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Abstract 

Topical inflammatory diseases are most commonly treated with 

glucocorticoids, such as hydrocortisone, which have debilitating side effects including 

a range of systemic metabolic side effects as well as local effects such as to thin the 

skin and delay wound healing. Safer anti-inflammatory therapies are required and this 

thesis investigates a novel drug called 5α-tetrahydrocorticosterone (5α-THB) as a safer 

topical anti-inflammatory treatment. The main foci of this thesis are to assess the 

effects of 5αTHB on wound repair, as well as to characterise its mechanisms of action. 

Defective angiogenesis accounts for impaired wound healing brought about by 

steroids in many cases. 5αTHB suppressed vessel growth in a mouse ex vivo model of 

angiogenesis, but was less potent in this action than hydrocortisone, suggesting a safer 

therapeutic profile. To understand the underlying mechanisms, the effect of 5αTHB 

on gene expression in the mouse aorta during angiogenesis was compared with that of 

dexamethasone (a selective GR agonist) and hydrocortisone. Whereas dexamethasone 

and hydrocortisone caused differential expression of genes involved in inflammatory 

signalling and extracellular matrix remodelling, 5αTHB did not and instead selectively 

regulated Pecam1, involved in vasculature remodelling. This suggested that 5αTHB 

suppresses angiogenesis through different mechanisms of action in comparison to 

dexamethasone, and thus may not act through GR. Supporting this, dexamethasone 

increased the abundance of GR responsive transcripts (Per1, Hsd11b1, Fkbp51) 

whereas 5αTHB only increased the abundance of Per1. Furthermore, whereas the GR 

antagonist RU486 attenuated dexamethasone-regulation of genes, it had no effect on 

gene regulation by 5αTHB.  
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To assess GR-mediation of 5αTHB effects, model systems were used to investigate 

whether 5αTHB is able to bind GR, stimulate its nuclear translocation, and initiate 

changes in its interaction with co regulator peptides. In a competitive binding assay, 

dexamethasone and hydrocortisone both decreased the fluorescence polarisation of a 

GR specific ligand, consistent with GR binding. In contrast, 5αTHB only displaced the 

specific GR ligand at very high concentrations. In terms of nuclear translocation, 

5αTHB also did not have an effect on the ratio of GR in the nucleus and cytoplasm 

(N/C) of A549 cells, suggesting that GR remained predominantly in the cytoplasm 

after 5αTHB treatment and did not translocate into the nucleus, whereas 

dexamethasone increased the N/C ratio at three different time points. Likewise, 

whereas dexamethasone stimulated changes in the interaction between GR and many 

co regulator peptides, 5αTHB had no effect. Collectively these results from model 

systems suggest that 5αTHB does not work through the conventional GR mechanism 

of action. 

Finally, a hypothesis generating approach was taken in order to gain hints into how 

5αTHB may be working. A microarray was performed to compare the effects of 

5αTHB and dexamethasone on gene expression in human peripheral blood derived 

macrophages. Both dexamethasone and 5αTHB were able to cause differential 

expression of genes in these cells. However unexpectedly, out of the 350 genes 

regulated by dexamethasone, and the 165 genes regulated by 5αTHB, only 35 genes 

were commonly regulated by both steroids. This suggested that 5αTHB mainly acts 

through different mechanisms to dexamethasone also in macrophages. In an 

enrichment analysis of the differentially expressed genes, whereas the NFκB signalling 

pathway was the top enriched pathway in genes only regulated by dexamethasone, 
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enriched pathways in genes only regulated by 5αTHB included those related to 

phagocytosis, the TGF-beta signalling pathway, and Th1-Th2 cell differentiation.  

This thesis therefore provides evidence to suggest that 5αTHB may provide a safer 

topical anti-inflammatory steroid, less harmful to wound repair processes. In addition, 

the mechanisms underlying the action of 5αTHB differ from those of classical GCs, 

consistent with its reduced side-effect profile. Other potential mechanisms, such as 

actions through the mineralocorticoid receptor, must now be explored. 
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Lay Summary 

Inflammatory diseases of the skin, such as eczema, are most commonly treated with a 

type of drug called a glucocorticoid. But although glucocorticoids are good at reducing 

inflammation, they have side effects inside the body and on the skin. Glucocorticoids 

cause colouring and thinning of the skin, and also prevent wounds from healing. 

The way in which glucocorticoids prevent wounds from healing is by slowing the 

growth of new blood vessels, so that oxygen and nutrients cannot enter the wound. 

A safer drug is needed which treats inflammation but does not slow the growth of new 

blood vessels. Our group have found a new drug called 5αTHB, which also treats 

inflammation but so far seems to have fewer side effects than glucocorticoids inside 

the body. This thesis explores why this is and also tests whether 5αTHB also has fewer 

side effects than glucocorticoids on the skin. 

The results show that in mice, 5αTHB was less damaging to new blood vessel growth 

than glucocorticoids, and so is likely to be safer when applied to the skin. In 

comparison to glucocorticoids, 5αTHB also had different effects on the genes of both 

mice and humans. These differences could explain why 5αTHB is able to treat 

inflammation without having side effects. 

In summary, this thesis gives evidence that 5αTHB is safer than glucocorticoids for 

treating skin inflammation. It also provides a starting point for understanding why this 

is, and future work will look further into this. 
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1. Introduction 

Inflammatory and immune diseases are highly prevalent, causing significant 

morbidity and mortality worldwide, as well as high costs for society (Amaya-Amaya, 

Montoya-Sanchez et al. 2014, Straub and Schradin 2016). Examples include 

rheumatoid arthritis (RA), systemic lupus erythematosus (SLE) and multiple sclerosis 

(Straub and Schradin 2016). It is reported that almost 5% of the European population 

are affected by an autoimmune disease, and one of the most serious complications is 

the increased risk of cardiovascular disease (CVD) (Amaya-Amaya, Montoya-

Sanchez et al. 2014, Generali, Folci et al. 2017). This is due both to a modulation of 

risk factors and to accelerated atherosclerosis and vascular damage resulting from the 

inflammatory condition (Amaya-Amaya, Montoya-Sanchez et al. 2014, Generali, 

Folci et al. 2017, Mahmoudi, Aslani et al. 2017). In fact in RA, which has an overall 

prevalence of 1% worldwide, an increased CVD risk is responsible for around 50% of 

premature deaths (Mahmoudi, Aslani et al. 2017). Inflammatory skin disease is also a 

huge burden, with eczema being reported to affect around 230 million people globally 

(Vos, Flaxman et al. 2012). The most effective anti-inflammatory agents known, for 

which 40 billion prescriptions are given out each year in the UK, are glucocorticoid 

(GC) steroid hormones (Nixon, Upreti et al. 2012, Yang, Ray et al. 2012, Newton 

2013, Nixon, Andrew et al. 2013). However, GC therapy is associated with debilitating 

side effects, such as impaired wound healing, obesity, type 2 diabetes and osteoporosis 

(Wei, MacDonald et al. 2004, De Bosscher 2010, Nixon, Upreti et al. 2012, Yang, Ray 

et al. 2012, Nixon, Andrew et al. 2013). Much work has focused on improving GC 

therapies. An alternative therapy is the use of nonsteroidal anti-inflammatory drugs 
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(NSAIDS). However these also have adverse effects, particularly gastrointestinal (GI) 

toxicity characterised by GI irritation, ulcers and bleeding. NSAIDS work in different 

ways to GCs, mainly by inhibiting the cyclooxygenase (COX) enzymes involved in 

prostaglandin biosynthesis. Since the COX 1 isozyme is expressed mainly in the 

stomach, whereas high COX 2 levels are present in inflammatory cells, selective COX 

2 inhibitors were produced in an attempt to eliminate the GI side-effects.  These drugs 

seemed promising but later had to be withdrawn from the market when their more 

serious cardiovascular side effects were identified (Suthar and Sharma 2014). There 

remains a large unmet medical need for safer therapies that maintain anti-inflammatory 

properties comparable to GCs but lack adverse effects (Vandevyver, Dejager et al. 

2013). This thesis will explore the properties of an alternative anti-inflammatory 

steroid, believed to have a better therapeutic index than conventional glucocorticoids. 

1.1. Glucocorticoids 

GCs (Figure 1.1) are steroid hormones composed of 21 carbon atoms and containing 

the general cyclo pentane perhydrophenanthrene ring structure as a scaffold. GCs such 

as hydrocortisone and dexamethasone are often administered pharmaceutically. 

However, GCs are also produced endogenously to enable the body to respond 

appropriately to stress (both emotional and physical) (De Bosscher 2010). GCs 

therefore have many roles in the regulation and maintenance of a wide variety of 

homeostatic and metabolic processes (De Bosscher 2010, Vandevyver, Dejager et al. 

2013). One role is in the metabolism of glucose, reflected in the name glucocorticoid 

(glucose+ cortex+ steroid). The many functions of GCs make them essential for health, 

and indeed either chronic elevation or chronic reduction of endogenous 

glucocorticoids produce the pathological conditions Cushing’s syndrome and 
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Addison’s disease, respectively (Nixon, Upreti et al. 2012, Kadmiel and Cidlowski 

2013). Tissues which possess high GC levels include the liver, adipose tissue, muscles 

and bone. GC function in muscle involves the breakdown of protein into amino acids. 

In Cushing’s syndrome GC levels are chronically elevated leading to symptoms of 

muscle wasting, growth retardation in children, and myopathy (Stahn, Lowenberg et 

al. 2007). Osteoporosis is another symptom of Cushing’s syndrome and occurs as a 

result of GC signalling in bone (Stahn, Lowenberg et al. 2007). Another important role 

of GCs is glucose homeostasis, since GCs stimulate gluconeogenesis and decrease 

glucose utilisation, acting in an antagonistic manner to insulin and ultimately 

increasing blood glucose levels (De Bosscher 2010). This is reflected in the common 

symptoms of insulin resistance and glucose intolerance in Cushing’s syndrome (De 

Bosscher, Beck et al. 2010). GCs also have effects on fatty acid metabolism (De 

Bosscher 2010). These effects on glucose and fat metabolism result in a plethora of 

increased metabolic and cardiovascular risk factors in Cushing’s syndrome, including 

central adiposity, dyslipidaemia, obesity, hypertension and type II diabetes (De 

Bosscher, Beck et al. 2010, Yang, Nixon et al. 2011). 
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Figure 1.1: Glucocorticoid (GC) chemical structures. The endogenous GC in humans is 
cortisol (Nixon, Upreti et al. 2012), and in rodents is corticosterone, which is also present in 
human to a small extent (Nixon, Upreti et al. 2012, Chapman, Holmes et al. 2013). 
Dexamethasone is a synthetic GC which is commonly used pharmaceutically (Bledsoe, 
Montana et al. 2002, Nixon, Upreti et al. 2012, Kadmiel and Cidlowski 2013). Cortisol is also 
used as a pharmaceutical under the name ‘Hydrocortisone’. Synthetic GCs have a similar 
structure to the natural GCs, but have been modified to achieve increased selectivity and 
binding at the glucocorticoid receptor (GR)(Nixon, Upreti et al. 2012).  

 

 

Endogenous glucocorticoids are synthesised from the precursor cholesterol, in a 

series of enzymatic changes, known as ‘steroidogenesis’, mediated by hydroxysteroid 

dehydrogenases (HSD family) and cytochrome P450 oxidases (CYP family) (Figure 

1.2)(Cain and Cidlowski 2017, Desmet and De Bosscher 2017, Clayton, Jones et al. 

2018). Although local GC production has been reported in other tissue, including the 

thymus, intestine and skin, the major site of glucocorticoid steroidogenesis is in the 

cortex region of the adrenal glands (Cain and Cidlowski 2017, Clayton, Jones et al. 

2018). Cortisol is the main endogenous human GC and corticosterone the main rodent 

GC, since rodents lack the adrenal 17α-hydroxylase enzyme. Corticosterone is also 
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present in humans, although it circulates at levels 10-30 times lower than cortisol 

(Nixon, Upreti et al. 2012). The synthesis and release of endogenous GC is controlled 

in a circadian and ultradian manner by the hypothalamic-pituitary-adrenal (HPA) axis 

(Figure 1.3) (Cain and Cidlowski 2017, Desmet and De Bosscher 2017, Clayton, Jones 

et al. 2018). The HPA axis can also be activated to produce GCs in response to various 

stressors (such as psychological distress, physical strain, tissue trauma and 

inflammatory cytokines) (Cain and Cidlowski 2017). In health, GCs can then act via 

negative feedback and limit their own production through suppression of the HPA axis 

(Clayton, Jones et al. 2018). 
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Figure 1.2: Glucocorticoid biosynthetic pathways occurring in the adrenal cortex. 
Glucocorticoids are synthesised from cholesterol through a series of reactions as shown.  HSD 
= hydroxysteroid dehydrogenase. 
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Figure 1.3: Glucocorticoid regulation by the hypothalamic-pituitary-adrenal (HPA) axis. 
In response to circadian cues, stress, or inflammatory cytokines, the hypothalamus produces 
corticotropin-releasing hormone (CRH) and arginine vasopressin (AVP), which then act on the 
anterior pituitary gland, causing it to synthesise and secrete adrenocorticotropin hormone 
(ACTH). When ACTH binds receptors on adrenocortical cells, steroidogenesis is stimulated 
and GC produced (Kadmiel and Cidlowski 2013, Cain and Cidlowski 2017). Image adapted 
from reference (Cain and Cidlowski 2017) and ‘Psychology’ book, ‘Stress, lifestyle and health’ 
chapter, by Eric B. Weiser, January 2014. 
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Once released into the circulation from the adrenal cortex, ~90% endogenous 

GC becomes bound to plasma proteins, mainly the plasma protein corticosteroid-

binding globulin (CBG) whereas 10% remains unbound. CBG-bound GR is protected 

from metabolic degradation. Since GCs are small hydrophobic molecules the unbound 

fraction can readily diffuse across membranes and exert their biological effects (Nixon, 

Andrew et al. 2013), or are themselves metabolised in the liver and then excreted from 

either the kidney (95%) or gut (5%)(Schacke, Docke et al. 2002). However there is 

also evidence of selective active transport of glucocorticoids out of tissues. For 

example, the ATP (adenosine 5’ –triphosphate)-binding cassette (ABC) transporters 

have been described which differentially transport cortisol and corticosterone out of 

target cells, providing further control over their availability (Nixon, Mackenzie et al. 

2016). Although active systemic GC levels are controlled by the HPA axis, CBG 

protein in serum, and ABC transporters in cells, GC availability in tissues and cells 

can be further controlled enzymatically through the action of metabolic enzymes, best 

exemplified by 11β-hydroxysteroid dehydrogenases (11β HSDs). 11βHSD2 is able to 

convert the active GC (cortisol in human, corticosterone in rodent) into its inactive 

form (cortisone in human, 11-dehydrocorticosterone in rodent), whilst 11βHSD1 

predominantly catalyses the reverse reaction (Draper and Stewart 2005, Walker 2007, 

Tiganescu, Walker et al. 2011, Chapman, Holmes et al. 2013). Differences in 

11βHSD1 and 11βHSD2 abundance and activities, therefore, provide an extra control 

to determine GC sensitivity at a cell and tissue specific level. More recently my 

supervisor’s group has shown that the enzyme 5-reductase 1 (5αR1) also modulates 

GC activity (Livingstone, Di Rollo et al. 2014, Livingstone, Di Rollo et al. 2017). The 

5α-reductases convert GCs into their 5α-reduced forms and are involved in GC 
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clearance in the liver as the first step of increasing polarity to promote excretion. Aside 

from the liver, 5αR1 is also expressed in other metabolic tissues such as adipose and 

skeletal muscle (Russell and Wilson 1994, Upreti, Hughes et al. 2014). The loss or 

inhibition of 5αR1 has been linked to an adverse metabolic phenotype in humans and 

rodents including development of a fatty liver, decreased insulin sensitivity, increased 

weight gain, as well as HPA suppression, all of which are consistent with the effects 

of GC excess (Livingstone, Di Rollo et al. 2014, Livingstone, Barat et al. 2015). 

Once inside a target cell, GCs exert their main effects through binding to the 

glucocorticoid receptor (GR; unified nuclear receptor nomenclature NR3C1) which is 

expressed in almost all cells and tissues (De Bosscher 2010, Kadmiel and Cidlowski 

2013). Endogenous GCs can also bind to the Mineralocorticoid receptor (MR, NR3C2) 

with a 10 fold higher affinity than they do to the GR (Schacke, Docke et al. 2002, 

Vandevyver, Dejager et al. 2013). However, although GC binding to MR is important 

for some physiological effects, GC selectivity for GR is achieved in most cellular 

contexts due to the more limited/ tissue specific expression of MR, and also as a result 

of the activity of the 11βHSD2 isozyme which is often co-expressed with MR. Hence, 

11βHSD2 provides a barrier against GC binding to MR, achieving GR selectivity 

(Nixon, Andrew et al. 2013).  Many synthetic glucocorticoids (such as dexamethasone) 

also exist which, in contrast, often do not bind MR since they were designed to be 

selective for GR.  
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1.2. The Glucocorticoid Receptor  

The glucocorticoid receptor is a 94 kD modular protein. It is a member of the 

nuclear receptor superfamily of transcription factors which includes the progesterone 

receptor (PR), androgen receptor (AR), estrogen receptor (ER) and mineralocorticoid 

receptor (MR) (Kadmiel and Cidlowski 2013, Nixon, Andrew et al. 2013, De 

Bosscher, Beck et al. 2016). GR is activated through ligand binding, with different 

ligands resulting in distinct conformational changes and, hence, a different spectrum 

of effects. Encoded by the NR3C1 gene, GR consists of 9 exons (Kino 2000, Cain and 

Cidlowski 2017). Exon 1 is an untranslated region, exon 2 encodes an N-terminal 

transactivation domain (NTD), exons 3 and 4 encode a DNA-binding domain (DBD), 

and exons 5-9 encode a ligand binding domain (LBD) as well as a hinge region which 

separates the DBD and LBD (Kino 2000). Like the other nuclear receptors, GR is 

therefore composed of three major functional domains: The NTD, DBD and LBD 

(Figure 1.4)(Kadmiel and Cidlowski 2013, Cain and Cidlowski 2017). 

 

Figure 1.4: Domain structure of the Glucocorticoid Receptor (GR). GR is composed of an 
N-terminal domain (NTD) including the AF1 transactivation region; a central DNA binding 
domain (DBD) region containing ‘zinc fingers’ responsible for binding DNA; and a C terminal 
domain (CTD) separated from the DBD by a hinge region. The C terminal domain contains 
another transactivation region AF2 , and also interacts with various stabilising proteins (for 
example Heat shock proteins (HSP) 90, 56 and 70, p23 and Src) as well as folding to form a 
ligand binding domain (LBD) where ligand becomes bound. Figure adapted from reference 
(Buttgereit, Straub et al. 2004). 
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1.2.1. Functional domains of GR 

The NTD (residues 1-417) is the least conserved domain of GR (Kadmiel and 

Cidlowski 2013). This contains a transcriptional activation function (AF1) which 

mediates binding to diverse molecules necessary for the initiation of transcription, such 

as coactivators, chromatin modulators, and transcriptional machinery (Kino 2000, 

Kadmiel and Cidlowski 2013). Whereas in its basal state AF1 is relatively unfolded, it 

adopts a more complex helical structure in response to binding of cofactors (Kino 

2000). It also contains several serine residues (S203, S211 and S226) capable of being 

phosphorylated to modulate GR function (Nixon, Andrew et al. 2013). 

The central DBD (residues 418-487) is the most conserved region throughout the 

nuclear receptor superfamily (Kino 2000, Kadmiel and Cidlowski 2013). It contains 

two zinc finger motifs, each composed of a zinc ion held between four cysteine 

residues and followed by an α-helix (Kino 2000). The zinc finger motifs mediate 

genomic interaction with specific DNA sequences called glucocorticoid responsive 

elements (Kino 2000, Kadmiel and Cidlowski 2013, Cain and Cidlowski 2017). The 

DBD also contains a nuclear localisation function, a dimerisation interface, and has 

additional roles in transcription factor interaction (Schacke, Rehwinkel et al. 2006, De 

Bosscher 2010, Yang, Ray et al. 2012, Vandevyver, Dejager et al. 2013). 

Finally, the well conserved C terminal LBD is comprised of 11 α-helices and 4 

small β-sheets that fold to form a hydrophobic pocket for high affinity binding to 

specific ligands (Kino 2000, Kadmiel and Cidlowski 2013, Cain and Cidlowski 2017). 

The LBD also contains a transcriptional activation function (AF2) to recruit 
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coactivators in a ligand dependent manner (Yang, Ray et al. 2012). Like the DBD, the 

LBD is also involved in nuclear localisation and dimer formation (De Bosscher 2010). 

 

1.2.2. ‘Classical’ genomic signalling by GC 

Many mechanisms exist by which GC exert their effects. These mechanisms 

are complex and depend on the ligand structure. The ‘classical’ GC signalling 

mechanism involves its binding to GR, followed by translocation of GR into the 

nucleus, where GR either binds to DNA or to other transcription factors, resulting in 

direct or indirect gene regulation, respectively. These components of ‘classical GC 

signalling’ are described in sections 1.2.2.1 – 1.2.2.3. However, it is now known that 

signalling by GC is much more complex, and additional mechanisms are described in 

1.2.3. 

1.2.2.1.  GR binding and nuclear translocation 

In the absence of ligand, GR is reported to constantly shuttle through the 

nuclear pore channel between the nucleus and cytoplasm but to reside predominantly 

in the cytoplasm (De Bosscher 2010, Yang, Ray et al. 2012, Vandevyver, Dejager et 

al. 2013). In the cytoplasm, GR exists as part of a multiprotein complex (Cain and 

Cidlowski 2017, Scheschowitsch, Leite et al. 2017, Vandewalle, Luypaert et al. 2018) 

consisting of GR interacting with two molecules of HSP90, additional heat shock 

proteins (HSP70, HSP56), members of the Mitogen-activated protein kinase (MAPK) 

family, and other chaperones and co-chaperones (p23, p60, Src, hop) (Stahn, 

Lowenberg et al. 2007, De Bosscher, Beck et al. 2010, Yang, Ray et al. 2012, 

Chinenov, Gupte et al. 2013, Vandevyver, Dejager et al. 2013, Keenan, Lew et al. 
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2016, Scheschowitsch, Leite et al. 2017, Whirledge and DeFranco 2018). These 

interactions are required for efficient folding of GR into a stable conformation, 

preventing its degradation and enhancing its affinity for ligand (Kino 2000). The 

region of GR responsible for forming these stabilising interactions is demonstrated in 

figure 1.4 and is close to the ligand binding domain (Stahn, Lowenberg et al. 2007, De 

Bosscher, Beck et al. 2010, Yang, Ray et al. 2012, Chinenov, Gupte et al. 2013, 

Vandevyver, Dejager et al. 2013). Additionally the complex contains an 

immunophilin, which is either FK506 binding protein 51 (FKBP4) or FK506 binding 

protein 52 (FKBP5)(Bekhbat, Rowson et al. 2017). FKBP4 and FKBP5 compete with 

each other for binding to HSP90 (Bekhbat, Rowson et al. 2017). Whereas interaction 

with FKBP4 stimulates GR nuclear translocation, this movement is inhibited by 

FKBP5, which is reported to have a reduced interaction with dynein and also to mask 

nuclear localisation signals (NLS) (Bekhbat, Rowson et al. 2017, Clayton, Jones et al. 

2018). 

Upon ligand binding to the GR LBD, a conformational change takes place in 

the receptor, resulting in partial dissociation of the complex, and in FKBP5 

replacement with FKBP4 (Keenan, Lew et al. 2016, Cain and Cidlowski 2017, Desmet 

and De Bosscher 2017, Clayton, Jones et al. 2018, Vandewalle, Luypaert et al. 2018). 

This conformational change exposes NLS and results in GR now favouring nuclear 

import over nuclear export, as the NLS interacts with dynein (a motor protein) and 

dynein then associates with microtubules to transport the GR complex to the nuclear 

pore (Bekhbat, Rowson et al. 2017, Scheschowitsch, Leite et al. 2017). At the nuclear 

pore GR interacts with importins and nucleoporins, allowing it to enter the nucleus, 

dissociate from further chaperones and induce its genomic effects (Scheschowitsch, 
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Leite et al. 2017). The extent of GR nuclear translocation is, therefore, in part dictated 

by the balance of FKBP4 and FKBP5, as well as by exposure of NLS (of which there 

are two for GR: NL1 and NL2), which often depends on the ligand structure (Kino 

2000, Bekhbat, Rowson et al. 2017, Scheschowitsch, Leite et al. 2017). Once in the 

nucleus GR modulates gene transcription. The ligand receptor complex is then 

degraded, as GR dissociates from the ligand and is cleared from DNA (Kino 2000). 

GR is then recycled, slowly translocating back to the cytoplasm, reportedly mediated 

by the Ca2+ binding protein calreticulin, and finally the GR chaperone complex 

reforms (Kino 2000, Cain and Cidlowski 2017). 

1.2.2.2. Direct gene regulation by GR (Transactivation) 

One of the most widely reported mechanisms of gene regulation is the direct 

binding of GR, using the two zinc fingers contained within its DBD, to glucocorticoid 

response elements (GREs) in the promoter regions of target genes (Kino 2000). 

Classical GREs consist of inverted repeats of hexameric half sites separated by a 

sequence of three base pairs, with the consensus sequence GGAACAnnnTGTTCT, 

where ‘n’ is any base (Cain and Cidlowski 2017). Each half site binds one GR 

molecule, and these two bound GR molecules form multiple contacts and subsequently 

dimerise (Kino 2000); although it is still under debate whether the dimerisation occurs 

prior to DNA binding and in which subcellular compartment (Scheschowitsch, Leite 

et al. 2017). GR binding and dimerisation results in a conformational change 

(Scheschowitsch, Leite et al. 2017) and leads to the recruitment of coactivator proteins 

via the GR activation functions AF-1 and AF-2 (Kino 2000, Keenan, Lew et al. 2016, 

Whirledge and DeFranco 2018). Examples of these coactivator proteins are the steroid 

receptor coactivator 1 (SRC1, also known as NCOA1), glucocorticoid receptor- 
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interacting protein 1 (GRIP1, also known as NCOA2), and p300/CBP (Keenan, Lew 

et al. 2016, Cain and Cidlowski 2017). The recruitment of coactivator proteins induces 

chromatin remodelling, subsequently allowing the pre-initiation complex to form 

(including the recruitment of RNA polymerase II) and resulting in the activation of 

gene transcription (Keenan, Lew et al. 2016, Cain and Cidlowski 2017). Variation in 

GRE sequences, such as the 3 non-specific spacer nucleotides, influences the 3D 

structure of the bound GR dimer, leading to variations in its surface conformation 

(Kino 2000, Scheschowitsch, Leite et al. 2017). This in turn determines which 

transcriptional co-activators and chromatin-remodelling complexes are recruited, and 

modulates the transcriptional output of GR (Kino 2000, Scheschowitsch, Leite et al. 

2017). The DNA GRE sequence itself is, therefore, described to be critical in 

determining GR transcriptional activity (Kino 2000, Cohen and Steger 2017, 

Scheschowitsch, Leite et al. 2017), although other mechanisms are also involved in 

directing GR to these sites (Desmet and De Bosscher 2017).  This mechanism of 

action, demonstrated in figure 1.5a, is known as transactivation (TA) and these dimeric 

GRE sites are mainly associated with an increase in gene expression (Cohen and Steger 

2017). 

1.2.2.3. Indirect gene regulation by GR (Transrepression) 

GR can also indirectly regulate gene transcription, and the main mechanism 

through which it does this is by targeting transcription factors. This alternative mode 

of GR-mediated gene regulation occurs when GR monomers (Scheschowitsch, Leite 

et al. 2017) physically interact with, or ‘tether’, to another transcription factor without 

contacting DNA, although the TF may or may not be bound to DNA itself (Cain and 

Cidlowski 2017, Desmet and De Bosscher 2017, Scheschowitsch, Leite et al. 2017, 



46 
 

Vandewalle, Luypaert et al. 2018). This protein-protein interaction, demonstrated in 

figure 1.5d, alters the ability of both GR and the tethered transcription factor to 

influence gene transcription, such as by modulating their ability to bind DNA or to 

recruit co regulators and the transcriptional machinery (Kino 2000, Cain and 

Cidlowski 2017). The process has been termed transrepression (TR) and is usually 

associated with gene down-regulation (Desmet and De Bosscher 2017). It is reported 

to be particularly important for the suppression of inflammatory and immune 

responses by glucocorticoids (Kino 2000, Cain and Cidlowski 2017).  

1.2.3. Additional ‘non-classical’ genomic GC signalling 

Increases and decreases in gene expression were originally assumed to largely 

depend on transactivation (1.2.2.2) and transrepression (1.2.2.3) mechanisms, 

respectively. However, the situation is now known to be more complex. Direct GR 

binding to DNA can also result in suppression of gene expression, whereby GR 

interacts with repressive DNA motifs, termed negative GREs (nGREs)(figure 

1.5b)(Kino 2000, Cain and Cidlowski 2017, Cohen and Steger 2017, Scheschowitsch, 

Leite et al. 2017). nGREs consist of an inverted palindrome separated by 0-2 

nucleotide pairs, with the consensus sequence CTCC(n)0-2GGAGA (Kino 2000, Cain 

and Cidlowski 2017). Two monomers bind to nGREs with inverted polarity compared 

to how they bind GREs (Bekhbat, Rowson et al. 2017). Whereas at GRE the GR 

monomers bind on the same side of the DNA strand in a head to head fashion, at a 

nGRE they bind in a head to tail fashion on opposite sides of DNA (Kino 2000, 

Bekhbat, Rowson et al. 2017, Vandewalle, Luypaert et al. 2018). This orientation 

prevents GR dimerization (Bekhbat, Rowson et al. 2017, Scheschowitsch, Leite et al. 

2017), ensuring that two single monomers are bound to nGREs (Scheschowitsch, Leite 
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et al. 2017), and leading to the formation of a repressing complex through the 

recruitment of histone deacetylases and of co-repressors such as nuclear receptor co-

repressor 1 (NCOR1) and silencing mediator of retinoid and thyroid hormone 

receptors (SMRT) (Keenan, Lew et al. 2016, Cain and Cidlowski 2017, Vandewalle, 

Luypaert et al. 2018). This results in the suppression of gene transcription (Keenan, 

Lew et al. 2016, Scheschowitsch, Leite et al. 2017). In addition to GREs and nGREs, 

half site GREs are now also known to exist (figure 1.5c). These consist of only half of 

the classic GRE binding sequence (Desmet and De Bosscher 2017). GR binds to half 

site GREs as a monomer (Cohen and Steger 2017, Desmet and De Bosscher 2017, 

Scheschowitsch, Leite et al. 2017, Clayton, Jones et al. 2018), and has already been 

shown to drive transcription in both liver and primary macrophages in this way 

(Scheschowitsch, Leite et al. 2017). Interestingly, it was demonstrated in mouse liver 

that, under physiological conditions, GR monomer binding to half site motifs occurs 

more frequently than GR dimer binding to GREs (De Bosscher, Beck et al. 2016, 

Scheschowitsch, Leite et al. 2017), whilst administration of exogenous GCs causes a 

preference for GR homodimer binding at GRE sites, which occurs at the cost of 

monomer binding to half site GREs (De Bosscher, Beck et al. 2016, Vandewalle, 

Luypaert et al. 2018). It has, therefore, been suggested that GR monomers are more 

important for the physiological roles of GCs, and GR dimers for the pharmaceutical 

and stress functions (Vandewalle, Luypaert et al. 2018). Another layer of complexity 

is added by the fact that GR has also recently been reported to form heterodimers with 

MR and regulate gene expression this way (Trapp, Rupprecht et al. 1994, Liu, Wang 

et al. 1995, Savory, Prefontaine et al. 2001, Mifsud and Reul 2016). Furthermore, as 

well as translocating into the cell nucleus (Kino 2000) the ligand bound GR is also 
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reported to translocate into mitochondria and bind to mitochondrial DNA, stimulating 

gene expression and mediating apoptosis (Cain and Cidlowski 2017). 

Additionally, indirect methods of gene regulation other than transrepression 

exist. GR may compete with other TFs for essential co-activators, preventing TF 

activity (Cain and Cidlowski 2017).  Furthermore, in a slight variation of the TR 

mechanism, GR may interact with transcription factors whilst itself bound to DNA. 

This typically occurs at DNA sites containing both a responsive element for a distinct 

transcription factor as well as a half site GRE (Figure 1.5e) (Kino 2000, Cain and 

Cidlowski 2017, Whirledge and DeFranco 2018). This type of site is known as a 

‘composite element’ (Kino 2000, Cain and Cidlowski 2017, Vandewalle, Luypaert et 

al. 2018) and monomer binding at these sites has also been suggested to stabilise the 

interaction between monomer and nearby TFs in a process known as ‘half site 

facilitated tethering’ (Cohen and Steger 2017, Desmet and De Bosscher 2017). 

Binding at composite elements can lead to gene repression due to an interruption in 

TF-DNA binding, as described for the TR mechanism. However, it can also lead to 

gene activation in some cases, and this has been explained in terms of the bound TFs 

acting as pioneer factors in order to facilitate access of GR to the GRE half site. This 

mechanism is known as ‘assisted loading’ and alternatively (depending on the binding 

site composition and local chromatin conditions) may involve GR acting as the pioneer 

factor to aid TF binding to its response element (Kino 2000). Whether gene induction 

or suppression occurs at a composite element often depends on the TF subunit 

composition, with both directions of GR regulation being described for various STAT 

family members as well as for AP1 depending on the context (Cain and Cidlowski 

2017).   
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Figure 1.5: Genomic signalling mechanisms of the Glucocorticoid Receptor (GR): Glucocorticoids (GC) diffuse through cell membrane and bind 
to GR, causing it to dissociate from a stabilising complex and translocate into the nucleus to exert its effects. In a mechanism known as Transactivation 
(a) GR may bind as a homodimer to glucocorticoid response elements (GRE) in the promoter region of target genes, which is usually associated with 
gene activation. It may also bind negative GRE (nGRE) as two GR monomers (b), usually associated with gene down regulation, or may bind as a 
monomer to a half-site GRE (c). Alternatively, GR monomers may tether to and suppress the activity of transcription factors (TF)(d) which are either 
unbound or bound to TF response elements (TFRE) on target genes. They may also bind at a ‘composite element’ € which has both a GRE for a GR 
monomer, and a TFRE for a TF. DNA helices are modified from the following source:  http://www.funkidslive.com/events/its-dnas-60th-birthday/#
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1.2.4. Non-genomic signalling of GCs 

Aside from genomic mechanisms which target DNA or transcription factors to 

regulate transcription/translation, non-genomic GC signalling is also known to occur 

and is thought to be particularly important for rapid GC effects. Whereas genomic GC 

effects usually occur within a few hours, more rapid GC actions have been 

demonstrated which, in contrast, occur within minutes. Non-genomic effects are 

reported to clearly contribute to the physiological and pharmaceutical effects of GCs, 

including the suppression of inflammation, as described in detail in section 1.3. GC 

modulation of brain function and behaviour is known to involve non-genomic 

mechanisms (Haller, Mikics et al. 2008) as is HPA axis regulation (Song and 

Buttgereit 2006). The mechanisms underpinning these non-genomic effects are diverse 

and vary according to the cell, tissue, species and steroid. However, they do appear to 

overlap and share some common signalling pathways; for example often involving 

calcium ions, protein kinase C (PKC), phospholipase C (PLC), cyclic adenosine 

monophosphate (cAMP), mitogen-activated protein kinases (MAPK), and tyrosine 

kinases (Wehling 1997, Falkenstein, Tillmann et al. 2000, Losel and Wehling 2003). 

Although a crossover between non-genomic and genomic mechanisms is known to 

exist it has not been widely explored (Haller, Mikics et al. 2008), and the genomic 

effects later arising from non-genomic signalling may be very important for function. 

(Losel and Wehling 2003).  

One non-genomic mechanism involves non-specific interactions with cell 

membranes, during which steroids intercalate into cell and mitochondrial membranes, 

thus influencing their physiochemical properties, although very high concentrations of 

GC are often required for this (Stahn, Lowenberg et al. 2007, Strehl and Buttgereit 
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2013). However, non-genomic GC effects may alternatively involve GC binding to the 

cytoplasmic GR (cGR) or to a membrane bound receptor (Buttgereit and Scheffold 

2002, Buttgereit, Straub et al. 2004, Song and Buttgereit 2006, Stahn, Lowenberg et 

al. 2007, Haller, Mikics et al. 2008, Strehl and Buttgereit 2013). cGR-mediated non-

genomic effects are based on the fact that GC binding causes the stabilised GR-multi 

protein complex to dissociate (Strehl and Buttgereit 2013). This promotes the release 

of cofactors (including of Src, HSPs, kinases such as MAPKs, and immunophilins) 

which mediate non-genomic intra-cellular signalling (Buttgereit and Scheffold 2002, 

Buttgereit, Straub et al. 2004, Stahn, Lowenberg et al. 2007, Haller, Mikics et al. 2008, 

Strehl and Buttgereit 2013). Alternatively, specific non-genomic effects of GCs can 

also occur through binding to receptors other than the classical GR. One example is 

the membrane variant of this receptor termed membrane GR (mGR)(Stahn, 

Lowenberg et al. 2007). mGR originates from the same gene as cGR but is suggested 

to vary through differential splicing, promoter switching or post translational editing 

(Stahn, Lowenberg et al. 2007). mGR was originally only known to exist in amphibian 

neuronal membranes, lymphoma and leukaemia cells (Buttgereit and Scheffold 2002, 

Buttgereit, Straub et al. 2004, Song and Buttgereit 2006, Stahn, Lowenberg et al. 

2007). It was later identified in PBMCs (monocytes and B lymphocytes) with the use 

of a high sensitivity immunofluorescence technique (Buttgereit, Straub et al. 2004, 

Stahn, Lowenberg et al. 2007). mGR exerts rapid effects through phosphorylation and 

dephosphorylation processes (Strehl and Buttgereit 2013). cGR and mGR have a 

similar capacity for binding to HSP and DNA binding, and they also possess similar 

phosphorylation patterns (Mitre-Aguilar, Cabrera-Quintero et al. 2015). However, 

there are also differences between mGR and cGR (as well as the difference in location) 
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such as different molecular weights and, interestingly, different ligand binding 

specificities. An example is that, whereas mGR was reported to bind dexamethasone 

and aldosterone but not hydrocortisone, cGR is known to bind hydrocortisone (Powell, 

Watson et al. 1999, Mitre-Aguilar, Cabrera-Quintero et al. 2015).  

A receptor other than the classical GR and mGR, through which non-genomic 

effects have been proposed to be mediated, is a 63 kDa acidic glycoprotein (Mitre-

Aguilar, Cabrera-Quintero et al. 2015), possessing completely different 

pharmacological characteristics from mGR, and originally described to share 

similarities with opioid receptors (Losel and Wehling 2003). Interestingly, cortisol and 

corticosterone bind to this receptor with high affinity and specificity, but other 

classical GR ligands such as dexamethasone and aldosterone do not (Rose and Moore 

1999, Falkenstein, Tillmann et al. 2000, Mitre-Aguilar, Cabrera-Quintero et al. 2015). 

However, a whole series of membrane proteins capable of GC binding appear to exist 

not just on the plasma membrane but also on other membranes such as the endoplasmic 

reticulum, intra cytoplasmic vesicles and mitochondria (Haller, Mikics et al. 2008). 

Glucocorticoid effects are also known to be mediated through allosteric actions at 

receptors for other hormones, and this has been reported for the GABA receptor 

(Tasker, Di et al. 2006). GABA receptors are proteins with allosteric binding sites not 

just for GABA neurotransmitters but also for benzodiazepines and barbiturates 

(Falkenstein, Tillmann et al. 2000). 3α,5α-tetrahydroprogesterone (3α5αTHP) and 

3α,5α-tetrahydrodeoxycorticosterone (3α,5αTHDOC) were the first steroids 

demonstrated to modulate neuronal excitability through interaction with GABA 

(Falkenstein, Tillmann et al. 2000) and a 3α OH group in the steroid A ring seems to 

allow the positive allosteric interaction.  
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1.4.  Achieving cell- and tissue-specific regulation by GR 

Despite ubiquitous expression of GR, and the fact that all cells have the same 

set of genes, the effects of GR are cell, tissue, context, and ligand specific (Cohen and 

Steger 2017, Vandewalle, Luypaert et al. 2018). This is because multiple factors 

determine responsiveness to GCs, hence leading to this specificity in GR 

transcriptional regulation.  

1.4.1. Chromatin Accessibility 

Chromatin accessibility is one factor contributing to cell and tissue specificity 

of GC effects. Section 1.2.3 described the various types of GR binding sites on DNA, 

however the accessibility of the binding sites for GR and TF depends on the local 

chromatin structure (Cohen and Steger 2017, Scheschowitsch, Leite et al. 2017, 

Clayton, Jones et al. 2018). In eukaryotic cells, DNA associates with various nuclear 

proteins such as histones and chromatin modifying factors. It wraps 1.67 turns around 

a histone octamer to form the smallest structural unit called a ‘nucleosome’, which 

then compacts further into a higher order chromatin (Kino 2000). It has been shown 

that up to 95% of GR occupancy occurs in pre-existing regions of accessible 

chromatin. However, this takes up only a subset of the existing binding sites, as the 

rest are inaccessible due to being buried in repressive chromatin structures (Cohen and 

Steger 2017, Vandewalle, Luypaert et al. 2018). Chromatin structure is organised 

differently depending on the tissue and cell type, and this is one reason why GR binds 

and regulates different genes in a cell specific manner (Cohen and Steger 2017, 

Scheschowitsch, Leite et al. 2017, Vandewalle, Luypaert et al. 2018). In vivo work 

suggests that GR on its own cannot remodel chromatin in order to access DNA in 

nucleosomes (Cohen and Steger 2017). However once bound to DNA it can further 



54 
 

remodel chromatin and, therefore, stimulate binding of other TFs (or vice versa) in a 

mechanism known as ‘assisted loading’ described to occur at ‘composite elements’ in 

section 1.2.3.2 (Cohen and Steger 2017). 

1.4.2. GR Isoforms 

Alternative splicing and transcription initiation of the NR3C1 gene gives rise 

to a variety of mRNA species. This and a further variety in translation initiation sites 

mean that many heterogeneous GR isoforms are produced, perhaps contributing to 

tissue specific functions (Kino 2000, Bekhbat, Rowson et al. 2017, Cain and Cidlowski 

2017, Cohen and Steger 2017, Desmet and De Bosscher 2017, Clayton, Jones et al. 

2018). 

The human GR gene contains 9 exons, and alternative splicing of the terminal 

exon (exon 9) generates the two major and most widely studied isoforms, the classic 

GRα and the non-ligand binding GRβ, with molecular weights of 97 and 94 kilo-

Daltons, respectively (Kino 2000, De Bosscher, Beck et al. 2016, Bekhbat, Rowson et 

al. 2017, Vandewalle, Luypaert et al. 2018). GRα and GRβ are both ubiquitously 

expressed and are highly homologous. They differ only after amino acid 727, after 

which GRα has an additional 50 amino acids in its C terminal region, whereas GRβ 

has an additional-non homologous 15 amino acids (Kino 2000). 

GRα is the traditional receptor isoform (Kino 2000) which acts as a transcription factor 

to influence gene expression and accounts for the classical functions of GR (Kino 

2000, Bekhbat, Rowson et al. 2017, Scheschowitsch, Leite et al. 2017, Vandewalle, 

Luypaert et al. 2018). In contrast, the GRβ isoform, does not bind glucocorticoid and 

cannot induce gene transcription in response to GC (Kino 2000, De Bosscher, Beck et 
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al. 2016, Bekhbat, Rowson et al. 2017, Vandewalle, Luypaert et al. 2018). This is 

because, whereas the NTD and DBD are the same in both isoforms, their LBD are 

different (Kino 2000). Specifically, helix 11 and 12 are disrupted in the LBD of GRβ, 

and these helices are crucial for forming the ligand binding pocket (Kino 2000, Cohen 

and Steger 2017). GRβ is able to interact with GREs in the nucleus using its DBD, and 

it is thought to negatively regulate the activity of the GRα isoform (De Bosscher, Beck 

et al. 2016, Bekhbat, Rowson et al. 2017, Cohen and Steger 2017, Scheschowitsch, 

Leite et al. 2017). Consistent with this, GRβ attenuated GRα-mediated transrepression 

of IL6 and TNFα genes (Kino 2000) and was also shown to have a negative effect on 

GRE-mediated transactivation by GCs, such as of the MKP-1 and PEPCK genes (Kino 

2000). Clinical studies have also provided evidence that GRβ inhibits GRα activity, 

and increased GRβ expression is thought to be a mechanism of glucocorticoid 

resistance in inflammatory disease (Bekhbat, Rowson et al. 2017). Cytokine signalling 

increases expression of GRβ relative to GRα, and increased GRβ expression is 

associated with reduced sensitivity to GCs in patients with various inflammatory and 

immune system diseases (Kino 2000, Cohen and Steger 2017, Vandewalle, Luypaert 

et al. 2018). GRβ has been proposed to act as an inhibitor through several mechanisms. 

This includes competing with GRα for GRE sites, binding directly to GRα to prevent 

its activity, or by using its AF1 domain to compete for co-activator proteins (Kino 

2000). However, due to the low expression of GRβ in comparison to GRα, its 

inhibitory effect has been doubted by some and is not universally accepted (Bekhbat, 

Rowson et al. 2017). Interestingly, it was recently shown that GRβ has intrinsic 

transcriptional activity, independent of its effects to inhibit GRα-activity (Kino 2000, 

Keenan, Lew et al. 2016, Cain and Cidlowski 2017, Scheschowitsch, Leite et al. 2017). 



56 
 

For example, GRβ has been shown to stimulate STAT1 expression through GREs, and 

was shown to modulate gene expression both in GRα-dependent and -independent 

manners in the liver (Kino 2000). However, the physiological role of this activity is 

not yet known (Kino 2000). Furthermore, although currently there are no known 

endogenous ligands for GRβ, it has recently been demonstrated that it can bind the GR 

antagonist mifepristone (RU486) in the same ligand binding pocket and orientation as 

GRα (Lewis-Tuffin, Jewell et al. 2007, Ligr, Li et al. 2012, Min, Perera et al. 2018). 

Although GRβ is located predominantly in the nucleus (Bekhbat, Rowson et al. 2017, 

Cohen and Steger 2017, Vandewalle, Luypaert et al. 2018), RU486 also stimulates 

cytoplasmic GRβ to undergo nuclear translocation and to regulate gene expression in 

an antagonistic manner (Lewis-Tuffin, Jewell et al. 2007, Min, Perera et al. 2018). This 

is because despite the lack of helix 12, the GRβ/ RU486 complex preferentially 

interacts with a co-repressor, but not with a coactivator, with an affinity similar to that 

of the GRα/RU486 complex (Min, Perera et al. 2018). 

As well as alternative splicing, further GR isoforms are produced due to the 

presence of 8 different translation initiation sites, beginning at amino acids 1 (GRα-

A), 27 (GRα-B), 86 (GRα-C1), 90 (GRα-C2), 98 (GRα-C3), 316 (GRα-D1), 331 

(GRα-D2) and 336 (GRα-D3). Since all initiation sites are present on the NTD, both 

GRα and GRβ are thought to give rise to a similar amount of isoforms (Kino 2000). 

With regard to the GRα isoforms, whilst all are capable of nuclear translocation in 

response to ligand, in the absence of ligand they have different cytoplasmic and nuclear 

distribution patterns (Kino 2000). Furthermore, the isoforms vary in their ability to 

transactivate and transrepress genes, reported to be in part due to distinct chromatin 

modulatory activity (Kino 2000, Bekhbat, Rowson et al. 2017). Differences in 
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expression of these diverse isoforms could partly explain the cell-specific responses to 

GCs (Cain and Cidlowski 2017, Vandewalle, Luypaert et al. 2018). 

The various splice variants and translational isoforms of GR are demonstrated in figure 

1.6. 
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Figure 1.6. Glucocorticoid Receptor (GR) Isoforms: Alternative splicing and translation 
initiation of a single GR primary transcript give rise to diverse GR isoforms. Five splice variants 
(GRα, GRβ, GRγ, GR-A, and GR-P) have been identified, each with 8 potential translational 

protein isoforms (A, B, C1, C2, C3, D1, D2, and D3). Image adapted from (Cain and Cidlowski 
2015).  
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1.4.3. Post Translational Modifications 

Post translational modifications (PTM) of GR also contribute to the diversity 

of glucocorticoid signalling, by regulating GR activity (Keenan, Lew et al. 2016). 

Aspects of GR activity which are influenced by PTM include nuclear translocation, 

effects on gene transcription, protein interactions and receptor degradation (Cain and 

Cidlowski 2017, Whirledge and DeFranco 2018). 

Phosphorylation is a commonly reported post-translational modification. The 

NTD of GR is extensively phosphorylated, and contains at least 5 phosphorylation 

sites (Kino 2000, Cohen and Steger 2017, Clayton, Jones et al. 2018) whereby a serine 

residue can be phosphorylated in response to GC (Bekhbat, Rowson et al. 2017). 

Several kinases phosphorylate GR, including mitogen activated protein kinases 

(MAPKs), cyclin-dependent kinases (CDKs), and glycogen synthase kinase 3 

(GSK3)(Kino 2000, Cohen and Steger 2017). Phosphorylation can alter GR 

transcriptional activity either globally or in a gene specific manner, by influencing GR 

recruitment to target genes (Bekhbat, Rowson et al. 2017, Clayton, Jones et al. 2018). 

As mentioned in section 1.2.1, many serine residues located inside the AF1 domain of 

GR can be phosphorylated, which alters its interaction with cofactors and its 

subsequent transcriptional regulation (Kino 2000). GR phosphorylation at certain 

residues is often ligand selective, and has been shown to correlate with GR 

transcriptional activity (Keenan, Lew et al. 2016). Various GR phosphorylation sites 

have been functionally characterised (Clayton, Jones et al. 2018). GR Serine211 

residue can be phosphorylated by p38 MAPK and this is associated with increased 

nuclear translocation, cofactor recruitment and an enhancement of transcriptional 

activity (Kino 2000, Grose, Werner et al. 2002, Bekhbat, Rowson et al. 2017, Cohen 
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and Steger 2017). Adenosine 5’monophosphate-activated protein kinase (AMPK) 

activates p38 MAPK, and is therefore able to indirectly phosphorylate GR (Kino 

2000). In contrast, phosphorylation of the GR Serine226 residue by c-Jun N-terminal 

kinases (JNKs) suppresses transcriptional activity, and this is reported to be due to its 

increased nuclear export (Kino 2000, Cohen and Steger 2017). 

1.4.4. Micro RNAs 

Further GR regulation appears to be mediated by microRNAs (miRNAs) which 

are short single stranded RNAs, around 19-22 nucleotide bases long (Kino 2000, 

Clayton, Jones et al. 2018). miRNAs are transcribed mainly by RNA polymerase II 

either from miRNA clusters or from within protein-coding or non-coding genes (Kino 

2000, Clayton, Jones et al. 2018). They can interact with mRNA causing its 

degradation, or can inhibit transcriptional initiation, both resulting in post-

transcriptional down-regulation of protein expression (Clayton, Jones et al. 2018). It 

is estimated that miRNAs can regulate as much as 60% of the mammalian 

transcriptome, and although individual mRNAs only have subtle effects on gene 

expression, the cumulative effects of several miRNAs on a biological process may be 

much more profound (Clayton, Jones et al. 2018). miRNAs are known to negatively 

regulate steroidogenesis, and to also influence GC availability through modulating 

11βHSD enzyme expression (Clayton, Jones et al. 2018). Furthermore, it is reported 

that several miRNAs regulate inflammatory and immune responses, some of which are 

induced by GCs (De Bosscher, Beck et al. 2016, Clayton, Jones et al. 2018). mRNAs 

may, therefore, influence GR signalling through effects on its ligand, or alternatively 

by associating with GR itself to influence signalling (De Bosscher, Beck et al. 2016). 
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1.4.5. Ligand Selectivity 

Crucially, the spectra of effects which result from GR activation depend on the 

ligand structure. Different ligands can activate distinct GR-regulated genes and 

signalling pathways, resulting in different pharmacological outcomes (De Bosscher, 

Beck et al. 2016, Keenan, Lew et al. 2016). This results from the fact that GR exhibits 

a high level of flexibility, and, therefore, the conformational change which results from 

their activation is highly ligand-dependent (De Bosscher, Beck et al. 2016, 

Vandewalle, Luypaert et al. 2018). Consequently, different ligands lead to varying 

patterns of GR co-factor recruitment, dimerization, nuclear translocation and 

transcriptional activity (De Bosscher, Beck et al. 2016, Scheschowitsch, Leite et al. 

2017). This raises the possibility of designing ligands which selectively activate some 

GR effects over others, in order to improve the safety and effectiveness of GCs 

(Keenan, Lew et al. 2016). This theme is discussed further in sections 1.6 onwards, 

since the focus of this thesis is a particular compound which provides promise as a 

selective GR ligand to treat inflammatory diseases. 

1.4.  Pharmaceutical use of GCs to treat inflammation 

1.4.1. Introduction to inflammation 

Inflammation is fundamental to the immune system’s response to infection, 

irritation or injury. It is normally initiated with the binding of a foreign molecule 

(which may be a protein, nucleic acid or an endotoxin such as LPS) to a specific pattern 

recognition receptor (PRR) such as a Toll like receptor (TLR) on the surface of 

immune and neighbouring cells. Binding to these receptors activates signalling 

cascades which ultimately lead to activation of key inflammatory transcription factors 
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such NFκB, AP1, IRF and STAT. Activation of pro-inflammatory transcription factors 

is a crucial step during an inflammatory response as it leads to increased expression of 

many key anti-inflammatory molecules, such as the IL6, IFNα and TNFα cytokines. 

These inflammatory mediators then induce changes in, for example, vascular 

permeability and immune cell recruitment, which ultimately lead to the successful 

clearance of infection (Chinenov, Gupte et al. 2013). 

1.4.2. History of anti-inflammatory GC use 

          Hench and co-workers, in 1948, were the first to demonstrate the therapeutic use 

of glucocorticoids to suppress inflammation, when they used cortisone in the treatment 

of rheumatoid arthritis (Hench 1950). For this work they later won a Nobel Prize, and 

since then it has become commonplace to use GCs for the treatment of a wide range 

of acute and chronic inflammatory and immune diseases (Schacke, Schottelius et al. 

2004, Yang, Ray et al. 2012). Cortisol is now regularly administered under the name 

of ‘hydrocortisone’ which was first introduced in the early 1950s (Schacke, Docke et 

al. 2002). However, since GR signalling underpins many processes other than just 

inflammation, any exogenously administered GC not only targets inflammatory cells 

but all others in which GCs are active, hence resulting in the detrimental side effects. 

Consequently, the long term use of GCs is associated with increased risk of death from 

cardiovascular disease (Souverein, Berard et al. 2004, Wei, MacDonald et al. 2004) 

with phenotypes strongly resembling those in patients with Cushing’s syndrome in 

whom endogenous GC levels are high (Nixon, Upreti et al. 2012). In addition to these 

increased disease risks, long term administration of GCs is also known to suppress the 

HPA axis, in turn resulting in maladaptive behaviour and increased susceptibility to 

future inflammatory insult (Stahn, Lowenberg et al. 2007). It is, therefore, clear that 



63 
 

new drugs, which retain anti-inflammatory ability but do not cause these side-effects, 

or at least have a reduced side-effect profile, are urgently required. Many synthetic 

glucocorticoids have been developed over the years, a common one being 

dexamethasone (Figure 1.1). Synthetic GCs generally possess a similar steroid 

scaffold but have structural modifications to improve potency as well as specificity for 

the GR over MR since 11βHSD2 often does not metabolise synthetic GCs in the same 

way as endogenous GCs. Importantly, some synthetic GCs are even predominantly 

reduced by 11βHSD2 rather than oxidised. As a result the co expression of 11βHSD2 

with MR is often not sufficient for synthetic GCs to achieve GR selectivity  (Best, 

Nelson et al. 1997, Wamil, Andrew et al. 2008, Nixon, Upreti et al. 2012, Kadmiel and 

Cidlowski 2013). Additional attention has also been paid to the pharmacokinetics of 

drugs in order to reduce side-effects and improve the therapeutic index (Schacke, 

Schottelius et al. 2004, Schacke, Rehwinkel et al. 2006). A big improvement in 

synthetic topical GC use was marked by the development of drugs which are less stable 

and can be delivered directly to the site of inflammation, therefore undergoing 

degradation before they can exert systemic effects (Schacke, Rehwinkel et al. 2006, 

Stahn, Lowenberg et al. 2007). Especially in the context of skin inflammatory 

conditions such as eczema, the therapeutic index has been greatly improved in drugs 

such as mometasone furoate (MF) and methylprednisolone aceponate (MPA) which 

rarely have systemic effects. However local side effects such as skin atrophy and 

decreased wound healing still exist and cannot be ignored (Schacke, Zollner et al. 

2009). Improvements based on drug design principles have almost reached their limit 

and the remaining problems now appear to lie within the molecular mechanism of 

these drugs, namely the fact that they stimulate a wide range of GR mediated processes 
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other than just the desired anti-inflammatory effects. Understanding this phenomenon 

may open doors to new strategies for drug design. 

1.4.3. Dissociating between GR mechanisms 

For decades, an attractive idea has been that the anti-inflammatory effects of GCs 

are mainly a consequence of GR tethering to transcription factors (TR), whereas the 

side-effects arise because of an increase in gene expression due to direct binding of 

GR to GREs (TA)(Cain and Cidlowski 2017, Vandewalle, Luypaert et al. 2018). This 

was because the GR is known to suppress the activity of pro-inflammatory 

transcription factors via the TR mechanism, leading to downregulation of pro-

inflammatory genes such as intracellular adhesion molecule (ICAM1), interleukin 6 

(IL6), monocyte chemoattractant protein 1 (MCP1), and tumour necrosis factor α 

(TNFα)(De Bosscher, Beck et al. 2016, Keenan, Lew et al. 2016). In contrast, genes 

up-regulated as a consequence of the TA mechanism included those involved in 

carbohydrate, protein and fat metabolism (which lead to the common GC side-effects), 

such as tyrosine amino transferase (TAT), phosphoenolpyruvate carboxykinase 

(PEPCK), and fatty acid synthase (Grose, Werner et al. 2002, De Bosscher, Beck et al. 

2010, De Bosscher, Beck et al. 2016, Vandewalle, Luypaert et al. 2018). From this 

idea arose the hypothesis that the anti-inflammatory effects of GCs could be separated 

from the adverse effects, by selectively targeting TR, and avoiding TA mechanisms 

(De Bosscher, Beck et al. 2016). The concept of an improved ‘dissociated steroid’ has 

therefore arisen. A dissociated steroid would bind to GR to induce its TR effects, but 

without affecting the TA mechanism. Since TA is assumed to rely on GR dimers and 

TR on monomers, a skewing towards GR monomers has been the avenue explored in 

order to create a ‘dissociated steroid’. This idea was explored with the help of a GR 
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dimerisation defective mouse (GRdim). The GRdim mouse model was generated by 

an A458T (alanine-to-threonine) single point mutation introduced by gene targeting 

using the Cre/loxP system (Reichardt, Kaestner et al. 1998). This mutation is in the 

second zinc finger of the DBD (De Bosscher, Beck et al. 2016, Scheschowitsch, Leite 

et al. 2017, Vandewalle, Luypaert et al. 2018). Dimer binding to a typical GRE is 

reported to be stabilised by protein-protein interactions of two GR monomers through 

a dimerization interface within the second zinc finger of the DBD (Adams, Meijer et 

al. 2003). The A458T mutation therefore compromises the ability of GR to form 

homodimers, and impairs any process dependent on homodimerisation, such as GRE 

driven TA (De Bosscher, Beck et al. 2016, Vandewalle, Luypaert et al. 2018).  Indeed, 

the authors reported a loss of TA and impaired DNA binding of GR in GRdim mice, 

however the mutated GR was still able to repress the activity of other transcription 

factors such as AP1 (Reichardt, Kaestner et al. 1998). The GRdim mouse model 

therefore demonstrated that TA and TR activities could be separated in vivo, and that 

any action of GCs remaining in these mice were independent of GR binding to DNA 

(Reichardt, Kaestner et al. 1998). The authors also concluded that DNA binding of GR 

is not essential for survival, since unlike GR-/- mice which die shortly after birth due 

to atelectasis of the lungs, GRdim mice are viable (Reichardt, Kaestner et al. 1998). 

Further studies have since been performed using the GRdim mouse model, confirming 

that TR functions mediated by GR tethering to TFs remain intact in GRdim mice 

(Vandewalle, Luypaert et al. 2018). In both wild and mutant animals, TR mechanisms 

mediated through AP1 and NFκB were retained, and cytokines under the control of 

these transcription factors, such as IL6 and TNFα, were suppressed to the same extent 

after LPS stimulation in macrophages (Schacke, Docke et al. 2002, Nixon, Andrew et 
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al. 2013). However whilst retaining anti-inflammatory ability, the DNA interaction 

and transcriptional activity of the mutated GR appears to be impaired at classical GRE 

binding sites (Vandewalle, Luypaert et al. 2018). Indeed, the GRdim mice have 

demonstrated an impaired ability to upregulate certain GRE containing genes such as 

TAT, glutathione-3-peroxidase and PEPCK, in comparison with wild type mice 

(Schacke, Rehwinkel et al. 2006, Nixon, Andrew et al. 2013, Vandevyver, Dejager et 

al. 2013). Furthermore, in the GRdim mice, in contrast to wild types, after exogenous 

GC treatment there was an enrichment of GR at half site GRE motifs due to a lack of 

GR redistribution from monomeric to dimeric GRE sites (De Bosscher, Beck et al. 

2016, Vandewalle, Luypaert et al. 2018). This is consistent with impaired gene 

regulation in GRdim mice. These studies, therefore, provided strong evidence that the 

anti-inflammatory effects of GCs were strongly dependent on the TR mechanism, and 

were capable of occurring in the absence of direct DNA interaction with GR dimers. 

The search for improved GR ligands has, hence, moved in recent years to focus on 

dissociating between different mechanisms of the GR, and this idealised type of ligand 

has been given the term a Selective Glucocorticoid Receptor Agonist (SEGRA). 

However, a ligand which dissociates TA and TR is an oversimplification of what 

needs to be achieved. Indeed, the GRdim model itself has been criticised. Evidence 

has suggested the requirement of other residues for dimerization, and it has been 

questioned whether the single point mutation is sufficient to eliminate GR dimerization 

and TA. It has been suggested that, independent of the DBD dimer interface, other 

‘alternative’ types of dimer can form in GRdim mice and that these can bind DNA but 

in a reduced manner dependent on the cell type and gene promoter. Examples given 

have included multimers or even GR/MR dimers (Nixon, Andrew et al. 2013, 
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Vandevyver, Dejager et al. 2013). Indeed whilst the A458T point mutation (contained 

within the GR of the GRdim mouse) prevents GR binding at a single GRE, it is now 

suggested that on some GR responsive promoters GR can form distinct multimers 

independently of the DBD dimer interface (Adams, Meijer et al. 2003). The PNMT 

gene promoter for example contains five regions where GR could bind (in contrast to 

TAT which contains a single GRE). Furthermore a dimerization defective GR was 

reported to bind to the PNMT promoter and in fact stimulated its transcription more 

strongly than wild type GR in vitro. This report demonstrated that typical GR dimer 

binding to GRE is not essential for regulation of PNMT. The authors of this latter paper 

therefore proposed that in fact, DNA binding of GR might be essential for survival 

(Adams, Meijer et al. 2003) 

Furthermore, although the separation of GRE-dependent TA and protein-protein 

interaction-dependent TR initially provided considerable optimism (De Bosscher, 

Beck et al. 2016), understanding of GR mechanisms and their complexity has now 

improved (Keenan, Lew et al. 2016) and achieving a dissociation of the side-effects 

and anti-inflammatory effects of GCs in this way is now considered unrealistic 

(Vandewalle, Luypaert et al. 2018). For example, GR is able to enhance, rather than 

repress, transcriptional activity through interaction with some transcriptional factors, 

such as with members of the signal transducer and activator of transcription (STAT) 

family (Keenan, Lew et al. 2016). Likewise, recent observations suggest that GR 

bound to canonical GREs can lead to negative regulation of genes in some cases, rather 

than cause TA (Keenan, Lew et al. 2016). Importantly, many genes up-regulated by 

the TA mechanism encode anti-inflammatory proteins, such as glucocorticoid induced 

leucine zipper (GILZ), inhibitor of NFκB (IκBα), interleukin 10 (IL10), MAP kinase 
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phosphatase 1 (MKP-1) and lipocortin 1(De Bosscher, Beck et al. 2016, Keenan, Lew 

et al. 2016, Cain and Cidlowski 2017, Desmet and De Bosscher 2017). These are often 

essential, particularly in acute inflammatory conditions, to completely resolve 

inflammation (De Bosscher, Beck et al. 2016, Vandewalle, Luypaert et al. 2018), 

making GR dimerization a requirement in some conditions for responding to 

exogenous GCs and suppressing inflammation (Vandewalle, Luypaert et al. 2018). In 

fact, GRdim mice are significantly more susceptible to several models of acute 

inflammation (such as septic shock induced by LPS, and TNF lethality) than wild type 

mice (Desmet and De Bosscher 2017, Vandewalle, Luypaert et al. 2018). Whereas 

wild type mice are well-protected by exogenous GCs in acute inflammation, GRdim 

mice are not (Vandewalle, Luypaert et al. 2018). Interestingly, this is in contrast to 

chronic models (such as irritative skin inflammation) in which wild type and GRdim 

mice are equally protected by exogenous GCs (Schacke, Schottelius et al. 2004). It 

has, therefore, been suggested by De Bosscher et al. (2016) that for chronic conditions, 

where long term treatment is required and GR dimers are most likely to result in side-

effects, skewing the balance towards GR monomers would be of benefit (De Bosscher, 

Beck et al. 2016, Desmet and De Bosscher 2017); whereas a skewing towards GR 

dimers over monomers may be beneficial to treat acute inflammatory diseases for 

which the long term effects are less of a consideration due to the short term and 

lifesaving nature of the treatment (De Bosscher, Beck et al. 2016, Vandewalle, 

Luypaert et al. 2018). De Bosscher et al. have proposed that new compounds that 

maximally stimulate GR dimerization could be designed for acute conditions, whereas 

compounds which selectively form monomers could be used for chronic conditions. 

They have termed these compounds SEDIGRAMs (selective dimerising GR agonists 
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or modulators) versus SEMOGRAMs (selective monomerising GR agonists or 

modulators) (De Bosscher, Beck et al. 2016, Vandewalle, Luypaert et al. 2018). 

However, this approach may also be overly simplistic. An alternative approach may 

be based on designing ligands which when bound to GR, result in a modified GR-

ligand structure, in turn affecting interaction of the GR-ligand complex with cofactors 

and, hence, influencing gene expression. Indeed, upon GR binding, the agonist 

dexamethasone induces a conformational change within helix-11, leading to 

interaction with TIF2 coactivator. Binding of the GR antagonist RU486, however, 

caused helix-11 to adopt an alternative conformation with co-repressor NCoR instead 

being recruited (Nixon, Andrew et al. 2013). It may, therefore, be that SEGRAs bind 

to GR and cause differences in gene transcription through distinct cofactor recruitment. 

1.4.4. The development of a Selective Glucocorticoid Receptor Agonist 

(SEGRA) 

          In recent years there has been an immense effort in both pharmaceutical and 

academic settings to develop a SEGRA. This is a compound capable of binding to GR 

and activating its anti-inflammatory mechanisms (which are thought to largely depend 

on TR by GR monomers) whilst not affecting mechanisms underpinning the side 

effects (many of which involve TA by GR dimers). The first compounds which 

appeared to be able to ‘dissociate’ between these two mechanisms of GR activity were 

the RU compounds (RU24782, RU24858 and RU40066) (Schacke, Rehwinkel et al. 

2006, Stahn, Lowenberg et al. 2007). The RU compounds, which were developed by 

Roussel Uclaf (now Sanofi Aventis, Paris, France) have a steroidal core and 

demonstrate strong GR binding affinity (Figure 1.7) (Schacke, Rehwinkel et al. 2006, 

McMaster and Ray 2007). In contrast to conventional GCs, the RU compounds showed 
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a reduced in vitro ability to cause TA of target genes and, hence, were thought to 

distinguish between TA and TR mechanisms (McMaster and Ray 2007). However, 

while these data were tantalising in vitro,  when tested in vivo it was evident that this 

was not the case, since the same side effects arose as with conventional GCs, with no 

therapeutic advantage (Rosen and Miner 2005, McMaster and Ray 2007). 

          Since the RU compounds, various other SEGRAs, both steroidal and non-

steroidal, have been proposed. Examples of non-steroidal candidates are AL-438 and 

Compound A (Figure 1.7). AL-438 is a quinolone-based compound which binds 

strongly to GR and which was synthesised by modification of the progestin scaffold 

(McMaster and Ray 2007, Reeves, Rayavarapu et al. 2012). Developed by Ligand 

Pharmaceuticals (San Diego, CA, USA) and Abbott Laboratories (Abbott Park, IL, 

USA) this compound demonstrated anti inflammatory effects with a reduced side 

effect profile, especially in relation to glucose metabolism and bone reabsorption. This 

was evident in vivo as well as in vitro (Schacke, Rehwinkel et al. 2006, Reeves, 

Rayavarapu et al. 2012). Rather than completely dissociating TA from TR 

mechanisms, AL-438 is reported to reduce the interaction between GR and 

coactivators involved in the development of certain side effects (Schacke, Rehwinkel 

et al. 2006). 

Compound A was the first proposed SEGRA to be derived from a natural 

source (Reeves, Rayavarapu et al. 2012). It is a synthetic analog of a non-steroidal 

compound identified from the Namibian shrub Salsola tuberculatiformmis 

Botschantev, by Haegman and colleages (De Bosscher, Vanden Berghe et al. 2005, 

Reeves, Rayavarapu et al. 2012). Compound A is a high affinity GR ligand and can 

induce GR nuclear translocation (De Bosscher, Vanden Berghe et al. 2005, Reeves, 
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Rayavarapu et al. 2012, Reuter, Grunwitz et al. 2012). It has been reported to favour a 

monomeric GR conformation and also did not appear to increase Ser-211 

phosphorylation in a similar way to Dex as described in sections 1.2.1. and 1.2.4.3 (De 

Bosscher, Vanden Berghe et al. 2005, Reeves, Rayavarapu et al. 2012). It, therefore,  

appeared to have low TA potential and, indeed, this was demonstrated in comparison 

to conventional GCs in vitro and in vivo (De Bosscher, Vanden Berghe et al. 2005, 

Reeves, Rayavarapu et al. 2012). However, at high doses of compound A, toxic 

aziridine breakdown products are formed, resulting in apoptosis of various cell types, 

and death of mice (Reeves, Rayavarapu et al. 2012, Reuter, Loitsch et al. 2012).  

Another series of promising SEGRA compounds are the ZK compounds by 

Bayer Schering Pharma AG (Berlin). Of special interest has been compound 

ZK216348 which is a non-steroidal compound synthesised from dihydrobenzofurane 

(Schacke, Rehwinkel et al. 2006, Reeves, Rayavarapu et al. 2012). This compound 

was identified as the (+) enantiomer of a racemic compound (ZK 209614) during a 

screening process specifically for selective glucocorticoid modulators. Although the (-

) enantiomer did not bind GR, ZK216348 was found to be a high affinity GR agonist 

(Schacke, Schottelius et al. 2004). In addition to binding GR, ZK 216348 was also able 

to induce GR nuclear translocation (Reuter, Loitsch et al. 2012) and exert anti-

inflammatory effects both in vitro and in vivo (Schacke, Schottelius et al. 2004). 

Furthermore, this compound has demonstrated a reduced side-effect profile compared 

to conventional GCs, especially in relation to dermal applications (Reuter, Loitsch et 

al. 2012). ZK216348 reduced skin thickness and skin breaking strength significantly 

less than prednisolone in vivo (Schacke, Schottelius et al. 2004). In vitro, ZK216348 

did not inhibit the closure of wounds made in a non-transformed rat small intestine 
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epithelial cell line (IEC-6), nor in HaCaT cells (a skin-derived keratinocyte cell line), 

whereas dexamethasone significantly reduced migration of cells in comparison to 

control (Reuter, Loitsch et al. 2012). However ZK216348 also binds to the MR and to 

PR which may limit its use due to unwanted effects. Another compound in this series, 

Compound ZK245186, is currently in phase 2 clinical trials for atopic dermatitis 

(Reeves, Rayavarapu et al. 2012). 

          It seems that the SEGRA quest is moving forward since the focus has been put 

on finding drugs which dissect between different GR signalling mechanisms. These 

synthetic drugs have real promise for dramatically reducing side-effects. However, 

although much focus has been paid to synthesising these dissociative compounds, it 

may now appear that compounds like this, which were previously ignored, may already 

be in existence physiologically. Indeed, 5α-reduced glucocorticoids, which have been 

known since the 1970s. are now coming to light as potential SEGRAs.  
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Figure 1.7: Structures of previously investigated Selective Glucocorticoid Receptor 
Analogues (SEGRAs). Image adapted from (Schacke, Rehwinkel et al. 2006). 

 

 

1.4.5. 5α reduced Glucocorticoids 

          5α reduced glucocorticoids are formed via a series of reductions that occur 

naturally in the liver as part of the elimination process for glucocorticoids. In the rate 

limiting step, 5α reductase enzymes catalyse reduction of the Δ4,5 double bond in the 

glucocorticoid A ring (Stahn, Lowenberg et al. 2007) to form a 5α dihydrometabolite.  

The 3-ketone group is then rapidly reduced either by 3α-hydroxysteroid 

dehydrogenase (3α-HSD) to give the major 3α,5α-tetrahydro-metabolite or by 3β-

hydroxysteroid dehydrogenase (3β-HSD) to give the minor 3β,5α-

tetrahydrometabolite (McInnes, Kenyon et al. 2004, Nixon, Upreti et al. 2012), as 
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shown in Figure 1.7. These reactions provide a GC clearance route since the polar end 

products can be more easily cleared by the kidneys (Nixon, Upreti et al. 2012). Since 

disruption of 5αR activity shares adverse effects with alterations in GC activity, it does 

appear that 5α reduced GCs may be physiologically relevant in tissues other than the 

liver (Livingstone, Barat et al. 2015), although the relative contributions of increased 

product and decreased substrate are hard to dissect.  

The 5α reductase enzymes are hydrophobic membrane bound enzymes 

identified in rodent work during the 1950s. They are expressed not only in the liver 

but also in other tissues such as the skin, lungs, GI tract, adipose tissue and 

reproductive tissue (McInnes, Kenyon et al. 2004, Nixon, Upreti et al. 2012). In 

addition to binding GCs, 5α reductase enzymes also bind a range of 3-oxo-4-ene 

steroids, including the androgens, progestogens, and mineralocorticoids. The 5α 

reduced metabolites of these other steroids are known to have biological activity 

(Yang, Nixon et al. 2011, Nixon, Upreti et al. 2012). For example, 5α reduced 

androgens (such as dihydrotestosterone) bind the AR with greater affinity than the 

parent androgens. 5α reduced progesterones, which bind PR and are suggested to be 

neurosteroids, are actually the main progestogen in some species. Although with 

weaker activity, 5α reduced aldosterone metabolites also bind the MR (Nixon, Upreti 

et al. 2012). In contrast, 5α reduced GCs were assumed inert metabolites since they 

only very weakly activated metabolic gene transcription (such as TAT) which was 

known to be an important effect of the parent GCs. They were thus deemed a 

‘suboptimal inducer’ and remained largely ignored (Nixon, Upreti et al. 2012). 

However, recently there has been renewed interest in 5α reduced GCs since they have 

been shown to possess some previously unexplored anti-inflammatory activity. If able 
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to be used as an anti-inflammatory treatment, the fact that 5α reduced GCs only weakly 

activate metabolic gene expression is actually highly desired in order to prevent side 

effects. Due to our better understanding of GR mediated mechanisms, we can now 

postulate that 5α reduced GCs may be SEGRAs, capable of activating TR processes 

with limited effects on TA. This could be explained in terms of the more planar Δ4,5 

trans double bond of parent GCs which is likely to interact with GR in a different 

manner to the reduced forms with all single bonds. This may therefore affect the final 

conformation of the ligand bound GR, and hence its ability to induce downstream 

processes (Nixon, Upreti et al. 2012). 

1.4.6. 5α Tetrahydrocorticosterone (5αTHB) 

Of particular interest, is the 5α reduced metabolite of corticosterone (the main 

rodent GC), 5alpha tetrahydrocorticosterone (5αTHB) (Figure 1.8 iii). 5αTHB has a 

reduced side-effect profile in vitro and in vivo in comparison to its parent GC 

corticosterone, alongside its anti-inflammatory effects. Accumulating evidence 

suggests that the mechanisms of action of 5αTHB are different from those of 

conventional GCs. 

 

Figure 1.8:  Metabolism of natural rodent glucocorticoid corticosterone (B) to produce 
5α-tetrahydrocorticosterone (5αTHB).  The conversion of B (i) to 5αTHB occurs naturally in 
the liver to increase polarity and, therefore, enable easier excretion. In the rate-limiting step, 
B is reduced by the 5α-reductase enzyme (5αR) to form the dihydrometabolite 5αDHB 
(ii)(McInnes, Kenyon et al. 2004, Nixon, Upreti et al. 2012). Further reduction by 3α-
hydroxysteroid dehydrogenases (3αHSDs) then follows rapidly to form 5αTHB (iii) (McInnes, 
Kenyon et al. 2004, Yang, Nixon et al. 2011, Nixon, Upreti et al. 2012). 
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          Evidence of 5αTHB having anti-inflammatory effects in vitro and in vivo has 

been collated. In LPS-stimulated mouse bone marrow-derived macrophages (BMDM), 

5αTHB suppressed IL6 and TNFα cytokine release although to a lower extent than 

dexamethasone and corticosterone (Yang, Nixon et al. 2011). Dose-dependent effects 

of 5αTHB to suppress cytokine release were also demonstrated in RAW264.7 

macrophages (Nixon, 2011), again with a weaker suppressive effect than 

corticosterone. This work also provided evidence that the cytokine suppression is due 

to direct effects of 5αTHB on transcription factors by demonstrating that both 5αTHB 

and corticosterone suppressed phosphorylation of JNK and p38; two MAPK family 

members which once phosphorylated, lead to AP1 and NFкB activation. Unlike 

corticosterone, 5αTHB did not have a significant effect on the amount of IKβα, which 

could be suggestive of effects mediated by 5αTHB solely through the MAPK family. 

Anti-inflammatory effects to suppress IL6 and TNFa cytokine release in vivo were 

confirmed in mouse whole blood, and in peritoneal lavage fluid from a mouse model 

of thioglycollate-induced peritonitis 5αTHB suppressed IL6 and MCP1 (TNFα was 

not tested)(Yang, Nixon et al. 2011). Furthermore, in the latter model inflammatory 

cell infiltration into the peritoneum was also measured, and 5αTHB suppressed 

neutrophil and inflammatory monocyte cell infiltration. However, recent work 

suggests interesting modes of action (Gastaldello, Livingstone et al. 2017). In a mouse 

model of dermatitis (induced with croton oil) 5αTHB appeared to mediate anti-

inflammatory effects in a different manner to corticosterone. Whereas the anti-

inflammatory effects of corticosterone (decreased cell infiltration, ear swelling and 

neutrophil activity) were evident after 6 hours, 5αTHB demonstrated (at 

concentrations 5 fold higher than corticosterone) a different time course of action with 
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these effects only evident after 24 hours. In addition to this difference in time course, 

Gastaldello (2014) demonstrated that 5αTHB increased transcripts of the anti-

inflammatory Dusp1 (also known as Mkp-1) in two different mouse models, whereas 

interestingly corticosterone did not. This is strongly suggestive of 5αTHB acting to 

suppress inflammation through different mechanisms to those of conventional GCs. 

Further evidence to suggest differences exerted by 5αTHB is that when HE293 cells 

were co-transfected with GR, 5αTHB actually increased NFкB and AP1 mediated 

luciferase activity (Nixon, 2011). This is contrary to the effects of corticosterone and 

5αDHB and to what would be expected if 5αTHB suppressed inflammation through 

the conventional TR mechanism. 

          It, therefore, appears that 5αTHB is anti-inflammatory but with different 

mechanisms of actions and reduced adverse metabolic effects in comparison to 

conventional GCs. The in vivo anti-inflammatory effects of 5αTHB were first 

demonstrated in a murine model of thioglycollate-induced peritonitis, in which 5αTHB 

suppressed neutrophil infiltration with a similar efficacy to corticosterone (McInnes, 

Kenyon et al. 2004).  In this model the drugs had to be administered subcutaneously, 

since 5αTHB was rapidly cleared from the circulation when infused systemically, 

indicative of poor systemic bioavailability and difficulty in maintaining an effective 

dose. This, therefore, suggested that 5αTHB would not be suitable for oral use and 

instead should be developed as a topical treatment. For topical use, the rapid clearance 

is actually a positive feature, reducing the likelihood of systemic side effects occurring. 

Evidence that 5αTHB could suppress inflammation when applied topically was 

subsequently tested. Indeed, in a murine croton oil ear model of dermal inflammation, 

5αTHB reduced swelling and cell infiltration to a similar extent to corticosterone, 
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without inducing systemic side-effects (42)(Dawn Livingstone, personal 

communication). 5αTHB is now being investigated as a safer topical glucocorticoid 

and, therefore, its adverse effects locally on the skin (e.g. impaired wound healing) 

need to be explored.  

1.4.7. 5αTHB as a SEGRA with decreased adverse effects on wound 

healing 

With eczema estimated to affect 230 million people worldwide, inflammatory 

skin diseases are highly prevalent and are most commonly treated with topical GCs. 

Absorption of these drugs into the circulation leads to the systemic side effects 

previously described. This is a particular problem for babies with a low body volume 

to skin ratio. Therefore, in the context of topical treatments, the high clearance rate of 

5αTHB may actually be an advantage, reducing the potential for systemic effects. 

However topical GC treatments are additionally plagued by local adverse effects of 

delayed wound healing and skin atrophy. For patients with a skin barrier which is 

already delicate and compromised, such as in the elderly or in diabetic patients who 

are more likely to experience chronic non healing wounds, this is a particular concern 

(Brandt, Grunler et al. 2015, Briquez, Hubbell et al. 2015, Holmes, Plichta et al. 2015, 

Rosique, Rosique et al. 2015). Therefore, more needs to be known about the effects of 

5αTHBs on wound repair. Delayed wound healing as a result of GC exposure is not 

only a problem for skin treatments but also for systemic use, where GCs may delay 

internal wound healing (for example in vascular repair processes). The wound repair 

process is surprisingly similar in different tissues and after various insults, with 

internal repair mechanisms (occurring after, for example myocardial infarction, 

reperfusion injury or tissue ischaemia) strongly resembling those following skin 
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wounding (Gurtner, Werner et al. 2008). The skin, hence, provides a very useful model 

for studying effects on wound healing processes in general, and 5αTHB could not only 

provide a safer topical anti-inflammatory treatment, but through an understanding of 

its mechanisms may also help to provide a prototype for a safer drug which could 

regulate internal inflammation at sites of vascular injury and repair, without some of 

the adverse effects.  

1.10.  Mechanisms of wound repair in the skin 

The skin is the largest organ of the body, composed of two main layers (Bayo, 

Sanchis et al. 2008, Hopkinson, Hamill et al. 2014, Holmes, Plichta et al. 2015, 

Rosique, Rosique et al. 2015). The inner layer is the dermis consisting mainly of 

fibroblasts and connective tissue. The outer layer, the epidermis, is a stratified 

squamous epithelium containing multilayers of keratinocytes (Hopkinson, Hamill et 

al. 2014). The dermis and epidermis are joined together through a basement membrane 

of many extracellular matrix (ECM) proteins (Hopkinson, Hamill et al. 2014). Due to 

the skin’s crucial function as a protective barrier, it is very important that when a 

wound is formed and this barrier is broken, that the healing process occurs as quickly 

as possible.  

The wound healing process involves many cell types, pathways, proteins, 

growth factors, and ECM components (Eming, Brachvogel et al. 2007, Jiang, Zhang 

et al. 2013, Sinno and Prakash 2013, Ding and Tredget 2015). It can be divided into 

four main phases of haemostasis, inflammation, new tissue formation, and tissue 

remodelling (Eming, Brachvogel et al. 2007, Giusti, Rughetti et al. 2013, Sinno and 

Prakash 2013, Johnson and Wilgus 2014, Martinez, Smith et al. 2015, Portou, Baker 



80 
 

et al. 2015, Rosique, Rosique et al. 2015). Haemostasis initiates the wound healing 

process (Ding and Tredget 2015, Portou, Baker et al. 2015, Rosique, Rosique et al. 

2015). Platelets released from damaged vessels form a ‘haemostatic plug’ in the 

wound, and release biomolecules important for later stages of tissue repair (Giusti, 

Rughetti et al. 2013, Sinno and Prakash 2013, Hopkinson, Hamill et al. 2014, Ding 

and Tredget 2015, Martinez, Smith et al. 2015, Rosique, Rosique et al. 2015). The 

haemostatic plug provides a protective barrier, prevents haemorrhage and serves as a 

temporary matrix for early cell migration (Sinno and Prakash 2013, Hopkinson, Hamill 

et al. 2014, Briquez, Hubbell et al. 2015, Ding and Tredget 2015).  Inflammation is 

then activated whereby increased vascular permeability, capillary dilation, and 

expression of endothelial adhesion molecules, result in leucocyte recruitment (Sinno 

and Prakash 2013, Ding and Tredget 2015).  Neutrophils arrive first, followed by 

macrophages after a few days and later T lymphocytes (Eming, Brachvogel et al. 2007, 

Barrientos, Stojadinovic et al. 2008). The immune cells clean the wound of foreign 

material and provide further growth factors and cytokines for later stages of wound 

repair (Portou, Baker et al. 2015). The proliferative stage of wound healing involves 

the migration and proliferation of many cell types including fibroblasts, keratinocytes 

and endothelial cells. Fibroblasts migrate to the wound site and differentiate into 

myofibroblasts, which contract to help close the wound and secrete ECM components 

such as collagen (Barrientos, Stojadinovic et al. 2008, Briquez, Hubbell et al. 2015, 

Rosique, Rosique et al. 2015) (Eming, Brachvogel et al. 2007, Portou, Baker et al. 

2015, Rosique, Rosique et al. 2015). In a process called reepithelialisation 

keratinocytes from the side of the wound migrate, proliferate and differentiate in order 

to cover the wound site and restore the epidermis (Martinez-Mora, Mrowiec et al. 
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2012, Jiang, Zhang et al. 2013, Hopkinson, Hamill et al. 2014, Portou, Baker et al. 

2015). Finally, angiogenesis occurs. This is the formation of new blood vessels from 

the pre-existing vasculature and is vital for wound repair to give a temporary increase 

in blood vessels, providing oxygen and nutrients at the injury site (Eming, Brachvogel 

et al. 2007, Sinno and Prakash 2013, Johnson and Wilgus 2014, Martinez, Smith et al. 

2015). During angiogenesis the vessel basement membrane degrades, and the vessel 

dilates and becomes more permeable to allow proliferation and migration of 

endothelial cells, leading to the sprouting of new vessels (Hwang and Heath 2010, 

Johnson and Wilgus 2014, Lee, Lin et al. 2015). The final stage in wound repair, which 

overlaps with the end of the proliferative phase, is the remodelling phase during which 

the ECM is remodelled into a more permanent scar tissue (Sinno and Prakash 2013). 

The wound healing process is demonstrated in figure 1.9. 
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Figure 1.9: Skin structure and the wound repair process. The skin consists of the epidermis (mainly keratinocytes) and the dermis (fibroblasts, 
blood capillaries and connective tissue). When a wound is formed the repair process involves: the formation of a haemostatic plug by platelets (P); 
dilation and increased permeability of blood vessels, and the subsequent infiltration of neutrophil (N) and monocyte (M) inflammatory cells; the growth 
of new blood vessels (angiogenesis) into the wound to supply it with oxygen and nutrients; and finally, the migration of fibroblasts and keratinocytes 
for wound contraction, connective tissue formation, and epithelialisation. 
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1.6.  Mechanism of angiogenesis 

Angiogenesis is the formation of new blood vessels from the pre-existing 

vasculature (Johnson and Wilgus 2014). Since oxygen can only diffuse up to 200μM 

through tissues this process is vital for wound repair to give a temporary increase in 

blood vessels at the injury site and, hence, provide nutrients and oxygen for granulation 

tissue formation (Eming, Brachvogel et al. 2007, Logie, Ali et al. 2010, Sinno and 

Prakash 2013, Johnson and Wilgus 2014, Martinez, Smith et al. 2015). 

Blood vessels in healthy tissue exist in a quiescent state, with tight cell-cell 

adhesions between endothelial cells, and surrounded by a basement membrane which 

is important for stabilisation as well as for endothelial cell function. Mature vessels 

are further stabilised due to the pericytes and smooth muscle cells surrounding them 

(Johnson and Wilgus 2014). The blood vessels are held in this quiescent state in adult 

tissues, due to production of more inhibitors of angiogenesis than activators in the 

microenvironment (Johnson and Wilgus 2014). However, during wound repair, many 

proangiogenic molecules are released, such as from platelets and macrophages 

(Martinez, Smith et al. 2015). This tips the balance in favour of angiogenic activation, 

and the point at which the proangiogenic factors dominate is known as the ‘angiogenic 

switch’ (8, 11, 18, 19). Angiogenesis then proceeds through several stages, 

demonstrated in figure 1.9. The existing vessel first dilates and becomes more 

permeable - Pericytes and SMCs detach from the vessel and endothelial cell-cell 

contacts loosen, transforming them from their quiescent state into proliferative and 

migratory cells (Hwang and Heath 2010, Zhu, Yao et al. 2015).  Degradation of the 

basement membrane and surrounding ECM by matrix metalloproteinases (MMPs) and 

serine and cysteine proteases then provides a gap for migration of ECs to occur and 
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form a sprout (Johnson and Wilgus 2014) (Hwang and Heath 2010, Lee, Lin et al. 

2015). Proliferation and migration of cells within the sprout, and subsequent 

remodelling, forms a ‘lumen’ or ‘tube’. Finally, maturation of the vascular network 

occurs. Whilst excessive blood vessels regress in a process known as ‘vessel pruning’ 

(Korn and Augustin 2015), other vessels are stabilised through formation of a new 

basement membrane, and for larger vessels, also the reattachment of smooth muscle 

cells and pericytes (Eming, Brachvogel et al. 2007). 

 

 

Figure 1.10: Mechanisms involved in the initiation of angiogenesis. Angiogenesis is 
initiated by an alteration in the presence of angiogenic signalling molecules. These signals 
stimulate degradation of the basement membrane, and also activate endothelial cells to loosen 
their cell-cell contacts, in preparation for cell migration through the gap in the basement 
membrane. Image adapted from (Welti, Loges et al (2013) J Clin Invest 123(8):3190-200). 
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1.7. Glucocorticoid-mediated effects on wound repair and 

angiogenesis 

Glucocorticoids impair wound healing through effects on both the epidermal 

and dermal skin layers, as well as causing a flattening of the junction between these 

two layers (Schoepe, Schacke et al. 2006, Tiganescu, Walker et al. 2011, Tiganescu, 

Tahrani et al. 2013). Keratinocytes and fibroblasts are both targets of GCs, with growth 

factor signalling and cross-talk between the two cell types also being affected 

(Schoepe, Schacke et al. 2006, Tiganescu, Hupe et al. 2014). With regard to 

keratinocytes, their migration and proliferation is inhibited by GCs (Schoepe, Schacke 

et al. 2006, Tiganescu, Walker et al. 2011, Jozic, Vukelic et al. 2017, Tiganescu, Hupe 

et al. 2018). Their size is also decreased, assumed to be mediated by reduced synthesis 

of macromolecules (Schoepe, Schacke et al. 2006). There is also a reduced synthesis 

of epidermal lipids. The consequences of these effects are epidermal thinning, 

impaired epithelialisation, with increased permeability and water loss (Schoepe, 

Schacke et al. 2006, Schoepe, Schacke et al. 2010, Tiganescu, Hupe et al. 2014) 

resulting in disrupted barrier function of the skin (Schoepe, Schacke et al. 2006). 

Fibroblasts are also affected by GCs due to a reduction in proliferation (Schoepe, 

Schacke et al. 2006, Guo and Dipietro 2010) and in particular their synthesis of ECM 

proteins is inhibited by GCs (Schoepe, Schacke et al. 2006, Guo and Dipietro 2010) 

GCs have direct effects on gene expression involved in collagen turnover (Tiganescu, 

Tahrani et al. 2013) and reduce both major skin collagens – type 1 (making up around 

80% of skin collagen) and type III (10-15%) (Schoepe, Schacke et al. 2006, Terao, 

Tani et al. 2014, Terao and Katayama 2016). Other ECM proteins, such as elastin, are 

also affected by GCs (Guo and Dipietro 2010). This results in a thinning of the dermis, 
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with decreased tensile strength and elasticity (Schoepe, Schacke et al. 2006). The 

combined effects of GC on the epidermis and dermis results in skin with a reduced 

barrier function and reduced structural integrity (Tiganescu, Walker et al. 2011). It is 

thinner, dryer, and has a reduced ability to heal. Wound healing is further impaired by 

GCs due to a suppression of angiogenesis (Gastaldello, Livingstone et al. 2017).  

 GCs are well known to inhibit angiogenesis, both at physiological 

concentrations and in chronic excess (Small, Hadoke et al. 2005, Logie, Ali et al. 2010, 

Morgan, Keen et al. 2018). This has been demonstrated in vitro, in vivo and during 

wound repair, and is reported to be mediated via GR (Small, Hadoke et al. 2005, Logie, 

Ali et al. 2010, Morgan, Keen et al. 2018). Pharmacological inhibition of GCs has been 

suggested as a possible treatment to enhance angiogenesis and improve healing during 

both topical and internal wound repair (Logie, Ali et al. 2010, McSweeney, Hadoke et 

al. 2010). The mechanisms through which GCs affect vascular function are diverse 

and are still not completely understood, but they appear to act at multiple stages of the 

angiogenesis process (Small, Hadoke et al. 2005, Logie, Ali et al. 2010, Morgan, Keen 

et al. 2018). It is well known that GCs suppress inflammation, and this itself is 

detrimental to angiogenesis due to the pro-angiogenic cytokines released from 

inflammatory cells (McSweeney, Hadoke et al. 2010). GCs also modify secretion of 

angiogenic factors from other cell types. For example, they are suggested to inhibit 

VEGF transcription and nitric oxide production by endothelial cells themselves 

(Small, Hadoke et al. 2005). Furthermore, in a recent study they modified the secretion 

of factors from myofibroblasts, which caused an indirect suppression of angiogenesis 

and also prevented endothelial cell migration and ability to form tube like structures 

(Drebert, MacAskill et al. 2017). Another indirect mode in which GCs can suppress 
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angiogenesis is through effects on the basement membrane. GCs can cause degradation 

of the ECM, and this can affect cell behaviour such as to inhibit endothelial cell 

migration and proliferation (Drebert, MacAskill et al. 2017, Morgan, Keen et al. 2018). 

The ECM is often reported as the key component in the effects of GCs on angiogenesis. 

Next generation RNA sequencing analysis recently assessed gene expression changes 

in the mouse aorta in response to cortisol. Of 13 enriched KEGG pathways for with 

genes downregulated in cortisol-treated aorta, 9 were associated with inflammatory 

responses and 4 were associated with ECM or cytoskeletal function (Morgan, Keen et 

al. 2018). Aside from indirect effects, there is also evidence that GCs exert direct 

effects on endothelial cells themselves. This is perhaps expected since endothelial cells 

express both GR and MR (Logie, Ali et al. 2010). Indeed, GCs have been shown to 

directly inhibit TLS formation by cultured isolated endothelial cells. This TLS 

formation was inhibited in a concentration- and time-dependent manner, and was 

prevented by the GR antagonist RU486. It was demonstrated that the GCs achieved 

this by reducing the formation of cell-cell contacts rather than increasing the 

degradation of existing tubes. Furthermore, the GCs did not impair endothelial cell 

proliferation, migration or viability but instead caused alterations in the cytoskeletal 

structure of the endothelial cells, hence interfering with their morphology and ability 

to form cell-cell connections (Logie, Ali et al. 2010). Finally, GCs are also reported to 

act on vascular smooth muscle cells which surround the vessels. For example they can 

inhibit production of matrix metalloproteinases, and also prevent their migration and 

proliferation (Small, Hadoke et al. 2005, Logie, Ali et al. 2010, Drebert, MacAskill et 

al. 2017). 
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1.8. Introduction Summary 

 In summary, glucocorticoids (GCs) thin the skin and prevent wound repair. 

Along with adverse metabolic effects, these are the major side effects associated with 

the use of GCs topically to treat inflammatory skin disease. The GC metabolite 5αTHB 

may reduce inflammation with fewer side effects than GCs. However the mechanisms 

of action of 5αTHB are unknown. This thesis will compare the effects of 5αTHB and 

the topical GC hydrocortisone to prevent wound repair. It will also investigate the 

mechanisms of action of 5αTHB, in particular whether its effects are mediated through 

the glucocorticoid receptor. This work may bring us closer to the development of a 

safer topical anti-inflammatory therapy, preventing much suffering and healthcare 

costs. 
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1.11. Hypotheses and Aims 

          Our group is interested in developing 5αTHB as a topical anti-inflammatory 

agent, necessitating studies of the effects of 5αTHB on wound repair processes. 

Further studies are also required to decipher its mechanism of action which appears 

different from that of conventional GCs.  

The hypotheses explored in this thesis are: 

1. 5αTHB is suitable for use as a safer topical anti-inflammatory treatment. 

2. 5αTHB acts through GR. 

3. 5αTHB is a SEGRA, dissociating between different GR- mediated molecular 

mechanisms. 

The corresponding aims are: 

1. To assess whether 5αTHB is less detrimental to wound repair processes than 

conventional GCs. 

2. To investigate whether the anti-inflammatory effects of 5αTHB are GR-

dependent. 

3. To assess whether gene regulation by 5αTHB and conventional GCs differs in 

inflammatory cells. 
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2. Materials and Methods 

2.1 Materials and reagents 

Room temperature is abbreviated as RT. Overnight is abbreviated as O/N. 

2.1.1. Source and maintenance of animals 

Male C57Bl/6 mice, 8-12 weeks old, were purchased from Harlan Laboratories Ltd. 

(Bicester, UK). They were allowed to acclimatise for one week after arrival prior to 

being used for experiments. Mice were maintained under controlled conditions of 

temperature (18-22⁰C) and light (lights on between 0700-1900 hours). They were 

allowed free access to standard chow (RMI 801002; Special Diet Services, Witham, 

UK) and drinking water. All experiments were approved by Veterinary Services at the 

University of Edinburgh and performed under the guidelines of the UK Home Office, 

and the following project licences: PW Hadoke, PPL No: 60/4523 and KE Chapman, 

PPL No: 60/7874. Animals were killed by asphyxiation with CO2. 

2.1.2. Outsourced reagents and chemicals 

All cell culture reagents, including for washing cells and for the preparation of media, 

were from Lonza (Berkshire, UK) unless otherwise stated. All laboratory chemicals 

and reagents are from Sigma Aldrich (Dorset, UK) unless otherwise stated. Steroids, 

including the GR antagonist RU486, were from Steraloids (Newport, RI, USA). 

2.1.3. Sources of cultured cells 

2.1.3.1. Cell lines 

hTERT immortalised human dermal fibroblasts were a gift from Andrew Campell, 

Beatson Institute for Cancer Research (Glasgow, UK); The human keratinocyte cell 

line HaCaT was from, and is considered proprietary to, the German Cancer Research 
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Centre (DKFZ, Heidelberg, Germany). The HaCaTs were formed by spontaneous 

transformation to immortality of a long term primary culture of human adult skin 

keratinocytes, originally obtained from a male skin melanoma specimen (Boukamp, 

Petrussevska et al. 1988). Human umbilical vein endothelial cells (HUVECs) were 

from PromoCell GmbH (Heidelberg, Germany). Each batch had been pooled from 

multiple donors from the supplier, and cells were used between passage number 2 and 

6 in all experiments. A549 cells were from the European Collection of Cell Cultures 

(ECACC, distributor Sigma-Aldrich) and are transformed human type II alveolar 

epithelial cells, initiated from the lung carcinoma of a 58 year old Caucasian male 

(Lieber, Smith et al. 1976). L292 cells were also obtained from ECACC (distributor 

Sigma- Aldrich) and are transformed fibroblast cells derived from normal 

subcutaneous areolar and adipose tissue of a 100 day old male C3H/An mouse. 

2.1.3.2. Murine bone marrow-derived macrophages (BMDM) 

Primary BMDMs were freshly isolated from murine tibia and femur according to a 

published protocol (Weischenfeldt and Porse 2008), using mice which had been 

maintained and culled as described in (2.1.1.), as follows: 

2.1.3.2.1. Removal of femur and tibia bones: 

Hip joints were dislocated from culled mice which had previously been partially 

dissected for the aortic ring assay described in (2.2.3). Posterior limbs were removed 

and cleared of skin and soft tissues to reveal the bones. Femur and tibia bones were 

then detached, immersed in sterile ice cold PBS and stored at 4ºC for a maximum of 

24 hours, until required, since the cells do not loose viability in this time period 

(personal communication from Professor Karen Chapman). 
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2.1.3.2.2. BMDM cell isolation, plating, and differentiation 

Femur and tibia bone ends were removed with a scalpel (Swann-Morton, Sheffield, 

UK) to expose the marrow. Holding the bone at one end with sterile forceps, the 

marrow was flushed out into a Falcon tube (Falcon, Fischer Scientific, Loughborough, 

UK) with a syringe (Medisave, Dorset, UK) containing normal serum medium for 

BMDM (2.1.4.1.1, 5 mL), attached to a needle (22 G; Medisave, Dorset, UK). The cell 

suspension, resulting from the contents of all 4 bones of the mouse, was passed gently 

ten times through a larger needle (18 G; Medisave, Dorset, UK) to break cell clumps, 

and then filtered through a 40 µM FalconTM cell strainer to remove bone fragments 

and debris. The suspension was then adjusted to 20 mL with medium, and transferred 

to a T25 ultra low-attachment flask (Corning, Flintshire, UK) which was incubated (37 

°C, 7 days) to allow for monocyte-macrophage differentiation. Every 2 days, 1/3rd of 

the medium was replaced, and one week after plating the cells, they were detached 

from the bottom of the flask by firmly hitting it from the side. The resulting cell 

suspension was transferred into a 50 mL Falcon tube, and the flask washed with PBS 

(no calcium, no magnesium)(4°C 20 mL)(Thermo Fisher Scientific, Paisley, UK) and 

subjected to another round of firm hitting on its side to remove any remaining cells. 

The PBS containing the remaining cells was added to the suspension in the 50 mL 

tube, which was centrifuged (400 G, 5 min, RT) to collect the cells as a pellet. The cell 

pellet was then resuspended in serum free medium. Cells were then plated 5x105 

cells/mL per well in 12 well plates (Corning, Flintshire, UK) and left to settle at 37 °C 

for 24 hours before treatment.  

2.1.4. Preparation of reagents and solutions 

2.1.4.1. Cell culture medium 
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2.1.4.1.1. Normal serum medium:  

Normal serum medium for murine bone marrow derived macrophage (BMDM) cells 

consisted of DMEM/Nutrient mixture F-12 (DMEM F-12) supplemented with 

penicillin (100 IU/mL), streptomycin (100 µg/ mL), L-glutamine, FBS (10% v/v) and 

L929 cell cultured medium described in 2.1.4.2 (15%). L929 cells were cultured in 

DMEM/F-12 supplemented with HI-FBS (10% v/v), penicillin (100 IU/mL) and 

streptomycin (100 µg /mL). For HaCaTs, Fibroblasts, and A549 cells normal serum 

medium consisted of Dulbecco’s modified Eagle’s medium supplemented with a high 

concentration of glucose (4.5 g/L, glucose), HI-Foetal Bovine Serum (HI-FBS, 10% 

v/v), penicillin (100 IU/ml), streptomycin (100 µg/mL) and L-glutamine (2 mM). For 

HUVECs normal serum medium consisted of endothelial basal medium-2 (EBM-2) 

with all the supplements and growth factors added from the ECM-2 SingleQuot kit.  

2.1.4.1.2. Serum free medium: 

Serum free medium for BMDM consisted of normal serum medium in the absence of 

FBS and L929 cultured medium.  

2.1.4.1.3. Stripped serum medium: 

For HaCaTs and fibroblasts, stripped serum medium consisted of normal serum 

medium with the same volume of charcoal stripped FBS (Sigma Aldrich) in place of 

HI-FBS. For HUVECs, stripped serum medium consisted of normal serum medium 

minus the addition of the hydrocortisone aliquot from the ECM-2 SingleQuot kit. 

2.1.4.2. L929 fibroblast-conditioned medium for BMDMs.  
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L929 cells were cultured until confluent and then left for 10 days without the medium 

being changed. The medium was then collected, sterilised by filtration (0.22 µM, 

Millipore, Hertfordshire, UK) and frozen (-20 °C) for subsequent use during the 

culture of BMDMs. 

2.1.4.3. Freezing medium 

This was composed of 10% dimethyl sulphoxide (DMSO; Sigma Aldrich) in FBS. 

2.1.4.4. Steroid solutions 

Steroids were dissolved in ethanol to obtain stock solutions 1000 times more concentrated 

than required. 1 μL of these stock steroid solutions was added for every 1 mL of medium, 

at the time of treatment, minimising the amount of ethanol which was present in the final 

solution (and hence exposed to cells) to 0.1%.  

 

2.1.5. Cell culture 

2.1.5.1. Cell thawing 

Aliquots of cells were stored frozen in liquid nitrogen. Frozen cells were thawed in a 

water bath maintained at 37 °C and then transferred to a 15 mL Falcon tube (Falcon, 

Fisher Scientific, Loughborough, UK) containing normal serum medium (2.1.3.1.1) 

and collected as a pellet by centrifugation (1000xg, 5 min, RT). The cell pellet was 

resuspended in normal serum medium and plated in 75 cm3 flasks (Corning, Flintshire, 

UK). The flasks used for HUVECs were coated in gelatin (as described in 2.1.5.4.) 

representing an adjustment of the standard protocol.  
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2.1.5.2. Maintenance and passaging of cells 

The thawed cells were maintained at 37 °C in a 5% CO2 incubator, and were passaged 

when confluent. To passage cells, they were first washed with phosphate buffered 

saline (PBS) and detached from the flask by treatment with trypsin (5 mL, 5 min, 37 

°C)(Gibco by Life Technologies, Thermo Fisher Scientific, Paisley, UK). For HaCaT 

cells which adhere strongly to cell culture plates, the trypsin was replaced with TrypLE 

Express Enzyme (1X) phenol red (gibco, life technologies, Thermo fisher scientific, 

Paisley, UK) and incubated for 10, instead of 5, minutes. Once the cells had detached, 

an equal volume of medium was added in order to inactivate the trypsin, followed by 

centrifugation (1000xg, 5 min, RT) to collect the cells as a pellet. The pellet was re 

suspended in medium and separated into 5 - 10 new flasks, which already contained 

medium so that the final volume of medium in each flask was 12 mL. The cells were 

then returned to 37 °C.  

2.1.5.3. Cell freezing 

To freeze, cells were washed with sterile PBS and detached from the flask by treatment 

with trypsin (5 mL, 5 min, 37 °C) or TrypLE Express in the case of HaCaTs (5 mL, 

10 min, 37 °C). An equal volume of fresh culture medium was then added to counteract 

the trypsin, and the cells were collected as a pellet by centrifugation (1000xg, 5 min, 

RT). The cell pellet was re suspended in freezing medium and separated into 1 mL 

aliquots. Aliquots were gradually frozen, primarily at -80°C inside a polystyrene box 

(24 h) before moving into liquid nitrogen.  
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2.1.5.4. Coating of culture flasks and plates 

Gelatin-coating: To coat the 75 cm2 cell culture flasks in gelatin (Sigma Aldrich, 

Dorset, UK), gelatin was first diluted in PBS to give a 0.1% solution, and 10 mL of 

this was added to the cell culture flask. The flask was incubated (37 °C, 0.5 hours) and 

then transferred to a sterile hood with the lid left ajar, for 3 hours. To coat 96 well 

plates with gelatin, 50 µL of the 0.1% gelatin solution was pipetted into each well, and 

the same protocol followed as for the flasks.  

Collagen-coating: To coat 96 well plates with collagen-type 1 (rat tail, Millipore, 

Hertfordshire, UK), collagen was diluted 1:4 in 70 % ethanol then vortexed until it had 

solubilised. 25 µl of this was then transferred to each well, and the plate gently shaken. 

The cell culture plate was then left ajar to allow airflow and prevent condensation, for 3 hours. 

This protocol was taken from the Merck Millipore website 

(http://www.merckmillipore.com/GB/en/life-science-

research/cellculturesystems/cellgrowth/hanging/IyGb.qB.y1MAAAFBNgdb3.rV,nav?Referr

erURL=http%3A%2F%2Fwww.google.co.uk%2Furl%3Fsa%3Dt%26rct%3Dj%26q%3D%2

6esrc%3Ds%26source%3Dweb%26cd%3D12%26ved%3D2ahUKEwiQ0N_GkaPcAhXDKc

AKHTEoA_oQFjALegQIBRAB%26url%3Dhttp%253A%252F%252Fwww.merckmillipore

.com%252FTW%252Fzh%252Flife-science-research%252Fcell-culture-systems%252Fcell-

growth%252Fhanging%252FIyGb.qB.y1MAAAFBNgdb3.rV%252Cnav%26usg%3DAOvV

aw0rgnMZhr3BLU7oTb-KTn, last accessed on 16.07.2018). 
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http://www.merckmillipore.com/GB/en/life-science-research/cellculturesystems/cellgrowth/hanging/IyGb.qB.y1MAAAFBNgdb3.rV,nav?ReferrerURL=http%3A%2F%2Fwww.google.co.uk%2Furl%3Fsa%3Dt%26rct%3Dj%26q%3D%26esrc%3Ds%26source%3Dweb%26cd%3D12%26ved%3D2ahUKEwiQ0N_GkaPcAhXDKcAKHTEoA_oQFjALegQIBRAB%26url%3Dhttp%253A%252F%252Fwww.merckmillipore.com%252FTW%252Fzh%252Flife-science-research%252Fcell-culture-systems%252Fcell-growth%252Fhanging%252FIyGb.qB.y1MAAAFBNgdb3.rV%252Cnav%26usg%3DAOvVaw0rgnMZhr3BLU7oTb-KTn
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2.2. Laboratory protocols 

2.2.1. RNA analysis 

2.2.1.1. Materials 

2.2.1.1.1. Tris-Borate-Ethylenediamine tetra acetic acid (TBE) 10X Buffer 

solution: 

1.0 M Tris, 0.9 M Boric acid, 0.01 M ethylenediamine tetra acetic acid (EDTA) 

2.2.1.1.2. TBE 0.5X Buffer Solution:  

10X Buffer Solution diluted 1/20 using de-ionised water. 

2.2.1.2. RNA extraction from aorta 

A protocol which had previously been used for RNA extraction (Morgan, Keen et al. 

2018) was adapted in order to obtain sufficient amounts of RNA at the desired 

concentration range (10-100 ng/µL) and of adequate quality. In comparison to the 

original protocol, tissue homogenisation was altered to be performed at the lowest 

speed (4000 x g) and for the shortest time (30 sec) possible, to avoid degradation. The 

modified protocol consisted of adding Qiazol lysis reagent (250 µL/well; Qiagen, 

Manchester, UK) to each well of a 96 well plate on ice, and using a pipette to mix this 

with the collagen, to release the aortic rings. The mixture of Qiazol, collagen and aortic 

rings was then transferred from the well to a 1.5 mL Eppendorf tube and stored frozen 

at -80°C. Four rings which had been treated in the same way, together with the collagen 

and QIAzol solution, were then pipetted into a MagNA lyser green beads tube (Roche 

Diagnostics, Mannheim, Germany) for tissue homogenization with Precellys 24 tissue 
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homogeniser (Bertin Technologies, Montigny le Bretonneux, France) (4000 x g, 30 

sec). Total RNA was extracted by using an RNeasy mini kit and its reagents (Qiagen). 

Briefly, chloroform (200 µL) was added to the MagNA lyser tubes, which were shaken 

and then incubated (2 min, RT). Centrifugation (21130 x g, 15 min, 4 °C) followed 

and the upper transparent layer containing the total RNA (approximately 700 µL) was 

transferred to an equal volume of ethanol (70%) in a new 2 mL Eppendorf tube.  After 

gentle mixing, the solution was transferred to an RNeasy Mini Spin Column, 

centrifuged (8000 x g, 30 sec, RT), and the flow-through discarded. The column was 

then sequentially washed with RWI buffer (700 µL), RPE buffer (500 µL), and finally 

ethanol (500 µL, 80 %), with centrifugation (8000 x g, 30 sec, RT) after each step, 

discarding the flow-through each time. A final centrifugation step (8000 x g, 1 min, 

RT) was then conducted in order to remove any residual ethanol, and the column was 

placed into a 1.5 mL Eppendorf tube.  Finally, RNase-free water (30 µL) was added 

to the column which was incubated (2 min, RT) and then centrifuged (8000 x g, 1 min, 

RT) in order to elute RNA. The RNA was then added again to the same column and 

centrifuged again (8000 x g, 1 min, RT) to maximise recovery of the RNA from the 

column.  

 

2.2.1.3. RNA quantification 

RNA Quantification was performed using the QubitTM RNA HS (High Sensitivity) 

Assay Kit (Invitrogen, Thermo Fisher Scientific) in order to obtain accurate 

quantification with the low concentrations of RNA. The QubitTM working solution was 

prepared by diluting the QubitTM RNA HS Reagent in QubitTM RNA HS Buffer 

(1:200). The two standards required by the assay were prepared by adding 190 µL of 
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the working solution and 10 µL of both QubitTM standard #1 and of QubitTM standard 

#2 in two separate 0.5 µL QubitTM assay tubes. The working solution was added to the 

individual assay tubes together with 2 µL of the samples so that the final volume in 

each tube was 200 µL. All the tubes were mixed by vortexing (2-3 sec) and allowed to 

incubate (2 min, RT). Standards were read using a QubitTM 2.0 Fluorometer 

(Invitrogen Life Technology, Thermo Fisher scientific, Paisley, UK) to calibrate the 

instrument. Then the sample concentrations were measured and reported by the 

instrument as ng/mL. RNA samples with concentrations equal or higher than 6.25 

ng/µL were accepted for real-time qPCR analysis. Four RNA samples were discarded 

since their RNA concentrations were lower than this. The excitation wavelength of the 

QubitTM 2.0 Fluorometer is 644 nm, and the emission wavelength of the fluorophore 

used by the QubitTM RNA HS Assay Kit is 673 nm. The fluorescence emission 

intensity is the indicator of the RNA concentration.  

 

2.2.1.4. Evaluation of RNA quality 

RNA quality and integrity were assessed, using gel electrophoresis, by the 

visibility of two bands, corresponding to 28S and 18S ribosomal RNA (rRNA). 

Agarose gel (1 %w/v) was prepared by dissolving agarose in TBE buffer solution 

(0.5X; section 2.2.1.1.2) followed by the addition of the Biotum GelRedTM Nucleic 

acid stain (Cambridge Bioscience, Cambridge, UK). When solidified, 2 µg RNA 

together with Loading Buffer Orange (VWR International Ltd, Leicestershire, UK) 

was loaded onto the gel and run in TBE buffer (0.5X) with an electrophoresis Power 

Supply POWER 350 (Fischer Scientific, Thermo Fisher Scientific) (200 V, 1 h, RT). 

The gel was imaged under Ultra-Violet (UV) radiation (306 nm) using UVDOC HD6 
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(UVITEC, Cambridge, UK) with the band for the 28S rRNA being approximately 

twice as intense as the band for the 18S rRNA. Samples that separated into two visible 

bands in a 2:1 ratio (figure 2.1) were deemed acceptable. This was the case for all 

samples taken forward. 

 

 

 

 

Figure 2.1: RNA band visualisation under UV light. RNA was extracted from mouse aortic 
rings and assessed for quality and integrity using gel electrophoresis. The 28S and 18S 
ribosomal RNA bands were clearly visible in approximately a 2:1 ratio, indicating the total RNA 
samples were intact. Representative from images of all samples. 

 

2.2.1.5. Reverse Transcription 

RNA samples were diluted to a concentration of 6.25 ng/μL using nuclease free water. 

Reverse transcription of these RNA samples to give complementary DNA (cDNA) 

was performed with an applied biosystems High Capacity cDNA Reverse 

Transcription Kit (Thermo Fisher Scientific, Paisley, UK) using the kit reagents and 

protocol. Briefly, 75 ng of each RNA sample was added to RNAse Inhibitor (1 μL) to 

prevent RNA degradation, 10X RT buffer (2 µL) to maintain a favourable reaction pH 

and ionic strength, 25X deoxyribonucleotide triphosphate (dNTP) Mix (100 mM, 0.8 

µL), 10X RT Random Primers (2 µL), MultiscribeTM Reverse Transcriptase (1 µL) and 

nuclease free water (1.2 µL). Two negative controls were also prepared: one consisted 

of adding nuclease free water in place of the MultiscribeTM Reverse Transcriptase, in 

order to identify contamination with genomic DNA. The other consisted of replacing 
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the RNA sample with nuclease free water, to identify any contamination with RNA. 

Reverse transcription was performed using a thermal cycler (Techne, Staffordshire, 

UK) which involved incubating the samples at 25 °C for 10 min first to allow the 

primers to anneal, then at 37 °C for 2 h for DNA polymerisation to occur, followed by 

85 °C for 5 min for enzyme deactivation. Finally, temperature was reduced to 4 °C and 

samples were stored at -20 °C until needed.  

 

2.2.1.6. Real-time qPCR 

For quantification of genes by real-time PCR, a LightCycler® 480 (Roche 

Diagnostics, Mannheim, Germany) was used. Primers (Table 2.1) were designed to 

match intron-spanning probes with the Roche Universal Probe Library (UPL) using 

the online software Universal ProbeLibrary Assay Design Center 

(https://lifescience.roche.com/en_gb/brands/universal-probe-library.html#assay-

design-center, 2017). Primers were stored at concentrations of 100 pmol/ µL in Tris-

EDTA buffer solution for stability (100 µM) and diluted in nuclease free water to 20 

µM for use. The primer concentrations required by the assay was of 200 nM, therefore 

0.1 µL of each 20 µM primer was used in 10 µL of reaction. Each newly made cDNA 

was diluted 1/20 in nuclease free water for analysis.  In parallel, for each gene tested, 

a standard curve was generated: representative cDNA samples from each group were 

pooled and diluted 1/5 to give a starting solution, from which serial dilutions were 

prepared until 1/320 standard was achieved. Assay mix for each gene of interested was 

prepared as follows: each well contained LightCycler® 480 Probes Master (5 µL), 

primers (0.1 µL forward primer and 0.1 µL reverse primer), the corresponding UPL 

probe (0.1 µL) and nuclease free water (2.7 µL). Standards (2 µL) or samples (2 µL) 

https://lifescience.roche.com/en_gb/brands/universal-probe-library.html#assay-design-center
https://lifescience.roche.com/en_gb/brands/universal-probe-library.html#assay-design-center
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were mixed with the 8 µL of the master mix in the 384-well qPCR plate. A negative 

control to assess for potential contamination of reagents was prepared by using 

nuclease free water instead of sample. Samples were heated for initial denaturation (95 

°C, 30 sec), followed by 50 cycles of PCR amplification, consisting of denaturation 

(95 °C, 10 sec), and annealing and extension (60 °C, 30 sec). Once the PCR 

programme was complete, samples were cooled (40 °C, 30 sec). All samples were 

analysed in triplicate and amplification curves plotted (x axis = cycle number, y axis 

= fluorescence). Crossing points (Cp) were determined by the LightCycler® software 

v1.5.3, using the maximum point of the second derivative of the amplification plot. 

Triplicates were accepted if the standard deviation of their crossing points (Cp) was 

lower or equal to 0.4 cycles. If the standard deviation was higher than 0.4 cycles then 

the replicates were checked for consistency and any outliers excluded. A standard 

curve was generated for each gene (x axis = log concentration, y axis = crossing point), 

fitted with a straight line of best fit and accepted if reaction efficiency was between 

1.7 and 2.1. Negative controls were accepted as negative if there was no amplification 

for at least 10 cycles after the most dilute point on the standard curve. There were no 

statistical differences in transcript abundance of the housekeeping genes Actβ or Tbp 

between treatment groups. This was the case both for their individual transcript 

abundances measured alone (P=0.139 and P=0.226 respectively), and for the mean of 

their transcript abundances (P=0.122). This confirmed that the mean transcript 

abundance of these two genes was an appropriate reference in order for normalisation 

of the subsequent data. 
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Gene symbol, full name Primers sequence UPL 

Actβ (Actin, beta) 5’-accagaggcatacagggaca-3’ 64 

3’-ctaaggccaaccgtgaaaag-5’ 

Col4a1 (Collagen, type IV, alpha 1) 5’-agttggaggaatgggcttg-3’ 80 

3’-ccagggacaccctgtgag-5’ 

Col14a1 (Collagen, type XIV, alpha 1) 5’-atgtggattccggtctatgg-3’ 79 

3’-agagtcctgttcttctttgaggtc-5’ 

Cxcl5 (C-X-C motif chemokine ligand 5) 5’-cagtgggtttgagaacaccata-3’ 25 

3’-ctggaggctcattgtggac-5’ 

Dusp1 (Dual specificity phosphatase 1) 5’-tggttcaacgaggctattgac-3’ 89 

3’-ggcaatgaacaaacactctcc-5’ 

Fkbp51 (FK506 binding protein 5) 5’-ccttcttgctccgagcttt-3’ 69 

3’-tgttcaagaagttcgcagagc-5’ 

Hsd11b1 (Hydroxysteroid 11-beta dehydrogenase 1) 5’-tctacaaatgaagagttcagaccag-3’ 1 

3’-gccccagtgacaatcacttt-5’ 

Mcp1 (Chemokine (C-C motif) ligand 2) 5’-catccacgtgttggctca-3’ 62 

3’-gatcatcttgctggtgaatgagt-5’ 

Mmp9 (Matrix metallopeptidase 9) 5’-cagaggtaacccacgtcagc-3’ 7 

3’-gggatccaccttctgagactt-5’ 

iNOS (Nitric oxide synthase 2, inducible) 5’-ctttgccacggacgagac-3’ 13 

3’-tcattgtactctgagggctgac-5’ 

Pecam1 (Platelet/endothelial cell adhesion molecule 1) 5’-actcgacaggatggaaatcac-3’ 45 

3’-cggtgttcagcgagatcc-5’ 

Per1 (Period circadian clock 1) 5’-acagcagccacggttctc-3’ 71 

3’-ggacccaggagtgcacag-5’ 

Tbp (TATA-binding protein) 5’-gatgggaattccaggagtc-3’ 97 

3’-gggagaatcatggaccagaa-5’ 

Vcam1(Vascular cell adhesion molecule 1) 5’-tcttacctgtgcgctgtgac-3’ 47 

3’-gacctccacctgggttctct-5’ 

Wnt5a (Wingless-type MMTV integration site family, 

member 5A) 

5’-acgcttcgcttgaattcct-3’ 55 

3’-cccgggcttaatattccaa-5’ 

 
Table 2.1: Details of primers and probes for real-time PCR analysis of murine genes 
using Roche Universal Probe Library (UPL). The forward primer (5’ → 3’) for each gene is 
the upper sequence, the reverse primer (3’ → 5’) is the lower. Reference genes were beta-
Actin (Actβ) and TATA-binding protein (Tbp). Primers were designed to match the given intron-
spanning probes with the Roche Universal Probe Library UPL using the online software 
Universal ProbeLibrary Assay Design Center 
(https://lifescience.roche.com/en_gb/brands/universal-probe-library.html#assay-design-
center, 2017). 
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2.2.2. Protein analysis 

2.2.2.1. Western blotting 

2.2.2.1.1. Materials and buffers 

Hypotonic buffer: Hepes (20 mM, pH 7.6), glycerol (20 %; BD Laboratory supplies, 

Nottingham, UK), NaCl (10 mM), MgCl2 (1.5 mM), EDTA (0.2 mM), Triton (0.1% 

in distilled water). The following reagents were added immediately before use: 

Pefabloc (1 mM) and aprotinine (10 μL/mL, Thermo Scientific). 

Hypertonic buffer: Hypotonic buffer + NaCl (5 M). 

Running buffer 1X:  Tris Base (1 M), Sodium dodecyl sulphate (SDS, 0.035 M), Hepes 

(1 M) in distilled water. 

Transfer Buffer 1X: 0.025 M Tris Base (0.025 M), 0.2 M glycine (0.2 M), methanol 

(10% v/v in distilled water). 

TBS-T: TBS prepared with Tris-HCl (50 mM) and NaCl (150 mM) plus Tween-20 

(0.1% v/v, in distilled water). 

2.2.2.1.2. Whole protein extraction 

To extract protein from the cells, the RIPA lysis buffer system (Santa Cruz 

biotechnology, Heidelberg, Germany) was prepared using kit reagents as follows: Per 

mL of 1x RIPA lysis buffer, 10 μL PMSF, 10 μL sodium orthovonadate solution and 

20 μL protease inhibitor cocktail solution was added. Media was removed from the 

flask and cells washed (12 mL cold PBS) before incubating with complete RIPA buffer 

(1 mL, cold, shaker, 5 min). With the flask tilted on ice, cells were scraped from the 
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surface of the flask and the RIPA buffer containing these cells was transferred into an 

Eppendorf, rotated (15 min) to complete the lysis, before subjecting to centrifugation 

(15 min, 13 x g, 4 °C) and transferring the supernatant (containing protein) to a fresh 

Eppendorf for concentration measurement.  

2.2.2.1.3. Protein extraction of separated nuclear and cytoplasmic components 

Cells in 6 well plates were washed (2x PBS) and allowed to swell on ice in hypotonic 

buffer (700 μL/ well, ice cold, 5 min). Cells were then detached from the well plate by 

scraping, and the cells from 3 separate wells were combined and transferred into 15 

mL Falcon tubes. These were then centrifuged (100 x g, 15 min, 4ºC) after which the 

supernatant (containing the cell cytoplasm) was transferred into an Amicon ultra- 2 

mL centrifugal filter (Millipore, Hertfordshire, UK) and spun (800 x g, 4 ºC, around 

30-60 min) until around 400 μL cytoplasmic protein solution was obtained. The cell 

pellets (containing the nuclear fraction) were resuspended in 5 x their volume of 

hypertonic buffer and transferred to Eppendorfs. They were then rotated (1 hour, 4ºC) 

and centrifuged (16000 x g, 5 min, 4 ºC) and the supernatant containing the nuclear 

protein was transferred into fresh Eppendorfs. Protein concentration measurements 

and Western blot were then performed on nuclear and cytoplasmic fractions. 

2.2.2.1.4. Protein quantification 

Protein was quantified using the Bio-rad DC Protein Assay kit according to 

manufacturer’s instructions (Bio-Rad Laboratories Ltd, Hertfordshire, UK). Bovine 

serum albumin (BSA, fraction V) at concentrations of 0.25, 0.5, 1 and 2 mg/mL, was 

used to generate the standard curve. Water was used as a blank (0 mg/mL). Samples 

and standards (5 µL) were added in duplicate to a 96 well plate before addition of Bio-
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Rad’s alkaline copper tartrate solution (25 µl), followed by Bio-Rad’s dilute Folin 

reagent (200 µl). The plate was gently agitated to mix the reagents and after 15 minutes 

the absorbance was measured at 750 nm using an OPTImax tunable microplate reader 

(Molecular Devices, Wokingham, UK). The standard curve was deemed acceptable if 

r2 >0.98. The samples were accepted if the standard deviation between values was less 

than 10 % of the mean. The concentration of each protein sample was calculated from 

its absorbance value, using the line of best fit from the standard curve. 

2.2.2.1.5. Western blot sample preparation 

Western blot samples were prepared by adding 20 µg protein to appropriate volumes 

of 4x NuPAGE LDS Sample buffer (Life Technologies, Paisley, UK) and 10x 

NuPAGE sample reducing agent (Life Technologies). These samples were frozen at - 

20°C until required. 

2.2.2.1.6. Gel electrophoresis and protein transfer to membrane 

Protein samples were denatured (95 °C, 5 min) and separated on 4-12 % w/v gradient 

gels (Thermo Fischer Scientific) in running buffer for 2 hours at 80 V. Separated 

protein was then transferred to 0.45 µm nitrocellulose blotting membrane (GE 

Healthcare, Buckinghamshire, UK) using transfer buffer (1.5 hours, 60 V, 4°C). 

Transfer was confirmed by visualising protein on the membrane using Ponceau S 

solution which was washed off using 0.1 M NaOH as described in the manufacturer’s 

instructions. Membranes were then blocked with 5% blotting-grade blocker (Bio-rad, 

Hertfordshire, UK) in TBS-T (1 h, 37 °C) before washing (TBS-T, 5 minX3) and 

incubation with primary antibody (4 °C, O/N unless otherwise stated) diluted in 5% 

BSA in TBS-T. Primary antibodies and the dilutions used are given in Table 2.2. 
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Membranes were again washed (TBS-T, 5 minX3) and incubated with secondary 

antibody (1h, RT) diluted in 5% blocking solution in TBS-T, and matched to the 

species in which the primary antibody was raised. Membranes were then washed again 

in the same way before being viewed. 

 

Protein detected Code of antibody used Antibody 

dilution 

Species 

GR Sc-1003, Santa Cruz 1/500 Rabbit 

GR Sc-1004, Santa Cruz 1/500 Rabbit 

GR Sc-8992, Santa Cruz 1/500 Rabbit 

β-Tubulin Sc-101527, Santa Cruz 1/500 Mouse 

GRB2 Sc-255, Santa Cruz 1/1000 Rabbit 

PARP 556494, BD Pharmingen 1/1000 Mouse 

 
Table 2.2. Details of primary antibodies used for protein detection by Western blot. 
Primary antibodies were for binding to the Glucocorticoid receptor (GR), β-Tubulin, Growth 
factor receptor bound protein 2 (GRB2), and Poly (ADP-ribose) polymerase (PARP) proteins. 
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2.2.2.1.7. Visualisation and quantification of protein on membrane 

2.2.2.1.7.1. Fluorescence  

Secondary antibodies used in 2.2.2.1.6 when being visualised by the fluorescence 

method were those listed in Table 2.3. The membrane was scanned using an Odyssey 

Imaging System (LICOR Biosciences, Cambridgeshire, UK): the fluorescence 

intensity was measured at an emission wavelength of 795 nm (excitation wavelength 

778 nm), and the band intensity was then quantified using Image studio-lite software 

(Odyssey Imaging Systems, LI-COR Biosciences, Cambridgeshire, UK).  

Antibody Code of antibody Antibody dilution 

Goat anti-mouse IR Dye800 

CW 

926-32210, Licor Biosciences 1/10,000 

Goat anti-rabbit IR Dye800 

CW 

926-32211, Licor Biosciences 1/10,000 

Table 2.3. Secondary antibodies used for fluorescence detection of proteins by Western 
blot. 
 

2.2.2.1.7.2. Chemiluminescence  

Secondary antibodies used in 2.2.2.1.6 when being visualised by the 

chemiluminescence method were those listed in Table 2.4. Membranes were prepared 

for X-ray development using Immobilon Western Chemiluminescent Horse Radish 

Peroxidase (HRP) substrate kit (Millipore, Watford, UK) and its reagents. Briefly, the 

membrane was incubated (5 min, RT) in a mixture containing equal amounts of HRP substrate 

luminol and a HRP substrate peroxide solution. The membrane was then exposed to X ray film 

(CL-XPosureTM Film, 34088, Thermo Scientific)(5 min, RT) and film developed using an X 
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ray developer (Konica Minolta). The HRP-conjugated secondary antibody present on the 

protein of interest initiates luminol oxidation by peroxide, which then creates a signal on the 

film due to the emission of light as it decays to the ground state. 

Antibody Code of antibody Antibody dilution 

Anti-mouse IgG (whole molecule)- Peroxidase A5906, Sigma 1/10,000 

Anti-rabbit IgG (whole molecule)- Peroxidase A0545, Sigma 1/10,000 

Table 2.4. Secondary antibodies used for chemiluminescence detection of proteins by 
Western blot.  
 

2.2.2.2. Quantification of cytokines by ELISA 

IL6 and TNFα cytokines were measured in cell medium by following the 

manufacturer’s instructions and using kit reagents of the Mouse IL-6 and Mouse TNF 

alpha ELISA Ready-SET-Go! Kits (Invitrogen, Thermo Fischer Scientific, Paisley, 

UK). Briefly, the 96 well ELISA plate was prepared by shaking with capture antibody 

(100 µL/well, 4 °C, O/N). The plate was then washed three times by soaking it in wash 

buffer (>250 µL, 1 min) which consisted of 0.05 % Tween-20 in PBS. Wells were then 

blocked by shaking with assay diluent (200 µL/ well, RT, 1 hour). They were then 

washed (>250 µL wash buffer, 1 min, RT) and samples were loaded in duplicate (100 

µL/ well). Standard curve samples were prepared in diluent, and diluent was also used 

as a blank. The samples were shaken (4 °C, O/N) before washing 5 times with wash 

buffer as described above. Detection antibody (100 µL/ well) was added and incubated 

(1 hour, RT) then the plate washed 5 times as above. Then 100 µL / well Avidin-HRP 

enzyme was added (30 min, RT) and washed 7 times soaking for 2 minutes each time. 

Wells were incubated with TMB substrate solution (100 µL/ 15 min/ RT) and the 

reaction stopped with 1 M H2SO4 (50 µL/ well). The plates were analysed 
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spectrophotometrically using SoftMaxPro software (Molecular Devices, Berkshire, 

UK). The absorbance difference between 570 nM and 450 nM was measured, in order 

to correct for background. The standard curve, which was fitted according to 

manufacturer’s instructions, was accepted if r2 >0.98 and duplicates if the standard 

deviation was <10% of the mean. 

2.2.2.3. Visualisation of protein by immunofluorescence 

A549 cells were plated at 200,000 cells/4 ml/ well on glass coverslips in 6 well plates. 

After 24 hours the cells were washed (3 X PBS) and incubated in serum free medium 

for 24 hours. Treatments followed, and then treated cells were washed (2x PBS, RT) 

and fixed (2% v/v paraformaldehyde in PBS, 10 min, RT, 800 μL). Fixed cells were 

washed twice with PBS (RT) and then twice again with a solution of PBS containing 

0.1% v/v Triton X100). Excess liquid was subsequently removed from coverslips by 

holding their edges to tissue, and cells were permeabilised (ice cold methanol, 

Scientific laboratory supplies, Nottingham, UK) (3 min, wet ice) and left to air-dry (1-

3 min). Coverslips were blocked with 1% w/v heat-shock fraction BSA in PBS (4 

mL/well, 1 hour, RT), washed (2x PBS, RT), and incubated with primary antibody 

(100 µL, dark, ON, 4 °C). They were then washed (3x PBS + 0.05% v/v TritonX100) 

and incubated with secondary antibody (100 µL, dark, 2 hours, RT). After a further 

wash (3x PBS+0.05% TritonX100) coverslips were stained with DAPI (30 min, RT) 

then washed again (3x PBS+ 0.05% Triton, then 3x PBS) and placed on glass slides 

using mountant (Thermoscientific, Cheshire, UK). Slides were then air-dried in the 

dark and stored in the dark at 4 ºC until cells were visualised with fluorescence 

microscopy, using a Zeiss Axioskop microscope (HB050/HC, Germany) fitted with a 

microcolour liquid crystal tunable RGB filter and a photometrics Coolsnap camera. 5 
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images were taken randomly of each slide in blue (400-550nm), green (470-630nm) 

and red (550-700nm) channels, and then 10 cells were randomly chosen within each 

image to have their fluorescence quantified. Two approaches were taken for 

fluorescence quantification. A ‘scoring method’ required a qualitative measurement of 

the fluorescence in each cell according to the extents of fluorescence between the 

nucleus (N) and cytoplasm (C). Possible scores were 5 (N>>C), 4 (N>C), 3 (N=C), 2 

(N<C) and 1 (N<<C) and the mean score for each treatment were calculated. The other 

method of quantification was analysis using ‘ImageJ’ software, in which the corrected 

total cell fluorescence (CTCF) was quantified. The operator was blinded to treatment 

in all cases. 

2.2.3. Ex vivo aorta angiogenesis assay 

2.2.3.1. Aorta dissection from mouse 

The aortic ring assay was used to measure steroid effects on angiogenesis. Animals 

were maintained and killed as described in (2.1.1). The mouse was then pinned down 

by its paws, in the supine position, and cleaned with ethanol (70%, VWR Chemicals, 

Leicestershire, UK). The skin was cut along the ventral midline with sterile tweezers 

and scissors. The ribcage was cut open, and organs and tissues removed to expose the 

aorta. The aorta was subsequently cut at the distal end, and then cleared of blood by 

flushing serum free DMEM through it from the heart, using a syringe and 27G needle 

(BD Microlance, Medisave, Dorset, UK). The heart was subsequently removed, and 

the aorta isolated by detaching it from the surrounding upper and lower layer of 

adipose and connective tissue. Following dissection, the aorta was placed in DMEM 

and stored on ice for up to 4 hours until used. 
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2.2.3.2. Aortic ring plating and culture 

Aortas were cut into rings approximately 0.5 mm in length. Aortic rings were 

embedded one ring/well (96 well plate) in an ice cold solution of Collagen Type 1 (1 

mg/mL; Millipore, Hertfordshire, UK) in DMEM (ice cold, and adjusted with 0.1 M 

NaOH until the solution is pink, indicating a basic pH). Once embedded, the plate was 

left at RT (15 min) before transferring to 37ºC (1 hour). Opti-MEM (Life 

Technologies, Paisley, UK) was then added (150 μL/well) containing either no 

treatment, a growth stimulating treatment, or the growth stimulating treatment plus the 

appropriate steroid. The growth stimulating treatment consisted originally (day 0) of 

1% FCS and was then changed to 5 ng/mL Recombinant Murine Vascular Endothelial 

Growth Factor (VEGF) (PeproTech, London, UK) on days 3 and 5. In our laboratory 

this combination had previously been found to provide optimum conditions for vessel 

growth (personal communication from Dr Junxi Wu and Dr Robert Ogley). Medium 

was replaced on days 3 and 5.  

2.2.3.3. Quantification and analysis of angiogenesis 

Aortic rings were assessed, by light microscopy, for cells migrating out from the rings 

in response to FCS at day 3, and for vessel growth in response to VEGF at day 7. The 

rings that did not respond to the FCS and VEGF treatments, which lacked both a cell 

migration and vessel growth response, were assumed dead and were discarded (on 

average this was the case for one ring per two complete assays (of 20 rings each)). 

Angiogenesis was assessed by counting the new vessels which had grown from aortic 

rings, by direct light microscopy (x50). This vessel counting method is commonly used 

to quantify angiogenesis in the literature (Rohan et al. 2000, Nicosia & Ottinetti 1990). 
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Small (2005) had compared the accuracy and consistency of this method with a 

computer-assisted analysis method, which involved taking images of aortic rings from 

a live feed camera and then using the Microcomputer Imaging Device 

(MCID)(Imaging Research Inc, Canada) to measure the area of growth, maximum and 

average diameter of growth and vessel density. While measurement of vessel density 

proved to be unreliable and inconsistent, similar patterns of vessel growth were 

detected using the other 3 methods. However since they offered no major 

improvements Small et al. chose the counting method to quantify angiogenesis based 

on the fact that it is technically less demanding and requires only the use of light 

microscopy whilst still being reliable. The same decision was also made here, and 

vessels were counted originally both on days 5 and 7. Each segment sprouting from 

both the aortic ring and the new vessels, were considered as an individual vessel 

(Figure 2.2). Images of rings were captured on days 5 and 7 using an Axiovert 25 

Microscope (Zeiss, Cambridge, UK) fitted with a Photometrics Coolsnap camera. 

 

 

 

 

 

 
Figure 2.2: Vessel counting from murine aortic rings under light microscopy. 
Representative example showing that each segment sprouting from both the aortic ring and 
the new vessels was considered as an individual vessel during vessel counting. 
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2.2.4. In vitro cell migration assay 

Cell lines (Human dermal fibroblasts, HaCaTs, and HUVECs) were grown to 

confluence in normal serum medium, as detailed in 2.1.5. Cells were plated in stripped 

serum medium in specialised 96 well Image Lock Microplates (Essen bioscience, 

Hertforshire, UK). Cells were grown for 8-16 hours in a standard incubator. Scratches 

were then made using the Essen Bioscience 96 pin wound maker, which was specially 

developed to create precise and reproducible wounds. Medium was immediately 

removed and wells washed twice (100 µl PBS), to remove dead cells, before replacing 

with fresh stripped serum medium (100 µl/well) with or without treatment. The 

ImageLock plate was then placed in the Incucyte (Essen Bioscience, Hertfordshire, 

UK) and the proprietary software used to record images to monitor wound closure. 

The metric chosen for quantification of cell migration was Relative Wound Density 

(RWD, %). This metric relies on measuring the spatial cell density in the wound area 

relative to the spatial cell density outside the wound area, at every time point (therefore 

the RWD should be 0% at t=0, and 100% when the cell density inside the wound is 

the same as the cell density outside the initial wound).  Because of this it is self-

normalising for cell density changes occurring outside the wound due to cell 

proliferation and/or pharmacological effects, and is reported to be robust across 

multiple cell types (Incucyte ZOOM Scratch Wound Processing Overview Technical 

Note, Essen Bioscience).  

2.2.5. Measurement of co-regulator peptide recruitment to nuclear receptors 

This was performed in collaboration with Professor Onno Meijer (Leiden University 

Medical Centre) and René Houtman (PamGene International) using the PamGene 
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Microarray Assay for Real-time Coregulator Nuclear Receptor Interaction 

(MARCoNI). Steroids were first prepared in DMSO, and were then added to a buffered 

solution of the isolated GST-tagged ligand binding domain (LBD-GST, 10 nM, AB 

vector, San Diego, CA) of a human nuclear receptor (either GR or MR) and a 

fluorescent Anti-GST alexa 488 antibody (25 nM). Each assay mix was subsequently 

added to all wells of an individual PamChip array, where each well contained a 

different coregulator peptide immobilised in a porous microarray membrane. Binding 

of nuclear receptors to the coregulator peptides was visualised by detecting the 

fluorescence signal using a PamStation 12 processing platform. The changes in 

binding in response to steroid, relative to DMSO control, were made using Student’s 

unpaired t-tests. The experiment was repeated 3 times. 

2.2.6. Assessment of steroid ability to bind GR ligand binding domain 

This was performed by the Drug Discovery core (College of Medicine and 

Veterinary Medicine, University of Edinburgh) using a PolarScreen Glucocorticoid 

Receptor Competitor Assay kit (Fisher Scientific, Loughborough, UK). This kit is a 

displacement assay utilising a commercial fluorescent ligand, called Fluormone GS1. 

Since Fluormone GS1 is a specific ligand for the hGR LBD, it binds at this site to form 

a GS1/GR complex. However, an effective competitor may also bind to the hGR LBD 

and prevent this GS1/GR complex from forming. This results in a shift in the 

fluorescence polarisation value, and the extent of this shift is used to determine the 

relative affinity of test compounds for GR. The assay was performed in accordance 

with the manufacturer’s protocol. This involved adding the GR, fluormone GS1 and 

steroid to a micro well plate. The fluorescence polarisation (mP) was then measured 

at 535 nm and 590 nm using a TECAN infinite 1000 microplate reader (TECAN, 
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Reading, UK). Graphs were plotted using Graphpad 4, with the logIC curves plotted 

with a fitted four parameter equation. 

 

2.3. Data analysis 

Data analysis was performed using GraphPad Prism 6 (CA, USA) and was presented 

as mean ± SEM. Data were analysed using the statistical tests described in the legend 

of each figure. Statistical significance was taken at p<0.05, and when a trend is 

described this indicates a p value of 0.05<p<0.1. 
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Chapter 3: Is 5αTHB less detrimental during wound repair 

than current glucocorticoid administration? 

3.1. Introduction 

As mentioned in the introduction, 5α-Tetrahydrocorticosterone (5αTHB) is 

now being investigated as a safer topical anti-inflammatory treatment which is less 

detrimental during wound repair than current glucocorticoids (GCs). Wound repair is 

a complex process involving inflammatory signalling, formation of granulation tissue 

(composed largely of extracellular matrix proteins and myofibroblasts), angiogenesis, 

and epithelialisation (Eming, Brachvogel et al. 2007, Giusti, Rughetti et al. 2013, 

Sinno and Prakash 2013, Johnson and Wilgus 2014, Martinez, Smith et al. 2015, 

Portou, Baker et al. 2015, Rosique, Rosique et al. 2015). The process relies on the 

action of keratinocytes, fibroblasts, and endothelial cells. GCs are known to be 

detrimental to multiple stages occurring during wound repair (Schoepe, Schacke et al. 

2006, Tiganescu, Walker et al. 2011, Tiganescu, Tahrani et al. 2013). They are anti-

inflammatory, both by suppressing pro-inflammatory signalling and by remodelling 

the vasculature to prevent inflammatory cell recruitment to the wound site. They also 

cause decreased expression of many molecules involved in extracellular matrix (ECM) 

formation (such as collagen and matrix metalloproteinases (MMPs)), and inhibit the 

migration and proliferation of keratinocytes and fibroblasts (Small, Hadoke et al. 2005, 

Schoepe, Schacke et al. 2006, Tiganescu, Walker et al. 2011). Importantly, GCs inhibit 

angiogenesis (the formation of new blood vessels from the pre-existing vasculature) 

with defective angiogenesis being largely responsible for impaired wound healing in 

many cases (Johnson and Wilgus 2014).  
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Initial studies suggest that 5αTHB is less detrimental to angiogenesis and ECM 

component formation, than conventional GCs (Gastaldello, Livingstone et al. 2017). 

In a mouse subcutaneous sponge implantation model of angiogenesis, 5αTHB 

suppressed vessel growth only to a limited extent whereas growth was substantially 

decreased by corticosterone. Transcript analysis of mRNA from these sponges 

revealed that corticosterone decreased expression of many factors important during 

vessel formation, whereas 5αTHB reduced only a small subset. Furthermore, 5αTHB 

did not reduce deposition of collagen (an important ECM component of granulation 

tissue) in sponges whereas corticosterone did. This work provided initial evidence that 

5αTHB would have fewer adverse effects on wound healing processes than 

conventional GCs, and would, hence, be suitable as an improved topical anti-

inflammatory treatment. 
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3.2. Hypothesis 

The hypothesis addressed in this chapter is that 5αTHB is suitable for use as a safer 

topical anti-inflammatory agent. It is less harmful to the skin than conventional GCs, 

with decreased effects on skin thinning and wound repair processes. In particular: 

1. 5αTHB has fewer adverse effects on migration of cells important during the 

wound repair process. 

2. 5αTHB is less angiostatic than conventional glucocorticoids. 

 

3.3. Aims 

1. To determine whether 5αTHB impairs migration of fibroblasts, keratinocytes 

and endothelial cells and compare its effects to those of dexamethasone and 

hydrocortisone. 

2. To assess the effects of 5αTHB on the vasculature using a mouse ex vivo aortic 

ring assay, and to compare with the effects of dexamethasone and 

hydrocortisone. The model will be used to: 

I. Compare steroid effects on vessel growth. 

II. Compare steroid effects on gene expression in the aorta. 

3. To determine whether the effects of 5αTHB are GR dependent. 
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3.4. Methods 

3.4.1. Investigating the effects of 5αTHB on cell migration in vitro  

3.4.1.1. Choice of cells 

HaCaT cells were chosen as the human keratinocyte cell model since they were known 

from the literature to be GC responsive, since dexamethasone impaired cell migration 

in an in vitro scratch wound assay (Reuter, Loitsch et al. 2012). Human umbilical vein 

endothelial cells (HUVECs) were used as the endothelial cell model since 

glucocorticoids had previously inhibited tube-like structure formation in these cells 

(Logie, Ali et al. 2010). Finally, hTERT immortalised human dermal fibroblasts were 

chosen as a relevant skin fibroblast model since they are taken from the skin and so 

are likely to be appropriate for studying effects on wound repair mechanisms; 

however, there was no literature available on steroid responsiveness of this particular 

cell line.  

3.4.1.2. Assessment of GR protein in cell lines 

The presence of GR protein was assessed in HaCaT, HUVEC, and dermal fibroblast 

cells. Cells were grown to confluence and complete protein extracted as described in 

2.2.2.1.2. Protein was subsequently quantified (2.2.2.1.4) and visualised as a band 

using Western blot (2.2.2.1.5 – 2.2.2.1.6). Primary antibodies used were GR (sc-1003, 

rabbit polycloncal IgG) and β-tubulin (sc-101527, mouse monoclonal IgG) (both 1:500 

dilution and from Santa Cruz, Heidelberg, Germany). Secondary antibodies used were 

goat anti-rabbit IR Dye 800 CW (926-32211) and goat anti-mouse IR Dye 800 CW 

(926-32210) (both 1:10000 dilution and from Licor Biosciences, Cambridge, UK) 

matched to the species of the primary antibody. The blots were developed and band 
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intensity quantified with the fluorescence method (2.2.2.1.7.1) using an Odyssey® 

Imaging Systems and ImageStudioLite software (both LI-COR Biosciences, Cambridge, 

UK). 

3.4.1.3. Essen bioscience cell migration scratch assay 

3.4.1.3.1. Method development 

The scratch assay was utilised as described in (2.2.4) in order to compare steroid 

effects on HUVEC, HaCaT or dermal fibroblast migration. Initial assays were 

performed in the absence of steroid treatment in order to find the optimum conditions 

required for confluent monolayers to have formed after 8-16 hours, from which 

reproducible scratches could be made. Seeding densities of between 10000 and 60000 

cells/ well were tested, and the effect of coating the plate with collagen type 1 or gelatin 

(protocols in 2.1.5.4) was also investigated in the case of fibroblasts and HUVECs, 

respectively, in order to increase adherence of cells to the plate surface. 

Pharmacological manipulation of the optimised assay was subsequently tested by 

treating HaCaT cells with epidermal growth factor (EGF, 25 ng/ml) as this had 

consistently been reported to increase HaCaT cell migration (Charvat, Chignol et al. 

1998, Tochio, Tanaka et al. 2010).  

3.4.1.3.2. Testing steroid effects 

Dexamethasone, hydrocortisone and 5αTHB concentration responses were performed 

in triplicate, and repeated on three independent cell preparations, using the following 

concentration range: 1 nM, 10 nM, 100 nM, 1 μM, and 10 μM, according to the method 

described in (2.2.4) with previously optimised conditions stated in table 3.2. The 
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negative control for all experiments consisted of the addition of ethanol as vehicle in 

the absence of steroid. 

3.4.2. Investigating the effects of 5αTHB in the vasculature ex vivo 

3.4.2.1. Comparing steroid effects on vessel growth 

Angiogenesis was examined using the mouse ex vivo aortic ring assay model 

(Baker, Robinson et al. 2012). As described in (2.2.3), vessel growth was stimulated 

from aortic rings, and the ability of steroids to suppress this was investigated. Day 7 

was determined  by Small et al. (Small, Hadoke et al. 2005) to be the optimal time-

point to assess effects on vessel growth. Small et al. (Small, Hadoke et al. 2005) 

reported that new vessel growth increased from days 3 to 7, then reached a plateau 

after day 7 (Small, G.R, 2005). In this thesis, vessel growth was stimulated with growth 

factors and it was therefore anticipated that a plateau of vessel growth may be reached 

in less than 7 days. For this reason the vessels were originally counted both on days 5 

and 7. However more vessels had grown on day 7 than on day 5, leading to an increased 

power to detect suppression of vessel growth at this later time point. Therefore, 

subsequent comparisons were made using day 7 data. Power calculations using PS: 

Power and Sample size calculation software (WD Dupont and WD Plummer, Jr) 

indicated that a sample size of n=8 was required in order to achieve sufficient power 

in this assay. Therefore n=8 was achieved in duplicate. Steroid concentration responses 

were performed, with treatments consisting of dexamethasone (1 nM, 3 nM, 10 nM, 

30 nM, 100 nM, 300 nM, and 1 μM), hydrocortisone (10 nM, 30 nM, 100 nM, 300 

nM, 1 μM, 3 μM, and 10 μM), or 5αTHB (same dose range as hydrocortisone).  
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3.4.2.2. Assessing GR dependence of the effects of 5αTHB on vessel growth 

Effects mediated via GR were also investigated using the GR antagonist RU486, 

initially using concentrations of 30 nM or 3 μM RU486 (equal to the doses used of 

dexamethasone and 5αTHB), either alone or in combination with dexamethasone (30 

nM) or 5αTHB (3 µM). Dexamethasone was chosen as the positive control due to its 

GR selectivity, and the concentrations used of dexamethasone (30 nM) and 5αTHB (3 

µM) were those previously calculated from their concentration response curves to be 

required for significant suppression of vessel growth. Subsequently, the effect of 

RU486 to shift the steroid concentration-response curves was investigated, by re-

performing the concentration response experiments described in (3.4.2.1) in the 

presence of 30 nM RU486. 

 

3.4.2.3. Comparing steroid effects on mRNA transcript expression in aortic 

rings 

After counting, on day 7, the new vessels that had grown from aortic rings used in the 

experiments described in (3.4.2.1) and (3.4.2.2), RNA was extracted from the rings 

and reverse transcribed for qPCR using the protocols described in (2.2.1.2 – 2.2.1.5). 

Four rings (of the same treatment group) were combined for RNA extraction to 

produce each RNA sample. Treatment groups consisted of unstimulated control, 

stimulated aortic ring (with FCS followed by VEGF as described in 2.2.3.2.), or aortic 

ring which had been stimulated and then treated with either 5αTHB (3 μM), 

dexamethasone (30 nM), hydrocortisone (1 μM), or RU486 (30 M or 3 M) either alone 

or in combination with 5αTHB (3 μM) or dexamethasone (30 nM). Table 3.1 

demonstrates these treatment combinations for clarification. The steroid doses were 
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chosen based on the results of the experiments described in (3.4.2.1). Since aortic rings 

were only treated with specific drug concentrations in order to achieve the 

concentration responses described in 3.4.2.1, it was not possible to compare EC50s of 

each steroid. Furthermore the EC50 of dexamethasone did not significantly suppress 

vessel growth. Consequently, the lowest concentrations of each steroid required to 

significantly suppress vessel growth were chosen to compare effects on gene 

expression in the aorta. At these concentrations vessel growth was suppressed to 

35±11%, 30±7% and 26±14% of stimulated controls by hydrocortisone, 

dexamethasone, and 5αTHB, respectively. RNA transcript abundance across the 

treatment groups was assessed by real-time qPCR (2.2.1.6). To ensure reliability of 

results, two reference genes (Tbp and Actβ) were used, and transcript abundance of 

each gene was normalised to the mean of the two for each sample, due to the lack of 

significant changes in the abundance of transcripts among groups. Next generation 

RNA sequencing analysis had recently been performed to identify gene expression 

changes in the murine aortic ring model in response to hydrocortisone, and genes of 

interest were selected from this study (Morgan, Keen et al. 2018), as well as from real-

time PCR analysis of transcripts in the sponge implantation model performed by 

Gastaldello (Gastaldello, Livingstone et al. 2017).  
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 Unstimulated Stimulated 

Vehicle        √  

Vehicle  √ 

5αTHB  √ 

Hydrocortisone  √ 

Dexamethasone  √ 

RU486  √ 

RU486 + 5αTHB  √ 

RU486 + Hydrocortisone  √ 

RU486 + Dexamethasone  √ 

 

Table 3.1: Stimulation and treatment combinations for mouse aortic ring experiments, 
to investigate steroid effects on angiogenesis. 
 

3.4.2.4. Data and statistical analysis 

qPCR samples with RDS < 10 % different between analytical triplicates were deemed 

acceptable. All data were analysed using GraphPad Prism6 software and presented as 

mean with error bars representing the standard error of the mean (SEM). Data were 

analysed by one-way ANOVA and either Dunnett’s or Tukey’s multiple comparison 

test, depending on whether every mean was being compared with every other mean 

(Tukey’s test) or every mean was being compared to a control mean (Dunnett’s test). 

To fit the concentration response curves, a non-linear regression analysis was 

performed using the log (inhibitor) vs response (three parameters) equation and using 



128 
 

the least squares fitting method. Curves were fitted to the mean data and due to the 

inherent variability in the aortic ring assay, EC50 values were calculated from the mean 

data. Statistical analysis was performed using GraphPad Prism 6. 
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3.5. Results 

3.5.1. Assessing the effects of 5αTHB on cell migration 

3.5.1.1. Assessment of GR expression in cell types 

The presence of GR protein in the dermal fibroblast, HaCaT and HUVEC cell lines 

was assessed by Western blot. A similar intensity of bands for β-tubulin demonstrated 

equal loading of protein from each cell type and provided a control between slight 

deviations in sample loading. Bands were quantified and expressed relative to β-

tubulin loading control. All cell types expressed GR (figure 3.1a and b).  

 

 

 

 

 

 

 

 

Figure 3.1: Human Umbilical Vein Endothelial cells (HUVECs), HaCaTs and dermal 
fibroblasts all expressed GR. Whole protein was extracted from cells and visualised by 
Western blot with β-tubulin, the latter demonstrating equal loading of protein (a). GR band 
intensities were quantified and expressed relative to the band intensity of their β-tubulin 
loading control (b). GR protein was present in all cell types. Graph is mean ± SEM of n=3.  
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3.5.1.2. Optimisation of cell seeding conditions 

During initial preliminary assays with each cell type, the importance of 

selecting the correct seeding density became apparent. With too low a seeding density, 

cell monolayers were not completely formed due to the presence of gaps between cells. 

This meant that there was a lot of variability in the rate of wound closure between 

replicates, as cells often moved in other directions in order to fill the gaps, rather than 

to close the wounds. With too high a seeding density, cells would attach too tightly to 

each other, often forming clumps and detaching from the well surface. This prevented 

reproducible scratches from being formed, and also led to the presence of cell debris 

(which as well as blocking the pathway of migrating cells, also interfered with the 

computer’s ability to distinguish between ‘cell’ and ‘scratch’ areas). As an additional 

measure to prevent the formation of cell debris, it was also determined that both 

fibroblasts and HUVECs required a coating in order to increase their adherence to the 

surface of the well plates. This was achieved with collagen-1 and gelatin, respectively. 

Since collagen-1 is the major collagen in the skin (providing around 80% of skin 

collagen (Schoepe, Schacke et al. 2006)) this mimics well the granulation tissue 

present in the wound into which the fibroblasts migrate (Schoepe, Schacke et al. 2006, 

Terao, Tani et al. 2014, Terao and Katayama 2016).  In contrast, the basement 

membrane of blood vessels, which forms around the endothelial cells, is a dense 

polymeric sheet composed of ECM proteins but with a slightly different composition 

to the skin ECM (Eming, Brachvogel et al. 2007). The main collagen present is 

collagen IV, and this forms a scaffold together with separate polymers of laminin, held 

together by linker proteins such as nidogens and the heparin sulphate proteoglycan 

perlecan (Eming, Brachvogel et al. 2007, Briquez, Hubbell et al. 2015). Gelatin is a 
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heterogeneous mixture of water-soluble proteins present in collagen, and is extracted 

from skin, tendons, ligaments and bones. It is, therefore, often used mimic the 

basement membrane of blood vessels in order to test the mobility of endothelium cells 

in vitro 

(https://www.sigmaaldrich.com/catalog/product/sigma/g1393?lang=en&region=GB, 

last accessed 21/07/2018).  

Ultimately, the conditions which were deemed optimum in order to study cell 

migration in this assay for each cell type are given in table 3.2.  

 Seeding Density: Plates coated with: 

HaCaT 40000 Uncoated 

Fibroblast 15000 1 mg/mL collagen-type 1 

HUVEC 45000 0.1% gelatin 

 
Table 3.2: The optimum cell plating conditions chosen for use with the Essen 
Bioscience cell migration scratch wound assay. Human umbilical cord endothelial cells 
(HUVEC), HaCaTs, and dermal fibroblasts were plated in 96 well plates under the conditions 
in this table, 8-16 hours before scratch formation. 
 
 

3.5.1.3. Optimising assay analysis settings. 

After scratch formation, cell migration was continuously monitored and well-images 

taken every 2 hours by the Incucyte® analysis software package. From these images, 

cell migration was quantified using the relative wound density (RWD) metric 

previously described (2.2.4). To compute RWD the Incucyte® software relies on the 

formation of various masks – a ‘confluence mask’ covering the cells and a ‘wound 

mask’ covering the scratch area, demonstrated in figure 3.2, as compared to without 

the masks as seen in figure 3.3. It was therefore vital for these masks to be accurately 

applied and ‘processing definitions’ were made for each cell type, with various 

https://www.sigmaaldrich.com/catalog/product/sigma/g1393?lang=en&region=GB
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parameters altered to optimise this as far as possible. Table 3.3 gives the optimised 

parameters for each cell type. 

 

 

 

 

 

 

Figure 3.2: The Incucyte® analysis software package was used to apply ‘confluence’ (in 
orange) and ‘wound’ (in yellow) masks to cell migration images at each time point. From 
these masks, progress of the cells to migrate and cover the scratch area was computed by 
the software in terms of relative wound density (RWD). Image (a) is a representative original 
scratch at zero hours (0 hours) made by the Incucyte Wound maker tool in human umbilical 
vein endothelial cells (HUVECs). Cell migration to cover the scratch after 6 hours (the time at 
which vehicle-treated HUVECs had 40% RWD) can be visualised in image (b).  

 

  HaCaT Fibroblasts HUVEC 

Segmentation 

adjustment 

 1.2 1.3 2 

Clean up Hole fill (µm2) 500 4000 300 

Filters Minimum area 

(µm2) 

700 3500 900 

Table 3.3: The optimum analysis parameters chosen for ‘confluence’ and ‘wound’ 
masks to be accurately applied to images, using the Incucyte® analysis software 
package (Essen Bioscience). These parameters were optimised separately for each cell 
type, ensuring reliable mask formation and subsequent cell migration quantification. Only the 
settings listed in this table were applied. 

 

 

0 hours                                            6 hours 

Wound mask 

 

Confluence mask 
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3.5.1.4. Model assessment and time point selection 

To assess whether the scratch wound model was suitable for studying pharmacological 

effects on cell migration, endothelial growth factor (EGF) was used, which is widely 

reported to stimulate HaCaT cell migration. Vehicle treatment did not influence cell 

migration in comparison to untreated control cells (figure 3.4). EGF treatment 

increased HaCaT cell migration as assessed visually and after RWD quantification 

(figures 3.3 and 3.4). For vehicle-treated scratches the average wound closure times 

were calculated as well as the time required for the scratch to reach 20, 40, 60 and 80% 

RWD.  RWDs of EGF-treated scratches were subsequently compared at each time 

point. EGF increased cell migration in comparison to vehicle-treated cells at time-

points when vehicle treated cells had 40, 60 and 80% RWD. This indicated that cell 

migration changes could be detected by the model and, hence, that it is suitable for 

assessing the effects of other compounds. The difference between vehicle- and EGF-

treated scratches became significant when vehicle-treated scratches had 40% RWD 

(occurring after 12 hours in HaCaTs). The time for vehicle-treated scratches to reach 

40% RWD was therefore the time point chosen to quantify further pharmacological 

effects.  
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Figure 3.3: Epidermal growth factor (EGF, 25ng/ml) increased migration of HaCaT cells 
in comparison to vehicle-treated cells. HaCaTs were plated in stripped serum medium and 
grown to confluence in 96 well ImageLock Microplates. A scratch was made and media 
replaced with either vehicle or EGF. Images (a) and (b) demonstrate original wounds zero 
hours (0h) after scratch formation. Cell migration occurred over time to cover the scratch area, 
and masks applied by the Incucyte® analysis software were used to compute relative wound 
density (RWD, %). After 12 hours RWD of vehicle-treated cells was 43% (c) whereas in EGF-
treated cells it was 78% (d). Images are representative of three replicates. 
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Figure 3.4: Cell migration was successfully manipulated using the Incucyte® cell 
migration scratch assay, with differences between treatments becoming significant at 
the time point when vehicle treated scratches had 40% relative wound density (RWD). 
Scratches were made in confluent HaCaT monolayers and stripped serum media replaced 
either with no treatment (Control), with ethanol vehicle (V) or with epidermal growth factor 
(EGF, 25ng/ml). Wound closure was then monitored using Essen Bioscience Incucyte® 
analysis software. RWD was compared between the two treatment groups at the time when 
vehicle treated cells had 20, 40, 60 and 80% RWD.  Vehicle treatment did not influence wound 
closure in comparison to untreated control. EGF increased RWD of scratches in comparison 
to vehicle treatment, at the time points when vehicle treated scratches had 40, 60 and 80% 
RWD. Data from each time point were individually analysed by one-way ANOVA with 
Dunnett’s multiple comparisons test. *=P<0.05 vs V, **=P<0.01 vs V. 
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3.5.1.5. Assessing steroid effects on cell migration 

Cell seeding densities optimised as described in section 3.4.1.2 were successful in 

creating confluent monolayers from which reproducible wounds could be made. 

Processing definitions using the chosen parameters described in section 3.4.1.3 

allowed the Incucyte® software to distinguish clearly between open scratch areas and 

those containing cells for each cell type. The time taken for vehicle-treated scratches 

to close to 40% RWD occurred in a consistent manner, requiring 16 hours for 

fibroblasts, 12 hours for keratinocytes and 6 hours for HUVECs. Comparisons to 

assess steroid effects were subsequently made at these time points.   

The GR-selective glucocorticoid dexamethasone did not have a significant effect on 

fibroblast, HUVEC, or HaCaT migration, at any concentration tested from 1nM to 

10µM. This can be seen visually (appendices figures A1, A4 and A7) and was 

confirmed through quantification (figures 3.5a, 3.6a and 3.7a).  Hydrocortisone did not 

have any effect on fibroblast or HaCaT migration (figures 3.5b and 3.7b), but did 

suppress HUVEC migration (figure 3.6b), reaching significance at doses of 1 nM and 

10 nM. 5αTHB also did not affect cell migration of any cell type, at any dose tested 

(figures 3.5c, 3.6c and 3.7c, and appendices figures A3, A6 and A9). 
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Figure 3.5: Dermal fibroblast cell migration was unaffected by dexamethasone (a), 
hydrocortisone (b) or 5α-tetrahydrocorticosterone (5αTHB)(c). Cell migration was 
assessed using the Incucyte® cell migration scratch assay (Essen Bioscience). Cells were 
plated in stripped serum medium. Scratches were made in confluent cell monolayers and 
media replaced containing vehicle (ethanol) or either dexamethasone, hydrocortisone or 
5αTHB concentrations ranging from 1 nM to 10 µM. Cell migration to cover the scratch area 
(or ‘wound’) was then assessed every 2 hours as the ‘relative wound density’ (RWD), a 
measurement of the spatial cell density in the wound area relative to the spatial cell density 
outside of the wound area at every time point. RWD was compared between treatments at the 
time when RWD of vehicle-treated cells was 40%. The steroids tested did not cause any 
difference in fibroblast cell migration in comparison to vehicle-treated control. Graphs are 
mean ± SEM, n=3. Data were analysed by one-way ANOVA. 
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Figure 3.6: Human Umbilical Vein Endothelial Cell (HUVEC) migration was unaffected 
by dexamethasone (a) or 5α-tetrahydrocorticosterone (5αTHB)(c) but was inhibited by 
hydrocortisone (b). Cell migration was assessed using the Incucyte® cell migration scratch 
assay (Essen bioscience). Cells were plated in stripped serum medium. Scratches were made 
in confluent cell monolayers and media replaced containing vehicle (ethanol), or either 
dexamethasone, hydrocortisone or 5αTHB at concentrations ranging from 1 nM to 10 µM. Cell 
migration to cover the scratch area (or ‘wound’) was then assessed every 2 hours and the 
‘relative wound density’ (RWD) measured: the spatial cell density in the wound area relative 
to the spatial cell density outside the wound area at every time point. RWD was compared 
between treatments at the time when RWD of vehicle-treated cells was 40%. RWD of 
dexamethasone (a) and 5αTHB (c) treated wounds was unchanged relative to control. RWD 
was decreased by hydrocortisone (b) at doses of 1 nM and 10 nM, indicative of reduced 
HUVEC cell migration. Comparisons were made with Dunnett’s multiple comparisons test. 
Graphs are mean ± SEM, n=3. Data were analysed by one-way ANOVA. * = P<0.05, ** = 
P<0.01 vs control. 
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Figure 3.7: HaCaT cell migration was unaffected by dexamethasone (a), hydrocortisone 
(b) or 5α-tetrahydrocorticosterone (5αTHB) (c). Cell migration was assessed using the 
Incucyte® cell migration scratch assay (Essen bioscience). Cells were plated in stripped serum 
medium. Scratches were made in confluent cell monolayers and media replaced containing 
vehicle (ethanol) or either dexamethasone, hydrocortisone or 5αTHB concentrations ranging 
from 1 nM to 10 µM. Cell migration to cover the scratch area (or ‘wound’) was then assessed 
every 2 hours as the ‘relative wound density’ (RWD), a measurement of the spatial cell density 
in the wound area relative to the spatial cell density outside the wound area at every time point. 
RWD was compared between treatments at the time when RWD of vehicle-treated cells was 
40%. None of the drugs caused any difference in HaCaT cell migration in comparison to 
control, as analysed with Dunnett’s multiple comparisons test. Graphs are mean ± SEM, n=3. 
Data were analysed by one-way ANOVA
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3.5.2. The effects of steroids on angiogenesis 

3.5.2.1. Assessment of controls 

A growth stimulus (FCS followed by VEGF) increased the number of vessels that 

sprouted from aortic rings in comparison to unstimulated negative controls (figure 

3.8). This effect was significant after both 5 and 7 days (white panels in figures 3.9a 

and b, respectively). However, the magnitude of growth was greater at 7 days, 

justifying this as the correct time to assess the effects of steroids on vessel growth, as 

a greater suppression in the number of vessels could be possible at this time point. 

Dexamethasone (positive control) suppressed vessel growth in a concentration-

dependent manner (figures 3.9 and 3.11). There was a pattern indicating 

dexamethasone-induced suppression of growth at day 5 (figure 3.9a), with significant 

suppression achieved at 300 nM. However, this concentration-dependent suppression 

became more apparent at day 7, when several concentrations (30 nM, 100 nM, 300 nM 

and 1 µM) of dexamethasone significantly suppressed vessel growth. The EC50 dose 

for suppression of vessel growth by dexamethasone at day 7 was 7.66 nM. However 

suppression of vessel growth by 10 nM dexamethasone (just higher than the EC50 

dose) did not reach significance. Therefore a concentration of 100 nM was chosen as 

the positive control for future experiments; this was slightly higher than the first 

concentration required to reach significance (30 nM), in order to ensure demonstration 

of inhibition. 

Power calculations performed using PS: Power and Sample size calculation software 

(by WD Dupont and WD Plummer, Jr) supported day 7 as the best time point to 

robustly detect the observed suppression (by 69%) of vessel growth by 
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dexamethasone. In order to achieve power of 90%, a sample size of 8 was required 

when assessing vessel growth at day 7.  

The large error bars (particularly at lower concentrations of dexamethasone when the 

mean vessel numbers are high, and hence the standard deviations, are large) 

demonstrate an inherent variability in this assay. In an attempt to reduce this inter assay 

variability, the effect of normalising the data to the number of vessels which grew in 

response to the stimulus alone, was investigated. Curves were fitted to the mean raw 

data, and the mean data expressed as % stimulus (figure 3.10). However there was no 

major improvement in the parameters describing the quality of the curve fit by 

normalising the data to the stimulus. It was, therefore, decided to continue assessing 

vessel growth using the raw number of vessels. 

 

 

 

Figure 3.8: Vessel growth was succesfully stimulated from murine aortic rings. Rings 
were plated in collagen and cultured in medium originally containing 1% Foetal calf serum 
(FCS, day 0). Medium was replaced on days 3 and 5, with the addition of vascular endothelial 
growth factor (VEGF, 5 ng/mL) in place of FCS. Rings treated with this stimulus treatment 
(FCS followed by VEGF) produced many more vessels than control rings, evident on days 5 
and 7. Images are representative of n=8.5X magnification. 

 

Day 3 Day 5 Day 7 
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Figure 3.9: Dexamethasone (Dex) induced a concentration-dependent suppression of 
vessel growth from murine aortic rings. Aortic rings were maintained in medium containing 
vehicle (control), a stimulus for vessel growth, or a combination of the stimulus plus one of the 
following concentrations of dexamethasone: 1, 3, 10, 30, 100, 300 or 1000 nM (left to right on 
graphs). The stimulus consisted of foetal calf serum on day 0, followed by vascular endothelial 
growth factor on days 3 and 5. Vessels which had grown from aortic rings were counted on 
day 5 (graphs a and c) and on day 7 (b and d) after plating. The stimulus significantly increased 
vessel growth from aortic rings after 5 (a) and 7 (b) days, but more vessels had grown at the 
later time point. Dexamethasone induced a concentration-dependent suppression of this 
vessel growth, requiring a concentration of 300 nM to reach significance at day 5, and a lower 
concentration(30 nM) at day 7. Concentration- response curves were then plotted for data at 
both day 5 (c) and day 7 (d). From these the concentration of dexamethasone required to 
inhibit vessel growth by half (EC50) was found to be 11.1 nM at day 5, and 7.7 nM at day 7. 
EC50 values were calculated from mean data due to inherent variability in the aortic ring assay. 
Graphs show mean ± SEM of n=8. *=P<0.05, **=P<0.01 vs control as analysed by an unpaired 
t-test. #=P<0.05, ##=P<0.01 vs stimulus as analysed by one-way ANOVA, followed by 
Dunnett’s multiple comparisons test. 
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Figure 3.10: Aortic ring assay concentration-response curve fit was not improved 
through normalisation. Murine aortic rings were maintained in medium containing vehicle 
(control), a stimulus for vessel growth, or a combination of the stimulus plus dexamethasone 
(1, 3, 10, 30, 100, 300 or 1000 nM). After 7 days the vessels which had grown from the rings 
were counted and a concentration-response curve of these raw values was plotted (a). In 
addition, a concentration-response curve was also plotted of these vessel numbers normalised 
to the number of vessels which had grown from rings treated with the stimulus alone (set to 
100%)(b). The R2 value for the curve generated by normalising the data was not much 
different, since the shape stayed the same, so this does not control well for inter assay 
variability. Data is mean of n=8. 
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Figure 3.11: Concentration-dependent suppression of vessel growth from aortic rings 
by dexamethasone (Dex). Aortic rings were plated in collagen and cultured in medium either 
alone, containing a stimulus (S) for vessel growth, or with a combination of the stimulus plus 
a dexamethasone concentration ranging from 1 nM to 1 µM. The stimulus increased the 
number of vessels which had sprouted from aortic rings after 7 days. Dexamethasone induced 
a concentration-dependent suppression of this vessel growth with 7.7 nM required for half-
maximal effect (EC50). The EC50 was calculated from mean data due to inherent variability 
in the aortic ring assay. Images are representative of n=8. 5X magnification. 
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3.5.2.2.  Assessment of the effect of hydrocortisone in an ex vivo model 

of angiogenesis 

As demonstrated by the white panels in figure 3.12a, the stimulus (FCS followed by 

VEGF) was successful in stimulating the growth of vessels from murine aortic rings 

after 7 days of culture. This was consistent with the previous experiments given in 

figure 3.9, in which a similar number of vessels grew after treatment with the stimulus. 

This vessel growth was inhibited by the positive control, dexamethasone, once again 

demonstrating that angiogenesis can be manipulated in this assay and, hence, its 

appropriateness for assessing steroid effects.  

Further rings were treated with a combination of the stimulus and hydrocortisone. 

Hydrocortisone induced a concentration-dependent suppression of vessel growth from 

murine aortic rings. However, it was less potent than dexamethasone; the suppression 

of vessel growth became significant in comparison to stimulated controls (not treated 

with steroid) at a concentration of 1 µM (figure 3.12a) and the EC50 for suppression 

by hydrocortisone was 867 nM (figure 3.12b). 
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Figure 3.12: Hydrocortisone (HC) induced a concentration-dependent suppression of 
vessel growth from murine aortic rings. Aortic rings were maintained in medium either 
containing vehicle (control), a stimulus for vessel growth, or a combination of the stimulus plus 
dexamethasone (Dex) positive control (100 nM) or a HC concentration of 10, 30, 100, 300, 
1000, 3000 or 10,000 nM (left to right on graphs). The stimulus consisted of foetal calf serum 
on day 0 followed by vascular endothelial growth factor on days 5 and 7. Vessels which had 
grown from aortic rings were counted 7 days after plating. By day 7, the stimulus had caused 
a significant increase in vessel growth from aortic rings (graph a). HC induced a concentration-
-dependent suppression of this vessel growth, with the effect becoming significant at 1 µM. A 
concentration-response curve (R2=0.2891) was plotted (b) and from this the concentration of 
HC required to inhibit vessel growth by half (EC50) was 867 nM. The EC50 was calculated 
from mean data due to inherent variability in the aortic ring assay. Graphs show mean ± SEM 
of n=8. ****=P<0.0001 vs control, ##=P<0.01, ###=P<0.001, ####=P<0.0001 vs stimulus as 
analysed by one-way ANOVA followed by Dunnett’s multiple comparisons test.  
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Figure 3.13: Concentration-dependent suppression of vessel growth from aortic rings 
by hydrocortisone (HC). Aortic rings were plated in collagen and cultured in medium either 
alone, containing a stimulus (S) for vessel growth, or with a combination of the stimulus plus 
100 nM dexamethasone (Dex) or a HC concentration ranging from 10 nM to 10 µM. The 
stimulus increased the number of vessels which had sprouted from aortic rings after 7 days. 
Dexamethasone (positive control) suppressed this vessel growth. HC also induced a 
concentration-dependent suppression of vessel growth with 867 nM required for half-maximal 
effect (EC50). The EC50 was calculated from mean data due to inherent variability in the aortic 
ring assay. Images are representative of n=8. 5X magnification. 
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3.5.2.3. Assessment of the angiostatic effects of 5αTHB in an ex vivo 

model. 

As demonstrated in figure 3.14a, during experiments with 5αTHB the growth stimulus 

(FCS followed by VEGF) significantly increased the number of vessel outgrowths 

which had sprouted from mouse aortic rings after 7 days. This is consistent with the 

stimulus effect previously described (figures 3.9 and 3.12). Dexamethasone (positive 

control; 100 nM) significantly suppressed this vessel growth, demonstrating a 

functional and reliable assay.  

5αTHB also suppressed vessel growth from aortic rings. This suppression was evident 

at higher concentrations than required with the other steroids tested, reaching 

significance in comparison to stimulated control at 3 µM and 10 µM (figure 3.14a). 

However, at lower concentrations the effect of 5αTHB was less clear, and the 

concentration-response curve was flatter in comparison to those for dexamethasone 

and hydrocortisone. This is reflected in the higher EC50 of 2399 nM for suppression 

of vessel growth by 5αTHB in this model (figure 3.14b). 
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Figure 3.14: 5αTHB induced a concentration-dependent suppression of vessel growth 
from murine aortic rings. Aortic rings were maintained in medium either containing vehicle 
(control), a stimulus for vessel growth, or a combination of the stimulus plus dexamethasone 
(Dex;  positive control) or 5αTHB at a concentration of 10, 30, 100, 300, 1000, 3000 or 10,000 
nM. The stimulus consisted of foetal calf serum on day 0 followed by vascular endothelial 
growth factor on days 5 and 7. Vessels which had grown from aortic rings were counted 7 
days after plating. At day 7, the stimulus had caused a significant increase in vessel growth 
from aortic rings. 5αTHB induced a concentration-dependent suppression of this vessel 
growth, with the effect becoming significant at 3 µM. A concentration-response curve (b) was 
subsequently plotted (R2=0.2512) and from this the concentration of 5αTHB required to inhibit 
vessel growth by half (EC50) was determined as 2399 nM. The EC50 was calculated from 
mean data due to inherent variability in the aortic ring assay. Graphs show mean ± SEM of 
n=8. ****=P<0.0001 vs control, #=P<0.05, ##=P<0.01, ###=P<0.001 vs stimulus as analysed 
by one-way ANOVA followed by Dunnett’s multiple comparisons test.  
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Figure 3.15: Concentration-dependent suppression of vessel growth from aortic rings 
by 5αTHB. Aortic rings were plated in collagen and cultured in medium either alone, containing 
a stimulus (S) for vessel growth, or with a combination of the stimulus plus 100 nM 
dexamethasone (Dex) as a positive control, or plus 5αTHB at a concentration ranging from 10 
nM to 10 µM. The stimulus increased the number of vessels which had sprouted from aortic 
rings after 7 days. Dexamethasone suppressed this vessel growth. 5αTHB induced a 
concentration-dependent suppression of vessel growth with 2399 nM required for half-
maximal effect (EC50). The EC50 was calculated from mean data due to inherent variability 
in the aortic ring assay. Images are representative of n=8.  5X magnification.
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3.5.2.4.  Summary of the effects of 5αTHB and hydrocortisone on 

angiogenesis in the aortic ring assay model. 

As evident from figures 3.12 and 3.14, hydrocortisone and 5αTHB both induced 

concentration- dependent suppression of vessel outgrowth from mouse aortic rings. 

Hydrocortisone did this with an EC50 of 867 nM and achieved a significant 

suppression with doses 1 µM and above. 5αTHB was less potent than hydrocortisone 

to suppress vessel growth. It had a higher EC50 of 2399 nM and required a larger dose 

of 3 µM in order for its suppression of vessel growth to reach significance. A summary 

of the angiostatic effects of the steroids tested in this model, including that of the 

positive control dexamethasone, is given in table 3.4. 

 

Steroid EC50 for 

angiostasis 

Lowest dose for significant angiostatic 

effect, and suppression achieved versus 

stimulated control. 

Dexamethasone 7.7 nM 30 nM, achieving 65±11% suppression. 

Hydrocortisone 867 nM 1 µM, achieving 70±7% suppression. 

5αTHB 2399 nM 3 µM, achieving 74±14% suppression. 

 

Table 3.4: A summary of the effects of steroids on angiogenesis in a murine aortic ring 
model after 7 days. Murine aortic rings were plated in collagen and cultured in medium with 
a stimulus for vessel growth plus either vehicle (ethanol, 1 µL per 1 mL), or dexamethasone, 
hydrocortisone or 5αTHB at concentrations ranging from 1 nM to 10 µM. All steroids induced 
concentration-dependent suppression of the stimulated vessel growth, with the half-maximal 
doses (EC50) given in the middle column. EC50 values were calculated from mean data due 
to the inherent variability in the aortic ring assay. The dose of each steroid required for the 
suppression of vessel growth to reach significance against stimulated controls (not treated 
with steroid) is given in the right hand column. Data were determined from mean of n=8 
experiments.
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3.5.3. Investigation of the involvement of GR in the angiostatic effects of 

5αTHB 

In section 3.4.2. it was determined that 5αTHB induced a concentration-

dependent suppression of angiogenesis in the murine aortic ring assay, albeit with a 

lower potency than either hydrocortisone or dexamethasone. To understand the 

underlying mechanism, the GR antagonist RU486 was used to determine whether this 

suppression of angiogenesis was mediated through GR. A GR-selective agonist, 

dexamethasone, was used as the positive control (hydrocortisone being a ligand for 

both MR and GR). 

3.5.3.1. Antagonism of the angiostatic effect of 5αTHB using equipotent doses 

of RU486 

N=12 was selected to increase power, since a concentration-response was no 

longer being performed. Equal concentrations of RU486 and steroid were used, since 

in previous preliminary work by McInnes (2003) this was sufficient for RU486 to 

antagonise the effect of 5αTHB in the same assay. The lowest concentrations required 

of dexamethasone and 5αTHB (as determined in sections 3.4.1.2 and 3.4.1.3) in order 

to significantly suppress vessel growth, were chosen in order to assess antagonism by 

RU486. At these doses it was anticipated that any antagonism would clearly be 

evident.  

Once again, aortic rings responded well to the stimulus with vessel growth 

successfully increased to an average of 98 sprouts per ring (figure 3.16). 

Dexamethasone (30 nM) suppressed this vessel growth (figure 3.16a) consistent with 

previous data. Low concentration (30 nM) RU486, in the absence of steroid, did not 
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alter vessel growth but the high concentration (3 µM) induced a significant suppression 

of growth. For this reason the combined effects of the steroids with this high 

concentration of RU486, could not be interpreted. Whereas dexamethasone (30 nM) 

suppressed vessel growth alone, in combination with the lower concentration of 

RU486 (30 nM, concentration equivalent to dexamethasone) it did not, suggesting 

some antagonism. Power calculations indicated that N=117 were required to detect 

(with 90% power) a significant difference between dexamethasone- mediated 

suppression of vessel growth in the presence of RU486, and in the absence of RU486. 

With regard to 5αTHB, in contrast to the previous concentration-response data, 

suppression of vessel growth by a concentration of 3 µM did not achieve significance 

(figure 3.16b). Power calculations based on this data demonstrated that N=41 would 

be required for the effect to become significant (for a power of 90%). 
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Figure 3.16: Investigation of the involvement of the glucocorticoid receptor (GR) in 
5αTHB-mediated inhibition of angiogenesis. The GR antagonist RU486 was used to 
assess whether the suppression of vessel growth by (a) dexamethasone (Dex;  positive 
control), or (b) 5αTHB, is mediated via GR. Murine aortic rings were cultured in medium either 
with vehicle (control), with a stimulus for vessel growth, or with a combination of the stimulus 
plus either dexamethasone (30 nM) or 5αTHB alone or in combination with RU486 at low (30 
nM) or high (3 µM) concentrations. The stimulus increased the number of vessels which grew 
from aortic rings. High concentration RU486 alone suppressed this vessel growth, making its 
effects in combination with the steroids difficult to interpret. Graphs are mean ± SEM of n=12. 
****=P<0.0001 vs control as analysed by unpaired t-test, #=P<0.05, ##=P<0.01, 
###=P<0.001, ####=P<0.0001 vs stimulus, as analysed by one-way ANOVA followed by 
Dunnett’s multiple comparisons test. 

 

 

 

 

(a)           (b)  

 

 

 

           

5  T H B

N
u

m
b

e
r
 o

f 
v

e
s

s
e

ls

-

-

-

-

+

-

-

-

+

+

-

-

+

-

-

+

+

+

-

+

+

-

+

-

+

+

+

-

0

5 0

1 0 0

1 5 0

S t im u lu s :

5  T H B :

R U 4 8 6  lo w :

R U 4 8 6  h ig h :

****

# # # #

# #

D e x a m e th a s o n e

N
u

m
b

e
r
 o

f 
v

e
s

s
e

ls

-

-

-

-

+

-

-

-

+

+

-

-

+

-

-

+

+

+

-

+

+

-

+

-

+

+

+

-

0

5 0

1 0 0

1 5 0

****

# # #

# #

#

S t im u lu s :

D e x :

R U 4 8 6  lo w :

R U 4 8 6  h ig h :

 
Stimulus: 

Dex: 
RU486 low: 

RU486 high: 

 
Stimulus: 

5α THB: 
RU486 low: 

RU486 high: 

Dexamethasone                                               5α THB 



155 
 

3.5.3.2. Assessment of antagonism by a shift in the concentration-response 

curves. 

In section 3.5.3.1 single doses of steroid (30 nM of dexamethasone and 3 µM 

of 5αTHB) were used to suppress vessel growth, and antagonism of this suppression 

was assessed using RU486. However due to the inherent variability in the aortic ring 

assay, the sample sizes required to detect significant effects and gain definitive 

answers in this previous section would be very high, requiring many mice. In this 

current section, in order to better interpret the effects of RU486, the steroid 

concentration- responses were re performed in the presence of RU486 (30 nM). The 

EC50 values were then compared for steroid dose responses in the presence and 

absence of RU486, to assess whether the EC50 values were altered by RU486.                                                                                                                                                                                                                                                                                                               

3.5.3.2.1. Assessment of the effect of RU486 on the concentration-response 

to dexamethasone 

The stimulus significantly increased vessel growth from aortic rings in 

comparison to unstimulated controls (figure 3.17a). However there was less vessel 

outgrowth formation from rings in general in this assay compared to previous 

experiments. For example, during the original dexamethasone concentration-response 

(figure 3.9b) an average of 28 vessel outgrowths formed from unstimulated control 

rings, in comparison to an average of 15 vessel outgrowths in this experiment (figure 

3.17a). Likewise, an average of 71 vessel outgrowths formed from stimulated controls 

in the original dexamethasone concentration-response, compared to an average of 34 

in this experiment. Also in contrast, the suppression of vessel outgrowth formation by 

dexamethasone alone at 100 nM (positive control) in this current assay did not reach 
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significance (p=0.2). This is likely related to the assay variability as well as the lower 

number of vessel outgrowths, resulting in reduced sensitivity of the assay to allow 

detection of small effects. Power calculations revealed that a sample size of 47 would 

be required to detect a significant suppression of vessel growth by dexamethasone with 

90% power. This reflects problems with this experiment in comparison to the previous 

concentration-response experiment where n=8 was sufficient to achieve high power. 

An additional problem was that RU486 itself suppressed vessel growth, even at this 

lower dose of 30 nM, further complicating the interpretation of the experiment and 

indicating that further methods of answering the question should instead be sought.  In 

spite of these issues, in the presence of 30 nM RU486, dexamethasone still induced a 

concentration-dependent suppression of vessel growth in this experiment. A higher 

dose (1 µM) was required to reach significance in comparison to 30 nM required 

previously (figure 3.9b) in the absence of RU486. In addition the EC50 had increased 

to 287.7 nM (in comparison to 7.7 nM in the absence of RU486). A rightward shift 

was therefore induced in the dexamethasone concentration response curve by RU486. 

Raw vessel numbers were normalised to stimulated controls and concentration-

responses in the presence and absence of RU486 were superimposed on the same graph 

(figure 3.19a). Although the error bars do overlap at the lowest and highest doses of 

dexamethasone, they do not for the middle doses. Again this is suggestive of some 

antagonism by RU486, however it is not definitive due to the lack of power in this 

assay. 
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Figure 3.17: Investigation of the effect of the glucocorticoid receptor antagonist RU486 
on the suppression of angiogenesis by dexamethasone. Murine aortic rings were cultured 
in medium either with vehicle (control), with a stimulus for vessel growth, or with a combination 
of the stimulus plus RU486 (30 nM) alone or together with one of the following concentrations 
of dexamethasone: 1, 3, 10, 30, 100, 300 or 1000 nM (left to right on graphs). After 7 days 
vessels which had grown from the rings were counted. The stimulus (foetal calf serum on day 
0, followed by vascular endothelial growth factor on days 3 and 5) increased the number of 
vessels which grew from aortic rings in comparison to control. RU486 when given alone 
suppressed this vessel growth, and dexamethasone had an additional effect, achieving 
significance in comparison to RU486 alone at a dose of 1 µM (a). In the presence of RU486 
the concentration of dexamethasone required to inhibit vessel growth by half (EC50) was 
287.7 nM (b). EC50 values were calculated from mean data.  Graphs show mean ± SEM of 
n=8. **=P<0.01 vs control, #=P<0.05, ##=P<0.01 vs Stimulus + RU486, $=P<0.05 vs Stimulus, 
as analysed by one-way ANOVA followed by Dunnett’s multiple comparisons test. 
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3.5.3.2.2. Assessment of the effect of RU486 on concentration response curve 

to 5αTHB 

The stimulus significantly increased vessel growth from aortic rings in comparison to 

unstimulated controls (figure 3.18a) from an average of 12 to an average of 32. Again, 

this assay has a lower power than the previous 5αTHB concentration response curve 

in the absence of RU486 (figure 3.14a) in which vessel growth was increased to an 

average of 56 from an average of 18. Just as in the dexamethasone concentration-

response curve in the presence of RU486 (figure 3.17a), the dexamethasone positive 

control did not suppress the stimulated vessel growth in this experiment (figure 3.18a). 

As suggested previously, this is likely to be a consequence of the low power of this 

experiment; indeed when the control data from both experiments are combined (to 

achieve n=16; figure 3.20) the suppression by dexamethasone becomes significant. 

Suppression of vessel growth by 5αTHB was also not statistically significant (figure 

3.18a). From the concentration-response curve (figure 3.18b) a higher EC50 of 3110 

nM was evident, in comparison to 2399 nM in the absence of RU486 (figure 3.14b). 

Again, this could be interpreted as a rightward shift of the concentration-response 

curve by RU486; however, when the normalised concentration-response curves in the 

presence and absence of RU486 were superimposed on the same graph (figure 3.19b) 

the error bars overlapped for all concentrations of 5αTHB. This suggests that RU486 

did not antagonise the effect of 5αTHB. However again due to the lack of power this 

is not conclusive.  
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Figure 3.18: Investigation of glucocorticoid receptor antagonist RU486 effect on the 
suppression of angiogenesis by 5αTHB. Murine aortic rings were cultured in medium either 
with vehicle (control), with a stimulus for vessel growth, or with a combination of the stimulus 
plus RU486 (30 nM) alone or together with one of the following concentrations of 5αTHB: 10, 
30, 100, 300, 1000, 3000 or 10000 nM (left to right on graphs). After 7 days, vessels which 
had grown from the rings were counted. The stimulus (foetal calf serum on day 0, followed by 
vascular endothelial growth factor on days 3 and 5) increased the number of vessels which 
grew from aortic rings in comparison to control. Suppression of this by dexamethasone (Dex) 
positive control did not achieve significance, demonstrating a lack of power in this assay and 
making further interpretation difficult. Graphs show mean ± SEM of n=8. **=P<0.01 vs control 
as analysed by one-way ANOVA followed by Dunnett’s multiple comparisons test. 
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Figure 3.19: The effect of the glucocorticoid receptor antagonist RU486 on the 
suppression of angiogenesis by dexamethasone (Dex) and 5αTHB. Steroid-induced 
suppression of vessel growth from mouse aortic rings was compared in the presence and 
absence of RU486 (30 nM). The number of vessels which grew from rings was normalised to 
stimulated controls, and normalised data were used to superimpose concentration-response 
curves in the presence and absence of RU486 for (a) dexamethasone, and (b) 5αTHB. 
Whereas RU486 appears to antagonise the effect of low concentrations of dexamethasone, it 
did not antagonise the effect of 5αTHB. Graphs show mean ± SEM of n=8. 

 

 

 

(a) 

 

 

 

 

 

(b) 

D e x  ( lo g [M ])

%
 C

o
n

tr
o

l

-1 0 -9 -8 -7 -6 -5

0

5 0

1 0 0

1 5 0

2 0 0

2 5 0

D e x  +  R U 4 8 6

E C 5 0  =  2 8 7 .7  n M

D e x  a lo n e

E C 5 0  =  7 .6 6  n M

5 T H B  ( lo g [M ])

%
 C

o
n

tr
o

l

-9 -8 -7 -6 -5 -4

0

5 0

1 0 0

1 5 0

2 0 0

5 T H B  +  R U 4 8 6

E C 5 0  =  3 1 1 0  n M

5 T H B  a lo ne

E C 5 0  =  2 3 9 9  n M



161 
 

 

 

 

 

 

Figure 3.20: Combined control data from concentration-response experiments for 
dexamethasone and 5αTHB in combination with RU486. Graphs show mean ± SEM of 16. 
****=P<0.0001 vs control, #=P<0.05 vs stimulus, as analysed by one-way ANOVA followed by 
Dunnett’s multiple comparisons test. 

 

3.5.4. The effect of steroids on gene expression in the mouse aorta 

In addition to investigating the mechanisms of 5αTHB by antagonism with RU486 

(section 1.4.3), in this section the effects of 5αTHB on gene expression in the aorta 

were compared to those of hydrocortisone and dexamethasone. 

3.5.4.1.  Retrieval of aortic rings and RNA extraction. 

In sections 1.4.2 and 1.4.3, aortic ring assays were performed, from which 

aortic rings were available for RNA extraction and subsequent gene expression 

analysis. Additional experiments were also performed to increase the availability of 

rings as they needed to be pooled. It was established, whilst using the protocol for 

RNA extraction described in section (2.2.1.2), that it was necessary to combine four 

aortic rings for RNA extraction in order to obtain sufficient RNA for analysis by 

qPCR. An initial power calculation revealed that a sample size of 5 was required in 

order to detect a 362% induction of Per1 by dexamethasone with 90% power. 

Therefore a sample size of at least N=5 was ensured for all treatment groups. The 
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number of RNA samples produced varied according to the aortic rings available, and 

were as follows: Stimulus only N=11, Dexamethasone N=8, Hydrocortisone N=5, 

5αTHB N=9, RU486 N=6, RU486 + Dex N=5, RU486 + 5αTHB N=5.  

3.5.4.2. Comparison of the effects of 5αTHB, dexamethasone, and 
hydrocortisone on gene expression in mouse aortic rings  

 

3.5.4.2.1. Genes involved in inflammation and signalling 

Exposure to dexamethasone decreased the abundance of transcripts for Cxcl5 (figure 

3.21a) and produced a trend (p=0.053) to increase transcripts for Dusp1 (figure 3.21b) 

in mouse aortic rings undergoing angiogenesis. Hydrocortisone decreased transcript 

abundance of Cxcl5 (figure 3.21a) and increased that of Dusp1 (figure 3.21b)(30). 

5αTHB did not affect transcript abundance of these genes. There was a trend (p=0.07) 

for 5αTHB to increase transcripts of Mcp1 versus control (figure 3.21c). Mcp1 

transcripts were significantly increased (P<0.01) by 5αTHB in comparison to aortic 

rings exposed to dexamethasone or hydrocortisone, both of which had no effect. 

Therefore the trend for 5αTHB to increase Mcp1 transcripts would likely become 

significant with increased power. iNOS expression was not altered by any treatment 

(figure 3.21d). 

3.5.4.2.2. Genes involved in remodelling of the extracellular matrix (ECM) 

The transcript abundance of Col4a1 was increased by hydrocortisone and there was a 

trend (p=0.0501) for an increase with dexamethasone (figure 3.21e). Both 

dexamethasone and hydrocortisone decreased abundance of Mmp9 transcripts (figure 

3.21f). There was a trend (p=0.09) for hydrocortisone to reduce the expression of 
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Col14a1 (figure 3.21g). 5αTHB did not alter abundance of any of these gene 

transcripts. 

3.5.4.2.3. Genes involved in remodelling the vasculature 

5αTHB decreased the abundance of Pecam1 transcripts, and hydrocortisone also 

exhibited a trend (p=0.07) to decrease them (figure 3.21h). Vcam1 expression was not 

altered by any treatment (figure 3.21i). 

3.5.4.2.4. Genes known to be directly associated with GR 

Dexamethasone and hydrocortisone both increased the abundance of Per1, Hsd11b1, 

and Fkbp51 transcripts (figures 3.21j, k, and l). 5αTHB only increased the abundance 

of Per1 transcripts; however this was to a lesser extent than hydrocortisone or 

dexamethasone (figure 3.21j). 

 

 

 

 

 

 

 

 

 



164 
 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.21: Steroid effects on gene transcript abundance: RNA was extracted from stimulated mouse aortic ring sections treated with either 
vehicle (stimulus only), dexamethasone (Dex; 30 nM), hydrocortisone (HC; 1µM) or 5αTHB (3 µM). The RNA was reverse transcribed into cDNA and 
analysed by real-time PCR for expression of genes involved in inflammation and signalling ((a) Cxcl5, (b) Dusp1, (c) Mcp1, and (d) iNOS), extracellular 
matrix (ECM) remodelling ((e) Col4a1, (f) Mmp9, (g) Col14a1), vasculature remodelling ((h) Pecam1, (i) Vcam1) as well as typical GR responsive 
genes ((j) Per1, (k) Hsd11b1 and (l) Fkbp51)) . n=11 for stimulus- only treated group, n=8 for Dex, n=5 for HC, and n=9 for 5αTHB. Graphs (mean ± 
SEM) were analysed by one-way ANOVA followed by Tukey’s multiple comparison test, *=p<0.05, **=p<0.01, ***=p<0.001, ****=p<0.0001 vs Stimulus; 
#=p<0.05, ##=p<0.01, ####=p<0.0001 vs HC; $=p<0.05, $$=p<0.01, $$$=p<0.001, $$$$=p<0.0001 vs Dex. 
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3.5.4.3.  Using RU486 to investigate the involvement of GR in the effects of 

steroids on gene expression in mouse aortic rings. 

In order to test the contribution of GR to transcript regulation by 5αTHB, the 

ability of RU486 to antagonise the effect was assessed. It should be kept in mind that 

this experiment is compromised by my demonstration that RU486 had a direct effect 

on vessel growth in this assay. Dexamethasone was used as a positive control in this 

experiment, since it is a selective GR agonist. Dexamethasone no longer caused 

differential expression of Cxcl5, Mmp9, and Hsd11b1 when co-administered with 

RU486 (figures 3.22a, b and d). RU486 also tended to antagonise dexamethasone-

induced up-regulation of Per1 (P=0.06) and Fkbp51 (P=0.08)(figures 3.22c and e). 

Interestingly, RU486 alone actually down-regulated Mmp9 (figure 3.22b). Whilst this 

makes interpretation difficult, it is interesting that rather than having an additive effect, 

dexamethasone no longer had an effect in the presence of RU486. 

In contrast to the genes influenced by dexamethasone, RU486 did not 

antagonise the effect of 5αTHB on Pecam1 and Per1 transcripts (figure 3.33a and b). 

RU486 did decrease Pecam1 transcript expression on its own, complicating the 

interpretation regarding this gene. However it did not alter transcript abundance of 

Per1 (figure 3.33b).  
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Figure 3.22: RU486-mediated antagonism of dexamethasone-mediated changes in gene 
expression in the mouse aorta. RNA was extracted from mouse aortic ring sections, which 
had been treated with stimulus (1% FCS on day 0, followed by 5 ng/ mL VEGF on days 3 and 
5) in combination with either dexamethasone (Dex, 30 nM), the glucocorticoid receptor 
antagonist RU486 (RU, 30 nM), or a combination of the two (RU + Dex). The RNA was reverse 
transcribed into cDNA, and real-time PCR was used to measure transcript abundance of (a) 
Cxcl5, (b) Mmp9, (c) Per1, (d) Hsd11b and (e) Fkbp51. Dex altered transcript abundance of 
all the genes tested. When given in combination with RU486 it no longer altered transcript 
abundance of Cxcl5, Mmp9 and Hsd11b1. RU486 tended (0.05<P<0.1) to antagonise the 
effect of Dex on transcript abundance of Mmp9 (P=0.089), Per1 (P=0.058), Hsd11b1 
(P=0.063) and Fkbp51 (P=0.081). n=11 for stimulus-only treated group, n=8 for Dex, n=6 for 
RU, and n=5 for RU+Dex. Graphs (mean ± SEM) were analysed by one-way ANOVA followed 
by Tukey’s multiple comparisons test, *=p<0.05, **=p<0.01, ***=p<0.001, ****=p<0.0001 vs 
stimulus, ##=p<0.01, ####=p<0.0001 vs Dex. 
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Figure 3.23: RU486-mediated antagonism of 5α-Tetrahydrocorticosterone (5αTHB)-
mediated changes in gene expression in the mouse aorta. RNA was extracted from mouse 
aortic ring sections, which had been treated with stimulus (1% FCS on day 0, followed by 5 
ng/ mL VEGF on days 3 and 5) in combination with either 5αTHB (3 µM), the glucocorticoid 
receptor antagonist RU486 (RU, 30 nM), or a combination of the two (RU + 5αTHB). The RNA 
and was reverse transcribed into cDNA, and real-time PCR was used to measure transcript 
abundance of (a) Pecam1 and (b) Per1. 5αTHB altered transcript abundance of both genes, 
both in the presence and absence of RU486. RU486 alone decreased expression of Pecam1, 
but had no effect on Per1. n=11 for stimulus-only treated group, n=9 for 5αTHB, n=6 for RU, 
and n=5 for RU+5αTHB. Graphs (mean ± SEM) were analysed by one-way ANOVA followed 
by Tukey’s multiple comparisons test, *=p<0.05, **=p<0.01, ***=p<0.001, ****=p<0.0001 vs 
Stimulus, $=p<0.05 vs RU486.  
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3.6. Discussion 

The investigations described in this chapter were designed to assess the 

potential of 5αTHB as a potential novel topical anti-inflammatory treatment. 5αTHB 

had previously suppressed skin inflammation in vivo (Gastaldello, Livingstone et al. 

2017). However the local adverse effects of 5αTHB on the skin had not been fully 

investigated, and the effects of 5αTHB on wound repair were of particular interest. 

GCs are known to inhibit wound repair (Sevilla and Perez 2018). During wound repair 

the migration of keratinocytes, fibroblasts, and endothelial cells is important for 

epithelialisation, to secrete ECM/ close the wound, and for angiogenesis, respectively 

(Lee, Lin et al. 2015, Martin and Nunan 2015). Since each cell regulates a different 

stage of the wound healing process, steroid effects were compared on the migration of 

keratinocyte (HaCaT), fibroblast (dermal fibroblast), and endothelial (HUVEC) cell 

lines, hence providing a good overall broad model. However unexpectedly in this 

assay, migration of these cell lines was unaffected by the positive control 

dexamethasone, the topical glucocorticoid hydrocortisone, and by 5αTHB. One 

exception was a small effect on migration of the HUVEC endothelial cell line by low 

(but not high) doses of hydrocortisone which may be due to effects mediated via MR, 

or alternatively due to assay variability. Endothelial cells are known to express MR, 

and effects through MR may be dominant at lower doses when affinity for GR is low. 

Although MR expression was not tested here it has been reported in HUVECs 

(Oberleithner, Schneider et al. 2003, Yang and Zhang 2004, Logie, Ali et al. 2010). 

However, since the effect was lost at higher doses, and since the average RWD for 

vehicle -treated cells in this assay appears particularly high, the apparent effect is likely 

to result from small differences in the original scratch sizes and in the accuracy of 
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mask formation by the software. The effect could, hence, disappear with increasing 

sample size and could be tested in this way. 

Although migration of keratinocyte migration is described in the literature to 

be GC responsive (Lee, Vouthounis et al. 2005, Vukelic, Stojadinovic et al. 2010, 

Reuter, Loitsch et al. 2012), there are conflicting reports regarding the effect of GCs 

on endothelial cell and fibroblast migration (Huang, Liu et al. 2001, Eming, 

Brachvogel et al. 2007, Drebert, MacAskill et al. 2017). A lack of effect by 

dexamethasone on migration of this particular HUVEC endothelial cell line has been 

reported previously (Huang, Liu et al. 2001, Drebert, MacAskill et al. 2017) whereas 

GCs have inhibited migration of other types of endothelial cell such as porcine aortic 

endothelial cells and rat skeletal muscle microvascular endothelial cells (Fyfe, 

Rosenthal et al. 1995, Shikatani, Trifonova et al. 2012). The effect of GC on 

endothelial cell migration may, therefore, differ between species, due to species-

specific differences in GR. Indeed species differences are already known to exist 

regarding glucocorticoid effects on vascular smooth muscle cell (VSMC) migration, 

which dexamethasone is known to inhibit in rodent, but not in human cells (Pross, 

Farooq et al. 2002).  There are also known to be tissue specific differences in 

endothelial cells, and reports describing the limitations of using HUVECs as a model 

(Jaffe, Nachman et al. 1973, Alby and Auerbach 1984, Nolan, Ginsberg et al. 2013). 

If more time was available perhaps a more relevant cell model would be explored such 

as Human Dermal Microvascular Endothelial Cells (Markiewicz, Panneerselvam et al. 

2016). Interestingly in one of the previous studies in which dexamethasone did not 

suppress HUVEC migration, it did indirectly inhibit migration through a modification 

of the secreted factors from myofibroblasts (Drebert, MacAskill et al. 2017). Therefore 
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another likely reason for the lack of GC effects on endothelial cells in this chapter may, 

therefore, be because the cells were studied in isolation, when actually wound repair 

is a very complex process requiring communication between many cell types. The 

indirect effects of 5αTHB on HUVEC cell migration, may therefore be investigated in 

the future.  

Literature is sparse for the effects of GCs on fibroblast migration. In a previous 

study dexamethasone had no effect on migration of primary human normal dermal 

fibroblasts (Syed, Singh et al. 2013) but inhibited primary human keloid fibroblasts, 

which is interesting because keloids result from excessive fibrosis and are, thus, likely 

to contain more myofibroblasts (Eming, Brachvogel et al. 2007). As mentioned in 

section 1.9.2, fibroblasts differentiate into myofibroblasts during wound healing, 

therefore perhaps myofibroblasts would be a more relevant model. However unlike 

endothelial and fibroblast cells, keratinocyte cell migration is consistently inhibited by 

dexamethasone in the literature, including both the HaCaT cell line (Reuter, Loitsch 

et al. 2012) and primary human keratinocytes (Lee, Vouthounis et al. 2005, Vukelic, 

Stojadinovic et al. 2010). The lack of effect in this current work, therefore, is not in 

agreement with the literature in this case. It may be possible that the assay was not able 

to detect GC- mediated alterations in migration. However EGF positive control 

increased HaCaT migration in this assay consistent with the literature, demonstrating 

that the model was reliable for measuring pharmacological effects to upregulate cell 

migration (Charvat, Chignol et al. 1998, Tochio, Tanaka et al. 2010). Consistent 

positive controls to assess pharmacological manipulation of the fibroblast and 

endothelial cell lines could not be found, and ideally it would have been good to have 

a positive control for each cell type which is a critique I have of the work. Since the 
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cell migration assay was not responsive to even the conventional GCs, the effects of 

5αTHB could not be compared in this ‘broad’ model of wound healing. Instead the 

steroid effects were compared on angiogenesis; one particular stage of the wound 

repair process already known to be inhibited by GCs (Small, Hadoke et al. 2005) .  

Angiogenesis is crucial during wound repair. Since 1983 it has been known 

that GCs suppress angiogenesis (Folkman, Langer et al. 1983) and it is now known 

that even physiological GC concentrations can cause this inhibition (Small, Hadoke et 

al. 2005). The aortic ring assay model of angiogenesis was adopted here which had 

responded to GCs in past work (Small, Hadoke et al. 2005). Considerable intra-assay 

variability was noted in the data generated by this assay, caused by many factors such 

as variations in ring size, ring handling, and also the exact location of the aorta from 

which rings were taken from. However in spite of this variability, dose dependent 

suppression of vessel growth occurred in response to all three steroids 

(dexamethasone, hydrocortisone, and 5αTHB). Hydrocortisone required a 

concentration (1 µM) around 33x the concentration required of dexamethasone (30 

nM) in order to reduce vessel growth significantly. This is broadly consistent with a 

chick embryo chorioallantoic membrane bioassay performed in 1987, in which 

hydrocortisone was reported to be around 25x less angiostatic than dexamethasone 

(Folkman and Ingber 1987). In the current work, 5αTHB was less potent than 

hydrocortisone to suppress vessel growth, with a higher EC50 (2399 nM) in 

comparison to that of hydrocortisone (867 nM) and requiring a higher concentration 

(3 µM) in order for the suppression of vessel growth to reach significance. In a 

previous experiment using the aortic ring assay model, 5αTHB suppressed vessel 

growth at a lower dose than in the current work (1µM; McInnes 2003). However, in 
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that assay the vessel growth was not stimulated by growth factors whereas in my assay 

it was, which was important since during wound repair many growth factors are 

present and are known to initiate the process of angiogenesis. The results from this 

current study, therefore, suggest that 5αTHB is less detrimental to angiogenesis than 

hydrocortisone. In a mouse in vivo model of skin inflammation it has been 

demonstrated that 5αTHB has anti-inflammatory effects equipotent to those of 

hydrocortisone (Yang, Nixon et al. 2011). Combined with the results in this chapter, 

this suggests that 5αTHB would provide a safer topical anti-inflammatory treatment 

than GC, less detrimental to wound repair processes. However, it should be 

acknowledged that these were two separate models. Furthermore, since angiogenesis 

is just one stage of wound repair, additional processes involved in the healing process 

would need to be studied in order to make a definitive conclusion regarding the 

therapeutic profile of 5αTHB. In particular an in vivo mouse model of skin wound 

healing, which is known to be glucocorticoid responsive, would be a suitable approach 

(Duan, Patyna et al. 2006, Xie, Gao et al. 2009).  

In the recent in vivo sponge implantation model of angiogenesis 5αTHB was 

also less detrimental to vessel density than corticosterone, even at high doses 

(Gastaldello, Livingstone et al. 2017). During the wound healing process in vivo, 

inflammation precedes angiogenesis, and inflammatory cells such as neutrophils and 

macrophages are recruited into the wound site (Sinno and Prakash 2013). The growth 

factors and cytokines released from inflammatory cells, in particular from 

monocytes/macrophages, promote angiogenesis (Barrientos, Stojadinovic et al. 2008). 

However the aortic ring assay provides an excellent model for studying the effects of 

glucocorticoids directly on angiogenesis, whilst excluding their indirect effects on the 
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infiltration of inflammatory cells into the wound site. This current work using the 

aortic ring assay therefore expands on the findings of Gastaldello, by demonstrating 

that 5αTHB is also able to suppress angiogenesis through direct effects on the 

vasculature. Other steroids have been reported to suppress angiogenesis independent 

of their ability to reduce cytokine production, and are known as ‘angiostatic’ steroids 

(Hori, Hu et al. 1996). Indeed, in the literature the potencies of steroids in terms of 

their ability to suppress angiogenesis and inflammation do not necessarily appear 

correlated. It should not be ignored that, whilst less potent than hydrocortisone, 5αTHB 

still did induce a clear concentration-dependent suppression of angiogenesis, and this 

may be important physiologically. Importantly, in 1987, angiogenesis was inhibited 

by epicortisol (a stereoisomer of hydrocortisone)(Folkman and Ingber 1987) which 

lacks both GR and MR activity. This is particularly relevant here since there remains 

doubt over whether effects of 5αTHB are mediated through GR. Investigations into 

the mechanisms through which 5αTHB suppresses angiogenesis have been performed 

in this chapter, including mediation through GR. 

As described in 1.7.7.3, the mechanisms through which GCs affect vascular 

function are diverse and are still not completely understood (Small, Hadoke et al. 2005, 

Logie, Ali et al. 2010, Morgan, Keen et al. 2018). It is well known that GCs suppress 

inflammation, and thus indirectly suppress angiogenesis due to the proangiogenic 

cytokines released from inflammatory cells (McSweeney, Hadoke et al. 2010). 

Another indirect mode in which GCs can suppress angiogenesis is through effects on 

the vessel basement membrane, causing degradation of the ECM and affecting cell 

behaviour such as to inhibit endothelial cell migration and proliferation (Drebert, 

MacAskill et al. 2017, Morgan, Keen et al. 2018). Finally there is also evidence that 
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GCs exert direct effects on endothelial cells themselves, remodelling the vasculature 

by altering the ability of endothelial cells to form cell-cell connections (Logie, Ali et 

al. 2010). A functional analysis of next generation RNA sequencing data has recently 

been published to study the effect of hydrocortisone on gene expression changes in the 

mouse aorta. Of 13 KEGG pathways which were down-regulated in cortisol-treated 

aorta, 9 were associated with inflammatory responses and 4 were associated with ECM 

or cytoskeletal function (Morgan, Keen et al. 2018). It was concluded from this study 

that hydrocortisone mainly suppressed angiogenesis through effects on the basement 

membrane ECM (Morgan, Keen et al. 2018). In this chapter, the effects of steroids 

were compared on gene expression involved in ECM remodelling (Col4a1, Mmp9, 

and Col14a1) as well as in inflammatory signalling (Cxcl5, Dusp1, Mcp1, and iNOS), 

and vasculature remodelling (Pecam1, Vcam1). In relation to genes involved in 

inflammation and signalling, dexamethasone and hydrocortisone both caused down-

regulation of Cxcl5, and increased (hydrocortisone) or tended to increase 

(dexamethasone) expression of Dusp1. This is consistent with the effects of 

hydrocortisone on expression of these genes in the published next generation RNA 

sequencing analysis (Morgan, Keen et al. 2018). However, unlike dexamethasone and 

hydrocortisone, 5αTHB had no effect on expression of Cxcl5 and Dusp1 in this work. 

Instead it had a trend to increase Mcp1 expression, whereas dexamethasone and 

hydrocortisone had no effect.  

In relation to genes involved in ECM remodelling, while there was no effect 

on Col14a1, Mmp9 expression was decreased by both dexamethasone and 

hydrocortisone, whereas hydrocortisone increased, and dexamethasone tended to 

increase, Col4a1 expression.  Col4a1 encodes the α1 chain of collagen IV, the main 
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collagen present in the basement membrane surrounding endothelial and vascular 

smooth muscle cells (Vahedi and Alamowitch 2011). Likewise MMP9 (encoded by 

Mmp9) is one of the most commonly studied MMP proteins in blood vessels, where it 

degrades both collagens and gelatins, causing increased migration of vascular 

endothelial cells (Chen, Jin et al. 2013). A decrease in Mmp9 and increase in Col4a1 

is, therefore, consistent with a suppression of angiogenesis. The effects of 

hydrocortisone and dexamethasone here are consistent with the effects of 

hydrocortisone on expression of these genes in the RNA sequencing analysis 

previously published (Morgan, Keen et al. 2018). However, in contrast, 5αTHB had 

no effect on Col4a1 or Mmp9 expression in the mouse aorta in our current study.  

The work presented in this chapter is consistent with reports that 

hydrocortisone suppresses angiogenesis mainly through effects on the ECM and on 

inflammatory signalling (Folkman and Ingber 1987, Morgan, Keen et al. 2018). 

However, the results suggest that 5αTHB does not suppress angiogenesis through these 

same mechanisms. This is in agreement with previous in vivo work using the sponge 

implantation model of angiogenesis, where 5αTHB had more limited effects than 

corticosterone on altering transcript abundance involved in ECM homeostasis, and, in 

contrast to corticosterone, did not decrease collagen staining in sponges (Gastaldello, 

Livingstone et al. 2017). The increase in Mcp1 expression seen here in response to 

5αTHB is also in agreement with the sponge implantation model, where Mcp1 

expression was also increased by 5αTHB but not by corticosterone (Gastaldello, 

Livingstone et al. 2017). Mcp1 stimulates the recruitment of monocytes into tissues, 

and is described to have a key role in the development of an inflammatory response 

(Madrigal, Garcia-Bueno et al. 2010). Interestingly, in our current study 
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dexamethasone had no effect on expression of the genes investigated involved in 

vascular remodelling; whereas 5αTHB decreased, and hydrocortisone had a trend to 

decrease, expression of Pecam1. In the sponge implantation model Pecam1 expression 

was also suppressed by both corticosterone and 5αTHB. Pecam1, also known as CD31, 

is a cell adhesion molecule with pro-angiogenic and pro-inflammatory activity. A cell 

surface glycoprotein, it is expressed by endothelial cells and concentrated mainly at 

sites of cell-cell contact, where it has adhesive properties (Park, Sorenson et al. 2015). 

Pecam1 is also expressed to a lesser extent by platelets and leukocytes, and plays a 

role in the migration of leukocytes through junctions between adjacent endothelial 

cells (Woodfin, Voisin et al. 2007). A decrease in Pecam1 is consistent with reduced 

endothelial cell adhesion, and impaired TLS formation and angiogenesis. Since 

hydrocortisone also had a trend to decrease Pecam1, it could be that both 

hydrocortisone and 5αTHB have another mode of action which dexamethasone does 

not share. This may involve MR since hydrocortisone binds to both MR and GR, 

whereas dexamethasone is GR-specific. A decrease in Pecam1 may indicate that the 

suppression of angiogenesis is mediated by a decrease in endothelial cell adhesion in 

newly forming vessels. Alternatively it may suggest that the endothelial cells are being 

induced to undergo endothelial-to-mesenchymal transition, which is also associated 

with reduced angiogenesis.  

This suggestion that 5αTHB may act through different mechanisms to suppress 

angiogenesis is further supported by the fact that dexamethasone and hydrocortisone 

increased expression of all GR responsive genes tested (Per1, Hsd11b1, and Fkbp51) 

whereas 5αTHB only increased Per1 expression, which can also be increased by MR. 

The GR antagonist RU486 was used to further investigate whether the angiostatic 
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effects of 5αTHB were mediated through GR. RU486 is a competitive GR antagonist 

with a binding affinity for GR 3 times greater than that of dexamethasone, and 10 times 

that of hydrocortisone (Castinetti, Brue et al. 2012, Fleseriu, Biller et al. 2012, Nguyen 

and Mizne 2017). In addition, it also antagonises the progesterone receptor (binding 

affinity more than twice that of progesterone) and the androgen receptor (binding 

affinity less than one third that of testosterone)(Castinetti, Brue et al. 2012, Sun, Fang 

et al. 2014) but does not bind the MR or to the estrogen receptor (Castinetti, Brue et 

al. 2012, Fleseriu, Biller et al. 2012). Out of the two doses of RU486 originally tested 

in this work,  the higher concentration suppressed vessel growth alone, which was not 

entirely unexpected since RU486 also has some agonist activity (Peeters, Ruigt et al. 

2008). The lower RU486 concentration partially-blocked dexamethasone-induced 

suppression of angiogenesis, suggesting that dexamethasone was acting through GR. 

Furthermore when dexamethasone concentration-response curves in the presence and 

absence of RU486 were normalised and superimposed on the same graph, the error 

bars often did not overlap, again suggesting some antagonism, although it did not hold 

true for all data points. In contrast when 5αTHB concentration-response curves, in the 

presence and absence of RU486, were normalised and superimposed, the error bars 

overlapped for every concentration of 5αTHB. This suggests that RU486 did not shift 

the concentration-response curve of 5αTHB, and hence that the suppression of vessel 

growth by 5αTHB was independent of GR. However, these results should be 

interpreted with caution and no firm conclusions can be made as there was a lack of 

power in both the dexamethasone and 5αTHB concentration-response curves in the 

presence of RU486. This was due to poor vessel growth which may have resulted from 

the fact that, in comparison to previous assays, the experiments with RU486 were 
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performed around a year later than the original dose responses where vessel growth 

was much better. Although all medium was used prior to its expiration date, different 

batches may have caused variations in the extent of vessel growth from aortic rings. In 

line with this, the suppression of vessel growth by dexamethasone alone at 100 nM 

(positive control) did not reach significance for either of the 5αTHB or dexamethasone 

concentration–response curves in combination with RU486. This was due to the lack 

of power since when the 5αTHB and dexamethasone data were combined, the 

suppression by dexamethasone at this concentration reached significance. Power 

calculations indicated that this could only be resolved by using a high number of mice. 

Therefore the results from these experiments are only speculative and no firm 

conclusions can be made, both due to the lack of power and the fact that RU486 had 

an effect alone in this assay. Keeping the above limitations in mind, the low dose of 

RU486 (30 nM) was used to assess the role of GR on steroid-mediated alterations in 

gene expression in the mouse aortic rings. The effects on gene expression by 5αTHB 

were not blocked by RU486 and, therefore, may have been mediated through a 

receptor other than GR. This is in agreement with the previous concentration-response 

data.  

In summary, the work presented in this chapter provides further evidence that 

5αTHB is less detrimental to wound repair than current GCs. The work suggests that 

5αTHB is acting through alternative mechanisms than glucocorticoids to suppress 

angiogenesis, perhaps by preventing endothelial cell adhesion in newly forming 

vessels, or by inducing endothelial-to mesenchymal transition (EndMT). Both 

explanations are consistent with a decrease in angiogenesis. Future work will 

investigate whether 5αTHB is able to induce EndMT by assessing its effects on further 
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gene expression related to this process. Crucially, this work suggests that not only does 

5αTHB work through different signalling pathways but also via a distinct receptor. 

Since 5αTHB did influence Per1 transcripts one alternative receptor through which 

5αTHB may act through to suppress angiogenesis is the MR. Future work will address 

this by investigating whether the MR antagonist spironolactone antagonises the effects 

of 5αTHB, aldosterone, and hydrocortisone on angiogenesis and gene expression.   
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4. Can 5αTHB act through GR? 

 

4.1. Introduction 

It has been demonstrated that 5αTHB has in vitro and in vivo effects to suppress 

inflammation, and now also to inhibit angiogenesis, although to a lesser extent than 

corticosterone and hydrocortisone (McInnes, Kenyon et al. 2004, Yang, Nixon et al. 

2011). However it has been difficult to determine whether or not these effects are 

mediated in the same way as for classical GCs.  

Of particular interest has been whether the effects of 5αTHB are mediated via 

GR. McInnes et al. showed that corticosterone and 5αTHB were similarly effective in 

displacing tritiated dexamethasone from binding sites in rat hepatocytes, with a Kd in 

the nM range (McInnes, Kenyon et al. 2004). However, it has been difficult to show 

that the anti-inflammatory actions of 5αTHB are GR dependent. In previous work, 

whereas the GR antagonist RU486 prevented 5THB-induced cytokine suppression 

in LPS-stimulated RAW264.7 cells (Nixon, M ,2011), it actually increased inhibition 

induced by 5αTHB in LPS-stimulated murine bone marrow-derived macrophages 

(BMDM)(Gastaldello, 2014; Yang, 2009). Later work revealed that RU486 alone 

suppressed cytokine release, making RU486 a poor tool for these studies (Gastaldello, 

2014). In vivo RU486 given systemically, antagonised the suppression of dermatitis 

by topical administration of corticosterone in mice but did not attenuate the anti-

inflammatory effects of 5THB (Gastaldello, Livingstone et al. 2017). Additional 

experiments are, therefore, required to address the question of whether the anti-

inflammatory effects of 5αTHB are GR mediated. 
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Although a simplified model, the classical mechanism by which GCs are 

reported to work is by binding to GR and stimulating its translocation into the nucleus, 

where ligand bound GR regulates the expression of target genes through direct DNA 

binding (mechanism a in figure 1.4). Ligand-dependent co-regulator proteins become 

recruited to GR during this process to assist with DNA binding. Alternatively GR may 

tether to other transcription factors and modulate their activity (mechanism d in figure 

1.4). This chapter addresses the ability of 5αTHB to stimulate these classical activities 

of GR. 
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4.2. Hypotheses 

The conclusion in chapter 3 is that 5αTHB acts on the vasculature through different 

mechanisms from conventional glucocorticoids. It is thought that perhaps 5αTHB 

binds to GR to target alternative mechanisms to those targeted by the glucocorticoids 

currently in use. Therefore, the hypothesis tested by the work described in this chapter 

is that 5αTHB acts through GR but with alternative downstream effects. In particular, 

the sub-hypotheses tested here are that: 

1. 5αTHB is able to bind GR. 

2. 5αTHB can cause nuclear translocation of GR. 

3. 5αTHB can stimulate co-regulator peptide recruitment to GR. 

4. The anti-inflammatory effects of 5αTHB are dependent on GR. 

 

4.3. Aims 

The aim is to use model systems to investigate whether 5αTHB can stimulate the above 

GR mechanisms. The individual aims are to: 

1. Assess whether 5αTHB is able to displace selective GR ligands from the 

isolated human GR ligand binding domain (hGR LBD). 

2. To quantify nuclear translocation of human GR after treatment with 5αTHB in 

A549 cells. 

3. To compare effects of 5αTHB and dexamethasone on co-regulator peptide 

recruitment to the isolated hGR LBD. 
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4. Investigate whether GR knockdown prevents 5αTHB suppression of 

inflammatory cytokine release in mouse bone marrow-derived macrophages 

(BMDM). 
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4.4. Methods 

4.4.1. Comparing steroid ability to bind GR 

Steroid binding to human GR ligand binding domain (hGR LBD) was 

measured using a PolarScreen Glucocorticoid Receptor Competitor Assay Kit (Fisher 

Scientific, Loughborough, UK) as described in 2.2.6. This was performed by the Drug 

Discovery core (College of Medicine and Veterinary Medicine, University of 

Edinburgh). For each steroid a concentration-response was performed, using 

concentrations of 0.5, 1, 5, 10, 50, 100, 500 and 1000 nM for dexamethasone, 0.5, 1, 

5, 10, 50, 100, 500, 1000, 5000 and 10000 nM for hydrocortisone, and 5, 10, 50, 100, 

500, 1000, 5000 and 10000 nM for 5αTHB.  

 

4.4.2. Assessment of 5αTHB ability to induce GR nuclear translocation 

A549 cells were chosen for the study of GR nuclear translocation due to the fact that 

they had also been used previously by Gastaldello (2014) to investigate whether 

5αTHB induces phosphorylation of the GR Serine 211 residue. Phosphorylation of GR 

at this residue is associated with GR nuclear translocation; therefore for completeness 

the work was performed in the same cell type. 

In order to investigate GR nuclear translocation, two alternative methods were 

evaluated: ‘Immunofluorescence’ and ‘Nuclear/Cytoplasmic (N/C) separation’. 

 

4.4.2.1. Immunofluorescence method 

The immunofluorescence protocol described in (2.2.2.3) was followed to visualise GR 

in A549 cells and to qualitatively and quantitatively assess the effects of steroids on 

GR nuclear translocation. Cells were treated in duplicate on days 3 (for 24 hour 
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treatment) and 4 (30 minute treatment) with dexamethasone (positive control; 100 nM) 

or 5αTHB (1, 3 or 10 μM).  The negative control consisted of either vehicle (ethanol, 

1 µL per 1 mL) or no treatment. The primary antibody was either GR sc-8992 or sc-

1003 (both 1/150 dilution in PBS) in combination with Goat-anti-rabbit 

AlexaFluor488 or AlexaFluor555 conjugate secondary antibody (Thermo scientific, 

1/800 dilution in PBS, 100μL, 2h, dark, RT). Negative controls were also performed 

with no primary antibody, no secondary antibody, or in the absence of both primary 

and secondary antibodies, as described in (4.4.3.1), to check for non-specific antibody 

binding and cell autofluorescence.  

 

4.4.2.2. Nuclear/Cytoplasmic separation method 

A549 cells were plated 350000 cells/ well in 6 well plates (day 1) and treated in 

triplicate on days 3 (24 hour treatment) and 4 (6 hours and 30 minute treatment). 

Treatment consisted of vehicle (ethanol, 1 µL per 1 mL; negative control), 

dexamethasone (positive control; 100 nM) or 5αTHB (1, 3 or 10 μM). Separate nuclear 

and cytoplasmic protein was then extracted from the cells and its concentration 

measured according to the protocols described in (2.2.2.1.3) and (2.2.2.1.4). The 

amount of GR was then quantified and compared between the two fractions using 

Western blot, as described in (2.2.2.1.5). The primary antibody for GR visualisation 

by Western blot was sc-1003; however, during optimisation sc-8992 and sc-1004 were 

also tested (all 1/500 dilution). Both sc-1003 and sc-8992 had previously been used 

my members of our group, and sc-1004 had been recommended to give clear GR bands 

by another group, although they were not using human tissue. Primary antibodies for 

GRB2 (sc-255) and PARP (BD Pharmingen, 556494) were used as nuclear and 
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cytoplasmic controls respectively (2 hours, RT, 1/1000 dilution) since they are only 

expressed in either the nucleus or cytoplasm respectively so could confirm the clear 

separation of the two fractions. Secondary antibodies used were either Goat Anti-rabbit 

(926-32211) or Goat Anti-mouse (926-32210)(both Licor Biosciences, 1/10000 

dilution) diluted in a milk solution (5% w/v in TBS-T). Finally, protein was detected 

on the membrane using fluorescence method as described in (2.2.2.1.7.1).  

 

4.4.3. Assessment of 5αTHB effects on coregulator peptide recruitment to GR. 

PamGene’s MARCoNI assay was used as described in (2.2.5) to compare the effects 

of dexamethasone (1 μM) or 5αTHB (1 μM) on co-regulator peptide recruitment to the 

isolated GR GST-tagged ligand binding domain (GR-LBD-GST, 10 nM, AB vector, 

San Diego, CA). Experiments were performed using  n=3. 

4.4.4. Comparing the effects of steroids on cytokine release from mouse bone 

marrow-derived macrophages 

Primary BMDM were freshly isolated from mouse tibia and femur bones, and 

then plated as described in section 2.1.4.2. Cells were treated 24 hours later with either 

hydrocortisone (at concentrations of 10, 30, 100, 300 or 1000 nM) or 5αTHB (at 

concentrations of 100, 300, 1000, 3000 or 10000 nM). Since there were not enough 

cells per mouse to treat in duplicate, cells were treated in singlicate. One hour after 

steroid treatment the cells were then stimulated with LPS (either 3 or 100 ng/mL; 

lipopolysaccharides from Escherichia coli, Sigma). A vehicle control was included 

which consisted of cells treated with ethanol and PBS in place of steroid and LPS, 

respectively. In addition, a stimulus control was performed which had ethanol (1 µL 
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per 1 mL) in place of steroid but was still stimulated by LPS (either 3 or 100 ng/mL). 

24 hours after LPS stimulation (or control treatment) medium was collected, and 

frozen at -20 °C for quantification of IL6 or TNFα cytokines by ELISA, performed as 

described in 2.2.2.2. ELISA standard curves were accepted with relative standard 

deviations (RSD) within 15%. 

 

4.4.5. Data analysis 

Data produced using methods 4.3.1 and 4.3.3.2 were analysed using GraphPad Prism6 

software and presented as mean with error bars representing the standard error of the 

mean (SEM). Data were analysed by one-way ANOVA and comparisons made using 

Dunnett’s multiple comparisons test. To fit the concentration-response curves, a non-

linear regression analysis was performed using the log (inhibitor) vs response (three 

parameters) equation and using the least squares fitting method.    
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4.5. Results 

4.5.1. Does 5αTHB displace selective GR ligands from the isolated GR ligand 

binding domain? 

A model GR expression system was used in order to assess whether 5αTHB is 

able to displace selective GR ligands from the isolated GR LBD (figure 4.1). 

Dexamethasone and hydrocortisone both decreased the fluorescence polarisation of 

the GR-selective ligand, with EC50 values of 0.00421 μM and 0.019 μM, respectively. 

5αTHB, however, only displaced the selective GR ligand to a very limited extent, and 

at high concentrations. This is reflected in its EC50 value of 480 μΜ. 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.1: 5αTHB only competed for binding to the glucocorticoid receptor (GR) ligand 
binding domain (LBD) at high concentrations. A competitor assay was performed using 
the isolated GR LBD and a fluorescent ligand selective for the GR LBD. Dexamethasone and 
hydrocortisone both displaced the fluorescent ligand from GR, with EC50s of 0.00421 µM and 
0.019 µM, respectively. 5αTHB however did this only to a very small extent at high 
concentrations. Its EC50 was 480 µM. Data are mean ± SEM of n=3.  
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Hydrocortisone 0.019 
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4.5.2. Does 5αTHB translocate GR into the nucleus? 

In order to investigate nuclear translocation of GR two alternative methods, 

‘immunofluorescence’ and ‘Nuclear/Cytoplasmic (N/C) separation’, were evaluated 

to determine receptor localisation. 

4.5.2.1. Immunofluorescence method development 

As a preliminary screen, the immunofluorescence protocol and quantification 

procedure (described in 2.2.2.3) was performed in A549 cells either treated with 

ethanol vehicle, 5αTHB (1, 3 or 10 µM) or dexamethasone (positive control; 100 nM). 

Images of slides are given in figure 4.2 and graphs of quantification to assess nuclear 

translocation in figure 4.3. At all time-points (30 minutes, 6 hours and 24 hours) the 

quantification score for dexamethasone-treated cells was higher than for cells treated 

with vehicle, although only slightly and this was not significant. However, it is evident 

from the score, and also from visual inspection, that vehicle-treated cells already had 

high signal in the nucleus. This background signal created difficulties in measuring an 

increase in score after dexamethasone treatment, and, hence, the causes of this high 

background were explored to improve the dynamic range of the assay.  
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Figure 4.2: Representative images from a preliminary immunofluorescence screen of 
the effects of dexamethasone (dex, 100 nM) and 5αTHB (1µΜ, 3μM or 10μM) to cause 
GR nuclear translocation in serum-starved A549 cells. DAPI stain indicates cell nuclei, 
and GR is visualised by secondary detection of a GR antibody (in green). Additionally, overlay 
of the images is shown. White arrows highlight examples of nuclei with increased signal after 
dexamethasone treatment, indicating increased nuclear GR translocation. However, a high 
level of background signal in the nucleus is already present in control vehicle-treated slides. 
Examples of cells with high background signal are circled. Nuclear signal is also evident in 
5αTHB-treated cells, although this is less pronounced than in dexamethasone-treated cells. 
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Figure 4.3: Quantification of a preliminary immunofluorescence screen of the effects of 
dexamethasone (Dex, 100 nM) or 5αTHB (1µΜ, 3μM or 10μM) on GR nuclear 
translocation in serum-starved A549 cells. Quantification was originally performed using 
the following scoring method: 5: much more fluorescence signal in the nucleus (N) in 
comparison to cytoplasm (C) (N<<C), 4: more fluorescence signal in the N in comparison to C 
(N<C), 3: an equal amount of fluorescence signal in the N and C; N=C, 2: more fluorescence 
signal in the N than the C (N>C) and 1: much more fluorescence signal present in the N in 
comparison to the C (N>>C). Dexamethasone (positive control) only produced a slightly higher 
score in comparison to vehicle at all time-points. However, high nuclear background meant 
that vehicle-treated cells already had a high score; consequently, the dynamic range between 
vehicle and positive control was small.
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Decreased background had already been achieved in Western blots using an 

alternative antibody (sc-1003) in comparison to sc-8992. These two antibodies were, 

therefore, compared using the current immunofluorescence protocol (figure 4.4). 

However, with both antibodies the score remained high for vehicle-treated cells. 

Furthermore, the background signal remained even in the absence of primary antibody. 

This can be visualised in figure 4.5a, in which in the green channel, cell nuclei can be 

seen in the absence of primary antibody. In further negative controls with no secondary 

antibody (figure 4.5c, green channel) and in the absence of both primary and secondary 

antibody (figure 4.5d, green channel) the fluorescence signal persisted. This eliminated 

the possibility of non-specific antibody binding, and hence suggested that the 

background was caused by auto-fluorescence from the cells themselves. Interestingly, 

no fluorescence was evident when live cells were viewed down the microscope before 

being fixed (figure 4.6). This was indicative of the fixing procedure causing the 

fluorescence. To avoid auto-fluorescence in the green emission spectrum, an 

alternative secondary antibody with a fluorophore which emits in the red emission 

spectrum (Fluorophore red 555) was compared with that previously used (Fluorophore 

green 488). In contrast to the green emission spectrum, auto-fluorescence from cell 

nuclei was not visible in the red channel in the absence of secondary antibody (figure 

4.5c and 4.5d). Quantification supported these improvements: a lack of signal in the 

red emission spectrum in the absence of secondary antibody meant that no score could 

be given to cells (figure 4.7d) in contrast to when viewed in the green emission 

spectrum where a score could still be given (figure 4.7c). It is evident from controls 

with no primary antibody that there was some non-specific binding of both the green 

and the red secondary antibodies, as a score could be given to the cells in both cases 
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(figures 4.7a and b). However, in the green channel there was additional nuclear 

background signal (figure 4.5a, green channel) leading to a score > 3 for vehicle-

treated cells (figure 4.7a), whereas in the red channel there was no extra background 

signal in the nucleus – just a general background fluorescence signal equally dispersed 

in the image (figure 4.5b, red channel), leading to a score < 3 for vehicle treated cells 

as desired (figure 4.7b). 
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Figure 4.4: Immunofluorescence optimisation: Comparing background signal and 
dynamic range between two primary antibodies. A549 cells were serum starved and then 
treated with vehicle (ethanol, 1 µL per 1 mL) alone or combined with dexamethasone (Dex, 
100 nM) for 24 hours. The cells were then fixed and stained for immunofluorescence analysis, 
using primary antibody combined with a green (G) fluorescent secondary antibody. 
Fluorescence was quantified in each cell according to the extent of fluorescent signal between 
the nucleus (N) and cytoplasm (C). Possible scores were 5 (N>>C), 4 (N>C), 3 (N=C), 2 (N<C) 
and 1 (N<<C). High background was evident previously using the sc-8992 antibody (a). An 
alternative antibody, sc-1003, (b) was compared in an attempt to reduce background signal in 
vehicle-treated cells. However, the background signal remained, and the vehicle-treated cells 
continued to have high scores. As a result the difference in score between vehicle- and 
dexamethasone-treated cells remained small. Furthermore, even with no primary antibody a 
fluorescence signal was evident. Single experiment; data are an average of 10 cells per image, 
from 5 images per slide, in duplicate. 
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Figure 4.5: Negative immunofluorescence controls demonstrate auto-fluorescence 
from fixed A549 cells in the green emission spectrum. A549 cells were serum starved, 
treated with vehicle, and then fixed for immunofluorescence analysis. Background signal in 
cell nuclei was evident in controls minus primary antibody (a, green channel) suggesting 
unspecific secondary antibody binding. In further controls with no secondary antibody (c) and 
with neither primary nor secondary antibody (d) signal was still evident from cell nuclei in this 
channel, indicating auto-fluorescence in the green emission spectrum. White arrows indicate 
areas with high background signal. Using an alternative secondary antibody emitting in the red 
emission spectrum, background signal was not evident in cell nuclei (b, red channel). 
Therefore, in contrast, fixed A549 cells do not auto-fluoresce in the red emission spectrum and 
it is more accurate to perform immunofluorescence analysis in this channel. Images are 40X 
magnification. 
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Figure 4.6: Unfixed A549 cells do not auto-fluoresce in the green or red emission 
spectra. Live A549 cells were viewed under a microscope before the fixing and 
immunofluorescence analysis procedure. Fluorescence signal was studied from both the 
green and red emission spectra, and fluorescence signal was not detected in either. 
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Figure 4.7: Paraformaldehyde-fixed A549 cells auto-fluoresce in the green, but not the 
red, emission spectra. Immunofluorescence analysis of vehicle (ethanol, 1 µL per 1 mL)-
treated serum-starved A549 cells was performed in the absence of primary antibody, to assess 
non-specific binding of green (a) and red (b) emitting secondary antibodies. Auto-fluorescence 
in each emission spectrum was also assessed by the absence of secondary antibody. In the 
absence of primary antibody a fluorescence signal remained in both the green (a) and red (b) 
emission spectra, indicating non-specific binding of the secondary antibody. In the absence of 
secondary antibody, fluorescence signal persisted in the green emission spectra (c) but not 
the red (d). Vehicle groups indicate the presence of both primary and secondary antibodies. 
Single experiment, data are average of 10 cells per image, from 5 images per slide, in 
duplicate.  
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Following improvements gained from viewing the slides in the red emission 

spectrum, the immunofluorescence analysis was re-performed using the red 555 

secondary antibody to compare vehicle- and dexamethasone-treated cells. 

Experiments with the green 488 secondary antibody were performed alongside for 

comparison. As seen previously in the red emission spectrum, in the absence of red 

555 secondary antibody (figures 4.8a and c, red channel) no cell nuclei could be 

visualised. Again this is in contrast to the green emission spectra in which cell nuclei 

could be seen auto-fluorescing in the absence of the green secondary antibody (figures 

4.8b and d, green channel). In addition to the autofluorescence, the signal in the green 

channel in figure 4.8d may have also arisen (to some extent) from overlap of emission 

spectra between the green and red secondary antibodies, demonstrated in figure 4.8e. 

Using a far red fluorophore with an emission spectrum further from the green 

wavelength could help to resolve this; however this was not attempted since despite 

the qualitative improvements, when quantified the dynamic range between vehicle- 

and dexamethasone-treated cells was still very narrow (figure 4.9a and b). 

A continuous quantification method, whereby the fluorescence signal is measured by 

ImageJ, was used (figure 4.9c and d) to re-quantify the assessment of positive controls, 

in a final attempt to widen the dynamic range. No major improvements were seen in 

comparison to the scoring method (figures 4.9a and b). Therefore, it was decided to 

focus on the N/C separation method as an alternative quantifiable technique. 
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Figure 4.8: Qualitative assessment of GR nuclear translocation in fixed A549 cells was 
improved using the red emission spectra for immunofluorescence analysis in 
comparison to green. A549 cells were serum starved and then treated for 24 hours with 
vehicle (ethanol, 1 µL per 1 mL) (a, b) or dexamethasone (100 nM, positive control) (c, d). The 
cells were then fixed and analysed using immunofluorescence. Secondary antibodies 
absorbing in the green emission spectra (green 2⁰ antibody; a and c) and red emission spectra 
(red 2⁰, b and d) were compared. Cell nuclei auto-fluoresced in the green channel (b and d, 
green channel) whereas they did not in the red channel (a and c, red channel).  This meant 
that there was a larger dynamic range between immunofluorescence of vehicle- and 
dexamethasone-treated cells when viewed using the red channel (b and d, respectively, red 
channel) than when viewed using the green channel (a and c, respectively, green channel). 
The signal in the green channel in (d) may arise from a combination of autofluorescence and 
the overlap between emission spectra for the green Alexafluor®488 and red Alexafluor®555 
conjugate secondary antibodies (shown in e).  

DAPI Red Channel Green Channel 

(a) Vehicle,        

Green Fluorophore. 

(b) Vehicle,           

Red Fluorophore. 

(c) Dexamethasone,       

Green Fluorophore. 

(d) Dexamethasone, 

Red Fluorophore. 

(e) Emission spectra  
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Figure 4.9: Quantitative comparison between immunofluorescence analysis in red and 
green emission spectra, and of two different quantification methods. The dynamic range 
between dexamethasone positive control and vehicle immunofluorescence was narrow after 
analysis in both the green (a) and red (b) emission spectra when quantified using the scoring 
method. An alternative ImageJ quantification (c and d) of the corrected total cell fluorescence 
(CTCF) was investigated to improve the dynamic range. Single experiment, data are average 
of duplicate slides, and of 5 images per slide. For (a) and (b) the average score was taken for 
10 cells per image. 
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4.5.2.2. N/C separation method development 

High background was evident in the initial Western blot performed using the sc-8992 

antibody (figure 4.10a). Alternative antibodies and detection methods were, therefore, 

compared (figure 4.10b and c). Sc-1004 gave non-specific bands and, therefore, sc-

1003 was chosen as the preferred antibody, giving clear GR bands at the correct size, 

95kDa. Using this antibody both chemiluminescence (figure 4.10b) and fluorescence 

(fig 4.10c) detection methods gave the clear specific band at 95kDa. However, since 

fluorescence detection has a broader dynamic range for quantitative measurement, this 

was the method selected (Quantitative, Two- Color Western Blot Detection With 

Infrared Fluorescence, LI-COR Biosciences, May 2004). 
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Figure 4.10: Method development for Western blot. Primary antibody optimisation followed 
the initial Western blot where sc-8992 antibody gave high background signal (a). This antibody 
was subsequently compared with alternative primary antibodies sc-1004 and sc-1003 using 
both chemiluminescence (b) and Licor fluorescence (c) detection methods. Sc-1004 gave non-
specific bands whereas sc-1003 produced clear GR bands at 95kDa, with only a small level 
of non-specific binding.  
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4.5.2.3. Assessment of GR translocation using the N/C separation technique 

4.5.2.3.1. Data analysis 

Nuclear (PARP) and cytoplasmic (GRB2) loading controls indicated successful 

separation of nuclear and cytoplasmic fractions from A549 cells (figure 4.11). Since 

the two fractions had different loading controls, the raw GR intensities were used to 

calculate N/C values, rather than intensities normalised to a loading control. For this 

reason n=6 was attempted as an initial sample size in order to account for any 

variations in sample loading.  

4.5.2.3.2. Assessment of controls 

Dexamethasone (100 nM, positive control) significantly increased the N/C ratio in 

comparison to vehicle (negative control) at all time-points (figure 4.12), indicating 

increased GR nuclear translocation. This was also evident from visual inspection and 

was seen more easily in the cytoplasmic fraction, as a less intense GR band for 

dexamethasone-treated samples (figure 4.11).  

4.5.2.3.3. Assessing GR translocation in response to 5αTHB 

The N/C ratio for cells treated with 5αTHB (at doses of 1, 3 and 10 µM) was not 

different from vehicle-treated cells at any time point (figure 4.12). 5αTHB gave a 

significantly smaller N/C ratio than dexamethasone at all doses and time points. This 

suggests that GR remained predominantly in the cytosol. Again this was supported 

visually as no change in band intensity relative to vehicle control (figure 4.11). 
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Figure 4.11: GR nuclear translocation occurred after dexamethasone (Dex) but not 5α-
tetrahydrocorticosterone (5αTHB) treatment. A549 cells were cultured in serum-containing 
medium for 48 hours and then treated for 30 minutes, 6 hours or 24 hours with vehicle (ethanol, 
1 µL per 1 mL), Dex (100nM), or 5αTHB (1, 3 or 10µM). Nuclear and cytoplasmic protein 
fractions were then separated and the amount of GR compared between treatments using 
Western blot. Clear nuclear/cytoplasmic separation was achieved as seen by PARP and 
GRB2 restricted to nuclear and cytoplasmic fractions respectively. Cytoplasmic GR bands of 
Dex treated cells were less intense at all time points (in comparison to vehicle) indicative of 
GR nuclear translocation. Differences were not apparent with any dose of 5αTHB. Images are 
representative of n=6. 
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Figure 4.12: Dexamethasone caused glucocorticoid receptor (GR) translocation into the 
nucleus, whereas 5α-tetreahydrocorticosterone (5αTHB) did not. A549 cells were 
cultured in serum-containing medium for48 hours and then treated for 30 minutes (a), 6 hours 
(b) or 24 hours (c) with vehicle (ethanol, 1 µL per 1 mL), dexamethasone (Dex, 100 nM), or 
5αTHB (1, 3 or 10µM). Nuclear and cytoplasmic protein fractions were then separated and the 
amount of GR compared between treatments using Western blot. GR band intensities were 
quantified and nuclear/cytoplasmic (N/C) ratios assessed. At all time-points the N/C ratio was 
increased by dexamethasone relative to vehicle control. 5αTHB, however, did not influence 
the N/C ratio at any concentration or time point. Data are mean ±SEM of n=6. Data were 
analysed by one-way ANOVA and comparisons made using Dunnett’s multiple comparisons 
test. **=P<0.01, ****=P<0.0001 vs vehicle control. ##=P<0.01, ###=P<0.001, ####=P<0.0001 
vs Dex.
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4.5.3. Does 5αTHB induce co-regulator peptide recruitment to the GR ligand-

binding domain? 

Dexamethasone (1 µM, positive control) caused clear increases and decreases in the 

interaction between GR and many of the co-regulator peptides investigated (right 

panel, figure 4.13). 5αTHB (1 µM) however did not affect the interaction between GR 

with any of the co-regulator peptides (left panel, figure 4.13).  
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Figure 4.13:  5αTHB did not stimulate co-regulator peptides to interact with the 
glucocorticoid receptor ligand binding domain (LBD). PamGene’s Microarray Assay for 
Real-time Coregulator-Nuclear Receptor Interaction (MARCoNI) was used to compare the 
effects of 5αTHB (1 µM) or dexamethasone (1 μΜ) on co-regulator recruitment to the GR 
ligand-binding domain (LBD). The heat map demonstrates increases (in red) and decreases 
(in blue) in interactions between GR with each co-regulator peptide studied. In contrast to 
5αTHB, dexamethasone induced clear changes in co-regulator recruitment, consistent with its 
effects to bind GR, stimulate GR-DNA binding and alter gene expression. Comparisons 
relative to control (dimethyl sulfoxide) were made using Student’s unpaired t-tests. Correction 
for multiple testing was performed using the Benjamin and Hochberg method. *=P<0.05, 
**=P<0.01, ***=P<0.001 V Control. 
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4.5.4. Does 5αTHB mediate its anti-inflammatory effects through GR? 

In previous work 5αTHB suppressed IL6 release from murine BMDM (Yang, 

Nixon et al. 2011). However, the GR antagonist RU486 was shown to be a poor tool 

to assess whether this suppression of cytokine release by 5αTHB was mediated 

through GR. Therefore, as an alternative, we designed a GR knockdown experiment, 

in the same cell type, to assess whether GR knockdown would prevent the suppression 

of cytokine release by 5αTHB. First for comparison, hydrocortisone and 5αTHB 

concentration-response curves were performed in order to determine the IC50 for 

steroid-induced suppression of cytokine in the presence of GR, before the knockdown 

was carried out.  

4.5.4.1. ELISA Quality control 

 ELISA was used to measure cytokine levels in cell media. Quality control 

samples were not provided by the manufacturer’s kits, and insufficient BMDM cells 

were available from individual mice to produce quality control samples for comparison 

between each experiment. However, the RSD was calculated for each data point on 

the IL6 and TNFα standard curves, and curves were only accepted with RSDs within 

15%. The mean standard curves and RSD values are given in figure 4.14.  
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Figure 4.14: ELISA standard curves for measuring IL6 and TNFα cytokine 

concentrations. Standard curves were accepted when the relative standard deviation (RSD) 

for each data point was within 15%. Data is mean ± SEM of N=5 (TNFα) and N=8 (IL6).  
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4.5.4.2. Effects of steroid to suppress IL6 release from BMDM stimulated with 

100 ng/mL LPS. 

Originally, mouse BMDM were stimulated with 100 ng/mL LPS. This 

concentration was chosen based on the work of Gastaldello (2014) and Yang (2009), 

who successfully suppressed IL6 release from mouse BMDM using glucocorticoid. In 

an initial experiment N=4 was achieved; however, using the raw data there was not a 

significant increase in IL6 concentration in cell media after stimulation with 100 

ng/mL LPS (figure 4.15a). Furthermore, a significant concentration-dependent effect 

of HC treatment was not observed (overall P=0.65), although this was likely due to 

variability. In order to account for inter-assay variability, the data in each individual 

experiment was normalised to the IL6 concentration present in the media of LPS-only 

treated cells (figure 4.15b). This normalisation was successful in decreasing the 

variability, and after normalisation the differences in IL6 concentrations between 

groups were significant (overall P=0.0001). From the normalised data it was evident 

that LPS did successfully stimulate an inflammatory response from the cells, as there 

was a significant increase in the IL6 release in comparison to vehicle-only treated cells. 

Hydrocortisone induced a concentration-dependent suppression of this IL6 release. 

Suppression was seen from concentrations greater than 300 nM, and complete 

suppression was achieved by 1 µM. A concentration-response curve was plotted 

(figure 4.15c) from which it was calculated that the IC50 for suppression was 151.7 

nM. However, in contrast to hydrocortisone, and to the work performed previously 

(Yang, Nixon et al. 2011), 5αTHB did not suppress IL6 release from BMDM after 

stimulation with 100 ng/mL LPS.  
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Figure 4.15: In murine bone marrow-derived macrophages (BMDM) stimulated with 100 
ng/mL LPS, hydrocortisone (HC) induced a concentration-dependent suppression of 
IL6 release whereas 5αTHB did not. BMDM were treated with lipopolysaccharide (LPS; 100 
ng/mL) to stimulate an inflammatory response, or with ethanol vehicle (V, 1 µL per 1 mL) as a 
negative control. One hour prior to this the cells had been primed with either vehicle (ethanol) 
(LPS), a HC concentration between 10 nM and 1000 nM, or a 5αTHB concentration between 
100 nM and 10000 nM. The cells were incubated for 24 hours, and then their media removed 
for measurement of IL6 concentration by ELISA. The concentration of IL6 released from 
BMDM after each treatment was plotted as a bar chart (a). LPS increased the concentration 
of IL6 released from BMDM. Hydrocortisone induced a concentration-dependent suppression 
of this IL6 release, achieving a significant suppression at a concentration of 1000 nM in 
comparison to LPS-stimulated cells which were not exposed to HC. 5αTHB did not have an 
effect on IL6 release. Concentration-response curves were plotted to show the effects of HC 
(b) and 5αTHB (c) on IL6 release. The IC50 for HC-induced suppression of IL6 release was 
determined as 151.7 nM. Data are mean ± SEM of n=4. Data were analysed by one-way 
ANOVA and comparisons made using Dunnett’s multiple comparisons test; ***=P<0.001, 
**=P<0.01, *=P<0.05 vs V. #=P<0.05 vs LPS.
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4.5.4.3. The effects of steroids on suppression of IL6 release from BMDM 

stimulated with 3 ng/mL LPS. 

Although 100 ng/mL was the LPS concentration used previously by 

Gastaldello (2014) and Yang (2009), a more significant suppression of IL6 with 

5αTHB was seen when the cells were stimulated with a lower concentration of LPS; 

the most significant suppression was seen with an LPS concentration of 3 ng/mL in 

the work of Gastaldello (2014), and with an LPS concentration of 10 ng/mL in the 

work of Yang (2009). Therefore, it was thought that perhaps 100 ng/mL LPS was too 

high a concentration, and that, after this stimulation, 5αTHB is no longer able to 

suppress IL6 cytokine release. It was, therefore, decided to stimulate mouse BMDM 

with a lower dose of LPS (3 ng/mL), and increase groups to n=8 in order to account 

for the variability seen in preliminary experiments (figure 4.16). 

After stimulation of BMDM with 3 ng/mL LPS, the concentration of IL6 

released from cells was again increased in comparison to vehicle– treated cells (figure 

4.16a). Hydrocortisone induced a concentration-dependent suppression of IL6 release, 

with an IC50 of 167 nM (figures 4.16a and b). Again, suppression was seen at 

concentrations of 300 nM and above, this time also achieving complete suppression 

with 300 nM. However, 5αTHB did not suppress the release of IL6 from BMDM 

stimulated with 3 ng/mL LPS (figures 4.16a and c). 
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Figure 4.16: In mouse bone marrow-derived macrophage cells (BMDM) stimulated with 
3 ng/mL LPS, hydrocortisone (HC) induced a concentration-dependent suppression of 
IL6 release whereas 5αTHB had no effect. BMDM were treated with lipopolysaccharide 
(LPS; 3 ng/mL) to stimulate an inflammatory response, or with vehicle (V) as a negative 
control. One hour prior to this the cells had been primed with either vehicle (ethanol) (LPS), a 
HC dose between 10 nM and 1000 nM, or a 5αTHB dose between 100 nM and 10000 nM. 
The cells were incubated for 24 hours, and then their media removed for measurement of IL6 
concentration by ELISA. The concentration of IL6 released from BMDM after each treatment 
was plotted as a bar chart (a). LPS increased the concentration of IL6 released from BMDM. 
Hydrocortisone induced a concentration-dependent suppression of this IL6 release, achieving 
a significant suppression at a concentration of 300 nM in comparison to stimulated cells which 
were left untreated. 5αTHB did not have a significant effect on IL6 release. Concentration-
response curves were plotted to show the effects of HC (b) or 5αTHB (c) on IL6 release. The 
IC50 for HC-induced suppression of IL6 release was determined as 167 nM. Data are mean 
± SEM of n=8. Data were analysed by one-way ANOVA and comparisons made using 
Dunnett’s multiple comparisons test; ***=P<0.001, **=P<0.01, *=P<0.05 vs V. #=P<0.05 vs 
LPS. 
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4.5.4.4. Steroid-induced suppression of TNFα release from BMDM 

stimulated with 3 ng/mL LPS. 

5αTHB not only suppressed IL6 release from BMDM in previous work, but 

also TNFα release (Yang, Nixon et al. 2011). Therefore, since the suppression of 

IL6 could not be recapitulated in this work, the ability of 5αTHB to suppress TNFα 

release from the same cells was also assessed. 

As with experiments investigating release of IL6, stimulation with 3 ng/mL 

LPS caused a significant increase in TNFα release from BMDM in comparison to 

unstimulated cells (figure 4.17a). Hydrocortisone induced a concentration-

dependent suppression of this stimulated TNFα release with an IC50 of 313 nM 

(figures 4.17a and b). Complete suppression was observed with concentrations of 

300 nM and above. 5αTHB however, did not significantly suppress TNFα release 

in comparison to stimulated controls at any concentration tested (figures 4.17a and 

c). A small effect was evident at the highest concentration of 5αTHB (1000 nM) 

which caused a significant decrease in TNFα released from cells in comparison to 

the lowest concentration (100 nM). However, since there was no difference in 

comparison to stimulated controls, and since no significant difference between 

these two concentrations of 5αTHB was evident in the previous IL6 concentration-

response curves, the GR knockdown was not performed.  
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Figure 4.17: In mouse bone marrow-derived macrophages (BMDM) stimulated with 3 
ng/mL LPS, hydrocortisone (HC) induced a concentration -dependent suppression of 
TNFα release, whereas 5αTHB had no effect. BMDM were treated with lipopolysaccharide 
(LPS; 3 ng/mL) to stimulate an inflammatory response, or with vehicle (V) as a negative 
control. One hour prior to this the cells had been primed with either vehicle (ethanol) (LPS), a 
HC concentration between 10 nM and 1000 nM, or a 5αTHB concentration between 100 nM 
and 10000 nM. The cells were incubated for 24 hours, and then their media removed for TNFα 
concentration measurement by ELISA. The concentration of TNFα released from BMDM after 
each treatment was plotted as a bar chart (a). LPS increased the concentration of TNFα 
released from BMDM. Hydrocortisone induced a concentration--dependent suppression of this 
TNFα release, achieving significance at 1000 nM in comparison to stimulated cells which were 
left untreated. 5αTHB did not have a significant effect on TNFα release. Concentration-
response curves were plotted to show the effects of HC (b) or 5αTHB (c) on TNFα release. 
The IC50 for HC-induced suppression of TNFα release was determined as 313 nM. Data are 
mean±SEM of n=10. Data were analysed by one-way ANOVA and comparisons made using 
Dunnett’s multiple comparisons test; ****=P<0.0001, *=P<0.05 vs V. ####=P<0.0001, 
###=P<0.001 vs LPS, $=P<0.05 vs 100 nM 5αTHB. 
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4.6. Discussion 

Recent work has suggested that the anti-inflammatory effects of 5αTHB may 

not be mediated by GR (Gastaldello, Livingstone et al. 2017). This is supported by 

work described in the previous chapter in which 5αTHB appeared to also target 

different mechanisms in the vasculature. Therefore, work described in this chapter 

addressed the role of GR in mediating responses induced by 5αTHB.  

During investigation of steroid binding to GR, dexamethasone and 

hydrocortisone both displaced a GR-selective ligand in a commercial human GR 

competition assay whereas 5αTHB only displaced the ligand at high concentrations. 

This suggested that 5αTHB binds only very minimally to human GR, which is in 

contrast to previous work demonstrating that corticosterone, 5αTHB and 5αDHB had 

similar affinities in displacing tritiated dexamethasone from binding sites in rat 

hepatocytes (McInnes, Kenyon et al. 2004). The difference between this current assay 

and the previous work is that in the latter, whole rat hepatocytes were used, whereas 

our current model system contained human GR and only the LBD. Firstly, the LBD 

may be in a slightly different conformation when in its isolated form, with 

consequences on ligand binding. Secondly, dexamethasone may bind to sites other 

than just cytosolic GR in the hepatocytes, and 5αTHB may instead have been 

displacing dexamethasone from these alternative sites. One alternative proposed was 

the ‘low affinity glucocorticoid binding sites’ (LAGs) which are known to be present 

in the cell microsomal fraction and nuclear envelope (Ambellan, Swanson et al. 1981, 

Roszak, Lefebvre et al. 1990). Consistent with this, although 5αTHB displaced 

dexamethasone from whole hepatocytes and also from the microsomal fraction, the 

binding affinity of 5αTHB was much lower in the cytosolic fraction (McInnes 2003). 
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Alternatively, another possible receptor which dexamethasone may bind to (and may 

have been displaced from) in the microsomal fraction is the membrane GR. Although 

membrane GR originates from the same gene as cytoplasmic GR, it is suggested to 

vary through differential splicing, promoter switching or post translational editing 

(Stahn, Lowenberg et al. 2007). Furthermore it is reported to differ from cytoplasmic 

GR in its ligand binding specificities (Mitre-Aguilar, Cabrera-Quintero et al. 2015). It 

is, therefore, quite plausible that 5αTHB may bind to membrane GR but not the 

cytoplasmic GR. Another difference between this binding assay (using isolated human 

GR LBD) and the previous work (using whole rat hepatocytes) is the species 

difference. This is despite the fact that there is strong evolutionary pressure on 

conservation of the GR gene, and that GR structure and function are well conserved 

among all vertebrate species studied so far (Stolte, van Kemenade et al. 2006).  Of 

these species, the amino acid sequences the of the mouse and rat GR most closely 

resemble that of human GR (Stolte, van Kemenade et al. 2006). This is reflected in the 

common use of murine models to study the effects of glucocorticoid, such as in the 

previous work investigating the effects of 5αTHB (Yang, Nixon et al. 2011, 

Gastaldello, Livingstone et al. 2017). However, although it is unlikely, it should be 

kept in mind that a small amino acid variation in the GR LBD due to species 

differences, may cause differences in ligand binding. 

In order to investigate whether 5αTHB can induce GR to translocate into the 

nucleus, two alternative methods of ‘immunofluorescence’ and ‘nuclear/ cytoplasmic 

(N/C) separation’ were evaluated. Using the original immunofluorescence method 

there was a very narrow dynamic range between vehicle- and dexamethasone- treated 

cells. This resulted from high background immunofluorescence signal in the nucleus, 
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caused by a combination of non-specific secondary antibody binding and auto-

fluorescence of cells in the green emission spectrum. It was determined that the fixing 

procedure (using paraformaldehyde) was causing cells to auto-fluoresce, consistent 

with the literature which reports non-specific binding of the secondary antibody to 

charged groups from unbound aldehydes used in fixation (Burry 2011). Furthermore 

it is reported that aldehyde-based chemicals can react with amines and proteins causing 

fluorescence with a green/yellow wavelength (Collins, 2006). The autofluorescence 

could be avoided by using alternative fixation methods or by aldehyde blocking 

(Thermofisher 2015, Collins 2006) but in this case a secondary antibody with a 

fluorophore which emits in the red (as opposed to green) emission spectrum was 

successful in eliminating the auto-fluorescence. However, due to non-specific 

secondary antibody binding, and also due to the nature of the scoring system used as 

the quantification method, the dynamic range between vehicle- and positive control 

(dexamethasone)-treated cells remained narrow. This meant that any attempts to 

identify intermediary effects were challenging. Improvements were attempted by 

using the alternative quantification method of continuous analysis by ImageJ. This was 

also performed blinded to treatment to eliminate bias. However, since cytoplasmic 

membranes could not be seen in images (only the nuclear outline as determined using 

DAPI staining) a caveat of this method was that cytoplasmic signal could not be 

determined, so the result is based only on nuclear signal. It may have been beneficial 

to include a membrane marker such as sodium-potassium-ATPase or cadherins 

(Abcam, 2016). However, since non-specific antibody binding was still present and 

could also limit reliability, it was decided instead to proceed by assessing steroid 

effects on GR nuclear translocation using the N/C separation method. The N/C 
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separation method had previously been used, albeit in a different cell type 

(myofibroblasts), by another group demonstrating that dexamethasone caused GR to 

be transported into the nucleus (Drebert, Bracke et al. 2015). In this current work, the 

model was successfully adopted to the nuclear and cytoplasmic separation of A549 

cells, with a marked improvement in the dynamic range over the immunofluorescence 

method. The method was used to demonstrate that 5αTHB did not stimulate human 

GR to translocate into the nucleus in A549 cells, unlike dexamethasone. This is 

consistent with previous work in the same cell type by Gastaldello, in which 5αTHB 

did not induce phosphorylation of the Serine 211 residue in GR (known to correlate 

with GR nuclear translocation) whereas corticosterone did (Gastaldello, 2014). 

However, it should be noted that the A549 cells used in these studies are an artificial 

model (a secondary cell line). The recruitment of cofactors to GR is known to be cell-

type specific (Chinenov, Gupte et al. 2013), and cofactors are known to be important 

for nuclear translocation as described in section 1.2.2. Therefore, it would also be 

beneficial to evaluate GR translocation in a primary cell line, where the conditions 

more closely resemble normal physiology. Indeed the results in A549 cells contrast 

with work by Yang (2009) in another secondary cell line (HEK293 cells). In her work 

she used fluorescence microscopy to monitor the movement of green fluorescent 

protein (GFP)-tagged GR (GFP-GR). Whereas dexamethasone (1 µM) or 

corticosterone (1 µM) induced nuclear translocation occurring within 15 and 30 

minutes, respectively, the translocation observed after addition of 5αTHB (1 µM) was 

much slower (2 hours) and remained largely incomplete. Aside from the possibility 

that different co-regulators may be present, another explanation for the discrepancies 

between this past work and ours may be the fact that GFP-GR is a modified protein 
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and may not be representative of endogenous GR. GFP binding to GR may, therefore, 

modify its physiological processes (McMaster and Ray 2007).  

 As described in section 1.2.2, GR binding and nuclear translocation are 

strongly linked since the conformational change which takes place due to GR binding 

enables exposure of NLS and the formation of interactions required for nuclear 

translocation. The fact that 5αTHB only bound GR at very high concentrations, and 

also did not cause its nuclear translocation in this current work is therefore consistent. 

However, this does not exclude the possibility that the effects of 5αTHB are GR 

mediated. Indeed the displacement assay involved only the LBD of GR. It may be that 

5αTHB binds at an allosteric GR site, resulting in non-genomic signalling, or 

alternatively it may act non-genomically through membrane GR. Indeed membrane 

GR is reported to have a different ligand binding specificity from cytosolic GR; for 

example, hydrocortisone had no binding affinity at membrane GR (Powell, Watson et 

al. 1999). As described in section 1.2.3.3, either binding to mGR or to an allosteric site 

could trigger signalling cascades which may result in the indirect modification of gene 

expression. This indirect regulation of gene expression would be consistent with the 

fact that 5αTHB suppressed topical inflammation only after 24 hours, whereas 

corticosterone-induced inhibition was evident after just 6 hours (Gastaldello, 

Livingstone et al. 2017). Alternatively, 5αTHB may bind to a different nuclear 

receptor, such as MR. Indeed endogenous GCs have a similar affinity for MR as 

aldosterone making MR a potential target (Nixon, Upreti et al. 2012). Whichever 

signalling mechanisms are used by 5αTHB, the results presented in this chapter 

suggest that 5αTHB does not cause GR to move into the nucleus. However, the 

question remains whether even a small amount of 5αTHB-bound GR, if able to enter 
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the nucleus, would be sufficient to alter GR-mediated gene regulation. To answer this, 

the effects of 5αTHB on co-regulator recruitment to GR were investigated. 

GR binding to DNA is assisted and regulated by the recruitment of many co-

regulator peptides, and ligand binding to GR allows it to adopt the conformation 

required to interact with these co-regulators. Pamgene’s MARCoNI assay was utilised 

for this study because it enables the profiling of the effect of steroids on GR interaction 

with a range of co-regulator peptides. Dexamethasone induced clear increases and 

decreases in the interaction between GR and many of the co-regulator peptides 

investigated whereas 5αTHB had no effect. This suggests that 5αTHB does not 

stimulate the recruitment of co-regulator proteins to the GR, and is consistent with the 

demonstration in this chapter that 5αTHB did not bind GR LBD nor induce GR nuclear 

translocation. One critique of this assay is that equal concentrations (1 µM) of 5αTHB 

and dexamethasone were used, although 5αTHB is known to be less potent. Indeed 10 

µM was required for 5αTHB binding to GR, whereas dexamethasone bound to a 

similar extent at 10 nM. Therefore, it is possible that a higher concentration of 5αTHB 

would influence interactions between co-regulator peptides and GR. Another critique 

is that since only the (human) GR LBD was used in this assay, it may be possible that 

5αTHB binds to an allosteric site on GR and affects recruitment of co-regulator 

peptides from there. Alternatively, co-regulator peptides could be recruited to sites 

other than the LBD. However, consistent with the assay, initial ChIPseq experiments 

(collaboration with Alasdair Jubb, unpublished work) show that dexamethasone, but 

not 5αTHB, caused GR to bind GRE on typical response genes in human peripheral 

blood mononuclear cells (PBMCs). Since direct GRE binding is only one GR-
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mediated mechanism which occurs in the nucleus, it would be interesting to also study 

the effect of 5αTHB on GR tethering to transcription factors such as AF1 and NFκB. 

The hypotheses addressed in this chapter was that the previously-demonstrated 

anti-inflammatory effects of 5αTHB were mediated via GR. In the work of both 

Gastaldello (2014) and Yang (Yang, Nixon et al. 2011), 5αTHB suppressed IL6 and 

TNFα release from murine BMDM. Suppression of IL6 and TNFα by glucocorticoids 

is reported to largely occur through GR tethering to transcription factors (such as NFκβ 

and AP1), as described in section 1.3. Gastaldello employed the GR antagonist RU486 

in this model in order to investigate the involvement of GR in these anti-inflammatory 

properties of 5αTHB. However, the experiments were inconclusive since RU486 

actually suppressed IL6 release on its own. In this current work it was therefore 

decided to perform GR knockdown in these cells. The experiments of Gastaldello and 

Yang, showing suppression of cytokines by 5αTHB in mouse BMDM, were first re-

performed in the absence of GR knockdown for control purposes. However 

unexpectedly, 5αTHB did not suppress IL6 release from LPS-stimulated BMDM 

whereas hydrocortisone did in a clear concentration-dependent manner. The lack of 

effect by 5αTHB could not be resolved by stimulating cells with a lower dose of LPS, 

nor by increasing the sample size to n=8 for increased power. This was not consistent 

with the work of Gastaldello and Yang. Furthermore in this current work 5αTHB also 

did not suppress release of the alternative cytokine TNFα from the same stimulated 

BMDM cells, also inconsistent with the work of Yang and Gastaldello. Since the effect 

of 5αTHB to suppress cytokines could not be recapitulated, the GR knockdown was 

not performed. It is unclear why the results in this chapter are inconsistent with 

previous findings. There are no major differences in how the experiments were 
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performed. The time course for treatment was the same, with cells being treated for 24 

hours with steroid, and LPS given 1 hour after the steroid. Since hydrocortisone did 

induce a concentration-dependent suppression of cytokine release in this work, the 

absence of effect by 5αTHB cannot be due to problems with the ELISA kits used to 

quantify cytokines. Fresh steroid solutions were prepared in ethanol between each 

concentration-response experiment. A small optimisation had been made to the 

BMDM plating technique from the previous experiments performed by Gastaldello. 

Whereas she re-suspended her cells to give a constant volume each time and then 

plated a specific volume of the suspension per well, in this current study the cells were 

counted and a constant number of cells plated per well. Since this ensured that the 

same number of cells was present in each well, it controlled for intra- and inter- 

variability. However, if anything, this modification could be expected to increase the 

reproducibility of the data and is unlikely to explain the absence of effect in the current 

data. Furthermore, in the work performed by Yang a specific number of cells per well 

was also plated. Another small modification made during this study was that the data 

from each individual experiment were normalised to the cytokine concentration 

present in the media of LPS-only treated cells. The normalised data were then 

combined. This was in order to further reduce inter-assay variability; however, in the 

work by Yang and Gastaldello the raw cytokine concentrations (pg/ mL) were instead 

compared. Again, normalising the data would be expected to increase the 

reproducibility. Although the effect of 5αTHB was not significant compared to 

vehicle, a small concentration-dependent effect can be seen in the TNFα 

concentration-response, where TNFα release was significantly decreased after 

treatment with the highest (1000 nM) dose of 5αTHB, in comparison to treatment with 
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the lowest (100 nM) 5αTHB dose. The result in this chapter is, therefore, not entirely 

inconsistent with the previous work. Indeed, also in the previous work, 5αTHB 

consistently required a higher concentration than corticosterone to suppress IL6 and 

TNFα release in this model, with a threefold difference in potency indicated by Yang. 

 Anti-inflammatory effects of 5αTHB aside from those solely involving 

cytokine release, have also been demonstrated in past work. For example, 5αTHB 

suppressed inflammatory cell infiltration in a mouse model of thioglycolate-induced 

peritonitis, where IL6 suppression by 5αTHB occurred but was lost at higher 

concentrations (Yang, Nixon et al. 2011). Furthermore, more recently 5αTHB 

suppressed swelling and cell infiltration in a croton oil-induced mouse ear model of 

dermatitis, whereas real-time PCR analysis of gene transcripts revealed that, in this 

model, there was an also an absence of effects on IL6 and TNFα transcript expression. 

Therefore, despite my negative findings, 5αTHB may be suppressing inflammation by 

signalling through other mechanisms which have not been tested. In Gastaldello’s 

mouse model of dermatitis, 5αTHB-induced suppression of inflammatory swelling 

was evident only after 24 hours, suggestive of mediation through alternative signalling 

pathways. Furthermore, in the thioglycolate-induced peritonitis model, whereas 

5αTHB and corticosterone suppressed infiltration of neutrophils to the same extent, 

5αTHB had less of an effect to suppress macrophage recruitment. There is, therefore, 

substantial evidence that 5αTHB acts through different mechanisms to suppress 

inflammation in comparison to other GCs.  

 In summary, the results of this chapter are consistent, indicating that 5αTHB 

does not work through the classical GR mechanism of action, namely by binding to 

GR LBD, stimulating GR nuclear translocation, and interacting with coregulatory 
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peptides. Therefore, this chapter suggests that 5αTHB does not have direct genomic 

effects through GR. Instead, 5αTHB may act through GR to initiate non-genomic 

mechanisms, either by binding the LBD at high concentrations, or by binding at an 

allosteric site. 5αTHB may also act through another receptor known to bind 

glucocorticoids, such as membrane GR or LAGs, which are also both associated with 

non-genomic effects of steroid (Falkenstein, Tillmann et al. 2000, Strehl and Buttgereit 

2013). Alternatively, 5αTHB may have direct genomic effects through another 

receptor such as MR or an unidentified receptor. A microarray has recently been 

performed in which 5αTHB was shown to regulate gene expression in human 

peripheral blood derived macrophages. The next chapter of this thesis will, therefore, 

involve a gene expression analysis of this microarray data, in hope of further 

understanding the mechanisms of action of 5αTHB. 
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5. What is the mechanism of action of 5αTHB? 

5.1. Introduction 

 There is compelling evidence in vivo of the anti-inflammatory properties of 

5αTHB (Yang, Nixon et al. 2011, Gastaldello, Livingstone et al. 2017). Whilst its 

mechanisms remain unknown, evidence suggests that they are different from those of 

a typical glucocorticoid, and may underpin a safer therapeutic profile (Gastaldello, 

Livingstone et al. 2017). The requirement of GR for the effects of 5αTHB had not been 

substantiated by the work in this thesis or that of others (Gastaldello, Livingstone et 

al. 2017). Indeed the work presented in chapters 3 and 4 suggested that 5αTHB does 

not act through GR, at least not through genomic mechanisms. Therefore the receptor 

for 5αTHB, as well as its mechanisms of action, including whether they were largely 

genomic or non-genomic, remain unknown. 

 In previous work 5αTHB suppressed cytokine release from murine bone 

marrow derived macrophages (BMDM)(Gastaldello, 2014; Yang, 2009). 

Macrophages have high expression levels of transcriptionally-active GR, and GR 

binding sites have been identified in macrophage DNA, where they are enriched near 

to glucocorticoid-inducible genes (Jubb, Young et al. 2016, Jubb, Boyle et al. 2017). 

In past work, the GR antagonist RU486 attenuated the ability of both corticosterone 

and dexamethasone to suppress cytokine release from BMDM. However, it potentiated 

the suppression of cytokine release by 5αTHB (Gastaldello, 2014; Yang, 2009).  In 

this current work, a significant suppression of cytokine release from these cells by 

5αTHB could not be recapitulated. For this reason the targeted approach of GR 

knockdown to further investigate GR mediation of 5αTHB’s effects in these cells 

could not be followed through. An exploratory approach was, therefore, pursued in 
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order to gain additional insight into the mechanisms of action of 5αTHB. The 

transcriptional response of human monocyte derived macrophages to dexamethasone 

exposure had recently been assessed by local collaborators (Jubb, Young et al. 2016). 

This was therefore an ideal model to also compare the effects of 5αTHB, for analysis 

in this thesis.  

 

 

5.2. Hypothesis 

The hypothesis addressed in this chapter is that 5αTHB regulates a different set of 

gene transcripts to conventional glucocorticoids. 

5.3. Aims 

The aim is to use the results of a microarray to assess gene regulation by 5αTHB 

in human monocyte derived macrophages, in order to generate hypotheses for a 

possible mechanism of action of 5αTHB. The individual aims are: 

1. To identify actions of 5αTHB that may be mediated through classical GR 

genomic actions, by assessing genes commonly regulated by both 5αTHB and 

dexamethasone. 

2. To identify independent mechanisms of 5αTHB, by assessing genes only 

regulated by 5αTHB but not by dexamethasone. 
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5.4. Methods 

A microarray was performed in collaboration with Dr Alasdair Jubb in order to 

compare the effects of 5αTHB and dexamethasone to modulate gene expression in 

human monocyte derived macrophages (hMDMs). Dexamethasone was chosen as 

positive control as it has high affinity for GR and relatively low affinity for MR (Lan, 

Graham et al. 1982). All sample collection, preparation, analysis and data analysis to 

generate the gene lists described in table 5.2, was performed by Dr Alasdair Jubb. 

Whereas the genes regulated by dexamethasone have already been published (Jubb, 

Young et al. 2016), the 5αTHB-regulated gene lists were reserved for analysis in this 

thesis. 

5.4.1. Sample collection and RNA analysis by microarray. 

Human blood was collected from healthy volunteer donors aged 18-65 years: 

four donors had been used for the initial dexamethasone experiment and three were 

used for the follow up exploratory 5αTHB analysis. Ethical approval was provided by 

the South East Scotland Research Ethics Committee and full written consent obtained. 

From the blood samples, peripheral blood monocytes were then isolated by gradient 

separation of buffy coats followed by MACs CD14 +ve bead separation (Miltenyi 

Biotech, Surrey, UK) to isolate the monocyte fraction from the PBMCs. The full 

protocol is available at www.macrophages.com. Purified cells were cultured (RPMI 

supplemented with Penicillin/Streptomycin, Glutamax (Invitrogen) and 10% FCS) in 

the presence of recombinant human colony stimulating factor (CSF-1), also known as 

macrophage colony-stimulating factor (M-CSF)(104 U/mL) for 1 week, as per Hume 

lab standard operating procedure (Jubb, Young et al. 2016), to produce a stable 

population of monocyte-derived macrophages. Differentiated cells were re-plated at 

http://www.macrophages.com/
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1x106 cells/ mL and treated with either vehicle, dexamethasone (100nM, for 1h, 2h, 

4h, 10h, and 24h) or 5αTHB (1µM, for 2h, 8h, and 24h). In previous work, 5αTHB 

suppressed inflammation after 24 hours but not after 6 hours (Gastaldello, Livingstone 

et al. 2017). Therefore it was anticipated in this work that the majority of 5αTHB- 

regulated genes would be evident after 24 hours, and that the functional analysis of 

dexamethasone- and 5αTHB- regulated genes could be compared at this time point. It 

was for this reason that the 24 hour time point was chosen to assess the effect of 

5αTHB on gene expression, along with one early (2 hour) and one intermediate (8 

hour) time point. After treating the cells, RNA was then extracted using RNeasy 

column-based extraction with on-column DNase treatment (Qiagen), and RNA quality 

was checked using a 2100 Bioanalyzer (Agilent Technologies, Stockport, UK). RNA 

was prepared for microarrays using standard Affymetrix protocols by Edinburgh 

Genomics and gene expression was measured using an Affymetrix HT HG- U133 plus 

PM (human) expression array.  

5.4.2. Data analysis 

Quality and outliers were assessed using the R package ‘arrayQualityMetrics’ 

(Gautier, Cope et al. 2004). Background correction and generation of raw expression 

values was performed using the ‘affy’ package in R (Kauffmann, Gentleman et al. 

2009). To identify differentially expressed genes two complementary approaches had 

been taken for the response to dexamethasone (Jubb, Boyle et al. 2017)(Jubb, A, 2015). 

The first was using Biolayout Express 3D (Theocharidis, van Dongen et al. 2009) to 

assess for groups of genes with a correlated expression profile over the time course. 

This produced lists of genes that changes up or down at each phase of the response 

which were then filtered by requiring an absolute 2-fold change (log2 fold change of 



232 
 

1, adjusted p-value <0.05 (Benjamini-Hochberg)) to be retained in the analysis. In 

order to ensure genes with extreme profiles were not excluded by this approach the 

‘limma’ package in R was used to identify differentially expressed genes with a 

minimum log2 fold change of 1.5 adjusted p value of <0.05 (Benjamini-

Hochberg)(Smyth.G.K et al, 2005). The same approach was therefore taken to produce 

the gene lists for the response to 5αTHB (as described in table 5.1). The output for the 

purposes of the initial analysis in this thesis are lists of genes that responded to 

dexamethasone and/or 5αTHB at any time during the 24 hour time course. 

 

Comparison Undertaken Explanation 

Dexamethasone Dexamethasone-treated vs vehicle treated human PBMCs. 

5αTHB 5αTHB-treated vs vehicle treated human PBMCs. 

 

Table 5.1: A description of the comparisons undertaken vs (relative to) vehicle treated 
cells.   
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5.4.3. Functional analysis 

A functional analysis is a high throughput tool which uses the biological knowledge 

accumulated in public databases in order to functionally analyse a large gene list 

(Huang da, Sherman et al. 2009). It, therefore, allows us to identify the most enriched 

and relevant biology within a gene list (Huang da, Sherman et al. 2009, Hong, Zhang 

et al. 2014). Metascape (www.metascape.org)(Developed by Sanford Burnham, 

UCSD, GNF) enrichment analysis tool was employed for the work described in this 

thesis based on the method it uses for the enrichment and output of enriched terms, as 

well as for the background databases with which it is linked. The KEGG pathway 

(www.genome.jp/kegg) and GO Biological Process (www.geneontology.org) 

background databases are available for annotation and were used here. Metascape uses 

the Singular Enrichment Analysis (SEA) method which, due to its efficiency in 

extracting the biological meaning behind large gene lists, is the most traditional and 

popular strategy (Huang da, Sherman et al. 2009, Hong, Zhang et al. 2014). Gene 

identifiers (from the input gene list) are first converted into Entrez gene IDs, and then 

the Entrez gene IDs are used to extract biological information about each gene from 

various background databases. Using these databases each gene is annotated according 

to which biological process or pathway terms (‘annotation terms’) they are associated 

with. A statistical test is then applied to identify the annotation terms which are 

‘enriched’ for the genes in the list (so have a larger amount than expected) in 

comparison to control or reference background. The enriched annotation terms 

associated with the gene list therefore provide important insight into its biological 

themes. Metascape uses the hypergeometric statistical test to identify enriched 

annotation terms, and this is suitable for both small and large gene lists, so is flexible 

http://www.metascape.org/
http://www.genome.jp/kegg
http://www.geneontology.org/
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depending on the length of the gene list (Hong, Zhang et al. 2014). For each gene list 

in table 2 enriched terms from publicly available databases (e.g. KEGG pathways, 

Gene Ontology (GO) terms) were sought using an enrichment p value cut off of 

p<0.05. A common limitation to this SEA strategy is that the large outputs of enriched 

annotation terms are often heavily overlapped and redundant, which can cause 

information to be overlooked (Huang da, Sherman et al. 2009). However, Metascape 

clusters redundant annotation terms, grouping them based on their similarities, and 

presenting the top 20 clusters in a heat map, focusing on the larger biological picture. 

For every ‘cluster’ representing a common pathway or process, the most enriched term 

is chosen as the representative term of the group. One limitation of clustering the 

annotation terms in this way is that the most enriched term within each cluster is chosen 

to represent it (forming the cluster name) on each diagram. Therefore, the cluster 

names may not necessarily represent all ontology terms included in it perfectly, and 

information could be missed. For this reason an appendix is also provided at the back 

of this thesis, which gives information on the individual terms within each cluster, as 

well as the genes responsible for the enrichment of each term or cluster, and their fold 

changes. 

 

 

 

 

 

 



235 
 

5.5. Results 

5.5.1. Time point assessment  

Of the genes which were differentially expressed between vehicle and 5αTHB 

treatments, 41 were regulated at the 2 hour time point, and 124 genes were regulated 

at the 8 hour time point. There were no differentially expressed genes after 24 hours 

following 5αTHB treatment of hMDMs. This was unexpected, and meant that the 

functional analysis of dexamethasone- and 5αTHB- regulated genes could not be 

compared at the 24 hour time point. Although the majority of 5αTHB- regulated genes 

were regulated at the intermediate 8 hour time point, gene expression in response to 

dexamethasone was not assessed after 8 hours, so a direct comparison of steroid effects 

at this time point also could not be made. Because of this limitation, all genes which 

were differentially expressed over the 24 hour period following steroid treatment were 

grouped together to perform the functional analyses described in section 5.5.3. 

 Since the time points were different between steroids, genes were grouped 

according to whether they first became differentially expressed at an early time point 

(between 0-2 hours), at an intermediate time point (between 2-8 hours by 5αTHB, or 

between 2-10 hours by dexamethasone), or at a late time point (between 8-24 hours by 

5αTHB, or between 10-24 hours by dexamethasone). Figures 5.1 and 5.2 demonstrate 

the proportion of genes regulated at an early, intermediate, and late time point after 

dexamethasone and 5αTHB treatment respectively.  
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Figure 5.1: The proportion of genes which became differentially expressed at an early, 
intermediate, or late time point after dexamethasone treatment of human peripheral 
blood-derived macrophages. The early time point corresponds to genes which were 
regulated 0-2 hours post treatment (33 genes), intermediate corresponds to 2-10 hours post 
treatment (259 genes), and late corresponds to 10-24 hours post treatment (58 genes).  

 

 

 

 

 

 

 

 

 

Figure 5.2: The proportion of genes which became differentially expressed at an early, 
intermediate, or late time point after 5αTHB treatment of human peripheral blood-
derived macrophages. The early time point corresponds to genes which were regulated 0-2 
hours post treatment (41 genes), intermediate corresponds to 2-8 hours post treatment (124 
genes), and late corresponds to 8-24 hours post treatment. None of the genes regulated by 
5αTHB required more than 8 hours to become differentially expressed.  
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5.5.2. Analysis of gene lists. 

A total of 350 genes were identified as being differentially expressed between vehicle 

and dexamethasone treatments (table 5.2; list 1) over the 24 hour time course after 

treatment. 165 genes were differentially expressed between vehicle and 5αTHB 

treatments (table 5.2; list 2). Only 38 genes were commonly differentially expressed 

in response to both dexamethasone and 5αTHB (table 5.2; list 3). This means that a 

remaining 312 genes were only regulated by dexamethasone and not by 5αTHB (table 

5.2; list 4). In addition, 127 genes were only regulated by 5αTHB and not by 

dexamethasone (table 5.2; list 5). The number of genes in each list is given in table 

5.2, and the data is demonstrated in figure 5.3.  

The 350 genes differentially expressed in response to dexamethasone have been 

published by Dr Alasdair Jubb (Jubb, Young et al. 2016). All other gene lists from table 

5.2 are provided in the appendices of this thesis.  
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Gene list Description Total genes Genes up-regulated Genes down-regulated 

1 All genes differentially 

expressed between 

dexamethasone and 

vehicle treatments. 

350 225 125 

2 All genes differentially 

expressed between 

5αTHB and vehicle 

treatments. 

165 133 32 

3 Common genes which 

were differentially 

expressed between 

dexamethasone and 

vehicle treatments and 

between 5αTHB and 

vehicle treatments. 

38 32 6 

4 Genes only differentially 

expressed between 

dexamethasone and 

vehicle treatments (not 

between 5αTHB and 

vehicle treatments). 

312 194 118 

5 Genes only differentially 

expressed between 

5αTHB and vehicle 

treatments (not between 

dexamethasone and 

vehicle treatments). 

127 101 26 

 

 
Table 5.2:  A summary of the gene lists generated from a microarray comparing dexamethasone 
and 5αTHB effects on gene expression in human peripheral blood derived macrophages. The 
number of significant differentially regulated genes with fold change > 1.5 and adjusted p value < 0.05 are 
also given for each gene list. 
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Figure 5.3:    A Venn diagram demonstrating the number of differentially expressed 
genes in human peripheral blood mononuclear cells after dexamethasone and 5αTHB 
treatments respectively. 

 

 

5.5.3. Enrichment analysis 

Enrichment analyses of GO biological processes and KEGG pathways were 

first performed using all genes regulated by either dexamethasone (list 1, table 5.2) or 

5αTHB (list 2, table 5.2) (section 2.2.1). Further enrichment analyses were then 

performed using the genes only regulated by either dexamethasone (list 4, table 5.2) 

or 5αTHB (list 5, table 5.2)(Section 2.2.2). Finally, enrichment analyses of the genes 

commonly regulated by both 5αTHB and dexamethasone (list 3, table 5.2) are 

described in section 2.2.3. 

 

 

 

312 genes                38 genes         127 genes  

 Dex only                    Both            5αTHB only 
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5.5.3.1. Enrichment analyses of all genes regulated by dexamethasone and 

5αTHB 

5.5.3.1.1. Enrichment of GO biological processes 

5.5.3.1.1.1. Enrichment of GO biological processes by all genes regulated by 

dexamethasone 

The top 20 GO biological process clusters identified as being significantly 

enriched, following analysis of the 350 genes regulated by dexamethasone, are given 

in figure 5.4a. Many of the most significantly-enriched clusters are related to 

inflammatory and immune responses. Examples are the GO biological processes of 

‘inflammatory response’, ‘response to cytokine’ and ‘regulation of cytokine 

production’. Other enriched processes include ‘regulation of cell migration’, ‘negative 

regulation of cell proliferation’ and ‘single organism cell adhesion’. 

Enrichment was subsequently assessed for up- and down-regulated genes 

separately, as different components of a given pathway or molecular function could be 

up- or down-regulated within a single comparison. The GO biological process terms 

which were significantly enriched for genes up-regulated and down-regulated by 

dexamethasone are given in figure 5.4b and c respectively. 
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Figure 5.4: Gene Ontology Biological process clusters enriched for genes which were 
(a) differentially expressed (both up-regulated and down-regulated genes), (b) up- 
regulated, or (c) down-regulated in human peripheral blood-derived macrophages 
between 0-24 hours after dexamethasone (100 nM) treatment. 
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5.5.3.1.1.2. Enrichment of GO biological processes by all genes regulated by 

5αTHB  

The top 20 significantly enriched (p<0.05) GO biological process clusters in 

the list of 165 differentially regulated genes after 5αTHB treatment (gene list 2, table 

5.2) are given in figure 5.5a. The most significantly enriched GO biological process 

cluster was ‘cellular response to lipid’; however, GO biological process clusters 

relating to inflammation were also enriched (such as ‘Inflammatory response’, 

‘cytokine production’ and ‘cytokine production involved in immune response’). These 

were less significantly enriched (higher p value) than by dexamethasone. Other 

enriched processes in the list of genes regulated by 5αTHB included ‘blood vessel 

development’, ‘hematopoietic or lymphoid organ development’ and ‘fat cell 

differentiation’.  

Up-regulated and down-regulated genes were also assessed separately as for 

dexamethasone. The top 20 significantly-enriched GO biological process clusters are 

given for the up-regulated genes in figure 5.5b, whereas only 4 GO biological process 

clusters were significantly enriched (at p<0.05) in the down-regulated genes, given in 

figure 5.5c. 
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Figure 5.5: Gene Ontology Biological process clusters which were significantly enriched 

(p<0.05) in genes which were (a) differentially expressed (either up- and down-regulated), (b) 
up-regulated or (c) down-regulated (both adjusted p<0.05) in human peripheral blood-derived 
macrophages between 0-24 hours after treatment with 5αTHB (1 µM). 
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5.3.3.1.2. Enrichment of KEGG pathways. 

5.3.3.1.2.1. Enrichment of KEGG pathways by all genes regulated by 

dexamethasone 

All 350 genes differentially regulated in human PBMCs after dexamethasone 

treatment (list 1, table 5.2) were then used for an enrichment analysis of KEGG 

pathways. The top 20 significantly-enriched KEGG pathways are given in figure 5.6a. 

Many of these are involved with inflammatory and immune responses; such as ‘NFκB 

signalling pathway’ which was the most significantly enriched of the pathways. Others 

included ‘cytokine-cytokine receptor interaction’, ‘TNF signalling pathway’ and 

‘MAPK signalling pathway’. KEGG pathways relating to cancer were also commonly 

enriched, such as ‘proteoglycans in cancer’, ‘transcriptional misregulation in cancer’, 

‘bladder cancer’ and ‘endometrial cancer’. 

Separate lists of up-regulated and down-regulated genes were then analysed, 

and the significantly enriched KEGG pathways within these separate lists are given in 

figures 5.6b and c respectively. There were 15 significantly enriched KEGG pathways 

for the up-regulated genes. The most significant was the ‘FoxO signalling pathway’, 

followed by ‘transcriptional misregulation in cancer’, ‘mineral absorption’, 

‘proteoglycans in cancer’, ‘AMPK signalling pathway’ and ‘MAPK signalling 

pathway’. For down-regulated genes, 10 KEGG pathways were significantly enriched. 

The top 3 were the ‘NFκB signalling pathway’, ‘TNF signalling pathway’ and 

‘cytokine-cytokine receptor interaction’. 
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Figure 5.6: KEGG pathways (at p value<0.05) which were significantly enriched for (a) all 
differentially-expressed genes, (b) up-regulated genes, and (c) down-regulated genes in 
human peripheral blood derived macrophages between 0-24 hours after treatment with 
dexamethasone (100 nM).  
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5.5.3.1.2.2. Enrichment of KEGG pathways by all genes regulated by 5αTHB 

An enrichment analysis of KEGG pathways for the list of 165 genes which 

were differentially expressed after 5αTHB treatment (list 2, table 5.2) was then 

performed. 13 KEGG pathways were significantly enriched, demonstrated in figure 

5.7a. The most significantly enriched KEGG pathway cluster was ‘Fc gamma R-

mediated phagocytosis’ which is related to an inflammatory response. Other enriched 

KEGG pathway clusters relating to inflammation were the ‘TNF signalling pathway’ 

(which did appear in the enrichment analysis of dexamethasone-regulated genes) and 

‘Th1 and Th2 cell differentiation’ (which did not). Another of the enriched KEGG 

pathways was ‘Aldosterone synthesis and secretion’  

The genes up-regulated and down-regulated by 5αTHB were then analysed 

separately. There were 8 KEGG pathways specifically up- regulated by 5αTHB (figure 

5.7b) but there were no down-regulated KEGG pathways. Fc gamma R-mediated 

phagocytosis was the most significantly enriched pathway in the list of up-regulated 

genes. This was followed by the ‘TGF-beta signalling pathway’, ‘Th1 and Th2 cell 

differentiation’ and ‘Type II diabetes mellitus’.  
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Figure 5.7: KEGG pathways (at p value<0.05) which were significantly enriched for (a) all 
differentially expressed genes and (b) up-regulated genes in human blood derived 
macrophages between 0-24 hours after treatment with 5αTHB (1 µM). 
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5.5.3.2. Enrichment analysis of genes only regulated by either dexamethasone 

or 5αTHB. 

In order to compare pathways and processes commonly regulated by both 

drugs, or specifically targeted by one or the other, an enrichment analysis was 

performed on the genes which were only regulated by either dexamethasone or 5αTHB 

(lists 4 and 5 respectively, able 5.2) and those which were commonly regulated by both 

drugs (list 3, table 5.2).  

5.5.3.2.1. Enrichment analysis of GO biological processes 

5.5.3.2.1.1. Enrichment of GO biological processes by genes regulated only 

by dexamethasone 

Many of the top GO Biological process clusters which were enriched in the 

genes only regulated by dexamethasone (and not 5αTHB)(list 4, table 5.2) were related 

to inflammatory and immune responses. Again, other enriched processes within these 

genes included cell migration and cell proliferation. The top 20 enriched GO biological 

process clusters are given in figure 5.8a.  

The genes were then separated according to whether they were up-regulated or down-

regulated in response to dexamethasone, and then enrichment analysis performed 

separately for each of these groups.  

For the 194 total up-regulated genes, the enriched GO biological process clusters are 

given in figure 5.8b, and for the 118 down-regulated genes, the enriched GO biological 

process clusters are given in figure 5.8c.   
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Figure 5.8: A list of the top 20 GO Biological process clusters which were enriched in genes 
found to be (a) differentially expressed (in either direction), (b) up-regulated or (c) down-

regulated between 0-24 hours after dexamethasone (100 nM) treatment, but not by 5αTHB 

treatment, in human peripheral blood macrophage cells. 

 

 

(a) 

 

 

 

 

 

 

(b) 

 

 

 

 

 

 

(c) 

 

 

 

 

 



250 
 

5.5.3.2.1.2. Enrichment of GO biological processes by genes only regulated 

by 5αTHB. 

With regard to the genes which were only regulated by 5αTHB (and not by 

dexamethasone) (list 5, table 5.2) the GO biological processes which were 

significantly enriched (p<0.05) are given in figure 5.9a. ‘Blood vessel development’ 

was the second most significantly enriched cluster, after ‘organic hydroxyl compound 

biosynthetic process’ and followed by ‘negative regulation of pathway-restricted 

SMAD protein phosphorylation’.  Other enriched processes included ‘leukocyte 

chemotaxis’, ‘fat cell differentiation’, ‘regulation of cellular localisation’ and 

‘regulation of fibroblast proliferation’.  

The up-regulated and down-regulated genes were then analysed separately. 

Figure 5.9b demonstrates that ‘blood vessel development’ is enriched by the genes 

which were up regulated by 5αTHB. Other processes enriched by the up-regulated 

genes were ‘fat cell differentiation’, ‘regulation of fibroblast proliferation’, ‘regulation 

of microtubule-based process’, ‘SMAD protein signal transduction’ and ‘negative 

regulation of neurogenesis’.  

Only 4 GO biological process clusters were significantly down-regulated at an 

enrichment p value of 0.05 (figure 5.9c). These were ‘steroid metabolic process’, 

‘response to lipoprotein particle’, ‘cellular response to interferon gamma’, and 

‘microtubule-based process’.  
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Figure 5.9: GO Biological process clusters which were enriched in the list of genes found to 
be (a) differentially expressed (in either direction), (b) up-regulated and (c) down-regulated 
between 0-24 hours after treatment with 5αTHB, but not by treatment with dexamethasone, in 
human peripheral blood macrophage cells. 
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5.5.3.2.2. Enrichment analysis of KEGG pathways 

5.5.3.2.2.1. Enrichment analysis of KEGG pathways by genes regulated only 

by dexamethasone 

The top 20 significantly enriched KEGG pathways in the genes regulated only 

by dexamethasone (but not 5αTHB)(list 4, table 5.2) are given in figure 5.10a. The 

results are similar to when the commonly regulated genes (by both dexamethasone and 

5αTHB) were included; except now the ‘TNF signalling pathway’ has been removed. 

In addition, the following new pathways appear on this heat map: ‘rheumatoid 

arthritis’, ‘amoebiasis’, ‘hepatitis B’, ‘apoptosis’, ‘AMPK signalling pathway’, 

‘Epstein-Barr virus infection’ and ‘circadian entrainment’.  

Genes up-regulated or down-regulated by dexamethasone (but not 5αTHB) 

were analysed separately. 19 KEGG pathways were significantly enriched by up 

regulated genes (p<0.05)(figure 5.10b).  

10 KEGG pathways were significantly enriched by down-regulated genes, 

given in figure 5.10c.  
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Figure 5.10: KEGG pathways which were enriched in the genes regulated only by 
dexamethasone (100 nM) (and not by 5αTHB) between 0-24 hours after treatment in human 

peripheral blood macrophages. Heat map (a) uses both up-regulated and down-regulated 
genes to determine enriched processes, whereas heat maps (b) and (c) use only genes which 
were up-regulated or down-regulated, respectively. 
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5.5.3.2.2.2. Enrichment of KEGG pathways by genes regulated only by 5αTHB 

An enrichment analysis of KEGG pathways was then performed on genes 

which were only regulated by 5αTHB (and not dexamethasone). There were only 8 

KEGG pathways significantly enriched (p<0.05) in this list of genes (list 5, table 5.2) 

which are given in figure 5.11a. The most significantly enriched pathway was the 

TGF-beta signalling pathway. This was followed by ‘Fc-gamma R- mediated 

phagocytosis’ and ‘Th1 and Th2 cell differentiation’ which are both pathways related 

to inflammation and immunity. In comparison to the heat map of pathways enriched 

by all genes (regulated by both dexamethasone and 5αTHB) many pathways have now 

disappeared from the list, so may be commonly targeted by both 5αTHB and 

dexamethasone. These include ‘TNF signalling pathway’, ‘Aldosterone synthesis and 

secretion’, ‘sphingolipid signalling pathway’, ‘sphingolipid metabolism’, ‘mineral 

absorption’, ‘tight junction’ and ‘transcriptional misregulation in cancer’.  

When up-regulated and down-regulated genes were analysed separately, 7 

KEGG pathways were enriched for up-regulated genes (figure 5.11b) and these were 

very similar to the enriched pathways using all the 5αTHB up-regulated genes (figure 

5.11b). The only differences are that the KEGG pathway clusters of ‘Type II diabetes 

mellitus’ and ‘Mineral absorption’ have now disappeared; hence, genes commonly 

regulated by both drugs are required for these processes to be enriched.  

There were no KEGG pathways enriched in the list of 5αTHB down-regulated 

genes. 
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Figure 5.11: KEGG pathways which were enriched in the genes regulated only by 5αTHB (1 
µM) between 0-24 hours after treatment in human peripheral blood macrophages. Heat map 
(a) gives the KEGG pathways which were enriched in the list of all genes differentially 
regulated by 5αTHB, and heat map (b) are gives the KEGG pathways which were enriched in 
only the up-regulated genes. There were no enriched KEGG pathways in the down-regulated 
genes. 
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5.5.3.3. Enrichment analysis of genes commonly regulated by both 5αTHB and 

dexamethasone 

5.5.3.3.1. Enrichment of GO biological processes by genes commonly 

regulated by both 5αTHB and dexamethasone 

Finally, an enrichment analysis was performed on the genes which were 

commonly regulated both by 5αTHB and by dexamethasone (list 3, table 5.2). 15 GO 

biological process clusters were enriched for these genes, which are given in figure 

5.12a.  

The up-regulated and down-regulated genes were then separated. 12 GO 

biological processes were significantly enriched for up-regulated genes (figure 5.12b). 

Many of these enriched processes were related to inflammation and immunity such as 

the negative regulation of leukocyte apoptotic process, inflammatory response and 

lymphocyte activation. Processes related to the negative regulation of apoptosis were 

among the most significantly enriched processes (‘negative regulation of leukocyte 

apoptotic process’ and ‘negative regulation of apoptotic process’) although ‘regulation 

of cellular carbohydrate metabolic process’ was the most significantly enriched. Other 

enriched processes were ‘locomotory behaviour’, ‘response to lipid’, ‘membrane lipid 

metabolic process’ and ‘regulation of vesicle-mediated transport’.  

There were no GO biological processes significantly enriched for down-

regulated genes. 
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Figure 5.12: GO Biological process clusters which were enriched in the list of genes which 
were commonly differentially expressed between 0-24 hours after both 5αTHB (1 µM) and 
dexamethasone (100 nM) treatment. (a) are the GO Biological processes which were enriched 
by this total gene list, and (b) are the biological processes which were enriched only for the 
up-regulated genes. There were no enriched GO biological processes by the down-regulated 
genes. 
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5.5.3.3.2. Enrichment of KEGG pathways by genes commonly regulated by 

both 5αTHB and dexamethasone 

In the genes which were commonly regulated by both dexamethasone and 

5αTHB, there were 2 significantly enriched (p<0.05) KEGG pathways, which were 

‘sphingolipid signalling pathway’ and ‘cGMP-PKG’ signalling pathway’. 2 genes 

(ADORA3 and PRKCE) were present in both enriched KEGG pathway clusters. 

Again, up-regulated and down-regulated genes were analysed separately. One KEGG 

pathway (cGMP-PKG) was enriched in the list of up-regulated genes whereas there 

were no enriched signalling pathways in the commonly down-regulated genes.  
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5.6. Discussion 

Previous work suggested that 5αTHB retains some glucocorticoid activities but 

acts through a different mechanism from typical glucocorticoids (Gastaldello, 

Livingstone et al. 2017). The findings so far presented in this thesis (chapters 3 and 4) 

are consistent with this previous work. The mechanisms of action of 5αTHB remain 

unknown, and to gain some insight an exploratory approach was taken in this chapter 

whereby the transcriptional response of human monocyte derived macrophages 

(hMDMs) were compared between 5αTHB and the selective GR agonist 

dexamethasone. A microarray of the steroid-treated hMDMs showed that 165 genes 

were regulated by 5αTHB, and 350 by dexamethasone, whereas only 38 of these genes 

were commonly regulated by both steroids. It was unexpected that differential 

expression of all 5αTHB- regulated genes occurred in under 8 hours, whereas some 

dexamethasone-regulated genes required 24 hours to become differentially expressed. 

This contrasts with the in vivo work of Gastaldello et al, in which 5αTHB required 24 

hours to suppress swelling and cell infiltration whereas corticosterone required only 6 

hours (Gastaldello, Livingstone et al. 2017). However since Gastaldello assessed 

inflammation at only two time points (6 and 24 hours), it is possible that 5αTHB had 

an effect just after the 6 hour time point which was only detected at the later 24 hour 

time point, which would be consistent with the work presented here. It should be noted 

that the model used by Gastaldello et al used mice whilst the current work was 

performed in human cells. Furthermore, the croton oil model used by Gastaldello et al 

(Gastaldello, Livingstone et al. 2017) is an in vivo model and, therefore, is influenced 

by the full immune response and requires time for protein translation and the effect to 

become evident, whereas the microarray used in the current work was performed on 
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RNA taken from individual macrophages. However, since 5αTHB did not cause 

differential expression of any genes after 24 hours in this current work, a functional 

analysis of gene expression at this time point could not be performed. Instead, the 

functional analyses of dexamethasone- and 5αTHB- regulated genes were compared 

by using all genes regulated by each steroid over the course of the 24 hours after 

treatment, keeping the limitation in mind that gene regulation by 5αTHB was assessed 

at fewer time points than dexamethasone. 

The 38 genes commonly regulated by both dexamethasone and 5αTHB included 

typical glucocorticoid responsive genes (such as Per1, Fkbp51, and Gilz) which 

contain GRE in their promoters for transactivation by GR. Whilst this may suggest 

mediation of effects through GR, it is not conclusive proof since all members of the 

NR3C nuclear receptor subfamily (mineralocorticoid, glucocorticoid, androgen, and 

progesterone receptors) have overlapping DNA binding preferences (Hudson, Youn et 

al. 2014). Furthermore MR also has overlapping preferences with GR for ligand 

binding, and MR has been shown to regulate all three of these genes (Fernandes-Rosa, 

Hubert et al. 2011, Hudson, Youn et al. 2014, Petrovich, Asher et al. 2014, Fletcher, 

Morgan et al. 2017). Interestingly, evidence has suggested that at least Per1 and 

Fkbp51 can be regulated by GR-MR heterodimers (Petrovich, Asher et al. 2014, 

Mifsud and Reul 2016). Therefore, in future work the involvement of MR, and perhaps 

of GR-MR heterodimers, for 5αTHB’s effects should be investigated. Although there 

were some genes commonly regulated by both dexamethasone and 5αTHB, the fact 

that there were only 38 provides strong evidence that the two steroids largely act 

through different mechanisms in macrophages. One point to keep in mind is that a 

reason for the lack of commonly regulated genes may be that the selection criteria used 
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to select genes were too stringent, with the consequence that many more commonly 

regulated genes could have been missed. It was also considered that these 38 

commonly regulated genes may be the genes which are key to achieving the anti-

inflammatory effects of both compounds. In a functional analysis performed on these 

commonly-regulated genes to assess this, whereas three GO biological processes 

related to inflammation were enriched (‘Negative regulation of leukocyte apoptotic 

process’, ‘Lymphocyte activation’, and ‘Inflammatory response’), there was 

enrichment of only two KEGG pathway terms, with just 3 genes responsible for 

enrichment of each term. This could indicate that, whilst dexamethasone and 5αTHB 

may target some of the same inflammatory processes, they may achieve this by acting 

through different molecular pathways.   

 Whereas dexamethasone caused differential expression of 350 genes in this 

study, a previous study had identified only 133 genes regulated by dexamethasone; 

however, this data is not directly comparable since in the previous study the cells were 

undifferentiated monocytes (Ehrchen, Steinmuller et al. 2007). In addition to the 

typical glucocorticoid responsive genes reported above, other transcription factors 

(Nfil3, Jdp2, Irf1, Bcl) and anti-inflammatory genes (Sesn1, Fcar, Cd163) were also 

identified among dexamethasone- regulated genes, which have been reported in 

previous studies to be glucocorticoid regulated (Ehrchen, Steinmuller et al. 2007, 

Chinenov, Coppo et al. 2014). This suggested that the microarray results are reliable. 

Many of the GO biological processes which were enriched for dexamethasone-

regulated genes relate to inflammation. Furthermore the KEGG pathways enriched by 

dexamethasone-regulated genes in this study are consistent with the mechanisms 

known to be used by glucocorticoids to suppress inflammation. For example the most 
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enriched KEGG pathways among down-regulated genes include the NFκB and TNF 

signalling pathways, and among up-regulated genes include the MAPK signalling 

pathway which, as discussed in section 1.3, are all known to be involved in the 

suppression of inflammation by glucocorticoids. Among the genes only regulated by 

dexamethasone (i.e. when the 38 genes commonly regulated by dexamethasone and 

5αTHB are taken away) the situation is very similar, with many enriched GO 

biological processes and KEGG signalling pathways relating to inflammation, perhaps 

suggesting that the overlapping genes are not crucial for the anti-inflammatory effect 

of dexamethasone. 

The fact that 5αTHB caused differential expression of 165 genes demonstrates 

that it has effects on gene transcription in human peripheral blood macrophages, as 

opposed to acting solely via membrane receptors and second messenger signalling, for 

example. Among 5αTHB- regulated genes, the most enriched GO biological process 

is ‘cellular response to lipid’. On inspection of the enrichment table for figure 3 in the 

appendices, the redundant processes within this cluster reflect a cellular response to 

steroid hormone, suggesting that 5αTHB does in some way engage in mechanisms 

associated with a classical steroid. The ‘inflammatory response’ GO biological process 

is also enriched among 5αTHB regulated genes, as are ‘cytokine production’ and 

‘cytokine production involved in the immune response’, although not as significantly 

as their enrichment by dexamethasone-regulated genes. Another enriched cluster was 

‘blood vessel development’ and, on inspection of the enrichment table for figure 3 in 

the appendices, the redundant terms within this cluster relate to angiogenesis, vascular 

development, and endothelial cell migration. Therefore, perhaps 5αTHB affects the 

release of growth factors from immune cells, which then act on the vasculature. 
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Whereas chapter 3 suggests that 5αTHB acts directly on the vasculature (for example 

to alter expression of adhesion molecules) the result here may, therefore, suggest that 

5αTHB also acts indirectly on the vasculature through effects on immune cells 

(Gastaldello, Livingstone et al. 2017). The work here is in an inflammatory cell, and 

5αTHB has been suggested to suppress inflammation mainly by reducing vascular 

permeability and subsequent inflammatory cell recruitment (Gastaldello, Livingstone 

et al. 2017). Genes involved in a reduction of vascular permeability may therefore have 

caused enrichment of the ‘blood vessel development’ term. Another explanation could 

be that 5αTHB induces a specific phenotype in the macrophages, which promotes 

angiogenesis. The M2 phenotype is known to promote angiogenesis and tissue healing 

(Shapouri-Moghaddam, Mohammadian et al. 2018). These functions are important 

after the initial proinflammatory response of the classical M1 macrophages, in order 

to restore tissue homeostasis (Shapouri-Moghaddam, Mohammadian et al. 2018). 

Further evidence for the presence of the M2 macrophage is presented by the 

demonstration that ‘SMAD protein signal transduction’ is another enriched process 

among up-regulated genes. SMAD signalling is activated by TGFβ, and a specific type 

of M2 macrophage (known as M2c) is known to release TGFβ (Gratchev 2017, 

Shapouri-Moghaddam, Mohammadian et al. 2018). Furthermore, the KEGG pathways 

enriched by 5αTHB-regulated genes include ‘Fc gamma R-mediated phagocytosis’, 

‘TGF-beta signalling pathway’, and ‘Th1 and Th2 cell differentiation’. Enrichment of 

these terms is consistent with the possibility that the macrophages treated with 5αTHB 

have developed the M2c phenotype. This relates to the concept that macrophages are 

not a homogenous cell population but may adopt distinct phenotypes and functions, 

depending on the presence of various stimuli (such as cytokines, growth factors, and 
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hormones) present in their microenvironment (Ehrchen, Steinmuller et al. 2007, 

Schmieder, Michel et al. 2012, Chazaud 2014, Gratchev 2017, Shapouri-Moghaddam, 

Mohammadian et al. 2018). The polarised phenotypes that macrophages acquire have 

been broadly classified into two major groups: Pro-inflammatory, classically-activated 

macrophages (M1) and anti-inflammatory, alternatively-activated macrophages (M2), 

which promote Th1 and Th2 responses, respectively (Rickard and Young 2009, Mills 

2012, Schmieder, Michel et al. 2012, Shapouri-Moghaddam, Mohammadian et al. 

2018). A change in phenotype from M1 to M2 can, therefore, explain enrichment of 

the term ‘Th1 and Th2 cell differentiation’. M1 macrophages are polarised by a 

microbial trigger, such as LPS, or by Th1 cytokines, such as IFN-γ or TNFα (Rickard 

and Young 2009, Schmieder, Michel et al. 2012). They have robust antimicrobial 

activity, secreting various pro-inflammatory cytokines (such as IL6 and TNFα), 

chemokines, as well as reactive oxygen and nitrogen intermediates. Although this is 

effective in killing pathogens it also results in tissue destruction  (Schmieder, Michel 

et al. 2012, Shapouri-Moghaddam, Mohammadian et al. 2018). In contrast, M2 

macrophages actually suppress inflammation and function to promote tissue repair and 

remodelling, re-establishing homeostasis. They do this in part through an increase in 

angiogenesis, which is, therefore, consistent with enrichment of terms relating to the 

vasculature (Rickard and Young 2009, Schmieder, Michel et al. 2012, Chazaud 2014, 

Shapouri-Moghaddam, Mohammadian et al. 2018). There are a variety of M2 cells 

depending on the stimulus used for polarisation. For this reason M2 macrophages have 

been further classified into M2a, M2b, and M2c subfamilies (Schmieder, Michel et al. 

2012, Chazaud 2014). The M2c subset can be induced by glucocorticoids, IL10, or 

TGFβ, and also release TGFβ as a mediator (Zizzo, Hilliard et al. 2012).  The presence 
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of this M2c macrophage phenotype would, therefore, be consistent with enrichment of 

the ‘TGF beta signalling pathway’ KEGG term as well as with the GO biological 

process terms relating to SMAD signalling (Ehrchen, Steinmuller et al. 2007). 

Furthermore, M2c cells have a pro-healing function and increased phagocytic activity, 

consistent with enrichment of the term relating to phagocytosis (Zizzo, Hilliard et al. 

2012). The increased phagocytic activity of M2c cells is associated with an up 

regulation of Mertk, and, interestingly, this gene was increased in the microarray in 

response to dexamethasone and 5αTHB, suggesting that this phenotype was also 

present in dexamethasone-treated cells to some extent (Shapouri-Moghaddam, 

Mohammadian et al. 2018).  

Limitations of the enrichment analysis should not be ignored. First of all the 

macrophages were unstimulated, so they may not optimally model an inflammatory 

response. This is important since the macrophage phenotype is described to change 

upon stimulation, with microbial triggers such as LPS being reported to cause classical 

activation of macrophages into a pro inflammatory M1 phenotype (Rickard and Young 

2009, Mills 2012, Schmieder, Michel et al. 2012, Shapouri-Moghaddam, 

Mohammadian et al. 2018). It must be noted that these macrophages had not been 

stimulated, and LPS stimulation is known to alter macrophage phenotype. Future work 

will compare the effect of dexamethasone and 5αTHB on gene expression in LPS-

stimulated cells. Another limitation is that Metascape is limited by current knowledge 

of genes and of processes to which they relate. Therefore, it may be that many of the 

5αTHB-regulated genes have a role in a large suppression of inflammation through 

mechanisms which are entirely undiscovered. However, since this information is not 

known the genes will not cause an enrichment of inflammatory terms in the database, 
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and, consequently, this will not be reflected in the Metascape diagrams. Metascape can 

be used only to provide hints of what may be happening, to direct future investigation.  

In summary, the work described in this chapter suggest that 5αTHB acts largely 

through different mechanisms from dexamethasone in immune cells. The enrichment 

analysis of 5αTHB- regulated genes tentatively suggests the presence of a particular 

macrophage phenotype known as M2c. 5αTHB may, therefore, either selectively target 

these cells, or may induce a phenotypic change in macrophage cells into the reparative 

M2c subtype. This is, therefore, consistent with 5αTHB acting to suppress 

inflammation without detrimental effects to wound repair processes. The hypothesis 

that 5αTHB induces a phenotypic change in macrophages into the M2c phenotype will 

be investigated in future work. This could be achieved by testing surface marker 

expression typical of M2c cells in human peripheral blood macrophages after 5αTHB 

treatment, to confirm the change in phenotype. Although the work described in this 

chapter suggests that GR is probably not involved in mediating the effects of 5αTHB 

(since 5αTHB and dexamethasone largely regulated different genes) this is not 

conclusive and in the future the same microarray may be performed after GR 

knockdown, in order to provide conclusive evidence. Mediation of the effects of 

5αTHB through MR will be tested in the future. Indeed ‘Aldosterone synthesis and 

secretion’ was an enriched KEGG pathway in the list of all of the 5αTHB-regulated 

genes, although this was not present on the heat map of enriched KEGG pathways in 

genes which were only regulated by 5αTHB. This chapter provides further evidence 

that 5αTHB acts through different mechanisms to glucocorticoids and suggests 

alternative mechanisms by which 5αTHB may suppress inflammation. The hypotheses 
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generated in this chapter will be investigated in future work, perhaps leading to the 

development of a safer class of anti-inflammatory therapy. 
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6. Summary and Future Work 

 

 There has been a huge drive to find a selective modulator of GR activity over 

the past few years. This is in an attempt to better treat inflammatory diseases, since the 

current glucocorticoid treatments have side effects which restrict their use. The work 

described in this thesis was based on a glucocorticoid metabolite, 5αTHB, which is 

under investigation as a selective modulator of GR activity for topical anti-

inflammatory treatment. The anti-inflammatory effects of 5αTHB had been robustly 

demonstrated in vivo, on the skin and in a model of peritonitis (Yang, Nixon et al. 

2011, Gastaldello, Livingstone et al. 2017). However, the role of GR in mediating the 

effects of 5αTHB had not been established (Gastaldello, Livingstone et al. 2017). The 

work described in this thesis, therefore, investigated the mechanisms of action of 

5αTHB, as well as further exploring the potential of 5αTHB as a topical steroid by 

studying its effects to delay wound repair, a side effect which is a particular problem 

of topical glucocorticoid treatments. 

6.1. Is 5αTHB less detrimental to wound repair processes than current 

glucocorticoids? 

 The wound healing process involves many stages and cell types, and 

communication between the cells through release of growth factors and other 

mediators is crucial for coordinating the healing response (Eming, Brachvogel et al. 

2007, Barrientos, Stojadinovic et al. 2008). In this thesis an attempt to compare steroid 

effects on different aspects of the wound repair process was performed, by using a 

scratch wound assay to measure the migration of endothelial, dermal fibroblast, and 

keratinocyte cells. However neither 5αTHB nor dexamethasone effected migration of 
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any cell type. In the literature it has since been demonstrated that paracrine signalling 

plays an important role in coordinating the behaviour of these cells. In future work the 

indirect effects of 5αTHB on cell behaviour should therefore be considered. 

Angiogenesis is crucial for wound repair. Work described in this thesis using 

an aortic ring assay model provided further evidence that 5αTHB is a less potent 

inhibitor of angiogenesis than other topical glucocorticoids. It is therefore likely to be 

suitable for use as a safer topical anti-inflammatory treatment. This thesis expands on 

past work by showing that 5αTHB suppresses angiogenesis, at least in part, through 

direct effects on the vasculature. Furthermore, evidence was presented to suggest that 

5αTHB may act indirectly through macrophages to promote, rather than inhibit, 

angiogenesis and tissue repair. The mechanisms of how angiogenesis is suppressed by 

5αTHB were investigated by comparing steroid effects on gene expression in the 

mouse aorta. Glucocorticoids are reported to suppress angiogenesis mainly through 

effects on inflammatory signalling and on the ECM in the vessel basement membrane 

(Morgan, Keen et al. 2018). However unlike dexamethasone and hydrocortisone, 

5αTHB had no effect on gene transcript abundance relating to components of the 

basement membrane, and also had no effect on transcript abundance of the 

inflammatory signalling gene Cxcl5, which was one of the most strongly down-

regulated genes in a previous microarray investigating the effects of hydrocortisone in 

the aortic ring assay (Morgan, Keen et al. 2018).. Instead, 5αTHB tended to increase 

transcript levels of the monocyte chemoattractant gene Mcp1, and decreased transcript 

levels of the endothelial adhesion protein Pecam1. The gene expression analysis 

presented in this thesis, therefore, strongly suggested that 5αTHB was using different 
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mechanisms than dexamethasone and hydrocortisone to suppress angiogenesis in the 

mouse aorta.  

Pecam1, which was selectively downregulated by 5αTHB in this work, 

encodes a protein which is expressed on the surface of all vascular cells, including 

platelets, endothelial cells, monocytes, neutrophils, and some T cells (Ilan and Madri 

2003, Solowiej, Biswas et al. 2003, Woodfin, Voisin et al. 2007, Lertkiatmongkol, 

Liao et al. 2016). Pecam1 protein is highly enriched and one of the most abundant 

components at endothelial cell-cell junctions (Lertkiatmongkol, Liao et al. 2016), 

where it participates in cell-cell adhesion and the maintenance of junction integrity and 

permeability (Ilan and Madri 2003, Solowiej, Biswas et al. 2003). It is not clear from 

this current work which cell type was mainly responsible for the downregulation of 

Pecam1, and future work may investigate whether 5αTHB is able to decrease Pecam1 

expression specifically in endothelial cells. If so, then 5αTHB may be acting to 

suppress angiogenesis by interfering with the formation of new cell-cell contacts 

between endothelial cells. Another explanation could be that 5αTHB is inducing 

endothelial cells to undergo endothelial-to-mesenchymal transition (EndMT) since 

this is associated with a loss of Pecam1 as well as decreased angiogenesis 

(Miscianinov, Martello et al. 2018). EndMT causes endothelial cells to acquire a 

mesenchymal-like phenotype and undergo cytoskeletal rearrangement to develop a 

more stretched, fibroblast-like morphology (Miscianinov, Martello et al. 2018). Future 

work could address whether 5αTHB is able to induce EndMT in endothelial cells, both 

through direct and indirect effects. This could be achieved by observing the endothelial 

cells to assess whether they are developing a fibroblast-like morphology, after 

treatment with 5αTHB, as well as after culture with media taken from 5αTHB- treated 
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inflammatory cells. Endothelial cell gene expression could also be assessed: 

endothelial cells undergoing EndMT could be expected to have decreased expression 

of vascular endothelial cadherin (VE-Cadherin) and Pecam1, and increased expression 

of α-smooth muscle actin (αSMA), vimentin (Vim), N-cadherin, and ECM proteins 

such as collagen type 1 and 3 (Miscianinov, Martello et al. 2018).  

Angiogenesis is just one stage during wound repair. In future work the ultimate 

effect of 5αTHB on wound repair should be compared in vivo with the effects of 

hydrocortisone (topical glucocorticoid) and dexamethasone (GR agonist). A mouse 

model of skin wound healing is available in which wound vascularisation and rate of 

closure can be reproducibly measured (Miscianinov, Martello et al. 2018). This model 

is also reported to be excellent for studying the impact of EndMT on vessel growth 

during wound healing, so would also help to gain insight into whether 5αTHB is 

inducing this process (Miscianinov, Martello et al. 2018). If 5αTHB is found to be less 

detrimental than glucocorticoids to the wound repair process, then the mechanisms 

underpinning why can then be investigated further. 

6.2. Does 5αTHB work through GR? 

 Whereas 5αTHB was originally assumed to be an inert metabolite of 

corticosterone, it was later discovered to possess biological effects (McInnes, Kenyon 

et al. 2004). Various early model systems suggested, as would naturally be assumed, 

that its effects were mediated through GR (McInnes, Kenyon et al. 2004). However 

more recent experimental results have been contradictory. In the most recent work in 

vivo, RU486 attenuated the corticosterone-mediated suppression of inflammatory 

swelling in a mouse ear model of dermatitis, but did not block the effect of 5αTHB 
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(Gastaldello, Livingstone et al. 2017). This thesis presents new evidence to support the 

more recent work that suggests 5αTHB does not act through GR. In this work 5αTHB 

only minimally bound the isolated human GR, did not stimulate GR translocation into 

the nucleus, and did not cause changes in GR interaction with co-regulator peptides.  

From the work described in chapter 5, 5αTHB predominantly regulated a 

different set of genes than dexamethasone in human macrophages. This provided 

evidence that 5αTHB has a distinct profile of biological action compared with 

conventional glucocorticoids, supporting the concept that it may not work through GR. 

There is also evidence from the aortic ring assay model of angiogenesis to suggest that 

GR was not involved for the effects of 5αTHB. The decrease in transcript abundance 

of Pecam1 by 5αTHB in aortic rings was not antagonised by RU486, and although 

5αTHB increased expression of Per1 this was to a lesser extent than dexamethasone 

and hydrocortisone and was not prevented by RU486. Studies of suppression of vessel 

growth suggested that RU486 also did not antagonise the dose-dependent effect of 

5αTHB whereas it suppressed the effect of dexamethasone, although caution should 

be taken when interpreting this data due to a lack of power in the experiments and the 

fact that RU486 alone suppressed vessel growth. Further work is needed to gain a 

definitive conclusion of whether GR is required for the effects of 5αTHB in the aortic 

ring assay model, and this should be addressed in future work. This could not be 

achieved using GR knockout mice since they die after birth due to respiratory failure 

(Cole, Blendy et al. 1995) however mice heterozygous for GR could be used in which 

GR is expressed to a lesser extent than wild type animals. A conditional knockout 

mouse model could also be generated in which GR is specifically disrupted in 

endothelial cells. In previous work by Logie et al., dexamethasone inhibited tube-like 
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structure formation by cultured endothelial cells and this was blocked by RU486, 

demonstrating that glucocorticoid-induced suppression of angiogenesis is at least in 

part mediated through effects on GR in endothelial cells (Logie, Ali et al. 2010). 

Another approach could be to knockdown GR in the aortic ring assay, which can be 

achieved by transfecting the rings with siRNA (Baker, Robinson et al. 2012).  

6.3. How does 5αTHB work? 

A microarray of steroid effects in human peripheral blood-derived 

macrophages in chapter 5 suggested that 5αTHB mainly acts through different 

mechanisms from the selective GR ligand dexamethasone, but did cause differential 

expression of Per1, Fkbp51, and Gilz, which are regulated through GRE. Similarly, in 

chapter 3, 5αTHB increased transcripts of Per1 in the mouse aorta, which was not 

antagonised by RU486. Since MR is also able to bind GRE, and since endogenous 

glucocorticoids are also able to bind MR, this seems the next most logical receptor to 

investigate for mediation of 5αTHB effects. This could be achieved in future work by 

assessing antagonism with the MR antagonist spironolactone. Alternatively, model 

systems could be used to investigate the effects of 5αTHB on MR translocation, such 

as the nuclear/cytoplasmic separation model. Initial results of experiments addressing 

the influence of 5αTHB on recruitment of co-regulator peptides at MR, are promising. 

However, MR is known to promote inflammation in macrophages (Bene, Alcaide et 

al. 2014). Therefore if 5αTHB is discovered to work through MR, further 

investigations of the downstream mechanisms will be required. Interestingly, 

differential regulation of Per1 and Fkbp51 has also been linked to MR-GR 

heterodimers, so mediation of the effect of 5αTHB through these heterodimers may 
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also be an avenue to explore in the future (Petrovich, Asher et al. 2014, Mifsud and 

Reul 2016). 

A functional analysis of the genes which were differentially expressed by 

5αTHB in the microarray, found enrichment of terms associated with a specific 

macrophage phenotype known as M2c. Two alternative hypotheses that may arise 

from this work are that 5αTHB may (a) specifically target this M2c subtype, or (b) 

induce a phenotypic change in macrophages into this M2c subtype. Future work should 

address these hypotheses and this could be achieved by staining 5αTHB-treated 

macrophages for Arg-1 in mouse, or MMR/CD206, TLR-1, or TLR-8 in human. 

Alternatively gene expression of IL10, TGFβ, CCL16, CCL18, and CXC13 could be 

tested which can be expected to increase in macrophages of the M2c phenotype 

(Shapouri-Moghaddam, Mohammadian et al. 2018). It must be noted that the 

macrophages in chapter 5 had not been stimulated, and the microarray should be 

performed in LPS-stimulated cells in future work for comparison. Furthermore, the 

macrophage subtypes (M1, M2, M2c) have been defined in vitro using well-defined 

stimuli. Realistically this is an oversimplified concept of the in vivo situation where 

macrophages are likely to be exposed to a combination of stimuli (Shapouri-

Moghaddam, Mohammadian et al. 2018) and hence switch between one phenotype 

and another, as well as possessing intermediate phenotypes (Chazaud 2014, Shapouri-

Moghaddam, Mohammadian et al. 2018). The effect of steroids on M2c polarisation 

could therefore also be tested by immunostaining for M2c macrophages on tissue taken 

from in vivo models.   

One of the enriched pathways related to the M2c macrophage phenotype in 

5αTHB regulated genes was the TGFβ pathway. Endothelial to mesenchymal 
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transition (EndMT) of endothelial cells is known to be dependent on the TGFβ 

pathway (Miscianinov, Martello et al. 2018). Since chapter 3 suggested that 5αTHB 

may be causing EndMT of endothelial cells in aortic rings, it may be possible that 

5αTHB causes M2c polarisation of inflammatory cells, which then indirectly cause 

EndMT of endothelial cells through release of TGFβ. 5αTHB effects on gene 

expression relating to TGFβ signalling in endothelial cells and inflammatory cells 

could therefore be investigated in future work. TGFβ signals by binding to a 

heteromeric receptor complex formed by the TGFβ type I receptor (Tgfbr1) and the 

TGFβ type 2 receptor (Tgfbr2). This leads to activation of Smad2 and Smad3 proteins, 

which translocate to the nucleus and mediate TGFβ signalling by regulating 

transcription of target genes (Gratchev 2017, Miscianinov, Martello et al. 2018). In the 

microarray performed in hMDMs (described in chapter 5) 5αTHB caused upregulation 

of Smad7 and Tgif1 genes which are both inhibitors of TGFβ signalling (Gratchev 

2017)( https://www.ncbi.nlm.nih.gov/gene/7050). Therefore, genes relating to TGFβ 

signalling which could be measured include Tgif1, Tgfbr1, Tgfbr2, Smad2, Smad3, and 

Smad 7. 

 

6.4. Summary 

 In summary this thesis has shown that 5αTHB is less angiostatic than the topical 

glucocorticoid hydrocortisone and therefore is a promising candidate for a safer topical 

anti-inflammatory therapy. The thesis gives further evidence that 5αTHB acts through 

distinct mechanisms to glucocorticoids, likely independent of GR, and provides 

hypotheses for further exploration. Identification of the mechanisms used by 5αTHB 

https://www.ncbi.nlm.nih.gov/gene/7050
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in future work may lead to the development of a whole new prototype of anti-

inflammatory drug which could also be used systemically. This would allow safer 

treatment of patients requiring long term anti-inflammatory therapy, preventing much 

suffering and cost associated with current side effects. 
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