
An Investigation of Supervised Learningin Genetic Programming
Chris Gathercole

T
H

E

U N I V E R
S

I T
Y

O
F

E
D I N B U

R
G

H

Ph.D.University of Edinburgh1998

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Edinburgh Research Archive

https://core.ac.uk/display/429724765?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

AbstractThis thesis is an investigation into Supervised Learning (SL) in Genetic Program-ming (GP). With its
exible tree-structured representation, GP is a type of GeneticAlgorithm, using the Darwinian idea of natural selection and genetic recombination,evolving populations of solutions over many generations to solve problems. SL is acommon approach in Machine Learning where the problem is presented as a set ofexamples. A good or �t solution is one which can successfully deal with all of theexamples.In common with most Machine Learning approaches, GP has been used to solve manytrivial problems. When applied to larger and more complex problems, however, severaldi�culties become apparent. When focusing on the basic features of GP, this thesishighlights the immense size of the GP search space, and describes an approach tomeasure this space. A stupendously
exible but frustratingly useless representation,Anarchically Automatically De�ned Functions, is described. Some di�culties associ-ated with the normal use of the GP operator Crossover (perhaps the most commonmethod of combining GP trees to produce new trees) are demonstrated in the simpleMAX problem. Crossover can lead to irreversible sub-optimal GP performance whenused in combination with a restriction on tree size. There is a brief study of tournamentselection which is a common method of selecting �t individuals from a GP populationto act as parents in the construction of the next generation.The main contributions of this thesis however are two approaches for avoiding the�tness evaluation bottleneck resulting from the use of SL in GP. To establish thecapability of a GP individual using SL, it must be tested or evaluated against eachexample in the set of training examples. Given that there can be a large set of train-ing examples, a large population of individuals, and a large number of generations,before good solutions emerge, a very large number of evaluations must be carried out,often many tens of millions. This is by far the most time-consuming stage of the GPalgorithm. Limited Error Fitness (LEF) and Dynamic Subset Selection (DSS) bothreduce the number of evaluations needed by GP to successfully produce good solutions,adaptively using the capabilities of the current generation of individuals to guide theevaluation of the next generation. LEF curtails the �tness evaluation of an individualafter it exceeds an error limit, whereas DSS picks out a subset of examples from thetraining set for each generation.Whilst LEF allows GP to solve the comparatively small but di�cult Boolean Even Nparity problem for large N without the use of a more powerful representation such asAutomatically De�ned Functions, DSS in particular has been successful in improvingthe performance of GP across two large classi�cation problems, allowing the use ofsmaller population sizes, many fewer and faster evaluations, and has more reliablyproduced as good or better solutions than GP on its own.The thesis ends with an assertion that smaller populations evolving over many gener-ations can perform more consistently and produce better results than the `established'approach of using large populations over few generations.
ii

AcknowledgementsI'd like to take this opportunity to thank the many people who have assisted, coerced,guided, bullied, ridiculed, encouraged, or otherwise contributed to my completing thisthesis. Many thanks to my supervisor, Dr. Peter Ross, for knowing the answers to manyquestions. Many thanks to Dave Corne for lending an ear, and likewise to his better-groomed replacement, Emma Hart. Many thanks to the attendees and organisers of theGP96 and GP97 conferences for many inspiring conversations and talks, and especiallyto Bill Langdon for his many helpful comments. Many thanks to the denizens of E17and E19 for the endlessly diverting chats. Many thanks to many other people. Andlast but not least, many thanks to SERC, who became EPSRC, for funding nearly thewhole of my PhD with grant number 93314680.

iii

DeclarationI hereby declare that I composed this thesis entirely myself and that it describes myown research.

C. S. GathercoleEdinburghMarch 22, 1998

iv

Contents
Abstract iiAcknowledgements iiiDeclaration ivList of Figures xiList of Tables xiiI Overview of Genetic Programming 11 Introduction 21.1 Why Look At GP . 21.2 Why Read this Thesis . 31.3 What is in this thesis . 31.4 Search Algorithms . 41.5 GP: The What and the How . 111.6 Basics of Supervised Learning . 182 Rami�cations of a Large and Messy Problem 202.1 Why Choose the Thyroid Problem . 212.2 Starting Point . 232.3 First Impressions . 252.4 Early Snags and Decisions . 252.5 Longer Term Snags, Workarounds, and Hindsight 34v

2.6 Applying GP to a problem . 372.7 Summary . 42II A Closer Look At Genetic Programming 433 GP Tree Representation 443.1 The standard GP tree . 443.2 Counting Trees . 463.3 Extending the Function and Terminal Sets 523.4 Summary . 584 GP Tree Recombination and Selection 594.1 Crossover and the MAX problem . 604.1.1 Why Restrict Tree Size . 614.1.2 The MAX Problem . 664.1.3 Crossover in GP . 774.1.4 Experiment Details . 784.1.5 Results . 804.1.6 Analysis of Crossover . 904.1.7 Discussion of MAX problem . 924.1.8 Summary . 964.2 Tournament Selection . 984.2.1 Various Selection Methods . 984.2.2 Some E�ects of Tournament Selection 1014.3 Discussion . 106III Genetic Programming and Supervised Learning 1085 Making use of the Training Set in GP 1095.1 Training Sets in Machine Learning . 1105.2 Selecting Training and Test Sets . 113vi

5.3 Approaches for Evolutionary Algorithms 1145.4 Approaches for GP in this thesis . 1166 Dynamic Subset Selection 1176.1 Subset Selection Methods . 1186.2 Historical Subset Selection (HSS) - the algorithm 1186.3 Dynamic Subset Selection (DSS) - the algorithm 1196.4 Random Subset Selection (RSS) - the algorithm 1226.5 GP Details . 1236.6 The `Large and Messy' Thyroid Problem 1236.7 Thyroid Results . 1266.8 A Smaller Problem: TicTacToe Endgames 1326.9 TicTacToe Results . 1336.10 A quick summary of results from other runs 1336.11 Smaller Populations over More Generations 1346.12 DSS Discussion . 1357 Limited Error Fitness 1397.1 LEF - the algorithm . 1407.2 GP Details . 1457.3 The Even N Parity problem . 1467.4 Results . 1477.5 LEF Discussion . 1558 Small Populations, Many Generations 1608.1 Solving the TicTacToe problem with a small population 1618.1.1 GP parameters . 1618.1.2 LEF parameters . 1638.1.3 DSS parameters . 1658.1.4 Comparison of GP, GP+LEF, and GP+DSS, on TicTacToe . . . 1658.2 Solving the Thyroid problem with a small population 1678.3 Discussion . 169vii

IV Summary and Conclusion 1729 Further Work 17310 Summary 17611 Conclusion 179Glossary 182Bibliography 184

viii

List of Figures
1.1 Linear String; tree . 151.2 LISP-like Program; tree . 151.3 Algebraic Expression; GP tree . 152.1 A `Large and Messy' Problem . 242.2 Easy Thyroid subproblem . 293.1 Structure of IFLTE subtree { (If Less Than Or Equal to), arity=4 . . . 453.2 Example of an ADF tree . 533.3 example AADF tree . 564.1 Spike and Decay with Parsimony . 644.2 Optimal Tree for MAX-depth-4-f+gf1g 684.3 Optimal Tree for MAX-depth-4-f*,+gf1g 684.4 Optimal Tree for MAX-depth-4-f*,+gf0.5g 684.5 Optimal Tree for MAX-depth-5-f*,+gf0.25g 684.6 Optimal Tree for MAX-depth-4-f*,/gf0.9g 694.7 An optimal tree for MAX-nodes-81-f*,+gf0.25g 704.8 Avg gens needed by MAX-depth-D runs using Crossover 814.9 StdDev of gens needed by MAX-depth-D runs using Crossover 814.10 Failure of MAX-depth-D runs using Crossover 824.11 Failure of MAX-depth-D runs using Crossover & Mutations 824.12 Sub-Optimal tree for MAX-depth-5-f*,+gf0.5g 834.13 Sub-Optimal tree for MAX-depth-5-f*,/gf0.9g 834.14 Sub-Optimal tree for MAX-nodes-81-f*,+gf0.25g 84ix

4.15 Gens needed for MAX-nodes-N-f*,+gf0.25g with Crossover 864.16 Gens needed for MAX-nodes-N-f*,+gf0.5g with Crossover 864.17 Gens needed for MAX-nodes-N-f*,+gf1g with Crossover 864.18 Gens needed for MAX-nodes-N-f*,+gf0.25g with Crossover & Mutations . 874.19 Gens needed for MAX-nodes-N-f*,+gf0.5g with Crossover & Mutations 874.20 Gens needed for MAX-nodes-N-f*,+gf1g with Crossover & Mutations . . 874.21 Success of MAX-nodes-N-f*,+gf0.25g runs with Crossover 884.22 Success of MAX-nodes-N-f*,+gf0.5g runs with Crossover 884.23 Success of MAX-nodes-N-f*,+gf1g runs with Crossover 884.24 Success of MAX-nodes-N-f*,+gf0.25g runs with Crossover & Mutations . 894.25 Success of MAX-nodes-N-f*,+gf0.5g runs with Crossover & Mutations . . 894.26 Success of MAX-nodes-N-f*,+gf1g runs with Crossover & Mutations . . . 894.27 Average Parent Selection Frequency . 1034.28 Average Distribution of Repeated Selections 1034.29 Average Likelihood of Non-Selection . 1044.30 Average Number of Unchecked Parents 1046.1 Simple GP tree for class 1 and class 2 cases 1256.2 GP tree for class 3 cases . 1276.3 Errors made on Thyroid test set by DSS & RSS 1286.4 Errors made on Thyroid test set by GP & GP+HSS 1286.5 Errors made on Thyroid training set by GP & GP+DSS 1296.6 Errors made on Thyroid training set by GP & GP+DSS 1306.7 Dynamics of DSS: showing the varying di�culty and age weights 1307.1 Best-of-gen Fitness of GP on Even N Parity, N=6, Pop=400 1487.2 Best-of-gen Fitness of GP+LEF on Even N Parity, N=6, Pop=400 . . . 1487.3 Best-of-gen Bushiness of GP on Even N Parity, N=6, Pop=400 1497.4 Best-of-gen Bushiness of GP+LEF on Even N Parity, N=6, Pop=400 . . 1497.5 Fitness Std Dev of standard GP on Even N Parity, N=6, Pop=400 . . . 1507.6 Fitness Std Dev of GP+LEF on Even N Parity, N=6, Pop=400 150x

7.7 Error Limit of GP+LEF on Even N Parity, N=6, Pop=400 1517.8 Evals per Gen of GP+LEF on Even N Parity, N=6, Pop=400 151

xi

List of Tables
3.1 The number of possible GP trees with N nodes 514.1 Details of the optimal trees for MAX-nodes-N-f*,+gf0.25g 744.2 Details of the optimal trees for MAX-nodes-N-f*,+gf0.5g 754.3 Details of the optimal trees for MAX-nodes-N-f*,+gf1g 766.1 Distribution of Classes in Thyroid Data 1196.2 Best results by GP (and NN) on Thyroid Problem 1316.3 Best results by GP on TicTacToe problem 1336.4 Further Thyroid Training and Test Results 1357.1 Summary of results from runs on the Even N Parity problem 1528.1 Looking for a good Population Size for the TicTacToe problem 1638.2 Looking for a good Tournament Size for the TicTacToe problem 1638.3 Looking for good LEF Pause Parameters on TicTacToe problem 1648.4 Comparison of GP, GP+DSS, GP+LEF on TicTacToe Problem 1668.5 Results for GP and GP+DSS on Thyroid Problem 168

xii

Part IOverviewof Genetic Programming

1

Chapter 1Introduction
1.1 Why Look At GPGenetic Programming is an evolutionary-based search technique which can be ap-plied to many di�erent types of problems, and it has had some notable successes.Gruau has developed a method for encoding `growth' instructions for Neural Net-works, evolving both the structure and weights of networks, [Gruau et al. 96]. Howleyhas used GP to \discover near optimal control laws for the minimum time reorientationfor a spacecraft", [Howley 96]. Garces-Perez et al have used GP to produce \superior"results in the facility layout problem, [Garces-Perez et al. 96]. Walsh and Ryan haveused GP to develop a technique for the \Autoparallelisation of Sequential Programs",[Walsh & Ryan 96].As can be seen in these examples, GP is a
exible, widely applicable algorithm. It issimple, easy to explain and understand, with a huge potential for solving large andcomplex problems beyond the ken of the programmer. The fact that GP does not oftenachieve this potential gives rise to an intriguing area of study.A large part of GP's appeal stems from its simplicity. Using its basic but
exible tree-structured representation, GP is capable of solving some di�cult problems with littleinput or external knowledge. However, it soon becomes clear that GP can be madefaster, more e�cient, and more e�ective, by relaxing the simplicity requirement andinstead looking at how to allow GP to take more advantage of the problem structure,or properties of its own evolving population of solutions. In particular, in Supervised2

CHAPTER 1. INTRODUCTION 3Learning problems, the speed and capability of GP is highly dependent on the size andmake up of the training data, i.e. the way the problems are presented to GP as a setof examples.1.2 Why Read this ThesisThis thesis is not aimed at convincing the ignorant that GP is best in certain situations.Instead it dodges that issue in favour of looking at ways of improving standard GP andthe use of GP in the particular area of Supervised Learning classi�cation problems.GP has many obvious but circumventable weaknesses, most notable among these areits rapacious demands for computer memory and CPU time. There is lots of scope forimprovement. This thesis highlights some weaknesses of GP with Supervised Learning,and describes some procedures which can improve GP's performance. In e�ect, thisthesis adds some utilities to a tool-box which can be used to repair GP when it doesn'twork well, or needs a boost.1.3 What is in this thesisThis chapter introduces GP and the entire thesis. It looks at GP from two view-points: how it �ts in with other search algorithms, in Section 1.4, and the mechanicsof how GP works, in Section 1.5. Section 1.6 looks at the idea of Supervised Learning.Chapter 2 takes a look at some of the lessons learned whilst using GP, highlightingseveral di�culties that could have been avoided, and some of which are dealt with inthis thesis.Chapter 3 looks at some aspects of the tree-based representation in GP, including thehuge size of the search space, and Automatically De�ned Functions (ADF) where GPcan evolve its own representation. Chapter 4 looks at some aspects of GP operators,including restrictions on tree size, the adverse interaction of Crossover (a standard GPoperator) and restricted tree size, and the use of Tournament Selection for choosingparents from the population.Chapters 5 to 8 contain most of the research done for this thesis, looking at a variety of

CHAPTER 1. INTRODUCTION 4methods for dealing with the training set in supervised learning, taking advantage ofthe current abilities of the GP population to reduce the computational e�ort necessaryto �nd good solutions. The two main methods are Dynamic Subset Selection (DSS),where a di�erent subset of the training set is selected for each generation of GP, andLimited Error Fitness (LEF), where each individual in the population is only allowedto make a limited number of errors before its �tness evaluation is curtailed. Chapter 8concentrates on the bene�cial use of much smaller population sizes to tackle the sameproblems as those in earlier chapters, needing many more generations but requiringless computational e�ort.Chapter 9 describes what could or should be done to follow up the work in this thesis.There is a summary in Chapter 10, and a conclusion in Chapter 11. Following theconcluding chapter there is a Glossary of many of the terms and acronyms used in thisthesis, including a page reference to where each is �rst mentioned or de�ned in thethesis.But �rst, looking at GP in the context of other computer-based search algorithms...1.4 Search AlgorithmsFor a given problem, a computer-based search algorithm may be needed to �nd goodor optimal solutions. Problem solving is equivalent to searching for solutions. Theproblem may be beyond the capabilities of current knowledge of direct, calculus-basedsolutions, or perhaps the problem owner is simply lazy.Choosing or designing a representation, along with a method for moving from onesolution to another or a description of the interrelationships between solutions, de�nesa Search Space, which is simply the collection of all possible `reachable' solutions to thegiven problem. To be sure, the vast majority of possible solutions are likely to be verybad ones. But, for a problem to be solvable, the representation has to be su�cientlypowerful that the search space contains at least one good or acceptable solution, andit must be possible to `reach' such solutions.A measure of the merit of each particular solution has also to be codi�ed in some

CHAPTER 1. INTRODUCTION 5way. The computer-based search algorithm has to be given a method for identifyingacceptable solutions when they are discovered by the search process, i.e. a measureof how good or `�t' a particular solution is relative to other solutions, or perhaps anabsolute measure of the �tness of a solution. By the same token, there should be someway of identifying unacceptable solutions.A search algorithm can make use of earlier results to guide its search through thespace. The simplest two, Enumeration and Random search, shown below, use nofeedback from earlier search results. Alpha-Beta pruning allows Enumeration to useearlier results to shorten the search. Hill Climbing and Simulated Annealing keepa record of the current best individual and use it as guide to further search. Morecomplex approaches, such as TABU search, and Evolutionary Algorithms such as GP,maintain a record of several individuals to help guide their later searches.Without FeedbackThe most straightforward approach for �nding an optimal solution is to enumerate allpossible solutions to a problem, i.e. check every possible solution in the search space,and pick the best one. If the problem is to �nd the largest of a small set of numbers,the Enumeration approach is perfectly satisfactory but, alas, it should be obvious thatthis isn't going to be the approach of choice for most other problems. If the searchspace is �nite, the Enumeration approach will be able to �nd the optimal solution,but it will only know which it is when it has completed the enumeration. All but thesimplest of problems have in�nite, or �nite but extremely large search spaces. It willbe either impractical (i.e. it will take too long) or impossible (i.e. it will take forever) tosearch them in their entirety. With GP, the search space is often �nite but enormous,increasing massively in size with every increase in permitted tree size (see Section 3.2).Random search is perhaps the simplest option for searching large search spaces. Ran-dom solutions are generated and tested until a su�ciently good one is found or asu�ciently large sample of the search space has been made. There is no guaranteethat this approach will �nd an optimal solution unless it is allowed to run for an in�n-ite time. It is highly susceptible to the content of the search space. If there are veryfew non-bad solutions, Random search is unlikely to �nd any useful solutions. However

CHAPTER 1. INTRODUCTION 6it can be used to form an impression of the distribution of solutions throughout thespace, giving an idea of the possible e�ectiveness of searching via other methods.With FeedbackOne common use of the Enumeration approach is in game-playing programs. Thecomputer looks ahead in the game tree at all possible moves and their consequencesand picks the best move, i.e. the one least likely to lead to a loss, or most likely tolead to a win. The addition of Alpha-Beta pruning is required to allow this approachto work on any but the most trivial of games. In this specialised problem area, Alpha-Beta pruning can reduce the size of the search space by allowing certain regions to beignored on the basis that they can't possibly contain acceptable solutions, using theinformation gained in an earlier part of the search. Even with Alpha-Beta pruning, itis not possible to exhaustively search the entire game tree for chess. The addition ofsome human expert chess knowledge encoded in the program allows the search to becurtailed still further with some educated guesswork.The Enumeration approach with Alpha-Beta pruning and some expert chess knowledge,running on a very fast computer with dedicated chess circuitry, known as Deep Blue,[Tan 95, Hsu et al. 95], has successfully taken on, drawn with, and beaten the humanworld chess champion, Gary Kasparov (considered to be the best ever player in thehistory of chess) over several competitive games, though it lost the tournament overall.The chess world awaited with interest the next incarnation of Deep Blue (Deeper Blue)with essentially the same algorithm but even faster hardware, which it was generallyacknowledged would overcome even Kasparov to become world chess champion (unlessthe powers-that-be in the World Chess Organisations got their act together in time tochange the rules to prevent non-humans from winning the title). Sure enough, DeeperBlue was better and did cause Kasparov all sorts of problems, even going on to win thecompetition on points, winning several games along the way. Interestingly, the maindi�culty Kasparov had was not that Deeper Blue was playing especially wonderfulchess (it wasn't bad, though), but that Deeper Blue was deciding on its moves soquickly that Kasparov wasn't able to much thinking during his opponent's clock time,and consequently was put under a great deal of pressure leading to numerous major

CHAPTER 1. INTRODUCTION 7un-Kasparov-like mistakes.Hill Climbing, a form of neighbourhood search, is perhaps the simplest modi�cation torandom search which makes use of previous search results to guide its current search.An initial random solution is generated and tested. Instead of then generating acompletely new solution, as would be the case with purely random search, one or moreclose variants of the current solution are generated and tested. The best variant (orperhaps an equally good variant, if none are actually better) then becomes the focusof the search, and one or more variants are generated from this new solution, andtested, and so on. If after several iterations no improvement is found, the search isconsidered to have ended, and the current solution is the best one found during theentire search. This method can be very fast at �nding the optimal solution in certainsearch spaces. Some modi�cations to Hill Climbing, described below, have producedbenchmark solutions (i.e. the best solutions found so far by any method) to some quitedi�cult problems, [Ross & Corne 95]. However, in its simple form described here, HillClimbing can quickly become trapped on sub-optimal hills, i.e. it reaches a region inthe search space where all variants of the current focus solution are worse, but thefocus solution is not the optimal solution. Another way of looking at this situation isthat there is no way, using the idea of close variants, to move from the current solutionto the optimal solution, where each variant is no worse than the last.Simulated Annealing (SA), [Press et al. 92], is an approach which attempts to over-come the di�culty just mentioned for Hill Climbing. As with Hill Climbing, a randomsolution is generated and tested. Rather than only choosing as-good or better variantsto be the next focus, SA can accept worse variants with some probability. The probab-ility and (in some versions of SA) the randomness of the variations change with time,so that SA becomes less likely to accept worse variants after the algorithm has beenrunning for a while. Eventually the size of the variations reaches zero, and the search isconsidered to have ended at the current focus solution. This more complex approach ismuch less likely to `get stuck' on sub-optimal hills than simple Hill Climbing, and hasbeen used by O'Reilly, [O'Reilly & Oppacher 94a], to match GP on several problems,using the same tree-based GP representation, described below in Section 1.5.Hill Climbing (HC) can be made more
exible by removing the requirement that the

CHAPTER 1. INTRODUCTION 8best variant becomes the new focus solution. With Stochastic Hill Climbing (SHC),a better variant becomes the new focus with a certain probability, and it is evenpossible that a worse variant might become the focus solution with a certain (smaller)probability, as with SA. This allows the algorithm to `travel' across the search spacewithout necessarily getting `trapped' on small sub-optimal hills.A comparison of GP, Stochastic Iterated Hill Climbing (SIHC, described below), andSA, in [O'Reilly & Oppacher 96], shows that the simple hill climbing algorithms workwell with the tree-based GP representation and powerful mutation operators. Hybridsof GP and SIHC and SA can improve upon standard GP. A comparison of GeneticAlgorithms (GA, described below), SA, and SHC on several real timetabling problems,using equivalent operators, [Ross & Corne 95], shows that SA and SHC can outperformGA.With Feedback and MemoryTABU search is a metaheuristic which can be added to algorithms such as Hill Climb-ing. One weakness of Stochastic Hill Climbing is that the search might traverse thesame part of the search space repeatedly, wastefully re-visiting and re-testing solu-tions. This is especially true when reaching the top of a `hill' in the search space; thesearch has nowhere to go except back upon its earlier route. With TABU, a list is keptof forbidden moves. When the underlying search algorithm makes an allowed move,that move or something abstracted from it is added to the TABU list. The TABUlist is normally of �xed length and so loses a move from its end which then becomesas acceptable move again. The list of forbidden moves helps stop the Hill Climbingsearch from getting stuck on sub-optimal hills, enabling it to explore other regions ofthe search space.Although not really a modi�cation of the Hill Climbing algorithm, Iterated Hill Climb-ing is nonetheless a powerful approach. As its name suggests, it consists of repeatedruns of the Hill Climbing algorithm, starting from a di�erent random solution eachtime, likewise Stochastic Iterated Hill Climbing (SIHC). This is another way of avoid-ing getting stuck on sub-optimal hills. The best solution can then be taken from severalindependent searches. As already mentioned, Hill Climbing is very quick. Iterated Hill

CHAPTER 1. INTRODUCTION 9Climbing can carry out a reasonable search of the search space in much less time thanthat required by the Evolutionary Algorithms described below.Take the simple Stochastic Iterated Hill Climbing algorithm, and expand its one focussolution into a collection of several focus solutions, called a population. Test all theindividuals in the population, using a �tness function, which assigns a score to eachindividual based on how well it solves the problem in hand. Then construct somevariants of the better solutions in the population, test them, and insert them into thepopulation by replacing some of the existing worse solutions. What you now have isa simple model of evolution through Natural Selection (or unnatural selection, if youprefer). Better solutions are likely to `survive' (i.e. remain in the population) longenough to reproduce (i.e. have variants made), and worse solutions are likely to be`killed o�' (i.e. replaced by new solutions). This approach is known generally as anEvolutionary Algorithm (EA).The `child' solutions, i.e. variants of the existing `parent' solutions, can be producedin several ways. A simple random variation of the parent can be made, known asMutation, i.e. a copy of the parent with small random changes. Copies of two or moreparent solutions can be combined in a simple way known generally as Crossover toproduce one or more child solutions which contain a mixture of features copied fromthe parent solutions, though this term covers many di�erent types of combination.The solutions in the population can be regarded as a very simplistic form of geneticmaterial, analogous to chromosomes.EAs come in many di�erent
avours. Evolutionary Programming (EP),[Fogel 92, Fogel 93, Fogel 95, Fogel & Fogel 96] typically use Mutation on repres-entations of Finite State Machines. Evolution Strategie (ES), [B�ack et al. 91,Ho�meister & Back 91], originally only used Mutation, but now also incorporate Cross-over. ES can perhaps be characterised by the use of real-value encodings and `strategyvectors' which guide the way Mutation is carried out on each individual. Evolution-ary Algorithms which make some use of Crossover are commonly known as GeneticAlgorithms (GA), [Holland 75, Goldberg 89a]. GA and ES were developed more orless simultaneously, though the proponents of ES would insist that GA and ES aredistinctly di�erent.

CHAPTER 1. INTRODUCTION 10A GA is essentially a simple model of the theory of Darwinian evolution by NaturalSelection and Genetic Recombination. The theory was proposed by Charles Darwin[Darwin 59] and Alfred Russell Wallace (whose surprise letter to Darwin detailing hisown thoughts on evolution, arrived at independently, kick-started Darwin's publicationof `Origin of the Species' and the ensuing shake-up of the Creationist orthodoxy of thetime) during the last century. There is little sensible argument against its descriptiveand explanatory power of what occurs in the natural world. In its much simpli�ed (andmuch more recent) form as a GA, for computer-based search, the model of evolutionperforms very well. Crossover, sometimes considered the principle distinguishing fea-ture between a GA and other search strategies, seems to be a help in some situationsand a hindrance in others.The typical representation used in a GA is linear. This stems from Holland's earlyattempts to duplicate natural genetic evolution by mimicking the linear chromosomesfound in natural DNA. Linear solutions are simple to work with, and can be applied tomany di�erent problems. They are easy to code if the solutions are all of a �xed length,with simple ways of modifying or recombining solutions together. However, not allproblems are amenable to this �xed-size representation, where the size is set before thesearch begins. In many cases the size of an acceptable solution is not known in advance.A more
exible approach known as Messy GAs, [Goldberg 89b, Goldberg et al. 93],allows variable length linear solutions, though requires di�erent methods of mutatingand recombining solutions. The increased expressive power of the Messy GA adds tothe algorithm's complexity.An alternative approach is to drop the linear format, instead adopting a tree-structuredrepresentation. This is a natural variation of the standard GA. There are many obviousand straightforward ways of mutating and recombining solutions of this form, describedbelow, such as the exchange of subtrees. Genetic Programming (GP) is a GA usingthis particular tree-based representation.The term `Genetic Programming' is a little misleading, implying that the algorithm'ssole use is to generate programs, although that may have been the original aim duringits development. There are many approaches to the evolution of computer programs in-

CHAPTER 1. INTRODUCTION 11cluding tree-based GA (aka GP), [Kinnear Jr. 93, Langdon 95, Crosbie & Spa�ord 96,Brave 96], machine-code GA, [Nordin & Banzhaf 95], and Arti�cial Life methods,[Ray 91, Thearling & Ray 94], etc. Unfortunately the term `Genetic Programming'is used to refer to both tree-based GAs and the evolutionary generation of programs.This thesis concentrates on the aspect of GP which is a tree-based GA.1.5 GP: The What and the HowPerhaps the best introduction to GP can be found in \Genetic Programming: onthe Programming of Computers by means of Natural Selection", [Koza 92]. Whilstnot the �rst or only proponent of the automatic generation of programs by com-puters, (Cramer, amongst others, did some earlier work, [Cramer 85]), Koza's bookhelped popularise the �eld. A large and weighty, but easy to read, tome, it de-scribes and delves into many aspects of GP. His next GP book, [Koza 94], similarlyweighty, takes GP a bit further, expanding on some of the themes in the previousbook, notably Automatically De�ned Functions (described in this thesis in Section3.3). The collection \Advances in Genetic Programming", [Kinnear 94], provides avery good snapshot of the wide range of GP-related research, as does the more re-cent \Advances in Genetic Programming 2", [Angeline & Kinnear, Jr. 96], which alsoincludes Langdon's extensive GP bibliography, [Langdon & Koza 95, Langdon 96]. An-other good collection of GP research can be found in the GP-96 conference proceedings,[Koza et al. 96], and GP-97 proceedings, [Koza et al. 97]. Since GP is just a simple,natural variation of a GA, there are any number of relevant GA-related books and pa-pers available. The classic, seminal GA book is \Adaptation in Natural and Arti�cialSystems" by Holland, [Holland 75]. There are proceedings of numerous annual and bi-annual conferences which have focussed on aspects of Evolutionary Computation suchas \International Conference on Genetic Algorithms", ICGA, \Parallel Problem Solv-ing from Nature", PPSN, \IEEE Conference on Evolutionary Computation", \GeneticAlgorithms in Engineering Systems: Innovations and Applications", Galesia.GP can be considered to have two main components:

CHAPTER 1. INTRODUCTION 12� an evolutionary search algorithm� a tree-structured representationThe two components are quite separate. The evolutionary algorithm which searchesfor solutions is independent of the way the solutions are represented.Evolutionary SearchThe underlying search algorithm, known as a Genetic Algorithm (GA), uses a simplemodel of Darwinian evolution to search for good solutions. The success (or not) ofnatural selection and genetic recombination relies on the potential for o�spring tooccasionally be `better' than or improve upon their parents. A GA starts with aninitial group or population of individuals, generated at random. These individuals canbe thought of as chromosomes, if the biological analogy is taken far enough. Eachindividual is tested to see how good it is at solving the problem in hand, using a �tnessfunction. The problem in hand could be to design a bridge that is both light andstrong, or construct a timetable that satis�es as many constraints as possible, or todesign a Neural Network to classify phonemes, or to predict the next major
uctuationin share prices given the previous �ve days worth of trading �gures. In short, almostanything goes.Each individual in the population is a possible solution to the problem. Whilst allof these initial individuals will almost certainly be very poor or un�t solutions, someof them will be slightly less un�t than others. These �tter solutions are selected toact as parents for the next generation of solutions. Individual parent solutions arecopied or mutated, or pairs of parent solutions are mixed together (in a process knownas Crossover), to produce new or child solutions. The child solutions can be placedback into the population, replacing the most un�t individuals, (in a process knownas steady-state replacement), updating the population, or can be collected togetherto create a completely new generation of individuals which then replaces the previousgeneration. The latter option (generational replacement) is the one described morefully here, and used throughout this thesis.

CHAPTER 1. INTRODUCTION 13The choice of which method (or operator) to use in constructing each child is made atrandom for each child. The user speci�es `operator selection frequencies', i.e. the biasgiven towards choosing Mutation, Crossover, and any other operators which may havebeen de�ned to create new individuals.Once the new generation of individuals has been created, they are all tested, and the�tter ones are selected to act as parents of the next generation. This generational cycleis repeated until one of four things occurs:� an individual is produced which solves the problem completely but not necessarilyoptimally and the search process ends (in some cases it is possible to know whenan optimal solution has been discovered)� an individual is produced which solves the problem su�ciently well that the userdecides to end the search� it becomes apparent that the search process will not produce suitable individualsand the user decides to end the search� something goes wrong and the process has to be debugged and restarted(There are no prizes for guessing which two of these possibilities occur most often inpractice.)A GA is an extremely
exible algorithm, and there are a great many variations uponthe basic theme. Some common ones are:� Elitism. The best individual(s) of one generation are explicitly copied into thenext generation, ensuring that the GA doesn't lose or `forget' good individuals.� Seeding the initial generation with some possibly good solutions. This allows theGA to take advantage of any extra domain knowledge the user might have, or tomake use of earlier results, allowing the population to start evolving with �tterindividuals.� Parallel populations and Migration. Several populations are evolved simultan-eously, all working on the same problem, with occasional individuals transfered

CHAPTER 1. INTRODUCTION 14or migrated from one population to another. This allows the e�cient use of fastparallel computers. A GA is eminently parallelise-able.Each aspect of a GA is subject to minute and seemingly never-ending adjustments, andmany many parameters. The design of particular GAs and their assorted parametervalues is still very much an intuitive process, based on experience and feedback fromearlier runs.Representing Solutions in GPThe standard GA uses a linear representation, such as a string of bits, or numbers, orcharacters, for each solution. Ideally, it should be able to represent all possible solutionsto a problem using the particular representation. The linear representation is simple,concise, and easy to modify. For example, a linear solution string can be mutated byrandomly changing one or more of the characters in the string. Two parent stringscan be combined via Crossover by exchanging substrings between them to produce twochild solutions which contain a mixture of material from both parents, in a processanalogous to genetic crossover. The linear representation is suited to many problems,especially when the structure and maximum size of likely good solutions are known inadvance.However, when solution sizes are open-ended, or solutions are likely to have some kindof hierarchical structure, the linear representation can be restrictive. Genetic Program-ming is a GA which uses a tree-structured representation. This
exible representationcan be used to encode LISP-like programs (Figure 1.2), algebraic expressions (Fig-ure 1.3), hierarchical relationships between di�erent parts of a solution, and linearsolutions (Figure 1.1), among other things (see Section 3.1 for more examples).GP is given a set of functions (i.e. nodes which support subtrees) and terminals (i.e.leaf nodes which do not support subtrees). A subtree can be a single terminal node orconsist of functions and terminals. Standard GP ensures that there is closure, i.e. anyfunction can have any subtree(s) and the whole tree is still valid. A simple example ofa supervised learning problem should make this clear.Imagine the problem is to �nd an equation for mapping between two input vari-

CHAPTER 1. INTRODUCTION 15
Linear StringA B C D E F G H ;

Tree
seq

A seq

seq

B seq

C D

seq

E seq

seq

F G

H

Figure 1.1: Linear String; tree
LISP-like Program(cons (append (car q1) (car q2)));

Tree
cons

append

car

q1

car

q2Figure 1.2: LISP-like Program; tree
Algebraic ExpressionX*Y + X/Y + Y ;

GP Tree
+

*

X Y

+

div

X Y

negate

negate

YFigure 1.3: Algebraic Expression; GP tree

CHAPTER 1. INTRODUCTION 16ables X and Y and an output variable. GP is allowed to use the functionsf +, *, div, -, negate g, and the terminals f X, Y g. The functions are the basic arith-metic operations `plus', `times', `divide', and `multiply' which take two arguments each,and the function `negate' which negates its one argument (i.e. multiplies by -1). Theterminals are the two problem-speci�c variables, and have real number values.An example GP tree is shown in Figure 1.3. The binary arity functions, `*', `+', `div',each have two subtrees, whilst the single arity function `negate' has one subtree. Thesubtree on the left containing `*', `X' and `Y', represents the arithmetic expression`X*Y'. The tree as a whole represents `(X*Y) + (X/Y + (- (- Y)))' or, more simply,`X*Y + X/Y + Y'. With the standard closure condition, any function node can haveany tree as a subtree. In the case of the division function, this presents a problem. IfY ever has a value of zero, there would be a division by zero, which is mathematicallyunde�ned, and would normally result in a computer error. In such an instance, a GPfunction is `protected', i.e. it is de�ned to produce a legal value whenever it wouldnot normally do so, and thus the function is protected from values it cannot handle.The divide function is often de�ned to return 1 (or perhaps 0) if the denominator (i.e.the value returned by the right-hand subtree) is zero. The two `negate' nodes in thesame subtree are obviously redundant, but there is no requirement for GP trees to besensible or e�cient.New or child trees can be created from parent trees very easily. A parent tree can bemutated by replacing a randomly selected node with a di�erent one of the same arity,e.g. by replacing the `div' (a function node of arity 2) by a `-' node (also of arity 2), orby replacing one of the `Y' nodes (arity 0) by an `X' node (also arity 0). Another formof Mutation is to replace a randomly chosen subtree by a new, randomly generatedsubtree. Two parent trees can be combined by exchanging a randomly selected subtreefrom one parent with a randomly selected tree in the other parent in a process knownas Crossover. There are many variations of these operations for producing new trees.The closure constraint means that all of these operations on GP trees only ever producevalid trees.In such a problem, there would usually be a set of examples of input values (X andY) and their associated output value. A GP individual would be tested or evaluated

CHAPTER 1. INTRODUCTION 17on each example by instantiating the variables X and Y in the tree to their respectivevalues, calculating the return value of the tree, and comparing this value with thecorrect or target output value. The sum of absolute di�erences over all the examplescould be used as a measure of how good or �t the solution is, i.e. the smaller the better.This method of evaluating the �tness of an individual is known as Supervised Learning(or perhaps supervised training).Several useful variations of basic GP are:� Strongly-Typed GPThe closure constraint is removed, and constraints based upon data-types areused instead. This means that not all possible trees will be valid trees. Functionnodes can only have subtrees as arguments which return the correct data-type.[Montana 95, Haynes et al. 96].� Mutation-only GPSome research suggests that the standard crossover operator may not necessarilybe A Good Thing, [Gathercole & Ross 96], (see Section 4.1). Some modi�cationsto Crossover have worked well, [Angeline 96a, Angeline 96b], as has an assort-ment of mutation operators, [O'Reilly & Oppacher 94b].� Hill Climbing and Simulated AnnealingIgnoring the population aspect of GP, but making use of the tree-structuredrepresentation, [O'Reilly & Oppacher 94b]� Automatically De�ned FunctionsA more powerful representation, allowing GP to evolve hierarchical functionde�nitions, especially suited to problems whose solutions have a strong hier-archical structure, [Koza 92, Koza 94, Kinnear, Jr. 94] (see Section 3.3).� \A Compiling Genetic Programming System that Directly Manipulates the Ma-chine Code", with an awesome speedup in evaluation times, and only a fewrestrictions, [Nordin 94]� Representing the GP population using a Directed Acyclic GraphThis highly e�cient method for representing a collection of trees can lead to

CHAPTER 1. INTRODUCTION 18massive savings in memory usage, and huge speedups in evaluation time by cach-ing earlier results of subtree evaluations, [Ehrenburg 96].1.6 Basics of Supervised LearningSupervised Learning can be any one of a variety of ways for presenting a problem toa computer-based learning algorithm. The simplest analogy is that of a Pupil-Teacherarrangement. The teacher presents the pupil with a problem (or sub-problem). Thepupil works out an answer and returns it to the teacher. The teacher compares thepupil's answer with the correct answer, and then gives the pupil a reward or punishment(or an error score) accordingly. The pupil can use this feedback to try an improve itsmethod for calculating answers in future.In terms of GP, the teacher is the �tness function. Knowledge of the problem in handis encoded in the �tness function, enabling it to assess the worth (i.e. �tness) of all thecandidate solutions produced by GP (the pupil). Good solutions get a good score, i.e.a reward, and bad solutions get a bad score, i.e. e�ectively a punishment.A problem can sometimes be de�ned in terms of a set of examples. The learningalgorithm has to come up with a mapping between input and output values thatcorrectly deals with the training set. The (often unspeci�ed) hope is that this mappingwill transfer well to previously unseen examples and be able to cope with all possibleexamples of this type. In such a problem, the �tness of an individual would relate tothe sum of errors it makes on the whole training set of examples. It is not possible thento work out from the �tness score exactly what errors were made on each training case.This is known as batch-learning. If the problem is to win at chess, the only feedbackthe learning algorithm would normally receive is a noti�cation of whether it had wonor lost a game, known as delayed feedback. There is no way of working out from thefeedback what aspects of the way the game was played were good or bad. An evenmore di�cult situation would be when the chess learning algorithm is presented withfeedback only after several games had been played.The main problems tackled in this thesis are of the batch-learning type, in Chapters 5to 8. The aim is to correctly classify a training set of, say, 4000 example cases. In

CHAPTER 1. INTRODUCTION 19one problem there is also a test set which is used as a guide to see how well a solutiongeneralises to cases which were unseen during the training phase.So that was an overview of Genetic Programming and Supervised Learning. Thenext chapter looks as actually using GP to try and solve problems...

Chapter 2Rami�cations ofa Large and Messy Problem
This chapter illustrates some of the di�culties of using GP in practice by applyingGP to a largish messy supervised learning classi�cation problem. The Thyroid Prob-lem, described in Section 2.1, has been extensively tackled elsewhere using NeuralNetworks, [Schi�mann et al. 92a, Schi�mann et al. 92b], among other algorithms, andhas a benchmark score associated with it. The process of applying GP to the problemis discussed. Of the many di�culties encountered, the �tness evaluation bottleneck isthe most fundamental and hardest to avoid. To combat this, Dynamic Subset Selec-tion (DSS), [Gathercole & Ross 94a, Gathercole & Ross 94b, Gathercole & Ross 97a],a modi�cation of the standard supervised learning approach was designed. DSS en-ables GP to produce good solutions to the Thyroid Problem, and is described in greaterdetail in Chapter 6.In general, published papers seem to miss out a lot of detail concerning the di�cultiesand choices made along the way to the development of a particular method. Theseunspeci�ed choices, perhaps dead-ends or mistakes, will likely be repeated by laterresearchers, unaware that some of their di�culties have already been tackled. Whatfollows is a description of how the features of the Thyroid Problem led to the stepstaken towards its solution, using GP, giving the reasons for some choices made alongthe way. This should allow for a re-examination of the approach. Hindsight now showswhere several decisions could or should have been made di�erently.20

CHAPTER 2. RAMIFICATIONS OF A LARGE AND MESSY PROBLEM 212.1 Why Choose the Thyroid ProblemAttempting toy problems with GP, such as the Iris Problem, [Fisher 36], (a stalwartof Machine Learning research which is denounced with feeling as being far too simplea problem in [Francone et al. 96]), can be a profoundly unsatisfying experience,. If aproblem has one or several simple and easily-attainable solutions, it is di�cult to learnmore about GP, and in particular to explore GP's limitations. The GP literature, e.g.[Atkin & Cohen 94], suggests that it is di�cult to scale GP up to work successfully onlarger problems.The Thyroid Problem, available from [Werner 92], is considerably larger than the IrisProblem. It is a Supervised Learning task, like the Iris Problem, but consists of aset of approximately 4000 training cases and a set of 3500 test cases, where each casecomprises twenty-one �elds. In contrast, the Iris Problem consists of 100 trainingcases, 50 test cases, and each case comprises four �elds. The task in both problemsis to correctly assign each case into one of three possible classes. The Thyroid datais messy and noisy, and like the Iris data (measured by hand from an assortmentof irises), is based on real measurements. A solution to the Thyroid Problem is ofpractical importance, since it relates to the identi�cation of hospital in-patients whoare likely to go on and develop later complications with their thyroid gland. The datafalls into three separate classes, two of which signify a thyroid illness, and are thus theimportant ones to identify, and one much larger class (92% of all cases) which signi�esno thyroid illness.Described by Schi�mann et al is an attempt to use a variety of Neural Network ap-proaches to solve the Thyroid Problem, [Schi�mann et al. 92a, Schi�mann et al. 92b].Their results indicate it is possible to solve the problem to a high degree of accuracy,nearly 98% correct, but that it is not easy to do so (92% correct is actually a trivialsolution since one of the three classes consist of 92% of all of the cases). The NeuralNetwork results set up a good benchmark, or a target to aim at using GP, enabling auseful comparison between the two di�erent approaches.Possibly the earliest published report on using the thyroid dataset in Machine Learningresearch is [Quinlan 86]. Later, in [Quinlan 87], Quinlan reports error rates of 0.3%

CHAPTER 2. RAMIFICATIONS OF A LARGE AND MESSY PROBLEM 22and writes,\This domain is a good starting point becase it uses `live' data from which,warts and all, extremely accurate classi�ers can be constructed."A variety of ML algorithms are applied to the thyroid dataset in[Weiss & Kapouleas 89], including an assortment of statistical pattern recogni-tion algorithms such as Linear Discriminant, Quadratic Discriminant, NearestNeighbour, Bayes Independence, and Neural Networks (back propogation), andsome decision tree induction methods. The best results reported are for CART(Classi�cation and Regression Trees, [Breiman et al. 84]) scoring 0.21% training and0.64% test error rates. Weiss and Kapouleas state that the NN runs took by farthe longest of all they carried out, requiring up to 11.5 hours per run for the largernetworks.Turney tackles the thyroid problem with a variety of algorithms from the point of viewof cost of classi�cation, [Turney 95], where each �eld in the data, corresponding to amedical test, has an associated cost. The aim is to minimise the error rate and thetotal cost per classi�cation, and the combined error scores reported make it di�cult tocompare with work done in this thesis. In [Raymer et al. 97], Raymer et al also lookto minimise classi�cation costs, by attempting to reduce the number of �elds used inthe classi�cations. The best error rate reported for the GA, which evolves a weight setfor use by a K Nearest Neighbours algorithm, is 2.25% on unbiased holdout tests, butthe time taken for a typical run is not reported.In summary, several di�erent algorithms have been used to tackle the thyroid problem.The decision tree induction algorithms in particular have produced the best resultsin the shortest time, and there have been several investigations into reducing decisiontree sizes or the number of �elds used. Neural networks have not managed to performas well, and the larger networks appear to require training times roughly equivalent toGP (i.e. runs for GP+DSS reported in Chapter 8.2).There are many other Supervised Learning tasks in the public domain whose datasetsare readily available over the Internet, e.g. [UCI 97]. The Thyroid Problem is one ofthe larger problems. Its data is already split into Training and Testing sets. It is

CHAPTER 2. RAMIFICATIONS OF A LARGE AND MESSY PROBLEM 23relatively straightforward to apply the standard GP algorithm, although there was alarge initial hurdle, described below in Section 2.4, of how to interpret a GP tree'soutput as indicating one of three categories.Whilst it is easy to apply GP to solving the Thyroid Problem, it rapidly becomesobvious that there are many hurdles to overcome, such as very slow �tness evaluations,premature convergence, the need for a large population, and many more, for GP totackle the problem successfully. Although not common to many simple problems,these di�culties are what makes the Thyroid Problem interesting, and will have to beovercome if GP is to be applied to larger, more di�cult problems in the future.2.2 Starting PointThe starting point for the attempt, in this thesis, to tackle the Thyroid Problem usingGP consisted of:� the Thyroid papers, [Schi�mann et al. 92a, Schi�mann et al. 92b],and data, [Werner 92].The Thyroid papers indicate that the Thyroid problem is solvable to a high degreeof accuracy, and give a benchmark �gure, approx 98% correct on the Test set,enabling a good comparison to be made with GP. The data is already split intoTraining and Test sets. When viewed using XGOBI, [Swayne et al. 91], shown inFigure 2.1, a large degree of overlap is obvious between the three di�erent classesof the Thyroid data. Also, one of the three classes is much more common thanthe other two.� Koza's huge book, [Koza 92].This opus covers many di�erent example problems, which suggest sensible initialsettings for the many GP parameters. It gives an idea of what might be areasonable set of functions to complement the problem-speci�c terminals (i.e.the terminals corresponding to the �elds in the problem). Koza also stronglyrecommends the addition of an ephemeral random constant to the terminal set.Each time this terminal is selected as a leaf node in a randomly generated subtree,

CHAPTER 2. RAMIFICATIONS OF A LARGE AND MESSY PROBLEM 24

Var 19

Var 21

Var 20

Figure 2.1: A `Large and Messy' Problem: This �gure shows a 3D Slice (of 21 dimen-sions) of a 500 case subset of the Thyroid training data showing the overlap betweenthe 3 classes. Classes 1 and 2, signifying a thyroid illness, are represented by
 and �.Most of the cases belong to the largest class, signifying no thyroid illness, representedhere by 2. Only a subset of these cases have been included since they would obscuremost of the �gure.The view presented here has been selected by hand on the basis that it shows the threeclasses more clearly than any other view, though the classes still overlap a great deal.From most other viewpoints, the classes overlap even more and are much less distinct.

CHAPTER 2. RAMIFICATIONS OF A LARGE AND MESSY PROBLEM 25for example when a random individual is created at generation 0 or during amutation operation, it will take on a random
oating-point value. This valueremains �xed throughout the remainder of that particular node's existence in thepopulation, where it might be spread by the actions of the crossover operator.� o�-the-peg GP code, \Simple Genetic Programming in C" (SGPC),[Tackett & Carmi 93].The SGPC code is a well-written implementation of the standard GP algorithm,written in C, and available in the public domain. It is easy to adapt to supervisedtraining problems. In SGPC, a GP tree is represented using C pointers, a
exibleapproach, but slow and uses up a great deal of memory.� several Sun and HP workstations.Once the GP program was ready to run, there were several Sun and HP work-stations available. Each was able to handle jobs of no more than approximately10Mb or so. There was also a large server available, able to handle much largerjobs up to 100Mb or so. These machine limitations imposed an upper limit onpopulation `volume', i.e. total number and size of individuals in the population.2.3 First ImpressionsThe overriding initial impression from the early runs of GP on the Thyroid Problemwas that GP is very slow, ine�cient, and impractical. The runs would converge earlyto bad solutions and then enter long periods of no improvement at all, producing largenumbers of un�t individuals. Population sizes of several thousand were needed toimprove solution quality, which had a severe impact on the turnaround time for GPruns, taking many days to achieve non-trivial solutions.2.4 Early Snags and DecisionsChoosing Parameter Values One of the most daunting aspects of using GP is thevery large number of parameters that need to be speci�ed before the algorithm can beused. Parameters include the function and terminal sets, population size and structure,

CHAPTER 2. RAMIFICATIONS OF A LARGE AND MESSY PROBLEM 26replacement method, operator type and selection frequencies, etc. All of these a�ectGP's performance to varying degrees. More often than not, wrong choices will lead toGP performing very badly.To some extent, Koza's book answers all of the questions raised above. Among themany examples in the book are practical suggestions for parameter settings. This isa great help when starting out on a problem, but it quickly becomes clear that eachproblem is unique, and GP responds di�erently to di�erent parameter settings on eachproblem. What is left after Koza's book is educated guesswork, and feedback fromprevious runs.Perhaps the most important GP parameters to `get right' are the terminal set, thefunction set, population size (and structure and replacement strategy), in combinationwith fairly `standard' settings for other parameters such as the operators and operatorselection frequencies.For the Thyroid problem, the terminal set is speci�ed by the 21 �elds in the problem,where each variable in the terminal set refers to one of the �elds in the Thyroid data.Koza recommends including an ephemeral random constant, described above in Sec-tion 2.2, but early runs indicated that this had no signi�cant e�ect (for the Thyroidproblem) and was replaced with a small group of �xed constants, f 0, 1 g, which also,it later appeared, had no signi�cant e�ect. The selection of sets of functions and ter-minals, constant or otherwise, is a topic of much debate within the GP community. Itwasn't the focus of work done in this thesis and is not pursed further here.Constructing the function set is something of an art form. It has to be powerfulenough to allow GP to construct good solutions,
exible enough to allow for variety,and not too large that it reduces the e�ciency of GP's search. The function set isf IFLTE, +, -, *, %, tanh, log, minimum of 3, negate, sqrt g, where the functions be-have as follows:� IFLTE (If arg1 is Less Than or Equal to arg1 then the answer is arg3 else it isarg4)� +,-,* (plus, minus, multiply)

CHAPTER 2. RAMIFICATIONS OF A LARGE AND MESSY PROBLEM 27� % (protected division where division by zero is de�ned to be 1)� tanh� log (protected natural logarithm, where log(0) is de�ned to be -1000)� minimum of 3 (returns the smallest of its three arguments)� negate (multiplies by -1)� sqrt (protected square root of the absolute value of its argument)The function set seems to have most of these properties, and was found through acombination of Koza's book, guesswork, and feedback from early runs.Koza makes no bones about recommending that population size should be set as largeas possible, i.e. at least in the 1000's. Whilst this is certainly more likely to enable GPto �nd non-trivial solutions it is not very practical from the point of view of computingresources (see below).Population structure can take many forms. The simplest, used in this thesis, is pan-mitic, where any individual can be combined with any other individual during thebreeding stage. Another structure involves the population topologically separated intodemes or islands, where only neighbours (in some sense) can be combined during breed-ing.There are many proponents of the two di�erent replacement strategies: generational,where an entirely new generation is constructed from the previous generation, orsteady-state, where new individuals replace old individuals in the same population.Generational replacement requires the addition of Elitism, where the best individual(s)from the previous generation is included in the next generation, to ensure that the pop-ulation does not lose its best individuals. Steady-state replacement is implicitly elitistsince the best individual will never be replaced. Early results indicated that steady-state replacement was perhaps a bit more susceptible to prematurely converging tobad solutions, so generational replacement was used throughout this thesis. A pan-mitic population requires fewer parameters than a distributed population, so for thisreason alone it was used throughout this thesis. Population structure and replacement,

CHAPTER 2. RAMIFICATIONS OF A LARGE AND MESSY PROBLEM 28as with the choice of functions and terminals, are topics of much current debate withinthe GP (and GA) community, and are not pursued further here.How to distinguish between more than two classes The task in the ThyroidProblem is to construct a solution which distinguishes between three classes of examplesin the training data. For GP, this means that when an individual tree is evaluated ona particular case, the tree's output must be interpreted as indicating which one of thethree classes the case belongs to. It quickly becomes clear that this is not a trivialstep.The obvious approach is to subdivide possible GP tree outputs into ranges such as� output < 0, signi�es class 1� output = 0, signi�es class 2� output � 0, signi�es class 3Thus a tree output of 7.4, say, would be interpreted as class 3. Early results with thischoice of ranges and others, such as� output < 0� 0 � output < 100� 100 � outputwere discouraging. GP seems unable to cope with this extra step, instead �xating onthe largest class, 3, with trivial trees. To be successful, GP individuals would have tocope with the extra translation step for their outputs to be interpreted correctly, aswell as distinguishing between the di�erent classes using the information in the �eldsof each example.Fortunately, with the Thyroid Problem, there exists a `natural' division into two sub-problems, where each subproblem is simpler than the whole problem, and one of thesubproblems involves a much smaller training set. This natural division creates two

CHAPTER 2. RAMIFICATIONS OF A LARGE AND MESSY PROBLEM 29

Var 20

Var 19

Var 21

Figure 2.2: Easy Thyroid subproblem: 3D Slice (of 21 dimensions) of all 83 class 1cases, represented by
, and 191 class 2 cases, represented by �, showing the distinctsplit between the two classes. This subproblem is simple to solve.

CHAPTER 2. RAMIFICATIONS OF A LARGE AND MESSY PROBLEM 30binary classi�cation problems. The �rst is to distinguish between cases from class 3(the largest class, which signi�es that the patient has no thyroid trouble) and all theothers (much smaller classes, which signify that the patient has some form of thyroidtrouble), and then if the case is not in class 3, to distinguish between cases from class1 and from class 2 (two distinct thyroid ailments). Even more fortunate is the factthat the smaller subproblem, distinguishing between classes 1 and 2, is very easy. Thesplit between these two classes is obvious in Figure 2.2. Using the same setup as usedto tackle the larger subproblem, it is easy for GP to discover a 100% correct solutionfor distinguishing between classes 1 and 2. This means that most of the e�ort can befocussed on the one binary classi�cation task of identifying class 3 cases. Interpretinga GP tree's output as identifying one of two possible classes is much easier than thesituation involving three classes. For this thesis,� output < 0, signi�es class 3� output � 0, signi�es not class 3The approach of splitting a large, multi-class (i.e. more than two) classi�cation probleminto smaller binary classi�cation subproblems can, in principle, be expanded to copewith any number of possible classes in the training data. A group of cases belongingto N classes could be classi�ed using log2N binary classi�cation steps. Experi-ment and/or pre-processing for dependencies would be needed to �nd the best wayto subdivide the main problem. The initial approaches of translating from ranges ofpossible tree outputs to an indication of particular classes emerged as being too greata hurdle for GP to overcome, and although an interesting topic for further study, wasnot pursued further in this thesis.Fitness Measure One of the simplest �tness measures possible in this type of clas-si�cation problem is the error count, i.e. the number of misclassi�cations made, butit does su�er from several de�ciencies. It is unable to distinguish between two treeswhich make di�erent errors but make the same total number of errors. It is also heavilya�ected by the relative sizes of classes in the data. In the Thyroid data, class 3 is muchmore prevalent than the other two classes combined, so it is possible for a tree to score

CHAPTER 2. RAMIFICATIONS OF A LARGE AND MESSY PROBLEM 31well (only 8% errors !) by always choosing class 3. In hindsight, an obvious approachis to re-scale the size of an error corresponding to a misclassi�cation, according to therelative size of the classes. Thus choosing the largest class incorrectly would incur ahigher penalty than choosing one of the other smaller classes incorrectly. However,the simple error count was used in this thesis, until the addition of Dynamic SubsetSelection, described below in Section 6.Bad Solutions All the early runs failed to produce anything like good solutions,i.e. they failed to evolve individuals which signi�cantly outperformed the randomlygenerated trees in generation 0 of each run. Runs quickly �xated on solutions whichclassi�ed all cases as belonging to the largest class, producing small trees, and rapidlyconverging in a few generations to close copies of one individual. In such a situationthe population quickly loses most of the variety in the function and terminal sets. Anobvious approach to the problem of small trees is to forbid the addition of small treesto the population, by imposing restrictions on the operators. But, as with rescalingthe error count, it was not used here on the Thyroid problem.Need for many runs to provide good Statistics In order to get useful informa-tion about GP performance, say the e�ect of some parameter changes, many runs areneeded to provide adequate statistics about their e�ectiveness since, in some circum-stances, GP can produce widely di�ering results using the same parameters. This isvery di�cult to achieve with GP since the runs are very slow. When starting on a prob-lem, there are so many parameter choices that need to be made and tested that a largeelement of guesswork is necessary, leaving later choices vulnerable to being a�ected byspurious results. Unfortunately, GP seems quite sensitive to a variety of parameters.Many decisions taken during this thesis were based on a very few successful runs, andhave no doubt led to some bad choices for parameter settings.Bugs GP is a robust algorithm. It is very e�ective at hiding errors in the program,or even taking advantage of them in the �tness evaluation stage, producing poor butextremely `�t' individuals! The C language used in SGPC is susceptible to manysubtle bugs, in particular the pointer representation used can easily produce obscure

CHAPTER 2. RAMIFICATIONS OF A LARGE AND MESSY PROBLEM 32bugs that are di�cult to track down. To deal with bugs in C, the `assert' function isextremely helpful. It is best used at every stage in the program to con�rm that thingsare as they should be. A good programming methodology involving frequent testing isneeded right from the start to prevent later GP research from descending into an evermore desperate search for wily and elusive bugs.GP is slow As indicated in [Koza 92], GP may need a large population size. This,plus the needs of supervised training (i.e. evaluation of individuals on each trainingcase), combined with the
exible but ine�cient C-pointer approach used by SGPC torepresent GP trees, leads to a major bottleneck at the �tness evaluation stage of theGP algorithm. The GP program becomes very large, requiring many megabytes ofcomputer run-time memory, and very slow, due to the large number of evaluations.Runs can take many days. The large process size exacerbates CPU use, making itmuch less e�cient. This is due to thrashing, where a CPU spends most of its timeswapping pages of memory in and out of swap space, rather than allocating processingtime to its processes. A further problem is that GP produces a large number of un�ttrees.There are several ways of tackling the �tness evaluation bottleneck.Increasing the speed of the algorithm can be done through better coding. Thisinvolves a major rewrite of the code, which is a lengthy process, and a detailed lookat e�cient representations such as in [Keith & Martin 94]. The approach of e�cientcoding has been taken to a successful extreme in [Nordin 94, Nordin & Banzhaf 95,Francone et al. 96], producing linear GP individuals which are evaluated directly asraw machine code. Nordin et al seem to have surmounted the obvious di�cultieswhich might occur when allowing GP to produce and execute raw machine code. Theyreport speedups in the region of 100x faster than traditional C-based programs. Sucha speedup would allow a much faster turnaround time for GP runs, allowing a greatdeal more study to done on optimising parameters. However this approach does haveseveral limitations such as lack of
exibility, and the functions and terminals can haveno side-e�ects (which means they do not a�ect the context of any subsequent function

CHAPTER 2. RAMIFICATIONS OF A LARGE AND MESSY PROBLEM 33calls or terminals, e.g. a node whose evaluation causes a robot to turn left has a side-e�ect, but a node which simply returns a value does not). A more expensive speedincrease can be gained through the purchase of larger and faster computers, but thisis perhaps not an option available to the average researcher. A more feasible approachmight be to make use of smaller computers in parallel, since the basic GP algorithmcan be easily adapted to work in parallel. This is probably `the way of the future',but unfortunately it brings up a large number of new parameters. Andre and Kozaseem to have the best of both worlds, using a parallel network of powerful computers,[Andre & Koza 96].Looking once again at the bottleneck of �tness evaluation, another approach is toreduce the need for so many �tness evaluations. Reducing the size of the populationleads immediately to worse solutions, but as can be seen in Chapter 8, when allowed torun for many more generations, a small population can outperform a large populationusing fewer �tness evaluations overall.It would be nice to be able to reduce the size of the training set, since it is directlyproportional to the length of the �tness evaluation step. A closer inspection of theperformance of a GP population on the Thyroid training set reveals that many of thetraining cases are easy, given that most of the population can correctly classify them.This leaves a core of more di�cult cases which are frequently misclassi�ed. Using onlythis core of di�cult cases (545 out of 3772) as a training set leads to Historical SubsetSelection (HSS), described in Chapter 6. HSS allows much faster �tness evaluations,whilst still producing good solutions. A more
exible approach is to select a subsetof the training set dynamically. If each case in the training set is assigned a weightbased on its di�culty, i.e. how often it was misclassi�ed when it was last part of a�tness evaluation stage, and the number of generations since it was last selected, asubset of cases can be selected and used to evaluate the �tness of each generation.With the subset size around 10% of the full Thyroid training set, Dynamic SubsetSelection (DSS), described in Section 6, leads to roughly a 10x speed increase in theGP generation rate, and produced better solutions than when the whole set was usedto evaluate each generation.

CHAPTER 2. RAMIFICATIONS OF A LARGE AND MESSY PROBLEM 34What runtime information to look at and store The aim in the Thyroid prob-lem is to construct a solution which performs well at classifying the training data.Consequently, the ultimate measure of success of a run is the �tness of the best indi-vidual it produces. The next most important measure of a run is how long to let itcontinue running, which could be for a �xed number of generations or, more usually,until the run shows no signs of further improvement. A measure of improvement canbe taken from the change in �tness of the best individual in successive generations.However, this approach ignores any dynamics within the population. Fitness diversityis a useful guide but it is hard to measure. Average population �tness does not in-dicate how the trees themselves are changing. Tracking the frequencies of nodes inthe population involves the output of a lot of information, especially when runs cantake many thousands of generations. Tracking tree structure, and the frequencies ofsubtrees can be CPU intensive as well as requiring even more output, and is represent-ation independent. By storing a unique seed for the random number generator for eachrun, it should be possible to reproduce earlier runs exactly, and extract more detailsat a later stage. This saves memory use for storing output but runs the risk of missingimportant information �rst time round, and is very slow.2.5 Longer Term Snags, Workarounds, and HindsightLonger term di�culties and decisions can be divided into two main categories: codingstrategy, and research method.Coding StrategyOld Bugs One of the most disheartening aspects of using a computer program toproduce data in a series of runs over an extended period of time is uncovering old bugs.These well hidden monsters have remained incognito until the most recent modi�cationto the program, or perhaps an inspired test run. Having found a bug it is necessary tocheck its impact (if any) on previous runs. If the bug is su�ciently serious there mightbe nothing for it but to go back and repeat all the previous runs. Obviously, the bestapproach is to avoid or prevent bugs in the �rst place but, as mentioned above, theGP algorithm is very robust, and its output and performance can be very deceptive.

CHAPTER 2. RAMIFICATIONS OF A LARGE AND MESSY PROBLEM 35The best strategy is to assume bugs will arise, to pepper the code with error checksright from the start, and to carry out frequent and varied tests.Tweak Parameters or Add New Code Tweaking parameters allows you to im-prove the existing setup, but there is the possibility that tweaking will be a never endingprocess, especially if the solution is not achievable with the current setup. Adding newcode or extending the algorithm, however, is an excellent way to add more parametersto the system, adding complexity to the code and the algorithm. No matter what highhopes there are for getting these new parameters right �rst time, they and the otherswill still need tweaking.Reproduce-ability One of the major problems which arises after adding modi�c-ations to the code is that the code is likely not to be backwards compatible, unlessgreat e�orts are made every step. This causes di�culties when it comes to reproducingold results, which means it is more important to store key information from each runinstead of relying on being able to reproduce the data later from re-runs. A versioncontrol system such as RCS [Tichy 85] is (and indeed would have been) extremelyuseful.Research MethodBeing led astray An insidious consequence of very slow runs is the idle time betweenstarting a run and viewing its results. It is very easy to extrapolate from earlier andpartial results to make changes to parameters and start new runs, following up theassumptions made. This can lead to dead-ends, where parameter changes do notimprove GP performance. By the time this is realised, a great deal of time can bewasted. It is important to base modi�cations on good statistics, involving many runsusing the same parameters but di�erent random number seeds. Unfortunately, giventhat GP is very slow, this is somewhat di�cult to achieve.Use of Test set as a Training set Ideally, for comparisons with other algorithms,or assessment of an algorithm's performance on a problem, there should be a test

CHAPTER 2. RAMIFICATIONS OF A LARGE AND MESSY PROBLEM 36set of unseen data. Only after all the development and training has �nished shouldthe algorithm be checked on the unseen data. There are many established methods forselecting representative test and training sets from one large data set of examples, someof which are described in Section 5.2. For the Thyroid problem, the data was alreadysplit into training and test sets by Schi�mann et al. In this thesis, every e�ort wasmade to `ignore' the test set when making modi�cations to improve GP's performance.The test set was certainly never explicitly used to guide modi�cations towards makingGP better at generalisation from the training set.Data Explosion Completing many long runs, each with a large population, overmany generations, produces a vast volume of data to be processed and/or stored.There are many details which may or may not be important later. The approachof making runs reproduce-able runs into the di�culties mentioned above, and stillrequires the storing of all parameter settings and random seed numbers for each runs,and makes data mining impossible.Parameter Explosion Extending the GP algorithm throws up a huge number ofparameters. It is important to document each one, use clear names, make the defaultsclear, and to assume idiocy on the parts of the user and especially the programmerby including extensive error checks on the bounds of all the parameter ranges. If not,chaos could well ensue. At the end of the programming done for this thesis, there were170 input parameters, 55 special data types, 500 function de�nitions, and over 30,000lines of C code.Reputation with other non-GP users Given that GP is CPU intensive, memoryintensive, sometimes increasing greatly in size during a run, when runs can last severaldays, and many runs are needed to produce adequate statistics, the GP user won't winany popularity awards on multi-user computers. There seems to be no way of avoidingthis (apart from obtaining your own computer), so it is best to get used to the idea ofreceiving hate e-mail.

CHAPTER 2. RAMIFICATIONS OF A LARGE AND MESSY PROBLEM 372.6 Applying GP to a problemThe procedure for using GP can be divided into four main parts:� Knowledge Acquisition� Knowledge Representation� GP Tuning� GP RunsKnowledge Acquisition is the �rst stage in problem solving. For the purposes ofthis thesis, the problems were chosen in order to investigate the performance of GP,rather than from any particular urge or need to actually solve them. Having selecteda problem, the next step is to analyse it and extract any salient features. Armed withthis information, it should be possible to make an informed choice about what mightbe the best approach to use in order to try and solve the problem. Once again, for thepurposes of this thesis, the approach is always GP.Knowledge Representation is a key stage. With a good representation, a prob-lem can be made much more amenable. With GP, the underlying representation isobviously a tree structure, but that is only the start of the process of designing a rep-resentation. Most test problems come prepackaged with data �elds. These can oftenbe taken directly as the terminal set for GP, but in many cases some pre-processing,such as Principal Components Analysis [Jolli�e 86], is needed to identify the relevantparts of the problem data, to remove extraneous data, or to construct more usefulcombinations of the data. An example of this process is well described in [Tackett 93],where GP is used to classify feature vectors extracted from infrared images containingimages of tanks (or not, as the case may be).Though the terminal set is often easily decided upon, the function set is often not assimple to construct. It is the glue which binds the terminals into useful expressions,and needs to be su�ciently powerful to allow GP to construct good solutions. This

CHAPTER 2. RAMIFICATIONS OF A LARGE AND MESSY PROBLEM 38step is still a `black art'. Despite many di�erent researchers using GP, there is nostraightforward formulae which can be applied to decide upon suitable function sets.It is clear that Automatically De�ned Functions, described and used in [Koza 92,Koza 94], can and probably should be added to the GP representation when a problemcontains inherent hierarchy of small solutions forming part of larger solutions, or whenthere is a great deal of similarity between di�erent parts of the problem. Both of thesecharacteristics are apparent in the Even-N Parity problem, described in Chapter 7.However Koza has demonstrated that ADF can be an impediment if such characteristicsare not present. Other more powerful features such as indexed memory, [Teller 94], onlyseem useful in certain specially constructed problem areas. Successful GP applicationshave involved incorporating as much problem knowledge as possible into the functionand terminal sets. If there are known links between terminals, then those links, e.g.square root, or log10, should be included in the function set. It is not necessarily thecase that reducing the volume of input data is the best approach to take, since keyrelationships within the data may be lost.Along with the basic tree-based representation, GP comes with some standard oper-ators, i.e. ways of changing or recombining existing trees to produce new and di�erentand possibly better trees. Crossover is often considered the main GP operator, wheresubtrees are exchanged between two parent trees to produce one or two child treescontaining a mixture of nodes from each parent. Along with Crossover is usually someform of mutation, where nodes or subtrees are replaced by randomly generated nodes orsubtrees. Usually the sites in the parent trees where these operators work are chosen atrandom, without any regard to which parts of the parent trees are in some way import-ant or essential to the functioning of the tree or causing the tree to produce incorrectanswers. This blind action of the operators results in high percentage of child treesperforming worse than their parent trees. Using a speci�c classi�cation-tree repres-entation, [Vere 95], the bene�ts of more targeted operator actions are obvious, whereleaf decision analysis can make use of the fact that the \�tness (error) contributionof each subtree is localised and independent of other disjoint subtrees". O'Reilly andOppacher, using various mutation operators and Simulated Annealing, have shownthat Crossover is not necessary for the successful use of the GP tree representationin solving problems, [O'Reilly & Oppacher 96]. Lang has shown how mutations and

CHAPTER 2. RAMIFICATIONS OF A LARGE AND MESSY PROBLEM 39simple hill climbing can perform better than GP, calling into question the e�ective-ness of Crossover, [Lang 95]. All in all, it is never usually obvious what are the bestoperators or combination thereof for particular problems.Associated with the set of operators is the set of operator selection probabilities, whichestablish how frequently each operator is used to generate individuals for the nextgeneration. With very low operator success rates, i.e. the children are usually worsethan the parents, it is not obvious how to balance the operator selection. Researchin GAs, [Tuson & Ross 96b, Tuson & Ross 96a], has shown that dynamically alter-ing the selection probabilities can be di�cult to do well as it is both problem- andrepresentation-dependent, and in fact can hinder the GA. Section 4.1 provides somefood for thought when constructing operators and choosing selection probabilities.Given a particular GP representation, the �tness function needs to be speci�ed insuch a way that it can identify the relative merit of solutions expressed using thisrepresentation. In combination with the GP operators, the �tness function de�nesa search space for GP to traverse in search of good solutions. The �tness functionencodes a great deal of the knowledge the user has about the problem. Ideally the�tness function should facilitate an easy path from bad solutions via a series of easysteps (i.e. operator actions) to optimal solutions, where each solution along the path hasa better �tness than the ones before. Unfortunately, most problems do not have suchwell-behaved search spaces. A great deal of e�ort has gone into looking at the behaviourof search spaces in GA, also known as �tness landscapes, [Jones 95], but rather fewerstudies have been published on GP search spaces. Needless to say, GP search spacesare hideously complicated. Especially in supervised learning problems, the �tnessevaluation of the population is the main bottleneck in the GP algorithm. Chapters 5to 8 look at ways of alleviating this bottleneck and extracting more information fromthe supervised training set.Tuning GP i.e. selecting initial or new settings for its assorted parameters, is a `blackhole' into which a great deal of time and e�ort disappears. The number of aspects ofa GP program which can be tweaked in a desperate attempt to improve its perform-ance is nothing short of phenomenal. Perhaps the single most important parameter

CHAPTER 2. RAMIFICATIONS OF A LARGE AND MESSY PROBLEM 40is population size. Too large and GP takes forever to complete each generation. Toosmall and, well, a thought-provoking part of this thesis shows that GP can, in certainsituations, perform better with a very small population than a very large population,i.e. it �nds better solutions in a much shorter time (see Chapter 8). Taking populationsize to the extremes: in�nite { means that GP should be able to randomly generate anoptimal tree in generation 0; one { means you have a form of Hill Climbing or, with afew extra features, Simulated Annealing, which have both been shown to perform well.Although not conclusive, the impression gained from work done during this thesis isthat the e�ective population size is dependent on the type of problem being tackled inthe following way. If the search space contains a wide range of �tness values (ignoringthe addition of parsimony), where it is possible to produce a succession of trees withsmall increments in their �tness values, such as the TicTacToe and Thyroid problems,small populations over many generations perform better. If the problem is di�cult,and the search space contains only a small number of distinct �tness values, such asthe Even-N parity problem, described in Chapter 5, a larger population is necessaryto allow GP the chance to construct better solutions. Experience has shown that itis worthwhile trying GP �rst with a small population running over many generations.If there are still signs of improvement in �tness after many generations, then a largerpopulation is probably unnecessary, and would perhaps hinder rather than help. Itappears that a large population might be more prone to converging prematurely to sub-optimal solutions (perhaps it �nds and �xates upon local optima too rapidly, whereasa smaller population might not even �nd most of these local optima and wouldn't movetowards local optima as quickly).One debate which occurs in the GP community but not the GA community concernsrestrictions on tree size. Given GP's propensity to `bloat', [Blickle & Thiele 94], wherethe size of individuals in the population increases as they accumulate garbage, runninginto practical limits on the availability of computer memory, it has become commonpractise to impose some limits on tree size, or to use parsimony, a bias in the �tnessfunction against larger trees. Not all reports have been in favour of such restrictions.Rosca has indicated that GP trees tend to grow to a certain (large) average size andthen oscillate around this size, [Rosca 96]. A more general study of the principle

CHAPTER 2. RAMIFICATIONS OF A LARGE AND MESSY PROBLEM 41of Occam's Razor, the idea that `smaller is better' which is used in much MachineLearning literature, indicates that such a bias leads to solutions which are less ableto generalise successfully on unseen data, [Webb 96]. Section 4.1 takes a look at anadverse interaction between the Crossover operator and restricted tree size. There isno consensus as yet on what is the best approach to take, except perhaps that GPtends to use up too much memory, especially with large populations, and parsimonyseems to hold down tree size quite e�ectively without appreciably hindering GP.Since, for many problems, the optimum solutions are not known (and also, often, their�tness values), a decision must usually be made about when to end GP runs. Too fewgenerations and GP might not have had su�cient chance to evolve good solutions. Toomany generations and much time might be wasted as GP shows no sign of improvement,with its population having converged to become copies or damaged copies of the bestindividual, unable to produce any better solutions. If left for long enough, the mutationoperators can in theory generate all possible trees, but this isn't perhaps the moste�cient way to use GP. The stopping criteria in this thesis are usually when a knownoptimum is found, or after a certain number of �tness evaluation or generations havepassed, or the computer has crashed. In most cases, trial runs are needed to establisha baseline performance for GP.As new features are added to GP, the programmer experiences what can only bedescribed as a parameter explosion. Each new parameter can a�ect all the originalparameter settings. There is usually no way of knowing what is the best setting fora particular parameter. Guesswork, some testing, and reading the literature, are theonly options available.Once a particular GP design has been decided upon, the decision of what to record asoutput is relatively simple. Usually the �tness of the best individual in each genera-tion is su�cient, along with, perhaps, the average population �tness. Deciding upona particular GP design is usually quite challenging. During the design, much experi-mentation is needed to �nd the best parameter settings, and much data needs to beexamined, processed and stored. A balance has to be struck between recording all in-formation about the GP run that might be useful, and not �lling up gigabytes of diskcomputer space with millions of numbers. If the runs are made repeatable, it should

CHAPTER 2. RAMIFICATIONS OF A LARGE AND MESSY PROBLEM 42be possible to recover any data if it is later deemed necessary.GP Runs: The phrase \A watched kettle never boils" must have been thoughtof with GP in mind. GP can be very slow. Although Nordin et al, [Nordin 94,Nordin & Banzhaf 95], seem to have hit upon an impressively fast GP implementa-tion, where the individuals consist of directly evaluated raw machine code, most im-plementations, such as [Andre & Koza 96, Tackett & Carmi 93, Implementations 97],are compiled from a high level language such as C, or C++, or are even interpreted, e.g.Lisp. Large populations, many generations, di�cult problems, all conspire to producelong run times.The single most important bottleneck in GP is the �tness evaluation stage. In partic-ular with Supervised Training, tree evaluation gets carried out many millions of times.Larger training sets mean more evaluations. Chapter 5 looks at ways of alleviating thisbottleneck. In particular, Dynamic Subset Selection (DSS), has proved to be a verye�ective and robust method for speeding up run times and enabling GP to solve thedi�cult Thyroid problem to a high degree of accuracy.2.7 SummaryThere is a morass of parameters and possible variations of the GP algorithm. Withoutmuch useful theory as a guide, all that remains is re-use of suggested parameterssettings by other practitioners, or seat-of-the-pants twiddling by trial and error.There is as yet no satisfactory way of getting GP to produce trees which can successfullyclassify cases from more than two classes, though there is always the option of splittingthe problem into a series of binary decisions.GP is approaching its current practical limits with the Thyroid problem. Concentratingon the �tness evaluation bottleneck has produced several approaches for speeding upGP evaluations, reducing run times, and producing better solutions than GP using thestandard Supervised Learning method.

Part IIA Closer LookAt Genetic Programming

43

Chapter 3GP Tree Representation
This chapter looks at GP's tree-based representation, with an eye towards boosting theperformance of GP. Following a short reprise of the standard GP tree representation,Section 3.2 investigates the size of the GP search space, which is really very large indeed.Section 3.3 looks at variations of the standard GP tree representation, concentratingespecially on the approach of Automatically De�ned Functions (ADF), where GP candevelop its own functions, potentially more powerful and useful than those in theoriginal function set. The summary in Section 3.4 highlights the speed of the machinecode GP implementation, and the power of ADFs, but indicates that tackling the�tness evaluation bottleneck, as in Chapters 5 and 8, provides more immediate andwidely applicable improvements in GP for supervised learning problems.3.1 The standard GP treeThe standard GP tree is a simple structure, consisting of a mixture of terminal (orleaf) nodes, and non-terminal (or function) nodes with branches. The terminal andnon-terminal nodes are drawn from a set of permitted nodes. Each node, when itis evaluated, returns a value. For a terminal node, this value could be the currentinstantiation of a variable represented by that node, or a constant number, or it couldrepresent an action (also known as a side-e�ect) such as \rotate the left wheel forwardby 90 degrees". If a node does have such a side-e�ect, its value could be simply aconstant, or it could be a value which indicates the success (or not) of the action.A function node's evaluated value usually depends on the evaluations of its subtrees44

CHAPTER 3. GP TREE REPRESENTATION 45(also known as arguments). Such a function node could represent the simple operationof addition, in which case its evaluated value would be the sum of the values of itstwo subtrees, or the function node could represent a sequence of actions, in whichcase each of its subtrees would be evaluated in turn, and the function node's valuemight be the value of its last subtree. One of the commonly used function nodes isIFLTE (If Less Than Or Equal to), with four subtrees, i.e. an arity of four, shown inFigure 3.1.Structure of IFLTE subtree
IFLTE

1st 2nd 3rd 4th

Maximum of A and D
IFLTE

D A A DFigure 3.1: Structure of IFLTE subtree { (If Less Than Or Equal to), arity=4The tree on the left shows the structure an IFLTE subtree, and the tree on the rightgives an example of IFLTE subtree in practice where it returns the maximum valueof the variables A and D. If the value of the �rst subtree is less than or equal to thevalue of the second subtree, the function node's value is taken to be the value of itsthird subtree, otherwise it is taken to be the value of its fourth subtree. If the �rstsubtree always has a value which is less than the second subtree, the fourth subtree ofthe function node IFLTE will never be evaluated.Any and all combinations of function and terminals are permitted. To ensure thatall combinations of nodes produce sensible values, i.e. closure, the function nodes are`protected' to be able to cope with any possible value. This is easily demonstrated bythe divide function. In normal arithmetic, division by zero is not de�ned, and wouldlead to a fatal error in the GP program if a division by zero was attemped. In GP, thisspecial case is covered by de�ning the value of division by zero to be one, or perhapszero. Thus, if the second argument of a division node returns a value of zero, thedivision function still evaluates to a sensible value. This generality is very
exible androbust, allowing any subtree to be replaced by any other subtree, whilst the overall

CHAPTER 3. GP TREE REPRESENTATION 46tree can still be evaluated successfully. Very often, GP trees will not `make sense',and consist in e�ect of mathematical junk. However, it is often possible to constructvery powerful expressions using GP trees. Function nodes can be nested to any depth,though there is usually some restriction on overall tree size.The question of choosing what function and terminal nodes GP is allowed to use is notstraightforward. If function and terminal sets are not su�ciently powerful, GP willnot be able to construct trees which can perform well on the particular problem. Ifthe sets are too large, the search space is very large, and GP can be made even lesse�cient than usual. Choosing function and terminal sets for each problem is an artform, often requiring some experimentation, good knowledge of the problem, and luck,and this thesis makes no attempt to take this aspect of GP any further.3.2 Counting TreesThe number of GP trees which can be constructed from given function and terminalsets and even with a size restriction can be very very large (obviously the number oftrees is in�nite without such a size restriction). This section looks at just how largethat is.It is not a simple task to count the number of trees possible with given function andterminal sets, and, of course, a restriction on tree size. Without such a restriction, thequestion of how many trees are possible becomes rather easy to answer. There are twomain type of tree size restriction:maximum number of nodes {unlimited depth, but an overall limit on the number of nodes.maximum depth {a limited number of levels below the root node, though all subtrees are allowed to�ll out to this depth. It is a much coarser control on tree size than a restrictionon the number of nodes.A literature search produced no easy method for calculating the number of trees pos-sible for a given set of nodes, however it is quite straightforward to design a recursive

CHAPTER 3. GP TREE REPRESENTATION 47search algorithm to do the calculation quickly. Such an algorithm for calculating thenumber of trees possible with a restriction on the number of nodes is as follows:

CHAPTER 3. GP TREE REPRESENTATION 48# Algorithm for calculating the number of trees possible# with a restriction on the number of nodes:### Given a maximum number of nodes, N# Given a list of function node arities, L# Given a number of terminals, T## Store the results for the number of possible trees in a 2-D array,# indexed by the number of subtrees and the maximum number of nodes,# Tree_Count[subtrees, nodes]## Define the recursive COUNT_TREES_WITH_MAX_NODES algorithm, to# calculate the number of trees with exactly N nodes, with these# arguments:## Remaining_subtrees,# the number of subtrees to be filled out with at least one node# Remaining_nodes,# the number of nodes still to be included in the treedefineCOUNT_TREES_WITH_MAX_NODES(Remaining_subtrees,Remaining_nodes) :-if(Tree_Count[Remaining_subtrees,Remaining_nodes] is defined)then{ return(Tree_Count[Remaining_subtrees,Remaining_nodes])}# otherwise calculate it as follows...if(Remaining_subtrees == Remaining_nodes)# i.e.\ can only use terminal nodesthen{ Tree_Count[Remaining_subtrees,Remaining_nodes]= T ** Remaining_subtreesreturn(Tree_Count[Remaining_subtrees,Remaining_nodes])}if(Remaining_subtrees == 1)# have to use a function node at this pointthen{ Subtotal = 0foreach function arity F in the list L, where F < Remaining_nodes

CHAPTER 3. GP TREE REPRESENTATION 49{ Subtotal= Subtotal+ COUNT_TREES_WITH_MAX_NODES(F,Remaining_nodes-1)}Tree_Count[Remaining_subtrees,Remaining_nodes] = Subtotalreturn(Tree_Count[Remaining_subtrees,Remaining_nodes])}# ...otherwise divide nodes amongst subtrees.# The algorithm divides the remaining nodes between the first subtree# and the rest of the subtrees, with the rest of the subtrees getting# at least Remaining_subtrees-1 nodes, and the first subtree getting# at least one node. R is the number of nodes allocated to the rest of# the subtrees. For any particular allocation of nodes, the number of# possibilities is the product of First_subtree_count and# Rest_subtree_count. The total of all possible allocations gives the# number of ways of distributing Remaining_nodes amongst# Remaining_subtrees.Subtotal = 0for(R = Remaining_subtrees -1;R < Remaining_nodes;R = R + 1){ First_subtree_count= COUNT_TREES_WITH_MAX_NODES(1,Remaining_nodes-R)Rest_subtree_count= COUNT_TREES_WITH_MAX_NODES(Remaining_subtrees-1,R)Subtotal= Subtotal + (First_subtree_count * Rest_subtree_count)}Tree_Count[Remaining_subtrees,Remaining_nodes] = Subtotalreturn(Tree_Count[Remaining_subtrees,Remaining_nodes])-: End of definition of COUNT_TREES_WITH_MAX_NODES

CHAPTER 3. GP TREE REPRESENTATION 50The number of trees with exactly N nodes is the result returned byCOUNT TREES WITH MAX NODES(1,N). The algorithm works by recursively cal-culating the number of possible trees with less than N nodes before using that in-formation to calculate the �nal value for N. It will return 0 for a particular N if it isimpossible to construct a tree with exactly N nodes, e.g. with binary arity functionsand even N. A similar algorithm can be constructed to calculate the number of possibletrees of a particular maximum depth (i.e. where no nodes exceed the maximum depth)by using the ideas of Remaining depth instead of Remaining nodes.The number of possible trees for a variety of maximum numbers of nodes N, and avariety of function and terminal sets, are given in Table 3.1 below. As can be seen, thenumber of possible trees with a maximum number of nodes N increases exponentiallywith N. The search space for the Thyroid problem increases in size by a factor 30,approximately, for each increment of N. The search space for the TicTacToe problemincreases more slowly, by a factor 12, approximately. This is due to there being morevariety of function and terminal nodes in the Thyroid problem.If the trees are restricted by depth, then the largest function arity becomes the mostimportant factor to consider. For each increment in allowed depth, the number ofpossible trees increases enormously quickly, much faster than with the restriction onnumbers of nodes. If TreesD is the number of possible trees �lled out to depth D,and Ai is the arity of function i, thenTreesD+1 =Xi (TreesD)AiTrees0 = NumberofTerminalsIt can be seen by inspection that the most important contribution to the increaseof trees with depth comes from the largest function arity, Alargest. For the Thyroidproblem, this means for each increment in depth, the number of possible full treesincreases by at least a power of 4, and the number of nodes in these trees `only'increases by a factor of 4.It has to be said that the GP search space is rather large, rapidly reaching ten to thepower of several hundred even for quite simple problems - far too large to even consider

CHAPTER 3. GP TREE REPRESENTATION 51
The number of possible GP trees with N nodesThyroid Problem, TicTacToe Problem,in Section 6 in Section 8.1arities=f1,1,1,1,2,2,2,2,3,4g arities=f1,2,2,2,2,2gN 23 terminals 10 terminals1 2.3e+01 1.0e+012 9.2e+01 1.0e+013 2.5e+03 5.1e+024 3.9e+04 1.5e+035 1.1e+06 5.3e+046 2.2e+07 2.6e+057 5.8e+08 7.0e+068 1.4e+10 4.6e+07...50 2.7e+71 1.7e+5651 8.2e+72 2.4e+5752 2.4e+74 3.6e+5853 7.3e+75 5.3e+5954 2.2e+77 7.8e+6055 6.5e+78 1.1e+6256 1.9e+80 1.7e+6357 5.8e+81 2.5e+6458 1.7e+83 3.7e+65...200 4.4e+293 2.2e+232201 1.3e+295 3.4e+233202 4.1e+296 5.1e+234203 1.2e+298 7.6e+235204 3.8e+299 1.1e+237205 1.2e+301 1.7e+238206 3.5e+302 2.6e+239207 1.1e+304 3.9e+240208 3.3e+305 5.8e+241Table 3.1: The number of possible GP trees with N nodes

CHAPTER 3. GP TREE REPRESENTATION 52an exhaustive search. The brief calculations above merely hint at its complexity. Onthe face of it, GP is presented with a daunting task when it is required to search thespace for useful trees. In this context, e�orts to reduce the size of the search spacethrough the use of parsimony (a penalty against large trees) and more powerful andcompact functions (described below) seem well worthwhile.3.3 Extending the Function and Terminal SetsData-Typing One consequence of the
exibility of the standard GP representationis that a function node can take any function or terminal nodes as arguments, i.e.function arguments, function node values, and terminal node values, all have the samedata-type. This allows GP operators to combine subtrees indiscriminately and stillproduce legal (though not necessarily e�ective) trees. [Montana 95] looks at strongly-typed GP (STGP), eliminating the closure constraint. Instead of just one data type,the functions and terminals have a variety of data types, and the GP operators arerestricted in what combinations of nodes are allowed, restricting the search space.Montana introduces generic functions, generic data types, and local variables. Thisresults in GP producing a higher percentage of `sensible' trees, though with a largeroverhead for the operators. Montana looks with some success at a variety of \mod-erately complex problems involving multiple data types", but highlights the di�cultyof de�ning good evaluation functions, and shows that STGP (as with most versionsof GP) has di�culty scaling up to much larger problems. [Haynes et al. 96] extendsSTGP by allowing more data types.Linear Representation [Perkis 94] looks at the use of a stack, and a linear programrepresentation instead of the usual tree based representation. Terminals are a class offunction which push preset variables onto a stack. Functions pop their arguments o�the numerical stack and return their result by pushing it onto the stack. Functioncalls that occur with too few items on the stack simply do nothing. Perkis reportsthat stack-based GP can be implemented very e�ciently, and works well with simpleproblems, but again has di�culty scaling up to larger problems.[Nordin & Banzhaf 95] describes a compiling GP system that directly manipulates

CHAPTER 3. GP TREE REPRESENTATION 53SPARC machine code. As with Perkis's Stack-Based approach, Nordin and Bahnzafuse a linear program representation. Although this machine code approach has somelimitations in that the functions are not allowed any side-e�ects, the GP algorithmcan run two orders of magnitude faster than the usual approaches of manipulatingtree representations, and with much smaller memory requirements. This increase inspeed allows Nordin and Bahnzaf's GP to be successfully applied to much larger andmore complex problems than before. Francone et al indicate that rather than beinga hindrance, when compared with the less restricted standard GP tree structure, thecompiling GP's linear representation performs very well on a variety of sparse dataproblems, [Francone et al. 96]. Extending their representation, Nordin and Bahnzafhave demonstrated that their compiling GP system can successfully use a close ana-logue of Koza's Automatically De�ned Functions.Automatically De�ned Functions [Koza 92, Koza 94] introduces the idea ofAutomatically De�ned Functions (ADF). ADF imposes a high-level structure on eachtree in the GP population. Each tree thus has a result-producing branch, which isevaluated to determine the tree's �tness, and the one or more other branches providethe de�nitions of the one or more functions which can be referred to in the result-producing branch, all of which evolve together. Each main branch has its own functionand terminal sets, and a structure-preserving crossover can only occur between theresult-producing subtree of the same main branch in each parent. An example ADFtree is given below in Figure 3.2.
PROGN

DEFUN

ADF0 ARGUMENT LIST

ARG0 ARG1

RESULT BODY

DEFUN

ADF1 ARGUMENT LIST

ARG0 ARG1

RESULT BODY

MAIN RESULT BODY

Figure 3.2: Example of an ADF treeOnly the subtrees labelled `RESULT BODY' can be changed during the evolutionary

CHAPTER 3. GP TREE REPRESENTATION 54process. In the case of this example, the tree consists of two ADF branches and a mainresults-producing branch. The main results-producing branch has an extra functionADF1 in its function set. The ADF1 branch has an extra function ADF0 in its functionset, and two extra, local, terminals ARG0 and ARG1 which refer to the arguments ofany occurrence of ADF1 (which is de�ned here to takew two arguments) in the mainresults-producing branch. The ADF0 branch has two extra, local, terminals ARG0 andARG1 which refer to the arguments of any occurrence of ADF0 (which is also de�nedhere to take two arguments) in the ADF1 RESULT BODY subtree. This structureenforces a hierarchical arrangement of ADFs. Care is taken to avoid recursion by notallowing an ADF branch to refer to itself i.e. not including an ADF in its own functionlist. Any tree-combining operations such as crossover are only permitted betweenequivalent branches in di�erent trees, e.g. the ADF1 result body branch of one treecan only be crossed with the ADF1 result body branch of another. In e�ect, for theexample above, there are three separate breeding populations of branches: the mainresult body, the ADF0 result body, and the ADF1 result body.Koza demonstrates that the ADF approach is e�ective on problems which containa hierarchical structure, in particular where solutions to the main problem can beconstructed through a combination of solutions to easier subproblems. This is demon-strated on the Even-N Parity problem, (also covered in Section 7), where solutions forlarge N can comprise combinations of solutions for smaller N. The whole hierarchy canbe represented by a single GP tree, though the number of ADFs must be speci�ed inadvance. For problems where there isn't a hierarchical structure for ADF to exploit,it is less clear how much ADF is of bene�t to GP. The extra overheads necessary forADF mean that it can cause GP to run more slowly and less e�ciently.Anarchically Automatically De�ned Functions Early experiments in this thesiswith a more
exible form of ADF, Anarchically Automatically De�ned Functions(AADF), indicate that part of the success of ADF is the structure it imposes on theform of the solution. With AADF, automatic function de�nitions can occur anywhereand more than once within the GP tree, unlike in ADF where the tree structure placesstrict limits on possible function de�nitions. An example AADF tree is shown in Fig-ure 3.3 below, where the `div' function node is being rede�ned. Any of the functions in

CHAPTER 3. GP TREE REPRESENTATION 55the function set or terminals in the terminal set could be rede�ned in this way includ-ing, strangely enough, the key REDEFUN function node by which the rede�nitionstake place.The REDEFUN function takes three arguments:� Left branch: the name of the function being rede�ned, taken to be the root nodeof that subtree (`div', in this example). If this subtree consists solely of a terminalnode, then that terminal is being rede�ned.� Middle branch: the new de�nition of this function (or terminal)� Right branch: a result-producing branch in which the new de�nition of the func-tion (or terminal) takes e�ectEach function has a default de�nition that can be overridden by REDEFUN. In thisexample, the default de�nition of `div' is protected division, i.e. its value is the result ofdividing its �rst argument by its second argument, with checks to ensure that divisionby zero does not occur. The `div' function has an arity of 2, i.e. it takes two arguments.Thus the rede�ned version must also have two arguments. (All the functions in thisexample have an arity of two or one.) In the example, where `div' occurs in the right-most, result-producing branch of REDEFUN, it has two arguments `B' and `X'. Thevalues of these two arguments are passed to the new de�nition of `div' by temporarilychanging the values of `X' (to be the �rst argument, i.e. the value of `B') and `Y' (tobe the second argument, i.e. the value of `X') within the middle, rede�nition branch ofREDEFUN. In the example, `X' is being used within the rede�nition, but `Y' is not,so the value of the second argument of the `div' node in the result-producing branchhas e�ectively been ignored within the rede�nition branch.`X' and `Y' have been added to the terminal set specially to allow REDEFUN to de�nefunctions up to an arity of two. Rede�nitions of any of the arity two functions willinvolve the use of `X' and `Y' in this way. Rede�nitions of any arity 1 functions, e.g.`SQRT', will only make use of `X'. In other function sets, with higher arity functions,more terminals would need to be used to pass the values of the functions' argumentsinto the rede�nition. The `X' and `Y' (and however many other argument-related)

CHAPTER 3. GP TREE REPRESENTATION 56nodes would normally be initialised with some simple default values, e.g. 1.As can be seen in the example tree in Figure 3.3, the new behaviour of `div' is tomultiply its �rst argument by the value of `A', ignoring the value of its second argument.Thus, in the result branch of the REDEFUN node in the example, the value of the`div' subtree is B multiplied by A, rather than B divided by X.The same approach can be used to rede�ne terminal nodes. In this case, the left-mostREDEFUN subtree would consist simply of one terminal node, the middle subtreewould be its new de�nition, possibly making use of the original value of the terminal.Unlike in the rede�nition of function nodes, as described above, the two terminals Xand Y would not be rede�ned, since the terminal node takes no arguments. The right-most subtree would be the result-producing branch in which the new de�nition of theterminal takes e�ect.
redefinition
takes effect
in this
branch

node being
redefined

+

-

C A

REDEFUN

div

B C

*

X A

*

SQRT

div

B X

+

A Y

...takes
three
arguments

new
definition
of ‘div’

new
definition
is used
here

nodes
(unused)

garbage

(and of ‘X’ and ‘Y’
within this branch)

AADF in action!

Figure 3.3: example AADF treeThis AADF representation is extremely
exible and almost totally useless. Like thebasic GP representation, it has closure, so that any function node can take any functionor terminal nodes as arguments. It can allow recursion, iteration, rede�nition of anyfunction or terminal, and hierarchical de�nitions, all at any location within the tree,and as often as any restrictions on tree size permit. Recursion can be avoided or

CHAPTER 3. GP TREE REPRESENTATION 57controlled by providing a default behaviour if a new de�nition refers to itself, e.g. thede�nition branch of the REDEFUN node can only make use of an earlier de�nition ofthe node being rede�ned. It makes sense to put a block on the REDEFUN node beingrede�ned.Extremely powerful and
exible trees can be constructed using AADF. By adding aREDEFUN at the top of a tree, all instances of the rede�ned node have their beha-viour changed simultaneously. It is possible to create function hierarchies of arbitrarydepth, whereas in ADF the hierarchy is de�ned at the start of the run. However, suchAADF trees are also very unlikely to occur during the evolution of a population, sinceseveral parts of a tree have to be right simultaneously for an instance of a REDEFUNnode to be e�ective. This is extremely unlikely to say the least. Early, discouraging,experiments with several variations of AADF indicate that GP is totally unable totake advantage of such
exibility. The REDEFUN nodes and their associated extrasubtrees behave much like spurious junk nodes, with no impact on the trees' �tnesses,except perhaps bringing about a larger parsimony penalty. Much care and much morethought is needed to enable GP to take advantage of AADF. One possibility is tocause certain links between nodes to be made inviolate, i.e. the reproduction operatorsprevented from splitting the trees at those points. Another possibility is to includerewards in the �tness function for making use of the extra features. This might enableGP to retain the extra complications long enough to make use of them.Adaptive Representation (AR) [Rosca & Ballard 94] looks at the discovery ofuseful subtrees (building blocks) in a population, generalising them, and adding themto the function set, in e�ect `adapting the problem representation on-the-
y'. The nextgeneration of trees can then make use of these new and hopefully more powerful func-tions, allowing GP to construct a hierarchy of new function de�nitions in the functionset for the entire population to exploit. Although this approach requires lots of extraprocessing of the population, Rosca and Ballard state that \all new building blockscan be discovered in O(population size) time". Each time a new function is added,the population goes through `considerable' changes as it evolves to take advantage ofit. Rosca and Ballard use this adaptive representation to tackle the Even-N-Parityproblem (also covered in Chapter 7) up to N = 11, showing that AR compares well

CHAPTER 3. GP TREE REPRESENTATION 58with ADF in terms of computational e�ort, scaling up well to the larger N. As withADF, AR is an e�ective hierarchical approach to problem solving with GP.Both ADF and AR enable GP to explore a search space of smaller trees, by allowingGP to use smaller, more powerful trees, rather than larger unwieldy trees with lesspowerful components that are more prone to being split up during reproduction.3.4 SummaryThis chapter has taken a brief look at GP's tree-based representation, with an eyetowards boosting the performance of GP. The number of possible GP trees is huge,and is most dependent on the largest arity of the functions in the function set. Thebasic speed of the GP algorithm can be boosted by two orders of magnitude by directlymanipulating machine code segments, though with several restrictions such as using alinear representation with a limited number of possible instructions, and the functionsand terminals not having any side-e�ects. However, it still performs very well andis, of course, exceedingly fast, so that it seems worthwhile persevering despite thelimitations it might have. Koza's Automatically De�ned Functions and Rosca andBallard's Adaptive Representation can both take advantage of hierarchical structureinherent in several di�cult problems, allowing GP to solve problems of far greatercomplexity than it could manage with the standard representation. However, it is notclear how well ADF and AR would perform on similarly di�cult problems withoutsuch an exploitable hierarchical structure.Although obviously powerful additions to the GP toolkit, the compiling GP system,ADF, and AR, all would require a fairly substantial modi�cation or rewrite of an exist-ing implementation of GP. This thesis concentrates on some modi�cations to standardGP which are easier to implement, such as the more complex �tness function of Dy-namic Subset Selection, in Chapter 5, which should work well with all of the extensionsto GP mentioned above.

Chapter 4GP Tree Recombination andSelection
There have been many studies of the performance and e�ects of operators inGAs, and rather fewer for GP. [Koza 92] looks at the standard operators, insistingthat Crossover is essential to GP performance. O'Reilly and Oppacher in severalstudies, [O'Reilly & Oppacher 96, O'Reilly & Oppacher 92, O'Reilly & Oppacher 94b,O'Reilly & Oppacher 95a], concentrate on designing powerful Mutation operatorswhich function with a variety of Hill-Climbing techniques, (i.e. they do not re-quire either a population or Crossover), or looks at other hybrids involving Cross-over. [O'Reilly & Oppacher 95b] looks at a GP version of the GA Schema Theorem,[Holland 75], the main backbone of GA theory, and �nds that it does not transfer wellto GP, concluding amongst other things that it \constitutes a narrow and impreciseaccount of GP search behaviour."The most common GP operators are simple, and ine�cient, i.e. they have a low like-lihood of producing children which are as �t or �tter than their parents. This thesisdoes not look any further at ways of improving GP operators, which would be highlyproblem speci�c (but see [Vere 95] for work on e�cient operators working on decisiontrees, and [Montana 95, Haynes et al. 96] for work on Strongly-Typed GP, where op-erators are restricted in how they can alter trees). The use of a restriction on tree sizeis also common to many GP implementations, and this can be seen in Section 4.1 tointeract adversely with the main GP operator, Crossover.Tournament Selection is a widely used method for picking individuals from the pop-59

CHAPTER 4. GP TREE RECOMBINATION AND SELECTION 60ulation as parents for the operators to work on, and is the selection method usedthroughout this thesis. Section 4.2 takes a look at some of the consequences of usingTournament Selection and some reasons why it was used in this thesis.4.1 Crossover and the MAX problemThe Crossover operator is common to most implementations of GP, providing a simplebut powerful method for recombining genetic material in a population. Crossover seemsto be in widespread use in its simplest form, described in Section 4.1.3, mixing twoparent trees through the exchange of randomly selected subtrees to produce one or twochild trees. Mutation operators are often used in combination with Crossover. Alsocommon to most GP is some form of upper limit on tree size, necessary to prevent thepopulation expanding to exceed available computer resources.This section introduces the MAX problem for GP, a convenient mechanism for lookingat the machinations of Crossover. The task is to produce the largest possible valuefor a given function and terminal set and maximum tree depth or maximum numberof nodes. Ostensibly an easy problem for GP to solve, results for several variations ofthe MAX problem, given in Section 4.1.5, con�rm some inadequacies of the crossoveroperator in normal use. These are highlighted in an analysis in Section 4.1.6. Evenwith the mitigating e�ects of some mutation operators, described in Section 4.1.3, a lossof diversity in the upper levels of trees in the population due to Crossover, discussedin Sections 4.1.5 and 4.1.7, leads to premature convergence to sub-optimal solutions.This is made irreversible through the interaction of Crossover and the restriction ontree depth.The tendency of Crossover to ignore the upper tree levels should be well known, butthe extent of its negative impact on population diversity and premature convergenceare made more apparent here through the use of the MAX problem.This section is an extension of the paper [Gathercole & Ross 96], in which the MAXproblem was �rst published, which looked solely at a restriction on tree depth. With arestriction on the number of nodes, the MAX problem is more complex for GP, exper-iencing more subtle interactions between the action of the operators and the tree size

CHAPTER 4. GP TREE RECOMBINATION AND SELECTION 61restriction. Langdon and Poli take the MAX problem further in [Langdon & Poli 97],concentrating on the restriction on tree depth, but considering bigger trees, di�erentselection pressures, di�erent initialisations of the population, measuring populationvariety, and the number of steps required to solve the MAX problem.4.1.1 Why Restrict Tree SizeGP e�ortlessly takes computers beyond their limits both in terms of memory andCPU use. Ways of reducing CPU use are investigated in Chapters 5 to 8. Two ofthe easiest ways for reducing GP's memory requirements are restricting the populationsize, also investigated in Chapter 8, and restricting individual tree sizes within thepopulation. Both of these methods limit GP's use of memory. This section looks atsome consequences of imposing restrictions on tree size.Trees in a GP population have a tendency to `bloat'. This phenomenon, noted in[Blickle & Thiele 94], might be explained by the fact that larger trees (i.e. ones whichcontain more garbage or redundancy in the form of super
uous subtrees) are morelikely to survive the actions of Crossover undamaged. Smaller trees are likely to resultin damaged, un�t trees after Crossover. Whilst nice from a perspective of wishing thetrees well, the bloat phenomenon can be a hindrance to the GP user. Another factorcould be `hitch-hiking', where super
uous subtrees bene�t from their proximity in �ttrees to �t subtrees. Crossover and selection are quite likely to copy and spread theassociated non-contributory subtrees along with the �t subtrees. The trees in the GPpopulation expand with each generation, requiring a larger memory allocation, andcan result in a reduction in CPU e�ciency.The open-ended nature of bloating is questioned in [Rosca 96]. Rosca suggests theexistence of \size attractors", where trees in a population will expand to a certainsize range and then
uctuate within this range without continuing to expand indef-initely. Rosca also questions the bias commonly introduced into GP runs in favourof small trees, suggesting that the generalisation capabilities of such small trees areless than those of larger trees. To avoid these di�culties, Rosca proposes an AdaptiveRepresentation, explicitly evolving and selecting code modules instead of entire trees(described in Section 3.3).

CHAPTER 4. GP TREE RECOMBINATION AND SELECTION 62In theory, for a classi�cation problem, it is usually possible to construct a huge GPtree which can perform 100% successfully on the training set by explicitly dealing withevery case in the training set. In e�ect, the tree memorises the entire training set -an extreme form of over�tting. Such a tree is unlikely to perform well on a di�erenttest set, where the individual cases are not the same as those in the training set. Thisis the dilemma of generalisation versus memorisation (over�tting). Ideally, GP shouldproduce small trees which contain the essence of what is needed to solve all possiblecases, having generalised from the training set to all possible cases. One of the simplestmethods of biasing GP towards generalising rather than memorising is to prefer smallertrees to larger trees in the selection process, and is sometimes known as the principleof Occam's Razor. A standard approach used in Machine Learning is to train usingjust the training set, and regularly test the best individual using the test set, stoppingwhen the performance on the test set begins to worsen. It has been hypothesised indiscussions within the GP community that GP is quite resistant to over�tting. Suchover�tting was not apparent during the runs of GP in this thesis. Best-of-generationtrees' performances on test sets were always still improving towards the end of runs ifthe training performance was improving. Perhaps the runs never ran long enough toreach a situation where the test performances would begin to worsen.Looking further at the generalisation capabilities of smaller versus larger decision trees(i.e. not speci�cally GP trees), [Webb 96] questions the \utility of Occam's Razor" asa guiding principle in Machine Learning. Starting with small, simple decision trees,Webb adds complexity to them without a�ecting their performance on the trainingsets, using only the training sets as a guide, then compares their performance on theassociated test sets. The larger trees generalise better. Whilst not demonstrating thatlarger GP trees generalise better than smaller GP trees, Webb's study does suggestthat the bias towards smaller trees should be considered carefully.Nevertheless, despite possible good reasons for allowing GP trees to grow unbounded,it is often impractical to let them do so. Some form of tree size restriction is necessary.There are four main types of size restriction reported in the literature: two of which setexplicit size limits, one which edits trees to remove super
uous nodes, and one whichbiases GP against selecting larger trees as parents.

CHAPTER 4. GP TREE RECOMBINATION AND SELECTION 63� A limit on the number of nodes in a tree- each time a new tree is generated in the breeding stage, it is scanned, and thenumber of nodes counted.� A limit on the depth of a tree- each time a new tree is generated in the breeding stage, it is scanned, and thedepth calculated, i.e. the longest path from the root node to any leaf node.If the child tree size exceeds the limit, some form of default is applied, e.g. the childtree is made into a simple copy of its parent, or the breeding step is repeated until itgenerates a `legal' tree, or the too-large tree is pruned in some way down to size. Eachof these methods for dealing with the size limit has consequences for the direction ofthe evolution of the GP population.� Tree editing- there are several ways of explicitly reducing the size of trees. [Soule et al. 96]looks at the removal of known and obviously super
uous subtrees. Such subtreescan be calculated in advance using the properties of the function set. However,Soule et al then noted the spreading of super-super
uous subtrees, i.e. super
uoussubtrees which avoided the culling process.Another, more subtle and directed form of editing is described in[Blickle & Thiele 94, Blickle 96]. The edges of each GP tree traversed duringevaluation are marked. Unmarked edges are those which did not contribute tothe �tness of the tree, and those subtrees are replaced by randomly chosen ter-minals.� Parsimony- a penalty is added to the �tness value of a tree proportional to its size, i.e.trees with more nodes have a larger penalty included in their �tness values. Thismethod can function without any explicit upper limit on tree size. Instead, itbiases the selection of parents towards smaller trees. In e�ect it turns a GPproblem into a multi-objective optimisation problem, where the �tness of a tree

CHAPTER 4. GP TREE RECOMBINATION AND SELECTION 64

0

100

200

300

400

500

600

0 500 1000 1500 2000 2500 3000 3500 4000

N
um

be
r o

f n
od

es
 in

 B
es

t-o
f-g

en
er

at
io

n
tre

e

Generations

Spike and Decay with Parsimony: Plot of tree size of Best-of-generation tree

Number of nodes in tree

Figure 4.1: Spike and Decay with Parsimony - shows a typical pro�le of the tree sizeof the best of generation individual, as parsimony provides a bias towards the selectionof smaller but equally �t variants of the best of generation individual (showing a decayin tree size), without hindering the discovery of new, �tter, but much larger trees,(showing a spike in tree size).depends both on its performance on a problem and on its size. The bias againstlarge trees can be made very weak when the size of the penalty is always less thanthe smallest unit of �tness. In classi�cation problems this is easy to implement,since the smallest unit would be 1, corresponding to a misclassi�cation of a singlecase. With a penalty factor of 0:001 �NumberOfNodesInTree, the parsimonyfactor would only have an e�ect on two equally �t but di�erent sized trees, aslong as the trees never exceeded 999 nodes in size. For other problems with amore �ne grained �tness function, a decision has to be made on the impact ofthe parsimony on the �tness value.[Zhang & Muehlenbein 95] looks at an \adaptive balancing of accuracy and parsi-mony", a method for automatically varying the size of the parsimony penaltyaccording to the quality of the current best solution. The parsimony penaltystarts low, and is increased as the quality of the best solution increases.In use, parsimony has the desired e�ect of restricting tree growth. During a

CHAPTER 4. GP TREE RECOMBINATION AND SELECTION 65typical run, the trees expand quickly to a certain, problem (and parameter)-related size range. New, �tter trees which are the result of Crossover are oftenmuch larger than the population average. These �tter trees will continue to beselected, but any child trees which have the same �tness but fewer nodes, perhapsthrough the action of a mutation operator snipping out a super
uous subtree,will be preferentially selected.Looking at Figure 4.1, a typical run taken from Chapter 8 on the TicTacToeproblem, showing the size of the best of generation tree as the generations pro-gress, a spike-decay curve is evident several times during the course of this typicalrun. The `spike' corresponds to the discovery of a �tter but very large individual.The `decay' corresponds to the discovery of equally �t but smaller variations ofthe tree. The �nal spike which occurs just before generation 2500, coincides withthe discovery of an optimum tree which scores 100% on the training set. As therun continues, selection pressure favours smaller but equally �t variants of thistree, resulting in a classic decay curve.In practise, if the di�culty of the problem is not known, and it is likely thatthe population will expand to exceed the memory allocation even with the biastowards selecting smaller trees, parsimony is used in combination with one of theexplicit limits on tree size mentioned above.In this thesis, every e�ort was made to allow the GP trees to expand without anyexplicit limits, but with a weak parsimony factor biasing selection towards smallertrees. With large populations, e.g. 5000, in Section 6, this was not possible, and anexplicit size restriction was needed. With smaller populations, e.g. 400, and 50, inSections 7 and 8, there was su�cient memory to allow the trees to grow unbounded totheir `natural' size.The MAX problem, described below, looks at the consequences of a strict upper limiton tree size interfering with the actions of the Crossover operator when the trees inthe population have expanded close to the limit.

CHAPTER 4. GP TREE RECOMBINATION AND SELECTION 664.1.2 The MAX ProblemThe MAX problem was constructed speci�cally to investigate what happens when thetrees in a GP population expand to reach an explicit restriction on tree size. Thetask is to �nd a tree which returns the largest possible value for a given terminal andfunction set, with a depth limit, D, or a limit on the number of nodes, N. No trees areallowed to exceed the size restriction. GP is given a maximum number of generations(the cuto�) in which to �nd an optimal tree, after which it is considered to have failed.The cuto� is made su�ciently large so as to give GP a good chance of �nding theoptimal tree before reaching the generation limit. In every successful run of the MAXproblem the number of generations needed to �nd the optimal tree was much less thanthe cuto�.The MAX problem for GP is analogous to the Ones-Max problem for GAs,[J.D.Scha�er et al. 91], where an individual consists of a �xed length binary string(since GP uses a non-linear representation, this analogy can only be a very loose one),and its �tness is simply the sum of its bit values. The optimal solution has all of itsbits set to on. Although a simple problem, in practice a GA's population often con-verges to a state where every individual has some bits set to o� in the same positionsas every other individual, if the chromosome is su�ciently long. Thus GA Crossover,the usual method for recombining individuals where substrings are taken from two ormore parents to create a child, will result in new individuals with the same bits setto o�. GA Mutation is then the only operator which can change the o� bits to on,resulting in only a slow progression of the population towards discovering the optimalsolution. The process by which o�-bits turn up at the same positions in each individualin the population is known as hitch-hiking, and is a consequence of using the crossoveroperator and selection. When substrings are recombined by Crossover to produce �tindividuals, the �t individuals get favoured by the selection process and any o�-bitsget carried along for the ride. Soon all individuals in the population are the same asor close copies of the �ttest individuals, all sharing the same o�-bits.For GP and the MAX problem, since the optimal trees will, by necessity, need toextend to the maximum depth (or number of nodes), the size restriction in the MAX

CHAPTER 4. GP TREE RECOMBINATION AND SELECTION 67problem is obviously a more important factor than in most other GP problems. Itbecomes apparent below that the interactions between the function and terminals sets,size restriction, Crossover, and selection pressure, can combine to make it very di�cultfor GP to �nd an optimal tree. In fact, the problem can be considered deceptive forGP, where the �tness contributions of subtrees discovered early on in the search leadGP astray, away from discovering the necessary subtrees later on.There are several advantages of the MAX problem for looking at GP as stated: resultsare known quickly; the solution space is easy to visualise; the optimal trees are knownin advance; the problem can be varied and made more di�cult in small steps.The MAX problem can be expressed as� MAX-depth-D-fFunction SetgfTerminal Setg� MAX-nodes-N-fFunction SetgfTerminal Setgrepresenting the two di�erent size restrictions. The di�erent versions of the MAXproblem covered in this thesis are as follows:MAX-depth-D-fFunction SetgfTerminal SetgThe simplest form of the MAX problem is MAX-depth-D-f+gf1g, where the onlyoptimal solution (shown in Figure 4.2, for D = 4) is a full tree of `+'s and `1's. For agiven depth D, where the root node is counted as depth 0, the maximum possible treevalue is 2D. The depths tested are from 3 to 8.InMAX-depth-D-f*,+gfng, the `*' (times) function is of no use in terms of return-ing large values unless both its arguments are greater than 1. This requires the useof the `+' function to add the small terminals together, creating values greater than1. So the `+' function is most e�ective near the leaves of the tree. The `*' functionis most e�ective at the top of the tree, if su�ciently large values are returned by thesubtrees.For MAX-depth-D-f*,+gf1g, the optimal tree, shown in Figure 4.3 for D = 4,consists of `1's in the bottom layer, `+'s in the penultimate layer, `+'s or `*'s in the

CHAPTER 4. GP TREE RECOMBINATION AND SELECTION 68
+

1 1

+
+

1 1

+
1 1

+
+

+

1 1

+
1 1

+
+

1 1

+
1 1

+
+

+
+

1 1Figure 4.2: Optimal Tree for MAX-depth-4-f+gf1g
+

1 1

++

*

+
1 1

+

* *

+
1 1

+ +
1 1

+
*+or *+or *+or *+or

1 1 1 11 1 1 1Figure 4.3: Optimal Tree for MAX-depth-4-f*,+gf1g
++

*

++ ++ + + +

*+or *+or

+ + + +

.5 .5 .5 .5 .5 .5 .5 .5 .5 .5 .5 .5 .5 .5 .5 .5Figure 4.4: Optimal Tree for MAX-depth-4-f*,+gf0.5g
++ ++ ++ + + +

+ + + +

*+or

+ +

.25 .25.25 .25.25 .25.25 .25.25 .25 .25.25 .25 .25 .25 .25

++ ++ ++ + + +

+ + + +

*+or

+ +

.25 .25.25 .25.25 .25.25 .25.25 .25 .25.25 .25 .25 .25 .25

*

Figure 4.5: Optimal Tree for MAX-depth-5-f*,+gf0.25g

CHAPTER 4. GP TREE RECOMBINATION AND SELECTION 69next-to-penultimate layer, and `*'s in any layers above that. For a given depth D, themaximum possible tree value is 42D�2 , where D >= 2, and there are 2D�2 distinctoptimal trees. The depths tested are from 3 to 6.The MAX problem can be made progressively more di�cult for GP by decreasing thesize of the constant terminal (the reasons for this are described below in Section 4.1.7).To keep the arithmetic simple, the constants have been kept to inverse powers of 2.With MAX-depth-D-f*,+gf0.5g, the constant has been reduced from 1 to 0.5,and now an optimal tree consists of one more layer of `+'s and one less layer of `*'s.The generic optimal tree is shown in Figure 4.4 for D = 4. For a given depth D,the maximum possible tree value is 42D�3 , where D >= 3, and there are 2D�3 distinctoptimal trees. The depths tested are from 3 to 7.With MAX-depth-D-f*,+gf0.25g, the constant has been reduced again to 0.25,with an extra layer of `+'s in the optimal tree as a consequence, shown in Figure 4.5for D = 5.
*

*
* * * * * *

**
*

/

/
/

/

.9 .9 .9 .9 .9 .9 .9 .9 .9 .9 .9 .9 .9 .9 .9 .9Figure 4.6: Optimal Tree for MAX-depth-4-f*,/gf0.9gThe variationMAX-depth-D-f*,/gf0.9g involves the `/' (divide) function instead ofthe `+' function. The two functions, `*' and `/', must be combined together asymmet-rically to create an optimal tree. The `*' function's role becomes that of providing assmall a value as possible which, as the second argument of the `/' function, is turned intoa large value. The optimal tree for MAX-depth-D-f*,/gf0.9g, shown in Figure 4.6 forD = 4, has a di�erent structure from the optimal tree for the MAX-depth-D-f*,+gfngproblems. Most of the tree layers consist of an unbalanced mix of the two functions.

CHAPTER 4. GP TREE RECOMBINATION AND SELECTION 70MAX-nodes-N-fFunction SetgfTerminal SetgA subset of the variations described above are attempted with a restriction on thenumber of nodes instead of depth. The optimal trees for the MAX-nodes-N variationsare more complex than for MAX-depth-D. For this reason, MAX-nodes-N-f*,/gf0.9gis not investigated further here, since it isn't immediately obvious what an optimaltree would look like. For the other variations, MAX-nodes-N-f*,+gfng, the optimaltrees have been established. Unlike with the MAX-Depth-D versions, there are manyoptimal trees for each problem, and the search spaces are much much larger.
*

*

+

+

+

.25 +

.25 +

.25 +

+

.25 +

.25 .25

.25

.25

+

+

.25 .25

.25

+

+

+

.25 .25

+

+

.25 +

.25 .25

.25

+

.25 +

+

.25 .25

.25

*

+

+

.25 +

+

.25 .25

.25

+

+

.25 .25

+

+

.25 +

.25 .25

.25

+

+

.25 +

+

.25 +

.25 .25

.25

+

.25 +

.25 +

+

.25 .25

.25

Figure 4.7: An optimal tree for MAX-nodes-81-f*,+gf0.25gOne of the many optimal trees for MAX-nodes-81-f*,+gf0.25g is shown in Figure 4.7.As with the optimal trees for MAX-depth-D, the tree has `*' nodes near the rootjoining subtrees consisting entirely of `+'s and the constant 0.25, in this case. Thereare 41 terminal nodes, 38 `+'s, and 3 `*'s. Three of the four f+,0.25g subtrees haveten constants and nine `+'s each, with a return value of 2.5. The other subtree haseleven constants and ten `+'s, with a return value of 2.75. The four subtrees are joinedby three `*'s to give an optimal return value of 2:75 � 2:5 � 2:5 � 2:5 = 42:96875.

CHAPTER 4. GP TREE RECOMBINATION AND SELECTION 71No set formula is given here for the tree structure or return value of an optimal treefor each MAX-nodes-N problem. The proof of such a formula is not straightforward,though it is made easier by sticking with the binary arity functions `+' and `*'. Theproblem of constructing provably optimal trees by hand is an interesting topic in its ownright. Instead, a quick enumeration algorithm was constructed to generate the struc-ture and hence return value of an optimal tree for a given N. The following guidelinescan be used to speed up the algorithm to �nd an optimal tree.A MAX-nodes-N-f*,+gfng tree can be viewed as(n+ n+ n+ :::) � (n+ n+ ::) � (n+ n+ n+ n:::) � :::made up of some subtrees consisting only of `+'s and `n', combined together by some`*'s. This can be written as TreeV alue = tYi=1Siwhere t is the number of subtrees, Si, containing only `+'s and `n's, andSi = CiX1 n = n � Ciwhere `n' is the value of the constant node, and Ci is the number of constant nodes insubtree Si, with the following constraint on the total number of nodes to satisfy thesize restriction t� 1 + tXi=1(Ci + Ci � 1) = Nwhere N is the maximum allowed number of nodes, i.e. the number of `*' nodes joiningthe t subtrees (i.e. t-1) plus the sum of the number of `+' and `n' nodes in each subtreemust be no greater than N. An optimal tree would use all N nodes, assuming N isodd, otherwise it could only use N-1 nodes, being unable to incorporate the remainingnode into the binary tree (a binary tree can only have an odd number of nodes). Morespeci�cally, when N is odd,

CHAPTER 4. GP TREE RECOMBINATION AND SELECTION 72tXi=1Ci = N + 12since the number of terminal nodes is one greater than the number of function nodes(with the proviso that the function nodes are binary). All the remaining N�12 nodesare function nodes. It is simple to show that if Ci > Cj + 1, for some i and j, (i.e. onesubtree has at least two more constant nodes that another subtree), the overall treevalue can be increased by decrementing the larger Ci and incrementing the smallerCj. Thus all the f+,ng subtrees in an optimal tree have the same number of nodes,or di�er only by one `+' and one `n'. For su�ciently small N, there is a cuto� pointwhere the optimal tree need contain no `*' nodes. For the values of the constant nused here, i.e. 1, 0.5, and 0.25, this cuto� point can be calculated fromn � N + 12 � 4i.e. when there are insu�cient nodes to construct a f+,ng subtree with a return valuegreater than 4. If a f+,ng subtree has a return value greater than 4, it can be splitinto two smaller f+,ng subtrees, and combined using `*' to produce a greater returnvalue than before. For larger values of the constant n, an extra constraint would beneeded.Using all the above criteria, a quick enumeration of the few remaining possibilitiesfor a given N results in a list of the number of terminal nodes in each f+,ng subtree.From here it is straightforward to calculate the optimal tree value, and the variouspermutations of these subtrees to give all the optimal tree structures.A MAX-nodes-N-f*,+gfng tree can be represented by a list of numbers, where eachelement in the list is the number of constants in a f+,ng subtree. The length of thelist gives the number of such subtrees. These subtrees are then combined by `*' nodesto produce the �nal tree. For example, the list (11,10,10,10) represents all the optimaltrees for MAX-nodes-81-f*,+gf0.25g, one of which is displayed in full in Figure 4.7.The total number of trees for a given list, such as (11,10,10,10), can be calculated asfollows (making use of the algorithm for calculating the number of possible tree with agiven number of nodes, and for given function and terminal sets, shown in Section 3.2):

CHAPTER 4. GP TREE RECOMBINATION AND SELECTION 73Given the list of numbers of constants in subtrees, (11,10,10,10):subtree11 = 16796, the number of subtrees with 11 `n' nodes (and 10 `+' nodes)subtree10 = 4862, the number of subtrees with 10 `n' nodes (and 9 `+' nodes)The number of ways of combining 4 subtrees and 3 `*' nodes, where 3 subtrees are thesame size, is the number of permutations of 4 objects (with 3 being identical) timesthe number of ways of combining 4 subtrees (where each subtree can be considered asa terminal node) and 3 `*' nodes, subtree4.SubtreePermutations = 4 � subtree4 = 4 � 5 = 20Thus the total possible number of trees from f11,10,10,10g isNumberOfTrees = SubtreePermutations � subtree11 � (subtree10)3 ' 8 � 1015In Table 4.1, the optimal tree value, the number of possible optimal trees, thenumber of trees possible up to and including the size limit, the list of sub-tree sizes, and the list of subtree values, are given for a range of values of Nfor the problem MAX-nodes-N-f*,+gf0.25g. A periodic variation is apparent inthe list of subtree sizes whose period increases as N increases. Table 4.2, forMAX-nodes-N-f*,+gf0.5g, and Table 4.3, for MAX-nodes-N-f*,+gf1g, show similarfeatures to that for MAX-nodes-N-f*,+gf0.25g. The period of the cycle is shorter forn = 0:5, and shorter still for n = 1, due to the fact that the f+,ng subtrees with largerconstants need fewer nodes to produce a su�ciently large return value for the `*' nodesto be e�ective.

CHAPTER 4. GP TREE RECOMBINATION AND SELECTION 74
Details of the optimal trees for MAX-nodes-N-f*,+gf0.25g, where 27 � N � 97N MAX Value Optimal Possible Constants Subtreetrees trees per subtree values27 3.5 7.43e+05 7.08e+09 14 3.529 3.75 2.67e+06 5.09e+10 15 3.7531 4. 9.69e+06 3.69e+11 16 433 4.5 1.23e+06 2.69e+12 9 8 2.25 235 5.0625 2.04e+06 1.97e+13 9 9 2.25 2.2537 5.625 1.39e+07 1.45e+14 10 9 2.5 2.2539 6.25 2.36e+07 1.07e+15 10 10 2.5 2.541 6.875 1.63e+08 7.95e+15 11 10 2.75 2.543 7.5625 2.82e+08 5.93e+16 11 11 2.75 2.7545 8.25 1.97e+09 4.43e+17 12 11 3 2.7547 9. 3.46e+09 3.32e+18 12 12 3 349 9.75 2.45e+10 2.50e+19 13 12 3.25 351 10.5625 4.33e+10 1.88e+20 13 13 3.25 3.2553 11.390625 2.92e+09 1.42e+21 9 9 9 2.25 2.25 2.2555 12.65625 2.98e+10 1.08e+22 10 9 9 2.5 2.25 2.2557 14.0625 1.01e+11 8.16e+22 10 10 9 2.5 2.5 2.2559 15.625 1.15e+11 6.20e+23 10 10 10 2.5 2.5 2.561 17.1875 1.19e+12 4.72e+24 11 10 10 2.75 2.5 2.563 18.90625 4.11e+12 3.60e+25 11 11 10 2.75 2.75 2.565 20.796875 4.74e+12 2.74e+26 11 11 11 2.75 2.75 2.7567 22.6875 4.98e+13 2.10e+27 12 11 11 3 2.75 2.7569 24.75 1.74e+14 1.61e+28 12 12 11 3 3 2.7571 27. 2.03e+14 1.23e+29 12 12 12 3 3 373 29.25 2.16e+15 9.45e+29 13 12 12 3.25 3 375 31.6875 7.63e+15 7.26e+30 13 13 12 3.25 3.25 377 35.15625 6.57e+14 5.58e+31 10 10 10 9 2.5 2.5 2.5 2.2579 39.0625 5.59e+14 4.30e+32 10 10 10 10 2.5 2.5 2.5 2.581 42.96875 7.72e+15 3.31e+33 11 10 10 10 2.75 2.5 2.5 2.583 47.265625 4.00e+16 2.56e+34 11 11 10 10 2.75 2.75 2.5 2.585 51.9921875 9.21e+16 1.97e+35 11 11 11 10 2.75 2.75 2.75 2.587 57.19140625 7.96e+16 1.52e+36 11 11 11 11 2.75 2.75 2.75 2.7589 62.390625 1.11e+18 1.18e+37 12 11 11 11 3 2.75 2.75 2.7591 68.0625 5.85e+18 9.12e+37 12 12 11 11 3 3 2.75 2.7593 74.25 1.36e+19 7.06e+38 12 12 12 11 3 3 3 2.7595 81. 1.19e+19 5.47e+39 12 12 12 12 3 3 3 397 87.890625 4.00e+18 4.24e+40 10 10 10 10 9 2.5 2.5 2.5 2.5 2.25Table 4.1: Details of the optimal trees for MAX-nodes-N-f*,+gf0.25g

CHAPTER 4. GP TREE RECOMBINATION AND SELECTION 75
Details of the optimal trees for MAX-nodes-N-f*,+gf0.5g, where 27 � N � 99N MAX Value Optimal Possible Constants Subtreetrees trees per subtree values27 12.5 2.94e+03 7.08e+09 5,5,4 2.5,2.5,229 15.625 2.74e+03 5.09e+10 5,5,5 2.5,2.5,2.531 18.75 2.47e+04 3.69e+11 6,5,5 3,2.5,2.533 22.5 7.41e+04 2.69e+12 6,6,5 3,3,2.535 27. 7.41e+04 1.97e+13 6,6,6 3,3,337 31.5 6.99e+05 1.45e+14 7,6,6 3.5,3,339 39.0625 3.84e+04 1.07e+15 5,5,5,5 2.5,2.5,2.5,2.541 46.875 4.61e+05 7.95e+15 6,5,5,5 3,2.5,2.5,2.543 56.25 2.07e+06 5.93e+16 6,6,5,5 3,3,2.5,2.545 67.5 4.15e+06 4.43e+17 6,6,6,5 3,3,3,2.547 81. 3.11e+06 3.32e+18 6,6,6,6 3,3,3,349 97.65625 5.38e+05 2.50e+19 5,5,5,5,5 2.5,2.5,2.5,2.5,2.551 117.1875 8.07e+06 1.88e+20 6,5,5,5,5 3,2.5,2.5,2.5,2.553 140.625 4.84e+07 1.42e+21 6,6,5,5,5 3,3,2.5,2.5,2.555 168.75 1.45e+08 1.08e+22 6,6,6,5,5 3,3,3,2.5,2.557 202.5 2.18e+08 8.16e+22 6,6,6,6,5 3,3,3,3,2.559 244.140625 7.53e+06 6.20e+23 5,5,5,5,5,5 2.5,2.5,2.5,2.5,2.5,2.561 292.96875 1.36e+08 4.72e+24 6,5,5,5,5,5 3,2.5,2.5,2.5,2.5,2.563 351.5625 1.02e+09 3.60e+25 6,6,5,5,5,5 3,3,2.5,2.5,2.5,2.565 421.875 4.07e+09 2.74e+26 6,6,6,5,5,5 3,3,3,2.5,2.5,2.567 506.25 9.15e+09 2.10e+27 6,6,6,6,5,5 3,3,3,3,2.5,2.569 610.3515625 1.05e+08 1.61e+28 5,5,5,5,5,5,5 2.5,2.5,2.5,2.5,2.5,2.5,2.571 732.421875 2.21e+09 1.23e+29 6,5,5,5,5,5,5 3,2.5,2.5,2.5,2.5,2.5,2.573 878.90625 1.99e+10 9.45e+29 6,6,5,5,5,5,5 3,3,2.5,2.5,2.5,2.5,2.575 1054.6875 9.96e+10 7.26e+30 6,6,6,5,5,5,5 3,3,3,2.5,2.5,2.5,2.577 1265.625 2.99e+11 5.58e+31 6,6,6,6,5,5,5 3,3,3,3,2.5,2.5,2.579 1525.87890625 1.48e+09 4.30e+32 5,5,5,5,5,5,5,5 2.5,2.5,2.5,2.5,2.5,2.5,2.5,2.581 1831.0546875 3.54e+10 3.31e+33 6,5,5,5,5,5,5,5 3,2.5,2.5,2.5,2.5,2.5,2.5,2.583 2197.265625 3.72e+11 2.56e+34 6,6,5,5,5,5,5,5 3,3,2.5,2.5,2.5,2.5,2.5,2.585 2636.71875 2.23e+12 1.97e+35 6,6,6,5,5,5,5,5 3,3,3,2.5,2.5,2.5,2.5,2.587 3164.0625 8.37e+12 1.52e+36 6,6,6,6,5,5,5,5 3,3,3,3,2.5,2.5,2.5,2.589 3814.697265625 2.07e+10 1.18e+37 5,5,5,5,5,5,5,5,5 2.5,2.5,2.5,2.5,2.5,2.5,2.5,2.5,2.591 4577.63671875 5.58e+11 9.12e+37 6,5,5,5,5,5,5,5,5 3,2.5,2.5,2.5,2.5,2.5,2.5,2.5,2.593 5493.1640625 6.69e+12 7.06e+38 6,6,5,5,5,5,5,5,5 3,3,2.5,2.5,2.5,2.5,2.5,2.5,2.595 6591.796875 4.69e+13 5.47e+39 6,6,6,5,5,5,5,5,5 3,3,3,2.5,2.5,2.5,2.5,2.5,2.597 7910.15625 2.11e+14 4.24e+40 6,6,6,6,5,5,5,5,5 3,3,3,3,2.5,2.5,2.5,2.5,2.599 9536.7431640625 2.89e+11 3.29e+41 5,5,5,5,5,5,5,5,5,5 2.5,2.5,2.5,2.5,2.5,2.5,2.5,2.5,2.5,2.5Table 4.2: Details of the optimal trees for MAX-nodes-N-f*,+gf0.5g

CHAPTER 4. GP TREE RECOMBINATION AND SELECTION 76
Details of the optimal trees for MAX-nodes-N-f*,+gf1g, where 15 � N � 63N MAX Optimal Possible Constants SubtreeValue trees trees per subtree values15 18 1.20e+01 6.50e+04 3,3,2 3,3,217 27 8.00e+00 4.31e+05 3,3,3 3,3,319 36 6.00e+01 2.92e+06 4,3,3 4,3,321 54 3.20e+01 2.01e+07 3,3,3,2 3,3,3,223 81 1.60e+01 1.41e+08 3,3,3,3 3,3,3,325 108 1.60e+02 9.93e+08 4,3,3,3 4,3,3,327 162 8.00e+01 7.08e+09 3,3,3,3,2 3,3,3,3,229 243 3.20e+01 5.09e+10 3,3,3,3,3 3,3,3,3,331 324 4.00e+02 3.69e+11 4,3,3,3,3 4,3,3,3,333 486 1.92e+02 2.69e+12 3,3,3,3,3,2 3,3,3,3,3,235 729 6.40e+01 1.97e+13 3,3,3,3,3,3 3,3,3,3,3,337 972 9.60e+02 1.45e+14 4,3,3,3,3,3 4,3,3,3,3,339 1458 4.48e+02 1.07e+15 3,3,3,3,3,3,2 3,3,3,3,3,3,241 2187 1.28e+02 7.95e+15 3,3,3,3,3,3,3 3,3,3,3,3,3,343 2916 2.24e+03 5.93e+16 4,3,3,3,3,3,3 4,3,3,3,3,3,345 4374 1.02e+03 4.43e+17 3,3,3,3,3,3,3,2 3,3,3,3,3,3,3,247 6561 2.56e+02 3.32e+18 3,3,3,3,3,3,3,3 3,3,3,3,3,3,3,349 8748 5.12e+03 2.50e+19 4,3,3,3,3,3,3,3 4,3,3,3,3,3,3,351 13122 2.30e+03 1.88e+20 3,3,3,3,3,3,3,3,2 3,3,3,3,3,3,3,3,253 19683 5.12e+02 1.42e+21 3,3,3,3,3,3,3,3,3 3,3,3,3,3,3,3,3,355 26244 1.15e+04 1.08e+22 4,3,3,3,3,3,3,3,3 4,3,3,3,3,3,3,3,357 39366 5.12e+03 8.16e+22 3,3,3,3,3,3,3,3,3,2 3,3,3,3,3,3,3,3,3,259 59049 1.02e+03 6.20e+23 3,3,3,3,3,3,3,3,3,3 3,3,3,3,3,3,3,3,3,361 78732 2.56e+04 4.72e+24 4,3,3,3,3,3,3,3,3,3 4,3,3,3,3,3,3,3,3,363 118098 1.13e+04 3.60e+25 3,3,3,3,3,3,3,3,3,3,2 3,3,3,3,3,3,3,3,3,3,2Table 4.3: Details of the optimal trees for MAX-nodes-N-f*,+gf1g

CHAPTER 4. GP TREE RECOMBINATION AND SELECTION 774.1.3 Crossover in GPCrossover is part of the standard GP `package'. It is the most obvious and `natural'method for recombining two trees to produce child trees. It is considered by some to bethe main power underlying the GP algorithm, and by others to be at best just anotherform of Mutation and at worst an actual hindrance to GP, [Angeline 97]. Whateverits e�ectiveness, Crossover appears in virtually every description of GP, and everyimplementation of GP. It is the operator with which most newcomers to GP begin.The standard crossover operator in GP, as described in Section 1.5, given two parenttrees, can in theory bring a subtree from anywhere in one parent tree and swap it witha subtree anywhere in the other parent tree to produce two new child trees containinga mixture of genetic information from both parent trees. There are no restrictionson the selection of subtrees. Any node in either tree can be chosen as a crossoverpoint, though occasionally there are biases in favour of non-terminal nodes. Thereis no direct equivalent of a static location as with genes in a chromosome in a GA.Thus, if a particular node, e.g. a `+'-node, appears anywhere within any tree in the GPpopulation, then it is possible for GP Crossover (assuming such a tree is ever selected tobe a parent) to spread that particular node to anywhere in a tree in the next generation.Only when that particular node disappears from all trees in the population, will GPCrossover be unable to spread it into the next generation.In a typical GP setup, operators such as Crossover work with some idea of a maximumallowed depth or maximum number of nodes allowed for each tree in the population,as described above in Section 4.1.1. A consequence of this restriction on tree size isthat the crossover operator may no longer be able to swap all possible pairs of subtreesbetween two parents and still produce `legal' trees. This e�ect is minimal when thepopulation consists only of trees much smaller than the size limit, but becomes moremarked as GP trees usually tend to increase in size in later generations.There are many simple ways of dealing with Crossover's propensity for producing illegaltrees, as mentioned above in Section 4.1.1. The simplest is to select just one of thetwo child trees, at least one of which is guaranteed to be legal, and is the method usedhere. Other methods include reselecting the crossover points in some way until both

CHAPTER 4. GP TREE RECOMBINATION AND SELECTION 78children are legal, pruning over-large trees, or default to making the children identicalcopies of their parents. Thus, in practice, Crossover in GP is not free to move just anysubtree to any part of another tree. The tree size restrictions limit the e�ectivenessof Crossover and, as discussed below, can hinder GP's discovery of better trees viaCrossover.In normal use, Crossover is used along with other operators, usually some forms ofMutation, creating one o�spring from one parent (ascertained after many discussionsand examining the literature). One oft used type of Mutation operator randomlygenerates a new subtree in a parent tree to produce a child. This method is useful sinceit can introduce small e�ective subtrees to a population but is not likely to introducelarge e�ective subtrees. Another form of mutation operator replaces an individualnode in a parent tree with another node of the same arity to produce a child. Thismethod is useful for reintroducing nodes back into a population. But, unless thepopulation can make immediate use of them, Selection will probably wipe them outin the next generation. In the case of MAX-depth-D-f+,*gf0.5g, (see Figure 4.4) thiswould speedily bring about the discovery of the optimal tree since replacing a high-level`+'-node with a `*'-node creates a �tter tree. Looking at MAX-depth-D-f/,*gf0.9g,(see Figure 4.6), the left-hand side of the trees often requires the introduction of largee�ective subtrees which are unlikely to be created by mutating a subtree and wouldnot be created by mutating an individual node. Thus incorporating either or both ofthe mutation operators as described above would not help GP �nd the optimal tree.4.1.4 Experiment DetailsThe MAX-depth-D variations discussed in this section are f+gf1g, f+,*gf1g,f+,*gf0.5g, f+,*gf0.25g, and f*,/gf0.9g. The depths are between 3 and 8, wherethe upper depth limit depends on the size of the optimal tree value over
owing the
oating-point representation, or complete failure by GP at smaller depths. Fifty runswere made for each variation, with the only operator being Crossover. These runs werethen divided according to whether or not they were successful, as detailed below in Sec-tion 4.1.5. For comparison, MAX-depth-D-f+,*gf0.5g and f*,/gf0.9g were repeatedwith the addition of the mutation operators mentioned above in Section 4.1.3. Their

CHAPTER 4. GP TREE RECOMBINATION AND SELECTION 79selection frequencies were: 60% Crossover; 20% Mutate Node; 20% Mutate Subtree.An e�ort was made to keep the GP used here simple since the aim was to demonstratesome qualitative aspects of the crossover operator, and not to strive for optimal GPperformance. The implementation used generational replacement with elitism on apopulation size of 200. A tournament of size 6 was used with the MAX-depth-D runs.With hindsight this tournament size is probably too large with a population size of only200 for GP to perform as well as it could, but many of the runs were successful despitethis. A tree's �tness is the maximum possible return value minus the tree's returnvalue. Thus a �tness score of zero is optimal, with worse �tnesses being large andpositive. Standard crossover was used, with two parents producing one child, where alltrees were limited to a maximum depth D. A crossover point was chosen by randomlyselecting one node from all of the nodes in a tree. Crossover could have been mademore likely to produce a child di�erent from its parents by requiring that at least oneof the crossover points in the two parents was a function (i.e. non-leaf) node, since allterminal nodes were identical. Runs were stopped after 500 generations as failures, orearlier as successes if the optimal tree was produced.For the MAX-nodes-N variations, f*,+gf1g, f*,+gf0.5g, f*,+gf0.25g, the populationsize was kept at 200, but the tournament size was reduced to 3, after early resultsindicated that GP was often failing to �nd the optimal trees. Reducing the selectionpressure in this way did improve GP performance by a small amount. Just the resultsinvolving tournament size 3 are described in detail below. Since the MAX-nodes-Nproblems are apparently substantially harder for GP than the MAX-depth-D problems,GP was set a later cuto� at 3000 generations. Most of the successful runs �nished wellbefore the cuto� generation. Those that discovered an optimal tree close to the cuto�had shown no signs of improvement for many hundreds of generations before that,making it fairly safe to conclude that the discovery of the optimal tree was a chanceevent due to an extremely unlikely but successful mutation of all or most of a tree. Aswith the MAX-depth-D variations, the size restriction was raised as high as possible sothat the optimal tree values did not exceed the machine-speci�c limits of the
oating-point representation used. For su�ciently small N, the MAX-nodes-N problem istrivial, with GP usually discovering an optimal tree in generation 0, i.e. when trees are

CHAPTER 4. GP TREE RECOMBINATION AND SELECTION 80initially generated at random. Also, as with the MAX-depth-D variations, the runswere repeated with the addition of the Mutation operators, leading to over 20,000 runsbeing carried out.4.1.5 ResultsPerformance of GP on MAX-depth-DThe average number of generations for the successful runs for each of the variationsof the MAX-depth-D problem, in Figure 4.8, shows the MAX problems increasing indi�culty for GP with increasing depth, unsurprisingly.The percentage of runs which ended in failure, shown in Figure 4.10, increases rapidlywith depth for all but MAX-depth-D-f*,+gf1g and f+gf1g. The populations in thesefailed runs reached a state where it was impossible or extremely unlikely to producethe optimal tree. The populations in successful runs were, in e�ect, `lucky' to discoverthe optimal trees before the disappearance of crucial subtrees from the populations.Adding the mutation operators, shown in Figure 4.11 has helpedMAX-depth-D-f+,*gf0.5g to achieve 100% success at all the depths tested (andsimilarly for MAX-depth-D-f+,*gf0.25g, though it is not shown on the graph). TheMAX-depth-D-f/,*gf0.9g runs, on the other hand, still have di�culty in �nding theoptimal trees. Looking at the runs which failed, the entire population had usuallyconverged to be a duplicate (or very close copy) of the `best of run' tree.Typical sub-optimal trees found for MAX-depth-DThe following trees exemplify the sub-optimal trees discovered by GP in the variationsof the MAX problem (where depth 0 refers to the root node):For MAX-depth-5-f*,+gf0.5g, the `best of run' tree shown in Figure 4.12 is notvery di�erent (in terms of node changes) from the optimal tree. Each node at depth 1is a `+' instead of a `*'. However all the �t trees in the population also had no `*'-nodes in this layer, and were all the same size and shape (i.e. full to depth 5). Theonly `*'-nodes in the population were at depth 0. Given this situation, Crossover is no

CHAPTER 4. GP TREE RECOMBINATION AND SELECTION 81
0

50

100

150

200

3 4 5 6 7 8A
v
e
r
a
g
e

N
u
m
b
e
r

o
f

G
e
n
e
r
a
t
i
o
n
s

Depth

Average Number of Generations needed for Successful MAX runs

MAX-depth-D-{+}-{1}
MAX-depth-D-{+,*}-{1}

MAX-depth-D-{+,*}-{.5}
MAX-depth-D-{+,*}-{.25}
MAX-depth-D-{/,*}-{.9}

Figure 4.8: Average number of generations needed by the successful MAX-depth-Druns using Crossover, showing di�culty increasing with depth
0

20

40

60

80

100

3 4 5 6 7 8

S
ta

nd
ar

d
D

ev
ia

tio
n

Depth

Standard Deviation of Number of Generations needed for Successful MAX runs

MAX-depth-D-{+}-{1}
MAX-depth-D-{+,*}-{1}
MAX-depth-D-{+,*}-{.5}

MAX-depth-D-{+,*}-{.25}
MAX-depth-D-{/,*}-{.9}

Figure 4.9: Standard Deviation of number of generations needed by the successfulMAX-depth-D runs using Crossover, showing di�culty increasing with depthlonger able to improve on `best of run' tree. An operator which mutated individualnodes could easily construct a �tter tree from this one.For MAX-depth-5-f*,/gf0.9g, the `best of run' tree shown in Figure 4.13 needstwo more `/'-nodes down the left-most side to become the optimal tree. Given that allthe �t trees in the population came to be duplicates of this tree, Crossover could notimprove upon it. Any subtree not containing a `/'-node would have a smaller valuethan the `.9'-node at depth 3, and thus would result in the whole tree having a smaller�tness. The only `/'-nodes are to be found at depths 0, 1, and 2, and Crossover cannotbring those subtrees down to start at depth 3 since that would create an illegal tree.An operator which mutated subtrees might be able to construct a �tter tree from thisone.

CHAPTER 4. GP TREE RECOMBINATION AND SELECTION 82

0

10

20

30

40

50

60

70

80

90

100

3 4 5 6 7 8

P
e
r
c
e
n
t
a
g
e

F
a
i
l
u
r
e

Depth

Percentage of Unsuccessful MAX runs

MAX-depth-D-{+}-{1}
MAX-depth-D-{+,*}-{1}

MAX-depth-D-{+,*}-{.5}
MAX-depth-D-{+,*}-{.25}
MAX-depth-D-{/,*}-{.9}

Figure 4.10: Percentage of MAX-depth-D runs failing, using Crossover

0

10

20

30

40

50

60

70

80

90

100

3 4 5 6 7 8

P
e
r
c
e
n
t
a
g
e

F
a
i
l
u
r
e

Depth

Percentage of Unsuccessful MAX runs involving Mutation

MAX-depth-D-{+,*}-{.5}
(Mutation)-MAX-depth-D-{+,*}-{.5}

MAX-depth-D-{/,*}-{.9}
(Mutation)-MAX-depth-D-{/,*}-{.9}

Figure 4.11: Percentage of MAX-depth-D runs failing (dashed lines), using Crossoveronly (2) and Mutations (+), and Percentage of MAX-depth-D runs failing (solid lines),using Crossover only (4) and Mutations (x)

CHAPTER 4. GP TREE RECOMBINATION AND SELECTION 83
*

++ ++ ++ + + +

+ + + +
+ +

+

++ ++ ++ + + +

+ + + +
+ +

+

.5 .5Figure 4.12: Sub-Optimal tree for MAX-depth-5-f*,+gf0.5g
*

* *

/
/

* * * *
**

*

.9 .9 .9 .9 .9 .9 .9 .9

* * * *
**

*

.9 .9 .9 .9 .9 .9 .9 .9

* * * *
**

*

.9 .9 .9 .9 .9 .9 .9 .9

*
/

.9 .9 .9 .9

.9

Figure 4.13: Sub-Optimal tree for MAX-depth-5-f*,/gf0.9gPerformance of GP on MAX-nodes-NAs with the results for MAX-depth-D above, the results for the variations of theMAX-nodes-N are in two main sets of �gures. The average number of generationsneeded by the successful runs are shown in Figures 4.15 to 4.20. Although there were50 runs for each N and sets of operators with and without Mutation, the averagesshown for MAX-nodes-N-f*,+gf0.25g and MAX-nodes-N-f*,+gf0.5g become very er-ratic and e�ectively meaningless for larger values of N, since so few runs were successful.If there were no successful runs for a particular N, then that point doesn't appear in thegraphs. Many of the points for large N which do appear, correspond to very few suc-cessful runs, often only one successful run. The averages for MAX-nodes-N-f*,+gf1gshow both that few generations were needed, and that the addition of the Mutationoperators actually hinders GP for this particular variation, sometimes doubling thenumber of generations needed. The averages for MAX-nodes-N-f*,+gf0.5g withoutMutation show a rapid increase in the number of generations needed up to N=100,whereas for MAX-nodes-N-f*,+gf0.5g with Mutation the generations needed by suc-

CHAPTER 4. GP TREE RECOMBINATION AND SELECTION 84
*

*

+

+

+

+

+

.25 +

.25 .25

+

+

+

.25 .25

+

+

.25 .25

+

.25 .25

.25

.25

.25

+

.25 .25

+

+

.25 +

.25 .25

+

.25 +

+

.25 +

.25 +

+

+

.25 .25

.25

.25

+

+

.25 .25

.25

+

+

.25 .25

+

.25 +

.25 +

+

+

+

.25 .25

.25

+

.25 .25

+

+

+

+

.25 .25

.25

.25

.25

Figure 4.14: A Sub-Optimal tree for MAX-nodes-81-f*,+gf0.25g, with error 3.156250cessful runs rises much more slowly. The averages for the MAX-nodes-N-f*,+gf0.25gruns both with and without Mutation also rise slowly.Figures 4.21 to 4.26 show the percentage of runs which ended in failure. These graphsare statistically more reliable than the ones mentioned above for average genera-tions to success. Each point is a value averaged over 50 runs. The two graphs forMAX-nodes-N-f*,+gf1g in Figures 4.23 and 4.26 show that this version of the MAXproblem is very easy for GP both with and without the Mutation operators. Thegraphs for the average generations to success, in Figures 4.17 and 4.20, show that GPneeds few generations to successfully �nd an optimal tree. The optimal trees for thisproblem consist of many small f+,ng subtrees joined by many `*' nodes. GP quicklydiscovers these small subtrees, and the subproblem of putting them together optimallyis quite simple.The sets of graphs for MAX-nodes-N-f*,+gf0.25g and MAX-nodes-N-f*,+gf0.5g, onthe other hand, show some distinctive features. Both the graphs showing failures andthe graphs showing average generations to success show a periodic variation in di�culty

CHAPTER 4. GP TREE RECOMBINATION AND SELECTION 85as N changes. Looking at both the graph in Figure 4.18, showing the percentagefailures of the MAX-nodes-N-f*,+gf0.25g runs, and Table 4.1, indicating the structuresof the optimal trees, it is apparent where the periodic variation comes from. As Nincreases, each sudden jump in the percentage failure corresponds to an increment inthe number of f+,ng subtrees in the optimal solution. Reading from the table, forN=53, the �rst optimal subtree structure with three f+,ng subtrees is (9,9,9), and thenext time the number of f+,ng subtrees increases (to four) is for N=77. These twovalues of N correspond to the �rst two spikes in the graph. Similarly, each spike afterthat corresponds to the next increase in the number of f+,ng subtrees in the optimalsolution. The relative di�culty of the MAX problem is related to the distribution ofsizes of f+,ng subtrees in the optimal tree and the sizes of f+,ng subtrees which GPis likely to construct.Regarding the impact of the Mutation operators on GP's performance, for small N (upto around 50), the addition of the Mutation operators corresponds to a much lower fail-ure rate for both MAX-nodes-N-f*,+gf0.25g and MAX-nodes-N-f*,+gf0.5g. For lar-ger N, GP can be seen to have bene�ted greatly from the addition of Mutation operatorsin MAX-nodes-N-f*,+gf0.25g. The periodic variation in di�culty is more obvious, butthere are many more successes as N increases all the way to 249. Somewhat confus-ingly, the same improvement for large N is not apparent in MAX-nodes-N-f*,+gf0.5g.Instead, it appears that the addition of Mutation operators has actually hindered GPfor larger N, with GP performing worse than without Mutation.Typical sub-optimal trees found for MAX-nodes-NThe sub-optimal trees discovered for MAX-nodes-N-f*,+gf0.25g andMAX-nodes-N-f*,+gf0.5g follow a common theme. A typical sub-optimal treeis shown in Figure 4.14 for MAX-nodes-81-f*,+gf0.25g. Whereas the optimal treeshould be of the form (11,10,10,10), shown in Figure 4.7 and discussed in 4.1.2,i.e. with four subtrees containing 11, 10, 10, and 10 `0.25' nodes, the sub-optimaltree shown in 4.14 is of the form (14,14,13). It contains fewer but larger subtrees,producing a slightly smaller return value than the optimal tree. In fact, all of thesub-optimal trees discovered by GP were of this form, containing one fewer subtree

CHAPTER 4. GP TREE RECOMBINATION AND SELECTION 86
0

500

1000

1500

2000

2500

0 50 100 150 200 250A
ve

ra
g
e
 G

e
n
e
ra

tio
n
s

to
 O

p
tim

a
l T

re
e

Nodes N

Average Generations to Success of MAX-nodes-N-{*,+}{0.25} runs with Crossover

Figure 4.15: Average number of generations needed by the successfulMAX-nodes-N-f*,+gf0.25g with Crossover

0

500

1000

1500

2000

2500

0 50 100 150 200 250A
ve

ra
g
e
 G

e
n
e
ra

tio
n
s

to
 O

p
tim

a
l T

re
e

Nodes N

Average Generations to Success of MAX-nodes-N-{*,+}{0.5} runs with Crossover

Figure 4.16: Average number of generations needed by the successfulMAX-nodes-N-f*,+gf0.5g with Crossover

0

500

1000

1500

2000

2500

0 50 100 150 200 250A
ve

ra
g
e
 G

e
n
e
ra

tio
n
s

to
 O

p
tim

a
l T

re
e

Nodes N

Average Generations to Success of MAX-nodes-N-{*,+}{1} runs with Crossover

Figure 4.17: Average number of generations needed by the successfulMAX-nodes-N-f*,+gf1g runs with Crossover

CHAPTER 4. GP TREE RECOMBINATION AND SELECTION 87
0

500

1000

1500

2000

2500

0 50 100 150 200 250A
ve

ra
g
e
 G

e
n
e
ra

tio
n
s

to
 O

p
tim

a
l T

re
e

Nodes N

Average Generations to Success of MAX-nodes-N-{*,+}{0.25} runs with Crossover and Mutations

Figure 4.18: Average number of generations needed by the successfulMAX-nodes-N-f*,+gf0.25g runs with Crossover & Mutations

0

500

1000

1500

2000

2500

0 50 100 150 200 250A
ve

ra
g
e
 G

e
n
e
ra

tio
n
s

to
 O

p
tim

a
l T

re
e

Nodes N

Average Generations to Success of MAX-nodes-N-{*,+}{0.5} runs with Crossover and Mutations

Figure 4.19: Average number of generations needed by the successfulMAX-nodes-N-f*,+gf0.5g runs with Crossover & Mutations

0

500

1000

1500

2000

2500

0 50 100 150 200 250A
ve

ra
g
e
 G

e
n
e
ra

tio
n
s

to
 O

p
tim

a
l T

re
e

Nodes N

Average Generations to Success of MAX-nodes-N-{*,+}{1} runs with Crossover and Mutations

Figure 4.20: Average number of generations needed by the successfulMAX-nodes-N-f*,+gf1g runs with Crossover & Mutations

CHAPTER 4. GP TREE RECOMBINATION AND SELECTION 88

0

20

40

60

80

100

0 50 100 150 200 250

P
e
rc

e
n
ta

g
e
 F

a
ilu

re
 (

o
f
5
0
 r

u
n
s)

Nodes N

Success of MAX-nodes-N-{*,+}{0.25} runs with Crossover

Figure 4.21: Success of MAX-nodes-N-f*,+gf0.25g runs with Crossover

0

20

40

60

80

100

0 50 100 150 200 250

P
e
rc

e
n
ta

g
e
 F

a
ilu

re
 (

o
f
5
0
 r

u
n
s)

Nodes N

Success of MAX-nodes-N-{*,+}{0.5} runs with Crossover

Figure 4.22: Success of MAX-nodes-N-f*,+gf0.5g runs with Crossover

0

20

40

60

80

100

0 50 100 150 200 250

P
e
rc

e
n
ta

g
e
 F

a
ilu

re
 (

o
f
5
0
 r

u
n
s)

Nodes N

Success of MAX-nodes-N-{*,+}{1} runs with Crossover

Figure 4.23: Success of MAX-nodes-N-f*,+gf1g runs with Crossover

CHAPTER 4. GP TREE RECOMBINATION AND SELECTION 89

0

20

40

60

80

100

0 50 100 150 200 250

P
e
rc

e
n
ta

g
e
 F

a
ilu

re
 (

o
f
5
0
 r

u
n
s)

Nodes N

Success of MAX-nodes-N-{*,+}{0.25} runs with Crossover and Mutations

Figure 4.24: Success of MAX-nodes-N-f*,+gf0.25g runs with Crossover & Mutations

0

20

40

60

80

100

0 50 100 150 200 250

P
e
rc

e
n
ta

g
e
 F

a
ilu

re
 (

o
f
5
0
 r

u
n
s)

Nodes N

Success of MAX-nodes-N-{*,+}{0.5} runs with Crossover and Mutations

Figure 4.25: Success of MAX-nodes-N-f*,+gf0.5g runs with Crossover & Mutations

0

20

40

60

80

100

0 50 100 150 200 250

P
e
rc

e
n
ta

g
e
 F

a
ilu

re
 (

o
f
5
0
 r

u
n
s)

Nodes N

Success of MAX-nodes-N-{*,+}{1} runs with Crossover and Mutations

Figure 4.26: Success of MAX-nodes-N-f*,+gf1g runs with Crossover & Mutations

CHAPTER 4. GP TREE RECOMBINATION AND SELECTION 90than the optimal tree. It is not possible for Crossover to produce a �tter child treefrom two trees of this form. It is not possible for mutating a single node to producea �tter child. It is possible but extremely unlikely that mutating an entire new treecould produce an optimal tree, but that applies in all situations where such a mutationis being used. To construct a �tter tree, using the sub-optimal tree as a basis, each ofthe large f+,ng subtrees would have to be modi�ed (i.e. pruned) and a new subtreeadded (using the pruned nodes), joined to the main tree via a `*' node.4.1.6 Analysis of CrossoverThis section presents a simple analysis of the crossover operator in GP, showing itslikely impact on GP trees where there is a restriction on tree depth, and the populationconsists of `full' trees, i.e. trees which have �lled out to the maximum allowed depth.This situation is frequently reached whilst tackling the MAX-DEPTH problems. Thefollowing calculations apply to GPs with function sets involving functions of arity oftwo, e.g. like the MAX problems. If the largest function arity is greater than 2, theproblem is exacerbated.

CHAPTER 4. GP TREE RECOMBINATION AND SELECTION 91D - the maximum tree depthl - tree layer, from 0 (the root node) to DLl - the number of nodes in layer l= 2l; where 0 � l � DNl - the number of nodes in all layers from 0 to layer l inclusive=Plj=0 Lj =Plj=0 2j = 2l+1 � 1ND - the total number of nodes in a tree of depth D= 2D+1 � 1C(any)l - the likelihood of any node(s) in a tree, in layer l, experiencing some crossoveractivity, i.e. when a crossover point occurs in any layer from 0 to l= NlND = 2l+1�12D+1�1 ' 2l+12D+1 = 12D�lC(layer)l - the likelihood of crossover occurring within a layer l, i.e. when the twocrossover points are in the same layer= L2lN2D = 22l(2D+1�1)2 ' 22l22D+2 = 122(D�l+1)C(2 legal o�spring) - the likelihood of crossover, based on a random choice of cross-over points, producing two legal o�spring= legaltotal = PDj=0 L2jN2D = PDj=0(2j)2(2D+1�1)2 ' PDj=0 22j22(D+1)' 22D22(D+1) = 14 ; for large DLooking at C(any)l shows that the upper layers receive relatively little attention fromthe crossover operator, especially as the trees grow large. In the MAX problem as usedhere, the tree sizes in question are fairly small (e.g. D=6), even so the upper tree layersare mostly una�ected by Crossover.Looking at C(layer)l shows how an exchange of subtrees within the upper layers ismuch less likely again. This implies that there is little or no spread of subtrees withinthe upper layers in later generations.

CHAPTER 4. GP TREE RECOMBINATION AND SELECTION 92Looking at C(2 legal o�spring) shows that Crossover will frequently produce illegalo�spring once the trees in the population �ll out. For each pair of o�spring producedby Crossover in this way, there will always be at least one legal o�spring, but there isa high probability that the other will be illegal. Either this illegal o�spring has to bemodi�ed in some way or simply take just one o�spring from each crossover operation.Given two full trees, selecting just one o�spring produced by Crossover will mean eitherthat subtrees were swapped between the same layer in each tree, or that a subtree froma lower level has been raised to a higher level. It is impossible for a subtree from ahigher level to be brought down to a lower level and still produce a legal tree, since itwould exceed the depth limit. Thus Crossover, producing a single o�spring from eachpair of parent trees, operating on a population of full trees, will produce o�spring inthe next generation in the following manner:� mostly through the exchange of low level subtrees� some through the raising of a low level subtree to a higher level� very few through the exchange of high level subtrees� none through the lowering of a high level subtree to a lower levelIf subtree discovery takes place in the lower levels, Crossover would be very e�ectiveat spreading these new subtrees through the population. If, on the other hand, im-provements in subtrees solely or largely take place in the higher levels, Crossover willbe very slow to spread these new subtrees through the population.4.1.7 Discussion of MAX problemThe analysis in Section 4.1.6 highlights one of the main biases that Crossover bringsto GP, even without considering populations of full trees. Subtree discovery and thespread of subtrees takes place at lower levels, mostly involving the leaf nodes. Thee�ectiveness of this is highly dependent on the problem in hand. Immediately bene�cialsubtrees are quickly spread within the trees and through the population, at the expenseof other subtrees of less immediate bene�t. For MAX-depth-D-f+gf1g, this results ina speedy discovery of the optimal tree.

CHAPTER 4. GP TREE RECOMBINATION AND SELECTION 93The situation mentioned above for Crossover in general is made worse when a treedepth restriction is incorporated. Whilst the GP population consists of trees which areshallower than the depth restriction, it is still possible, though unlikely for Crossoverto move subtrees around freely. When the trees have expanded to reach the depthrestriction, the situation changes. The only movement of subtrees possible via Cross-over is from lower levels to higher levels or within the same level. In the case of theother MAX problems, such as MAX-depth-D-f+,*gf0.5g, this can result in a purgingof `*'-nodes from the population, perhaps only leaving a few of these function nodes inthe higher levels of some of the trees, where they will remain relatively untouched. Thebene�t of these nodes only emerges after the trees reach an appreciable size, by whichtime it is unlikely or impossible that they can be spread by Crossover. Once the treeshave reached the depth limit, the only way the higher levels are a�ected is throughthe promotion of lower level subtrees, which contain no `*'-nodes, and the movementof subtrees within the same level. If there are no `*'-nodes in any tree at a particularhigh level, it is now impossible for Crossover to introduce a `*'-node to this level; thepopulation has e�ectively converged to being duplicates of a sub-optimal tree, and nofurther improvement is possible. Langdon and Poli's study of the MAX-DEPTH prob-lem \... show[s] that this can happen even when the population retains a high level ofvariety and show that in many cases evolution from the sub-optimal solutions to thesolution is possible if enough time is allowed", [Langdon & Poli 97].Results from the MAX-nodes-N runs show some characteristics similar to theMAX-depth-D results. Early loss of `*' nodes from the lower levels hinders the searchfor the optimal tree later on. Until the trees reach an appreciable size, the �tter subtreesare those which contain more `+'-nodes. Only after gaining large `+'-subtrees does itbecome worthwhile to have high level `*'-nodes. After gaining high level `*'-nodes, itthen becomes worthwhile to have more but smaller `+'-subtrees which would involvealtering all of the large `+'-subtrees simultaneously. Making just one `+'-subtree alittle smaller would simply lower the �tness of the tree. Thus the trees are trapped ina sub-optimal form.A scan of published papers has indicated that this restriction on the number of nodes isused more often than a maximum tree depth, since it lends itself well to various memory

CHAPTER 4. GP TREE RECOMBINATION AND SELECTION 94and CPU-e�cient GP implementations. The trees in a GP population still expandwith the generations, quickly reaching their size limit. At this stage, Crossover a�ectsmainly the peripheral (i.e. leaf) nodes, and becomes unable to modify upper levels ofthe trees e�ectively, although perhaps not as often as with the depth restriction.Further runs, tracking the number, distribution, and location of `*' nodes throughoutthe population should make the pattern of loss of `*' nodes more explicit.Modi�cations to Crossover Several other investigations have focussed in someway on Crossover in GP. [Rosca 95] looks at causality in GP, relating the changesin the structure of GP trees caused by Crossover with changes in the properties ofthe trees. [D'haeseleer 94] looks at context preserving Crossover in GP, attemptingto ensure that swapped subtrees will still be e�ective. This moves away from themore
uid approach proposed by Koza. Instead of allowing any and all combinationsof functions and terminals, D'haeseleer removes the closure constraint, allowing sev-eral di�erent data-types, only allowing nodes of the same data-type to be broughttogether. With less
exibility, GP has fewer opportunities to construct inappropri-ate trees. [O'Reilly & Oppacher 95a] looks at hybrids of operators such as Crossoverand Hill Climbing, maintaining that these mutation-based operators can match oroutperform basic Crossover. [Lang 95] shows how mutations and simple hill climbingcan perform better than GP with Crossover, calling into question the e�ectiveness ofCrossover and the population-based approach of GP.There is no doubt that it should be possible to modify Crossover or its use so that itis more likely to result in the discovery of optimal (or at least better) solutions in theMAX problem, even if this is at the expense of speed on those problems where it doeswell already. In practice, where the focus of a paper is not on the operators themselves,`standard' Crossover still seems to be used as one of the main GP operators, usually incombination with other operators such as Mutation. More attention should be paid toensure that the other operators are capable of overcoming Crossover's shortcomings.Simple mutation operators have been shown here to be insu�cient. Using very largepopulation sizes to boost Mutation's chance of constructing large useful subtrees onlyobscures the problem.

CHAPTER 4. GP TREE RECOMBINATION AND SELECTION 95The method of selecting crossover points could be modi�ed to ensure that the tree layersget a more even spread of crossover activity. [Koza 92] uses Crossover where internalnodes have a 90% chance of being selected as a crossover point compared with 10% forleaf nodes. However, the higher tree levels will still experience much lower crossoveractivity than the lower levels. It might be better to scale the selection probabilityaccording to depth or the number of nodes in each level, perhaps targeting sectionsof tree which have a low node variance across the population, but this requires extraprocessing, and the identi�cation of important tree sections would likely be somewhatproblematic.For the purposes of enabling GP to solve the MAX-depth-D problem more easily,there is one operator action in particular which will obviously be highly e�ective. Itcould be considered as a form of Mutation, or incorporated into a form of Crossover.Either way, the operator would select a point near the root of a parent tree, copy thesubtree below this point, and insert it at a point further away from the root, replacingthe subtree there. Excess nodes would be pruned o�, so that the resulting child treesatis�ed the size constraints. The consequences of this operator would be to counterthe main weakness of standard Crossover in the MAX problem, i.e. its inability to bringsubtrees down to the lower levels, and would enable the downward spreading of the`*' nodes. This would certainly result in a very much higher success rate (if not 100%success) in the MAX-depth-D problems, and would probably help in MAX-node-N.This operator, whilst undoubtedly e�ective with the MAX-depth-D problems, is alsolikely to be useful for other GP problems where nodes near the root are crucial at lowerlevels, as well counteracting Crossover's main weakness mentioned above.However, with MAX-node-N, there is another di�culty to overcome, where the sub-optimal trees have several large f+,ng subtrees, but the optimal trees have one or moref+,ng subtrees all of which are smaller. To move from such a sub-optimal tree to anoptimal tree, all of the large subtrees have to be modi�ed and a new subtree added, allin a single operator step, otherwise the resulting child tree, though `nearer' to being anoptimal tree, will have a lower �tness, and is thus unlikely to be chosen as a parent. Anoperator which explicitly corrected for this occurrence is unlikely to be useful for otherGP problems, unless they are known to have similarly deceptive sub-optimal trees.

CHAPTER 4. GP TREE RECOMBINATION AND SELECTION 96The simplest approach for avoiding the e�ects of Crossover is not to use it, insteadrelying on an assortment of Mutation operators. It would be a worthwhile extension ofthe MAX runs so far to see what happens without Crossover. A hypothesis is that theMAX-depth-D problems would be solved more slowly, but with a much higher successrate, and that the success rate on the MAX-nodes-N would also increase, though theremight still be the di�culty with discovering the sub-optimal trees with fewer and largersubtrees than the optimal trees.For problems where tree size is part of the solution, allowing unlimited tree sizesis obviously not applicable. For others, where the optimal tree sizes are unknown,parsimony (penalising large trees) appears to work well, especially when it is usedonly to discriminate between trees which would otherwise have the same �tness (thisimpression has been gleaned from many experiments and communications with otherGP practitioners). Thus trees can grow as large as is needed to do better on a problem,and Crossover can operate in an unrestricted fashion, but there is continual selectionpressure for smaller trees which do just as well.4.1.8 SummaryThe MAX problems for GP show how the crossover operator and selection can bedirectly responsible for loss of diversity of nodes within the upper tree levels within apopulation, leading to premature convergence to a sub-optimal solution or very veryslow improvement in solutions. When used in combination with a restriction on treedepth, the premature convergence becomes irreversible. Subtree discovery and move-ment takes place mostly near the leaf nodes, with nodes near the root left mostlyuntouched. Diversity drops quickly to zero near the root node in the tree population,resulting in GP being unable to create `�tter' trees via the crossover operator. The ad-dition of simple mutation operators is not su�cient to overcome these problems. Careshould be taken to ensure that the spread of subtrees throughout the GP populationis not sti
ed by Crossover.When used in combination with a restriction on the number of nodes in a tree,the population converges on trees with a sub-optimal structure. It is this struc-ture rather than the loss of `*' nodes which renders GP from getting any closer to

CHAPTER 4. GP TREE RECOMBINATION AND SELECTION 97discovering an optimal tree. The sub-optimal structure involves fewer and largerf+,ng subtrees, which are rapidly spread through the population, at the expense ofthe smaller f+,ng subtrees which are needed for constructing an optimal tree. ForMAX-nodes-N-f*,+gf0.25 or 0.5g, the failure of GP is not necessarily due to Cross-over and selection. This MAX problem is quite deceptive, with larger f+,ng subtreesreturning larger values.This should not be taken as an attack on the crossover operator and GP, or a claim thatthe MAX problem epitomises all GP problems. Instead it gives a better understandingof how Crossover works in practice, often in combination with tree size restrictions,and enables the user to be aware of its potential failings.

CHAPTER 4. GP TREE RECOMBINATION AND SELECTION 984.2 Tournament SelectionThis section looks at Tournament Selection, the method used in this thesis for pickingindividuals from the GP population to be used as parents in creating the next genera-tion of individuals. The aim is to �nd ways of speeding up GP for supervised learningtasks, perhaps by reducing the population size, memory requirements, or number of�tness evaluations. A brief survey of a variety of selection methods in Section 4.2.1 isfollowed by an explanation of why Tournament Selection was chosen here. Section 4.2.2looks at some consequences of using Tournament Selection. A much more substantialbut somewhat opaque study of a variety of selection methods, including TournamentSelection, can be found in [Blickle & Thiele 95]. Blickle and Thiele take an in-depthlook at the behavioural characteristics of the various selection methods, proving nu-merous theorems along the way. An earlier study of several common selection schemescan be found in [Goldberg & Deb 91]. The study below is much simpler and morestraightforward.4.2.1 Various Selection MethodsReasons for SelectionThere are two stages in the GP algorithm where individuals are selected from thecurrent population: selecting parents, and selecting individuals to be replaced.Selecting for ReplacementThere are two main methods of replacing individuals in GP:Steady-State, and Generational.In Steady-State Replacement, once a new child has been created and evaluated, adecision is made on whether to insert the child into the population, displacing anexisting individual, or to discard the child. Several alternatives have been used in theliterature:� replace worst - discard the worst existing individual

CHAPTER 4. GP TREE RECOMBINATION AND SELECTION 99� replace at random if child is better - choose an individual at random and discardit if it is worse than the child, otherwise discard the child� replace parent if no worse - discard the parent if the child is no worse� etc ... There are numerous other variationsIn Generational Replacement (the method used in this thesis), on the other hand, theentire population is replaced by a completely new generation of individuals, avoidingall the replacement decisions mentioned above, but usually requires the addition ofElitism. Elitism is simply the explicit copying of the best individual in the currentgeneration into the next generation, ensuring that the population does not lose itsprevious best individual. Steady-State Replacement is implicitly elitist since the bestindividual would never be discarded. For GP, [Koza 92] recommends the use of Over-Selection, a more extreme version of Elitism. This is considered necessary since GPtends to produce a large proportion of very un�t individuals. The top 50%, say, ofindividuals in the current population are explicitly copied into the next generation,and only they are used as parents to create the rest of the population, discarding theworst 50% before the breeding stage. This approach is similar to that used in someEvolution Strategies, [B�ack et al. 91].Selecting ParentsThere are numerous approaches documented in the literature for selecting parentsfrom a population in GA-type algorithms. Typically there is a bias towards selecting�t individuals more frequently than un�t individuals. Three of the main types are asfollows:Roulette-Wheel Selection was one of the earliest methods, described in[Holland 75], where an individual's chance of being selected is related to its �tness(a form of Fitness-Proportionate Selection). This method has fallen out of favourdue to the fact that it is easily swayed by `super'-�t individuals in a population.If an individual has a substantially higher �tness than the rest of the populationit will dominate the breeding process. Likewise, if the population has a high

CHAPTER 4. GP TREE RECOMBINATION AND SELECTION 100average �tness, there will be little di�erence between individuals over likelihoodof selection, so there will be no e�ective bias in favour of �tter individuals. Inorder to avoid these problems, extra processing is needed to re-scale the �tnessvalues.Rank-based Selection involves sorting the entire population in terms of �tness. Nowan individual's chance of being selected is proportional to its rank in the popu-lation, i.e. a higher ranked individual is more likely to be selected than a lowranked individual. Rank-based Selection does not su�er from the two inad-equacies of Roulette-Wheel Selection mentioned above. Both Roulette-Wheeland Rank-based Selection involve processing or sorting the �tnesses of the entirepopulation. Each selection can then involve scanning the entire population again.Tournament Selection is much simpler and less computationally intensive. A �tnesstournament is held to select a parent, where the best individual picked from asmall set chosen at random from the population is taken to be the parent. Varyingthe tournament set size varies the selection pressure, i.e. the likelihood that thebest individuals in a population will be selected as parents. No pre-processingof the population's �tnesses is needed. Tournament Selection is amenable toparallel implementations and spatially-biased selection, where parents are chosenwithin a certain neighbourhood of a speci�ed location in a spatially distributedpopulation.For the Crossover operator, two or more parents are needed to produce o�spring.Usually, both parents are selected as described above. However, sometimes, as in[Ratford 96], the choice of the second parent is a�ected by the choice of the �rst parent.This could be to ensure that the two parents are substantially di�erent (or similar).Another alternative is for the second parent to be selected completely at random.There have been some studies of selection methods, mentioned above, looking partic-ularly at GAs. It is not certain that these studies can or should be applied to GP,but the assumption is usually made that they can. In general, it seems the previouslypopularised approach of Roulette-Wheel Selection quickly fell from favour, and hasbeen replaced with a form of Rank-based or Tournament Selection, with low selection

CHAPTER 4. GP TREE RECOMBINATION AND SELECTION 101pressure, i.e. without a strong bias in favour of the �ttest individuals.Tournament Selection in this ThesisFor the purposes of this thesis, Tournament Selection was used, without over-selection.Early experiments indicated that Tournament Selection was marginally less likely toresult in the GP population converging prematurely to variations of the best but sub-optimal individuals. These results could have been spurious, but since TournamentSelection has appeared to perform adequately, and there didn't seem to be any otherapparent advantages to using over-selection or other selection methods, it seemed easierto stick with simple Tournament Selection. Varying other parameters and modi�ca-tions to GP had a much bigger impact on GP performance.In Summary, Tournament Selection is a very simple method to implement. It worksquickly, since it does not require an initial scan of all population �tnesses (though oneis needed to �nd the best individual for elitism), sorting of the population by �tness,or repeated scans of the entire population for each selection. It is easy to modify theselection pressure in small steps using the tournament size.What follows is a brief investigation into Tournament Selection, looking at the e�ectsof varying the tournament size, and the distribution of parent selections amongst apopulation.4.2.2 Some E�ects of Tournament SelectionThe following graphs reproduce the e�ects of Tournament Selection on a generationof a population. Generational Replacement is used, i.e. an entirely new population isgenerated to replace the old one. Although just one population size, 50, is shown here,the shape of the graphs would be the same for other population sizes, though the scaleson the axes would change.For simplicity, the sample population used is ranked in order of �tness, starting withmember 0 having the best �tness. Each selection of a parent involves randomly pickinga tournament set of individuals, and then selecting the �ttest of these as the parent.The e�ect of di�erent tournament sizes is shown in the graphs. A tournament size

CHAPTER 4. GP TREE RECOMBINATION AND SELECTION 102of 1 corresponds to a randomly selected parent with no bias towards greater �tness.As the tournament size increases, through 2, 4, and 6, the bias towards greater �tnessincreases.The number of parents which would be selected to create the next generation is takenhere to be 1:4 � PopulationSize, i.e. 70. This corresponds to the operators and oper-ator selection probabilities used in most of the runs in this thesis: Crossover with 40%probability, requiring two parents, and various Mutation operators with a total prob-ability of 60%, requiring one parent. Thus the number of parents which are selectedon average from each generation to produce one child is 0:4 � 2 + 0:6 = 1:4.The selection of parents is simulated for one generation. This is repeated 1000 timesand the results averaged to produce these graphs. The graphs show the frequency ofselection, in Graph 4.27, the distribution of repeated selections, in Graph 4.28, thelikelihood of not being selected, in Graph 4.29, and the likelihood of not being checked(i.e. the individual is never part of a tournament), in Graph 4.30.Parent Selection Frequency Graph 4.27 shows how, unsurprisingly, the �tter in-dividuals get selected more often, with the plot for tournament size=1 showing thedistribution of selections if they are completely random and not based on �tness atall. Only with tournament size=2 are the least �t individuals in with any substantialchance of being selected when �tness is used as the selection criteria. Increasing thetournament size increases the bias abruptly in favour of the �ttest individuals. Withtournament size=6, the plot indicates that something very similar to 50% over-selectionis occurring, as mentioned in Section 4.2.1.The �ttest individuals are repeatedly selected, as can also be seen in Graph 4.28. Thissuggests that there would be much repetition of subtrees within the population. Amethod for storing the entire GP population as a single directed acyclic graph (DAG),instead of as individual trees is discussed in [Handley 94, Keijzer 96, Ehrenburg 96].As long as the components of the trees have no side-e�ects, earlier subtree evaluationscan be cached and do not have to be re-evaluated when they appear in other trees.Handley reports a 15- to 28-fold reduction in node storage requirements, and 11- to30-fold reduction in the number of nodes evaluated per run, for populations of size

CHAPTER 4. GP TREE RECOMBINATION AND SELECTION 103

0

1

2

3

4

5

6

7

8

0 5 10 15 20 25 30 35 40 45 50

P
a
re

n
t
S

e
le

c
ti
o
n
 F

re
q
u
e
n
c
y

Sorted Population Size=50, best(0) -> worst(49)

Showing Frequency of Selection to be a Parent (70 selections, averaged over 1000 runs)

Tournament Size = 1
Tournament Size = 2
Tournament Size = 4
Tournament Size = 6

Figure 4.27: Average Parent Selection Frequency

0

5

10

15

20

25

30

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

N
u
m

b
e
r

o
f
In

d
iv

id
u
a
ls

Selection Frequency

Distribution of Selection Frequencies

Tournament Size = 1
Tournament Size = 2
Tournament Size = 4
Tournament Size = 6

Figure 4.28: Average Distribution of Repeated Selections

CHAPTER 4. GP TREE RECOMBINATION AND SELECTION 104

0

0.2

0.4

0.6

0.8

1

0 5 10 15 20 25 30 35 40 45 50

L
ik

e
li
h
o
o
d
 o

f
N

o
n
-S

e
le

c
ti
o
n

Sorted Population Size=50, best(0) -> worst(49)

Showing Likelihood of Non-Selection to be a parent (70 selections, averaged over 1000 runs)

Tournament Size = 1
Tournament Size = 2
Tournament Size = 4
Tournament Size = 6

Figure 4.29: Average Likelihood of Non-Selection

0

2

4

6

8

10

12

14

1 2 3 4 5 6

N
u
m

b
e
r

o
f
u
n
c
h
e
c
k
e
d
 i
n
d
iv

id
u
a
ls

Tournament Size, Population Size=50, Selections=70, Averaged over 1000 runs

Showing Number of Unchecked Individuals for each Tournament Size

Figure 4.30: Average Number of Unchecked Parents

CHAPTER 4. GP TREE RECOMBINATION AND SELECTION 105500. Speedups of this magnitude would obviously be a huge bene�t for supervisedtraining problems with large training sets, as discussed in Section 5, but it is not clearif it would work quite as well with the Dynamic Subset Selection method, discussedin Section 6, where the evaluations of trees would di�er for each generation. Keijzerlooks at the impact of DAGs on Automatically De�ned Functions (ADFs, discussed inSection 3.3), suggesting that in certain situations the memory needed for node storagecan be massively reduced.Whilst not pursued in this thesis, the use of DAGs for e�ciently representing a GPpopulation looks very promising.Distribution of Repeated Selections Graph 4.28 shows the distribution of selec-tion frequencies, i.e. the number of individuals selected with each frequency. Lookingat the Selection Frequency 0, it is apparent that a sizeable fraction of the populationremains unselected. For tournament size=6, 30 out of the 50 individuals (i.e. 60%) arenot selected to be parents. Even with the low selection pressure due to tournamentsize=2, on average 30% of the population remains unselected in each generation. Thissuggests there could be some practical way of evaluating but not retaining a fractionof the population. Experiments would be needed to ascertain if a current generation's�tness pro�le could be used as a guide to deciding whether or not to retain certainchild individuals created for the next generation. A simple bias against un�t individu-als would leave a smaller population that could be `representative' in some way of thelarger, full population. For small population sizes such as 50, shown here, the memorysavings would be small, however they could be signi�cant with much larger popula-tions, since the percentage of unselected individuals would be the same regardless ofpopulation size.Likelihood of Non-Selection Graph 4.29 shows the likelihood of individuals notbeing selected at all in a generation. To all intents and purposes, for larger tournamentsizes, the top 10-20% of the population are always selected, and the bottom 10-20%are never selected. However, it can be seen in the plot for tournament size=2 thatmost individuals in the population have a substantial possibility of being selected.

CHAPTER 4. GP TREE RECOMBINATION AND SELECTION 106Number of Unchecked Individuals Graph 4.30 shows the number of individualsin a population which take no part in the Tournament Selection process, i.e. they arenever picked to be part of a tournament. As the tournament size increases, althoughthe number of tournaments remains the same, the number of individuals being pickedto participate in the tournaments increases substantially. Thus the likelihood of anindividual remaining unpicked decreases substantially. This indicates that there isn'tmuch scope for e�ciency savings in CPU or memory usage by avoiding the productionand evaluation of these `wasted' individuals. Even with large populations, the numberof unpicked individuals would be small.Looking at the results above, the main area with scope for improvement (in GPusing Tournament Selection) is the use of a representation such as a directed acyclicgraph, where the entire population is stored compactly, and subtree evaluations canbe cached. The Graphs 4.27 and 4.28 indicate that there would be a great deal ofredundancy within the population, with many trees coming from only a few individu-als. The potential reduction of memory and/or CPU requirements reported for thisrepresentation is impressive, but with the caveats that to save CPU time the evalu-ations of the nodes must be free of side-e�ects. However, the performance of GP canno doubt be optimised in several di�erent ways (perhaps with di�erent operators as in[Ehrenburg 96]) to run better using such a representation.Other than the use of DAGs, there seem to be no obvious areas where GP can beimproved substantially to take advantage of (or avoid the consequences of) TournamentSelection.4.3 DiscussionThere are two main issues raised in this chapter. The �rst and perhaps main issue,raised in Section 4.1 as the MAX problem, is that Crossover (and indeed other operat-ors) can have an adverse interaction with restrictions on tree size, resulting in a loss ofoperator e�ciency and, in certain cases, the inability of the operators to improve on asub-optimal solution. There are no guaranteed �xes for this problem, which is likely toarise with varying degrees of severity whenever GP individuals start approaching their

CHAPTER 4. GP TREE RECOMBINATION AND SELECTION 107limits on size. However, being aware of the possibilities, combined with a few simpleprecautionary steps, should minimise its impact. The main precaution seems to beto allow the individuals, if possible, to grow to their preferred size, perhaps applyinga gentle parsimony pressure to bias GP towards selecting smaller individuals. Wherethis is not possible, greater care needs to be taken to ensure that the operators canfunction well with individuals approaching or at the size limits.The second issue, raised in Section 4.2, concerns the great potential of storing the entireGP population as a directed acyclic graph, with its huge savings in memory require-ments and reduction in subtree evaluation through the caching of earlier evaluations,and the caveat that the GP nodes must be free of side-e�ects during evaluation.

Part IIIGenetic Programmingand Supervised Learning

108

Chapter 5Making use of the Training Setin GP
It soon becomes obvious that one of the �rst and biggest hurdles to overcome whenusing GP to tackle a large supervised learning classi�cation problem is the sheer num-ber of �tness evaluations needed by GP. To calculate the �tness of a GP individual, itis evaluated against each case in the training set; its �tness relates to the total numberof errors made. A large training set means a large number of evaluations. A di�cultproblem may require a large population of individuals, which may take many gener-ations before �nding a good solution. Many tens of millions of evaluations might beneeded, taking many days of computer time.This chapter looks at what can be done with the training set, including methodsfrom other �elds such as Statistics and Machine Learning, with the aim of speedingup GP, and making it a more practical and reliable tool. There is a great deal ofliterature for training arti�cial Neural Networks and constructing Decision Trees forclassi�cation problems, some of which is described in Section 5.1. Section 5.2 describessome methods for selecting training and test sets from raw data in a statistically soundfashion. Section 5.3 describes several methods which have been applied to evolutionaryalgorithms, followed by Section 5.4 which describes some methods applied to GP,including some original work done for this thesis.

109

CHAPTER 5. MAKING USE OF THE TRAINING SET IN GP 1105.1 Training Sets in Machine LearningWithout doubt the GP and Evolutionary Algorithm communities in general are re-discovering a lot of work that the wider Machine Learning community has knownabout for years.Neural Networks One example from the area of Neural Networks is provided by[Zhang 94]. Zhang looks for:\... factors which in
uence the learning speed and generalisation ability ofthe networks. One of them is the nature and size of the training set. Whilethere is no guarantee that the generalisation performance is improved byincreasing the training set size, the training time increases as the numberof examples increases. In general, one should choose those examples whichare most likely to help the network solve the problem."Neural Networks obviously share some of GP's di�culties with supervised learning oflarge training sets. Back-propagation, perhaps the most common method for train-ing Neural Networks often requires that the training data is presented repeatedly (inepochs) before the network succeeds in solving the problem. Each time a case or batchof cases is presented to the learning network, the error between the network's outputand the target output is propagated back through the nodes in the network, so thateach node has an error term. The links between nodes (i.e. weights) are adjusted inan attempt to reduce the error.In the paper, Zhang proposes a criterion for selecting critical examples, and presents ane�cient method for selecting examples and scheduling their training order based on thiscriterion. Bypassing a great deal of mathematics, the method can be summarised asfollows: choose the cases on which the network makes the largest errors. The networkis then trained on this subset of cases, minimising the errors. And then the process isrepeated.Zhang reports:

CHAPTER 5. MAKING USE OF THE TRAINING SET IN GP 111\Our experimental results show that the selective incremental learning �ndsand uses only a critical subset of given examples, which leads to a consid-erable enhancement in training speed and generalisation performance."Cohn et al present a di�erent approach to training Neural Networks on a subset ofthe whole training set, [Cohn et al. 94]. They use the idea of \selective sampling"from \regions of uncertainty" to guide the choice of training examples. For a binaryclassi�cation problem, a network is trained on an initial random sample of trainingexamples. The network's real-valued output (between 0 and 1) is then thresholded intoone of three zones: \Class 1" (0.9 or greater'), \Class 2" (0.1 or less), and \Uncertain"(between 0.1 and 0.9). The \Uncertain" points de�ne a \region of uncertainty". Asyet unclassi�ed points which fall into this region are selected from the training set.Several limitations of this approach are highlighted: the \region of uncertainty" cancome to encompass the entire training set; it is highly dependent on the initial randomsample of examples; and there are di�culties in scaling up to more complex problemdomains. Nevertheless,\... selective sampling demonstrates signi�cant improvement over passive,random sampling techniques on a number of simple problems."Decision Trees One example from the area of Decision Trees is provided by[Quinlan 86]. A decision tree is a hierarchical arrangement of small classi�cation rules,where each node represents a `decision' about one of the �elds in the problem. Forexample, If Field 1 is Red then A else if Field 1 is Blue then B else if Field 1 is greenthen C, or If Field 2 is TRUE then D else E. The components A,B,C,D,E can representa �nal classi�cation, e.g. is-a-�sh, or could be a further decision subtree. There is alarge degree of overlap between decision trees and GP trees, e.g. [Vere 95].Quinlan describes an approach for synthesising decision trees called ID3:\The basic structure of ID3 is iterative. A subset of the training set calledthe window is chosen at random and a decision tree formed from it; thistree correctly classi�es all objects in the window. All other objects in the

CHAPTER 5. MAKING USE OF THE TRAINING SET IN GP 112training set are then classi�ed using this tree. If the tree gives the correctanswer for all these objects then it is correct for the entire training set andthe process terminates. If not, a selection of the incorrectly classi�ed objectsis added to the window and the process continues. In this way, correctdecision trees have been found after only a few iterations for training setsof up to thirty thousand objects described in terms of up to 50 attributes.Empirical evidence suggests that a correct decision tree is usually foundmore quickly by this iterative method than by forming a tree directly fromthe entire training set....While decision trees generated by the above systems are fast to executeand can be very accurate, they leave much to be desired as representationsof knowledge."This last point is one which could also be levelled at much of what is produced by GP.However, Quinlan has demonstrated several methods for simplifying decision trees,[Quinlan 87].Salzburg demonstrates the e�ectiveness of feature selection \for improving the speedand accuracy of machine learning programs on large data sets", [Salzburg 93]. \Com-bined Stepwise Selection" (CSS) is used in combination with four di�erent methods ofclassi�cation: back-propagation, nearest neighbour, nested hyperrectangles, and mul-tivariate (\oblique") decision trees which use multivariate tests at each non-leaf nodeof the decision tree.Rather than look at all possible combination of features, which would take a prohib-itively long time, CSS attempts �rst to reduce the set of features one by one, thenselects subsets of features from the reduced feature set. A classi�er is evaluated (i.e.trained from scratch) on a set of features. The classi�er is then evaluated on each pos-sible subset where one feature has been removed from the initial set. If the classi�erworks equally well without the deleted feature, it is assumed to be OK to ignore it.The feature which causes the smallest decrease in accuracy is removed. This processis repeated as long as the decrease is below a preset threshold (0.5%).

CHAPTER 5. MAKING USE OF THE TRAINING SET IN GP 113Using brute-force search, the best pair of features is chosen from the reduced featureset, evaluating the classi�er on all possible pairs of features to allow for possible andquite common pairwise interactions between features. Each of the remaining features(from the reduced feature set) is then tried in turn, in combination with the best pair.The feature that gives the best improvement in accuracy is added to the pair, and theprocess is repeated with the set of three, and so on, trying each remaining feature inturn, until the improvement is less than the preset threshold.Salzburg reports that the classi�er methods were able to produce more accurate resultswith the smaller feature sets. The smaller feature sets allowed the discovery of newknowledge about the underlying scienti�c domain. Whilst the CSS method is notperhaps ideal for GP (the number of runs needed would probably be prohibitive),it does indicate again that feedback between the learning method and the way theproblem is presented to the learning method can lead to faster and more accurateresults.Feature set selection is a topic which is not explored further in this thesis.5.2 Selecting Training and Test SetsThe topic of selecting training and test sets from raw classi�cation data has had agreat deal of e�ort and statistics thrown at it. The aim is to choose representative setswhich give the particular learning method every opportunity to produce an e�ectiveclassi�er, based on the training set, and an accurate estimate of how well the classi�erwill generalise to unseen data, based on the test set. Simply partitioning the datarandomly into two sets runs the risk of selecting non-representative sets. One methodin particular has been established as a popular and e�ective selection method.Cross-Validation involves splitting the data into k equal or nearly equal sized sets. Oneof the k sets is taken as the test set, and the remaining k -1 sets are combined to formthe training set. This is repeated, taking each of the k sets in turn as the test set.The learning algorithm is trained and tested on each of the combinations. Choosingthe value of k can be done by guesswork or experiment. If k is the number of casesin the whole set, so that the test set is of size one each time, the method is known as

CHAPTER 5. MAKING USE OF THE TRAINING SET IN GP 114Jack-Kni�ng.The data in the Thyroid problem described in Section 6.6 was already divided intotraining and test sets for earlier Machine Learning studies, and the TicTacToe data,described in Section 6.8, was used as a single training set, so the topic of training andtest set selection was not explored in this thesis.5.3 Approaches for Evolutionary AlgorithmsThe standard use of a training set in an Evolutionary Algorithm (EA) is to evaluateeach individual against each case in the training set in order to establish the individual's�tness. This is repeated for each individual in the population and for each generation.Whilst laudably simple, this approach can obviously lead to a very large number ofevaluations for any but the simplest of problems. It would be an advantage if a muchsmaller subset of the training set could be used in place of the whole training set.A method for selecting a single representative subset to use as a training set is HistoricalSubset Selection, described in Section 6.2. It shows that even a very simple selectionmethod can work well. The smaller training set leads to much a faster turnaroundtime for GP. Variations of this simple approach have been mentioned in several papersand discussions with other machine learning practitioners, and it is an obvious methodto try when faced with large training sets.A more
exible method is to pick a variety of subsets during the course of a trainingrun. There are many ways that di�erent subsets could be selected from the trainingset. The goal is to pick the right subsets to allow the learning algorithm to proceed asfast and as accurately as possible. The simplest method for picking a di�erent set foreach generation is randomly. Random Subset Selection, described in Section 6.4, canperform surprisingly well, though not as well as the more directed methods describedbelow. As with HSS, this method has been mentioned in discussions with other machinelearning practitioners as an obvious method to try when faced with large training sets.HSS and RSS have been described here to provide a context for the following method,Dynamic Subset Selection, which was developed during the course of this thesis to

CHAPTER 5. MAKING USE OF THE TRAINING SET IN GP 115allow GP to use and bene�t from large training sets.One criteria that can be used to guide the selection is the performance of the pop-ulation. If individuals in the population consistently classify a case correctly, thenthat case is of limited use in judging the relative performance of the individuals in thepopulation. On the other hand, a case which is often misclassi�ed does provide moreuseful information for the �tness function.In Chapter 6, Dynamic Subset Selection makes use of the di�culty of each trainingcase, i.e. how often it is misclassi�ed, and its age, i.e. how many generations since itwas last selected. This has worked well on some large classi�cation problems, usingless computer resources to produce better results than standard GP. Siegel describesa similar algorithm in [Siegel 94], but does not make use of the age aspect.A di�erent approach to selecting subsets on which to evaluate the entire population isdescribed in [Hillis 90]. Hillis uses two spatially distributed populations, where the �t-ness of an individual in one population is based on how well it confounds an individualat the same location in the other population. One population, the `hosts', is evolvingminimal sorting networks, whilst the other population, the `parasites', is evolving di�-cult subsets of training cases, where the success of a training subset represents a failureof a sorting network and vice versa. The host/parasite relationship prevents large por-tions of the population from becoming stuck in local optima. \Successive waves ofepidemic and immunity keep the population in a constant state of
ux." Only signi�c-ant training cases show up in the parasite population, so it is su�cient to apply onlya few tests to an individual each generation, substantially reducing computation timeper generation. These two factors mean the system can be run productively for manymore generations.Rosin and Belew also co-evolve populations, using a globally calculated �tness and\�tness sharing" which depends on the di�culty of an individual's successes, i.e.the more individuals which share a success, the less important or di�cult that suc-cess is, [Rosin & Belew 95]. This links quite closely with the idea of �tness sharingand `niches' used by Goldberg and Richardson, where functionally similar individu-als have their �tnesses reduced, favouring individuals which have unique abilities,

CHAPTER 5. MAKING USE OF THE TRAINING SET IN GP 116[Goldberg & Richardson 87]. Greene and Smith make a much more explicit use ofniches, [Greene & Smith 93]. Individuals are ranked according to their `discriminab-ility', i.e. the ability to di�erentiate examples correctly. Moving sequentially throughthis ordering, each training example is allocated to the �rst individual which correctlydi�erentiates it. When all the examples have been \consumed", the remaining indi-viduals are discarded, i.e. all the available niches are full. Reproduction takes placerandomly within the remaining individuals. Good results and potential are reported.Angeline and Pollack look at competitive environments where the �tness is related onlyto the current ability of the population, [Angeline & Pollack 93]. Individuals competeagainst one another in �tness tournaments playing TicTacToe, amongst other things,rather than a pre-de�ned `expert' player. They report that\a competitive �tness function requires only a minimal understanding ofthe search space for a complex task.... [U]sing the population as a reservoir for comparison is preferable tousing an exemplar for the task when an objective measure of �tness isunavailable."5.4 Approaches for GP in this thesisChapter 6 presents Dynamic Subset Selection (DSS), and the two simpler methods:Random Subset Selection, and Historical Subset Selection. Chapter 7 presents LimitedError Fitness (LEF). DSS and LEF are approaches which can reduce the number of�tness evaluations needed by GP, and can enable GP to �nd more accurate solutions.Chapter 8 demonstrates that these two approaches can allow the use of much smallerpopulation sizes in GP.

Chapter 6Dynamic Subset Selection
When using GP on a di�cult supervised learning problem with a large set of trainingcases and a large population size, a very large number of tree evaluations must becarried out every generation. This chapter describes three approaches, previouslypublished in [Gathercole & Ross 94a, Gathercole & Ross 94b], to reduce the numberof such evaluations by selecting a small subset of the training data set on which toactually carry out the GP algorithm.Dynamic Subset Selection (DSS) -using the performance of the current GP population to select a new subset of`di�cult' and/or under-selected cases every generationHistorical Subset Selection (HSS) -using the performance of previous GP runs to construct a single subsetRandom Subset Selection (RSS) -selecting a new subset at random every generationGP, GP+DSS, GP+HSS, and GP+RSS, are compared on a large classi�cation problem,the Thyroid Problem. GP+DSS can produce better results in less than 20% of the timetaken by GP, and produces better results than an attempt using a variety of NeuralNetworks. GP+HSS can nearly match the results of GP, and, perhaps surprisingly,GP+RSS can occasionally approach the results of GP. GP and GP+DSS are thencompared on a smaller problem, the TicTacToe Problem.117

CHAPTER 6. DYNAMIC SUBSET SELECTION 1186.1 Subset Selection MethodsAt present, the potential of Genetic Programming (GP) and Genetic Algorithms (GA)has been demonstrated in many di�erent problem areas. Generally, these experimentshave involved solving small, relatively neat problems. The future beckons, however,with large and horribly messy problems, to which the GP method will have to be scaledup.With supervised learning, a training set of cases is involved and the aim is to learnhow to classify these known example cases and hopefully generalise to be able tocorrectly classify all possible cases. Large problems will require large training sets.In the standard GP algorithm, the entire population of GP trees is evaluated againstthe entire training data set, and so the number of tree evaluations carried out pergeneration is directly proportional to both the population size and the size of thetraining set. This chapter looks at ways of reducing the e�ective training set size, andshows that this can also allow a reduction in population size.The simple method of Dynamic Subset Selection (DSS) is described in Section 6.3.DSS reduces the number of such evaluations that need to be carried out before asatisfactory answer evolves and, in fact, can produce a more general answer. Two otherselection methods are described for purposes of comparison: the (even) simpler methodof Random Subset Selection (RSS), in section 6.4, and Historical Subset Selection(HSS), in Section 6.2, which uses previous GP runs to select a single training subset.A classi�cation problem involving the Thyroid data set, described in Section 6.6 isused as a token `large and messy' problem. A smaller problem involving TicTacToeendgame positions is described in Section 6.8.Following on from the results obtained by DSS, a Dynamic Fitness Function (DFF),based on DSS, is proposed for further study.6.2 Historical Subset Selection (HSS) - the algorithmFor HSS, previous straightforward GP runs are used to establish some measure of howdi�cult each training case is. Over the course of several runs (say, �ve or so), the

CHAPTER 6. DYNAMIC SUBSET SELECTION 119cases misclassi�ed by the best population member in each generation in each run arerecorded. These cases then make up the subset used in further GP+HSS runs, and thesubset remains static after its initial selection. Due to the rough-and-ready method bywhich it is selected, the subset contains a mixture of many di�cult cases and manywhich are actually quite easy to classify. Even a best-of-generation population membermakes some simple misclassi�cations early on in its development.Distribution of Classes in Thyroid DataSet Class 1 Class 2 Class 3 Total(% of set) (% of set) (% of set)Training 93 (02%) 191 (05%) 3488 (92%) 3772Test 73 (02%) 177 (05%) 3178 (93%) 3428HSS 65 (12%) 190 (35%) 290 (53%) 545Table 6.1: Distribution of Classes in Thyroid DataSome simple checks showed di�erent runs producing very similar subsets selected bythis method. The statistics almost always agreed on which cases were most oftenmisclassi�ed, and only disagreed on some of the easier cases. The subset size usedin the runs was 545, consisting of every single case misclassi�ed during seven previousruns of a standard GP. A core of around 300 cases were misclassi�ed more than once ortwice, and so were considered to be at least moderately di�cult cases. The distributionof classes within the set can be seen in Table 6.1. Nearly all of the cases from the twosmallest classes are included in the subset, making up nearly 50% of the subset, asopposed to just 7% of the whole training set.6.3 Dynamic Subset Selection (DSS) - the algorithmWorking with the assumption that supervised learning with GP can proceed e�ectivelyeven whilst only using a subset of the full training set, this simple idea of DSS is basedupon a few premises and a small amount of hindsight. Firstly, it is of bene�t to

CHAPTER 6. DYNAMIC SUBSET SELECTION 120focus the GP's attention onto the di�cult cases, i.e. the ones which are frequentlymisclassi�ed. Secondly, it is also of bene�t to check cases which have not been lookedat for several generations. This leads to the �nal point that all of the cases in thetraining set should be looked at, eventually.The algorithm for DSS involves randomly selecting a target number of cases from thewhole training set every generation, with a bias so that a case is more likely to beselected if it is `di�cult' or has not been selected for several generations. In eachgeneration, using a very simple procedure, the subset is selected by the following twopasses through the full training set.� In one pass of the entire training set, of size T, in a generation, g, each trainingcase, i, is assigned a weight, W, which is the sum of its current `di�culty', D,exponentiated to a certain power, d, and the number of generations since it waslast selected (or age), A, also exponentiated to a certain power, a:8i : 1 � i � T; Wi(g) = Di(g)d +Ai(g)a8i : 1 � i � T; Di(0) = 0; Ai(0) = 1(Ai(0) is set to one so that each case has a non-zero weight.)The sum of all the cases' weights is also calculated during this �rst pass.� Then, in a second pass of the entire training set, each case in turn is given alikelihood (not strictly a probability, more an expected number of such cases), P,of being selected to be in the subset. A case's selection likelihood is given by itsweight divided by the sum of all the cases' weights and multiplied by the targetsubset size, S: 8i : 1 � i � T; Pi(g) = Wi(g) � SPTj=1Wj(g)A random number is generated between 0 and 1. If the case's chance P is greaterthen the random number, it is selected. If a case, i, is selected to be in the subset,then its di�culty, Di is set to 0, and age, Ai is set to 1 (so that the weights are

CHAPTER 6. DYNAMIC SUBSET SELECTION 121always greater than zero), otherwise its di�culty remains unchanged, and its age,Ai is incremented. While testing each member of the GP population against eachcase in the current subset of training cases, the di�culty, Di, (starting from 0)is incremented each time the case is misclassi�ed by one of the GP trees.Using this process, if a weight is su�ciently large it will be scaled by S to begreater than 1 and so that case will de�nitely be selected to be in the subset.The subset size will
uctuate around the target size S each time a new subset is selected.Given that some cases will be selected with a probability of 1 (due to the rough andready selection process), the average subset size will in fact be slightly larger than thetarget size. Other selection methods could easily produce subset sizes of exactly S, e.g.roulette wheel selection as used in Chapter 8, but it was felt that a varying subset sizemight contribute more to the e�cacy of the GP algorithm, and certainly did not seemto hinder it. The current generation of the GP's population is then evaluated againstthis subset of cases instead of the entire training set.The equation for calculating the weights of each case in the training set,Wi(g) = Di(g)d +Ai(g)a, is kept as simple as possible. The aim is to �nd a balancebetween age and di�culty. The age exponent means that eventually even the easiestcase is certain to be reselected as the age contribution to the weight rapidly increaseswith each passing generation. The exponents allow the relative contribution of age anddi�culty to be easily adjusted for di�erent population sizes and training set sizes. Asit happens, the fact that exponents are combined in this way means that the equationis quite robust when used, unchanged, with a variety of population and training setsizes. Other, more complicated, combinations of age and weight are possible, but donot appear to be necessary for DSS to function well.The di�culty ratings of cases depend on the size of the population. Larger populationslead to larger di�culty ratings. This could result in di�cult cases being reselectedmore frequently in runs with larger populations than those with smaller populations.However, since the age weight uses an exponent, it soon (after a few generations morefor larger populations) increases su�ciently to achieve a balance with the di�cultyweights.

CHAPTER 6. DYNAMIC SUBSET SELECTION 122To use this form of DSS, the following three parameters have to be set:Target Number of cases - subset sizeDi�culty exponent - importance given to di�cult casesAge exponent - importance given to unselected casesCurrently (and, it seems, as always), choosing useful combinations of parameter set-tings is somewhat of a black art. For the purposes of the Thyroid data set, a targetsize of 400 (out of 3772) was quickly chosen as an e�ective value after some experi-mentation, though other values from 200 upwards also worked well. This correspondsto slightly more than the number of moderately di�cult cases selected by the HSSmethod, leaving room for a few easy cases to be included. With the target size set at400, it was easier to select sensible values for the two exponents. An average di�cultyrating for a case, with a population size of 10000, might be around 2000 or so. Themost di�cult cases could have a rating of up to 10000. With a target size of 400,it would take at least 10 generations to cover all the 3772 training cases. Given thisdisparity between a very `di�cult' case and an `old' case, an arbitrary decision wasmade to keep the di�culty exponent to 1.0 and to set the age exponent to 3.5. Withthese exponents, the most di�cult cases and cases around 15 generations old wouldhave roughly equivalent weights.Siegel describes an algorithm similar to DSS in [Siegel 94], but does not make use ofthe age aspect, instead using only a bias towards di�culty.6.4 Random Subset Selection (RSS) - the algorithmIn RSS, for each generation, each case in turn is selected to be in the current subsetof training cases with an equal likelihood, which is scaled to ensure that the subsetselected, on average, is of the target size. As with the DSS method, the subset size
uctuates around the target size with each generation.8i : 1 � i � T; Pi(g) = ST

CHAPTER 6. DYNAMIC SUBSET SELECTION 123Without any weights biased by di�culty or age, RSS provides an opportunity to distin-guish between the e�ects of using subsets, and the bias introduced by the performanceof each generation of the evolving population which a�ects the subset selection in DSS.6.5 GP DetailsGenerational replacement with elitism was used along with tournament selection with atournament size of 6, and large population sizes of 5000 and 10000. A small parsimonyfactor was used, in combination with a form of restriction on tree depth to no deeperthan 17. The operators were� 40% Crossover� 10% Duplicate Parent� 50% Mutate SubtreeIn hindsight, the restriction on tree depth was probably not ideal; a restriction on thenumber of tree nodes would be preferable. Also, the Mutation operator was quite ablunt operator; perhaps an extra Mutate Node operator might have been useful.6.6 The `Large and Messy' Thyroid ProblemThe Thyroid data set [Werner 92] represents a hard classi�cation problem; oneof several stored at [UCI 97]. The results reported for Neural Networks[Schi�mann et al. 92a, Schi�mann et al. 92b] provide an useful comparison with theperformance of GP, however, the main aim for this investigation was to improve theperformance of GP on a hard problem.The data is based upon measurements of in-patients at a clinic. Each measurementvector consists of 15 binary values (0.0 or 1.0) and 6
oating point values (i.e. 21 �eldsin all), and falls into one of three classes. Class 3 signi�es a `normal' thyroid gland andis by far the most common class in both training and test data sets, whilst classes 1 and2 signify that the patient later experienced a thyroid gland problem. To be useful in

CHAPTER 6. DYNAMIC SUBSET SELECTION 124practise in identifying potential thyroid problems, a classi�cation scheme would have tocorrectly classify signi�cantly more than 92% of all cases, since over 92% of all patientshave a normal (class 3) thyroid gland, as can be seen in Table 6.1.There are 3772 cases in the training set and 3428 cases in the test set. Examinationof the data in graphical form, e.g. using XGobi [Swayne et al. 91], reveals that theboundaries between the classes of points are very murky indeed. Points from di�erentclasses seem to mingle freely with each other, as can be seen in Figure 2.1 in Section 2.2.In all runs, only the training set is used by the GP to try to evolve its population toclassify the thyroid cases into their correct classes. The test set is only used as a checkon each generation's best (or �ttest) classi�er (with respect to the training set), to seehow well it generalises to another set of the same kind of data. A run's best classi�eris taken to be the one which performs best when evaluated on the training set. This isnot necessarily the one which performs best on the test set. The setup which generatesthe �ttest classi�er with respect to the training set which then performs best on thetest set in this way is taken to be the most successful one.The function set, chosen after a great deal of guesswork is:f IFLTE, +, -, *, %, TANH, LOG, MINIMUM OF 3, NEGATE, SQRT gand terminal set used in this problem is:f B1 to B15, F1 to F6, 0, -1, Random Constant gwhere `B' and `F' refer to the binary and
oating point �elds of the Thyroid cases.`0' and `-1' refer to constants added to the terminal set as a possible aid to GP inconstructing useful subtrees. There was some experimentation with and without theseextra constants, and with and without Koza's recommended `ephemeral random con-stant' (each time a new node of this type is created, i.e. by Mutation, it is given arandom value which it holds for the lifetime of the node). There was no apparentbene�t in using the random constant in the Thyroid problem, making the resultingtrees messy and hard to decipher. It was also not clear if the constant nodes `0' and

CHAPTER 6. DYNAMIC SUBSET SELECTION 125`-1' had any bene�cial e�ect either. Much more experimentation is needed to establish`ideal' terminal and function sets.Modi�cation to Thyroid ProblemTo make things easier for the GP (after a few initial, unsuccessful runs), the Thyroidproblem was reformulated to classifying cases as class 3 or not class 3. This reformu-lation allowed the GP tree's outputs to be treated as boolean:� output � 0) class 3� output < 0) not class 3It proved relatively straight forward, in a separate run, for DSS to produce a treeexpression which could distinguish between classes 1 and 2 with 100% accuracy onboth the training and test sets. This subproblem can be seen to be quite simple inFigure 2.2 in Section 2.4. In fact, it is linearly separable. The simple tree shownin Figure 6.1 is su�cient to distinguish between class 1 and class 2 cases with 100%accuracy, and was discovered by GP very easily. If this approach were to be used inpractise, two GP expression trees would have to be used in two phases: First (andmost di�cult) distinguish between class 3 cases and the others, then, if it is not a class3 case, distinguish between class 1 and class 2 cases.
+

NEGATE

F6

-

+

B6 *

-

B2 F4

F4

-0.069964

Figure 6.1: Simple GP tree which distinguishes between class 1 and class 2 cases with100% accuracy.

CHAPTER 6. DYNAMIC SUBSET SELECTION 126Experiments were carried out with three methods of Subset Selection and comparedagainst the baseline performance of the standard GP which uses the entire training setin each generation.6.7 Thyroid ResultsThis is by far the larger of the two problems attempted in this chapter. Results aregiven in Table 6.2 for a typical DSS run with a population size of 10000, and for typicalGP, DSS, HSS, and RSS runs with a population size of 5000, and for the best NeuralNetwork results reported in [Schi�mann et al. 92a]. It was not possible to complete arun of GP with a population size of 10000 in a reasonable time!Figure 6.3 shows the DSS run easily outperforming RSS, though RSS is still showingsigns of improvement after 120 generations. This indicates that subset selection canproduce useful results even without any bias used in selecting cases, though the biasused in DSS can be seen to greatly improve subset selection. Figure 6.4 shows thestandard GP run outperforming HSS, though only due to a surge around generation48. These two methods often produce similar scores, but HSS achieves them withmany fewer tree evaluations. For this problem, it is thus possible to extract a usefulsubset of cases using a very simple selection process which allows GP to perform nearlyas well (with many fewer evaluations) as with the whole set. Figure 6.5 shows DSSmatching GP results using many more generations, but only 20% of the number of treeevaluations.The best tree produced by the DSS run (with population size = 10000) to distinguishbetween class 3 and not class 3, was found on Generation 69, giving only 25 errors onthe test set, underlined in Table 6.2, and is shown in Figure 6.2. It used only 13 outof the 21 variables available in classifying the Thyroid cases.The dynamics of the DSS components can be seen in Figure 6.7, taken from a run witha population size of 5000. The curve for `average powered time since used' shows theaverage weight corresponding to the age (i.e. how many generations since last beingselected) of each case in the training set. Rising sharply early on, as only a few areselected and the rest remain unselected, the curve peaks and drops after generation 10,

CHAPTER6.DYNAMICSUBSETSELECTION
127
+

-

+

-

+

-

SQRT

F2

F2

MIN3

LOG

LOG

LOG

IFLTE

LOG

B2

LOG

IFLTE

*

+

B15 F4

TANH

SQRT

F5

LOG

B2

TANH

F3

F1

SQRT

F2

SQRT

SQRT

TANH

F4

B14 B13

MIN3

B13 +

+

IFLTE

B12 B4 MIN3

LOG

LOG

LOG

IFLTE

LOG

B2

LOG

B11

SQRT

F2

SQRT

SQRT

TANH

F4

B14 LOG

LOG

LOG

B11

B2

NEGATE

LOG

IFLTE

MIN3

B15 F1 B11

-

B8 NEGATE

LOG

+

IFLTE

-

B3 B14

B7 -0.866196 B13

B4

SQRT

IFLTE

F6 B14 F6 B2

SQRT

SQRT

TANH

F4

MIN3

-

F5 F6

+

IFLTE

MIN3

c0 B5 B8

B4 *

B9 *

F6 B4

IFLTE

F6 B14 F6 B2

NEGATE

IFLTE

LOG

LOG

SQRT

F5

B13 F6 B12

SQRT

SQRT

IFLTE

LOG

B2

-

F3 F2

SQRT

F2

-

B8 IFLTE

B1 -

-

SQRT

F2

F2

B7

F2 F4

B14

+

MIN3

-

F6 F2

B3 F3

MIN3

F6 F5 B14

F2

TANH

B7

Figure6.2:GP+DSStreewhichdistinguishesbetweenclass3casesandallotherswith
highaccuracy.

CHAPTER 6. DYNAMIC SUBSET SELECTION 128Performance of GP with RSS or DSS on the Thyroid Test Set

0

50

100

150

200

0 20 40 60 80 100 120

T
e
s
t

S
e
t

E
r
r
o
r
s

(
o
u
t

o
f

3
4
2
8
)

Generations

DSS
RSS

Figure 6.3: The number of errors made on the Thyroid test set by the best-of-generationtrees produced during a run of the DSS and RSS Methods for each generation.
Performance of GP with and without HSS on the Thyroid Test Set

0

50

100

150

200

0 10 20 30 40 50 60

T
e
s
t

S
e
t

E
r
r
o
r
s

(
o
u
t

o
f

3
4
2
8
)

Generations

Standard GP
HSS

Figure 6.4: The number of errors made on the Thyroid test set by the best-of-generationtrees produced during a run of the Standard GP and HSS Methods for each generation.

CHAPTER 6. DYNAMIC SUBSET SELECTION 129
Performance of GP with and without DSS on the Thyroid Training Setplotted against the number of generations

0

50

100

150

200

250

0 20 40 60 80 100 120

T
r
a
i
n
i
n
g

S
e
t

E
r
r
o
r
s

(
o
u
t

o
f

3
7
7
2
)

Generations

Standard GP
DSS

Performance of GP with and without DSS on the Thyroid Training Setplotted against the number of tree evaluations

0

50

100

150

200

0 2e+08 4e+08 6e+08 8e+08 1e+09 1.2e+09 1.4e+09

T
r
a
i
n
i
n
g

S
e
t

E
r
r
o
r
s

(
o
u
t

o
f

3
7
7
2
)

Tree Evaluations

Standard GP
DSS

Figure 6.5: The number of training set errors made on the Thyroid training set by thebest-of-generation trees produced during a run of GP with and without DSS methods,plotted against the number of generations and tree evaluations.

CHAPTER 6. DYNAMIC SUBSET SELECTION 130
Performance of GP with and without DSS on the Thyroid Test Set

0

50

100

150

200

0 2e+08 4e+08 6e+08 8e+08 1e+09 1.2e+09 1.4e+09

T
e
s
t

S
e
t

E
r
r
o
r
s

(
o
u
t

o
f

3
4
2
8
)

Tree Evaluations

Standard GP
DSS

Figure 6.6: The number of errors made on the Thyroid test set by the best-of-generationtrees produced during a run of the Standard GP and DSS methods against the numberof tree evaluations carried out.
Plots showing how the DSS weights vary with each generation

0

200

400

600

800

1000

1200

1400

1600

1800

0 20 40 60 80 100
Generations

average_difficulty
average_powered_time_since_used

number_selected
average_powered_difficulty

Figure 6.7: Dynamics of DSS: showing the varying di�culty and age weights

CHAPTER 6. DYNAMIC SUBSET SELECTION 131Thyroid Training and Test ResultsPop. Subset Gener- Avg. Evals Total % correctAlgorithm Size Size ations per Gen. Evals Training TestGP 10000 3772 n/a 3.8e+07 n/a n/a n/aGP+DSS 10000 400 69 4.0e+06 2.7e+08 99.84 99.27GP 5000 3772 60 1.9e+07 11.3e+08 99.70 99.00GP+DSS 5000 400 117 2.0e+06 2.3e+08 99.70 99.00GP+RSS 5000 400 124 2.0e+06 2.5e+08 99.10 98.40GP+HSS 5000 545 57 2.0e+06 1.6e+08 99.50 98.70NN - [Schi�mann et al. 92a] - Cascade Correlation 100.00 98.48Table 6.2: Best results by GP on Thyroid Problem, with best NN results for comparisonas the selection process ensures that all of the cases get selected at least once. The`average powered di�culty' curve shows the average di�culty rating for the cases risingas more and more cases are selected and given a non-zero di�culty rating. This curvecan then be seen to drop very slowly over the later generations as the populationsevolves to correctly classify more of them. The early dip in the `number selected'curve is due to a mistake made when initialising the parameters in early runs whicha�ected the subset selection process in the �rst few generations. Generally, the numberof cases selected can be seen to oscillate close to the subset size of 400. The averageage weight can be seen to dominate the average di�culty weight. Cases with aboveaverage weights, however, are much more likely to be selected.GP+DSS seems to perform well with a variety of di�erent DSS parameter settings.The DSS algorithm seems quite robust given that, eventually, all cases will have beenselected to participate in several di�erent subsets. If the age weight is too large itcan swamp the di�culty weight, and this is perhaps the most likely problem to beexperienced with di�erent parameter settings. If the di�culty weight is too large, itwill eventually be matched by the age weight, due to the case ages being exponentiated,and the selection process will reach a balance. A variety of di�erent subset sizes allseem to work well.

CHAPTER 6. DYNAMIC SUBSET SELECTION 1326.8 A Smaller Problem: TicTacToe EndgamesThe TicTacToe problem is smaller and neater than the Thyroid problem. Nevertheless,it is used here to show that DSS can transfer well to other problems.The data, taken from [Aha 93], consists of the complete set of possible, legal 3x3 boardcon�gurations at the end of TicTacToe games (also known as `Noughts and Crosses'),where player `x' is assumed to have played �rst. The target concept is `win for playerx' (i.e. , true when `x' has one of the 8 possible ways to create a `three-in-a-row').There are 958 di�erent board positions (taking into account the board's rotationalsymmetries), each of which is represented by 9 �elds, each of which can take one ofthree values f1, -1, 0g corresponding to fplayer `x', player `o', blankg. Approximately65% of the positions are a win for `x'.The task for GP is to construct a tree which can correctly classify all possible boardpositions as to whether or not they are a win for `x', using the entire set as a trainingset. This is a variation on the standard method of splitting the cases into training andtest sets, but the problem is su�ciently di�cult that it still allows a clear comparisonbetween di�erent GP runs, and there was no wish to study the generalisation perform-ance of GP here. The problem has a `neat' solution, easily constructed by hand, butthe resulting tree is fairly large and contains a lot of detail.The allowed function and terminal sets used in this problem are:f AND (both args > 0), OR (either arg > 0), IFGTZ (IF arg is Greater Than Zero)gf cornerNW, edgeN, cornerNE, edgeW, centre, edgeE, cornerSW, edgeS, cornerSE gIt can be seen that the function set is not su�ciently powerful to make use of all thepossible values of the terminal nodes. The function set cannot distinguish between thetwo of the possible position values: player `o' and blank. In e�ect, the board data hasbeen reduced to indicating whether of not each board position is held by player `x'.However, even with this reduced level of detail, the problem is still solvable. Otherruns tackling the TicTacToe problem are shown in Section 8, looking at the e�ect ofusing a much smaller population size, and these runs do have a more extensive function

CHAPTER 6. DYNAMIC SUBSET SELECTION 133set which can make use of all of the detail available in the board data.6.9 TicTacToe ResultsThe following results in Table 6.3 are taken from representative runs. The GP popu-lation sizes used here are 1000 and 2000, and the DSS subset size is 200 (out of 958training cases). The `di�culty' and `age' weights are the same as those used in theThyroid problem. Initial runs indicated that these values produced good results, asdid a variety of other values.It was not possible to get a standard GP run to produce a tree which could classifyall of the training cases since the runs were very slow, and always converged to asub-optimal solution within approximately 100 generations. The GP+DSS runs, witha variety of subset sizes, always achieved close to 100% (approx 95%) if allowed torun for enough generations, and always showed signs of improvement even after manygenerations. TicTacToe Training ResultsPop. Subset Gener- Avg. Evals Total Training setAlgorithm Size Size ations per Gen. Evals % correctGP+DSS 1000 200 196 2.0e+05 3.9e+07 100.00GP+DSS 2000 200 131 4.0e+05 5.2e+07 100.00GP 1000 958 114 9.6e+05 1.1e+08 90.60GP 2000 958 94 1.9e+06 1.8e+08 96.20Table 6.3: Best results by GP on TicTacToe problem6.10 A quick summary of results from other runsDi�erent DSS subset sizes were tried on the di�erent problems. As the subset size isreduced, the performance of the GP drops, gradually at �rst but then rapidly, andseems to mimic that of a much smaller population size. As the subset size is increasedtowards that of the full training set, the time taken to produce reasonable solutionsincreases, but, the performance with DSS is still at least as good as that of GP on itsown.

CHAPTER 6. DYNAMIC SUBSET SELECTION 134Adding in a parsimony factor (i.e. penalising large, `bushy', trees) speeds up the runningof the GP program, since it then uses much less run-time memory to store the wholepopulation of (smaller) trees, and the trees are quicker to evaluate. The standard GPdid not seem to perform as well with this restriction as it did without. However, DSSseemed, if anything, to perform better than before. In the TicTacToe problem it waspossible to observe the parsimony leading to smaller optimal trees, after the run haddiscovered its �rst optimal tree.Proposed Dynamic Fitness Function (DFF), based on DSSA �tness function, based on the statistics accumulated during a DSS run was tried.Here, instead of the �tness of a GP tree being the number of training cases it mis-classi�es, the �tness is instead taken to be the sum of the `di�culty' ratings of eachof the training cases it misclassi�es. Again, the di�culty rating of a case refers to thenumber of GP trees which misclassi�ed the case in the last generation. This �tnessfunction seems to have a somewhat similar e�ect to DSS in that the GP runs seem toconverge more reliably to good solutions, and occasionally produce better solutions. Itwill need many more runs to try and quantify this, but early indications are that this�tness function works well with both GP on its own and GP+DSS, helping to improveboth types of run.6.11 Smaller Populations over More GenerationsAn interesting result of using DSS (and DFF) on small populations was noticed overmany generations. Large populations (using generational replacement) tend to con-verge to some best �tness value, and thereafter show no signs of improvement, nomatter how many more generations are carried out. On the other hand, smaller popu-lations show a slowly improving best �tness value, even after several thousand genera-tions. The same is not true for smaller populations without DSS. They settle down toa given (often quite bad) best �tness value very quickly.Table 6.4 contains some indicative runs with di�erent sized small populations. Al-though they do not achieve as good a peak performance as the large populations, they

CHAPTER 6. DYNAMIC SUBSET SELECTION 135Further Thyroid Training and Test ResultsPop. Subset Gener- Avg. Evals Total % correctAlgorithm Size Size ations per Gen. Evals Training TestGP+DSS 10000 400 69 4.0e+06 2.7e+08 99.84 99.27GP+DSS 5000 400 117 4.0e+06 2.3e+08 99.70 99.00GP+DSS 200 400 1711 8.0e+04 1.4e+08 99.34 98.22GP+DSS+DFF 100 400 1806 4.0e+04 7.3e+07 99.42 98.80GP+DSS+DFF 100 300 2531 3.3e+04 7.6e+07 99.52 98.98GP+DSS+DFF 50 400 3870 2.3e+04 7.7e+07 99.47 98.86Table 6.4: Further Thyroid Training and Test Resultsget reasonably close, still using fewer tree evaluations, and using much less computermemory. Using less memory has a knock-on e�ect with the e�ciency of CPU-usage,and in fact increases the speed of tree evaluation. These runs were still (very) slowlyimproving, but were interrupted when user patience ran out, or a re-boot was sched-uled.The use of small populations is explored further in Chapter 8.6.12 DSS DiscussionGP, DSS, HSS, RSS, and NNs The GP + DSS method produces results as goodas those of the standard GP and in a much shorter time, on the Thyroid Problem atleast. DSS can actually produce better answers, as can be seen with the TicTacToeproblem, and the population appears to produce a larger variety of solutions in latergenerations than with standard GP or HSS. The random nature of DSS appears toassist the basic GP algorithm.HSS out-performed the standard GP in terms of processing time, and nearly matchedit in terms of quality of results. HSS was the main contender for improvement-of-the-week until DSS was implemented. One big bene�t of HSS is the ease with whichprevious standard GP runs can be cannibalised for information to use in selecting asubset of di�cult cases.RSS performs surprisingly well, and can match the performance of standard GP incertain situations, in a much shorter time. This perhaps indicates one of the bene�ts

CHAPTER 6. DYNAMIC SUBSET SELECTION 136of DSS that, in e�ect, the �tness function is continually being changed, never allowingthe GP to settle into a rut.When compared with the Neural Network results in [Schi�mann et al. 92a], the best ofwhich is shown in Table 6.2 above, GP+DSS produced a tree which generalised betterfrom the training set. To be fair, in splitting up the problem into two phases (class 3or not, then class 1 or 2), the GP has been presented with an easier problem than waspresented to the Neural Networks. This could be taken in di�erent ways: splitting upthe problem is mildly cheating, or demonstrating the
exibility of the GP approach.Thyroid Problem For the Thyroid problem, the distribution of errors made by thebest tree was split more or less evenly between problem cases (classes 1 and 2) andno-problem cases (class 3). This could be altered by biasing the GP algorithm to erringon the side of problem cases, i.e. more False-Positive errors and fewer False-Negativeerrors, which would be more useful in a medical environment.Looking at the trees produced, it was interesting how the best tree used only 13 outof the 21 variables available to classify most of the cases correctly. This could perhapslead to some useful savings in data collection costs, or it could help focus attention onsome key measurements. It might be possible to make some further measurements andsplit each key measurement into several di�erent, �ner measurements. One advantageof GP over NNs is that it is very di�cult to obtain such insights from the node weightsin a trained NN.DSS DSS does not seem too sensitive to the choice of subset size, and `di�culty' and`age' weights. The ones chosen for the Thyroid Problem carried over successfully tothe TicTacToe problem. It is possible to pick bad values, but it seemed just as easy topick useful ones. A reasonable guess so far (albeit one which needs to be checked onmany more and di�erent problems) seems to be a subset size around a �fth to a tenthof the full training set size, with the weights chosen to allow a di�cult case and a case�ve to �fteen generations old to have a roughly equivalent weighting.There are obviously many factors a�ecting the optimum choice of these parameters. Itappears that a large training set, containing some degree of redundancy, with a core

CHAPTER 6. DYNAMIC SUBSET SELECTION 137of di�cult cases would bene�t the most from DSS. However GP, in particular in theTicTacToe problem, seems to su�er from an inability to reach an optimal solution. Thiscould be due to many things, but, applying DSS enables GP to correctly classify all ofthe training set. Di�cult cases are persistently dragged into the subset until the GPpopulation evolves to be able to deal with them. Standard GP does not di�erentiatebetween easy and hard cases, and this lack of pressure becomes noticeable near theend of a run when the population fails to �nd the optimal solution. DSS appearsto epitomise this idea of a dynamic �tness function increasing the pressure to solvedi�cult cases.At this early stage of investigation, there are strong hints that the method is morewidely applicable to general problem solving with GP and GA involving large trainingsets (for time saving), and to di�cult problems (for better and more general answers).What is more, DSS is easily added to the basic GP algorithm. The performance ofDSS on the smaller, less messy, TicTacToe problem bodes well for DSS to be appliedto many other supervised training problems. Possibly one of the more useful aspectsof DSS so far has been its ability to produce results quickly which, for GP, means thatdi�erent function sets and parameter settings can be experimented with.DFF DFF is a logical progression from DSS itself, and in many ways has an equival-ent e�ect on the �tness function in supervised learning with a training set. DFF andDSS provide a simple feedback mechanism for focusing a GP population onto its ownde�ciencies.Smaller Populations It is interesting that the DSS method which allows GP to beused on large problems in a practical time, also allows GP to be scaled down for useon smaller machines where CPU memory and its usage is more constraining than CPUspeed.Further Research There are myriad lines of investigation to follow up. For instance,how widely applicable is DSS to other problems? How does DSS's randomness in
uencethe behaviour of GP? Would DSS work as well if it was only based on an individual

CHAPTER 6. DYNAMIC SUBSET SELECTION 138tree's measure of di�culty, e.g. the performance of the best-of-generation tree, or doesit need the combined measures from the whole population? Could DSS be applied toother supervised training algorithms, e.g. Neural Networks, where the training cases arecontinually re-assessed until correctly classi�ed? Could DSS be applied to constraintsolving problems? How sensitive is DSS to its parameter settings?

Chapter 7Limited Error Fitness
This chapter presents Limited Error Fitness (LEF), described in Section 7.1, and �rstpublished in [Gathercole & Ross 97b]. LEF is a variation on the standard �tness func-tion for GP on supervised classi�cation problems. LEF enables a simple GP, describedin Section 7.2, to solve the previously out of reach Boolean Even N Parity problem forN > 5, described in Section 7.3. The test results from runs with N=6 and N=7 aregiven in Section 7.4, followed by a discussion in Section 7.5.The Boolean Even N parity problem (�nding the parity of N boolean inputs) is a hardone for GP to solve; increasing rapidly in di�culty and solution size with increasingN. Koza has shown that N=5 represents, in e�ect, an upper limit for standard GP,even with a large population size of 8000. Runs tend to converge rapidly on sub-optimal solutions. Only with the use of Automatically De�ned Functions (ADF), amore powerful representation, was Koza able to solve for N=6 and higher, with a largepopulation of 4000, [Koza 92, Koza 94].\... the parity functions are the hardest Boolean functions to �nd via blindrandom search of the space of S-expressions using the function set F andthey are the hardest to learn via genetic programming."With LEF, standard GP without ADF can readily solve for N=6 and N=7 with a pop-ulation size of 400, but may require several thousand generations. A smaller populationsize allows GP to be run on smaller computers at a reasonable speed, in a reasonablelength of time. It has the potential to solve for even higher N with larger populations.139

CHAPTER 7. LIMITED ERROR FITNESS 140LEF is variation on the standard GP �tness function for classi�cation problems. Anindividual's �tness score is based on how many cases remain uncovered in the orderedtraining set after the individual exceeds an error limit. The training set order and theerror limit are both altered dynamically in response to the performance of the �ttestindividual in the previous generation.Evidence indicates that LEF rewards generality, penalises specialists, and maintainsdiversity in the GP population, preventing premature convergence. After many thou-sands of generations, if it has not yet found an optimal solution, LEF keeps the GPpopulation in
ux. Thus GP is a more e�ective optimiser, continually emphasising therelative importance of di�cult cases, and de-emphasising easy cases. However, LEFis very susceptible to the choice of various parameter values, and often causes the GPpopulation to undergo a catastrophic loss of good individuals. LEF is also used suc-cessfully on the TicTacToe problem in Chapter 8. However LEF still hasn't yet beentried on enough problems to identify other potential weaknesses such as over-�tting onthe training set.7.1 LEF - the algorithmLEF is a variation on the standard method used to evaluate the �tness of a GP indi-vidual in supervised learning on classi�cation problems. In e�ect, it presents a di�erentversion of the same problem to each generation of the population, based on how wellthe population performed on the previous version. The standard method evaluatesthe GP individual on each case in the set of training cases, compares its `answer' (orclassi�cation) with the correct answer, and the GP individual's �tness score is basedon the total number of errors.With LEF, a GP individual's �tness score is related to how many of the ordered set oftraining cases it classi�es correctly before it makes a certain number of misclassi�ca-tions. After exceeding the error limit, any cases not yet covered by the individual arecounted as misclassi�ed. The �tness score is the total number of misclassi�ed cases.If the GP individual is a poor one, i.e. makes many mistakes, it will not be evaluatedon the entire training set. If the GP individual is a good one, it will be evaluated

CHAPTER 7. LIMITED ERROR FITNESS 141on the entire training set, making fewer mistakes than the number allowed. Thus, ingeneral, it is quicker to �nd the �tness value for a poor GP individual than a good GPindividual, saving CPU time.At the start of a run, the training set is shu�ed into a random order to avoid anybiases that may have been introduced in the original ordering. The error limit is set inadvance of the �rst generation, possibly with the bene�t of information gleaned fromprevious runs. The �rst generation could, however, run without an error limit, and theerror limit be set equal to the number of errors made by the best GP individual in the�rst generation. Later on, the error limit is raised, lowered, or left unchanged, and thetraining set is re-ordered, depending on the performance of the best GP individual inthe preceding generation. The timing of these changes depends on two measures fromthe best of generation individual (BOGI), and some parameters set at the start of therun. The two measures are the number of cases not covered by the BOGI (because itexceeded the error limit before reaching the end of the training set), and the numberof generations since the last improvement in the BOGI (ignoring generations when itgot worse). In this instance, the term `improvement' is taken to mean that the BOGImade fewer errors. With parsimony included in the �tness function, i.e. a penalty forlarge trees, the BOGI often gets smaller, with a corresponding small decrease in its�tness score, but remains functionally unchanged.The algorithm for modifying the error limit is as follows:� BOGI improvement:IF the BOGI has improved within the last O-PAUSE generationsTHEN make no parameter changes� Over-Coverage:IF the BOGI makes fewer errors than the error limitAND the BOGI hasn't improved for O-PAUSE generationsTHEN{ reduce the error limit by O-DECREMENT{ move the O-BUBBLES easiest training casesto the end of the ordered training set

CHAPTER 7. LIMITED ERROR FITNESS 142� Exact-Coverage:IF the BOGI reaches the error limit, but covers all the casesAND the BOGI hasn't improved for E-PAUSE generationsTHEN{ reduce the error limit by E-DECREMENT{ move the E-BUBBLES easiest training casesto the end of the ordered training set� Under-Coverage:IF the BOGI exceeds the error limit before covering all the casesAND the BOGI hasn't improved for U-PAUSE generationsTHEN{ increase the error limit by U-INCREMENT{ move the U-BUBBLES easiest training casesto the end of the ordered training setThese four phases cover all the possibilities for the interaction of the error limit and theperformance of the BOGI. Over-Coverage corresponds to the BOGI making fewer errorsthan the error limit, indicating that the problem could be made harder by reducing theerror limit. Under-Coverage corresponds to the BOGI making more errors than theerror limit, so none of the population can cover the entire training set. Raising the errorlimit would give the population a better chance of covering the entire set. The Exact-Coverage phase has been made explicit, even though it could have been incorporatedinto the other two phases. This phase is quite crucial in LEF; it is when the BOGI onlyjust covers the training set. Reducing the error limit at all will immediately reducethe �tness of the BOGI, possibly by a large amount, allowing other, previously less �t,individuals to the fore.There are several parameters set at the start of a run. Some typical values are asfollows:� initial error limit - set to allow the �rst generation BOGI to nearly cover theentire training set. This obviously depends on the training set, and di�ers for

CHAPTER 7. LIMITED ERROR FITNESS 143each problem. Experiments have indicated that it is better to start too large thantoo small, though the algorithm allows it to rise if it is set too low. However inthe LEF run for N=6, shown below, the error limit was set quite low at 20 (thereare 64 training cases, and a random solution is likely to achieve approximately32 errors), to demonstrate how the LEF algorithm copes with a BOGI that can'tcover the entire training set before exceeding the error limit.� O-PAUSE - set to 5� E-PAUSE, U-PAUSE, - set to 15These delays can be varied somewhat but experiments have indicated that ifE-PAUSE and U-PAUSE are too small, the population doesn't have time toadapt to the new version of the problem, and so doesn't improve very quickly ifat all. If U-PAUSE is too long, the population converges too much on the newversion of the problem, and loses the diversity needed to solve the earlier versions.In e�ect, it has to re-learn how later. This loss of diversity is more noticeablewith smaller populations, and is usually catastrophic, setting back the populationby many generations. O-PAUSE seems less important since it only has an e�ectwhen the BOGI makes fewer errors than the error limit, and there are likely tobe several other individuals making few errors. Reducing the error limit at thisstage still keeps the current BOGI in place, but speeds up the evaluation of themajority of the population.� O-DECREMENT, E-DECREMENT, - set to 1These changes to the error limit are kept small. If they are too large, the changein di�culty of the problem becomes too extreme, the population fails to over-come the change, and bad GP individuals can suddenly become the best of thegeneration.� U-INCREMENT - set to 1This parameter can be made larger to help counter the e�ect of the catastrophicloss of good individuals in the population, by allowing a faster increase in theerror limit.� O-BUBBLES, E-BUBBLES, U-BUBBLES, - set to 1

CHAPTER 7. LIMITED ERROR FITNESS 144The change in order of the training set is kept small. The problem is madeslightly more di�cult, but previous good GP individuals should still performwell. If it is too drastic, as with changes in the error limit, it is detrimentalto the development of the population. The `BUBBLES' refer to one pass of abubble sort algorithm. Starting with the �rst case in the set, and moving alongthe order towards the last case, pairs of cases are swapped if the later one hasbeen misclassi�ed (or left uncovered) more often. This has the e�ect of movingthe easiest case (i.e. the one that was misclassi�ed least often by the previousgeneration) to the end of the ordered set, and moving the harder cases one placetowards the start of the ordered set. There are many other ways of changing theorder of the training set, but this is one of the simplest, and appears to have areasonably good e�ect. One `bubble' only reduces the BOGI �tness by at mostone, even though, potentially, a case could be moved from the start of the setorder all the way to the end. Any di�cult cases are only moved towards thestart of the set by one position. Changing the error limit can have a much biggerimpact on the BOGI �tness.In essence, these parameters control the change in di�culty of the problem in responseto the performance of the population in the previous generation. Many experimentshave indicated that it is better to minimise the impact of the changes to error limitand set order, especially E-DECREMENT and E-BUBBLES. The population is giventime to adapt to the new version of the problem. If it proves too di�cult, the problemis made slightly easier. If it proves too easy, the problem is made slightly harder. Theultimate aim is to reduce the error limit to zero, i.e. for the BOGI to make no errors.Related Work Closely related to LEF is the idea of co-evolving host and para-site populations, [Hillis 90, Rosin & Belew 95], niches, [Goldberg & Richardson 87,Greene & Smith 93], competitive �tness functions, [Angeline & Pollack 93], (These aredescribed more fully in Section 5.3), and training subset selection, (Chapter 6).

CHAPTER 7. LIMITED ERROR FITNESS 1457.2 GP DetailsThe GP setup is kept simple, and Automatically De�ned Functions (ADF) are notused. Generational replacement with elitism is used, with panmitic tournament selec-tion of size 4, using population sizes from 100 to 800. The operators (and selectionprobabilities) are:� 40% CROSSOVER AT ANY POINT- crossover between two parents producing one child� 20% MUTATE SUBTREE- mutate a subtree in a parent to produce a child� 20% MUTATE BY SUBTREE PROMOTION- replace a subtree in a parent by one of its own subtrees to produce a child� 20% MUTATE ANY NODE- replace a random node in a parent with another node of the same arityThe function and terminal sets are described below, in Section 7.3.An individual's �tness is based upon the number of classi�cation errors it makes (i.e.the fewer the better) and, for LEF, the number of training cases left uncovered afterit exceeds the error limit (i.e. also the fewer the better). Parsimony, a penalty forlarge trees, is added to the �tness score as a factor 0.001 times the number of nodesin the tree. Since the maximum allowed tree size is 999 nodes, the contribution fromparsimony never reaches 1.0, and so di�erentiates only between trees which performequally well on the training set. A smaller �tness score corresponds to a �tter tree,with a minimum (of less than 1.0) equal to the parsimony factor of a tree which makesno errors on the training set.The basic GP settings can certainly be improved. In particular, the tournament sizeseems to be too large. Some studies [Blickle & Thiele 95, Hancock 94] and severaldiscussions with GA practitioners seem to indicate that smaller tournament sizes workbetter. The choice of operators is also important. They can always be improved,and care should be taken so that they do not impede GP, (see Section 4.1), though the

CHAPTER 7. LIMITED ERROR FITNESS 146ones used here prove reasonably successful. The main aim of this section is to show thepossibly bene�cial impact of LEF on a standard GP, not to optimise GP parameters.7.3 The Even N Parity problemThe Even N Parity problem has been used by Koza as a problem which causes di�-culties for GP in [Koza 92]:\The parity family of functions is a very di�cult family of functions tolearn. For example, after trying 20 runs of genetic programming withoutautomatic function de�nition, no solution was found for the even-5-parityproblem using a population size of 4000 and the given function set F (al-though we did �nd one solution on our eighth run after we increased thepopulation size to 8000). However, if automatic function de�nition is used,solutions to both the even-5-parity and the even-6-parity functions can bereadily found with a population size of 4000."The training set consists of all the 2N possible combinations of N binary inputs (64 forN=6, and 128 for N=7). The correct classi�cation is the parity of the N inputs, i.e.TRUE where an even number of inputs are TRUE, and FALSE where an odd numberof the inputs are TRUE. The parity changes with any change in a single input value.The task for GP is to �nd a tree which correctly classi�es all the cases in the trainingset using the following function and terminal sets:� Terminal Set - f b0; b1; b2; :::; bN�1 g,N boolean variables� Function Set F - f AND, OR, NAND, NOR g,standard logical functions, computationally complete.As N is increased, the problem becomes exponentially harder for a simple GP and, forN=6 or greater, supposedly impossible (or exceedingly unlikely to be solved) even witha very large population size of 8000. At this point, Koza then demonstrates the power

CHAPTER 7. LIMITED ERROR FITNESS 147and might of Automatically De�ned Functions (ADF) which he uses to successfullysolve the Even N Parity problem up to N=6, [Koza 92], and up to N=11, [Koza 94],but using large population sizes of 4000, taking roughly 20 generations for N=6. ADFis a more powerful representation, particularly suited to the structure inherent in theBoolean Even N Parity problem, allowing GP to construct hierarchical function de�n-itions. LEF used in combination with a simple GP, without ADF, successfully reachesthe dizzy heights of N=7, with small population sizes ranging from 100 to 800, and hasthe potential to solve for larger N. Population size has a major impact on the speedof GP, and especially on the run-time memory requirements. It can easily exceed theusable memory generally available in present-day workstations, causing them to runvery ine�ciently.7.4 ResultsA series of runs (of the order of 50) were carried out with an assortment of populationsizes and parameter settings, though no runs used ADF. Since each run took severalhours, especially all the runs without LEF, there are not su�cient runs to providesound performance statistics. However, some clear trends do emerge. The results fromruns on the Even N Parity problem are as summarised in Table 7.1.The results con�rm that simple GP is incapable of solving the Even N Parity problemfor N=6 or N=7 (or greater) with an assortment of population sizes ranging from 100to 800, allowed to run for 4000 generations for N=6, and 8000 generations for N=7.Letting GP run on even longer would almost certainly not result in optimal trees beingdiscovered since the runs showed no signs of improvement.Graphs from two sample runs for N=6, with a population size of 400, are shown in Fig-ures 7.1 to 7.8. The graphs are from a typical, successful run of GP with LEF, showingthe changes in BOGI �tness, Figure 7.2, and tree size (or `bushiness'), Figure 7.4, thepopulation �tness standard deviation, Figure 7.6. These graphs are shown alongsidethe equivalent graphs from an unsuccessful run of GP without LEF (they all failed to�nd an optimal tree). The next two graphs show the error limit, Figure 7.7, and thenumber of tree evaluations per generation, Figure 7.8, for the run with LEF. The runs

CHAPTER 7. LIMITED ERROR FITNESS 148

16

18

20

22

24

26

28

30

32

0 500 1000 1500 2000 2500 3000 3500 4000

Fi
tn
es
s

Generations

Without LEF: Plot of Best of Generation Fitness

Fitness

Figure 7.1: Best of Generation Fitness during a typical run of GP without LEF on theEven N Parity Problem, where N=6, and PopulationSize = 400

0

10

20

30

40

50

60

70

0 500 1000 1500 2000 2500

Fi
tn
es
s

Generations

With LEF: Plot of Best of Generation Fitness

Fitness

Figure 7.2: Best of Generation Fitness during a typical run of GP with LEF on theEven N Parity Problem, where N=6, and PopulationSize = 400

CHAPTER 7. LIMITED ERROR FITNESS 149

0

50

100

150

200

250

300

0 500 1000 1500 2000 2500 3000 3500 4000

Bu
sh
in
es
s
-
Nu
mb
er
 o
f
Tr
ee
 N
od
es

Generations

Without LEF: Plot of Best of Generation Bushiness

bushiness

Figure 7.3: Best of Generation Bushiness during a typical run of GP without LEF onthe Even N Parity Problem, where N=6, and PopulationSize = 400

0

50

100

150

200

250

300

350

400

450

500

550

0 500 1000 1500 2000 2500

Bu
sh
in
es
s
-
Nu
mb
er
 o
f
Tr
ee
 N
od
es

Generations

With LEF: Plot of Best of Generation Bushiness

bushiness

Figure 7.4: Best of Generation Bushiness during a typical run of GP with LEF on theEven N Parity Problem, where N=6, and PopulationSize = 400

CHAPTER 7. LIMITED ERROR FITNESS 150

0

0.5

1

1.5

2

2.5

3

3.5

4

0 500 1000 1500 2000 2500 3000 3500 4000

St
an
da
rd
 D
ev
ia
ti
on
 o
f
Fi
tn
es
se
s
in
 P
op
ul
at
io
n

Generations

Without LEF: Plot of Standard Deviation of Fitnesses in Population

Stddev of Fitness

Figure 7.5: Standard Deviation of Fitness during a typical run of GP without LEF onthe Even N Parity Problem, where N=6, and PopulationSize = 400

0

5

10

15

20

25

0 500 1000 1500 2000 2500

St
an
da
rd
 D
ev
ia
ti
on
 o
f
Fi
tn
es
se
s
in
 P
op
ul
at
io
n

Generations

With LEF: Plot of Standard Deviation of Fitnesses in Population

Stddev of Fitness

Figure 7.6: Standard Deviation of Fitness during a typical run of GP with LEF on theEven N Parity Problem, where N=6, and PopulationSize = 400

CHAPTER 7. LIMITED ERROR FITNESS 151

0

5

10

15

20

25

30

0 500 1000 1500 2000 2500

Er
ro
r
Li
mi
t

Generations

With LEF: Plot of Error Limit

Error Limit

Figure 7.7: Error Limit during a typical run of GP with LEF on the Even N ParityProblem, where N=6, and PopulationSize = 400

0

5000

10000

15000

20000

25000

30000

0 500 1000 1500 2000 2500

Tr
ee
 E
va
lu
at
io
ns

Generations

With LEF: Plot of Number of Tree Evaluations per Generation

Tree Evaluations

Figure 7.8: Evals per Generation during a typical run of GP with LEF on the EvenN Parity Problem, where N=6, and PopulationSize = 400. Without LEF, GP wouldneed 25600 evaluations per generation.

CHAPTER 7. LIMITED ERROR FITNESS 152
Summary of results from runs on the Even N Parity problemN Standard GP GP with LEF GP with ADFN < 5 Solvable Solvable SolvableN = 5 Koza solves once Solved here repeatedly Koza solves easilywith with withPop Size = 8000 small Pop Sizes, e.g. 400 Pop Size = 4000N = 6 Not Solvable Solved here repeatedly with Koza solves easily with(11 runs) small Pop Sizes Pop Size = 4000e.g. 400and upto 4000 generationsN = 7 Not Solvable Solved here less often Koza solves easily(7 runs) with small Pop Sizes with Pop Size = 4000e.g. 600and upto 8000 generations(5 of 10 runs,with Pop=600)N = 8 Not Solvable Comes close, but Koza solves easilyneeds larger Populationand more generationsupto Not Solvable Not Solved Yet Koza solves with lotsN = 11 of computing powerTable 7.1: Summary of results from runs on the Even N Parity problem

CHAPTER 7. LIMITED ERROR FITNESS 153without LEF do a constant number of evaluations per generation, i.e. in the sample runshown here, PopulationSize �NumberOfTrainingCases = 400 � 64 = 25600. TheLEF run took 2500 generations before an optimal tree was found. Care should betaken when comparing between graphs with LEF and without LEF, since the scalesare not same. However, it is clear that with LEF, the BOGI �tness and bushiness
uctuate a great deal more, and the standard deviation is much higher than withoutLEF. There is a catastrophic deterioration in the �tness of GP with LEF near the1400th generation, seen in Figure 7.2, a common feature of runs with LEF. This isfollowed by a rapid rise in the error limit, seen in Figure 7.7, and the �tness soon fallsto reach zero errors less than 1000 generations later. The run of GP with LEF appearsto have restarted nearly from scratch, but typically recovers quickly.In a typical run for GP without LEF on N=6, as shown in Figure 7.1, with 64 casesin the training set, the BOGI would reach a
oor of, say, 16 errors over the courseof several hundred generations, and would then fail to improve beyond that level.Very occasionally, when allowed to run on for many thousand generations, a fortuitousmutation might bring about a small improvement. The best error total achieved byan individual from GP without LEF for N=6 was 8 errors, and the worst was 20errors. These results are taken from 11 runs. At no stage, in any run, did the GPwithout LEF look capable of achieving zero errors. The standard deviations of eachpopulation's �tnesses were low, indicating that they consisted mostly of functionallysimilar variations of copies of the BOGI.In a typical run for GP without LEF on N=7, with 128 cases in the training set, theBOGI would reach a
oor of around 36 errors after 1500 generations and would notimprove beyond that level. The best error total achieved was 19 errors, and the worstwas 44 errors. These results are taken from 6 runs. The best trees found were all small.For GP with LEF for both N=6, shown in Figure 7.2, and N=7, the GP populationsshowed signs of continual change and/or improvement, even after many thousands ofgenerations. In a typical, successful run, the BOGI error total would improve over thecourse of 1000 generations, between some large
uctuations. If the
uctuation is severeenough, the BOGI starts again from a high error total. Often, as can be seen in Figure7.2, the recovery from this loss of BOGI �tness is faster than the initial improvement

CHAPTER 7. LIMITED ERROR FITNESS 154in BOGI �tness before the
uctuation, even when the BOGI tree becomes very smalland trivial indeed, as can be seen in Figure 7.4 around generation 1400. Occasionally,the improvement would bottom out somewhere between 1 and 5 errors (for N=6), and1 and 10 errors (for N=7). However, after several hundred more generations, with agreat deal of
uctuation in the BOGI error total, it would improve to reach zero.The graph of the error limit, in Figure 7.7, shows several occasions when the errorlimit oscillates, e.g. between generation 200 and 300, and between generation 1600and 1800. This corresponds to the BOGI matching the error limit, not improving forseveral generations, the error limit is lowered, and there is still no improvement in theBOGI �tness for several more generations, so the error limit is raised again, and so on.These
uctuations show the population is repeatedly forced by LEF to cope with thedi�cult cases. The oscillations of the error limit can be seen to coincide with the risingdiagonals in the BOGI �tness, in Figure 7.2, just after generation 500, for example.The error limit is lowered, the training set order is bubbled, bringing the di�cult casesone position nearer the start of the order, causing the �tness of the BOGI to decreaseby one.The addition of LEF keeps the population in
ux, not allowing it to settle down.Often the
uctuations in BOGI �tness are quite extreme, but the population usuallyrecovers to improve upon its previous best. Unsuccessful runs always showed signs ofimprovement as the generation limit was reached, and looked likely to eventually �ndan optimal tree if given more time.The plot of the BOGI bushiness for GP without LEF, in Figure 7.3, shows the `classic'spike followed by a decay accompanying nearly every major improvement in BOGI�tness when parsimony is being used. It seems to correspond to Crossover producinga much larger, �tter tree by combining two existing �t trees. The large BOGI tree isthen gradually reduced in size over the following generations through the actions of theMutation operators, whilst still maintaining its functionality. In the runs of GP withLEF, the bushiness spikes are much more frequent, but the decay curves are disruptedby the continual
uctuations.These results were taken from runs with the parameters set as described above in

CHAPTER 7. LIMITED ERROR FITNESS 155Section 7.2. Many other runs with di�erent parameter settings produced similar results.Only with LEF was GP able to �nd solutions for N=6 and N=7. GP with LEF wasable to �nd optimal solutions for N=6 and N=7 with population sizes ranging from100 to 800 although, perhaps understandably, not very often with a population of size100 for N=7. But, with a population size of 600 allowed 8000 generations, GP withLEF was successful �ve times out of ten runs, and had a higher success rate with apopulation size of 800.7.5 LEF DiscussionA comparison of the graphs showing GP with and without LEF shows how LEF changesthe dynamics of a GP run; the population is never allowed to settle. The standarddeviation of �tnesses remains much higher than for GP without LEF for the entirerun. As long as the BOGI improves over the generations, the population is left alone.However, once the BOGI stops improving, the �tness function is adjusted by alteringthe error limit and re-ordering the training set. If the error limit is raised (because theBOGI exceeds the error limit), a wider variety of individuals in the next generationwill have similarly good �tness scores, which increases the possibility that a new treewill be produced which can `break out' of the current sub-optimal situation. If theerror limit is lowered or the training set re-ordered (because the BOGI comes underthe error limit), fewer individuals in the next generation will have good scores, andthese will feature more strongly in the next round of breeding.The time taken to evaluate each generation increases as the �tness function is madeeasier, and decreases as the �tness function is made harder. On average, with LEF,every generation involves between a half and two thirds of the number of individualevaluations needed by GP without LEF. It means little unless the overall times to solvethe problems are compared but, in the problems described here, only GP with LEFwas able to �nd optimal solutions.The lowering of the error limit and the re-ordering of the training set (combined withparsimony which favours smaller trees) help nudge the population towards increasinggenerality. Specialists in the population which have a good score sensitive to the

CHAPTER 7. LIMITED ERROR FITNESS 156ordering will �nd their �tnesses reduced as the easy cases are bubbled to the endof the set order, and the harder cases moved nearer the start of the set order. Thegradual change of the �tness function provides more opportunities for an individualto be improved in small increments, allowing the mutation operators to work moree�ectively. With a low error limit, LEF provides a quick, approximate measure of anindividual's performance on the entire training set. It discriminates di�erently betweenindividuals from GP without LEF.LEF can be seen as a form of �tness `sharing' [Goldberg & Richardson 87], where the�tnesses of individuals in a `niche' are reduced according to the number of individualsin the niche. Here, a niche is taken to mean functional equivalence, where two or moreindividuals correctly classify the same individuals in the training set. As the set isreordered, easy cases (based on the performance of the previous generation) are movedto the end of the set, in e�ect penalising the currently successful individuals, allowingother, functionally di�erent, individuals to prosper.With LEF, if the population size is too small or the LEF parameters are too extreme,the disruption caused by lowering the error limit and bubbling the training set orderis often catastrophic. It usually occurs after the Exact-Coverage phase of the LEFalgorithm, when the error limit is lowered and the training set is bubbled. The BOGIin the next generation has a substantially worse �tness score than in the previousgeneration. When the error limit is raised again several generations later, after theBOGI fails to improve, the individual(s) which exhibited the previous best �tness hasoften disappeared from the population, so GP is forced to re-discover something it hadalready produced. This suggests that with LEF the population acts as a reservoir ofprevious good solutions, in e�ect allowing GP to backtrack. The population needs tobe large enough to ensure that solutions rendered temporarily worse by a change inthe �tness function survive long enough to contribute at a later stage if the �tnessfunction is made easier again.The explicit preservation of previously �t individuals (perhaps the BOGIs from thelast few generations) would seem a sensible modi�cation to GP with LEF, avoiding thecatastrophic losses of good individuals, allowing a faster recovery from a reduced andthen increased error limit. However, preliminary results using this idea seem to indicate

CHAPTER 7. LIMITED ERROR FITNESS 157that LEF does not bene�t from the preservation of previously �t individuals (withthe exception of simple elitism). In fact, LEF actually performed worse in every runwhere �t individuals from earlier generations were re-introduced into the population. Itwould appear that the catastrophic disruptions of the population �tnesses might be anessential part of the way LEF works. The changing �tness function penalises previously�t individuals whenever a stumbling-block is reached where the BOGI stops improving,leaving GP to discover new solutions. Re-introducing previously �t solutions wouldprevent this discovery of new solutions, leaving GP stuck at local optima.GP runs (without LEF) very often converge prematurely [Ryan 94] and, once theyreach such a stasis, are extremely unlikely ever to break out of it and produce �tterindividuals. Even when the population contains individuals which can correctly classifymost of the training set, it is unlikely to produce individuals in later generations whichcan correctly classify the entire set. With LEF, on the other hand, the populationis continually being moved away from such a stasis and prevented from converging.A similar e�ect is reported in [Hillis 90] for co-evolving host/parasite populations.With LEF, this often incurs a catastrophic reduction to a low-�tness population; ine�ect, reinitialising the population. But, every time this occurs, the population rapidlyimproves to at least match its previous best BOGI in fewer generations than it tookto reach it the �rst time.A simple GP is not suited to optimisation. With LEF, the few cases not yet consistentlyclassi�ed correctly are continually being brought to the start of the set ordering, forcingthe population to deal with the cases it �nds `di�cult' by penalising individuals whichfail on the `di�cult' cases.GP runs are frequently limited by computer memory capacity, with an upper limiton population size. Parsimony provides pressure to select for smaller trees. LEFallows much smaller population sizes to be used e�ectively, albeit requiring many moregenerations. In fact, GP with LEF seems to bene�t more from an increase in populationsize than does GP without LEF, and could well bene�t from a much lower selectionpressure than provided by the tournament size used here. It would be worth seeing thee�ect of LEF on GP with unlimited tree sizes, i.e. no parsimony. Further experimentsare needed to clarify this.

CHAPTER 7. LIMITED ERROR FITNESS 158LEF is another example of how the training set can be used in di�erent ways to bene�tGP and other GA-related algorithms (see Chapter 6). Simply evaluating each indi-vidual in each generation on the entire training set ignores the current abilities of thepopulation, which change with each generation, and ignores information gained aboutthe di�culty of cases in the training set. Breaking up the problem into sub-problems,and presenting the sub-problems to be solved in turn, can `lead' the population tosolve the entire problem. Several runs produced optimal trees after only a few hun-dred generations (as opposed to thousands of generations, on average) with a steadilyimproving BOGI �tness, suggesting that, in those instances, the route to optimalityhad somehow been made much easier.As the easiest case is bubbled to the end of the set order, the hard cases move nearerthe start of the order by one place. If the BOGI is only making a few errors, then its�tness is highly dependent on the location of all the cases it �nds di�cult in the setorder. When the error limit is reduced by one, the previous BOGIs get a much worse�tness score, and can actually do worse than individuals which previously had lower�tnesses.LEF is an automated way of presenting a series of di�erent sub-problems to the popu-lation. It is highly dependent on the initial ordering, with a static training set. Somestatic orderings, combined with the error limit, allow GP to solve the problem muchmore quickly than with the shu�ed orders, but it requires some more in-depth know-ledge of the problem (or luck) to produce these particular orderings. Yet other staticorderings impeded GP. The initial random order and dynamic `bubbling' of the train-ing set order seems to o�er a reasonable middle-ground of di�culty, based only on thecurrent performance of the GP population, and not on meta-knowledge of the problem.There are some potential pitfalls when it comes to applying LEF with GP on other,more di�cult, problems. If the training set is noisy, GP with LEF might produceindividuals which are over-�tted to the training set, and thus perform badly on a testset. However, it should be possible to extract information from the GP runs whichhighlights the existence of particularly di�cult training cases which don't `�t in', bylooking at cases which are frequently misclassi�ed. The parameter values and basicLEF approach used in this section were selected after much experimentation, and there

CHAPTER 7. LIMITED ERROR FITNESS 159are many other possibilities. Many of them performed badly, impeding GP rather thanhelping it. Hopefully the values used here, and the reasoning behind them, will transfersatisfactorily to other problems. However, it is not yet obvious how to use LEF sensiblywith symbolic regression problems since the error term is not as straightforward as thenumber of misclassi�cations. These `curve-�tting' problems introduce an extra andpotentially much larger error term, corresponding to how well the individual �ts thedata. Constructing a sensible, robust algorithm to incorporate this `curve-�tting' errorinto LEF is not easy, and seems to be even more sensitive to bad parameter settingsthan LEF on a classi�cation problem.ADF has been shown by Koza to be particularly suited to the Even N Parity problem,solving for large N by simultaneously solving for smaller N. The neat hierarchical natureof its solutions complement the structure inherent in the problem. Other problems donot necessarily have such a helpful structure, so GP with ADF would most likely su�era similar fate to GP without ADF, or might even hinder GP for problems where ADFwas no help. In the case of the Even N Parity problem, ADF, as a modi�cation to GP,performs better than LEF, as a modi�cation to GP. However, LEF could be used inparallel with ADF, and there seems to be no reason why it wouldn't enable GP withADF to be applied to harder problems with smaller populations.An early (and unsupported) hypothesis is that, for classi�cation problems such asthe Even N Parity problem, if GP with LEF works, it can work more quickly andconsistently than GP without LEF, and, if GP with LEF fails to work, then so willGP without LEF. On the Even N Parity problem (and others), even when GP withLEF failed to produce an optimal solution, it always produced a solution making fewererrors than GP without LEF.

Chapter 8Small Populations,Many Generations
This chapter takes a brief and thought-provoking look at the use of small populationswith GP, previously published in [Gathercole & Ross 97a]. The trend in the literatureappears to be towards using as large a population as possible. Certainly this is the re-commendation put forward in [Koza 92]. The rationale behind using large populationsis that the GP is ine�cient, i.e. it produces a low ratio of �t children. For a generationof parents to produce �tter children, a large number of children must be generated. Fordi�cult problems, it becomes very unlikely that a particular generation will producebetter individuals, thus a larger population size is seen as the main route to increasingthis likelihood. Larger populations need more CPU and memory resources. CPU use ismade less e�cient as the computer's memory use increases. The time taken to processa generation increases.It is an interesting notion that smaller can mean faster and better. Presented below arethe results of a brief comparison of GP, GP with Dynamic Subset Selection (GP+DSS),discussed in Chapter 6, and GP with Limited Error Fitness (GP+LEF), discussed inChapter 7, on the TicTacToe problem, discussed in Chapter 6, followed by a similarcomparison of GP and GP+DSS on the Thyroid problem, discussed in Chapter 6,all using a small population size of 50. For both problems, GP+DSS with the smallpopulation size produces a better answer using fewer tree evaluations, than other runsusing much larger populations. Even standard GP can be seen to perform well withthe much smaller population size. 160

CHAPTER 8. SMALL POPULATIONS, MANY GENERATIONS 161It is not possible to extrapolate from the Thyroid and TicTacToe problems to the setof all possible problems, and say that a small population size is always best for GP.However, the fact that it is demonstrated here for these two problems, indicates thatit is certainly worth an exploratory run or two or three with a small population sizebefore assuming that a large population size is necessary.Section 8.1 brie
y describes the TicTacToe problem, and covers the initial runs neededto �nd adequate parameter values for GP, LEF, and DSS, before presenting Table 8.4which summarises the results of using a small population size. Section 8.2 brie
y de-scribes the Thyroid problem, before presenting Table 8.5 which summarises the resultsof using a small population size. Section 8.3 discusses the rami�cations of these results.8.1 Solving the TicTacToe problemwith a small populationThe task in the TicTacToe problem is to correctly classify a set of 958 cases. The setconsists of all legal 3�3 board con�gurations at the end of TicTacToe games, whereplayer `x' is assumed to have played �rst. The target concept is `win for player x',i.e player `x' has three `x's in a row, and indeed player `x' does win approximately65.3% of all the positions. Each case has nine �elds, corresponding to the nine boardpositions, and each �eld can take one of three values f1, -1, 0g, corresponding tofplayer `x', player `o', blankg.8.1.1 GP parametersPrevious GP runs, with and without DSS, described in Section 6.9, used populationsizes of 1000 and 2000, and took several days each. Other experimental runs indicatedthat a smaller population size might be e�ective, and several runs carried out withpopulation sizes ranging from 400 down to 50 proved this to be true. These results, inTable 8.1 were produced by a standard GP using generational replacement with elitism,a parsimony factor of 0.001 with an upper limit of 999 nodes in a tree, tournamentselection with a tournament size of 4, and di�erent sets of operators and functions fromthe earlier runs. The operators were

CHAPTER 8. SMALL POPULATIONS, MANY GENERATIONS 162� 40% CROSSOVER -producing one child� 20% MUTATE SUBTREE� 20% MUTATE BY SUBTREE PROMOTION� 20% MUTATE NODEThe function set,f AND (both > 0), OR (either > 0), IFGTZ, IFLTZ, IFEQZ, NEGATE gis expanded from the
awed one used in Section 6.8 to allow GP to make use of allthe possible values in the case �elds. The
aw was only discovered during prepara-tions for the work described in this chapter. Initial runs using the small populationsizes and the
awed function set produced optimal, showing better performances withsmall populations than the earlier results for large populations. Initial runs with largepopulations and the new function set performed similarly as badly as ones with the
awed function set.The terminal set used isf cornerNW, edgeN, cornerNE, edgeW, centre, edgeE, cornerSW, edgeS, cornerSE gcorresponding to the positions on the TicTacToe boardAs can be seen in Table 8.1, a population size of 200 appears to be the most likely of theones tested to result in GP producing an optimal tree. Even so, using a population sizeof 50 still results in a success rate of 35%, half of the success rate for a population sizeof 200, but in under a third of the number of tree evaluations (indicating the potentialthat in the long run there might be more chance of success for the same amount ofe�ort expended using the smaller population size). Thus, for the sake of speed, apopulation size of 50 could be considered reasonable. The runs with a population sizeof 400 were very slow, taking several days, and thus only nine runs were completed.With a population size of 200, the ten runs were also quite slow, but had a much highersuccess rate. It was possible to complete twice as many runs with population sizes of50 and 100, to provide statistically more sound averages.

CHAPTER 8. SMALL POPULATIONS, MANY GENERATIONS 163Results from looking at the e�ects of small Population Sizeswith standard GP on the TicTacToe problem(tournament size = 4, maximum 4000 generations)Pop. Size Runs Successes % Success Avg Gens Avg Evals50 20 7 35% 3013 1.4e+08100 20 9 45% 2178 2.1e+08200 10 7 70% 1907 3.7e+08400 9 4 44% 2556 9.8e+08Table 8.1: Looking for a Small but still E�ective Population Sizefor the TicTacToe problemGiven a population size of 50, it is not obvious what is a reasonable tournament size.Results in Section 4.1.4 indicate that the `ideal' tournament size is a �ckle thing, chan-ging with each problem and population size. Three tournament sizes are compared,and the results presented in Table 8.2 indicate that, for this problem and populationsize of 50, a tournament size of 4 is marginally better than tournament sizes of 2 or 6.Results from looking at the e�ects of di�erent Tournament Sizeswith standard GP on the TicTacToe problem(population size = 50, maximum 4000 generations)Tourn. Size Runs Successes % Success Avg Gens Avg Evals2 29 1 3% 2283 1.1e+084 30 7 23% 3013 1.4e+086 30 5 17% 2988 1.4e+08Table 8.2: Looking for a good Tournament Size to go with Population size 50for the TicTacToe problemAssuming all the other GP parameters have reasonably e�ective values, this completesthe brief search for an adequate setup for GP.8.1.2 LEF parametersFor LEF, however, there are extra parameters, described in Section 7.1, which need tobe set. The LEF algorithm uses the idea of an error limit. During the evaluation stage,when an individual is evaluated on each case in the training set, the evaluations arecurtailed if the individual exceeds the error limit. The remaining cases are then treatedas misclassi�cations and included in the individual's �tness rating. The error limit andthe order of cases in the training set are modi�ed according to the performance of the

CHAPTER 8. SMALL POPULATIONS, MANY GENERATIONS 164best of generation individual (BOGI), and are left unchanged if the BOGI is improving.If, over the course of several generations without improving, the BOGI exceeds theerror limit (OVER-COVERAGE), the BOGI is then raised. If, over the course ofseveral generations without improving, the BOGI matches (EXACT-COVERAGE) orcomes under the error limit (UNDER-COVERAGE), the error limit is lowered andthe training set order `bubbled', i.e. in a single pass of a bubble sort, the easiest case(the one misclassi�ed least often) is bubbled away from the start of the set to the end.Experimental runs in Section 7.1 indicate that LEF works better if the changes to theerror limit and the training set order are kept small. However, it is not clear whatare suitable values for the delays (or PAUSE) between noticing that the BOGI is notimproving and altering the error limit and set order.There are three distinct phases (EXACT, OVER, UNDER) each with its own delay.Twenty runs each for three possible combinations are presented in Table 8.3, in a briefattempt to �nd adequate values. The best of the three is taken as the settings for LEFused below in the main comparison with GP, GP+LEF, and GP+DSS.For this chapter, the initial error limit was arbitrarily set to 50, but, with hindsight,there should perhaps have been some more e�ort put into �nding a good initial value.In [Gathercole & Ross 97b], very similar dynamics are noted for LEF and Hillis'sco-evolving host and parasite populations, [Hillis 90]. Other similarities are notedwith niches and �tness-sharing, [Rosin & Belew 95], and competitive environments,[Angeline & Pollack 93], using the population as a \reservoir for comparison". Theseare described more fully in Chapter 5.Results from looking at the e�ects of di�erent settingsof the PAUSE parameters for LEF(population size = 50, tournament size = 4, maximum 4000 generations)PAUSE Runs Successes % Success Avg Gens Avg EvalsExact Over Under15 5 15 20 2 10% 2928 1.0e+085 5 5 20 4 20% 3164 1.1e+0815 15 5 20 6 30% 2550 8.9e+07Table 8.3: Looking for good LEF Pause Parameters on TicTacToe problem

CHAPTER 8. SMALL POPULATIONS, MANY GENERATIONS 1658.1.3 DSS parametersDSS, like LEF, has its own fair share of parameters. The DSS algorithm, describedmore fully in Section 6.3, involves picking a subset of cases from the full training set foreach generation. Each generation of GP is evaluated using only this subset. The casesare selected according to how di�cult they are, i.e. how often they were misclassi�edlast time they were selected, and how old they are, i.e. how many generations since thelast time they were selected. Older and more di�cult cases have a greater likelihoodof being selected to be in the next subset. This means that more di�cult cases willbe re-selected more often, but also ensures that all cases will repeatedly selected, al-lowing their di�culty rating to be updated according to the changing abilities of latergenerations. Siegel describes a similar algorithm in [Siegel 94], but does not make useof the age aspect.The three main parameters are subset size, bias given to di�culty, and bias given toage. The two biases take the form of exponents which increase the size, i.e. importance,of the di�culty and age values of each case. Initial runs indicated that a subset size of100, half the size of the one used in Section 6.9, worked well with the population sizeof 50, and a tournament size of 4. The age exponent was kept the same at 3:5. Thedi�culty exponent, however, was increased from 1:0 to 2:0 to accommodate the smallerpopulation size (and thus lower di�culty values). Unlike the more random subsetselection algorithm in described in Section 6.3, a version of roulette-wheel selectionhas been used to ensure that exactly the speci�ed number of cases are selected to bein the subset.8.1.4 Comparison of GP, GP+LEF, and GP+DSS, on TicTacToeUsing the GP, LEF, and DSS parameters established above, the results of �fty runsfor each of GP, GP+LEF, and GP+DSS, are presented in Table 8.4, alongside someof the results from Section 6.9 using much larger population sizes. The runs involvingpopulations of size 50 all have the same number of permitted tree evaluations, equi-valent to GP over 4000 generations. As can be seen, GP+DSS performs very well,discovering an optimal tree in all �fty runs. GP and GP+LEF both have much lower

CHAPTER 8. SMALL POPULATIONS, MANY GENERATIONS 166Results on TicTacToe Problemfrom comparing GP, GP with DSS (subset size 100), and GP with LEF,(population size = 50, tournament size = 4,maximum 4000 generations, or equivalent 1.9e+08 evaluations)Algorithm Successes Average Best/Runs (%) Gens [StdDev] Evals Gens EvalsGP 12/50 (24%) 2727 [0835] 1.3e+08 833 4.0e+07GP + LEF 16/50 (32%) 3830 [1461] 1.3e+08 1396 5.3e+07GP + DSS 50/50 (100%) 8577 [5431] 5.1e+07 2326 2.8e+07Population Size = 1000, DSS subset size = 200GP 0/1 (0%) ...failed... 114 1.1e+08GP + DSS 1/1 (100%) 196 [] 3.9e+07 196 3.9e+07Population Size = 2000, DSS subset size = 200GP 0/1 (0%) ...failed... 94 1.8e+08GP + DSS 1/1 (100%) 131 [] 5.2e+07 131 5.2e+07Table 8.4: Comparison of GP, GP with DSS, and GP with LEF, on TicTacToe Problem.success rates, with GP+LEF discovering optimal trees slightly more often than GP, andwith a similar number of tree evaluations to GP, on average. Both GP and GP+LEFhad the potential of discovering an optimal tree in approximately 1000 generations.GP+DSS on the other hand progressed much more slowly in terms of generations,but much faster in terms of tree evaluations, towards discovering an optimal solution.The slowest run by GP+DSS took just over 26000 generations, though this falls wellshort of 32158 generations which, for GP+DSS, involves an equivalent number of treeevaluations to that of GP over 4000 generations.Comparing the performance of GP and GP+LEF runs which failed to �nd an optimaltree, GP on its own often resulted in runs which bottomed out very quickly on a highnumber of errors, in a few hundred generations, then showed no signs of improvementover the remaining thousands of generations. A few GP runs were still improvingeven by the end of 4000 generations, very slowly, but had only reached a relativelymodest number of errors. Most of the failed GP+LEF runs still showed signs ofimprovement even after 4000 generations, and had usually achieved fewer errors thanGP. Even the GP+LEF runs which had not improved for many hundreds of generations

CHAPTER 8. SMALL POPULATIONS, MANY GENERATIONS 167would, if allowed to run longer, have undergone some substantial upheavals as theLEF algorithm altered the training set order su�ciently to render the current best ofgeneration individual un�t. There were, however, very few instances of the catastrophicdecrease in the best of generation �tness described in Section 7.5.The results for populations sizes of 1000 and 2000 are only reported for individual runs,and are not averaged. They are more to indicate the potential of those populationsizes. Only GP+DSS was able to �nd an optimal solution with these large populationssizes, needing similar numbers of evaluations to GP+DSS with a population size of 50.However, the much smaller population size requires much less runtime memory, andconsequently the CPU runs more e�ciently.8.2 Solving the Thyroid problem with a small populationThe Thyroid problem, described in Section 6.6 is tackled again in this section, but usinga much smaller population size of 50, as used in the TicTacToe problem above. Thetask in the Thyroid problem is to correctly classify a set of 3772 training cases. Thereis a test set of 3428 cases to help assess the potential performance of the classi�er onunseen cases. The Thyroid data comes from patients at a clinic. A small proportion ofthe patients later developed illnesses related to their thyroid glands. Each case consistsof 21 �elds, made up of 15 binary values and 6
oating point values, and falls into oneof three possible classes. Class 3 signi�es a `normal' thyroid gland and is by far themost common class in both training and test data sets, whilst classes 1 and 2 signifythat the patient later experienced a thyroid gland problem. To be useful in practise inidentifying potential thyroid problems, a classi�cation scheme would have to correctlyclassify signi�cantly more than 92% of all cases, since over 92% of all patients havea normal (class 3) thyroid gland. As described in Section 6.6, the Thyroid problemcan be split into two sub-problems: distinguishing between Class 3 cases and all others(hard), and distinguishing between Class 1 and Class 2 cases (easy). To come up with areasonable solution to the hard problem, GP requires a great deal of computing power.The results from GP using large population sizes is presented in Section 6.7.The results from very few runs are presented here, in Table 8.5. Even with the ad-

CHAPTER 8. SMALL POPULATIONS, MANY GENERATIONS 168Results for GP with and without DSS on Thyroid Problem(population size = 50, tournament size = 4, DSS subset size = 400)Algorithm Runs Errors on Training Set Errors on Test SetGenerations (% success of 3772) (% success of 3428)(evals) Best Avg. [StdDev] Best Avg. [StdDev]Population Size = 50GP 3 4000 10 19.3 [8.1] 32 61.3 [21.4](7.7e+08) (99.73%) (99.49%) (99.07%) (98.29%)GP + DSS 8 3-11000 3 7.4 [5.3] 23 35.25 [11.3](3.3e+08) (99.92%) (99.80%) (99.32%) (98.97%)Population Size = 5000GP 1 60 11 34(11.3e+08) (99.70%) (99.00%)GP + DSS 1 117 11 34)(2.3e+08) (99.70%) (99.00%)Population Size = 10000GP 0GP + DSS 1 69 6 25(2.7e+08) (99.84%) (99.27%)Table 8.5: Results for GP with and without DSS on Thyroid Problem. Most of theruns were curtailed early due to time pressures. Only 3 runs with GP completed 4000generations. 8 runs with GP + DSS completed between 3000 and 11000 generations,where 1 generation by GP is equivalent (in terms of tree evaluations) to 7.06 generationsby GP+DSS.vantages of a small population size of 50, and DSS, runs still take a long time (manydays), and all of the GP+DSS runs were curtailed before they reached an equivalentnumber of tree evaluations to GP over 4000 generations (the equivalent number of gen-erations for GP+DSS is 28239). However, it can be seen that, even with this handicap,GP+DSS produced better results than GP. The average performance by GP+DSS onthe training set was better than the best performance by GP. With a population of size50, GP+DSS has produced a substantially better result than any of the other GP runs,with or without DSS, for the much larger population sizes of 5000 and 10000 shown inSection 6.7, and one of these runs had already beaten the best test set performance bya Neural Network, reported in [Schi�mann et al. 92a] and shown in Section 6.7. Com-

CHAPTER 8. SMALL POPULATIONS, MANY GENERATIONS 169pared with the dismal early performance exhibited by GP during the early researchdone for this thesis, achieving 99.92% on the training set, and 99.32% on the test setis very gratifying.The average sizes of the best trees found by GP with a population of 50 was 71 nodes,whilst the best trees found by GP+DSS had an average of 301 nodes. Once again thiscan be seen as a consequence of the DSS �tness function preventing any one tree fromremaining as the best of generation individual over several generations. With GP, theone individual is likely to remain as best of generation for many generations, givingthe operators more opportunity to prune the tree down to a smaller but functionallyequivalent version, responding to the pressure provided by the parsimony penalty. WithGP+DSS, there is less opportunity for this e�ect to take place, since each generationis likely to throw up a di�erent best individual.8.3 DiscussionThis chapter demonstrates that small can be beautiful in the world of GP. A smallpopulation, instead of being desirable only from the point of view of computer resourcelimitations, actually seems to be of bene�t in solving the problems investigated here.A large population clearly evolves in a di�erent way from a small population. It isapparent that a large population running for a small number of generations behavesdi�erently from a small population running for a large number of generations. A largepopulation is more likely than a small population to make bigger improvements in�tness from one generation to the next. A small population is only likely to produceindividuals with small increments in �tness from the previous generation. However,in the TicTacToe and Thyroid problems there is a great deal of scope for small im-provements in �tness. What is more, the actions of DSS and LEF produce even morepossibilities for small increments in �tness. Even the use of parsimony adds the pos-sibility of very small increments in �tness, as super
uous subtrees can be snipped outresulting in slightly smaller and thus slightly �tter trees.When using tree evaluations as a measure of the computational e�ort needed by arun, a small population goes through many more generations than a large population.

CHAPTER 8. SMALL POPULATIONS, MANY GENERATIONS 170A population of size 50 can go through nearly 20 times as many generations as apopulation of size 1000 before matching the number of tree evaluations. Assumingthere is at least one optimal tree (as in the TicTacToe problem), a large populationhas to discover trees with larger increments in �tness between each generation toreach an optimal tree than a small population. The small population can go throughmany smaller increments to produce trees with the same optimal �tness as the largepopulation. From any generation, small increments in �tness are much more likelythan large increments in �tness, especially with GP where the operators very oftenproduce child trees which are less �t than the parents. It seems sensible to supposethat small increments in �tness by a small population are much more likely than largeincrements by a large population. Thus, a more `e�cient' way to use a GP populationis to keep it small. If the likelihood of small increments in �tness by a small populationis too low, for example if the problem is too hard or has very few possible incrementsin �tness values, only then is it worthwhile (or necessary) to use a large population.This could form the basis of a method for characterising problem types, looking atdistribution of possible �tness values.What happens if the population size is taken down to an extreme, i.e. one? This thenenters the realms of Hill-Climbing, Simulated Annealing, etc. The characterisation ofproblems by looking at the range and number of possible �tness values might leadto a way of deciding in advance which is the better approach to use in tackling aproblem. It can be argued that if a problem has many possible �tness values, where itis quite possible to improve in small increments of �tness, GP is made more e�cientusing a smaller population, especially in combination with a more powerful supervisedlearning algorithm such as Dynamic Subset Selection, which dynamically alters the�tness function in response to each generation's abilities.With small populations, large increases in �tness are less likely than in large pop-ulations. With DSS and LEF, the �tness function is continually changing, allowingsuper-�t individuals only
eeting moments of glory, and giving the population moreopportunity to undergo small increments in �tness, especially with the Thyroid andTicTacToe problems. The combination of these factors leads to the much improvedperformance of GP.

CHAPTER 8. SMALL POPULATIONS, MANY GENERATIONS 171There is a cost-tradeo� between running large populations a few times and smallpopulations many times. It is very hard to get adequate statistics for runs with largepopulations, for obvious reasons. However, DSS seems to have made GP with a smallpopulation a much more reliable and practical proposition. Experience suggests thatGP with DSS is more consistent than GP without DSS.

Part IVSummary and Conclusion

172

Chapter 9Further Work
Anarchically Automatically De�ned Functions (AADF) This representation,described in Section 3.3, is exceedingly
exible. Despite its abject failure so far, itdoes hold great potential in allowing GP to construct arbitrarily complex functionde�nitions within individual trees, including multi-layered hierarchies, recursion, anditeration. As mentioned in Section 3.3:\Much care and much more thought is needed to enable GP to take ad-vantage of AADF. One possibility is to allow certain links between nodes tobe made inviolate, i.e. the reproduction operators prevented from splittingthe trees at those points. Another possibility is to include rewards in the�tness function for making use of the extra features. This might enable GPto retain the extra complications long enough to make use of them."The MAX problem Described in Section 4.1, the MAX problem highlights severalaspects of GP and its operators. It would be worthwhile seeing whether the Mutationoperators, without Crossover, would experience the same di�culties as Crossover onits own. Following on from the analysis showing that high level nodes almost never getbrought down to the lower layers, it might be worthwhile designing some operators toexplicitly overcome this.Making Use of the Training Set From the fairly brief survey of supervised learn-ing in areas other than GP, described in Chapter 5:173

CHAPTER 9. FURTHER WORK 174\Without doubt the GP and Evolutionary Algorithm communities in gen-eral are re-discovering a lot of work that the wider Machine Learning com-munity has known about for years."A more vigorous and wide-ranging survey of the Machine Learning literature is calledfor to distinguish between genuinely novel and rediscovered techniques.Dynamic Subset Selection (DSS) Only some aspects of DSS are described orinvestigated in Chapters 6 and 8. Experience now suggests a useful modi�cation toDSS would be a delay of several generations between changes in the subset. A closerlook at the dynamics of the cases in the subset selection process might bring to lightsome useful information on the performance of DSS.Historical Subset Selection (HSS) could be used as a �rst step to prune away uselesstraining cases.DSS should be tried on many more problems.Limited Error Fitness (LEF) LEF, described in Chapters 7 and 8, is not a veryrobust algorithm. More runs on many di�erent problems are needed to identify goodchoices of parameters. Experience suggests that the error limit should be decreasedless often, and perhaps not in combination with a `bubble'. More e�ort should be putinto choosing a good starting error limit. It would be worth looking more closely atwhat happens to the population during one of the catastrophic losses in �tness thatLEF engenders. Perhaps it is better that they happen.On several occasions, a particular set ordering allowed GP to solve the Parity problemvery quickly. It might be possible to extract some general features of such `ideal' setorderings and re-orderings, perhaps allowing them to be constructed more deliberately.Small Populations, Many Generations Further work, begun in Chapter 8, isneeded to quantify more precisely when small population sizes might perform moree�ciently than larger population sizes. A series of runs with a much wider range ofpopulation sizes and di�erent problems might be instructive.

CHAPTER 9. FURTHER WORK 175Parsimony Whilst parsimony performed well during this thesis, experience and vari-ous statements in the literature suggests that it could usefully be made even less severe.Perhaps it could be applied every few generations instead of every generation, allowingthe population more freedom to grow if needed, but still being reined back with anintermittent pressure towards smaller trees.Overall Perhaps the main area that could or should be pursued is to carry out moreruns on many more and di�erent problems to establish better performance statisticsfor DSS, LEF, and small population sizes in general.

Chapter 10Summary
Chapter 1 looks at GP in the context of other computer-based search algorithms,showing its similarity to Stochastic Iterated Hill Climbing, and its roots in Darwin'stheory of Natural Selection and Genetic Recombination, and describes the mechanicsof the basic GP algorithm and Supervised Learning.Chapter 2 introduces the `large and messy' Thyroid problem, describing how it hasbeen tackled by several di�erent Machine Learning researchers, and looks at some ofthe di�culties and lessons learned during the process of using GP to solve the Thyroidproblem. This chapter might be useful to anyone using GP for the �rst time, hopefullyenabling them to avoid certain pitfalls.Chapter 3 discusses the enormous size of the search for GP, and looks at a varietyof alternative representations for reducing the size of the search space or increasingthe power or speed of GP. The use of linear machine code segments instead of treesleads to a huge increase in speed, with less
exibility than the standard GP treerepresentation, whilst Automatically De�ned Functions and Adaptive Representationincrease the expressive power of the standard GP tree representation. The failure of ahighly
exible, extremely powerful, but practically useless approach called AnarchicallyAutomatically De�ned Functions (AADF) is described. It is possible that AADF couldbe made to work, but much more research would be needed to establish this.

176

CHAPTER 10. SUMMARY 177Chapter 4 looks at GP operators, concentrating on the impact of restricted tree size(both depth and number of nodes) on the performance of Crossover, showing (with alarge number of runs) how the restriction can leave GP unable to improve upon sub-optimal solutions even with the use of Mutation operators. The work in Section 4.1looking at the interaction between GP Crossover and restricted tree size involves aproblem constructed speci�cally for this investigation. There aren't many substantialsolutions presented for the general di�culties raised, instead the section simply warnsof the existence of these di�culties. In the chapter is also a study of the e�ects oftournament selection on the GP population, and the use of Directed Acyclic Graphsto store the GP population and cache �tness evaluations is described.Chapter 5 highlights the �tness evaluation bottleneck, and describes what can bedone with the training set in Supervised Learning, looking at several approaches forNeural Networks, Decision Trees, Evolutionary Algorithms, and GP.Chapter 6 describes Dynamic Subset Selection (DSS), where a small subset of thetraining set is used to evaluate each generation in GP, applying it to the large andmessy Thyroid classi�cation problem, and the smaller and neater TicTacToe problem.DSS is a robust algorithm which enables GP to produce better and more consistentresults, outperforming a benchmark result reported in a study of Neural Networks onthe Thyroid problem.Chapter 7 describes Limited Error Fitness (LEF), where a �tness evaluation iscurtailed when the individual exceeds an error limit, applying it the Boolean Even NParity problem. LEF allows GP to solve for N=6 and N=7 with a small populationwithout the use of Automatically De�ned Functions (ADF), a much more powerfulrepresentation, especially suited to the hierarchical structure of the Parity problem.Koza managed to get standard GP to solve up to N=5, and only solved for larger Nusing ADF.Chapter 8 looks at the use of small populations over many generations, showing howDSS and LEF can enable smaller populations in GP to work very well, outperforming

CHAPTER 10. SUMMARY 178larger populations with less computational e�ort.Chapter 9 details areas for further work.Chapter 11 brings the thesis to a conclusion.Glossary gives de�nitions of many of the terms and acronyms used in this thesis,including a page reference to where each is �rst mentioned or de�ned in the thesis.

Chapter 11Conclusion
The original aim of this thesis was\... [to look] at ways of improving standard GP and the use of GP inthe particular area of Supervised Learning classi�cation problems. GP hasmany obvious but circumventable weaknesses, most notable among theseare its rapacious demands for computer memory and CPU time. There islots of scope for improvement."This thesis can be said to have contributed to GP in the following areas:Using the Training Set { Highlighting the ease with which GP can be improved ifmore use is made of the training set.Dynamic Subset Selection (DSS) , developed within this thesis, is a powerfulmodi�cation of the standard supervised learning approach. DSS is robust, work-ing well with a variety of parameter settings. It enabled GP to solve the `largeand messy' Thyroid classi�cation problem to a very high level of accuracy, withless computational e�ort, and with a much smaller population size. DSS enabledGP to solve the TicTacToe problem with a much higher consistency. DSS looksas though it will scale up well to much larger problems.Historical Subset Selection (HSS) is a simple and obvious approach to quickly�nd a useful and reasonably e�ective subset of a large training set with which totrain GP. Although not a new technique, it is shown here that it can work well.179

CHAPTER 11. CONCLUSION 180Random Subset Selection (RSS) is a less focussed version of DSS which workssurprisingly well despite its simplicity. As with HSS, RSS is not a new technique,but can work well.Limited Error Fitness (LEF) , developed within this thesis, is quite di�erent fromDSS, more sensitive to its parameters, but allows GP to solve the very hard EvenN Parity problem for larger N than previously achieved without AutomaticallyDe�ned Functions.The MAX problem , developed within this thesis, is a simple test of GP whichhighlights some unfortunate interactions between Crossover, one of the mostcommon and standard GP operators, and a limit on tree size, another commonfeature of many GP implementations.Small populations are shown to be rather e�ective in GP, especially in combinationwith DSS. Small populations make more e�cient use of the way GP works, al-lowing the GP population to evolve in a series of small (and thus more likely)increments in �tness.Various weaknesses of this thesis can be summarised as follows:Need more runs and a wider variety of test problems to establish more reliable per-formance statistics for DSS, LEF, and the use of small populations.Some obvious followups not followed up.Some Re-Inventing of the Wheel { A more vigorous and wide-ranging survey ofthe Machine Learning literature is called for, since a great many researchers havetrod the supervised learning path before.Still many areas of GP which need improving such as the performance of thestandard GP operators, �nding e�ective and robust parameter values, and GP'sboundless craving for computer resources.Whilst GP is a fairly obvious extension of a linear GA, the tree-structured solutionsbring with them more and richer dynamics. The tree representation allows GP to be

CHAPTER 11. CONCLUSION 181applied to some very interesting problem domains, but unfortunately has a performancepenalty, needing a great deal of computer memory and CPU time. This thesis showsseveral ways of circumventing these limitations in supervised training classi�cationproblems, most especially the use of Dynamic Subset Selection in combination with asmall population size.

Glossary
AADF Anarchically Automatically De�ned Functions (pp.54)ADF Automatically De�ned Functions (pp.53)AR Adaptive Representation (pp.57)BOGI Best of Generation Individual (pp.141)Bushiness Tree Size, i.e. number of nodes (pp.147)CSS Combined Stepwise Selection (pp.112)DAG Directed Acyclic Graph (pp.102)DFF Dynamic Fitness Function (pp.134)DSS Dynamic Subset Selection (pp.117)EA Evolutionary Algorithm (pp.9)EP Evolutionary Programming (pp.9)ES Evolution Strategie (pp.9)GA Genetic Algorithm (pp.9)GP Genetic Programming (pp.10)HC Hill Climbing (pp.7)HSS Historical Subset Selection (pp.117)IFEQZ If Equal To Zero (pp.162)IFGTZ If Greater Than Zero (pp.162)IFLTE If Less Than Or Equal to (pp.45)IFLTZ If Less Than Zero (pp.162)LEF Limited Error Fitness (pp.139)ML Machine Learning (pp.110)NN Neural Network (pp.126)Parsimony A �tness penalty proportional to tree size (pp.63)RSS Random Subset Selection (pp.117)SA Simulated Annealing (pp.7)SGPC Simple Genetic Programming in C (pp.25)SHC Stochastic Hill Climbing (pp.8)SIHC Stochastic Iterated Hill Climbing (pp.8)182

GLOSSARY 183SL Supervised Learning (pp.18)STGP Strongly-Typed Genetic Programming (pp.52)

Bibliography[Aha 93] David W. Aha. Tic-tac-toe endgame database. TheAI CD-ROM, Revision 2, Network Cybernetics Corpor-ation, 1993.[Andre & Koza 96] David Andre and John R. Koza. Parallel geneticprogramming: A scalable implementation using thetransputer network architecture. In Peter J. Angelineand K. E. Kinnear, Jr., editors, Advances in GeneticProgramming 2, chapter 16, pages 317{338. MIT Press,Cambridge, MA, USA, 1996.[Angeline & Kinnear, Jr. 96] Peter J. Angeline and Kenneth E. Kinnear, Jr., editors.Advances in Genetic Programming 2. MIT Press, Cam-bridge, MA, 1996.[Angeline & Pollack 93] Peter J. Angeline and Jordan B. Pollack. Competitiveenvironments evolve better solutions for complex tasks.In Proceedings of the 5th International Conference onGenetic Algorithms, ICGA-93, pages 264{270. MorganKaufmann, 1993.[Angeline 96a] Peter J. Angeline. An investigation into the sensitivityof genetic programming to the frequency of leaf selectionduring subtree crossover. In John R. Koza, David E.Goldberg, David B. Fogel, and Rick L. Riolo, editors,Genetic Programming 1996: Proceedings of the First An-nual Conference, pages 21{29, Stanford University, CA,USA, 28{31 July 1996. MIT Press.[Angeline 96b] Peter J. Angeline. Two self-adaptive crossover operatorsfor genetic programming. In Peter J. Angeline and K. E.Kinnear, Jr., editors, Advances in Genetic Programming2, chapter 5, pages 89{110. MIT Press, Cambridge, MA,USA, 1996.[Angeline 97] Peter J. Angeline. Subtree crossover: Building block en-gine or macromutation? In Genetic Programming 1997:Proceedings of the Second Annual Conference, StanfordUniversity, CA, USA, 13{16 July 1997.184

BIBLIOGRAPHY 185[Atkin & Cohen 94] Marc S. Atkin and Paul R. Cohen. Learning monitor-ing strategies: A di�cult genetic programming applica-tion. In Proceedings of the 1994 IEEE World Congresson Computational Intelligence, pages 328{332a. IEEEPress, 1994.[B�ack et al. 91] Thomas B�ack, Frank Ho�meister, and Hans-Paul Schwe-fel. A survey of evolution strategies. In Lashon B. Belew,Richard K.; Booker, editor, Proceedings of the 4th Inter-national Conference on Genetic Algorithms, pages 2{9,San Diego, CA, July 1991. Morgan Kaufmann.[Blickle & Thiele 94] Tobias Blickle and Lothar Thiele. Genetic program-ming and redundancy. In J. Hopf, editor, Genetic Al-gorithms within the Framework of Evolutionary Com-putation (Workshop at KI-94, Saarbr�ucken), pages 33{38. Max-Planck-Institut f�ur Informatik (MPI-I-94-241),1994.[Blickle & Thiele 95] Tobias Blickle and Lothar Thiele. A comparison of selec-tion schemes used in genetic algorithms. TIK-Report 11,TIK Institut fur Technische Informatik und Kommunika-tionsnetze, Computer Engineering and Networks Labor-atory, ETH, Swiss Federal Institute of Technology, Glori-astrasse 35, 8092 Zurich, Switzerland, December 1995.[Blickle 96] Tobias Blickle. Evolving compact solutions in ge-netic programming: A case study. In Hans-MichaelVoigt, Werner Ebeling, Ingo Rechenberg, and Hans-Paul Schwefel, editors, Parallel Problem Solving FromNature IV. Proceedings of the International Conferenceon Evolutionary Computation, volume 1141 of LNCS,pages 564{573, Berlin, Germany, 22-26 September 1996.Springer-Verlag.[Brave 96] Scott Brave. Evolving recursive programs for tree search.In Peter J. Angeline and K. E. Kinnear, Jr., editors,Advances in Genetic Programming 2, chapter 10, pages203{220. MIT Press, Cambridge, MA, USA, 1996.[Breiman et al. 84] L. Breiman, J. H. Friedman, R. A. Olshen, and C. J.Stone. Classi�cation and regression trees. Technical re-port, Wadsworth International, Monterey, CA, 1984.[Cohn et al. 94] David Cohn, Les Atlas, and Richard Ladner. Improvinggeneralization with active learning. Machine Learning,15(2):201{221, 1994.[Cramer 85] Nichael Lynn Cramer. A representation for the ad-aptive generation of simple sequential programs. In

BIBLIOGRAPHY 186John J. Grefenstette, editor, Proceedings of an Interna-tional Conference on Genetic Algorithms and the Applic-ations, pages 183{187, 1985.[Crosbie & Spa�ord 96] Mark Crosbie and Eugene H. Spa�ord. Evolving eventdriven programs. In John R. Koza, David E. Goldberg,David B. Fogel, and Rick L. Riolo, editors, Genetic Pro-gramming 1996: Proceedings of the First Annual Con-ference, pages 273{278, Stanford University, CA, USA,28{31 July 1996. MIT Press.[Darwin 59] C. Darwin. On the Origin of Species. John Murray,London, 1859.[D'haeseleer 94] P. D'haeseleer. Context preserving crossover in geneticprogramming. In Proceedings of the 1994 IEEE WorldCongress on Computational Intelligence, volume 1, pages256{261. IEEE Press, 1994.[Ehrenburg 96] Herman Ehrenburg. Improved direct acyclic graph hand-ling and the combine operator in genetic programming.In John R. Koza, David E. Goldberg, David B. Fogel,and Rick L. Riolo, editors, Genetic Programming 1996:Proceedings of the First Annual Conference, pages 285{291, Stanford University, CA, USA, 28{31 July 1996.MIT Press.[Fisher 36] R. A. Fisher. The use of multiple measurements in taxo-nomic problems. Annals of Eugenics, 7:179{188, 1936.[Fogel & Fogel 96] D. B. Fogel and L. J. Fogel. An introduction to evolution-ary programming. Lecture Notes in Computer Science,1063:21{??, 1996.[Fogel 92] D. B. Fogel. An analysis of evolutionary programming.In D. B. Fogel and W. Atmar, editors, Proceedings of theFirst Annual Conference on Evolutionary Programming,pages 43{51, La Jolla, California, 1992.[Fogel 93] D. B. Fogel. On the philosophical di�erences betweenevolutionary algorithms and genetic algorithms. In D. B.Fogel and W. Atmar, editors, Proceedings of the SecondAnnual Conference on Evolutionary Programming, pages23{29, La Jolla, California, 1993.[Fogel 95] D. Fogel. Evolutionary Computation: Toward a NewPhilosophy of Machine Intelligence. IEEE, 1995.[Francone et al. 96] Frank D. Francone, Peter Nordin, and Wolfgang Ban-zhaf. Benchmarking the generalization capabilities of acompiling genetic programming system using sparse datasets. In John R. Koza, David E. Goldberg, David B.

BIBLIOGRAPHY 187Fogel, and Rick L. Riolo, editors, Genetic Programming1996: Proceedings of the First Annual Conference, pages72{80, Stanford University, CA, USA, 28{31 July 1996.MIT Press.[Garces-Perez et al. 96] Jaime Garces-Perez, Dale A. Schoenefeld, and Roger L.Wainwright. Solving facility layout problems using ge-netic programming. In John R. Koza, David E. Gold-berg, David B. Fogel, and Rick L. Riolo, editors, Ge-netic Programming 1996: Proceedings of the First An-nual Conference, pages 182{190, Stanford University,CA, USA, 28{31 July 1996. MIT Press.[Gathercole & Ross 94a] Chris Gathercole and Peter Ross. Dynamic training sub-set selection for supervised learning in genetic program-ming. In Yuval Davidor, Hans-Paul Schwefel, and Re-inhard M�anner, editors, Parallel Problem Solving fromNature III, pages 312{321, Berlin, 9-14 October 1994.Springer-Verlag.[Gathercole & Ross 94b] Chris Gathercole and Peter Ross. Some training sub-set selection methods for supervised learning in geneticprogramming. Presented at ECAI Workshop on AppliedGenetic and other Evolutionary Algorithms, organisedby Gusz Eiben, Bernard Manderick, Zso� Ruttkay, 1994.[Gathercole & Ross 96] Chris Gathercole and Peter Ross. An adverse interactionbetween crossover and restricted tree depth in geneticprogramming. In John R. Koza, David E. Goldberg,David B. Fogel, and Rick L. Riolo, editors, Genetic Pro-gramming 1996: Proceedings of the First Annual Con-ference, pages 291{296, Stanford University, CA, USA,28{31 July 1996. MIT Press.[Gathercole & Ross 97a] Chris Gathercole and Peter Ross. Small populationsover many generations can beat large populations overfew generations in genetic programming. In John R.Koza, Kalyanmoy Deb, Marco Dorigo, David B. Fogel,Max Garzon, Hitoshi Iba, and Rick L. Riolo, editors,Genetic Programming 1997: Proceedings of the SecondAnnual Conference, Stanford University, San Francisco,CA, USA, 13{16 July 1997. Morgan Kaufmann.[Gathercole & Ross 97b] Chris Gathercole and Peter Ross. Tackling the booleaneven n parity problem with genetic programming andlimited-error �tness. In John R. Koza, Kalyanmoy Deb,Marco Dorigo, David B. Fogel, Max Garzon, Hitoshi Iba,and Rick L. Riolo, editors, Genetic Programming 1997:Proceedings of the Second Annual Conference, StanfordUniversity, San Francisco, CA, USA, 13{16 July 1997.Morgan Kaufmann.

BIBLIOGRAPHY 188[Goldberg & Deb 91] David E. Goldberg and Kalyanmoy Deb. A comparativeanalysis of selection schemes used in genetic algorithms.In Gregory J. E. Rawlings, editor, Foundations of geneticalgorithms, pages 69{93. Morgan Kaufmann, San Mateo,1991.[Goldberg & Richardson 87] David E. Goldberg and Jon Richardson. Genetic al-gorithms with sharing for multimodal function optimiza-tion. In Genetic Algorithms and their Applications: Pro-ceedings of the Second International Conference on Ge-netic Algorithms, pages 41{49. Lawrence Erlbaum, 1987.[Goldberg 89a] D. E. Goldberg. Genetic Algorithms in Search, Optimiz-ation, and Machine Learning. Addison-Wesley, Reading,Mass., 1989.[Goldberg 89b] D. E. Goldberg. Messy genetic algorithms: Motivation,analysis, and �rst results. Complex Systems, 3:493{530,1989.[Goldberg et al. 93] David E. Goldberg, Kalyanmoy Deb, Hillol Kargupta,and Georges Harik. Rapid, accurate optimization of dif-�cult problems using fast messy genetic algorithms. InStephanie Forrest, editor, Proceedings of the 5th Interna-tional Conference on Genetic Algorithms, pages 56{64,San Mateo, CA, USA, 1993. Morgan Kaufmann.[Greene & Smith 93] David Perry Greene and Stephen F. Smith. Competition-based induction of decision models from examples. Ma-chine Learning, 13:229, 1993.[Gruau et al. 96] Frederic Gruau, Darrell Whitley, and Larry Pyeatt. Acomparison between cellular encoding and direct en-coding for genetic neural networks. In John R. Koza,David E. Goldberg, David B. Fogel, and Rick L. Riolo,editors, Genetic Programming 1996: Proceedings of theFirst Annual Conference, pages 81{89, Stanford Univer-sity, CA, USA, 28{31 July 1996. MIT Press.[Hancock 94] Peter J. B. Hancock. An empirical comparison of selec-tion methods in evolutionary algorithms. In Terence C.Fogarty, editor, Evolutionary Computing: AISB Work-shop, pages 80{94. Springer-Verlag, Lecture Notes inComputer Science 865, 1994.[Handley 94] S. Handley. On the use of a directed acyclic graph torepresent a population of computer programs. In Pro-ceedings of the 1994 IEEE World Congress on Compu-tational Intelligence, pages 154{159. IEEE Press, 1994.

BIBLIOGRAPHY 189[Haynes et al. 96] Thomas D. Haynes, Dale A. Schoenefeld, and Roger L.Wainwright. Type inheritance in strongly typed geneticprogramming. In Peter J. Angeline and K. E. Kin-near, Jr., editors, Advances in Genetic Programming 2,chapter 18, pages 359{376. MIT Press, Cambridge, MA,USA, 1996.[Hillis 90] W. D. Hillis. Co-evolving parasites improve simulatedevolution as an optimization procedure. Technical Re-port TR-1 AE91-1, Thinking Machines Corporation,1990. (Appeared in Physica D42 [1990]: pp. 228-234).[Ho�meister & Back 91] F. Ho�meister and T. Back. Genetic algorithms and evol-ution strategies | similarities and di�erences. LectureNotes in Computer Science, 496:455{??, 1991.[Holland 75] John Holland. Adaptation in Natural and Arti�cial Sys-tems. University of Michigan Press, 1975.[Howley 96] Brian Howley. Genetic programming of near-minimum-time spacecraft attitude maneuvers. In John R. Koza,David E. Goldberg, David B. Fogel, and Rick L. Riolo,editors, Genetic Programming 1996: Proceedings of theFirst Annual Conference, pages 98{106, Stanford Uni-versity, CA, USA, 28{31 July 1996. MIT Press.[Hsu et al. 95] F.-H. Hsu, M. S. Campbell, Hoane, Jr., and A. J. Deepblue system overview. In Proceedings of the Nineth Inter-national Conference on Supercomputing, pages 240{244,New York, 1995. ACM Press.[Implementations 97] Implementations. Illuminati online's anonym-ous ftp site for genetic programming, 1997.ftp://ftp.io.com/pub/genetic-programming/code.[J.D.Scha�er et al. 91] J.D.Scha�er, L.J. Eshelman, and D. O�uttt. Spuriouscorrelations and premature convergence in genetic al-gorithms. In G.J.E. Rawlins, editor, Foundations ofGenetic Algorithms, pages 102{112. Morgan Kau�man,1991.[Jolli�e 86] J. Jolli�e. Principal Component Analysis. Springer-Verlag, 2nd edition, 1986.[Jones 95] Terry Jones. Evolutionary Algorithms, Fitness Land-scapes and Search. Unpublished PhD thesis, Univer-sity of New Mexico, Department of Computer Sci-ence,University of New Mexico, Albuquerque NM 87131,1995.[Keijzer 96] Maarten Keijzer. E�ciently representing populations ingenetic programming. In Peter J. Angeline and K. E.

BIBLIOGRAPHY 190Kinnear, Jr., editors, Advances in Genetic Programming2, chapter 13, pages 259{278. MIT Press, Cambridge,MA, USA, 1996.[Keith & Martin 94] Mike J. Keith and Martin C. Martin. Genetic program-ming in C++: Implementation issues. In Kenneth E.Kinnear, Jr., editor, Advances in Genetic Programming,chapter 13. MIT Press, 1994.[Kinnear 94] K. Kinnear. Advances in Genetic Programming. MITPress, Cambridge, MA, 1994.[Kinnear Jr. 93] Kenneth E. Kinnear Jr. Generality and di�culty in ge-netic programming: Evolving a sort. In Proceedings ofthe 5th International Conference on Genetic Algorithms,ICGA-93, pages 287{294. Morgan Kaufmann, 1993.[Kinnear, Jr. 94] Kenneth E. Kinnear, Jr., editor. Advances in GeneticProgramming. MIT Press, Cambridge, MA, 1994.[Koza 92] J.R. Koza. Genetic Programming: on the Programmingof Computers by means of Natural Selection. MIT Press,Cambridge, MA, 1992.[Koza 94] J.R. Koza. Genetic Programming II:. MIT Press, Cam-bridge, MA, 1994.[Koza et al. 96] John R. Koza, David E. Goldberg, David B. Fogel, andRick L. Riolo, editors. Genetic Programming 1996: Pro-ceedings of the First Annual Conference, Stanford Uni-versity, CA, USA, 28{31 July 1996. MIT Press.[Koza et al. 97] John R. Koza, Kalyanmoy Deb, Marco Dorigo, David B.Fogel, Max Garzon, Hitoshi Iba, and Rick L. Riolo, ed-itors. Genetic Programming 1997: Proceedings of theSecond Annual Conference, Stanford University, CA,USA, 13-16 July 1997. Morgan Kaufmann.[Lang 95] Kevin J. Lang. Hill climbing beats genetic search on aboolean circuit synthesis of Koza's. In Proceedings ofMachine Learning, 1995. Held in Tahoe City, California,USA. July.[Langdon & Koza 95] W. Langdon and J. Koza. Bibliography on GeneticProgramming: a comprehensive index of GP relateditems, 1995. Can be accessed at the Advanced Searchof the Collection of Computer Science Bibliographies athttp://liinwww.ira.uka.de/bibliography/waisbib.html.[Langdon & Poli 97] W. B. Langdon and R. Poli. An analysis of the max prob-lem in genetic programming. In John R. Koza, Kalyan-moy Deb, Marco Dorigo, David B. Fogel, Max Garzon,

BIBLIOGRAPHY 191Hitoshi Iba, and Rick L. Riolo, editors, Genetic Pro-gramming 1997: Proceedings of the Second Annual Con-ference, Stanford University, San Francisco, CA, USA,13{16 July 1997. Morgan Kaufmann.[Langdon 95] W. B. Langdon. Evolving data structures using ge-netic programming. In L. Eshelman, editor, GeneticAlgorithms: Proceedings of the Sixth International Con-ference (ICGA95), pages 295{302, San Francisco, CA.,USA, July 1995. Morgan Kaufmann.[Langdon 96] W. B. Langdon. Data Structures and Genetic Program-ming. Unpublished PhD thesis, University College, Lon-don, 27 September 1996.[Montana 95] David J. Montana. Strongly typed genetic programming.Evolutionary Computation, 3(2):199{230, 1995.[Nordin & Banzhaf 95] Peter Nordin and Wolfgang Banzhaf. Evolving turing-complete programs for a register machine with self-modifying code. In L. Eshelman, editor, Genetic Al-gorithms: Proceedings of the Sixth International Con-ference (ICGA95), pages 318{325, San Francisco, CA.,USA, July 1995. Morgan Kaufmann.[Nordin 94] Peter Nordin. A compiling genetic programming systemthat directly manipulates the machine code. In Ken-neth E. Kinnear, Jr., editor, Advances in Genetic Pro-gramming, chapter 14. MIT Press, 1994.[O'Reilly & Oppacher 92] Una-May O'Reilly and Franz Oppacher. An experi-mental perspective on genetic programming. In R Man-ner and B Manderick, editors, Parallel Problem Solvingfrom Nature 2, pages 331{340, Brussels, Belgium, 1992.Elsevier Science.[O'Reilly & Oppacher 94a] Una-May O'Reilly and Franz Oppacher. Program searchwith a hierarchical variable length representation: Ge-netic programming, simulated annealing and hill climb-ing. In Yuval Davidor, Hans-Paul Schwefel, and Re-inhard Manner, editors, Parallel Problem Solving fromNature { PPSN III, pages 397{406. Springer-Verlag, 9-14 October 1994.[O'Reilly & Oppacher 94b] Una-May O'Reilly and Franz Oppacher. Program searchwith a hierarchical variable length representation: Ge-netic programming, simulated annealing and hill climb-ing. Technical Report 94-04-021, Santa Fe Institute,1994.

BIBLIOGRAPHY 192[O'Reilly & Oppacher 95a] Una-May O'Reilly and Franz Oppacher. Hybridizedcrossover-based search techniques for program discovery.Technical Report 95-02-007, Santa Fe Institute, 1995.[O'Reilly & Oppacher 95b] Una-May O'Reilly and Franz Oppacher. The troublingaspects of a building block hypothesis for genetic pro-gramming. In Foundations of Genetic Algorithms III,1995. To be published.[O'Reilly & Oppacher 96] Una-May O'Reilly and Franz Oppacher. A comparativeanalysis of GP. In Peter J. Angeline and K. E. Kin-near, Jr., editors, Advances in Genetic Programming 2,chapter 2, pages 23{44. MIT Press, Cambridge, MA,USA, 1996.[Perkis 94] Tim Perkis. Stack-based genetic programming. In Pro-ceedings of the 1994 IEEE World Congress on Compu-tational Intelligence, pages 148{153. IEEE Press, 1994.[Press et al. 92] William H. Press, Saul A. Teukolsky, William T. Vet-terling, and Brian P. Flannery. Numerical Recipes in C:The Art of Scienti�c Computing (2nd ed.). CambridgeUniversity Press, Cambridge, 1992. ISBN 0-521-43108-5.[Quinlan 86] J R Quinlan. Induction of decision trees. Machine Learn-ing, 1(1):81{106, 1986.[Quinlan 87] J. R. Quinlan. Simplifying decision trees. InternationalJournal of Man-Machine Studies, 27(3):221{234, 1987.[Ratford 96] M. Ratford. The Single Chromosome's Guide To Dat-ing. Unpublished M.Sc. thesis, Department of Arti�cialIntelligence, University of Edinburg h, 1996.[Ray 91] T. S. Ray. Evolution and optimization of digital organ-isms. School of Life and Health Sciences, University ofDelaware, Newark, Delaware 19716, USA., 1991.[Raymer et al. 97] Michael L. Raymer, William F. Punch, Eric D. Good-man, Paul C. Sanschagrin, and Leslie A. Kuhn. Sim-ultaneous feature scaling and selection using a geneticalgorithm. In Thomas B�ack, editor, Proceedings ofthe 7th International Conference on Genetic Algorithms,pages 561{567, San Francisco, July19{23 1997. MorganKaufmann.[Rosca & Ballard 94] Justinian P. Rosca and Dana H. Ballard. Hierarchicalself-organization in genetic programming. In Proceed-ings of the Eleventh International Conference on Ma-chine Learning. Morgan Kaufmann, 1994.

BIBLIOGRAPHY 193[Rosca 95] Justinian P. Rosca. An analysis of hierarchical ge-netic programming. Technical Report 566, Universityof Rochester, 1995.[Rosca 96] Justinian Rosca. Generality versus size in genetic pro-gramming. In John R. Koza, David E. Goldberg,David B. Fogel, and Rick L. Riolo, editors, Genetic Pro-gramming 1996: Proceedings of the First Annual Con-ference, pages 381{387, Stanford University, CA, USA,28{31 July 1996. MIT Press.[Rosin & Belew 95] Christopher D. Rosin and Richard K. Belew. Findingopponents worth beating: Methods for competitive co-evolution. In Proceedings of the 6th International Con-ference on Genetic Algorithms, 1995.[Ross & Corne 95] P. Ross and D. Corne. Comparing genetic algorithms,simulated annealing and stochastic hillclimbing on sev-eral real timetabling problems. In Proceedings of theAISB Workshop on Evolutionary Computing, She�eld,England, 1995.[Ryan 94] Conor Ryan. Pygmies and civil servants. In Kenneth E.Kinnear, Jr., editor, Advances in Genetic Programming,chapter 11. MIT Press, 1994.[Salzburg 93] Stephen Salzburg. Improving classi�cation methods viafeature selection. Technical Report JHU-92/12, Depart-ment of Computer Science, John Hopkins University.Baltimore, June 1992; revised April 1993.[Schi�mann et al. 92a] W. Schi�mann, M. Joost, and R. Werner. Optimizationof the backpropagation algorithm for training multilayerperceptrons. Technical Report 15, University of Koblenz,Institute of Physics, 1992.[Schi�mann et al. 92b] W. Schi�mann, M. Joost, and R. Werner. Synthesis andperformance analysis of multilayer neural network archi-tectures. Technical Report 16, University of Koblenz,Institute of Physics, 1992.[Siegel 94] Eric V. Siegel. Competitively evolving decision treesagainst �xed training cases for natural language pro-cessing. In Kenneth E. Kinnear, Jr., editor, Advancesin Genetic Programming, chapter 19. MIT Press, 1994.[Soule et al. 96] Terence Soule, James A. Foster, and John Dickinson.Code growth in genetic programming. In John R. Koza,David E. Goldberg, David B. Fogel, and Rick L. Riolo,editors, Genetic Programming 1996: Proceedings of theFirst Annual Conference, pages 215{223, Stanford Uni-versity, CA, USA, 28{31 July 1996. MIT Press.

BIBLIOGRAPHY 194[Swayne et al. 91] Deborah Swayne, Dianne Cook, and Andreas Buja.User's manual for XGobi, a dynamic graphics programfor data analysis implemented in the X Window System(version 2). Bellcore Technical Memorandum TM ARH-020368, 1991.[Tackett & Carmi 93] Walter Alden Tackett and Aviram Carmi. SGPC: SimpleGenetic Programming in C. Available via FTP atftp://cs.ucl.ac.uk/genetic/ftp.io.com/code/, 1993. Ori-ginal source code for the GP implementation used in thisthesis.[Tackett 93] Walter Alden Tackett. Genetic programming for featurediscovery and image discrimination. In Proceedings ofthe 5th International Conference on Genetic Algorithms,ICGA-93. Morgan Kaufmann, 1993.[Tan 95] C. J. Tan. Deep blue: Computer chess and massivelyparallel systems. In Proceedings of the Nineth Inter-national Conference on Supercomputing, pages 237{239,New York, 1995. ACM Press.[Teller 94] Astro Teller. The evolution of mental models. In Ken-neth E. Kinnear, Jr., editor, Advances in Genetic Pro-gramming, chapter 9. MIT Press, 1994.[Thearling & Ray 94] Kurt Thearling and Thomas S. Ray. Evolving multi-cellular arti�cial life. In Rodney A. Brooks and Pat-tie Maes, editors, Proceedings of the 4th InternationalWorkshop on the Synthesis and Simulation of LivingSystems ArtificialLifeIV , pages 283{288, Cambridge,MA, USA, 1994. MIT Press.[Tichy 85] Walter F. Tichy. RCS-a system for version control. Soft-ware-Practice and Experience, 15(7):637{654, July 1985.[Turney 95] Peter D. Turney. Cost-sensitive classi�cation: Empiricalevaluation of a hybrid genetic decision tree inductionalgorithm. Journal of Arti�cial Intelligence Research,1995.[Tuson & Ross 96a] A. Tuson and P. Ross. Co-evolution of operator settingsin genetic algorithms. Lecture Notes in Computer Sci-ence, 1143:286{??, 1996.[Tuson & Ross 96b] A. Tuson and P. Ross. Cost based operator rate ad-aption: An investigation. Lecture Notes in ComputerScience, 1141:461{??, 1996.[UCI 97] UCI. Machine Learning Repository. Datasets held athttp://www.ics.uci.edu/~mlearn/MLRepository.html, 1997.

BIBLIOGRAPHY 195[Vere 95] Steven Vere. Genetic classi�cation trees. In EvolutionaryAlgorithms in Management Applications, pages 277{289.Springer, 1995.[Walsh & Ryan 96] Paul Walsh and Conor Ryan. Paragen: A novel tech-nique for the autoparallelisation of sequential programsusing genetic programming. In John R. Koza, David E.Goldberg, David B. Fogel, and Rick L. Riolo, editors,Genetic Programming 1996: Proceedings of the FirstAnnual Conference, pages 406{409, Stanford University,CA, USA, 28{31 July 1996. MIT Press.[Webb 96] Geo� Webb. Further experimental evidence against theutility of occam's razor. Journal of Arti�cial IntelligenceResearch, June 1996.[Weiss & Kapouleas 89] Sholom M. Weiss and Ioannis Kapouleas. An empiricalcomparison of pattern recognition, neural nets, and ma-chine learning classi�cation methods. In N. S. Sridharan,editor, Proceedings of the 11th International Joint Con-ference on Arti�cial Intelligence, pages 781{787, Detroit,MI, USA, August 1989. Morgan Kaufmann.[Werner 92] Randolf Werner. Thyroid training and test datasets. Obtained from Daimler-Benz. Available viahttp://www.ics.uci.edu/~mlearn/MLRepository.html,and from ftp://ftp.ics.uci.edu/pub/machine-learning-databases/thyroid-disease/ann-Readme, 1992.[Zhang & Muehlenbein 95] Byoung-Tak Zhang and Heinz Muehlenbein. Balancingaccuracy and parsimony in genetic programming. Evol-utionary Computation, 1995.[Zhang 94] Byoung-Tak Zhang. Accelerated learning by active ex-ample selection. International Journal of Neural Sys-tems, 5:67{75, March 1994.

