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Abstract 

The 14-3-3 family of proteins are important signalling proteins involved in a number 

of cellular processes. These include cell cycle regulation, apoptosis, signal 

transduction and cell signalling. There is also considerable evidence in the literature 

that 14-3-3 proteins play a vital role in the pathology of neurodegenerative diseases, 

including Alzheimer’s, Parkinson’s, Huntington’s and Prion disease. The 

neurodegenerative disease of focus in this research is Spinocerebellar Ataxia Type 1 

(SCA1). SCA1 is a polyglutamine-repeat disease and the interaction of the disease 

protein ataxin-1 with 14-3-3 proteins leads to the toxic accumulation and subsequent 

protein aggregation which is characteristic of this disease. This study focused on 

attempting to elucidate the structure of various domains of the disease protein and 

also in identifying potential inhibitors of this deleterious interaction. Unfortunately, 

structural studies were not successful due to a number of caveats encountered in the 

expression and purification of the ataxin-1 protein domains. By utilising 

computational methods and small molecule inhibitors, a number of potential lead 

compounds which possess the ability to at least partly disrupt the interaction of 14-

3-3 have been identified. As 14-3-3 proteins play roles in other neurodegenerative 

diseases, successful identification of potential drug lead treatments can have far 

reaching benefits in a number of neurodegenerative diseases including SCA1. 

 

Lipid rafts are also involved in neurodegenerative disease pathology. Lipid rafts are 

cholesterol and sphingolipid rich domains which organise the plasma membrane 

into discrete microdomains and act as signalling platforms and processing centres 

which attach specific proteins and lipids. A number of disease proteins are 

processed at these membrane regions, including those involved in Alzheimer’s, 

Parkinson’s and Prion disease. This processing is a step which is critical in the 

pathology of disease and abnormal processing leads to the formation of toxic 

protein aggregates. Previous research in the lab identified the association of low 

levels of the five main brain isoforms of 14-3-3 proteins with rafts. This study 

expanded on this to positively identify the presence of the two phospho-forms of 14-
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3-3,  and . The mechanism by which 14-3-3 proteins associate with rafts was also 

investigated, indicating that 14-3-3 associates with rafts via an unidentified raft-

bound protein(s). In addition, the phosphorylation status and quaternary structure 

of 14-3-3 in the presence of sphingolipids has been explored. 
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CHAPTER 1 

14-3-3 PROTEINS, LIPID RAFTS AND 

NEURODEGENERATIVE DISEASES 

 

A number of proteins involved in a wide range of neurodegenerative diseases are 

known to interact with both 14-3-3 proteins and lipid rafts. Prior to undertaking this 

research, there was also a suggestion of a connection between lipid rafts and 14-3-3 

proteins. The purpose of this research was to further explore these connections 

between all three factors and investigate possible means of preventing these 

interactions for the purposes of potential treatments in neurodegenerative diseases. 

This first chapter addresses the position which each of these factors holds in current 

literature and sets a basis for the background into the purposes of the research in 

this thesis. The main neurodegenerative disease studied is Spinocerebellar Ataxia 

Type 1, which is discussed in section 1.3. 
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1.1. 14-3-3 Proteins 

The 14-3-3 family of proteins are generally classed as signalling adaptor proteins 

which primarily bind to phospho-serine and phospho-threonine motifs. A function 

for this protein family was first identified in the 1980s (Yamauchi et al. 1981; 

Ichimura et al. 1987) and since this, 14-3-3 protein research has expanded into a very 

broad field, encompassing eukaryotic organisms and intracellular signalling 

processes. A number of functions have been attributed to 14-3-3 and the number of 

identified interacting partners is continually increasing. To date, more than 400 14-3-

3 target proteins have been identified, with a recent study of endogenous 14-3-3ζ 

interacting proteins identifying 95 novel putative partners (Ge et al. 2010). This 

research has identified greater than 60 potential 14-3-3 ligands, which adds to the 

hundreds of ligands already identified through other studies (Jin et al. 2004; Pozuelo 

Rubio et al. 2004). 

Here is a brief introduction to this ever increasing research field, with the most 

relevant areas highlighted with regards to the research presented. 

 

1.1.1. Identification and Characterisation of 14-3-3 Proteins 

The family of 14-3-3 proteins were first identified by Moore and Perez (1967). The 

proteins are named according to their migration positions on two-dimensional 

DEAE-cellulose chromatography (“14th” fraction) and starch gel electrophoresis 

(“3.3” inches). 14-3-3 proteins are small and acidic, with a molecular mass of 28-33 

kDa (Toker et al. 1992). Despite being well known as an abundant brain protein, 14-

3-3 proteins have now been found in almost all tissues, including heart and liver 

(Celis et al. 1990). The different isoforms display a range of isoform specificity, 

which is discussed in section 1.1.3.2. The location of 14-3-3 proteins is 

predominantly in the cytoplasmic compartment, however these proteins have also 

been detected in intracellular organelles including the Golgi apparatus and the 

nucleus as well as the plasma membrane (Celis et al. 1990). It is also well established 

that 14-3-3 protein expression is not confined to mammalian tissues, but have been 
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detected in all eukaryotic organisms and cells examined thus far (Aitken 2002; Fuller 

et al. 2006). 

Studies by Jones and colleagues identified 14-3-3 proteins existing as dimers, 

fuelling theories that one function of 14-3-3 may be as an adaptor protein for 

signalling pathways (Jones et al. 1995a; Jones et al. 1995b). In addition, some 30 

years ago, 14-3-3 was shown to activate tryptophan and tyrosine hydroxylases 

(Yamauchi et al. 1981; Ichimura et al. 1987). The first indication of 14-3-3 being a 

phosphorylation-dependent protein was discovered by Furukawa and colleagues 

when they observed that 14-3-3 activation of tyrosine hydroxylase required 

phosphorylation by a serine/threonine kinase (Furukawa et al. 1993). Subsequent 

studies into the phosphorylation-dependent nature of 14-3-3 led to the identification 

of the binding motif required for ligand binding with 14-3-3. A library of 

phosphorylated peptides was constructed by Muslin and colleagues based on Raf-1, 

indicating that 14-3-3 is a phosphoserine-binding protein (Muslin et al. 1996). This 

resulted in the binding motif being refined to RSXpSXP, whereby X is equal to any 

amino acid. This sequence motif is referred to as the mode I motif following the 

discovery of a second consensus motif (Yaffe et al. 1997). The second motif, known 

as mode II has been identified as RXXXpSXP. A third binding motif, mode III, which 

is also phospho-dependent has been identified as pS/T (X1-2)-COOH (Ganguly et al. 

2005).  

Following the initial functional discovery for 14-3-3, a great many other attributes 

have been awarded to this promiscuous family of proteins. The discovery of the 

ability to activate tyrosine and tryptophan hydroxylases was shortly followed by the 

identification of 14-3-3 as a protein kinase C (PKC) inhibitor (Toker et al. 1992). 14-3-

3 proteins were also found to interact with full-length c-Bcr and the BCR/Abl 

complex, indicating that 14-3-3 has a role in cell cycle control (Reuther et al. 1994) 

(see Figure 1.1). There are also a number of publications detailing the interaction 

between 14-3-3 and various kinases, including Raf-1, which support a role for 14-3-3 

in signal transduction and as a ‘protein scaffold’ (Fantl et al. 1994; Freed et al. 1994; 

Fu et al. 1994; Liu et al. 1996; Honda et al. 1997; Fanger et al. 1998).  
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Figure 1.1: Schematic Diagram of 14-3-3 and Phosphorylation Sites 

A number of kinases can phosphorylate 14-3-3. The phosphorylated residue (P) and the 

respective kinase(s) are highlighted. In addition, alternative sequences for different isoforms 

are detailed. The purple boxes represent residues which have been shown to be essential for 

phosphopeptide binding and the regions of the protein which are involved in dimerisation 

are also highlighted. This figure is updated from Aitken (2006). 

 

The 1990s was an extremely prominent decade in 14-3-3 re-discovery. 14-3-3 

proteins were found to interact in a phospho-independent manner (Fu et al. 1993; 

Petosa et al. 1998), regulate and interact with DNA (Hermeking et al. 1997; Todd et 

al. 1998; Chan et al. 1999), structural information was uncovered (Jones et al. 1995a; 

Liu et al. 1995; Xiao et al. 1995; Yaffe et al. 1997) and implications in 

neurodegenerative disease was discovered (Layfield et al. 1996; Ostrerova et al. 

1999; Wiltfang et al. 1999). Since these developments, 14-3-3 research has further 

progressed, with greater establishment of a critical role in neurodegenerative 

disease (Waelter et al. 2001; Baxter et al. 2002; Chen et al. 2003; Mackie and Aitken 

2005). The fact that 14-3-3 proteins display a range of functions including 

modulation of transcription, inhibition of apoptosis and regulation of the cell cycle 

and intracellular signalling pathways indicate that they are plausible therapeutic 

targets which should be approached with caution (Muslin and Xing 2000; Berg et al. 

2003; Rosenquist 2003; Dougherty and Morrison 2004; Aitken 2006). The isoform 
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specificity of 14-3-3 proteins is detailed later which is an important factor to 

consider for therapeutic drug targeting. 

 

1.1.2. The Crystal Structure of 14-3-3 

The first crystal structures of 14-3-3 solved were those of 14-3-3τ and 14-3-3ζ (Liu et 

al. 1995; Xiao et al. 1995). Since then, the structures of all seven 14-3-3 isoforms have 

been solved in complex with bound ligands. These structures indicate that the 

proteins are dimeric and resemble a flattened horseshoe shape, containing a central 

channel, 35 Å long, 35 Å wide and 20 Å deep (see Figure 1.2). Each monomeric 

subunit is composed of nine anti-parallel -helices with the four of the N-terminal 

forming the dimer interface and channel floor (Gardino et al. 2006). It is generally 

accepted that ligand binding occurs in the central channel which is also known as 

the amphipathic binding groove. The binding groove has a basic pocket which 

consists of two arginine and one lysine residues which are in contact with either a 

serine or threonine which is phosphorylated on the target. On one side of the 

groove, helices 3 and 5 comprise a cluster of charged and polar residues and on the 

other side of the groove, helices 7 and 9 comprise a patch of hydrophobic residues. 

It is important to note that the residues which form the groove are mainly conserved 

across the different 14-3-3 isoforms (Liu et al. 1995; Xiao et al. 1995; Yaffe et al. 1997; 

Petosa et al. 1998). Since many 14-3-3 ligands bind well to all isoforms, it was 

suggested that binding of 14-3-3 to target proteins was mediated through the 

conserved amphipathic groove and that the basic cluster of residues K49, R56 and 

R127 are required for interaction between 14-3-3 and the phospho-amino acid in the 

ligand (Liu et al. 1995). Mutational analysis (Zhang et al. 1997; Thorson et al. 1998; 

Wang et al. 1998) and co-crystallization studies (Yaffe et al. 1997; Petosa et al. 1998; 

Rittinger et al. 1999) have been employed to test this hypothesis. As residues on 

either side of the binding groove are required for 14-3-3 protein interactions, it has 

been proposed that dimeric 14-3-3 is essential for full functionality (Tzivion et al. 

1998). 
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Figure 1.2: Structure of 14-3-3 

Each of the 14-3-3 monomers in the above images is represented by a different colour. Each 

monomer has nine alpha helices and the basic pocket, which is in contact with a peptide, is 

represented by the red coloured residues. The peptide bound to the monomer is coloured 

yellow, with the phosphorylated serine purple. The mode of peptide binding presented is 

‘mode 1’. The top image is a 90° rotation of the lower image, which allows visibility of the 

dimer interface (Xiao et al. 1995; Yaffe et al. 1997; Rittinger et al. 1999).  
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Structural studies into 14-3-3 proteins have provided a wealth of knowledge into the 

mechanisms which allow 14-3-3s to interact with other proteins. Co-crystallization 

studies have shown that 14-3-3 binding peptides utilise the amphipathic binding 

groove, whether the peptide is phosphorylated or not. This is an extremely relevant 

piece of information with regard to research conducted in Chapter 5. One protein 

which can bind to 14-3-3 proteins in a phosphorylation independent manner is the 

ADP-ribosyltransferase Exoenzyme S (ExoS) from Pseudomonas aeruginosa. ExoS 

does require the presence of 14-3-3 for activation (Fu et al. 1993) and subsequent 

studies identified that 14-3-3ζ binds to ExoS and that this interaction is required for 

ExoS activation (Masters et al. 1999). It has since been determined that the sequence 

DALDL in ExoS is essential for interaction with 14-3-3 (Henriksson et al. 2002). This 

sequence is also found in the unphosphorylated peptide R18 (with the sequence 

LDL) which is also a high affinity 14-3-3 binding peptide. This peptide was 

discovered by Fu and colleagues following the screening of a phage display library 

(Wang et al. 1999). Other proteins which bind to 14-3-3 in a phosphorylation 

independent manner include phospholipase A2, GP 1b alpha subunit of platelet 

membrane glycoprotein, Bax and p190RhoGEF (Aitken 2011). The interaction of 14-

3-3 with these proteins does not utilise a phosphorylated serine or threonine residue 

to account for the interaction. The interaction sequences of these proteins share little 

similarity; however they have features of amphipathic helices consistent with 14-3-3 

interaction. 

Phosphorylation-independent interactions with 14-3-3 pose a problem with regard 

to the regulatory mechanism which phosphorylation provides. If a protein interacts 

with 14-3-3 in a phosphorylation-independent manner, what prompts the 

dissociation of the protein from 14-3-3? One possible suggestion was proposed by 

the group who identified the phospho-independent interaction of 14-3-3 with Bax 

(Nomura et al. 2003). They state that Bax phosphorylation was not identified to 

account for a phosphorylation-dependent interaction with 14-3-3. They suggest that 

Bax and 14-3-3 interact in healthy cells and following delivery of an apoptotic 

stimulus, interaction of a phosphorylated protein with 14-3-3 releases Bax protein.  
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The dimeric quaternary structure of 14-3-3 is mediated by the N-terminus of the 

protein and this has been demonstrated by crystallographic studies (Liu et al. 1995; 

Xiao et al. 1995). The dimer interface of 14-3-3 proteins is formed by the packing of 

helix 1 from one of the monomers against helices 3 and 4 from the other, producing 

a 6-8 Å hole in the centre. Buried in the dimer interface are a number of 

hydrophobic and polar residues (L12, A16, V62, I65 and Y82), which are highly 

conserved across mammalian 14-3-3 isoforms. This raises the suggestion of 14-3-3 

proteins forming heterodimers, which is addressed in the following section (Jones et 

al. 1995a). 

As 14-3-3 proteins are dimeric, this means they possess the ability to simultaneously 

bind two ligands. Utilising this function can have significant biological implications 

in a number of cellular processes. One possible purpose of this 14-3-3 function may 

be to modulate the activity of two different signalling proteins, by bringing them 

together. Alternatively, 14-3-3 dimerization may have an impact on subcellular 

localisation. One proposed theory is that one monomer of 14-3-3 functions as a 

targeting unit, binding an anchored ligand whilst the other monomer binds a 14-3-3 

‘cargo’ protein. Examples of cargo proteins include Crm1, Cdc25 and the FOXOs, 

which are localised to the nucleus and cytoplasm respectively when bound to 14-3-3 

(Rittinger et al. 1999). The interaction of these proteins with 14-3-3 alters the 

subcellular location of the ‘cargo’ for interaction with another protein in the same 

compartment. The site of the anchored ligand may aid in localising cargo proteins to 

specific intracellular compartments (Jones et al. 1995a; Huber et al. 2002; Yaffe 

2002b).  
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1.1.3. 14-3-3 Isoforms 

In mammals, there are seven isoforms of 14-3-3 (β, γ, ε, ζ, η, σ and τ); however, for 

the purposes of this research, the main focus will be on the five major brain isoforms 

of 14-3-3 (β, γ, ε, ζ, and η). In mammalian brain, two of these isoforms are 

phosphorylated on Ser185 (β and ζ) (Aitken et al. 1995b). The 14-3-3s are expressed 

in a number of tissues and account for 1% of total soluble brain protein (Boston et al. 

1982). The different isoforms of 14-3-3 were named according to their reversed-

phase HPLC positions (Ichimura et al. 1988).  

The 14-3-3 family of proteins is highly conserved across a range of mammalian 

species and the isoforms are mainly identical, containing only a few diverse regions. 

The different isoforms and their alignment are shown in Figure 1.3. 

 

1.1.3.1. Dimerisation and Phosphorylation 

As previously stated, crystallisation of 14-3-3 proteins confirmed that they natively 

exist as dimers. As recombinant 14-3-3 proteins are always dimeric, this would 

suggest that the monomeric form is not thermodynamically favourable (Aitken et al. 

2002). Yet, a recent study has found a novel splice variant of human 14-3-3 (named  

14-3-3 epsilon sv) which, as a result of the splicing, has a deleted N-terminal -helix 

(Han et al. 2010). As stated, this region is imperative for dimer formation (Jones et 

al. 1995b).  GST pull-down and co-immunoprecipitation assays confirmed that the 

splice variant could not form a dimer with any of the other 14-3-3 isoforms. HEK293 

cells were transfected with both the full length and the splice variant forms of 14-3-3 

epsilon for 24 hours prior to UV irradiation. Flow cytometric analysis of the cells 24 

hours post irradiation indicated that 14-3-3 epsilon sv could still prevent UV-

induced apoptosis and therefore function as a monomer. This is at odds with other 

studies highlighting the importance of dimeric 14-3-3 for full functionality (Tzivion 

et al. 1998; Yaffe 2002a; Messaritou et al. 2010). 
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Figure 1.3: Alignment of Brain 14-3-3 Isoforms 

A. Sequences of 14-3-3 brain isoforms aligned using the ClustalW server 

(http://www.ebi.ac.uk/Tools/msa/clustalw2/). Residues are coloured according to 

their physicochemical properties. AVFPMILW = Small (small + hydrophobic (incl. 

aromatic –Y)); DE = Acidic; RK = Basic; STYHCNGQ = Hydroxyl + Sulfhydryl + 

Amine + G.  

Characters on bottom row indicate the following:  

* = position of single, fully conserved residue; 

: = conservation between groups of strongly similar properties; 

. = conservation between groups of weakly similar properties. 

B. Phylogenetic tree indicating the relationship between the different 14-3-3 isoforms 

generated using the facility at http://pir.georgetown.edu/pirwww/index.shtml. It is 

clear that beta and zeta isoforms are very similar, as are gamma and eta, with 14-3-3 

epsilon being the most distinct brain isoform of 14-3-3. 
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14-3-3 proteins not only form homo-dimers, they also form hetero-dimers. This was 

discovered through cross-linking and co-immunoprecipitation studies which 

identified that 14-3-3τ and 14-3-3ζ can dimerise in vitro and 14-3-3ε and 14-3-3ζ 

dimerise in vivo (Jones et al. 1995a). Co-immunoprecipitation studies were 

conducted by transfecting myc-tagged 14-3-3ε into COS cells to interact with 

endogenous 14-3-3 which had been overexpressed. As only little endogenous 14-3-3 

co-immunoprecipitated with the tagged 14-3-3, it was concluded that 14-3-3 

dimerisation is stable and not readily exchangeable. 

More in-depth analysis of the heterodimers which 14-3-3 can form was conducted in 

PC12 cell lines which had been stably transfected with myc-tagged 14-3-3ε and  

(Chaudhri et al. 2003). The results of these studies confirmed that 14-3-3 did 

dimerise with all endogenous 14-3-3 isoforms and also homodimerise. However, the 

strongest dimerization was detected between myc-tagged 14-3-3 and 14-3-3. In 

stark contrast, the authors observed myc-tagged 14-3-3 dimerising with all 

endogenous 14-3-3 isoforms tested ( and ) apart from endogenous 14-3-3. 

There has been a suggestion as to why the isoform of 14-3-3 does not 

homodimerise well. Structural studies indicate that homodimerised 14-3-3ζ is 

stabilized through three salt bridges in each half of the dimer interface. However, in 

14-3-3, only one of these salt bridges is present in the homodimer. This information 

led Gardino and colleagues to suggest that in order to increase the number of salt 

bridges and therefore stabilise the dimer interface,  14-3-3 preferentially dimerises 

with other 14-3-3 isoforms (Gardino et al. 2006).  

The ability of 14-3-3 proteins to form heterodimers appears to be a conserved 

feature, as Saccharomyces cerevisiae 14-3-3 homologues BMH1 and BMH2 have also 

been found to exist mainly as heterodimers (Chaudhri et al. 2003). In keeping with 

the theory proposed on the ability of 14-3-3 to bind two ligands; one function which 

heterodimeric forms of 14-3-3 may have is to bring two distinct signalling proteins 

together which would bind specifically to different isoforms of 14-3-3 (Aitken et al. 

2002). Functional relevance of homodimers may therefore be to alter the cellular 

localisation or activity of specific proteins. 
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One very important aspect of 14-3-3 heterodimerisation which should be addressed 

is the implications of heterodimers with the phosphorylated isoforms of 14-3-3;  

and . The  and  isoforms of 14-3-3 are the phosphorylated forms of  and  

respectively. These proteins are phosphorylated by up to 50% in brain and this is the 

only tissue where these isoforms of 14-3-3 have been detected to date (Aitken et al. 

1995b). One aspect which makes these isoforms all the more interesting is the fact 

that not all of the 14-3-3 isoforms contain this phosphorylation site, indicating that 

phosphorylation on Ser185 is an isoform-specific regulatory mechanism.  

Following the identification of the phospho-forms, a function was soon attributed to 

them. Aitken and colleagues discovered that the phosphorylated isoforms improved 

the ability of 14-3-3 proteins to inhibit PKC two-fold (Aitken et al. 1995a). It has 

since been identified that Ser185 on 14-3-3,  and  is phosphorylated by the stress 

activated Jun N-terminal kinase (JNK) (Tsuruta et al. 2004). Phosphorylation of 

these isoforms has serious consequences for apoptosis regulation by disrupting their 

interaction with pro-apoptotic proteins Bax, Bad, FOXO3a and c-Abl. This results in 

the release of these proteins into the cytoplasm to induce pro-apoptotic signalling 

(Tsuruta et al. 2004; Sunayama et al. 2005; Yoshida et al. 2005). 

Other phosphorylation sites on 14-3-3 isoforms include Thr233 (14-3-3ζ) and Ser233 

(14-3-3) which are mediated by casein kinase ICKI) and the breakpoint cluster 

region (BCR) kinase, respectively (see Figure 1.1) (Dubois et al. 1997; Clokie et al. 

2005). Phosphorylation of these sites appears to be isoform-specific. As only the 

non-phosphorylated form of 14-3-3ζ had previously been shown to bind to Raf-1 in 

HEK cells (Rommel et al. 1996), the authors of the CKI study concluded that 14-3-

3ζ phosphorylation on Thr233 is likely to negatively regulate interaction with Raf-1. 

There are also reports in the literature of 14-3-3 proteins having an additional 

phosphorylation site on Ser58 (Megidish et al. 1998). The phosphorylation of this 

site has been attributed to the activity of kinases including Sphingosine Dependent 

Kinase 1 (SDK1), PKB/Akt, caspase-cleaved PKC and PKA (Megidish et al. 1998; 

Powell et al. 2002; Hamaguchi et al. 2003; Woodcock et al. 2003; Ma et al. 2005). As 

this residue is buried deep within the dimer interface, it would not be expected to be 
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exposed given the stable formation of the 14-3-3 dimer. Woodcock and colleagues 

have investigated the implications which phosphorylation of this site has on dimer 

formation (Woodcock et al. 2003; Woodcock et al. 2010). This topic is of particular 

interest and is detailed and investigated further in Chapter 3. 

 

1.1.3.2. Isoform-Specific Functions of 14-3-3 Isoforms 

The majority of organisms investigated to date express more than one homologue of 

14-3-3; Saccharomyces cerevisiae expresses only two isoforms of 14-3-3, whereas 

Arabidopsis thaliana expresses around thirteen 14-3-3 isoforms. The evolutionary 

conservation of multiple 14-3-3 isoforms has been explained and discussed by 

Rosenquist (et al. 2000). Here, the authors discuss common suggestions regarding 

14-3-3 isoform specificity, including the possibility that all isoforms of 14-3-3 bind 

with relatively equal specificity to binding targets, and express very little isoform 

specificity. This theory has been supported through studies with Arabidopsis thaliana 

14-3-3 isoforms, which were expressed in yeast and replaced all endogenous 14-3-3 

(van Heusden et al. 1996). Despite these findings, the authors also discussed studies 

which disputed this theory. Another two Arabidopsis thaliana studies support the 

prospect of 14-3-3 isoform specificity. There were significant differences identified 

between five 14-3-3 isoforms to inhibit nitrate reductase (Bachmann et al. 1996) and 

nine isoforms displayed different affinities for a C-terminus peptide from the plant 

plasma membrane H+-adenosine triphosphatase (Rosenquist et al. 2000). Other 

possibilities to account for the conserved evolution of 14-3-3 isoforms include 

ensuring a high level of protein is available to conduct various cellular processes. 

Should a large amount of protein be required, by increasing the number of genes 

which encode that protein, this required quantity can be met. Another suggestion is 

that the different isoforms may be targeted to specific subcellular compartments, or 

are specifically expressed in different tissues. Finally, 14-3-3 isoforms may interact 

with a specific subset of binding partners, which would help to account for the 

diverse range of functions attributed to 14-3-3. 
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Table 1.1 lists a selection of mammalian proteins for which 14-3-3 isoforms display a 

range of isoform specificity. The majority of the studies involved yeast two hybrid 

screens or co-immunoprecipitation and ‘pull-down’ assays. However, as 14-3-3 

proteins form heterodimers as well as homodimers (see section 1.1.3.1) this 

complicates determining isoform specific interactions. To overcome this issue, most 

of the studies involved over-expressing the 14-3-3 isoform of interest to produce 

homodimers. One potential issue with this method is that the physiological 

relevance of the interaction may be compromised, as natively, the 14-3-3 of interest 

may preferentially be heterodimeric. However, testing the functional specificity of 

heterodimers is a more challenging task. One main caveat of the studies listed in 

Table 1.1 is the poor range of isoform investigation; most have studied only a few 

isoforms and some do not report on isoform specificity. This is a factor which has 

been addressed in more recent studies and the results to date do provide an insight 

into mammalian 14-3-3 isoform specificity.  

It is clear that particular interactions incur greater isoform specificity, although 

generally more than one isoform can bind a certain protein with varying affinities. 

The 14-3-3 isoforms found to interact with the proteins detailed in Table 1.1 are 

listed in order of isoform specificity. 

An interesting observation highlighted by these studies is the way in which related 

14-3-3 isoforms interact with other proteins. Figure 1.3B is a phylogenetic tree 

analysing the relationship between the different brain isoforms of 14-3-3. This shows 

that the  and  isoforms are very similar and  and  are highly related, with  

sharing the least similarity between the other 14-3-3 isoforms. One would expect 

then that similarly related isoforms would behave and interact in a similar manner 

also. For a number of cases, this is true; A20, ADAM22, AKAP-lbc, CamKII, 

CDC25B, p27, PKCζ and Raf-1. There appears to be greater consistency with  and  

isoforms, however the same cannot be said of 14-3-3  and . This is evident from 

14-3-3 isoform interactions with A20 and ADAM22. Whilst both highly related  

and  14-3-3 interact with these proteins, 14-3-3 also interacts with them; however 
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Table 1.1: Selected Isoform-Specific 14-3-3 Protein Interactions 

Protein  14-3-3 Isoform(s) Reference 

A20 η, ε, β, ζ (Vincenz and Dixit 1996) 

ADAM22  (Zhu et al. 2003; Zhu et al. 2005) 

AKAP-lbc  (Diviani et al. 2004) 

Ataxin-1   (Chen et al. 2003) 

CamKII  slight  (Davare et al. 2004) 

Cbl  (Liu et al. 1997) 

CBP501 slight (Matsumoto et al. 2011) 

Cdc2/cyclin B1 σ (Chan et al. 1999) 

CDC25B slight (Mils et al. 2000; Manke et al. 2005) 

CDC25C   (Chan et al. 1999; Dalal et al. 2004) 

CDK11P110 slight (Feng et al. 2005) 

CLIC4  (Suginta et al. 2001) 

ER  (Kim et al. 2011) 

GR  (Wakui et al. 1997) 

IGF-1  (Craparo et al. 1997) 

KSR1  (Jagemann et al. 2008) 

MYPT1  (Koga and Ikebe 2008) 

NFAT  (5x greater), (Chow and Davis 2000) 

PMCA4  (Rimessi et al. 2005) 

P27Kip1 (p27)  slight (Sekimoto et al. 2004) 

Par3  slight (Izaki et al. 2005) 

Parkin  (Sato et al. 2006) 

PKC  (Van Der Hoeven et al. 2000) 

p53 and (Rajagopalan et al. 2010) 

Raf-1 β and ζ (Fantl et al. 1994; Freed et al. 1994) 

The isoforms are listed in order of specificity. Where only one isoform is listed, generally 

that isoform was selected from a screen (e.g. yeast two hybrid) or proteomic study 

(identification my mass spectrometry). Not all 14-3-3 isoforms were necessarily tested per 

study. Abbreviations: A20 – zinc finger protein; ADAM22 – A disintegrin and 

metalloproteinase 22; AKAP-lbc – A-kinase anchoring protein-lbc; CamKII – Calcium and 

calmodulin-dependent kinase kinase; Cdc2 – cell division cycle 2 protein; CDC25C – cell 

division cycle 25C protein; CDK11 – cyclin dependent kinase 11; CLIC4 – chloride 

intracellular channel 4; ER – estrogen receptor ; GR – glucocorticoid receptor; IGF-1 – 

Insulin growth factor 1 receptor; MYPT1 – myosin-binding large subunit; NFAT – nuclear 

factor of activated T cells; PMCA4 – plasma membrane calcium pump. 
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there is no interaction with 14-3-3. Instead, there is greater preference of interaction 

with 14-3-3, which shares least similarity with the other isoforms. This does appear 

to be a running theme, with a number of interactions showing specificity for  and  

isoforms and not What is also interesting is the number of interactions with 14-3-

3, indicating that this protein has a number of overlapping properties with other 

isoforms, despite displaying the lowest level of sequence similarity. It may be that 

we have yet to discover 14-3-3 specific functions. 

There have also been studies into heterodimer-specific 14-3-3 interactions. Most 

importantly, these have been focussed on the implications on signalling complex 

formation as a result of preferential 14-3-3 heterodimer formation (Jagemann et al. 

2008; Liang et al. 2008; Fischer et al. 2009; Kligys et al. 2009). The Jones group 

identified a preference of 14-3-3  dimers to interact with the SSH1 (Slingshot) 

phosphatase which is involved in keratinocyte migration (Kligys et al. 2009). 

Another group looked at the potential of both homo- and heterodimers of 14-3-3 to 

associate with Raf kinases (Fischer et al. 2009). The authors concluded that whilst 

Raf- A, B and C were studied, Raf-B had the strongest interaction with 14-3-3 

isoforms and the presence of 14-3-3 suggested that 14-3-3 proteins studied were 

heterodimeric (Fischer et al. 2009). The location of the RAF proteins also impacts on 

their interaction with 14-3-3 proteins. The study found that Raf-A interacted least 

with 14-3-3 isoforms when analysing homodimers and this was also consistent in 

studies with heterodimers. Raf-B and Raf-C expressed in Saccharomyces cerevisiae 

associated with both homo- and heterodimeric forms of 14-3-3 (Fischer et al. 2009). 

Salt and water homeostasis in epithelial sodium channels is also dependent on 

heterodimeric 14-3-3 (Liang et al. 2008). Knockdown studies of 14-3-3 isoforms 

revealed that a heterodimer of 14-3-3  is required for aldosterone regulation 

(Liang et al. 2008). Finally, one important 14-3-3 interaction is with the molecular 

scaffold kinase suppressor of Ras 1 (KSR1) and studies have shown that interaction 

is preferentially with 14-3-3, both homodimeric and heterodimeric forms 

(Jagemann et al. 2008). The authors found that KSR1 binds to, and can be regulated 
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by, 14-3-3 heterodimers with 14-3-3  and , however the role of different 

heterodimers in KSR1 regulation was not explored (Jagemann et al. 2008). 

These studies indicate that the ability of different isoforms of 14-3-3 to 

heterodimerise has a profound impact on a variety of cellular processes and further 

investigation may yield more information on the isoform-specific importance of 

these proteins. 
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1.1.4. 14-3-3 and Neurodegenerative Diseases 

14-3-3 proteins are predominantly found in the brain and the two phosphorylated 

isoforms of 14-3-3 are only detected in brain tissue. The high level of these proteins 

in brain suggests that they play an important role in a number of vital neuronal 

regulatory processes. This alone indicates that 14-3-3 proteins are likely to be crucial 

in neurodegenerative diseases and many research groups have identified a number 

of links with 14-3-3 proteins and neurodegeneration. A summary of the main 

neurodegenerative diseases and the role of 14-3-3 proteins follow. 

 

1.1.4.1. Alzheimer’s disease (AD) 

The German psychiatrist and neuropathologist Alois Alzheimer (1864-1915) first 

described the disease which bears his name in 1907 following investigation of the 

patient Auguste D (Alzheimer 1907; Alzheimer et al. 1995). He reported that this 51-

year-old female presented a “strange disease of the cerebral cortex” and reported that 

she presented symptoms of presenile dementia, displaying nerve cell loss, diffuse 

cortical atrophy and the characteristic plaques and tangles associated with the 

disease. It was his then colleague and director at the Munich psychiatric clinic, Emil 

Kraeplin, who named this condition as ‘Alzheimer’s disease’.  

Nowadays, Alzheimer’s disease is known as the most common form of progressive 

dementia, affecting millions of people worldwide. This neurodegenerative disease is 

characterized by the presence of β-amyloid plaques and neurofibrillary tangles 

which accumulate in the brains of patients (Glenner and Wong 1984; Goedert et al. 

1988; Wischik et al. 1988). The majority of cases of AD are sporadic, however there 

are a small number of cases which occur through autosomal-dominant inheritance 

and the majority of these cases occur before the age of 65 (Terry and Davies 1980). 

Patients who develop AD before the age of 65 are classed as having ‘presenile’ or 

‘early-onset’ dementia and patients developing the disease after the age of 65 are 

classed as having ‘senile’ or ‘late-onset’ dementia. 



 

- 19 - 

 

Four genes have been identified which can cause AD. The proteins which these 

genes encode are the presenilins (PSEN1 and PSEN2), amyloid precursor protein 

(APP) and Apolipoprotein E (ApoE). Mutations in the presenilins and APP lead to 

the production of amyloidogenic -amyloid, which accumulates in neurons and 

forms the characteristic plaques. These three genes are typically associated with 

early-onset familial AD and are discussed in more detail later in this section. ApoE 

mutations are associated with late-onset familial AD. This protein has a role in 

cholesterol redistribution and is discussed in detail in section 1.2.3.1. 

A link between AD and 14-3-3 has been identified. Layfield and colleagues 

identified 14-3-3 proteins in the neurofibrillary tangles (NFT) of AD brains (Layfield 

et al. 1996). In particular, 14-3-3 and  have been identified through co-precipitation 

studies to bind to Aβ (β-amyloid) in rabbit brains (whose Aβ sequence is identical to 

human) and mass spectrometry analysis of rabbit and mouse brains identified 14-3-

3ε, ζ and η isoforms (Nelson and Alkon 2007).  

14-3-3ζ is also implicated in the tau phosphorylation complex (Agarwal-Mawal et al. 

2003). Tau is a microtubule binding protein which, when hyperphosphorylated, 

forms neurofibrillary tangles. The interaction between glycogen synthase kinase 3β 

(GSK3β) and tau has been proposed to be mediated by 14-3-3, resulting in increased 

phosphorylation. However, 14-3-3 association with tau and GSK3 has been 

identified in a 400-500 kDa protein complex; much larger than the combined sizes of 

these three proteins at ~167 kDa. This suggests that 14-3-3 alone is not likely to be 

the sole modulator of this interaction. In addition, both GSK3 and tau are proteins 

of reasonable size; 47 and 60 kDa respectively. Given the size of these two proteins, 

it would rather difficult for both of these proteins to fit into the binding groove of 

14-3-3 at the same time. The authors only investigated the role of 14-3-3 in the tau 

phosphorylation complex, so the roles of other proteins in this complex are 

unknown. The increased phosphorylation observed in this study may be due to the 

localisation function of 14-3-3, relocating one or both of these proteins 

independently to aid in the phosphorylation of tau by GSK3. 
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Additionally, 14-3-3ζ binds to unphosphorylated tau protein at a binding site on the 

C-terminal microtubule binding domain (Hashiguchi et al. 2000). One group 

investigated the effects of tau phosphorylation on 14-3-3ζ binding. Sadik and 

colleagues discovered that in vitro phosphorylation of tau with a range of kinases 

(PKA, PKB, GSK3β, CDK2 and CK1) altered 14-3-3ζ association (Sadik et al. 2009). 

They found that there was a ~2.5-fold increase in 14-3-3ζ association with tau 

protein phosphorylated with PKA or PKB compared to unphosphorylated protein. 

Phosphorylation with the other kinases did not result in any significant change in 

14-3-3ζ association compared to unphosphorylated protein. The authors concluded 

that 14-3-3 has a higher affinity for phosphorylated tau protein and that 

phosphorylation by PKA or PKB generates a phosphorylation-dependent binding 

site at the N-terminal projection domain for 14-3-3 interaction. They also 

investigated the other brain 14-3-3 isoforms for association with phosphorylated tau 

and found that in addition to 14-3-3ζ, both the β and η isoforms of 14-3-3 are 

involved in phosphorylation dependent and independent association with tau. In 

addition, tau phosphorylation creates an additional 14-3-3 binding site. This binding 

site only becomes available at the N-terminus of the protein following 

phosphorylation by PKA or PKB (Sadik et al. 2009). This comprehensive study 

identified this additional phosphorylation site on tau as Ser214 which is present in 

rat brain and co-immunoprecipitates with 14-3-3 in vivo. 14-3-3 interaction at this 

site reduces tau aggregation, prompting the authors to suggest that the interaction 

may change the conformation of tau to maintain it in a non-aggregated state (Sadik 

et al. 2009). 

The presenilins (PSEN 1 and 2) and APP are the three proteins which have 

pathogenic mutations which contribute to familial forms of AD (Hardy 1997). 

PSEN1 is involved in the regulation of APP, which affects the size of β-amyloid (Aβ) 

fragments produced. Aβ1-40 is non-amyloidogenic, but Aβ1-42 is amyloidogenic. 

PSEN1 interacts with -catenin (also known as NPRAR (neural plakophilin-related 

arm-repeat protein) or neurojungin) (Tanahashi and Tabira 1999) as does 14-3-3ζ in 

a phospho-dependent manner (Mackie and Aitken 2005). Mutation of Ser1072 on -
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catenin abolishes binding of 14-3-3 in both transfected cells and in vitro. Despite this 

connection having no pathophysiological role in AD, it does support another link 

between 14-3-3 and neurodegenerative diseases.  

 

1.1.4.2. Parkinson’s disease (PD) 

The condition known as ‘Parkinson’s disease’ was first described by the physician 

James Parkinson in 1817 as a form of ‘shaking palsy’. However, the first European 

reference of the disease was actually in the late 16th century by William Shakespeare, 

who referred to the disease as ‘palsy’ of old age in several of his plays (Stien 2005). 

PD is mainly classed as a sporadic disease, yet extremely few environmental factors 

or triggers have been identified to date (Tanner 2003; Taylor et al. 2005; Dick et al. 

2007). Most cases of PD present at 60 years of age and typically last about 15 years 

before the patient dies from the disease, most commonly from pneumonia 

(reviewed in Lees et al. 2009). PD is characterised by bradikinesia, which is a 

reduction in speed of initial voluntary movements which progressively reduce in 

speed, amplitude or repetition; resting tremor, muscle rigidity and postural 

instability. Pathophysiologically, PD is characterised by depletion of dopaminergic 

neurons of the substantia nigra pars compacta (SNpc) and the presence of 

intracellular inclusions, including Lewy bodies, in various areas of the brain, 

including the SN, hypothalamus, brain stem, hippocampus and the cortex 

(Nussbaum and Polymeropoulos 1997).  

The first connection between Parkinson’s disease and 14-3-3 was shown by 

Ostrerova and colleagues (et al. 1999) when they suggested that 14-3-3 and the PD-

disease protein -synuclein share 40% sequence homology over a limited part of 

their sequence. They also discovered that -synuclein interacts with 14-3-3 and 

ligands of 14-3-3, leading to over-expression and toxicity. Further investigation into 

the shared interactions of 14-3-3 and -synuclein revealed that dopamine 

homeostasis is disrupted due to reduced -synuclein levels as a result of 

aggregation (Perez et al. 2002). The levels of 14-3-3/-synuclein complexes are 
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increased in dopaminergic neurons in the SN, indicating that 14-3-3 contributes to 

dopamine dependent neurotoxicity through selective vulnerability of dopaminergic 

neurons (Xu et al. 2002).  14-3-3 is also sequestered into Lewy bodies by -synuclein, 

possibly preventing the anti-apoptotic role of 14-3-3 (Kawamoto et al. 2002).  

A recent study has found a neuroprotective quality of 14-3-3 in PD (Yacoubian et al. 

2010). In an -synuclein transgenic mouse model, mRNA expression for a number 

of 14-3-3 isoforms (and ) was down-regulated; leading to the conclusion that 

reduced expression is a key factor in PD progression. This was supported by the fact 

that over-expression of these same isoforms resulted in a neuroprotective effect; by 

reducing the formation of -synuclein inclusions and protecting against chemical 

inducers of PD in various dopaminergic cell lines (Yacoubian et al. 2010). These 

results support the theory that 14-3-3 sequestration into Lewy bodies can have a 

significant impact on -synuclein toxicity. 

Another aspect which links 14-3-3 with PD is through 14-3-3 interaction with the 

disease protein parkin (Sato et al. 2006). The linker region of parkin ubiquitin ligase 

contains a 14-3-3 binding sequence, allowing interaction with 14-3-3. Binding of 14-

3-3 to the linker region suppressed ubiquitin ligase activity. The authors also noted 

that -synuclein relieved this negative regulation of parkin through sequestration of 

14-3-3. This led the authors to conclude that 14-3-3 is a regulating protein which 

links -synuclein with parkin in PD pathogenesis (Sato et al. 2006). 

Finally, 14-3-3 has been shown to interact with the leucine-rich repeat protein kinase 

2 (LRRK2), whereby genetic mutations predispose patients to develop PD (Nichols 

et al. 2010). When this enzyme is phosphorylated on Ser910 and Ser935, interaction 

with 14-3-3 occurs, preventing aggregation of LRRK2. Recent studies have shown 

that a number of PD mutations alter this phosphorylation state, disrupting the 

interaction of LRRK2 with 14-3-3 (Li et al. 2011b). In vivo analysis has shown that 

disrupting 14-3-3 interaction with LRRK2 alters the cytoplasmic localization of 

LRRK2, leading to the formation of inclusion bodies (Nichols et al. 2010). These 

studies indicate that 14-3-3 interaction with LRRK2 is vital in preventing neurotoxic 

accumulation of LRRK2 aggregates.  
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Collectively, the studies presented here suggest that whether by direct or in-direct 

methods, 14-3-3 proteins play a major role in the pathogenesis of PD. 

 

1.1.4.3. Huntington’s disease (HD) 

The condition referred to as ‘Huntington’s disease’ first gained attention following 

the reports by Osler (1893). He was referring to the original transcripts of George 

Huntington (Huntington 1872) after whom the disease is named. Huntington’s 

observations on the disease were those of a hereditary form of chorea which he 

found to exist “almost exclusively on the east end of Long Island”. It was not until 20 

years later that Osler gave the disease the attention it deserves. In 1932, Vessie 

(1932) investigated the ancestry of the families whom Huntington studied and 

identified that 1,000 cases across 12 generations descended from 2 brothers in 

Suffolk, England.  

HD is an autosomal-dominant, progressive neurodegenerative disease, 

characterised by a distinct phenotype of chorea, dystonia, cognitive decline, poor 

coordination and behavioural difficulties. The disease typically presents around 

middle-age, however due to the genetic nature of the disease, age of onset can be at 

any time (reviewed in Walker 2007). HD is one of the polyglutamine-repeat 

diseases, resulting from an expanded polyglutamine tract in the protein huntingtin 

(htt). The length of this tract is inversely correlated with age of onset of disease. This 

expanded protein can form intranuclear and intracytoplasmic inclusions, which are 

comprised of a number of proteins, including -synuclein and 14-3-3 (Waelter et al. 

2001). 

In HD, GABA (gamma aminobutyric acid) receptor expression is increased (Cepeda 

et al. 2004). It is the GABAergic neurons of the basal ganglia which are most 

vulnerable in HD and dysfunction results in the choreal symptoms witnessed in 

patients. There is no evidence to suggest that levels of 14-3-3 are altered in HD 

disease models, however reduced 14-3-3 binding to GABABR1 receptor subunits 

has been discovered (Couve et al. 2001). The interaction of 14-3-3 with the GABABR1 
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subunit prevents dimerization of GABABR1 and GABABR2; a step vital for eliciting 

agonist response (Bowery and Enna 2000; Filippov et al. 2000). This suggests that 

functional expression of GABA receptors is involved in HD pathogenesis, leading to 

neurodegeneration. In addition, 14-3-3 interacts with huntingtin-associated protein 

1 (HAP1) (Rong et al. 2007), which regulates the trafficking of GABA receptors to 

the membrane from the endoplasmic reticulum; another factor which is disrupted in 

HD (Twelvetrees et al. 2010). 

Waelter and colleagues (et al. 2001) studied aggresome-like inclusions in human 293 

Tet-Off cells and found that they contained ubiquitinated mutant huntingtin and 14-

3-3 proteins. They concluded that the inclusions were neurotoxic, causing 

ultrastructural changes and were formed as a result of failure in proteasomal 

degradation (Waelter et al. 2001). Since then, it has been shown that 14-3-3 

interaction with the N-terminal domain of huntingtin is critical for aggresome 

formation and targeting (Wang et al. 2009).  

There is further information regarding the role of 14-3-3 and the formation of 

huntingtin aggregates from transfection studies. A study in N2A cells identified 

interaction between 14-3-3  and  with the N-terminus of polyglutamine 

expanded huntingtin (Omi et al. 2008). This investigation found that suppression of 

siRNA for 14-3-3 prevented aggregate formation; however the same could not be 

shown for the other 14-3-3 isoforms. The authors concluded that 14-3-3 participates 

in the aggregation of non-native, aggregation-prone proteins under non-native 

conditions (Omi et al. 2008). 

Finally, 14-3-3 proteins play a role in the transcriptional status of the huntingtin 

protein in HD. It has been shown that Huntington’s disease binding protein 2 

(HDBP2) interacts with 14-3-3, a factor which influences the subcellular 

localization of HDBP2 (Sichtig et al. 2007). This has implications on the expression of 

huntingtin, as it has been previously shown that HDBP2 regulates gene expression 

of huntingtin in neuronal cells (Tanaka et al. 2004).  
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1.1.4.4. Creutzfeldt-Jakob Disease (CJD) 

CJD, along with Gertsmann-Straussler disease, fatal familial insomnia and kuru are 

forms of human prion disease. Approximately 15% of prion disease cases are 

inherited through mutations in the PRNP gene and the other cases of disease are 

either acquired or sporadic. The worldwide incidence of CJD is 0.5-1 case per 

million population (Alperovitch et al. 1994). The majority of human prion disease 

cases are sporadic however variant CJD (vCJD) can be acquired in humans from 

cattle infected with bovine spongiform encephalopathy (BSE), the variation of the 

disease in cattle (Ironside et al. 1996; Will et al. 1996). The disease is known as 

scrapie in sheep.  

CJD is a transmissible spongiform encephalopathy (TSE). It is a rapidly progressing 

fatal central nervous system disorder which is characterised by rapidly progressing 

dementia and in more than 90% of cases, patients die within a year of displaying 

disease symptoms (Brown et al. 1994). The transmissible agent of the disease has 

been termed as a proteinaceous infectious agent; also known as prion (Prusiner 

1982) and the normal mammalian cellular gene coding for the prion protein (PrP) 

has been identified (Oesch et al. 1985).  

The first indications of a link between 14-3-3 and CJD were uncovered from a screen 

for protein markers in cerebrospinal fluid (CSF) for pre-mortem diagnosis 

(Harrington et al. 1986; Hsich et al. 1996). The original assumption for the presence 

of 14-3-3 in the CSF was assumed to be due to a leakage of brain proteins from a 

massive neuronal disruption (Hsich et al. 1996). The authors also concluded that the 

rate of neuronal destruction should be proportional to the quantity of 14-3-3 

present. Since then, much more has been learnt about the significance of 14-3-3 

proteins in the CSF of CJD patients. Kenney and colleagues discovered that the 

concentration of 14-3-3 in the CSF of CJD patients is actually considerably higher 

than in patients suffering from other neurodegenerative diseases (Kenney et al. 

2000). Now, a CSF assay for 14-3-3 proteins is a standard procedure for diagnosing 

CJD and remains the highest diagnostic tool in CJD (WHO 1998). Comprehensive 

studies have also been conducted to identify that the 14-3-3 isoforms which appear 
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in the CSF are  and  (Wiltfang et al. 1999). This provides some degree of 

differentiation between which isoforms of 14-3-3 are specific to CJD from other 

neurodegenerative diseases.  

Further to their identification in the CSF, the distribution of 14-3-3 proteins is also 

significantly altered in scrapie-infected murine brain (Baxter et al. 2002). This study, 

conducted in an established rodent scrapie model, immunolabelled different 14-3-3 

isoforms to identify their localisation in normal and scrapie-affected brain. One 

difference observed from immunoblot analysis of brain extracts from both normal 

and affected brain was the reduction in levels of 14-3-3. In normal brain, the level 

of this isoform is significantly lower than the other detected isoforms (except for 14-

3-3), and in the scrapie brain, the level of this protein drops below the limit of 

detection by immunoblotting (Baxter et al. 2002). The authors proposed that the 

reduction in 14-3-3 may be due to its presence only in the hippocampus in normal 

brain, a region which is severely damaged in neurodegeneration. The levels of the 

other 14-3-3 isoforms ( and ) are expressed at similar levels in both infected 

and normal brain. In normal brain, these isoforms are widely distributed; however 

in disease brain the labelling patterns in the thalamus and hippocampus identified 

the absence of these isoforms. The authors attributed the region-specific reduction in 

14-3-3 detection to be a result of disease pathology. The areas which are most 

severely affected by the disease are those which displayed the greatest differences in 

14-3-3 isoform distribution when compared to normal brain (Baxter et al. 2002).  
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1.1.4.5. Amyotrophic Lateral Sclerosis (ALS) 

Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disorder characterised 

by the depletion of large motor neurons in the brain, brainstem and spinal cord. The 

disease presents in adults and is clinically recognized by progressive fatal paralysis 

resulting in death by respiratory failure over the space of three to five years 

(reviewed in Siddique and Ajroud-Driss 2011). ALS is a predominantly sporadic 

disease of unknown etiology. Almost a decade and a half after the first descriptions 

of a progressive muscular atrophy, the first gene attributed to cause a familial form 

of the disease was identified in SOD1 (copper/ zinc superoxide dismutase) (Rosen 

1993). Since then, a further 10 genes have been found linked to the disease (Siddique 

and Ajroud-Driss 2011). 

At present, there are number of studies which support involvement of 14-3-3 

proteins in ALS. ALS patients, both sporadic and familial cases, display hyaline 

inclusions and proteinaceous cytoplasmic aggregates, similar to Lewy bodies (Bruijn 

et al. 1997; Watanabe et al. 2001; Corcoran et al. 2004; Kawamoto et al. 2004). 

Kawamoto and colleagues found that these inclusions contained abundant 14-3-3 

protein, leading the authors to suggest that 14-3-3 may play an integral role in 

inclusion formation (Kawamoto et al. 2004). 

Bcl2-associated athanogene 3 (BAG3) has been shown to be important in targeting 

Hsp70 substrates involved in the binding to dynein to aggresomes (Gamerdinger et 

al. 2011). It was previously known from a QUICK (Quantitative 

Immunoprecipitation Combined with Knockdown) study that 14-3-3ζ binds to 

BAG3 (Ge et al. 2010). This useful method for identifying protein-protein 

interactions employs stable isotope labelling with amino acids (SILAC), RNAi 

induced knockdown, co-immunoprecipitation and quantitative mass spectrometry. 

Briefly, cells are metabolically labelled by SILAC before knocking out the protein of 

interest by RNAi and incubating cell lysates with an immobilized antibody for the 

protein of interest. Finally, precipitated proteins are analysed by mass spectrometry 

and compared to untreated controls. 
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Histone deacetylase 6 (HDAC6) has been found to have a 14-3-3 binding site 

(Johnson et al. 2010). HDAC6 is known to regulate aggresome formation and 

possibly play a role in microtubule stability (reviewed in Li et al. 2011a). All these 

factors contribute to the suggestion that 14-3-3 proteins play a role in inclusion 

formation in ALS. 

14-3-3 proteins also have an additional role in aggregate formation, through binding 

to the 3’ untranslated region (3’ UTR) of the low molecular weight neurofilament 

(NF-L) mRNA (Ge et al. 2007). In ALS patients, the mRNA levels of NF-L in the 

spinal cord are increased and it has been proposed that changes in NF-L 

stoichiometry can lead to aggregate formation. Binding of 14-3-3 to the 3’ UTR of 

NF-L mRNA also involves other proteins which comprise the aggregates found in 

both familial and sporadic ALS (Volkening et al. 2009). This is an additional point 

which supports a role for 14-3-3 in ALS pathophysiology. 

 

1.1.4.6. Spinocerebellar Ataxia Type 1 (SCA1) 

For the purposes of this research, the most important role of 14-3-3 in 

neurodegenerative disease is that in which it plays in spinocerebellar ataxia type 1 

(SCA1). As this disease is an integral part of the research presented, it is fully 

discussed, along with the involvement of 14-3-3 in section 1.3. 
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1.2. Lipid Rafts 

The fluid mosaic model of cell membranes, described by Singer and Nicholson 

(1972), proposes that membrane proteins are suspended in a fluid lipid bilayer, in 

which proteins and lipids are free to diffuse laterally, without constraints. The lipid 

raft hypothesis expands on this model, suggesting that small, moving platforms, 

which attach specific lipids and proteins are present in the bilayer (Simons and 

Ikonen 1997). Due to the ever-changing heterogeneous composition of lipids and 

proteins, the structure of lipid rafts is dynamic, contributing to the wide range of 

signal transduction roles in which rafts are involved. In addition, the association of 

specific proteins with lipid rafts has an impact on pathology of a number of 

neurodegenerative diseases. Here, the role of these processing microdomains and 

their involvement in neurodegeneration is explored. 

 

1.2.1. What are Lipid Rafts? 

Lipid rafts are plasma membrane microdomains which are enriched in cholesterol 

and sphingolipids and attach specific proteins (Simons and Ikonen 1997). These raft 

entities have been described as relay stations in intracellular signalling and 

platforms for the transportation of selected membranes (Simons and Ikonen 1997). 

Located predominantly in the plasma membrane, rafts have been found formed in 

internal compartments, including the Golgi apparatus (Gkantiragas et al. 2001). 

There are two types of lipid raft studied in detail; caveolae, also known as little 

caves; and planar lipid rafts, which are non-caveolar or glycolipid rafts. Both raft 

types have been estimated to be approximately 25-100 nm in diameter (Allen et al. 

2007).  

Often referred to as detergent resistant membranes (DRMs), from the procedure by 

which they are extracted (Brown and Rose 1992), this term is widely accepted as a 

cluster of lipid rafts. The study by Brown and Rose (1992) was the first to address 

the detergent-resistant nature of lipid rafts; however previous studies had identified 

the link between specific proteins and a lipid-rich region of the plasma membrane 
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(reviewed by Thompson and Tillack 1985). Prior to this point, research into raft 

domains of the plasma membrane was rather sporadic; however since the discovery 

of lipid rafts, a flurry of studies have been conducted, identifying a wide range of 

cellular processes implicated by rafts. Some of the biological processes proposed to 

be influenced by raft domains include apoptosis, signal transduction, synaptic 

transmission, protein sorting and disease signalling (Brown and London 1998; 

Simons and Toomre 2000; Harris and Siu 2002; Simons and Ehehalt 2002; Tsui-

Pierchala et al. 2002). 

Over the years, a number of questions have arisen over the validity of lipid rafts and 

whether they are mere artefacts of the procedure employed for their extraction 

(Heerklotz 2002; Edidin 2003; Munro 2003; Pike 2003; Simons and Vaz 2004). These 

doubts were not aided by the planar nature of rafts rendering them 

indistinguishable in the plasma membrane. Fortunately, advances in technology, 

predominantly microscopy, have resulted in the observation of rafts in synthetic 

vesicles (Garner et al. 2008; Owen et al. 2009). This convincing data demonstrates 

the existence of small, dynamic and selective cholesterol-rich heterogeneous regions, 

or lipid rafts, in the plasma membranes of living cells (Zheng and Foster 2009b; 

Lingwood and Simons 2010).  

 

1.2.2. Lipid Raft Composition 

At present, lipid rafts are viewed as dynamic, nanoscale domains which are 

enriched in cholesterol, sphingolipids and GPI-anchored proteins (Hancock 2006). 

The sphingolipids in rafts associate laterally with each other, with the sphingolipid 

head group occupying a larger area of the exoplasmic leaflet than their hydrocarbon 

chains. Any gaps in between sphingolipids are filled by cholesterol molecules. 

These clusters of cholesterol and sphingolipids act as assemblies in the exoplasmic 

leaflet which are also rich in saturated phosphatidylcholine. The exoplasmic leaflet 

is also enriched in glycosphingolipids and sphingomyelin, whilst the cytoplasmic 

leaflet is enriched in phosphatidylethanolamine and phosphatidylserine. Proteins 
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associate with rafts on the exoplasmic leaflet, either through GPI-anchors or with 

transmembrane domains (Brown and Rose 1992; Simons and Ikonen 1997). Figure 

1.4 is a diagram of a lipid raft in the plasma membrane. 

 

 

Figure 1.4: Lipid Raft Model 

Schematic diagram of a lipid raft domain in relation to the plasma membrane. Lipid rafts are 

proposed to be in the liquid ordered domain and are rich in sphingolipids, saturated 

phosphatidylcholine and cholesterol. Proteins which preferentially partition into rafts 

include GPI-anchored, palmitoylated and particular transmembrane proteins. The bulk 

plasma membrane is proposed to be in the liquid disordered phase. The inner leaflet, 

cytoplasmic face, is depleted in cholesterol with comparison to the outer leaflet and is 

enriched in phosphatidylserine and phosphatidylethanolamine. 

 

A number of proteins have also been found to associate with lipid rafts, by naturally 

partitioning into the liquid-ordered phase which rafts create. Proteomic studies into 

rafts are aplenty, however not without issue (Pike 2009; Zheng and Foster 2009a). 

One problem with raft proteomic studies is the low abundance of membrane 

proteins for analysis and conventional mass spectrometry techniques have 

experienced difficulty in analysing transmembrane domain proteins. Another factor 
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which affects raft protein identification is the heterogeneous nature of lipid rafts. In 

spite of these issues, a number of proteins have been identified as being raft 

associated. 

Initial studies into lipid rafts identified that GPI-anchored proteins are insoluble in 

Triton X-100 (Hoessli and Rungger-Brandle 1985; Low 1989; Brown and Rose 1992; 

Cinek and Horejsi 1992; Fiedler et al. 1993; Chatterjee and Mayor 2001) and the GPI-

anchor is attached to rafts (Rodgers et al. 1994). In addition, a number of tyrosine 

kinases were also found to be concentrated at rafts (Draberova and Draber 1993; 

Rodgers et al. 1994; Shenoy-Scaria et al. 1994; Field et al. 1995; Robbins et al. 1995; 

Field et al. 1997; Wu et al. 1997; Davy et al. 2000) and these studies identified that 

palmitoylated proteins may preferentially partition into rafts as a result of the 

saturated acyl chain (Melkonian et al. 1999). The proteins identified from these 

studies cemented the role of lipid rafts as signalling platforms and their implications 

in cell signalling (Simons and Ikonen 1997; Zajchowski and Robbins 2002). This led 

to the suggestion that lipid rafts enhance cell signalling by concentrating pathway 

components or excluding interfering proteins at a localised region of the plasma 

membrane. 

There have been at least 250 proteins quantified and validated as authentic raft 

proteins (Patra 2008), which have a range of cellular functions, including roles in 

signalling, structure, differentiation, metabolism, growth, migration and death 

(Patra 2008; Zhang et al. 2010). Proteomic analysis of rafts has been conducted in a 

number of cell types which include hippocampal neurons (Ledesma et al. 2003), 

human umbilical vein endothelial cells (Sprenger et al. 2004), Jurkat T cells (Haller et 

al. 2001), internal organelles (Poston et al. 2011) amongst many others (Nebl et al. 

2002; Foster et al. 2003; Blonder et al. 2004; Osterhues et al. 2006; Zhai et al. 2009). 

These studies identified raft marker proteins, including GPI-anchored proteins, the 

palmitoylated protein flotillin-1 and caveolin, confirming that the analysis was of 

raft membrane domains. These studies largely identified similar classes of proteins, 

although the exact composition does vary from study to study. This may be due to 

the heterogeneous nature of these domains, with different rafts being composed of 



 

- 33 - 

 

different lipid and protein populations (Pike 2004). Cytoskeletal proteins are one 

sub-group that are readily detected (Ledesma et al. 2003). It has been suggested that 

the association of cytoskeletal proteins may not be raft-specific, due to the high 

abundance of these proteins in the cell as a whole (Ledesma et al. 2003; Zhang et al. 

2010). 

The localisation of certain proteins to a specific region of the plasma membrane 

supports the hypothesis that these membrane regions are involved in the pathology 

of a range of human diseases. Some lipid-raft related diseases include a number of 

cancers, diabetes, cardiomyopathy and hypertension to name but a few (reviewed in 

Zhang et al. 2010). The main interest in regards to the presented research is the role 

of lipid rafts in neurodegenerative diseases, which is addressed in the following 

section. 

In addition to the links with neurodegeneration, rafts are also of interest due to their 

connection with 14-3-3 proteins. The first indications of a link between 14-3-3 

proteins and lipid rafts was in a study by Assossou (et al. 2003). This study, 

conducted in the protozoan Toxoplasma gondii, an intracellular parasite known to 

cause severe infection in animals and humans, found 14-3-3 proteins localised 

mainly in the cytoplasmic compartment however a small proportion of the protein 

was also detected in lipid raft membrane fractions (Assossou et al. 2003). The 

authors suggested that 14-3-3 proteins associating with lipid raft domains may have 

implications in signal transduction. 

Since then, greater links between 14-3-3 proteins and lipid rafts have been 

established. Dr. Carolyn Brechin conducted extensive research into the association 

of 14-3-3 proteins with rafts during her Ph.D. (Brechin 2006). She discovered that a 

number of 14-3-3 isoforms associate with lipid rafts and that the association can be 

disrupted by a small dimeric fourteen-three-three peptide inhibitor (difopein). This 

research provides the basis for further investigations into 14-3-3 association with 

lipid rafts.  
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1.2.3. Lipid Rafts and Neurodegenerative Diseases 

Lipid rafts have been found implicated in a number of human diseases and 

neurodegenerative diseases are not exempt. Cholesterol does not possess the ability 

to cross the blood brain barrier (BBB), rendering the brain solely responsible for the 

synthesis and transport of cholesterol between cell types. As the brain consists of 

~2% cholesterol which is synthesised de novo, any variety of factors can significantly 

impact functions in the CNS (Zipp et al. 2007; Schengrund 2010). The importance of 

cholesterol is echoed in the hypothesis that gradual changes in lipid raft 

composition, which occur with age, can eventually surpass a threshold where they 

present themselves as symptoms of disease (Schengrund 2010). This section 

addresses the role of lipid rafts in neurodegenerative disease pathology. 

 

1.2.3.1. Alzheimer’s disease 

As detailed in section 1.1.4.1, the characteristics of AD are well defined; however the 

pathological changes which result in AD are not so clear. Changes affecting the 

disease proteins tau and Aβ (Hardy et al. 1998) are widely accepted as initiating 

factors of the disease. In addition, a genetic risk factor for AD in the form of 

apolipoprotein E4 (apoE4) was identified in 1993 (Strittmatter et al. 1993). ApoE is a 

constituent of liver-synthesized very low density lipoproteins which are involved in 

the redistribution of cholesterol and lipids among cells (Mahley 1988). Mouse 

studies into the impact of ApoE proteins have identified some very interesting 

points. Comparative studies into the distribution of cholesterol in the plasma 

membrane between mice expressing different forms of ApoE found that ApoE4 

mice had more cholesterol in the exofacial leaflet than ApoE3 mice, yet the total 

amount of cholesterol was the same (Hayashi et al. 2002). In addition, another study 

found that mice expressing ApoE4 displayed protein and lipid compositional 

changes at rafts in comparison with ApoE3 mice (Igbavboa et al. 2005). The 

compositional changes combined with the risk factor element of ApoE4 support a 

theory for lipid rafts being implicated in AD pathology (Schengrund 2010).  
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This is further supported by the abnormal processing of AD proteins at rafts. The 

amyloid pre-cursor protein (APP) was identified as being raft associated (Parkin et 

al. 1999) leading to the proposal that abnormal processing of this protein at rafts 

may be a key stage in disease pathology. Proteolytic processing of APP produces the 

A peptides which are the major constituents of the plaques found in AD brains. 

There are two pathways for processing of APP; the non-amyloidogenic pathway, 

where APP is cleaved by -secretase within the A sequence, precluding peptide 

formation, and releasing a soluble N-terminal fragment sAPP. The amyloidogenic 

pathway sees APP cleaved by -secretase, producing a soluble N-terminal fragment 

sAPP, and a short C-terminal fragment which is membrane-bound and 

subsequently cleaved by -secretase, releasing the A peptide. It is now clear that 

proteolytic cleavage of APP is dependent on lipid rafts (Simons et al. 2001; Ehehalt 

et al. 2003).  

Further analysis into the role of rafts and proteolytic processing identified that 

cholesterol depletion of N2a cells reduced -cleavage, and a reduction of cholesterol 

levels by 20-30% produced a 50-60% reduction in the secretion of A (Ehehalt et al. 

2003). In contrast, the levels of -cleavage were increased, further supporting a 

regulatory role for rafts in disease pathology (Ehehalt et al. 2003). This appears to be 

supported by patients who receive cholesterol lowering drugs displaying a lower 

prevalence of the disease (Jick et al. 2000; Wolozin et al. 2000). 

These studies all support the hypothesis that compositional changes of rafts have an 

impact on signal transduction, resulting in intracellular alterations which contribute 

to the development of AD. 
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1.2.3.2. Parkinson’s disease 

There are also links between lipid rafts and PD, with at least 3 disease proteins 

found associating with raft domains (Fallon et al. 2002; Fortin et al. 2004; Hatano et 

al. 2007). For clinical symptoms of PD, see section 1.1.4.2. 

One of the disease proteins identified as associating with lipid rafts is -synuclein 

(Fortin et al. 2004). Raft association of -synuclein was coupled with the discovery 

that the synaptic localisation of this protein is also raft-mediated (Fortin et al. 2004). 

In addition, investigations with the PD-associated mutation, A30P, disrupted raft 

association and abolished normal synaptic localization of -synuclein. These results 

suggest that in PD, the A30P mutation contributes to pathogenesis through 

disrupting raft association and any changes to lipid rafts may contribute to disease 

pathology through the disruption of specific association of proteins. Further 

investigation by this group identified that -synuclein association with rafts is 

mediated by lipids and not through protein interactions (Kubo et al. 2005). A recent 

study has also identified a connection between a raft-marker protein, caveolin-1, 

and -synuclein (Madeira et al. 2011). Cell culture analysis in N2a cells identified 

that up-regulation of -synuclein increased the expression of caveolin-1. Over-

expression of -synuclein resulted in N2a cell death, as expected with neuronal cell 

death reported in PD pathology. However knock-down of caveolin-1 expression 

rescues the cell death which is induced by -synuclein. This indicates that -

synuclein toxicity is mediated by a raft-bound protein (Madeira et al. 2011). 

The ubiquitin-ligase protein parkin has also been found to associate with lipid rafts 

(Fallon et al. 2002). Despite this discovery, at present there is no connection between 

parkin association at rafts and disease pathology. The authors do suggest that 

parkin mutations may affect signal transduction, membrane plasticity and synaptic 

transmission (Fallon et al. 2002) however further investigation is required to identify 

a causative link between raft association and disease pathology. 

Missense mutations in LRRK2 contribute to PD and this protein has also been 

identified in lipid rafts (Hatano et al. 2007) extracted from cell culture and also 

mouse brain. The association of LRRK2 with cellular membrane structures, could 
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indicate a role for this protein in membrane trafficking (Hatano et al. 2007). Like 

parkin, a causative link between LRRK2 raft association and pathogenesis has not 

been identified, however the authors of this study hypothesise that association of a 

number of PD proteins with rafts may be a factor for inducing neuronal 

degeneration. 

Finally, a recent study comparing the composition of lipid rafts isolated from the 

frontal cortex of human brain identified significant alterations in the lipid 

composition of rafts in PD brain (Fabelo et al. 2011). The lipid alterations suggest 

that rafts in PD brain exist in a viscous liquid-ordered state, which can have a 

significant impact on signal transduction, raft thermodynamics and spatial 

organization. At present, it is not clear whether the altered lipid composition of rafts 

is a consequence of the disease, or whether this is a contributing factor to disease 

progression; however the authors do comment that their data likely points to a 

causative mechanism in PD (Fabelo et al. 2011). 
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1.2.3.3. Creutzfeldt-Jakob disease 

The proteinaceous agent of CJD, PrP (see section 1.1.4.4) is attached to lipid rafts by 

its GPI-anchor (Naslavsky et al. 1997). The cellular form of the protein, PrPC, and the 

protease-resistant form, PrPSC, are both found in lipid rafts. Following their 

identification at these domains, it further transpired that alterations in lipid raft 

composition promotes the formation of the PrPSC form of the protein, confirming 

that association of PrPC with lipid rafts is required for conversion to the 

proteinaceous form (Naslavsky et al. 1999). Conversion is dependent on the GPI-

anchor of the protein and is reduced when rafts are depleted of cholesterol (Simons 

and Ehehalt 2002). For conversion to occur, the raft domain must be infected by the 

proteinaceous form, PrPSC  (Baron et al. 2002), inducing the posttranslational 

modification which alters the protein structure from an -helix to a -sheet 

conformation (Pan et al. 1993; Prusiner 1998). This structural change promotes 

protein aggregation and fibrillization (Kazlauskaite et al. 2003), of which 

accumulation in neuronal cells leads to disrupted function and cell death (Johnson 

and Gibbs 1998).  

Further support for lipid raft involvement in CJD pathology is evident from the 

neuronal cell line study which identified that disruption of raft formation confers 

protection against prion neurotoxicity (Bate et al. 2004). Dose-dependent 

administration of a cholesterol synthesis blocker, squalestatin, reduced the 

accumulation of PrPSC in N2a cells and SH-SY5Y cells pre-treated with squalestatin 

display resistance to PrPSC toxicity (Bate et al. 2004). 

This brief overview confirms that lipid rafts play an integral role in 

neurodegenerative disease pathology and that further investigations can uncover 

more information with regards to a potential treatment and also a greater 

understanding of disease pathology.  
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1.3. Spinocerebellar Ataxia Type 1 (SCA1) 

There is a group of at least 20 autosomal dominant cerebellar ataxias (ADCAs) 

which are generally referred to as spinocerebellar ataxias (SCAs). The term 

‘spinocerebellar’ is a hybrid derived from the clinical signs and neuroanatomical 

regions associated with the diseases (Margolis 2003). There are three ADCAs which 

were classified clinically by Harding (1982) and ADCA I encompasses SCA1, SCA2 

and SCA3. SCAs 1, 2, 3, 6, 7 and 17 are all members of the polyglutamine-repeat 

family of diseases. The other SCAs arise from a variety of different genetic 

mutations.  

There are a total of nine known polyglutamine-repeat diseases, which include the 

SCAs along with Huntington’s disease (HD), dentatorubral pallidoluysian atrophy 

(DRPLA) and spinobulbar muscular atrophy (SBMA) (Zoghbi and Orr 2000). All of 

these diseases are genetically inherited, neurodegenerative diseases which have 

similar pathogenesis and symptoms.  

Spinocerebellar Ataxia Type 1 (SCA1) was the first of the spinocerebellar ataxias to 

be described and affects 1-2 people in every 100,000. The rarity of this disease 

should not detract from its severity and the urgent need for current treatments into 

such a debilitating condition. Here the clinical symptoms and pathogenesis of the 

disease are discussed. 

  

1.3.1. Clinical Effects of SCA1 

SCA1 is a late onset autosomal dominant neurodegenerative disorder which is 

characterised by cerebellar ataxia in conjunction with pyramidal and 

extrapyramidal symptoms, peripheral neuropathy, oculomotor abnormalities and 

cognitive impairment, which have varying degrees of severity (Matilla-Duenas et al. 

2008). Symptoms may begin at any age between 4 and 74, but in the majority of 

cases, symptoms begin to appear in the third and fourth decade. From the age of 

onset, the disease usually lasts between 10 and 20 years. At disease onset, the 

majority of patients display multi-systemic symptoms which are present for 1-2 
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years. The clinical symptoms at disease onset include pyramidal signs, which can 

present themselves before ataxia, cerebellar ataxia syndrome, and in the majority of 

patients, ophthalmoplegia, which is a weakness or paralysis of the muscles which 

control eye movement. Disease progression leads to the presence of a number of 

other symptoms which occur in variable degrees of severity. These symptoms 

include dysphonia (vocal disorder), dysarthria (poor speech articulation), dysphagia 

(difficulty swallowing), tongue atrophy, deep sensory loss, peripheral sensory-

motor axonal neuropathy, pes-cavus (claw-foot) and amyotrophy (wasting of 

muscle tissue). The most common extrapyramidal symptom is dystonia or 

fasciculations (muscular twitches or spasms). Generally, the latter symptoms which 

are detailed present themselves as the disease progresses. In addition, with disease 

progression, the severity of ophthalmoplegia increases and gaze-evoked nystagmus 

occurs (the inability to hold gaze in an eccentric position). These uncontrolled eye 

movements are absent in the later stages of disease and the number of saccades 

(involuntary rapid eye movements) increase but slow down in velocity as the 

disease progresses to the later stages (Sasaki et al. 1996). 

The clinical symptoms of SCA1 are very similar to those of the other SCAs; however 

there are means of distinguishing SCA1 from the other SCA subtypes. Schols and 

colleagues (2008) conducted studies with patients suffering from a variety of 

ADCAs and discovered that, following magnetic stimulation of the motor cortex, it 

was possible to completely differentiate SCA1 patients from SCA patients. By 

studying the motor evoked potentials (MEPs) produced from nerve stimulation, it 

was clear that SCA1 patients have a prolonged central motor conduction time and 

nerve conduction studies indicate that SCA1 patients have a slower conduction 

velocity in comparison to other SCA patients (Schols et al. 2008).  

At present, there is no treatment for SCA1 or its symptoms. The main aim of current 

treatments is to provide palliative care for patients. 
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1.3.2. Disease Pathology 

There are a number of mechanisms which can contribute to SCA1 pathology. There 

have been propositions that the polyglutamine repeat itself, along with 

polyglutamine toxicity and subsequent protein interactions, can all play a role in the 

initiation of the disease. Here provides a brief overview of the potential initiating 

factors in this debilitating disease. 

 

1.3.2.1. The Polyglutamine Tract 

The ATXN1 gene (previously denoted SCA1) was first identified in 1993 (Orr et al. 

1993) indicating that the mutation is a result of an expansion of a translated 

glutamine (CAG) repeat located within exon 8 of the gene. The ATXN1 gene 

encodes a novel 792-830 residue protein, named ataxin-1 (Banfi et al. 1994). This 

protein contains the coding region for a polyglutamine tract which is formed by the 

CAG repeats. As the number of repeats in the tract can vary between normal and 

disease states, the full length of the protein is affected, i.e. the exact length of the 

protein is dependent on the length of the glutamine tract. In normal alleles, the tract 

contains between 6 and 44 repeats. When the number of repeats is greater than 20, 

CAT (histidine) nucleotide interruptions are present, to maintain the stability of the 

tract (Chung et al. 1993). In disease alleles, the number of repeats is larger; between 

39 and 82. A key point in disease alleles is that the CAT interruptions are absent 

(Jodice et al. 1994). This absence of CAT nucleotides indicates that a substitution of 

histidine (CAT) to glutamine (CAG) may be the initial de-stabilising event in the 

progression of the disease (Goldfarb et al. 1996). Studies have identified an inverse 

correlation between the increased number of CAG repeats in the tract and the age of 

onset of the disease (Jodice et al. 1994). As the number of repeats in the 

polyglutamine tract increases, onset of disease is at an earlier age and with a more 

rapid progression and subsequent younger death, suggesting that polyglutamine 

tract expansion results in a toxic gain-of-function. Additionally, studies suggest that 

parental transmission can affect the length of the polyglutamine tract (Chung et al. 
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1993). Paternal transmission in 63% of cases studied increased the repeat number, 

whereas maternal transmission in 69% of cases either decreased or did not alter the 

number of repeats. 

 

1.3.2.2. Ataxin-1 Aggregation 

Ataxin-1 is a novel protein, which is predominantly located in the nucleus of 

neuronal cells and in the cytoplasm of non-neuronal cells (Servadio et al. 1995). 

Figure 1.5 shows a schematic diagram of the protein. Expression in neuronal cells is 

2-4 times greater than in peripheral tissues (which include skeletal muscle, heart, 

liver and lymphoblasts). It is the Purkinje cells of the cerebellum which are affected 

in SCA1 (Zoghbi 1995) and intriguingly, ataxin-1 is found in both the nucleus and 

cytoplasm here (Servadio et al. 1995). This is the same for both affected and 

unaffected individuals, suggesting that the location of the mutant protein does not 

have an influence on disease pathology.  

 

 

Figure 1.5: Schematic Diagram of Ataxin-1 

The ataxin-1 protein contains a glutamine tract (Q), an ataxin-1/HBP1 (AXH) domain and a 

Self-Association Region (SAR). Other domains involved in ataxin-1 interaction and 

regulation are also highlighted. NLS; Nuclear Localisation Sequence. 
 

 

The main characteristic of SCA1 is the formation of insoluble protein aggregates as a 

result of misfolded ataxin-1 (Perutz et al. 1994; Skinner et al. 1997; Cummings et al. 

1998). However, it is important to note, transgenic mice studies have identified that 
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ataxin-1 aggregation is not required for SCA1 pathogenesis, yet localisation of the 

ataxin-1 protein to the nucleus is (Klement et al. 1998). The function of ataxin-1 

remains unknown; however studies indicate that the protein may play a role in 

synaptic plasticity and neuronal functions (Matilla et al. 1998). ATXN1 null mice 

display reduced motor and learning capabilities, yet do not display any symptoms 

of SCA1, suggesting that lack of protein function does not lead to disease. In fact, 

ataxin-1 aggregation is accredited with a gain-of-function; through the ability to 

form aggregates. This has also been supported through human genetic analysis, 

which discovered that humans with a large deletion in the ATXN1 gene do not 

suffer from SCA1, but do suffer from seizures and mental retardation (Davies et al. 

1999).  

Ataxin-1 aggregates also contain ubiquitin, the 20S proteasome and a molecular 

chaperone HDJ-2/ HSDJ (DnaJ Hsp40) (Cummings et al. 1998). This suggests that 

changes in the protein conformation due to the expanded polyglutamine tract 

render the protein resistant to proteasomal degradation (Cummings et al. 1998). 

Interestingly, at sufficiently high levels, the unexpanded form of the protein can also 

lead to disease pathology, suggesting the wild-type form may adopt more than one 

stable conformation, which in abundance, may be toxic (Fernandez-Funez et al. 

2000). There is also evidence that the cerebellar leucine-rich acidic nuclear protein 

(LANP), a predominantly Purkinje cell expressed protein, interacts with ataxin-1 in 

a glutamine-repeat related manner and is also present in aggregates (Matilla et al. 

1997). LANP is a nucleoplasmic shuttling protein involved in a range of cellular 

processes. LANP interacts with the transcriptional repressor p120E4F and it has 

been shown that LANP interaction with ataxin-1 relieves this repression 

(Cvetanovic et al. 2007). The authors concluded that this discovery is in-keeping 

with previous findings that the earliest pathological change in SCA1 mice is 

transcriptional misregulation (Lin et al. 2000; Serra et al. 2004).  
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1.3.2.3. Ataxin-1 Interactions 

Another factor which contributes to disease pathology is the interactions involving 

ataxin-1. A number of studies, mainly employing cell culture and yeast two-hybrid 

systems, have been conducted to identify interacting proteins. Table 1.2 lists ataxin-

1 interacting proteins identified to date. One of the first ataxin-1 interactions 

identified was with the ubiquitin-like nuclear protein, A1Up (Davidson et al. 2000). 

Identified from a yeast-two hybrid screen, this interaction provided the first 

indications that ataxin-1 may be somewhat involved in the ubiquitin/ proteasome 

system and play a role in the formation and regulation of nuclear multimeric 

protein complexes (Davidson et al. 2000). The next breakthrough in ataxin-1 

interactions was the discovery that the protein binds RNA in a tract length-

dependent manner (Yue et al. 2001). The authors of the study found that as the 

length of the polyglutamine tract increases, the ability to bind RNA decreases; 

leading the authors to suggest that ataxin-1 has a role in RNA metabolism, a 

function which can be altered with increasing tract length. 

A number of ataxin-1 interactions are also influenced by the length of the 

polyglutamine tract, including LANP, the polyglutamine-binding protein-1 

(PQBP1), the zinc-finger transcription factor Sp1, the transcriptional repressor 

Capicua (CIC) and the RNA-binding motif protein 17 (RBM17) (Matilla et al. 1997; 

Okazawa et al. 2002; Lam et al. 2006; Goold et al. 2007; Lim et al. 2008). Interactions 

which are dependent on the length of the polyglutamine tract suggest that 

alterations in the protein conformation could give rise to a number of aberrant 

protein interactions. Most interestingly is the fact that the majority of protein 

interactions occur through the C-terminal of ataxin-1; a region containing a number 

of interaction motifs (see Figure 1.5) but not the glutamine tract itself. 

The interacting proteins listed in Table 1.2 are mainly involved in transcription, 

RNA processing, post-translational modifications and signal transduction. 
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Table 1.2: Ataxin-1 Interacting Proteins 

Cellular 

Process 

Interacting 

Proteins 

Region of 

Interaction 

PolyQ 

Modulation?  

Reference 

Transcription Boat SAR Yes (Mizutani et al. 

2005) 

Capicua (CIC) AXH No (Lam et al. 2006; 

Lim et al. 2006) 

CCNK Unknown Unknown (Lim et al. 2006) 

DAZAP2 Unknown Unknown (Lim et al. 2006) 

DERP6 Unknown Unknown (Lim et al. 2006) 

DNAJA3 Unknown Unknown (Lim et al. 2006) 

GFI-1/senseless AXH No (Tsuda et al. 2005) 

HDAC3 Unknown Yes (Tsai et al. 2004) 

HIVEP1 Unknown Unknown (Lim et al. 2006) 

LANP C-terminus 

and polyQ 

Yes (Matilla et al. 1997; 

Cvetanovic et al. 

2007) 

NCOR2/SMRT C-terminus 

(most likely 

AXH) 

No (Tsai et al. 2004) 

PQBP1 Unknown Yes (Okazawa et al. 

2002) 

SIX5 Unknown Unknown (Lim et al. 2006) 

Sp1 AXH Yes (Goold et al. 2007) 

SPEN Unknown Unknown (Lim et al. 2006) 

Tip60 Region 

encompassing 

the SAR 

Yes (Serra et al. 2006) 

UbcH6 C-terminus No (Lee et al. 2008) 

YY1AP1 Unknown Unknown (Lim et al. 2006) 

ZXH1 Unknown Unknown (Lim et al. 2006) 

RNA 

Processing 

A1Up SAR No (Davidson et al. 

2000; Lim et al. 

2006) 

A2BP1 Unknown Unknown (Lim et al. 2006) 

p80 coilin C-terminus No (Hong et al. 2003; 

Lim et al. 2006) 

PQBP1 Unknown Unknown (Okazawa et al. 

2002) 

PUM1 Unknown Unknown (Lim et al. 2006) 

RBM9 Unknown Unknown (Lim et al. 2006) 

RBM17 C-terminus Yes (Lim et al. 2008) 

TAP/NXF-1 Unknown Unknown (Irwin et al. 2005) 
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Cellular 

Process 

Interacting 

Proteins 

Region of 

Interaction 

PolyQ 

Modulation?  

Reference 

Ubiquitination CHIP Unknown No (Al-Ramahi et al. 

2006) 

SP1 AXH Yes (Goold et al. 2007) 

UbcH6 C-terminus No (Lee et al. 2008) 

Ubiquitin Unknown Yes (Duyckaerts et al. 

1999) 

Phosphorylation LANP PolyQ Yes (Matilla et al. 1997) 

Sumoylation Sumo-1 Multiple 

Domains 

Yes (Riley et al. 2005) 

Stabilization USP7 C-terminus Yes (Hong et al. 2002) 

14-3-3 C-terminus Yes (Chen et al. 2003) 

Signal 

Transduction 

CRK (Lim et al. 2006) 

Drd2-Signalling (Goold et al. 2007) 

Glutamate Signalling (Serra et al. 2004) 

IGF (Gatchel et al. 2008) 

Notch Pathway (Tong et al. 2011) 

RA/thyroid hormone-signalling (Goold et al. 2007) 

Wnt-signalling (Goold et al. 2007) 

14-3-3 (Chen et al. 2003) 

One of the most important interacting proteins with regards to disease pathology is 

that with 14-3-3 (Chen et al. 2003). As this interaction is integral to this research, it is 

detailed fully in section 1.3.3. 

One interaction which merits further explanation is that with the co-chaperone/ 

ubiquitin ligase CHIP (C terminus of Hsp70-interacting protein). There appears to 

be a conflict between different research groups as to the effect CHIP has on disease 

pathology (Al-Ramahi et al. 2006; Choi et al. 2007). One group proposes that CHIP is 

neuroprotective, targeting expanded ataxin-1 for degradation and suppressing 

toxicity of the expanded protein (Al-Ramahi et al. 2006). The other group reports 

that ubiquitinated expanded ataxin-1 becomes insoluble and increases the formation 

of protein aggregates (Choi et al. 2007). Both studies investigated the potential of 

CHIP to interact with ataxin-1, both normal and expanded forms and the ability of 

CHIP to ubiquitinate these proteins. Both groups also identified the CHIP domain 

which is required for interaction with ataxin-1 however this is where the similarities 

end. The study by Choi and colleagues was conducted in a cell culture system (Choi 
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et al. 2007), whereas the study by Al-Ramahi and colleagues was carried out in 

Drosophila, however the solubility of ataxin-1 following ubiquitination was not 

investigated (Al-Ramahi et al. 2006). Despite the conflicting suggestions by these 

two groups, there have been no further insights into the role of CHIP in SCA1 

pathology published to date. It may be that CHIP does confer neuroprotective 

properties, which may include sequestration of toxic proteins into insoluble 

aggregates. What is clear is that while cell culture and Drosophila models are highly 

informative, they do not inform us as to the exact mechanisms which occur in 

human brain and caution must be exercised when investigating potential 

therapeutic agents. 

Another ataxin-1 interacting protein of great interest is Brother of ataxin-1, also 

known as Boat (Mizutani et al. 2005). The human protein shares 33% sequence 

homology with human ataxin-1. Interest in Boat stemmed from its AXH domain, 

also a feature of ataxin-1. The AXH domains of both human proteins share 66% 

sequence homology and a number of ataxin-1 interactions in this region with 

transcriptional regulators are also shared with Boat. The most significant structural 

difference between these two proteins is the lack of a glutamine tract in Boat 

(Mizutani et al. 2005). Both proteins are expressed in Purkinje cells and mouse 

models of SCA1 show a reduction in Boat expression at as early as three weeks, 

suggesting that Boat expression may be a marker for disease. Boat interacts directly 

with ataxin-1 via the self-association region (SAR) of ataxin-1. The interaction of 

Boat with ataxin-1 suppresses glutamine-repeat-expanded cytotoxicity and the 

reduction in Boat levels in SCA1 models could account for the increase in self-

associated mutant ataxin-1, leading to the increased toxicity of the protein (Mizutani 

et al. 2005). Further studies into the role of Boat has found that the homologous 

protein displaces ataxin-1 from interactions with the transcriptional repressor 

Capicua leading to suppressed neurodegeneration in animal studies (Bowman et al. 

2007). Overall, current research indicates that this protein, while similar to ataxin-1 

is neuroprotective in SCA1 models through a number of different interactions, 

despite the obvious structural similarities with the disease protein. 
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1.3.3. Ataxin-1 and 14-3-3 

The most important interaction of ataxin-1 with regards to this research is the one 

with 14-3-3. The beginnings of a connection with 14-3-3 and ataxin-1 arose from the 

finding that ataxin-1 has a phosphorylation site on Ser776 (Emamian et al. 2003). 

One very important factor of phosphorylation at this site in disease pathology is that 

the protein is only phosphorylated in the nucleus and not the cytoplasm of Purkinje 

cells. Phosphorylation of the expanded form of the protein resulted in transgenic 

mice displaying abnormal Purkinje cell morphology and nuclear inclusions, 

indicating that the phosphorylation of this residue of the expanded protein is critical 

for degeneration of Purkinje cells in SCA1 (Emamian et al. 2003). 

Subsequently, Chen and colleagues were investigating the role of Ser776 

phosphorylation in SCA1 pathology (Chen et al. 2003). They found that ataxin-1, 

phosphorylated by the kinase Akt/ PKB on Ser776, interacts with 14-3-3 and  and 

the strongest interaction is with expanded ataxin-1 (Chen et al. 2003). The study, 

conducted in a number of cell lines and transgenic Drosophila flies, identified that 

the interaction of phosphorylated ataxin-1 with 14-3-3 not only stimulates the 

formation of aggregates, but stabilizes ataxin-1 and prevents its degradation. It was 

also discovered that ataxin-1 phosphorylation on Ser776 is as a result of the kinase 

Akt, which creates the 14-3-3 binding site; therefore interaction of ataxin-1 with 14-

3-3 is phosphorylation-dependent. These findings led the authors to suggest that 

potential therapeutic agents for SCA1 may be targeted towards reducing Akt kinase 

activity (Chen et al. 2003). An image of the interaction is shown in Figure 1.6. The 

disease model proposed by the authors suggests that stabilization of expanded 

ataxin-1 by interaction with 14-3-3 leads to a toxic accumulation of this protein 

complex, particularly in the nucleus. This accumulation in Purkinje cells eventually 

leads to cell death and subsequent neurodegeneration (Chen et al. 2003).  
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Figure 1.6: Model of Ataxin-1 Accumulation 

Following phosphorylation of ataxin-1 on Ser776, 14-3-3 and  can interact with the disease 

protein. 14-3-3 binds more strongly with expanded ataxin-1, resulting in a gradual 

accumulation of the toxic protein complex. This toxic accumulation eventually results in 

neuronal cell death and subsequent neurodegeneration. This model is adapted from that 

presented by Chen (et al. 2003). 

 

Since this extremely important discovery in SCA1 pathology, questions have arisen 

as to the exact mechanism by which phosphorylation occurs. A more recent study 

has found that inhibition of Akt activity had no effect on ataxin-1 phosphorylation, 

yet inhibition of the cyclic AMP-dependent protein kinase (PKA) did result in a 

reduction in ataxin-1 phosphorylation at Ser776 (Jorgensen et al. 2009). One major 

difference between the two studies is the experimental techniques employed to 

identify the kinase. Chen and colleagues first identified that Akt can phosphorylate 

ataxin-1 by an in vitro kinase assay, after ataxin-1 sequence analysis identified a 

consensus motif for Akt at Ser776 (Chen et al. 2003). Following confirmation of 

phosphorylation by in vitro kinase assays, in vivo analysis was carried out in HeLa 

cells, which confirmed the groups’ initial findings. In contrast, Jorgensen and 
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colleagues conducted their studies in transgenic mice models (Jorgensen et al. 2009). 

They conclude that a mammalian model of the human disease presents additional 

factors, which can affect the activity of endogenous kinases. They concur that Akt 

would be expected to phosphorylate Ser776 on ataxin-1 due to the recognition motif, 

however it appears that a higher level regulatory mechanism in the cerebellum 

prevents Akt from phosphorylating this residue (Jorgensen et al. 2009). However, it 

is still unclear which kinase in human cerebellum is responsible for ataxin-1 

phosphorylation at Ser776 (Umahara and Uchihara 2010). 

In order to try and better understand the disease mechanisms in humans, Umahara 

and colleagues investigated the localisation of 14-3-3 proteins in human brains of 

patients with SCA1 (Umahara et al. 2007). The results of this study found that in 

SCA1 brain, 14-3-3 was found in the cytoplasm and nucleus of a number of neuronal 

cells, including Purkinje cells, pontine neurons, dentate nucleus neurons and 

anterior horn cells of the spinal cord. Isoform-specific analysis of 14-3-3 localisation 

found that pontine neurons were extremely positive for 14-3-3; Purkinje cells 

contained 14-3-3 and the dentate nucleus neurons contained both isoforms 

(Umahara et al. 2007). In addition, 14-3-3 was found concentrated in neuronal 

nuclei of all brain regions affected by SCA1, indicating that 14-3-3 is the most 

widely distributed isoform in SCA1 brains. 

Other studies into the interaction between 14-3-3 and ataxin-1 have found that the 

formation of complexes in the cerebellum and brainstem differ significantly (Jafar-

Nejad et al. 2011). Mouse studies, with mice lacking a 14-3-3 allele, identified that 

this haploinsufficiency rescues a number of SCA1 phenotypes, most notably, motor 

related phenotypes and cerebellar pathology (Jafar-Nejad et al. 2011). The study also 

found that mice heterozygous for 14-3-3 displayed lower levels of ataxin-1, both 

mutant and wild type, and the number of protein complexes present in the 

cerebellum was reduced. Unfortunately, despite these very promising findings, a 

number of other phenotypic symptoms which are not related to the cerebellum were 

not rescued, and the authors discovered that the mice died from respiratory 

dysfunction. This led to the suggestion that the mechanism by which 14-3-3 plays a 
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role in disease pathology is limited to the cerebellum. To test this, comparisons were 

made between the cerebellum and the brainstem; both regions which are severely 

affected by SCA1. By immunoblotting, it was determined that the levels of 14-3-3 in 

the brainstem and the cerebellum were the same and that ataxin-1 co-

immunoprecipitated with 14-3-3 from both regions. Analysis of the size of the 

protein complexes formed by ataxin-1 found that there were a greater number of 

large complexes in the cerebellum compared to the brainstem. This led to the 

conclusion that ataxin-1 has different interaction partners in different brain regions, 

which adds to the complexity of the disease pathology (Jafar-Nejad et al. 2011).   

There is also evidence to suggest 14-3-3 and phosphorylation of Ser776 are involved 

in ataxin-1 interactions with splicing factors (de Chiara et al. 2009; Lai et al. 2011). 

The ataxin-1 protein sequence contains a conserved region which allows the protein 

to interact with splicing factors (de Chiara et al. 2009). This region overlaps the 14-3-

3 binding site and the NLS. The region of the splicing factors which ataxin-1 has a 

recognition motif for is known as the UHM (U2AF Homology Motif) and it has been 

previously suggested that serine phosphorylation regulates UHM association 

(Selenko et al. 2003). de Chiara and colleagues investigated whether 

phosphorylation of Ser776 by Akt had any effect on association of ataxin-1 with the 

UHM region of the splicing factor U2AF65 and found that phosphorylation reduced 

association three fold (de Chiara et al. 2009). In light of more recent data, that the 

kinase PKA may be responsible for phosphorylation in vivo, it would be interesting 

to see if phosphorylation by PKA had any effect on U2AF65 association, as the 

authors also identified that ataxin-1 association of U2AF65 does have a positive 

effect on splicing (de Chiara et al. 2009). The study also found that interaction of 14-

3-3 with ataxin-1 prevents interaction with U2AF65, however ataxin-1 with a S776A 

mutation did not interact with 14-3-3 and interaction with the splicing factor was 

not affected. This suggests that preferential association of ataxin-1 with splicing 

factors compared with 14-3-3 prevents ataxin-1 self association and subsequent 

aggregation (de Chiara et al. 2009). 
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Following identification of ataxin-1 association with splicing factors, Lai and 

colleagues further investigated the phosphorylation status of ataxin-1 at Ser776 (Lai 

et al. 2011). They found that by comparing cytoplasmic and nuclear pS776-ataxin-1 

levels from mouse cerebellum that, over a 2 hour incubation period, the levels of 

phosphorylated protein in the nucleus decreased; indicating that ataxin-1 is subject 

to phosphatase activity in the nucleus (Lai et al. 2011). A comparison of 14-3-3 levels 

with phosphatase activity discovered that the level of 14-3-3 was inversely 

correlated with phosphatase activity, i.e. 14-3-3 levels were lower in the nucleus of 

cerebellar extracts, suggesting that 14-3-3 prevents dephosphorylation of ataxin-1 in 

the cytoplasm (Lai et al. 2011). The effect of phosphorylation on protein stabilisation 

was also investigated and showed that a S776D mutation, to a phospho-mimicking 

residue, was sufficient to stabilise ataxin-1, yet this mutated protein was unable to 

interact with 14-3-3. By addition of a competitive 14-3-3 peptide inhibitor, R18, 

interaction with S776-ataxin-1 was disrupted and the ataxin-1 protein 

dephosphorylated (Lai et al. 2011). The group then went on to identify the 

phosphatase responsible as Protein Phosphatase 2A (PP2A). One final point that this 

study uncovered is the fact that the association of 14-3-3 with ataxin-1 must be 

disrupted in order for ataxin-1 to be transported into the nucleus (Lai et al. 2011). 

However, there was no investigation into how this mechanism occurs in Purkinje 

cells. As nuclear localisation of ataxin-1 is key to disease pathology, this is one 

instance which suggests that 14-3-3 may be neuroprotective, yet this is at odds with 

the evidence that 14-3-3 contributes to the formation of the toxic aggregates in 

SCA1. This highlights the complexity of the pathology of this disease and the role 

that 14-3-3 plays. 
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1.4. Aims of Project 

14-3-3 proteins are implicated in a wide range of cellular processes, including the 

pathology of neurodegenerative diseases. In addition, lipid raft domains of the 

plasma membrane have also been identified as the processing centres for a number 

of disease proteins in neurodegeneration. Previous research conducted in this 

laboratory had identified the association of 14-3-3 proteins with lipid rafts; leading 

to the hypothesis that the presence of 14-3-3 proteins and neurodegenerative disease 

proteins at lipid rafts may be connected to disease pathology. 

Previous research had identified the five main brain isoforms of 14-3-3 associating 

with rafts. Therefore, one of the main aims of this project was to determine whether 

the two phospho-forms of 14-3-3,  and , also associated with lipid rafts. As these 

two phospho-forms are only present in brain tissue, this may bear some significance 

in relation to neuronal processes. To investigate this, immunoblotting with 

antibodies specific for the phosphorylated epitope of these isoforms was conducted, 

following raft protein separation by 2D SDS-PAGE. 

In addition to the links between 14-3-3 proteins, lipid rafts and neurodegenerative 

diseases, is the functional implications which sphingolipids present in lipid rafts can 

elicit on 14-3-3 proteins. 14-3-3 has been shown to be phosphorylated on a residue 

buried within the dimer interface in the presence of sphingosine. 14-3-3 natively 

exists as a dimer; a conformation which is essential for full protein function. 

Alterations to the protein structure can have implications on the cellular processes 

which 14-3-3s are involved in, which may include neurodegenerative diseases. As 

sphingosine is present in lipid rafts, I hypothesise that the quaternary structure of 

14-3-3 may be altered at lipid rafts, altering the functional capacity of the protein. 

This theory was investigated by in vitro kinase assays and cross-linking analysis in 

lipid rafts. 

Finally, one neurodegenerative disease of particular interest in this research was 

Spinocerebellar Ataxia Type 1 (SCA1). Interaction of the disease protein, ataxin-1, 

with 14-3-3 has been shown to contribute to the formation of aggregates which is a 

key characteristic of this disease. This knowledge prompted the investigation into 
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identifying small molecule inhibitors which can prevent this toxic interaction. To 

identify potential inhibitors, a collaborative study was conducted with the 

Computational Biology Group based at Edinburgh University. This study identified 

a number of potential inhibiting compounds, which were tested following the 

development of an ELISA assay method. In addition, the production of ataxin-1 

protein constructs was also investigated for future inhibitor analysis. 
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CHAPTER 2 

MATERIALS AND METHODS 

 

All reagents were purchased from Sigma-Aldrich (Dorset, UK) at analytical grade 

unless otherwise stated. 

 

2.1. Molecular Biology 

Table 2.1: Molecular Biology Buffers 

Buffer Components Concentration 

Luria Bertani (LB) media Peptone/Tryptone 

Yeast Extract 

Sodium Chloride 

10 g/L 

5 g/L 

10 g/L 

LB agar Bacto-Agar in LB media 15 g/L 

SOC media pH 7.0 Bacto-tryptone 

Bacto-yeast extract 

Sodium chloride 

Potassium chloride 

Magnesium chloride (hydrated) 

Magnesium sulphate (hydrated) 

Glucose 

20 g/L 

5 g/L 

10 mM 

2.5 mM 

10 mM 

10 mM 

20 mM 

Terrific Broth (TB) media Tryptone 

Yeast Extract 

Dipotassium Phosphate 

Monopotassium Phosphate 

12 g/L 

24 g/L 

12.5 g/L 

2.3 g/L 

TAE Buffer Tris-HCl 

Acetic acid 

EDTA pH 8.0 

40 mM 

20 mM 

1 mM 

6 x DNA gel loading 

buffer 

Bromophenol blue 

Xylene Cyanol FF 

Glycerol 

EDTA 

12.6% (w/v) 

12.6% (w/v) 

30% 

120 mM 

Phosphate Buffered Saline 

(PBS) pH 7.4 

Sodium phosphate 

Potassium phosphate 

Potassium chloride 

Sodium chloride 

10 mM 

1.8 mM 

2.7 mM 

137 mM 
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2.1.1. Agarose Gel Electrophoresis 

1% agarose gels were routinely prepared by heating 1 g molecular biology grade 

agarose in 100 ml of TAE buffer (40 mM Tris-HCl, pH 8.0, 20 mM acetic acid, 1 mM 

EDTA) until dissolved. The agarose was allowed to cool before adding 5 μl of 

CYBRsafe (Invitrogen, Paisley, UK) which allows DNA to be visualised under UV 

light. The gel was submerged in TAE buffer and DNA samples were prepared using 

6 x loading dye (Promega, Southampton, UK) to a final concentration of 1 x before 

loading into the wells. DNA fragments were separated at 170 V and visualised 

under UV light. 

 

2.1.2. Primer Design 

Sense primers were designed using the following approach: 

Start with four bases which do not form part of the primer to protect the restriction 

site as restriction enzymes bind to this prior to digestion. Regularly used bases were 

CCCA. The restriction site is added before adding at least the first 27 bases of the 

protein to be cloned. If possible, the end of the protein sequence code should contain 

guanine or cytosine bases. These bases form three hydrogen bonds with each other, 

making primer binding more stable. When required, frame bases were added after 

the restriction site to ensure that the protein sequence was in frame.  

4 Bases Restriction Site First 27 Bases of Protein Code 

Antisense primers were designed using the following approach: 

Again begin with four bases which do not form part of the primer to protect the 

restriction site. For this primer, the bases GTGC were routinely used. Next, the 

restriction site was added before inserting a stop codon, such as TTA. The stop 

codon is required to ensure proper translation of the protein. Finally, the protein 

sequence is added. For the anti-sense primer, it is the reverse-complement of the last 

27 bases which is added.  

4 Bases Restriction Site Stop Codon Last 27 Bases of Protein Code 
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Table 2.2: Table of Primers 

Protein 

Expression 

Plasmid 

Direction Species Primer Sequence Restriction 

Site 

Ataxin-1  

575-815 

Sense Human CCCACTCGAGATGAAAGGC

TCCATCATCCAGTTGGCC 

XhoI 

Ataxin-1 

718-815 

Sense Human CCCACTCGAGATGGGCAGC

AGACACAGGTATGCCGAGC

AG 

XhoI 

Ataxin-1 

740-815 

Sense Human CCCACTCGAGATGAATGGC

GAACTGAAGTTTCCAGAGA

AA 

XhoI 

Ataxin-1 

575-815, 

740-815, 

718-815 

Antisense Human GTGCAAGCTTTTACTTGCCT

ACATTAGACCGGCCTTCAAT 

HindIII 

14-3-3 ζ 

Full-length 

Sense Human CCCAGGATCCATGGATAAA

AATGAGCTGGTTCAG 

BamHI 

14-3-3 ζ 

Full-length 

Antisense Human GTGCGAATTCTTAATTTTCCC

CTCCTTCTCCTGCTTCAGC 

EcoRI 

 

2.1.3. Polymerase Chain Reaction (PCR) with Pfu Polymerase 

PCR was performed on a PCR Sprint Thermal Cycler PCR machine (Thermo Fisher 

Scientific, Waltham, MA). For accurate DNA amplification, Pfu polymerase was 

used. A typical PCR reaction was set up as follows1: 

 

10 x Pfu polymerase buffer   -  5 μl 

Pfu polymerase (2.5 U)   -  1 μl 

Sense primer (1 μM)    -  1 μl 

Antisense primer (1 μM)   -  1 μl 

dNTPs (10 mM)    -  4 μl 

DNA template     -  1 μl 

dH2O      -  37 μl 

Total volume     -  50 μl 

                                                      
1 The final concentration for each reagent is given in parenthesis. Various concentrations of 

the DNA template were used depending on the DNA sample being cloned. 
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The following PCR programme was used: 

 

1 x  -  95°C melt  -  60 sec. 

    95°C melt  -  30 sec. 

35 x  -  55°C anneal  -  45 sec. 

    68°C t extend2  -   

1 x  -  72°C hold  -  10 min. 

 

2.1.4. Restriction Digest 

Restriction digests were performed to cut PCR products to produce sticky ends for 

DNA ligation. This method is known as a PCR product digest. Restriction digests 

were also performed analytically to check that insert DNA had ligated into plasmid 

DNA. This method is known as an analytical digest.  

 

2.1.4.1. PCR Product Digest 

Restriction digests were set up with PCR products and vector DNA as follows3: 

 

10 x Buffer     -  6 μl 

BSA (1 mg/ ml)    -  6 μl 

Enzyme 1 (10 U)    -  3 μl 

Enzyme 2 (10 U)    -  3 μl 

DNA template (50 ng)   -  30 μl 

dH2O      -  12 μl 

Total Volume     -  60 μl 

 

Digests were incubated at 37°C for 2 h. 

 

                                                      
2 The extension time (t extend) is 2 min/ kb of protein. 
3 The final concentration for each reagent is given in parenthesis.  
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2.1.4.2. Analytical Digest 

Analytical restriction digests were set up as follows4: 

 

10 x Buffer     -  3 μl 

BSA (1 mg/ ml)    -  3 μl 

Enzyme 1 (10 U)    -  1 μl 

Enzyme 2 (10 U)    -  1 μl 

DNA template (200 ng)   -  20 μl 

dH2O      -  2 μl 

Total Volume     -  30 μl 

 

Digests were incubated at 37°C for 2 h. 

 

2.1.5. Gel Extraction 

Gel extraction was performed using either the QIAquick gel extraction kit (Qiagen, 

Crawley, UK) or the Gel Purification Kit (Promega, Southampton, UK). In both 

cases, the procedure was carried out according to the manufacturer’s instructions. 

 

2.1.6. Ligation of Insert DNA into Vector DNA 

A ratio of 1:3 of vector: insert was calculated using the following equation: 
 

vector (ng) x insert size (kb)  x molar ratio of  insert =           insert (ng) 

vector size (kb)     vector 
 

The concentration of the vector and insert was estimated by comparing the DNA 

fragments separated on agarose gel electrophoresis with known concentrations of 

DNA molecular weight markers. The ligation reaction mixture was prepared to a 

total volume of 10 μl with the relevant concentrations of vector and insert DNA. 1 μl 

of T4 DNA ligase (NEB, Ipswich, MA) and 1 μl 10 x ligase buffer were added and 

the reaction was made up to a total volume of 10 μl with nuclease-free water. 

                                                      
4 The final concentration for each reagent is given in parenthesis. 
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Reactions were incubated either at room temperature for 3 h, or overnight at 4°C. 

After incubation, the whole 10 μl of ligated DNA was transformed into Top10 

Escherichia coli cells. 

 

2.1.7. Preparation of Competent Bacteria 

Escherichia coli strains used included Top10 for DNA production and BL21 (DE3) 

(both Invitrogen, Paisley, UK), Rosetta 2 and Rosetta-gami 2 (DE3)pLysS (Novagen, 

Merck, Darmstadt, Germany) for protein production. Production of competent 

bacteria was based on a modified version of the Hanahan (1983) method. A single 

colony of the cell line was inoculated in 5-10 ml of LB broth supplemented with 

appropriate antibiotic and incubated overnight at 37°C, with shaking at 200 rpm. 

This overnight inoculation was added to 200 ml of pre-warmed LB supplemented 

with antibiotic and grown to an O.D. at 600 nm of between 0.4 and 0.7. The total 

volume was divided into 50 ml fractions and incubated on ice for 20 min prior to 

centrifugation at 4500 rpm at 2°C for 10 min. After supernatant removal, cells were 

resuspended in 10 ml ice-cold 100 mM CaCl2 on ice. The mixtures were combined, 

set in ice and incubated at 4°C for 2 h. Cells were harvested by centrifugation at 

4500 rpm at 2°C for 10 min and resuspended in 2 ml ice-cold 100 mM CaCl2 with 

20% (v/v) glycerol. 100 μl aliquots were stored at -80°C until further use. 

 

2.1.8. Transformation of Bacteria 

Bacterial cells were transformed with DNA using the heat shock method. For 

transformation, ~1 μg of DNA was added to 50 μl of competent cells and incubated 

on ice for 20 min, to allow the DNA to bind to the cells. The mixture was then heat-

shocked at 42°C for 90 seconds before returning to ice for 2 min. After incubation, 

500 μl of SOC media was added to the mixture and incubated at 37°C, shaking at 

200 rpm for at least 90 min. The cell suspension was spread onto agar plates 

supplemented with appropriate antibiotic and incubated at 37°C overnight. 

Negative controls were set up minus DNA.  
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2.1.9. Production of Glycerol Stocks 

Glycerol stocks were produced to allow seeding of bacterial cultures without 

previous transformation. 500 μl of bacterial culture with an O.D. of greater than 0.6 

at 600 nm was added to 500 μl 100% glycerol to make a glycerol stock. This was 

thoroughly mixed before storing at -80°C until further use. 

 

2.1.10. Purification of Plasmid DNA 

2.1.10.1. Small Scale Purification 

A bacterial colony was picked into 10 ml LB media supplemented with appropriate 

antibiotic and incubated overnight at 37°C, with shaking at 200 rpm. The culture 

was centrifuged at 13,000 rpm in a bench top centrifuge for 5 min to pellet the 

bacteria. Qiagen’s QIAquick mini-prep kit was used to purify the plasmid DNA, 

according to the manufacturer’s instructions. The DNA was eluted into 50 μl of 

protease-free water. 

 

2.1.10.2. Large Scale Purification 

A bacterial colony was picked into 100 ml LB media supplemented with appropriate 

antibiotic and incubated overnight at 37°C, shaking at 200 rpm. Plasmid DNA was 

isolated using Qiagen’s maxi-prep kit, according to the manufacturer’s instructions. 

The DNA was eluted into 500 μl of protease-free water. 

 

2.1.11. Quantification of Plasmid DNA 

The concentration of plasmid DNA was measured using a Nanodrop® 

Spectrophotometer ND-1000. Absorbance was measured at 260 nm and nuclease-

free water was used as a blank before measuring the concentration of 1 μl of the 

DNA sample. Concentration was measured in ng/ μl. 
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2.2. Expression and Purification Techniques 

Proteins which were routinely expressed and purified for the purposes of this 

research are detailed in Table 2.3.  

 
Table 2.3: Protein Expression Plasmids 

Construct 

Name 
Source 

Growth 

Temp. 

A600 

induction 

IPTG 

Conc. 

Time for 

Induction 

His-Ataxin-1 

‘C’ 

IMAGE clone  

(S. Beck) 
37°C 0.7-0.8 0.5 mM 16 h 

His-Ataxin-1 

‘AC’ 

IMAGE clone  

(S. Beck) 
37°C 0.7-0.8 0.5 mM 16 h 

His-14-3-3ζ N. Houston 16°C 0.6 0.5 mM 16 h 

GST-ExoS  

88-453 
Bengt Hallberg 37°C 0.6 0.5 mM 4 h 

 

The p-Trc-His-A’ expression vector, employed for cloning His-fusion proteins, 

contains an ampicillin resistance gene.  The pGEX-2TK expression vector, employed 

for GST-fusion proteins cloning, also carries an ampicillin resistance gene. For 

procedures requiring antibiotic selection, a final concentration of 100 μg/ml of 

ampicillin was used in addition to any other antibiotics required for selection. 

Employed E. coli strains and the required antibiotics are detailed in Table 2.4. 

 
Table 2.4: Strains of Competent Cells used in Protein Expression 

E. coli Strain Antibiotic  Final Concentration 

BL21(DE3) n/a n/a 

Rosetta 2 Chloramphenicol 34 g/ml 

Rosetta-Gami 2 

Streptomycin 50 g/ml 

Tetracycline 12.5 g/ml 

Chloramphenicol 34 g/ml 
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2.2.1. Expression of Recombinant Proteins 

Recombinant proteins (see Table 2.3) were transformed into the E. coli strains of 

competent cells, as detailed in Table 2.4 and selected on agarose plates 

supplemented with appropriate antibiotic. A 100 ml culture was grown overnight 

from a single colony in LB media supplemented with appropriate antibiotic (see 

Table 2.4). A 1/10 dilution of the starter culture was made into the same medium 

and grown at 37°C, 200 rpm until the relevant O.D. at 600 nm was reached (see 

Table 2.3). Protein expression was induced by addition of isopropyl-beta-D-

thiogalactopyranoside (IPTG) at the concentration indicated in Table 2.3. Cultures 

were then transferred to the temperature for optimum growth (Table 2.3) in a 

shaking incubator at 200 rpm for either 4 h, or overnight (16 h). Cultures were 

harvested by centrifugation at 6500 rpm until the total volume had been clarified. 

Pellets were resuspended in 20 ml of 1xPBS and transferred to Falcon tubes. The 

mixture was centrifuged at 4500 rpm for 30 min. The supernatant was removed and 

pellets were stored at -80°C until further use.  

For expression trials, 500 μl samples were collected at various time points and 

centrifuged at 13,000 rpm for 5 min to pellet the cells. Cell pellets were resuspended 

in 250 μl of 3 x SDS Loading Buffer and boiled at 100°C for 5 min before either 

storing at -20°C until further use or running on SDS-PAGE. 
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2.2.2. Immobilised Metal Affinity Chromatography (IMAC) by Gravity Flow 

2.2.2.1. Ataxin-1 ‘C’ and ‘AC’ 

Ataxin-1 ‘C’ and ‘AC’ domains were predominantly purified using gravity flow 

columns charged with 100 mM cobalt chloride (CoCl2). Columns were prepared 

with a column volume (CV) of 5 ml. This consisted of Sepharose beads charged with 

Co2+. The process of charging and regenerating the column after each purification 

procedure was carried out according to the protocol detailed in The QIAexpressionist 

Handbook (Qiagen, Crawley, UK, 2001). 

All procedures for protein purification were carried out at 4°C unless otherwise 

stated. For purification by gravity flow IMAC, a -80°C pellet was resuspended in 

ice-cold lysis buffer (1 x PBS, 1 mM EDTA, 1 mM DTT, 0.1% Triton X-100, pH 7.5). A 

protease inhibitor tablet (Roche Diagnostics Ltd, U.K.) was added prior to lysis. 

Once completely resuspended and smooth, the cell suspension was sonicated at 10 

microns for 8 periods of 30 seconds, with a 30 second break between each 

sonication. The sonicated cell lysate was incubated on ice for 30 min and clarified 

through centrifugation at 15,000 rpm (27,100 x g), 4°C for 25 min in a Sorvall SS-34 

rotor. The supernatant of the clarified lysate was filtered through a 0.45 μm filter. 

The filtered lysate was applied to the gravity flow column and sealed inside. The 

column was then tumbled for 1 h at 4°C to allow the lysate to fully interact with the 

Co2+ ions on the Sepharose beads. After tumbling, the column was opened and the 

flow-through from the beads collected in a Falcon tube. Collection was stopped 

before the remaining volume was less than that of the column volume, so as not to 

allow the Sepharose beads to dry out. Following this is a lengthy wash-step with 10 

CV of wash buffer (20 mM imidazole, 20 mM Tris, 0.3 M NaCl, pH 7.4). This wash 

step is important to remove any non-specific binding proteins which would 

contaminate the protein of interest. The eluate of the wash step is also collected, in 

the event that the protein of interest may be eluted at extremely low imidazole 

concentrations. 
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To elute the ataxin-1 proteins, the optimum concentration of imidazole had been 

determined by Dr. Sebastian Beck to be 200 mM. Therefore, the proteins were eluted 

with a minimum of 7 CV of elution buffer (200 mM imidazole, 20 mM Tris, 50 mM 

NaCl, pH 7.4). The elution fractions were collected in 1 CV increments. Each elution 

fraction collected was also treated with 200 μl of protease inhibitors (25 mM DTT, 98 

mM EDTA plus one protease inhibitor tablet per 50 ml) and stored at 4°C. 

 

2.2.2.2. 14-3-3ζ 

14-3-3ζ was purified using 1 ml gravity-flow IMAC columns containing NTA beads 

charged with 100 mM nickel chloride (NiCl2). Beads were prepared by washing 2 ml 

of bead slurry with 50 ml of dH2O by centrifugation at 4,500 rpm in a benchtop 

centrifuge. Once the supernatant was removed, beads were transferred to a column 

where the remaining liquid was drained prior to charging the beads with 2 ml of 

100 mM NiCl2. Excess liquid was left to drain before washing with 10 ml of dH2O 

followed by 10 ml of Equilibration Buffer (20 mM sodium phosphate, 500 mM 

sodium chloride, 50 mM imidazole, pH 8). Charged beads were stored at 4°C until 

required. 

A bacterial pellet stored at -80°C was resuspended in 40 ml of Lysis Buffer (20m M 

sodium phosphate, 500 mM sodium chloride, 20 mM imidazole, pH 8.0) plus a 

protease inhibitor tablet (Roche Diagnostics Ltd, UK) while on ice. Once no clumps 

were visible, the lysate was vortexed, to ensure complete re-suspension. Once 

completely resuspended and smooth, the cell suspension was sonicated at 10 

microns for 8 periods of 30 seconds, with a 30 second break between each 

sonication. The lysate was centrifuged at 27,000 x g (15,000 rpm) in an SS-34 rotor 

for 1 h at 4°C. After centrifugation, the supernatant was filtered through a 0.2 μm 

filter and the filtrate applied to the charged NTA beads for incubation at 4°C for 1 h 

with rotation. Typically, the filtrate and charged beads were incubated in a 50 ml 

Falcon tube. The protein/bead mixture was then centrifuged at 1,000 rpm for 5 min 

and the supernatant collected. This was termed the ‘flow-through’. Beads were 
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resuspended in 40 ml of Equilibration Buffer and rotated at 4°C for 30 min. Again, 

the mixture was centrifuged at 1,000 rpm for 5 min and the supernatant collected. 

This was termed the ‘wash’. Beads were transferred to a gravity-flow column and 

the protein was eluted with a total volume of 20 ml Elution Buffer (20 mM sodium 

phosphate, 500 mM sodium chloride, 250 mM imidazole, pH 8). Eluate was 

collected in either 1 or 2 ml fractions. To ensure that all protein which had bound to 

the column was removed, a final wash with 10 ml of Wash Buffer (20 mM sodium 

phosphate, 500 mM sodium chloride, 500 mM imidazole, pH 8) was carried out. 

This also allows the charged NTA beads to be used more than once for subsequent 

protein purification. 

Fractions were analysed by SDS-PAGE (see section 2.3.1) and those which contained 

the protein of interest were pooled for further concentration. As the protein is eluted 

from the column with a high imidazole concentration, the protein buffer was 

changed to either 25 mM HEPES (pH 7) or PBS in a vivaspin (see section 2.2.4). 

All procedures were carried out at 4°C unless otherwise stated. 

 

2.2.2.3. ExoS 

GST-tagged proteins were purified with Glutathione-Sepharose beads. Beads were 

prepared by washing 1.5 ml of bead slurry in 20 ml of PBS by centrifuging at 1,500 

rpm for 5 min in a benchtop centrifuge. The supernatant was removed and beads 

washed in 20 ml PBS with 0.1% Triton X-100 and centrifuged at 1,500 rpm for 5 min. 

The supernatant was removed and the beads washed once again in 20 ml PBS and 

centrifuged at 1,500 rpm for 5 min. Beads were stored at 4°C until required. 

A bacterial pellet stored at -80°C was resuspended in 40 ml of ice-cold PBS 

containing one protease inhibitor tablet. Lysozyme was added to give a final 

concentration of 1 mg/ml before incubating the mixture on ice for 30 min. Following 

incubation, 0.2 ml of 1 M DTT and 4.5 ml of 10% Triton X-100 was added to the 

mixture, before sonicating at 10 microns for 6 periods of 30 seconds, with a 30 

second break between each sonication. The lysate was then centrifuged at 12,000 



 

- 67 - 

 

rpm (17,000 x g) for 1 h in an SS-34 rotor. Following centrifugation, the supernatant 

was filtered through a 0.22 m filter and the filtrate added to the prepared 

Glutathione-Sepharose beads for incubation at 4°C for 2 h with rotation. The 

protein/bead mixture was centrifuged at 1,500 rpm for 5 min and the supernatant 

removed. The beads were washed four times with PBS by resuspending and 

centrifuging at 1,500 rpm and removing the supernatant. The beads were then 

washed once, in the same manner, with 1.2 M NaCl before finally washing twice 

with PBS. When the final supernatant was removed, the beads were left as 50% 

slurry. 

For glutathione elution, the bead slurry was aliquoted into 1 ml fractions and the 

PBS was removed by centrifuging at 3,000 rpm in a benchtop centrifuge. To each 

fraction, 500 l of Glutathione Elution Buffer (10 mM reduced glutathione, 50 mM 

Tris-HCl pH 8) was added and incubated at room temperature for 30 min with 

tumbling. After incubation, fractions were centrifuged at 3,000 rpm for 20 seconds 

and the supernatants pooled. This was termed as fraction 1. The elution step with 

Glutathione Elution Buffer was repeated until 4 fractions were collected and these 

fractions were separated on 12% SDS-PAGE. Fractions containing the protein of 

interest were pooled together and the glutathione removed from the protein by 

dialysing with PBS. 

All procedures were carried out at 4°C unless otherwise stated. 
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2.2.3. Ion-Exchange Chromatography 

This step was employed when protein fractions from IMAC purification were not of 

sufficient purity. This purification step was carried out on a BioCAD 700E Perfusion 

Chromatography Workstation. Cation exchange was employed and details are 

given in Table 2.5. 

Table 2.5: Ion-Exchange Conditions 

Protein 
Ion-Exchange 

Column 
Buffer A Buffer B 

Ataxin-1 ‘C’ Cation (MonoS) 10 mM MES (pH 6) 
10 mM MES,  

2 M NaCl (pH 6) 

Ataxin-1 ‘AC’ Cation (MonoS) 10 mM MES (pH 6) 
10 mM MES,  

2 M NaCl (pH 6) 

 

The ion-exchange column was equilibrated with Buffer A for 90 min before the 

protein was loaded onto the column. The chromatography procedure began with a 

10 min step of 100% Buffer A before a gradient step of 0-100% Buffer B for 45 min. 

The run ended with a final 10 min step of 100% Buffer B.  

Fractions were collected with an Advantec SF-2120 fraction collector and those 

containing protein were analysed on SDS-PAGE and pooled for further analysis. 

 

2.2.4. Gel Filtration Chromatography 

In order to separate proteins according to their size and shape, gel filtration 

chromatography was employed. This method is unlike other chromatography 

methods, whereby proteins being separated bind to the solid phase. Instead, 

proteins are ‘retained’ in the column for varying amounts of time, depending on the 

size of the protein and matrix employed in the column, i.e. not adsorptive. 

For Ataxin-C purification, a Superose 12 10/30 chromatography column of 24 ml 

with a molecular weight range of 1-300 kDa was used. Superose comprises of a 

cross-linked, agarose-based medium with a bead size of approximately 8-12 μm. The 

method was carried out on a BioCAD Perfusion Chromatography Workstation with 
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an Advantec SF-2120 fraction collector connected to collect individual fractions for 

further analysis. Samples were prepared to 100 μl and run over 80 min with a buffer 

of 20 mM Tris, 150 mM NaCl pH 7.4 at a flow rate of 0.5 ml/min. 

 

2.2.5. Concentration and Storage of Proteins 

Purified recombinant proteins must be concentrated for further analysis, 

particularly crystallography. Proteins were concentrated into buffers which were 

suitable for the protein, e.g. 14-3-3ζ is stable in HEPES buffer. Occasionally, proteins 

would be required to be in a particular buffer for certain assays or crystallography 

conditions. In order to change buffers and concentrate proteins, the following 

methods were employed: 

1. A Vivaspin concentrator (Sartorius Stedim Biotech, Germany).  

Depending on the size of protein to be concentrated, a concentrator with a 

suitable MWCO (molecular weight cut-off) was used. One caveat of this 

method is the loss of protein yield due to the protein sticking to the filtration 

membrane. This can be overcome through keeping the Vivaspin on ice after 

centrifugation and gently resuspending the sample before using a fine-tip 

pipette or needle and syringe to remove the protein sample. 

2. A Slide-a-Lyzer Dialysis Cassette (Thermo Fisher Scientific, Waltham, MA).  

For dialysis of GST-tagged proteins, a cassette with a MWCO of 3.5 kDa was 

used. The cassette was prepared according to the manufacturer’s instructions 

prior to injecting the protein sample. The cassette was placed in a large beaker 

containing ~800 ml of PBS and incubated at 4°C with mixing. After a few 

hours, the buffer was changed and dialysis continued overnight. The buffer 

was changed periodically over the following 24 h to ensure sufficient dialysis.  
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2.2.6. Protein Concentration Determination 

2.2.6.1. Bradford Assay 

Protein concentration was determined according to the Bradford (1976) method. 

Samples were made up to 50 μl in dH2O and 200 μl of Bradford dye reagent (Bio-

Rad, Hertfordshire, UK) was added to each sample to give a 1:4 ratio of sample to 

reagent. Samples were incubated at room temperature for 5 min and the absorbance 

measured at 595 nm. Samples were analysed in triplicate and compared with a 

standard curve constructed using serial dilutions of bovine serum albumin (BSA). 

 

2.2.6.2. Bicinchoninic acid (BCA) Assay 

For determination of protein concentration of raft fractions, whereby lipids interfere 

with the Bradford assay reagent, a BCA assay kit from Pierce (Rockford, IL) was 

used according to the manufacturer’s instructions. Samples were made up to 50 μl 

in dH2O and incubated with 1 ml working reagent (1:20 ratio) for 30 min at 60°C. 

The working reagent is produced by mixing 50 parts of reagent A (BCA containing 

solution) with 1 part of reagent B (4% cupric sulphate). Following incubation, 

samples were cooled to room temperature and the absorbance measured at 562 nm. 

Absorbance values were compared with a BSA standard curve to calculate protein 

concentration. 
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2.3. Biochemical Techniques 

2.3.1. SDS-PAGE 

Proteins were routinely separated by size under denaturing conditions by SDS-

PAGE based on the method of King and Laemmli (1971). Tris-glycine gels of 

varying percent acrylamide were used according to the size of proteins to be 

analysed. 

Table 2.6: Buffers for SDS-PAGE 

Buffer Components Concentration 

Stacking Gel Acrylamide 

Tris-HCl pH 6.8 

SDS 

Ammonium persulphate 

TEMED 

5% (w/v) 

0.125 M 

0.1% (w/v) 

0.1% (w/v) 

0.04% (v/v) 

Resolving Gel Acrylamide 

Tris-HCl pH 8.8 

SDS 

APS 

TEMED 

10-15% (w/v) 

0.375 M 

0.1% (w/v) 

0.1% (w/v) 

0.1% (w/v) 

Tris-Glycine running 

buffer 

Glycine 

Tris 

SDS 

0.192 M 

0.025 M 

0.1% (w/v) 

Laemmli Buffer  

(3 x SDS Loading buffer) 

Tris-HCl pH 6.8 

Glycerol 

SDS 

β-mercaptoethanol 

Bromophenol Blue 

0.15 M  

30% (v/v) 

6% (w/v) 

15% (v/v) 

0.1% (w/v) 

Coomassie Blue Stain Acetic acid 

Methanol 

Coomassie brilliant blue (G250/ R250) 

10% (v/v) 

45% (v/v) 

0.2% (w/v) 

Destain Acetic acid 

Methanol 

10% (v/v) 

30% (v/v) 

 

Mini-PROTEAN Tetra Cell apparatus from Bio-Rad (Hertfordshire, UK) was 

employed for running small gels. Vertical slab gels were produced using 5 ml of 

resolving gel (components listed in Table 2.6) and overlaid with 2 ml of stacking gel 

(see also Table 2.6). Gels were fitted into the Mini-PROTEAN Tetra Cell apparatus 

and the tank reservoirs were filled with Tris-glycine running buffer (Table 2.6). 
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Samples were mixed with the appropriate volume of 3 x SDS loading buffer 

(Laemmli’s buffer, Table 2.6) and boiled for 5 min at 100°C before loading onto the 

stacking gel for separation. Molecular weight markers from Bio-Rad (Precision Plus 

Protein Standards, both Unstained and Pre-stained) or NEB (ColorPlus Prestained 

Protein Marker) were loaded alongside the samples, with a molecular weight range 

from 10-250 kDa. Gels were run by application of 200 V for approximately 1 h, or 

until the dye front had just run off the bottom of the resolving gel. Gels were either 

Coomassie blue stained (see Table 2.6 for stain and destain buffers) or transferred to 

nitrocellulose membrane for immunoblotting (as described in section 2.3.2 below). 

 

2.3.2. Immunoblotting 

Following SDS-PAGE separation, proteins were transferred from the gel to 

nitrocellulose membrane at a constant current of 0.2 A for 90 min using the Trans-

blot SD semi-dry transfer apparatus (Bio-Rad, Hertfordshire, UK) in the presence of 

transfer buffer (see Table 2.7). 

Table 2.7: Buffers for Immunoblotting 

Buffer Components Concentration 

Transfer Buffer Glycine 

Tris 

Methanol 

0.192 M 

0.025 M 

20% (v/v) 

Ponceau S stain Ponceau S 

Trichloroacetic acid 

0.1% (w/v) 

3% (w/v) 

TBS-Tween (TBS-T) Tris-HCl pH 7.5 

NaCl 

Tween-20 

0.02 M 

0.137 M 

0.1% (v/v) 

Blocking Buffer Non-fat dried milk (Marvel) 5% (w/v) in TBS-T 

Blocking Buffer  

(for phospho-specific reactions) 

BSA 1% (w/v) in TBS-T 

Stripping Buffer Glycine-HCl pH 2.0 

SDS 

0.025 M 

1% (w/v) 

Phosphate Buffered Saline (PBS) 

pH 7.4 

Sodium phosphate 

Potassium phosphate 

Potassium chloride 

Sodium chloride 

10 mM 

1.8 mM 

2.7 mM 

137 mM 

 



 

- 73 - 

 

After transfer, the membrane was stained with Ponceau S to check protein transfer 

efficiency. The membrane was destained with dH2O and TBS-T prior to incubation 

with blocking buffer for 1 h on a belly-dancer shaker. The membrane was washed 3 

times with TBS-T for 5 min per wash. Primary antibodies (see Table 2.8) were 

diluted to the appropriate concentration in blocking buffer for membrane 

incubation at 4°C overnight. Membranes were washed again in TBS-T (3 x 5 min) 

and incubated in the corresponding secondary antibody conjugated to horse radish 

peroxidase for 1 h at room temperature. Secondary antibodies were also diluted to 

the appropriate concentration in blocking buffer. The secondary antibodies 

employed and their respective concentrations are found in Table 2.9. Following 

secondary antibody incubation, membranes were again washed in TBS-T (3 x 5 min) 

followed by a 10 min wash in dH2O. The membrane was finally incubated with the 

enhanced chemiluminescence (ECL) system (Millipore, Bedford, MA) and exposed 

to autoradiographic film (Kodak, Herts, UK) for varying periods of time.  

 
Table 2.8: Primary Antibodies for Immunoblotting 

Antibody Dilution Host Supplier/Origin 

14-3-3 PAN 1:2000 Rabbit Alastair Aitken and co-workers, 

Edinburgh 

14-3-3 pSPEKA 1:250 Sheep Alastair Aitken and co-workers 

14-3-3 β 1:2000 Rabbit Alastair Aitken and co-workers 

14-3-3  N-terminal 1:2000 Rabbit Alastair Aitken and co-workers 

14-3-3  C-terminal 1:2000 Rabbit Alastair Aitken and co-workers 

14-3-3  1:3000 Rabbit Alastair Aitken and co-workers 

14-3-3  1:2000 Rabbit Alastair Aitken and co-workers 

14-3-3ζ 1:2000 Rabbit Alastair Aitken and co-workers 

Flotillin-1 C-20 1:500 Goat Santa Cruz Biotechnology, Santa Cruz, 

CA 

Prion Protein, 6H4 1:3000 Mouse Prionics AG, Zurich 

Phospho-Akt 

(Ser473) (D9E) 

1:2000 Rabbit Cell Signalling Technology, Danvers, 

MA 
 
 
Table 2.9: Secondary Antibodies for Immunoblotting 

Species Dilution Supplier/Origin 

Goat/Sheep 1:2000 Sigma-Aldrich, Dorset, UK 

Rabbit 1:20,000 Abcam, Cambridge, UK 

Mouse 1:5000 Sigma-Aldrich, Dorset, UK 
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Membranes were routinely incubated in stripping buffer (see Table 2.7) for 30 min at 

room temperature to disrupt the interaction between the antigen and the antibody. 

The membrane was then washed 4 times with PBS for 10 min per wash to neutralise 

the pH. Membranes were incubated in blocking buffer and the immunoblotting 

procedure repeated. Generally, nitrocellulose membranes were not stripped more 

than once. 

 

2.3.3. Lipid Raft Isolation from Whole Rat Brain 

All procedures were carried out at 4°C unless otherwise stated. 

Table 2.10: Buffers for Lipid Raft Isolation 

Buffer Components Concentration 

MES Buffered Saline 

(MBS)5 

MES pH 6.5 

NaCl 

Triton X-100 

CaCl2 

MgCl2 

0.025 M 

0.150 M 

1% (v/v) 

0.001 M 

0.001 M 

Low Density Membrane 

(LDM) Buffer 

Sucrose 

Tricine pH 7.8 

EDTA 

0.25 M 

0.02 M 

0.001 M 

 

2.3.3.1. Raft Isolation Employing OptiPrep Iodixanol Gradients 

Lipid rafts were prepared based on the method of Chamberlain and co-workers 

(Chamberlain et al. 2001; Chamberlain and Gould 2002). Other studies have 

employed similar methods (Parkin et al. 1999; Martens et al. 2000; Miura et al. 2001; 

Taverna et al. 2004; Gil et al. 2005). 

A whole rat brain was weighed prior to homogenisation on ice in MBS containing 

1% (v/v) TX-100 (see Table 2.10) with 20 strokes of a Dounce homogeniser. The 

homogenate was passed through a wide-barrel needle at least 5 times before 

incubation on ice for 15 min. The homogenate was centrifuged at 3,000 rpm (1100 x 

g) for 15 min in a Sorvall SS-34 rotor to sediment tissue debris. Once again, the 

                                                      
5 Immediately prior to homogenisation, protease and phosphatase inhibitors were added. 
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supernatant was passed through a wide-barrel needle 5-10 times and incubated on 

ice for another 15 min. OptiPrep Solution (Axis-Shield, Dundee, UK) is an aqueous 

solution comprising 60% (w/v) iodixanol in water. A combination of OptiPrep 

Solution and LDM buffer (see Table 2.10) were added to the homogenate to adjust 

the density to 25% (v/v) iodixanol.  

OptiPrep gradients were prepared and are detailed in Table 2.11. 

 
Table 2.11: OptiPrep Gradients for Raft Isolation 

Volume OptiPrep Volume LDM Buffer Iodixanol Gradient 

1.25 ml 13.75 ml 5% (v/v) 

2.5 ml 12.5 ml 10% (v/v) 

5 ml 10 ml 20% (v/v) 

 

Discontinuous iodixanol gradients were constructed in thin walled polycarbonate 

tubes. For each raft isolation procedure, 6 tubes were set up, loading 3.3 ml of 

iodixanol/homogenate into the bottom of each tube. This was overlaid with 2 ml of 

20% (v/v) iodixanol, followed by 2 ml of 10% (v/v) iodixanol. This was overlaid with 

2 ml of 5% (v/v) iodixanol and finally the tubes were balanced by adding LDM 

buffer. A diagram of the tubes once set up is shown in Figure 2.1. Gradients were 

centrifuged at 33,000 rpm (121,000 x g) in a Sorvall TH641 swinging bucket rotor for 

2 h.  

 



 

- 76 - 

 

 

Figure 2.1: Iodixanol Gradient Set-Up For Raft Isolation From Whole Rat Brain 

Lipid rafts were isolated from rat brain by TX-100 extraction, followed by flotation on an 

iodixanol density gradient. 

A. Representation of iodixanol gradients set up prior to centrifugation. The final 

concentration of iodixanol expressed as a percentage is labelled in each layer.  

B. Representation of the gradients after centrifugation. The area where the lipid rafts 

are found is indicated by the grey region. The gradient was collected as 20 fractions, 

0.5 ml each. Fractions were collected by sucrose displacement, as shown in the 

diagram. Fractions were collected from the top of the tube by a fraction collector. In 

most cases, fraction 10 contained the lipid rafts.  

 

After centrifugation, an opaque band was visible between the 5% and 10% iodixanol 

gradients which contain the lipid rafts (Figure 2.1). Twenty 0.5 ml fractions were 

collected by sucrose displacement and the use of a fraction collector. Fractions were 

stored at -20°C.  
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2.3.3.2. Raft Isolation Employing Sucrose Density Gradients 

An alternative method of lipid raft isolation was also employed. The OptiPrep 

method is useful as the procedure is shorter than using sucrose gradients; however 

previous studies have shown the sucrose gradient method to produce more 

concentrated raft fractions. 

Again, a whole rat brain was weighed prior to homogenisation on ice in MBS 

containing 1% (v/v) TX-100 (see Table 2.10) with 30 strokes of a Dounce 

homogeniser. The homogenate was centrifuged at 1,100 x g for 10 min in a Sorvall 

SS-34 rotor to sediment tissue debris. To determine the protein concentration of the 

cleared homogenate, a BCA assay (detailed in section 2.2.6.2) was carried out.  It is 

important to determine protein concentration through a BCA assay and not a 

Bradford assay, as the lipids present in the homogenised rat brain interfere with the 

Bradford reagent and do not provide clear results.  

As the density of TX-100 is 1.07 g/ml, a 1% (v/v) solution has a detergent 

concentration of 10.7 mg/ml. The protein concentration was adjusted to 2 mg/ml by 

addition of homogenisation buffer to give a detergent to protein ratio of 5:1 (w/w). 

An equal volume of 80% (w/v) sucrose in MBS was added to the cleared 

homogenate and passed though a wide barrel needle at least 5 times to ensure 

complete mixture of the two components. 

Discontinuous sucrose density gradients were constructed in thin walled 

polycarbonate tubes. For each raft isolation procedure, 6 tubes were set up. To 

begin, 5 ml of 40% sucrose/brain homogenate mix was added to the bottom of each 

tube. This was then overlaid with 5 ml of 30% sucrose in MBS; ~2 ml of 5% sucrose 

in MBS and finally 5% sucrose in MBS was added to the top of each tube to ensure 

equal weight for balancing. The set up of the tubes prior to centrifugation is shown 

in Figure 2.2. Gradients were centrifuged at 38,000 rpm (160, 165 x g) in a Sorvall 

TH641 swinging bucket rotor for 17 h overnight. 
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Figure 2.2: Sucrose Gradient Set-Up for Raft Isolation from Whole Rat Brain 

Lipid rafts were isolated from rat brain by TX-100 extraction, followed by flotation on 

sucrose density gradients. 

A. Representation of sucrose density gradients set up with rat brain homogenate prior 

to centrifugation.  

B. Representation of the gradients after centrifugation. The grey region indicates the 

lipid rafts. The gradient was collected as 20 fractions of 0.5 ml. As is shown in the 

diagram, fractions were collected from the top of the tube by sucrose displacement. 

In most cases, fraction 8 contained the rafts.  

 

After centrifugation, a white interface was visible between the 5% sucrose and the 

30% sucrose gradients (Figure 2.2). This white interface contains the lipid rafts. Once 

again, twenty fractions at 0.5 ml were collected by sucrose displacement. The 

fractions were collected using a fraction collector. After collection, the fractions were 

stored at -20°C. 
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2.3.4.  Cholesterol Assay 

Cholesterol assays were routinely carried out on fractions isolated from rat brain to 

identify lipid rafts. Infinity Reagent was purchased from Thermo Electron 

(Waltham, MA) and the procedure carried out according to the manufacturer’s 

instructions. Briefly, 10 μl of sample was mixed with 1ml of Infinity Reagent and 

incubated at 37°C for 5 min.  

The assay consists of two sequential enzyme reactions. Cholesterol oxidase converts 

cholesterol to cholest-4-en-3-one. This reaction creates a by-product of hydrogen 

peroxide, which combines with hydroxybenzoic acid and 4-aminoantipyrine to form 

quinoneimine dye. This reaction is driven by peroxidase and the quinoneimine dye 

absorbs at 500-550 nm. 

Following incubation, absorbance (Abs) was measured at 500 nm and compared 

with a 2 mg/ml cholesterol standard prepared in the same way.  

Sample cholesterol concentration = Abs500nm sample  x 2 mg/ml 

      Abs500nm standard  

 



 

- 80 - 

 

2.3.5. Cholesterol Depletion of Lipid Rafts 

2.3.5.1.  Chloroform: Methanol Extraction 

Lipid raft fractions were treated with chloroform: methanol extraction, a procedure 

which effectively removed lipids while concentrating the protein in the sample. Two 

peak raft fractions were extracted for each raft experiment. Each 500 μl fraction was 

split into two 250 μl fractions and 1 ml of chloroform: methanol (2:1 ratio) was 

added to each 250 μl fraction. Tubes were inverted approximately 20 times to ensure 

the reagents were thoroughly mixed and briefly vortexed before centrifuging for 20 

sec. After centrifugation, two layers were separated by a white interface. The lower 

layer, the solvent layer, was removed using a fine-tip pipette. The procedure was 

repeated a further two times to ensure sufficient extraction. Finally, the upper, 

aqueous layer was also removed, leaving the white interface remaining. The white 

interfaces were resuspended in 5 μl of dH2O and combined for further analysis. 

 

2.3.5.2. Methyl-β-CycloDextrin (MβCD) 

Fresh lipid rafts were treated with methyl-β-cyclodextrin to deplete cholesterol 

levels for protein analysis. The peak fractions from a fresh raft preparation were 

diluted in an equal volume of MBS buffer and centrifuged in a Beckman TL-100 

centrifuge at 60,000 rpm (250,000 x g) for 20 min to pellet the rafts. The supernatant 

was removed and the rafts were resuspended in 200 μl of 20 mM MβCD per raft 

fraction and incubated at 37°C for 2 h to deplete the cholesterol. Following 

incubation, the mixture was centrifuged as before and the supernatant containing 

the proteins was used for further analysis. 
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2.3.6. 2-Dimensional (2D) SDS-PAGE 

2D SDS-PAGE was carried out in order to identify different isoforms of 14-3-3 by 

iso-electric point (pI) and molecular weight. 

 

2.3.6.1. Sample Rehydration to IPG Strips 

Protein samples were prepared and resuspended in Rehydration Buffer (Genomic 

Solutions, Cambridgeshire, UK). The concentration of the protein and the volume of 

rehydration buffer required depended on the IPG strips used. In most cases, 

Immobiline DryStrip pH 4-7, 11 cm IPG strips (GE Healthcare, Buckinghamshire, 

UK) were used. Protein samples were prepared to between 50 and 300 μg 

concentrations and a total volume of 280 μl in Rehydration Buffer. Samples were 

pipetted into a rehydration tray and an IPG strip was gently overlaid. The strip was 

moved slowly over the solution to ensure that the whole strip was in contact with 

the solution and there were no air bubbles. Finally, 1 ml of mineral oil was coated 

on top of each strip to prevent the strips drying out during rehydration. The 

rehydration tray was covered and the strips were left to rehydrate at room 

temperature overnight. 

 

2.3.6.2. IsoElectric Focussing 

IPG strips which had been rehydrated were focussed using an Ettan IPGphor II 

IsoElectric Focusing System (Amersham Biosciences, Bucks, UK). 

The mineral oil was carefully removed by gentle pipetting and the strips were 

transferred to IPG strip holders which are used for the focussing step. Moistened 

wicks were added to each end of the strips to ensure good contact with the 

electrodes. Again, 1 ml of mineral oil was used to coat the strips to prevent drying 

out during the focussing step.  

The focussing procedure used is shown in Table 2.12. 
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Table 2.12: IsoElectric Focussing Procedure 

Step Voltage Mode Voltage (V) Time (h:min) 

1 Step and Hold 500 4:00 

2 Gradient 1000 1:00 

3 Gradient 6000 2:30 

4 Step and Hold 6000 20:00 

 

2.3.6.3. IPG Strip Equilibration 

Focussed IPG strips were equilibrated in an SDS buffer system to prepare the strips 

for second-dimension separation. Equilibration buffer6 (6 M Urea, 4% SDS, 30% 

glycerol, 50 mM Tris-HCl, pH 6.8) was freshly prepared for each equilibration. The 

equilibration buffer was supplemented with either DTT or IAM and incubated at 

37°C with gentle agitation as shown in Table 2.13.  

 
Table 2.13: Equilibration Conditions 

Buffer Supplement Incubation Time (mins) 

50 mM DTT 45 

50 mM DTT (fresh) 30 

150 mM IAM 15 

 

2.3.6.4. Second-Dimension Separation 

Equilibrated IPG strips were separated by SDS-PAGE on the second dimension. 

However, as the samples were focussed on 11 cm IPG strips and the second 

dimension supports 7 cm strips, the IPG strips were cut to size for second-

dimension separation. IPG strips with a pH range of 4-7 were used as the pI of 14-3-

3 is approximately 4.5 (Aitken et al. 1995b).This meant that the focussed IPG strip 

could be shortened at the pH 7 end. A diagram of this is shown in Figure 2.3.  

                                                      
6 Bromophenol blue was also added to provide a dye-front for second-dimension separation. 
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Figure 2.3: Diagram of IPG Strips Modified for Second-Dimension Separation 

Protein samples were rehydrated onto IPG strips and separated according to pI by iso-

electric focussing. IPG strips used for iso-electric focussing are 11 cm long, however only 

strips 7 cm long can be separated on second-dimension.  

A. Diagram showing the modification of an IPG strip for second-dimension separation.  

B. Diagram showing how the modified IPG strip is loaded into the second-dimension 

gel. 
 

 

The second-dimension separation was carried out on NuPAGE 4-12% Bis-Tris Zoom 

Gel 1.0 mm X IPG Well gels in the presence of MOPS buffer (both Invitrogen, 

Paisley, UK). An XCell SureLock Mini Cell (Invitrogen, Paisley, UK) was employed 

for second-dimension separation. IPG strips were loaded with the pH 4 end of the 

strip adjacent to the molecular weight marker lane. Gels were ran by application of 

100-200 V. Second-dimension separation SDS-PAGE was usually ran at a lower 

voltage than tris-glycine SDS-PAGE to prevent smearing of protein samples. 

Separation was continued until the dye-front had run off the resolving gel. 

After 2D separation was completed, gels were either stained with Coomassie Blue 

dye or transferred to nitrocellulose membrane for immunoblotting (see section 

2.3.2). 
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2.3.7. In-Gel Digestion and Mass Spectrometry 

2.3.7.1. In-Gel Digestion of Protein Bands 

Following SDS-PAGE, protein bands were revealed through staining with 

Coomassie Blue (R250) or Colloidal Coomassie stain (Thermo Fisher Scientific, 

Waltham, MA). Individual bands were excised according to Aitken and Learmonth 

(2002). Briefly, gel pieces were incubated with 300 μl of 200 mM NH4HCO3/ 50% 

acetonitrile for 30 min. This step is repeated a further 2 times to ensure removal of 

SDS. Proteins were reduced by incubation with 20 mM DTT/ 200 mM NH4HCO3/ 

50% acetonitrile for 1 h at room temperature. Bands were washed three times in 200 

mM NH4HCO3/ 50% acetonitrile to remove the DTT prior to alkylating cysteine 

residues by incubation in 50 mM iodoacetamide/ 200 mM NH4HCO3/ 50% 

acetonitrile for 20 min at room temperature in the dark. Bands were washed three 

times in 20 mM NH4HCO3/ 50% acetonitrile and centrifuged at 13,000 rpm in a 

benchtop centrifuge for 2 min. The gel pieces were covered in 100% acetonitrile, to 

shrink them and turn them white. After 5 min, or once the pieces had turned white, 

the acetonitrile was removed and the gel pieces left to dry. The gel pieces were 

rehydrated with trypsin solution (Promega, Southampton, UK) and 50 mM 

NH4HCO3 on ice. Once the gel pieces had swelled, they were incubated at 32°C 

overnight. 

The peptides were collected in the supernatant and further extraction was achieved 

through sonication for 10 min. Peptides were stored at -20°C until analysis by mass 

spectrometry. For long term storage, peptides were kept at -80°C. 

Occasionally, peptides would be sub-digested with the Endoproteinase Glu-C 

enzyme (Boehringer Mannheim, Mannheim, Germany) by addition of the enzyme 

to the tryptic digests after at least 90 min of incubation with trypsin alone. Where 

enzymatic sub-digestion has been applied, details are provided in the text. 

 



 

- 85 - 

 

2.3.7.2. Concentration of Peptides for Mass Spectrometry 

Occasionally, dilute peptides would be concentrated for mass spectrometry. This 

involves a simple clean-up procedure by solid-phase extraction through the use of a 

ZipTip (Millipore, Bedford, MA). A ZipTip is a miniature reverse-phase column 

which is packed into a 10 μl pipette tip. A C18 ZipTip contains a 0.5 μl bed volume of 

C18 silica (15 μm, 200 Å). Briefly, the tip is pre-wet by washing three times with 100% 

acetonitrile and equilibrated three times with 0.1% trifluoroacetic acid (TFA) in 

high-purity water. Peptides are bound to the ZipTip by aspirating and dispensing 

the sample 10-15 times. The ZipTip is then washed with 0.1% TFA as before. 

Peptides are eluted from the ZipTip with 0.1% TFA in 50% acetonitrile. Eluted 

samples were applied directly to a MALDI-TOF target plate for analysis. 

 

2.3.7.3. Matrix-Assisted Laser-Desorption Ionization-Time-of-Flight (MALDI-

TOF) Mass Spectrometry 

Peptides were analysed on a Voyager DE-STR MALDI-TOF mass spectrometer 

(Applied Biosystems, Paisley, UK). A 0.5 μl aliquot of peptides was mixed with 0.5 

μl of -cyano-4-hydroxycinnamic acid (CHCA) matrix and loaded onto a MALDI-

TOF target plate. The plate is placed into the mass spectrometer where a laser pulse 

ionises the peptides allowing them to enter the flight tube. The peptides are 

separated according to their mass to charge ratio. As they reach the mass detector at 

different times, a distinct signal is produced for each peptide.  

The computer program Data Explorer was used to calibrate the spectra using the 

internal calibration peaks provided by the trypsin. Once the peaks had been 

processed, they were database searched using in-house licensed MASCOT software. 

The results from the database search provide probability scores for any 

identification based on either a statistical score or a molecular weight search 

(MOWSE) score. The known mass of matched peptides is compared with 

experimental calculated masses and the higher the probability or score, the greater 

the confidence level that the correct protein has been identified (Henkin et al. 2004). 
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2.3.7.4. Liquid Chromatography-Mass Spectrometry (LC-MS) 

Peptides were analysed on an LTQ LC-MS system consisting of an Agilent 1200 

Series HPLC (Agilent Technologies, Berkshire, UK) with a Kasil sealed fused silica 

pre-column (Next Advance, Averill Park, NY) packed to a length of approximately 3 

cm with Pursuit C18, 5 μm particle size (Varian, Agilent Technologies, Berkshire, 

UK) reverse phase column and PicoTip Emitter analytical column PF 360-75-15-N-5 

(New Objective, Woburn, MA) packed to a length of approximately 20 cm with 

Pursuit C18, 5 μm particle size (Varian, Agilent Technologies, Berkshire, UK). The 

column was equilibrated with solvent A (0.1% formic acid in 2.5% acetonitrile) and 

eluted with a linear gradient from 0 to 10% over 6 to 8 min; from 8 to 60% over 8 to 

35 min; from 60 to 100% over 35 to 40 min; solvent B (0.1% formic acid, 0.025% TFA 

in 90% acetonitrile) over 45 min at a flow rate of 5 μl/min. 

The LTQ mass spectrometer (Thermo Fisher Scientific, Waltham, MA) was fitted 

with a nanoLC ESI source. Data dependent acquisition was controlled by Xcalibur 

software and database searching was achieved using in-house licensed MASCOT 

software. 

 

2.3.8. Protein Crystallography 

2.3.8.1. Sitting Drop Vapour Diffusion 

A multi-channel pipette was used to transfer 50 μl of the crystal screen (Hampton 

screen 1+2, Hampton Research, Aliso Viejo, CA) from the 96-well plate into a 96-

well Crystal Clear Duo Plate for robotic crystallography trials.  Once the plate was 

prepared, it was inserted into the crystal robot (Oryx-8, Douglas Instruments, 

Berkshire, UK) and set up following the manufacturer’s instructions. The Crystal 

Clear Duo Plate allows two ratios of protein: reservoir to be tested. Drops were 50% 

protein: 50% reservoir and 30% protein: 70% reservoir. Plates were sealed with 

crystal tape (Crystal Clear, Manco Inc., Ohio) and stored at 17°C to promote crystal 

formation. 
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2.3.8.2. Hanging Drop Vapour Diffusion 

For the hanging drop method, a Linbro 24 well plate was greased with petroleum 

jelly. Each well contained 0.5 ml of the reservoir solution. A volume of 2 μl of the 

protein sample was pipetted into the centre of a 22 mm siliconised circular cover 

slip, immediately followed by an equal volume of the reservoir solution pipetted 

into the protein drop. The drop was not mixed and the coverslip was inverted 

immediately over the corresponding well of reservoir solution. The coverslips were 

twisted 45° to ensure a good seal before incubating the tray at 17°C. 

 

2.3.9. Cross-Linking 

In order to test the quaternary structure of 14-3-3 proteins, cross-linking 

experiments were employed. Cross-linking is a technique where two or more 

molecules are chemically joined together by a covalent bond. The cross-linking 

agent has the ability to chemically attach to specific functional groups on the protein 

or molecule and attachment between two groups stabilizes the tertiary or 

quaternary protein structure. There are a number of cross-linking agents which have 

different properties to accommodate the ability to cross-link a variety of proteins 

and molecules. Variable properties of cross-linkers include chemical specificity, 

water-solubility and spacer arm length, including the ability to reverse the cross-

linking process.  

Previous research conducted in the lab had identified the cross-linker dimethyl 

pimelimidate (DMP) to be the optimal cross-linker for 14-3-3ζ. Cross-linking 

experiments were employed to identify the conformational status of 14-3-3ζ under 

various assay conditions. Typical cross-linking experiments were set up as follows: 

 

20 g 14-3-3ζ Protein            +  6 l DMP (35 mM)          +  15 l PBS 

 

Samples were incubated at room temperature for 16 h. The reaction was stopped 

due to the addition of 3 x Sample Buffer prior to analysis on SDS-PAGE. 
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2.3.10. In-Vitro Kinase Assay 

To test 14-3-3ζ phosphorylation, kinase assays were carried out. Assays were set up 

with a number of variables however the basic components of each reaction were as 

follows: 

 

PKA Reaction Buffer7 (10 x)   -  10 μl 

10mM ATP     -  10 μl 

PKA (1000 U)     -  10 μl 

14-3-3ζ (100 μg)    -  40 μl 

dH2O8      -  ---- μl 

        100 μl 

 

To test that phosphorylation was due to kinase activity, control assays were set up 

in the absence of kinase. Sphingosine was added to the reaction mixture to give a 

final concentration of 50 μM. Once all the reagents had been added to the mixture, 

the volume was adjusted to 100 μl with dH2O and incubated at 30°C. After 

incubating for 2 h, the reaction was stopped by the addition of 3 x sample buffer or 

freezing at -20°C. Samples were then cross-linked (as described in section 2.3.9) to 

test the conformation of 14-3-3. 

 

                                                      
7 1 x PKA Reaction Buffer (NEB) comprises 50 mM Tris-HCl, 10 mM MgCl2, pH 7.5 at 25°C. 
8 The volume of dH2O added varied according to any additional reagents (e.g. sphingosine 

or control lipids) that were being tested to give a final volume of 100 μl. 



 

- 89 - 

 

2.3.11. Enzyme-Linked Immunosorbent Assay - ELISA Assay 

The enzyme-linked immunosorbent assay (ELISA) was employed for investigating 

the inhibition potential of 14-3-3ζ by selected compounds. 

Table 2.14: Buffers for ELISA Assay 

Buffer Components Concentration 

TBS Tris-HCl pH 7.5 

NaCl 

0.02 M 

0.137 M 

Wash Buffer Tween 20 0.05% (v/v) in TBS 

1 x Blocking Buffer Non-fat dried milk (Marvel) 3% (w/v) in Wash Buffer 

2 x Blocking Buffer Non-fat dried milk (Marvel) 6% (w/v) in Wash Buffer 

 

A 96-well microplate coated with anti-GST antibody (GE Healthcare, 

Buckinghamshire, UK) was used for binding assays. GST-Exo-enzyme S (GST-ExoS) 

was immobilized to the wells by incubating 500 ng of protein in 100 μl of 2 x 

blocking buffer for 1 h at room temperature. Following incubation, wells were 

washed with 200 μl of wash buffer five times. Wells were then blocked for 1 hour 

with 1 x blocking buffer to prevent non-specific binding of protein. For compound 

testing; concentrations tested were determined according to the solubility of the 

compound. The range of concentrations analysed are provided in the text. 

Compounds were prepared in 2 x blocking buffer (minus Tween 20) and incubated 

with 500 ng of 14-3-3 for 20 min at room temperature. Following incubation, the 

protein: compound mixtures were added to the appropriate wells and incubated for 

1 h at room temperature. Wells were washed prior to the addition of a 14-3-3-

specific antibody (Pan 14-3-3). The antibody was prepared in 1 x blocking buffer and 

100 µl of this added to each well and incubated for 1 h at room temperature. Wells 

were washed again before addition of the corresponding secondary antibody (100 µl 

in 1 x blocking buffer) and incubated for another hour at room temperature. Wells 

were washed a final three times. 

To detect the antibody, the HRP substrate 4-chloro-1-napthol (4-CN) was used. This 

reagent produces an insoluble end product which, when it reacts with HRP, 

produces a blue visible colour. The optimal absorbance for this reagent is 495 nm. 

The plate reader used for detecting the assay results, a Wallac Victor2 1420 
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Multilabel Counter, had an absorbance filter at 485 nm. This wavelength is still 

within the absorbance range of the substrate and is therefore suitable for detection 

of the reagent. The 4-CN was prepared according to the manufacturer’s instructions 

(Sigma-Aldrich, Dorset, UK) and 100 μl was added to each well. The absorbance was 

measured around 5 min after addition of the 4-CN reagent. 

To aid interpreting the assay results, a control well where no compounds were 

tested and a well with only the 4-CN reagent were prepared to give absorbance 

values at both extremes for the particular assay being carried out. Wells which 

produced a high absorbance were deemed as a negative result, indicating that the 

compound being tested had failed to inhibit the interaction between 14-3-3ζ and 

ExoS. Wells which produced a low absorbance were deemed as a positive result, 

indicating that the compound being tested had successfully inhibited the interaction 

between 14-3-3ζ and ExoS. 
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CHAPTER 3 

14-3-3 PROTEINS AND LIPID RAFTS 

 

3.1. Introduction 

A number of studies have shown that lipid rafts play an integral role in 

neurodegenerative disease progression (see section 1.2.3). Many proteins which are 

processed at lipid rafts also interact with the 14-3-3 family of proteins. These protein 

interactions have also been shown to be a critical stage in disease progression. The 

fact that many disease proteins interact with 14-3-3 and are processed at lipid rafts 

leads to the suggestion that there may be a connection between lipid rafts and 14-3-3 

proteins. 

In order to test this hypothesis, studies were carried out to identify whether 14-3-3 

proteins are associated with lipid raft domains. A previous student (Dr. Brechin) 

identified the five main brain 14-3-3 isoforms as associating with lipid rafts. Dr. 

Brechin also investigated how 14-3-3s associate with rafts. Her results indicate that 

14-3-3s do not associate directly, but possibly through interaction with a membrane-

bound protein. 

Dr. Brechin was unable to demonstrate the association of phosphorylated 14-3-3 

isoforms with lipid rafts. The β and ζ isoforms of 14-3-3 are the only two identified 

to date which are endogenously heavily phosphorylated on Ser185 (Aitken et al. 

1995b). These isoforms are known as α and δ, respectively, and are only found 

present in brain tissue. Approximately 50% of the β and ζ isoforms are 

phosphorylated in brain. The presence of these isoforms heavily phosphorylated 

only in brain suggests an important function, possibly in neurodegenerative disease.  

In addition, phosphorylation of 14-3-3 can significantly alter protein function by 

negative regulation of protein interactions (Toker et al. 1992; Dubois et al. 1997; 

Aitken et al. 2002; Aitken 2011). 
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Identifying phospho-14-3-3s associating with lipid raft domains may be a critical 

step in understanding neurodegenerative disease pathology and may provide 

significant drug targets for the treatment of disease. Here, research has been 

undertaken in order to establish an association between phospho-14-3-3 isoforms 

and lipid rafts and to determine whether phosphorylation has an effect on protein 

interaction partners at lipid raft domains.  

In addition, sphingosine, a sphingolipid present in lipid rafts, has also been found to 

have links with 14-3-3 phosphorylation. The  and  isoforms of 14-3-3 have been 

shown to be phosphorylated by a “sphingosine-dependent kinase”, which has now 

been identified as the kinase domain of PKC following caspase-3 cleavage 

(Hamaguchi et al. 2003). The site of phosphorylation, Ser58, is a residue buried 

within the dimer interface (Megidish et al. 1998) and it appears that in the presence 

of sphingosine, this residue is exposed, allowing phosphorylation by a kinase.  

Woodcock and colleagues (Woodcock et al. 2003; Ma et al. 2005; Woodcock et al. 

2010) have identified that 14-3-3 can be phosphorylated by PKA on Ser58 but only 

in the presence of sphingosine; an effect which results in the conversion of 14-3-3 

into a monomer. One thing that is unclear from their research is whether 14-3-3 

monomerises due to the presence of sphingosine or through phosphorylation on 

Ser58. 

Due to the abundance of sphingosine in rafts, further investigating the role of 

sphingosine on 14-3-3 phosphorylation is also an area of interest. In addition, the 

effect of sphingosine on 14-3-3 at lipid rafts is an area which has not been explored 

and there is potential for the structural formation of 14-3-3 present at lipid rafts to 

have a number of implications on neurodegenerative diseases. 
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3.2. Aims 

Phospho-forms of 14-3-3 in Lipid Rafts 

As neurodegenerative disease proteins not only interact with 14-3-3, but are also 

processed at lipid rafts, identification of the phospho-forms of 14-3-3 at rafts may 

have implications on disease pathology. 

 

How 14-3-3 Isoforms Associate with Lipid Rafts 

Previous studies with difopein have shown that 14-3-3 association with lipid rafts is 

not membrane-bound (see Introduction section 1.2.2). This indicates that 14-3-3 

must be associating with rafts through interaction with another membrane-bound 

protein. Identifying the protein(s) which 14-3-3 interacts with may highlight 

neurodegenerative disease proteins providing more detail on neurodegenerative 

disease pathology. In addition, different isoforms or phospho-forms may associate 

through interactions with different proteins. 

 

Does Sphingosine Affect 14-3-3 Phosphorylation And/ Or Quaternary 

Structure? 

Does the presence of sphingosine have an effect on 14-3-3? Sphingosine is a 

sphingolipid present in lipid rafts. If sphingosine can affect the phosphorylation 

status of 14-3-3 or the quaternary structure of the protein, this may have a 

significant impact on protein function. 

 

Akt Phosphorylation in Lipid Rafts 

The kinase Akt also associates with lipid rafts. This endogenous kinase may 

contribute to the structural changes initiated by sphingosine, altering the function of 

14-3-3 proteins. 
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3.3. Results 

3.3.1. Lipid Raft Isolation from Rat Brain 

Several methods have been detailed in the literature with regard to isolating lipid 

rafts. Here, two methods were routinely used. These employed Optiprep gradients 

(see section 2.3.3.1 in Materials and Methods) and sucrose density gradients (see 

section 2.3.3.2 in Materials and Methods). 

The main raft isolation method employed for this research was the Optiprep 

method. Compared with other studies, this method appears to produce slightly 

more diffuse raft fractions, however one positive is that lipid rafts can be isolated 

from whole rat brain in a less time-consuming way compared with the sucrose 

gradient method. However, during this research, when the sucrose gradient method 

was employed, the resulting raft fractions appeared to be ‘clumpy’ and more 

difficult to work with. Due to this, both methods were employed, but the Optiprep 

gradient method was found to be the best and therefore the preferred method for 

this research.  

Isolation of lipid rafts from whole rat brain with the Optiprep gradient method 

produces 2-3 peak fractions of lipid rafts. As the overall amount of rafts which can 

be isolated from rat brain is spread out over a number of fractions, to ensure using a 

sufficient amount for experimental analysis, these fractions were pooled together, to 

produce more physiologically relevant and accurate results. 

In order to identify the lipid raft fractions, a cholesterol assay was routinely 

employed. Full details are provided in the Materials and Methods section 2.3.4. 

Once the cholesterol concentration of each fraction was calculated, the results were 

plotted and are shown in Figure 3.1. 
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Figure 3.1: Cholesterol Assay of Rat Brain Fractions 

Lipid rafts were isolated from whole rat brain by TX-100 isolation followed by flotation on 

Optiprep gradients. From the isolation procedure, 20 fractions were collected and subjected 

to a cholesterol assay. Experimental details are provided in Chapter 2. The peak raft fraction 

is fraction 10. Adjacent fractions also contain high levels of cholesterol indicating that they 

also contain lipid rafts. For lipid raft analysis, the two main peak fractions from each tube 

were combined. 

 

 

Figure 3.1 shows the results from the Optiprep gradient isolation method. It clearly 

shows the peak raft fractions, however they are dispersed over a number of 

fractions. For raft analysis, the two peak fractions would be combined together to 

increase the overall amount of rafts analysed. Peak raft fractions can also be 

identified by protein concentration. The protein concentration of the rafts is greater 

than that of the adjacent fractions. To determine the protein concentration, a 

Bradford Assay (section 2.2.6.1 in Materials and Methods) was originally used. 

However, the high concentration of lipids in these samples interacts with the 

Bradford reagent, affecting the outcome of the assay. A more suitable means of 

determining protein concentration is to use a Bicinchoninic Acid (BCA) assay 

(section 2.2.6.2 in Materials and Methods). The results from the BCA assay of the 

Optiprep fractions are shown in Figure 3.2. 
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Figure 3.2: BCA Assay of Rat Brain Fractions 

Lipid rafts were isolated from whole rat brain by TX-100 isolation followed by flotation on 

Optiprep gradients. Each of the 20 fractions collected were subjected to BCA assay to 

determine protein concentration. All experimental details are provided in Chapter 2. As the 

image shows, protein concentration increases to the peak raft fractions, which are identified 

from the cholesterol assay. The protein concentration of the fractions slightly decreases 

before increasing to indicate the cytosolic protein fractions, which are rich in protein. 

 

 

The results of the BCA assay are consistent with those from the cholesterol assay. 

Fractions which are high in cholesterol are also high in protein, a characteristic of 

lipid rafts. The last few fractions are also high in protein as these are the cytosolic 

protein fractions. The results from the BCA assay can be tested by Coomassie 

staining the fractions collected from the rat brain homogenate. These results are 

shown in Figure 3.3. 
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Figure 3.3: SDS-PAGE of Raft Fractions Isolated from Rat Brain 

Fractions collected from the Optiprep raft isolation method were mixed with an appropriate 

volume of 3 x Sample Buffer and separated on 12% SDS-PAGE. Following protein 

separation, gels were stained with Coomassie Blue dye followed by incubation with de-stain 

solution until protein bands could be visualised. The gel indicates that fractions 1-9 are low 

in protein. Fractions 10-13 are much higher in protein and these fractions contain the lipid 

rafts. There is a slight drop in intensity from fraction 14, increasing in intensity correlated 

with protein concentration up to fraction 20. Fractions 16-20 are the cytosolic protein 

fractions. 

 

It is clear that the Optiprep gradient isolation method is successful at isolating lipid 

rafts from whole rat brain. Similar results were obtained when using both fresh and 

frozen rat brain, which is beneficial, as it is more convenient to obtain rat brains and 

store them at -80C until required. It is not surprising that using frozen rat brain 

should not affect lipid rafts as they are also termed detergent resistant membranes. 

The very name suggests that they are resistant to detergents and therefore should be 

resistant to freezing and thawing. These tests were also carried out on the sucrose 

density gradient fractions and produced similar results (data not shown). 

 

3.3.2. Confirmation of Raft Isolation by Known Markers 

After isolating lipid rafts from rat brain homogenate, it is important to clarify that 

the cholesterol-rich fractions are in fact, lipid rafts. The various methods of 

confirming that the cholesterol-rich fractions are rafts were employed. 
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3.3.2.1. Flotillin-1/ Reggie-2 

The flotillin/ reggie proteins were identified and named by two independent 

research groups in 1997. One group identified two proteins of 47 kDa while 

screening for proteins upregulated in retinal ganglion cells during axon 

regeneration after optical nerve lesion in goldfish (Schulte et al. 1997; Lang et al. 

1998). The group named the proteins ‘reggie’; deriving the term from ‘regeneration’ 

due to the proteins functions. Simultaneously, a group investigating associating 

caveolae proteins identified ‘flotillin’ (Bickel et al. 1997; Galbiati et al. 1998). This 

group also identified flotillin as a marker for “the buoyant, Triton-insoluble membrane 

fraction in brain” which we refer to as lipid rafts. The group named the protein due 

to the fact they “float like a flotilla of ships” in the lipid raft fraction (Bickel et al. 1997). 

To add to the confusion, flotillin-1 = reggie-2 and flotillin-2 = reggie-1. For the 

purpose of this research, combined with the associated discovery to lipid rafts, the 

proteins will be referred to as flotillins.  

In order to identify the lipid rafts, all of the fractions collected from the rat brain 

gradient were separated on SDS-PAGE and immunoblotted with a flotillin-1 

antibody. The fractions which contain the flotillin-1 protein were identified as the 

raft fractions. The immunoblot with flotillin-1 from the Optiprep method is shown 

in Figure 3.4.  

 

 

Figure 3.4: Identification of Raft Fractions By Western Blotting for Flotillin-1 

Raft fractions isolated by flotation on Optiprep gradients were separated by SDS-PAGE on 

12% acrylamide gels. Proteins were transferred to nitrocellulose membrane and probed with 

flotillin-1 primary antibody. All experimental details are given in Chapter 2. The western 

blot indicates the presence of the flotillin-1 protein in fractions 9-12. This is concurrent with 

previous data indicating that these fractions contain lipid rafts. 
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3.3.2.2. Prion Protein (PrP) 

An alternative identification procedure is to test the rafts for the presence of the 

prion protein (PrP). Prion protein is a GPI-anchored protein (Stahl et al. 1987) which 

associates with lipid rafts (Vey et al. 1996; Naslavsky et al. 1997). Once again, rat 

brain gradient fractions were separated on SDS-PAGE and were immunoblotted 

with prion protein antibody (see Table 2.8 in Materials and Methods). Fractions 

which contained the protein were identified as lipid rafts. The immunoblot from the 

Optiprep isolation method is shown in Figure 3.5. 

 

 

Figure 3.5: Identification of Rafts By Western Blotting for Prion Protein 

Raft fractions were transferred to nitrocellulose membrane and probed with the prion 

protein primary antibody. Experimental details are provided in the Methods. The fractions 

containing the prion protein (fractions 8-12) correspond to those identified by other methods 

as lipid rafts.  

 

3.3.3. Chloroform: Methanol Extraction for Lipid Raft Analysis 

Analysing lipid raft proteins can be very difficult due to the high cholesterol 

content. When running lipid raft fractions on SDS-PAGE, the samples can smear 

quite badly, resulting in poor quality results and occasionally difficulty in 

interpreting data. 

In order to overcome these issues, a method of cholesterol depletion employing 

chloroform: methanol extraction was developed. The exact details of the procedure 

used are detailed in section 2.3.5 of Materials and Methods. It should be noted that 

this procedure is extremely effective when the analysis does not require any 

proteins to still be active, i.e. this method was employed for procedures such as 

SDS-PAGE in which proteins are denatured nevertheless. 

The method consists of subjecting raft containing fractions to the solvents in a ratio 

of 2:1 (chloroform: methanol). This combination of solvent and alcohol produces a 
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general extraction solvent, which allows the lipids to dissolve. The chloroform 

dissolves neutral lipids while the methanol disrupts hydrogen bonds of polar lipids 

which are membrane bound. This ensures that all of the lipids can be removed from 

the fraction, leaving only protein to be analysed. 

When carrying out the procedure, the fraction splits into three components; an 

upper aqueous layer, a white interface and a lower solvent layer. The lower solvent 

layer is removed prior to the addition of more solvent mixture. Fresh solvent 

mixture is added to ensure sufficient extraction of the lipids. Once the extraction is 

complete, the upper aqueous layer can be removed, leaving the protein-rich 

interface remaining. An additional bonus of this procedure, other than removing 

lipids, is that the protein in the sample is concentrated. Once the samples had been 

treated by the extraction procedure, they could be used without requiring any 

further concentration steps. For all lipid raft experiments, the two peak raft fractions 

would be extracted and combined for further analysis.  

The result of employing the chloroform: methanol extraction was extremely 

effective. In order to clarify that the method was suitable for raft studies, all of the 

component layers from the extraction were separated on SDS-PAGE and stained 

with Coomassie blue. This was to ensure that no protein was lost through the 

procedure, which could have seriously affected experimental results. Figure 3.6 

shows that the protein is concentrated to the interface and no protein is lost to either 

the aqueous or solvent layers of the extraction.  

This clearly shows that the chloroform: methanol extraction is an effective method 

for removing the lipids which had made analysis difficult, without losing any of the 

proteins associated with lipid rafts. 
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Figure 3.6: SDS-PAGE After Chloroform: Methanol Extraction 

Each of the fractions from chloroform: methanol extraction of lipid rafts were analysed on a 

12% SDS-PAGE gel. The samples loaded onto the gel are as follows: Mr = Molecular weight 

marker (Bio-Rad); Lane 1 = Upper aqueous layer; Lane 2 = White interface; Lane 3 = Lower 

solvent layer. It is clear from the gel that the protein in the lipid raft fraction is concentrated 

to the interface, which is retained for further analysis of raft proteins.  

 

 

3.3.4. 2D Analysis Identifies Phospho-14-3-3 in Lipid Rafts 

A previous student in the lab, Dr. Brechin, identified the five main brain isoforms of 

14-3-3 as associating with lipid rafts (Brechin 2006) although association of the 

phosphorylated forms was not confirmed. Immunoblotting with an antibody which 

recognises all 14-3-3 isoforms confirmed that 14-3-3 was detected in raft fractions 

subjected to chloroform: methanol extraction (data not shown). However, 

identifying the phospho-forms was not so simple. The previous difficulty in 

detection led to the hypothesis that, if present, the phospho-forms would be in 

much lower abundance than the other isoforms.  This would make detection by 1D 
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analysis very difficult. The decision was therefore taken to analyse the proteins by 

2D SDS-PAGE. As the two phospho-forms of 14-3-3 are very similar in molecular 

weight and iso-electric point (pI), an additional benefit would allow identifying 

whether both or just one of the phosphorylated isoforms are present at lipid rafts. 

For phospho-14-3-3 identification, peak raft fractions were identified and subjected 

to chloroform: methanol extraction. These experiments employed raft fractions 

isolated with Optiprep gradients, so the two peak raft fractions were treated and 

combined. The proteins were resuspended in a volume of Rehydration Buffer 

required for the IPG strip used. Full details of the 2D procedure are provided in 

section 2.3.6 of Chapter 2. 

Once the 2D procedure was completed, separated proteins were transferred to 

nitrocellulose membrane for immunoblotting. Full experimental details and 

antibodies used are given in section 2.3.2 of Chapter 2. In order to identify the 

phospho-forms of 14-3-3, the membrane was probed with primary antibodies 

specific for the N-terminal region of the and isoforms of 14-3-3 (Figure 3.7A). 

The blot shows two distinct elongated spots and slightly different pI values. This 

indicates the presence of both phospho- and non-phospho-forms of the 14-3-3 

proteins. The black arrow highlights the phosphorylated isoforms, which are 

slightly more acidic than the un-phosphorylated forms, shown by the white arrow. 

To identify phospho-forms of 14-3-3 the same blot was stripped and blocked before 

re-probing with the phospho-specific antibody, pSPEKA. This antibody, which was 

characterised by former student, Dr. Samuel Clokie (Clokie 2005), is named as such 

due to the epitope which the antibody recognises on the 14-3-3 protein, when 

phosphorylated. The result from this blot is shown in Figure 3.7B. The blot in Figure 

3.7B has been cropped to represent the hatched area in Figure 3.7A. It is clear that 

the spots detected with the phospho-specific antibody match those detected by the 

antibodies which detect the N-terminus of the protein, regardless of 

phosphorylation state. 
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Figure 3.7: 2D-PAGE Analysis of Lipid Raft Fractions 

Lipid raft fractions were subjected to chloroform: methanol extraction and separated by 2D 

SDS-PAGE before immunoblotting with 14-3-3 specific antibodies. 

A. Immunoblotting with antibodies specific for the N-terminus of the β and ζ isoforms 

of 14-3-3. These antibodies recognise both the phosphorylated and un-

phosphorylated forms of 14-3-3 (Martin et al. 1993). The black arrow indicates the 

phosphorylated isoforms of 14-3-3 (α and δ) and the white arrow indicates the un-

phosphorylated 14-3-3 isoforms (β and ζ).  

B. Immunoblotting with 14-3-3 phospho-specific antibody. This antibody is specific for 

isoforms of 14-3-3 (α and δ) which are phosphorylated at Ser185. The arrow 

indicates the phosphorylated 14-3-3 isoforms present in lipid rafts. The 

corresponding part of the 2D gel shown is indicated by the hatched box in A. 

 

 

The results shown here conclusively identify the presence of the phosphorylated 

isoforms of 14-3-3 ( and ) at lipid rafts. The presence of the isoforms is at a lower 

level than the non-phosphorylated isoforms of 14-3-3; however their presence may 

prove to be significant. The fact that the phospho-forms have only been identified in 

brain tissue indicates that the presence of these proteins may be an important factor 

in many neuronal regulatory processes which occur, including those which may be 

involved in neurodegenerative disease. 
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3.3.5. 14-3-3 in Rafts by Mass Spectrometry 

The identification of the α and δ isoforms of 14-3-3 at lipid rafts has a number of 

potential implications in neurodegenerative diseases. One thing that is uncertain is 

how abundant these proteins are at lipid rafts. It is well established that the 14-3-3 

proteins comprise 1% of total brain protein (Boston et al. 1982) suggesting that they 

are present in great abundance; however the distribution of the proteins at lipid 

rafts is not known. 

To gauge an estimate of the proportions of phosphorylated 14-3-3 to un-

phosphorylated 14-3-3 at lipid rafts, mass spectrometry was employed. A lipid raft 

fraction was depleted of cholesterol using the chloroform: methanol extraction 

procedure and run on a 4-12% Bis-Tris Gel (Invitrogen, Paisley, UK). A 14-3-3 

control was run alongside the raft fraction. This is shown in Figure 3.8. 

 

 

Figure 3.8: SDS-PAGE of Raft Fraction for Mass Spectrometry 

4-12% Bis-Tris gel (Invitrogen) showing; Lane 1 – Molecular weight marker (Bio-Rad); Lane 

2 – 14-3-3 control sample; Lane 3 – Lipid raft fraction treated with chloroform: methanol 

extraction. The boxed area indicates the bands excised for digestion and subsequent mass 

spectrometry. 
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In the raft lane, there are no definitive bands around the 30 kDa region, so three 

bands were tightly cut in that area, corresponding to the 14-3-3 control which was 

run in the adjacent lane. These three bands were digested with trypsin (full details 

in section 2.3.7) and analysed by mass spectrometry on MALDI-TOF. The results are 

displayed in Table 3.1 below. 

 
Table 3.1: MALDI-TOF Results 

Mass spectrometry results from raft proteins digested with trypsin. 

Band Hit Number Isoform Detected MOWSE Score 

1 7 Epsilon 39 

2 

3 Zeta/Delta 47 

7 Gamma 36 

16 Beta/Alpha 29 

 

The results from the MALDI-TOF mass spectrometry identified the epsilon, gamma, 

beta/zeta and alpha/delta isoforms of 14-3-3, however, none of these proteins 

produced very good MOWSE scores. This result is promising, as it proves that these 

isoforms are present in lipid rafts, however, it does not prove the presence of the 

phospho-forms. In particular, the phosphorylated peptide of interest was not 

detected. Response in MALDI-TOF is often relatively low for phosphopeptides and 

this appears to be the case here. To overcome this issue, LC-MS was carried out. 

The LC-MS results proved to be more informative than the MALDI-TOF results, by 

identifying the gamma, eta, theta, epsilon, beta/zeta and alpha/delta isoforms of 14-

3-3. However, once again, the phospho-peptide was not detected. Despite this, the 

mass spectrometry data clarifies the presence of these 14-3-3 isoforms at lipid rafts, 

concurring with the data that Dr. Brechin produced throughout her Ph.D. This is 

useful as it confirms that the western blotting data is not due to cross-reaction and is 



 

- 106 - 

 

a true result, validating the antibody specificity. The results of the LC-MS mass 

spectrometry analysis are detailed in Table 3.2 below. 

 
Table 3.2: LC-MS Results 

Mass spectrometry results from raft proteins digested with trypsin and analysed on LC-MS. 

Band Hit Number Isoform Detected MOWSE Score 

1 

2 Epsilon 566 

27 Zeta/Delta 86 

2 

1 Zeta/Delta 232 

2 Gamma 158 

3 Beta/Alpha 108 

4 Eta 81 

5 Theta 78 

6 Epsilon 58 

3 

1 Eta 226 

2 Zeta/Delta 212 

5 Theta 104 

6 Beta/Alpha 96 

10 Gamma 47 

37 Epsilon 20 
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Despite the LC-MS data proving to be more informative and producing much more 

significant hits with greater MOWSE scores, the phosphorylated peptide was still 

not detected. The peptide produced from the cleavage with trypsin is large and 

hydrophobic which may affect detection. To overcome this, the peptides were sub-

digested with the enzyme Endoproteinase Glu-C. 

When the α and δ isoforms of 14-3-3 are digested with trypsin, they produce the 

peptide shown in Figure 3.9. 

 

 

Figure 3.9: Tryptic Digest Sequence of Phospho-14-3-3 

Sequence of the peptide produced from digesting phosphorylated 14-3-3 (e.g. α and δ) with 

trypsin. The amino acids underlined indicate the peptide following trypsin cleavage 

between the lysine and alanine residues.  

 

 

Digestion with Endoproteinase Glu-C produces a much shorter peptide, as shown 

in Figure 3.10. 

 

 

Figure 3.10: Phospho-14-3-3 Peptide Following Endoproteinase Glu-C Digestion 

Sequence of the peptide produced following subdigestion of the tryptic peptide with 

Endoproteinase Glu-C. The amino acids underlined indicate the resulting peptide following 

cleavage between the glutamine and isoleucine residues. Digestion with Endoproteinase 

Glu-C alone would also result in cleavage between the glutamine and lysine residue 

(marked Glu-C*) however due to the prior digestion with trypsin, this cleavage no longer 

occurs since Glu-C is an end protease. This peptide is much shorter and more likely to be 

detected by mass spectrometry. 
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In both figures, the amino acid sequence which is underlined represents the peptide 

produced following enzyme digestion. Sub-digestion with Endoproteinase Glu-C 

produces a much shorter peptide, which was anticipated to be detected more easily 

by mass spectrometry. 

Before sub-digesting the raft samples, the effect of digestion with Endoproteinase 

Glu-C was tested on a control protein. Unfortunately, we had no recent gels with a 

purified brain 14-3-3 protein band which could be easily excised for enzyme 

digestion. However, there were some gels from ~20 years ago, which had protein 

bands of 14-3-3 purified from rat brain. For the purposes of using an appropriate 

control, one of these bands was excised and digested with both trypsin and 

Endoproteinase Glu-C, according to the method detailed in section 2.3.7.1. 

Following enzyme digestion, the peptides were run on LC-MS and the results 

analysed using database searches on the in-house MASCOT software. 

Amazingly, the results from the LC-MS showed that 14-3-3 beta/alpha and 14-3-3 

zeta/delta were the two top hits with MOWSE scores of 124 and 101 respectively, 

and the phosphorylated peptides were also detected for both phosphorylated 14-3-3 

isoforms. The results from the LC-MS provided the ms/ms results for the 

phosphorylated and un-phosphorylated peptide, which provides an indication of 

the spectra to look for in the raft samples. The ms/ms spectra are shown in Figure 

3.11 and Figure 3.12. The difference in mass between the phospho-peptide and the 

un-phosphorylated peptide is 80 Da.  
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Figure 3.11: MS/MS Control Data from Phosphorylated Peptide 

MS/MS fragmentation of the phosphorylated 14-3-3 peptide ILNSPEK.  

 

 

 

Figure 3.12: MS/MS Control Data from Non-Phosphorylated Peptide 

MS/MS fragmentation of the non-phosphorylated 14-3-3 peptide ILNSPEK. 

 

The control sample spectra provided an indication of what to look for in the lipid 

raft samples which were sub-digested with Endoproteinase Glu-C. In addition to 

the expected ms/ms data, the control sample also provided an elution time for each 

isoform, supplying an additional data point to analyse to identify the presence of 

the phospho-forms of 14-3-3. 
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To ensure that the phospho-peptide was not lost in any way, both the gel bands 

which had been digested with trypsin and also the aqueous peptides collected from 

the trypsin digest were sub-digested with endoproteinase Glu-C. For ease, the 

aqueous peptides collected from the tryptic digests were combined for the sub-

digestion. 

The peptides from bands 2 and 3 were analysed by MALDI-TOF to compare the 

relative amounts of peptides corresponding to the desired masses to determine 

which band to analyse further by LC-MS. It was clear from the MALDI data (not 

shown) that band 2 had a significantly higher level of peptides corresponding to the 

mass of the un-phosphorylated (800 Da) and phosphorylated (880 Da) peptides. 

Therefore peptides from this band were analysed by LC-MS along with the aqueous 

peptides from the double digest. 

Unfortunately database scans for each of the samples did not identify 14-3-3 and 

subsequent analysis of the raw data files did not yield any further information. This 

is disappointing but not entirely unexpected and should not detract from the 

importance of the identification of phospho-14-3-3 by immunoblotting. 

Immunoblotting is a much more sensitive technique than mass spectrometry and 

the fact that detection was only possible through a highly sensitive technique 

emphasises the hypothesis that the levels of phosphorylated 14-3-3 present at lipid 

rafts are in much lower abundance than un-phosphorylated 14-3-3. This is not 

surprising, given that phosphorylation of 14-3-3 on Ser185 negatively regulates a 

number of protein interactions, including those with FOXO3a, Bax and BAD 

(Tsuruta et al. 2004; Sunayama et al. 2005; Aitken 2011). It is therefore expected that 

the levels of phosphorylated 14-3-3 would be lower than un-phosphorylated 14-3-3 

at rafts, yet detection of 14-3-3 and  does imply that cellular processes may be 

adversely affected due to the presence of these proteins which may be a 

contributing factor in neurodegenerative disease pathology. 
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3.3.6. 14-3-3 Association with Lipid Rafts 

Following identification of the phospho-forms of 14-3-3 at lipid rafts, the next 

important question to address is, do these isoforms have different interaction 

partners to the un-phosphorylated forms? There are a number of caveats to 

approaching answering this question. One popular method of identifying 

interacting proteins is through immuno-precipitation (IP’s), however, the process of 

binding the 14-3-3 proteins to an antibody could inhibit the site of interest. This 

could lead to either a lack of results due to the competition of the antibody over the 

interacting protein, or the inability of any proteins to bind to the phosphorylation 

site, due to the presence of the antibody. 

In a bid to overcome such problems and tackle this question, a peptide pull-down 

method was attempted which involved coupling peptides for the site of interest 

(SPEKA – un-phosphorylated and pSPEKA – phosphorylated) to magnetic beads 

through an amine group. A control peptide was also tested and the proteins in lipid 

rafts which interacted with these peptides were analysed.  

Unfortunately, there were no visible protein bands in any of the sample lanes on the 

gel. The initial thought was that the samples were too dilute and the protein 

concentration was too low for detection by SDS-PAGE. Therefore, all the samples 

were concentrated to 50 μl in a vivaspin concentrator (see section 2.2.4) and re-

analysed by SDS-PAGE. Once again, the results were disappointing. There was only 

one visible band at ~70 kDa in the supernatant samples (data not shown). 

The results of this experiment indicate that during cholesterol depletion with 

MβCD, a number of raft associated proteins become insoluble and are contained in 

the pellet following centrifugation. This also appears to be the case for the 14-3-3s, 

indicating that they are binding to a transmembrane protein with such great affinity 

that they are not released into the supernatant following cholesterol depletion and 

remain bound to their raft binding partners. This would also account for the lack of 

targets identified from the pull-down itself. If 14-3-3s are binding with great affinity 

to transmembrane proteins, the peptides employed for the pull-down experiment 
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would not have the ability to displace this interaction and therefore pull-down the 

interacting proteins. 

In an attempt to test this theory, and also to identify whether specific isoforms of 14-

3-3 associate differently to lipid rafts, a western blot of the pellet and supernatant 

produced from cholesterol depletion with MβCD was carried out. The supernatant, 

pellet (resuspended in 120 μl PBS) and a cytosolic control fraction (loaded at 5 x 

lower volume) were ran on a 12% SDS-PAGE gel and transferred to nitrocellulose 

membrane. The blots were treated as described in Chapter 2 and immunoblotted 

with antibodies specific for all of the five brain isoforms of 14-3-3. The results of 

these blots are shown in Figure 3.13. 

 

 

Figure 3.13: 14-3-3 Isoform Association with MCD Treated Lipid Rafts 

Lipid rafts extracted from rat brain were treated with MCD and immunoblotted with 

antibodies specific for each of the five main brain isoforms of 14-3-3 following MCD 

treatment. Lanes are labelled as follows: Lane 1 – Supernatant; Lane 2 – Pellet; Lane 3 – 

Cytosolic control (loaded at a 5 x lower volume). 

 

A useful way to confirm that the MCD treatment was successful would have been 

to immunoblot for the raft marker proteins flotillin-1 and PrP. These proteins would 

be detected in the supernatant fraction following their release from disrupted lipid 

rafts by the cholesterol depletion treatment. 
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The results shown in Figure 3.13 clearly indicate that the different 14-3-3 isoforms 

associate differently with lipid rafts. 14-3-3is undetectable in MCD treated rafts, 

as there is no protein detection in either the supernatant or the pellet from the 

cholesterol treatment. Conversely, 14-3-3 appears to be highly abundant at raft 

domains, with strong detection in the pellet sample and a faint, but visible, band 

present in the supernatant. 14-3-3 and  clearly do associate with the raft pellet, 

but it is obvious that in comparison with the cytosolic control, the detectable levels 

of 14-3-3 proteins at rafts are low. One important observation from these results is 

that, with the exception of 14-3-3, the association of the other 14-3-3 isoforms is 

with the pellet, supporting the hypothesis that 14-3-3 proteins interact with a raft-

bound protein and are not solubilised during cholesterol depletion. These findings 

indicate that 14-3-3 is the most prominent isoform present in lipid rafts. This was 

further tested by a control, where MCD treatment was substituted with PBS.  

 

 

Figure 3.14: 14-3-3 Association with Lipid Rafts 

Lipid rafts extracted from rat brain were incubated with PBS as opposed to MCD and 

immunoblotted for 14-3-3. The lanes are labelled as follows: Lane 1 – Supernatant; Lane 2 – 

Pellet; Lane 3 – Cytosolic control (loaded at a 5x lower volume). 

 

Unfortunately, the control sample was only immunoblotted with 14-3-3 and . 

What this experiment shows is that the association of 14-3-3 with rafts is not 

cholesterol dependent. The same pattern of association for these two isoforms is 

witnessed in rafts both rich in cholesterol and those which are depleted of 

cholesterol. As the bands from the control blot (Figure 3.14) appear slightly darker 

than those from the MCD blots (Figure 3.13) this may suggest that a proportion of 

14-3-3 associates directly with cholesterol. However, with the exception of 14-3-3, 

none of the other 14-3-3 isoforms are detected in the supernatant fractions of any of 

the MCD blots. If 14-3-3 partly associates with cholesterol, then following 
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cholesterol depletion, the protein would be released into the supernatant and be 

detected. In addition, the detection of 14-3-3 in the supernatant of the control blot 

suggests that detection in the supernatant of the MCD blot may not be cholesterol 

related. 

It would be interesting to see if the other isoforms follow this pattern of association 

in cholesterol rich rafts, particularly the 14-3-3 isoform. However, preliminary 

results with two different 14-3-3 isoforms indicate that MCD has little impact on 

the association of 14-3-3 proteins with rafts. Taken together, the data presented here 

form a strong argument that association of 14-3-3 proteins with lipid rafts is not 

cholesterol related and that association is via a membrane-bound protein. It does 

appear that whatever protein the 14-3-3s are interacting with, the interaction is of 

high affinity, making identification of the membrane-bound protein difficult.  

One possible means of overcoming this issue would be to conduct simultaneous 

overlay assays, or far western blots, with mass spectrometry analysis. This may help 

identify raft associated proteins with which 14-3-3s can interact as a starting point to 

identify these raft proteins. 
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3.3.7. Purification of 14-3-3ζ for Sphingosine-Dependent Phosphorylation and 

Effect on Dimerisation 

The sphingolipid sphingosine has been shown to elicit an effect on 14-3-3ζ 

phosphorylation. In order to investigate this further, 14-3-3ζ was cloned into a His-

tagged vector (p-Trc-His-A’) and the expression conditions were optimised. Once 

the optimal expression conditions were determined, 14-3-3ζ was over-expressed and 

purified by a one step purification procedure using immobilised metal affinity 

chromatography (IMAC). This one step purification technique produced a highly 

purified protein for testing the effects of sphingosine. An SDS-PAGE gel of the 

purified protein from the IMAC column is shown in Figure 3.15. 

 

 

Figure 3.15: SDS-PAGE of 14-3-3ζ Fractions Collected from IMAC 

SDS-PAGE of fractions collected from 14-3-3ζ IMAC purification. Fractions were analysed on 

a 12% SDS-PAGE gel. Lanes are labelled as follows: Mr – Molecular Weight Marker; Lane 1 – 

Lysate; Lane 2 – Flow-Through; Lane 3 – Wash; Lane 4 – Elution 1; Lane 5 – Elution 3; Lane 6 

– Elution 5; Lane 7 – Elution 7; Lane 8 – Elution 9; Lane 9 – Elution 11; Lane 10 – Elution 13; 

Lane 11 – Elution 15; Lane 12 – Elution 17; Lane 13 – Elution 19; Lane 14 – Final Wash. 

 

 

The fractions collected from the column which were found to contain the protein 

were pooled together in a vivaspin concentrator with a MWCO of 10 kDa. Once 

concentrated, the buffer was either exchanged to 1 x PBS or 25 mM HEPES buffer 

for further experimental procedures. (Full details are given in Chapter 2). 
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To investigate the effects of sphingosine, cross-linking studies were conducted. The 

purified 14-3-3ζ was incubated with the cross-linker dimethyl pimelimidate (DMP) 

to determine that the protein can adopt a dimer structure.  This cross-linker has 

been shown by previous lab members to be the most optimal for 14-3-3 proteins. 

The results of this cross-linker can be seen in Figure 3.16.  
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Figure 3.16: SDS-PAGE of 14-3-3ζ Cross-Linking 

14-3-3ζ was incubated with the cross-linker DMP at room temperature for 16 h. Following 

incubation, cross-linking samples were boiled in an appropriate volume of 3  x Sample 

Buffer and separated on 12% SDS-PAGE. Lanes are labelled as follows: Mr – Molecular 

Weight Marker; Lane 1 – 14-3-3ζ only control; Lane 2 – 14-3-3ζ cross-linked with DMP.  

 

 

It is clear from the gel that the DMP has successfully cross-linked 14-3-3ζ. The band 

in the control lane (lane 1) represents the 14-3-3ζ control and also illustrates the 

purity of this protein following concentration. The bands in the cross-linked lane 

(lane 2) represent the monomeric form of 14-3-3ζ (~30 kDa) and also the dimeric 

form of 14-3-3ζ (~60 kDa). The effects of sphingosine are studied in the following 

sections. 
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3.3.8. In Vitro Kinase Assays to Investigate the Effects of Sphingosine 

Sphingosine can influence the phosphorylation of 14-3-3 proteins at Ser58, a residue 

buried deep within the dimer interface (Megidish et al. 1998; Hamaguchi et al. 2003; 

Woodcock et al. 2003; Woodcock et al. 2010). It is unclear what conformational effect 

sphingosine elicits on 14-3-3 proteins to allow this phosphorylation to take place. It 

has been speculated that interaction with sphingosine alters the conformation of 14-

3-3 by opening up the protein at the dimer interface, exposing the phosphorylatable 

residue. The effect of phosphorylation prevents further 14-3-3 dimerisation, 

resulting in 14-3-3 remaining in a monomeric state. An alternative method of action 

may be that the sphingosine molecule acts like a detergent, disrupting the 

interaction between two 14-3-3 monomers, rendering them unable to dimerise and 

open to phosphorylation. Either of these scenarios will have a number of 

implications on 14-3-3 protein function, particularly at lipid rafts, which are rich in 

sphingolipids which include sphingosine.  

To attempt to understand how sphingosine affects the conformation of 14-3-3, and 

its subsequent phosphorylation, in vitro kinase assays were performed. Sphingosine 

was tested at a final concentration of 50 µM. This concentration was employed 

based on the previous research conducted by Woodcock (et al. 2010). The full 

experimental procedure is detailed in section 2.3.10 of the Materials and Methods 

and the following assay conditions were tested: 

 

1. 14-3-3ζ 

2. 14-3-3ζ + PKA 

3. 14-3-3ζ + sphingosine 

4. 14-3-3ζ + sphingosine + PKA 

 

To investigate the effect of sphingosine, two methods were attempted. The first 

involved cross-linking the kinase samples and analysing these by SDS-PAGE to see 

if the quaternary structure of 14-3-3 is altered in the presence of sphingosine. The 

effect of cross-linking is shown in Figure 3.17. 
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Figure 3.17: SDS-PAGE of Cross-Linked Kinase Assay Samples 

Kinase assay samples were treated with 35 mM DMP cross-linker and analysed by 12% SDS-

PAGE. Lanes are labelled as follows: Lane 1 – Molecular weight marker; Lane 2 – Kinase 

assay 1 (14-3-3 only); Lane 3 – Kinase assay 2 (14-3-3 plus PKA); Lane 4 – Kinase assay 3 

(14-3-3 plus sphingosine); Lane 5 – Kinase assay 4 (14-3-3 plus sphingosine plus PKA); 

Lane 6 – Purified 14-3-3 plus cross-linker; Lane 7 – Purified 14-3-3 minus cross-linker. The 

band in lanes 3 and 5 at ~40 kDa is PKA. 

 

The results of the cross-linking analysis are not promising. All of the samples 

assayed appear to cross-link to the same degree. This may be due to the protein 

remaining in a dimeric state until phosphorylated, however the levels of monomeric 

to dimeric 14-3-3 do not appear to differ in the assay sample containing both PKA 

and sphingosine.  

In addition to cross-linking, the kinase assay samples were analysed by mass 

spectrometry to look for changes in mass due to phosphorylation. Initial analysis of 

the individual samples (data not shown) suggested that phosphorylation was 

occurring in assay 2 (14-3-3 plus PKA) when compared with the control of assay 1 

(14-3-3 only). Comparison of assay 4 (14-3-3 plus sphingosine plus PKA) also 

appeared to show phosphorylation. To clarify this, assays 1+2 and 1+4 were spotted 

together for mass spectrometry analysis, to see if there were distinct peaks 
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indicating phosphorylation between the two samples. The spectra for these tests are 

shown in Figure 3.18 and Figure 3.19. 

From the spectra of assay 1 and 2 mixed together (Figure 3.18), there are two clear 

peaks, representing the unphosphorylated and the phosphorylated protein. This 

indicates that 14-3-3 is phosphorylated by PKA on a residue other than Ser58, as 

there is no agent present which can affect the dimeric structure of 14-3-3 to expose 

this site for phosphorylation. This is useful for analysis of the sphingosine kinase 

samples. If there is a difference of only ~80 Da, this indicates that there is no 

phosphorylation occurring in addition to what would be expected by PKA. 

Interestingly, the spectra of the kinase samples with sphingosine and PKA (Figure 

3.19) shows a change in mass from unphosphorylated to phosphorylated protein in 

the region of ~160 Da; representative of phosphorylation on two residues of 14-3-3. 

This indicates that in the presence of sphingosine, an additional phosphorylation 

site on 14-3-3 is exposed. This is consistent with previous studies which have 

identified phosphorylation of 14-3-3 at Ser58 in the presence of sphingosine 

(Woodcock et al. 2010). Unfortunately, this does not indicate whether 14-3-3 is 

monomeric prior to phosphorylation by PKA at Ser58, or whether it is the result of 

phosphorylation which monomerises 14-3-3.  
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Figure 3.18: Spectra of Kinase Assay Samples 1 and 2 

Mass spectrometry analysis of samples from kinase assays 1 and 2 when mixed together. The top spectrum is the observed peaks from a wider mass 

range. The difference between the two peaks is 94.42 Da, which represents phosphorylation. The lower spectrum is the same as the one above focussed 

in on the peaks of interest. 

 

 



 

- 121 - 

 

 

Figure 3.19: Spectra of Kinase Assay Samples 1 and 4 

Mass spectrometry analysis of samples from kinase assays 1 and 4 when mixed together. The top spectrum is the observed peaks from a wider mass 

range. The difference between the two peaks is 176.84 Da, which represents double phosphorylation. The lower spectrum is the same as the one above 

focussed in on the peaks of interest. 
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3.3.9. 14-3-3 is Predominantly Monomeric at Lipid Rafts 

The presence of sphingosine in lipid rafts raises the question: is the quaternary 

structure of 14-3-3 altered in lipid rafts? It is already well established that for full 

functionality, 14-3-3 exists as a dimer. For more information, see Introduction 

section 1.1.3.1. Monomeric 14-3-3 is highly unstable and is readily degraded 

(Messaritou et al. 2010) but can form non-specific interactions with 

unphosphorylated proteins and aggregate (Sluchanko et al. 2011). If 14-3-3 is 

monomeric in lipid rafts, not only is the stability of the protein itself compromised, 

but other interacting proteins may also be detracted from their cellular roles. 

To investigate the quaternary structure of 14-3-3 proteins in raft domains, rafts 

isolated from rat brain were cross-linked with DMP and subsequently 

immunoblotted with the Pan 14-3-3 antibody. The results of the cross-linking are 

shown in Figure 3.20. 

 

 

Figure 3.20: Cross-Linking Analysis of 14-3-3 Proteins at Lipid Rafts 

Extracted rat brain fractions were treated with the cross-linker DMP prior to western blot 

analysis. The blot was probed with the Pan 14-3-3 antibody, which recognises all 14-3-3 

isoforms. Lanes are labelled as follows: Lane 1 – Raft fraction plus cross-linker; Lane 2 – Raft 

fraction minus cross-linker; Lane 3 – Cytosolic fraction plus cross-linker; Lane 4 – Cytosolic 

fraction minus cross-linker; Lane 5 – Cytosolic fraction plus cross-linker; Lane 6 – Cytosolic 

fraction minus cross-linker. Cytosolic fractions were loaded at a 5 x lower volume. The 

molecular weights correspond to the size of the monomeric (30 kDa) and the dimeric (60 

kDa) forms of 14-3-3. 
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For comparison, two sets of cytosolic protein fractions isolated from rat brain were 

also treated with DMP and control (PBS). The Pan 14-3-3 antibody was employed 

for detection, as it recognises all 14-3-3 isoforms, and as shown in section 3.3.6, 

different isoforms of 14-3-3 associate differently with lipid rafts. 

It can be seen from Figure 3.20 that the 14-3-3 proteins in the cytosolic fractions do 

cross-link and form dimers; however a large proportion is still monomeric. The 

result of the cross-linking experiment with purified 14-3-3 (Figure 3.16) does not 

result in the whole protein sample being cross-linked. The levels of cross-linking 

witnessed with purified protein are relatively similar to the levels of cross-linking 

witnessed here in cytosolic brain 14-3-3. In addition, the amount of cytosolic protein 

analysed here is only a fifth of that in the purified cross-linking and the raft sample 

analysis. 

The immunoblot in Figure 3.20 indicates that 14-3-3 in rafts does cross-link and 

therefore form dimers. However, the levels of dimeric 14-3-3 in rafts are low, with 

the band detected very faint and only visible after prolonged exposure. This is 

evident from the intensity of the monomeric 14-3-3 bands. The monomeric 14-3-3 in 

the raft sample is almost as intense as those in the cytosolic fractions, yet the dimeric 

band in the raft sample is barely visible, but prominent in the cytosolic fractions. 

Coupled with the fact that the cytosolic fractions are loaded at a 5x lower volume 

than the raft samples, the detected levels of dimeric 14-3-3 in rafts is very low. 

This low level of dimeric 14-3-3 in rafts indicates that the raft population of 14-3-3 is 

predominantly monomeric. This may be as a result of sphingolipids, namely 

sphingosine, eliciting a structural change of 14-3-3 proteins through disruption of 

the dimer interface. This suggests that access to Ser58 may be potentiated by 

monomerisation of the protein. This structural change of 14-3-3 may have a number 

of implications for protein function and regulation in lipid rafts. 

 



 

- 124 - 

 

3.3.10. 14-3-3 in Rafts and Akt Phosphorylation 

As 14-3-3 proteins appear to be predominantly monomeric at lipid rafts, this opens 

up the Ser58 phosphorylation site, usually buried within the dimer interface. This 

therefore invites the question of whether there is an endogenous kinase present in 

rafts which has the ability to phosphorylate this residue on 14-3-3. 

Cell culture studies have found a connection between lipid rafts and the kinase Akt 

(Zhuang et al. 2002; Adam et al. 2007) and there is also evidence that rafts recruit 

Akt to the plasma membrane (Lasserre et al. 2008). Recruitment of Akt from the 

cytosol to the plasma membrane occurs when the pleckstrin homology domain of 

Akt recognises PIP3 (phosphatidylinositol-3,4,5-triphosphate). PIP3 is generated 

from the phosphorylation of PIP2 (phosphatidylinositol-4,5-bisphosphate) by PI3K 

(phosphoinositide-3 kinase). Once in contact with the membrane, phosphorylation 

by PDK1 and PDK2 (phosphoinositide-dependent kinase 1 and 2) activates Akt, 

releasing it from the membrane to phosphorylate cytosolic and nuclear targets 

(Scheid and Woodgett 2003). The study by Lasserre and colleagues suggests that 

rafts act as ‘hot spots’ on the membrane for Akt recruitment following PIP3 

accumulation (Lasserre et al. 2008). 

 In light of this, the decision was taken to immunoblot rat brain fractions for Akt. 

Cytosolic and raft fractions extracted from whole rat brain by flotation on an 

OptiPrep density gradient were probed for the presence of the phosphorylated form 

of Akt; Akt phosphorylated on Ser473, which is the active form of the kinase. Raft 

fractions were also treated with either MCD or PBS (control) to test whether 

cholesterol depletion affects the association of phospho-Akt. The results of the blot 

are shown in Figure 3.21. 
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Figure 3.21: Akt Association with Lipid Rafts 

Lipid rafts, extracted from whole rat brain by flotation on OptiPrep density gradients, were 

treated with either MCD or PBS and immunoblotted for the presence of phospho-Akt. 

Lanes are labelled as follows: Lane 1 – Supernatant prior to treatment; Lane 2 – Supernatant 

following MCD treatment; Lane 3 – Pellet from MCD treated rafts; Lane 4 – Supernatant 

prior to treatment; Lane 5 – Supernatant following PBS treatment; Lane 6 – Pellet from PBS 

treatment; Lane 7 – Cytosolic control. The cytosolic control sample was loaded at a 5 x lower 

volume. The molecular weight of phospho-Akt is 60 kDa. 

 

 

The results of this experiment show that phospho-Akt does associate with lipid rafts 

extracted from rat brain. Importantly, cholesterol depletion does not reduce 

association; in fact the cholesterol depleted sample produces the most intense band 

on the blot. The intensity of the bands also indicates that phospho-Akt associates 

with rafts at a substantial level. 

Confirmation of the presence of phospho-Akt in lipid rafts coupled with the finding 

that 14-3-3 proteins are mainly monomeric in rafts gives rise to the possibility that 

Akt may phosphorylate 14-3-3 on Ser58. 
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3.4. Discussion 

This chapter focused on the association of 14-3-3 proteins with lipid rafts and the 

implications this can have for proteins involved in neurodegenerative diseases. 

Previous research identifying the association of 14-3-3 proteins with lipid rafts 

provided the basis for this research, which was expanded to investigate association 

of the two phospho-forms of 14-3-3,  and . Extensive investigation successfully 

identified the 14-3-3 phospho-forms associating with lipid rafts and mass 

spectrometry analysis indicates that the levels of these isoforms, which constitute 

approximately 55% of total  and  14-3-3 in brain, are present in rafts at a relatively 

lower abundance than the unphosphorylated forms. 

Following the successful identification of these phospho-forms in lipid rafts, I 

attempted to establish whether phosphorylation of 14-3-3 has an impact on 

interactions with other proteins in rafts. Subsequent analysis on the association of 

14-3-3s with lipid rafts and the effect of cholesterol depletion identified that 14-3-3 

proteins are contained in the insoluble material. This suggests that these protein or 

proteins interact with 14-3-3 in rafts with high affinity. This is consistent with the 

finding that low levels of phosphorylated 14-3-3 associate with rafts. 

Phosphorylation of 14-3-3 on both Ser185 and Thr233 result in the dissociation of 

protein interactions (Aitken 2011) and it would be expected that phospho-14-3-3 

would not be able to interact with the raft-bound protein, promoting association. 

The low levels of phospho-14-3-3 and the inclusion of unphosphorylated 14-3-3 in 

the insoluble material in rafts collectively support the theory that 14-3-3 association 

is through high affinity interactions with protein or proteins which are raft-bound. 

One possible means of overcoming this issue and identifying potential interacting 

proteins would be to conduct overlay assays, or far Western blots. Overlay assays of 

raft samples with 14-3-3 isoforms would identify proteins present in lipid rafts 

which 14-3-3 can interact with. This would provide a starting point for analysis and 

is definitely a method which should be considered for future raft investigations. 

Another aspect which this chapter addressed was the effect which sphingolipids 

present in lipid rafts could elicit on 14-3-3 proteins. 14-3-3 has been shown to be 



 

- 127 - 

 

phosphorylated on Ser58 by PKA in the presence of sphingosine; promoting the 

conversion of 14-3-3 to a monomer (Woodcock et al. 2003). This phosphorylation is a 

novel regulatory mechanism for 14-3-3 interactions and could explain the lack of 

observed Ser58 phosphorylation by other kinases of intact 14-3-3 that was purified 

from mammalian brain (Toker et al. 1992; Dubois et al. 1997; Aitken 2011). 

Phosphorylation only in the presence of sphingosine suggests that either the dimeric 

state of 14-3-3 is disrupted, by monomerisation, exposing the residue to be 

phosphorylated; or sphingosine elicits a conformational change of 14-3-3, which 

exposes Ser58 for phosphorylation and it is as a result of phosphorylation which 

results in 14-3-3 monomerisation. 

To investigate this further, it was first established that 14-3-3 is phosphorylated in 

the presence of sphingosine. This was identified by mass spectrometry, where it was 

evident that in the presence of PKA 14-3-3 is phosphorylated on another residue, 

and in the presence of PKA and sphingosine, 14-3-3 is doubly phosphorylated; 

indicating that sphingosine exposes an additional phosphorylation site on 14-3-3. 

The effect of sphingosine on 14-3-3 was investigated in lipid rafts. As sphingosine is 

abundant in rafts, if this sphingolipid elicits a structural effect, such as 

monomerisation of 14-3-3, this should be identifiable through raft analysis. As such, 

rafts which were isolated from whole rat brain were incubated with the cross-linker 

DMP and analysed by SDS-PAGE. This procedure identified that in lipid rafts, in 

comparison to the cytosol, 14-3-3 proteins are predominantly monomeric. Further 

raft analysis identified that an endogenous kinase in the form of Akt is also present, 

which may possess the ability to phosphorylate 14-3-3 on Ser58. However, re-

examination of the mass spectrometry analysis of 14-3-3 peptides in lipid rafts 

(section 3.3.5) did not identify this residue as being phosphorylated. It is important 

to stress that the mass spectrometry conducted was not focussed on the 

identification of phosphorylation of this residue and that further investigation 

would be required to positively conclude that 14-3-3 is not phosphorylated at Ser58 

in lipid rafts. In light of the results presented here, it appears that sphingosine does 

elicit a structural effect on 14-3-3 and the results of the raft cross-linking analysis 
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leads to the suggestion that sphingosine disrupts the dimeric structure of 14-3-3 to 

produce monomers. It is well established that 14-3-3 proteins exist as dimers for full 

functionality and that their ability to readily adopt dimers suggests that they are 

highly unstable in their monomeric form. Studies into monomeric 14-3-3 has also 

identified that this unstable form of the protein aggregates. 

The research presented here can support a role for 14-3-3 and lipid rafts in 

neurodegenerative diseases. 14-3-3 proteins which are present at lipid rafts can be 

monomerised in the presence of sphingosine; a major component of rafts. 

Additionally, neurodegenerative disease proteins are processed at rafts; 

abnormalities of which can initiate disease. The monomeric forms of 14-3-3 are 

highly unstable and can form aggregates, as can abnormally processed disease 

proteins. I therefore hypothesise that the production of monomeric 14-3-3 by 

sphingosine and abnormal disease protein processing by lipid rafts leads to the 

formation of the toxic aggregates which are a characteristic of numerous 

neurodegenerative diseases. This would account for the presence of 14-3-3 proteins 

in these aggregates and also support one theory that aggregate formation is a neuro-

protective mechanism, to sequester abnormal proteins from causing further 

neuronal damage (Olzmann et al. 2008). 

The research presented here provides a basis for further investigation into the roles 

of 14-3-3 proteins in neurodegenerative disease pathology and the association of 14-

3-3 and neurodegenerative disease proteins with lipid rafts. This also raises the 

intriguing possibility of a unique mode of regulation of 14-3-3 function. Due to the 

high level of sphingosine in rafts, this induces monomerisation of 14-3-3 which 

leads to the phosphorylation on Ser58 by Akt. 

 

 



 

- 129 - 

 

CHAPTER 4 

SPINOCEREBELLAR ATAXIA TYPE 1 AND ATAXIN-1

 

4.1. Introduction 

Spinocerebellar ataxia type 1 (SCA1) is one of seven neurodegenerative conditions 

termed polyglutamine-repeat diseases, which includes the more commonly known 

Huntington’s (Zoghbi and Orr 2000). All of the diseases follow a similar 

pathogenesis and are genetically inherited. The gene responsible for SCA1 was first 

identified in 1993, revealing that the expansion of a translated CAG (glutamine) 

repeat was responsible for the mutation (Orr et al. 1993). The SCA1 gene, known as 

ATXN1, encodes a 792-830 residue protein termed ataxin-1, where the variation in 

length is dependent on the polyglutamine tract (Banfi et al. 1993). In normal alleles, 

there are between 6 and 44 glutamine repeats in the tract, however, when the 

number of repeats exceeds 20, the tract stability is maintained through the presence 

of CAT nucleotides (which encode histidine residues (Chung et al. 1993). In disease 

alleles, the number of glutamine repeats is greater, between 39 and 82, and the 

histidine residues are absent (Jodice et al. 1994). This absence of CAT nucleotides 

suggests that a substitution of CAT to CAG nucleotidess may be the initial de-

stabilising event in the disease pathology (Goldfarb et al. 1996). 

It is now known that ataxin-1 is involved in many processes, including protein 

aggregation, phosphorylation and interactions which are important in SCA1. There 

are various aspects of the protein which are involved in disease pathology, 

including conformational changes of the protein itself and aggregation into nuclear 

inclusions. There are also interactions with the protein which play a role in SCA1 

(see section 1.3.2 of the Introduction). 

Previous studies have identified the phosphorylation sites of ataxin-1 (Emamian et 

al. 2003; Vierra-Green et al. 2005) and the AXH domain of ataxin-1 has been solved 
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crystallographically (Chen et al. 2004). In addition, an interaction between ataxin-1 

and 14-3-3 has been identified (Chen et al. 2003). The interaction between 14-3-3 and 

ataxin-1 is a key step in the pathology of SCA1, leading to toxic accumulation and 

protein aggregation (see section 1.3.3). 

The evidence presented in the literature indicates that the protein ataxin-1 plays an 

important role in development of SCA1 and understanding how to prevent the 

occurrence of toxic protein interactions is a real possibility for drug targeting. This 

can be achieved by better understanding the structure of the protein and identifying 

potential small molecule inhibitors. 

In this research, domains of the protein have been identified for structural studies 

and for potential prevention of deleterious interactions.  

 

4.2. Aims 

Identification of Ataxin-1 Domains 

As the crystal structure of the AXH domain of ataxin-1 has been solved, this 

provides a starting point for further structural analysis. As the whole length protein 

is highly unstable, domains of the protein have been selected to express and purify 

for further analysis. It is important to identify domains which can be produced in 

large quantities and which are stable and active for further analysis. 

 

Expression and Purification of Ataxin-1 Domains 

The ability to express and purify the domains to be of a sufficient quality to allow 

for crystal and compound inhibition studies is essential. The main aim here is to 

identify a bacterial expression system which can be exploited to produce a 

substantial quantity and quality of proteins for further analysis. 
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4.3. Results 

4.3.1. Identification of Ataxin-1 ‘C’ and ‘AC’ Domains 

The cDNA of ataxin-1 was first identified and characterised in 1994 from two 

human foetal cDNA libraries and a human adult cerebellar cDNA library (Banfi et 

al. 1994). This identified ataxin-1 as an 87 kDa protein containing 816 amino acids. 

The IMAGE clone (40125676) for the protein is 815 amino acids long, and this is the 

sequence from which selected domains were derived. To date, Chen and colleagues 

have crystallised the AXH domain of ataxin-1 (residues 563-694) (Chen et al. 2004). 

It was not possible to crystallise the whole protein, as the polyglutamine tract makes 

the protein highly unstable and not suitable for crystallisation. As there is known 

information for the AXH domain, it makes sense to include this region in domains 

to be studied, particularly as conditions for the crystallisation of the AXH domain 

have been discovered.  

Constructs were designed to incorporate the AXH domain and the C-terminal 

region. Two constructs were designed and cloned for analysis by Dr. Beck 

(Analytical and Environmental Chemistry, Humboldt-Universität zu Berlin, 

Department of Chemistry, Brook-Taylor-Str. 2, 12489 Berlin, Germany). These were 

termed as the Ataxin-C domain and the Ataxin-AC domain. The Ataxin-C domain 

was named as it consisted mainly of the C-terminal region of the protein (residues 

704-815). The Ataxin-AC domain was named as it consisted of the AXH domain and 

the C-terminal region of the protein (residues 561-815).  

Both of the constructs were cloned into the bacterial expression vector pTrc-His-A’. 

This system (Invitrogen, Paisley, UK) has been developed for the efficient 

expression and purification of recombinant proteins in E. coli. High level expression 

of fusion proteins can be achieved through transcriptional regulation of the trc 

promoter. The pTrc-His-A’ expression vector contains an N-terminal hexa-histidine 

tag to aid protein purification. The His-tag was linked to the ataxin-1 gene by a 

peptide sequence of 21 residues, 5 of which encode the Enterokinase recognition 

sequence for cleavage of the fusion tag. 
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Figure 4.1: Peptide Sequence in MCS 

Residues in the MCS connecting the hexa-histidine tag to the inserted ataxin-1 gene. 

Residues underlined encode the Enterokinase cleavage site. Residues highlighted in blue 

encode the Xpress epitope which allows detection of the recombinant protein using the Anti-

Xpress Antibody. 

 

 

Each of the constructs were cloned into the multiple cloning site (MCS) using the 

restriction enzymes BamHI and XhoI. A simplified image of the final construct is 

shown in Figure 4.2. 

 

Figure 4.2: Simplified vector map of pTrcHisA’ 

Vector map of pTrcHisA’ depicting the location of the ataxin-1 construct gene. The multiple 

cloning site contains the trc promoter and the hexa-histidine tag. Other regions highlighted 

are the ampicillin resistance gene (Ampr), the origin of replication (pBR322 origin) and the 

lacIq gene which codes for the lac repressor protein. The presence of this gene allows efficient 

transcriptional repression of the cloned insert in E. coli whether the strain is lacIq+ or lacIq-. 
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As stated, the ataxin-1 gene was truncated to remove the polyglutamine tract, which 

should make the selected domains more stable for analysis. Basic information for 

each domain in comparison to the full-length protein is given in Table 4.1. 

 

Table 4.1: Ataxin-1 Domains 

Information regarding the predicted isoelectric point (pI), molecular weight and number of 

residues for each selected domain and the full-length protein. These values were calculated 

by ProtParam (http://www.expasy.ch/tools/protparam.html) an online protein parameter 

predictor. 

 Full-Length Ataxin-1 ‘AC’ Domain ‘C’ Domain 

Predicted pI 8.49 7.10 9.52 

Predicted Mass 86922.6 Da 27733.6 Da 12286.0 Da 

Number of Residues 815 255 112 



 

- 134 - 

 

4.3.2. Expression of Ataxin-1 Domains 

Previously, optimum conditions for the expression of the ataxin-1 constructs were 

determined by Dr. Beck.  

The optimum expression of the Ataxin-1 AC domain was obtained under the 

following conditions; 

 

1. Expression in the Rosetta 2 strain of E. coli  

2. Expression in LB media supplemented with ampicillin 

3. Temperature remained stable at 37°C until O.D. induction stage was 

achieved (A600 at 0.7-0.8) 

4. Addition of isopropyl--D-thiogalactopyranoside (IPTG, final concentration 

0.5 mM) to induce protein production 

5. Culture at 37°C overnight for high yield of protein 

6. Cultures were agitated to promote cell growth by shaking at 200 rpm 

 

The optimum expression of the Ataxin-1 C domain was obtained under the 

following conditions; 

 

1. Expression in the BL21(DE3) strain of E. coli  

2. Expression in LB media supplemented with ampicillin 

3. Temperature was kept stable at 37°C until induction stage was achieved (A600 

at 0.7-0.8) 

4. Addition of IPTG (final concentration 0.5 mM) to induce protein production 

5. Overnight culture at 37°C to produce a high yield of protein 

6. Agitation of cultures at 200 rpm in a shaker 

 

Protein domains were expressed and collected in 1 L volumes for purification. 
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4.3.3. Purification of Ataxin-1 Domains 

4.3.3.1. First Step: IMAC (Immobilized Metal Affinity Chromatography) 

IMAC is a chromatographic technique employed for the purification of recombinant 

proteins expressed with a histidine-tag. IMAC, as the name suggests, involves 

immobilized metal ions on chromatographic media through chelating ligands. The 

metal ions employed in this research were either nickel (Ni2+) or cobalt (Co2+), for 

which histidine-tagged proteins have a high selective affinity. Metal ions are 

immobilized on a Sepharose matrix. 

The His-tagged protein binds to the matrix whilst other proteins in the lysate pass 

over the matrix and flow through the column. The column is then washed with 20 

mM imidazole to remove any unbound proteins to allow for cleaner protein 

purification. The His-tagged protein was eluted from the matrix with 200 mM 

imidazole, which competes for binding to the matrix. 

For a first-step purification of the Ataxin-1 AC and C domains, a gravity-flow IMAC 

column was prepared with the procedure carried out at 4°C. Full details of the 

protocol are given in Chapter 2 section 2.2.2. Briefly, the lysate was added to the 

column, which was tumbled for 1 h to allow the matrix and lysate to fully integrate. 

The flow-through was collected before washing the column with 10 CV of buffer (20 

mM imidazole) to remove the unbound proteins. The ataxin-1 domains were eluted 

with at least 7 CV of elution buffer (200 mM imidazole) and these were collected in 5 

ml (1 CV) fractions and analysed by SDS-PAGE. 
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Figure 4.3: SDS-PAGE of Fractions Collected from IMAC Purification 

A. SDS-PAGE of fractions collected from the ‘C’ domain IMAC purification. Lanes are 

labelled as follows; M = molecular weight marker; L = lysate which was loaded onto 

column; F = flow-through from column; W = wash sample; Lanes 1-6 = elution 

fractions.  

B. SDS-PAGE of fractions collected from the ‘AC’ domain IMAC purification. Lanes are 

labelled as follows; M = molecular weight marker; L = lysate loaded onto column; F = 

flow-through from column; W = wash sample; Lanes 1-4 = elution fractions. 

Fractions 2, 3 and 4 were pooled for further analysis. 
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4.3.3.2. Second Step: Cation Exchange Chromatography 

Ion-exchange chromatography is a method employed to separate proteins based on 

their charge. Results can be altered by varying the running pH, salt concentration 

and more importantly, by changing the ion exchanger. Proteins which have an 

overall net positive charge adsorb to cation exchangers and proteins with an overall 

net negative charge adsorb to anion exchangers. The greater the net charge, the 

greater the strength of the adsorption. The protein of interest can be desorbed from 

the ion exchanger by either changing the pH to reduce the net charge of the protein 

or through the addition of an ion competitor to ‘block’ the ion exchanger charges. A 

competing ion, NaCl, was used to desorb the ataxin-1 domains from the cation 

exchanger.  

Gradient elution was carried out on a Mono S (methyl sulphonate) ion exchange 

column. Anion exchange chromatography was also tested on a Mono Q (quaternary 

ammonium) ion exchange column; however this method yielded very poor results, 

so Mono S ion exchange was used. Anion exchange with a Mono Q column was 

possibly unsuccessful due to the high pI of the ataxin-1 constructs. For anion 

exchange chromatography to be successful, the constructs would have to be in a 

buffer of very high pH. As the buffer pH employed was pH 6, this ensured optimal 

conditions for cation exchange, which requires the protein buffer to be lower than 

the pI of the protein. 

The selected ataxin-1 domains were eluted from the cation exchange column with a 

NaCl gradient on a BioCAD 700E Perfusion Chromatography Workstation. Protein 

elution was detected by UV sensors at 280 nm. Fractions were collected using an 

Advantec SF-2120 fraction collector and relevant fractions were separated by SDS-

PAGE. Fractions which contained the protein of interest were pooled for further 

analysis. 
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Figure 4.4: Ataxin-C Ion-Exchange 

A. UV trace from Ataxin-C ion-exchange chromatography. Fraction numbers are given 

at the top of each column along the trace and were 1 ml each. Fractions indicated 

were further analysed on SDS-PAGE. 

B. SDS-PAGE of selected ion-exchange fractions. Fractions analysed in each well are 

indicated above the gel image. It is clear from the gel that the protein of interest is 

present in fractions 11, 12 and 13 in most abundance. These fractions were pooled 

for further analysis. 
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Figure 4.5: Ataxin-AC Ion-Exchange 

A. UV trace from Ataxin-AC ion-exchange chromatography. Fraction numbers are 

indicated in the top of each column along the trace and were 1 ml each. Indicated 

fractions were analysed by SDS-PAGE. 

B. SDS-PAGE of selected Ataxin-AC fractions from ion-exchange. Fractions analysed 

are indicated above the gel lanes. The gel bands numbered (1-3) were excised for 

mass spectrometry, which is further discussed in section 4.3.4. 
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4.3.3.3. Third Step: Gel Filtration Chromatography 

Gel filtration is employed to separate different oligomeric states of protein samples. 

This is particularly important for progression to crystallization, as the sample must 

be pure and homogeneous. 

For gel filtration, a Superose 12 10/30 column was used, as detailed in section 2.2.4 

of Material and Methods. The column was previously calibrated according to the 

manufacturer’s instructions.  

The Ataxin-C domain protein was purified by gel filtration chromatography. A 

sample of 5.3 mg/ml was diluted 1:5 with distilled water to make a total volume of 

100 μl. The sample was injected into the system and the run was carried out with a 

simple buffer for equilibration and elution (20 mM Tris, 150 mM NaCl pH 7.4).  

 

 
Figure 4.6: Chromatogram of Ataxin-C Gel Filtration 

Gel filtration of Ataxin-C protein on the Superose 12 10/30 column. The abscissa indicates 

the volume of protein elution and the ordinate indicates the absorbance units at 280 nm. 
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The chromatogram from the gel filtration of the Ataxin-C indicates that the protein 

elutes at 13.7 ml with a molecular weight of 57 kDa (Figure 4.6). Due to this, I 

hypothesise that the protein construct may possibly be forming a trimer.  

 

4.3.4. Confirmation of Protein Identity 

In order to verify that the protein of interest had been purified, MALDI-TOF was 

employed. This procedure involved excising bands of interest from SDS-PAGE and 

subjecting the bands to a tryptic digest (full details in section 2.3.7. of the Materials 

and Methods). Bands excised from purification of both ataxin-1 constructs were 

identified as being domains of the ataxin-1 (human) protein. This method is useful 

in identifying whether a band present on SDS-PAGE is a protein of interest or a 

contaminating protein. An example of this was during the optimization of Ataxin-C 

expression conditions. When expression was attempted using the Rosetta 2 strain of 

E. coli, two contaminating proteins were up-regulated in response to the antibiotic 

chloramphenicol which is required for selection of this bacterial strain. MALDI-TOF 

analysis identified that these contaminating proteins were not dimers or trimers of 

the Ataxin-C construct which was the initial hypothesis. Subsequently, changing the 

E. coli strain eliminated this problem.  

This problem of protein contamination can also be seen from the gel shown in 

Figure 4.5. The numbered bands on the gel were analysed by MALDI-TOF. The 

results of the top hits for each band are shown in Table 4.2. 

 
Table 4.2: Ataxin-AC MALDI-TOF Results 

Each top hit from the bands in Figure 4.5 which were prepared for MALDI-TOF. 

Protein 

Band 

MOWSE 

Score 

Protein M.W. 

(Da)/pI 
Species Protein Name 

1 3.31e+6 69116/4.8 ECO57 Chaperone Protein dnaK 

2 2743 87051/8.5 HUMAN Ataxin-1 

3 46277 87051/8.5 HUMAN Ataxin-1 
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It is clear from the mass spectrometry results that the Ataxin-AC domain is 

prominent; however, complete purification is an issue. Unfortunately, despite 

extensive attempts, purification to a sufficiently high level was not obtained. Due to 

the difficulties in purifying the Ataxin-AC domain, alternative approaches were 

explored, which are detailed later in this chapter. 

 

4.3.5. Crystallography of Ataxin-C: Initial Trials 

As purification of the Ataxin-C domain was more successful than the Ataxin-AC 

domain, crystallography trials were attempted. Initial screens were carried out 

using the Hampton Crystal Screen (1+2). The Ataxin-C protein was prepared to 5.3 

mg/ml and concentrated in a Vivaspin with PBS. The initial screen was set up in the 

sitting drop vapour diffusion method (see section 2.3.8.1 in Materials and Methods). 

From this initial screen, one set of conditions did appear to produce crystals. 

However, these crystals were not of sufficient size or quality to progress further. 

Further optimization of the crystallography conditions was attempted based on the 

original conditions which yielded protein crystals. The conditions which did yield 

crystals were as follows: 

 

0.2 M ammonium phosphate monobasic, 0.1 M Tris pH 8.5,  

50% v/v (+/-)-2,-methyl-2,4-pentanediol (MPD) 

 

Employing variations of these conditions, refined screens were set up with Ataxin-C 

protein which had been prepared to 3.7 mg/ml. Conditions were set up for hanging 

drop vapour diffusion in a 24 well plate. Details of the conditions tested are shown 

in Table 4.3. 
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Table 4.3: Refined Crystallography Conditions for Ataxin-C 

Conditions tested based on the initial results from the Hampton Crystallography screen. 

 1 2 3 4 5 6 

A 

0.2 M 

NH4H2PO4 

0.1 M MES 

pH 5.6 

50% MPD 

0.2 M 

NH4H2PO4 

0.1 M MES 

pH 6.5 

50% MPD 

0.2 M 

NH4H2PO4 

0.1 M PIPES 

pH 7 

50% MPD 

0.2 M 

NH4H2PO4 

0.1 M PIPES 

pH 7.5 

50% MPD 

0.2 M 

NH4H2PO4 

0.1 M 

BICINE 

pH 8 

50% MPD 

0.2 M 

NH4H2PO4 

0.1 M 

BICINE 

pH 8.5 

50% MPD 

B 

0.2 M 

NH4H2PO4 

0.1 M 

BICINE 

pH 8.5 

30% MPD 

0.2 M 

NH4H2PO4 

0.1 M 

BICINE 

pH 8.5 

40% MPD 

0.2 M 

NH4H2PO4 

0.1 M 

BICINE 

pH 8.5 

45% MPD 

0.2 M 

NH4H2PO4 

0.1 M 

BICINE 

pH 8.5 

50% MPD 

0.2 M 

NH4H2PO4 

0.1 M 

BICINE 

pH 8.5 

55% MPD 

0.2 M 

NH4H2PO4 

0.1 M 

BICINE 

pH 8.5 

60% MPD 

C 

0.05 M 

NH4H2PO4 

0.1 M 

BICINE 

pH 8.5 

50% MPD 

0.1 M 

NH4H2PO4 

0.1 M 

BICINE 

pH 8.5 

50% MPD 

0.15 M 

NH4H2PO4 

0.1 M 

BICINE 

pH 8.5 

50% MPD 

0.2 M 

NH4H2PO4 

0.1 M 

BICINE 

pH 8.5 

50% MPD 

0.25 M 

NH4H2PO4 

0.1 M 

BICINE 

pH 8.5 

50% MPD 

0.3 M 

NH4H2PO4 

0.1 M 

BICINE 

pH 8.5 

50% MPD 

NH4H2PO4 – Ammonium Phosphate Monobasic. 

 

 

Unfortunately, despite extensive incubation, no crystal formation occurred despite 

this refinement of the conditions. One reason may be due to the low protein 

concentration employed in this technique. Unfortunately purification of the Ataxin-

C domain is difficult and during these procedures, it became clear that the protein 

does not remain stable at 4°C. This poses a number of issues, including protein 

degradation, which may also have been a problem.  

Due to the difficulties experienced with both the ‘C’ and ‘AC’ domains of Ataxin-1, 

alternative avenues of analysis were explored. These are discussed in the next 

section. 
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4.3.6. Identification of New Ataxin-1 Domains 

As the initial ataxin-1 constructs were not easily purified, an alternative approach 

was explored. The protein sequence was examined by the online analysis tool 

PredictProtein (www.predictprotein.org) to predict the secondary structure. By 

examining the predicted secondary structure of the protein, more stable domains of 

the protein could be identified. The PredictProtein results showing all of the 

constructs selected is shown in Figure 4.7.  

It is clear from Figure 4.7 that the original constructs started at loop regions of the 

protein, making them unstable. This could explain the reason why successful 

purification of these constructs was not achieved. When the initial constructs were 

designed, this information was unknown and so they were selected based on 

previous studies where crystallography had been successful (Chen et al. 2004). 

Constructs were designed to encompass the AXH domain (crystal structure known) 

and the C-terminal region (structure unknown) of the protein. The AXH domain is 

included because there is evidence that this region of the protein can be crystallised, 

suggesting that regions of the protein which are unknown may be driven into 

crystallisation by the AXH domain. The general design remained the same for 

selecting new domains. The main difference between the two sets of domains is the 

specific residues where they begin. A difference of a few residues may be all that is 

needed to enhance the likelihood of producing more stable constructs, according to 

the predicted secondary structure. 

Three domains of varying sizes were selected, all of which included the 14-3-3 

binding site, with one also incorporating the AXH domain. These are highlighted in 

Figure 4.7. The domains are referred to according to the residues which they 

encompass; 575-815, 718-815 and 740-815. All of the constructs were cloned into the 

bacterial expression vector p-Trc-His-A’. Information regarding the expression 

vector is detailed in section 4.3.1. 
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Figure 4.7: Ataxin-1 Sequence and Domains 

Red highlighted residues indicate the starting residues of the original domains. Black highlighted residues indicate the starting residue of the second set 

of domains. In all cases, the C-terminal residue was 815. The Akt and 14-3-3 binding sites are also indicated, as well as the AXH domain. 



 

- 146 - 

 

These constructs were also cloned into the multiple cloning site (MCS) using the 

restriction enzymes HindIII and XhoI. A simplified image of the final construct is 

shown in Figure 4.8. 

 

 

 

 

Figure 4.8: Simplified Vector Map for New Domains in pTrcHisA’ 

Vector map of pTrcHisA’ depicting the location of the ataxin-1 construct gene. The multiple 

cloning site contains the trc promoter and the hexa-histidine tag. Other regions highlighted 

are the ampicillin resistance gene (Ampr), the origin of replication (pBR322) and the lacIq 

gene which codes for the lac repressor protein. 
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Again, the domains which were selected were truncated to remove the 

polyglutamine tract. Basic information regarding each domain in comparison to the 

full length protein is detailed in Table 4.4. 

 

Table 4.4: New Ataxin-1 Domains 

The predicted isoelectric point (pI), molecular weight and number of residues for each new 

domain and the full-length protein were calculated by ProtParam. 

(http://www.expasy.ch/tools/protparam.html). 

 
Full-Length 

Ataxin-1 
575-815 718-815 740-815 

Predicted pI 8.49 6.91 9.42 9.67 

Predicted 

Mass 
86922.6 Da 26352 Da 10894.4 Da 8349.7 Da 

Number of 

Residues 
815 241 98 75 
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4.3.7. Expression Trials of New Ataxin-1 Domains 

Expression trials were carried out in an attempt to identify not only the optimum 

expression conditions for each of the ataxin-1 domains, but also to determine the 

greatest soluble protein yield. By optimizing protein expression on a small scale, 

multiple conditions can be tested simultaneously and provide an indication of the 

amount of soluble protein which may be produced on a larger scale. 

There were several main expression conditions that were varied for the expression 

trials. These are detailed in Table 4.5. 

Trials were carried out systematically for all three domains, varying an individual 

condition per trial. Controls where protein expression was not induced were carried 

out alongside each expression trial.  

To determine how successful each condition was at expressing each domain, an 

aliquot from each trial sample, including controls, were separated on a gel. 

Conditions for cell harvesting and lysis were standardised with all samples and the 

same volume of material was loaded onto SDS-PAGE gels to correct for variability 

errors. Full details are provided in chapter 2. 

  
Table 4.5: Expression Trial Conditions for New Ataxin-1 Domains 

Details of the conditions tested for the expression of the new ataxin-1 domains. Small scale 

trials were carried out systematically by varying one of the following conditions per trial 

alongside appropriate controls. 

Expression Condition Variation 

E. coli Cell Strain: BL21(DE3), Rosetta-gami 2(DE3)pLysS 

Culture Media: LB, Terrific Broth (TB) 

IPTG Concentration:  0.2 mM, 0.5 mM, 1 mM final concentration 

A600 at Induction: 0.2, 0.3, 0.4, 0.5, 0.6 and 0.6-0.8 

Incubation 

Temperature: 

Cells were consistently grown to A600 at 37°C. After induction, the 

temperature was changed to: 16°C, 25°C or 37°C. 

Incubation Period: 
Following induction, the incubation period varied from 4 h up to 

20 h. 
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Initial trials with LB media and Terrific Broth with varying conditions did not yield 

any soluble protein for any of the constructs. As the domains are not full-length 

proteins and are potentially unstable, I hypothesised that there may be an issue with 

protein expression. In an attempt to overcome this, a new E. coli strain, Rosetta-gami 

2(DE3)pLysS was employed. This strain of E. coli combines features of the 

Origami™2 and Rosetta™2 strains. In particular, the Origami™ 2 strain aids protein 

folding, encouraging proteins to adopt a conformation for expression. This is an 

advantage for the ataxin-1 domains, which are known to have difficulty in folding 

correctly. The Rosetta-gami 2(DE3)pLysS strain also enhances expression of 

eukaryotic proteins. Again, this could be advantageous in expressing the ataxin-1 

domains, as these are designed from a eukaryotic IMAGE clone. There is one main 

disadvantage of the Rosetta-gami 2(DE3)pLysS strain over the BL21(DE3) strain, 

which was the time the cells required to reach A600 0.6. The Rosetta-gami 

2(DE3)pLysS cells took approximately double the time required by BL21(DE3) cells 

to reach induction.  

Despite the slow doubling time of the Rosetta-gami 2(DE3)pLysS strain of E. coli the 

potential benefits of the strain seemed positive. Trials were conducted, with varying 

temperatures and IPTG concentrations, yet ataxin-1 expression of any of the 

constructs was not visible when samples were analysed by SDS-PAGE. Further 

investigation into the Rosetta-gami 2(DE3)pLysS strain revealed that this strain of E. 

coli does not allow protein expression with the pTrc-His-A’ vector. According to the 

manufacturer, both the vector and the strain possess functions which suppress the 

expression of background proteins, in order to aid protein purification. This in turn 

prevents the expression of the protein of interest. This explained why no expression 

was seen with these trials, but did not explain the reasoning for the lack of protein 

expression in other cell lines. 

As there was no clear explanation for the lack of protein expression, DNA for all of 

the constructs was mini-prepped (details in Chapter 2) and sent to the DNA 

Sequencing Service at the University of Dundee to be sequenced. The purpose of re-

sequencing the constructs was to rule out any possibility of any mutations with the 
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constructs, which could have been having an effect on protein expression. The 

results of the sequencing clarified that all of the constructs were in the correct 

sequence and, more importantly, in the correct frame with the His-tag. There were 

no signs of any possible mutations or other problems with the sequences 

themselves, which could account for the lack of protein expression. Because of this, I 

hypothesised that one of the problems could be with the glycerol stocks which the 

proteins were picked from for expression. The glycerol stocks had been prepared 

some while previously, and there was a possibility that either they had degraded, or 

the proteins were too unstable to be expressed from a glycerol stock. 

To overcome this potential issue, all of the constructs were transformed into the 

BL21(DE3) strain of E. coli and selected on agarose plates supplemented with 

ampicillin. One colony from each plate was inoculated with LB media and 

ampicillin and grown overnight. This pre-culture was used to inoculate larger 

cultures for expression trials. Trials were carried out at varying concentrations of 

IPTG (0.2 mM, 0.5 mM and 1 mM) by induction at A600 of 0.7. Samples were treated 

as detailed in section 2.2.1 and separated on an SDS-PAGE gel. Unfortunately, once 

again, expression of the constructs was unsuccessful. 

The next variable to test was the A600 at induction. Once again, colonies from the 

575-815 ataxin-1 construct transformation into BL21(DE3) cells were used to 

inoculate 5ml cultures of LB and trials were carried out by inducing protein 

expression at A600 of 0.2, 0.3, 0.4, 0.5 and 0.6. Small culture volumes were used in 

order to test a range of conditions to identify those which produced the greatest 

protein expression. Cultures were then transferred to either a 37°C or 16°C 

incubator. After 4 h, samples of each culture were taken to test for expression and 

the remaining cultures returned to their respective temperatures for incubation 

overnight. Following completion of the trial, samples of each condition were taken 

and separated on 12% SDS-PAGE. 

When testing the A600 of the culture for induction, absorbance was measured on the 

spectrophotometer in our lab and also on a spectrophotometer in a neighbouring 

lab. Interestingly, the reading at A600 on our spectrophotometer appeared to be 
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~1.2% lower than that on our fellow colleagues. To test the accuracy, readings were 

also obtained from another colleague’s spectrophotometer, which also proved our 

readings to be ~1.2% lower. This suggests that previously, induction of protein 

expression may have been occurring at a later stage in the growth phase and IPTG 

may have been added while the cells were in stationary phase and not exponential 

phase. Subsequently, the induction of protein production may have been too late, 

hence the lack of protein expression in previous expression trials. 

Samples from each O.D. point were separated on the same gel for comparison. The 

samples from the induction at A600 of 0.3, 0.4 and 0.5 showed a small difference at 

the expected molecular weight area compared to a control sample. There appeared 

to be a very faint band at ~25 kDa from the culture incubated at 16°C overnight 

following induction with either 0.2 mM or 0.5 mM IPTG. This is highlighted in 

Figure 4.9. 
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Figure 4.9: SDS-PAGE Following Induction of Ataxin 575-815 at A600=0.4 

Expression samples were analysed by SDS-PAGE to identify the expression of ataxin 575-

815. This gel shows the expression samples of cultures induced with IPTG at A600 = 0.4. Lanes 

are identified as follows: 1 = Control sample; 2 = 0.2 mM IPTG, 4 hr incubation; 3 = 0.2 mM 

IPTG, overnight incubation; 4 = 0.5 mM IPTG, 4 hr incubation; 5 = 0.5 mM IPTG, overnight 

incubation; 6 = 1 mM IPTG, 4 hr incubation; 7 = 1 mM IPTG, overnight incubation; 8 = blank 

lane; 9 = 0.2 mM IPTG, 4 hr incubation; 10 = 0.2 mM IPTG, overnight incubation; 11 = 0.5 mM 

IPTG, 4 hr incubation; 12 = 0.5 mM IPTG, overnight incubation; 13 = 1 mM IPTG, 4 hr 

incubation; 14 = 1 mM IPTG, overnight incubation. Lanes 1-7 represent samples incubated at 

16C and lanes 9-14 represent samples incubated at 37C. The very faint band witnessed on 

the gel is highlighted by the arrow. 
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To test whether or not this band does represent expression of ataxin-1 (575-815), a 

larger culture was grown up for a small scale purification test. A large culture was 

set up and smaller cultures were taken and induced with either 0.2 mM IPTG or 0.5 

mM IPTG at A600 0.3, 0.4 and 0.5. Following induction, the cultures were transferred 

to 16°C to incubate whilst shaking at 200 rpm overnight. An un-induced control was 

also incubated at the same conditions for comparison. The following morning, two 

samples of 500 μl was taken from each small culture. One of the 500 μl samples from 

each condition was treated in the usual way; pellet culture and resuspend in 

Laemmli buffer. The other 500 μl sample was pelleted and resuspended in lysis 

buffer (the same used for His-purification). Each sample was then sonicated for 3 x 

10 seconds at 10 μ on ice with a 30 second break between each sonication, to prevent 

the samples from over-heating. Following sonication, samples were centrifuged 

(13,000 rpm for 5 min) and the supernatant was applied to Co2+ charged NTA beads. 

The bead-supernatant mixture was incubated at 4°C with tumbling for 1 h. The 

samples were centrifuged gently (2000 rpm for 1 min) and the supernatant removed. 

The beads were then washed in lysis buffer (20 mM imidazole) by tumbling at 4°C 

for 30 min. Following the wash, the beads were gently centrifuged again and the 

supernatant removed. The beads were resuspended in 30 μl of Laemmli buffer and 

boiled at 100°C for 5 min. Of this total volume, 15 μl of each sample was run on a 

12% SDS-PAGE gel, stained with Coomassie Blue and destained to visualise the 

bands.  

Unfortunately, following destaining, the only bands visible on the gel were those 

from the lysate which was run as a control (data not shown). It does not appear that 

any proteins in the 25 kDa region bound to the Co2+ charged beads, suggesting that 

the ataxin-1 575-815 construct had not actually been expressed. 

 

 



 

- 153 - 

 

4.4. Discussion 

The research conducted in this chapter focussed on the production of ataxin-1 

protein constructs to investigate the role the protein plays in disease pathology. The 

research began with expression and purification of constructs which had been 

previously cloned for analysis. These constructs were expressed; however 

purification did prove to be an issue. This led on to the development of new ataxin-1 

constructs, based on the predicted secondary structure of the protein. Following 

cloning into a His-tagged vector, expression of the constructs was attempted. 

Unfortunately, despite numerous attempts, expression of the new ataxin-1 

constructs was unsuccessful. There are a number of possible reasons for the lack of 

protein expression. Firstly, it is known that the ataxin-1 protein is unstable and does 

not always fold into a stable conformation. This could have resulted in protein 

expression becoming toxic to the cells. Secondly, the expression system itself could 

play a part. Due to time and financial constraints, it was not possible to investigate a 

number of expression systems, which may well have yielded more positive results. 

There is always a risk of problems with protein expression when only a construct of 

the protein is being investigated. Despite attempting to select constructs which 

appeared to be conformationally more stable and favourable, this has not translated 

into experimental practice. With hindsight, it now appears that continuing to pursue 

greater purification of the original constructs may have been a more fruitful avenue 

of research. However, with more time, expression and subsequent purification of 

the new ataxin-1 constructs may prove to be successful and efficient for ataxin-1 

protein investigations. 
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CHAPTER 5 

IDENTIFICATION OF COMPOUNDS FOR INHIBITION 

OF 14-3-3 ACTIVITY 

 

5.1. Introduction 

Currently there is a great deal of research into treatments for neurodegenerative 

diseases. As the age of the population increases, the number of patients suffering 

from neurodegenerative diseases is also on the increase. Therefore, it is essential 

that successful treatments are developed in order to combat this growing problem. 

Many current treatments focus on preventing the loss of, or replacing depleted 

neurotransmitters; i.e. L-DOPA replaces dopamine in Parkinson’s disease and 

current Alzheimer’s treatments prevent the degradation of acetylcholine. Current 

research into neurodegeneration is still focussed on identifying the pathways which 

lead to these debilitating diseases, by means of identifying drug targets. There are 

also studies which are interested in the impact gene therapy and stem cells can have 

on treating neurodegeneration.  

There are a number of studies which have identified the interaction of 14-3-3 with 

neurodegenerative disease proteins as being a key step in disease pathology. Yet, to 

date, there are no drugs which specifically target 14-3-3 interactions in a bid to treat 

these diseases. This research aims to fill that gap, through targeting 14-3-3 

interactions as potential treatments in neurodegenerative disease.  

The main focus is on the interaction between 14-3-3ζ and ataxin-1 in Spinocerebellar 

Ataxia Type 1. This is a model interaction by which 14-3-3ζ inhibition can be tested. 

The interaction of these two proteins is well established and is an ideal model to test 

14-3-3ζ inhibitors against.  

The aim was to identify inhibitors using an in vitro model with 14-3-3ζ and 

exoenzyme S (ExoS), an ADP-ribosyltransferase toxin of Pseudomonas aeruginosa. 
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This interaction is phosphorylation independent and can be easily replicated in vitro 

without requiring prior phosphorylation of the test protein. Once inhibitory 

compounds have been identified from this interaction, they can be tested using the 

ataxin-1 constructs detailed in Chapter 4. 

 

5.2. Aims 

Identification of Compounds which Block 14-3-3ζ Interactions    

The aim of this research is to identify small compound inhibitors which can inhibit 

the interaction of 14-3-3ζ with disease proteins. It is not essential to identify 

compounds which completely inhibit 14-3-3ζ interaction, due to the number of 

other interactions which this would affect. More detail on the interactions which 14-

3-3 proteins play an important role in, including cell cycle regulation and cell 

signalling, are detailed in section 1.1.1 of the Introduction. However, reducing the 

interaction can significantly slow down the progression of aggregation and return 

the rate of protein degradation back to normal levels. 
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5.3. Results 

5.3.1. Identification of Compounds for 14-3-3 Inhibition 

Identifying compounds which block 14-3-3ζ interactions was a collaborative work 

with Dr. Wissam Mehio of the Computational Biology Group at the University of 

Edinburgh. The computational approach docks various compounds in a virtual 

screening programme and scores them according to their position over suggested 

points of a protein.  

 

5.3.1.1. EDULISS 

EDULISS, Edinburgh University Ligand Selection System, is a small molecule 

database for data mining which is currently maintained by Dr. Kun-Yi Hsin at the 

University of Edinburgh (Hsin et al. 2010). The EDULISS database was developed 

originally by Dr. A Hinton (Hinton 2005) and since then, has been expanded to 

include more suppliers, physicochemical information and is continuously updated. 

The in-house database contains the 3D atomic coordinates for each of the 5.5 million 

compounds stored, of which 4 million are unique, along with greater than 1600 

calculated molecular descriptors, including structural, molecular, physicochemical, 

geometric and pharmacophoric properties, to name but a few. The use of a selection 

of descriptors enables the rapid selection of small related molecular families from 

the database. This also provides an efficient means of identifying unique 

compounds, as molecular weight and atom type alone identify only 6% of the 

compounds in the database as unique (Hsin et al. 2010). Compounds are sourced 

from 28 different commercial databases and small specialist compound catalogues, 

ensuring that each compound is currently available for purchase. A chart of the 

companies and the number of compounds contributed is shown in Figure 5.1.  
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Figure 5.1: Companies Contributing to EDULISS Database 

Histogram showing the commercial databases which contribute to EDULISS and the number 

of compounds each contributes. This information is available on the EDULISS website 

(http://eduliss.bch.ed.ac.uk/test/index.jsp). 

 

Of all the compounds stored in the database, more than 3.9 million fit the Lipinski’s 

rule of five and 3.4 million fit the Oprea lead-like criteria. These pharmacokinetic 

parameters assess the drug-likeability of chemical compounds with strict criteria 

which increase the potential likelihood of a compound to be an orally active drug.  

This provides an alternative means of identifying potential compounds by a 

descriptor- or rule-based search, which users can select on the EDULISS web 

interface. Other options include a molecular structure similarity search and an 

Interatomic Pharmacophore Profile (IPP) search. In addition, users can search the 

database by compound ID to retrieve information relevant to the compound and 

also as a means to purchase compounds.  In this research, EDULISS was used as a 

source of compounds for virtual screening through application of the LIDAEUS 

program (section 5.3.1.3) to detect potential compounds for 14-3-3ζ inhibition. 
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5.3.1.2. STP 

Dr. Mehio developed a program which can predict the location of potential binding 

sites (Mehio et al. 2010). This program has been named STP – Surface Triplet 

Propensities/ Surface Triangle Profiles. STP relies on the propensities of triplet 

patterns to indicate whether a patch is likely to be a binding site or not.  

For identifying compounds which can inhibit the binding pocket of 14-3-3, the 

Protein Data Bank (PDB) file 1QJB was used. This file is 14-3-3 and phospho-

peptide complex in mode 1 (Rittinger et al. 1999). The PDB file is uploaded to the 

website (http://opus.bch.ed.ac.uk/stp/index.php) to run STP. This identifies 

hydrogen bond donor and acceptors in the protein. Examples of donors and 

acceptors are shown in Figure 5.2. The maximum distance between donor and 

acceptor is 3.8 Å.  

 

 

Figure 5.2: Hydrogen Bond Donors and Acceptors 

Examples of Hydrogen Bond Donors (HBD) and Hydrogen Bond Acceptors (HBA). In the 

donors, the underlined hydrogens (H) are donated to the double and triple bonds of the 

acceptors.  

 

Once HBD’s and HBA’s have been identified, these are used to predict the location 

of binding sites through the propensity of triplet patterns. This indicates whether a 

patch is likely to be a binding site or not. The programme then provides the user 

with a file and a tutorial in order to visualise the binding sites. The returned PDB 

file needs to be opened in Pymol to carry out the required steps. The first step is to 

remove all the hydrogen atoms and then colour the protein by bfactor code. The 

final step is to show the solvent accessible surface which coats the protein in patches 
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of colour, with the colour scale going from blue to red, with red coloured patches 

indicating those most favourable for high affinity binding sites. The STP image 

generated from the 1QJB PDB file is shown in Figure 5.3. 

 

 

Figure 5.3: STP Image of PDB File 1QJB 

STP image showing the most favourable binding sites for the 14-3-3 PDB File 1QJB. The 

patches coloured red are the most favourable binding sites, whereas the blue areas are the 

least favourable. The dotted arrow points to the phospho-binding pocket. 
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5.3.1.3. LIDAEUS  

LIDAEUS, Ligand Discovery at Edinburgh University, is an in-house virtual 

screening program (Wu et al. 2003; Taylor et al. 2008). To begin, the PDB file of the 

protein to be screened in complex with its natural ligand is obtained. In this 

research, this is the PDB file 1QJB. The natural ligand is removed from the file and a 

map generation program defines the binding pocket of the protein and defines a set 

of site points. The site points determined are assigned according to their preferred 

protein interaction; HBA, HBD or hydrophobic. This provides all the information 

required to run the program. 

The potential inhibitors are screened against the 3-D structure of the protein of 

interest and matched to the site points in as many ways as possible to get a fit. This 

stage is referred to as ‘pose’. Each pose is scored according to a number of factors 

including Van der Waals and hydrogen bond donor and acceptor bonding energies. 

At this point, a number of orientations and energy minimization techniques are 

applied to the ligands to achieve a better score. The final stage of the process is to 

‘sort’ the ligands tested. This maintains a list of the top 1000 best scoring ligands.  

The compounds which were selected to test 14-3-3ζ binding inhibition are shown in 

Table 5.1. A full list of the compounds identified from this screen is detailed in Table 

7.1 in the Appendix. 
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Table 5.1: Compounds Tested for 14-3-3ζ Binding Inhibition 

Compound Image Compound Name Supplier Solubility 
 

 

 

Maltotetraose 

(MW 666.58) 

Sigma-

Aldrich 

50 mg/ml in 

dH2O 

(0.075 M) 

 

DIPSO 

(MW 261.29) 

Sigma-

Aldrich 

0.1 M in 

dH2O 

 

6-Phosphogluconic Acid 

Trisodium Salt 

(MW 342.08) 

Sigma-

Aldrich 

50 mg/ml in 

dH2O 

(0.145 M) 

 

ADP 

Adenosine 5’-

diphosphate sodium 

salt hydrate  

(MW 471.16) 

Acros 

Organics 

Soluble in 

dH2O 

 

 

5.3.1.4. Compound Selection and the Blood-Brain Barrier 

The purpose of identifying potential compounds which can inhibit 14-3-3 

interaction is for therapeutic benefits in neurodegenerative diseases. Clearly, this 

suggests that any potential inhibiting compounds must have the potential to cross 

the blood-brain barrier (BBB) in order to elicit their therapeutic effects. 

The BBB is a continuous layer of endothelial cells which are joined by tight 

junctions. The BBB was identified by Paul Ehrlich in the late 19th century following 

intravenous injection of a dye which stained most tissues, however the brain 

remained unstained. As a consequence, the brain remains inaccessible to a number 

of drugs, due to lipid solubility which is insufficient to allow penetration of the BBB. 

However, the integrity of the BBB can be disrupted during inflammation, allowing 

substances which are normally impermeable to pass. Generally, it is only small, 

non-polar molecules which have the ability to passively diffuse across the BBB 

however some neuro-active drugs do so through transporters (Rang 2003). 
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One treatment which exploits this method is the first-line treatment for Parkinson’s 

disease, levodopa (L-DOPA). Administration of L-DOPA is almost always with a 

peripheral dopa decarboxylase inhibitor (e.g. carbidopa), to reduce the required 

dose by 10-fold and the peripheral side-effects. The dopa decarboxylase inhibitor 

prevents the L-DOPA being metabolised into dopamine by peripheral 

decarboxylases prior to reaching the brain. The dopa decarboxylase inhibitor cannot 

pass the BBB, however L-DOPA does gain entry to the brain via the large neutral 

amino acid transporter. Once L-DOPA passes into the brain, it is quickly converted 

into dopamine to mediate its therapeutic effects (Golan 2008). 

There are a number of peptides which have the ability to increase the permeability 

of the BBB. These include bradykinin (a potent vasodilator) and enkephalins (small 

molecule pain killers) and may be useful in improving penetration of the BBB (Rang 

2003). 

Should any of the compounds tested prove to be effective, progression into clinical 

trials would require the ability of the compounds to cross the BBB. There are 

predictive software systems available (Molecular Discovery Ltd) which can 

determine whether a compound is a potential substrate for the efflux pump, P-

glycoprotein, which allows penetration of the BBB. Another factor which also needs 

to be considered is the presence of the multi-drug-resistance protein (MRP) which 

actively removes exogenous molecules from within neural endothelial cells. 
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5.3.2. Purification of Proteins Required for Testing Potential Compounds 

In order to be able to test the ability of the identified compounds to inhibit the 

binding interaction of 14-3-3ζ, proteins were prepared for analysis. The interaction 

tested is with 14-3-3ζ and Exoenzyme S (ExoS), due to the fact this interaction occurs 

independently of phosphorylation whilst still utilising the phospho-protein binding 

pocket of 14-3-3 proteins (Masters et al. 1999). By not needing to prior 

phosphorylate the test protein, a number of potential caveats can be avoided during 

the initial screening stage. 

For the purposes of this screening method, 14-3-3ζ was used and the purification of 

this protein is detailed in both section 2.2.2.2 of the Materials and Methods and also 

section 3.3.7 in Chapter 3. Production of 14-3-3ζ was from a construct which tags the 

protein with a histidine-tag. This tag is only 6 residues long and does not interfere 

with the formation of 14-3-3ζ (as detailed in section 3.3.7) and should not interfere 

with any interactions with 14-3-3ζ. Because of this, the decision was taken to leave 

the His-tag attached to the protein. 

The other protein required for testing compound inhibition was ExoS. A construct 

of ExoS containing the 14-3-3 binding region had been previously cloned into a 

GST-tagged vector (see Table 2.3 in Materials and Methods) and the expression 

conditions were optimised. Full details of the expression and purification conditions 

are given in sections 2.2.1 and 2.2.2.3 in Chapter 2 respectively. ExoS was over-

expressed and purified by a one-step purification procedure employing glutathione-

Sepharose beads. The GST-tag has a high affinity for the glutathione-Sepharose 

beads, meaning the tagged protein of interest binds to the beads and unbound 

material can be washed off the beads. Once the protein of interest had bound to the 

beads, reduced glutathione was used to elute the protein from the beads. Following 

elution, fractions from all stages of the purification procedure were analysed on 

SDS-PAGE to identify which fractions contained the protein of interest. An SDS-

PAGE gel of these fractions is shown in Figure 5.4. 
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Figure 5.4: SDS-PAGE of Purification Fraction for GST-ExoS 

SDS-PAGE of fractions collected from the purification of GST-ExoS. Fractions were analysed 

on 12% SDS-PAGE. Lanes are labelled as follows: Lane 1 – Molecular weight marker; Lane 2 

– Lysate; Lane 3 – Flow-Through; Lane 4 – Wash; Lane 5 – Elution 1; Lane 6 – Elution 2; Lane 

7 – Elution 3; Lane 8 – Elution 4; Lane 9 – Final Bead Sample. 

 

The gel image shows that elution fractions 1 and 2 contain the protein of interest. It 

should be noted that the ladder of bands below the band for the purified protein are 

not contaminating proteins. During denaturation and reduction conditions, the GST 

fusion tag degrades and appears as a ladder of bands of lower molecular weight 

below the full-sized fusion protein on SDS-PAGE. These fractions which were found 

to contain the protein of interest were pooled together for dialysis to remove the 

reduced glutathione. To do this, dialysis in a slide-a-lyser was carried out in the 

presence of PBS (see section 2.2.4). 

Following dialysis, to check that the majority of the reduced glutathione had been 

removed, a test with glutathione-Sepharose beads was carried out. In order to test 

the ability of the GST-ExoS to rebind to glutathione-Sepharose beads, a small 

volume of protein (40 μl) was added to a small amount (15 μl bead slurry) of beads 

and incubated at 4°C for a minimum of 1 h whilst tumbling. A sample of the beads 
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and the supernatant were then analysed by SDS-PAGE to compare how much 

protein had re-bound to the beads. The results of this test are shown in Figure 5.5. 

 

 

Figure 5.5: SDS-PAGE of Glutathione Test 

Protein tested for the ability to re-bind to glutathione-Sepharose was analysed on 12% SDS-

PAGE. Lanes are labelled as follows: M – Molecular Weight Marker; Lane 1 – Bead Sample; 

Lane 2 – Supernatant Sample. 

 

The gel from the glutathione test shows that the majority of the GST-ExoS protein 

does rebind to the glutathione-Sepharose beads. A small amount does appear not to 

have bound, possibly due to some reduced glutathione remaining. However, 

importantly, the majority of the reduced glutathione has been removed and the 

protein still possesses the ability to bind to glutathione. Despite being unable to 

completely re-bind all of the protein to the beads, this is still suitable for further 

procedures. When using the GST-ExoS protein for testing the compounds, the 

protein will be used in an excess concentration than that required for the procedure, 

in order to saturate the surface of the chip or well. This means that GST-ExoS which 

has the ability to bind to glutathione-coated surfaces, or anti-GST antibodies will 

still have the ability to saturate the surface required to test for 14-3-3ζ interaction.  

 



 

- 166 - 

 

5.3.3. Methods for Testing Compound Inhibition 

5.3.3.1. SPR 

Surface Plasmon Resonance (SPR) is a technique which has been around for over 20 

years which has become increasingly popular with current advances in technology. 

This useful real-time, label-free analysis technique allows the characterisation of 

biomolecular interactions in terms of binding specificity, kinetics and affinity. The 

technique supports a range of molecules for analysis including proteins, nucleic 

acids, lipids and carbohydrates to name but a few. 

SPR-based instruments (e.g. BIAcore) measure the refractive index (within ~300 nm) 

near the surface of a sensor through an optical method. The surface is contained in a 

sensor chip (BIAcore) which can have a variety of surfaces, depending on the 

interaction which you plan to investigate. The sensor chips contain a number of 

micro-fluidic flow cells (typically 2-4) which can hold ~20-60 nl. A continuous flow 

rate (1-100 μl/min) delivers the running buffer to the flow cells to be used. 

Interactions are tested through immobilizing the ‘ligand’ to the sensor surface and 

injecting the ‘analyte’ to be tested in an aqueous solution over the flow cell. If the 

analyte binds to the ligand, this accumulation on the surface of the sensor results in 

an increase in the refractive index. Importantly, there are no moving parts to the 

optical device, enhancing stability and allowing the change in refractive index to be 

measured in real time. The refractive index is plotted as resonance units (RU) versus 

time and displayed as a sensorgram. An SPR angle change of ~0.1% corresponds to 

1000 RU. To produce this change, ~1 ng per square mm of protein must bind to the 

surface of the sensor chip; however the exact relation of RU to ng of bound material 

varies according to the refractive index of the analyte. 

In order to produce an accurate result, a control or reference flow cell is also tested, 

where either no ligand or a control ligand is immobilized to the surface, which the 

analyte cannot interact with. The response from this cell provides a background 

reading which can be subtracted from the sensorgram to produce the actual binding 

response. If the analyte does not bind to the ligand, the change in refractive indices 
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of both flow cells will be the same and the actual binding response will be 0 RU. It is 

only the interaction of the analyte with the ligand which produces a positive 

response which can be visualised on the sensorgram. 

There is one main caveat of SPR which can make this technique very difficult to 

obtain useful results. When the ligand is injected into the flow cell for 

immobilization on the sensor surface, there is no way of knowing which way round 

the analyte has bound to the chip. It may well be that the interaction site of the 

ligand is inaccessible to the analyte due to its orientation on the sensor surface. In an 

attempt to overcome this, a number of combinations of 14-3-3 and ExoS with and 

without GST moieties have been tested. These are detailed in Table 5.2. 

 
Table 5.2: SPR Combinations Tested 

Ligand Analyte Binding 

ExoS GST-14-3-3ζ No 

ExoS 14-3-3ζ No 

GST-14-3-3ζ ExoS No 

14-3-3ζ ExoS No 

GST-ExoS 14-3-3ζ Partial 

 

It is clear from the binding results that these combinations have not yielded great 

success. This may be due to the orientation of the ligand on the sensor chip however 

the presence of the GST moiety may also be a factor. A colleague investigated the 

ability of ExoS and 14-3-3ζ to interact when one of the proteins was tagged with a 

GST moiety. She discovered that when 14-3-3ζ was tagged with GST, there was no 

interaction with ExoS, however when the GST moiety was tagged to ExoS, the 

interaction with 14-3-3ζ could occur. This suggests that the GST tag on 14-3-3ζ has 

implications on how the protein can interact and is not a good model for testing 

compound inhibition. 
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In light of this information, a model for testing compound inhibition by SPR was 

designed. A diagram of the proposed model is shown in Figure 5.6. 

 

 

 

Figure 5.6: Diagram of Proposed SPR Model 

Diagram indicating the method of ligand and analyte binding proposed for testing 14-3-3ζ 

compound inhibition. Full details of each stage are given in the text. 
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The stages of the model are detailed as follows: 

 

1. Using a CM5 chip (BIAcore), activate the surface for ligand binding. The chip 

is activated by a 1:1 solution of EDC: NHS, which reacts with the carboxyl 

methyl dextran surface of the chip to produce reactive succinamide esters. 

2. Following surface activation, inject a GST antibody over the surface of the 

sensor chip and immobilize through interactions with free amine groups 

with the chip surface. Following GST antibody immobilization, free GST 

must be injected over the surface to block any high affinity sites as this can 

compromise the binding results. 

3. Inject the ‘ligand’ – GST-ExoS over the sensor surface. The GST moiety will 

interact with the GST antibody and orientate the ExoS in a manner which is 

accessible to the ‘analyte’. 

4. Finally, inject the ‘analyte’ over the sensor surface. The analyte is 14-3-3ζ 

which should bind to ExoS, producing a positive response. 

 

For testing compound inhibition, each compound would be incubated with 14-3-3ζ 

prior to injecting over the sensor surface to test for 14-3-3ζ binding to ExoS. If the 

final binding result is positive, this indicates that the compound being tested has not 

inhibited the ability of 14-3-3ζ to bind to ExoS. If the final binding result is negative, 

this indicates that the compound tested is a successful inhibitor of 14-3-3 binding. 

Prior to testing the compounds, the method had to be tested to see if it would be a 

useful model. Unfortunately, initial tests indicated that the difference in RU 

following addition of 14-3-3ζ was only ~16% which is not a viable model. This small 

change in RU indicates that if an inhibitor was only binding to a fraction of 14-3-3, 

it would not be possible to determine this from using SPR. In addition, due to time 

constraints and the expense of using SPR, alternative methods were explored to 

obtain more accurate results. An example of the output trace obtained using SPR is 

shown in Figure 5.7. 
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Figure 5.7: Output Trace from SPR Test 

Following activation, the flow cell was coated with a GST-antibody. The image shows the point where GST-ExoS was added to the flow-cell and the 

increase in response units represents protein binding. Once the level of protein binding had stabilised, the 14-3-3 protein was passed over the chip. The 

increase in response units indicates that the protein does bind to the GST-ExoS which is immobilised on the chip. This image has been magnified to see 

the response to adding 14-3-3 to the chip; however the overall percentage of response units means that this method is not suitable for detecting small 

changes such as the presence of an inhibitor. 
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5.3.3.2. ELISA Assay 

Enzyme-linked immunosorbent assays (ELISA) are plate-based assays, mainly 

employed for detecting and quantifying substances including proteins, peptides and 

antibodies. This method can also be adapted to test the effectiveness of the 14-3-3ζ 

compound inhibitors. This is carried out in 96-well plates that are pre-coated with 

anti-GST antibody, allowing the GST moiety of GST-ExoS to bind to the surface of 

the well whilst orientating the ExoS in a manner which allows 14-3-3ζ to bind. A 

diagram showing how this works is shown in Figure 5.8. 

Each stage of the assay model is detailed below: 

 

1. Begin with a 96-well plate pre-coated with anti-GST antibody. 

2. Incubate selected wells with GST-ExoS to immobilise the protein to the wells. 

The GST-tag also orientates the protein in the wells allowing further protein 

interactions. 

3. Add 14-3-3 protein which has been pre-incubated with test compounds to the 

selected wells and incubate. 

4. Following incubation, wells are washed and successfully inhibiting 

compounds will prevent the interaction of 14-3-3 with ExoS, however 

unsuccessful compounds will not prevent 14-3-3 binding to ExoS. 

5. The final step is to incubate with 14-3-3 specific antibodies, and subsequent 

HRP-conjugated secondary antibodies, prior to HRP-conjugate detection. 

Wells tested with unsuccessful compounds will produce a positive result 

through HRP detection as the 14-3-3 protein will still have the ability to 

interact with the ExoS protein. Compounds which successfully inhibit 14-3-3 

interaction will produce a negative HRP response, as there will be no 14-3-3 

protein present in the well to be detected by the antibodies. 
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Figure 5.8: ELISA Assay 

The steps involved in the ELISA assay are illustrated. Details about each step are provided in 

the text. 
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As with SPR, the use of GST-ExoS provides a means of orientating the protein to 

allow 14-3-3ζ to interact. The additional benefit of the ELISA assay over SPR is the 

ability to test a number of compounds at a variety of different concentrations at 

once. This allows for larger scale screening of compounds and quickly identifying 

which compounds should be developed further as potential drug leads.  

In order to obtain a measurable absorbance in the assay, the HRP substrate 4-chloro-

1-napthol (4-CN) was employed. This is an HRP reagent which is similar to 

traditional ECL however the reagent produces an insoluble product which creates a 

blue colour. The optimal absorbance for the resulting product is 495 nm. The 

spectrophotometer employed for the assay has a 485 nm absorbance filter, which is 

still within the absorbance range of the substrate and is suitable for reagent 

detection. A test was carried out with a Western Blot. Following incubation with 4-

CN for approximately 45 min a blue band was visible at the expected molecular 

weight for 14-3-3 which verified its suitability.  

The interaction between GST-ExoS and 14-3-3ζ serves as a control and this 

interaction was utilised to optimise the assay method. A series of control conditions 

were tested to optimise the ELISA conditions prior to testing the compounds. The 

assay was tested following the manufacturer’s instructions as a starting point. These 

initial results were promising, indicating that this method would be successful 

following further optimisation. One key point to mention is that the suggested 

buffers for this assay are all PBS-based. However, PBS is not generally a suitable 

buffer for 14-3-3 proteins. The phosphate group present in the buffer can compete 

for the phospho-protein binding pocket of 14-3-3. This in turn could reduce the 

interaction between 14-3-3ζ and ExoS, leading to a number of false-positive 

compounds. To test this, control assays were performed with the basis of the buffers 

used being changed to TBS. In fact, when the buffers were changed to TBS, the 

absorbance of 4-CN increased by 0.3-0.4 absorbance units. An example of the results 

obtained by comparison of the different assay buffers is shown in Figure 5.9. This 

indicates that for compound testing, PBS should be avoided. 
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Figure 5.9: Comparison of Assay Buffers 

The difference in absorbance detected from identical assay conditions with the only 

difference being the basis of the buffers used for the assay. It is clear from the chart that the 

absorbance is greatly increased through the use of TBS-based buffers over PBS-based 

buffers. This could be due to competition from the phosphate group for the phospho-protein 

binding pocket of 14-3-3ζ. 

 

Another factor that was tested was whether an additional blocking step had any 

effect on the assay. The 96-well plates used are coated in anti-GST antibody and pre-

blocked prior to use. However, a series of controls were also tested to determine 

whether an additional blocking step following addition of GST-ExoS to the wells 

would affect the outcome of the assay.  

The addition of a blocking step decreased the overall response of 14-3-3ζ binding; 

suggesting that the blocking step may be preventing non-specific protein binding to 

the surface of the wells. Non-specific 14-3-3 binding to the wells could lead to a 

false positive reading and a subsequent false negative result. This step was therefore 

not omitted from the final assay model. An example of the effect of blocking on the 

assay is shown in Figure 5.10. 
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Figure 5.10: Effect of Blocking Conditions on Assay 

Identical samples were tested with the only difference being that an additional blocking step 

following primary protein incubation was introduced to one sample. The chart shows that 

by introducing a blocking step, the absorbance value detected decreases. 

 

The optimal time to measure absorbance readings was investigated. From testing 

the 4-CN reagent by Western Blotting, it was clear that the reagent may take some 

time to produce a visible end product, therefore an assay was set up where the 

absorbance was measured every 5 min over a 30 min period. To ensure that the 

highest level of absorbance was not specific to a single condition, a number of 

different conditions, including appropriate controls, were tested to ensure that the 

optimal 5 min period correlated across a range of conditions. A chart of the 

absorbance over time is shown in Figure 5.11 and the different conditions tested are 

detailed in Table 5.3. 

It is very clear from the chart that in all cases, the highest absorbance readings are 

measured 5 min after addition of the 4-CN reagent. There is no difference between 

different assay conditions, indicating that for detection in a 96-well plate, the 4-CN 

reagent is most active within the first 5 min. Conducting this assay has also been 

very useful in determining background absorbance levels. For the purposes of 

subtracting background absorbance levels, readings obtained from the 5 min time 

period have been used. The results from the conditions tested have been normalised 
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against the reading obtained for the blank well, as this is the condition which has 

only tested the absorbance of the 4-CN reagent. The normalised absorbance values 

are charted in Figure 5.12. 

 

 

 

Figure 5.11: Graph of Absorbance Readings over Time 

The absorbance of 4-CN signal with time. Readings were taken every 5 min to determine the 

optimum time after addition of 4-CN to measure absorbance. 

 

 Table 5.3: Assay Conditions Tested 

 

A Blank Well (no protein) 

B No protein plus blocking step 

C Blank well, blocked plus 14-3-3ζ 

D Blank well plus 14-3-3ζ 

E GST-ExoS, blocked plus 14-3-3ζ 

F GST-ExoS plus 14-3-3ζ 
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Figure 5.12: Normalised Assay Absorbance Values 

The assay conditions, with appropriate controls, were normalised against the value obtained 

for the completely blank well which is equivalent to the absorbance of the 4-CN reagent. 

Assay conditions correlate with those detailed in Table 5.3. 

 

It is clear that the control assay wells, i.e. those testing the absorbance of 14-3-3ζ 

binding to ExoS, produce the greatest difference in absorbance compared with the 

control wells to test the absorbance when 14-3-3ζ and ExoS cannot interact. By 

identifying the absorbance of the 4-CN reagent alone, it is clear to see that should a 

compound successfully inhibit the interaction between 14-3-3ζ and ExoS, the 

difference in absorbance will be sufficient to give a clear result.  

In conclusion, the optimisation of the ELISA assay has proved to be successful with 

a number of caveats identified and corrected to ensure that compound testing can 

be conducted efficiently. Full details of the final assay method are given in section 

2.3.11 of Materials and Methods. The following section details the outcome of the 

compounds tested and their ability to prevent interaction between 14-3-3ζ and ExoS. 
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5.3.4. Testing Compounds to Block 14-3-3ζ Interaction 

Following successful optimisation of the assay conditions for testing the potential 

inhibiting compounds, the next stage was to test compound effectiveness. The 

concentrations tested were based on the solubility of the compounds. To test the 

potential inhibitory effect of the compounds, they were pre-incubated with 14-3-3ζ 

prior to addition of the solution to the wells containing GST-ExoS immobilised to 

the surface of the glutathione coated well. Following incubation, the 14-3-3ζ: test 

compound solution was removed from the wells and the assay completed. 

Following addition of the 4-CN reagent, the absorbance was compared to the 

control readings. Once again, a positive result, i.e. a high absorbance, indicated that 

the compound had been unsuccessful at inhibiting the interaction between 14-3-3ζ 

and ExoS and a negative result, i.e. a low absorbance, indicated that the compound 

had successfully inhibited the interaction between 14-3-3ζ and ExoS. In all cases, 

antibodies used for detection were specific for 14-3-3 protein. 

Details of the concentrations and outcomes of the compounds tested are detailed as 

follows. 

 

5.3.4.1. Maltotetraose 

Maltotetraose is soluble in dH2O up to 50 mg/ml. This is equivalent to a 

concentration of 75 mM. The ratio of the solution containing the compound to the 

solution of 14-3-3 was 1:1; therefore the highest concentration which could be 

tested was 37.5 mM. Based on this, a series of concentrations were tested, ranging 

from 1 mM to 37.5 mM. 

To test the different concentrations, assays were set up in triplicate in order to 

obtain average readings. The compound was pre-incubated with 14-3-3 for 20 

minutes before adding to the Exo-S coated wells. Following completion of the assay, 

absorbance readings were measured at 485 nm and normalised against the 

background reading. A graph of the normalised absorbances is shown in Figure 

5.13. 
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Figure 5.13: Absorbance of Maltotetraose Concentrations Tested 

Varying concentrations of maltotetraose were tested for their ability to inhibit 14-3-3 

interaction with Exo-S. Conditions were tested in triplicate and the absorbance readings 

averaged. The background reading was subtracted from each condition to normalise all 

results against the baseline. The control reading represents the absorbance from an assay 

where no compound was tested. 

 

Unfortunately, the results of the maltotetraose assay are not promising, as most of 

the conditions tested produce absorbance readings similar to that of the control. As 

the control data is representative of an assay where no compound was tested, the 

results here suggest that maltotetraose does not possess the ability to inhibit the 

interaction of 14-3-3. The only indication that maltotetraose, or another similarly 

structured compound, may have some affinity for the 14-3-3 binding site, is from 

the reading obtained for the 5 mM concentration tested. This concentration 

produced the lowest absorbance reading, indicating that the compound may be 

partially inhibiting the interaction of 14-3-3. Possibly by looking at other 

compounds which are of a similar stereochemistry, a more suitable inhibitor could 

be identified. 
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5.3.4.2. DIPSO 

The solubility of DIPSO is 100 mM in dH2O. Again, the ratio of 14-3-3 to compound 

in solution was 1:1; therefore the highest concentration which could be tested for 

DIPSO was 50 mM. Based on this, a series of concentrations ranging from 1 mM to 

50 mM were tested. 

Again, conditions were tested in triplicate, in order to obtain average absorbance 

values. The absorbance values, normalised against the background reading, are 

shown in Figure 5.14. 

 

 

 

Figure 5.14: Absorbance of DIPSO Concentrations Tested 

A range of DIPSO concentrations were tested for their ability to inhibit 14-3-3 interaction 

with Exo-S. Conditions were tested in triplicate and absorbance readings averaged. Readings 

were normalised by subtraction of the background absorbance. The control reading 

represents the absorbance from an assay where no compound was tested. 
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The results of this assay do seem promising. Despite the lower concentrations tested 

having no impact on 14-3-3 inhibition, there is a substantial reduction in 

absorbance with DIPSO concentrations of 10 mM and above. It may be the case that 

higher concentrations of this compound may confer even greater inhibition of 14-3-

3 interaction; however one problem with this is the unrealistic potential of 

developing a treatment at such a high concentration. Regardless, despite not 

completely inhibiting the interaction of 14-3-3, DIPSO does indicate the potential 

development of a similarly structured compound which may serve as an effective 

small molecule inhibitor. 

In addition, further investigation into this compound may yet yield more promising 

results. Altering the assay conditions, such as examining a wider range of 

compound concentrations, increasing the incubation time or altering the 

temperature of incubation may all influence the effectiveness of the compound. At 

this stage, DIPSO should not be ruled out as a possible 14-3-3 inhibitor and should 

be investigated further. 

 

5.3.4.3. 6-Phosphogluconic Acid Trisodium Salt 

For testing 6-phosphogluconic acid trisodium salt, a stock solution at a 

concentration of 10 mM in dH2O was prepared. As the peptide solution is mixed 

with an equal volume of the 14-3-3 solution, the maximum concentration tested 

was 5 mM. Based on this as the highest concentration which could be tested, a range 

of concentrations from 5 mM down to 0.1 mM were analysed. 

Each concentration was tested three times and the results averaged. For each 

averaged reading, the background absorbance was subtracted. The results of the 6-

phosphogluconic acid assay are presented in Figure 5.15. 

The results of this assay are rather ambiguous. Whilst all of the concentrations 

tested result in a reduced absorbance reading in comparison to the control, the 

reduction in absorbance is minimal.  
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Figure 5.15: Absorbance of 6-Phosphogluconic Acid Concentrations Tested 

A range of 6-phosphogluconic acid concentrations were tested for their ability to inhibit 14-

3-3 interaction with Exo-S. Conditions were tested in triplicate and absorbance readings 

averaged. Background absorbance readings were subtracted to normalise the results. The 

absorbance of the control reading represents an assay where no compound was tested. 

 

The results of this assay are very interesting. Surprisingly, the lowest concentration 

tested, 0.1 mM, appears to convey the greatest inhibitory potential. There is clear 

evidence here that 6-phosphogluconic acid has the ability to inhibit 14-3-3 

interaction, although only partially. Once again, further investigation may optimise 

conditions which result in much greater inhibition of 14-3-3 interaction. 

Alternatively, further investigation into similarly structured compounds may yield 

a more suitable candidate for therapeutic potential. 
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5.3.4.4. Adenosine 5’-DiPhosphate Sodium Salt Hydrate 

The final compound which was investigated was adenosine 5’-diphosphate sodium 

salt hydrate (ADP). ADP is readily soluble in dH2O, presenting minimal limitations 

with regard to the concentrations which could be tested. Concentrations tested were 

similar to those for the other compounds. For this reason, the concentrations of ADP 

investigated ranged from 1 mM to 50 mM. Once again, conditions were tested in 

triplicate and the readings averaged for analysis. The background absorbance was 

subtracted from each condition absorbance. The results of the ADP assay are shown 

in Figure 5.16. 

 

 

 

Figure 5.16: Absorbance of Adenosine 5’-Diphosphate Concentrations Tested 

Varying concentrations of adenosine 5’-diphosphate sodium salt hydrate were tested against 

14-3-3 to inhibit interaction with Exo-S. Each condition was tested in triplicate and the 

absorbance readings were averaged. Background absorbance readings were subtracted to 

normalise the results. The absorbance of the control reading represents an assay where no 

compound was tested. 
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The results of the ADP assay are very disappointing. All of the conditions tested 

failed to even partially inhibit the interaction of 14-3-3 with Exo-S. All of the 

average absorbance readings obtained for this compound are similar to the control 

data, which represents 14-3-3 and Exo-S where no compound was tested. In fact, 

some of the absorbance readings for the conditions tested are actually higher than 

those of the control, clearly indicating that this compound has failed to convey any 

inhibitory action of 14-3-3. 
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5.4. Discussion 

This small study into identifying potential inhibitors of 14-3-3 has produced some 

mixed results. Whilst it is clear that none of the compounds tested to date exhibit 

complete inhibition of 14-3-3, there is evidence to suggest that further refinement 

of test conditions, or investigations into other, structurally similar compounds, may 

prove to be successful. 

The results of the ADP assay show that this compound does not appear to have any 

inhibitory effect of 14-3-3 and further analysis with this compound should be 

abandoned. The results of the maltotetraose assay are not promising either. 

Incubation with maltotetraose at 5 mM does appear to reduce the absorbance of the 

assay reading, however much greater investigation is required to determine 

whether this compound would have the therapeutic potential required from the 

compound being sought. 

Conversely, the results from the DIPSO and 6-phosphogluconic acid trisodium salt 

assays show more potential. These compounds appear to have a partial inhibitory 

effect of 14-3-3 and further investigation would be useful. One quality desired of a 

potential inhibitor is to partially inhibit the interaction of 14-3-3, so as to not 

adversely affect other cellular processes which the protein is involved in (see section 

1.1.3.2 for more information). Failing this, these compounds indicate that 

structurally, they have the ability to affect the interaction of 14-3-3 and 

investigations into alternative compounds which are similar in structure may prove 

to be therapeutically beneficial. Further analysis of the identified compounds listed 

in Table 7.1 may identify such a lead. 
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CHAPTER 6 

GENERAL DISCUSSION 

 

The main focus of the research conducted in this Ph.D. project was to investigate the 

protein complexes which are involved in the pathology of neurodegenerative 

diseases. Currently, the average age of the world population is rising and with it, 

the increase in occurrence of neurodegenerative disease. At present, the therapeutic 

treatments required for such diseases do not exist and with more people living 

longer, the impact this will have on healthcare is frightening. This project focussed 

on therapeutic targets which influence disease proteins; 14-3-3 proteins. As detailed 

in section 1.1.4, 14-3-3 proteins are involved in a number of neurodegenerative 

diseases, therefore making them a prime target for therapeutic potential. 

The possibility of 14-3-3 as a therapeutic target was investigated in Chapter 5. Here, 

the interaction between 14-3-3 and the SCA1 disease protein, ataxin-1, provided the 

basis for therapeutic intervention. The interaction between 14-3-3 and ataxin-1 has 

been shown to be a key stage in disease pathology (see section 1.3.3), so the 

approach taken was to prevent this deleterious interaction from occurring, through 

the identification of small molecule inhibitors. By employing a number of computer 

modelling programs through collaboration with the Computational Biology Group 

based at Edinburgh University, greater than 60 potential compounds were 

identified. Means of testing these compounds were explored and eventually, the 

development of an ELISA assay method proved to be the optimal method of choice. 

The compounds which have been tested to date have produced mixed results, with 

some exhibiting no inhibitory action at all, whilst others have shown partial 

inhibition. Only a very small selection of the compounds identified were tested in 

this research project and further testing of the potential compounds (Table 7.1) may 

identify a prime therapeutic candidate. Should a therapeutic compound be 

discovered, the potential benefits would not be restricted to only SCA1 patients. The 
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interaction of 14-3-3 proteins with other neurodegenerative disease proteins is a key 

feature of many diseases and by targeting 14-3-3, and not one single specific disease 

protein, increases the potential number of patients which could benefit from a 

therapeutic treatment. 

As the identification of small molecule inhibitors in this research was primarily 

based on finding a treatment for SCA1, the disease protein ataxin-1 was also 

studied. There were a number of research aspects which were planned to be 

investigated with ataxin-1; however one major problem encountered in this research 

was the expression of selected protein constructs. A number of constructs of ataxin-

1 were created, with a view to attempt protein crystallography and elucidate 

structural information. All of the constructs cloned also contained the 14-3-3 binding 

site, to allow testing of any potential inhibiting compounds identified. However, 

despite creating constructs which would be expected to be conformationally stable, 

there was great difficulty in expression of the constructs, with a number of different 

expression conditions being tested, to no avail. 

Another aspect of this research also focussed on the plasma membrane domains, 

lipid rafts. These regions of the plasma membrane are described as processing 

centres and a number of neurodegenerative disease proteins are processed here. It is 

at lipid rafts where abnormal processing occurs which leads to the formation of 

abnormally folded disease proteins, which then go on to aggregate and form toxic 

neuronal inclusions. Lipid rafts were also an area of interest following previous 

research conducted in this laboratory; 14-3-3 proteins had been found to associate 

with lipid rafts. Given the connection between 14-3-3 proteins and lipid rafts with 

neurodegenerative diseases, this was an obvious area to investigate. One point of 

particular interest was the presence of phosphorylated 14-3-3 proteins only in brain 

tissue. This suggests that the presence of phosphorylated 14-3-3 only in brain has a 

particular neuronal function, which may be implicated in neurodegenerative 

diseases. The first port of call was identifying whether these phospho-forms also 

associated with lipid rafts. Following extensive western blot analysis, the phospho-

forms were identified as being raft associated and subsequent mass spectrometry 
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analysis confirmed that the levels of phosphorylated 14-3-3 are significantly lower 

than unphosphorylated 14-3-3 at rafts compared with the high levels of 

phosphorylated  and  14-3-3 in brain. Since it has been established that 

phosphorylation at Ser185 can promote dissociation of interacting proteins, the next 

step was to investigate how the 14-3-3 proteins are associated with rafts and if 

phosphorylation has an impact on interacting proteins. This was not an easy 

question to answer, as 14-3-3 association with rafts revealed that these proteins are 

contained in the insoluble membrane, indicating that their interaction with a raft-

bound protein is of high affinity. This fits with the established literature that only 

14-3-3 that is not phosphorylated at Ser185 (nor indeed Ser/Thr233) interacts with its 

target proteins. 

Another raft aspect that was investigated was the impact that the sphingolipid 

sphingosine has on 14-3-3 proteins. Lipid rafts are comprised of a variety of 

sphingolipids, which include sphingosine, and studies have revealed that 14-3-3 can 

be phosphorylated in the presence of sphingosine. The site of phosphorylation is a 

residue which is found in the dimer interface of 14-3-3 indicating that sphingosine 

elicits a conformational effect which allows a kinase access to phosphorylate. Mass 

spectrometry analysis of 14-3-3 kinase assays with sphingosine identified that, in the 

presence of sphingosine, 14-3-3 is phosphorylated. As sphingosine is found in lipid 

rafts, the quaternary structure of 14-3-3 at rafts was investigated through cross-

linking analysis. This identified levels of monomeric 14-3-3 in rafts much higher 

than dimeric 14-3-3. This leads to the suggestion that sphingosine in lipid rafts 

disrupts the dimer conformation of 14-3-3, resulting in a 14-3-3 population at rafts 

which is mainly monomeric. This subsequently allows phosphorylation on Ser58 by 

Akt which could inhibit the re-association to dimeric 14-3-3. This would be a unique 

mode of regulation of 14-3-3 function. 

Monomeric 14-3-3 is highly unstable and can aggregate. This may be extremely 

important with regard to neurodegenerative diseases. As disease proteins 

abnormally processed at rafts form aggregates; unstable, monomeric 14-3-3 which 

can also aggregate may contribute to the aggregate formation seen in these diseases. 
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This would definitely be one way of explaining the presence of 14-3-3 in the 

aggregates which are a characteristic of many neurodegenerative diseases. 

Taken together, the research presented here has not only investigated pathological 

implications which may contribute to neurodegenerative disease, but also potential 

therapeutic agents. Further investigation may reveal a possible treatment for the 

increasing numbers of patients suffering from these debilitating diseases. 

 



 

- 190 - 

 

CHAPTER 7 

APPENDIX 

 

7.1. Compounds Identified for 14-3-3ζ Inhibition 

The following table contains the highest scoring, commercially available 

compounds which were identified from the LIDAEUS search to potentially inhibit 

the amphipathic binding groove of 14-3-3ζ. 

Table 7.1: Full List of Compounds Identified from LIDAEUS 

 

Compound Image Compound Name Supplier 

 

(3R,4R,5S,6R)-5-

(((2S,3R,4R,5S,6R)-5-

(((2S,3R,4R,5S,6R)-5-

(((2S,3R,4R,5S,6R)-3,4-

dihydroxy-6-(hydroxymethyl)-

5-(((2S,3R,4S,5S,6R)-3,4,5-

trihydroxy-6-

(hydroxymethyl)tetrahydro-2H-

pyran-2-yl)oxy)tetrahy dro-2H-

pyran-2-yl)oxy)-3,4-dihydroxy-

6-(hydroxymethyl)t etrahydro-

2H-pyran-2-yl)oxy)-3,4-

dihydroxy-6-

(hydroxymethyl)tetrahydro-2H-

pyran-2-yl)oxy)-6-

(hydroxymethyl)tetrahydro-2H-

pyran-2,3,4-triol 

InterBioScreen 

 

1,3,5-Triazin-4-one, 4,5-

dihydro-2-amino- 5-.beta.-D-

arabinofuranosyl-, 5'-

monophosphate ester, 

monolithium salt 

National 

Cancer 

Institute 

 

Uridine-5'-diphosphoglucose, 

disodium salt 
Sigma-Aldrich 

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Search&db=PubMed&term=1,3,5-Triazin-4-one,%204,5-dihydro-2-amino-%205-.beta.-D-arabinofuranosyl-,%205'-monophosphate%20ester,%20monolithium%20salt&doptcmdl=DocSum
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Search&db=PubMed&term=1,3,5-Triazin-4-one,%204,5-dihydro-2-amino-%205-.beta.-D-arabinofuranosyl-,%205'-monophosphate%20ester,%20monolithium%20salt&doptcmdl=DocSum
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Search&db=PubMed&term=1,3,5-Triazin-4-one,%204,5-dihydro-2-amino-%205-.beta.-D-arabinofuranosyl-,%205'-monophosphate%20ester,%20monolithium%20salt&doptcmdl=DocSum
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Search&db=PubMed&term=1,3,5-Triazin-4-one,%204,5-dihydro-2-amino-%205-.beta.-D-arabinofuranosyl-,%205'-monophosphate%20ester,%20monolithium%20salt&doptcmdl=DocSum
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Search&db=PubMed&term=1,3,5-Triazin-4-one,%204,5-dihydro-2-amino-%205-.beta.-D-arabinofuranosyl-,%205'-monophosphate%20ester,%20monolithium%20salt&doptcmdl=DocSum
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Compound Image Compound Name Supplier 

 

D-Ribulose 1,5-bisphosphate 

sodium salt hydrate 
Sigma-Aldrich 

 

C10H14N5O7P.2Li 

National 

Cancer 

Institute 

 

 
 

Cellotetraose Sigma-Aldrich 

 

Methyl 3-O-β-D-

galactopyranosyl-β-D-

galactopyranoside 

Sigma-Aldrich 

 

Adenosine-5'-diphosphate, 

disodium salt hydrate  
TimTec 

 

4-O-β-Galactopyranosyl-D-

mannopyranose 
Sigma-Aldrich 

 

Loganin/Loganoside 

C17H26O10 

National 

Cancer 

Institute 

http://timtec.net/estore/-c-0/adenosine-5-diphosphate-disodium-salt-hydrate-st057081-p-52478?zenid=2243f716c8e9e19b3692fbe1af37bed7
http://timtec.net/estore/-c-0/adenosine-5-diphosphate-disodium-salt-hydrate-st057081-p-52478?zenid=2243f716c8e9e19b3692fbe1af37bed7
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Compound Image Compound Name Supplier 

 

Adenosine 5'-diphosphate, 

monosodium salt dihydrate 
TimTec 

 

(2S,3S,4R,5R)-2-

(hydroxymethyl)-3-

(((2S,3R,4S,5S,6R)-3,4,5-

trihydroxy-6-

(hydroxymethyl)tetrahydro-2H-

pyran-2-yl)oxy)tetrahydro-2H-

pyran-2,4,5-triol 

InterBioScreen 

 

NP-002944 AnalytiCon 

 

(2S,3R,4S,5R,6S)-5-

(((2S,3R,4R,5S)-5-

(((2S,3R,4S,5R,6R)-5-

(((2S,3R,4R,5R,6R)-3,4-

dihydroxy-6-(hydroxymethyl)-

5-(((2R,3R,4R,5R,6R)-3,4,5-

trihydroxy-6-

(hydroxymethyl)tetrahydro-2H-

pyran-2-yl)oxy)tetrahy dro-2H-

pyran-2-yl)oxy)-3,4-dihydroxy-

6-(hydroxymethyl)t etrahydro-

2H-pyran-2-yl)oxy)-3,4-

dihydroxytetrahydro-2H-pyran-

2-yl)oxy)-6-methyltetrahydro-

2H-pyran-2,3,4-triol 

InterBioScreen 

 

C12H19N6O7P 

National 

Cancer 

Institute 
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Compound Image Compound Name Supplier 

 

(2S,3R,4S,5S,6R)-2-

(((2R,3S,4S,5S,6S)-4,5-dihydroxy-

2-(hydroxymethyl)-6-

(((1S,2R,3S,4R)-2,3,4-

trihydroxycyclohexyl)oxy)tetrah

ydro-2H-pyran-3-yl)oxy)-6-

(hydroxymethyl)tetrahydro-2H-

pyran-3,4,5-triol 

InterBioScreen 

 

Thymidine-5′-diphospho-α-

D-glucose disodium salt 
Sigma-Aldrich 

 

D-(+)-Cellotriose Sigma-Aldrich 

 

NP-007394 AnalytiCon 

 

2S,3R,4S,5R,6S)-5-

(((2S,3R,4R,5R,6R)-3,4-

dihydroxy-6-(hydroxymethyl)-

5-(((2R,3R,4R,5S)-3,4,5-

trihydroxytetrahydro-2H-pyran-

2-yl)oxy)tetrahydro-2H-pyran-2-

yl)oxy)-6-methyltetrahydro-2H-

pyran-2,3,4-triol 

InterBioScreen 

 

(2R,3R,4R,5S)-5-

(((2S,3S,4S,5S,6R)-5-

(((2S,3R,4R,5S,6R)-3,4-

dihydroxy-6-(hydroxymethyl)-

5-(((2R,3R,4R,5R,6R)-3,4,5-

trihydroxy-6-

(hydroxymethyl)tetrahydro-2H-

pyran-2-yl)oxy)tetrahydro-2H-

pyran-2-yl)oxy )-3,4-dihydroxy-

6-(hydroxymethyl)tetrahydro-

2H-pyran-2- yl)oxy)tetrahydro-

2H-pyran-2,3,4-triol 

InterBioScreen 
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Compound Image Compound Name Supplier 

 

(2R,2'R,3S,3'S,4S,4'S,5R,5'R,6S,6'S

)-6,6'-(((2S,3R,4S,5R,6R)-2-

(((2R,3S,4S,5S,6R)-4,5-

dihydroxy-6-(((2R,3S,4R,5R,6R)-

4,5,6-trihydroxy-2-

(hydroxymethyl)tetrahydro-2H-

pyran-3-yl)oxy)-2-

((((2R,3R,4S,5S)- 3,4,5-

trihydroxytetrahydro-2H-pyran-

2-yl)oxy)methyl)tet rahydro-2H-

pyran-3-yl)oxy)-5-hydroxy-6-

((((2S,3R,4R,5S,6R)-3,4,5-

trihydroxy-6-

(hydroxymethyl)tetrahydro-2H-

pyran-2-

yl)oxy)methyl)tetrahydro-2H-

pyran-3,4-diyl)bis(oxy))bis(2-

(hydroxymethyl)tetrahydro-2 H-

pyran-3,4,5-triol) 

InterBioScreen 

 

Maltotriose hydrate Sigma-Aldrich 

 

D(+)-Treholose Sigma-Aldrich 

 

4-Nitrophenyl β-D-

cellotrioside 
Sigma-Aldrich 

 

4-(((2S,3R,4S,5R,6R)-3,4-

dihydroxy-6-(hydroxymethyl)-

5-(((2S,3R,4R,5R,6R)-3,4,5-

trihydroxy-6-

(hydroxymethyl)tetrahydro-2H-

pyran-2-yl)oxy)tetrahydro-2H-

pyran-2-yl)amino)benzoic acid 

InterBioScreen 
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Compound Image Compound Name Supplier 

 

4-(3,4-dimethoxyphenyl)-1-

(4-fluorophenyl)-3-(2-methyl 
TimTec 

 

Stachyose hydrate from 

Stachys tuberifera 
Sigma-Aldrich 

 

4-Methylumbelliferyl β-D-

lactopyranoside 
Sigma-Aldrich 

 

N-((2R,3R,4R,5S,6R)-2-((R)-2-

((3aR,5R,6S,6aR)-2,2-dimethyl-6-

propoxytetrahydrofuro[2,3-

d][1,3]dioxol-5-yl)-2-

hydroxyethoxy)-4,5-dihydroxy-

6-(hydroxymethyl)tetrahydro-

2H-pyran-3-yl)acetamide 

InterBioScreen 

 

D-myo-Inositol 1,5,6-tris-

phosphate ammonium salt 
Sigma-Aldrich 

 

D-(+)-Raffinose pentahydrate Sigma-Aldrich 
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Compound Image Compound Name Supplier 

 

α-Lactose 1-phosphate 

barium salt 
Sigma-Aldrich 

 

Sucrose 6′-monophosphate 

dipotassium salt 
Sigma-Aldrich 

 

C11H15N4O8P 

National 

Cancer 

Institute 

 

8-Bromoinosine 5′-

diphosphate sodium salt 
Sigma-Aldrich 

 

C11H15N4O8P 

National 

Cancer 

Institute 

 

8-Bromoadenosine 5′-

triphosphate sodium salt 
Sigma-Aldrich 

 

Cytidine 5′-

diphosphoglycerol disodium 

salt 

Sigma-Aldrich 
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Compound Image Compound Name Supplier 

 

Uricase from Candida sp. - 

recombinant, expressed in 

Escherichia coli, lyophilized 

powder, ≥2 units/mg solid 

Sigma-Aldrich 

 

C15H22N5O7P 

National 

Cancer 

Institute 

 

5-(2-amino-6-oxohydropurin-

9-yl)-3,4-dihydroxyoxolan-2 
TimTec 

 

((2R,3S,4R,5R)-3,4-dihydroxy-5-

(6-oxo-1H-purin-9(6H)-

yl)tetrahydrofuran-2-yl)methyl 

dihydrogen phosphate 

InterBioScreen 

 

D-myo-Inositol 1,4-

bisphosphate potassium salt - 

from bovine brain, ≥98% 

(TLC) 

Sigma-Aldrich 

 

7H-Pyrrolo[2,3-d]pyrimidine, 

4-(methylthio)-7-(5-O-

phosphono-.beta.-D-

ribofuranosyl)- 

National 

Cancer 

Institute 

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Search&db=PubMed&term=7H-Pyrrolo%5b2,3-d%5dpyrimidine,%204-(methylthio)-7-(5-O-phosphono-.beta.-D-ribofuranosyl)-&doptcmdl=DocSum
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Search&db=PubMed&term=7H-Pyrrolo%5b2,3-d%5dpyrimidine,%204-(methylthio)-7-(5-O-phosphono-.beta.-D-ribofuranosyl)-&doptcmdl=DocSum
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Search&db=PubMed&term=7H-Pyrrolo%5b2,3-d%5dpyrimidine,%204-(methylthio)-7-(5-O-phosphono-.beta.-D-ribofuranosyl)-&doptcmdl=DocSum
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Search&db=PubMed&term=7H-Pyrrolo%5b2,3-d%5dpyrimidine,%204-(methylthio)-7-(5-O-phosphono-.beta.-D-ribofuranosyl)-&doptcmdl=DocSum


 

- 198 - 

 

Compound Image Compound Name Supplier 

 

5-Amino-4-

imidazolecarboxamide 

ribotide 

National 

Cancer 

Institute 

 

4-Thiazolecarboxamide, 2-(5-

O-phosphono-.beta.-D-

ribofuranosyl)-, monosodium 

salt 

National 

Cancer 

Institute 

 

8-Bromoinosine 5′-

diphosphate sodium salt 
Sigma-Aldrich 

 

Benzamide riboside 

monophosphate 

National 

Cancer 

Institute 

 

C9H14N3O9P.3Na 

National 

Cancer 

Institute 

 

5'-Adenylic acid, 1-oxide; 

Adenosine 1-oxide 5'-

monophosphate 

National 

Cancer 

Institute 

 

Disodium inosine 5'-

monophosphate 

National 

Cancer 

Institute 

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Search&db=PubMed&term=5-Amino-4-imidazolecarboxamide%20ribotide&doptcmdl=DocSum
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Search&db=PubMed&term=5-Amino-4-imidazolecarboxamide%20ribotide&doptcmdl=DocSum
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Search&db=PubMed&term=5-Amino-4-imidazolecarboxamide%20ribotide&doptcmdl=DocSum
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Search&db=PubMed&term=4-Thiazolecarboxamide,%202-(5-O-phosphono-.beta.-D-ribofuranosyl)-,%20monosodium%20salt&doptcmdl=DocSum
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Search&db=PubMed&term=4-Thiazolecarboxamide,%202-(5-O-phosphono-.beta.-D-ribofuranosyl)-,%20monosodium%20salt&doptcmdl=DocSum
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Search&db=PubMed&term=4-Thiazolecarboxamide,%202-(5-O-phosphono-.beta.-D-ribofuranosyl)-,%20monosodium%20salt&doptcmdl=DocSum
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Search&db=PubMed&term=4-Thiazolecarboxamide,%202-(5-O-phosphono-.beta.-D-ribofuranosyl)-,%20monosodium%20salt&doptcmdl=DocSum
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Search&db=PubMed&term=Benzamide%20riboside%20monophosphate&doptcmdl=DocSum
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Search&db=PubMed&term=Benzamide%20riboside%20monophosphate&doptcmdl=DocSum
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Search&db=PubMed&term=5'-Adenylic%20acid,%201-oxide;&doptcmdl=DocSum
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Search&db=PubMed&term=Adenosine%201-oxide%205'-monophosphate&doptcmdl=DocSum
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Search&db=PubMed&term=Adenosine%201-oxide%205'-monophosphate&doptcmdl=DocSum
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Search&db=PubMed&term=Disodium%20inosine%205'-monophosphate&doptcmdl=DocSum
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Search&db=PubMed&term=Disodium%20inosine%205'-monophosphate&doptcmdl=DocSum
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Compound Image Compound Name Supplier 

 

Sodium guanosine 5'-

monophosphate 

National 

Cancer 

Institute 

 

Polyinosinate:polycytidylate 

National 

Cancer 

Institute 

 

7-Deaza-2′-deoxyguanosine 

5′-triphosphate lithium salt - 

10 mM in H2O 

Sigma-Aldrich 

 

5'-Cytidylic acid, disodium 

salt 

National 

Cancer 

Institute 

 

Inosine 5′-triphosphate 

trisodium salt 
Sigma-Aldrich 

 

C10H13N4O7P 

National 

Cancer 

Institute 

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Search&db=PubMed&term=Sodium%20guanosine%205'-monophosphate&doptcmdl=DocSum
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Search&db=PubMed&term=Sodium%20guanosine%205'-monophosphate&doptcmdl=DocSum
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Search&db=PubMed&term=Polyinosinate:polycytidylate&doptcmdl=DocSum
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Search&db=PubMed&term=5'-Cytidylic%20acid,%20disodium%20salt&doptcmdl=DocSum
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Search&db=PubMed&term=5'-Cytidylic%20acid,%20disodium%20salt&doptcmdl=DocSum
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Compound Image Compound Name Supplier 

 

C10H13FN5O7P.2H3N 

National 

Cancer 

Institute 

 

C9H13N2O8PS.2Na 

National 

Cancer 

Institute 

 

C6H9O9P.4Na 

National 

Cancer 

Institute 

 

C10H13N4O7PS.Ba 

National 

Cancer 

Institute 

 

Uridylyl(3′→5′)guanosine 

ammonium salt 
Sigma-Aldrich 
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Compound Image Compound Name Supplier 

 

(C10H12ClN4O7P)x 

National 

Cancer 

Institute 

 

6-Azauridine 5'MP disodium 

salt 

National 

Cancer 

Institute 

 

1,3,5-Triazin-4-one, 4,5-

dihydro-2-amino- 5-.beta.-D-

arabinofuranosyl-, 5'-

monophosphate ester, 

monolithium salt 

National 

Cancer 

Institute 

 

Uridine-5'-diphosphoglucose, 

disodium salt 
Sigma-Aldrich 

 

D-Ribulose 1,5-bisphosphate 

sodium salt hydrate 
Sigma-Aldrich 

 

C10H14N5O7P.2Li 

National 

Cancer 

Institute 

 

Cytidine 5′-

diphosphoglycerol disodium 

salt 

Sigma-Aldrich 

 

 

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Search&db=PubMed&term=6-Azauridine%205'MP%20disodium%20salt&doptcmdl=DocSum
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Search&db=PubMed&term=6-Azauridine%205'MP%20disodium%20salt&doptcmdl=DocSum
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Search&db=PubMed&term=1,3,5-Triazin-4-one,%204,5-dihydro-2-amino-%205-.beta.-D-arabinofuranosyl-,%205'-monophosphate%20ester,%20monolithium%20salt&doptcmdl=DocSum
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Search&db=PubMed&term=1,3,5-Triazin-4-one,%204,5-dihydro-2-amino-%205-.beta.-D-arabinofuranosyl-,%205'-monophosphate%20ester,%20monolithium%20salt&doptcmdl=DocSum
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Search&db=PubMed&term=1,3,5-Triazin-4-one,%204,5-dihydro-2-amino-%205-.beta.-D-arabinofuranosyl-,%205'-monophosphate%20ester,%20monolithium%20salt&doptcmdl=DocSum
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Search&db=PubMed&term=1,3,5-Triazin-4-one,%204,5-dihydro-2-amino-%205-.beta.-D-arabinofuranosyl-,%205'-monophosphate%20ester,%20monolithium%20salt&doptcmdl=DocSum
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Search&db=PubMed&term=1,3,5-Triazin-4-one,%204,5-dihydro-2-amino-%205-.beta.-D-arabinofuranosyl-,%205'-monophosphate%20ester,%20monolithium%20salt&doptcmdl=DocSum


 

- 202 - 

 

Reference List 

Adam, R. M., Mukhopadhyay, N. K., Kim, J., Di Vizio, D., Cinar, B., Boucher, K., Solomon, 

K. R. and Freeman, M. R. (2007). "Cholesterol Sensitivity of Endogenous and 

Myristoylated Akt." Cancer Research 67(13): 6238-6246. 

Agarwal-Mawal, A., Qureshi, H. Y., Cafferty, P. W., Yuan, Z., Han, D., Lin, R. and Paudel, H. 

K. (2003). "14-3-3 Connects Glycogen Synthase Kinase-3beta to Tau within a Brain 

Microtubule-associated Tau Phosphorylation Complex." J. Biol. Chem. 278(15): 

12722-12728. 

Aitken, A. (2002). "Functional specificity in 14-3-3 isoform interactions through dimer 

formation and phosphorylation. Chromosome location of mammalian isoforms and 

variants." Plant Mol Biol 50(6): 993-1010. 

Aitken, A. (2006). "14-3-3 proteins: a historic overview." Semin Cancer Biol 16(3): 162-72. 

Aitken, A. (2011). "Post-translational modification of 14-3-3 isoforms and regulation of 

cellular function." Semin Cell Dev Biol 22(7): 673-80. 

Aitken, A., Baxter, H., Dubois, T., Clokie, S., Mackie, S., Mitchell, K., Peden, A. and 

Zemlickova, E. (2002). "Specificity of 14-3-3 isoform dimer interactions and 

phosphorylation." Biochem Soc Trans 30(4): 351-60. 

Aitken, A., Howell, S., Jones, D., Madrazo, J., Martin, H., Patel, Y. and Robinson, K. (1995a). 

"Post-translationally modified 14-3-3 isoforms and inhibition of protein kinase C." 

Mol Cell Biochem 149-150: 41-9. 

Aitken, A., Howell, S., Jones, D., Madrazo, J. and Patel, Y. (1995b). "14-3-3 alpha and delta 

are the phosphorylated forms of raf-activating 14-3-3 beta and zeta. In vivo 

stoichiometric phosphorylation in brain at a Ser-Pro-Glu-Lys MOTIF." J Biol Chem 

270(11): 5706-9. 

Aitken, A. and Learmonth, M. (2002). "Protein identification by in-gel digestion and mass 

spectrometric analysis." Mol Biotechnol 20(1): 95-7. 

Al-Ramahi, I., Lam, Y. C., Chen, H. K., de Gouyon, B., Zhang, M., Perez, A. M., Branco, J., de 

Haro, M., Patterson, C., Zoghbi, H. Y. and Botas, J. (2006). "CHIP protects from the 

neurotoxicity of expanded and wild-type ataxin-1 and promotes their ubiquitination 

and degradation." J Biol Chem 281(36): 26714-24. 

Allen, J. A., Halverson-Tamboli, R. A. and Rasenick, M. M. (2007). "Lipid raft microdomains 

and neurotransmitter signalling." Nat Rev Neurosci 8(2): 128-140. 

Alperovitch, A., Brown, P., Weber, T., Pocchiari, M., Hofman, A. and Will, R. (1994). 

"Incidence of Creutzfeldt-Jakob disease in Europe in 1993." Lancet 343(8902): 918. 

Alzheimer, A. (1907). "Ueber eine eigenartige Erkrankung der Himrinde." Allg. Z. Psychiat. 

Med. 64: 146-148. 



 

- 203 - 

 

Alzheimer, A., Stelzmann, R. A., Schnitzlein, H. N. and Murtagh, F. R. (1995). "An English 

translation of Alzheimer's 1907 paper, "Uber eine eigenartige Erkankung der 

Hirnrinde"." Clin Anat 8(6): 429-31. 

Assossou, O., Besson, F., Rouault, J. P., Persat, F., Brisson, C., Duret, L., Ferrandiz, J., 

Mayencon, M., Peyron, F. and Picot, S. (2003). "Subcellular localization of 14-3-3 

proteins in Toxoplasma gondii tachyzoites and evidence for a lipid raft-associated 

form." FEMS Microbiol Lett 224(2): 161-8. 

Bachmann, M., Huber, J. L., Athwal, G. S., Wu, K., Ferl, R. J. and Huber, S. C. (1996). "14-3-3 

proteins associate with the regulatory phosphorylation site of spinach leaf nitrate 

reductase in an isoform-specific manner and reduce dephosphorylation of Ser-543 

by endogenous protein phosphatases." FEBS Letters 398(1): 26-30. 

Banfi, S., Chung, M. Y., Kwiatkowski, T. J., Jr., Ranum, L. P., McCall, A. E., Chinault, A. C., 

Orr, H. T. and Zoghbi, H. Y. (1993). "Mapping and cloning of the critical region for 

the spinocerebellar ataxia type 1 gene (SCA1) in a yeast artificial chromosome contig 

spanning 1.2 Mb." Genomics 18(3): 627-35. 

Banfi, S., Servadio, A., Chung, M. Y., Kwiatkowski, T. J., Jr., McCall, A. E., Duvick, L. A., 

Shen, Y., Roth, E. J., Orr, H. T. and Zoghbi, H. Y. (1994). "Identification and 

characterization of the gene causing type 1 spinocerebellar ataxia." Nat Genet 7(4): 

513-20. 

Baron, G. S., Wehrly, K., Dorward, D. W., Chesebro, B. and Caughey, B. (2002). "Conversion 

of raft associated prion protein to the protease-resistant state requires insertion of 

PrP-res (PrP(Sc)) into contiguous membranes." Embo J 21(5): 1031-40. 

Bate, C., Salmona, M., Diomede, L. and Williams, A. (2004). "Squalestatin cures prion-

infected neurons and protects against prion neurotoxicity." J Biol Chem 279(15): 

14983-90. 

Baxter, H. C., Liu, W. G., Forster, J. L., Aitken, A. and Fraser, J. R. (2002). 

"Immunolocalisation of 14-3-3 isoforms in normal and scrapie-infected murine 

brain." Neuroscience 109(1): 5-14. 

Berg, D., Holzmann, C. and Riess, O. (2003). "14-3-3 proteins in the nervous system." Nat Rev 

Neurosci 4(9): 752-62. 

Bickel, P. E., Scherer, P. E., Schnitzer, J. E., Oh, P., Lisanti, M. P. and Lodish, H. F. (1997). 

"Flotillin and epidermal surface antigen define a new family of caveolae-associated 

integral membrane proteins." J Biol Chem 272(21): 13793-802. 

Blonder, J., Hale, M. L., Lucas, D. A., Schaefer, C. F., Yu, L. R., Conrads, T. P., Issaq, H. J., 

Stiles, B. G. and Veenstra, T. D. (2004). "Proteomic analysis of detergent-resistant 

membrane rafts." Electrophoresis 25(9): 1307-18. 

Boston, P. F., Jackson, P. and Thompson, R. J. (1982). "Human 14-3-3 protein: 

radioimmunoassay, tissue distribution, and cerebrospinal fluid levels in patients 

with neurological disorders." J Neurochem 38(5): 1475-82. 



 

- 204 - 

 

Bowery, N. G. and Enna, S. J. (2000). "gamma-aminobutyric acid(B) receptors: first of the 

functional metabotropic heterodimers." J Pharmacol Exp Ther 292(1): 2-7. 

Bowman, A. B., Lam, Y. C., Jafar-Nejad, P., Chen, H. K., Richman, R., Samaco, R. C., Fryer, J. 

D., Kahle, J. J., Orr, H. T. and Zoghbi, H. Y. (2007). "Duplication of Atxn1l suppresses 

SCA1 neuropathology by decreasing incorporation of polyglutamine-expanded 

ataxin-1 into native complexes." Nat Genet 39(3): 373-9. 

Bradford, M. M. (1976). "A rapid and sensitive method for the quantitation of microgram 

quantities of protein utilizing the principle of protein-dye binding." Anal Biochem 

72: 248-54. 

Brechin, C. (2006). SNAREs, 14-3-3 proteins and cholesterol dependent membrane domains, 

University of Edinburgh. Ph.D. Thesis. 

Brown, D. A. and London, E. (1998). "Functions of lipid rafts in biological membranes." 

Annu Rev Cell Dev Biol 14: 111-36. 

Brown, D. A. and Rose, J. K. (1992). "Sorting of GPI-anchored proteins to glycolipid-enriched 

membrane subdomains during transport to the apical cell surface." Cell 68(3): 533-

544. 

Brown, P., Gibbs, C. J., Jr., Rodgers-Johnson, P., Asher, D. M., Sulima, M. P., Bacote, A., 

Goldfarb, L. G. and Gajdusek, D. C. (1994). "Human spongiform encephalopathy: 

the National Institutes of Health series of 300 cases of experimentally transmitted 

disease." Ann Neurol 35(5): 513-29. 

Bruijn, L. I., Becher, M. W., Lee, M. K., Anderson, K. L., Jenkins, N. A., Copeland, N. G., 

Sisodia, S. S., Rothstein, J. D., Borchelt, D. R., Price, D. L. and Cleveland, D. W. 

(1997). "ALS-linked SOD1 mutant G85R mediates damage to astrocytes and 

promotes rapidly progressive disease with SOD1-containing inclusions." Neuron 

18(2): 327-38. 

Celis, J. E., Gesser, B., Rasmussen, H. H., Madsen, P., Leffers, H., Dejgaard, K., Honore, B., 

Olsen, E., Ratz, G., Lauridsen, J. B. and et al. (1990). "Comprehensive two-

dimensional gel protein databases offer a global approach to the analysis of human 

cells: the transformed amnion cells (AMA) master database and its link to genome 

DNA sequence data." Electrophoresis 11(12): 989-1071. 

Cepeda, C., Starling, A. J., Wu, N., Nguyen, O. K., Uzgil, B., Soda, T., Andre, V. M., Ariano, 

M. A. and Levine, M. S. (2004). "Increased GABAergic function in mouse models of 

Huntington's disease: reversal by BDNF." J Neurosci Res 78(6): 855-67. 

Chamberlain, L. H., Burgoyne, R. D. and Gould, G. W. (2001). "SNARE proteins are highly 

enriched in lipid rafts in PC12 cells: implications for the spatial control of 

exocytosis." Proc Natl Acad Sci U S A 98(10): 5619-24. 

Chamberlain, L. H. and Gould, G. W. (2002). "The Vesicle- and Target-SNARE Proteins That 

Mediate Glut4 Vesicle Fusion Are Localized in Detergent-insoluble Lipid Rafts 

Present on Distinct Intracellular Membranes." Journal of Biological Chemistry 

277(51): 49750-49754. 



 

- 205 - 

 

Chan, T. A., Hermeking, H., Lengauer, C., Kinzler, K. W. and Vogelstein, B. (1999). "14-3-

3[sigma] is required to prevent mitotic catastrophe after DNA damage." Nature 

401(6753): 616-620. 

Chatterjee, S. and Mayor, S. (2001). "The GPI-anchor and protein sorting." Cell Mol Life Sci 

58(14): 1969-87. 

Chaudhri, M., Scarabel, M. and Aitken, A. (2003). "Mammalian and yeast 14-3-3 isoforms 

form distinct patterns of dimers in vivo." Biochemical and Biophysical Research 

Communications 300(3): 679-685. 

Chen, H. K., Fernandez-Funez, P., Acevedo, S. F., Lam, Y. C., Kaytor, M. D., Fernandez, M. 

H., Aitken, A., Skoulakis, E. M., Orr, H. T., Botas, J. and Zoghbi, H. Y. (2003). 

"Interaction of Akt-phosphorylated ataxin-1 with 14-3-3 mediates 

neurodegeneration in spinocerebellar ataxia type 1." Cell 113(4): 457-68. 

Chen, Y. W., Allen, M. D., Veprintsev, D. B., Lowe, J. and Bycroft, M. (2004). "The structure 

of the AXH domain of spinocerebellar ataxin-1." J Biol Chem 279(5): 3758-65. 

Choi, J. Y., Ryu, J. H., Kim, H. S., Park, S. G., Bae, K. H., Kang, S., Myung, P. K., Cho, S., Park, 

B. C. and Lee do, H. (2007). "Co-chaperone CHIP promotes aggregation of ataxin-1." 

Mol Cell Neurosci 34(1): 69-79. 

Chow, C. W. and Davis, R. J. (2000). "Integration of calcium and cyclic AMP signaling 

pathways by 14-3-3." Mol Cell Biol 20(2): 702-12. 

Chung, M. Y., Ranum, L. P., Duvick, L. A., Servadio, A., Zoghbi, H. Y. and Orr, H. T. (1993). 

"Evidence for a mechanism predisposing to intergenerational CAG repeat instability 

in spinocerebellar ataxia type I." Nat Genet 5(3): 254-8. 

Cinek, T. and Horejsi, V. (1992). "The nature of large noncovalent complexes containing 

glycosyl-phosphatidylinositol-anchored membrane glycoproteins and protein 

tyrosine kinases." J Immunol 149(7): 2262-70. 

Clokie, S. J., Cheung, K. Y., Mackie, S., Marquez, R., Peden, A. H. and Aitken, A. (2005). 

"BCR kinase phosphorylates 14-3-3 Tau on residue 233." Febs J 272(15): 3767-76. 

Clokie, S. J. H. (2005). Protein kinases that phosphorylate 14-3-3 isoforms, University of 

Edinburgh. Ph.D. Thesis. 

Corcoran, L. J., Mitchison, T. J. and Liu, Q. (2004). "A novel action of histone deacetylase 

inhibitors in a protein aggresome disease model." Curr Biol 14(6): 488-92. 

Couve, A., Kittler, J. T., Uren, J. M., Calver, A. R., Pangalos, M. N., Walsh, F. S. and Moss, S. 

J. (2001). "Association of GABA(B) receptors and members of the 14-3-3 family of 

signaling proteins." Mol Cell Neurosci 17(2): 317-28. 

Craparo, A., Freund, R. and Gustafson, T. A. (1997). "14-3-3 (epsilon) interacts with the 

insulin-like growth factor I receptor and insulin receptor substrate I in a 

phosphoserine-dependent manner." J Biol Chem 272(17): 11663-9. 



 

- 206 - 

 

Cummings, C. J., Mancini, M. A., Antalffy, B., DeFranco, D. B., Orr, H. T. and Zoghbi, H. Y. 

(1998). "Chaperone suppression of aggregation and altered subcellular proteasome 

localization imply protein misfolding in SCA1." Nat Genet 19(2): 148-54. 

Cvetanovic, M., Rooney, R. J., Garcia, J. J., Toporovskaya, N., Zoghbi, H. Y. and Opal, P. 

(2007). "The role of LANP and ataxin 1 in E4F-mediated transcriptional repression." 

EMBO Rep 8(7): 671-7. 

Dalal, S. N., Yaffe, M. B. and DeCaprio, J. A. (2004). "14-3-3 Family Members Act 

Coordinately to Regulate Mitotic Progression." Cell Cycle 3(5): 670-675. 

Davare, M. A., Saneyoshi, T., Guire, E. S., Nygaard, S. C. and Soderling, T. R. (2004). 

"Inhibition of calcium/calmodulin-dependent protein kinase kinase by protein 14-3-

3." J Biol Chem 279(50): 52191-9. 

Davidson, J. D., Riley, B., Burright, E. N., Duvick, L. A., Zoghbi, H. Y. and Orr, H. T. (2000). 

"Identification and characterization of an ataxin-1-interacting protein: A1Up, a 

ubiquitin-like nuclear protein." Hum Mol Genet 9(15): 2305-12. 

Davies, A. F., Mirza, G., Sekhon, G., Turnpenny, P., Leroy, F., Speleman, F., Law, C., van 

Regemorter, N., Vamos, E., Flinter, F. and Ragoussis, J. (1999). "Delineation of two 

distinct 6p deletion syndromes." Hum Genet 104(1): 64-72. 

Davy, A., Feuerstein, C. and Robbins, S. M. (2000). "Signaling within a caveolae-like 

membrane microdomain in human neuroblastoma cells in response to fibroblast 

growth factor." J Neurochem 74(2): 676-83. 

de Chiara, C., Menon, R. P., Strom, M., Gibson, T. J. and Pastore, A. (2009). "Phosphorylation 

of S776 and 14-3-3 Binding Modulate Ataxin-1 Interaction with Splicing Factors." 

PLoS ONE 4(12): e8372. 

Dick, F. D., De Palma, G., Ahmadi, A., Scott, N. W., Prescott, G. J., Bennett, J., Semple, S., 

Dick, S., Counsell, C., Mozzoni, P., Haites, N., Wettinger, S. B., Mutti, A., Otelea, M., 

Seaton, A., Soderkvist, P. and Felice, A. (2007). "Environmental risk factors for 

Parkinson's disease and parkinsonism: the Geoparkinson study." Occup Environ 

Med 64(10): 666-72. 

Diviani, D., Abuin, L., Cotecchia, S. and Pansier, L. (2004). "Anchoring of both PKA and 14-3-

3 inhibits the Rho-GEF activity of the AKAP-Lbc signaling complex." EMBO J 23(14): 

2811-2820. 

Dougherty, M. K. and Morrison, D. K. (2004). "Unlocking the code of 14-3-3." J Cell Sci 117(Pt 

10): 1875-84. 

Draberova, L. and Draber, P. (1993). "Thy-1 glycoprotein and src-like protein-tyrosine kinase 

p53/p56lyn are associated in large detergent-resistant complexes in rat basophilic 

leukemia cells." Proc Natl Acad Sci U S A 90(8): 3611-5. 

Dubois, T., Rommel, C., Howell, S., Steinhussen, U., Soneji, Y., Morrice, N., Moelling, K. and 

Aitken, A. (1997). "14-3-3 is phosphorylated by casein kinase I on residue 233. 



 

- 207 - 

 

Phosphorylation at this site in vivo regulates Raf/14-3-3 interaction." J Biol Chem 

272(46): 28882-8. 

Duyckaerts, C., Durr, A., Cancel, G. and Brice, A. (1999). "Nuclear inclusions in 

spinocerebellar ataxia type 1." Acta Neuropathol 97(2): 201-7. 

Edidin, M. (2003). "Lipids on the frontier: a century of cell-membrane bilayers." Nat Rev Mol 

Cell Biol 4(5): 414-8. 

Ehehalt, R., Keller, P., Haass, C., Thiele, C. and Simons, K. (2003). "Amyloidogenic 

processing of the Alzheimer {beta}-amyloid precursor protein depends on lipid 

rafts." J. Cell Biol. 160(1): 113-123. 

Emamian, E. S., Kaytor, M. D., Duvick, L. A., Zu, T., Tousey, S. K., Zoghbi, H. Y., Clark, H. B. 

and Orr, H. T. (2003). "Serine 776 of Ataxin-1 Is Critical for Polyglutamine-Induced 

Disease in SCA1 Transgenic Mice." Neuron 38(3): 375-387. 

Fabelo, N., Martin, V., Santpere, G., Marin, R., Torrent, L., Ferrer, I. and Diaz, M. (2011). 

"Severe alterations in lipid composition of frontal cortex lipid rafts from Parkinson's 

disease and incidental Parkinson's disease." Mol Med 17(9-10): 1107-18. 

Fallon, L., Moreau, F., Croft, B. G., Labib, N., Gu, W.-J. and Fon, E. A. (2002). "Parkin and 

CASK/LIN-2 Associate via a PDZ-mediated Interaction and Are Co-localized in 

Lipid Rafts and Postsynaptic Densities in Brain." Journal of Biological Chemistry 

277(1): 486-491. 

Fanger, G. R., Widmann, C., Porter, A. C., Sather, S., Johnson, G. L. and Vaillancourt, R. R. 

(1998). "14-3-3 Proteins Interact with Specific MEK Kinases." Journal of Biological 

Chemistry 273(6): 3476-3483. 

Fantl, W. J., Muslin, A. J., Kikuchi, A., Martin, J. A., MacNicol, A. M., Grosst, R. W. and 

Williams, L. T. (1994). "Activation of Raf-1 by 14-3-3 proteins." Nature 371(6498): 

612-614. 

Feng, Y., Qi, W., Martinez, J. and Nelson, M. A. (2005). "The cyclin-dependent kinase 11 

interacts with 14-3-3 proteins." Biochem Biophys Res Commun 331(4): 1503-9. 

Fernandez-Funez, P., Nino-Rosales, M. L., de Gouyon, B., She, W. C., Luchak, J. M., 

Martinez, P., Turiegano, E., Benito, J., Capovilla, M., Skinner, P. J., McCall, A., Canal, 

I., Orr, H. T., Zoghbi, H. Y. and Botas, J. (2000). "Identification of genes that modify 

ataxin-1-induced neurodegeneration." Nature 408(6808): 101-6. 

Fiedler, K., Kobayashi, T., Kurzchalia, T. V. and Simons, K. (1993). "Glycosphingolipid-

enriched, detergent-insoluble complexes in protein sorting in epithelial cells." 

Biochemistry 32(25): 6365-73. 

Field, K. A., Holowka, D. and Baird, B. (1995). "Fc epsilon RI-mediated recruitment of 

p53/56lyn to detergent-resistant membrane domains accompanies cellular 

signaling." Proc Natl Acad Sci U S A 92(20): 9201-5. 



 

- 208 - 

 

Field, K. A., Holowka, D. and Baird, B. (1997). "Compartmentalized activation of the high 

affinity immunoglobulin E receptor within membrane domains." J Biol Chem 272(7): 

4276-80. 

Filippov, A. K., Couve, A., Pangalos, M. N., Walsh, F. S., Brown, D. A. and Moss, S. J. (2000). 

"Heteromeric assembly of GABA(B)R1 and GABA(B)R2 receptor subunits inhibits 

Ca(2+) current in sympathetic neurons." J Neurosci 20(8): 2867-74. 

Fischer, A., Baljuls, A., Reinders, J., Nekhoroshkova, E., Sibilski, C., Metz, R., Albert, S., 

Rajalingam, K., Hekman, M. and Rapp, U. R. (2009). "Regulation of RAF activity by 

14-3-3 proteins: RAF kinases associate functionally with both homo- and 

heterodimeric forms of 14-3-3 proteins." J Biol Chem 284(5): 3183-94. 

Fortin, D. L., Troyer, M. D., Nakamura, K., Kubo, S.-i., Anthony, M. D. and Edwards, R. H. 

(2004). "Lipid Rafts Mediate the Synaptic Localization of {alpha}-Synuclein." J. 

Neurosci. 24(30): 6715-6723. 

Foster, L. J., De Hoog, C. L. and Mann, M. (2003). "Unbiased quantitative proteomics of lipid 

rafts reveals high specificity for signaling factors." Proc Natl Acad Sci U S A 100(10): 

5813-8. 

Freed, E., Symons, M., Macdonald, S. G., McCormick, F. and Ruggieri, R. (1994). "Binding of 

14-3-3 proteins to the protein kinase Raf and effects on its activation." Science 

265(5179): 1713-1716. 

Fu, H., Coburn, J. and Collier, R. J. (1993). "The eukaryotic host factor that activates 

exoenzyme S of Pseudomonas aeruginosa is a member of the 14-3-3 protein family." 

Proceedings of the National Academy of Sciences 90(6): 2320-2324. 

Fu, H., Xia, K., Pallas, D. C., Cui, C., Conroy, K., Narsimhan, R. P., Mamon, H., Collier, R. J. 

and Roberts, T. M. (1994). "Interaction of the protein kinase Raf-1 with 14-3-3 

proteins." Science 266(5182): 126-129. 

Fuller, B., Stevens, S. M., Jr., Sehnke, P. C. and Ferl, R. J. (2006). "Proteomic analysis of the 14-

3-3 family in Arabidopsis." Proteomics 6(10): 3050-9. 

Furukawa, Y., Ikuta, N., Omata, S., Yamauchi, T., Isobe, T. and Ichimura, T. (1993). 

"Demonstration of the phosphorylation-dependent interaction of tryptophan 

hydroxylase with the 14-3-3 protein." Biochem Biophys Res Commun 194(1): 144-9. 

Galbiati, F., Volonte, D., Goltz, J. S., Steele, Z., Sen, J., Jurcsak, J., Stein, D., Stevens, L. and 

Lisanti, M. P. (1998). "Identification, sequence and developmental expression of 

invertebrate flotillins from Drosophila melanogaster." Gene 210(2): 229-37. 

Gamerdinger, M., Kaya, A. M., Wolfrum, U., Clement, A. M. and Behl, C. (2011). "BAG3 

mediates chaperone-based aggresome-targeting and selective autophagy of 

misfolded proteins." EMBO Rep 12(2): 149-56. 

Ganguly, S., Weller, J. L., Ho, A., Chemineau, P., Malpaux, B. and Klein, D. C. (2005). 

"Melatonin synthesis: 14-3-3-dependent activation and inhibition of arylalkylamine 



 

- 209 - 

 

N-acetyltransferase mediated by phosphoserine-205." Proc Natl Acad Sci U S A 

102(4): 1222-7. 

Gardino, A. K., Smerdon, S. J. and Yaffe, M. B. (2006). "Structural determinants of 14-3-3 

binding specificities and regulation of subcellular localization of 14-3-3-ligand 

complexes: a comparison of the X-ray crystal structures of all human 14-3-3 

isoforms." Semin Cancer Biol 16(3): 173-82. 

Garner, A. E., Smith, D. A. and Hooper, N. M. (2008). "Visualization of detergent 

solubilization of membranes: implications for the isolation of rafts." Biophys J 94(4): 

1326-40. 

Gatchel, J. R., Watase, K., Thaller, C., Carson, J. P., Jafar-Nejad, P., Shaw, C., Zu, T., Orr, H. T. 

and Zoghbi, H. Y. (2008). "The insulin-like growth factor pathway is altered in 

spinocerebellar ataxia type 1 and type 7." Proc Natl Acad Sci U S A 105(4): 1291-6. 

Ge, F., Li, W.-L., Bi, L.-J., Tao, S.-C., Zhang, Z.-P. and Zhang, X.-E. (2010). "Identification of 

Novel 14-3-3 Interacting Proteins by Quantitative Immunoprecipitation Combined 

with Knockdown (QUICK)." Journal of Proteome Research 9(11): 5848-5858. 

Ge, W. W., Volkening, K., Leystra-Lantz, C., Jaffe, H. and Strong, M. J. (2007). "14-3-3 protein 

binds to the low molecular weight neurofilament (NFL) mRNA 3' UTR." Mol Cell 

Neurosci 34(1): 80-7. 

Gil, C., Soler-Jover, A., Blasi, J. and Aguilera, J. (2005). "Synaptic proteins and SNARE 

complexes are localized in lipid rafts from rat brain synaptosomes." Biochemical and 

Biophysical Research Communications 329(1): 117-124. 

Gkantiragas, I., Brugger, B., Stuven, E., Kaloyanova, D., Li, X.-Y., Lohr, K., Lottspeich, F., 

Wieland, F. T. and Helms, J. B. (2001). "Sphingomyelin-enriched Microdomains at 

the Golgi Complex." Mol. Biol. Cell 12(6): 1819-1833. 

Glenner, G. G. and Wong, C. W. (1984). "Alzheimer's disease: Initial report of the purification 

and characterization of a novel cerebrovascular amyloid protein." Biochemical and 

Biophysical Research Communications 120(3): 885-890. 

Goedert, M., Wischik, C. M., Crowther, R. A., Walker, J. E. and Klug, A. (1988). "Cloning and 

sequencing of the cDNA encoding a core protein of the paired helical filament of 

Alzheimer disease: identification as the microtubule-associated protein tau." 

Proceedings of the National Academy of Sciences 85(11): 4051-4055. 

Golan, D. E., Tashjian, Armen H. Jr., Armstrong, Ehrin, J., Armstrong, April W. (2008). 

Principles of Pharmacology, Lippincott Williams & Wilkins. 

Goldfarb, L. G., Vasconcelos, O., Platonov, F. A., Lunkes, A., Kipnis, V., Kononova, S., 

Chabrashvili, T., Vladimirtsev, V. A., Alexeev, V. P. and Gajdusek, D. C. (1996). 

"Unstable triplet repeat and phenotypic variability of spinocerebellar ataxia type 1." 

Ann Neurol 39(4): 500-6. 



 

- 210 - 

 

Goold, R., Hubank, M., Hunt, A., Holton, J., Menon, R. P., Revesz, T., Pandolfo, M. and 

Matilla-Duenas, A. (2007). "Down-regulation of the dopamine receptor D2 in mice 

lacking ataxin 1." Hum Mol Genet 16(17): 2122-34. 

Haller, P. D. v., Donohoe, S., Goodlett, D. R., Aebersold, R. and Watts, J. D. (2001). "Mass 

spectrometric characterization of proteins extracted from Jurkat T cell detergent-

resistant membrane domains." PROTEOMICS 1(8): 1010-1021. 

Hamaguchi, A., Suzuki, E., Murayama, K., Fujimura, T., Hikita, T., Iwabuchi, K., Handa, K., 

Withers, D. A., Masters, S. C., Fu, H. and Hakomori, S. (2003). "Sphingosine-

dependent protein kinase-1, directed to 14-3-3, is identified as the kinase domain of 

protein kinase C delta." J Biol Chem 278(42): 41557-65. 

Han, D., Ye, G., Liu, T., Chen, C., Yang, X., Wan, B., Pan, Y. and Yu, L. (2010). "Functional 

identification of a novel 14-3-3 epsilon splicing variant suggests dimerization is not 

necessary for 14-3-3 epsilon to inhibit UV-induced apoptosis." Biochem Biophys Res 

Commun 396(2): 401-6. 

Hanahan, D. (1983). "Studies on transformation of Escherichia coli with plasmids." J Mol Biol 

166(4): 557-80. 

Hancock, J. F. (2006). "Lipid rafts: contentious only from simplistic standpoints." Nat Rev 

Mol Cell Biol 7(6): 456-62. 

Harding, A. E. (1982). "The clinical features and classification of the late onset autosomal 

dominant cerebellar ataxias." Brain 105(1): 1-28. 

Hardy, J. (1997). "Amyloid, the presenilins and Alzheimer's disease." Trends in 

Neurosciences 20(4): 154-159. 

Hardy, J., Duff, K., Hardy, K. G., Perez-Tur, J. and Hutton, M. (1998). "Genetic dissection of 

Alzheimer's disease and related dementias: amyloid and its relationship to tau." Nat 

Neurosci 1(5): 355-8. 

Harrington, M. G., Merril, C. R., Asher, D. M. and Gajdusek, D. C. (1986). "Abnormal 

proteins in the cerebrospinal fluid of patients with Creutzfeldt-Jakob disease." N 

Engl J Med 315(5): 279-83. 

Harris, T. J. and Siu, C. H. (2002). "Reciprocal raft-receptor interactions and the assembly of 

adhesion complexes." Bioessays 24(11): 996-1003. 

Hashiguchi, M., Sobue, K. and Paudel, H. K. (2000). "14-3-3zeta is an effector of tau protein 

phosphorylation." J Biol Chem 275(33): 25247-54. 

Hatano, T., Kubo, S., Imai, S., Maeda, M., Ishikawa, K., Mizuno, Y. and Hattori, N. (2007). 

"Leucine-rich repeat kinase 2 associates with lipid rafts." Hum Mol Genet 16(6): 678-

90. 

Hayashi, H., Igbavboa, U., Hamanaka, H., Kobayashi, M., Fujita, S. C., Wood, W. G. and 

Yanagisawa, K. (2002). "Cholesterol is increased in the exofacial leaflet of synaptic 



 

- 211 - 

 

plasma membranes of human apolipoprotein E4 knock-in mice." Neuroreport 13(4): 

383-6. 

Heerklotz, H. (2002). "Triton promotes domain formation in lipid raft mixtures." Biophys J 

83(5): 2693-701. 

Henkin, J. A., Jennings, M. E., Matthews, D. E. and Vigoreaux, J. O. (2004). "Mass processing-

-an improved technique for protein identification with mass spectrometry data." J 

Biomol Tech 15(4): 230-7. 

Henriksson, M. L., Francis, M. S., Peden, A., Aili, M., Stefansson, K., Palmer, R., Aitken, A. 

and Hallberg, B. (2002). "A nonphosphorylated 14-3-3 binding motif on exoenzyme S 

that is functional in vivo." Eur J Biochem 269(20): 4921-9. 

Hermeking, H., Lengauer, C., Polyak, K., He, T. C., Zhang, L., Thiagalingam, S., Kinzler, K. 

W. and Vogelstein, B. (1997). "14-3-3 sigma is a p53-regulated inhibitor of G2/M 

progression." Mol Cell 1(1): 3-11. 

Hinton, A. C. (2005). Database-Mining : EDULISS a descriptor based approach, University of 

Edinburgh. Ph.D. Thesis. 

Hoessli, D. and Rungger-Brandle, E. (1985). "Association of specific cell-surface 

glycoproteins with a triton X-100-resistant complex of plasma membrane proteins 

isolated from T-lymphoma cells (P1798)." Exp Cell Res 156(1): 239-50. 

Honda, R., Ohba, Y. and Yasuda, H. (1997). "14-3-3 zeta Protein Binds to the Carboxyl Half of 

Mouse Wee1 Kinase." Biochemical and Biophysical Research Communications 

230(2): 262-265. 

Hong, S., Ka, S., Kim, S., Park, Y. and Kang, S. (2003). "p80 coilin, a coiled body-specific 

protein, interacts with ataxin-1, the SCA1 gene product." Biochimica et Biophysica 

Acta (BBA) - Molecular Basis of Disease 1638(1): 35-42. 

Hong, S., Kim, S. J., Ka, S., Choi, I. and Kang, S. (2002). "USP7, a ubiquitin-specific protease, 

interacts with ataxin-1, the SCA1 gene product." Mol Cell Neurosci 20(2): 298-306. 

Hsich, G., Kenney, K., Gibbs, C. J., Lee, K. H. and Harrington, M. G. (1996). "The 14-3-3 brain 

protein in cerebrospinal fluid as a marker for transmissible spongiform 

encephalopathies." N Engl J Med 335(13): 924-30. 

Hsin, K.-Y., Morgan, H. P., Shave, S. R., Hinton, A. C., Taylor, P. and Walkinshaw, M. D. 

(2010). "EDULISS: a small-molecule database with data-mining and pharmacophore 

searching capabilities." Nucleic Acids Research. 

Huber, S. C., MacKintosh, C. and Kaiser, W. M. (2002). "Metabolic enzymes as targets for 14-

3-3 proteins." Plant Mol Biol 50(6): 1053-63. 

Huntington, G. (1872). "On chorea." Med. Surg. Reporter 26: 317-321. 

Ichimura, T., Isobe, T., Okuyama, T., Takahashi, N., Araki, K., Kuwano, R. and Takahashi, Y. 

(1988). "Molecular cloning of cDNA coding for brain-specific 14-3-3 protein, a 



 

- 212 - 

 

protein kinase-dependent activator of tyrosine and tryptophan hydroxylases." Proc 

Natl Acad Sci U S A 85(19): 7084-8. 

Ichimura, T., Isobe, T., Okuyama, T., Yamauchi, T. and Fujisawa, H. (1987). "Brain 14-3-3 

protein is an activator protein that activates tryptophan 5-monooxygenase and 

tyrosine 3-monooxygenase in the presence of Ca2+,calmodulin-dependent protein 

kinase II." FEBS Lett 219(1): 79-82. 

Igbavboa, U., Eckert, G. P., Malo, T. M., Studniski, A. E., Johnson, L. N., Yamamoto, N., 

Kobayashi, M., Fujita, S. C., Appel, T. R., Muller, W. E., Wood, W. G. and 

Yanagisawa, K. (2005). "Murine synaptosomal lipid raft protein and lipid 

composition are altered by expression of human apoE 3 and 4 and by increasing 

age." J Neurol Sci 229-230: 225-32. 

Ironside, J. W., Sutherland, K., Bell, J. E., McCardle, L., Barrie, C., Estebeiro, K., Zeidler, M. 

and Will, R. G. (1996). "A new variant of Creutzfeldt-Jakob disease: 

neuropathological and clinical features." Cold Spring Harb Symp Quant Biol 61: 523-

30. 

Irwin, S., Vandelft, M., Pinchev, D., Howell, J. L., Graczyk, J., Orr, H. T. and Truant, R. 

(2005). "RNA association and nucleocytoplasmic shuttling by ataxin-1." J Cell Sci 

118(Pt 1): 233-42. 

Izaki, T., Kamakura, S., Kohjima, M. and Sumimoto, H. (2005). "Phosphorylation-dependent 

binding of 14-3-3 to Par3beta, a human Par3-related cell polarity protein." 

Biochemical and Biophysical Research Communications 329(1): 211-218. 

Jafar-Nejad, P., Ward, C. S., Richman, R., Orr, H. T. and Zoghbi, H. Y. (2011). "Regional 

rescue of spinocerebellar ataxia type 1 phenotypes by 14-3-3epsilon 

haploinsufficiency in mice underscores complex pathogenicity in 

neurodegeneration." Proc Natl Acad Sci U S A 108(5): 2142-7. 

Jagemann, L. R., Perez-Rivas, L. G., Ruiz, E. J., Ranea, J. A., Sanchez-Jimenez, F., Nebreda, A. 

R., Alba, E. and Lozano, J. (2008). "The functional interaction of 14-3-3 proteins with 

the ERK1/2 scaffold KSR1 occurs in an isoform-specific manner." J Biol Chem 

283(25): 17450-62. 

Jick, H., Zornberg, G. L., Jick, S. S., Seshadri, S. and Drachman, D. A. (2000). "Statins and the 

risk of dementia." Lancet 356(9242): 1627-31. 

Jin, J., Smith, F. D., Stark, C., Wells, C. D., Fawcett, J. P., Kulkarni, S., Metalnikov, P., 

O'Donnell, P., Taylor, P., Taylor, L., Zougman, A., Woodgett, J. R., Langeberg, L. K., 

Scott, J. D. and Pawson, T. (2004). "Proteomic, functional, and domain-based analysis 

of in vivo 14-3-3 binding proteins involved in cytoskeletal regulation and cellular 

organization." Curr Biol 14(16): 1436-50. 

Jodice, C., Malaspina, P., Persichetti, F., Novelletto, A., Spadaro, M., Giunti, P., Morocutti, C., 

Terrenato, L., Harding, A. E. and Frontali, M. (1994). "Effect of trinucleotide repeat 

length and parental sex on phenotypic variation in spinocerebellar ataxia I." Am J 

Hum Genet 54(6): 959-65. 



 

- 213 - 

 

Johnson, C., Crowther, S., Stafford, M. J., Campbell, D. G., Toth, R. and MacKintosh, C. 

(2010). "Bioinformatic and experimental survey of 14-3-3-binding sites." Biochem J 

427(1): 69-78. 

Johnson, R. T. and Gibbs, C. J., Jr. (1998). "Creutzfeldt-Jakob disease and related 

transmissible spongiform encephalopathies." N Engl J Med 339(27): 1994-2004. 

Jones, D. H., Ley, S. and Aitken, A. (1995a). "Isoforms of 14-3-3 protein can form homo- and 

heterodimers in vivo and in vitro: implications for function as adapter proteins." 

FEBS Lett 368(1): 55-8. 

Jones, D. H., Martin, H., Madrazo, J., Robinson, K. A., Nielsen, P., Roseboom, P. H., Patel, Y., 

Howell, S. A. and Aitken, A. (1995b). "Expression and structural analysis of 14-3-3 

proteins." J Mol Biol 245(4): 375-84. 

Jorgensen, N. D., Andresen, J. M., Lagalwar, S., Armstrong, B., Stevens, S., Byam, C. E., 

Duvick, L. A., Lai, S., Jafar-Nejad, P., Zoghbi, H. Y., Clark, H. B. and Orr, H. T. 

(2009). "Phosphorylation of ATXN1 at Ser776 in the cerebellum." J Neurochem 

110(2): 675-86. 

Kawamoto, Y., Akiguchi, I., Nakamura, S. and Budka, H. (2004). "14-3-3 proteins in Lewy 

body-like hyaline inclusions in patients with sporadic amyotrophic lateral sclerosis." 

Acta Neuropathol 108(6): 531-7. 

Kawamoto, Y., Akiguchi, I., Nakamura, S., Honjyo, Y., Shibasaki, H. and Budka, H. (2002). 

"14-3-3 proteins in Lewy bodies in Parkinson disease and diffuse Lewy body disease 

brains." J Neuropathol Exp Neurol 61(3): 245-53. 

Kazlauskaite, J., Sanghera, N., Sylvester, I., Venien-Bryan, C. and Pinheiro, T. J. (2003). 

"Structural changes of the prion protein in lipid membranes leading to aggregation 

and fibrillization." Biochemistry 42(11): 3295-304. 

Kenney, K., Brechtel, C., Takahashi, H., Kurohara, K., Anderson, P. and Gibbs, C. J., Jr. 

(2000). "An enzyme-linked immunosorbent assay to quantify 14-3-3 proteins in the 

cerebrospinal fluid of suspected Creutzfeldt-Jakob disease patients." Ann Neurol 

48(3): 395-8. 

Kim, Y., Kim, H., Jang, S. W. and Ko, J. (2011). "The role of 14-3-3beta in transcriptional 

activation of estrogen receptor alpha and its involvement in proliferation of breast 

cancer cells." Biochem Biophys Res Commun 414(1): 199-204. 

King, J. and Laemmli, U. K. (1971). "Polypeptides of the tail fibres of bacteriophage T4." J Mol 

Biol 62(3): 465-77. 

Klement, I. A., Skinner, P. J., Kaytor, M. D., Yi, H., Hersch, S. M., Clark, H. B., Zoghbi, H. Y. 

and Orr, H. T. (1998). "Ataxin-1 Nuclear Localization and Aggregation: Role in 

Polyglutamine-Induced Disease in SCA1 Transgenic Mice." Cell 95(1): 41-53. 

Kligys, K., Yao, J., Yu, D. and Jones, J. C. R. (2009). "14-3-3zeta/ tau heterodimers regulate 

Slingshot activity in migrating keratinocytes." Biochemical and Biophysical Research 

Communications 383(4): 450-454. 



 

- 214 - 

 

Koga, Y. and Ikebe, M. (2008). "A novel regulatory mechanism of myosin light chain 

phosphorylation via binding of 14-3-3 to myosin phosphatase." Mol Biol Cell 19(3): 

1062-71. 

Kubo, S., Nemani, V. M., Chalkley, R. J., Anthony, M. D., Hattori, N., Mizuno, Y., Edwards, 

R. H. and Fortin, D. L. (2005). "A combinatorial code for the interaction of alpha-

synuclein with membranes." J Biol Chem 280(36): 31664-72. 

Lai, S., O'Callaghan, B., Zoghbi, H. Y. and Orr, H. T. (2011). "14-3-3 Binding to ataxin-

1(ATXN1) regulates its dephosphorylation at Ser-776 and transport to the nucleus." J 

Biol Chem 286(40): 34606-16. 

Lam, Y. C., Bowman, A. B., Jafar-Nejad, P., Lim, J., Richman, R., Fryer, J. D., Hyun, E. D., 

Duvick, L. A., Orr, H. T., Botas, J. and Zoghbi, H. Y. (2006). "ATAXIN-1 interacts 

with the repressor Capicua in its native complex to cause SCA1 neuropathology." 

Cell 127(7): 1335-47. 

Lang, D. M., Lommel, S., Jung, M., Ankerhold, R., Petrausch, B., Laessing, U., Wiechers, M. 

F., Plattner, H. and Stuermer, C. A. (1998). "Identification of reggie-1 and reggie-2 as 

plasmamembrane-associated proteins which cocluster with activated GPI-anchored 

cell adhesion molecules in non-caveolar micropatches in neurons." J Neurobiol 37(4): 

502-23. 

Lasserre, R., Guo, X.-J., Conchonaud, F., Hamon, Y., Hawchar, O., Bernard, A.-M., Soudja, S. 

M. H., Lenne, P.-F., Rigneault, H., Olive, D., Bismuth, G., Nunes, J. A., Payrastre, B., 

Marguet, D. and He, H.-T. (2008). "Raft nanodomains contribute to Akt/PKB plasma 

membrane recruitment and activation." Nat Chem Biol 4(9): 538-547. 

Layfield, R., Fergusson, J., Aitken, A., Lowe, J., Landon, M. and Mayer, R. J. (1996). 

"Neurofibrillary tangles of Alzheimer's disease brains contain 14-3-3 proteins." 

Neurosci Lett 209(1): 57-60. 

Ledesma, M. D., Da Silva, J. S., Schevchenko, A., Wilm, M. and Dotti, C. G. (2003). 

"Proteomic characterisation of neuronal sphingolipid-cholesterol microdomains: role 

in plasminogen activation." Brain Res 987(1): 107-16. 

Lee, S., Hong, S. and Kang, S. (2008). "The ubiquitin-conjugating enzyme UbcH6 regulates 

the transcriptional repression activity of the SCA1 gene product ataxin-1." 

Biochemical and Biophysical Research Communications 372(4): 735-740. 

Lees, A. J., Hardy, J. and Revesz, T. (2009). "Parkinson's disease." Lancet 373(9680): 2055-66. 

Li, G., Jiang, H., Chang, M., Xie, H. and Hu, L. (2011a). "HDAC6 alpha-tubulin deacetylase: 

A potential therapeutic target in neurodegenerative diseases." Journal of the 

Neurological Sciences 304(1â€“2): 1-8. 

Li, X., Wang, Q. J., Pan, N., Lee, S., Zhao, Y., Chait, B. T. and Yue, Z. (2011b). 

"Phosphorylation-dependent 14-3-3 binding to LRRK2 is impaired by common 

mutations of familial Parkinson's disease." PLoS One 6(3): e17153. 



 

- 215 - 

 

Liang, X., Butterworth, M. B., Peters, K. W., Walker, W. H. and Frizzell, R. A. (2008). "An 

obligatory heterodimer of 14-3-3beta and 14-3-3epsilon is required for aldosterone 

regulation of the epithelial sodium channel." J Biol Chem 283(41): 27418-25. 

Lim, J., Crespo-Barreto, J., Jafar-Nejad, P., Bowman, A. B., Richman, R., Hill, D. E., Orr, H. T. 

and Zoghbi, H. Y. (2008). "Opposing effects of polyglutamine expansion on native 

protein complexes contribute to SCA1." Nature 452(7188): 713-8. 

Lim, J., Hao, T., Shaw, C., Patel, A. J., Szabo, G., Rual, J. F., Fisk, C. J., Li, N., Smolyar, A., 

Hill, D. E., Barabasi, A. L., Vidal, M. and Zoghbi, H. Y. (2006). "A protein-protein 

interaction network for human inherited ataxias and disorders of Purkinje cell 

degeneration." Cell 125(4): 801-14. 

Lin, X., Antalffy, B., Kang, D., Orr, H. T. and Zoghbi, H. Y. (2000). "Polyglutamine expansion 

down-regulates specific neuronal genes before pathologic changes in SCA1." Nat 

Neurosci 3(2): 157-63. 

Lingwood, D. and Simons, K. (2010). "Lipid Rafts As a Membrane-Organizing Principle." 

Science 327(5961): 46-50. 

Liu, D., Bienkowska, J., Petosa, C., Collier, R. J., Fu, H. and Liddington, R. (1995). "Crystal 

structure of the zeta isoform of the 14-3-3 protein." Nature 376(6536): 191-4. 

Liu, Y.-C., Elly, C., Yoshida, H., Bonnefoy-Berard, N. and Altman, A. (1996). "Activation-

modulated Association of 14-3-3 Proteins with Cbl in T Cells." Journal of Biological 

Chemistry 271(24): 14591-14595. 

Liu, Y.-C., Liu, Y., Elly, C., Yoshida, H., Lipkowitz, S. and Altman, A. (1997). "Serine 

Phosphorylation of Cbl Induced by Phorbol Ester Enhances Its Association with 14-

3-3 Proteins in T Cells via a Novel Serine-rich 14-3-3-binding Motif." Journal of 

Biological Chemistry 272(15): 9979-9985. 

Low, M. G. (1989). "The glycosyl-phosphatidylinositol anchor of membrane proteins." 

Biochim Biophys Acta 988(3): 427-54. 

Ma, Y., Pitson, S., Hercus, T., Murphy, J., Lopez, A. and Woodcock, J. (2005). "Sphingosine 

activates protein kinase A type II by a novel cAMP-independent mechanism." J Biol 

Chem 280(28): 26011-7. 

Mackie, S. and Aitken, A. (2005). "Novel brain 14-3-3 interacting proteins involved in 

neurodegenerative disease." Febs J 272(16): 4202-10. 

Madeira, A., Yang, J., Zhang, X., Vikeved, E., Nilsson, A., Andren, P. E. and Svenningsson, P. 

(2011). "Caveolin-1 interacts with alpha-synuclein and mediates toxic actions of 

cellular alpha-synuclein overexpression." Neurochem Int 59(2): 280-9. 

Mahley, R. W. (1988). "Apolipoprotein E: cholesterol transport protein with expanding role 

in cell biology." Science 240(4852): 622-30. 

Manke, I. A., Nguyen, A., Lim, D., Stewart, M. Q., Elia, A. E. and Yaffe, M. B. (2005). 

"MAPKAP kinase-2 is a cell cycle checkpoint kinase that regulates the G2/M 



 

- 216 - 

 

transition and S phase progression in response to UV irradiation." Mol Cell 17(1): 37-

48. 

Margolis, R. L. (2003). "Dominant spinocerebellar ataxias: a molecular approach to 

classification, diagnosis, pathogenesis and the future." Expert Review of Molecular 

Diagnostics 3(6): 715-732. 

Martens, J. R., Navarro-Polanco, R., Coppock, E. A., Nishiyama, A., Parshley, L., Grobaski, T. 

D. and Tamkun, M. M. (2000). "Differential Targeting of Shaker-like Potassium 

Channels to Lipid Rafts." Journal of Biological Chemistry 275(11): 7443-7446. 

Martin, H., Patel, Y., Jones, D., Howell, S., Robinson, K. and Aitken, A. (1993). "Antibodies 

against the major brain isoforms of 14-3-3 protein: an antibody specific for the N-

acetylated amino-terminus of a protein." FEBS Lett 336(1): 189. 

Masters, S. C., Pederson, K. J., Zhang, L., Barbieri, J. T. and Fu, H. (1999). "Interaction of 14-3-

3 with a Nonphosphorylated Protein Ligand, Exoenzyme S of Pseudomonas 

aeruginosa " Biochemistry 38(16): 5216-5221. 

Matilla-Duenas, A., Goold, R. and Giunti, P. (2008). "Clinical, genetic, molecular, and 

pathophysiological insights into spinocerebellar ataxia type 1." Cerebellum 7(2): 106-

14. 

Matilla, A., Koshy, B. T., Cummings, C. J., Isobe, T., Orr, H. T. and Zoghbi, H. Y. (1997). "The 

cerebellar leucine-rich acidic nuclear protein interacts with ataxin-1." Nature 

389(6654): 974-8. 

Matilla, A., Roberson, E. D., Banfi, S., Morales, J., Armstrong, D. L., Burright, E. N., Orr, H. 

T., Sweatt, J. D., Zoghbi, H. Y. and Matzuk, M. M. (1998). "Mice Lacking Ataxin-1 

Display Learning Deficits and Decreased Hippocampal Paired-Pulse Facilitation." J. 

Neurosci. 18(14): 5508-5516. 

Matsumoto, Y., Shindo, Y., Takakusagi, Y., Takakusagi, K., Tsukuda, S., Kusayanagi, T., Sato, 

H., Kawabe, T., Sugawara, F. and Sakaguchi, K. (2011). "Screening of a library of T7 

phage-displayed peptides identifies alphaC helix in 14-3-3 protein as a CBP501-

binding site." Bioorg Med Chem 19(23): 7049-56. 

Megidish, T., Cooper, J., Zhang, L., Fu, H. and Hakomori, S.-i. (1998). "A Novel Sphingosine-

dependent Protein Kinase (SDK1) Specifically Phosphorylates Certain Isoforms of 

14-3-3 Protein." J. Biol. Chem. 273(34): 21834-21845. 

Mehio, W., Kemp, G. J. L., Taylor, P. and Walkinshaw, M. D. (2010). "Identification of Protein 

Binding Surfaces using Surface Triplet Propensities." Bioinformatics. 

Melkonian, K. A., Ostermeyer, A. G., Chen, J. Z., Roth, M. G. and Brown, D. A. (1999). "Role 

of lipid modifications in targeting proteins to detergent-resistant membrane rafts. 

Many raft proteins are acylated, while few are prenylated." J Biol Chem 274(6): 3910-

7. 



 

- 217 - 

 

Messaritou, G., Grammenoudi, S. and Skoulakis, E. M. C. (2010). "Dimerization Is Essential 

for 14-3-3zeta Stability and Function in Vivo." Journal of Biological Chemistry 285(3): 

1692-1700. 

Mils, V., Baldin, V., Goubin, F., Pinta, I., Papin, C., Waye, M., Eychene, A. and Ducommun, 

B. (2000). "Specific interaction between 14-3-3 isoforms and the human CDC25B 

phosphatase." Oncogene 19(10): 1257-65. 

Miura, Y., Hanada, K. and Jones, T. L. Z. (2001). "G(s) Signaling Is Intact after Disruption of 

Lipid Rafts." Biochemistry 40(50): 15418-15423. 

Mizutani, A., Wang, L., Rajan, H., Vig, P. J., Alaynick, W. A., Thaler, J. P. and Tsai, C. C. 

(2005). "Boat, an AXH domain protein, suppresses the cytotoxicity of mutant ataxin-

1." Embo J 24(18): 3339-51. 

Moore, B. E. a. P., V.J. (1967). Physiological and Biochemical Aspects of Nervous Integration, 

Prentice-Hall, Englewoods Cliffs. 

Munro, S. (2003). "Lipid rafts: elusive or illusive?" Cell 115(4): 377-88. 

Muslin, A. J., Tanner, J. W., Allen, P. M. and Shaw, A. S. (1996). "Interaction of 14-3-3 with 

signaling proteins is mediated by the recognition of phosphoserine." Cell 84(6): 889-

97. 

Muslin, A. J. and Xing, H. (2000). "14-3-3 proteins: regulation of subcellular localization by 

molecular interference." Cellular Signalling 12(11-12): 703-709. 

Naslavsky, N., Shmeeda, H., Friedlander, G., Yanai, A., Futerman, A. H., Barenholz, Y. and 

Taraboulos, A. (1999). "Sphingolipid depletion increases formation of the scrapie 

prion protein in neuroblastoma cells infected with prions." J Biol Chem 274(30): 

20763-71. 

Naslavsky, N., Stein, R., Yanai, A., Friedlander, G. and Taraboulos, A. (1997). 

"Characterization of detergent-insoluble complexes containing the cellular prion 

protein and its scrapie isoform." J Biol Chem 272(10): 6324-31. 

Nebl, T., Pestonjamasp, K. N., Leszyk, J. D., Crowley, J. L., Oh, S. W. and Luna, E. J. (2002). 

"Proteomic analysis of a detergent-resistant membrane skeleton from neutrophil 

plasma membranes." J Biol Chem 277(45): 43399-409. 

Nelson, T. J. and Alkon, D. L. (2007). "Protection against beta-amyloid-induced apoptosis by 

peptides interacting with beta-amyloid." J Biol Chem 282(43): 31238-49. 

Nichols, R. J., Dzamko, N., Morrice, N. A., Campbell, D. G., Deak, M., Ordureau, A., 

Macartney, T., Tong, Y., Shen, J., Prescott, A. R. and Alessi, D. R. (2010). "14-3-3 

binding to LRRK2 is disrupted by multiple Parkinson's disease-associated mutations 

and regulates cytoplasmic localization." Biochem J 430(3): 393-404. 

Nomura, M., Shimizu, S., Sugiyama, T., Narita, M., Ito, T., Matsuda, H. and Tsujimoto, Y. 

(2003). "14-3-3 Interacts directly with and negatively regulates pro-apoptotic Bax." J 

Biol Chem 278(3): 2058-65. 



 

- 218 - 

 

Nussbaum, R. L. and Polymeropoulos, M. H. (1997). "Genetics of Parkinson's disease." Hum 

Mol Genet 6(10): 1687-91. 

Oesch, B., Westaway, D., Walchli, M., McKinley, M. P., Kent, S. B., Aebersold, R., Barry, R. 

A., Tempst, P., Teplow, D. B., Hood, L. E. and et al. (1985). "A cellular gene encodes 

scrapie PrP 27-30 protein." Cell 40(4): 735-46. 

Okazawa, H., Rich, T., Chang, A., Lin, X., Waragai, M., Kajikawa, M., Enokido, Y., Komuro, 

A., Kato, S., Shibata, M., Hatanaka, H., Mouradian, M. M., Sudol, M. and Kanazawa, 

I. (2002). "Interaction between mutant ataxin-1 and PQBP-1 affects transcription and 

cell death." Neuron 34(5): 701-13. 

Olzmann, J. A., Li, L. and Chin, L. S. (2008). "Aggresome formation and neurodegenerative 

diseases: therapeutic implications." Curr Med Chem 15(1): 47-60. 

Omi, K., Hachiya, N. S., Tanaka, M., Tokunaga, K. and Kaneko, K. (2008). "14-3-3zeta is 

indispensable for aggregate formation of polyglutamine-expanded huntingtin 

protein." Neuroscience Letters 431(1): 45-50. 

Orr, H. T., Chung, M. Y., Banfi, S., Kwiatkowski, T. J., Jr., Servadio, A., Beaudet, A. L., 

McCall, A. E., Duvick, L. A., Ranum, L. P. and Zoghbi, H. Y. (1993). "Expansion of an 

unstable trinucleotide CAG repeat in spinocerebellar ataxia type 1." Nat Genet 4(3): 

221-6. 

Osler, W. (1893). "Remarks on the varieties of chronic chorea, and a report upon two families 

of the hereditary form, with one autopsy." J. Nerv. Ment. Dis. 18: 97-111. 

Osterhues, A., Liebmann, S., Schmid, M., Buk, D., Huss, R., Graeve, L. and Zeindl-Eberhart, 

E. (2006). "Stem cells and experimental leukemia can be distinguished by lipid raft 

protein composition." Stem Cells Dev 15(5): 677-86. 

Ostrerova, N., Petrucelli, L., Farrer, M., Mehta, N., Choi, P., Hardy, J. and Wolozin, B. (1999). 

"alpha-Synuclein shares physical and functional homology with 14-3-3 proteins." J 

Neurosci 19(14): 5782-91. 

Owen, D. M., Williamson, D., Rentero, C. and Gaus, K. (2009). "Quantitative microscopy: 

protein dynamics and membrane organisation." Traffic 10(8): 962-71. 

Pan, K. M., Baldwin, M., Nguyen, J., Gasset, M., Serban, A., Groth, D., Mehlhorn, I., Huang, 

Z., Fletterick, R. J., Cohen, F. E. and et al. (1993). "Conversion of alpha-helices into 

beta-sheets features in the formation of the scrapie prion proteins." Proc Natl Acad 

Sci U S A 90(23): 10962-6. 

Parkin, E. T., Turner, A. J. and Hooper, N. M. (1999). "Amyloid precursor protein, although 

partially detergent-insoluble in mouse cerebral cortex, behaves as an atypical lipid 

raft protein." Biochem J 344 Pt 1: 23-30. 

Patra, S. K. (2008). "Dissecting lipid raft facilitated cell signaling pathways in cancer." 

Biochim Biophys Acta 1785(2): 182-206. 



 

- 219 - 

 

Perez, R. G., Waymire, J. C., Lin, E., Liu, J. J., Guo, F. and Zigmond, M. J. (2002). "A role for 

alpha-synuclein in the regulation of dopamine biosynthesis." J Neurosci 22(8): 3090-

9. 

Perutz, M. F., Johnson, T., Suzuki, M. and Finch, J. T. (1994). "Glutamine repeats as polar 

zippers: their possible role in inherited neurodegenerative diseases." Proc Natl Acad 

Sci U S A 91(12): 5355-8. 

Petosa, C., Masters, S. C., Bankston, L. A., Pohl, J., Wang, B., Fu, H. and Liddington, R. C. 

(1998). "14-3-3zeta binds a phosphorylated Raf peptide and an unphosphorylated 

peptide via its conserved amphipathic groove." J Biol Chem 273(26): 16305-10. 

Pike, L. J. (2003). "Lipid rafts: bringing order to chaos." J Lipid Res 44(4): 655-67. 

Pike, L. J. (2004). "Lipid rafts: heterogeneity on the high seas." Biochem J 378(Pt 2): 281-92. 

Pike, L. J. (2009). "The challenge of lipid rafts." J Lipid Res 50 Suppl: S323-8. 

Poston, C. N., Duong, E., Cao, Y. and Bazemore-Walker, C. R. (2011). "Proteomic analysis of 

lipid raft-enriched membranes isolated from internal organelles." Biochemical and 

Biophysical Research Communications 415(2): 355-360. 

Powell, D. W., Rane, M. J., Chen, Q., Singh, S. and McLeish, K. R. (2002). "Identification of 14-

3-3zeta as a protein kinase B/Akt substrate." J Biol Chem 277(24): 21639-42. 

Pozuelo Rubio, M., Geraghty, K. M., Wong, B. H. C., Wood, N. T., Campbell, D. G., Morrice, 

N. and Mackintosh, C. (2004). "14-3-3-affinity purification of over 200 human 

phosphoproteins reveals new links to regulation of cellular metabolism, 

proliferation and trafficking." Biochem. J. 379(2): 395-408. 

Prusiner, S. B. (1982). "Novel proteinaceous infectious particles cause scrapie." Science 

216(4542): 136-44. 

Prusiner, S. B. (1998). "Prions." Proc Natl Acad Sci U S A 95(23): 13363-83. 

Rajagopalan, S., Sade, R. S., Townsley, F. M. and Fersht, A. R. (2010). "Mechanistic 

differences in the transcriptional activation of p53 by 14-3-3 isoforms." Nucleic Acids 

Research 38(3): 893-906. 

Rang, H. P., Dale, M.M., Ritter, J.M., Moore, P.K. (2003). Pharmacology, Churchill 

Livingstone. 

Reuther, G. W., Fu, H., Cripe, L. D., Collier, R. J. and Pendergast, A. M. (1994). "Association 

of the protein kinases c-Bcr and Bcr-Abl with proteins of the 14-3-3 family." Science 

266(5182): 129-133. 

Riley, B. E., Zoghbi, H. Y. and Orr, H. T. (2005). "SUMOylation of the polyglutamine repeat 

protein, ataxin-1, is dependent on a functional nuclear localization signal." J Biol 

Chem 280(23): 21942-8. 



 

- 220 - 

 

Rimessi, A., Coletto, L., Pinton, P., Rizzuto, R., Brini, M. and Carafoli, E. (2005). "Inhibitory 

interaction of the 14-3-3{epsilon} protein with isoform 4 of the plasma membrane 

Ca(2+)-ATPase pump." J Biol Chem 280(44): 37195-203. 

Rittinger, K., Budman, J., Xu, J., Volinia, S., Cantley, L. C., Smerdon, S. J., Gamblin, S. J. and 

Yaffe, M. B. (1999). "Structural Analysis of 14-3-3 Phosphopeptide Complexes 

Identifies a Dual Role for the Nuclear Export Signal of 14-3-3 in Ligand Binding." 

Molecular cell 4(2): 153-166. 

Robbins, S. M., Quintrell, N. A. and Bishop, J. M. (1995). "Myristoylation and differential 

palmitoylation of the HCK protein-tyrosine kinases govern their attachment to 

membranes and association with caveolae." Mol Cell Biol 15(7): 3507-15. 

Rodgers, W., Crise, B. and Rose, J. K. (1994). "Signals determining protein tyrosine kinase 

and glycosyl-phosphatidylinositol-anchored protein targeting to a glycolipid-

enriched membrane fraction." Mol Cell Biol 14(8): 5384-91. 

Rommel, C., Radziwill, G., Lovric, J., Noeldeke, J., Heinicke, T., Jones, D., Aitken, A. and 

Moelling, K. (1996). "Activated Ras displaces 14-3-3 protein from the amino terminus 

of c-Raf-1." Oncogene 12(3): 609-19. 

Rong, J., Li, S., Sheng, G., Wu, M., Coblitz, B., Li, M., Fu, H. and Li, X. J. (2007). "14-3-3 

protein interacts with Huntingtin-associated protein 1 and regulates its trafficking." J 

Biol Chem 282(7): 4748-56. 

Rosen, D. R. (1993). "Mutations in Cu/Zn superoxide dismutase gene are associated with 

familial amyotrophic lateral sclerosis." Nature 364(6435): 362. 

Rosenquist, M. (2003). "14-3-3 proteins in apoptosis." Braz J Med Biol Res 36(4): 403-8. 

Rosenquist, M., Sehnke, P., Ferl, R. J., Sommarin, M. and Larsson, C. (2000). "Evolution of the 

14-3-3 Protein Family: Does the Large Number of Isoforms in Multicellular 

Organisms Reflect Functional Specificity?" Journal of Molecular Evolution 51(5): 446-

458. 

Sadik, G., Tanaka, T., Kato, K., Yamamori, H., Nessa, B. N., Morihara, T. and Takeda, M. 

(2009). "Phosphorylation of tau at Ser214 mediates its interaction with 14-3-3 protein: 

implications for the mechanism of tau aggregation." Journal of Neurochemistry 

108(1): 33-43. 

Sasaki, H., Fukazawa, T., Yanagihara, T., Hamada, T., Shima, K., Matsumoto, A., Hashimoto, 

K., Ito, N., Wakisaka, A. and Tashiro, K. (1996). "Clinical features and natural history 

of spinocerebellar ataxia type 1." Acta Neurol Scand 93(1): 64-71. 

Sato, S., Chiba, T., Sakata, E., Kato, K., Mizuno, Y., Hattori, N. and Tanaka, K. (2006). "14-3-

3eta is a novel regulator of parkin ubiquitin ligase." Embo J 25(1): 211-21. 

Scheid, M. P. and Woodgett, J. R. (2003). "Unravelling the activation mechanisms of protein 

kinase B/Akt." FEBS Letters 546(1): 108-112. 



 

- 221 - 

 

Schengrund, C.-L. (2010). "Lipid rafts: Keys to neurodegeneration." Brain Research Bulletin 

82: 7-17. 

Schols, L., Linnemann, C. and Globas, C. (2008). "Electrophysiology in spinocerebellar 

ataxias: spread of disease and characteristic findings." Cerebellum 7(2): 198-203. 

Schulte, T., Paschke, K. A., Laessing, U., Lottspeich, F. and Stuermer, C. A. (1997). "Reggie-1 

and reggie-2, two cell surface proteins expressed by retinal ganglion cells during 

axon regeneration." Development 124(2): 577-87. 

Sekimoto, T., Fukumoto, M. and Yoneda, Y. (2004). "14-3-3 suppresses the nuclear 

localization of threonine 157-phosphorylated p27(Kip1)." Embo J 23(9): 1934-42. 

Selenko, P., Gregorovic, G., Sprangers, R., Stier, G., Rhani, Z., Kramer, A. and Sattler, M. 

(2003). "Structural basis for the molecular recognition between human splicing 

factors U2AF65 and SF1/mBBP." Mol Cell 11(4): 965-76. 

Serra, H. G., Byam, C. E., Lande, J. D., Tousey, S. K., Zoghbi, H. Y. and Orr, H. T. (2004). 

"Gene profiling links SCA1 pathophysiology to glutamate signaling in Purkinje cells 

of transgenic mice." Hum Mol Genet 13(20): 2535-43. 

Serra, H. G., Duvick, L., Zu, T., Carlson, K., Stevens, S., Jorgensen, N., Lysholm, A., Burright, 

E., Zoghbi, H. Y., Clark, H. B., Andresen, J. M. and Orr, H. T. (2006). "RORalpha-

mediated Purkinje cell development determines disease severity in adult SCA1 

mice." Cell 127(4): 697-708. 

Servadio, A., Koshy, B., Armstrong, D., Antalffy, B., Orr, H. T. and Zoghbi, H. Y. (1995). 

"Expression analysis of the ataxin-1 protein in tissues from normal and 

spinocerebellar ataxia type 1 individuals." Nat Genet 10(1): 94-8. 

Shenoy-Scaria, A. M., Dietzen, D. J., Kwong, J., Link, D. C. and Lublin, D. M. (1994). 

"Cysteine3 of Src family protein tyrosine kinase determines palmitoylation and 

localization in caveolae." J Cell Biol 126(2): 353-63. 

Sichtig, N., Silling, S. and Steger, G. (2007). "Papillomavirus binding factor (PBF)-mediated 

inhibition of cell growth is regulated by 14-3-3beta." Arch Biochem Biophys 464(1): 

90-9. 

Siddique, T. and Ajroud-Driss, S. (2011). "Familial amyotrophic lateral sclerosis, a historical 

perspective." Acta Myol 30(2): 117-20. 

Simons, K. and Ehehalt, R. (2002). "Cholesterol, lipid rafts, and disease." J Clin Invest 110(5): 

597-603. 

Simons, K. and Ikonen, E. (1997). "Functional rafts in cell membranes." Nature 387(6633): 

569-572. 

Simons, K. and Toomre, D. (2000). "Lipid rafts and signal transduction." Nat Rev Mol Cell 

Biol 1(1): 31-9. 



 

- 222 - 

 

Simons, K. and Vaz, W. L. (2004). "Model systems, lipid rafts, and cell membranes." Annu 

Rev Biophys Biomol Struct 33: 269-95. 

Simons, M., Keller, P., Dichgans, J. and Schulz, J. B. (2001). "Cholesterol and Alzheimer's 

disease: Is there a link?" Neurology 57(6): 1089-1093. 

Singer, S. J. and Nicolson, G. L. (1972). "The Fluid Mosaic Model of the Structure of Cell 

Membranes." Science 175(4023): 720-731. 

Skinner, P. J., Koshy, B. T., Cummings, C. J., Klement, I. A., Helin, K., Servadio, A., Zoghbi, 

H. Y. and Orr, H. T. (1997). "Ataxin-1 with an expanded glutamine tract alters 

nuclear matrix-associated structures." Nature 389(6654): 971-4. 

Sluchanko, N. N., Sudnitsyna, M. V., Seit-Nebi, A. S., Antson, A. A. and Gusev, N. B. (2011). 

"Properties of the Monomeric Form of Human 14-3-3zeta Protein and Its Interaction 

with Tau and HspB6." Biochemistry 50(45): 9797-9808. 

Sprenger, R. R., Speijer, D., Back, J. W., De Koster, C. G., Pannekoek, H. and Horrevoets, A. J. 

(2004). "Comparative proteomics of human endothelial cell caveolae and rafts using 

two-dimensional gel electrophoresis and mass spectrometry." Electrophoresis 25(1): 

156-72. 

Stahl, N., Borchelt, D. R., Hsiao, K. and Prusiner, S. B. (1987). "Scrapie prion protein contains 

a phosphatidylinositol glycolipid." Cell 51(2): 229-240. 

Stien, R. (2005). "Shakespeare on parkinsonism." Mov Disord 20(6): 768-9. 

Strittmatter, W. J., Saunders, A. M., Schmechel, D., Pericak-Vance, M., Enghild, J., Salvesen, 

G. S. and Roses, A. D. (1993). "Apolipoprotein E: high-avidity binding to beta-

amyloid and increased frequency of type 4 allele in late-onset familial Alzheimer 

disease." Proc Natl Acad Sci U S A 90(5): 1977-81. 

Suginta, W., Karoulias, N., Aitken, A. and Ashley, R. H. (2001). "Chloride intracellular 

channel protein CLIC4 (p64H1) binds directly to brain dynamin I in a complex 

containing actin, tubulin and 14-3-3 isoforms." Biochem J 359(Pt 1): 55-64. 

Sunayama, J., Tsuruta, F., Masuyama, N. and Gotoh, Y. (2005). "JNK antagonizes Akt-

mediated survival signals by phosphorylating 14-3-3." The Journal of Cell Biology 

170(2): 295-304. 

Tanahashi, H. and Tabira, T. (1999). "Isolation of human delta-catenin and its binding 

specificity with presenilin 1." Neuroreport 10(3): 563-8. 

Tanaka, K., Shouguchi-Miyata, J., Miyamoto, N. and Ikeda, J. E. (2004). "Novel nuclear 

shuttle proteins, HDBP1 and HDBP2, bind to neuronal cell-specific cis-regulatory 

element in the promoter for the human Huntington's disease gene." J Biol Chem 

279(8): 7275-86. 

Tanner, C. M. (2003). "Is the cause of Parkinson's disease environmental or hereditary? 

Evidence from twin studies." Adv Neurol 91: 133-42. 



 

- 223 - 

 

Taverna, E., Saba, E., Rowe, J., Francolini, M., Clementi, F. and Rosa, P. (2004). "Role of Lipid 

Microdomains in P/Q-type Calcium Channel (Cav2.1) Clustering and Function in 

Presynaptic Membranes." Journal of Biological Chemistry 279(7): 5127-5134. 

Taylor, K. S., Counsell, C. E., Gordon, J. C. and Harris, C. E. (2005). "Screening for 

undiagnosed parkinsonism among older people in general practice." Age Ageing 

34(5): 501-4. 

Taylor, P., Blackburn, E., Sheng, Y. G., Harding, S., Hsin, K. Y., Kan, D., Shave, S. and 

Walkinshaw, M. D. (2008). "Ligand discovery and virtual screening using the 

program LIDAEUS." British Journal of Pharmacology 153(S1): S55-S67. 

Terry, R. D. and Davies, P. (1980). "Dementia of the Alzheimer type." Annu Rev Neurosci 3: 

77-95. 

Thompson, T. E. and Tillack, T. W. (1985). "Organization of glycosphingolipids in bilayers 

and plasma membranes of mammalian cells." Annu Rev Biophys Biophys Chem 14: 

361-86. 

Thorson, J. A., Yu, L. W. K., Hsu, A. L., Shih, N.-Y., Graves, P. R., Tanner, J. W., Allen, P. M., 

Piwnica-Worms, H. and Shaw, A. S. (1998). "14-3-3 Proteins Are Required for 

Maintenance of Raf-1 Phosphorylation and Kinase Activity." Molecular and Cellular 

Biology 18(9): 5229-5238. 

Todd, A., Cossons, N., Aitken, A., Price, G. B. and Zannis-Hadjopoulos, M. (1998). "Human 

Cruciform Binding Protein Belongs to the 14-3-3 Family " Biochemistry 37(40): 

14317-14325. 

Toker, A., Sellers, L. A., Amess, B., Patel, Y., Harris, A. and Aitken, A. (1992). "Multiple 

isoforms of a protein kinase C inhibitor (KCIP-1/14-3-3) from sheep brain. Amino 

acid sequence of phosphorylated forms." Eur J Biochem 206(2): 453-61. 

Tong, X., Gui, H., Jin, F., Heck, B. W., Lin, P., Ma, J., Fondell, J. D. and Tsai, C. C. (2011). 

"Ataxin-1 and Brother of ataxin-1 are components of the Notch signalling pathway." 

EMBO Rep 12(5): 428-35. 

Tsai, C. C., Kao, H. Y., Mitzutani, A., Banayo, E., Rajan, H., McKeown, M. and Evans, R. M. 

(2004). "Ataxin 1, a SCA1 neurodegenerative disorder protein, is functionally linked 

to the silencing mediator of retinoid and thyroid hormone receptors." Proc Natl 

Acad Sci U S A 101(12): 4047-52. 

Tsuda, H., Jafar-Nejad, H., Patel, A. J., Sun, Y., Chen, H. K., Rose, M. F., Venken, K. J., Botas, 

J., Orr, H. T., Bellen, H. J. and Zoghbi, H. Y. (2005). "The AXH domain of Ataxin-1 

mediates neurodegeneration through its interaction with Gfi-1/Senseless proteins." 

Cell 122(4): 633-44. 

Tsui-Pierchala, B. A., Encinas, M., Milbrandt, J. and Johnson, E. M., Jr. (2002). "Lipid rafts in 

neuronal signaling and function." Trends Neurosci 25(8): 412-7. 



 

- 224 - 

 

Tsuruta, F., Sunayama, J., Mori, Y., Hattori, S., Shimizu, S., Tsujimoto, Y., Yoshioka, K., 

Masuyama, N. and Gotoh, Y. (2004). "JNK promotes Bax translocation to 

mitochondria through phosphorylation of 14-3-3 proteins." EMBO J 23(8): 1889-1899. 

Twelvetrees, A. E., Yuen, E. Y., Arancibia-Carcamo, I. L., MacAskill, A. F., Rostaing, P., 

Lumb, M. J., Humbert, S., Triller, A., Saudou, F., Yan, Z. and Kittler, J. T. (2010). 

"Delivery of GABAARs to synapses is mediated by HAP1-KIF5 and disrupted by 

mutant huntingtin." Neuron 65(1): 53-65. 

Tzivion, G., Luo, Z. and Avruch, J. (1998). "A dimeric 14-3-3 protein is an essential cofactor 

for Raf kinase activity." Nature 394(6688): 88-92. 

Umahara, T. and Uchihara, T. (2010). "14-3-3 proteins and spinocerebellar ataxia type 1: from 

molecular interaction to human neuropathology." Cerebellum 9(2): 183-9. 

Umahara, T., Uchihara, T., Yagishita, S., Nakamura, A., Tsuchiya, K. and Iwamoto, T. (2007). 

"Intranuclear immunolocalization of 14-3-3 protein isoforms in brains with 

spinocerebellar ataxia type 1." Neurosci Lett 414(2): 130-5. 

Van Der Hoeven, P. C., Van Der Wal, J. C., Ruurs, P., Van Dijk, M. C. and Van Blitterswijk, J. 

(2000). "14-3-3 isotypes facilitate coupling of protein kinase C-zeta to Raf-1: negative 

regulation by 14-3-3 phosphorylation." Biochem J 345 Pt 2: 297-306. 

van Heusden, G. P. H., van der Zanden, A. L., Ferl, R. J. and Steensma, H. Y. (1996). "Four 

Arabidopsis thaliana 14-3-3 protein isoforms can complement the lethal yeast bmh1 

bmh2 double disruption." FEBS Letters 391(3): 252-256. 

Vessie, P. R. (1932). "Original article on the transmission of Huntington's chorea for 300 years 

- the Bures family group." J. Nerv. Ment. Dis. 76(553-573). 

Vey, M., Pilkuhn, S., Wille, H., Nixon, R., DeArmond, S. J., Smart, E. J., Anderson, R. G., 

Taraboulos, A. and Prusiner, S. B. (1996). "Subcellular colocalization of the cellular 

and scrapie prion proteins in caveolae-like membranous domains." Proc Natl Acad 

Sci U S A 93(25): 14945-9. 

Vierra-Green, C. A., Orr, H. T., Zoghbi, H. Y. and Ferrington, D. A. (2005). "Identification of a 

novel phosphorylation site in ataxin-1." Biochim Biophys Acta 1744(1): 11-8. 

Vincenz, C. and Dixit, V. M. (1996). "14-3-3 Proteins Associate with A20 in an Isoform-

specific Manner and Function Both as Chaperone and Adapter Molecules." Journal 

of Biological Chemistry 271(33): 20029-20034. 

Volkening, K., Leystra-Lantz, C., Yang, W., Jaffee, H. and Strong, M. J. (2009). "Tar DNA 

binding protein of 43 kDa (TDP-43), 14-3-3 proteins and copper/zinc superoxide 

dismutase (SOD1) interact to modulate NFL mRNA stability. Implications for 

altered RNA processing in amyotrophic lateral sclerosis (ALS)." Brain Res 1305: 168-

82. 

Waelter, S., Boeddrich, A., Lurz, R., Scherzinger, E., Lueder, G., Lehrach, H. and Wanker, E. 

E. (2001). "Accumulation of mutant huntingtin fragments in aggresome-like 



 

- 225 - 

 

inclusion bodies as a result of insufficient protein degradation." Mol Biol Cell 12(5): 

1393-407. 

Wakui, H., Wright, A. P., Gustafsson, J. and Zilliacus, J. (1997). "Interaction of the ligand-

activated glucocorticoid receptor with the 14-3-3 eta protein." J Biol Chem 272(13): 

8153-6. 

Walker, F. O. (2007). "Huntington's disease." Lancet 369(9557): 218-28. 

Wang, B., Yang, H., Liu, Y. C., Jelinek, T., Zhang, L., Ruoslahti, E. and Fu, H. (1999). 

"Isolation of high-affinity peptide antagonists of 14-3-3 proteins by phage display." 

Biochemistry 38(38): 12499-504. 

Wang, H., Zhang, L., Liddington, R. and Fu, H. (1998). "Mutations in the hydrophobic 

surface of an amphipathic groove of 14-3-3zeta disrupt its interaction with Raf-1 

kinase." J Biol Chem 273(26): 16297-304. 

Wang, Y., Meriin, A. B., Zaarur, N., Romanova, N. V., Chernoff, Y. O., Costello, C. E. and 

Sherman, M. Y. (2009). "Abnormal proteins can form aggresome in yeast: 

aggresome-targeting signals and components of the machinery." Faseb J 23(2): 451-

63. 

Watanabe, M., Dykes-Hoberg, M., Cizewski Culotta, V., Price, D. L., Wong, P. C. and 

Rothstein, J. D. (2001). "Histological Evidence of Protein Aggregation in Mutant 

SOD1 Transgenic Mice and in Amyotrophic Lateral Sclerosis Neural Tissues." 

Neurobiology of Disease 8(6): 933-941. 

WHO (1998). "Human transmissible spongiform encephalopathies." Wkly Epidemiol Rec 

73(47): 361-372. 

Will, R. G., Ironside, J. W., Zeidler, M., Cousens, S. N., Estibeiro, K., Alperovitch, A., Poser, 

S., Pocchiari, M., Hofman, A. and Smith, P. G. (1996). "A new variant of Creutzfeldt-

Jakob disease in the UK." Lancet 347(9006): 921-5. 

Wiltfang, J., Otto, M., Baxter, H. C., Bodemer, M., Steinacker, P., Bahn, E., Zerr, I., 

Kornhuber, J., Kretzschmar, H. A., Poser, S., Ruther, E. and Aitken, A. (1999). 

"Isoform pattern of 14-3-3 proteins in the cerebrospinal fluid of patients with 

Creutzfeldt-Jakob disease." J Neurochem 73(6): 2485-90. 

Wischik, C. M., Novak, M., ThÃ¸gersen, H. C., Edwards, P. C., Runswick, M. J., Jakes, R., 

Walker, J. E., Milstein, C., Roth, M. and Klug, A. (1988). "Isolation of a fragment of 

tau derived from the core of the paired helical filament of Alzheimer disease." 

Proceedings of the National Academy of Sciences 85(12): 4506-4510. 

Wolozin, B., Kellman, W., Ruosseau, P., Celesia, G. G. and Siegel, G. (2000). "Decreased 

prevalence of Alzheimer disease associated with 3-hydroxy-3-methyglutaryl 

coenzyme A reductase inhibitors." Arch Neurol 57(10): 1439-43. 

Woodcock, J. M., Ma, Y., Coolen, C., Pham, D., Jones, C., Lopez, A. F. and Pitson, S. M. 

(2010). "Sphingosine and FTY720 directly bind pro-survival 14-3-3 proteins to 

regulate their function." Cellular Signalling 22(9): 1291-1299. 



 

- 226 - 

 

Woodcock, J. M., Murphy, J., Stomski, F. C., Berndt, M. C. and Lopez, A. F. (2003). "The 

dimeric versus monomeric status of 14-3-3zeta is controlled by phosphorylation of 

Ser58 at the dimer interface." J Biol Chem 278(38): 36323-7. 

Wu, C., Butz, S., Ying, Y.-s. and Anderson, R. G. W. (1997). "Tyrosine Kinase Receptors 

Concentrated in Caveolae-like Domains from Neuronal Plasma Membrane." Journal 

of Biological Chemistry 272(6): 3554-3559. 

Wu, S. Y., McNae, I., Kontopidis, G., McClue, S. J., McInnes, C., Stewart, K. J., Wang, S., 

Zheleva, D. I., Marriage, H., Lane, D. P., Taylor, P., Fischer, P. M. and Walkinshaw, 

M. D. (2003). "Discovery of a Novel Family of CDK Inhibitors with the Program 

LIDAEUS: Structural Basis for Ligand-Induced Disordering of the Activation Loop." 

Structure (London, England : 1993) 11(4): 399-410. 

Xiao, B., Smerdon, S. J., Jones, D. H., Dodson, G. G., Soneji, Y., Aitken, A. and Gamblin, S. J. 

(1995). "Structure of a 14-3-3 protein and implications for coordination of multiple 

signalling pathways." Nature 376(6536): 188-91. 

Xu, J., Kao, S. Y., Lee, F. J., Song, W., Jin, L. W. and Yankner, B. A. (2002). "Dopamine-

dependent neurotoxicity of alpha-synuclein: a mechanism for selective 

neurodegeneration in Parkinson disease." Nat Med 8(6): 600-6. 

Yacoubian, T. A., Slone, S. R., Harrington, A. J., Hamamichi, S., Schieltz, J. M., Caldwell, K. 

A., Caldwell, G. A. and Standaert, D. G. (2010). "Differential neuroprotective effects 

of 14-3-3 proteins in models of Parkinson's disease." Cell Death and Dis 1(1): e2. 

Yaffe, M. B. (2002a). "How do 14-3-3 proteins work?-- Gatekeeper phosphorylation and the 

molecular anvil hypothesis." FEBS Lett 513(1): 53-7. 

Yaffe, M. B. (2002b). "How do 14-3-3 proteins work? - Gatekeeper phosphorylation and the 

molecular anvil hypothesis." FEBS Letters 513(1): 53-57. 

Yaffe, M. B., Rittinger, K., Volinia, S., Caron, P. R., Aitken, A., Leffers, H., Gamblin, S. J., 

Smerdon, S. J. and Cantley, L. C. (1997). "The structural basis for 14-3-

3:phosphopeptide binding specificity." Cell 91(7): 961-71. 

Yamauchi, T., Nakata, H. and Fujisawa, H. (1981). "A new activator protein that activates 

tryptophan 5-monooxygenase and tyrosine 3-monooxygenase in the presence of 

Ca2+-, calmodulin-dependent protein kinase. Purification and characterization." J 

Biol Chem 256(11): 5404-9. 

Yoshida, K., Yamaguchi, T., Natsume, T., Kufe, D. and Miki, Y. (2005). "JNK phosphorylation 

of 14-3-3 proteins regulates nuclear targeting of c-Abl in the apoptotic response to 

DNA damage." Nat Cell Biol 7(3): 278-285. 

Yue, S., Serra, H. G., Zoghbi, H. Y. and Orr, H. T. (2001). "The spinocerebellar ataxia type 1 

protein, ataxin-1, has RNA-binding activity that is inversely affected by the length of 

its polyglutamine tract." Hum Mol Genet 10(1): 25-30. 

Zajchowski, L. D. and Robbins, S. M. (2002). "Lipid rafts and little caves. Compartmentalized 

signalling in membrane microdomains." Eur J Biochem 269(3): 737-52. 



 

- 227 - 

 

Zhai, J., Strom, A. L., Kilty, R., Venkatakrishnan, P., White, J., Everson, W. V., Smart, E. J. and 

Zhu, H. (2009). "Proteomic characterization of lipid raft proteins in amyotrophic 

lateral sclerosis mouse spinal cord." Febs J 276(12): 3308-23. 

Zhang, L., Wang, H., Liu, D., Liddington, R. and Fu, H. (1997). "Raf-1 kinase and exoenzyme 

S interact with 14-3-3zeta through a common site involving lysine 49." J Biol Chem 

272(21): 13717-24. 

Zhang, T., Zhang, X. and Sun, Z. (2010). "Global network analysis of lipid-raft-related 

proteins reveals their centrality in the network and their roles in multiple biological 

processes." J Mol Biol 402(4): 761-73. 

Zheng, Y. Z. and Foster, L. J. (2009a). "Biochemical and proteomic approaches for the study 

of membrane microdomains." J Proteomics 72(1): 12-22. 

Zheng, Y. Z. and Foster, L. J. (2009b). "Contributions of quantitative proteomics to 

understanding membrane microdomains." J Lipid Res 50(10): 1976-85. 

Zhu, P., Sang, Y., Xu, H., Zhao, J., Xu, R., Sun, Y., Xu, T., Wang, X., Chen, L., Feng, H., Li, C. 

and Zhao, S. (2005). "ADAM22 plays an important role in cell adhesion and 

spreading with the assistance of 14-3-3." Biochemical and Biophysical Research 

Communications 331(4): 938-946. 

Zhu, P. c., Sun, Y., Xu, R., Sang, Y., Zhao, J., Liu, G., Cai, L., Li, C. and Zhao, S. (2003). "The 

interaction between ADAM 22 and 14-3-3zeta: regulation of cell adhesion and 

spreading." Biochemical and Biophysical Research Communications 301(4): 991-999. 

Zhuang, L., Lin, J., Lu, M. L., Solomon, K. R. and Freeman, M. R. (2002). "Cholesterol-rich 

Lipid Rafts Mediate Akt-regulated Survival in Prostate Cancer Cells." Cancer 

Research 62(8): 2227-2231. 

Zipp, F., Waiczies, S., Aktas, O., Neuhaus, O., Hemmer, B., Schraven, B., Nitsch, R. and 

Hartung, H. P. (2007). "Impact of HMG-CoA reductase inhibition on brain 

pathology." Trends Pharmacol Sci 28(7): 342-9. 

Zoghbi, H. Y. (1995). "Spinocerebellar ataxia type 1." Clin Neurosci 3(1): 5-11. 

Zoghbi, H. Y. and Orr, H. T. (2000). "Glutamine repeats and neurodegeneration." Annu Rev 

Neurosci 23: 217-47. 

 

 



 

- 228 - 

 

Publications 

 

 Brechin C, Houston NP, Clokie S, Fismen L, Peden A, Falconer H, Fu H, and 

Aitken A (2012), 14-3-3 isoforms and interacting proteins in lipid raft membranes. 

FEBS J, revised version submitted. 

 Houston NP, Brechin C, Falconer H, Vigbedor M, Maltas E and Aitken A (2010), 

14-3-3 Isoforms in Lipid Rafts: The Role in Neurodegenerative Diseases. J. 

Neurochem. 113 (Suppl. 1), 12. 

 Houston N, Brechin C, Falconer H , Vigbedor M , Aitken A (2009),  14-3-3  

Protein interactions and drug discovery in Parkinson’s disease. Neurodegenerative 

Diseases. Suppl 6: 222. 

 


	PhD coversheet April 2012
	Houston2012

