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ABSTRACT 
 

Acute Respiratory Distress Syndrome (ARDS) is the most extreme form of acute 

lung injury and continues to have a significant morbidity and mortality. 

Unfortunately, the mechanisms involved in the recovery and repair of the lung 

following ARDS remain poorly understood. An understanding of these is pivotal to 

improving outcome from acute lung injury. Several observational studies have 

suggested a potential relationship between Vascular Endothelial Growth Factor 

(VEGF) in the lung and the development/outcome of ARDS. In this thesis, three 

potential mechanisms underlying these observations have been explored: 

 

1. What is the anatomical distribution of VEGF receptor and isoform expression in 

normal and ARDS lung? How does this change at early and later time points 

following acute lung injury? 

 

2. Are human type 2 alveolar epithelial (ATII) cells a source of and target for 

VEGF? How does exposure to a pro-inflammatory milieu modify their 

expression of VEGF isoforms and receptors? 

 

3. Is there a relationship between a functional VEGF polymorphism and 

susceptibility to developing and severity of ARDS?  

 

I have demonstrated VEGF receptor expression on both sides of the alveolar-

capillary membrane with upregulation in later ARDS. All three principal isoforms 

(VEGF121, VEGF165 and VEGF189) are expressed in normal human lung with uniform 

downregulation of all three in early ARDS, which normalises with increasing time 

following injury. I have not found any evidence of VEGF isoform switching.  
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I have also demonstrated human ATII cells are both a significant cellular source of 

and a target for VEGF (via VEGF receptor expression) confirming autocrine VEGF 

activity in the lung. VEGF is an ATII cell survival factor. ATII cells differentially 

respond to pro-inflammatory stimuli by increasing VEGF isoform but not receptor 

expression, which may serve as a regulatory control mechanism. 

 

Finally, I have demonstrated the VEGF 936 T allele increases susceptibility to and 

the severity of lung injury. The T allele is associated with an increase in plasma 

VEGF level in ARDS patients but intra-alveolar levels are unaffected.  
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CHAPTER 1: 
INTRODUCTION AND BACKGROUND 

 

This chapter will give an overview of acute respiratory distress syndrome (ARDS) 

with particular emphasis on its pathology and pathophysiology, demonstrating the 

importance of the alveolar-capillary membrane epithelium and also review the 

biology of vascular endothelial growth factor (VEGF).  

 

 

 

Part of this chapter has been published in Thorax. 

Medford ARL, Millar AB. 

Vascular endothelial growth factor (VEGF) in acute lung injury (ALI) and acute 

respiratory distress syndrome (ARDS): paradox or paradigm? 

Thorax 2006 61: 621-6. 
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1.1 ACUTE RESPIRATORY DISTRESS SYNDROME 
 

1.1.1 Historical overview 
 

Ashbaugh and colleagues first described acute respiratory distress syndrome (ARDS) 

as a clinical syndrome in 19671. Twelve patients had acute respiratory distress, 

cyanosis refractory to oxygen therapy, reduced lung compliance and diffuse chest 

radiograph infiltrates (see Figures 1.1, 1.2). 

 
 
Figure 1.1: CXR of patient with early ARDS with typical bilateral infiltrates but normal 
heart size. Source: Ware LB et al.2  

 

 
Figure 1.2: Computed tomographic (CT) scan of thorax in early ARDS showing typical 
bilateral infiltrates more prominent in dependent posterior zones, sparing the anterior 
zones. Source: Ware LB et al.2  
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These striking but uniform clinical, physiological, radiological and pathological 

findings distinguished them from 272 other ventilated intensive care unit (ICU) 

patients treated in Colorado General and Denver General Hospitals. The syndrome 

was initially called “Adult Respiratory Distress Syndrome” by Petty and Ashbaugh 

in 1971 as the pathological findings of the seven who died were almost identical to 

those in the infant respiratory distress syndrome with alveolar atelectasis, capillary 

engorgement and formation of hyaline membranes (see Figure 1.3)3.  

 

 
 

Figure 1.3: Histology of early ARDS showing early diffuse alveolar damage with 
neutrophilic alveolitis and intra-alveolar red cells with hyaline membranes (arrow). 
Source: Ware LB et al.2  

 

The syndrome was subsequently renamed “Acute Respiratory Distress Syndrome” 

(ARDS) in recognition of the fact the same syndrome was also occurring in children 

(indeed, one of the original cohort in 1967 was aged 11 years old). 
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The syndrome is not new and a form of progressive pulmonary collapse was known 

to military surgeons during the First World War with pulmonary oedema noted 

following gunshot wounds to the head4. During the Second World War, later lung 

injury following trauma was described as “traumatic wet lung” which was observed 

following thoracic trauma, blast injuries, abdominal trauma and multiple fractures of 

long bones5. A pathological state “congestive atelectasis” was described in 1950 by 

Moon with airless, heavy lungs congested with debris and hyaline membrane 

formation lining the alveolar spaces at post mortem (reviewed in Petty et al6). The 

clinical and physiological features were not described at this time however.  

 

In summary, it is evident that the pathophysiological complex we recognise as ARDS 

has many potential causes and has been known by other terms for a long time. 

 

1.1.2 Definitions 
ARDS has proved difficult to define because of its many causes and occurrence in a 

variety of clinical settings. The initial 1971 definition summarised the clinical 

features of ARDS well but lacked specific criteria to identify patients systematically. 

Most definitions since have been operational and rely upon three features of ARDS 

as shown in Table 1.1 below6. 

 
Criterion Features 

Oxygenation Hypoxaemia and respiratory distress 

CXR appearances Diffuse alveolar infiltrates (see Figures 1.1, 1.2) 

Compliance Reduced respiratory system compliance 

Table 1.1: Key features of ARDS 

However problems remained: severity of hypoxaemia varied from one series to 

another; type and magnitude of infiltrates were seldom specified and compliance 

measurement required ventilation and was not readily reproducible. 

 

In 1988, an expanded definition (the Murray Lung Injury Score, see section 2.1.3.1 

and Table 2.4) was proposed that quantified the physiological respiratory impairment 

using a four-point lung injury scoring system based on four criteria shown in Table 

1.2 below7. 
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Criterion Measurement 

Respiratory support Level of positive end-expiratory pressure (PEEP) 

Oxygenation Ratio of partial pressure of arterial oxygen to the fraction 

of inspired oxygen (PaO2:FiO2)  

Compliance The static lung compliance 

CXR appearances The degree of CXR infiltrates 

Table 1.2: Key features of Murray Lung Injury Score 

 

This definition also included the presence or absence of non-pulmonary organ 

dysfunction and specified the clinical cause of lung injury. However, this scoring 

was not shown to be predictive of outcome in the first 72 hours and lacked specific 

criteria to exclude cardiogenic pulmonary oedema, a major differential8. 

Measurements of pulmonary artery wedge pressure (PAWP), have varied from less 

than 12 mmHg to less than 18 mmHg using such a definition9 10.  

 

1.1.3 1994 North American-European Consensus Statement 
In 1994, the North American-European consensus conference, unified the definitions 

of acute lung injury (ALI) and ARDS, its most extreme form11. This definition was 

an attempt to standardise patient selection and allow direct comparisons of research 

into basic mechanisms and treatments for ARDS. ARDS (or ALI) was defined as 

shown in Table 1.3 below. 

 
Criterion Features 

Time course An acute process persisting for days or weeks 

CXR appearances Bilateral CXR infiltrates consistent with pulmonary oedema (see 

Figures 1.1, 1.2) 

Clinical specificity No clinical evidence of heart failure or absence of left atrial 

hypertension (verified by PAWP < 18 mmHg if necessary) 

Oxygenation PaO2:FiO2 < 200 mmHg for ARDS, PaO2:FiO2 < 300 mmHg for ALI 

Table 1.3: 1994 North American Consensus Conference definition 
 

The advantages of this definition are that it is simple to apply in the clinical setting, it 

recognises that there is a spectrum of lung injury severity and also attempts to 

exclude cardiogenic pulmonary oedema and chronic lung disease.  
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This definition is not without its limitations however and more appropriate 

definitions are awaited. The distinction between ALI and ARDS on the basis of 

worsened gas exchange does not reliably correlate with the underlying pathology. 

The degree of hypoxaemia does not predict survival. It takes no account of the 

amount of PEEP applied, which may profoundly affect oxygenation or lung 

compliance. For example, similar levels of oxygenation (and PaO2:FiO2) may be 

achieved with significantly different levels of PEEP that is not discriminated by this 

definition. Furthermore, it does not specify the cause of ARDS or take into 

consideration the different pathophysiology according to the site of the original 

injury, it does not consider the presence of multiorgan dysfunction (which does not 

always occur in ARDS, for example in chlorine inhalation or massive air embolism) 

and the radiographic findings are not specific and some data suggests that they are 

not applied consistently by observers12.  

 

It should be noted the definition does not demand the automatic measurement of 

PAWP but only as an aid to diagnosis, as PAWP can be commonly elevated over 18 

mmHg in ARDS patients particularly if volume overloaded or with high intrathoracic 

pressures. A high PAWP does not exclude acute lung injury as such elevations may 

due to concomitant left ventricular dysfunction which occurs in up to 20% of ARDS 

patients13. If lung infiltrates and hypoxaemia fail to improve after normalisation of 

the PAWP, then there is likely to be an element of acute lung injury. However, 

myocardial ischaemia may lead to transient left ventricular dysfunction that may be 

missed if the PAWP is measured after resolution of the ischaemia so timing of the 

PAWP measurement is critical.  

 

Measurement of brain natriuretic peptide (BNP) can be helpful if clinical evaluation 

does not exclude the possibility of cardiogenic pulmonary oedema. Plasma BNP < 

100pg/ml (< 200mg/ml if glomerular filtration rate < 60ml/min) makes heart failure 

unlikely12. High levels do not always imply heart failure in critically ill patients as 

confirmed in an observational study showing high BNP levels did not discriminate 

between those with severe sepsis and those with acute heart failure14.  
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Echocardiography may be helpful in discriminating (if clinical evaluation and plasma 

BNP are not helpful) particularly if there is demonstration of significant reduced left 

ventricular ejection fraction or severe aortic/mitral valve dysfunction to suggest heart 

failure. However, it may be difficult to exclude heart failure secondary to diastolic 

dysfunction, volume overload from acute renal failure and also milder left ventricular 

dysfunction secondary to ARDS (as described above in 20% of cases). 

 

Other diagnostic techniques may help in the future. Increased microvascular 

permeability can be demonstrated at an early stage using gallium scintigraphy in 

ARDS to measure a gallium pulmonary leak index15 16. The practical value of this 

remains to be determined. Diffuse alveolar damage (see section 1.1.7.3, Chapter 1) 

can be detected early on BALF from cytological analysis17. Although BAL is usually 

well tolerated in ARDS, this technique may be limited by the lack of specificity of 

diffuse alveolar damage for ARDS, as it is well described in pulmonary fibrosis18. 

 

In summary, the 1994 definition could potentially be refined by including the level of 

PEEP, plasma BNP measurement (< 100pg/ml), echocardiography (absence of 

significant aortic or mitral valve dysfunction with reasonable ejection fraction) and 

pulmonary artery catheterisation take in context as necessary. This refinement should 

also incorporate the site of injury and aetiology, the presence of multiple organ 

dysfunction and a more specific definition of radiographic findings. Perhaps in the 

future, measurements of protein leak to document increased pulmonary vascular 

permeability or early bronchoscopic detection of diffuse alveolar damage may also 

accelerate the diagnosis and improve the specificity of this definition.  
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1.1.4 Epidemiology 
The lack of a consistent definition of ARDS until more recently, and the myriad of 

causes and clinical features has hindered an accurate estimation of the true incidence 

of ARDS. Early estimates in North America were of an incidence of 75 per 

100,00019. More recent studies in the UK and USA have suggested much lower 

incidences (1.5 to 4.5 per 100,000) but these were carried out before the 1994 

consensus definition20 21. The first study using the 1994 consensus definition 

suggested a higher incidence of 13.5 per 100,000 in a Scandinavian population22. 

Experience of investigators screening in the ARDS Network Trial suggests the 

original estimate of 75 per 100,000 may be accurate23. Ongoing prospective studies 

using the 1994 consensus definition will clarify this issue.  

 

The number of patients at risk of ARDS is unknown. The proportion of these that 

develop ARDS varies with the aetiology from 1.7% following cardiopulmonary 

bypass to 35.6% following aspiration in one study9. Prevalence studies in the ICU 

setting have revealed a 16-18% prevalence of ARDS in the critically ill22 24. 

Demographics suggest an acute inciting event triggers lung injury with a time course 

of usually less than 24 hours to injury following onset of the event25. 



 36

1.1.5 Predisposing factors  
The risk factors associated with the development of ARDS are either those causing 

direct injury to the lung (pneumonia, aspiration etc.) or those causing indirect injury 

in the setting of a systemic process via blood-borne systemic inflammatory mediators 

(sepsis, pancreatitis etc). Table 1.4 displays a list of predisposing factors associated 

with ARDS. Sepsis is the most associated factor (40% of cases) with development of 

ARDS and the presence of multiple predisposing factors substantially increases the 

risk9 26. 

 
Direct Remote 

Pneumonia 

Aspiration 

Drowning 

Fat and amniotic fluid embolism  

Lung contusion 

Smoke and toxic gas inhalation 

Alveolar haemorrhage 

Reperfusion (post embolectomy) 

Unilateral lung reimplantation 

Sepsis 

Pancreatitis 

Trauma/multiple fractures 

Burns 

Massive blood transfusion 

Leukoagglutin reaction (transfusion-related) 

Diabetic ketoacidosis 

Bone marrow transplantation 

Drug overdose: aspirin, cocaine, opioids etc 

Table 1.4: Abbreviated list of conditions associated with ARDS. 
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1.1.6 Outcome and prognosis 
Most studies until recently have reported a mortality rate of 40-60%27-30. Death 

occurs mainly due to sepsis or multiorgan dysfunction and not respiratory failure28. 

However, the recent therapeutic success of low tidal volume ventilation in the ARDS 

Network Trial indicates some deaths are directly related to iatrogenic ventilator-

induced lung injury23. Some data suggest mortality is falling. One North American 

study found a 36% mortality in 1993 compared to 53-68% in 1983-730. A second 

study from the UK revealed a reduction from 66% mortality in 1990-3 to 34% in 

1994-731. Possible reasons for this include improved treatment of sepsis, better 

ventilation strategies and improved supportive care.  

 

Deaths continue to occur months after discharge. 28 day mortality reflects the acute 

disease and treatment but does not represent long-term survival very well. 60 day 

mortality (as used in the ARDS Network Trial) is thought by many to be the optimal 

endpoint23. Number of ventilator-free days may also be a more useful endpoint in 

addition to 60 day mortality. Pulmonary function in most survivors returns to normal 

or near-normal levels and most reach their maximal recovery at 6 months32 33. Mild 

restriction, a reduction in diffusing capacity and expiratory flow, bronchial hyper-

reactivity and air trapping can occur. A more recent study suggests many ARDS 

survivors have a persistent extrapulmonary functional disability 12 months after 

discharge mainly due to muscle wasting and weakness with minimal lung function 

changes33. 

 

Prognostic factors predicting death at the time of diagnosis include chronic liver 

disease, non-pulmonary organ dysfunction, sepsis and age8 22 34 35. Oxygenation 

(PaO2/FiO2) is not a prognostic factor at onset of ARDS but 24-48 hours later predicts 

outcome8 22 23 34 36 37.  

 

To put ARDS mortality in context, it has been estimated from a mortality of 40% 

there are just under 16,500 deaths associated with ARDS annually in USA compared 

to 17,518 for emphysema and 16,516 HIV-related deaths2. Therefore, acute lung 

injury has significant implications for population health. 
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1.1.7 Pathogenesis and pathology 
 

1.1.7.1 Alveolar epithelial cells – normal structure and function  
In order to understand the pivotal importance of the alveolar epithelium in both 

pathogenesis and recovery from ARDS, it would be advantageous to briefly review 

the anatomy and physiology. The alveolar epithelium is composed of type I (ATI) 

and type II (ATII) cells (see Figures 1.4 a-b).  

 

 
Figures 1.4a (x 40) and b: The normal alveolus, alveolar epithelial cells and alveolar- 
capillary membrane. Abbrevations: AM = alveolar macrophage, EBM = endothelial 
basement membrane. Source (fig 1.4b): Ware LB et al.2  

 

ATI cells cover 93% of the alveolar surface, reflecting their ability to stretch into 

flattened cells with very little depth but with a large surface area to facilitate gas 

exchange38. ATI cells contain few organelles and also function in regulating water 

transport39. 

 

ATII cell 

Fig 1.4a 

Fig 1.4b 

ATI cell 

Air space 
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In contrast, ATII cells (see Figures 1.4 a-b) are cuboidal with microvilli and 

comprise only 7% of the alveolar surface40. They enable transepithelial transport of 

fluid and electrolytes and are the progenitor cells to ATI cells responsible for 

regeneration of ATI cells following lung injury41. Surfactant synthesis and secretion 

is a unique feature of ATII cells. This is essential to prevent airway collapse. They 

also have functions in coagulation/fibrinolysis and host defence42. Culture of ATII 

cells is complicated by the fact that they differentiate to an ATI cell phenotype after a 

few days38 40 43. Phenotypically (methods discussed in Chapter 2, see Figures 2.1, 2.2 

and 2.3), they can be distinguished from ATI cells by their cuboidal shape; 

expression of alkaline phosphatase (ALP), surfactant protein C (SP-C) or aquaporin-

3 (AQP3); absence of HTI56 or aquaporin-5 (AQP5), both markers mostly selective 

for ATI cells; and the presence of lamellar bodies at electron microscopy (see 

Figures 1.5, 1.6)40 41 43-45. AQP5 is expressed in other cells in the respiratory tract; 

airway smooth muscle and bronchial epithelium but not ATII cells45 46. 

 

 

 
Figure 1.5: Transmission EM from ATII cell showing lamellar bodies (lb) and apical 
microvilli (arrows). Nu = nucleus. Source: Fehrenbach H et al.42 
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Figure 1.6: Transmission EM at higher power from ATII cell lamellar body showing 
densely packed phospholipid membranes bound by single limiting membrane. 
Source: Fehrenbach H et al.42  
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1.1.7.2 The lung as a target organ 
The lung has certain unique features making it more susceptible as a target organ to 

the development of acute lung injury47. It is a highly vascular organ and the alveolar-

capillary membrane (see Figure 1.4 a-b) is optimally designed to maximise gas 

exchange allowing extensive exposure to the outside environment. There are a 

myriad of intra-alveolar inflammatory cells including neutrophils, macrophages, 

epithelium and endothelium. Intrapulmonary inflammation and endothelial injury are 

key events in the development of ARDS. 

 

It is important to be aware of the unique features of the alveolar-capillary bed that 

make it so susceptible to injury. Specifically, the alveolar-capillary bed is the main 

site of leucocyte migration in response to inflammation48. The lung architecture is 

also unique with oxygenated blood transported in the veins, a large 

neutrophil:pulmonary capillary size ratio (6-8μm versus 2-15μm) and close 

apposition of alveoli to the vascular bed; the distance for neutrophil migration is < 

1μm from blood to air space. The alveolar surface area is estimated to be 100m2. 

Specifically, there is a complex network of short capillaries where the route from 

arteriole to venule crosses often greater than 8 alveolar walls containing more than 

50 capillary segments. Compared to other vascular beds, there are many more 

lymphocytes and monocytes with about 50 times more neutrophils. The transit time 

for neutrophils through this bed is much longer than for red blood cells (6-26 seconds 

versus 1-4 seconds). The difference in transit times accounts for the increase in 

neutrophil concentration.  
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Other unique features to the lung are the different site of neutrophil migration ie) 

capillaries and not post-capillary venules as in the systemic vascular beds. Therefore, 

there is no need for tethering mechanisms in alveolar capillaries that are required to 

capture neutrophils across systemic post-capillary venules. The classical tethering, 

rolling and arrest of the neutrophil on inflamed endothelium is not applicable to the 

lung. Due to the high neutrophil:pulmonary capillary size ratio, about 50% of 

capillary segments require neutrophils to change their shape from spherical to 

“sausage-like” to pass. Changes in mechanical properties of neutrophils on activation 

during inflammation are pivotal in completely interrupting neutrophil transit. Other 

unique features of neutrophil migration in the lung remain to be explained. For 

example, 20% of neutrophil migration occurs through direct penetration of the 

endothelial cytoplasm.  

 

Migration of neutrophils into the alveolar space can occur via β2-integrin dependent 

or independent mechanisms. Neutrophil-mediated proteolysis is not required for 

neutrophil migration in the lung. Although adhesion molecules are integral to 

neutrophil trafficking in the lung, physical factors are also important. Electron 

microscopy confirms fibrin strands at inflammatory sites emerging into the alveolar 

space, providing an adhesive substrate for migrating neutrophils and an “explosion” 

of neutrophils into the alveolus by a “pressure” mechanism from accumulating 

interstitial exudate.  
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1.1.7.3 Pathology of evolving ARDS  
The pathology of ARDS progresses with time although pathological studies are 

largely derived from post mortem material that may not be entirely representative.  

 

In the acute stage (see Figures 1.3, 1.7 a-b), (up to day 7 following onset of injury), 

there is an influx of protein-rich oedema fluid, neutrophils and other inflammatory 

cells and fibrin into the air spaces due to increased permeability of the alveolar-

capillary barrier49. However, collagen deposition has also been shown to begin at an 

early stage (within 24 hours) in ARDS indicating fibroproliferation may occur earlier 

than previously thought and acute/chronic stages may be synchronous50 51. 

 
Figures 1.7a (x 40) and b: The injured alveolus in the acute phase of lung injury. 
Abbrevations: as in Figure 1.4a, also AN = alveolar neutrophils. Source (fig 1.7b): 
Ware LB et al.2  
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There may also be features of the initiating event eg) fat emboli, gastric aspiration. 

At the microscopic level, there is evidence of ATI cell injury with exposure of the 

underlying basement membrane52. ATII cells seem more resistant to injury49. 

Hyaline membrane formation (diffuse alveolar damage) occurs over the injured ATI 

cells (Figure 1.8) 48-72 hours after the insult described as diffuse alveolar damage53 

54.  

 
Figure 1.8: EM showing endothelial and epithelial injury. Swelling of the endothelium 
(EN) and intravascular neutrophil (LC) in capillary (C). Loss of alveolar epithelial cells 
with hyaline membrane deposition on basement membrane (BM*). Source: Ware LB et 
al.2  

 

The chronic stage (after day 7) is variable. There may be rapid alveolar fluid 

clearance and epithelial repair followed by clinical recovery but in other cases 

oedema persists and intra-alveolar fibroproliferation occurs although this may often 

have started earlier as mentioned above (Figures 1.9 a-b, 1.10)49-51. 
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Figures 1.9 a (x 40) and b: Histology of late stage of lung injury (fig 1.9a) and 
mechanisms important in either complete resolution or persistent fibrosis (fig 1.9b). 
NB: Staining on fig 1.9a DAB (brown) is for VEGF. Source (fig 1.9b): Ware LB et al.2  

 

An organised exudate forms as myofibroblasts migrate from the injured epithelium 

into the fibrin-rich exudate. New blood vessels also fill the alveolar space55. 

Fibroproliferation (Figure 1.10) can progress to fibrosis distorting the lung 

architecture and impairing gas exchange (Figures 1.11a and b)53. 

 

Fig 1.9a 

Fig 1.9b 
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Figure 1.10: Collagen deposition in extracellular matrix of alveolar compartment, 
fibrosing alveolitis stage of ARDS. Source: Dr Nassif Ibrahim (see 
Acknowledgements). 
 

 
Figure 1.11a: Reticular opacities on CXR suggesting development of fibrosing 
alveolitis after day 7. Source: Ware LB et al.2  

 

 
Figure 1.11b: Reticular opacities on CT with ground-glass shadowing during same 
phase as in Figure 1.11a. Source: Ware LB et al.2  
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Intrapulmonary levels of procollagen III peptide (a collagen precursor) are elevated 

very early after the onset of injury and is associated with increased risk of death56 57. 

Therefore, alveolar fluid clearance and regeneration of normal alveolar epithelium 

are critical to recovery from ARDS. 

 

1.1.7.4 Endothelial and epithelial injury 
Two separate barriers form the alveolar-capillary barrier, the microvascular 

endothelium and the alveolar epithelium (see Figure 1.4).  

 

Increased vascular permeability and endothelial injury are established as being 

important in the development of pulmonary oedema in ARDS. Indeed, it has been 

suggested by some authors that ARDS is the pulmonary manifestation of a 

generalised endothelial injury ultimately leading to multi-organ failure58. Increased 

systemic levels of neutrophil elastase and L-selectin (involved in neutrophil 

activation and tissue migration) have been linked with the development of both 

ARDS and multi-organ failure59 60. 

 

The importance of epithelial injury has been recognised more recently although it has 

been documented in pathological studies over 25 years ago61-63. The degree of 

alveolar epithelial injury is an important predictor of outcome64. Plasma and ELF 

levels of KL-6 (an epithelial expressed glycoprotein) have been shown to be elevated 

in patients with ARDS and may also have prognostic value65 66. Indeed, non-

survivors have higher plasma and ELF levels up to day 10 and day 2 respectively65.  

 

Alveolar epithelial injury can have serious consequences. It can result in increased 

permeability as the epithelial barrier is much less permeable than the endothelial 

barrier in normal circumstances and impaired removal of fluid from the alveolar 

space occurs62 64 67 68. It can also cause reduced surfactant turnover and production 

(also described in acute lung injury) and septic shock in patients with bacterial 

pneumonia69-71. Perhaps most importantly, it can result in translocation of 

biochemical mediators of fibrosis and lead to fibrosis from disorganised or 

insufficient repair especially if the injury is severe56 72.  
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1.1.7.5 Neutrophil-dependent lung injury 
Neutrophils accumulate early in the course of ARDS in lung specimens and 

predominate in BALF from ARDS patients52 61 63. Activation of neutrophils leads to 

generation of cytotoxic substances harmful to the alveolar epithelium including 

reactive oxygen species, proteolytic enzymes, eicosanoids and cationic peptides. In 

addition, other substances released may enhance the inflammatory response in the 

lung such as growth factors, cytokines and chemokines2 73.  

 

However, neutrophilic damage to the lung is not the only mechanism for 

development of ARDS as this has been described in patients with neutropaenia74. 

Moreover, granulocyte colony-stimulating factor (given to augment neutrophil 

numbers) in severe pneumonia patients does not increase the incidence or severity of 

lung injury75. Hence, neutrophil-independent mechanisms are also important in the 

development role of lung injury and neutrophils also have an important in host 

defence.  

 

1.1.7.6 Cytokines 
A complex pro-inflammatory cytokine cascade initiates and amplifies the 

inflammatory response to lung injury76. Inflammatory cells, alveolar epithelium and 

fibroblasts are all potential sources of such cytokines. Extrapulmonary factors can 

also regulate intrapulmonary cytokine production in ARDS such as macrophage 

inhibitory factor (MIF) increasing interleukin-8 (IL-8) and tumour necrosis factor 

alpha (TNF-α)77. The balance between pro- and anti-inflammatory mediators is also 

important as demonstrated in ARDS alveolar macrophages compared to “at risk”78. 

Several endogenous inhibitors have been described including interleukin-1-receptor 

antagonist (IL-1Ra), IL-8 autoantibodies, soluble tumour necrosis factor alpha 

(sTNF) and interleukin-10 (IL-10)63 79.  
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1.1.7.7 Ventilator-induced lung injury 
Mechanical ventilation of the lung can cause lung injury by two principal 

mechanisms and hence play a role in the pathogenesis of ARDS. Firstly, patients are 

subjected to high inspired oxygen concentrations which is toxic itself80. In rats, death 

occurs within 60-72 hours when exposed to greater than 95% oxygen81.  

 

Secondly, ventilation at high volumes and pressures can cause physical lung injury 

leading to increased oedema in the injured lung82-84. This is corroborated by the 

observed reduction in mortality (9% absolute reduction) with low tidal volume 

ventilation strategies in the ARDS Network Trial23. Mechanisms may involve 

alveolar over-distension and cyclical opening and closing of alveoli during 

ventilation85-87. Both mechanisms can lead to pro-inflammatory cytokine release and, 

moreover, a protective ventilation strategy can reduce both pulmonary and systemic 

cytokine responses88 89. A recent study highlights the importance of the pulmonary 

epithelium as a source of pro-inflammatory cytokines in this context90. 

 
1.1.7.8 Other mechanisms of injury 
Acute lung injury involves a complex process with multiple pro- and anti-

inflammatory pathways. Abnormalities of production, composition and function of 

surfactant may contribute to alveolar collapse and gas exchange abnormalities71 91. 

 

Pulmonary blood flow abnormalities and injury to the pulmonary vasculature related 

to micro- and macro-thrombosis are well described in ARDS56 92-94. A recent trial 

(PROWESS) has shown the benefits of activated protein C in severe sepsis 

syndrome, of potential relevance to acute lung injury95. 
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1.1.8 Resolution 
Alveolar oedema is resolved (Figure 1.9) by active transport of sodium and chloride 

into the interstitium96. Removal of oedema is associated with improved oxygenation, 

shorter ventilation and increased survival. Water follows passively via water channel 

proteins (aquaporins) predominantly expressed on AE cells39 96. Soluble protein is 

removed primarily by diffusion between alveolar epithelial cells. Insoluble protein is 

removed by endocytosis and transcytosis by alveolar epithelial cells and by 

phagocytosis by macrophages97.  

 

The ATII cell is required to proliferate and differentiate into ATI cells to reconstitute 

the alveolar epithelial barrier42. This covers the denuded basement membrane 

restoring the normal alveolar architecture increasing the fluid-transport capacity of 

the alveolar epithelium. Keratinocyte (KGF) and hepatocyte growth factors (HGF) 

and epithelial growth factors are known to be involved in this process.  

 

The mechanisms underlying resolution remain poorly understood. Apoptosis may be 

important in neutrophil clearance in the injured lung. High intrapulmonary levels of 

apoptotic markers are present and broncho-alveolar lavage fluid (BAL) can cause 

epithelial cell apoptosis98 99. 
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1.2 VASCULAR ENDOTHELIAL GROWTH FACTOR 
(VEGF) 
 

1.2.1 Background and biological actions 
Vascular endothelial growth factor (VEGF), also known as vascular permeability 

factor (VPF), is a 34–46 kDa disulfide-linked dimeric glycoprotein and was first 

isolated from tumour cells100 101. VEGF and VPF were discovered from separate 

sources but were subsequently found to be identical by cDNA cloning and protein 

sequencing. It will be referred to as VEGF hereafter102. It is expressed by a variety of 

cell types including tumour cells, epithelial cells, macrophages, smooth muscle cells, 

neutrophils and platelets103-106. 

 

The key functions of VEGF are on the vascular bed. It is a potent endothelial cell 

mitogen in vitro and a potent angiogenic factor which has been demonstrated in a 

variety of in vivo models100 107. Embryos lacking a single VEGF allele have a lethal 

phenotype due to abnormal vascular development and lung architecture emphasising 

it is perhaps the most critical regulator of vascular development108. VEGF also 

increases microvascular permeability 50,000 times more potently than histamine109. 

It increases hydraulic conductivity in isolated microvessels mediated by calcium 

influx110. Permeability is increased via structural alterations in paracellular “tight” 

junctions and transcellular “caveolae”111 112. VEGF can induce fenestrations in some 

non-fenestrated vascular beds113.  

 

VEGF has other effects on the vascular bed. It is chemotactic for vascular endothelial 

cells and monocytes114-116. Studies also suggest it may act as a survival factor for 

vascular endothelium via its anti-apoptotic action and up-regulation of anti-apoptotic 

proteins Bcl-2 and A1117 118. It also has complex effects on coagulation including 

activation of procoagulant tissue factor116 119. 
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VEGF has also been shown to be mitogenic on other cell types including human 

foetal pulmonary epithelial cells and neuronal cells103 120 121. Other studies have 

suggested an induction of collagen synthesis in human mesangial cells and 

osteoclast-mediated bone resorption and neurotrophic effects on neuronal cells120 122. 

 

Because of the importance of VEGF to angiogenesis and maintenance of the vascular 

bed, it is unsurprising that clinical trials of anti-VEGF therapy are in progress in solid 

tumours, and VEGF therapy in ischaemic vascular disease123-127.  

 

1.2.2 Why investigate VEGF in ARDS? 
From the background on ARDS, it is clear that an increase (either functional or 

physical) in microvascular permeability (one of the main biological functions of 

VEGF) is one of the cardinal features of ARDS. Secondly, angiogenesis (another 

core function of VEGF) is a recognised histological feature in the lung following 

recovery from lung injury as it is in other forms of wound repair. Thirdly, high 

intrapulmonary concentrations of VEGF (approximately 10ng/ml) have been 

detected in normal human subjects, more than 500 times the levels in normal plasma 

although the reasons for this remain unclear at present as significant oedema and 

angiogenesis do not occur in healthy lungs128. Finally, it is evident that VEGF 

receptors are abundant in the vascular bed and VEGF itself is abundant in the lung 

and many of the mediators implicated in ARDS cause VEGF release.  

 

These data have led to the hypothesis that VEGF has an important role in acute lung 

injury.  
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1.2.3 VEGF receptors  
 

1.2.3.1 VEGF receptors 1 and 2 (VEGFR1, VEGFR2) 
VEGF binds two related tyrosine receptor kinases, VEGF receptor 1 (VEGFR1) and 

VEGF receptor 2 (VEGFR2). They have seven immunoglobulin-like domains with 

specific functions, a single transmembrane region and a consensus tyrosine kinase 

sequence interrupted by a kinase-insert domain (Figure 1.12)129-131.  

 
 

Figure 1.12: structure of VEGF receptors, main cellular sites and ligands. Source: 
Zachary I132. Cyt = cytoplasmic domain, PlGF = placental growth factor, ECD = 
extracellular domain. TM = transmembrane hydrophobic membrane-spanning domain. 
Red ovals denote Ig-like loops. Large cytoplasmic domain consists of catalytic 
domain (CAT) and non-catalytic kinase insert (KI). 

 

VEGFR1 and VEGFR2 (the main receptors) were initially thought to be largely 

confined to vascular endothelium133 134. However, they have subsequently been 

detected elsewhere including activated macrophages, ATII cells and neutrophils103 104 

135-137. VEGF is therefore capable of acting on both (epithelial and endothelial) sides 

of the alveolar-capillary membrane compatible with a significant biological function 

in the airspace in addition to its well-known effects on the vascular bed.  

 



 54

1.2.3.1.1 VEGFR1 

Accumulating evidence supports a more inhibitory function for VEGFR1. VEGFR1 

activation induces monocyte chemotaxis but not proliferation in cells lacking 

VEGFR2114 138 139. VEGFR1 knockout mice die between days 8.5 and 9.5 in utero 

from excessive proliferation of angioblasts supporting a negative regulatory role on 

VEGF by VEGFR1 at least during early development140 141. In addition, targeted 

deletion of the tyrosine kinase domain (but not the VEGF binding domain) on 

VEGFR1 does not cause death or obvious vascular defects139. Other studies have not 

confirmed a decoy function but suggested additional roles in haematopoiesis and 

release of tissue-specific growth factors eg) in the liver142 143.  

 

1.2.3.1.2 VEGFR2 

Current evidence is consistent with VEGFR2 being the main signalling receptor for 

VEGF bioactivity ie) angiogenesis, proliferation and permeability144 145. Activation 

of VEGFR2 causes proliferation in cells lacking VEGFR1. VEGFR2 knockout mice 

fail to develop blood islands or organised blood vessels resulting in early death146. 

VEGFR2 also has a pro-survival function with anti-apoptotic effects on human 

umbilical vein endothelial cells (HUVECs)147. 

 

1.2.3.2 Other VEGF receptors 
There are other important receptors activated by members of VEGF or its 

superfamily (see section 1.2.5). VEGF receptor 3 (VEGFR3) is not a receptor for 

VEGF itself but for VEGF-C and VEGF-D (see section 1.2.5) and is principally 

localised to lymphatic endothelium in adults148. These will not be discussed further in 

this thesis.  

 

1.2.3.2.1 Neuropilin receptors (NRP-1, NRP-2) 

Neuropilin receptors (NRP-1, NRP-2) are isoform-specific VEGF-binding sites of 

different size and affinity to VEGFR1 and VEGFR2149 150. They are expressed by 

endothelial cells in many adult tissues but lack the intracellular component 

containing tyrosine kinase activity and are regarded as VEGF co-receptors, being 

unable to signal themselves without the involvement of VEGFR2. They are known to 

bind semaphorins and are involved in neuronal guidance.  
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Studies are consistent with NRP-1 acting as a co-factor, augmenting the effects of 

VEGF (see Figure 1.12). It is isoform-specific, recognising exon 7 of VEGF (binding 

VEGF165 but not VEGF121, see section 1.2.4 later) and increases the effect of 

VEGF165 by enhancing its binding to VEGFR2. This might partially explain the 

greater mitogenic potency of VEGF165 compared to the VEGF121 isoform. Studies 

also support a role for NRP-1 in vasculogenesis and angiogenesis. NRP-1 knockout 

and overexpressing mice both die prematurely from vascular defects151 152.  

 

NRP-2 also exhibits isoform-specificity and can form complexes with VEGFR1 in 

endothelial cells in vitro153 154. Unlike NRP-1, NRP-2 knockout mice have no 

vascular defects but some neuronal adverse effects consistent with a less important 

role in vascular development155.  

 
1.2.3.2.2 Soluble receptors 

Soluble, truncated inhibitory forms of some of the receptors exist functioning as 

natural inhibitors. Isoforms of NRP-1 and NRP-2 exist generated by alternate 

splicing156. Soluble VEGFR1 (sflt) contains only the first 6 immunoglobulin-like 

domains and can also dimerise with VEGFR2 as well as bind soluble VEGF as 

efficiently as VEGFR1 reducing unbound VEGF levels157. Variation in soluble 

receptors may be one cause of regulation of free VEGF levels. One recent clinical 

study described a significant increase in intrapulmonary sflt, which was postulated to 

account for the apparent fall in free intrapulmonary VEGF levels in ARDS158.  
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1.2.4 VEGF isoforms 
The VEGF gene has been localised to chromosome 6 (6p21.3) with eight exons 

separated by seven introns159 (see Figure 1.13). 

 
Figure 1.13: Partial nucleotide sequence of human VEGF gene. Upper case letters are 
exon nucleotides and lower case are intron or 5’-UTR nucleotides. Amino acids are 
numbered from alanine residue denoting amino terminus of protein. Nucleotides are 
numbered from translation start site. Boxes represent areas closely matching 
transcriptional control consensus sequences. Source: Tischer E et al160.  
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Exon 1 encodes the signal sequence, exon 2 the N terminus, and exon 3 the 

dimerisation domain. VEGF dimerisation is necessary for biological activity161. Exon 

3 encodes the VEGFR1 binding domain, exon 4 the VEGFR2 binding domain and 

the terminal part of exon 7 encodes the NRP binding domain (illustrated in Figure 

1.14). N-glycosylation occurs in exon 3 (Aspartic acid, 74) which is a post-

translational effect required for effective VEGF protein secretion but has no effect on 

VEGF function162 163. 

 
 

Figure 1.14 A: Exon structure of VEGF mRNA. Amino acid sequence corresponding to 
mRNA sequence given underneath. Functional domains shown. B: Schematic of 
VEGF isoform protein structure with different properties arising from differential 
presence of the heparin-binding functional domain (exon 6 and 7). NB: Promoter 
region in 5’-UTR and VEGF 936 C/T polymorphism (see Chapter 5) in 3’-UTR region. 
Source: Bates DO et al.164  
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Alternative splicing of the VEGF transcript from exons 5 to 8 leads to the generation 

of several different isoforms with variable diffusibilities depending on their length 

(Figure 1.14): VEGF121, VEGF165, VEGF189 and VEGF206
160 165. Exon 6 (not present 

in VEGF121 and VEGF165) and exon 7 provide heparin-binding affinity; exon 8 

(present in all active isoforms) is necessary for the stimulation of mitosis. A plasmin 

cleavage site is present near the end of exon 5 resulting in a 110 amino acid peptide 

(VEGF110) when VEGF is cleaved by plasmin, which loses the ability to stimulate 

mitosis. Therefore, the mitotic ability resides in the carboxyl terminus of VEGF. 

There are four cysteine bonds in the VEGF165 and VEGF189 that provide the VEGF 

dimers with their characteristic shape. 

 

1.2.4.1 Main VEGF isoforms 
The longer isoforms are highly basic and remain virtually completely cell-associated 

whereas VEGF121 (lacking both exons 6 and 7) is freely diffusible160 166. VEGF165 

(lacking exon 6 but not 7) possesses intermediary properties being largely soluble but 

a distinct fraction remains cell-associated167. It is the predominant isoform and most 

biologically active in the physiological state168. 

 

As already discussed, the carboxyl-terminal heparin-binding domain (111-165) is 

thought to be critical for mitogenic potency, and VEGF121 is not as mitogenic as 

VEGF165
169. VEGF189 seems to be less active than VEGF165 or VEGF121 in vivo in a 

model of glioblastoma clones overexpressing the VEGF isoforms implanted into 

mouse brains170. The VEGF189-overexpressing clones resulted in negligible 

haemorrhage compared to the other two isoforms and less angiogenesis170. The 

heparin-binding isoforms appear to have a more significant role in vascular 

development as mice expressing only the murine equivalent of VEGF121 (VEGF120) 

die shortly after delivery because of circulatory problems (with impaired lung 

microvascular development and airspace maturation) whereas those expressing the 

longer isoforms live for 2 weeks171-173. In addition to their variable diffusibilities and 

functional effects, there is evidence of variability in VEGF receptor activation; for 

example, NRP-1 is activated by VEGF165 but not VEGF121
174.  
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1.2.4.2 Rarer VEGF isoforms 
More recent studies have identified other rarer VEGF145, VEGF148 and VEGF183 

isoforms (see Figure 1.14) in cell lines, human glomerular tissue and human Müller 

cells175-177. VEGF145 is unusual in binding very well to the extracellular matrix and 

seems to be largely confined to reproductive tissues175 178 179. As discussed, plasmin, 

can also cleave the cell-associated isoforms to VEGF110 157 168. Both VEGF110 and 

VEGF148 lack exon 8 explaining their reduced potency compared to VEGF165.  

 

1.2.4.3 Novel inhibitory isoform (VEGF165b) 
Since this research was started a novel inhibitory isoform (see Figure 1.15) has been 

identified, VEGF165b180 181. 

  

 
 

Figure 1.15: Exon structure of VEGF165b mRNA (bottom of figure) as compared to 
“normal” VEGF isoform structure. Source: Bates DO et al.180 

 

Conditioned medium containing this isoform significantly inhibits VEGF165-

mediated vascular endothelial proliferation, migration and vasodilatation when co-

incubated with VEGF165 raising the possibility of an anti-angiogenic isoform. The 

transcript is identical to VEGF165 except for the replacement of exon 8 with exon 9 

containing an alternative 6 amino acids (Figure 1.16). 
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Figure 1.16: A: Nucleotide sequence of VEGF165 and VEGF165b cDNA. 66 base pairs 
downstream of exon 7 missing from VEGF165b. B: exon structure of carboxyl terminal 
end of VEGF165 and VEGF165b. The 3’UTR sequence of exon 8 contains an intronic 
sequence for exon 9. C: Predicted amino acid sequence of VEGF165 compared with 
VEGF165b. Italics denote acidic and underline basic residues. Source: Bates DO et 
al.180 

 

In summary, the relative proportion of isoforms may have profound functional 

effects on VEGF biology. Therefore, the regulation of isoform switching may be 

critical in determining its functional importance in the lung.  

 

The loss of two positively-charged terminal amino acids and the loss of Cys160 

residue (resulting in loss of a disulphide bond with Cys146, see Figure 1.16 and hence 

lack of proximity to the carboxyl terminus to the VEGFR2 binding site in exon 4) 

leads to a significant change in folding and tertiary structure thought to affect 

VEGFR2 signalling (thought to be the main signalling receptor162 182).  
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1.2.5 VEGF superfamily 
A superfamily of VEGF-related proteins exists with similar structure and function: 

VEGF-B, -C, -D, -E and placental growth factor (PlGF) (see Figure 1.17)168. This 

thesis will focus on the role of VEGF-A (termed VEGF throughout this thesis). 

Isoforms are described for the other superfamily members (see Figure 1.17), but their 

genes are located on different chromosomes (see Table 1.5). 

 
Figure 1.17: Comparison of structure of VEGF superfamily. Percentages on right 
indicate amino acid homology with VEGF165. PlGF = placental growth factor. Arrows 
denote areas of proteolytic cleavage for VEGF-C and VEGF-D. Source: Takahashi H et 
al183. 
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Specific antibodies to the VEGF superfamily members (with the exception of 

VEGF165b, discussed in section 6.2.1, Chapter 6) are available.  These antibodies are 

specific in their binding (with the exception of VEGF-A antibody which will detect 

VEGF165b in addition to the three VEGF isoforms, as discussed above). The detailed 

methodology of the antibodies used is discussed in section 2.3.3, Chapter 2 but the 

essential differences between the other superfamily antibodies are summarised in 

Table 1.5.  

 
Antibody % AA 

homology 
with 
VEGF165 

Binding 
area 

Detects Datasheet (Santa Cruz 
code) 

VEGF-A 100 6p21.2: (N) VEGF121,165,189 

isoforms 

http://datasheets.scbt.com/

sc-152.pdf (sc-152) 

VEGF-B 41 11q13: AA 

1-70 (N) 

VEGF-B isoforms http://datasheets.scbt.com/

sc-13083.pdf (sc-13083) 

VEGF-C 32 4q34: AA 

203-410 

(C) 

VEGF-C isoforms http://datasheets.scbt.com/

sc-20714.pdf (sc-20714) 

VEGF-D 31 Xp22.1: AA 

211-354 

(C)  

VEGF-D isoforms http://datasheets.scbt.com/

sc-13085.pdf (sc-13085) 

PlGF 46 14q24.3: 

AA 51-100 

PlGF isoforms http://datasheets.scbt.com/

sc-20714.pdf (sc-20714) 

 
Table 1.5: Specific characteristics of VEGF superfamily antibodies (no specific VEGF-
E antibody available). All are raised in rabbit species and polyclonal. AA = amino acid, 
N = N terminus, C = C terminus. 
 

http://datasheets.scbt.com/sc-152.pdf
http://datasheets.scbt.com/sc-152.pdf
http://datasheets.scbt.com/sc-13083.pdf
http://datasheets.scbt.com/sc-13083.pdf
http://datasheets.scbt.com/sc-20714.pdf
http://datasheets.scbt.com/sc-20714.pdf
http://datasheets.scbt.com/sc-13085.pdf
http://datasheets.scbt.com/sc-13085.pdf
http://datasheets.scbt.com/sc-20714.pdf
http://datasheets.scbt.com/sc-20714.pdf
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VEGF-C is a specific ligand for VEGFR3, but can also activate VEGFR2 with an 

estimated mitogenic potency 100 times less than VEGF itself. Its primary role is 

thought to be in lymphangiogenesis184. Indeed, it is expressed largely near VEGFR3 

on lymphatic endothelium after development185 186. VEGF-D transcripts are 

expressed in lung as well as other organs and it is thought to have similar roles in 

lymphatic vessel development and also vascular development having many structural 

similarities to VEGF-C187. VEGF-E has similar structure to VEGF121 but superior 

mitogenic activity almost equal to VEGF165
188. It activates only VEGFR2. PlGF 

binds to VEGF receptor 1 (VEGFR1) and has significant homology with VEGF, 

although with weaker mitogenic activity than VEGF itself189 190. It can be mitogenic 

on human umbilical vein endothelial cells in the form of a dimer with VEGF 

(HUVECs)191. 

 

In addition to the VEGF superfamily, there are possibly a further family of tissue-

specific VEGFs (most recently, the endocrine gland derived VEGF (Eg-VEGF)192. It 

has identical biological function to VEGF although structurally not related but 

pronounced target-cell selectivity. In addition, there are numerous other growth 

factors with angiogenic (basic fibroblast growth factor and the angiopoeitin family) 

beyond the scope of this thesis193 194.  

 

In summary, VEGF is only one of many members with similar (but in general less 

potent) functional properties in a superfamily. The functions of the other members of 

the VEGF superfamily are poorly understood but this demonstrates the further 

complexity of VEGF biology.  
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1.2.6 Regulation of VEGF expression 
Any change in VEGF receptor expression, soluble receptors or alternate splicing to 

change the relative isoform expression would theoretically alter VEGF bioactivity. 

However, there are some important regulators of VEGF expression independent of 

such changes of relevance to the normal and injured lung that will be discussed 

further.  

 

1.2.6.1 Regulation of VEGF expression by hypoxia 
Oxygen is a key regulator of VEGF bioactivity, hypoxia being a potent stimulus to 

VEGF expression. In ARDS, tissue hypoxia is well described and high flow oxygen 

is often used therefore there may be a relationship between these factors and VEGF 

bioactivity2. Hypoxia-inducible factor 1 (HIF-1) is a heterodimeric protein regulated 

by removal of the HIF-1 alpha subunit through ubiquination and proteosomal 

destruction in normoxic conditions195. Hypoxia inhibits HIF-1 ubiquination and 

allows binding of HIF-1 to a hypoxia response element (HRE) upstream of the 

VEGF gene in promoter, enhancer and intronic sequences increasing VEGF 

transcription196 197. Hypoxia also increases VEGF mRNA stability198 199.  

 

Oxygen also regulates VEGF receptor expression. Hypoxia upregulates VEGFR1 

and VEGFR2 expression in vivo200. VEGFR1 has a HIF-1 consensus sequence in its 

promoter region, whereas VEGFR2 does not and is thought to be upregulated by 

post-transcriptional paracrine mechanisms201 202.  

 

1.2.6.2 Other mechanisms of regulation 
Aside from oxygen-related regulatory mechanisms, other oxygen-independent 

mechanisms exist. In ARDS, intrapulmonary increases in pro-inflammatory 

cytokines such as TNF-α and LPS are well-described2. Both of these cytokines can 

upregulate VEGF expression although these findings were described outside the air 

space in mononuclear and endothelial cells203 204. More recent data has described 

similar findings for LPS in an alveolar epithelial cell line, A549 cells205. TNF-α may 

also converge with the VEGF signalling pathway (discussed in section 1.2.7).  
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Importantly, VEGF can regulate its own activity by direct regulation of its receptors, 

at least in the vascular bed. VEGF activation of VEGFR2 increases VEGFR2 gene 

expression and cellular levels and can also upregulate VEGFR1 and sflt expression in 

endothelial cells206 207.  

 

Mechanical stretch may be important, particularly relevant in the context of 

mechanical ventilation and ventilator-induced lung injury208. Pulmonary ischaemia in 

the presence of normoxia in ventilated ferret lungs is associated with an increase in 

HIF-1 alpha mRNA but not protein209. 

 

Other mechanisms exist but are not discussed in further detail and they are not 

relevant to the lung eg) tumour suppressor gene inactivation which is relevant to non-

necrotic vascular tumours210.  
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1.2.7 VEGF signalling 
The complexity of VEGF signalling pathways is illustrated in Figure 1.18. VEGF 

appears to be able to stimulate almost all known signalling pathways in endothelial 

cells in culture. 46 different signalling molecules have been identified as being 

activated by VEGF in endothelial cells in one review including phospholipases C and 

A, thromboxane A2, protein kinases B and C PKB, PKC), PI3 kinase, nitric oxide 

(NO) and mitogen-activated protein kinase (MAPK)211. This does not take account of 

other signalling molecules in target cells other than endothelium.  

 

 
 

Figure 1.18: Schematic representation of VEGF signalling included illustrating its 
complexity. VEGFR2 (KDR) is the main signalling receptor. Source: Zachary I et al.212 

 

There is growing evidence that the signalling pathways for VEGF induced 

permeability and angiogenesis diverge. Inhibition of p38 MAPK enhances VEGF-

mediated angiogenesis but inhibits VEGF-mediated permeability on endothelial cells 

in vitro213 214. Furthermore, PKC inhibition prevents VEGF-induced proliferation and 

angiogenesis in vitro but induces permeability in vivo in endothelial cells and 

mice215.  
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In endothelial cells, mTNF seems necessary for VEGF-mediated permeability but not 

angiogenesis in vitro and in vivo214. Upregulated mTNF leads to continuous p38 

MAPK activation in endothelial cells and selective inhibition of mTNF (rather than 

sTNF) and/or p38 MAPK inhibits VEGF-mediated permeability in vitro. mTNF and 

VEGF signalling pathways may converge at the level of p38 MAPK, with mTNF 

having a permissive role in VEGF-mediated permeability (Figure 1.19). Indeed, 

TNF-α knockout mice do not have abnormal vasculature unlike their VEGF 

counterparts216. Inhibition of p38 MAPK is also associated with prevention of 

endothelial cell apoptosis in vitro following VEGFR2 activation suggesting MAPK 

may be implicated in other VEGF functions217.  

 

 
Figure 1.19: Potential convergence of continuous TNF and VEGF signalling pathways 
leading to vascular permeability. Source: Clauss M et al.214 
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1.2.8 VEGF Polymorphisms  
Significant interindividual variations in plasma VEGF level and gene expression 

have been reported105 218 219. Several functional VEGF polymorphisms have been 

described recently. Given its possible role in ARDS, such polymorphisms (although 

there are other explanations) are attractive candidates to influence individual 

susceptibility (which is known to be highly variable) to developing ARDS from a 

given “insult” eg) an individual will have an estimated 40-60% risk of developing 

acute lung injury following Gram negative sepsis9. VEGF is among those genes with 

a potential role in ARDS that is polymorphic220-222.  

 

1.2.8.1 VEGF +936 C/T polymorphism 
A CT substitution at position 936 distal to the start of translation in the 3’-

untranslated region of the VEGF gene on chromosome 6 is associated with reduced 

plasma levels in both heterozygotes and homozygotes220. This substitution results in 

altered binding of the transcription factor activator protein 4 (AP-4) although 

whether the abolishment of the AP-4 binding site is of any relevance to the reduction 

in VEGF protein expression remains unclear at present220. AP-4 is known to enhance 

expression of some viral genes by binding to their enhancer sites e.g. SV-40223. 

However, the relation between this polymorphism and intrapulmonary inflammatory 

cell and epithelial cell production of VEGF is unknown at present. Another group 

failed to find a significant difference in serum level with genotype for the same 

polymorphism however this was a non-Caucasian population224. 

 

In other lung diseases, no association has been found between the same 

polymorphism and susceptibility to COPD although it has been implicated with 

altered susceptibility to sarcoidosis225 226. There are a growing number of studies 

confirming associations with extrapulmonary diseases, either inflammatory or 

neoplastic but these are not discussed further here227-231. 
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1.2.8.2 Other functional VEGF polymorphisms 
Other functional VEGF polymorphisms currently under investigation in this context 

include –634 G/C in the 5’UTR (associated with reduced VEGF production from 

peripheral blood monocytes (PBMs) stimulated with lipopolysaccharide222). 

Conversely, the same Japanese group found significantly higher serum levels with 

the same polymorphism224. The –1154 G/A and –2578 C/A polymorphisms in the 

promoter region are associated with higher VEGF production from stimulated 

PBMs232. Individuals with the A allele also have an 18 nucleotide insertion at –2549 

Individuals without the insertion have an almost doubling of transcriptional 

activity233. Such polymorphisms have been extensively studied in the context of 

extrapulmonary disease and are not considered further here as they have yet to be 

investigated in lung disease232-236.  
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1.2.9 VEGF and the lung 
A variety of in vitro, animal and human studies demonstrate the functional 

importance and abundance of VEGF in the normal lung. Studies in ALI need to 

consider both sides of the alveolar-capillary membrane. Isolated cellular studies 

looking at epithelial or microvascular endothelial cells give additional insight to 

animal models and clinical studies as discussed below.  

 

1.2.9.1 VEGF and the alveolar space 
In vitro studies have demonstrated an abundance of VEGF in lung tissue, especially 

in alveolar epithelium including A549 cell-line and primary human cultured type II 

pneumocytes205 237-239. Indeed, the highest levels of VEGF mRNA are found in 

animal and human lung suggesting that alveolar epithelium is the predominant 

source205 237. Data from animal and human studies confirm these findings. Although 

the embryonic role of VEGF is well recognised, adult murine lungs contain a 

significant amount of VEGF mRNA transcript240. In normal human lung air spaces, 

VEGF is compartmentalized (measured in fluid obtained at bronchoalveolar lavage) 

to 500 times higher than those in the plasma128.  

 

Human foetal airway epithelial (ATII) cells are known to express VEGF receptor 2 

(VEGFR2), the main functioning VEGF receptor, which would facilitate an 

autocrine role in the air space for VEGF in addition to its well-known paracrine 

effects on the vascular bed103 241. Such an autocrine role has been described on other 

specialised epithelial cells outside the lung, in the kidney106. 

 

In summary, high levels of VEGF exist in normal human lung despite the lack of 

angiogenesis, oedema or excess microvascular permeability occurring in the 

physiological state. Receptors are expressed in the airspace compatible with a 

biological (but as yet unclarified) role for VEGF in the uninjured state.  
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1.2.9.1.1 Studies suggesting pathological role for VEGF in alveolar space 

Theories that VEGF is solely pathological in the lung causing excess vascular 

permeability do not account for these findings. Nevertheless, a wealth of data is 

consistent with a pathological role of VEGF in the lung. A549 cells (although not 

entirely typical of primary human alveolar epithelial cells) release VEGF in response 

to pro-inflammatory stimuli potentially involved in ARDS, including LPS, neutrophil 

elastase and KGF205. In one LPS-induced murine model of lung injury, 

intrapulmonary levels of VEGF increased following injury for 96 hours mirroring an 

increase in bronchoalveolar lavage fluid protein and neutrophils, with significant 

VEGF localisation to lung epithelium242. In an acid-induced murine model of lung 

injury, high tidal (injurious) volume ventilation strategies increase lung VEGFR2 

(the main signalling receptor for VEGF bioactivity) protein expression consistent 

with a possible role in ventilator-induced lung injury243. On the vascular side of the 

alveolar-capillary membrane, clinical studies confirm an elevation in plasma VEGF 

in early ARDS (the first 24 hours) with normalisation of levels in recovery (after day 

4) in survivors but no non-survivors. A significant expression from peripheral blood 

monocytes in vitro was noted with a 48% reduction in albumin flux across human 

pulmonary endothelial cell monolayers using the soluble VEGFR1, sflt244. Such data 

are observational and do not imply causation. Significantly, a protective ventilatory 

strategy failed to reduce VEGF expression in the murine acid model, suggesting the 

VEGF response may be secondary to more critical events243.  
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More compelling data come from animal models focussed on the alveolar side of the 

ACM where VEGF over-expression appears to be directly harmful. Adenoviral 

delivery of VEGF165 to the murine lung leads to non-cardiogenic pulmonary oedema 

and increased pulmonary capillary permeability on the basis of histology, lung 

weight wet/dry ratios, elevated albumin permeability and Evans blue dye assay 

although viral-induced damage to the alveolar-capillary membrane may have 

contributed245. Overexpression of VEGF164 in neonatal transgenic mice respiratory 

epithelial cells leads to pulmonary haemorrhage, endothelial destruction and alveolar 

remodelling in an emphysema-like phenotype246. The emphysema-like changes may 

be secondary to the vascular disruption, as surfactant protein B (SP-B) production 

was not affected246.  

 

These data are consistent with a possible pathological role for VEGF in lung injury. 

However, many of the data are observational which may indicate secondary 

responses to more critical events. In addition, the overexpression models may have 

involved damage to the alveolar-capillary membrane exposing the underlying 

endothelium to the higher physiological levels of VEGF in the air space leading to 

excessive oedema. Moreover, these data do not account for the consistent findings of 

abundant VEGF in the normal lung. In this regard, a growing body of evidence is 

consistent with a protective role for VEGF in the lung.  
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1.2.9.1.2 Studies suggesting protective role for VEGF in alveolar space 

To date, observational studies in humans of lung injury consistently show a reduction 

in intrapulmonary VEGF levels in the early stages of ARDS247 248. This is consistent 

with a hyperoxic lung injury model in rabbits, where alveolar epithelial expression of 

VEGF was reduced135. Several other investigators have found similar reductions in 

intrapulmonary VEGF levels in other forms of lung injury including high altitude 

pulmonary oedema in adults, bronchopulmonary dysplasia, persistent pulmonary 

hypertension of the newborn, idiopathic pulmonary fibrosis, smokers or even in the 

early stages after lung transplantation248-253. Recovery of intrapulmonary VEGF 

levels to pre-injury levels has been noted following recovery from both acute lung 

injury in humans and the hyperoxic rabbit model and high altitude pulmonary 

oedema as well as later post transplant247-249 253.  

 

Considerable evidence suggests VEGF acts as an alveolar epithelial mitogen and 

stimulant. Exogenous VEGF acts as a growth factor on human foetal and neonatal 

murine pulmonary epithelial cells and is capable of restoring A549 cell proliferation 

after exposure of the cells to acid injury103 254 255. HIF-2α–deficient foetal mice (with 

consequent fatal respiratory distress syndrome in neonatal mice due to impaired 

surfactant production by type 2 pneumocytes) have lower intrapulmonary VEGF 

levels and expression on type 2 pneumocytes254. Intrauterine or postnatal 

intratracheal delivery to the neonatal mice of VEGF165 protected against developing 

respiratory distress syndrome and increased surfactant production254.  
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Further intervention studies interrupting VEGF signalling in some way lend further 

support to a protective role in the lung on the alveolar side. Chronic VEGFR2 

blockade (given subcutaneously) in rats leads to alveolar apoptosis and 

emphysema256. In addition, lung-targeted ablation of the VEGF gene by adenoviral 

delivery in the adult mouse leads to a persistent emphysema phenotype for at least 8 

weeks. Interestingly no inflammation or proliferation but increased apoptosis is seen 

in these lungs257. VEGF partially mediates the protective effects of IL-13 in a murine 

hyperoxic model of lung injury with transgenic overexpressing IL-13 mice258. The 

beneficial effect of IL-13 is significantly abrogated by VEGF blockade and IL-13 

selectively upregulates the murine VEGF164 isoform in normoxia but the other 

VEGF120 and VEGF188 isoforms in hyperoxia. The exact mechanisms of the VEGF-

mediated protection are not fully understood.  

 

These data suggest possible survival function for VEGF in the alveolar space. VEGF 

may have a pneumotrophic function and be an autocrine epithelial growth factor in 

the lung. It is already known to be a survival factor for the vascular bed via induction 

of anti-apoptotic proteins but to date this has not been demonstrated in alveolar 

epithelium118.  
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1.2.9.1.3 Conflicting data and possible reasons 

As stated previously, some of the data are conflicting and other data does not 

conclusively corroborate the above hypothesis. In one cellular study, VEGF164 failed 

to show a proliferative effect on rodent primary ATII cells. This may be related to 

the doses used, the species differences, the methodology of thymidine and 

bromodeoxyuridine (BrdU) incorporation and it should be noted a rise in SP-B 

transcription was detected259.  

 

VEGFR2 is the main signalling receptor for VEGF but little evidence is available to 

evaluate its role in acute lung injury241. Abadie et al.260 using homogenates from 

early and late human necropsy or surgical open biopsy ARDS lung tissue 

demonstrated no difference in VEGFR2 expression compared to controls. However, 

ATII cell proliferation and VEGFR2 expression were noted in injured tissue and 

these data do not exclude a protective role for VEGF.  

 

Abadie et al.260 in the same study using the same tissue failed to find any change in 

lung tissue homogenate VEGF levels following the early phase of injury in lung 

homogenates on immunohistochemistry but this may be due to different time points 

being used. In another observational clinical study, Maitre et al.249 failed to find a 

difference in serum VEGF levels in ARDS in contrast to the elevation of plasma 

VEGF levels noted by Thickett et al244. This is surprising as serum VEGF levels 

would be expected to be at least two times higher than plasma levels due to ex vivo 

platelet and neutrophil release105. However, methodology might again account for 

this. ELISA antibodies and control group severity were different (higher index of 

oxygenation in the latter study control group) to other observational clinical studies.  

 



 76

In summary, the current data appear conflicting but it is speculated there is a 

common underlying mechanism. Whilst it is possible the changes in VEGF level 

during injury and recovery may reflect changes secondary to repair and regeneration 

of the injured alveolar epithelium, time points of the animal models and clinical 

studies differed as did the degree of endothelial injury in the over expression animal 

models which might partially account for the apparently conflicting data. Changes in 

splice variant and soluble receptor expression may also contribute although 

published data are limited. This leads to more specific hypothesis; that in ARDS, 

alveolar-capillary membrane damage may contribute to oedema resulting from 

exposure to the underlying endothelium to higher (usually intrapulmonary) 

concentrations of VEGF but that paradoxically, VEGF acts as an alveolar epithelial 

mitogen facilitating resolution of oedema following recovery from acute lung injury 

once the alveolar-capillary membrane is restored.  



 77

1.2.9.2 Effects on pulmonary vasculature 
Pulmonary hypertension occurs in ARDS as well as endothelial injury and increased 

microvascular permeability2. Studies looking at the effect of VEGF on the 

endothelial side of the alveolar-capillary membrane are limited. VEGF is known to 

reduce trans-endothelial resistance of bovine lung microvascular endothelial cells for 

less than 60 minutes at concentrations less than 10ng/ml and stimulate endothelial 

cell chemotaxis maximally at 10ng/ml261. Most published studies have looked at the 

vasculature overall and potential development of pulmonary hypertension rather than 

at microvascular level.  

 

VEGF may indeed have protective effects on the pulmonary vasculature262 263. In an 

ovine model of chronic intrauterine pulmonary hypertension, whole lung VEGF 

protein expression is down-regulated, with reduced VEGF expression in the airway 

epithelium, vascular endothelial and smooth muscle cells on 

immunohistochemistry264. Indeed, transgenic mice overexpressing TNF-alpha (lung 

or systemic) display features of pulmonary hypertension associated with reduced 

VEGF and VEGFR2 mRNA expression265.  

 

Other data conflicts. VEGF–overexpressing transgenic mice develop an abnormal 

vasculature and lethal phenotype indicating the need for tight regulation of this 

molecule266. Hypoxia in rats and guinea pigs is associated with elevated VEGF 

mRNA and protein in pulmonary arteries as well as pulmonary hypertension267 268. In 

rats, mean pulmonary artery pressure correlated with the degree of hypoxia, vascular 

remodelling and VEGF levels in the pulmonary arteries268.  
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The above studies are observational and do not imply causation. Interventional 

studies favour a protective role against pulmonary hypertension. Administration of 

VEGFR tyrosine kinase inhibitor in newborn rats leads to pulmonary hypertension 

and abnormal lung structure269. Administration of a specific VEGF165 inhibitor leads 

to more significant features of pulmonary hypertension histologically and 

haemodynamically associated with decreased endothelial nitric oxide synthase 

(eNOS) expression264. Furthermore, adenovirally-delivered VEGF165 protects against 

hypoxic pulmonary hypertension in rats possibly via increased endothelial nitric 

oxide (NO) production270. Treatment of newborn rats with a VEGFR2 inhibitor 

decreases arterial density and vascular growth as well as alveolarization271. 

 

In summary, interventional studies suggest that VEGF may have a role in preventing 

pulmonary hypertension. The apparent conflicting observational data may indicate 

that hypoxia is simply an over-riding regulatory factor to VEGF bioactivity even if 

pulmonary hypertension has developed.  
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1.2.10 VEGF in other lung disease 
Further information as to the role of VEGF in the normal human lung comes from 

studies in other lung disease, which often (although not always) correlate with 

findings from studies in ALI.  

 

As in ALI, reduced intrapulmonary (airway or BAL) VEGF levels seem to be 

associated with alveolar epithelial destruction and emphysema. As discussed 

previously, animal studies have shown VEGF receptor blockade leads to a model of 

non-inflammatory emphysema256 272. In human studies, sputum, BALF and whole 

lung tissue VEGF levels are reduced in emphysema although the question remains 

whether this is a secondary phenomenon related to alveolar epithelial damage or a 

primary event273-276. Similar findings have been noted for whole lung VEGFR2 

levels273. In situ hybridisation suggests that the principal reduction in VEGF and 

VEGFR2 may be in alveolar epithelial cells273. Reduced BALF VEGF levels also 

occur in idiopathic pulmonary fibrosis (IPF), smokers with normal lung function and 

elderly normal subjects, where alveolar epithelial injury occurs252 277.  

 

As in ALI, recovery from other injuries is associated with recovery of 

intrapulmonary VEGF levels. BALF VEGF levels rise following successful recovery 

from lung transplantation253. Similar findings to ALI occur in the vascular bed with 

elevation of VEGF levels during the acute phase. Elevated serum VEGF levels occur 

in cystic fibrosis (CF) and decrease following treatment of CF exacerbations and 

extra thoracic sarcoidosis277-279. 
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In contrast to ALI, intrapulmonary VEGF levels are elevated in inflammatory and 

neoplastic diseases280 281. Elevated pleural fluid VEGF levels occur in empyema, 

parapneumonic and malignant effusions282. Elevated sputum VEGF levels occur in 

chronic bronchitis and asthma with an inverse correlation with FEV1 suggesting an 

association with severity of airway inflammation275 283. In situ hybridisation in 

human asthmatic biopsies shows upregulated VEGF, VEGFR1 and VEGFR2 mRNA 

expression on a variety of cell types284. Elevated BALF VEGF levels have also been 

described in acute eosinophilic pneumonia285. Elevated lung tissue VEGF levels 

correlate with poor differentiation of non-small cell lung cancer histologically286. 
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1.2.11 Preliminary conclusions: injurious or protective? 
In conclusion, the normal human lung contains significant amounts of the angiogenic 

factor VEGF, without significant angiogenesis. Published data conflicts. Many 

studies have suggested that VEGF may contribute to the development of non-

cardiogenic pulmonary oedema. Other data has proposed a more protective role in 

the alveolar epithelium following injury. Differences in the degree of endothelial 

injury may explain the conflicting data. It is speculated that it functions as a 

pneumotrophic factor behaving as an autocrine factor facilitating repair following 

injury but that when it is disrupted, tissue damage occurs with oedema across the 

exposed endothelium and emphysema. 

 

Therefore, VEGF in the lung may be a paradox: protecting and regenerating the 

epithelial surface yet contributing to the generation of pulmonary oedema across the 

underlying endothelium if disruption of the alveolar-capillary membrane occurs as in 

ARDS.  

 

Anti-VEGF therapy is already under investigation for lung cancer, vascular disease, 

pulmonary hypertension and chronic inflammatory diseases287. In the long term, 

therapy modulating the VEGF system may be of more value with better 

understanding of its role in the lung, and the regulatory mechanisms influencing 

VEGF bioactivity including changes in splice variants, transcription factors, pro-

inflammatory cytokines, and soluble receptors.  
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1.2.12 Thesis hypothesis 
VEGF has an important role in recovery and repair in ARDS 

 

1.2.12.1 Thesis aims 
In order to investigate this hypothesis, I have considered the following questions:  

 

1. Whole lung VEGF receptor and isoform expression: 
 What is the anatomical localisation of VEGF receptors in normal and injured human lung?  

 Is there a change in VEGF receptor expression in normal, early and later ARDS lung? 

 What is the VEGF isoform expression in normal and injured human lung? 

 Are there any changes in absolute or proportionate isoform expression? 

 

2. Human ATII cells: 
 Do human ATII cells express significant amounts of VEGF and is it altered in response to 

LPS? 

 Is VEGF a mitogen for human ATII cells? 

 Is human ATII cell expression of VEGF isoforms and its receptors altered by pro-

inflammatory cytokines? 

  

3. VEGF +936 C/T polymorphism: 
 Does this polymorphism influence susceptibility to the development of or severity of ARDS? 

 What is the relationship between the polymorphic genotype and plasma and BAL VEGF 

levels in patients at risk or with ARDS?   
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CHAPTER 2: 
MATERIALS AND METHODS  

 

This chapter will describe the techniques used in this thesis and will directly refer to 

the results chapters 3 to 6. It will also describe the source and nature of the materials 

used as well as details surrounding classification and risk stratification of patients. 

Specific details regarding the generation of solutions, oligonucleotide sequences, 

PCR reaction conditions and ELISA standard curves are situated in the appendices 

for ease of reference.  

 

 

 

The ATII cell extraction technique used in this chapter, (sections 2.3.4 -2.3.7 )has 

been published in another study in Am J Resp Cell Mol Biol. 

Armstrong L, Medford ARL, Uppington KM, Robertson J, Witherden IR, Tetley TD, 

Millar AB.  

Expression of functional toll-like receptor-2 and -4 on alveolar epithelial cells.  

Am J Resp Cell Mol Biol 2004 31(2): 241-5. 
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2.1 Subjects 
 

2.1.1 Ethics and consent  
The North Bristol NHS Trust Local Research Ethics Committee approved all studies 

including the use of anonymised archival lung tissue (see section 2.2.1). Patients 

were fully consented before lung resection. ITU patients had bronchoscopy as part of 

routine clinical practice. For normal and ventilated control patients, informed consent 

was obtained before venepuncture or bronchoscopy. For sedated ventilated patients, 

consent was given by the senior physician in charge of the ITU where it was felt that 

bronchoscopy was in the clinical interests of the patient as a means of detecting 

nosocomial infection, removal of secretions, mucus plugs or foreign bodies or to aid 

in other diagnoses.  

 

Normal subjects of good health were recruited by internal and external advertisement 

in the University of Bristol campus. Exclusion criteria were: significant past medical 

history of systemic disease (especially chronic lung disease, cancer, vascular disease 

or chronic inflammatory disease), non-Caucasian ethnicity, a smoking history, age 

greater than 30 years and not an undergraduate. The rationale for these exclusion 

criteria comes from observational studies that have noted changes in intra-alveolar 

VEGF levels with smoking, lung disease, inflammatory diseases, cancer, and 

increasing age (discussed in sections 1.2.9.1.2 and 1.2.10, Chapter 1). In addition, in 

any genetic study reducing ethnic variation minimises a further source of 

confounding (discussed in section 5.4.2, Chapter 5).   

 

It should be noted the 2004 Human Tissue Act does have implications for future 

research using archival tissue such as that described in sections 2.2.1 but at the time 

of full ethical approval and even after completion of the relevant experiments, the 

Act was not in place. Therefore, the anonymised archival lung tissue experiments 

were conducted with full ethical approval at the time (pre-2004) and did not 

contravene any such Act.  
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2.1.2 Definitions 
 

2.1.2.1 ARDS and ALI 
As described in section 1.1.3 and Table 1.3 in Chapter 1, ARDS and ALI were 

defined using the 1994 American-European Consensus Conference definition as 

summarised in Table 2.111. 

 
Criterion Features 

Time course An acute process persisting for days or weeks 

CXR appearances Bilateral CXR infiltrates consistent with pulmonary oedema  

Clinical specificity No clinical evidence of heart failure or absence of left atrial 

hypertension (verified by PAWP < 18 mmHg if necessary) 

Oxygenation PaO2:FiO2 < 200 mmHg for ARDS, PaO2:FiO2 < 300 mmHg for ALI 

Table 2.1: 1994 North American Consensus Conference definition 

 

2.1.2.2 “At risk” 
As per previous studies in the literature, “at risk” patients (as quoted in Chapter 5) 

were strictly defined98. “At risk” patients were ventilated and had similar degrees of 

physiological disturbance but without acute lung injury, ie) no CXR infiltrates and 

PaO2:FiO2 > 300mmHg. 

 

Patients with suspected sepsis were considered to be “at risk” of ARDS if they 

fulfilled the criteria shown in Table 2.2.  
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Primary criteria 

(≥2 of the following) 
Secondary criteria 

(≥2 of the following) 

Temperature > 39oC or < 36oC Systemic vascular 
resistance  

< 800 dyn·s/cm5 

White cell count  < 4,000/dl or > 

14,000/dl 

Blood pressure unexplained 

hypotension (SBP < 

90 mm Hg for > 60 

minutes) 

Blood culture a positive blood 

culture 

Acid-base status Ongoing metabolic 

acidosis with anion 

gap > 20 mEq/l 

Inotropes inotrope use to 

achieve SBP > 90 mm 

Hg 

Clinical 
suspicion 

strongly suspected 

source of infection 

Platelet count  < 81,000/dl 

Table 2.2: “At risk” definition in patients with sepsis 
 

Patients requiring massive transfusion were considered to be “at risk” of ARDS if 

intubated or on mask CPAP requiring > 15 units in 24 hours. Patients with acute 

pancreatitis were considered to be “at risk” of ARDS if displaying similar 

physiological features to those with sepsis described above except without a 

suspected source of infection or positive blood culture. Patients with inhalational 

injuries were considered to be “at risk” of ARDS if intubated or on mask CPAP. 

 

Some “at risk” patients had elevated lung injury scores but no CXR changes and 

were therefore not able to be included in the “acute lung injury” or ARDS group. 

Several studies have identified differing levels of circulating cytokines according to 

the site of the initiating insult. In this thesis, primary (direct) and secondary (remote) 

lung injury are classified as in Table 2.3. 
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Primary (direct) Secondary (remote) 

Community acquired pneumonia Extrapulmonary sepsis (intra-abdominal, 

vertebral, intracranial, cellulitis, endocarditis, 

unexplained bacteraemia) 

Hospital acquired pneumonia Pancreatitis 

Ventilator-associated pneumonia Massive blood transfusion 

Aspiration pneumonia 

Inhalational injury 

Diabetic ketoacidosis 

Table 2.3: Classification of primary and secondary lung injury 

 

Several patients had both primary and secondary lung injury and were classified as 

mixed lung injury. A significant BAL culture was regarded as ≥105 colony forming 

units per ml.  

 

2.1.3 ITU severity scores 
There has been a proliferation of scoring systems using various parameters to predict 

disease severity and outcome in ARDS7 288-293. These scores are helpful in allowing 

direct comparison of cohorts between different centres and different studies. Many 

attempts have been made to externally validate such prognostic models294 295. A 

number of inflammatory markers correlate with some of the scores (IL-6, IL-8). The 

Multiple organ Dysfunction Score (MODS) and the Sepsis-related Organ Failure 

Assessment (SOFA) score have also been used by some investigators292 293. These 

scores were not used in this thesis although some studies have demonstrated their 

prognostic value292 296. In this thesis, a variety of other scores were used to correlate 

with VEGF +936 genotype, as described next: 
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2.1.3.1 Murray Lung Injury Score 
The Lung Injury score (LIS) was developed by Murray et al. and assesses severity of 

ARDS indicating the degree of pulmonary injury and oxygenation7. It has not been 

shown to predict outcome from ARDS unlike other scores35 297. This is perhaps not 

surprising as the predominant cause of death in ARDS patients is multi-organ failure 

and only 10% die with refractory hypoxaemia28. The scoring system is outlined in 

Table 2.1.  

 
Value CXR: 

consolidated 
quadrants 

Hypoxaemia: 
PaO2:FiO2 ratio 
(mmHg) 

PEEP: 
(when ventilated) 
(cm H20) 

Lung compliance: 
(if available) 
(ml/cm H20) 

0 None >300 <5 >80 

1 1 225-299 6-8 60-79 

2 2 175-224 9-11 40-59 

3 3 100-174 12-14 20-39 

4 All 4 <100 >15 <19 

Table 2.4: Scoring system for Murray Lung Injury Score 

 

The final value is obtained by dividing the aggregate sum by the number of 

components used. In this thesis, pulmonary compliance measurements were not 

available. Murray et al. proposed that ARDS be defined as a LIS greater than 2.5; 

however, as discussed previously (Section 2.1.2) the 1994 American-European 

Consensus Conference definition was used to classify the cohorts for the 

polymorphism study as this is currently the internationally accepted definition in use 

by critical care investigators11. Therefore, the LIS values for some of the ARDS 

cohort are not all above 2.5. This exemplifies the fact that the 1994 definition is 

somewhat less stringent requiring only a threshold oxygenation index and bilateral 

CXR infiltration. 
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2.1.3.2 Acute Physiological and Chronic Health Evaluation (APACHE) 
scores 
The APACHE score was introduced in 1981 assessing 34 different parameters 

making it complex and difficult to use298. Since then it has been refined and 

simplified to the APACHE II score which evaluates 12 physiological variables 

including the Glasgow Coma Scale allocating points for age and comorbidity288. It 

has been used to compare severity of disease between centres as both a research and 

audit tool299. In an effort to improve its predictive ability, it was then refined to the 

APACHE III score by re-evaluating the selection and weighting of the various 

physiological parameters289. The score is the sum of three groups of variables 

(physiology, age and chronic health). Neither the APACHE II or APACHE III scores 

can predict the risk of mortality with total accuracy as yet300. 

 

2.1.3.3 Simplified Acute Physiology Score II (SAPS II) 
The SAPS II score includes 17 variables: 12 physiology variables, 3 underlying 

disease variables (acquired immunodeficiency syndrome, metastatic cancer and 

haematological malignancy), age and type of admission (scheduled surgical, 

unscheduled surgical and medical)290. It can predict mortality in ARDS although 

again has its limitations35 290 295. 

 

2.1.3.4 Severity scores and cytokine studies 
One of the main problems in interpretation of ARDS trials from different centres is 

the heterogeneity of case mix. Aetiology of ARDS has been associated with risk of 

developing the syndrome and outcome as discussed in Chapter 1. Use of robust 

scoring systems is important to allow comparison.  

 

Severity scores also allow association of inflammatory mediators with severity of 

physiological derangement. APACHE II score correlates with IL-6 and IL-10 levels 

in community acquired pneumonia301. Cytokine levels may therefore have additional 

prognostic value in ARDS patients. 
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2.1.4 Endpoints and other measures 
Mortality is the ultimate disease severity score. As discussed in Chapter 1, 60 day 

mortality has been recommended as a useful additional endpoint to the traditional 28 

day mortality as used in other trials23. For the ARDS cohort, the presence of systolic 

hypotension (< 100 mmHg) was noted.  
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2.2 Samples 
 

2.2.1 Archival lung tissue 
Archival anonymised formalin-fixed and paraffin embedded (FFPE) normal and 

ARDS lung tissue was obtained from Frenchay Pathology Department. The average 

time from death to post mortem was 6 hours and it is acknowledged that there would 

have been a finite risk of necrolysis and protein degradation. The cause of death in 

all cases of archival lung tissue was either remote (gut) or local (intrapulmonary) 

sepsis. In all cases, the post mortem had been performed for clinical reasons to 

further understand the cause and mechanism of death rather than by law. Issues 

surrounding selection bias and necrolysis are discussed in sections 3.4.2 (Chapter 3) 

and 6.2.1 (Chapter 6). ARDS lung tissue was designated “early ARDS” where onset 

was within 48 hours and “later ARDS” for onset after day seven.  

 

2.2.2 Resected human lung tissue  
Portions of “normal” human lungs were obtained from Thoracic Surgical Unit Bristol 

Royal Infirmary from cancer patients undergoing resection as a source of tissue for 

human ATII cell isolation and culture (see Sections 2.3.4 and 2.3.5).  
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2.2.3 Normal subjects and ventilated ITU patients 
10ml whole blood samples were obtained in sterile EDTA tubes either by 

venepuncture for normal patients or in situ arterial line for ventilated patients.  

 

Fibreoptic bronchoscopy was performed with an Olympus flexible non-video 

bronchoscope in ventilated “at risk” and ARDS patients in the presence of a senior 

anaesthetist. Suctioning of the endotracheal/tracheostomy tube was performed prior 

to BAL. The patient was prepared by pre-oxygenation with 100% oxygen for at least 

2 minutes, with adequate sedation with/without paralysis at the discretion of the 

senior anaesthetist. Lignocaine spray was not used and continuous monitoring of 

oximetry, ECG and haemodynamics was performed. The bronchoscope was inserted 

into either an endotracheal or tracheostomy tube (minimum size 8) using a swivel 

catheter mount adapter. When passing the bronchoscope down into the lung, care 

was taken to avoid suctioning secretions in the tube or proximal airways to avoid 

contamination. The tip of the bronchoscope was wedged into the right middle lobe 

and 20ml sterile saline was injected, aspirated and discarded. A new trap (a chilled 

siliconised bottle to minimise cell loss due to adherence) was positioned and 3 x 

60ml (180ml) aliquots of 0.9% sterile saline buffered with 8.4% sterile sodium 

bicarbonate were instilled to obtain broncho-alveolar fluid (BALF) – see section 

2.3.1 for BALF processing details. On average, a 35% (65ml) BAL yield was 

obtained, (range 5 – 90%). Finally, another trap was positioned and a further 20ml 

sterile saline injected and aspirated for use as a clinical sample for suspected 

ventilator-associated pneumonia for the intensivist team with clinical responsibility. 

At this point, the bronchoscope was redirected and wedged into the subsegment 

thought to be implicated in possible disease as assessed radiographically. All 

bronchoscopy procedures were performed by the same bronchoscopist (Dr Andrew 

Medford).   
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Ideally, all ventilated ICU patients would have been sampled to be included in the 

analysis. In certain defined situations, this was not possible. No samples were taken 

in the case of refusal of consent. Blood or BALF samples were not taken for analysis 

in cases of serious transmissible disease. Other contraindications to bronchoscopy 

included unstable coronary syndromes, uncontrolled severe coagulopathies or 

uncontrolled bronchospasm. Logistical reasons included unavailability of 

bronchoscopy at the time of admission (weekends) or need for early extubation 

precluding bronchoscopy.  
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2.3 Techniques 
 

2.3.1 Plasma and BALF extraction 
Blood samples were centrifuged at 1300g for 10 minutes at 4oC. Plasma was 

removed and stored at -70oC for later analysis. BALF was strained through a single 

layer of gauze to remove any mucus clumps. The BALF was centrifuged at 500g for 

5 minutes, and the supernatant was stored at -70oC for further analysis. 

 

Concentrated human ARDS BALF (x 100) was obtained by concentrating down 

ARDS BALF using Microcon YM-3 Centrifugal Filter Units (Millipore, 

Hertfordshire, UK). This was performed by Dr Lynne Armstrong 

(acknowledgements) and this fluid was used in the ATII cell culture (section 2.3.5, 

Chapter 2) and proliferation (section 2.3.8, Chapter 2) experiments. Briefly, 500μl 

aliquots of human ARDS BALF were pipetted into the sample reservoir in the vial 

with centrifugation at 14000g at 25oC for 100 minutes. The sample reservoir was 

then placed inverted and spun in invert spin mode at 1000g for 3 minutes. The 

sample reservoir was then removed leaving the vial with concentrate to be stored at -

70oC for further analysis. The degree of concentration was confirmed by measuring 

concentrate urea concentration and initial BALF urea concentration.  

 

2.3.2 DNA extraction 
DNA was extracted using a standard phenol-free high salt method302. After 

centrifugation described above, the buffy layer was carefully transferred to a 15ml 

centrifuge tube adding 8mls of red cell lysis buffer (Appendix) mixing well and left 

for 20 minutes. A further centrifugation at 1300g for 10 minutes at 4oC was 

performed. The red cell lysate was carefully removed as near as possible to the white 

cell pellet, resuspending the pellet in 3 mls of nuclei lysis buffer (Appendix). 0.6mls 

of 5x proteinase K (Sigma) solution [10mg/ml proteinase K in 1% sodium 

docesulphate (SDS)] was added mixing well and incubating at 55oC for 3 hours.  
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4mls of 4.5M ammonium acetate (see Appendix) was added shaking vigorously for 

15 seconds. A further centrifugation was performed at 1300g for 25 minutes at 4oC. 

The supernatant was carefully removed and 8mls of absolute ethanol (Fischer 

Chemicals) added inverting gently to facilitate DNA precipitation. Samples were 

stored for 24 hours at -20oC to optimise precipitation. The precipitated DNA was 

removed carefully from the ethanol and redissolved in 0.3mls of TE buffer 

(Appendix). The samples were then stored for a further 24 hours at 4oC to allow 

proper dissolving. 

 

Optical density was measured at 260nm (DNA content) to determine the DNA 

concentration using a GeneQuant II (Pharmacia Biotec, UK): 

 

DNA concentration (µg/ml): OD260nm x 50  

 

Purity was measured at 260/280nm with a value of greater than 1.5 considered to be 

of good purity (pure DNA has a ratio of 1.8). DNA samples were standardised to 

200ng/ml using RNAse free water.  

 

If DNA samples were not of sufficient purity, they were “cleaned” as follows. 500µl 

of the sample was mixed with an equal volume of phenol:chloroform:isoamyl 

ethanol (25:24:1) (Sigma) and vortexed followed by centrifugation for 20 minutes at 

13000g at 4oC. The aqueous layer was carefully removed and again mixed with an 

equal volume of phenol:chloroform:isoamyl ethanol (25:24:1). The mixture was then 

vortexed and centrifuged for 20 minutes at 13000g at 4oC. The aqueous layer was 

carefully removed and 1ml absolute ethanol and 50µl of 3M sodium acetate pH 6.0 

(Sigma) added. The sample was stored for 24 hours at -20oC to facilitate DNA 

precipitation. The precipitated DNA was carefully removed and washed in 1ml 70% 

ethanol. A final centrifugation for 20 minutes at 13000g at 5oC was performed before 

carefully removing the ethanol and redissolving the pellet in 100µl of RNAse free 

water and measuring the DNA concentration as described above. This always 

resulted in improvement of the 260/280nm ratio to above 1.5 although was inevitably 

associated with a fall in DNA concentration.  
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2.3.3 Immunohistochemistry 
 

2.3.3.1 Single stain immunohistochemistry 
Normal, early and late ARDS lung tissue sections were obtained. Normal lung tissue 

implied that there was no lung involvement in the cause of death. ARDS lung tissue 

was subdivided into “early” (within 48 hours of onset) and “later” (after day 7). 

Paraffinised 4µm sections were dewaxed in serial xylene (BDH Laboratory Supplies, 

Poole, UK), dehydrated in absolute ethanol (BDH Laboratory Supplies, Poole, UK) 

and soaked in running water for 5 minutes. Antigen retrieval was performed via 

pressure cooking for one minute 45 seconds in 0.01M tri-sodium citrate (BDH 

Laboratory Supplies, Poole, UK) buffer (pH 6). 0.1% saponin (Sigma-Aldrich, 

Dorset, UK) in phosphate buffered saline (PBS), pH 7.3 was used to permeabilise the 

membrane and was used as a wash buffer and antibody diluent.  

 

Sections were outlined after further rinsing in water with a hydrophobic pen 

(DAKO). Endogenous peroxidase was blocked with 3% hydrogen peroxide (H2O2) 

(Sigma) in absolute methanol (BDH Laboratory Supplies, Poole, UK) for 10 

minutes. Sections were incubated in 2.5% horse blocking serum (Vectastain 

Universal Quick Kit, Vector Laboratories, Peterborough, UK) to block non-specific 

binding sites. Avidin and biotin binding sites were then blocked with specific 

blocking sera (Vector Laboratories, Peterborough, UK). After washing the optimal 

concentration of primary antibody was applied for 1 hour (see Table 2.2). 

 

Antibody  Species Santa Cruz code  Dilution (concentration) 

VEGF Rabbit sc-152 1:500 (0.4µg/ml) 

VEGFR1 Rabbit sc-316 1:750 (0.27 µg/ml) 

VEGFR2 Rabbit sc-505 1:75 (2.67 µg/ml) 

NRP-1 Rabbit sc-5541 1:350 (0.57 µg/ml) 

AQP3 Goat sc-9885 1:500 (0.4 µg/ml) 

Isotypic IgG Rabbit sc-2027 1:150 (2.67 µg/ml) 

Isotypic IgG Goat sc-2028 1:150 (2.67 µg/ml) 

Table 2.5: Primary antibodies used in immunohistochemistry (all polyclonal) 
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Rabbit polyclonal antibodies to VEGF, VEGFR1, VEGFR2 and NRP-1 (Santa Cruz) 

were used as primary antibodies. The optimal concentration of the primary antibody 

was pre-determined using a variety of concentrations and assessing the most specific 

staining. Isotypic rabbit or goat IgG (Santa Cruz) at the same concentration was used 

as a negative control depending on the species of the primary antibody. In addition, 

specific blocking peptides for VEGF, VEGFR1 and AQP3 (Santa Cruz) were co-

incubated with these primary antibodies before immunohistochemistry to confirm 

specificity of staining (results were identical to using isotypic negative controls).  

 

After washing, a pan-specific biotinylated secondary antibody was added for 10 

minutes followed by streptavidin-peroxidase complex for 5 minutes after a further 

wash and diaminobenzidine tetrahydrochloride (DAB) substrate solution (Vector, 

SK-4100) for 10 minutes after washing yielding a brown colouration in areas of 

staining (Vectastain Universal Quick Kit, Vector Laboratories, Peterborough, UK). 

Sections were washed in distilled water and then counterstained in haematoxylin 

(Sigma) prior to serial dehydration and dewaxing in absolute ethanol and xylene 

before mounting with DPX mountant (BDH Laboratory Supplies, Poole, UK). Slides 

were examined by light microscopy (Zeiss-Axioskop).  
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Image capture and semi-quantitative densitometry were achieved using Histometrix 6 

software version 1.4 (Kinetic Imaging) linked to a JVC TK-C1360B camera with a 

resolution of 470 TV lines. The user selects pixels representing immunopositivity 

and this threshold is memorised by the software. Anything within the selected pixel 

range can be accounted for and is expressed as a percentage of the pixels in the 

selected area. Histometrix therefore gives a composite intensity score per unit area 

derived from the staining intensity value divided by the staining cross-sectional area 

assessed. Densitometry was performed on all slides from the same procedure 

assigning the same random colouration as unit of intensity on each slide. Histometrix 

also allows random (computer-generated) selection of areas on the section. Five 

randomly chosen areas on each section for each patient (n = 4) were assessed giving 

twenty values. Densities on negative control sections were subtracted from positively 

stained section densities to control for background pixel intensities detected by 

Histometrix.  

 

If dual staining was to be performed, slides were rinsed in distilled water following 

the DAB substrate solution stage. Then, a non-specific blocking solution was applied 

(as described earlier) followed, after a wash, by the second primary antibody for 1 

hour (AQP3, see Table 2.1). After washing, a pan-specific biotinylated secondary 

antibody was added for 10 minutes followed by streptavidin-peroxidase complex for 

5 minutes after a further wash (as described previously). Instead of DAB substrate 

Vector VIP substrate solution was applied (Vector, SK-4600) for 2 minutes yielding 

a purple colouration. Dual stained slides were counterstained after rinsing with 

methyl green (Vector, H-3402) according to manufacturer’s instructions. Briefly, this 

involved incubating slides to 60oC in a slide warmer for 5 minutes and rinsing in 

distilled water before dehydration and dewaxing (as described earlier). This 

methodology was adopted following a process of elimination of others as described 

below. 
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2.3.3.2 Unsuccessful dual staining immunohistochemistry 

Initial investigations were undertaken using goat polyclonal SP-C primary antibodies 

(Santa Cruz, sc-7705). This stained many other cells as well as ATII cells, especially 

alveolar macrophages. It became clear that AQP3 antibodies were more specific, 

because of relatively less non-specific alveolar macrophage immunostaining. A goat 

polyclonal AQP5 antibody (Santa Cruz, sc-9890) was considered as a negative 

marker for ATII cells and a positive marker for ATI cells but was not used because 

of non-specific staining on alveolar macrophages despite optimisation of blocking 

techniques. In terms of technique, using Vector Alkaline Phosphatase (Vector, SK-

5100) (more diffuse staining than peroxidase and difficult to visualise red against 

brown DAB) and use of nickel with DAB substrate solution (more localised 

peroxidase technique but grey colouration difficult to visualise against brown DAB) 

were suboptimal. Because of the anatomical proximity of VEGF and AQP-3 

expression in ATII cells, this limits differentiation by dual staining techniques. 

Limited attempts at immunofluorescence were halted by persistent non-specific 

staining of alveolar macrophages despite optimisation of blocking protocols. 



 100

2.3.4 ATII cell extraction from resected human lung 
specimens 
ATII cells were obtained from resected lungs using the established method of 

Witherden and Tetley43 303. Briefly, the lung segment was inflated with DCCM 

(React Scientific, Troon) and then perfused with 0.15M sterile saline massaging the 

tissue to remove alveolar macrophages and monocytes. The tissue was digested in 

0.25% trypsin in Hanks balanced salt solution (HBSS) (Sigma) twice at 37oC for 15 

minutes (10mls per 5cm3 of tissue) and then chopped into 1-2mm3 pieces in the 

presence of newborn calf serum (NCS) (Invitrogen, Paisley). 250 µg/ml DNAse I in 

7 ml HBSS (Sigma) was added to the suspension. After vigorous shaking for 5 

minutes, the suspension was filtered through a large gauge (~500µm) and then a 

40µm mesh (Fahrenheit, Milton Keynes). The filtered suspension was then 

centrifuged at 300g for 10 minutes at 4oC, the cell suspension was resuspended in 15 

ml HBSS/15 ml DCCM containing 100 µg/ml DNAse I. Serial adherence steps were 

performed at 37oC for 2 hours putting the cell suspensions in a T-175 and then a T-

75 flask after centrifugations at 300g for 10 minutes at 4oC, resuspending each time 

in 30mls of complete ATII culture medium. This led to purification due to adherence 

of contaminating alveolar macrophages and fibroblasts. Serial cytospins and cell 

counts were performed using a cytocentrifuge (Shandon cytospin 3) and Neubauer 

haemocytometer (see Appendix). The non-adherent cells were centrifuged at 300g 

for 10 minutes at 4oC. 1 x 106 ATII cells/ml (in complete ATII culture medium) were 

added to collagen-coated (Vitrogen 100, Cohesion Technologies, Palo Alto, USA) 24 

well plates (Corning). The correct number was determined from cell counts (see 

Appendix) and differential staining for alkaline phosphatase (see section 2.3.6). 
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2.3.5 ATII cell culture 
1 x 106 ATII cells were cultured in 1 ml complete ATII culture medium (NB: for the 

proliferation experiments only 100µl of 2 x 104 ATII cells/ml of complete ATII 

culture medium were cultured in 96 well plates until 30% confluence was attained 

before proceeding with mediator incubation and MTS reagents – see section 2.3.8). 

After 24 hours of adherence, any non-adherent cells and medium were removed and 

fresh complete medium added. The cells were then incubated at 37oC and after 16 

hours the medium was removed and the cells washed with HBSS. Fresh complete 

medium was then added and the cells incubated for a further 24 hours to establish 

confluent monolayers with ATII morphology. Cells were phenotyped (see below) 

before culturing and adding pro-inflammatory cytokines for 4 hours at day 3 and 

extracting RNA (see section 2.3.6).   

 

ATII cells were then incubated with a variety of different mediators (made up in 

complete medium) as shown in Table 2.6. Importantly, the same batch of LPS 

(Escherichia Coli 0111:B4, L4391, Sigma-Aldrich) was used in all LPS experiments.  

 
Incubation Concentration and source 

BAL fluid concentrated BAL fluid from ARDS patients (50 µl in 1ml complete medium) 

LPS 10µg/ml LPS (Sigma) 

TNFα 10ng/ml TNFα (Peprotech) 

IL-1β 1ng/ml IL-1β (Peprotech) 

VEGF165 0.1, 1 and 10ng/ml human VEGF165 (R&D) 

Table 2.6: Incubations used for ATII cell culture experiments. 
 



 102

These cytokines were selected as being known to be associated with ARDS and/or 

sepsis and therefore providing information about ATII cell behaviour in an ARDS 

milieu. VEGF was included to assess its possible effect on ATII cells, in a possible 

autocrine role (see Chapter 1). The doses of cytokine are consistent with those used 

in the literature in other primary cell work. The highest dose of VEGF (10ng/ml) 

equates to the intrapulmonary measured levels noted in normal subjects, the middle 

dose (1ng/ml) represents typical intrapulmonary VEGF levels in early ARDS128 247. 

The lowest dose (0.1ng/ml) represents the extreme lower range of intrapulmonary 

levels in early ARDS247.  
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2.3.6 ATII cell phenotyping  
ATII cell cytospins were incubated in ALP stain (see Appendix) for 20 minutes at 

37oC. ATII cells were phenotyped by staining for alkaline phosphatase (ALP), see 

(Figure 2.1 below).  

 
 
Figure 2.1: Alkaline phosphatase staining of ATII cytospin (magnification x 20) 
 

RT-PCR (see Appendix for technical details) was also performed for surfactant 

protein C (SP-C) and aquaporin 3 (AQP3) as positive markers for ATII phenotype 

and AQP5 as a negative marker (ATI phenotype) as shown in Figure 2.2. 

  

 

 

 
 Figure 2.2: RT-PCR for ATII phenotyping 

GAPDH 287 bp 

SP-C 405 bp 

AQP3 373 bp 

AQP5 760 bp 
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Electron microscopy (kindly performed by Dr Chris Neal, see Acknowledgements) 

also confirmed typical lamellar bodies (see Figures 2.3a and 2.3b below). 

 
 

Figure 2.3a: electron microscopy of ATII cell confirming lamellar bodies 

 

 
Figure 2.3b: Higher magnification of ATII cell lamellar bodies at electron microscopy 
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2.3.7 ATII cell RNA isolation 
Total cellular RNA was extracted from ATII cells cultured at 1 x 106/ml using 

RNABee reagent (AMS Biotechnology, Abingdon, UK) according to manufacturer’s 

instructions. Briefly, the supernatants were removed and the ATII cells were 

resuspended in 1ml RNABee reagent, scraping to ensure optimal cell removal. 200µl 

chilled chloroform was added with vigorous shaking for 15 seconds. Following 

centrifugation at 13000rpm for 15 minutes at 4oC, the aqueous phase (containing the 

RNA) was carefully removed to another tube. An equal volume (usually about 

400µl) of absolute isopropanol (Sigma) was added with 1µl of 20µg/µl glycogen 

(Roche) to aid the precipitation of RNA. Samples were stored for a minimum of 24 

hours at -20oC to aid RNA precipitation.  

 

Samples were recovered from -20oC storage and allowed to thaw on ice followed by 

centrifugation at 13000rpm for 15 minutes at 4oC. The resulting supernatant was 

carefully removed so as not to disturb the RNA pellet. Rehydration and washing was 

performed using 1 ml 70% ethanol and vortexing. The supernatant was discarded and 

the pellet allowed to air dry for 5 minutes before being resuspended in 20µl RNAse 

free water. Optical density was measured at 260nm (RNA content) to determine the 

RNA concentration using a GeneQuant II (Pharmacia Biotec, UK): 

 

RNA concentration (µg/ml): OD260nm x 40  

 

Purity was measured at 260/280nm with a value of > 1.7 considered to be of good 

purity (pure RNA has a ratio of 2.0). RNA samples were standardised to 200ng/ml 

using RNAse free water. 
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2.3.8 ATII cell proliferation 
ATII cell proliferation was assessed using the CellTiter96®Aqueous Non-Radioactive 

Cell Proliferation Assay (Promega) which is an accepted technique for indirectly 

assessing cell proliferation in culture304. A novel tetrazolium compound 3-(4,5-

dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-

tetrazolium (MTS) is bioreduced by metabolically active cells in culture to a 

formazan product that can be detected and measured colorimetrically at 490nm (see 

Figure 2.4 below).  

 
 
Figure 2.4: Structures of MTS tetrazolium salt and its formazan product. Source: 
Promega Corporation, Technical Bulletin No 169305.  
 

The absorbance at 490nm is directly proportional to the number of living cells in 

culture as shown in Figure 2.5. 

 



 107

 
Figure 2.5: Effect of cell number on absorbance at 490nm using MTS assay in K562 
cells (human chronic myelogenous leukaemia cells). Mean +/- SD of 4 replicates 
indicating linear response between cell number and absorbance at 490nm. Source: 
Promega Corporation, Technical Bulletin No 169305.  
 

This method has the advantage of speed, safety (no radioactivity or organic solvents) 

and stability. One theoretical problem is that an increase in absorbance although 

usually due to a proliferative response, may be related to an increase in cell 

metabolism without proliferation. The gold standard technique is [3H]-Thymidine 

incorporation but technical data has shown that the MTS method performs very 

similarly in assessing B9 cell proliferation in response to IL-6 as shown in Figure 2.6 

below.  
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Figure 2.6: Proliferation of B9 cells in response to various concentrations of IL-6 
measured using both MTS and [3H]-Thymidine assays. Source: Promega Corporation, 
Technical Bulletin No 169305.  

 

100µl of 2 x 104/ml ATII cells were cultured in complete ATII medium in a collagen 

coated 96 well plates to achieve 30% confluence. They were then incubated in 

culture medium plus/minus a variety of mediators for 48 hours in triplicate as 

detailed in Table 2.7 below. 
Incubation Concentration and source 

Control complete medium only 

sflt 10ng/ml sflt (R&D) 

VEGF165 0.1ng/ml VEGF165 (R&D) 

1ng/ml VEGF165  

10ng/ml VEGF165 

100ng/ml VEGF165 

VEGF165 and sflt 10ng/ml VEGF165 + 10ng/ml sflt 

100ng/ml VEGF165 + 10ng/ml sflt 

BAL fluid concentrated BAL fluid from ARDS patients (50µl in 1ml complete 

medium) 

BAL fluid and sflt concentrated BAL fluid from ARDS patients + 10ng/ml sflt 

Positive control 50ng/ml KGF (Peprotech) 

Table 2.7: Incubations used for ATII cell proliferation experiments 
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Next, 2mls of MTS solution were added to 100µl of phenazine methosulfate (PMS) 

solution. 20µl of this mixture was added to each well containing 100µl of 2 x 104/ml 

(previous experiments had indicated that 2 x 104/ml cells with 4 hours incubation 

with MTS reagents after 48 hours of mediators when at 30% confluence was 

probably the most linear response - see Figures 2.7a-c). 

 
Figure 2.7a: Proliferation of ATII cells using MTS assay with 2 hour incubation and 
increasing cell number (linear regression, r2 = 0.95, p < 0.0001). Dotted line denotes 
goodness of fit. 

Figure 2.7b: As for Figure 2.7a but 3 hour incubation (linear regression, r2 = 0.93, p = 
0.0001). 
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AE2 cell MTS standard curve 4 hours incubation
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Figure 2.7c: As for Figure 2.7a but 4 hour incubation (linear regression, r2 = 0.95, p < 
0.0001). 

 

As well as control wells, three background wells containing no medium were used to 

subtract background intensities. The plate was incubated for 4 hours at 37oC in a 

humidified, 5% CO2 atmosphere before recording the absorbance at 490nm using an 

ELISA microplate reader (Biolinx 2.1 software connected to a MR7000 Dynatec 

ELISA microplate reader (Dynex technologies). Proliferation was calculated as a 

percentage of control proliferation with positive values indicating a net proliferative 

response versus control. Negative values indicate a net reduced response versus 

control. The MTS assay was interpreted as being validated in all experiments where 

the positive control resulted in an increase in proliferation above control. In any 

experiment, where the positive control failed to elicit a higher proliferative response 

than control, the results were deemed invalid and the experiment repeated. 
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2.3.9 Formalin-fixed paraffin-embedded (FFPE) RNA 
extraction 
This method is a modified version of the Krafft technique306. 8 x 6µm sections were 

cut on a microtome (Jung-Biocut 2035, Westshore Technologies, Michigan, USA) 

from formalin-fixed paraffin-embedded (FFPE) blocks of archival normal, early 

(within 48 hours) and late ARDS (after day 7) lung tissue. Sections were dewaxed 

using repeated application of 800µl Histoclear II (National Diagnostics, Atlanta 

Georgia, USA), vortexing and centrifuging at 13,000 rpm for 5 minutes with 400µl 

absolute ethanol (Fisher Chemicals) washes discarding the supernatants. A final 

wash was performed with 800µl absolute ethanol.  

 

Sections were then dried at 55oC for 3 minutes before being digested for 6 hours in 

digest buffer (1mg/ml proteinase K (Sigma), 20mM Tris (Sigma), 20 mM EDTA 

(Sigma) buffer at pH 7.4, 1% SDS (Sigma) and RNAse free water – see Appendix) at 

the same temperature. After ice cooling, RNA was extracted using 500µl of 

phenol:chloroform:isoamyl ethanol (25:24:1) (Sigma) mixture removing the aqueous 

layer (containing the RNA) after vortexing and centrifugation (13,000 rpm at 4oC for 

2 minutes) repeating this extraction once.  

 

RNA was precipitated adding 40µl of 3M sodium acetate (Sigma, see Appendix), 1µl 

of 20µg/µl glycogen (Roche) and 240µl absolute isopropanol (Fisher) mixing gently 

and leaving overnight at -20oC. The RNA was then pelleted by centrifugation at 4oC 

at 13,000 rpm for 10 minutes discarding the supernatant. A final wash and 

centrifugation (12,000 rpm for 5 minutes at 4oC) in 80% ethanol was performed. 

RNA pellets were redissolved in 25µl RNAse free water by immersion at 55oC in a 

water bath for 10 minute. Samples were then stored overnight at -80oC before 

thawing and determining the RNA concentration as described previously (section 

2.3.7).   
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2.3.10 Semi-quantitative RT-PCR 
 

2.3.10.1 DNase treatment  
Prior to RT-PCR, genomic DNA contamination (detected by using a no RT control 

on the original RNA) was removed from the RNA using RNAse-free DNase 

(Promega). Briefly, 8µl RNA, 1µl RQ1 RNase-free DNase and 1µl RQ1 DNase 10x 

reaction buffer (Promega) (see Appendix) was added, vortexed and incubated at 

37oC for 30 minutes before placing on ice. 1µl of RQ1 DNase stop solution 

(Promega) was added to terminate the reaction and then the samples were incubated 

at 65oC for 10 minutes to inactivate the DNase. The treated RNA was checked for 

purity by having an absent no RT control again before being used for RT-PCR.  

 

2.3.10.2 Optimisation of RT-PCR and theoretical problems  
Before commencing RT-PCR the reaction conditions were optimised using 

temperature and magnesium gradients (see Figures 2.8a and b). 

 
 

 

 
 
Figure 2.8a: Example of temperature gradient for VEGF165 isoform RT-PCR.  
Lanes correspond to increasing temperatures as follows: 
1: 55oC 
2: 55.8oC 
3: 57.2oC 
4: 58oC 
5: 58.8oC 
6: 60oC  

1 2 3 4 5 6 
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Figure 2.8b: Example of magnesium gradient for VEGF165 isoform RT-PCR. Lanes 
correspond to increasing concentrations of magnesium chloride as follows (mM): 
1: 0.5mM 
2: 1mM 
3: 1.5mM 
4: 2mM 
5: 2.5mM 
6: 3mM 
7: 3.5mM 

 

Cycle gradients were used to demonstrate that the semiquantitative RT-PCR was 

detecting RNA in log phase and not plateau phase (see Figure 2.9).  

 

Figure 2.9: Example cycle gradient RT-PCR graph for VEGF165 (linear regression r2 = 
0.97, p = 0.11). Dotted line denotes goodness of fit.  
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RNA concentration gradient (see Figures 2.10a and b) was used to demonstrate there 

was a linear response to RNA concentration although this technique is known not to 

be truly quantitative as compared to real-time PCR and subject to the problems of 

end-point PCR307-309.  

 

 
Fig 2.10a: Example gel from RNA concentration gradient for GAPDH. Lanes 
correspond to increasing amounts of RNA as follows: 
1: 50ng 
2: 100ng 
3: 200ng 
4: 400ng 

 

Fig 2.10b: Densitometric analysis of Figure 2.10a (linear regression, r2 = 0.88, p = 0.06). 
Dotted line denotes goodness of fit. 
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Two-step RT-PCR at least offers the advantages of improved consistency, avoiding 

repetitive freeze-thawing of RNA samples and degradation, and increased 

sensitivity309. The preferred method to generate cDNA is using a Moloney Murine 

Leukemia Virus-based RT enzyme although oligo-dT is an established alternative. 

Theoretical problems with the oligo-dT method include variable primer efficiency 

due to sequence-dependent interactions and biased RT products due to RNA 

secondary structure and the length of the polyA tail309. 

 

All relative quantitative methods employ housekeeping genes. It is assumed the 

treatment or stimulation does not alter expression of it and that expression is constant 

although there is growing evidence for significant variation in GAPDH mRNA in 

asthmatic airways for example310 311.  

 

Other problems with RT-PCR include interassay variability (minimised using a 

mastermix here and measured at an average of 11.6%, see Figure 2.11), potential 

genomic DNA contamination (minimised using RNAse-free DNase treatment, see 

section 2.3.10.1) and post-PCR manipulations involving electrophoresis, imaging 

and densitometry (see section 2.3.11). 

 

Figure 2.11: Example of triplicate repeat of ATII RT-PCR for VEGF165, VEGF121 and 
GAPDH. 
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2.3.10.3 cDNA preparation 
cDNA synthesis was performed in a two-step reaction using 1µg of total RNA as a 

template. All reactions were carried out in a Peltier MTC-200 thermocycler. Reverse 

transcription was performed using a 20ul reaction [containing 5µl of 200ng/µl RNA, 

0.4µl oligoDT primer (Promega UK Ltd, Southampton, UK) and 14.6µl of RNAse 

free water] at 65oC for 10 minutes prior to ice quenching. The second stage was 

performed using a 15µl mix [4µl RT 5x buffer (Roche Diagnostic Ltd, Lewes, UK), 

2µl 100mM DTT (Roche Diagnostic Ltd, Lewes, UK), 4µl 20mM dNTPs (Abgene, 

Epsom, UK) and 1µl expandRT (Roche Diagnostic Ltd, Lewes, UK)] added to the 

20µl oligoDT mix at 42oC for 1 hour.  

 

2.3.10.4 cDNA polymerase chain reaction (PCR) 
cDNA PCR was then performed using 1µl of cDNA to amplify for VEGF isoforms, 

VEGFR1, VEGFR2, NRP-1 and GAPDH or B2M depending on the type of RNA. 

Amplifications were carried out in a 20µl reaction volume containing 13µl RNase 

free water, 1.2µl 25mM MgCl2 (final concentration 1.5 mM) (Abgene), 0.4µl 25µM 

dNTPs (Abgene), 1µl of 20µM forward and reverse primers (Sigma), 2µl 10x 

reaction buffer (Abgene) and 0.4µl 5U/µl Taq DNA polymerase (Abgene).  

 

Following denaturation at 94oC for 3 minutes, the reactions were subjected to pre-

determined optimal annealing temperatures for each molecule of interest (see 

Appendix for all temperatures, primer sequences, cycle number and product sizes). 

DNA extension was carried out at 72oC for 30 seconds followed by denaturation at 

94oC for 30 seconds. Cycles were repeated a specific number of times for each 

molecule (see Appendix). There was a final temperature of 72oC for 10 minutes to 

finalise any extension and the reaction was cooled to 4oC before quantification.  

 

All reactions were carried out in a Peltier MTC-200 thermocycler. A no cDNA 

sample was used as a negative control with a positive control cDNA known to 

express the product of interest (sequenced in the case of the VEGF isoform). A no 

RT control was used in addition to identify any genomic DNA contamination 

requiring DNase treatment (see section 2.3.10.1).   
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2.3.11 Electrophoresis, imaging and densitometry 
Individual amplified products were visualised by running the samples on an agarose 

gel (Sigma) specific for each molecule (2% for VEGF isoforms, 1% for VEGFR1, 

VEGFR2, NRP-1 and AQP3 and SP-C, see Appendix) dissolved in 1x Tris-borate 

ethylenediamine-tetraacetic acid (TBE) containing 7.5µl 10mg/ml ethidium 

bromide (Sigma). Gel electrophoresis was performed using a 1x TBE running 

buffer (Appendix) at 80 volts on a BioRad PowerPac-300 for approximately 60 

minutes. Samples were run against a relevant housekeeping gene [glyceraldehyde-

3-phosphate dehydrogenase (GAPDH)] for all experiments except FFPE RT-PCR 

which used beta-2-microglobulin (B2M)] and a 100 base pair (bp) ladder (Sigma) 

visualised by using a transilluminator (BioRad, Hertfordshire, UK) that allowed 

digital image capture. Semi-quantitative analysis and image capture was performed 

using densitometry for the amplified products using BioRad Geldoc software.  

 

For FFPE RT-PCR of VEGF isoforms on whole lung, in addition to absolute 

densitometry values, proportionate mRNA expression was calculated for each 

isoform in normal, early ARDS and later ARDS lung. This was derived from the 

percentage densitometry value of the individual isoform divided by the sum of the 

densitometry values for all three isoforms. 
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2.3.12 Purification of DNA from agarose gels  
(NB: All centrifugations described in the next 3 sections are 13000rpm for 1 minute 

unless otherwise stated). 

 

Following, PCR the amplified product was carefully excised from the agarose gel 

with a clean, sharp scalpel and the DNA purified using the QIAquick gel extraction 

kit according to manufacturer’s instructions (QIAGEN, West Sussex, UK). Briefly, 

the gel slice was weighed and 3 volumes of buffer QG added to 1 volume of gel. 

This was incubated at 50oC for 10 minutes and vortexed until the gel had dissolved 

ensuring the pH was less than 7.5 (indicated by the resulting yellow colouration). 1 

gel volume of absolute isopropanol was added. The mixture was transferred to a 

QIAquick spin column and centrifuged to bind DNA. The flow-through was 

discarded and 500µl of buffer QG added to remove any traces of agarose followed 

by a further centrifugation. A further 750µl of buffer PE was added to wash 

followed by centrifugation. After discarding the flow-through another 

centrifugation was performed. 50µl of buffer EB (10mM Tris-Cl, pH 8.5) was 

added to elute the DNA with a final centrifugation into a clean centrifuge tube. 

Samples were kept at -20oC for subsequent cloning and sequencing.  

 

2.3.13 Cloning of amplified RT-PCR products for sequencing 
In order to sequence and confirm the amplified suspected VEGF189 PCR product, the 

TA cloning kit (Invitrogen, Paisley, UK) was used according to manufacturer’s 

instructions. Briefly, ligation of the excised DNA was performed by mixing 1µl of 

PCR product with 1µl of 10x ligation buffer (see Appendix), 2µl of pCR 2.1 vector 

(see Figure 2.8) (25ng/µl in 10mM Tris-HCl, 1mM EDTA pH 8.0), T4 DNA ligase 

(4.0 Weiss Units/µl) and 5µl of sterile water. The reaction was incubated at 14oC 

overnight using a thermocycler (Peltier, PTC-200) and used for transformation into 

competent TOP10 E.Coli cells.  
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The following day, 2µl of the ligated reaction was carefully transferred into the 

E.Coli cells that had been slowly thawed on ice. Vials were placed on ice for 30 

minutes. Transformation was achieved by heat shocking the competent cells in a 

water bath at 42oC for exactly 30 seconds for the uptake of the vector containing the 

PCR product and immediately placed on ice. The cells were incubated at 37oC for 1 

hour at 225rpm in 250µl of SOC medium (see Appendix). 

 

Transformed cells were spread on Luria-Bertani (LB) (see Appendix) agar plates 

containing 100µg/ml ampicillin (Sigma) and 40mg/ml X-gal (Sigma) and incubated 

for 18 hours at 37oC. Plates were transferred to 4oC for 2-3 hours to allow proper 

colour development. The transformed cells were selected by blue/white colour 

screening due to the presence of the lacz (encodes the first 146 amino acids of β-

galactosidase) and the ampicillin resistance genes in the PCR2.1 vector (see Figure 

2.12). 

 
Figure 2.12: Structure of the linearized pCR 2.1 vector. Multiple cloning site shown 
with PCR product inserted by TA cloning. The arrow indicates the start of 
transcription for the T7 RNA polymerase. EcoR1 sites flank the inserted PCR product 
on each side. Source: Invitrogen technical bulletin312. 
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2.3.14 Plasmid purification of selected colonies 
White colonies were grown overnight at 37oC at 225rpm and plasmids were purified 

using the QIAprep Spin Miniprep Kit protocol according to manufacturer’s 

instructions (QIAGEN). Briefly, bacterial cells were pelleted at 3000rpm for 10 

minutes and resuspended in 250µl buffer P1 (containing RNAse A). 250µl buffer P2 

was added gently inverting the samples to avoid shearing of DNA. 350µl buffer N3 

was added repeating the inversion followed by centrifugation at 13000rpm for 10 

minutes decanting the supernatant to a QIAprep column.  

 

Samples present in the columns were centrifuged and the flow-through discarded. 

500µl buffer PB was added to remove trace nuclease activity followed by 

centrifugation and discard of the flow-through. 750µl buffer PE was added to wash 

the DNA followed by another centrifugation to remove residual wash buffer. The 

DNA was eluted into a clean centrifuge tube after adding 50µl buffer EB. 
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2.3.15 Sequencing of amplified RT-PCR products  
Sequencing was performed with the assistance of Mrs D Heinemann-Culpan (see 

Acknowledgements). The sequence of the presumed human VEGF189 product was 

confirmed as human VEGF189 (see Figure 2.13 below). 

 
NTNCAGCTTGGNCGAGCTCGGATCCTAGTAACGGCCGCCAGTGTGCTGGAATTCGGCT

TTCACCGCCTCGGCTTGTCACATCTGCAAGTACGTTCGTTTAACTCAAGCTGCCTCGCC

TTGCAACGCGAGTCTGTGTTTTTGCAGGAACATTTACACGTCTGCAGATCTTGTACAAA

CAAATGCTTTCTCCGCTCTGAGCAAGGCCCACAGGGATTTTCTTGTCTTGCTCTATCTTT

CTTTGGTCTGCATTCACATTTGTTGTGCTGTAGGAAGCTCATCTCAAGCCGAATTCTGCA

GATATCCATCACACTGGCGGCCGCTCGAGCATGCATCTAGAGGGCCCAATTCGCCCTA

TAGTGAGTCGTATTACAATTCACTGGCCGTCGTTTTACAACGTCGTGACTGGGAAAACC

CTGGCGTTACCCAACTTAATCGCCTTGCAGCACATCCCCCTTTCGCCAGCTGGCGTAAT

AGCGAAGAGGCCCGCACCGATCGCCCTTCCCAACAGTTGCGCAGCCTGAATGGCGAA

TGGACGCGCCCTGTAGCGGCGCATTAAGCGCGGCGGGTGTGGTGGTTACGCGCACGT

GACCGCTACACTTGCCAGCGCCCTACCGCCGCTCCTTTCGCTTTCTCCTTCCTTCTCGC

CACGTTCGCCGGCTTTCCCGTCAACTCTAATCGGGGGCTCCTTTAGGTTCGAATTAGTG

CTTTACGGCACTCGACCCNAAAAATTGATAAGGTGAGGGTCACGTANGGGCATCCCTG

ANAAAGGTTTCCCCTTTACTNGANCNGTCTTANNNGACCTGTCAATGGAAACCTACCAC

CGGCANTTTTGATAAAGA 

 

Figure 2.13: Sequenced product confirmed as human VEGF189. N denotes non-
sequenced nucleotide. 

 

VEGF121, VEGF165, VEGF165b cDNA templates were used as positive control for 

the RT-PCR. These had been expressed in a pcDNA3 expression vector as 

previously described180. Their identity had previously been confirmed by 

sequencing and they were kindly donated by Dr David Bates (see 

Acknowledgements). 
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2.3.16 ELISA 
Plasma and BAL VEGF levels were measured using a commercial sandwich ELISA 

kit according to manufacturer’s instructions (R&D Systems, Abingdon, UK). 

Briefly, a mouse monoclonal antibody specific for VEGF was precoated onto a 

microplate. 100µl (50µl for BAL samples) of assay diluent was added to each well. 

100µl (or 200µl for BAL samples) of standards, controls or samples in duplicate 

were then pipetted into the wells. After washing in an ELISA plate washer (Tecan, 

UK), 200µl of polyclonal-labelled detection antibody specific for VEGF conjugated 

to horseradish peroxidase was added. Following a further wash, a 200µl of substrate 

solution (equal volumes of hydrogen peroxide and tetramethylbenzidine) was added 

to the wells yielding a blue colour leaving for 25 minutes in the dark (20 minutes 

for BAL samples). The reaction was stopped with 50µl of stop solution (1M 

sulphuric acid) giving a yellow colour proportional to the amount of VEGF present. 

The intensity of the colour reaction was read spectrophotometrically in a microplate 

reader at 450nm using Biolinx 2.1 software connected to a MR7000 Dynatec plate 

reader (Dynex technologies). Wavelength correction at 570nm was used to correct 

for optical imperfections on the plate. Background intensities in wells containing no 

sample but ELISA reagents only were subtracted from all values. 

 

This ELISA has a mean intra-assay variability of 5.4% for plasma and 4.7% for BAL 

samples. The mean inter-assay variability is 7.3% for plasma and 6.7% for BAL 

samples. Standard curves were created from concentrations varying from 15.6 to 

1000 pg/ml (see Appendix). The lower limit of detection was 2.9 pg/ml. All samples 

were repeated in duplicate. This assay measures biologically free and active VEGF121 

and VEGF165 that is not bound to sflt. Previous experiments have indicated there is 

little/no free VEGF binding capacity within the plasma or BALF of ARDS patients 

(94% recovery of a known amount of VEGF spiked into plasma and 102% recovery 

into BAL – Thickett DR, thesis).  



 123

2.3.17 Induced Heteroduplex Generator (IHG) Analysis  
I used the technique of IHG analysis to allow simple, rapid and unequivocal 

genotyping313-316. Briefly, the principle of heteroduplex analysis (see Figure 2.14 

below) depends on formation of heteroduplexes with an altered electrophoretic 

mobility relative to homoduplexes. 

 
Figure 2.14: Diagrammatic representation of IHG principle. In the above Figure, a 
single mutation AT/GC is present. The synthesized IHG is an exact copy of allele 2 
except for a 4 base insert next to the site of the mutation. Gene fragments containing 
the polymorphic site are amplified using PCR amplifying the IHG separately. Products 
from the gene fragments and IHG are mixed, heated and cooled allowing heteroduplex 
formation. These differ in molecular conformation with a 5-base mismatch on 
heteroduplexes i and ii due to the presence of the polymorphic base and the 4 base 
insert compared to a 4-base mismatch on heteroduplexes iii and iv due to the 
presence of the 4 base insert but no polymorphic site. This therefore allows 
identification by electrophoresis of allele 1 and 2 in any combination. Adapted from: 
LJ Keen314, MJ Bown et al317. 
 

The mismatch tends to usually retard the migration of DNA during electrophoresis 

and can result in a large structural perturbation of a “bulge” (due to insertion or 

deletion) type. “Bubble” (due to single base mutation) types tend to lead to more 

subtle changes in structure and are hence not usually resolvable by gel 

electrophoresis.  



 124

 

This technique is ideal for rapid analysis of known mutations. An IHG reagent 

(either with a 2-5 base pair insert or deletion next to the site of mutation) is amplified 

separately by PCR as well as the DNA target under study. Products from the target 

and IHG PCRs are mixed, heated and cooled allowing heteroduplexes to form. The 

heteroduplexes formed will either have both “bubble” and “bulge” (mutation and 

insert/deletion) structural perturbations or “bulge” only (no mutation but 

insert/deletion) resolvable by electrophoresis.  

 

An IHG reagent was synthesized as a long oligonucleotide before purification. The 

patient samples and IHG reagents were amplified separately by PCR using standard 

conditions described previously313. Briefly, PCR mixes (50mml) contained 0.5mmM 

each of forward and reverse primers (VEGF forward: 5’-TTTGGGT 

CCGGAGGGCGAGA-3’, VEGF reverse: 5’-TTCCGGGCTCGGTGATTTAGC-3’) 

2.5mM MgCl2, 200mmM of each dNTP, 1 x Taq polymerase buffer (75mM Tris-

HCl pH 8.8, 20 mM (NH4)2SO4, 0.01% V/V Tween), 0.5 unit Taq polymerase 

(Advanced Biotechnologies) and either diluted IHG reagent or 500ng genomic DNA.  

 

Following an initial denaturation at 95oC for 5 minutes, 35 cycles of 95oC for 1 

minute, annealing at 61oC for 1 minute and 72oC for 1 minute was performed, 

followed by a final extension at 72oC for 7 minutes. Equal volumes of amplicons 

from genomic DNA and IHG reagents were mixed, denatured at 95oC for 5 minutes 

and allowed to cool slowly using controlled ramping to 37oC over a 30 minute 

period.  

 

Heteroduplexes were resolved by electrophoresis for 90 minutes at 200 V in 15% 

non-denaturing polyacrylamide “triple-wide” mini-gels (37.5:1 (W/V) acrylamide: 

bisacrylamide; National Diagnostics, containing 1 x TBE electrophoresis buffer) and 

visualized on a Kodak digital imaging system using a 302 nm UV trans-illuminator 

by post-staining in ethidium bromide (5 minutes in 1 x TBE containing 0.5 mg/ml 

ethidium bromide). 
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2.3.18 Statistical analysis  
Unless stated, all statistical calculations and manipulations were performed using 

Graph Pad Prism version 4.0 statistical software (Graph Pad, San Diego, California, 

USA). The Ryan-Joiner test was used to assess the data for normality. Normal data 

with multiple comparisons were analysed by ANOVA with post hoc Bonferroni 

analysis to add stringency. Nonparametric data with multiple comparisons were 

analysed by Kruskal-Wallis with post hoc Dunn’s analysis. Otherwise normal data 

were compared by student t test (paired or unpaired as appropriate). Nonparametric 

data otherwise were analysed with Mann-Whitney. Quanto version 1.1 software 

(http://hydra.usc.edu/gxe/), was used for power calculations in the genetic 

association study (see Chapter 5)318 319. Genotype and allele frequencies were 

compared by the Fishers exact test to control for low cell values or Chi Squared test 

if more than 2 x 2 contingency configuration. Hardy-Weinberg equilibrium was 

assessed using the Chi Squared test. Standard curve data for MTS proliferation assay, 

RT-PCR and ELISA were analysed by linear regression with plots showing goodness 

of fit as a dotted line and r2 values with p values. For all tests, a p value of 0.05 or 

less was considered significant.  

http://hydra.usc.edu/gxe/
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CHAPTER 3: 
VEGF ISOFORMS AND RECEPTORS IN ARDS 

 

This chapter describes experiments to examine the expression of VEGF isoform 

transcripts (VEGF121, VEGF165 and VEGF189) and its specific receptors in the normal 

and injured human lung.  

 

 

Part of this chapter has been published in abstract form in Thorax.  

Medford ARL, Armstrong L, Ibrahim NBN, Uppington KM, Millar AB. 

Pulmonary vascular endothelial growth factor (VEGF) receptor expression in acute 

respiratory distress syndrome (ARDS). 

 Thorax 2002 57(Suppl III): iii69 [P74]. 
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SUMMARY 
 

Background 
VEGF has properties that suggest a potential role in ARDS. It was hypothesized that 

VEGF receptors would be expressed in human lung and that there would be a 

significant change in VEGF isoform and receptor expression in injured and normal 

human lung. 

 

Methods 
Expression of VEGF and specific receptors was assessed by immunohistochemistry 

(for protein) and isoform-specific RT-PCR (for RNA) in human normal and ARDS 

lung.  

 

Results 
VEGF and its receptors were expressed at the protein level on alveolar epithelium, 

macrophages and vascular endothelium and significant changes occurred with the 

presence and timing of lung injury. In particular, in early ARDS, VEGF protein (and 

isoform mRNA) and receptor expression were reduced compared to later ARDS. No 

evidence of isoform switching at mRNA level was detected. 

 

Interpretation 
VEGF targets are expressed on both sides of the alveolar-capillary membrane and 

upregulated in later ARDS consistent with an autocrine role for VEGF in the lung. 

These changes suggest dynamic alterations in VEGF bioactivity in acute lung injury. 

Isoform switching does not occur but this does not preclude a role in recovery from 

lung injury.  
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3.1 INTRODUCTION 
 

As reviewed in Chapter 1 (sections 1.1.1 to 1.1.7), ARDS is the most extreme form 

of acute lung injury, characterised by noncardiogenic pulmonary oedema, 

neutrophilic alveolitis and the development of potentially reversible fibrosis. It 

continues to have an unacceptable morbidity and mortality2.  

 

Vascular endothelial growth factor (VEGF) is a potent angiogenic factor of critical 

importance in vascular development108. As discussed in detail in Chapter 1 (section 

1.2.1), certain biological properties (especially as a mitogen and permogen) of VEGF 

have, led to investigating its possible role in ARDS2. 

 

3.1.1 Background 
Observational data show plasma VEGF levels rise and intrapulmonary levels fall in 

the early stages of lung injury with normalisation of both during recovery244 247. 

These changes in intrapulmonary VEGF have also been noted by other investigators 

in ARDS and high-altitude pulmonary oedema248 249. As reviewed in Chapter 1 

(section 1.2.9), cellular and animal studies conflict on the role of VEGF in the 

alveolar space. Much of the data suggesting a pathological role may indicate 

secondary responses to more critical events and the overexpression models may have 

involved variable damage to the alveolar-capillary membrane exposing the 

underlying endothelium to the higher physiological levels of VEGF in the air space 

leading to excessive oedema. Timepoints in the animal models and clinical studies 

also differed. In addition, these data do not account for the consistent findings of 

abundant VEGF in the normal lung as well as the accumulating data consistent with 

a protective role for VEGF in the lung.  

 

There are other potential explanations for the observed reduction in intrapulmonary 

VEGF levels in early ARDS. One mechanism would be by increased expression of 

VEGF receptors. Another possible mechanism would be a shift towards 

predominance of cell-associated isoforms or a relative deficiency of soluble isoforms 

that would reduce freely diffusible detectable VEGF in biological fluids.  
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VEGF protein is compartmentalised to high levels in normal human epithelial lining 

fluid and human ATII cells express significant amounts of VEGF protein in vitro128 

239. As discussed in Chapter 1, (sections 1.2.3), VEGF exerts its biological effect 

through specific receptors. VEGFR1 may act as a decoy receptor140 141. VEGFR2 is 

thought to be the main signalling receptor144 145. VEGFR3 is confined to lymphatic 

endothelium hence was not assessed in this study148. Isoform-specific binding of 

VEGF165 to neuropilin 1 co-receptors (NRP-1) augments VEGFR2 signalling 

activity149. As discussed in chapter 1 (section 1.2.4), alternative splicing of the VEGF 

transcript from exons 5 to 8 leads to the generation of several different length VEGF 

isoforms with variable diffusibilities depending on their length160 165.  
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3.1.2 Hypothesis 
This thesis is based upon the hypothesis that VEGF has an important role in repair 

and recovery from lung injury. In this chapter, data concerning the following 

questions is presented and discussed: 

• Are VEGF and its specific receptors (VEGFR1, VEGFR2 and NRP-1) 

expressed in human lung commensurate with a role there? 

• Is there a significant change in expression in the injured lung both of 

functional VEGF isoforms and its specific receptors? 

• As ATII cells are key to alveolar repair following injury, is VEGF co-

localised with an ATII cell specific marker?  
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3.2 METHODS 
For detailed methods on specimens, immunohistochemistry, paraffin RNA extraction 

and VEGF isoform RT-PCR see Chapter 2.  

 

3.2.1 Specimens 
Archival normal and ARDS lung tissue sections and paraffin blocks were obtained 

from Frenchay Pathology Department. The North Bristol NHS Trust Local Research 

Ethics Committee approved this study.  

 

Normal, early and late ARDS lung tissue sections were obtained. Normal lung tissue 

implied that there was no lung involvement in the cause of death. ARDS lung tissue 

was subdivided into “early” (within 48 hours of onset) and “late” (after day 7). The 

underlying cause of ARDS was either remote (gut) or direct (intrapulmonary) sepsis 

in all cases.   

 

3.2.2 Immunohistochemistry  
Detailed methods and concentrations of antibodies are described in Chapter 2 

(section 2.3.3). Rabbit polyclonal antibodies to VEGF, VEGFR1, VEGFR2 and 

NRP-1 (Autogen Bioclear, UK Ltd, Wiltshire, UK) were used as primary antibodies. 

The VEGF antibody is known to detect VEGF121, VEGF165 and VEGF189 isoforms 

unlike the mouse monoclonal ELISA VEGF antibody (R&D), which detects only the 

soluble (VEGF121, and VEGF165) isoforms. Dual staining for alveolar epithelium was 

performed using Vector VIP substrate. Rabbit polyclonal antibodies to aquaporin-3 

(AQP-3, an ATII cell marker) were used as the primary antibody with conditions 

otherwise as described above. 
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3.2.3 Paraffin RNA extraction and VEGF isoform RT-PCR 
RNA was extracted from formalin-fixed paraffin-embedded tissue sections using the 

Krafft technique306. Detailed methods are described in Chapter 2 (section 2.3.9). 

VEGF isoform-specific RT-PCR was performed on the RNA as described in Chapter 

2 (section 2.3.10). Samples were visualised by agarose electrophoresis with ethidium 

bromide to allow image capture via a transilluminator and semiquantitative 

densitometry (section 2.3.11).  

 

3.2.4 Statistical analysis 
All statistical manipulations and analyses were performed using Graph Pad Prism 

version 4.0 software. Data in bar charts are plotted as mean and standard error. 

Semiquantitative immunostaining Histometrix pixel staining densities were normally 

distributed as assessed by the Ryan-Joiner test. Because of the necessity for multiple 

comparisons of the data, ANOVA testing was followed by Bonferroni post hoc 

analysis. Absolute and proportionate RT-PCR densities were normally distributed 

and the data were analysed by Student’s t test. A p value of < 0.05 was considered 

significant.  
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3.3 RESULTS 
 

3.3.1 Indirect Immunohistochemistry 
Indirect immunohistochemistry revealed no evidence of non-specific staining using 

isotypic negative control antibodies confirming that any positive staining was 

specific to the antibody of interest (see Figure 3.1).  

 

 
 

Figure 3.1: Isotypic control staining in normal lung (x 40). 
 

VEGF expression in general was most obviously detected on direct analysis of 

stained sections on alveolar epithelium and macrophages but also present on vascular 

endothelium. A typical example section from later ARDS lung is shown in Figure 

3.2. 
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Figure 3.2: VEGF expression in later ARDS lung (x 20). Vascular endothelium, alveolar 
macrophages and epithelium all positive for VEGF staining as labelled by key below.  
Abbreviations:  
AE: alveolar epithelium 
AM: alveolar macrophage 
VE: vascular endothelium 

 

In normal lung sections, VEGF and its receptors (VEGFR1, NRP-1 and VEGFR2) 

were expressed at apparent varying intensity on alveolar epithelium, macrophages 

and vascular endothelium (see Figures 3.3 a-d).  

AE 

AM 

VE 
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Figures 3.3 a-d: VEGF (a) and VEGFR2 (b), NRP-1 (c) and VEGFR1 (d) expression in 
normal lung (x 40) (apparent varying intensity). 
Abbreviations:  
AE: alveolar epithelium 
AM: alveolar macrophage 
VE: vascular endothelium 

AM 
AE 

AE 

AM 

AM 

AM 

AE 

AE 

VE 

VE 

VE 

VE 

3.3a 3.3b 

3.3c 3.3d 
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Densitometry (see Figure 3.4a) confirmed significantly greater staining for VEGFR2 

than VEGFR1 in normal lung as suggested on visual inspection of single stain 

normal lung immunohistochemistry sections (see Figures 3.3a-d).  
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Figure 3.4a: Graph of semiquantitative immunostaining densities for VEGF, VEGFR1 
and NRP-1 in normal lung respectively. All data are normally distributed and plotted 
as mean and standard error. p = 0.008 (ANOVA), p < 0.01 (Bonferroni) for VEGFR1 v 
VEGFR2 (highlighted*), otherwise all other comparisons not significant.  

 
In early ARDS, reduced alveolar expression of especially VEGF and VEGFR2 was 

noted. This may partly be due to the well-described loss of alveolar epithelium in 

early ARDS. However, a significant reduction in staining was confirmed 

densitometrically for all the molecules studied compared to later ARDS (see Figures 

3.5a-d, Figures 3.4a-g).  

 

However, in later ARDS there was marked upregulation of expression and this was 

confirmed densitometrically (see Figures 3.6a-d, Figures 3.4c-g). The increased 

staining noted on densitometry suggesting both an increased intensity of staining and 

an increase in cell number, which reflects the recovery/proliferative phase of “later” 

lung injury/ARDS. 
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semiquantitative densitometry  - early ARDS lung
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Figure 3.4b: Graph of semiquantitative immunostaining densities for VEGF, VEGFR1, 
VEGFR2 and NRP-1 respectively in early ARDS lung. All data are normally distributed 
and plotted as mean and standard error. p = 0.008 (ANOVA), p < 0.001 (Bonferroni) for 
VEGF v VEGFR1 and NRP-1; VEGFR2 v NRP-1 (highlighted*); p < 0.05 (Bonferroni) 
VEGFR1 v VEGFR2 (highlighted†), otherwise all other comparisons not significant.   
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Figure 3.4c: Graph of semiquantitative immunostaining densities for VEGF, VEGFR1, 
VEGFR2 and NRP-1 respectively in later ARDS lung. All data are normally distributed 
and plotted as mean and standard error. p = 0.008 (ANOVA), p < 0.01 (Bonferroni) for 
VEGF v NRP-1, (highlighted*); otherwise all other comparisons not significant.   
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semiquantitative densitometry  - vegf
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Figure 3.4d: Graph of semiquantitative immunostaining densities according to 
disease state for VEGF. All data are normally distributed and plotted as mean and 
standard error. p < 0.0001 (ANOVA), p < 0.001 (Bonferroni) for normal v late, early v 
late, (highlighted*); otherwise other comparisons not significant.  
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Figure 3.4e: Graph of semiquantitative immunostaining densities according to disease 
state for VEGFR1. All data are normally distributed and plotted as mean and standard 
error. p < 0.0001 (ANOVA), p < 0.001 (Bonferroni) for normal v late, early v late, 
(highlighted*); otherwise other comparisons not significant.  
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semiquantitative densitometry  - vegfr2
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Figure 3.4f: Graph of semiquantitative immunostaining densities according to disease 
state for VEGFR2. All data are normally distributed and plotted as mean and standard 
error. p < 0.0001 (ANOVA), p < 0.001 (Bonferroni) for normal v late, early v late, 
(highlighted*); otherwise other comparisons not significant.  
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Figure 3.4g: Graph of semiquantitative immunostaining densities according to 
disease state for NRP-1. All data are normally distributed and plotted as mean and 
standard error. p = 0.0002 (ANOVA), p < 0.001 (Bonferroni) for early v late 
(highlighted*); p < 0.05 (Bonferroni) for normal v early (highlighted†); otherwise other 
comparisons not significant.  
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Figures 3.5 a-d: VEGF (a) and VEGFR2 (b), NRP-1 (c) and VEGFR1 (d) expression in 
early ARDS showing consistently reduced alveolar expression especially for VEGF 
and VEGFR2 (highlighted) (x 40). Endothelial and macrophage expression as before. 
Abbreviations:  
AE: alveolar epithelium  
AM: alveolar macrophage 
VE: vascular endothelium 
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Figures 3.6 a-d: VEGF (a) and VEGFR2 (b), NRP-1 (c) and VEGFR1 (d) expression in 
later ARDS lung (x 40). Increased expression of all molecules noted on alveolar 
epithelium, alveolar macrophages and vascular endothelium. Staining of higher 
intensity and also increase in cell numbers, specifically alveolar macrophages and 
alveolar epithelium.  
Abbreviations:  
AE: alveolar epithelium 
AM: alveolar macrophage 
VE: vascular endothelium 
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3.3.2 Immunohistochemistry semiquantitative densitometry 
As already displayed, Histometrix analysis and semiquantitative densitometry results 

are shown in Figures 3.4a-g. They graphically present one set of data in two ways for 

ease of comparison. Figures 3.4a-c denote the densitometry values for different 

antibodies in each disease state, acknowledging here conclusions assume no 

significant differences in antibody affinity and avidity. Figures 3.4d-g denote 

densitometry values for a specific antibody comparing disease states which are not 

subject to the same theoretical problems. 

 

Densitometry values were significantly different (see Figures 3.4a-c) between VEGF 

and the studied receptors for normal, early and later ARDS suggesting heterogeneous 

expression of the studied molecules at different time points in injury, albeit subject to 

assumptions of similar antibody affinity and avidity as discussed earlier. 

Densitometry suggested VEGFR2 expression was highest in the normal lung, 

significantly higher than VEGFR1 (see Figure 3.4a). In early ARDS, there was a 

noted significant reduction in VEGFR1 and NRP-1 expression (see Figure 3.4b). 

Only the latter persisted in later ARDS lung (see Figure 3.4c).  

 

In terms of disease states, there was a significant shift in expression for all the 

studied molecules (see Figures 3.4d-g). VEGF, VEGFR1 and VEGFR2 were all 

expressed significantly higher in later ARDS than either early ARDS or normal lung. 

NRP-1 uniquely was significantly downregulated in early ARDS with a larger 

significant upregulation in later ARDS but this was not significant compared to 

normal lung.  
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3.3.3 Dual staining 
Dual staining for ATII cells using AQP-3 demonstrated co-localisation of VEGF on 

ATII cells (see Figures 3.7a and b).  

 

  
 
Figure 3.7a: Staining for VEGF (brown, DAB) in normal lung tissue (x 40). ATII cells 
and ATI cells arrowed. Figure 3.7b: Staining for AQP-3 (purple, VIP) in similar part of 
normal lung (x40). ATII cells and ATI cells arrowed. Co-localisation of VEGF staining 
with AQP-3 shown on ATII cells. Note also weak staining for VEGF on ATI cells.        
 
Abbreviations: 
ATI: Type 1 alveolar epithelial cell 
ATII: Type 2 alveolar epithelial cell 
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3.3.4 VEGF isoform-specific RT-PCR semiquantitative 
densitometry 
A typical semiquantitative RT-PCR gel from the FFPE tissue is shown in Figures 

3.8a (the positive controls are shown in more detail in Figure 3.8b). Because of a 

problem with cross-linking for longer products (>275 bp), beta-2-microglobulin 

(B2M) was used as a housekeeping gene (discussed in section 2.3.10).  

 

 

 
 

 
Figure 3.8a: Example RT-PCR gel showing VEGF isoform expression (VEGF121, 
VEGF165 and VEGF189) next to 100 bp ladder. B2M expression shown below. Positive 
control for VEGF189 not shown (see Figure 3.8b for all positive controls).  
Lanes as below:  
1,10: normal lung 
2-3,11-12: later ARDS 
4,13: early ARDS 
5,8,16: negative control  
6: VEGF121 positive control 
7: VEGF165 positive control 
9,17: 100bp ladder 
14,15: B2M positive control 

 

VEGF189 
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VEGF121 

 

 

 

B2M 

1 2 3 4 5 6 7 8 9 

10 11 12 13 14 15 16 17 
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Figure 3.8b: Example RT-PCR gel showing VEGF isoform expression (VEGF121, 
VEGF165 and VEGF189) next to 100 bp ladder with all negative and positive controls.  
Lanes as below: 
1: negative control 
2: VEGF121 positive control 
3: VEGF165 positive control 
4: VEGF189 positive control 
5: 100bp ladder 
 

Semiquantitative densitometry revealed no differences except a significant increase 

in VEGF189 in late versus early ARDS (p = 0.006, t test) (see Figure 3.9). 

VEGF189 
 
VEGF165 
 
VEGF121 

1 2 3 4 5
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Figure 3.9: Semiquantitative densitometry of VEGF189 relative to B2M (n = 5). Data 
expressed as mean and standard error. P values: normal v early, p = 0.12; normal v 
late, p = 0.66; early v late p = 0.006 (highlighted*).  

 

For VEGF165, semiquantitative densitometry revealed no differences except a 

significant increase in VEGF165 in late versus early ARDS (p = 0.005, t test) (see 

Figure 3.10). 
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Figure 3.10: Semiquantitative densitometry of VEGF165 relative to B2M (n = 5). Data 
expressed as mean and standard error. P values: normal v early, p = 0.16; normal v 
late, p = 0.39; early v late p = 0.005 (highlighted*). 

 

For VEGF121, semiquantitative densitometry revealed no statistical differences 

except a significant increase in VEGF121 in late versus early ARDS (p = 0.0005, t 

test) (see Figure 3.11). 
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Figure 3.11: Semiquantitative densitometry of VEGF121 relative to B2M (n = 5). Data 
expressed as mean and standard error. P values: normal v early, p = 0.07; normal v 
late, p = 0.15; early v late p = 0.0005 (highlighted*). 

 

In summary, a consistent reduction in all measured isoforms was noted in early lung 

injury that normalised in later ARDS.  

 

In terms of proportionate VEGF isoform transcriptional expression, there was no 

evidence of isoform switching between disease states (see Figure 3.12, p = 0.93). In 

all stages of disease, VEGF121 was noted to constitute the highest percentage 

proportion but this was not significant (p = 0.54 normal lung, p = 0.78 late ARDS 

lung, p = 0.96 early ARDS lung).  
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Proportionate VEGF isoform expression
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Figure 3.12: Proportionate semiquantitative densitometry for VEGF isoforms in 
normal, early ARDS and late ARDS lung (n = 5). Data expressed as percentages, p = 
0.93, Chi Squared. Note percentage for VEGF121 highest for each stage of disease but 
not significant: normal (p = 0.54), early ARDS (p = 0.96), late ARDS (p = 0.78). 

 

In summary, there was no evidence of isoform switching in any disease state. 
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3.4 DISCUSSION 
 

3.4.1 Interpretation and current literature 
 

3.4.1.1 Summary of results 
These data confirm VEGF receptor expression on additional targets (alveolar 

macrophages and epithelium in addition to endothelium, their usual site of 

expression). The data confirm co-localisation of VEGF with AQP3 on ATII cells and 

a significant upregulation of VEGF (protein and mRNA), VEGFR1 and VEGFR2 

protein expression in later ARDS versus normal lung and early ARDS lung. NRP-1 

expression is downregulated in early ARDS with upregulation of NRP-1 in later 

ARDS lung (not versus normal). In normal lung, VEGFR2 expression was 

significantly higher than VEGFR1. In early ARDS, there was a relative reduction in 

VEGFR1 and NRP-1 expression (compared to VEGF and VEGFR2) with 

significantly reduced NRP-1 expression compared to VEGF in later ARDS. In 

addition, these data show no evidence of VEGF isoform switching at transcriptional 

level. 

 

These data are consistent with a reduced VEGF signal in early ARDS with up-

regulation in later ARDS consistent with a biological role in recovery. In addition, 

the predominance of the main signalling VEGFR2144 145 over the “decoy” receptor 

VEGFR1114 139-141 in normal lung would tend to optimise VEGF bioactivity in the 

normal state. This adds to the suggestion of a function in lung recovery from data in 

previously published observational clinical studies244 247 249. An alternative 

interpretation of these results would be that VEGF has a pathological role in lung 

injury given the upregulation in necropsy tissue; however, I will go on to justify why 

this is unlikely in the light of other data.  
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These data also support a possible autocrine role for VEGF in lung on epithelium in 

addition to its recognised paracrine function on vascular endothelium (discussed in 

further detail in Chapter 4). Autocrine VEGF activity has been demonstrated in 

specialised kidney epithelial cells but as yet not in lung epithelium106. Indeed, 

exogenous VEGF has been shown to act as a growth factor on human foetal 

pulmonary epithelial cells and is capable of restoring the ability of A549 cells to 

express VEGF in an acid exposure cellular model of injury raising the possibility of 

an autocrine alveolar epithelial function103 255. 

 

However, there are other clear discrepancies with the current literature, which is 

limited in this area. Based on the receptor expression data, these data would be 

expected to lead to a reduction in detectable soluble intrapulmonary VEGF (due to 

increased receptor expression) in later ARDS and possibly a slight increase in 

soluble VEGF levels (due to reduced NRP-1 expression). This is not in keeping with 

current observational data in lung injury, ARDS and high-altitude pulmonary oedema 

which show plasma VEGF levels rise and intrapulmonary levels fall in the early 

stages of lung injury with normalisation of both during recovery244 247-249. However, 

these VEGF measurements were by ELISA, detecting only the soluble VEGF121 and 

VEGF165 isoforms. VEGF expression is significantly upregulated in later ARDS and 

the immunohistochemistry antibody recognises VEGF189 isoforms in addition to the 

soluble VEGF121 and VEGF165 isoforms so predicting overall effects on 

intrapulmonary VEGF levels and bioactivity is complex. In addition, changes in 

intrapulmonary VEGF isoform expression in acute lung injury may also be 

contributory but have yet to be clarified.  
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There are other areas of discrepancy. These data are not consistent with the limited 

current uncontrolled and observational literature on VEGF receptor expression in 

acute lung injury. In an observational archival tissue clinical study, Tsokos et al.320 

detected reduced VEGF (VEGF121 and VEGF165) and VEGF receptor expression on 

alveolar epithelium in “later” sepsis-induced ARDS. In this study, a reduction in 

VEGFR2 mRNA (as well as reduced VEGF121 and VEGF165 mRNA) expression in 

patients with sepsis was accompanied by reduced alveolar epithelial VEGF protein 

expression320. However, this was an observational study using autopsy material in 

non-survivors with pre-terminal ARDS due to sepsis but a variety of duration of 

illness ranging from 4 to 28 days of illness being ventilated for 4 days. The reduction 

in VEGF signal may reflect failure of alveolar epithelial repair here. Indeed, other 

observational studies have confirmed that intrapulmonary VEGF levels fail to 

normalize in non-survivors with ARDS247. 
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3.4.1.2 Animal models 
 

3.4.1.2.1 Hypoxia, volutrauma and VEGF intervention models 

Animal models of lung injury have increased understanding of changes in VEGF 

receptor and isoform expression in this context. Available evidence lends support to 

the concept of VEGFR2 expression in response to injury, whether hypoxia (acute or 

chronic) or volutrauma. High tidal volume ventilation strategies in an acid-induced 

murine model of lung injury increase VEGF receptor 2 (VEGFR2) expression with 

reduction in expression related to a lower tidal volume strategy of ventilation243. 

These early measurements (made only 4 hours after onset of ventilation) would 

predict a reduction in soluble VEGF in early ARDS, consistent with the data here 

and previous observational studies247 249. Significantly, there was no increase in 

VEGF noted at the same timepoint in the same study243 249. Chronic hypoxia (7-32 

days ex vivo) also increases VEGFR2 (and VEGFR1 and VEGF) mRNA and protein 

expression in rat lung200. Interestingly, even short term hypoxia (2 hours) increased 

VEGFR2 (and VEGFR1) transcription removing any confounding causes of vascular 

shear stress by perfusing the isolated lungs at constant flow and pressure with a 

priming agent inducing hypoxic pulmonary vasoconstriction. Such an early 

upregulation in binding sites would be consistent with a reduction in soluble 

intrapulmonary VEGF. Indeed, a single intraperitoneal injection of LPS led to a 

significant reduction in measurable lung VEGF mRNA over 2-12 hours consistent 

with this. There are no histological data to confirm whether there was breakage of the 

alveolar-capillary membrane or loss of alveolar tissue to explain the reduction in 

VEGF. The more long-term effects of chronic hypoxia suggest a role for VEGF in 

recovery via increased receptor activity.  
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Further evidence that changes in VEGF receptor expression may be more than 

simply epiphenomena and for the potential importance of VEGF acting through its 

main functional receptor (VEGFR2), comes from a number of intervention studies 

using a specific VEGFR2 inhibitor in rats256 269 271. In these studies, increased air 

spaces, loss of alveolar tissue weight, emphysema and alveolarization were 

consistently noted in newborn, infant and adult rats. There was associated evidence 

of increased alveolar cell apoptosis in all cases. Although two of these studies did not 

confirm functional blockade of VEGFR2 signalling activity, Kasahara et al.256 did 

demonstrate reduction in VEGFR2 phosphorylation due to the inhibitor and all three 

studies demonstrated pruning of the pulmonary arteries and right ventricular 

hypertrophy which are the typical expected findings of VEGF blockade on the 

pulmonary vasculature as a result of its established functions in vascular 

development and possible role in pulmonary hypertension (discussed in Chapter 1).  

 

However, some discrepancies persist in the literature in VEGFR2 blockade studies 

and hypoxia models. Firstly, Kasahara et al.256, in the aforementioned study, noted no 

effect on alveolar proliferation in their VEGFR2 intervention study. However, this 

was only assessed by morphological cell count, with no assessment of thymidine 

uptake or other proliferation assay used. Therefore, more subtle effects on 

proliferation cannot be excluded and changes in rates of apoptosis were noted as 

discussed earlier. Moreover, this does not exclude a protective role in repair or 

recovery in the lung by anti-apoptotic effect or other non-proliferative survival 

mechanisms. Secondly, in eNOS-deficient mice, 1-10 days of mild hypoxia in a 

hypobaric chamber led to a 34-63% reduction in VEGFR2 protein depending on 

whether the deficiency was partial or total321. Conclusions from this study are limited 

by the fact that there was no significant increase in VEGFR receptor expression in 

normal mice following mild hypoxia in contrast to many other studies.  
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3.4.1.2.2 Hyperoxia and prematurity models 

The effects of hyperoxia and prematurity in some studies also appear inconsistent 

and do not always support a protective role for VEGF in the lung137 322-324. Hosford et 

al.322 demonstrated a reduction in VEGFR2 (VEGF and VEGFR1) mRNA and 

protein expression in a hyperoxic newborn rat model of lung injury (from day 4 to 

14) compared to the normal increase (mRNA only) in normoxic animals. However, 

no histological analysis was performed in this study and low levels of VEGF and 

receptor expression did correlate with HIF levels indicating suppression of 

transcription by hyperoxia. No assessment (histological or otherwise) was made of 

recovery from injury at a later timepoint. Furthermore, the changes were not all 

uniform as levels of VEGF protein were actually increased at day 9 following 

hyperoxic lung injury but fell subsequently.  

 

Klekamp et al.137 noted a significant reduction in VEGF, VEGFR1 and VEGFR2 

mRNA at 48 hours in a hyperoxic adult rat model of lung injury. There was no 

change in relative isoform expression (VEGF188, VEGF164) but evidence of 

substantial loss of VEGF protein at 48 hours from both small and large airway 

epithelium with increased apoptosis. Again, no assessment was made of recovery 

from injury here and these decreases in VEGF and receptor expression would be in 

keeping with previous observational studies in the early stage of lung injury247-249.  

 

In a newborn and adult rabbit hyperoxic model of lung injury, Watkins et al.323 

detected a relative reduction in VEGF189 and parallel increase in VEGF121 and 

VEGF165 mRNA expression. This suggests a role for isoform splicing in lung injury 

(see section 3.4.1.3, next section). The initial reduction in VEGF levels (at 48 hours) 

is consistent with observational studies in early acute lung injury and there was later 

normalization of levels and isoform proportions (after 5 days) during recovery 

although no histological analysis was performed in this study247-249.  
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In a premature foetal baboon model of chronic lung disease, Maniscalco et al.324 

noted a reduction in VEGFR1 (and VEGF mRNA and protein) at 125 days (67% of 

term). Although these results are in contrast to the expected increase in lung VEGF 

during development, they do not preclude a protective role. Importantly, no reduction 

in the main signalling receptor (VEGFR2) was noted. In addition, supportive oxygen 

therapy was given continuously after premature delivery may have impaired VEGF 

transcription although no measurements of HIF were made. Moreover, the lung 

injury was heterogeneous with no significant decrease in VEGF histologically at 6 

days but decreasing at 14 days, with initial apparent localization of VEGF protein to 

ATII cells and subsequently thinned alveolar septae histologically consistent with 

alveolar epithelial loss. Therefore, potentially the failure of VEGF levels to increase 

may reflect the severity of lung injury in this model and failure of repair of the 

epithelium.  

 

3.4.1.3 VEGF isoform switching 
 

There is a relative lack of studies in acute lung injury examining isoform switching at 

the current time. In addition to the data confirming an alteration in absolute isoform 

expression in early ARDS, the data on proportionate isoform expression confirmed 

no evidence of isoform switching. 

 

Available data in the literature on isoform switching in human clinical studies are 

currently sparse and contradictory. On preliminary analysis, these data contrast with 

an observational study using human post mortem lung tissue from sepsis-induced 

ARDS patients325. In this study, an apparent switch to reduced soluble isoforms 

during injury was detected at transcriptional level. However, many methodological 

problems exist in this study preventing further conclusions. The timepoints varied 

from 4 to 28 days making comparison difficult. Moreover, no proportionate analysis 

of isoform expression was made, no increase in cell-associated isoform (VEGF189) 

was detected at all in either the control or disease lungs, no assessment of isoform 

expression was performed at systematic later timepoints in recovery and all the 

samples were from non-survivors.  
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Most existing data comes from animal models and the findings appear contradictory. 

Some data are in agreement with this thesis. In a LPS-induced mouse lung injury 

model, no change in proportionate VEGF isoform expression was noted following 

LPS injury from 24 to 72 hours326. However, all absolute values of isoform 

(VEGF120,164,188) expression were reduced in keeping with the absolute isoform data 

in this thesis. Similar changes were noted with age. Klekamp et al.137 also noted no 

change in relative isoform expression (VEGF188, VEGF164) in a hyperoxic adult rat 

model of lung injury with evidence of substantial loss of VEGF protein at 48 hours 

from both small and large airway epithelium corroborating observational studies247-

249.  

 

Other studies contrast with the data in this thesis. In a hyperoxic lung injury mouse 

model, elevated VEGF120 and VEGF188 isoform expression was noted in BAL fluid 

after 72 hours hyperoxic injury with no change in VEGF164 expression258. The 

apparent switch to both cell-associated and soluble isoform expression in early injury 

here is not consistent with the observed data in this thesis but may be explained by 

species differences (mouse versus human) and perhaps by the mode of injury 

(hyperoxia versus sepsis). In a hyperoxic lung injury rabbit model, a relative 

reduction in cell-associated isoforms was noted and an increase in soluble isoforms 

both of which normalized in recovery323. However, in rabbit VEGF188 is the 

predominant isoform in the lung so these results indicated a relative switch away 

from the predominant isoform in early injury with later normalization. In humans, 

VEGF165 is the predominant isoform and species differences again may be relevant. 

In addition, hyperoxia was applied for 9 days (longer than the other studies) followed 

by 60% oxygen, which may have impeded transcription via HIF.  

 

In summary, taking into consideration the significant methodological and species 

differences in published lung injury animal models, this may account for the 

observed differences in isoform switching compared to the data in this thesis.  
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In addition to changes in isoform switching and receptor expression, there are other 

possible mechanisms to explain the apparent reduction in intrapulmonary VEGF 

levels in the early stages of lung injury. These include damage to the alveolar-

capillary membrane and consequent leakage of intrapulmonary VEGF into the 

vascular bed or an epiphenomenon reflecting damage to the alveolar epithelium as 

described in normal smokers and patients with idiopathic pulmonary fibrosis (IPF) 
252. However, on the available evidence from current intervention studies the latter 

would seem unlikely. Further intervention and ultrastructural studies are required to 

answer these questions. 
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3.4.2 Limitations 
There are several limitations to this work. Only low numbers of samples were 

obtainable for sectioning and immunohistochemistry, which increases the possibility 

of error. It also precluded analysing the ratio of predominantly “cell-associated” 

(VEGF189) to predominantly “soluble” isoforms (VEGF121 and VEGF165) that would 

have been possible with higher n numbers. The low n numbers are primarily due to 

the difficulty of finding equal numbers of samples at different timepoints in acute 

lung injury. Typically, the earlier stages are harder to access due to the reduced 

tendency for surgical lung biopsy. Ideally, open lung biopsy from living ARDS 

patients would have been preferred but this is now seldom performed due to the 

rapidity of onset of ARDS, lack of thoracic surgeons on site and difficulty in 

achieving consent for research purposes on living tissues. 

 

Necropsy ARDS lung tissue introduces selection bias for a more severe cohort of 

ARDS and improper control group (although there was no obvious lung disease in 

the control group). Moreover, this necropsy tissue introduced further selection bias in 

containing only ARDS related to either direct (lung) or remote (gut) sepsis and not 

other aetiologies such as trauma. Further selection bias was introduced by those 

undergoing a post mortem for clinical reasons who are likely to have been a more 

severe subgroup and also only those where consent to post mortem was possible. 

Indeed, intrapulmonary VEGF levels are known to be lower in non-survivors with 

ARDS247.  Furthermore, the use of non-survivor (necropsy) tissue with the 

demonstration of upregulation of VEGF and its receptors introduces an alternative 

interpretation of the results in support of a pathological role in lung injury (although I 

have presented and interpreted the evidence in the light of other data, especially from 

intervention studies to conclude that my original interpretation of a role in recovery 

is indeed more plausible). The use of living ARDS tissue would have potentially 

avoided this complication.  
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Semiquantitative immunohistochemistry is primarily a technique for localisation and 

Histometrix is subject to variability of set criteria for assigned staining. However, 

Histometrix provides a more objective method of assessing differences in 

immunostaining than random arbitrary counting by blinded observers. Histometrix 

cannot assess individual tissues eg) alveolar epithelium or vascular endothelium. It 

also reflects a composite of pixel staining and will not take account of changes in cell 

number. Hence, a staining per cell number value cannot be derived. 

  

Significant differences in antibody affinity and avidity limit the strength of any 

comparison of staining between different antibodies in the same tissue despite the 

accuracy of Histometrix methodology. It is acknowledged that the conclusions in this 

chapter from comparisons between different antibody staining have assumed no 

significant differences in affinity and avidity. Such theoretical concerns should be 

addressed in future studies.  

 

Ideally, it would have been advantageous to assess individual VEGF isoform protein 

expression anatomically and functionally but individual isoform-specific antibodies 

are not currently available for immunohistochemistry although the VEGF antibody 

used recognises VEGF121, VEGF165 and VEGF189 isoforms unlike the antibody used 

in ELISA (R&D) which merely recognises the soluble isoforms (VEGF121 and 

VEGF165). Hence, comparisons between VEGF ELISA and immunohistochemical 

data are limited in this regard.  

 

Semiquantitative RT-PCR is limited by inferior accuracy compared to real-time PCR 

and other limitations discussed in Chapter 2. Briefly, there are problems relating to 

variability in the expression of housekeeping genes, genomic DNA contamination, 

variable primer efficiency using oligoDT method, and variability due to postPCR 

manipulations of electrophoresis, imaging and densitometry. There are also technical 

problems with paraffin RNA extraction with cross-linking for longer product sizes.  
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3.4.3 Conclusion 
In conclusion, the data confirm a significant upregulation of VEGF transcription and 

translation in later ARDS (versus early ARDS and normal lung). This is 

accompanied by a similar significant increase in VEGFR1 and VEGFR2 protein 

expression at the same time point compared to the same disease states. There is, 

however, no evidence of isoform switching. NRP-1 uniquely is downregulated in 

early ARDS with a significant upregulation in later ARDS (versus early ARDS). In 

normal lung and both time points of ARDS lung, VEGF and its receptor expression 

is heterogeneous and on both sides of the alveolar-capillary membrane. The data 

suggest significantly higher VEGFR2 versus VEGFR1 expression in normal lung. In 

early ARDS, there is a relative underexpression of VEGFR1 and NRP-1 compared to 

VEGF and VEGFR2. NRP-1 remains significantly underexpressed compared to 

VEGF in later ARDS. These changes do not account for previous published 

observations on intrapulmonary VEGF levels at this stage. Further studies are 

required to examine other possible mechanisms for this reduction and account for the 

observed variability in receptor expression including structural changes to the 

alveolar-capillary membrane, the alveolar epithelium and VEGF isoform switching. 

There are discrepancies with previously published studies largely due to significant 

methodological or species differences. In support of this, these data corroborate a 

significant number of other observational studies suggesting a biological role in 

repair following lung injury. An alternative interpretation of the results from 

necropsy tissue is a pathological role for VEGF but this is not consistent with 

previous data especially from intervention studies, whereas a protective role is 

consistent both with previous data and the current results. In addition, VEGF may 

serve an autocrine function in the lung on alveolar epithelium that is postulated to be 

its key source here. This will be further discussed in Chapter 4. 
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CHAPTER 4: 
VEGF AND HUMAN ATII CELLS: 
RESPONSE AND EXPRESSION 

 

This chapter will describe the isolation, culture and phenotypic characterisation of 

ATII cells, their response to VEGF in terms of proliferation and their expression of 

VEGF isoforms and receptors at the transcriptional level.  

 

 

 

Parts of this chapter have been published in abstract form in Eur Resp J, Thorax and 

Am J Resp Crit Care Med. 
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SUMMARY 
 

Background 
Alveolar epithelial injury is one of the key events in the development of ARDS. The 

ATII cell proliferates and differentiates to regenerate the alveolar epithelium after 

injury. I hypothesised that human ATII cells would be a source of and target for 

VEGF. I also hypothesised that VEGF was an ATII cell mitogen. 

 

Methods  
Primary human ATII cells were obtained, phenotyped and cultured from normal 

resected lung. VEGF expression was assessed by ELISA (for protein) and isoform-

specific RT-PCR (for RNA). VEGF receptor expression was assessed by RT-PCR 

(for RNA). Dose-dependent and specific effects of VEGF ATII cell proliferation 

were assessed using an MTS assay. 

 

Results 
ATII cells expressed all studied VEGF isoforms and receptors at transcriptional level 

including significant amounts of VEGF protein, which was time-dependent but not 

affected by LPS. LPS and VEGF (10ng/ml) increased mRNA expression of 

VEGFR1 and all isoforms except VEGF165 (not increased by LPS). No other 

consistent effects on receptor transcription were noted. VEGF165 increased ATII 

proliferation non-significantly at 10ng/ml with no evidence of dose-dependence. A 

specific VEGF inhibitor (sflt) significantly reduced the effects of 10ng/ml VEGF165. 
 

Interpretation 
ATII cells are a significant source of the VEGF and its targets consistent with an 

autocrine action for VEGF here. The pro-inflammatory milieu, especially LPS, 

increase VEGF isoform and receptor expression here and the effects of VEGF itself 

are concentration-dependent. LPS has no additional effect on VEGF protein 

expression suggesting post-transcriptional regulation. The data suggest ATII cell 

survival may be VEGF-dependent but do not confirm a mitogenic role. 
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4.1 INTRODUCTION  
 

As already reviewed in Chapter 1, ARDS is the most extreme form of acute lung 

injury, characterised by non-cardiogenic pulmonary oedema, neutrophilic alveolitis 

and the development of potentially reversible fibrosis with a considerable morbidity 

and mortality2. In Chapter 1, I have discussed the importance of alveolar epithelial 

injury in the development of ARDS, although injury on both sides of the alveolar-

capillary membrane is necessary.  

 

In Chapter 1, I have extensively discussed the function of VEGF as both a mitogen 

and permogen, on vascular endothelium. VEGF is compartmentalised to high 

concentration in the normal human lung. As reviewed in Chapter 1, other cellular, 

animal and clinical studies indicate that the likely source is alveolar epithelium on 

the basis of immunolocalisation and expression. The reasons for this 

compartmentalisation remain poorly understood. Other investigators have found high 

intrapulmonary VEGF levels in normal or “at risk” subjects before the development 

of ARDS or compared to the early stages post lung transplant247 253.  
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Such findings have resulted in investigation into its potential role in ARDS. As 

reviewed in Chapter 1, data assessing the role of VEGF in the alveolar space 

apparently conflicts. Much of the data suggesting a role in injury may indicate 

epiphenomena and the overexpression models may have involved unrecognised 

damage to the alveolar-capillary membrane exposing the underlying endothelium to 

the higher physiological levels of VEGF in the air space leading to excessive 

oedema. Different timepoints in the animal models and clinical studies were used. 

The data as a whole do not account for the consistent findings of abundant VEGF in 

the normal lung as well as the accumulating data consistent with a protective role for 

VEGF in the lung. In addition, there are potential biologically plausible explanations 

for the apparent paradoxical data. In addition to the physical factors of failure to 

prevent fluid efflux by loss of physical integrity, alveolar-capillary membrane 

damage may potentially contribute to pulmonary oedema by other mechanisms such 

as exposure of the underlying endothelium to higher (usually intrapulmonary) 

concentrations of VEGF. In the presence of an intact membrane, VEGF may promote 

alveolar epithelial proliferation and therefore lung recovery with removal of oedema 

and restoration of normal alveolar epithelial function. This chapter will concentrate 

on the evidence for the latter and also endeavour to add to current scientific 

knowledge on this aspect of VEGF bioactivity.  

 

As the data in Chapter 3 suggest, significant changes in splice variant and receptor 

expression occur in the time course of lung injury which may partially account for 

the observed fall in intrapulmonary VEGF levels in early ARDS and normalisation in 

recovery seen in clinical studies of lung injury247-249. Moreover, the VEGF co-

localisation with ATII cells data further support the hypothesis that ATII cells are the 

main intrapulmonary source of VEGF.  
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However, a number of questions remain. It is not known how the human alveolar 

epithelium responds to the pro-inflammatory milieu that occurs in ARDS. The 

effects of local VEGF on human alveolar epithelium are unknown, specifically 

whether VEGF is mitogenic here stimulating proliferation. The role of the primary 

cultured human ATII cell (the closest cellular surrogate for human alveolar 

epithelium) in lung injury is poorly understood as the current literature relates to 

A549 cell lines only (an adenocarcinoma line originally isolated in 1972 from a 

single parent cell)327. These cells are not functionally equivalent to human ATII cells, 

differing in many respects including IL-8 production327. The paucity of studies on 

human ATII cells probably reflects the technical difficulties in achieving sufficient 

pure cells from resected lung tissue, generating such monolayers and obtaining 

enough normal resected lungs given that diseased lung is more often resected40 43.  
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4.1.1 VEGF as an alveolar epithelial mitogen 
In the current literature, some studies support the hypothesis that VEGF promotes 

either recovery and/or proliferation of the alveolar epithelium in addition to its well-

described actions on vascular endothelium (see Chapter 1).  

 

Indirect evidence suggesting a possible role in stimulating alveolar epithelial 

proliferation comes from Kunig et al who administered intramuscular VEGF for 7 

days to postnatal rats in a hyperoxic model of lung injury328. VEGF prevented loss of 

alveolar tissue and septal thinning with increased radial alveolar counts and reduced 

mean linear intercepts, both histological indicators of increase alveolar development. 

However, this study did not examine specifically direct effects on or cell counts of 

alveolar epithelium and as there were also clear improvements in vascular 

development, then it is not entirely clear that these changes in alveolar tissues were 

primary direct effects.  

 

In human foetal explants, four days exposure to 50-100ng/ml exogenous VEGF165 

significantly stimulated pulmonary epithelial cell proliferation (as assessed by BrdU 

incorporation) and increased both ductal lumen volume density and epithelial density 

(by morphometric analysis)103.  

 

In a preterm mouse model of respiratory distress syndrome, both intratracheal and 

intra-amniotic delivery of VEGF facilitated alveolar epithelial maturation and 

increased surfactant protein expression (within six hours of injection). This was in 

addition to increasing protection from respiratory failure and death, although there 

was no reported evidence of a direct assessment or effect on cell number254.  

 

Indeed, acid injured human alveolar epithelial (albeit A549, not ATII) cells 

proliferated in response to 24 hours of incubation in increasing exogenous (1 – 

250ng/ml) concentrations of VEGF in a concentration-dependent fashion (as 

assessed by haemocytometry)255. In this study, no assessment of thymidine uptake 

was performed and the assumption is that proliferation was increased rather than cell 

survival being prolonged.  
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However, no evidence of proliferation was observed in rat isolated ATII cells in 

response to 48 hours of 10–100ng/ml VEGF165 as assessed by both [3H]thymidine 

and BrdU incorporation although an increase in SP-B transcription was noted with 

50ng/ml and there was no comment on changes in total cell count259.  

 

Further illustration of the importance of VEGF on the epithelium (rather than the 

vascular endothelium) comes from work in the kidney. 1nM VEGF165 increased 

epithelial cell proliferation in the kidney (as assessed by [3H]thymidine 

incorporation, haemocytometry and cytotoxicity (LDH assay)) demonstrating an 

increase in thymidine uptake106. Importantly, this was demonstrated as being due to 

an increase in cell survival rather than increase in true proliferation as the total cell 

count was increased but there was no change in thymidine uptake per cell106. An 

autocrine function for VEGF on kidney epithelium has been postulated and such a 

function may also occur in alveolar epithelium as VEGF receptors have been 

localised here too137 329.  

 

In summary, there is a relative lack of data investigating a potential role as a mitogen 

on alveolar epithelium. None of the existing data has used the gold standard of 

human ATII cells demonstrating the difficulties of this technique and obtaining 

sufficient cells. None of the studies in lungs assessed thymidine uptake and cell 

number as well as cytotoxicity to confirm specificity of the changes seen in cell 

number either to changes in proliferation or cell death unlike studies in other 

organs106. Existing data has also generally come from either developing human lung 

or rodent or murine species that limits the strength of any conclusions. 
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In addition, A549 cells have significant functional differences to ATII cells and this 

makes translating results more difficult. To date, two of the six studies alluded to did 

not report a positive effect on ATII cell proliferation or alveolarisation254 259. Raoul et 

al. used relatively less exposure to VEGF (48 hours) and assessed on plastic rather 

than paraffin embedded tissue259. Both of these studies did demonstrate increases in 

surfactant protein transcription and were conducted in animal (rodent and murine) 

cells. Both did not assess total cell counts formally and Compernolle et al. did report 

a positive effect on ATII cell maturation and did not specifically aim to assess 

proliferation. Moreover, Compernolle et al. used developing rather than mature cells 

and the much earlier time of analysis at 4-6 hours would not allow time for 

proliferation254. Therefore, some discrepancies may be due to species differences, 

developmental time factors, different time points and other aspects of methodology.  
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4.1.2 Hypothesis 
This thesis is based upon the hypothesis that VEGF has an important role in repair 

and recovery from lung injury. In Chapter 3, I demonstrated expression of VEGF and 

its receptors on both sides of the alveolar-capillary membrane, co-localisation of 

VEGF in ATII cells but that there was no evidence of VEGF isoform switching. In 

order to further investigate this hypothesis I explored the following questions: 

• Do human ATII cells express significant amounts of VEGF and its receptors? 

• How is human ATII cell VEGF expression modified in response to LPS? 

• Does VEGF stimulate human ATII cell proliferation? 

• Is human ATII cell VEGF isoform and receptor expression modified by pro-

inflammatory cytokines and if so in what way? 
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4.2 METHODS  
 

4.2.1 Rationale 
In order to explore this hypothesis, primary human cultured ATII cells were obtained 

as the closest approximation to the human in vivo alveolar epithelium unlike existing 

studies. The methodology is discussed in detail in Chapter 2 and later on in this 

chapter but, due to the complex number and order of experiments in this chapter, the 

essential principles are discussed now for clarity. Firstly, because of the 

acknowledged and alluded technical difficulties, a previous internationally 

recognised and accepted protocol (the Witherden and Tetley method) was adopted. 

Secondly, because of the theoretical problems of low cell number, normal parts of 

resected lung for cancer were used to achieve enough volume of tissue. An 

independent pathologist not involved in this work confirmed the presence of normal 

tissue to ensure lack of contamination. 

  

Having cultured primary human ATII cells, in vitro expression of VEGF was 

examined and response to pro-inflammatory cytokines and ARDS BAL fluid (used 

as an inflammatory in vivo surrogate) that would be anticipated in ARDS. 

Additionally, the response to increasing concentrations of VEGF was assessed to 

simulate the changes in local air space VEGF concentration in the early and later 

stages of ARDS. The functional ATII cell response was characterised by assessing 

VEGF isoform expression using isoform-specific RT-PCR (in the absence of a 

current methodology to assess isoform protein expression) and also VEGF receptor 

expression. 

 

To investigate the possibility of an autocrine function of VEGF and a mitogenic role, 

proliferation of ATII cells was assessed to increasing concentrations of VEGF 

simulating again the changes in local air space VEGF concentration in the early and 

later stages of ARDS. For detailed methods on human ATII cell isolation and 

techniques, VEGF isoform-specific RT-PCR, MTS assay and VEGF ELISA see 

chapter 2. 
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4.2.2 Specimens 
Macroscopically normal human lung tissue sections (approximately 15cm x 5cm x 

5cm) were obtained from normal parts of resected lung in eleven patients undergoing 

lobectomy for lung malignancy. The median age was 67 years. Ten donors were ex-

smokers and one donor a never-smoker. The North Bristol NHS and United Bristol 

Healthcare Trust Local Research Ethics Committees approved this study.  

 

4.2.3 Isolation and purification of human ATII cells 
Human ATII cells were extracted based on the method of Witherden and Tetley43, 

also previously used in this laboratory (see Appendix for Armstrong L et al.330 

illustrating this methodology). Briefly, the tissue sections were washed with normal 

saline, digested with trypsin and micro-dissected in newborn calf serum and DNAse 

to remove alveolar macrophages. Following vortexing and filtering with further 

DNAse treatment, serial adherences were performed to remove residual 

macrophages. The nonadherent ATII cells were removed and adhered to collagen-

coated dishes and either allowed to establish fully confluent or 30% confluent 

monolayers with ATII morphology (for the MTS assay, see Chapter 2 and below).  

 

It should be noted that cell culturing was performed in the presence of serum (10% 

newborn calf serum as used in the complete culture medium, see Appendix). Serum 

starving was considered as an option to allow all the cells to enter G0 phase of the 

cell cycle theoretically adding more validity to the proliferation assay experiments. 

However, serum starving can be unpredictable and potentially harmful to the cells 

that could have led to potential problems with loss of cell number and limited 

functional data at RT-PCR. Because cell number was a particular issue (the technical 

process of ATII cell extraction from resected lung tissue resulted in a significant 

percentage loss of contaminating cells), serum starving methodology was not 

employed (see section 4.4 for further discussion). 
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4.2.4 ATII phenotyping 
As reviewed in Chapter 1, ATII cells can be most easily distinguished from other 

cells by a variety of either physical characteristics or functionally detectable 

differences. Firstly, they express alkaline phosphatase which can give an easily 

detectable colouration), surfactant protein (surfactant protein-C, SP-C is most 

specific for ATII cells) and specific aquaporins (aquaporin-3, AQP-3, is most 

specific for ATII as ATI also express other aquaporins). Secondly, they are cuboidal 

in appearance as opposed to the flattened ATI cells and they do not possess the 

specific proteins of ATI cells including other aquaporins (aquaporin-5, AQP-5; 

which is expressed by other non-ATII respiratory tract cells, as discussed in Chapter 

1) or HTI56. Finally, at electron microscopy, lamellar bodies (the organelles which 

are the site of surfactant protein synthesis specific to these cells) are noted in ATII 

cells but not ATI cells40 41 43-45.  

 

Therefore, ATII phenotype was confirmed by positive staining for alkaline 

phosphatase (see Chapter 2 Methods, Figure 2.1, page 110) and expression of SP-C 

and AQP-3 mRNA assessed by RT-PCR (see Chapter 2 Methods, Figure 2.2, page 

111). Morphological characteristics with lamellar bodies were confirmed by electron 

microscopy (see Chapter 2 Methods, Figures 2.3a and 2.3b, p112) and an ATI 

phenotype excluded by absence of AQP-5 mRNA expression (see Chapter 2 

Methods, Figure 2.2, page 111).  
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4.2.5 RNA extraction 
In order to assess the functional response of the ATII cell to the pro-inflammatory 

milieu in ARDS, ATII cells were stimulated at day 3 for 4 hours (after verification of 

ATII phenotype, see section 4.2.2) with a variety of pro-inflammatory cytokines 

which have been implicated in ARDS as well as concentrated BAL fluid from ARDS 

patients as an in vivo surrogate. The concentrations of cytokine are consistent with 

those used in the literature in other primary cell work (see Chapter 2 Methods, 

Section 2.3.5, p102). In addition, ATII cells were incubated with increasing 

concentrations of VEGF based on previous studies to assess the functional 

importance of VEGF as a possible autocrine factor.  

 

The conditions performed to answer these questions were as displayed in Table 4.1 

below (all made up in complete medium, see Appendix). 

 
Incubation no. Conditions 

1 unstimulated control (no cytokine, medium only) 

2 concentrated human ARDS BAL fluid (50µl in 1ml complete medium) 

3 10µg/ml LPS 

4 10ng/ml TNFα 

5 1ng/ml IL-1β 

6 0.1ng/ml human VEGF165  

7 1ng/ml human VEGF165  

8 10ng/ml human VEGF165  

Table 4.1: Incubation conditions for ATII cell culture experiments. 

 

Total cellular RNA was extracted from 1 x 106 ATII cells (at 1 x 106/ml) after culture 

(see Chapter 2) with stimuli for 4 hours at day 3 was completed. Cells were washed 

in sterile PBS and cellular RNA extracted using RNABee and cellular RNA 

concentration was measured using a GeneQuant II as previously described in detail 

in Chapter 2.  
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4.2.6 Semiquantitative VEGF isoform and receptor RT-PCR 
Two-step RT-PCR was performed on the human ATII cell RNA as described in 

detail in Chapter 2 for the principal VEGF isoforms (VEGF121, VEGF165 and 

VEGF189), and receptors (VEGFR2, VEGFR1, NRP-1) and GAPDH. Products were 

electrophoresed though agarose gels and visualised using ethidium bromide staining 

assessing mRNA quantity by digital image densitometry. Primer sequences are 

described in the Appendix. Positive controls were sequenced VEGF isoforms (see 

Chapter 2 for details) and whole lung for VEGFR2 and NRP-1 and THP-1 or U937 

monocyte cell line for VEGFR1.  

 

4.2.7 MTS proliferation assay 
The MTS assay indicates cell viability and has been used a surrogate for proliferation 

in these experiments. It is important to understand some potential limitations of the 

MTS proliferation assay used before proceeding further. Any proliferation assay is 

hampered by the assumption that an increase in the compound of interest is due to 

increased number of cells rather than increased survival of existing cells. Ideally, any 

such analysis should be corroborated by performing a DNA incorporation assay (eg 

thymidine), cell count and apoptosis assay to determine the extent the changes in 

viability are due to changes in apoptosis, proliferation and functional activity per cell 

number. The MTS assay was used in these experiments, as it was the only locally 

available technique.  
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In order to assess a possible functional role as an alveolar epithelial mitogen, 

increasing physiological concentrations of VEGF were applied to cultured ATII cells 

in the proliferation assay experiments. To confirm the specificity of any effect, 

internal negative (no cells or medium to control for well intensity) and positive 

(KGF) controls were used as well as an unstimulated (no cytokine) experimental 

control. In addition, a specific VEGF inhibitor (sflt, the soluble VEGF receptor 

which binds free VEGF) was used in other wells to confirm specificity of any 

positive effect with VEGF. As an in vivo surrogate to ARDS, concentrated BAL fluid 

from ARDS patients was also used with and without a VEGF inhibitor to assess 

whether an effect was partly due to VEGF. Again, the concentrations used of VEGF 

were based on previous studies in the literature (see section 4.2.5) except that 

100ng/ml was also used to assess the effects of extremely high intrapulmonary 

VEGF (as would be attained theoretically by aerosolised delivery of VEGF as a 

therapy for example) to examine for alveolar toxicity. The concentrations of KGF 

and sflt again correspond to previously published concentrations in primary cell 

studies.  

 

The conditions performed to answer these questions were as shown in Table 4.2 

below (all made up in complete medium, see Appendix): 
 

Incubation no. Conditions 

1 Negative control (no medium or cells) 

2 Positive control (50ng/ml KGF) 

3 Unstimulated control (complete medium only) 

4 10ng/ml sflt  

5 0.1ng/ml human VEGF165  

6 1ng/ml human VEGF165  

7 10ng/ml human VEGF165  

8 10ng/ml human VEGF165 + 10ng/ml sflt 

9 100ng/ml human VEGF165 

10 100ng/ml human VEGF165 + 10ng/ml sflt 

11 concentrated human ARDS BAL fluid (50µl in 1ml complete medium) 

12 concentrated human ARDS BAL fluid + 10ng/ml sflt 

Table 4.2: Incubation conditions for ATII cell proliferation experiments.  
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100µl of 2 x 104/ml ATII cells were cultured in complete ATII cell medium until 

30% confluent to allow the opportunity for discriminative proliferation. The cells 

were incubated in either medium with/without mediators (see above) for 48 hours 

before adding PMS reagents for 4 hours (the precise timepoints as discussed in 

Chapter 2 were obtained from previous experiments). After proliferation, the 

confluence levels in the unstimulated cells averaged 50% allowing the possibility of 

discriminative proliferation. The MTS assay was performed as described in detail in 

Chapter 2. Briefly, 2mls of MTS solution were added to 100µl of PMS solution. 20µl 

of this mixture was added to each well in a 96 well plate containing 100µl of 2 x 

104/ml ATII cells after stimulation for 48 hours with the following (in triplicate).  

 

After a 4 hour incubation, 490nm absorbance was determined. Proliferation was 

calculated as a % of control proliferation for each experiment ensuring a positive 

response with the KGF positive control and subtracting background intensities.  

 

4.2.8 VEGF ELISA and response to LPS  
Confluent ATII cells were washed at day 3 in culture after removing the medium 

adding LPS (100ng/ml) and incubating for 3, 6 and 12 and 24 hours (other 

concentrations of 1, 10 and 1000ng/ml showed no difference – data not shown). 

VEGF protein levels were measured using a sandwich ELISA kit (R&D Systems, 

Abingdon, UK) according to manufacturer’s instructions as described previously247. 

All conditions were measured in triplicate removing the conditioned medium at each 

time point and storing at –70oC until analysis.  
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4.2.9 Statistical analysis  
Statistical analysis was performed using Graph Pad Prism software (version 4.0). 

Data were assessed for normality using the Ryan Joiner test. VEGF isoform RT-PCR 

data were nonparametric but log transformed (using ln) to normalise them. 

Graphically, normally distributed (or log transformed data) are represented by 

plotting means and standard errors of the mean as error bars; nonparametric data are 

represented by plotting medians and interquartile ranges as error bars. Paired data are 

graphically represented with interlinking lines and plotted as absolute values. MTS 

proliferation data (paired and normal) was analysed with the paired t test. Otherwise, 

groups of normally distributed data were analysed by ANOVA and Bonferroni post 

test correction if multiple comparisons were used. A p value of less than 0.05 was 

deemed significant. Groups of nonparametric data (which were not log transformed) 

were analysed by the Kruskal Wallis test and Dunn’s post test correction if multiple 

comparisons were used. 
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4.3 RESULTS 
 

4.3.1 ATII VEGF protein levels and response to LPS  
Human ATII cells express significant amounts of VEGF constitutively. VEGF 

protein levels increased with time in human ATII supernatant but there was no 

increased response to LPS but with the same temporal increase (see Figure 4.1).  

 

 
Figure 4.1: ATII cell supernatant levels of VEGF protein unstimulated and in response 
to LPS 100ng/ml. Data plotted as median values with interquartile ranges (n = 4 for 
each time point). Unstimulated: p = 0.012 (Kruskal Wallis); lps: p = 0.009 (Kruskal 
Wallis). *p < 0.01 (Dunns) for 3 hours versus 24 hours, both unstimulated and lps; 
otherwise p > 0.05 (Dunns) for all other comparisons.  
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4.3.2 ATII VEGF isoform expression 
Due to limitations in ATII cell yield, it was not always possible to perform all the 

different stimulations in each experiment (see Figures 4.7 – 4.9). ATII VEGF 

isoform expression was assessed using VEGF isoform-specific RT-PCR (as no 

protein methodology was available at the time, see Chapters 1 and 2). 

Semiquantitative RT-PCR demonstrated that ATII cells constitutively express all the 

three main VEGF isoforms, VEGF121, VEGF165 and VEGF189 (see Figure 4.2).  

 
Figure 4.2: Human ATII cell (all unstimulated examples shown above, see lane key 
below) VEGF isoform-specific RT-PCR gel showing constitutive ATII expression of 
VEGF121, VEGF165 and VEGF189 (at 90, 222 and 294 base pairs respectively, see 
Appendix for primer details) with negative and sequenced positive controls and 100bp 
ladder. 
Lane numbers (1-9 above) refer to as follows: 
1-4: unstimulated control 
5: negative control 
6: VEGF121 sequenced positive control 
7: VEGF165 sequenced positive control 
8: VEGF189 sequenced positive control 
9: 100 base pair ladder 

 

Semiquantitative densitometry was performed on the relative ratio of VEGF isoform 

to GAPDH intensity (see Figure 4.3 for example). 

VEGF189 (294 bp) 

VEGF165 (222 bp) 

VEGF121 (90 bp)

1 2 3 4 5 6 7 8 9
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Figure 4.3: Representative stimulated human ATII cell VEGF isoform RT-PCR gel 
showing isoform and GAPDH bands for densitometric analysis (ladder and positive 
control lanes not shown). 
Lane numbers (1-8 above) refer to as follows:  
1: 10ng/ml TNFα  
2: unstimulated control 
3: 10µg/ml LPS  
4,8: negative control 
5-7: GAPDH for samples 1-3 respectively (286bp) 

 

Intensities were log transformed (using ln) to normalise the data. Semiquantitative 

densitometric analyses confirmed ATII cells expressed all the three main isoforms 

(see Figures 4.4 - 4.6). 10ng/ml VEGF165 and LPS significantly upregulated all three 

isoforms except VEGF165, which was upregulated by 10ng/ml VEGF165 alone (see 

Figures 4.4 - 4.6). Other pro-inflammatory stimuli (TNF, IL-1, ARDS BAL fluid) 

and lower concentrations of VEGF165 did not alter VEGF isoform expression.  

VEGF189 (294 bp) 
 
VEGF165 (222 bp) 
 
VEGF121 (90 bp) 
 
 

1 2 3 4 5 6 7 8 
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Figure 4.4: Semiquantitative densitometric analysis of ATII VEGF121 RNA expression in 
response to stimulation conditions (see main text and key below; n = 3 except for 
control, n = 11; LPS, n=4). Y axis denotes log (ln) transform of percentage ratio of 
VEGF121 mRNA intensity to GAPDH. Data are plotted as means and standard errors of 
mean. p = 0.11 (ANOVA), but *p < 0.05 (Bonferroni) control versus both LPS and 
10ng/ml VEGF165, otherwise p > 0.05.  
Lane numbers (1-8 above) refer to as follows (same lane numbers refer to Figures 4.4-
4.6): 
1: unstimulated control 
2: 10µg/ml LPS 
3: 10ng/ml TNFα 
4: 1ng/ml IL-1β 
5: 0.1ng/ml human VEGF165  
6: 1ng/ml human VEGF165  
7: 10ng/ml human VEGF165  

8: concentrated human ARDS BAL fluid 
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Figure 4.5: Semiquantitative densitometric analysis of ATII VEGF165 RNA expression in 
response to stimulation conditions (see main text and key in Figure 4.7; n = 3 except 
for control, n = 11; LPS, n=4). Y axis denotes log (ln) transform of percentage ratio of 
VEGF165 mRNA intensity to GAPDH. Data are plotted as means and standard errors of 
mean. p = 0.19 (ANOVA), but *p < 0.05 (Bonferroni) control versus 10ng/ml VEGF165 

only, otherwise p > 0.05. Lanes 1-8 as per reference key in Figure 4.4. 
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Figure 4.6: Semiquantitative densitometric analysis of ATII VEGF189 RNA expression in 
response to stimulation conditions (see main text and key in Figure 4.7; n = 3 except 
for control, n = 11; LPS, n=4). Y axis denotes log (ln) transform of percentage ratio of 
VEGF189 mRNA intensity to GAPDH. Data are plotted as means and standard errors of 
mean. p = 0.09 (ANOVA), but *p < 0.05 (Bonferroni) control versus both LPS and 
10ng/ml VEGF189, otherwise p > 0.05. Lanes 1-8 as per reference key in Figure 4.4. 
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4.3.3 ATII VEGF receptor expression 
VEGF receptor expression was assessed using RT-PCR. Semiquantitative RT-PCR 

demonstrated that ATII cells constitutively express the two specific VEGF receptors 

outside the lymphatic system and the main co-receptor ie) VEGFR2, VEGFR1 and 

NRP-1 (see Figures 4.7 - 4.9). Due to limitations in ATII cell yield, it was not always 

possible to perform all the different stimulations in each experiment (see Figures 

4.10 – 4.12). 

 

 
 

 
 
Figure 4.7: Representative stimulated human ATII cell VEGFR2 RT-PCR gel showing 
VEGFR2 and GAPDH transcripts for densitometric analysis.  
Lane numbers (1-10 above) refer to as follows:  
1,7: unstimulated control 
2,8: 10µg/ml LPS 
3,9: positive control (whole lung) 
4,10: negative control 
5: 100 base pair ladder 
6: blank 

VEGFR2 
(332 bp) 

GAPDH 
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1 2 3 4 5 6 7 8 9 10 
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Figure 4.8: Representative stimulated human ATII cell NRP-1 RT-PCR gel showing 
NRP-1 and GAPDH transcripts for densitometric analysis.  
Lane numbers (1-5 above) refer to as follows:  
1: 10µg/ml LPS 
2: unstimulated control 
3: positive control (whole lung tissue) 
4: negative control 
5: 100 base pair ladder 

1 2 3 4 5 

NRP-1 
(509 bp) 

GAPDH 
(286 bp) 
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Figure 4.9: Representative stimulated human ATII cell VEGFR1 RT-PCR gel showing 
VEGFR1 and GAPDH transcripts for densitometric analysis. 
Lane numbers (1-10 above) refer to as follows:  
1: 100 base pair ladder 
2,7: unstimulated control 
3,8: 10µg/ml LPS 
4,9: positive control (THP-1) 

5,10: negative control 
6: blank 
 

Semiquantitative densitometry was performed on the relative ratio of VEGF receptor 

to GAPDH intensity (see Figures 4.10 - 4.12).  

 

Intensities were log transformed (using ln) to normalise the data. Semiquantitative 

densitometric analyses confirmed ATII cells expressed all the three main receptors 

(see Figures 4.10 - 4.12). None of the stimulations led to a significant increase in 

VEGFR2 or NRP-1 in any of the experiments, although 0.1ng/ml VEGF165 

significantly decreased VEGFR2 expression; and TNF and 1ng/ml VEGF165 

significantly decreased NRP-1 expression compared to control. In contrast, all tested 

stimuli increased VEGR1 expression: LPS, 1 and 10ng/ml VEGF165. Due to cell 

yield limitations, not all of the original experiments could be performed so no 

comment can be made on functional changes in VEGFR1 in response to TNF, IL-1 

or ARDS BAL fluid. Other pro-inflammatory stimuli did not alter VEGF receptor 

expression.  
 

VEGFR1 
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GAPDH 
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Figure 4.10: Semiquantitative densitometric analysis of ATII VEGFR2 RNA expression 
in response to stimulation conditions (n = 3 for TNF, n = 4 for 10ng/ml VEGF165, n = 5 
for 0.1 and 1ng/ml VEGF165, n = 7 for LPS, n = 8 for control). Y axis denotes log (ln) 
transform of percentage ratio of VEGFR2 mRNA intensity to GAPDH. Data are plotted 
as means and standard errors of mean. p = 0.02 (ANOVA), *p < 0.05 (Bonferroni) 
control versus 0.1ng/ml VEGF165; otherwise, p > 0.05 (Bonferroni) for control versus all 
other stimulations.  
Lane numbers (1-4 above) refer to as follows: 
1: unstimulated control 
2: 10µg/ml LPS 
3: 10ng/ml TNFα 
4: 0.1ng/ml human VEGF165  
5: 1ng/ml human VEGF165  

6: 10ng/ml human VEGF165 
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Figure 4.11: Semiquantitative densitometric analysis of ATII NRP-1 RNA expression in 
response to stimulation conditions (n = 3 except n = 4 for LPS, n = 8 for control). Y 
axis denotes log (ln) transform of percentage ratio of NRP-1 mRNA intensity to 
GAPDH. Data are plotted as means and standard errors of mean. p = 0.001 (ANOVA), 
*p < 0.05 (Bonferroni) control versus TNF and 1ng/ml VEGF165.  
Lane numbers (1-4 above) refer to as follows: 
1: unstimulated control 
2: 10µg/ml LPS 
3: 10ng/ml TNFα 
4: concentrated human ARDS BAL fluid 
5: 0.1ng/ml human VEGF165  
6: 1ng/ml human VEGF165  

7: 10ng/ml human VEGF165 
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Figure 4.12: Semiquantitative densitometric analysis of ATII VEGFR1 RNA expression 
in response to stimulation conditions (n = 3 except n = 4 for LPS, n = 6 for control). Y 
axis denotes log (ln) transform of percentage ratio of VEGFR1 mRNA intensity to 
GAPDH. Data are plotted as means and standard errors of mean. p = 0.008 (ANOVA), 
and *p < 0.05 (Bonferroni) control versus all other stimulations (LPS, 1ng/ml and 
10ng/ml VEGF165).  
Lane numbers (1-4 above) refer to as follows: 
1: unstimulated control 
2: 10µg/ml LPS 
3: 1ng/ml human VEGF165  
4: 10ng/ml human VEGF165  
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4.3.4 Effects of VEGF on ATII proliferation 
No significant increase in human ATII cell proliferation was detected with any 

concentration of VEGF from 0.1 to 100ng/ml although a concentration dependent 

increase (albeit not significant) was noted plateauing at 10ng/ml VEGF as assessed 

by MTS proliferation assay (see Figure 4.13). However, KGF (used as an internal 

positive control) caused significantly higher proliferation than control confirming the 

ability of the technique to assess response. Due to limitations in ATII cell yield, it 

was not always possible to perform all the different stimulations in each experiment 

(see Figures 4.14 – 4.15). 

 
Figure 4.13: ATII cell MTS proliferation assay. Relationship of increasing 
concentration of VEGF165 on MTS proliferation assay in human ATII cells with KGF as 
positive control (n = 8). Data plotted as means and with standard errors of mean. p = 
0.18 (ANOVA) *p< 0.05 (Bonferroni) KGF versus unstimulated control, otherwise all 
others p > 0.05.  
Lane numbers (1-5 above) refer to as follows:  
1: 0.1ng/ml human VEGF165 
2: 1ng/ml human VEGF165  
3: 10ng/ml human VEGF165  

4: 100ng/ml human VEGF165  
5: 50ng/ml KGF (positive control) 
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With the addition of a natural VEGF inhibitor (10ng/ml sflt), there was a significant 

reduction in proliferation with the higher doses of VEGF (10 and 100ng/ml) (see 

Figures 4.18 - 4.19) although sflt did not significantly alter proliferation versus 

unstimulated controls (mean change +2.9% (-6.3 - +12.2%, 95% CI; standard error 

3.3%) versus control, p = 0.42 (paired t test)).  
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Figure 4.14a: The effect of sflt on human ATII cell MTS proliferation in response to 
10ng/ml human VEGF165 (n = 7). Results displayed as percentage increases or 
decrease with reference to unstimulated control (not shown as bar but = 0%). Results 
plotted as paired data *p = 0.03 (paired t test) VEGF 10ng/ml versus VEGF 10ng/ml + 
10ng/ml sflt. Symbols as in legends.  
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human AE2 cell proliferation in response to
100ng/ml VEGF165: effect of sflt
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Figure 4.15: The effect of sflt on human ATII cell MTS proliferation in response to 
100ng/ml human VEGF165 (n = 5). Results displayed as percentage increases or 
decrease with reference to unstimulated control (not shown as bar but = 0%). Results 
plotted as mean with standard error of mean. †p = 0.04 (paired t test) VEGF 100ng/ml 
versus VEGF 100ng/ml + sflt. Symbols as in legends.  
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4.4 DISCUSSION 
 

4.4.1 Interpretation and current literature 
 

4.4.1.1 Summary of results 
I have demonstrated human ATII cell expression of VEGF at both mRNA and 

protein level. All the main isoform transcripts (VEGF121, VEGF165 and VEGF189) are 

expressed as well as the principal receptor transcripts (VEGFR2, VEGFR1 and NRP-

1). Human ATII cells VEGF protein expression is time dependent but not influenced 

by LPS. A variable response of human ATII cells to stimulation has been 

demonstrated. LPS increased human ATII cell transcription of VEGF121, VEGF189 

isoforms and VEGFR1. VEGF (10ng/ml) increased transcription of all three isoforms 

and VEGFR1 (as well as 1ng/ml for the latter) but decreased VEGFR2 (0.1ng/ml) 

and NRP-1 transcription (1ng/ml). TNF decreased NRP-1 transcription. VEGF did 

not significantly increase human ATII cell proliferation although the presence of the 

soluble VEGFR1 sflt did significantly reduce proliferation at higher concentrations 

(10ng/ml and above). 

  

I will now consider the implications and significance of these data in turn in the light 

of current knowledge. 

 

4.4.1.2 ATII cells as the intrapulmonary source of VEGF 
Due to the technical difficulties in human ATII cell culture and obtaining sufficient 

cells already discussed earlier in this thesis (see introduction, Chapter 4 and Chapter 

2), there is no current literature on primary ATII cell expression of VEGF per se and 

these data are therefore novel. As already discussed earlier in this chapter, existing 

data is based on studies on either human foetal explants, human A549 cells, rat ATII 

cells, or epithelial cells in other organs eg) kidney. 
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The ELISA data on human ATII cell supernatant confirms significant expression of 

VEGF at the protein level. This is in agreement with other studies showing high 

epithelial lining fluid levels in normal human subjects128. The immunohistochemical 

(see Chapter 3) and RT-PCR data confirm VEGF expression including all the major 

isoforms on alveolar epithelium.  

 

At the current time, there are no data on the effects of VEGF on human ATII cell 

expression of VEGF isoforms. VEGF significantly increased expression of all three 

VEGF isoforms at transcriptional level but only at the higher concentration of 

10ng/ml and not at the lower concentrations of 1 and 0.1ng/ml. VEGF concentrations 

of 10ng/ml are similar to those detected in normal human ELF122. These data are 

therefore compatible with an autocrine action of local intra-alveolar VEGF acting on 

ATII cells, which has been described in specialised epithelial cells in the kidney100.  

 

Upregulation of VEGF121 and VEGF189 isoform expression by LPS was noted but 

was not detected at the protein level. These data suggest post-transcriptional 

regulation and further studies should investigate this further. Current literature is 

conflicting. LPS has been shown to upregulate VEGF expression in airway epithelial 

cell lines, as well as other cell types including macrophages and myocytes205 331 332. 

In an aerosolised LPS animal model of lung injury, intrapulmonary VEGF protein 

levels were upregulated242. However, these studies did not examine specific isoform 

expression and the latter study did not specifically assess the direct effects of LPS. 

Moreover, in human necropsy tissue (VEGF121 and VEGF165) isoform transcript 

expression was reduced on alveolar epithelium in “later” sepsis-induced ARDS a 

situation where high levels of intra-alveolar LPS and TNF would be anticipated 

particularly in non-survivors320. The apparently conflicting results may be explained 

by the fact this was an observational study using autopsy material in non-survivors 

with pre-terminal ARDS due to sepsis. Other observational studies have confirmed 

that intrapulmonary VEGF levels fail to normalize in non-survivors with ARDS247. A 

reduced VEGF signal or presence in non-survivors is consistent with a protective 

function in the alveolus.  
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From a biological perspective, a positive response to LPS stimulation would be 

consistent with a role in recovery, accepting the supportive evidence for a role in 

recovery rather than injury discussed already in Chapters 1, 3 and 4. Indeed, the 

reason behind the selective failure of LPS to increase VEGF165 transcription is 

unexplained and surprising as this is the predominant isoform in humans (see chapter 

1, section 1.2.4168). Further studies are required to examine this further. Specifically, 

this study has not examined translational effects so this does not exclude the 

possibility of an increase in VEGF165 protein.  

 

Although TNF is well described as upregulating VEGF expression, it was not noted 

to have any positive effects on VEGF isoform transcription in this study205 333. This is 

perhaps surprising but again this study did not examine post-transcriptional effects 

and differential isoform expression. Further studies are required to address this 

question. However, one observational study has reported a reduction in VEGF 

isoform expression in human alveolar epithelium in the context of sepsis-induced 

ARDS (where high intra-alveolar TNF levels would be anticipated but were not 

measured) but this was in non-survivors and necropsy tissue so the failure of an 

increase in the postulated “protective” alveolar VEGF signal might have been 

predictable in this study320.  

 

Because of its novel discovery and methodological difficulties in demonstrating it 

particularly at the protein level, the isoform expression at translational level has not 

been studied yet in human ATII cells180 334. In addition, a novel inhibitory isoform, 

VEGF165b has been detected by RT-PCR but is not differentiated by current ELISA 

techniques due to its structural similarity180 181. At the present time, specific antibody 

techniques and ELISA antibodies are in development to detect this specific 

isoforms181 335. This has clear implications for reappraisal of current VEGF literature 

as previous ELISA measurements may not have accounted for this isoform 

particularly if it is demonstrated that there is a significant alveolar source and that 

isoform switching occurs in injury. This may also apply to the other isoforms in that 

a VEGFxxxb superfamily may exist on the basis of preliminary studies181.  
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4.4.1.3 ATII VEGF receptor expression 
In these experiments, I have demonstrated VEGF specific receptor (VEGFR2, 

VEGFR1 and NRP-1) protein expression on alveolar epithelium and ATII mRNA 

expression by RT-PCR. This would be consistent with an autocrine role of VEGF in 

the lung.  

 

The observed effects of VEGF on VEGF isoform and receptor transcription in this 

study are quite different. In contrast to the increase in VEGF isoform transcription, 

VEGF increased VEGFR1 transcription (at 1 and 10ng/ml) but decreased VEGFR2 

and NRP-1 transcription (at 0.1 and 1ng/ml respectively). As discussed in Chapter 1 

(section 1.2.3), evidence points to VEGFR2 (with NRP-1 as a co-receptor) as its 

main functional receptor with VEGFR1 as a decoy receptor. Therefore, in theory (if 

VEGFR1 is a decoy receptor), the observed functional effects would tend to favour a 

reduced VEGF biological positive signal as opposed to the effects of VEGF on its 

own isoforms. Further studies are required to explore and corroborate these findings.  

 

It is postulated the effects of VEGF on its receptor transcription might serve as a 

regulatory feedback function to control VEGF activity. However, the fact that this 

negative feedback appeared to occur at concentrations below 10ng/ml (0.1 or 1 

ng/ml) without a clear dose-dependent inhibition suggests the regulation is more 

complex and non-linear perhaps involving a critical concentration threshold to 

achieve negative regulation. Alternatively, or in addition, above a certain 

concentration threshold, a positive feedback regulatory mechanism may occur. 

Intuitively, this may be a survival mechanism to amplify a positive VEGF biological 

signal at times of extreme VEGF release but controlling the VEGF signal at lower 

ambient VEGF concentrations. Only further studies will confirm or refute these 

hypotheses. In contrast, the effects of VEGF on its isoform expression might serve to 

maintain intra-alveolar VEGF levels to act on receptors other than those on 

epithelium. 
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LPS similarly increased VEGFR1 but not VEGFR2 or NRP-1 expression. TNF did 

not increase receptor expression but did decrease NRP-1 expression. Both of these 

effects would act to decrease VEGF biological activity. The reason for these 

observations is unclear but it is postulated this might be a regulatory feedback 

mechanism to control VEGF activity. However, protein expression was not assessed 

or exposure to other concentrations of these cytokines so these data do not exclude a 

protective role for VEGF as posttranscriptional changes may be important.  

 

There are no specific studies addressing the question of VEGF receptor expression in 

response to LPS and TNF in the human lung. However, indirect evidence is 

conflicting. In an observational study on human necropsy tissue, lung tissue 

VEGFR2 transcript expression was reduced in “later” sepsis-induced ARDS320. In 

such non-survivors, intra-alveolar levels of LPS and TNF would be expected to be 

significantly elevated. However, conclusions are limited by the fact that specific 

intra-alveolar measurements of LPS or TNF were not performed, specific localisation 

was not performed, protein levels were not assessed, and VEGFR1 and NRP-1 were 

not analysed.  

 

Other indirect evidence has demonstrated increased VEGFR2 (and IL-6) levels in 

mice in response to high tidal volume ventilation in an acid aspiration model 

attenuated by low tidal volume ventilation243. Such ventilatory strategies again have 

been associated with pro-inflammatory cytokines release as is thought to occur in 

ventilator-induced lung injury, and would be expected to increase TNF and LPS 

levels locally208. However, again no specific measurement of lung TNF or LPS levels 

were made and the stimulus here may have been stretch rather than pro-inflammatory 

cytokines; additionally, VEGFR1 and NRP-1 expression was not assessed. 

Moreover, this study was not performed in humans. Further studies are required 

looking at all the VEGF receptor expression alterations in lung injury with 

synchronous measurements of cytokine levels and also assessing the effects of 

stretch.  
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4.4.1.4 VEGF as an alveolar epithelial mitogen 
One of the cardinal functions of VEGF is as a vascular endothelial cell mitogen100. 

Human studies have confirmed high intra-alveolar levels of VEGF in the uninjured 

state128. It is hypothesised that this could be explained by an intrinsic protective role 

for VEGF in the lung that becomes of greater relevance in lung injury. The 

postulated mechanism is as an alveolar epithelial mitogen, in addition to its well-

known mitogenic role on vascular endothelial cells (reviewed in Chapter 1). This 

would allow the alveolar epithelium to be repopulated following injury, allow 

clearance of the alveolar fluid and facilitate restoration of the depleted numbers of 

type 1 alveolar epithelial cells for gas exchange2.  

 

Contrary to this hypothesis, I did not demonstrate any significant proliferation effect 

of VEGF165 on ATII cells with the methodology employed. Studies on alveolar 

epithelium have been conflicting and small in number as already reviewed earlier in 

this chapter (see introduction, section 4.1.1). These discrepancies may be due to 

species differences, developmental time factors, different time points and other 

aspects of methodology. There are also significant limitations in the conclusions that 

can be drawn from existing studies. These have looked at either developing human 

lung or rodent or murine species and have not used human ATII cells (the gold 

standard). The vast majority of existing studies have failed to assess DNA uptake and 

cell number as well as cytotoxicity and have therefore failed to confirm the noted 

effects are due to proliferation per se rather than reduction in cell death.  
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The addition of sflt to assess the effects of VEGF blockade to higher concentrations 

of VEGF (10 and 100ng/ml) led to a significant decrease in observed proliferation 

versus the same VEGF concentrations without the inhibitor. These higher 

concentrations are compatible with those measured in normal human intra-alveolar 

VEGF levels but due to limitations on ATII cell yield, the effects of sflt on lower 

VEGF concentrations (which would be compatible with intra-alveolar VEGF levels 

at varying timepoints in ARDS) could not be explored in these experiments. 

Nevertheless, these results are compatible with VEGF functioning as a survival 

factor on human ATII cells, rather than a mitogen per se. Current studies provide 

evidence of this function, albeit on the vascular endothelium. For example, Gerber et 

al.118 have demonstrated VEGF upregulates anti-apoptosis proteins bcl-2 and A1 in 

human umbilical vein endothelial cells. VEGF is also protective of endothelial cells 

from apoptosis via inhibition of p38 MAP kinase and activation of the phosphatidyl 

3-kinase/Akt pathway147 336.  

 

VEGF blockade alone without VEGF did not significantly alter proliferation. This 

may indicate that a critical local VEGF concentration is necessary to maintain human 

ATII cell survival that was observed at VEGF concentrations at or above 10ng/ml in 

this study. These concentrations equate to those measured in normal human lungs128. 

This does suggest a threshold intra-alveolar concentration may be necessary for 

human ATII cell survival but only further experiments using sflt at these lower 

VEGF concentrations would answer this question. Alternatively, it is possible that 

because of either excessive or inadequate VEGF expression by human ATII cells in 

culture in these experiments, that the addition of sflt made no measurable difference 

either because of an inability to bind all soluble VEGF or because there was no 

significant soluble VEGF to bind. Further experiments with synchronous 

measurements of expressed VEGF in the culture supernatants would answer this 

question. In addition, it would be important to repeat these experiments using 

different culture time points, different mediator and MTS reagent incubation periods 

and at different confluence levels with different cell numbers. 
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4.4.2 Limitations 
Before discussing and reviewing the implications of the data in this chapter in the 

light of current knowledge, it is important to appreciate the limitations to this study. 

Firstly, it is important to confirm that VEGF is a true alveolar epithelial (as well as 

endothelial) mitogen, in addition to the established alveolar epithelial growth factors 

such as KGF337. The MTS assay has limitations in this regard. It is based on cell 

viability and assumes that increased metabolism and generation of a colorimetric 

formazan product is a valid surrogate for proliferation. However, to confirm true 

proliferation, corroborative evidence will be required from DNA incorporation 

assays and morphological assessments of actual cell number in future studies as well 

as apoptosis assays (as this would also affect DNA incorporation rates). True 

proliferation would be confirmed by increased DNA incorporation per individual cell 

rather than solely due to a reduction in apoptosis or increase in cell survival; whereas 

increased cell metabolism (as detected in the MTS assay) may be due to either 

increased cell number via an increase in cell survival as demonstrated in podocytes 

by Foster et al.106, decline in apoptosis or via increased DNA incorporation and true 

increase in proliferation as demonstrated by Brown et al.103 

 

Demonstration of a direct effect on proliferation is particularly important as 

accumulating literature suggests that VEGF can promote cell survival via an anti-

apoptotic function at least in vascular endothelial cells118 338. Indeed, it has been 

postulated that the apparent beneficial effects of VEGF on the alveolar epithelium 

may be secondary to its proliferative functions on the vascular bed based on studies 

demonstrating VEGF blockade profoundly affects the vasculature as well as 

impairing alveolar growth for example in the developing rat271. However, the 

accumulating wealth of evidence from intervention studies demonstrating profound 

effects on the epithelium with an emphysema-like appearance in animal studies 

including rats and adult mice in particular would support the alternative hypothesis 

of VEGF as a direct alveolar epithelial mitogen256 257. Confirmation of true 

proliferation on ATII cells would add further weight to this hypothesis.  
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Secondly, the timing of addition of VEGF may have underestimated its proliferative 

effect. The experimental stimulation with varying doses of VEGF was commenced at 

30% confluence but this may not have allowed enough time for discriminative 

proliferation. Stimulating with VEGF when the ATII cells were less confluent may 

have allowed more opportunity for proliferation under all the test conditions. The 

stimulation for 48 hours may not have been optimal for the chosen confluence of 

30% ie) it may have been too long to allow adequate proliferation.  

 

Thirdly, ATII culture was performed in serum rich media (10% newborn calf serum, 

see Appendix). Theoretically, this may make proliferation assay results difficult to 

interpret, as not all the cells would be in equal phase in the cell cycle and not in G0 

phase. Potentially, it may have led to an underestimate of proliferation because 

serum starving in a serum free medium would have put the cells in G0 phase before 

exposing them to VEGF. Indeed, serum starving was employed both by Ohwada et 

al.255 coworkers and Brown et al.103 who both demonstrated a significant effect on 

proliferation of alveolar epithelial cells. Raoul et al.103 259 failed to demonstrate a 

positive effect on proliferation and used serum rich medium. In addition, use of 

serum free media can be harmful and might have adversely affected cell survival and 

negatively interfered with proliferation assays. Given the significant loss of cell 

number (by virtue of the long and rigorous decontaminating steps in the ATII cell 

extraction and purification), it was thought to be important not to adversely affect 

cell numbers in any other way. Therefore, serum rich medium was used in these 

experiments. It is acknowledged that future experiments should at least in part 

incorporate serum free techniques when addressing the hypothesis of alveolar 

epithelial proliferation (discussed further in Chapter 6).  
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Fourthly, the relatively low n number (reducing the power and increasing the risk of 

a type 2 error inevitably) is due to the difficulty in obtaining human lung tissue from 

resection with heightened public anxieties over consent of human tissue research 

coupled with increased bureaucracy in ethics committees and the technical 

difficulties in human ATII isolation. In addition, thoracic surgeons in the UK are a 

scarce resource and there has been a decline in surgical lung biopsies for ARDS. 

Hence, the lung tissue obtained was from cancer resections, although a pathologist 

had identified “normal” areas suitable for research as the closest alternative to 

normal lung. However, it was not possible to obtain human ATII cells from ARDS 

lung tissue that would have been the optimal comparison to the quasi-normal lung. In 

addition, inevitably many of the lungs were from current or ex-smokers. Smoking is 

known to damage alveolar epithelium and is correlated with lower intrapulmonary 

VEGF levels252.  

 

Fifthly, neonatal calf serum (NCS) was used in the completed ATII cell medium and 

it is not known, on the basis of current literature, whether NCS is an exogenous (and 

confounding) source of VEGF. NCS is known to increase permeability of tight 

junctions of cultured epithelial cells, a function of VEGF339. Future experiments 

should clarify this issue (although serum starving would circumvent this potential 

issue, albeit with other potential problems). 

 

Finally, semiquantitative RT-PCR has inherent limitations as described already (see 

chapters 2, 3). However, at the current time no isoform-specific VEGF antibodies are 

available and isoform-specific RT-PCR is one of the few methodologies to assess 

relative isoform expression, albeit at the mRNA level. It would also have been 

preferable to sequence the receptor RT-PCR products although these receptors are 

well known to be expressed in the positive controls used and the products correlated 

well in size on electrophoresis with primers used frequently in the literature.  
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4.4.3 Conclusion 
With regard to VEGF as an intrapulmonary VEGF source, human ATII cells express 

all the three main isoforms with upregulation in response to VEGF and LPS. Such a 

mechanism is consistent with a protective role for intra-alveolar VEGF in response to 

injury. The failure of the other pro-inflammatory cytokines to significantly alter 

VEGF isoform expression requires explanation; it might serve as a regulatory control 

mechanism to limit excessive VEGF expression in a pro-inflammatory milieu. These 

studies did not examine posttranscriptional regulatory mechanisms, which may 

explain the failure of LPS to increase VEGF protein expression, and they require 

corroboration in real-time PCR experiments. Moreover, the functional response of 

human ATII cells in terms of VEGF expression to dysoxic (both hypoxic and 

hyperoxic environments as occur in ARDS) has not been examined. Further studies 

are also needed to address whether isoform switching occurs and what the functional 

effects on VEGF165b production might be in such circumstances. 

 

Intra-alveolar VEGF receptor expression appears to be modified transcriptionally by 

a pro-inflammatory milieu or VEGF itself. These experiments require corroboration 

by real time PCR. The observed changes would tend to lead to a reduced VEGF 

biological signal or increase in the decoy receptor (VEGFR1) and may serve as a 

regulatory control mechanism to limit VEGF activity in response to injury. 

Alternatively, posttranscriptional effects might account for the observed increase in 

VEGF receptor expression (described in Chapter 3) in later lung injury so further 

studies must examine this possibility further. 
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Finally, these experiments do not support the hypothesis that VEGF165 is a human 

ATII mitogen in vitro. However, the significant impairment of proliferation in a cell 

viability assay by sflt does suggest that VEGF may have a role in human ATII cell 

survival possibly at a threshold intra-alveolar concentration. Further studies 

examining apoptosis, cell number and DNA incorporation are necessary to examine 

these associations further. Certainly, VEGF is known to have an anti-apoptotic 

effect, at least in vascular endothelial cells118. Moreover, these results do not exclude 

this possibility of VEGF being a true ATII mitogen because as discussed earlier the 

MTS assay does not only reflect proliferation and only a defined set of time points 

and confluence settings were used. Further studies assessing the effect of sflt at lower 

VEGF concentrations are required as the effects of VEGF blockade in such 

environments are less clear. In addition, further studies are necessary to examine the 

expression of other novel inhibitory isoforms, such as VEGF165b, as these may 

potentially alter human ATII cell proliferation and cell survival given its observed 

effects on the vascular bed180 181.  
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CHAPTER 5: 
VEGF +936 CT POLYMORPHISM IN ARDS 

 

This chapter will examine the relationship between the functional +936 CT VEGF 

polymorphism and the susceptibility to and severity of ARDS. It will also look at the 

relationship between +936 CT genotype and plasma and intrapulmonary VEGF 

protein levels.  

 

Part of this chapter has been published in Thorax. 

Medford ARL, Keen JL, Bidwell J, Millar AB. 

Vascular endothelial growth factor gene polymorphism and acute respiratory 

distress syndrome. 

Thorax 2005 60: 244-48. 
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SUMMARY 
 

Background 
Only some individuals go on to develop ARDS suggesting genetic factors may be 

important in susceptibility. VEGF may have a role in recovery from lung injury. One 

functional VEGF polymorphism (+936CT) is associated with significantly lower 

plasma levels in those with the T allele. I hypothesized possession of the T allele 

would be associated with susceptibility to and severity of ARDS.  

 

Methods 

A cohort of 137 normal subjects, 117 ventilated patients with and 103 “at risk” of 

ARDS were genotyped. Plasma and BAL VEGF levels in genotyped patients were 

measured. The relation between VEGF genotype, BAL and plasma VEGF level and 

physiological severity score and outcome was also determined.  

 

Results 

CT and TT genotype frequencies were significantly increased in ARDS patients 

compared to the other cohorts. In ARDS patients, the T allele was associated with a 

higher mean APACHE3 score. BAL VEGF levels were lower than plasma levels in 

both cohorts irrespective of genotype. There was a significant increase in plasma 

VEGF level in ARDS patients with the T allele.  

 

Interpretation 

These data support a role for VEGF in genetic susceptibility to ARDS and its 

associated physiological derangement. The association of the T allele with a higher 

plasma VEGF level in ARDS may account for the observed association with 

increased mortality and physiological derangement. Further studies are necessary to 

clarify the underlying mechanisms behind this observation. 
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5.1 INTRODUCTION 
 

As already reviewed in the earlier chapters in this thesis, ARDS is the most extreme 

form of acute lung injury with a significant mortality and morbidity despite 

improvements in management of sepsis and ventilatory support23. Several properties 

of VEGF have led to investigation into its potential role in this condition as already 

discussed. Accumulating evidence is consistent with VEGF having a role in recovery 

from lung injury. This comes from in vitro studies, animal models and clinical 

observational studies. The apparent discrepancies in the literature which can be 

attributed to methodology and species differences.  

 

5.1.1 Background 
In the presence of a given risk factor for developing acute lung injury, this does not 

automatically ensue. The incidence of ARDS has been observed as quite low in 

patients at risk of the syndrome, occurring in only 26% in one large study340. 

Moreover, the proportion of patients developing acute lung injury varied depending 

on the clinical risk factor, varying from 43% in sepsis to 25% in trauma340. In another 

prospective study, diabetic patients had a significantly lower incidence of ARDS 

(25% versus 47%)341. One of the potential explanations for all these observations is 

genetic factors. Polymorphic genetic factors controlling cellular and humoral 

immune responses are known to have a role in explaining the clinical variability in 

presentation, outcome and duration in other diseases342.  

 

Genetic polymorphisms occur in at least 1% of the population. They may lead to 

alterations in the structure and function of proteins by substitution of a single base. 

Gene expression may be affected by a change in stability of mRNA or altered 

binding of transcription factors depending on the site of the polymorphism343. 

Polymorphisms that are associated with a biologically plausible and potentially 

functionally significant effect have been investigated by genetic association studies 

in particular to try and assess their contribution to susceptibility using a “candidate 

gene approach”.  
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5.1.2 Genetic association studies in ARDS 
The genetic basis for acute lung injury remains poorly understood. This is for a 

variety of reasons. Firstly, specific allele association studies in acute lung injury have 

been until relatively recently lacking344. Secondly, despite the slow accumulation of 

evidence from such genetic association studies, genetic factors are likely to be 

complex in acute lung injury as it arises from diverse triggers in phenotypically 

variable population and there may well be interactions between the gene and 

environment as well as variable gene penetrance. Finally, methodological difficulties 

probably represent the main reason for current low number of studies and level of 

knowledge rather than the lack of functional polymorphisms with biologically 

plausible and potentially relevant effects. These include the need for accurate and 

rigorous phenotyping to remove disease heterogeneity, a sufficient sample size of 

sufficient statistical power considering the allele frequency, an appropriately 

matched control group of similar ethnicity (interracial differences in allele frequency 

may occur), additional appropriate matched controls for a ventilated disease cohort to 

control for critical illness and ventilation, the lack of confirmation in family-based or 

linkage association studies which are not feasible in acute lung injury due to its 

sporadic nature as in other diseases such as asthma, and the failure to often replicate 

such findings independently in another population as a further stringent test of 

potential association345.  
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Other investigators have extended the “candidate gene approach” used expression 

profiling with gene chip arrays to help identify novel potential gene candidates for 

other genetic association studies but these present further problems of large numbers 

of potential genes. Other attempts to restrict potential candidates have included 

comparisons of gene expression across species from multiple animal models (rat, 

murine, canine) using array techniques as well as human cell culture models of 

stretch-induced lung injury before subsequently confirming the potential importance 

of the candidate gene in real time PCR and immunohistochemistry studies in human 

models followed by demonstration of an effect on susceptibility in association 

studies for the pre-B-cell colony-enhancing factor (PBEF) gene346. Ideally, such 

candidate genes would be confirmed in transgenic and knockout techniques before 

assessing functional polymorphisms in these genes in rigorously designed genetic 

association studies.  
 

Currently, the number of genetic association studies in acute lung injury continues to 

grow but are significantly less than those for sepsis alone345. In addition, many of the 

published studies are hampered by being underpowered, having inadequate 

ventilated matched controls of similar mixed populations of heterogeneous 

phenotypes and ethnicities and have not been replicated in independent populations. 

Existing published studies have only examined a small number of candidate genes: 

SP-B, angiotensin converting enzyme (ACE), TNF and PBEF as discussed below.  
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In the C/T 1580 SP-B polymorphism (associated with reduced SP-B activity), the C 

allele is associated with susceptibility to ARDS although the sample size was 

relatively small347. Similar findings were noted in a study of patients with community 

acquired pneumonia at risk of ARDS although mixed ethnic groups were used348. 

Another SP-B polymorphism in intron 4 is associated with susceptibility to ARDS in 

women, in particular by direct pulmonary injury though aspiration or pneumonia 

although the functional effects here are unknown. However, intrapulmonary SP-B 

levels were not measured, sample sizes were small and only a ventilated “at risk” 

group was used as control349. In the I/D (insertion/deletion) angiotensin converting 

enzyme (ACE) gene polymorphism, the D allele (a 287 base pair deletion in intron 

16, associated with higher plasma and T cell ACE activity) is associated with both 

susceptibility and mortality. ARDS patients of mixed aetiologies were used but there 

was a very large normal subject group, a ventilated non-ARDS respiratory failure 

group, and a ventilated control group344. Presence of the A allele from the G/A 308 

TNF polymorphism (associated with increased TNF production) is associated with 

higher mortality in ARDS particularly in younger patients350. Presence of the T allele 

from the C/T 1543 PBEF polymorphism (associated with reduced transcription) is 

associated with susceptibility to acute lung injury in Caucasian patients with 

sepsis351.  
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Given its biological properties and existing functional VEGF polymorphisms 

(reviewed in Chapter 1), extensive genetic association studies have been performed 

in cancer and vascular disease (not reviewed further here). However, of far greater 

potential relevance to acute lung injury, other genetic association studies have also 

confirmed a role in susceptibility in inflammatory diseases. These include 

rheumatological (rheumatoid arthritis, Behcets disease, Henoch Schonlein purpura, 

temporal arteritis, ankylosing spondylitis), skin (psoriasis) and kidney disease 

(nephrotic syndrome)231 352-358. In inflammatory lung disease (as discussed in Chapter 

1), genetic association studies have examined the VEGF 936 C/T polymorphism in 

COPD (no association found) and sarcoidosis (reduced susceptibility with T allele)225 

226. Therefore, it is reasonable to postulate such polymorphisms may also be of 

relevance in another inflammatory condition affecting the lung, acute lung injury and 

are hence worthy of study.  

 

As reviewed in Chapter 1, considerable variation in plasma VEGF levels has been 

noted amongst healthy subjects and functional VEGF polymorphisms are well 

described but at the current time have not been investigated as a potential explanation 

for susceptibility to the development of acute lung injury or critical illness. A CT 

substitution at position 936 distal to the start of translation in the 3’-untranslated 

region of the VEGF gene on chromosome 6p21.3 has been associated (by as yet 

uncertain mechanisms but thought to involve transcription factor AP-4) with a 75% 

reduction in plasma levels in subjects with the T allele, both CT and TT 

genotypes220. It should be noted that, currently, the recognised functional 

consequences of this polymorphism are not known despite the known significant 

effects on plasma VEGF level.  
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5.1.3 Hypothesis 
This thesis is based upon the hypothesis that VEGF has an important role in repair 

and recovery from lung injury. In Chapter 3, I confirmed VEGF and VEGF receptor 

expression on both sides of the alveolar-capillary membrane including ATII cells but 

with no evidence of VEGF isoform switching. In Chapter 4, I confirmed ATII cells 

as a significant alveolar source of VEGF and its receptors. The data also suggest 

VEGF has an autocrine action here serving as an ATII cell survival factor. In order to 

further investigate this hypothesis, I explored the following questions: 

• Does a functional VEGF polymorphism (the +936 CT polymorphism) 

contribute to genetic susceptibility to ARDS? 

• In addition to susceptibility to ARDS, is there a relationship between VEGF 

+936 genotype and severity of ARDS? 

• Are any observed relationships with susceptibility and severity of ARDS, 

specific to this syndrome rather than critical illness per se? 

• What is the relationship between VEGF +936 genotype and plasma and 

broncho-alveolar fluid (BALF) VEGF levels? 
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5.2 METHODS 
For detailed methods on severity scores, plasma, BALF, DNA extraction and 

genotyping see Chapter 2. 

 

5.2.1 Participants 
Blood samples were obtained from 137 normal subjects and 215 ventilated patients 

in Southmead Hospital Intensive Care Unit (ICU) both “at risk” (n = 103) of and 

with ARDS (n = 117) as defined in 1994 by the American-European Consensus 

Conference Committee11. “At risk” patients were classified strictly as per previous 

established definitions used in previous studies, also discussed in Chapter 298.  

 

Patients in the “at risk” cohort who went on to develop ARDS (see section 5.3.1 in 

Results, Chapter 5) were included in the ARDS cohort for statistical analysis (as they 

had developed ARDS) but also excluded from either cohort for a second analysis of 

an ARDS cohort referred to as “ARDS excluded” in the Results (section 5.3.1) to 

control for the change in disease phenotype and assess the impact of this sub-cohort.  

 

Normal subjects were in good health, of identical ethnicity and of similar gender 

ratio and age. Plasma and BAL samples (with matched genotypes) were obtained 

only in a proportion of patients because of failure of genotyping or DNA extraction, 

decline of consent, haemodynamic instability, timing of admission or unpredicted 

patient movements off unit. Whole blood sampling (and successful matched 

genotyping) was performed in 78 ARDS and 45 ventilated “at risk” patients. 

Fibreoptic bronchoscopy and broncho-alveolar lavage was performed in the right 

middle lobe (as described previously) with matched genotypes in 59 ventilated 

ARDS 32 “at risk” patients247. Flexible bronchoscopy was already performed as part 

of routine clinical practice as a standard of care in the intensive care unit (to detect 

possible nosocomial infection). Sampling was performed at 72 hours on average 

from the time of ITU admission (see results for sampling range).  
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Exclusion criteria were patients with an extensive smoking history (> 20 pack years), 

IPF, COPD or malignancy. The North Bristol NHS Trust Local Research Ethics 

Committee granted full ethical approval for the study. Informed consent was 

obtained from the patient or a surrogate.  

 
5.2.2 Clinical data 
Murray Lung Injury, Acute Physiology and Chronic Health Evaluation II (APACHE 

II), Acute Physiology and Chronic Health Evaluation III (APACHE III) and 

Simplified Acute Physiology (SAPS II) Scores were recorded for each ICU patient7 

288-290. 28 and 60 day mortality were also recorded.  

 

5.2.3 VEGF Measurements 
Plasma and BALF VEGF were measured using a sandwich ELISA kit (R&D 

Systems, Abingdon, UK) according to manufacturer’s instructions as described 

previously244 247. The detection limit was 2.9 pg/ml with 5% intra-assay and 7% 

inter-assay variability. 
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5.2.4 Statistical Analysis 
Using Quanto version 1.1 software (http://hydra.usc.edu/gxe/), assuming a T allele 

frequency of 0.16 as per existing studies, a type 1 error rate of 0.05, with two-way 

statistical significance at p < 0.05, and assuming a 1:1 control:case ratio, 142 cases 

and controls would be required to have 80% statistical power to demonstrate to 

detect an odds ratio of 2 difference in allele frequency220 318 319. Given the recruited 

numbers in this study, with a control: case ratio varying between 1.17:1 (for ARDS) 

to 1.33:1 (for “at risk”), the study was estimated to have 75.4% statistical power 

according to detect such a finding.  

 

Data were analyzed using Graph Pad Prism version 4.0. The Ryan-Joiner test was 

used to assess normality of data. Nonparametric data were normalised using log 

transformation. ITU severity scores and ELISA data were compared by ANOVA 

with a post hoc Bonferroni correction to control for multiple group comparisons. 

Genotype and allele frequencies, age distributions and risk factor distributions were 

compared by the Fishers exact test to control for low cell values. The Chi Squared 

test was used for contingency table analysis of these when a subsequent analysis 

including the “ARDS excluded” cohort was performed (see section 5.2.1 for 

discussion). Data in bar charts are plotted as mean and standard error. Hardy 

Weinberg equilibrium was assessed using the Chi Squared test for allele frequencies. 

For all tests, a p value of 0.05 or less was considered significant. 
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5.3 RESULTS  
 

5.3.1 Baseline Characteristics 
Table 5.1 shows baseline characteristics for normal (N) subjects, ventilated “at risk” 

(AR) patients and ARDS patients.  
Group No Mean (SE) age (years) Sex (F:M) 

Normal 137 52*† (1.7) 70:67 

“At risk” 103 64* (1.4) 44:59 

ARDS 117 61* (1.4) 48:69 

“ARDS excluded” 100 61† (1.5) 42:58 

 
Table 5.1: Baseline characteristics (modified from Medford et al.359). “ARDS excluded” 
refers to ARDS cohort excluding those who developed ARDS from the “at risk” cohort 
(n = 17) during the period of study (see Methods section 5.2.1 for further discussion). 
*p < 0.001 Bonferroni N versus AR and ARDS, p < 0.01 Bonferroni †N versus “ARDS 
excluded”, p < 0.0001 (ANOVA) 

 

There were no significant variations between groups in ethnicity or gender 

distribution, but the age of the normal group was significantly lower than the “at 

risk” and ARDS groups (mean age 52 yrs v 64 yrs and 61 yrs [p < 0.001 and p < 0.01 

Bonferroni]).  

 

The risk factor profile of the “at risk” and ARDS cohorts is shown in Table 5.2 and 

overall significantly different (p < 0.02, Chi Squared). They were well matched for 

most aetiologies and subtypes of sepsis except a higher proportion of total and chest 

sepsis (p < 0.01 and p < 0.02 respectively, Chi Squared) and a lower proportion of 

massive transfusion in the ARDS cohort (p < 0.0002, Chi Squared). 
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Risk factor “At risk” ARDS “ARDS excluded” p value 

Sepsis (combined) 72 (69.9) 99 (84.6) 85 (85) 0.01* 

Sepsis (chest) 37 (35.9) 61 (52.1) 54 (54) 0.02† 

Sepsis (abdomen) 22 (21.4) 30 (25.6) 24 (24) 0.76 

Sepsis (unknown site) 10 (9.7) 6 (5.1) 5 (5) 0.29 

Sepsis (nervous system) 3 (2.9) 2 (1.7) 2 (2) 0.82 

Massive transfusion 22 (21.4) 7 (6) 6 (6) 0.0002** 

Acute pancreatitis 5 (4.9) 9 (7.7) 8 (8) 0.61 

Inhalational injury 4 (3.9) 2 (1.7) 1 (1) 0.34 

Total 103 117 100 0.02† 

Table 5.2: Risk factor profiles for ventilated cohorts. Values are given as number (%). 
†Overall p < 0.02 (Chi Squared). *p < 0.01 sepsis (combined) AR v ARDS; †p < 0.02 
sepsis (chest) AR v ARDS; **p < 0.0002 massive transfusion AR v ARDS. (Modified 
from Medford et al.359) 

 

Table 5.3 shows the “at risk” and ARDS ventilated cohorts were matched in terms of 

generalized physiology severity scores (APACHEII, APACHEIII and SAPSII), but 

Murray Lung Injury scores were higher in the ARDS cohort as expected (2.84 or 

2.92 v 1.36 [p < 0.001 (Bonferroni)]). 
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Group Genotype Murray LIS SAPS II APACHE II APACHE III* 

All 1.36 (0.08) 42.2 (1.31) 17.0 (0.78) 67.9 (2.34) 

CT,TT 1.21 (0.20) 39.9 (2.85) 18.0 (1.42) 62.2 (4.87) “At risk” 

CC 1.40 (0.09) 42.8 (1.47) 17.0 (0.78) 69.3 (2.65) 

All 2.84 (0.06) 45.7 (1.32) 19.0 (0.75) 73.0 (2.47) 

CT,TT 2.74 (0.11) 46.8 (2.63) 19.0 (1.30) 80.9* (4.33) ARDS 

CC 2.90 (0.07) 45.2 (1.51) 18.5 (0.92) 69.3* (2.92) 

All 2.92 (0.06) 46.0 (1.49) 20.5 (0.85) 73.4 (2.81) 

CT,TT 2.86 (0.11) 48.7 (2.99) 22.2 (1.49) 83.8* (4.94) 
“ARDS 

excluded” 
CC 2.94 (0.08) 44.8 (1.69) 19.7 (1.02) 68.6* (3.26) 

 

Table 5.3: ICU severity scores. LIS = Lung Injury Score. Column 3 contains all relevant 
severity scores for all groups and genotypes expressed as mean values with standard 
error in parentheses. NB: data for APACHE2 log10 transformed to normalise prior to 
statistical analysis. *p < 0.05 (Bonferroni) ARDS CT,TT v ARDS CC (ANOVA, p = 0.02). 
(Modified from Medford et al.359) 
 

16.5% (n = 17) of the “at risk” group subsequently developed ARDS, pulmonary and 

abdominal sepsis being the commonest predisposing factors in these individuals (see 

Table 5.4 below).  

 
Risk factor Number (%) 

Sepsis (combined) 14 (82.4%) 

Sepsis (chest) 7 (41.2%) 

Sepsis (abdomen) 6 (35.3%) 

Sepsis (unknown site) 1 (5.9%) 

Massive transfusion 1 (5.9%) 

Acute pancreatitis 1 (5.9%) 

Inhalational injury 1 (5.9%) 

TOTAL 17 (100%) 

 

Table 5.4: Risk factor profile of “at risk” cohort subsequently developing ARDS. 
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5.3.2 CT, TT Genotype and T Allele Frequencies in Patient 
Groups 
 
Figure 5.1 shows a typical example of IHG technique for genotyping (see Figure 

5.1).  

  
 
Figure 5.1: Typical digitally captured image of IHG gel showing three easily 
differentiated VEGF +936 genotypes: CC, CT and TT. Please see Chapter 2 for detailed 
methods.  
 

Table 5.5 shows the genotype and allele frequencies for the three different groups. 

For all samples, the genotype distribution was in Hardy-Weinberg equilibrium (see 

Tables 5.6 a-d) (χ2 = 1.418, p = 0.50 for normal; χ2 = 0.729, p = 0.70 for “at risk”; 

and χ2 = 0.173 for ARDS, p = 0.92; χ2 = 1.766, p = 0.41 for “ARDS excluded”).  

CT CC TT 
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Genotype frequencies (%) Allele frequencies (%) Group No 

CT, TT 
(polymorphic)

CC 
(normal) 

T 
(polymorphic) 

C 
(normal) 

Normal 137 27 (19.7) 110 (80.3) 30 (10.9) 244 (89.1) 

“At risk” 103 20 (19.4) 83 (80.6) 22 (10.7) 184 (89.3) 

ARDS 117 38 (32.5)* 79 (67.5) 41 (17.5)† 193 (82.5) 

“ARDS excluded” 100 32 (32)** 68 (68) 33 (16.5)†† 167 (83.5) 

 

Table 5.5: Genotype and allele frequencies. (Modified from Medford et al.359) 
Genotype frequencies: *ARDS v N: OR 2.01, 95% CI 1.13 to 3.58, p = 0.02 Fishers 
exact; *ARDS v AR: OR 2.05, 95% CI 1.02 to 2.20, p = 0.03 Fishers exact; AR v N: OR 
0.98, 95% CI 0.52 to 1.87, p = 1.00 Fishers exact; **“ARDS excluded” v N: OR 1.89, 95% 
CI 1.04 – 3.43, p = 0.05 Fishers exact; **”ARDS excluded” v AR: OR 1.92, 95% CI 1.00 – 
3.67, p = 0.05 Fishers exact.   
Allele frequencies: †ARDS v N: OR 1.77, 95% CI 1.06 to 2.91, p = 0. 04 Fishers exact; 
†ARDS v AR: OR 1.82, 95% CI 1.04 to 3.18, p = 0.04 Fishers exact; AR v N: OR 0.97, 
95% CI 0.54 to 1.74, p = 1.00 Fishers exact; ††”ARDS excluded” v N: OR 1.59, 95% CI 
0.93 – 2.71, p = 0.10 Fishers exact; ”ARDS excluded”  v AR: OR 1.63, 95% CI 0.91 – 
2.92, p = 0.11 Fishers exact.  
 

Genotype frequency VEGF +936 
Genotype Expected (Hardy Weinberg) Observed 

(Obs – Exp)2/Exp 

TT 1.63 3 1.151 

CT 26.6 24 0.254 

CC 108.8 110 0.013 

TOTAL χ2 1.418 

Table 5.6a: Normal subjects, Hardy Weinberg equilibrium calculation. 
 

Genotype frequency VEGF +936 
Genotype Expected (Hardy Weinberg) Observed 

(Obs – Exp)2/Exp 

TT 1.179 2 0.57 

CT 19.68 18 0.15 

CC 82.14 83 0.009 

TOTAL χ2 0.729 

Table 5.6b: Ventilated “at risk” subjects, Hardy Weinberg equilibrium calculation. 
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Genotype frequency VEGF +936 
Genotype Expected (Hardy Weinberg) Observed 

(Obs – Exp)2/Exp 

TT 3.79 3 0.165 

CT 34.5 35 0.007 

CC 78.7 79 0.001 

TOTAL χ2 0.173 

Table 5.6c: ARDS subjects, Hardy Weinberg equilibrium calculation. 

 
Genotype frequency VEGF +936 

Genotype Expected (Hardy Weinberg) Observed 

(Obs – Exp)2/Exp 

TT 2.51 1 0.908 

CT 26.3 31 0.840 

CC 69.1 68 0.018 

TOTAL χ2 1.766 

Table 5.6d: “ARDS excluded” subjects, Hardy Weinberg equilibrium calculation. 

 
CT and TT genotypes occurred significantly more frequently in the ARDS group 

than the normal group (OR 2.01, 95% CI 1.13 to 3.58, p = 0.02 Fishers exact), and 

those “at risk” (OR 2.05, 95% CI 1.02 to 2.20, p = 0.03 Fishers exact). This was 

consistent even when analysing the “ARDS excluded” cohort (excluding those “at 

risk” who developed ARDS): OR 1.89, 95% CI 1.04 to 3.43, p = 0.05 Fishers exact 

versus normal, OR 1.92, 95% CI 1.00 to 3.67, p = 0.05 Fishers exact versus “at risk” 

and did not significantly differ from the original ARDS cohort: OR 0.94, 95% CI 

0.53 to 1.68, p = 0.88. The polymorphic T allele occurred significantly more 

frequently in the ARDS group (OR 1.77, 95% CI 1.06 to 2.91, p = 0.04 Fishers 

exact) than in the normal group and the ventilated “at risk” group (OR 1.82, 95% CI 

1.04 to 3.18, p = 0.04 Fishers exact). There were no differences in either genotype 

(OR 0.98, 95% CI 0.52 to 1.87, p = 1.00 Fishers exact) or allele frequencies (OR 

0.97, 95% CI 0.54 to 1.74, p = 1.00 Fishers exact) between the “at risk” and normal 

cohorts. Analysing the “ARDS excluded cohort”, none of the allele frequencies were 

significantly different versus normal (OR 1.59, 95% CI 0.93 – 2.71, p = 0.10 Fishers 

exact), versus “at risk” (OR 1.63, 95% CI 0.91 – 2.92, p = 0.11 Fishers exact) and 

versus the original ARDS cohort (OR 0.89, 95% CI 0.54 – 1.49, p = 0.70 Fishers 

exact).  



 223

 

5.3.3 CT, TT Genotypes and Mortality (28 and 60 day) 
Table 5.7 shows 28 and 60 day mortality according to disease group and genotype. 

Although there was a non-statistical trend to higher mortality in the ARDS (and 

“ARDS excluded” cohorts, especially with the latter) as would be expected, there 

were no significant differences in mortality between the ARDS and “at risk” cohorts 

as a whole either for 28 day mortality (ARDS v “at risk” OR 1.55, 95% CI 0.87 to 

2.76, p = 0.15 Fishers exact; “ARDS excluded” v “at risk” OR 1.79, 95% CI 0.99 – 

3.22, p = 0.06 Fishers exact) or 60 day mortality (OR 1.45, 95% CI 0.82 to 2.55, p = 

0.25 Fishers exact; “ARDS excluded” v “at risk” OR 1.61, 95% CI 0.90 – 2.58, p = 

0.06 Fishers exact).  

Group N Genotype 
28 day 
mortality (%) 

60 day 
mortality (%) 

103 All 28/103 (27.2)§ 31/103 (30.1)‡ 

20 CT,TT 6/20 (30) 7/20 (35) “At risk” 

83 CC 22/83 (26.5) 24/83 (28.9) 

117 All 41/117 (35.0) 43/117 (36.8) 

38 CT,TT 17/38 (44.7)* 18/38 (47.4)† ARDS 

79 CC 24/79 (30.4)* 25/79 (31.6)† 

100 All 40/100 (40)§ 41/100 (41)‡ 

32 CT,TT 16/32 (50)** 16/32 (50)†† “ARDS excluded” 

68 CC 24/68 (35.3)** 25/68 (36.8)†† 

 

Table 5.7: 28 and 60 day mortality (modified from Medford et al.359).  
28 day mortality: *ARDS CT,TT v CC OR 1.81, 95% CI 0.80 to 4.05, p = 0.21 Fishers 
exact; **”ARDS excluded” CT,TT v CC OR 1.83, 95% CI 0.78 – 4.30, p = 0.19 Fishers 
exact; § “ARDS excluded” v “at risk”  (all) OR 1.79, 95% CI 0.99 – 3.22, p = 0.06 Fishers 
exact.  
60 day mortality: †ARDS CT,TT v CC OR 1.90, 95% CI 0.85 to 4.23, p = 0.15 Fishers 
exact); ††”ARDS excluded” CT,TT v CC OR 1.72, 95% CI 0.73 – 4.03, p = 0.28 Fishers 
exact; ‡“ARDS excluded” v “at risk” (all) OR 1.61, 95% CI 0.90 – 2.58, p = 0.11 Fishers 
exact).  

 



 224

28 and 60 day mortality rates did not differ between CT/TT and CC genotypes in the 

“at risk” cohort (28 day mortality OR 1.19, 95% CI 0.41 to 3.48, p = 0.78 Fishers 

exact; 60 day mortality OR 1.32, 95% CI 0.47 to 3.72, p = 0.60 Fishers exact). 

However, a non-significant trend was noted for higher 28 and 60 day mortality rates 

for CT/TT genotypes in the ARDS cohort (28 day mortality OR 1.90, 95% CI 0.80 to 

4.05, p = 0.21 Fishers exact; 60 day mortality OR 1.90, 95% CI 0.85 to 4.23, p = 

0.15 Fishers exact), also noted in the “ARDS excluded cohort” (28 day mortality OR 

1.83, 95% CI 0.78 to 4.30, p = 0.19 Fishers exact; 60 day mortality OR 1.72, 95% CI 

0.73 to 4.03, p = 0.28 Fishers exact) 

 

5.3.4 CT,TT Genotypes and Physiological Scores 
Table 5.3 shows the ICU severity scores according to disease group and genotype. 

As expected, the Murray Lung Injury score was significantly higher for the ARDS 

cohort than the “at risk” cohort (mean score 2.84 v 1.36, p < 0.001 Bonferroni).  

 

There was no association between genotypes and Lung Injury, APACHE II or SAPS 

II scores. However, ARDS patients with CT or TT genotypes had significantly 

higher APACHE III scores those with CC genotypes (mean score 80.9 v 69.3, p < 

0.05 Bonferroni). 
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5.3.5 +936 Genotype, plasma and BALF VEGF Levels 
 

5.3.5.1 Genotype, demographics and mortality 
Sampling to obtain plasma and BALF was performed at 72 hours on average from 

the time of ITU admission (mean 2.8 days, 95% CI 2.25 – 3.36, sd 0.24 for “at risk”; 

mean 3.18 days, 95% CI 2.69 – 3.66, sd 0.276 for ARDS). Of the cohorts analyzed 

for VEGF genotype and plasma and BAL VEGF protein level, they were not 

significantly different in terms of gender, race or age according to VEGF +936 

genotype (see Table 5.8). As predicted, the ARDS cohorts had higher mortalities and 

all 60 day mortality rates were higher than the 28 day rates. However, there was no 

relationship between the presence of the T allele and either 28 or 60 day mortality 

(see Table 5.8). 

 

It should be noted that the allele frequencies and mortality rates in Table 5.8 differ 

from Table 5.7 due to selection of those from the original cohorts able to undergo 

BAL. As such, it is acknowledged this is a potential source of selection bias for those 

“fit” enough to undergo BAL (see section 5.4.2 in Discussion, Chapter 5). 

Nevertheless, the observational data on relation between BAL, plasma VEGF level 

and genotype are novel and important, with this proviso.  

 
“At risk” (n = 45) ARDS (n = 78) 

 CC 

(n = 26) 

CT, TT 

(n = 19) 

p value CC  

(n = 48) 

CT, TT 

(n =30) 

p value 

Age (yrs) 60 (3.20) 65.8 (4.08) 0.28 60.4 (2.23) 61.1 (2.76) 0.84 

Gender 
(F:M) 

9: 17 8: 11 0.76 19: 29 16: 14 0.25 

28 day 
mortality 

23.1% 

(6/26) 

31.6% 

(6/19) 

0.75 37.5% 

(18/48) 

43.3% 

(13/30) 

0.83 

60 day 
mortality 

23.1% 

(6/26) 

36.8% 

(7/19) 

0.54 37.5% 

(18/48) 

43.3% 

(13/30) 

0.83 

Table 5.8: Demographic data and mortality according to VEGF +936 genotype in “at 
risk” and ARDS cohorts. Age data plotted as mean with standard errors in brackets. 
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5.3.5.2 Acute physiology score, oxygenation and VEGF protein level 
according to VEGF +936 genotype 

The relation between the T allele and markers of oxygenation and physiological 

disturbance is shown in Table 5.9. As expected, the oxygenation fraction was lower 

in the ARDS cohorts with higher Murray Lung Injury scores. Other generalized 

acute physiology scores were also expectedly higher in the ARDS cohorts. However, 

there was no relationship between the presence of the T allele and oxygenation, 

Lung Injury or acute physiology score.  

 

“At risk” (n = 45) ARDS (n = 78) 
 

CC (n = 26) CT, TT (n = 19) CC (n = 48) CT, TT (n =30) 

PaO2/FiO2  

(mmHg) 
236.1 (16.9) 234.8 (26.8) 148 (11.2) 146 (11.24) 

LIS 1.59 (0.16) 1.21 (0.21) 2.88 (0.09) 2.70 (0.12) 

SAPS2 42.0 (2.82) 39.9 (2.85) 45.7 (1.82) 47.0 (2.88) 

AP2 18.0 (1.36) 17.7 (1.42) 19.7 (1.79) 20.9 (1.39) 

AP3 64.6 (4.69) 62.7 (4.87) 70.4 (3.76) 81.2 (4.79) 

Plasma VEGF 
(pg/ml) 

443.0 (120.4)* 313.8 (88.7)** 333.0 (56.7)***,† 482.4 (101.4)***,†† 

BAL VEGF 
(pg/ml) 

218.9 (42.5)* 125.3 (31.3)** 179.0 (39.9)† 244.8 (60.4)†† 

Table 5.9: Acute physiology score, oxygenation and VEGF protein level according to 
VEGF +936 genotype in “at risk” and ARDS cohorts. All data plotted as means with 
standard errors in brackets. “At risk”, p < 0.0001 (ANOVA), Bonferroni p values all > 
0.05 except *p < 0.05 plasma VEGF CC versus BAL VEGF CC; **p < 0.001 plasma 
VEGF CT,TT versus BAL VEGF CT,TT. ARDS, p < 0.0001 (ANOVA), Bonferroni p 
values all > 0.05 except ***p < 0.001 plasma VEGF CC versus plasma VEGF CT,TT; 
†plasma VEGF CC versus BAL VEGF CC; ††plasma VEGF CT,TT versus BAL VEGF 
CT,TT. 
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The relation between the T allele and plasma/BAL VEGF protein levels is shown in 

Table 5.9 and Figures 5.2a-b for both “at risk” and ARDS cohorts. As in keeping 

with previous observations, BAL VEGF protein levels were significantly lower than 

plasma in the ARDS cohort irrespective of the presence of the T allele247. The same 

observations were noted for the “at risk” cohort. There was no observed relationship 

between the presence of the T allele and BAL VEGF levels for either cohort. 

However, the presence of the T allele was associated with a significantly higher 

plasma VEGF level in the ARDS cohort (but not the “at risk” cohort).  
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Figure 5.2a Relationship between T allele and plasma/BAL VEGF protein level in “at 
risk” cohort: *p < 0.05 plasma versus BAL CC, **p < 0.001 plasma versus BAL CT, TT. 
Data represented as mean with standard errors as horizontal bars.  
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Plasma/BAL VEGF level and VEGF 936 genotype in ARDS
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Figure 5.2b Relationship between T allele and plasma/BAL VEGF protein level in 
ARDS cohort: *p < 0.001 plasma CC versus BAL CC; **p < 0.001 plasma CC versus 
plasma CT,TT; †p < 0.001 plasma CT,TT versus BAL CT,TT. Data represented as mean 
with standard errors as horizontal bars.  
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5.4 DISCUSSION 
 

5.4.1 Interpretation and current literature 
This study suggests an association between a specific allele (the VEGF +936 T 

allele) and susceptibility to ARDS within ARDS subjects and associated 

physiological disturbance (APACHE III score). This was specific to the ARDS 

cohort and not demonstrated in the “at risk” cohort, which controlled for ventilator-

induced injury suggesting that these findings are specific to ARDS, accepting the fact 

that an equivalent ventilated non-ARDS respiratory failure cohort and ventilated non 

“at risk” control cohort would have added further weight to this but were not feasible 

in this study. These data do lend support to the concept that VEGF may be an 

importance gene in influencing susceptibility to and severity of ARDS adding to 

published data suggesting a role for VEGF in ARDS244 247 249.  

 

As already reviewed, there is a relative paucity of genetic association studies in acute 

lung injury for a variety of reasons that have shown a positive association. This study 

is the first examining the contribution of VEGF to possible susceptibility in acute 

lung injury although other association studies on functional VEGF polymorphisms 

have been implicated in a variety of inflammatory conditions including 

rheumatological disease, kidney disease, skin disease and sarcoidosis as already 

reviewed earlier, see Section 5.1. Currently, with the exception of the current study 

in this thesis, published important genes in acute lung injury are only SP-B, ACE, 

TNF and PBEF344 346-351.  
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Previously an association between the T allele and 75% reduction in plasma levels 

has been reported in normal subjects220. In this study, the presence of the T allele was 

also associated with a significant increase in plasma VEGF levels in the ARDS 

cohort. There are no previous published report of associations between the T allele 

and plasma VEGF levels in ventilated “at risk” or ARDS patients. As already 

reviewed in Chapters 1 and 3, Thickett et al.244 have reported a significant elevation 

in plasma VEGF in early ARDS that fails to normalise in non-survivors. The 

association of the T allele with higher plasma VEGF levels in ARDS might be one 

explanation for the association with greater physiological disturbance (APACHE III 

score). The failure to demonstrate a mortality increase with the T allele in the ARDS 

cohort may reflect the underpowering of the study to demonstrate such a difference. 

However, other studies conflict as already reviewed in Chapter 1. Maitre et al.249 

found no difference in serum VEGF levels between early ARDS patients and 

controls whereas Hanaoka M et al.248 have reported a rise in serum VEGF levels in 

high altitude pulmonary oedema with recovery. These differences can be attributed 

to differences in methodology and differences in aetiology of lung injury.  

 

In normal human lungs, VEGF is compartmentalized with intrapulmonary VEGF 

levels (measured in fluid obtained at bronchoalveolar lavage) 500 times higher than 

plasma levels128. As already reviewed in Chapter 1, epithelial and endothelial injury 

occur in ARDS with a significant reduction in the alveolar-plasma concentration 

VEGF gradient in early ARDS but re-establishment of this in recovery244. Therefore, 

it is likely that the lung is a source of VEGF and that the rise in plasma VEGF level 

in early ARDS due to leakage of VEGF via a disrupted alveolar-capillary membrane 

exposing the underlying endothelium to its physiological effects including increased 

microvascular permeability as seen in ARDS.  
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In this study, the T allele was not associated with a change in intrapulmonary VEGF 

levels, which were consistently lower than plasma levels for all genotypes in both 

cohorts. This may be due to the timing of the sampling as observational studies have 

confirmed time-dependent changes in intrapulmonary VEGF following ARDS (as 

reviewed in Chapter 1), an effect on cell-associated VEGF isoforms (VEGF189 and 

VEGF206 not detected by the ELISA) or possibly a functional effect via some other 

mechanism than change in VEGF protein (eg transcriptional stability). There are no 

previous reports of the effects of the T allele on intrapulmonary VEGF levels and if 

the lung is the main source of VEGF how the T allele might affect intrapulmonary 

production. Previous observational studies have demonstrated a reduction in 

intrapulmonary VEGF levels in early ARDS (within 48 hours of diagnosis) and an 

increase in these levels in survivors at 72 or more hours247-249. In this study, BAL was 

taken off slightly later at 72 hours and hence not comparable. A relation cannot be 

therefore discounted between the T allele and intrapulmonary VEGF levels at earlier 

timepoints in the illness. As already discussed, epithelial lining fluid concentrations 

could not be derived and dilution effects may have led to a type 1 error here also.  

 

In assessing the relationship between the VEGF polymorphism and other ARDS 

parameters only the APACHE III physiological score was associated. This may be 

related either to the non-statistical trend to increased plasma VEGF levels or the 

superior sensitivity of the APACHE III score over other scoring systems. This 

system uses statistical modelling techniques to weight and select the variables, and 

multiple logistic regression to estimate risk of death unlike the other used scoring 

systems, which use a more subjective method with weights and variables, selected by 

expert opinion. There is some evidence to suggest that the APACHE III is a superior 

prognostic model295 360. However, further larger studies are required to confirm the 

absolute specificity of this association.  
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So why is there an apparent relation between the T allele, ARDS susceptibility, and 

severity of physiological dysfunction? Possible (but as yet untested) mechanisms 

include alterations in transcript stability or enhancement leading to alterations in 

VEGF expression, alteration in alternate splicing leading to isoforms switching or 

even alterations in VEGF receptor expression. These hypotheses would assume 

VEGF to have a protective role in recovery from lung injury and hence the more 

important role of this polymorphism in the lung. Studies to determine the effect of 

these genotypes on resident lung cells such as the alveolar epithelium are required to 

enable the mechanism by which they may influence ARDS pathogenesis.  

 

As already reviewed in Chapter 1, the role of VEGF in the normal human lung 

remains uncertain; but evidence from a variety of studies suggests a possible 

protective role in resolution from lung injury. Cellular, animal and clinical studies 

have confirmed the significant intrapulmonary VEGF concentrations in normal lung. 

They also suggest alveolar epithelium is a predominant intrapulmonary source and 

that VEGF is capable of acting as a mitogen here. Cellular and animal lung injury 

models as well as intervention studies with specific inhibitors, overexpression 

models and knockout models also add weight to the hypothesis of a protective role. 

Data in humans are scarcer and less conclusive but do indicate significant alterations 

in VEGF levels on both sides of the alveolar-capillary membrane both in the normal 

and injured states whether in ARDS or other forms of noncardiogenic pulmonary 

oedema such as high altitude pulmonary oedema. There are some apparent 

discrepancies in the literature with the potentially adverse effects of VEGF 

overexpression and stretch on VEGF expression in certain animal models and 

cellular studies but the majority of the discrepancies can be accounted for by 

differences in methodology, time points, species differences, or undetected changes 

in soluble receptors or isoform switching. VEGF levels may simply reflect damage to 

the alveolar epithelium as described in normal smokers and patients with idiopathic 

pulmonary fibrosis (IPF). However, more compelling evidence in the intervention 

and knockout studies argues against this.  
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5.4.2 Limitations 
There are several limitations to this genetic association study in this thesis. In any 

genetic epidemiological study, cohort size is paramount and the sample size in this 

study is modest compared to other similar studies although consistent with the initial 

power calculation considering the initial expected allele frequency. However, this 

study was not powered to show a difference in mortality or outcome. Moreover, as 

reviewed already, acute lung injury is a complex disease likely to be polygenic, and 

this study has examined only one candidate gene necessitating further increases in 

sample size. 

 

The availability of plasma and BAL samples with successful genotyping was a 

limiting factor for the reasons already mentioned of clinical instability, failure of 

genotyping or DNA extraction, decline of consent, haemodynamic instability, timing 

of admission or unpredicted patient movements off unit. This led to an inadvertent 

subpopulation from the original cohorts who were able to undergo BAL, which 

theoretically may have been a less severe group and had different mortality and allele 

frequencies from the original cohort (accounting for the differences in Tables 5.7 and 

5.8). This limits the strength of conclusions from this subpopulation introducing a 

potential selection bias although the data provide observational information about the 

relation between BAL and plasma VEGF level and genotype with this proviso. 

Ideally, it would have been preferable to sample both plasma and BAL fluid both 

early and later during the period of illness for both genotypes and in all patients to 

assess the possibility of a relation between genotypes and levels earlier in the course 

of the injury. In addition, it was not possible to sample at exactly the same point in 

the duration of illness, as there was some variability in date of admission to the ICU 

between patients with some inter-hospital transfers between ICUs. Finally, ideally it 

would have been preferable to obtain BAL urea values to derive epithelial lining 

fluid concentrations of VEGF to control for variation in BAL volume and dilution 

effects361 362.  
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The cohorts were not completely matched for age or risk factor profile. Post hoc 

analysis demonstrated a lower age in the normal group. Intrapulmonary VEGF levels 

have been reported to decline slightly with age (between the ages of 10 to 80 years 

up to 20 pg/ml), but vary minimally between the ages of 50-70 years, the age range 

of our cohorts277. The higher proportion of patients with sepsis and lower proportion 

of transfusion-related injury in the ARDS cohort limits the strength of our 

conclusions although sepsis is commonly the most prominent risk factor in “at risk” 

cohorts in such studies.  

 

Genetic confounding can cause population specific differences in allele frequencies. 

In this study, the T allele frequency in the normal group (0.11) was lower than that of 

previous studies in the same ethnic group (0.16)220. This is difficult to explain other 

than having occurred by chance. The same frequency was noted in the “at risk” 

cohort. Importantly, the T allele frequency in the ARDS group was higher than all of 

these suggesting an important difference (0.18). Moreover, an attempt was made to 

minimise genetic confounding by rigorous phenotypic classification (using an 

accepted international definition of ARDS and previously published definition of “at 

risk” although the latter is not an internationally accepted definition). However, acute 

lung injury is a heterogeneous condition and it is often not possible to narrow the 

phenotype of the “at risk” cohort. In this study, this was also not possible although 

sepsis was by far the largest constituent. Other confounders known to affect VEGF 

levels either positively (cancer) or negatively (increasing age, smoking, emphysema, 

interstitial lung disease) were excluded if possible (reviewed in section 1.2.10 in 

Chapter 1). 
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Well-matched controls in adequate number are also essential to any well-designed 

genetic association study. A ventilated “at risk” cohort was used for comparison in 

whom genotype frequencies were comparable to normal subjects to exclude the 

possibility of a false association with critical illness. However, it would have been 

preferable to have a ventilated non-ARDS respiratory failure control group in 

addition to control for the same level of critical respiratory illness. In addition, a 

ventilated non-“at risk” control group would have been preferable to control for 

ventilation itself as well as standard cohort of normal subjects. In this thesis, the 

ventilated normal control and non-ARDS respiratory failure control groups were not 

accessible weakening the association of any findings. All three groups of controls 

have been employed in select well-designed studies344.  

 

Prospective recruitment to each cohort was undertaken over the same time period 

reducing the possibility of recruitment bias as a cause of chance variation in 

genotype frequencies. The cohorts were all of Caucasian ethnicity to remove the 

possibility of altered genotype frequencies in different ethnicities. However, because 

different ethnicities have not been examined for the same polymorphism, the role of 

ethnic factors in polymorphism frequency variation cannot be resolved at the present 

time. Of note, a higher VEGF +936 CT genotype frequency has been reported in a 

Japanese cohort than would be expected in a normal Caucasian population224.  

 

It is also advantageous to be able to demonstrate a functional, biologically relevant 

effect of the polymorphism that might explain an association with susceptibility to 

the disease in question. The polymorphism study in this thesis fulfils these criteria, 

although the relation between genotype and intrapulmonary VEGF levels (potentially 

more relevant in lung injury) in normal subjects is not known.  

 

Finally, there is the possibility that the findings here are not causal and that the 

VEGF +936 CT polymorphism might be in linkage disequilibrium with another 

functional polymorphism, although this has yet to be demonstrated220. If future 

studies confirm such findings in independent populations and also for other 

functional VEGF polymorphisms, then linkage disequilibrium would be unlikely. 
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To control for multiple comparisons, post hoc Bonferroni statistical analysis was 

used. For contingency data, to remove errors related to low cell values with Chi-

squared test, the Fishers exact test was used for analysis. The polymorphism under 

study is associated with a functional effect on the gene product and our results are 

biologically plausible.  
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5.4.3 Conclusion 
In conclusion, individuals with the T allele are more susceptible to ARDS than 

normal subjects and ventilated “at risk” subjects. Those with the T allele develop 

ARDS of a higher physiological severity (higher APACHE III score) and increase 

plasma VEGF levels. However, presence of the T allele does not affect 

intrapulmonary VEGF levels or outcome. The lower intrapulmonary VEGF levels 

than plasma in both groups are consistent with previous observational data in ARDS 

and may reflect greater injury than suspected in the “at risk” group. These data, 

therefore, suggest a potential role for VEGF gene polymorphism in the development 

of ARDS in humans. In the future, intrapulmonary delivery of VEGF to those 

particularly susceptible according to the presence of the T allele may have a potential 

therapeutic role either in reducing the risk of ARDS or reducing severity of disease 

in those with established disease and genotyping may help target such therapy.  

 

Before such therapies become reality, further studies are required to assess the effects 

of the T allele on resident lung cells especially alveolar epithelium, isoform 

switching, receptor expression and alteration in VEGF transcripts. Moreover, further 

gene microarray experiments including the VEGF gene amongst other candidates in 

cellular, animal and human models will help to refine the functionally important and 

relevant genes and clarify the strength of any possible association. Amongst other 

alleles, the possible role of other functional VEGF polymorphisms needs to be 

appraised220-222. Using the “candidate gene” approach, future studies also 

incorporating transgenic and knockout models of the VEGF gene and other relevant 

candidates will add further clarity to the genetics of acute lung injury. Further 

rigorously designed genetic association studies on the functional VEGF polymorphic 

genes are required adequately powered to detect changes in outcome.  
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CHAPTER 6: CONCLUSIONS 
 

This chapter will summarise the significant findings from the results Chapter 3-5 in 

this thesis and highlight in the conclusions that can be drawn but also the limitations 

of the experiments. In addition, I will suggest how the experiments could be 

optimised, if repeated, what other questions are unanswered and what experiments 

are required in the future, Finally, I conclude with a revised hypothesis based on all 

the above for the role of VEGF in repair and recovery from acute lung injury.  

 

 

 

Part of this chapter has been published in Thorax. 

Medford ARL, Millar AB. 

Vascular endothelial growth factor (VEGF) in acute lung injury (ALI) and acute 

respiratory distress syndrome (ARDS): paradox or paradigm? 

Thorax 2006 61: 621-6. 
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6.1 Conclusions 
Research into acute lung injury in human studies is hampered by the lack of a 

specific definition until recent times, the lack of a specific biomarker to confirm the 

diagnosis, the heterogeneity of inducing factors and outcomes, the lack of an animal 

model mimicking acute lung injury exactly and the lack of understanding of any 

relevant genetic factors363 364. As well as the endothelium, the alveolar epithelium is 

of paramount functional importance with recovery being essential to establish fluid 

clearance, prevent fibrosis and restore gas exchange in ARDS337.  

 

As I have reviewed earlier in this thesis, VEGF is a potent permeability, angiogenesis 

and survival factor, known to act on vascular endothelium. VEGF is known to be 

abundant in the lung on the basis of cellular, animal and clinical studies, especially 

alveolar epithelium. Initial clinical and animal overexpression studies had led to the 

initial hypothesis that VEGF may be responsible for the noncardiogenic pulmonary 

oedema in ARDS.  

 

However, human clinical studies in normal subjects have clearly demonstrated high 

intra-alveolar VEGF levels in the absence of ARDS or angiogenesis that would not 

be consistent with this hypothesis. In addition, as reviewed in Chapter 1, a wealth of 

accumulating cellular, animal and clinical studies have demonstrated recovering 

intra-alveolar VEGF levels following lung injury. Moreover, intervention studies of 

VEGF blockade in animals have demonstrated profound alveolar architectural 

abnormalities similar to emphysema as well as defects in the pulmonary vasculature. 

These studies have led to the revised hypothesis that VEGF is protective and that it 

has a role in recovery and repair in acute lung injury. As I have also reviewed, 

despite the apparent conflicts in the literature, a lot of these differences can be 

explained by methodological differences, species differences, and variations in 

alveolar-capillary membrane injury. 
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6.1.1 Alterations in VEGF receptor expression and isoform 
switching 
To explore this reparative VEGF lung hypothesis further, I have explored possible 

reasons for the observed alterations in intra-alveolar VEGF levels following injury. 

One possible such explanation would be a significant alteration in available VEGF 

binding sites (receptors) and also changes in isoform transcription (isoform 

switching); both leading to significantly altered VEGF bioactivity.  

 

In Chapter 3, I have demonstrated VEGF protein and receptor (VEGFR2, VEGFR1 

and NRP-1) expression on both sides of the alveolar-capillary membrane; alveolar 

epithelium, alveolar macrophages and vascular endothelium. However, expression is 

heterogeneous in normal, early and later ARDS lung. In normal lung, VEGFR2 (the 

main functional receptor for VEGF bioactivity) expression is increased relative to 

VEGFR1 (the functioning decoy receptor) consistent with a protective non-injurious 

function in the normal lung. VEGFR1 and NRP-1 expression is decreased in early 

ARDS with persistent decreased expression of NRP-1 in later ARDS (although 

significantly higher than its expression in early ARDS). In later ARDS (albeit in 

necropsy tissue), I have demonstrated an increase in VEGF, VEGFR2 and VEGFR1 

expression versus normal and early ARDS lung. These changes would facilitate a 

greater VEGF biological signal in the recovery stage of lung injury (albeit in 

necropsy tissue where there has been failure of the recovery mechanism) although 

the functional consequences of the changes in expression in early ARDS are more 

difficult to interpret. 
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I have also demonstrated no evidence of isoform switching at transcriptional level. 

Changes in isoform switching cannot therefore account for the observed reduction in 

soluble intra-alveolar VEGF levels in early ARDS although post-transcriptional 

mechanisms cannot be exlcuded247 249. In addition, there is a consistent increase in 

transcription of all three VEGF isoforms in later ARDS compared to early lung 

injury. Despite the use of necropsy tissue, these data can be interpreted as showing 

an increase in VEGF transcription in “failed” recovery (necropsy tissue), which 

supports the findings of increased VEGF and receptor protein expression at this 

stage. These data are also consistent with published animal and clinical observational 

studies on higher intra-alveolar VEGF levels in recovery (albeit “failed” recovery, in 

necropsy tissue) from lung injury247 249. An alternative interpretation of a 

pathological hypothesis can potentially be based on the necropsy tissue data. 

However, if all existing data (especially intervention studies) are considered, then the 

data are still consistent with the VEGF reparative hypothesis, demonstrating “failed” 

repair with increased VEGF activity in necropsy tissue.  
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6.1.2 Human ATII cells as the predominant cellular source of 
VEGF and their response to injury 
I have co-localised VEGF protein expression with type 2 alveolar epithelial cells by 

dual staining immunohistochemistry indicating that ATII cells in the alveolar 

epithelium are the principal intrapulmonary source of VEGF. To explore this further, 

I have conducted further experiments in primary cultured human ATII cells, the 

closest available cellular surrogate to the human in vivo alveolus.  

 

6.1.2.1 Human ATII cell isoform and receptor expression in response to 
pro-inflammatory cytokines 
Having established ATII cells as the important cellular intrapulmonary VEGF 

source, it was further hypothesised that ATII cells express significant amounts of 

VEGF protein, that VEGF acts as an ATII cell mitogen and that ATII cell VEGF 

isoform and receptor expression is profoundly altered in a pro-inflammatory milieu 

simulating the alveolar micro-environment in ARDS.  

 

I have demonstrated human ATII cells are a principal source of VEGF in the lung 

expressing significant amounts of VEGF protein and the three predominant isoform 

transcripts (VEGF121, VEGF165 and VEGF189) and specific receptors (VEGFR1, 

VEGFR2 and NRP-1) in vitro. As discussed in Chapter 4, I have demonstrated a 

variable response of human ATII cells to stimulation. LPS increased human ATII 

cell transcription of VEGF121, VEGF189 isoforms and VEGFR1. However, LPS did 

not increase VEGF protein expression in ATII cell culture over control. VEGF 

(10ng/ml) increased transcription of all three isoforms and VEGFR1 (as well as 

1ng/ml for the latter) but decreased VEGFR2 (0.1ng/ml) and NRP-1 transcription 

(1ng/ml). TNF decreased NRP-1 transcription.  

 

These data confirm expression of VEGF binding sites on the alveolar epithelium, 

which facilitates an autocrine role for VEGF in the injured alveolus. This would be 

an important mechanism for locally secreted VEGF to exert its protective effect on 

the epithelium (discussed further in section 6.1.2.2). Such an autocrine role has been 

demonstrated in epithelial cells, albeit in the kidney and not in the lung as yet106.  
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It is postulated the differential response of ATII cells to these cytokines in terms of 

isoform and receptor expression may indicate a strategy by the alveolus to maximise 

VEGF release from the epithelium but to act more distally. The effects of VEGF in 

particular on its isoform and receptor expression are variable and intriguing. VEGF 

appears to positively regulate its isoform expression especially at 10ng/ml which 

would amplify a positive VEGF biological signal at times of significant VEGF 

release eg) following recovery from lung injury. At the same time, VEGF positively 

regulates VEGFR1 expression that would theoretically regulate VEGF activity 

assuming VEGFR1 functions as a decoy receptor. VEGF also negatively regulates 

VEGFR2 and NRP-1 but only at specific and lower concentrations suggesting a more 

complex, non-linear control mechanism of negative and possibly positive regulation 

involving a threshold. Ultimately, such mechanisms may serve to deliver maximal 

VEGF biological signal at times of recovery from injury in a temporally and spatially 

regulated fashion. However, only further experiments will confirm this question (see 

section 6.3).  

 

The failure of LPS to increase VEGF protein expression (as opposed to the increase 

in transcription noted) requires explanation but may either indicate post-

transcriptional regulatory mechanisms or reflect high protein expression in the 

normal lung in the non-injured state. Transcriptional rates in these states and post-

transcriptional effects must be the subject of further study (see section 6.3). 
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6.1.2.2 The effects of VEGF on human ATII cell proliferation 
I have found no clear evidence of a significant increase in human ATII cell 

proliferation with VEGF although the addition of sflt to higher doses of VEGF (10 

and 100 ng/ml) resulted in a significant decrease in proliferation. These data can be 

interpreted as supporting the role for VEGF at least as an alveolar survival factor but 

these experiments were limited in number with significant heterogeneity. VEGF is 

well known to act as a survival factor for ATII on vascular endothelial cells via 

upregulation in anti-apoptosis proteins but this has not yet been described in alveolar 

epithelium118. The failure of sflt to inhibit proliferation versus control without VEGF 

suggests that either endogenous VEGF levels in the experiments were too high or too 

low to be affected.  

 

As reviewed in Chapter 4, studies investigating alveolar proliferation are conflicting. 

These discrepancies may be due to cellular differences (A549 cells rather than ATII 

cells), species differences (developing human lung, rodent and murine lungs), 

developmental time factors, different time points and other aspects of methodology 

(not human ATII cells). In addition, there has been a consistent failure to assess 

DNA uptake and cell number as well as cytotoxicity to confirm an effect on 

proliferation rather than cell survival. 
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6.1.3 Functional VEGF polymorphisms as potential genetic 
susceptibility factors to the development of acute lung injury 
As reviewed in Chapter 1, differential susceptibility to developing ARDS or acute 

lung injury exists but the mechanisms behind this are unclear. Functional 

polymorphisms are one possible explanation to these observations. As an extension 

to the VEGF reparative hypothesis, it was hypothesised that functional VEGF 

polymorphisms would alter susceptibility to the development of and severity of 

ARDS. As reviewed in Chapter 5, I have investigated the possible role of a 

functional VEGF polymorphism (+936 CT) in clinical cohorts.  

 

Presence of the VEGF +936 T allele confers increased susceptibility to ARDS and is 

also associated with increased physiological severity of injury, as defined by an 

increased APACHE3 score. In normal subjects the T allele is associated with a 75% 

reduction in plasma VEGF levels although the mechanisms behind this remain 

unclear. Altered transcription factor binding has been postulated as one such 

mechanism220. The relationship with intra-alveolar levels in normal subjects is not 

known at the present time. In ARDS, I have demonstrated a significant effect of the 

T allele, different to that reported in normal subjects, with an increase in plasma 

VEGF levels (unlike the “at risk” cohort where no effect was demonstrated). I did 

not detect an effect of the T allele on BAL VEGF levels. The higher plasma VEGF 

levels in the T allele group may partially explain the associated higher physiological 

disturbance and potentially the increased susceptibility to developing ARDS. These 

higher levels may indicate greater leakage of intrapulmonary VEGF levels and 

greater damage to the alveolar-capillary membrane. The exact mechanisms by which 

the T allele facilitates greater injury and its effects on intra-alveolar isoform 

switching remain unclear. The exact mechanisms by which these changes occur and 

the effects (if any) on VEGF isoform expression remain to be elucidated.  
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6.1.4 Potential role for VEGF165b and other inhibitory isoforms 
This novel discovery has lead to a requirement for a reappraisal of all VEGF 

research. At the current time, the only technique able to distinguish between these 

isoforms is by RT-PCR using isoform-specific primers that flank the exon 9-

containing region. More recently, specific VEGF165b protein methodologies have 

been developed181 334. Specialised epithelial cells (podocytes) have been found to 

express this isoform and to display isoform switching334.  

 

There is the intriguing possibility of a whole VEGFxxxb family of inhibitory isoforms 

renamed as VEGFxxx-A isoforms as there is no true intron between exon 8 and 9 

(Figure 1.17)181 334.  

 
Figure 6.1: Putative VEGFxxx-A family of isoforms. Exon 9 has been renamed exon 8b 
with distal splice site selection (DSS) as opposed to the usual exon 8a with proximal 
splice site selection (PSS) associated with the normal VEGF isoform family. Source: 
Cui TG et al.334 

 

More recent data has shown expression of a VEGFxxxb superfamily in human 

podocytes as well as inhibition of VEGF–mediated VEGFR2 signalling and 

angiogenesis in the eye and viscera181. Mimicking a splicing switch (using A375 

melanoma cells) from VEGF165 to VEGF165b inhibited tumour growth in vivo in 

mice181. The possible existence of VEGF165b or a VEGFxxxb superfamily in alveolar 

epithelium remains currently unknown, whether switching occurs between 

stimulatory and inhibitory isoforms and the relationship of switching to acute lung 

injury.  
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6.2 Caveats and suggested repeat experiments 
The conclusions in this thesis must be assimilated with the acknowledgement of 

some limitations with the techniques and experimental design used. I will now 

review some of the key limitations and how I would repeat such experiments again in 

the light of these issues.  

 

6.2.1 Whole lung tissue experiments 
The immunohistochemistry experiments are limited by the fact that the experiments 

were conducted in necropsy ARDS lung tissue (introducing an alternative 

interpretation potentially of the results, discussed in Chapter 3) and also by the low 

patient number. Moreover, the use of only sepsis-related ARDS cases, with time for 

6 hours of necrolysis and using post mortem tissue consented on clinical grounds 

only introduce further confounders. These include protein damage, and selection bias 

based on aetiology and case severity. Ideally, in vivo surgical lung biopsy ARDS 

lung tissue would be the gold standard to investigate VEGF biology to minimise 

necrolysis and assess a variety of case severities without post mortem selection 

issues. Surgical biopsies are scarcely performed now due to difficulties in patient 

consent, rapidity of illness in ARDS or lack of on site thoracic surgical expertise. As 

reviewed in Chapters 1 and 3, VEGF levels have been observed to correlate with 

survival with failure to increase intra-alveolar and reduced plasma levels associated 

with poorer outcome247. 

 

Indeed, immunohistochemistry is an excellent technique for localisation but can only 

give limited information on quantitation and functional changes. Assumptions about 

similar affinity between different antibodies limit the strength of conclusions 

comparing staining of different antibodies in the same lung tissue. In addition, data 

on individual VEGF isoform protein expression are not currently available, as 

isoform specific antibodies are not yet developed for ELISA, Western blotting or 

immunohistochemistry. The immunohistochemistry antibody detects VEGF121, 

VEGF165 and VEGF189. The ELISA antibody detects both VEGF121 and VEGF165. 

Hence, the immunohistochemistry data provide a composite of all three isoforms.  
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Although I have demonstrated expression of VEGF receptor protein on alveolar 

epithelium, it would be important to demonstrate by dual staining techniques, co-

localisation of VEGF receptors (in addition to VEGF) with ATII cell markers. This 

would add weight to the hypothesis of VEGF having an autocrine role on such cells 

and a protective role in recovery from injury. 

 

In addition, VEGF165b specific antibodies are not currently available to allow 

anatomical localisation of VEGF165b in the lung. This has important functional 

implications in terms of overall VEGF bioactivity, given its profound functional 

differences to the other VEGF isoforms (reviewed in Chapter 1).  

 

Semi-quantitative RT-PCR has many limitations as discussed in chapter 2 including 

variations in housekeeping gene expression and a variety of limitations during RT-

PCR, imaging and densitometry. In addition, the process of RNA extraction from 

paraffinised lung tissue is technically challenging and theoretically can lead to loss of 

product structural integrity at higher sizes due to cross-linking (see Chapter 3). Real-

time PCR would allow more precise quantification of changes at the transcriptional 

level309. This methodology was not locally available at the time of performing these 

experiments.  

 

In summary, the optimal design of the immunohistochemistry experiments would use 

higher n numbers of in vivo surgical biopsy lung tissue. Comparisons of staining 

would ideally be performed only of different antibodies with similar or known 

affinities. To assess VEGF isoform transcript localisation in the absence of isoform-

specific antibodies for all the main isoforms as well as VEGF165b), in situ 

hybridisation using isoform-specific primers would give some information on pre-

translational lung isoform expression providing some anatomical data. Real time 

PCR analysis of extracted RNA from non-paraffinised whole ARDS lung tissue with 

isoform specific antibodies would provide functional data on isoforms expression at 

stages of injury negating the problems of paraffinised tissue RNA extraction and the 

other complications with this technique.  
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6.2.2 Human ATII cell experiments 
The ATII cell experiments are limited by low n number which reflects the difficulty 

in obtaining such lung tissue and the difficulties of the technique with regard to cell 

yield because of the purification and extraction process. Lung tissue is limited 

because of the reluctance for patient consent for research purposes and also the 

requirements for macroscopically normal lungs, devoid of gross emphysema or 

cancer which would profoundly affect VEGF levels (as reviewed in Chapter 1).  

 

It is difficult to ensure complete cell purity with ATII cell culture despite stringent 

efforts to remove other cell types in the extraction process, especially alveolar 

macrophages. Indeed, the cells were phenotyped as ATII cells using all available 

methods. It is impossible to exclude small areas of micro-emphysema (given that the 

all the patients were ex-smokers), which would be expected to alter VEGF levels (as 

discussed in Chapter 1).  

 

The MTS assay has many limitations as reviewed in Chapter 4. There are 

assumptions that detected increased cell viability is due to increased cell proliferation 

but thus does not exclude effects on increased cell survival or reduced apoptosis. 

Such effects which are described for VEGF in vascular endothelium118. To confirm 

specificity and verify an effect on proliferation, an assessment of DNA incorporation, 

apoptosis and cell count is necessary.  

 

It is possible that the cell number used, the time points of cell culture, degree of 

confluence and incubation time with cytokines may have underestimated the effects 

seen on proliferation. In addition, serum starving was not used to confirm the cells 

were all in G0 phase although this was because of the concern of further injury to the 

cells, low cell yield and limitations in lung tissue supply.  
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As discussed earlier in section 6.2.1 and Chapter 2, semi-quantitative RT-PCR has 

many limitations at the level of housekeeping gene expression, genomic DNA 

contamination, RT-PCR, imaging and densitometry processes. Real time PCR would 

allow more precise quantification of changes at the transcriptional level in ATII 

cells309. This would allow, for example, the exploration and confirmation of the 

apparent non-linear (not dose-dependent) effects of VEGF at different concentrations 

on receptor and isoform expression. It would also confirm the presence of complex, 

non-linear negative and positive feedback regulatory transcriptional mechanisms. 

When isoform-specific antibodies are available, this will allow functional studies at 

transcriptional and translational levels.  

 

It would be important to measure ATII cell supernatant VEGF levels to assess 

endogenous VEGF protein expression in response to the various experimental 

conditions. Significant extremes of endogenous VEGF levels in the supernatants 

might account for the failure of sflt to alter proliferation compared to control (see 

Chapter 4).  

 

Another potential confounder is exogenous VEGF in neonatal calf serum (NCS) in 

the ATII cell experiments. It would be important to assess VEGF presence and 

concentration in NCS, as although not described in the literature, other sera have 

permeability-inducing effects (as discussed in Chapter 4). 

 

In summary, higher numbers of bigger volume lung tissue are needed, devoid of 

microscopic cancer or emphysema, from never-smokers to repeat these experiments. 

This would allow extraction of higher cell numbers to assess proliferation by 

concurrent cell viability assay DNA incorporation assay, apoptosis assay, cell count 

and assessment of cell cycle stage using sflt with all VEGF concentrations. RNA 

extraction followed by real time PCR would provide more accurate functional data 

on isoform expression with concurrent measurements of supernatant (and NCS) 

VEGF levels with isoform-specific antibodies when available.  
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6.2.3 Genetic association study 
It was not possible to perform matched plasma and BAL VEGF measurements in this 

study for all the patients due to a variety of haemodynamic, ethical, procedural and 

temporal factors. As discussed, this led to an inevitable alteration of the total “at 

risk” and ARDS cohort as not all patients underwent BAL. This limits the 

applicability of conclusions from this “sub-cohort” to the original cohort. It is 

impossible to exclude a degree of genetic confounding leading to population specific 

differences in allele frequencies in this genetic study despite my stringent attempts to 

characterise the cohorts carefully. I also attempted to minimise other confounders of 

VEGF levels including age, smoking, cancer, critical illness and recruitment bias. 

However, it was not possible to measure matched plasma and BAL VEGF levels in 

normal subjects to assess the relation between the T allele and BAL VEGF levels. In 

addition, a matched non-inflammatory pulmonary oedema cohort was not included to 

exclude a confounder of non-specific hypoxaemia and pulmonary oedema.  

 

In summary, the optimal design of a repeat genetic association study looking at the 

936 CT polymorphism would have adequate statistical power to demonstrate a 

significant difference in susceptibility which might necessitate a multi-centre study. 

Measurements of both matched BAL and plasma VEGF would be performed 

simultaneously to assess the relation between the T allele and intra-alveolar VEGF 

levels with the whole cohort undergoing BAL to avoid inadvertent subpopulation 

issues. Such a repeat study would include a non-inflammatory pulmonary oedema 

cohort (on the basis of a clinical diagnosis of cardiogenic pulmonary oedema, 

elevated PAWP or low oedema fluid protein ratio) cohort of equal impaired 

oxygenation to control for the severity of illness to confirm the specificity of these 

findings. This would be in addition to cohorts of normal subjects, ventilated controls, 

ventilated “at risk” and ventilated ARDS patients.  
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6.3 Future additional experiments 
In addition to repeating some of the experiments to try and reduce the limitations 

discussed in section 6.2 (and reviewed in more detail in Chapters 3 to 5), I will now 

discuss the key future questions that remain. I will now discuss what further future 

experiments are necessary to answer the questions. Perhaps the most important 

information will be obtained from relevant transgenic overexpression and knockout 

animal models. 

 

The exact function and relative expression of VEGF165b remains to be clarified 

because of limitations in detecting it and differentiating it from VEGF itself although 

more recent data are encouraging in this regard suggesting a VEGFxxxb isoform 

superfamily181. Specific transgenic animals overexpressing these isoforms or with 

knockouts may clarify their role. Indeed, the mechanisms behind isoform switching 

(if it occurs) are crucial as there is evidence that mimicking a VEGF165 to VEGF165b 

switch can have anti-tumour effects in vivo for example181. This may have 

therapeutic relevance in the injured lung.  

 

Selected VEGF isoform knockout animal models of lung injury may help to further 

define their relative functional importance in terms of development, susceptibility, 

and response to lung injury. Animal models of lung injury will also provide testing of 

possible local intrapulmonary VEGF therapies once the relative importance of the 

isoforms has been evaluated including the VEGFxxxb family. Functional genomic and 

proteomic analysis in such models will help define other important molecules in this 

regard. It is important to assess the functional effects of all the different VEGF (and 

VEGFxxxb) isoforms on alveolar epithelial (ideally human ATII) cells in terms of 

isoform expression and proliferation.  
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More studies are required to assess alveolar epithelial repair in acute lung injury. 

ATII proliferation takes 24-48 hours to become significant in recovery from lung 

injury365. Therefore, other mechanisms such as cell migration and spreading may 

contribute to alveolar epithelial repair337. The potential role of VEGF in these other 

repair functions in the alveolus remains currently poorly understood and requires 

clarification.  

 

It would be advantageous to assess other key cells (including lung microvascular 

endothelial cells) involved in the alveolar-capillary membrane ie) ATII cells in co-

culture with microvascular endothelial cells. In particular, the response of lung 

microvascular endothelial cells to VEGF and pro-inflammatory cytokines is 

important to assess given the apparent differential response of ATII cells in terms of 

isoform and receptor expression. This would clarify whether intra-alveolar VEGF 

exerts a more distal effect in ARDS in addition to its proximal effect on alveolar 

epithelium. This would also involve assessing the relationship between endothelial 

and epithelial injury and the fibrogenic response. ATI cells are notoriously difficult 

to culture but would also be key cells to investigate. It would be important to 

evaluate isoform and receptor expression at the posttranscriptional level as discussed 

previously to determine the nature and extent of post-transcriptional regulation 

especially in response to pro-inflammatory cytokines in addition to VEGF165b 

expression.  

 

When isoform-specific and VEGFxxxb antibodies become available, this will allow 

anatomical localisation and functional analysis of their expression in normal and 

ARDS lung tissue as well as ATII cells to complement the experiments performed so 

far at transcriptional level.  
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The importance of VEGF gene studies would be strengthened by microarray studies 

assessing the important upregulated genes in ARDS to confirm that this is a 

polymorphic gene which requires further investigation in case control studies. 

Assuming this to be the case, there are many other functional VEGF polymorphisms 

requiring study that have biologically plausible effects. More work is required on the 

particular mechanisms of the functional effects seen with the polymorphic alleles, in 

terms of changes in transcription factor activity, isoform switching or other signal 

transducer effects.  

 

Finally, any appraisal of the role of VEGF will have to take into account the relative 

contribution of other relevant molecules such as sflt (whose levels are known to be 

altered in acute lung injury), angiostatin and the Tie family as well as other possible 

relevant ATII mitogens such as EGF, HGF, KGF and TGF to allow a better 

understanding of VEGF signalling mechanisms158 337 366. The importance and 

interaction of other factors such as mechanical and physical forces must be appraised 

and their relative contribution and effects on VEGF activity.  
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6.4 Postulated action of VEGF in the alveolus: a 
revised hypothesis 
As reviewed, much of the literature on VEGF in lung injury is conflicting but these 

differences can be attributed to different methodologies, species and time points. 

With this in mind, the most convincing interventional studies point to a protective 

role for VEGF in the lung.  

 

In the light of the experiments in this thesis, I conclude that VEGF is indeed an ATII 

cell survival factor acting in an autocrine manner and ATII cells are the predominant 

intrapulmonary source (see Figure 6.2). Although isoform switching does not occur, 

there is significant VEGF receptor upregulation in later ARDS. ATII cells exhibit a 

differential response to the inflammatory milieu in ARDS with an amplified isoform 

expression response but relative underexpression of VEGF receptors. Functional 

VEGF polymorphisms also have a role in determining susceptibility to and severity 

of lung injury.  
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I hypothesise367 (see Figure 6.2) in the light of the above, that these changes 

maximise VEGF protective biological actions in the alveolus especially in later 

ARDS with a reduced VEGF signal in early ARDS via reduction in isoform 

transcription, coupled with the reduced intra-alveolar VEGF levels noted in 

observational studies at this time. This hypothesis explains the high intra-alveolar 

VEGF levels in normal subjects despite no ongoing angiogenesis in the normal lung. 

In my revised hypothesis, I also speculate that VEGF has a more distal action on 

targets other than ATII cells via the observed relative down-regulation of ATII 

VEGF receptors in the inflammatory state that may also act as a regulatory control 

mechanism to limit VEGF release in a controlled fashion in response to injury. In 

addition, VEGF is an ATII cell survival factor and I speculate this would involve 

down-regulation of apoptosis, but the exact mechanisms remain to be clarified. 

Although the experiments in this thesis did not support a contribution as an ATII cell 

mitogen, I hypothesise that there may be a contributory role here too which was not 

confirmed because of methodological limitations discussed in Chapter 4. VEGF 

genotypes may account for the observed differential susceptibility to acute lung 

injury involving a “two hit” theory of susceptible genotype followed by other direct 

(aspiration) or remote (gut sepsis) injury triggering the cytokine cascade leading to 

full blown acute lung injury.  
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Figure 6.2: Revised hypothesis of function of VEGF in the alveolus (see text for 
details, section 6.4). Adapted from Medford et al.367 (see Appendix 1). Symbols: *“Two 
hit” theory: 1. Susceptible VEGF genotype eg) 936 T allele; 2. Injury (direct/remote). 
**Increased ATII cell survival: ?mechanism ↓apoptosis? †Differential response to 
inflammation: ↑VEGF isoform expression but limited ATII VEGFR upregulation: distal 
target and regulatory control? ††Autocrine loop on ATII cells. 

*

**  

††  
†  

**  

**  
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6.5 Final comment 
In conclusion, much still has to be learned about VEGF before therapy can be 

contemplated in ARDS as illustrated by the paradoxical results highlighted in 

Chapter 1 in animal models using VEGF delivery. However, VEGF has been 

identified as a potentially important mediator in repair and recovery from ARDS and 

has been utilised as a potential therapy in respiratory distress syndrome. Despite 

apparent discrepancies, accumulating cellular, animal and clinical studies suggest a 

protective role for VEGF in the lung. Whether VEGF is simply an ATII survival 

factor or actually a mitogen remains to be clarified and the exact mechanisms behind 

its alveolar protective function still need to be clarified. The future challenge will be 

to better understand the basic mechanisms underlying its role allowing generation of 

more targeted and effective therapies conferring additional information on response 

to treatment, prognosis, severity and susceptibility.  
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APPENDIX 1: PAPERS 

 

I enclose papers published in peer-reviewed journals relevant to the material in this 

thesis. The first paper is a review article summarising some of the literature reviewed 

in Chapter 1 and also some of the hypotheses discussed in further detail in Chapter 6. 

The second paper is a genetic association study relates to the data discussed in 

Chapter 5. The third paper illustrates the technique of human ATII cell culture used 

in Chapter 4. 

 

Papers 
1. Medford ARL, Millar AB. Vascular endothelial growth factor (VEGF) in acute 

lung injury (ALI) and acute respiratory distress syndrome (ARDS): paradox or 

paradigm? Thorax 2006 61: 621-6. 

 

2. Medford ARL, Keen LJ, Bidwell J, Millar AB. Vascular endothelial growth 

factor gene polymorphism and acute respiratory distress syndrome. Thorax 2005 

60: 244-48.  

 

3. Armstrong L, Medford ARL, Uppington KM, Robertson J, Witherden IR, Tetley 

TD, Millar AB. Expression of functional toll-like receptor-2 and -4 on alveolar 

epithelial cells. Am J Resp Cell Mol Biol 2004 31(2): 241-5. 
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APPENDIX 2: ABSTRACTS 
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1. Medford ARL, Armstrong L, Millar AB. The effect of vascular endothelial 

growth factor (VEGF) on primary human cultured type 2 alveolar epithelial 

(ATII) cell proliferation. Eur Resp J 2004 24(Suppl 48): 29-30s [S318]. 

 

2. Medford ARL, Armstrong L, Gillespie KM, Millar AB. The effect of 

proinflammatory cytokines on primary human cultured alveolar epithelial cell 

expression of vascular endothelial growth factor (VEGF) isoforms. Thorax 2003 

58(Suppl III): iii18-19 [S58]. 

 

3. Medford ARL, Keen LJ, Thickett DR, Hunter KJ, Millar AB. Plasma vascular 

endothelial growth factor (VEGF) levels and the VEGF +936C/T polymorphism 

in acute respiratory distress syndrome (ARDS). Thorax 2002 57(Suppl III): iii18-

19 [S54]. 
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Poster presentations 
1. Medford ARL, Thickett DR, Keen LJ, Armstrong L, Hunter KJ, Millar AB. 

Relationship between vascular endothelial growth factor plasma and 

bronchoalveolar lavage levels and +936 C/T polymorphism in acute respiratory 

distress syndrome. Am J Resp Crit Care Med 2003 167(7): A664. 

 

2. Medford ARL, Godinho SIH, Armstrong L, Uppington KM, Bates DO, Harper 

SJ, Millar AB. Vascular endothelial growth factor isoform expression in acute 

respiratory distress syndrome. Am J Resp Crit Care Med 2003 167(7): A662. 

 

3. Medford ARL, Godinho SIH, Armstrong L, Uppington KM, Bates DO, Harper 

SJ, Millar AB. Vascular endothelial growth factor (VEGF) isoform expression in 

primary human cultured alveolar epithelial cells. Eur Resp J 2003 22(Suppl 45): 

84s [P619]. 

 

4. Medford ARL, Kendall H, Armstrong L, Millar AB. Expression of vascular 
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respiratory distress syndrome (ARDS). Am J Resp Crit Care Med 2002 165(8): 

A474. 

 

5. Medford ARL, Thickett DR, Keen LJ, Bidwell J, Millar AB. Frequency of 
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6. Medford ARL, Armstrong L, Godinho SIH, Bates DO, Harper SJ, Millar AB. 

Vascular endothelial growth factor isoforms (VEGF165b, VEGF165 and VEGF189) 

expression in human and injured murine lung. Thorax 2002 57(Suppl III): iii69 
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APPENDIX 4: 
PRIMER SEQUENCES FOR RT-PCR 

 

NB: All programmes use 35 cycles 
 

Product Forward primer Reverse primer Base 
Pairs 

Annealing 
temp 

VEGF (exon 4-8): 
VEGF121, VEGF165 
and VEGF189 

GAGATGAGCTT

CCTACAGCAC 

TCACCGCCTCG

GCTTGTCACAT 

90, 222 

and 294 

55 

VEGF (exon 4-9): 
VEGF165b 

GAGATGAGCTT

CCTACAGCAC 

TTAAGCTTTCAG

TCTTTCCTGGTG

AGAGATCTGCA 

222 62 

VEGF (exon 7- 
3’UTR): VEGF165b, 
VEGF165-206 

GTAAGCTTGTA

CAAGATCCGCA

GACG 

ATGGATCCGTA

TCAGTCTTTCCT 

150, 200 62 

VEGFR1 GTCCACAGAAG

AGGATGAAGGT

GTCTA 

CACAGTCCGCC

ACGTAGGTGAT

T 

413 60 

VEGFR2 GCATCTCATCT

GTTACAG 

CTTCATCAATCT

TTACCCC 

332 55 

NRP-1 AAAAGCCCACG

GTCATAG 

TCTCATCCACA

GCAATCC 

509 55 

SP-C AGCAAAGAGGT

CCTGATGGA 

CTAGTGAGAGC

CTCAAGACT 

405 55 

AQP3 CCTTTGGCTTTG

CTGTCACTC 

ACGGGGTTGTT

GTAAGGGTCA 

373 55 

AQP5 GGTGTGCTCCG

TGGCCTTCCT 

CTTCCGCTCTTC

CCGCTGCTC 

760 55 

B2M  GCATCATGGAG

GTTTGAAGATG 

TAAGTTGCCAG

CCCTCCTAGAG 

233 55 

GAPDH GCCAAAAGGGT

CATCATCTC 

GTAGAGGCAGG

GATGATGTT 

286 55 

 

Table App4.1: Primer sequences for RT-PCR 
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APPENDIX 5: ELISA STANDARD CURVES 

Figure App5.1: ELISA standard curve for ARDS plasma samples (linear regression r2 = 
0.996, p < 0.0001). Dotted line denotes goodness of fit.  

 

 

 

 

 

 

 
Table App 5.1: Absolute values for ARDS plasma ELISA standard curve. 

Standard (pg/ml) Optical density (mean) Optical density (sd) 

31.2 0.037 0.001 

62.5 0.087 0.012 

125 0.164 0.003 

250 0.353 0.006 

500 0.615 0.014 

1000 1.133 0.052 
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Figure App5.2: ELISA standard curve for BAL samples (linear regression r2 = 0.99, p < 
0.0001). Dotted line denotes goodness of fit.  
 

Standard (pg/ml) Optical density (mean) Optical density (sd) 

15.6 0.051 0.004 

31.2 0.105 0.004 

62.5 0.152 0.028 

125 0.411 0.005 

250 0.723 0.065 

500 1.268 0.025 

1000 2.178 0.034 

Table App 5.2: Absolute values for BAL ELISA standard curve. 
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Figure App5.3: ELISA standard curve for “at risk” plasma samples (linear regression 
r2 = 0.99, p < 0.0001). Dotted line denotes goodness of fit.  
 

 

 

 

 

 

 

 

 
Table App 5.3: Absolute values for “at risk” plasma ELISA standard curve. 

Standard (pg/ml) Optical density (mean) Optical density (sd) 

31.2 0.038 0.018 

62.5 0.072 0.025 

125 0.15 0.009 

250 0.307 0.073 

500 0.483 0.085 

1000 0.888 0.173 
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Figure App5.4: ELISA standard curve for normal plasma normal samples (linear 
regression r2 = 0.99, p < 0.0001). Dotted line denotes goodness of fit.  
 

 

 

 

 

 

 

 
Table App 5.4: Absolute values for normal plasma ELISA standard curve. 

Standard (pg/ml) Optical density (mean) Optical density (sd) 

31.2 0.037 0.011 

62.5 0.069 0.022 

125 0.151 0.001 

250 0.257 0.035 

500 0.476 0.031 

1000 0.832 0.108 
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APPENDIX 6: SOLUTIONS 
(Sigma unless stated) 
 

1% Agarose gel 
1g agarose  

100ml 1 x TBE buffer 

 

ALP buffer 
127.1g magnesium chloride 

15.6g aminomethylpropanol 

Made up to 1 litre with distilled water 

pH 8.9 

 

ALP stain 
10mg napthol-AS-bisphosphate  

40μl dimethyl sulphoxide (DMSO) 

Made up to 10ml with ALP buffer 

10mg fast red violet 

Shake well 

Leave for 5 minutes then filter 

Make up just before use  

 

4.5M ammonium acetate 
129.8g ammonium acetate 

Made up to 100ml with distilled water 

 

Complete ATII culture medium  
10% NCS in DCCM-1 

2mM glutamine 

100 U/ml  penicillin 

100 μg/ml streptomycin 

0.02% fungazone 
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Digest buffer (FFPE) 
0.1g proteinase K 

10ml 10% SDS 

4ml 0.5M EDTA 

2ml 1M Tris, pH 7.4 

Made up to 100ml with distilled water 

 

0.5M EDTA 
18.6g EDTA 

Made up to 100ml with distilled water 

 

3% hydrogen peroxide (H2O2)/methanol 

500μl H2O2 

4.5ml absolute methanol (BDH, Poole, UK) 

 

LB (Luria-Bertani) medium and plates 
1% tryptone 

0.5% yeast extract 

1% NaCl 

pH 7.0 

Add 15g/L agar prior to above prior to autoclaving for plates 

Add 100μg/ml ampicillin after cooling to 55oC and invert and store at 4oC 

 

10x ligation buffer (cloning) 
60mM Tris-HCl, pH 7.5 

60mM magnesium chloride (MgCl2) 

50mM NaCl 

1mg/ml bovine serum albumin 

70mM β-mercaptoethanol 

1mM adenosine triphosphate (ATP) 

20mM dithiothreitol 

10mM spermidine 
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Nuclei lysis buffer  
4.67g sodium chloride 

0.149g EDTA (BDH, Poole, UK) 

0.142g TrisHCl  

0.134g Trizma base  

pH 8.2 

 

Phosphate buffered saline (PBS) 
40g sodium chloride (NaCl) 

5.8g di-sodium hydrogen phosphate (Na2HPO4) 

1g potassium di-hydrogen phosphate (KH2PO4) 

1g potassium chloride (KCl) 

Made up to 5 litres with distilled water 

pH 7.0 

 

Red cell lysis buffer 
7.7g (0.144M) ammonium chloride (BDH, Poole, UK) 

1ml 1M sodium hydrogen carbonate (Fisons, Loughborough, UK) 

Made up to 1 litre with distilled water 

 

RQ1 10x DNase reaction buffer (Promega) 
400mM Tris-HCl, pH 8.0 

100mM magnesium sulphate (MgSO4) 

10mM calcium chloride  

 

RQ1 DNase stop solution (Promega) 
20mM EGTA (pH 8.0) 

 

0.1% saponin/PBS 
2g saponin 

Made up to 2 litres with PBS 

pH 7.3 
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0.15M saline 
8.77g sodium chloride 

Made up to 1 litre in distilled water 

 

10% SDS 
10g SDS 

Made up to 100ml with distilled water 

 

SOC medium 
20g tryptone 

5g yeast extract 

0.5g NaCl 

Made up to 950ml with distilled water 

10ml of 250mM KCl added (1.86g KCl in 100ml distilled water) 

pH adjusted to 7.0 and volume increased to 980ml with distilled water 

10ml of 1M MgCl2 (20.33g MgCl2.6H2O in 100ml distilled water) 

10ml of 2M glucose (36g glucose in 100ml distilled water) 

 

3M sodium acetate  
24.6g Anhydrous sodium acetate 

Made up to 100ml with distilled water 

pH 6.0 (adjusted with glacial acetic acid) 
 

10 x TBE buffer 
14.8g EDTA 

111.4 g Boric acid 

217.8g Trizma base 

Made up to 2 litres with distilled water. 

Used at 1:10 diluted with distilled water (ie 1 x TBE buffer). 
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TE buffer 
1ml IM Tris, pH 7.5 

20μl 0.5M EDTA, pH 8.0 

Made up to 100mls with distilled water 

 

Tris (1M) 
121.1 g Trizma base 

Made up to 1 litre with distilled water 

 

0.01M tri-sodium citrate buffer 
4.4g tri-sodium citrate 

Made up to 1.5 litres with distilled water 

pH 6.0 
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APPENDIX 7: MISCELLANEOUS 
 

Using the Neubauer Haemocytometer 
 

The volume of one of the central nine squares equates to 0.1mm3 (1mm x 1mm x 

0.1mm depth) (10-4cm3), see Figure App7.1 below. 1ml has a volume of 1cm3. 

Therefore, the number of cells in one of the central nine squares (subdivided into 25 

squares) x 104 will give the number of cells per ml.  

 
 

N= the number of cells in 0.1mm3 (10-4 cm3) 

 

Total number of cells/ml = N x 104 

 

Total number of cells in solution = N x 104 x volume of original solution (ml) 

 
Figure App7.1: Principles of the Neubauer haemocytometer. 
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	RNA was extracted from formalin-fixed paraffin-embedded tissue sections using the Krafft technique306. Detailed methods are described in Chapter 2 (section 2.3.9). VEGF isoform-specific RT-PCR was performed on the RNA as described in Chapter 2 (section 2.3.10). Samples were visualised by agarose electrophoresis with ethidium bromide to allow image capture via a transilluminator and semiquantitative densitometry (section 2.3.11). 
	3.3.1 Indirect Immunohistochemistry
	 3.3.3 Dual staining
	Dual staining for ATII cells using AQP-3 demonstrated co-localisation of VEGF on ATII cells (see Figures 3.7a and b). 
	 3.3.4 VEGF isoform-specific RT-PCR semiquantitative densitometry
	 3.4 DISCUSSION
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	As already reviewed in Chapter 1, ARDS is the most extreme form of acute lung injury, characterised by non-cardiogenic pulmonary oedema, neutrophilic alveolitis and the development of potentially reversible fibrosis with a considerable morbidity and mortality2. In Chapter 1, I have discussed the importance of alveolar epithelial injury in the development of ARDS, although injury on both sides of the alveolar-capillary membrane is necessary. 
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	As already reviewed in the earlier chapters in this thesis, ARDS is the most extreme form of acute lung injury with a significant mortality and morbidity despite improvements in management of sepsis and ventilatory support23. Several properties of VEGF have led to investigation into its potential role in this condition as already discussed. Accumulating evidence is consistent with VEGF having a role in recovery from lung injury. This comes from in vitro studies, animal models and clinical observational studies. The apparent discrepancies in the literature which can be attributed to methodology and species differences. 
	In the presence of a given risk factor for developing acute lung injury, this does not automatically ensue. The incidence of ARDS has been observed as quite low in patients at risk of the syndrome, occurring in only 26% in one large study340. Moreover, the proportion of patients developing acute lung injury varied depending on the clinical risk factor, varying from 43% in sepsis to 25% in trauma340. In another prospective study, diabetic patients had a significantly lower incidence of ARDS (25% versus 47%)341. One of the potential explanations for all these observations is genetic factors. Polymorphic genetic factors controlling cellular and humoral immune responses are known to have a role in explaining the clinical variability in presentation, outcome and duration in other diseases342. 
	Genetic polymorphisms occur in at least 1% of the population. They may lead to alterations in the structure and function of proteins by substitution of a single base. Gene expression may be affected by a change in stability of mRNA or altered binding of transcription factors depending on the site of the polymorphism343. Polymorphisms that are associated with a biologically plausible and potentially functionally significant effect have been investigated by genetic association studies in particular to try and assess their contribution to susceptibility using a “candidate gene approach”. 
	 5.1.2 Genetic association studies in ARDS
	The genetic basis for acute lung injury remains poorly understood. This is for a variety of reasons. Firstly, specific allele association studies in acute lung injury have been until relatively recently lacking344. Secondly, despite the slow accumulation of evidence from such genetic association studies, genetic factors are likely to be complex in acute lung injury as it arises from diverse triggers in phenotypically variable population and there may well be interactions between the gene and environment as well as variable gene penetrance. Finally, methodological difficulties probably represent the main reason for current low number of studies and level of knowledge rather than the lack of functional polymorphisms with biologically plausible and potentially relevant effects. These include the need for accurate and rigorous phenotyping to remove disease heterogeneity, a sufficient sample size of sufficient statistical power considering the allele frequency, an appropriately matched control group of similar ethnicity (interracial differences in allele frequency may occur), additional appropriate matched controls for a ventilated disease cohort to control for critical illness and ventilation, the lack of confirmation in family-based or linkage association studies which are not feasible in acute lung injury due to its sporadic nature as in other diseases such as asthma, and the failure to often replicate such findings independently in another population as a further stringent test of potential association345. 

	5.2.2 Clinical data
	5.2.3 VEGF Measurements
	Plasma and BALF VEGF were measured using a sandwich ELISA kit (R&D Systems, Abingdon, UK) according to manufacturer’s instructions as described previously244 247. The detection limit was 2.9 pg/ml with 5% intra-assay and 7% inter-assay variability.
	 5.2.4 Statistical Analysis
	Using Quanto version 1.1 software (http://hydra.usc.edu/gxe/), assuming a T allele frequency of 0.16 as per existing studies, a type 1 error rate of 0.05, with two-way statistical significance at p < 0.05, and assuming a 1:1 control:case ratio, 142 cases and controls would be required to have 80% statistical power to demonstrate to detect an odds ratio of 2 difference in allele frequency220 318 319. Given the recruited numbers in this study, with a control: case ratio varying between 1.17:1 (for ARDS) to 1.33:1 (for “at risk”), the study was estimated to have 75.4% statistical power according to detect such a finding. 
	Data were analyzed using Graph Pad Prism version 4.0. The Ryan-Joiner test was used to assess normality of data. Nonparametric data were normalised using log transformation. ITU severity scores and ELISA data were compared by ANOVA with a post hoc Bonferroni correction to control for multiple group comparisons. Genotype and allele frequencies, age distributions and risk factor distributions were compared by the Fishers exact test to control for low cell values. The Chi Squared test was used for contingency table analysis of these when a subsequent analysis including the “ARDS excluded” cohort was performed (see section 5.2.1 for discussion). Data in bar charts are plotted as mean and standard error. Hardy Weinberg equilibrium was assessed using the Chi Squared test for allele frequencies. For all tests, a p value of 0.05 or less was considered significant.



	Table 5.1: Baseline characteristics (modified from Medford et al.359). “ARDS excluded” refers to ARDS cohort excluding those who developed ARDS from the “at risk” cohort (n = 17) during the period of study (see Methods section 5.2.1 for further discussion). *p < 0.001 Bonferroni N versus AR and ARDS, p < 0.01 Bonferroni †N versus “ARDS excluded”, p < 0.0001 (ANOVA)
	Risk factor
	“At risk”
	ARDS
	“ARDS excluded”
	p value
	Sepsis (combined)
	72 (69.9)
	99 (84.6)
	85 (85)
	0.01*
	Sepsis (chest)
	37 (35.9)
	61 (52.1)
	54 (54)
	0.02†
	Sepsis (abdomen)
	22 (21.4)
	30 (25.6)
	24 (24)
	0.76
	Sepsis (unknown site)
	10 (9.7)
	6 (5.1)
	5 (5)
	0.29
	Sepsis (nervous system)
	3 (2.9)
	2 (1.7)
	2 (2)
	0.82
	Massive transfusion
	22 (21.4)
	7 (6)
	6 (6)
	0.0002**
	Acute pancreatitis
	5 (4.9)
	9 (7.7)
	8 (8)
	0.61
	Inhalational injury
	4 (3.9)
	2 (1.7)
	1 (1)
	0.34
	Total
	103
	117
	100
	0.02†
	Table 5.2: Risk factor profiles for ventilated cohorts. Values are given as number (%). †Overall p < 0.02 (Chi Squared). *p < 0.01 sepsis (combined) AR v ARDS; †p < 0.02 sepsis (chest) AR v ARDS; **p < 0.0002 massive transfusion AR v ARDS. (Modified from Medford et al.359)
	Table 5.3: ICU severity scores. LIS = Lung Injury Score. Column 3 contains all relevant severity scores for all groups and genotypes expressed as mean values with standard error in parentheses. NB: data for APACHE2 log10 transformed to normalise prior to statistical analysis. *p < 0.05 (Bonferroni) ARDS CT,TT v ARDS CC (ANOVA, p = 0.02). (Modified from Medford et al.359)
	16.5% (n = 17) of the “at risk” group subsequently developed ARDS, pulmonary and abdominal sepsis being the commonest predisposing factors in these individuals (see Table 5.4 below). 
	Figure 5.1: Typical digitally captured image of IHG gel showing three easily differentiated VEGF +936 genotypes: CC, CT and TT. Please see Chapter 2 for detailed methods. 
	Table 5.5 shows the genotype and allele frequencies for the three different groups. For all samples, the genotype distribution was in Hardy-Weinberg equilibrium (see Tables 5.6 a-d) ((2 = 1.418, p = 0.50 for normal; (2 = 0.729, p = 0.70 for “at risk”; and (2 = 0.173 for ARDS, p = 0.92; (2 = 1.766, p = 0.41 for “ARDS excluded”). 
	 
	Group
	No
	Genotype frequencies (%)
	Allele frequencies (%)
	CT, TT
	CC
	T
	C
	Normal
	137
	27 (19.7)
	110 (80.3)
	30 (10.9)
	244 (89.1)
	“At risk”
	103
	20 (19.4)
	83 (80.6)
	22 (10.7)
	184 (89.3)
	ARDS
	117
	38 (32.5)*
	79 (67.5)
	41 (17.5)†
	193 (82.5)
	“ARDS excluded”
	100
	32 (32)**
	68 (68)
	33 (16.5)††
	167 (83.5)

	5.3.3 CT, TT Genotypes and Mortality (28 and 60 day)
	Table 5.7 shows 28 and 60 day mortality according to disease group and genotype. Although there was a non-statistical trend to higher mortality in the ARDS (and “ARDS excluded” cohorts, especially with the latter) as would be expected, there were no significant differences in mortality between the ARDS and “at risk” cohorts as a whole either for 28 day mortality (ARDS v “at risk” OR 1.55, 95% CI 0.87 to 2.76, p = 0.15 Fishers exact; “ARDS excluded” v “at risk” OR 1.79, 95% CI 0.99 – 3.22, p = 0.06 Fishers exact) or 60 day mortality (OR 1.45, 95% CI 0.82 to 2.55, p = 0.25 Fishers exact; “ARDS excluded” v “at risk” OR 1.61, 95% CI 0.90 – 2.58, p = 0.06 Fishers exact). 
	Table 5.7: 28 and 60 day mortality (modified from Medford et al.359). 
	28 day mortality: *ARDS CT,TT v CC OR 1.81, 95% CI 0.80 to 4.05, p = 0.21 Fishers exact; **”ARDS excluded” CT,TT v CC OR 1.83, 95% CI 0.78 – 4.30, p = 0.19 Fishers exact; § “ARDS excluded” v “at risk”  (all) OR 1.79, 95% CI 0.99 – 3.22, p = 0.06 Fishers exact. 
	60 day mortality: †ARDS CT,TT v CC OR 1.90, 95% CI 0.85 to 4.23, p = 0.15 Fishers exact); ††”ARDS excluded” CT,TT v CC OR 1.72, 95% CI 0.73 – 4.03, p = 0.28 Fishers exact; ‡“ARDS excluded” v “at risk” (all) OR 1.61, 95% CI 0.90 – 2.58, p = 0.11 Fishers exact). 

	28 and 60 day mortality rates did not differ between CT/TT and CC genotypes in the “at risk” cohort (28 day mortality OR 1.19, 95% CI 0.41 to 3.48, p = 0.78 Fishers exact; 60 day mortality OR 1.32, 95% CI 0.47 to 3.72, p = 0.60 Fishers exact). However, a non-significant trend was noted for higher 28 and 60 day mortality rates for CT/TT genotypes in the ARDS cohort (28 day mortality OR 1.90, 95% CI 0.80 to 4.05, p = 0.21 Fishers exact; 60 day mortality OR 1.90, 95% CI 0.85 to 4.23, p = 0.15 Fishers exact), also noted in the “ARDS excluded cohort” (28 day mortality OR 1.83, 95% CI 0.78 to 4.30, p = 0.19 Fishers exact; 60 day mortality OR 1.72, 95% CI 0.73 to 4.03, p = 0.28 Fishers exact)
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	Forward primer
	ALP buffer
	ALP stain
	Complete ATII culture medium 
	LB (Luria-Bertani) medium and plates
	Red cell lysis buffer
	SOC medium
	 TE buffer

	Using the Neubauer Haemocytometer
	Total number of cells in solution = N x 104 x volume of original solution (ml)

