

This thesis has been submitted in fulfilment of the requirements for a postgraduate degree

(e.g. PhD, MPhil, DClinPsychol) at the University of Edinburgh. Please note the following

terms and conditions of use:

This work is protected by copyright and other intellectual property rights, which are

retained by the thesis author, unless otherwise stated.

A copy can be downloaded for personal non-commercial research or study, without

prior permission or charge.

This thesis cannot be reproduced or quoted extensively from without first obtaining

permission in writing from the author.

The content must not be changed in any way or sold commercially in any format or

medium without the formal permission of the author.

When referring to this work, full bibliographic details including the author, title,

awarding institution and date of the thesis must be given.

Stochastic, Distributed and

Federated Optimization for

Machine Learning

Jakub Konečný

Doctor of Philosophy
University of Edinburgh

2017

Declaration

I declare that this thesis was composed by myself and that the work contained therein is my
own, except where explicitly stated otherwise in the text.

(Jakub Konečný)

3

4

Abstract

We study optimization algorithms for the finite sum problems frequently arising in machine
learning applications. First, we propose novel variants of stochastic gradient descent with
a variance reduction property that enables linear convergence for strongly convex objectives.
Second, we study distributed setting, in which the data describing the optimization problem
does not fit into a single computing node. In this case, traditional methods are inefficient,
as the communication costs inherent in distributed optimization become the bottleneck. We
propose a communication-efficient framework which iteratively forms local subproblems that can
be solved with arbitrary local optimization algorithms. Finally, we introduce the concept of
Federated Optimization/Learning, where we try to solve the machine learning problems without
having data stored in any centralized manner. The main motivation comes from industry when
handling user-generated data. The current prevalent practice is that companies collect vast
amounts of user data and store them in datacenters. An alternative we propose is not to collect
the data in first place, and instead occasionally use the computational power of users’ devices to
solve the very same optimization problems, while alleviating privacy concerns at the same time.
In such setting, minimization of communication rounds is the primary goal, and we demonstrate
that solving the optimization problems in such circumstances is conceptually tractable.

5

6

Acknowledgements

I would like to express my sincere gratitude to my supervisor, Peter Richtárik, for his guidance
through every facet of the research world. I have not only learned how to develop novel research
ideas, but also how to clearly write and communicate those ideas, prepare technical presenta-
tions and engage audience, interact with other academics and build research collaborations. All
of this was crucial for all I have accomplished and lays a solid foundation for my next steps.

I would also like to thank my other supervisors and mentors Jacek Gondzio and Chris
Williams for various discussions about research and differences between related fields. I am
also grateful to my examination committee, M. Pawan Kumar, Kostas Zygalakis and Andreas
Grothey. For stimulating discussions and fun we had together during last four years, I thank
other past and current members of our research group: Dominik Csiba, Olivier Fercoq, Robert
Gower, Filip Hanzely, Nicolas Loizou, Zheng Qu, Ademir Ribeiro and Rachael Tappenden.

I am indebted to School of Mathematics of the University of Edinburgh for the wonderful,
inclusive and productive work environment, to Principal’s Career Development Scholarship for
initially funding my PhD and to The Centre for Numerical Analysis and Intelligent Software
for funding my visit at the Simons Institute for the Theory of Computing. I am extremely
grateful to Gill Law, who was always very helpful in overcoming every formal or administrative
problems I encountered.

During my study I had the opportunity to work with many brilliant researchers:

• I would like to thank Martin Jaggi and Thomas Hofmann for hosting my visit at ETH
Zurich and encouragement in my starting career.

• I would like to thank Martin Takáč for the visit at Lehigh University, and his students
Chenxin Ma and Jie Liu. I would also like to thank Katya Scheinberg for her insightful
advice regarding my PhD study.

• I would also like to thank Ngai-Man Cheung, Selin Damla Ahipasaoglu and Yiren Zhou
who taught me a lot during my visit at Singapore University of Technology and Design.

• I would like to thank Owain Evans and others at Future of Humanity Institute at Oxford
University for hosting my extremely inspiring visit which helped me to understand the
implications of our work in a much broader context.

• I would like to thank the Simons Institute for the Theory of Computing at University of
California in Berkeley, for the opportunity I had at the start of my PhD study.

• Finally, I would like to thank my other collaborators for their ideas, help, jokes and
support: Mohamed Osama Ahmed, Dave Bacon, Dmitry Grishchenko, Michal Hagara,
Filip Hanzely, Reza Harikandeh, Michael I. Jordan, Nicolas Loizou, H. Brendan McMahan,
Barnabás Póczos, Zheng Qu, Daniel Ramage, Sashank J. Reddi, Scott Sallinen, Mark
Schmidt, Virginia Smith, Alex Smola, Ananda Theertha Suresh, Alim Virani and Felix
X. Yu.

For generous support through Google Doctoral Fellowship I am very thankful to Google,
which enabled me to pursue my goals without distractions. I appreciate the advice, patience,
discussions and fun I had with many amazing people during my summer internships at Google,
including Galen Andrew, Dave Bacon, Keith Bonawitz, Hubert Eichner, Jeffrey Falgout, Emily
Fortuna, Gaurav Gite, Seth Hampson, Jeremy Kahn, Peter Kairouz, Eider Moore, Martin Pe-
likan, John Platt, Daniel Ramage, Marco Tulio Ribeiro, Negar Rostamzadeh, Subarna Tripathi,
Felix X. Yu and many others. In particular, I would like to thank for the immerse trust and
support I received from Brendan McMahan and Blaise Agüera y Arcas.

7

For willingness to help and provide recommendation, reference, or connection at various
stages of my study, I would like to thank Blaise Agüera y Arcas, Petros Drineas, Martin
Jaggi, Michael Mahoney, Mark Schmidt, Nathan Srebro and Lin Xiao. In addition, I am
extremely thankful to Isabelle Guyon. I would perhaps not decide to go for PhD without her
encouragement and support after we met during my undergraduate study.

I would like to thank the Slovak educational non-profit organizations which helped to shape
who I am today, both on academic and personal level — Trojsten, Sezam, P-Mat and Nexteria
— and all the people involved in their activities.

Finally, I would like to thank my parents and family, for all the obstacles they quietly
removed so I could realize my dreams.

8

Contents

Abstract 5

1 Introduction 13
1.1 Empirical Risk Minimization . 13

1.1.1 Approximation-Estimation-Optimization tradeoff 14
1.1.2 Notation . 15

1.2 Baseline Algorithms . 15
1.3 Part I: Stochastic Methods with Variance Reduction 16

1.3.1 Semi-Stochastic Gradient Descent . 16
1.3.2 Semi-Stochastic Coordinate Descent . 16

1.4 Part II: Parallel and Distributed Methods . 17
1.4.1 Mini-batch Semi-Stochastic Gradient Descent in the Proximal Setting . . 17
1.4.2 Distributed Optimization with Arbitrary Local Solvers 17

1.5 Part III: Federated Optimization . 19
1.5.1 Distributed Machine Learning for On-device Intelligence 19
1.5.2 Distributed Mean Estimation with Communication Constraints 20

1.6 Summary . 21

I Variance Reduced Stochastic Methods 23

2 Semi-Stochastic Gradient Descent 25
2.1 Introduction . 25

2.1.1 Motivation . 25
2.1.2 Brief literature review . 26
2.1.3 Outline . 26

2.2 Semi-Stochastic Gradient Descent . 27
2.2.1 S2GD . 27
2.2.2 S2GD+ . 28

2.3 Summary of Results . 28
2.4 Complexity Analysis: Strongly Convex Loss . 30
2.5 Optimal Choice of Parameters . 33
2.6 Complexity Analysis: Convex Loss . 35
2.7 Implementation for sparse data . 36
2.8 Numerical Experiments . 38

2.8.1 Comparison with theory . 38
2.8.2 Comparison with other methods . 39
2.8.3 Boosted variants of S2GD and SAG . 41

2.9 Conclusion . 41

3 Semi-Stochastic Coordinate Descent 43
3.1 Introduction . 43
3.2 S2CD Algorithm . 45
3.3 Complexity Result . 47
3.4 Proof of Lemma 10 . 49

9

3.5 Proof of the Main Result . 51
3.5.1 Coordinate co-coercivity . 51
3.5.2 Recursion . 52
3.5.3 Proof of Theorem 11 . 52

II Parallel and Distributed Methods with Variance Reduction 55

4 Mini-batch Semi-Stochastic Gradient Descent in the Proximal Setting 57
4.1 Introduction . 57

4.1.1 Stochastic methods. 57
4.1.2 Modern stochastic methods . 58
4.1.3 Linear systems and sketching. 58

4.2 Contributions . 59
4.3 The Algorithm . 59

4.3.1 Deterministic and stochastic proximal gradient methods 60
4.3.2 Semi-stochastic methods . 60
4.3.3 Mini-batch S2GD . 60

4.4 Analysis . 61
4.4.1 Assumptions . 61
4.4.2 Main result . 61
4.4.3 Special cases: b = 1 and b = n . 62
4.4.4 Mini-batch speedup . 62
4.4.5 Convergence rate . 63
4.4.6 Comparison with Acc-Prox-SVRG . 63

4.5 Efficient implementation for sparse data . 64
4.6 Experiments . 66

4.6.1 Speedup of mS2GD . 67
4.6.2 mS2GD vs other algorithms . 67
4.6.3 Image deblurring . 69

4.7 Technical Results . 69
4.7.1 Proofs . 70
4.7.2 Proximal lazy updates for `1 and `2-regularizers 75

4.8 Conclusion . 76

5 Distributed Optimization with Arbitrary Local Solvers 77
5.1 Motivation . 77

5.1.1 Contributions . 77
5.1.2 Outline . 78

5.2 Background and Problem Formulation . 78
5.2.1 Problem Formulation . 80
5.2.2 Technical Assumptions . 81

5.3 The Framework . 82
5.3.1 The Local Subproblems . 83
5.3.2 Practical Communication-Efficient Implementation 84
5.3.3 Compatibility of the Subproblems for Aggregating Updates 85

5.4 Main Results . 86
5.4.1 Quality of Local Solutions . 86
5.4.2 Complexity Bounds . 86
5.4.3 Discussion and Interpretations of Convergence Results 87

5.5 Discussion and Related Work . 88
5.6 Numerical Experiments . 91

5.6.1 Exploration of Local Solvers within the Framework 91
5.6.2 Averaging vs. Adding the Local Updates 94
5.6.3 The Effect of the Subproblem Parameter σ′ 98
5.6.4 Scaling Property . 99
5.6.5 Performance on a Big Dataset . 99

10

5.6.6 Comparison with other distributed methods 100
5.7 Conclusion . 101
5.8 Proofs . 101

5.8.1 Proof of Lemma 31 . 101
5.8.2 Proof of Lemma 33 . 102
5.8.3 Proof of Lemma 34 . 102
5.8.4 Proofs of Theorems 36 and 37 . 102

III Federated Optimization and Learning 111

6 Federated Optimization: Distributed Machine Learning for On-device Intel-
ligence 113
6.1 Introduction . 113

6.1.1 Problem Formulation . 114
6.1.2 The Setting of Federated Optimization . 115

6.2 Related Work . 116
6.2.1 Baseline Algorithms . 116
6.2.2 A Novel Breed of Randomized Algorithms 117
6.2.3 Distributed Setting . 119

6.3 Algorithms for Federated Optimization . 123
6.3.1 Desirable Algorithmic Properties . 124
6.3.2 SVRG . 124
6.3.3 Distributed Problem Formulation . 125
6.3.4 DANE . 126
6.3.5 SVRG meets DANE . 127
6.3.6 Federated SVRG . 128
6.3.7 Further Notes . 131

6.4 Experiments . 131
6.4.1 Predicting Comments on Public Google+ Posts 131

6.5 Conclusions and Future Challenges . 134
6.6 Appendix: Distributed Optimization via Quadratic Perturbations 134

6.6.1 New Method . 134
6.6.2 L2-Regularized Linear Predictors . 136
6.6.3 A Dual Method: Dual Block Proximal Gradient Ascent 136
6.6.4 Proof of Theorem 46 . 137

7 Randomized Distributed Mean Estimation: Accuracy vs Communication 141
7.1 Introduction . 141

7.1.1 Background and Contributions . 141
7.1.2 Outline . 142

7.2 Three Protocols . 142
7.3 A Family of Randomized Encoding Protocols . 144

7.3.1 Encoding Protocol with Variable-size Support 144
7.3.2 Encoding Protocol with Fixed-size Support 145

7.4 Communication Protocols . 146
7.4.1 Naive . 146
7.4.2 Varying-length . 146
7.4.3 Sparse Communication Protocol for Encoder (7.1) 147
7.4.4 Sparse Communication Protocol for Encoder (7.4) 147
7.4.5 Binary . 147
7.4.6 Discussion . 148

7.5 Examples . 148
7.5.1 Binary Quantization . 148
7.5.2 Sparse Communication Protocols . 148

7.6 Optimal Encoders . 150
7.6.1 Optimal Probabilities for Fixed Node Centers 151

11

7.6.2 Trade-off Curves . 152
7.7 Further Considerations . 152

7.7.1 Beyond Binary Encoders . 152
7.7.2 Preprocessing via Random Rotations . 153

7.8 Application to Federated Learning . 154
7.8.1 Structured Update . 155
7.8.2 Sketched Update . 156
7.8.3 Experiments . 156

7.9 Additional Proofs . 158

IV Conclusion 161

8 Conclusion and Future Challenges 163

12

Chapter 1

Introduction

In this thesis, we focus on minimization of a finite sum of functions, with particular motivation
by machine learning applications:

min
w∈Rd

1

n

n∑

i=1

fi(w). (1.1)

This problem is referred to as Empirical Risk Minimization (ERM) in the machine learning
community, and represents optimization problems underpinning a large variety of models —
ranging from simple linear regression to deep learning.

This introductory chapter briefly outlines the theoretical framework that gives rise to the
ERM problem in Section 1.1, and clarifies what part of the general objective in machine learning
we address in this thesis. We follow by a summary of the thesis, highlighting the central
contributions without going into the details.

1.1 Empirical Risk Minimization

In a prototypical setting of supervised learning, one can access input-output pairs x, y ∈ X ×Y,
which follow an unknown probability distribution P(x, y). Typically, inputs and outputs are
not known at the same time, and a general goal is to understand the conditional distribution
of output given input, P(y|x). For instance, a bank needs to predict whether a transaction is
fraudulent, without knowing the true answer immediately, or a recommendation engine predicts
which products are users likely to be interested in next. For a more detailed introduction to
the following concept, see for instance [161].

The typical learning setting, relies on a definition of a loss function ` : Y × Y → R and a
predictor function φ : X → Y. Loss function `(ŷ, y) measures the discrepancy between predicted
output ŷ and true output y, and φ(x) maps an input to the predicted output ŷ. With these
tools, we are ready to define the expected risk of a predictor function φ as

E(φ)
def
=

∫
`(φ(x), y)dP(x, y).

The ideal goal is to find φ∗(x) that minimizes the expected risk, defined pointwise as

φ∗(x)
def
= arg min

ŷ∈Y

∫
`(ŷ, y)dP(y|x).

Clearly, since we do not assume to know anything about the source distribution P(x, y),
finding φ∗ is an infeasible objective.

Instead, we have access to samples from the distribution. Given a training dataset {(xi, yi)}ni=1,
which is assumed to be drawn iid from P(x, y), we can define the empirical risk En(φ) as a

13

proxy to the expected risk; also known as monte-carlo integration:

En(φ)
def
=

1

n

n∑

i=1

`(φ(xi), yi). (1.2)

If we further restrict the predictor φ to belong to a specific class of functions, e.g., linear func-
tions, minimizing the empirical risk becomes a tractable objective, motivating the optimization
problem (1.1).

1.1.1 Approximation-Estimation-Optimization tradeoff

A first learning principle is to restrict the candidate prediction functions to a specific class F .
This, together with the choice of loss function ` effectively corresponds to the choice of a specific
machine learning technique. As an example, these can be linear functions of x, parametrized
by a vector w: φw(x) = wTx. A more complex example is a class implicitly defined by the
architecture of a neural network.

In practice, an optimization algorithm is applied to obtain an approximate solution φ̂n to
the ERM problem. In order to assess the quality of the predictor φ̂n, compared to the ideal
but intractable φ∗, the standard in learning theory is to define the empirical risk minimizer as

φn
def
= arg min

φ∈F
En(φ),

and the best predictor in terms of expected risk as

φ∗F
def
= arg min

φ∈F
E(φ).

Taking expectation with respect to generation of the sampled data, and possible random-
ization in an optimization algorithm for solving (1.2), goal of a machine learner is to minimize

the excess error E
[
E(φ̂n)−E(φ∗)

]
by choosing `, F , and optimization algorithm appropri-

ately, subject to constraints such as computational resources available. The excess error can be
decomposed as follows:

E
[
E(φ̂n)−E(φ∗)

]
= E [E(φ∗F)−E(φ∗)] + E [E(φn)−E(φ∗F)] + E

[
E(φ̂n)−E(φn)

]
. (1.3)

The three terms above are referred to as approximation error, estimation error and optimiza-
tion error, respectively [22]. Approximation error captures how much one loses by restricting
the class of candidate predictor functions to F . Estimation error captures the loss incurred
by minimizing the empirical risk instead of the expected risk we would ideally optimize for.
Optimization error is a result of finding an approximate optimum of the empirical risk, using
an optimization algorithm.

These terms are subject to various tradeoffs that have been studied for decades. For instance,
expanding the functional class F will naturally decrease the approximation error, but can
increase the estimation error due to overfitting the training dataset. Increasing the size of
the dataset available (increasing n) makes the empirical risk a better approximation of the
expected risk, thus decreasing estimation error. However, it will likely make it computationally
more expensive to attain the same optimization error.

Detailed overview of the interplay of these terms is beyond the scope of this work. We
focus only on the optimization error, and what computational resources are necessary to obtain
particular levels of the error. This can mean using optimization algorithms on a single compute
node, with or without parallel processing units, or in a distributed environment. We describe
this in the rest of this chapter. A comprehensive literature overview is deferred to Section 6.2,
in which we explain why none of the existing methods are suitable for Federated Optimization,
a novel conceptual setting for the ERM problem.

14

1.1.2 Notation

With focus on the optimization objective only, we can reformulate (1.2) into notation used
throughout the thesis. We are interested in minimizing a function P (w), which in full generality
takes the form

P (w) =
1

n

n∑

i=1

fi(w) +R(w). (1.4)

The functions fi are assumed to be convex, and hide the dependence on the training data
xi, yi, which is mostly irrelevant for the subsequent analysis. The (optional) function R(w) is
referred to as a regularizer, and is in practice used primarily to prevent overfitting or enforce
structural properties of the solution. Most common choice are L2 (R(w) = λ/2‖w‖22) or L1
(R(w) = λ‖w‖1) regularizers for some choice of λ > 0.

By ∇fi(w) we denote the gradient of fi at point w. We denote 〈·, ·〉 the standard Euclidean
inner product of two vectors, and unless specified otherwise, ‖·‖ =

√
〈·, ·〉 refers to the standard

Euclidean norm. We denote the proximal operator of function ψ : Rd → R as proxψ(z) =

arg mins∈Rd
{

1
2‖s− z‖2 + ψ(s)

}
. The convex (Fenchel) conjugate of a function φ : Rd → R is

defined as the function φ∗ : Rd → R ∪ {∞}, with φ∗(u) = sups∈Rd{sTu− φ(s)}.

1.2 Baseline Algorithms

Two of the most basic algorithms that can be used to solve the ERM problem (1.4) are Gradient
Descent and Stochastic Gradient Descent, which we introduce now. For simplicity, we assume
that R(w) = 0 for all w ∈ Rd.

A trivial benchmark for solving (1.4) is Gradient Descent (GD) in the case when functions
fi are smooth (or Subgradient Descent for non-smooth functions) [127]. The GD algorithm
performs the iteration

w ← w − h

n

n∑

i=1

∇fi(w) = w − h∇P (w),

where h > 0 is a stepsize parameter.

Common practice in machine learning is to collect vast amounts of data {xi, yi}ni=1, which
in the context of our objective translates to very large n — the number of functions fi. This
makes GD impractical, as it needs to process the whole dataset in order to evaluate a single
gradient and update the model. This makes GD rather impractical for most state-of-the-art
applications. An alternative is to use a randomized algorithm, the computational complexity
of which is independent of n, in a single iteration.

This basic, albeit in practice extremely popular, alternative to GD is Stochastic Gradient
Descent (SGD), dating back to the seminal work of Robbins and Monro [153]. In the context
of (1.4), SGD samples a random function i ∈ {1, 2, . . . , n} in iteration t, and performs the
update

w ← w − ht∇fi(w),

where ht > 0 is a stepsize parameter.

Intuitively speaking, this method works because if i is sampled uniformly at random from in-
dices 1 to n, the update direction is an unbiased estimate of the gradient: E [∇fi(w)] = ∇P (w).
However, noise introduced by sampling slows down the convergence, and a diminishing sequence
of stepsizes ht is necessary for the method to converge.

If we consider the case of strongly convex P , the core differences between GD and SGD can
be summarized as follows. Let κ denote the condition number defined as the ratio of smoothness
and strong convexity parameters of P . GD enjoys fast convergence rate, while SGD converges
slowly. That is, in order to obtain ε-accuracy, GD needs O(κ log(1/ε)) iterations, while SGD
needs in general O(κ2/ε) iterations. On the other hand, GD requires computation of n gradients
of fi, which can be computationally expensive when data is abundant, while SGD needs to
evaluate only a single gradient, and thus does not depend on n.

In most practical applications in machine learning, a high accuracy is not necessary, as the
ERM problem is only a proxy to the original problem of interest, and error will eventually be

15

dominated by approximation and estimation errors described in Section 1.1.1. Indeed, SGD can
sometimes yield a decent solution in just a single pass through data — equivalent to a single
GD step.

1.3 Part I: Stochastic Methods with Variance Reduction

In Chapters 2 and 3, we propose and analyze semi-stochastic methods for minimizing the ERM
objective (1.4). These methods interpolate between the baselines (GD and SGD) in the sense
that they enjoy benefits of both methods. In particular, we show that using a trick to reduce
the variance of stochastic gradients, we are able to maintain the linear convergence of GD, while
using stochastic gradients. In order to do so, we still need to evaluate the full gradient ∇P ,
but only a few times during the entire runtime of the method.

1.3.1 Semi-Stochastic Gradient Descent

The Semi-Stochastic Gradient Descent (S2GD) method, proposed in Chapter 2 (see Algo-
rithm 1), runs in two nested loops. In the outer loop, it only computes and stores the full
gradient of the objective, ∇P (wt), the expensive operation one tries to avoid in general. In the
inner loop, with some choice of stepsize h, the update step is iteratively computed as

w ← w − h[∇fi(w)−∇fi(wt) +∇P (wt)] (1.5)

for a randomly sampled i ∈ {1, . . . , n}. The core idea is that the gradients of ∇fi are used
to estimate the change of the full gradient ∇P between the points wt and w, as opposed to
estimating the full gradient directly. It is easy to verify that if i is sampled uniformly at random,
the update direction is an unbiased estimate of the gradient ∇P (w).

We assume that P is µ-strongly convex, and the functions fi are L-smooth. Let κ = L/µ
denote the condition number. In a core result, we are able to show that for the update direction
form (1.5), we have that

E
[
‖∇fi(w)−∇fi(wt) +∇P (wt)‖2

]
≤ 4L[P (w)− P (w∗)] + 4(L− µ)[P (wt)− P (w∗)]

This shows that as both w and wt progress towards the optimum w∗, the second moment — and
thus also variance — of the estimate of the gradient diminishes. Together with unbiasedness,
we use this to build a recursion which yields (see Theorem 4) that for iterates wt in the outer
loop of the S2GD algorithm, we have

E
[
P (wt)− P (w∗)

]
≤ ct(P (w0)− P (w∗)),

where c is a convergence factor depending on the algorithm parameters and properties of the
optimization problem.

Each iteration of S2GD requires evaluation of ∇P — or n stochastic gradients ∇fi, followed
by a random number of stochastic updates. In Theorem 6 we show that we can obtain an ε-
approximate solution after evaluating O((n+κ) log(1/ε)) stochastic gradients. This is achieved
by running the algorithm for log(1/ε) iterations of the outer loop, with O(κ) stochastic updates
(1.5) in the inner loop. Contrast this with the rate of GD, which per iteration requires the
evaluation of n stochastic gradients, and thus needs a total of O(nκ log(1/ε)) gradient evalua-
tions to attain the same accuracy. Given that κ is commonly of the same order as n, which is
typically very large. This amounts to an improvement by several orders of magnitude!

1.3.2 Semi-Stochastic Coordinate Descent

In Chapter 3 we present Semi-Stochastic Coordinate Descent (S2CD) method as Algorithm 4,
which builds upon the S2GD algorithm by accessing oracle that returns partial stochastic
derivatives ∇jfi. In general, one can think of S2GD and similar stochastic methods as sampling
rows of a data matrix. S2CD is sampling both rows and columns of the data matrix, in order
to get computationally even cheaper stochastic iterations. Contrasted with S2GD, the outer

16

loop stays the same, but stochastic steps in the inner loop update only a single coordinate of
the variable w, and the update (1.5) changes to

w ← w − hp−1
j

(
1

nqij

(
∇jfi(w)−∇jfi(wt)

)
+∇jP (wt)

)
ej ,

where pj , qij are parameters of the algorithm determined by the problem structure, and ej is the
jth unit vector in Rd. As before, the update direction is an unbiased estimate of the gradient
∇P (w). However, the actual update has only one non-zero element.

We prove that the convergence of S2GD algorithm depends on a different notion of condition
number (see Corollary 12), which is always larger or equal to the one driving convergence of
S2GD. However, the advantage is the usage of a weaker oracle, which only accesses partial
derivatives. Whether S2CD is practically better than S2GD depends on the structure of a
given problem, and whether it is possible to implement the oracle efficiently.

1.4 Part II: Parallel and Distributed Methods

In Part II, we do not focus on serial algorithms, but explore possibilities of using parallel and
distributed computing architectures.

By parallel computation we mean utilization of multiple computing nodes with a shared
memory architecture, such as a multi-core processor. The main characteristic is that access to
all data is equally fast for every computing node. When we say we solve the ERM problem (1.4)
in a distributed setting, we mean that the amount of data describing the problem is too big to
fit into a random access memory (RAM) or cannot even be stored on a single computing node.
In both cases, the main difference to traditional, or serial, algorithms is that reading any data
from a RAM can be several orders of magnitude faster than it is to send it to another node in a
network. This single fact presents a considerable challenge to iterative optimization algorithms
that are inherently sequential, particularly to stochastic methods with fast iterations such as
those described in Part I.

1.4.1 Mini-batch Semi-Stochastic Gradient Descent in the Proximal
Setting

In Chapter 4 we present parallel version of the S2GD algorithm, which we call mS2GD (see
Algorithm 5), which improves upon S2GD algorithm in two major aspects. First, we allow and
analyze the effect of mini-batching — sampling multiple fi at the same time to obtain a more
accurate stochastic gradient. This admits simple use of parallel computing architectures, as the
computation of multiple stochastic gradients can be trivially parallelized. Second, the mS2GD
algorithm is applicable to problem (1.4) with general R(w) that admits an efficient proximal
operator. This includes non-smooth regularizers such as R(w) = ‖w‖1. We demonstrate the
algorithm is useful also in the area of signal processing and imaging.

In Section 4.4.4 we show that mini-batching alone can decrease the total amount of work
necessary for convergence even if we were only to run it as a serial algorithm. More precisely,
we show that up to a certain threshold on the mini-batch size (in typical circumstances about
30), the algorithm enjoys superlinear speedup in terms of the number of stochastic iterations
needed. Additionally, in Section 4.5, we discuss an efficient implementation of the algorithm
for problems with sparse data, which is significantly different and much more efficient than the
intuitive straightforward implementation.

1.4.2 Distributed Optimization with Arbitrary Local Solvers

In the following, we review a paradigm for comparing efficiency of algorithms for distributed
optimization, and describe what conceptual problem of these algorithms we address in Chap-
ter 5.

Let us suppose we have many algorithms A readily available to solve problem (1.4). The
question is: “How do we decide which algorithm is the best for our purpose?”

17

First, consider the basic setting on a single machine. Let us define IA(ε) as the number of
iterations algorithm A needs to converge to some fixed ε accuracy. Let TA be the time needed
for a single iteration. Then, in practice, the best algorithm is one that minimizes the following
quantity:1

TIME = IA(ε)× TA. (1.6)

The number of iterations IA(ε) is usually given by theoretical guarantees or observed from
experience. The TA can be empirically observed, or one can have an idea of how the time needed
per iteration varies between different algorithms in question. The main point of this simplified
setting is to highlight a key issue with extending algorithms to the distributed setting.

The natural extension to distributed setting is the formula (1.7). Let c be the time needed
for communication during a single iteration of the algorithm A. For the sake of clarity, we
suppose we consider only algorithms that need to communicate a single vector in Rd per round
of communication. Note that essentially all first-order algorithms fall into this category, so it
is not a restrictive assumption. This effectively sets c to be a constant, given any particular
distributed architecture one has at disposal.

TIME = IA(ε)× (c+ TA). (1.7)

The communication cost c does not only consist of actual exchange of the data, but also
several other protocols such as setting up and closing a connection between nodes. Consequently,
even if we need to communicate a very small amount of information, c always remains above a
nontrivial threshold.

Most, if not all, of the current state-of-the-art algorithms in setting (1.4) are stochastic and
rely on doing very large number (big IA(ε)) of very fast (small TA) iterations. Even a relatively
small c can cause the practical performance of their naively distributed variants drop down
dramatically, because we still have c� TA.

This has been indeed observed in practice, and motivated development of new methods,
designed with this fact in mind from scratch, which we review in detail later in Section 6.2.3.
Although this is a good development in academia — motivation to explore a novel problem, it
is not necessarily good news for the industry.

Many companies have spent significant resources to build excellent algorithms to tackle
their problems of form (1.4), fine tuned to the specific patterns arising in their data and side
applications required. When the data companies collect grows too large to be processed on
a single machine, it is understandable that they would be reluctant to throw away their fine
tuned algorithms and start building new ones from scratch.

We address this issue in Chapter 5 and propose the CoCoA+ framework, which works
roughly as follows. The framework formulates a general way to form a specific local subproblem
on each node, based on the data available locally, and a single shared vector that needs to be
distributed to all nodes. Within an iteration of the framework, each node uses any optimization
algorithm A, to reach a relative Θ accuracy on the local subproblem. Updates from all nodes
are then aggregated to form an update to the global model.

The efficiency paradigm changes as follows:

TIME = I(ε,Θ)× (c+ TA(Θ)). (1.8)

Time per iteration TA(Θ) denotes the time algorithm A needs to reach the relative Θ
accuracy on the local subproblem. The number of iterations I(ε,Θ) is independent of the
choice of the algorithm A used as a local solver. We provide a theoretical result, which specifies
how many iterations of the CoCoA+ framework are needed to achieve overall ε accuracy, if we
solve the local subproblems to relative Θ accuracy. Here, Θ = 0 would mean we require the local
subproblem to be solved to optimality, and Θ = 1 that we do not need any progress whatsoever.
The general upper bound on the number of iterations of the CoCoA+ framework is I(ε,Θ) =
O(log(1/ε))

1−Θ for strongly convex objectives (see Theorem 36). From the inverse dependence on
1 − Θ we can see that there is a fundamental limit to the number of communication rounds
needed. Hence, intuitively speaking, it will probably not be efficient to spend excessive resources

1Considering only algorithms that can be run on a given machine.

18

to attain very high local accuracy (small Θ).
This efficiency paradigm is more powerful for a number of reasons.

1. It allows practitioners to continue using their fine-tuned solvers for solving subproblems
within the CoCoA+ framework, that can run only on single machine, instead of having
to implement completely new algorithms from scratch.

2. The actual performance in terms of the number of rounds of communication is independent
from the choice of the optimization algorithm, making it much easier to optimize the
overall performance.

3. Since the constant c is architecture dependent, running optimal algorithm on one network
does not have to be optimal on another. In the setting (1.7), this could mean that when
moving from one cluster to another, a completely different algorithm might be necessary
for strong performance, which is a major change. In the setting (1.8), this can be improved
by simply changing Θ, which will be implicitly determined by the number of iterations
algorithm A runs for.

Extensive experimental evaluation in Section 5.6 demonstrates the versatility of the proposed
framework, which has already been implemented and adopted in the popular Apache Spark
engine.

1.5 Part III: Federated Optimization

Mobile phones and tablets are now the primary computing devices for many people. In many
cases, these devices are rarely separated from their owners [34], and the combination of rich
user interactions and powerful sensors means they have access to an unprecedented amount of
data, much of it private in nature. Machine learning models learned on such data hold the
promise of greatly improving usability by powering more intelligent applications. However, the
sensitive nature of the data means there are risks and responsibilities related to storing it in a
centralized location.

1.5.1 Distributed Machine Learning for On-device Intelligence

In Chapter 6 we move beyond distributed optimization and advocate an alternative — federated
learning — that leaves the training data distributed on the mobile devices, and learns a shared
model by aggregating locally computed updates via a central coordinating server. This is a
direct application of the principle of focused collection or data minimization proposed by the
2012 White House report on the privacy of consumer data [182]. Since these updates are specific
to improving the current model, they can be purely ephemeral — there is no reason to store them
on the server once they have been applied. Further, they will never contain more information
than the raw training data (by the data processing inequality), and will generally contain much
less. A principal advantage of this approach is the decoupling of model training from the need
for direct access to the raw training data. Clearly, some trust of the server coordinating the
training is still required, and depending on the details of the model and algorithm, the updates
may still contain private information. However, for applications where the training objective
can be specified on the basis of data available on each client, federated learning can significantly
reduce privacy and security risks by limiting the attack surface to only the device, rather than
the device and the cloud.

The main purpose of the chapter is to bring to the attention of the machine learning and
optimization communities a new and increasingly practically relevant setting for distributed
optimization, where none of the typical assumptions are satisfied, and communication efficiency
is of utmost importance. In particular, algorithms for federated optimization must handle
training data with the following characteristics:

• Massively Distributed: Data points are stored across a large number of nodes K. In
particular, the number of nodes can be much bigger than the average number of training
examples stored on a given node (n/K).

19

• Non-IID: Data on each node may be drawn from a different distribution; that is, the
data points available locally are far from being a representative sample of the overall
distribution.

• Unbalanced: Different nodes may vary by orders of magnitude in the number of training
examples they hold.

In the work presented in Chapter 6, we are particularly concerned with sparse data, where
some features occur on a small subset of nodes or data points only. Although this is not a
necessary characteristic of the setting of federated optimization, we will show that the sparsity
structure can be used to develop an effective algorithm for federated optimization. Note that
data arising in the largest machine learning problems being solved currently — ad click-through
rate predictions — are extremely sparse.

We are particularly interested in the setting where training data lives on users’ mobile devices
(phones and tablets), and the data may be privacy sensitive. The data {xi, yi} is generated
through device usage, e.g., via interaction with apps. Examples include predicting the next
word a user will type (language modeling for smarter keyboard apps), predicting which photos
a user is most likely to share, or predicting which notifications are most important.

To train such models using traditional distributed algorithms, one would collect the training
examples in a centralized location (data center), where it could be shuffled and distributed
evenly over proprietary compute nodes. We propose and study an alternative model: the
training examples are not sent to a centralized location, potentially saving significant network
bandwidth and providing additional privacy protection. In exchange, users allow some use of
their devices’ computing power, which shall be used to train the model.

In the communication model we use, in each round we send an update δ ∈ Rd to a centralized
server, where d is the dimension of the model being computed/improved. The update δ could
be a gradient vector, for example. While it is certainly possible that in some applications the δ
may encode some private information of the user, it is likely much less sensitive (and orders of
magnitude smaller) than the original data itself. For example, consider the case where the raw
training data is a large collection of video files on a mobile device. The size of the update δ
will be independent of the size of this local training data corpus. We show that a global model
can be trained using a small number of communication rounds, and so this also reduces the
network bandwidth needed for training by orders of magnitude compared to copying the data
to the datacenter.

Communication constraints arise naturally in the massively distributed setting, as network
connectivity may be limited (e.g., we may wish to deffer all communication until the mobile
device is charging and connected to a wi-fi network). Thus, in realistic scenarios we may be
limited to only a single round of communication per day. This implies that, within reasonable
bounds, we have access to essentially unlimited local computational power. Consequently, the
practical objective is solely to minimize the number of communication rounds.

The main purpose of the work is initiate research into, and design a first practical im-
plementation of federated optimization. Our results suggest that with suitable optimization
algorithms, very little is lost by not having an IID sample of the data available, and that even
in the presence of a large number of nodes, we can still achieve convergence in relatively few
rounds of communication. Recently, Google announced that they applied this concept in one
of their applications used by over 500 million users [117].

1.5.2 Distributed Mean Estimation with Communication Constraints

In Chapter 7 we theoretically address the problem of computing the average of vectors stored on
different computing devices, while placing a constraint on the amount of bits communicated.
This problem could become a bottleneck in practical application of federated optimization,
when a server aggregates the updates δ from individual users due to in general asymmetric
speed of internet connections [1], or cryptographic protocols used to protect individual update
[15] that further increase the size of the data needed to be communicated back to server.

We decompose the problem into a choice of encoding and communicating protocol, of which
we propose several types. In the setting when we are allowed to communicate a single bit per

20

element of vectors to be aggregated, we prove the best known bounds on the mean square error
of the resulting average.

We apply some of these ideas in the context of federated optimization in Section 7.8, in which
we focus on training deep feed-forward models. We propose two major types of techniques to
reduce the size of each update — structured and sketching updates. With structured updates,
we enforce the local update to be optimized for to be of a specific structure, such as low
rank or sparse, which lets us succinctly represent the update using fewer parameters. By
sketching updates, we mean the reduction of size of the update by sketching techniques, such
as subsampling and quantization used jointly with random structured rotations. In the main
contribution, we show we are able to train a deep convolutional model for the CIFAR-10 data,
while in total communicating less bits than necessary to represent the original size of the data.

1.6 Summary

The content of this thesis is based on the following publications and preprints:

• Chapter 2: Jakub Konečný and Peter Richtárik: “Semi-stochastic gradient descent meth-
ods.” arXiv preprint 1312.1666 (2013). [89]

• Chapter 3: Jakub Konečný, Zheng Qu and Peter Richtárik: “Semi-stochastic coordinate
descent.” Optimization Methods and Software, 1–13 (2017). [84]

• Chapter 4: Jakub Konečný, Jie Liu, Peter Richtárik and Martin Takáč: “Mini-batch
semi-stochastic gradient descent in the proximal setting.” IEEE Journal of Selected Topics
in Signal Processing 10(2), 242–255 (2016). [81]

• Chapter 5: Chenxin Ma, Jakub Konečný, Martin Jaggi, Virginia Smith, Michael I Jordan,
Peter Richtárik and Martin Takáč: “Distributed optimization with arbitrary local solvers.”
Optimization Methods and Software, 1–36 (2017). [104]

• Chapter 6: Jakub Konečný, Brendan McMahan, Daniel Ramage and Peter Richtárik:
“Federated optimization: distributed machine learning for on-device intelligence.” arXiv
preprint 1610.02527 (2016). [83] [88]

• Chapter 7: Jakub Konečný and Peter Richtárik: “Randomized Distributed Mean Estima-
tion: Accuracy vs Communication.” arXiv preprint 1611.07555 (2016). [86]

• Section 7.8: Jakub Konečný, Brendan McMahan, Felix Yu, Peter Richtárik, Ananda
Theertha Suresh and Dave Bacon: “Federated learning: Strategies for improving commu-
nication efficiency.” arXiv preprint 1610.05492 (2016).

During the course of my study, I also co-authored the following works which were not used
in the formation of this thesis:

• Reza Harikandeh, Mohamed Osama Ahmed, Alim Virani, Mark Schmidt, Jakub Konečný
and Scott Sallinen: “Stop wasting my gradients: Practical SVRG.” Advances in Neural
Information Processing Systems 28, 2251–2259 (2015). [74]

• Sashank J Reddi, Jakub Konečný, Peter Richtárik, Barnabás Póczós and Alex Smola
“AIDE: Fast and communication efficient distributed optimization.” arXiv preprint
1608.06879 (2016). [147]

• Filip Hanzely, Jakub Konečný, Nicolas Loizou, Peter Richtárik, Dmitry Grishchenko:.
Privacy Preserving Randomized Gossip Algorithms. arXiv preprint arXiv:1706.07636.
(2017) [73]

• Jakub Konečný and Peter Richtárik. “Simple complexity analysis of simplified direct
search.” arXiv preprint 1410.0390 (2014). [85]

21

In [74], we propose several practical improvements to the S2GD algorithm from Chapter 2.
In particular, we show that it is not necessary to compute a full gradient in the outer loop; in-
stead, an inexact estimate is sufficient for the same convergence. Additionally, we prove that the
algorithm is not only a superior optimization algorithm, but is also a better learning algorithm,
in the sense of the approximation-estimation-optimization tradeoff outlined in Section 1.1.1.

In [147], we propose a framework for distributed optimization in a similar spirit to the one
presented in Chapter 5, but one that works only with the primal problem. Accelerated Inexact
DANE is the first distributed method for (1.4) that nearly matches communication complexity
lower bounds while being implementable using first-order oracle only. This work also makes
a link to a distributed algorithm that we propose but do not analyze as Algorithm 12, and
indirectly provides its theoretical convergence guarantee.

In [73], we introduce and analyze techniques for preserving privacy of initial values in ran-
domized algorithms for average consensus problem.

Finally, in [85] we simplify and unify complexity proof techniques for direct search — a
classical algorithm for derivative-free optimization.

22

Part I

Variance Reduced Stochastic
Methods

23

Chapter 2

Semi-Stochastic Gradient
Descent

2.1 Introduction

Many problems in data science (e.g., machine learning, optimization and statistics) can be cast
as loss minimization problems of the form

min
w∈Rd

P (w), (2.1)

where

P (w)
def
=

1

n

n∑

i=1

fi(w). (2.2)

Here d typically denotes the number of features / coordinates, n the number of data points,
and fi(w) is the loss incurred on data point i. That is, we are seeking to find a predictor
w ∈ Rd minimizing the average loss P (w). In big data applications, n is typically very large;
in particular, n� d.

Note that this formulation includes more typical formulation of L2-regularized objectives
— P (w) = 1

n

∑n
i=1 f̃i(w) + λ

2 ‖w‖2. We hide the regularizer into the function fi(w) for the sake
of simplicity of resulting analysis.

2.1.1 Motivation

Let us now briefly review two basic approaches to solving problem (2.1).

1. Gradient Descent. Given wk ∈ Rd, the gradient descent (GD) method sets

wk+1 = wk − h∇P (wk),

where h is a stepsize parameter and ∇P (wk) is the gradient of P at wk. We will refer to
∇P (x) by the name full gradient. In order to compute ∇P (wk), we need to compute the
gradients of n functions. Since n is big, it is prohibitive to do this at every iteration.

2. Stochastic Gradient Descent (SGD). Unlike gradient descent, stochastic gradient descent
[125, 196] instead picks a random i (uniformly) and updates

wk+1 = wk − h∇fi(wk).

Note that this strategy drastically reduces the amount of work that needs to be done in
each iteration (by the factor of n). Since

E
[
∇fi(wk)

]
= ∇P (wk),

25

we have an unbiased estimator of the full gradient. Hence, the gradients of the component
functions f1, . . . , fn will be referred to as stochastic gradients. A practical issue with SGD
is that consecutive stochastic gradients may vary a lot or even point in opposite directions.
This slows down the performance of SGD. On balance, however, SGD is preferable to GD
in applications where low accuracy solutions are sufficient. In such cases usually only
a small number of passes through the data (i.e., work equivalent to a small number of
full gradient evaluations) are needed to find an acceptable w. For this reason, SGD is
extremely popular in fields such as machine learning.

In order to improve upon GD, one needs to reduce the cost of computing a gradient. In
order to improve upon SGD, one has to reduce the variance of the stochastic gradients. In
this chapter we propose and analyze a Semi-Stochastic Gradient Descent (S2GD) method. Our
method combines GD and SGD steps and reaps the benefits of both algorithms: it inherits the
stability and speed of GD and at the same time retains the work-efficiency of SGD.

2.1.2 Brief literature review

Several recent papers, e.g., [148], [156, 158], [163] and [80] proposed methods which achieve
similar variance-reduction effect, directly or indirectly. These methods enjoy linear convergence
rates when applied to minimizing smooth strongly convex loss functions.

The method in [148] is known as Random Coordinate Descent for Composite functions
(RCDC), and can be either applied directly to (2.1), or to a dual version of (2.1). Unless
specific conditions on the problem structure are met, application to the primal directly are is
not as computationally efficient as its dual version. Application of a coordinate descent method
to the dual formulation of (2.1) is generally referred to as Stochastic Dual Coordinate Ascent
(SDCA) [78]. The algorithm in [163] exhibits this duality, and the method in [172] extends the
primal-dual framework to the parallel / mini-batch setting. Parallel and distributed stochastic
coordinate descent methods were studied in [151, 58, 57].

Stochastic Average Gradient (SAG) by [156], is one of the first SGD-type methods, other
than coordinate descent methods, which were shown to exhibit linear convergence. The method
of [80], called Stochastic Variance Reduced Gradient (SVRG), arises as a special case in our
setting for a suboptimal choice of a single parameter of our method. The Epoch Mixed Gra-
dient Descent (EMGD) method, [195], is similar in spirit to SVRG, but achieves a quadratic
dependence on the condition number instead of a linear dependence, as is the case with SDCA,
SAG, SVRG and with our method.

Earlier works of [62], [48] and [10] attempt to interpolate between GD and SGD and de-
crease variance by varying the sample size. These methods however do not realize the kind
of improvements as the recent methods above. For partially related classical work on semi-
stochastic approximation methods we refer1 the reader to the papers of [112, 113], which focus
on general stochastic optimization.

2.1.3 Outline

We start in Section 2.2 by describing two algorithms: S2GD, which we analyze, and S2GD+,
which we do not analyze, but which exhibits superior performance in practice. We then move
to summarizing some of the main contributions of this chapter in Section 2.3. Section 2.4 is de-
voted to establishing expectation and high probability complexity results for S2GD in the case
of a strongly convex loss. The results are generic in that the parameters of the method are set
arbitrarily. Hence, in Section 2.5 we study the problem of choosing the parameters optimally,
with the goal of minimizing the total workload (# of processed examples) sufficient to produce
a result of specified accuracy. In Section 2.6 we establish high probability complexity bounds
for S2GD applied to a non-strongly convex loss function. Discussion of efficient implementation
for sparse data is in Section 2.7. Finally, in Section 2.8 we perform very encouraging numer-
ical experiments on real and artificial problem instances. A brief conclusion can be found in
Section 2.9.

1We thank Zaid Harchaoui who pointed us to these papers a few days before we posted our work to arXiv.

26

2.2 Semi-Stochastic Gradient Descent

In this section we describe two novel algorithms: S2GD and S2GD+. We analyze the former
only. The latter, however, has superior convergence properties in our experiments.

We assume throughout the chapter that the functions fi are convex and L-smooth.

Assumption 1. The functions f1, . . . , fn have Lipschitz continuous gradients with constant
L > 0 (in other words, they are L-smooth). That is, for all x, z ∈ Rd and all i = 1, 2, . . . , n,

fi(z) ≤ fi(x) + 〈∇fi(x), z − x〉+
L

2
‖z − x‖2.

(This implies that the gradient of P is Lipschitz with constant L, and hence P satisfies the same
inequality.)

In one part of this chapter (Section 2.4) we also make the following additional assumption:

Assumption 2. The average loss P is µ-strongly convex, µ > 0. That is, for all x, z ∈ Rd,

P (z) ≥ P (x) + 〈∇P (x), z − x〉+
µ

2
‖z − x‖2. (2.3)

(Note that, necessarily, µ ≤ L.)

2.2.1 S2GD

Algorithm 1 (S2GD) depends on three parameters: stepsize h, constant m limiting the number
of stochastic gradients computed in a single epoch, and a ν ∈ [0, µ], where µ is the strong
convexity constant of P . In practice, ν would be a known lower bound on µ. Note that the
algorithm works also without any knowledge of the strong convexity parameter — the case of
ν = 0.

Algorithm 1 Semi-Stochastic Gradient Descent (S2GD)

parameters: m = max # of stochastic steps per epoch, h = stepsize, ν = lower bound on µ
for k = 0, 1, 2, . . . do

gk ← 1
n

∑n
i=1∇fi(wk)

yk,0 ← wk

Let tk ← t with probability (1− νh)m−t/β for t = 1, 2, . . . ,m
for t = 0 to tk − 1 do

Pick i ∈ {1, 2, . . . , n}, uniformly at random
yk,t+1 ← yk,t − h

(
gk +∇fi(yk,t)−∇fi(wk)

)

end for
wk+1 ← yk,t

k

end for

The method has an outer loop, indexed by epoch counter k, and an inner loop, indexed by
t. In each epoch k, the method first computes gk—the full gradient of P at wk. Subsequently,
the method produces a random number tk ∈ [1,m] of steps, following a geometric law, where

β
def
=

m∑

t=1

(1− νh)m−t, (2.4)

with only two stochastic gradients computed in each step.2 For each t = 0, . . . , tk − 1, the
stochastic gradient ∇fi(wk) is subtracted from gk, and ∇fi(yk,t) is added to gk, which ensures
that, one has

E
[
gk +∇fi(yk,t)−∇fi(wk)

]
= ∇P (yk,t),

2It is possible to get away with computing only a single stochastic gradient per inner iteration, namely
∇fi(yk,t), at the cost of having to store in memory∇fi(wk) for i = 1, 2, . . . , n. This, however, can be impractical
for big n.

27

where the expectation is with respect to the random variable i.
Hence, the algorithm is an instance of stochastic gradient descent – albeit executed in a

nonstandard way (compared to the traditional implementation described in the introduction).
Note that for all k, the expected number of iterations of the inner loop, E

[
tk
]
, is equal to

ξ = ξ(m,h)
def
=

m∑

t=1

t
(1− νh)m−t

β
. (2.5)

Also note that ξ ∈ [m+1
2 ,m), with the lower bound attained for ν = 0, and the upper bound

for νh→ 1.

2.2.2 S2GD+

We also implement Algorithm 2, which we call S2GD+. In our experiments, the performance of
this method is superior to all methods we tested, including S2GD. However, we do not analyze
the complexity of this method and leave this as an open problem.

Algorithm 2 S2GD+

parameters: α ≥ 1 (e.g., α = 1)
1. Run SGD for a single pass over the data (i.e., n iterations); output w
2. Starting from w0 = w, run a version of S2GD in which tk = αn for all k

In brief, S2GD+ starts by running SGD for 1 epoch (1 pass over the data) and then switches
to a variant of S2GD in which the number of the inner iterations, tk, is not random, but fixed
to be n or a small multiple of n.

The motivation for this method is the following. It is common knowledge that SGD is able
to progress much more in one pass over the data than GD (where this would correspond to
a single gradient step). However, the very first step of S2GD is the computation of the full
gradient of P . Hence, by starting with a single pass over data using SGD and then switching
to S2GD, we obtain a superior method in practice.3

2.3 Summary of Results

In this section we summarize some of the main results and contributions of this work.

1. Complexity for strongly convex P . If P is strongly convex, S2GD needs

W = O((n+ κ) log(1/ε)) (2.6)

work (measured as the total number of evaluations of the stochastic gradient, accounting
for the full gradient evaluations as well) to output an ε-approximate solution (in expec-
tation or in high probability), where κ = L/µ is the condition number. This is achieved
by running S2GD with stepsize h = Θ(1/L), k = Θ(log(1/ε)) epochs (this is also equal
to the number of full gradient evaluations) and m = Θ(κ) (this is also roughly equal to
the number of stochastic gradient evaluations in a single epoch). The complexity results
are stated in detail in Sections 2.4 and 2.5 (see Theorems 4, 5 and 6; see also (2.27) and
(2.26)).

2. Comparison with existing results. This complexity result (2.6) matches the best-
known results obtained for strongly convex losses in recent work such as [156], [80] and
[195]. Our treatment is most closely related to [80], and contains their method (SVRG)
as a special case. However, our complexity results have better constants, which has a
discernable effect in practice. In Table 2.1 we summarize our results in the strongly
convex case with other existing results for different algorithms.

3Using a single pass of SGD as an initialization strategy was already considered in [156]. However, the
authors claim that their implementation of vanilla SAG did not benefit from it. S2GD does benefit from such
an initialization due to it starting, in theory, with a (heavy) full gradient computation.

28

Algorithm Complexity/Work

Nesterov’s algorithm O (
√
κn log(1/ε))

EMGD O
(
(n+ κ2) log(1/ε)

)

SAG O (max{n, κ} log(1/ε))
SDCA O ((n+ κ) log(1/ε))
SVRG O ((n+ κ) log(1/ε))
S2GD O ((n+ κ) log(1/ε))

Table 2.1: Comparison of performance of selected methods suitable for solving (2.1). The
complexity/work is measured in the number of stochastic gradient evaluations needed to find
an ε-solution.

We should note that the rate of convergence of Nesterov’s algorithm [127] is a determin-
istic result. EMGD and S2GD results hold with high probability (see Theorem 5 for
precise statement). Complexity results for stochastic coordinate descent methods are also
typically analyzed in the high probability regime [148]. The remaining results hold in
expectation. Notion of κ is slightly different for SDCA, which requires explicit knowledge
of the strong convexity parameter µ to run the algorithm. In contrast, other methods
do not algorithmically depend on this, and thus their convergence rate can adapt to any
additional strong convexity locally.

3. Complexity for convex f . If P is not strongly convex, then we propose that S2GD
be applied to a perturbed version of the problem, with strong convexity constant µ =
O(L/ε). An ε-accurate solution of the original problem is recovered with arbitrarily high
probability (see Theorem 8 in Section 2.6). The total work in this case is

W = O ((n+ L/ε)) log (1/ε)) ,

that is, Õ(1/ε), which is better than the standard rate of SGD.

4. Optimal parameters. We derive formulas for optimal parameters of the method which
(approximately) minimize the total workload, measured in the number of stochastic gradi-
ents computed (counting a single full gradient evaluation as n evaluations of the stochastic
gradient). In particular, we show that the method should be run for O(log(1/ε)) epochs,
with stepsize h = Θ(1/L) and m = Θ(κ). No such results were derived for SVRG in [80].

5. One epoch. Consider the case when S2GD is run for 1 epoch only, effectively limiting
the number of full gradient evaluations to 1, while choosing a target accuracy ε. We show
that S2GD with ν = µ needs

O(n+ (κ/ε) log(1/ε))

work only (see Table 2.2). This compares favorably with the optimal complexity in the
ν = 0 case (which reduces to SVRG), where the work needed is

O(n+ κ/ε2).

For two epochs one could just say that we need
√
ε decrease in each epoch, thus having

complexity of O(n+ (κ/
√
ε) log(1/

√
ε)). This is already better than general rate of SGD

(O(1/ε)).

6. Special cases. GD and SVRG arise as special cases of S2GD, for m = 1 and ν = 0,
respectively.4

7. Low memory requirements. Note that SDCA and SAG, unlike SVRG and S2GD,
need to store all gradients ∇fi (or dual variables) throughout the iterative process. While

4While S2GD reduces to GD for m = 1, our analysis does not say anything meaningful in the m = 1 case
- it is too coarse to cover this case. This is also the reason behind the empty space in the “Complexity” box
column for GD in Table 2.2.

29

Parameters Method Complexity

ν = µ, k = Θ(log(1
ε))

& m = Θ(κ)
Optimal S2GD O((n+ κ) log(1

ε))

m = 1 GD —
ν = 0 SVRG [80] O((n+ κ) log(1

ε))
ν = 0, k = 1, m = Θ(κε2) Optimal SVRG with 1 epoch O(n+ κ

ε2)
ν = µ, k = 1, m = Θ(κε log(1

ε)) Optimal S2GD with 1 epoch O(n+ κ
ε log(1

ε))

Table 2.2: Summary of complexity results and special cases. Condition number: κ = L/µ if f
is µ-strongly convex and κ = 2L/ε if f is not strongly convex and ε ≤ L.

this may not be a problem for a modest sized optimization task, this requirement makes
such methods less suitable for problems with very large n.

8. S2GD+. We propose a “boosted” version of S2GD, called S2GD+, which we do not
analyze. In our experiments, however, it performs vastly superior to all other methods
we tested, including GD, SGD, SAG and S2GD. S2GD alone is better than both GD and
SGD if a highly accurate solution is required. The performance of S2GD and SAG is
roughly comparable, even though in our experiments S2GD turned to have an edge.

2.4 Complexity Analysis: Strongly Convex Loss

For the purpose of the analysis, let

Fk,t def
= σ(w1, w2, . . . , wk; yk,1, yk,2, . . . , yk,t) (2.7)

be the σ-algebra generated by the relevant history of S2GD. We first isolate an auxiliary result.

Lemma 3. Consider the S2GD algorithm. For any fixed epoch number k, the following identity
holds:

E
[
P (wk+1)

]
=

1

β

m∑

t=1

(1− νh)m−tE
[
P (yk,t−1)

]
. (2.8)

Proof. By the tower law of conditional expectations and the definition of wk+1 in the algorithm,
we obtain

E
[
P (wk+1)

]
= E

[
E
[
P (wk+1) | Fk,m

]]
= E

[
m∑

t=1

(1− νh)m−t

β
P (yk,t−1)

]

=
1

β

m∑

t=1

(1− νh)m−tE
[
P (yk,t−1)

]
.

We now state and prove the main result of this section.

Theorem 4. Let Assumptions 1 and 2 be satisfied. Consider the S2GD algorithm applied to
solving problem (2.1). Choose 0 ≤ ν ≤ µ, 0 < h < 1

2L , and let m be sufficiently large so that

c
def
=

(1− νh)m

βµh(1− 2Lh)
+

2(L− µ)h

1− 2Lh
< 1. (2.9)

Then we have the following convergence in expectation:

E
[
P (wk)− P (w∗)

]
≤ ck(P (w0)− P (w∗)). (2.10)

30

Before we proceed to proving the theorem, note that in the special case with ν = 0, we
recover the result of [80] (with a minor improvement in the second term of c where L is replaced
by L− µ), namely

c =
1

µh(1− 2Lh)m
+

2(L− µ)h

1− 2Lh
. (2.11)

If we set ν = µ, then c can be written in the form (see (2.4))

c =
(1− µh)m

(1− (1− µh)m)(1− 2Lh)
+

2(L− µ)h

1− 2Lh
. (2.12)

Clearly, the latter c is a major improvement on the former one. We shall elaborate on this
further later.

Proof. It is well-known [127, Theorem 2.1.5] that since the functions fi are L-smooth, they
necessarily satisfy the following inequality:

‖∇fi(w)−∇fi(w∗)‖2 ≤ 2L [fi(w)− fi(w∗)− 〈∇fi(w∗), w − w∗〉] .

By summing these inequalities for i = 1, . . . , n, and using ∇P (w∗) = 0, we get

1

n

n∑

i=1

‖∇fi(w)−∇fi(w∗)‖2 ≤ 2L [P (x)− P (w∗)− 〈∇P (w∗), w − w∗〉] = 2L(P (w)− P (w∗)).

(2.13)

Let Gk,t
def
= gk + ∇fi(yk,t−1) − ∇fi(wk) be the direction of update at kth iteration in the

outer loop and tth iteration in the inner loop. Taking expectation with respect to i, conditioned
on the σ-algebra Fk,t−1 (2.7), we obtain5

E
[
‖Gk,t‖2

]
= E

[
‖∇fi(yk,t−1)−∇fi(w∗)−∇fi(wk) +∇fi(w∗) + gk‖2

]

≤ 2E
[
‖∇fi(yk,t−1)−∇fi(w∗)‖2

]
+ 2E

[
‖
[
∇fi(wk)−∇fi(w∗)

]
−∇P (wk)‖2

]

= 2E
[
‖∇fi(yk,t−1)−∇fi(w∗)‖2

]
+ 2E

[
‖∇fi(wk)−∇fi(w∗)‖2

]

−4E
[〈
∇P (wk),∇fi(wk)−∇fi(w∗)

〉]
+ 2‖∇P (wk)‖2

(2.13)

≤ 4L
[
P (yk,t−1)− P (w∗) + P (wk)− P (w∗)

]

−2‖∇P (wk)‖2 − 4
〈
∇P (wk),∇P (w∗)

〉

(2.3)

≤ 4L
[
P (yk,t−1)− P (w∗)

]
+ 4(L− µ)

[
P (wk)− P (w∗)

]
. (2.14)

Above we have used the bound ‖x′ + x′′‖2 ≤ 2‖x′‖2 + 2‖x′′‖2 and the fact that

E
[
Gk,t | Fk,t−1

]
= ∇P (yk,t−1). (2.15)

We now study the expected distance to the optimal solution (a standard approach in the

5For simplicity, we suppress the E
[
· | Fk,t−1

]
notation here.

31

analysis of gradient methods):

E
[
‖yk,t − w∗‖2 | Fk,t−1

]
= ‖yk,t−1 − w∗‖2 − 2h

〈
E
[
Gk,t | Fk,t−1

]
, yk,t−1 − w∗

〉

+h2E
[
‖Gk,t‖2 | Fk,t−1

]

(2.14)+(2.15)

≤ ‖yk,t−1 − w∗‖2 − 2h
〈
∇P (yk,t−1), yk,t−1 − w∗

〉

+4Lh2
[
P (yk,t−1)− P (w∗)

]

+4(L− µ)h2
[
P (wk)− P (w∗)

]

(2.3)

≤ ‖yk,t−1 − w∗‖2 − 2h
[
P (yk,t−1)− P (w∗)

]

−νh‖yk,t−1 − w∗‖2 + 4Lh2
[
P (yk,t−1)− P (w∗)

]

+4(L− µ)h2
[
P (wk)− P (w∗)

]

= (1− νh)‖yk,t−1 − w∗‖2
−2h(1− 2Lh)[P (yk,t−1)− P (w∗)]

+4(L− µ)h2[P (wk)− P (w∗)]. (2.16)

By rearranging the terms in (2.16) and taking expectation over the σ-algebra Fk,t−1, we
get the following inequality:

E
[
‖yk,t − w∗‖2

]
+ 2h(1− 2Lh)E

[
P (yk,t−1)− P (w∗)

]

≤ (1− νh)E
[
‖yk,t−1 − w∗‖2

]
+ 4(L− µ)h2E

[
P (wk)− P (w∗)

]
. (2.17)

Finally, we can analyze what happens after one iteration of the outer loop of S2GD, i.e.,
between two computations of the full gradient. By summing up inequalities (2.17) for t =
1, . . . ,m, with inequality t multiplied by (1− νh)m−t, we get the left-hand side

LHS = E
[
‖yk,m − w∗‖2

]
+ 2h(1− 2Lh)

m∑

t=1

(1− νh)m−tE
[
P (yk,t−1)− P (w∗)

]

(2.8)
= E

[
‖yk,m − w∗‖2

]
+ 2βh(1− 2Lh)E

[
P (wk+1)− P (w∗)

]
,

and the right-hand side

RHS = (1− νh)mE
[
‖wk − w∗‖2

]
+ 4β(L− µ)h2E

[
P (wk)− P (w∗)

]

(2.3)

≤ 2(1− νh)m

µ
E
[
P (wk)− P (w∗)

]
+ 4β(L− µ)h2E

[
P (wk)− P (w∗)

]

= 2

(
(1− νh)m

µ
+ 2β(L− µ)h2

)
E
[
P (wk)− P (w∗)

]
.

Since LHS ≤ RHS, we finally conclude with

E
[
P (wk+1)− P (w∗)

]
≤ cE

[
P (wk)− P (w∗)

]
− E

[
‖yk,m − w∗‖2

]

2βh(1− 2Lh)
≤ cE

[
P (wk)− P (w∗)

]
.

Since we have established linear convergence of expected values, a high probability result
can be obtained in a straightforward way using Markov inequality.

Theorem 5. Consider the setting of Theorem 4. Then, for any 0 < ρ < 1, 0 < ε < 1 and

k ≥
log
(

1
ερ

)

log
(

1
c

) , (2.18)

32

we have

P
[
P (wk)− P (w∗)
P (w0)− P (w∗)

≤ ε
]
≥ 1− ρ. (2.19)

Proof. This follows directly from Markov inequality and Theorem 4:

P
[
P (wk)− P (w∗) > ε

(
P (w0)− P (w∗)

)] (2.10)

≤ E
[
P (wk)− P (w∗)

]

ε(P (w0)− P (w∗))
≤ ck

ε

(2.18)

≤ ρ

This result will be also useful when treating the non-strongly convex case.

2.5 Optimal Choice of Parameters

The goal of this section is to provide insight into the choice of parameters of S2GD; that is,
the number of epochs (equivalently, full gradient evaluations) k, the maximal number of steps
in each epoch m, and the stepsize h. The remaining parameters (L, µ, n) are inherent in the
problem and we will hence treat them in this section as given.

In particular, ideally we wish to find parameters k, m and h solving the following optimiza-
tion problem:

min
k,m,h

W̃(k,m, h)
def
= k(n+ 2ξ(m,h)), (2.20)

subject to
E
[
P (wk)− P (w∗)

]
≤ ε(P (w0)− P (w∗)). (2.21)

Note that W̃(k,m, h) is the expected work, measured by the number number of stochastic
gradient evaluations, performed by S2GD when running for k epochs. Indeed, the evaluation
of gk is equivalent to n stochastic gradient evaluations, and each epoch further computes on
average 2ξ(m,h) stochastic gradients (see (2.5)). Since m+1

2 ≤ ξ(m,h) < m, we can simplify
and solve the problem with ξ set to the conservative upper estimate ξ = m.

In view of (2.10), accuracy constraint (2.21) is satisfied if c (which depends on h and m)
and k satisfy

ck ≤ ε. (2.22)

We therefore instead consider the parameter fine-tuning problem

min
k,m,h

W(k,m, h)
def
= k(n+ 2m) subject to c ≤ ε1/k. (2.23)

In the following we (approximately) solve this problem in two steps. First, we fix k and find
(nearly) optimal h = h(k) and m = m(k). The problem reduces to minimizing m subject to
c ≤ ε1/k by fine-tuning h. While in the ν = 0 case it is possible to obtain closed form solution,
this is not possible for ν > 0.

However, it is still possible to obtain a good formula for h(k) leading to expression for good
m(k) which depends on ε in the correct way. We then plug the formula for m(k) obtained this
way back into (2.23), and study the quantity W(k,m(k), h(k)) = k(n+ 2m(k)) as a function of
k, over which we optimize optimize at the end.

Theorem 6 (Choice of parameters). Fix the number of epochs k ≥ 1, error tolerance 0 < ε < 1,
and let ∆ = ε1/k. If we run S2GD with the stepsize

h = h(k)
def
=

1
4
∆ (L− µ) + 2L

(2.24)

and

m ≥ m(k)
def
=

{(
4(κ−1)

∆ + 2κ
)

log
(

2
∆ + 2κ−1

κ−1

)
, if ν = µ,

8(κ−1)
∆2 + 8κ

∆ + 2κ2

κ−1 , if ν = 0,
(2.25)

33

then E
[
P (wk)− P (w∗)

]
≤ ε(P (w0)− P (w∗)).

In particular, if we choose k∗ = dlog(1/ε)e, then 1
∆ ≤ exp(1), and hence m(k∗) = O(κ),

leading to the workload

W(k∗,m(k∗), h(k∗)) =

⌈
log

(
1

ε

)⌉
(n+O(κ)) = O

(
(n+ κ) log

(
1

ε

))
. (2.26)

Proof. We only need to show that c ≤ ∆, where c is given by (2.12) for ν = µ and by (2.11) for
ν = 0. We denote the two summands in expressions for c as c1 and c2. We choose the h and m
so that both c1 and c2 are smaller than ∆/2, resulting in c1 + c2 = c ≤ ∆.

The stepsize h is chosen so that

c2
def
=

2(L− µ)h

1− 2Lh
=

∆

2
,

and hence it only remains to verify that c1 = c− c2 ≤ ∆
2 . In the ν = 0 case, m(k) is chosen so

that c − c2 = ∆
2 . In the ν = µ case, c − c2 = ∆

2 holds for m = log
(

2
∆ + 2κ−1

κ−1

)
/ log

(
1

1−H

)
,

where H =
(

4(κ−1)
∆ + 2κ

)−1

. We only need to observe that c decreases as m increases, and

apply the inequality log
(

1
1−H

)
≥ H.

We now comment on the above result:

1. Workload. Notice that for the choice of parameters k∗, h = h(k∗), m = m(k∗) and
any ν ∈ [0, µ], the method needs log(1/ε) computations of the full gradient (note this
is independent of κ), and O(κ log(1/ε)) computations of the stochastic gradient. This
result, and special cases thereof, are summarized in Table 2.2.

2. Simpler formulas for m. If κ ≥ 2, we can instead of (2.25) use the following (slightly
worse but) simpler expressions for m(k), obtained from (2.25) by using the bounds 1 ≤
κ− 1, κ− 1 ≤ κ and ∆ < 1 in appropriate places (e.g., 8κ

∆ < 8κ
∆2 , κ

κ−1 ≤ 2 < 2
∆2):

m ≥ m̃(k)
def
=

{
6κ
∆ log

(
5
∆

)
, if ν = µ,

20κ
∆2 , if ν = 0.

(2.27)

3. Optimal stepsize in the ν = 0 case. Theorem 6 does not claim to have solved problem
(2.23); the problem in general does not have a closed form solution. However, in the ν = 0
case a closed-form formula can easily be obtained:

h(k) =
1

4
∆ (L− µ) + 4L

, m ≥ m(k)
def
=

8(κ− 1)

∆2
+

8κ

∆
. (2.28)

Indeed, for fixed k, (2.23) is equivalent to finding h that minimizes m subject to the
constraint c ≤ ∆. In view of (2.11), this is equivalent to searching for h > 0 maximizing
the quadratic h→ h(∆− 2(∆L+ L− µ)h), which leads to (2.28).

Note that both the stepsize h(k) and the resulting m(k) are slightly larger in Theorem 6
than in (2.28). This is because in the theorem the stepsize was for simplicity chosen to
satisfy c2 = ∆

2 , and hence is (slightly) suboptimal. Nevertheless, the dependence of m(k)
on ∆ is of the correct (optimal) order in both cases. That is, m(k) = O

(
κ
∆ log(1

∆)
)

for

ν = µ and m(k) = O
(
κ

∆2

)
for ν = 0.

4. Stepsize choice. In cases when one does not have a good estimate of the strong convexity
constant µ to determine the stepsize via (2.24), one may choose suboptimal stepsize that
does not depend on µ and derive similar results to those above. For instance, one may
choose h = ∆

6L .

34

In Table 2.3 we provide comparison of work needed for small values of k, and different values
of κ and ε. Note, for instance, that for any problem with n = 109 and κ = 103, S2GD outputs
a highly accurate solution (ε = 10−6) in the amount of work equivalent to 2.12 evaluations of
the full gradient of f !

ε = 10−3, κ = 103

k Wµ(k) W0(k)

1 1.06n 17.0n
2 2.00n 2.03n
3 3.00n 3.00n
4 4.00n 4.00n
5 5.00n 5.00n

ε = 10−6, κ = 103

k Wµ(k) W0(k)

1 116n 107n
2 2.12n 34.0n
3 3.01n 3.48n
4 4.00n 4.06n
5 5.00n 5.02n

ε = 10−9, κ = 103

k Wµ(k) W0(k)

2 7.58n 104n
3 3.18n 51.0n
4 4.03n 6.03n
5 5.01n 5.32n
6 6.00n 6.09n

ε = 10−3, κ = 106

k Wµ(k) W0(k)

2 4.14n 35.0n
3 3.77n 8.29n
4 4.50n 6.39n
5 5.41n 6.60n
6 6.37n 7.28n

ε = 10−6, κ = 106

k Wµ(k) W0(k)

4 8.29n 70.0n
5 7.30n 26.3n
6 7.55n 16.5n
8 9.01n 12.7n
10 10.8n 13.2n

ε = 10−9, κ = 106

k Wµ(k) W0(k)

5 17.3n 328n
8 10.9n 32.5n
10 11.9n 21.4n
13 14.3n 19.1n
20 21.0n 23.5n

ε = 10−3, κ = 109

k Wµ(k) W0(k)

6 378n 1293n
8 358n 1063n
11 376n 1002n
15 426n 1058n
20 501n 1190n

ε = 10−6, κ = 109

k Wµ(k) W0(k)

13 737n 2409n
16 717n 2126n
19 727n 2025n
22 752n 2005n
30 852n 2116n

ε = 10−9, κ = 109

k Wµ(k) W0(k)

15 1251n 4834n
24 1076n 3189n
30 1102n 3018n
32 1119n 3008n
40 1210n 3078n

Table 2.3: Comparison of work sufficient to solve a problem with n = 109, and various values
of κ and ε. The work was computed using formula (2.23), with m(k) as in (2.27). The notation
Wν(k) indicates what parameter ν was used.

2.6 Complexity Analysis: Convex Loss

If P is convex but not strongly convex, we define f̂i(w)
def
= fi(w)+ µ

2 ‖w−w0‖2, for small enough
µ > 0 (we shall see below how the choice of µ affects the results), and consider the perturbed
problem

min
w∈Rd

P̂ (w), (2.29)

where

P̂ (w)
def
=

1

n

n∑

i=1

f̂i(w) = P (w) +
µ

2
‖w − w0‖2. (2.30)

Note that P̂ is µ-strongly convex and (L+µ)-smooth. In particular, the theory developed in the
previous section applies. We propose that S2GD be instead applied to the perturbed problem,
and show that an approximate solution of (2.29) is also an approximate solution of (2.1) (we
will assume that this problem has a minimizer).

Let ŵ∗ be the (necessarily unique) solution of the perturbed problem (2.29). The follow-
ing result describes an important connection between the original problem and the perturbed
problem.

35

Lemma 7. If ŵ ∈ Rd satisfies P̂ (ŵ) ≤ P̂ (ŵ∗) + δ, where δ > 0, then

P (ŵ) ≤ P (w∗) +
µ

2
‖w0 − w∗‖2 + δ.

Proof. The statement is almost identical to Lemma 9 in [148]; its proof follows the same steps
with only minor adjustments.

We are now ready to establish a complexity result for non-strongly convex losses.

Theorem 8. Let Assumption 1 be satisfied. Choose µ > 0, 0 ≤ ν ≤ µ, stepsize 0 < h < 1
2(L+µ) ,

and let m be sufficiently large so that

ĉ
def
=

(1− νh)m

βµh(1− 2(L+ µ)h)
+

2Lh

1− 2(L+ µ)h
< 1. (2.31)

Pick w0 ∈ Rd and let ŵ0 = w0, ŵ1, . . . , ŵk be the sequence of iterates produced by S2GD as
applied to problem (2.29). Then, for any 0 < ρ < 1, 0 < ε < 1 and

k ≥ log (1/(ερ))

log(1/ĉ)
, (2.32)

we have
P
[
P (ŵk)− P (w∗) ≤ ε(P (w0)− P (w∗)) +

µ

2
‖w0 − w∗‖2

]
≥ 1− ρ. (2.33)

In particular, if we choose µ = ε < L and parameters k∗, h(k∗), m(k∗) as in Theorem 6, the
amount of work performed by S2GD to guarantee (2.33) is

W(k∗, h(k∗),m(k∗)) = O

((
n+

L

ε

)
log

(
1

ε

))
,

which consists of O(1
ε) full gradient evaluations and O(Lε log(1

ε)) stochastic gradient evaluations.

Proof. We first note that

P̂ (ŵ0)− P̂ (ŵ∗)
(2.30)

= P (ŵ0)− P̂ (ŵ∗) ≤ P (ŵ0)− P (ŵ∗) ≤ P (w0)− P (w∗), (2.34)

where the first inequality follows from f ≤ f̂ , and the second one from optimality of x∗. Hence,
by first applying Lemma 7 with ŵ = ŵk and δ = ε(P (w0)−P (w∗)), and then Theorem 5, with
c← ĉ, P ← P̂ , w0 ← ŵ0, w∗ ← ŵ∗, we obtain

P
[
P (ŵk)− P (w∗) ≤ δ +

µ

2
‖w0 − w∗‖2

] (Lemma 7)

≥ P
[
P̂ (ŵk)− P̂ (ŵ∗) ≤ δ

]

(2.34)

≥ P

[
P̂ (ŵk)− P̂ (ŵ∗)

P̂ (ŵ0)− P̂ (ŵ∗)
≤ ε
]

(2.19)

≥ 1− ρ.

The second statement follows directly from the second part of Theorem 6 and the fact that the
condition number of the perturbed problem is κ = L+ε

ε ≤ 2L
ε .

2.7 Implementation for sparse data

In our sparse implementation of Algorithm 1, described in this section and formally stated as
Algorithm 3, we make the following structural assumption:

Assumption 9. The loss functions arise as the composition of a univariate smooth loss func-
tion `i, and an inner product with a data point/example ai ∈ Rd:

fi(w) = `i(a
T
i w), i = 1, 2, . . . , n.

36

In this case, ∇fi(w) = ∇`i(aTi w)ai.

This is the structure in many cases of interest, including linear or logistic regression.

A natural question one might want to ask is whether S2GD can be implemented efficiently
for sparse data.

Let us first take a brief detour and look at SGD, which performs iterations of the type:

wk+1 ← wk − h∇`i(aTi w)ai. (2.35)

Let ωi be the number of nonzero features in example ai, i.e., ωi
def
= ‖ai‖0 ≤ d. Assuming that

the computation of the derivative of the univariate function `i takes O(1) amount of work, the
computation of ∇fi(w) will take O(ωi) work. Hence, the update step (2.35) will cost O(ωi),
too, which means the method can naturally speed up its iterations on sparse data.

The situation is not as simple with S2GD, which for loss functions of the type described in
Assumption 9 performs inner iterations as follows:

yk,t+1 ← yk,t − h
(
gk +∇`i(aTi yk,t)ai −∇`i(aTi wk)ai

)
. (2.36)

Indeed, note that gk = ∇P (wk) is in general be fully dense even for sparse data {ai}. As a
consequence, the update in (2.36) might be as costly as d operations, irrespective of the sparsity
level ωi of the active example ai. However, we can use the following “lazy/delayed” update
trick. We split the update to the y vector into two parts: immediate, and delayed. Assume
index i = it was chosen at inner iteration t. We immediately perform the update

ỹk,t+1 ← yk,t − h
(
∇`it(aTityk,t)−∇`it(aTitwk)

)
ait ,

which costs O(ait). Note that we have not computed the yk,t+1. However, we “know” that

yk,t+1 = ỹk,t+1 − hgk,

without having to actually compute the difference. At the next iteration, we are supposed to
perform update (2.36) for i = it+1:

yk,t+2 ← yk,t+1 − hgk − h
(
∇`it+1(aTit+1

yk,t+1)−∇`it+1(aTit+1
wk)

)
ait+1 . (2.37)

Algorithm 3 Semi-Stochastic Gradient Descent (S2GD) for sparse data; “lazy” updates

parameters: m = max # of stochastic steps per epoch, h = stepsize, ν = lower bound on µ
for k = 0, 1, 2, . . . do

gk ← 1
n

∑n
i=1∇fi(wk)

yk,0 ← wk

χ(s) ← 0 for s = 1, 2, . . . , d . Store when a coordinate was updated last time

Let tk ← t with probability (1− νh)m−t/β for t = 1, 2, . . . ,m
for t = 0 to tk − 1 do

Pick i ∈ {1, 2, . . . , n}, uniformly at random
for s ∈ nnz(ai) do

yk,t(s) ← yk,t(s) − (t− χ(s))hg
k
(s) . Update what will be needed

χ(s) = t
end for
yk,t+1 ← yk,t − h

(
∇`i(aTi yk,t)−∇`i(aTi wk)

)
ai . A sparse update

end for
for s = 1 to d do . Finish all the “lazy” updates

yk,t
k

(s) ← yk,t
k

(s) − (tk − χ(s))hg
k
(s)

end for
wk+1 ← yk,t

k

end for

37

However, notice that we can’t compute

∇`it+1(aTit+1
yk,t+1) (2.38)

as we never computed yk,t+1. However, here lies the trick: as ait+1
is sparse, we only need to

know those coordinates s of yk,t+1 for which (ait+1
)(s) is nonzero. So, just before we compute

the (sparse part of) of the update (2.37), we perform the update

yk,t+1
(s) ← ỹk,t+1

(s) − hgk(s)

for coordinates s for which (ait+1)(s) is nonzero. This way we know that the inner product

appearing in (2.38) is computed correctly (despite the fact that yk,t+1 potentially is not!). In
turn, this means that we can compute the sparse part of the update in (2.37).

We now continue as before, again only computing ỹk,t+3. However, this time we have to be
more careful as it is no longer true that

yk,t+2 = ỹk,t+2 − hgk.

We need to remember, for each coordinate s, the last iteration counter t for which (ait)(s) 6= 0.

This way we will know how many times did we “forget” to apply the dense update −hgk(s). We
do it in a just-in-time fashion, just before it is needed.

Algorithm 3 (sparse S2GD) performs these lazy updates as described above. It produces
exactly the same result as Algorithm 1 (S2GD), but is much more efficient for sparse data as
iteration picking example i only costs O(ωi). This is done with a memory overhead of only
O(d) (as represented by vector χ ∈ Rd).

2.8 Numerical Experiments

In this section we conduct computational experiments to illustrate some aspects of the perfor-
mance of our algorithm. In Section 2.8.1 we consider the least squares problem with synthetic
data to compare the practical performance and the theoretical bound on convergence in ex-
pectations. We demonstrate that for both SVRG and S2GD, the practical rate is substantially
better than the theoretical one. In Section 2.8.2 we compare the S2GD algorithm on several real
datasets with other algorithms suitable for this task. We also provide efficient implementation
of the algorithm, as described in Section 2.7, for the case of logistic regression in the MLOSS
repository6.

2.8.1 Comparison with theory

Figure 2.1 presents a comparison of the theoretical rate and practical performance on a larger
problem with artificial data, with a condition number we can control (and choose it to be poor).
In particular, we consider the L2-regularized least squares with

fi(w) =
1

2
(aTi w − bi)2 +

λ

2
‖w‖2,

for some ai ∈ Rd, bi ∈ R and λ > 0 is the regularization parameter.
We consider an instance with n = 100, 000, d = 1, 000 and κ = 10, 000. We run the algorithm

with both parameters ν = λ (our best estimate of µ) and ν = 0. Recall that the latter choice
leads to the SVRG method of [80]. We chose parameters m and h as a (numerical) solution of
the work-minimization problem (2.20), obtaining m = 261, 063 and h = 1/11.4L for ν = λ and
m = 426, 660 and h = 1/12.7L for ν = 0. The practical performance is obtained after a single
run of the S2GD algorithm.

The figure demonstrates linear convergence of S2GD in practice, with the convergence rate
being significantly better than the already strong theoretical result. Recall that the bound is on
the expected function values. We can observe a rather strong convergence to machine precision

6http://mloss.org/software/view/556/

38

http://mloss.org/software/view/556/

Figure 2.1: Least squares with n = 105, κ = 104. Comparison of theoretical result and practical
performance for cases ν = µ (full red line) and ν = 0 (dashed blue line).

in work equivalent to evaluating the full gradient only 40 times. Needless to say, neither SGD
nor GD have such speed. Our method is also an improvement over [80], both in theory and
practice.

2.8.2 Comparison with other methods

The S2GD algorithm can be applied to several classes of problems. We perform experiments
on an important and in many applications used L2-regularized logistic regression for binary
classification on several datasets. The functions fi in this case are:

fi(w) = log
(
1 + exp

(
bia

T
i w
))

+
λ

2
‖w‖2,

where bi ∈ {−1,+1} is the label of ith training example ai. In our experiments we set the
regularization parameter λ = Θ(1/n) so that the condition number κ = Θ(n), which is about
the most ill-conditioned problem used in practice. We added a (regularized) bias term to all
datasets.

All the datasets we used, listed in Table 2.4, are freely available7 benchmark binary classi-
fication datasets.

Dataset Training examples (n) Variables (d) L λ κ
ijcnn 49 990 23 1.23 1/n 61 696
rcv1 20 242 47 237 0.50 1/n 10 122

real-sim 72 309 20 959 0.50 1/n 36 155
url 2 396 130 3 231 962 128.70 100/n 3 084 052

Table 2.4: Datasets used in the experiments.

In the experiment, we compared the following algorithms:

• SGD: Stochastic Gradient Descent. After various experiments, we decided to use a
variant with constant step-size that gave the best practical performance in hindsight.

7Available at http://www.csie.ntu.edu.tw/∼cjlin/libsvmtools/datasets/.

39

http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/

• L-BFGS: A publicly-available limited-memory quasi-Newton method that is suitable for
broader classes of problems. We used a popular implementation by Mark Schmidt.8

• SAG: Stochastic Average Gradient, [158]. This is the most important method to com-
pare to, as it also achieves linear convergence using only stochastic gradient evaluations.
Although the methods has been analyzed for stepsize h = 1/16L, we experimented with
various stepsizes and chose the one that gave the best performance for each problem
individually.

• SDCA: Stochastic Dual Coordinate Ascent, where we used approximate solution to the
one-dimensional dual step, as in Section 6.2 of [163].

• S2GDcon: The S2GD algorithm with conservative stepsize choice, i.e., following the
theory. We set m = Θ(κ) and h = 1/10L, which is approximately the value you would
get from Equation (2.24).

• S2GD: The S2GD algorithm, with stepsize that gave the best performance in hindsight.
The best value of m was between n and 2n in all cases, but optimal h varied from 1/2L
to 1/10L.

Note that SAG needs to store n gradients in memory in order to run. In case of relatively
simple functions, one can store only n scalars, as the gradient of fi is always a multiple of ai.
If we are comparing with SAG, we are implicitly assuming that our memory limitations allow
us to do so. Although not included in Algorithm 1, we could also store these gradients we
used to compute the full gradient, which would mean we would only have to compute a single
stochastic gradient per inner iteration (instead of two).

We plot the results of these methods, as applied to various different, in the Figure 2.2 for
first 15-30 passes through the data (i.e., amount of work work equivalent to 15-30 full gradient
evaluations).

Figure 2.2: Practical performance for logistic regression and the following datasets: ijcnn, rcv
(first row), realsim, url (second row)

8http://www.di.ens.fr/∼mschmidt/Software/minFunc.html

40

http://www.di.ens.fr/~mschmidt/Software/minFunc.html

Time in seconds
Algorithm ijcnn rcv1 real-sim url
S2GDcon 0.25 0.43 1.01 125.53

S2GD 0.29 0.49 1.02 54.04
SAG 0.41 0.73 1.87 71.74

L-BFGS 0.15 0.67 0.76 309.14
SGD 0.39 0.57 1.54 62.73

SDCA 0.33 0.38 1.10 126.32

Table 2.5: Time required to produce plots in Figure 2.2.

There are several remarks we would like to make. First, our experiments confirm the in-
sight from [158] that for this types of problems, reduced-variance methods consistently exhibit
substantially better performance than the popular L-BFGS algorithm.

The performance gap between S2GDcon and S2GD differs from dataset to dataset. A
possible explanation for this can be found in an extension of SVRG to proximal setting [187],
released after the first version of this work was put onto arXiv (i.e., after December 2013) .
Instead Assumption 1, where all loss functions are assumed to be associated with the same
constant L, the authors of [187] instead assume that each loss function fi has its own constant
Li. Subsequently, they sample proportionally to these quantities as opposed to the uniform
sampling. In our case, L = maxi Li. This weighted sampling has an impact on the convergence:
one gets dependence on the average of the quantities Li and not in their maximum.

The number of passes through data seems a reasonable way to compare performance, but
some algorithms could need more time to do the same amount of passes through data than
others. In this sense, S2GD should be in fact faster than SAG due to the following property.
While SAG updates the test point after each evaluation of a stochastic gradient, S2GD does not
always make the update — during the evaluation of the full gradient. This claim is supported
by computational evidence: SAG needed about 20−40% more time than S2GD to do the same
amount of passes through data.

Finally, in Table 2.5 we provide the time it took the algorithm to produce these plots on
a desktop computer with Intel Core i7 3610QM processor, with 2 × 4GB DDR3 1600 MHz
memory. The numbers for the url dataset is are not representative, as the algorithm needed
extra memory, which slightly exceeded the memory limit of our computer.

2.8.3 Boosted variants of S2GD and SAG

In this section we study the practical performance of boosted methods, namely S2GD+ (Algo-
rithm 2) and variant of SAG suggested by its authors [158, Section 4.2].

SAG+ is a simple modification of SAG, where one does not divide the sum of the stochastic
gradients by n, but by the number of training examples seen during the run of the algorithm,
which has the effect of producing larger steps at the beginning. The authors claim that this
method performed better in practice than a hybrid SG/SAG algorithm.

We have observed that, in practice, starting SAG from a point close to the optimum, leads
to an initial “away jump“. Eventually, the method exhibits linear convergence. In contrast,
S2GD converges linearly from the start, regardless of the starting position.

Figure 2.3 shows that S2GD+ consistently improves over S2GD, while SAG+ does not
improve always: sometimes it performs essentially the same as SAG. Although S2GD+ is overall
a superior algorithm, one should note that this comes at the cost of having to choose stepsize
parameter for SGD initialization. If one chooses these parameters poorly, then S2GD+ could
perform worse than S2GD. The other three algorithms can work well without any parameter
tuning.

2.9 Conclusion

We have developed a new semi-stochastic gradient descent method (S2GD) and analyzed
its complexity for smooth convex and strongly convex loss functions. Our methods need

41

Figure 2.3: Practical performance of boosted methods on datasets ijcnn, rcv (first row), realsim,
url (second row)

O((κ/n) log(1/ε)) work only, measured in units equivalent to the evaluation of the full gra-
dient of the loss function, where κ = L/µ if the loss is L-smooth and µ-strongly convex, and
κ ≤ 2L/ε if the loss is merely L-smooth.

Our results in the strongly convex case match or improve on a few very recent results, while
at the same time generalizing and simplifying the analysis. Additionally, we proposed S2GD+
—a method which equips S2GD with an SGD pre-processing step—which in our experiments
exhibits superior performance to all methods we tested. We left the analysis of this method as
an open problem.

42

Chapter 3

Semi-Stochastic Coordinate
Descent

3.1 Introduction

In this chapter we study the problem of unconstrained minimization of a strongly convex func-
tion represented as the average of a large number of smooth convex functions:

min
w∈Rd

P (w) ≡ 1

n

n∑

i=1

fi(w). (3.1)

Many computational problems in various disciplines are of this form. In machine learning,
fi(w) represents the loss/risk of classifier w ∈ Rd on data sample i, P represents the empirical
risk (=average loss), and the goal is to find a predictor minimizing P . An L2-regularizer of the
form µ

2 ‖w‖2, for µ > 0, could be added to the loss, making it strongly convex and hence easier
to minimize.

Assumptions. We assume that the functions fi : Rd → R are differentiable and convex
function, with Lipschitz continuous partial derivatives. Formally, we assume that for each

i ∈ [n]
def
= {1, 2, . . . , n} and j ∈ [d]

def
= {1, 2, . . . , d} there exists Lij ≥ 0 such that for all x ∈ Rd

and h ∈ R,

fi(x+ hej) ≤ fi(x) + 〈∇fi(x), hej〉+
Lij
2
h2, (3.2)

where ej is the jth standard basis vector in Rd, ∇fi(x) ∈ Rd is the gradient of fi at point x and
〈·, ·〉 is the standard inner product. This assumption was recently used in the analysis of the
accelerated coordinate descent method APPROX [59]. We further assume that P is µ-strongly
convex. That is, we assume that there exists µ > 0 such that for all x, y ∈ Rd,

P (y) ≥ P (x) + 〈∇P (x), y − x〉+
µ

2
‖y − x‖2. (3.3)

Context. Batch methods such as gradient descent (GD) enjoy a fast (linear) convergence
rate: to achieve ε-accuracy, GD needs O(κ log(1/ε)) iterations, where κ is a condition number.
The drawback of GD is that in each iteration one needs to compute the gradient of P , which
requires a pass through the entire dataset. This is prohibitive to do many times if n is very
large.

Stochastic gradient descent (SGD) in each iteration computes the gradient of a single ran-
domly chosen function fi only—this constitutes an unbiased (but noisy) estimate of the gradient
of P—and makes a step in that direction [153, 125, 196, 162]. The rate of convergence of SGD
is slower, O(1/ε), but the cost of each iteration is independent of n. Variants with nonuniform
selection probabilities were considered in [201], a mini-batch variant (for SVMs with hinge loss)
was analyzed in [172].

43

Recently, there has been progress in designing algorithms that achieve the fast O(log(1/ε))
rate without the need to scan the entire dataset in each iteration. The first class of methods to
have achieved this are stochastic/randomized coordinate descent methods.

When applied to (3.1), coordinate descent methods (CD) [129, 148] can, like SGD, be
seen as an attempt to keep the benefits of GD (fast linear convergence) while reducing the
complexity of each iteration. A CD method only computes a single partial derivative ∇jP (w)
at each iteration and updates a single coordinate of vector w only. When chosen uniformly
at random, partial derivative is also an unbiased estimate of the gradient. However, unlike
the SGD estimate, its variance decrease to zero as one approaches the optimum. While CD
methods are able to obtain linear convergence, they typically need O((d/µ) log(1/ε)) iterations
when applied to (3.1) directly1. CD method typically significantly outperform GD, especially
on sparse problems with a very large number of variables/coordinates [129, 148].

An alternative to applying CD to (3.1) is to apply it to the dual problem. This is possi-
ble under certain additional structural assumptions on the functions fi. This is the strategy
employed by stochastic dual coordinate ascent (SDCA) [163, 143], whose rate is

O((n+ κ) log(1/ε)).

The condition number κ here is the same as the condition number appearing in the rate of GD.
Despite this, this is a vast improvement on the computational complexity achieved by GD which
has an iteration cost n times larger than SDCA. Also, the linear convergence rate is superior
to the sublinear rate O(1/ε) achieved by SGD, and the method indeed typically performs much
better in practice. Accelerated [164] and mini-batch [172] variants of SDCA have also been
proposed. We refer the reader to QUARTZ [143] for a general analysis involving the update of
a random subset of dual coordinates, following an arbitrary distribution.

Recently, there has been progress in designing primal methods which match the fast rate
of SDCA. Stochastic average gradient (SAG) [158], and more recently SAGA [45], move in a
direction composed of old stochastic gradients. The semi-stochastic gradient descent (S2GD)
[89, 87] and stochastic variance reduced gradient (SVRG) [80, 187] methods employ a different
strategy: one first computes the gradient of P , followed by O(κ) steps where only stochastic
gradients are computed. These are used to estimate the change of the gradient, and it is this
direction which combines the old gradient and the new stochastic gradient information which
is used in the update.

Main result. In this work we develop a new method—semi-stochastic coordinate descent
(S2CD)—for solving (3.1), enjoying a fast rate similar to methods such as SDCA, SAG, S2GD,
SVRG, SAGA, mS2GD and QUARTZ. S2CD can be seen as a hybrid between S2GD and CD.
In particular, the complexity of our method is the sum of two terms:

O(n log(1/ε))

evaluations ∇fi (that is, log(1/ε) evaluations of the gradient of P) and

O(κ̂ log(1/ε))

evaluations of 〈ej ,∇fi〉 for randomly chosen functions fi and randomly chosen coordinates
j, where κ̂ is a new condition number which is defined in (3.13) and larger than κ. We
summarize in Table 3.1 the runtime complexity of the various algorithms. Note that κ̂ enters
the complexity only in the term involving the evaluation cost of a partial derivative ∇jfi,
which can be substantially smaller than the evaluation cost of ∇fi. Hence, our complexity
result can be both better or worse than previous results, depending on whether the increase of
the condition number can or can not be compensated by the lower cost of the stochastic steps
based on the evaluation of partial derivatives.

1The complexity can be improved to O(dα
τµ

log(1/ε)) in the case when τ coordinates are updated in each

iteration, where α ∈ [1, τ] is a problem-dependent constant [151]. This has been further studied for nonsmooth
problems via smoothing [58], for arbitrary nonuniform distributions governing the selection of coordinates [150,
143] and in the distributed setting [149, 57, 143]. Also, efficient accelerated variants with O(1/

√
ε) rate were

44

Method Runtime paper

CD O(nκCgrad log(1/ε)) e.g. [127]

SGD O(Cgrad/ε) [196, 162]

CD O(nκCpd log(1/ε)) [129, 148]

SDCA O((n+ κ)Cgrad log(1/ε)) [163, 201, 143]

SVRG/S2GD O ((nCgrad + κCgrad) log (1/ε)) [80, 187, 89]

S2CD O ((nCgrad + κ̂Cpd) log (1/ε)) this work [84]

Table 3.1: Runtime complexity of various algorithms. We use Cgrad to denote the the evaluation
cost of the gradient of one single function ∇fi and use Cpd to denote the evaluation cost of a
partial derivative ∇jfi.

Outline. This chapter is organized as follows. In Section 3.2 we describe the S2CD algorithm
and in Section 3.3 we state a key lemma and our main complexity result. The proof of the
lemma is provided in Section 3.4 and the proof of the main result in Section 3.5.

3.2 S2CD Algorithm

In this section we describe the Semi-Stochastic Coordinate Descent method (Algorithm 4).

Algorithm 4 Semi-Stochastic Coordinate Descent (S2CD)

parameters: m (max # of stochastic steps per epoch); h > 0 (stepsize parameter); w0 ∈ Rd
for k = 0, 1, 2, . . . do

Compute and store ∇P (wk) = 1
n

∑
i∇fi(wk)

Initialize the inner loop: yk,0 ← wk

Let tk = T ∈ {1, 2, . . . ,m} with probability (1− µh)
m−T

/β
for t = 0 to tk − 1 do

Pick coordinate j ∈ {1, 2, . . . , d} with probability pj
Pick function index i from the set {i : Lij > 0} with probability qij
yk,t+1 ← yk,t − hp−1

j

(
∇jP (wk) + 1

nqij

(
∇jfi(yk,t)−∇jfi(wk)

))
ej

end for
Reset the starting point: wk+1 ← yk,t

k

end for

The discussion on the choice of m and h in Algorithm 4 is deferred to Section 3.3. As we
will see, the parameters m and h depends on the target accuracy and the number of iterations.
We next provide a more detailed description of the algorithm.

The method has an outer loop (an “epoch”), indexed by counter k, and an inner loop,
indexed by t. At the beginning of epoch k, we compute and store the gradient of f at wk.
Subsequently, S2CD enters the inner loop in which a sequence of vectors yk,t for t = 0, 1 . . . , tk

is computed in a stochastic way, starting from yk,0 = wk. The number tk of stochastic steps in
the inner loop is random, following a geometric law:

P
[
(tk = T)

]
=

(1− µh)m−T

β
, T ∈ {1, . . . ,m},

where

β
def
=

m∑

t=1

(1− µh)m−t. (3.4)

developed [59, 57], capable of solving problems with 50 billion variables.

45

In each step of the inner loop, we seek to compute yk,t+1, given yk,t. In order to do so, we
sample coordinate j with probability pj and subsequently2 sample i with probability qij , where
the probabilities are given by

ωi
def
= |{j : Lij 6= 0}|, vj

def
=

n∑

i=1

ωiLij , pj
def
= vj/

d∑

j=1

vj , qij
def
=

ωiLij
vj

, pij
def
= pjqij . (3.5)

Note that Lij = 0 means that function fi does not depend on the jth coordinate of x. Hence, ωi
is the number of coordinates function fi depends on – a measure of sparsity of the data3. It can
be shown that P has a 1-Lipschitz gradient with respect to the weighted Euclidean norm with
weights {vj} ([59, Theorem 1]). Hence, we sample coordinate j proportionally to this weight
vj . Note that pij is the joint probability of choosing the pair (i, j).

Having sampled coordinate j and function index i, we compute two partial derivatives:
∇jfi(wk) and ∇jfi(yk,t) (we compressed the notation here by writing ∇jfi(w) instead of
〈∇fi(w), ej〉), and combine these with the pre-computed value ∇jP (wk) to form an update
of the form

yk,t+1 ← yk,t − hp−1
j Gktij ej = yk,t − hgktij , (3.6)

where
gktij

def
= p−1

j Gktij ej (3.7)

and

Gktij
def
= ∇jP (wk) +

1

nqij

(
∇jfi(yk,t)−∇jfi(wk)

)
. (3.8)

Note that only a single coordinate of yk,t is updated at each iteration.
In the entire text (with the exception of the statement of Theorem 11 and a part of Sec-

tion 3.5.3, where E [·] denotes the total expectation) we will assume that all expectations are
conditional on the entire history of the random variables generated up to the point when yk,t

was computed. With this convention, it is possible to think that there are only two random
variables: j and i. By E [·] we then mean the expectation with respect to both of these random
variables, and by Ei [·] we mean expectation with respect to i (that is, conditional on j). With
this convention, we can write

Ei
[
Gktij
]

=

n∑

i=1

qijG
kt
ij

(3.8)
= ∇jP (wk) +

1

n

n∑

i=1

(
∇jfi(yk,t)−∇jfi(wk)

) (3.1)
= ∇jP (yk,t), (3.9)

which means that conditioned on j, Gktij is an unbiased estimate of the jth partial derivative

of P at yk,t. An equally easy calculation reveals that the random vector gktij is an unbiased

estimate of the gradient of P at yk,t:

E
[
gktij
] (3.7)

= E
[
p−1
j Gktij ej

]
= E

[
Ei
[
p−1
j Gktij ej

]]

= E
[
p−1
j ejEi

[
Gktij
]] (3.9)

= E
[
p−1
j ej∇jP (yk,t)

]
= ∇P (yk,t).

Hence, the update step performed by S2CD is a stochastic gradient step of fixed stepsize h.
Before we describe our main complexity result in the next section, let us briefly comment

on a few special cases of S2CD:

• If n = 1 (this can be always achieved simply by grouping all functions in the average into a

2In S2CD, as presented, coordinates j is selected first, and then function i is selected, according to a distri-
bution conditioned on the choice of j. However, one could equivalently sample (i, j) with joint probability pij .
We opted for the sequential sampling for clarity of presentation purposes.

3The quantity ω
def
= maxi ωi (degree of partial separability of P) was used in the analysis of a large class of

randomized parallel coordinate descent methods in [151]. The more informative quantities {ωi} appear in the
analysis of parallel/distributed/mini-batch coordinate descent methods [149, 59, 57].

46

single function), S2CD reduces to a stochastic CD algorithm with importance sampling4,
as studied in [129, 148, 143], but written with many redundant computations. Indeed,
the method in this case does not require the wk iterates, nor does it need to compute the
gradient of P , and instead takes on the form:

y0,t+1 ← y0,t − hp−1
j ∇jP (y0,t)ej ,

where pj = L1j/
∑
s L1s.

• It is possible to extend the S2CD algorithm and results to the case when coordinates are
replaced by (nonoverlapping) blocks of coordinates, as in [148] — we did not do it here
for the sake of keeping the notation simple. In such a setting, we would obtain semi-
stochastic block coordinate descent. In the special case with all variables forming a single
block, the algorithm reduces to the S2GD method described in [89], but with nonuniform
probabilities for the choice of i — proportional to the Lipschitz constants of the gradient
of the functions fi (this is also studied in [187]). As in [187], the complexity result then
depends on the average of the Lipschitz constants.

Note that the algorithm, as presented, assumes knowledge of the strong convexity parameter
µ. We have done this for simplicity of exposition: the method works also if µ is not explicitly
known — in that case, we can simply replace µ by 0 and the method will still depend on the
true strong convexity parameter. The change to the complexity results will be only minor in
constants and all our conclusions hold. Likewise, it is possible to give an O(1/ε) complexity
result in the non-strongly convex case of P , using standard regularization arguments (e.g., see
[89]).

3.3 Complexity Result

In this section, we state and describe our complexity result; the proof is provided in Section 3.5.
An important step in our analysis is proving a good upper bound on the variance of the

(unbiased) estimator gktij = p−1
j Gktij ej of ∇P (yk,t), one that we can “believe” would diminish to

zero as the algorithm progresses. This is important for several reasons. First, as the method
approaches the optimum, we wish gktij to be progressively closer to the true gradient, which
in turn will be close to zero. Indeed, if this was the case, then S2CD behaves like gradient
descent with fixed stepsize h close to optimum. In particular, this would indicate that using
fixed stepsizes makes sense.

In light of the above discussion, the following lemma plays a key role in our analysis:

Lemma 10. The iterates of the S2CD algorithm satisfy

E
[∥∥gktij

∥∥2
]
≤ 4L̂

(
P (yk,t)− P (w∗)

)
+ 4L̂

(
P (wk)− P (w∗)

)
, (3.10)

where

L̂ :=
1

n

d∑

j=1

vj
(3.5)
=

1

n

d∑

j=1

n∑

i=1

ωiLij . (3.11)

The proof of this lemma can be found in Section 3.4.
Note that as yk,t → w∗ and wk → w∗, the bound (3.10) decreases to zero. This is the main

feature of modern fast stochastic gradient methods: the squared norm of the stochastic gradient
estimate progressively diminishes to zero, as the method progresses, in expectation. Therefore
it is possible to use constant step-size in this type of algorithms. Note that the standard SGD
method does not have this property: indeed, there is no reason for Ei

[
‖∇fi(w)‖2

]
to be small

even if w = w∗.
We are now ready to state the main result of this chapter.

4A parallel CD method in which every subset of coordinates can be assigned a different probability of being
chosen/updated was analyzed in [150].

47

Theorem 11 (Complexity of S2CD). If 0 < h < 1/(2L̂), then for all k ≥ 0 we have: 5

E
[
P (wk+1)− P (w∗)

]
≤
(

(1− µh)m

(1− (1− µh)m)(1− 2L̂h)
+

2L̂h

1− 2L̂h

)
E
[
P (wk)− P (w∗)

]
.

(3.12)

By analyzing the above result (one can follow the steps in [89, Theorem 6]), we get the
following useful corollary:

Corollary 12. Fix the number of epochs k ≥ 1, error tolerance ε ∈ (0, 1) and let ∆
def
= ε1/k and

κ̂
def
= L̂/µ

(3.11)
=

1

µn

d∑

j=1

n∑

i=1

ωiLij . (3.13)

If we run Algorithm 4 with stepsize h and m set as

h =
∆

(4 + 2∆)L̂
, m ≥

(
4

∆
+ 2

)
log

(
2

∆
+ 2

)
κ̂, (3.14)

then E
[
P (wk)− P (w∗)

]
≤ ε(P (w0) − P (w∗)). In particular, for k = dlog(1/ε)e we have

1
∆ ≤ exp(1), and we can pick

k = dlog(1/ε)e, h =
∆

(4 + 2∆)L̂
≈ 1

(4 exp(1) + 2)L̂
≈ 1

12.87L̂
, m ≥ 26κ̂. (3.15)

Remark 13. Note that in order to define h and m as in (3.14), we need to fix the target
accuracy ε and the number of iterations k beforehand.

If we run S2CD with the parameters set as in (3.15), then in each epoch the gradient of
f is evaluated once (this is equivalent to n evaluations of ∇fi), and the partial derivative of
some function fi is evaluated 2m ≈ 52κ̂ = O(κ̂) times. If we let Cgrad be the average cost of
evaluating the gradient ∇fi and Cpd be the average cost of evaluating the partial derivative
∇jfi, then the total work of S2CD can be written as

(nCgrad +mCpd)k
(3.15)

= O
(

(nCgrad + κ̂Cpd) log

(
1

ε

))
, (3.16)

The complexity results of methods such as S2GD/SVRG [89, 80, 187] and SAG/SAGA
[158, 45]—in a similar but not identical setup to ours (these papers assume fi to be Li-smooth)—
can be written in a similar form:

O
(

(nCgrad + κCgrad) log

(
1

ε

))
, (3.17)

where κ = Lavg/µ with Lavg
def
= 1

n

∑
i Li [187] (or slightly weaker where κ = Lmax/µ with

Lmax
def
= maxi Li [158, 80, 89, 45]). The difference between our result (3.16) and existing

results (3.17) is in the term κ̂Cpd – previous results have κCgrad in that place. This difference
constitutes a trade-off: while κ̂ ≥ κ (we comment on this below), we clearly have Cpd ≤ Cgrad.
The comparison of the quantities κCgrad and κ̂Cpd is in general not straightforward and problem
dependent.

Let us now compare the condition numbers κ̂ and κ = Lavg/µ. It can be shown that (see
[148])

Li ≤
d∑

j=1

Lij

5It is possible to modify the argument slightly and replace the term L̂ appearing in the numerator by
L̂− µ

maxs ps
. However, as this does not bring any significant improvements, we decided to present the result in

this simplified form.

48

and, moreover, this inequality can be tight. Since ωi ≥ 1 for all i, we have

κ̂ =
L̂

µ

(3.11)
=

1

µn

d∑

j=1

n∑

i=1

ωiLij ≥
1

µn

n∑

i=1

d∑

j=1

Lij ≥
1

µn

n∑

i=1

Li =
Lavg
µ

= κ.

Let us denote
ω = min

i
ωi, ω̄ = max

i
ωi.

That is, ω and ω̄ are respectively the smallest and largest number of coordinates that a sub-
function depends on. In the case when

Li =

d∑

j=1

Lij , (3.18)

it is easy to see that
ωκ ≤ κ̂ ≤ ω̄κ.

In addition, when (3.18) holds, κ̂ is smaller than κmax
def
= Lmax/µ if

ω̄

n∑

i=1

Li ≤ nmax
i
Li.

3.4 Proof of Lemma 10

We will prove the following stronger inequality:

E
[∥∥gktij

∥∥2
]
≤ 4L̂

(
P (yk,t)− P (w∗)

)
+ 4

(
L̂− µ

maxs ps

)(
P (wk)− P (w∗)

)
. (3.19)

Lemma 10 follows by dropping the negative term.

STEP 1. We first break down the left hand side of (3.19) into d terms each of which we
will bound separately. By first taking expectation conditioned on j and then taking the full
expectation, we can write:

E
[∥∥gktij

∥∥2
]

(3.7)
= E

[
Ei
[
‖p−1
j Gktij ej‖2

]]

= E
[
p−2
j Ei

[(
Gktij
)2]]

=

d∑

s=1

p−1
s Ei

[(
Gktis
)2]

. (3.20)

STEP 2. We now further break each of these d terms into three pieces. That is, for each
j = 1, . . . , d we have:

49

Ei
[(
Gktij
)2] (3.8)

= Ei

[(
∇jP (wk) +

∇jfi(yk,t)−∇jfi(wk)

nqij
+
∇jfi(w∗)−∇jfi(w∗)

nqij

)2
]

= Ei

[(∇jfi(yk,t)−∇jfi(w∗)
nqij

+∇jP (wk)− ∇jfi(w
k)−∇jfi(w∗)
nqij

)2
]

≤ 2Ei

[(∇jfi(yk,t)−∇jfi(w∗)
nqij

)2
]

+ 2Ei

[(
∇jP (wk)− ∇jfi(w

k)−∇jfi(w∗)
nqij

)2
]

= 2Ei

[(∇jfi(yk,t)−∇jfi(w∗)
nqij

)2
]

+ 2Ei

[(∇jfi(wk)−∇jfi(w∗)
nqij

−
(
∇jP (wk)−∇jP (w∗)

))2
]

= 2Ei

[(∇jfi(yk,t)−∇jfi(w∗)
nqij

)2
]

+ 2Ei

[(∇jfi(wk)−∇jfi(w∗)
nqij

)2
]

− 2(∇jP (wk)−∇jP (w∗))2, (3.21)

where the last equality follows from the fact that

Ei
[∇jfi(wk)−∇jfi(w∗)

nqij

]
=

n∑

i=1

qij
∇jfi(wk)−∇jfi(w∗)

nqij
= ∇jP (wk)−∇jP (w∗).

STEP 3. In this step we bound the first two terms in the right hand side of inequality (3.21).
It will now be useful to introduce the following notation:

Qj
def
= {i : Lij 6= 0}, j = 1, . . . , d, (3.22)

and

1ij
def
=

{
1 if Lij 6= 0

0 otherwise
, i = 1, . . . , n, j = 1, . . . , d.

Let us fist examine the first term in the right-hand side of (3.21). Using the coordinate
co-coercivity lemma (Lemma 14) with y = w∗, we obtain the inequality

(∇jfi(w)−∇jfi(w∗))2 ≤ 2Lij (fi(w)− fi(w∗)− 〈∇fi(w∗), w − w∗〉) , (3.23)

using which we get the bound:

2

d∑

s=1

p−1
s Ei

[(
1

nqi,s

(
∇sfi(yk,t)−∇sfi(w∗)

))2
]

= 2

d∑

s=1

p−1
s

∑

i∈Qs

1

n2qi,s
(∇sfi(yk,t)−∇sfi(w∗))2

(3.23)

≤ 4

d∑

s=1

p−1
s

∑

i∈Qs

Lis
n2qi,s

(
fi(y

k,t)− fi(w∗)−
〈
∇fi(w∗), yk,t − w∗

〉)

(3.22)
= 4

n∑

i=1

d∑

s=1

p−1
s 1is

vs
n2ωi

(
fi(y

k,t)− fi(w∗)−
〈
∇fi(w∗), yk,t − w∗

〉)
. (3.24)

Note that by (3.5) and (3.11), we have that for all s = 1, 2, . . . , d,

p−1
s vs = nL̂.

50

Continuing from (3.24), we can therefore further write

2

d∑

s=1

p−1
s Ei

[(
1

nqij

(
∇jfi(yk,t)−∇jfi(w∗)

))2
]

≤ 4

n∑

i=1

d∑

s=1

1is
L̂

nωi

(
fi(y

k,t)− fi(w∗)−
〈
∇fi(w∗), yk,t − w∗

〉)

=
4L̂

n

n∑

i=1

(
fi(y

k,t)− fi(w∗)−
〈
∇fi(w∗), yk,t − w∗

〉)

= 4L̂(P (yk,t)− P (w∗)). (3.25)

The same reasoning applies to the second term on the right-hand side of the inequality (3.21)
and we have:

2

d∑

s=1

p−1
s Ei

[(
1

nqij

(
∇jfi(wk)−∇jfi(w∗)

))2
]
≤ 4L̂(P (wk)− P (w∗)). (3.26)

STEP 4. Next we bound the third term on the right-hand side of the inequality (3.21). First
note that since P is µ-strongly convex (see (3.3)), for all w ∈ Rd we have:

〈∇P (w), w − w∗〉 ≥ P (w)− P (w∗) +
µ

2
‖w − w∗‖2. (3.27)

We can now write:

2

d∑

s=1

p−1
s (∇sP (wk)−∇sP (w∗))2 ≥ 2

maxs ps

d∑

j=1

(∇jP (wk)−∇jP (w∗))2

(3.27)

≥ 4µ

maxs ps
(P (wk)− P (w∗)). (3.28)

STEP 5. We conclude by combining (3.20), (3.21), (3.25), (3.26) and (3.28).

3.5 Proof of the Main Result

In this section we provide the proof of our main result. In order to present the proof in an
organize fashion, we first establish two technical lemmas.

3.5.1 Coordinate co-coercivity

It is a well known and widely used fact (see, e.g. [127]) that for a continuously differentiable
function φ : Rd → R and constant Lφ > 0, the following two conditions are equivalent:

φ(x) ≤ φ(y) + 〈∇φ(y), x− y〉+
Lφ
2
‖x− y‖2, ∀x, y ∈ Rd

and
‖∇φ(x)−∇φ(y)‖2 ≤ 2Lφ(φ(x)− φ(y)− 〈∇φ(y), x− y〉), ∀x, y ∈ Rd.

The second condition is often referred to by the name co-coercivity. Note that our assumption
(3.2) on fi is similar to the first inequality. In our first lemma we establish a coordinate-based
co-coercivity result which applies to functions fi satisfying (3.2).

Lemma 14 (Coordinate co-coercivity). For all w, y ∈ Rd and i = 1, . . . , n, j = 1, . . . , d, we
have:

(∇jfi(w)−∇jfi(y))
2 ≤ 2Lij (fi(w)− fi(y)− 〈∇fi(y), w − y〉) . (3.29)

51

Proof. Fix any i, j and y ∈ Rd. Consider the function gi : Rd → R defined by:

gi(w)
def
= fi(w)− fi(y)− 〈∇fi(y), w − y〉 . (3.30)

Then since fi is convex, we know that gi(w) ≥ 0 for all w, with gi(y) = 0. Hence, y minimizes
gi. We also know that for any w ∈ Rd:

∇jgi(w) = ∇jfi(w)−∇jfi(y). (3.31)

Since fi satisfies (3.2), so does gi, and hence for all w ∈ Rd and h ∈ R, we have

gi(w + hej) ≤ gi(w) + 〈∇gi(w), hej〉+
Lij
2
h2.

Minimizing both sides in h, we obtain

gi(y) ≤ min
h
gi(w + hej) ≤ gi(w)− 1

2Lij
(∇jgi(w))2,

which together with (3.30) yield the result.

3.5.2 Recursion

We now proceed to the final lemma, establishing a key recursion which ultimately yields the
proof of the main theorem, which we present in Section 3.5.3.

Lemma 15 (Recursion). The iterates of S2CD satisfy the following recursion:

1

2
E
[
‖yk,t+1 − w∗‖2

]
+ h(1− 2hL̂)

(
P (yk,t)− P (w∗)

)

≤ (1− hµ)
1

2
‖yk,t − w∗‖2 + 2h2L̂

(
P (wk)− P (w∗)

)
.

(3.32)

Proof.

1

2
E
[
‖yk,t+1 − w∗‖2

] (3.6)
=

1

2
E
[∥∥yk,t − hp−1

j Gktij ej − w∗
∥∥2
]

=
1

2
‖yk,t − w∗‖2 − E

[〈
hp−1

j Gktij ej , y
k,t − w∗

〉]
+

1

2
E
[∥∥hp−1

j Gktij ej
∥∥2
]

(3.9)
=

1

2
‖yk,t − w∗‖2 − h

〈
∇P (yk,t), yk,t − w∗

〉
+
h2

2
E
[∥∥gktij

∥∥2
]

(3.27)

≤ 1

2
‖yk,t − w∗‖2 − h

(
P (yk,t)− P (w∗) +

µ

2

∥∥yk,t − w∗
∥∥2
)

+
h2

2
E
[∥∥gktij

∥∥2
]

(3.10)

≤ 1

2
‖yk,t − w∗‖2 − h

(
P (yk,t)− P (w∗) +

µ

2
‖yk,t − w∗‖2

)

+ 2h2L̂
(
P (yk,t)− P (w∗)

)
+ 2h2L̂

(
P (wk)− P (w∗)

)

= (1− µh)
1

2
‖yk,t − w∗‖2 − h(1− 2hL̂)

(
P (yk,t)− P (w∗)

)

+ 2h2L̂
(
P (wk)− P (w∗)

)
.

3.5.3 Proof of Theorem 11

For simplicity, let us denote:

ηk,t
def
=

1

2
E
[
‖yk,t − w∗‖2

]
, ξk,t

def
= E

[
P (yk,t)− P (w∗)

]
,

52

where the expectation now is with respect to the entire history. Notice that

yk+1,0 = yk,t
k

,

where tk = T ∈ {1, . . . ,m} with probability (1−µh)m−T /β with β defined in (3.4). Conditioning
on tk we obtain that

ξk+1,0 =
1

β

m−1∑

t=0

(1− µh)tξk,m−1−t. (3.33)

See also [89, Lemma 3] for a proof. By Lemma 15 we have the following m inequalities:

ηk,m + h(1− 2hL̂)ξk,m−1 ≤ (1− µh)ηk,m−1 + 2h2L̂ξk,0,

(1− µh)ηk,m−1 + h(1− 2hL̂)(1− µh)ξk,m−2 ≤ (1− µh)2ηk,m−2 + 2h2L̂(1− µh)ξk,0,

...

(1− µh)tηk,m−t + h(1− 2hL̂)(1− µh)tξk,m−t−1 ≤ (1− µh)t+1ηk,m−t−1 + 2h2L̂(1− µh)tξk,0,

...

(1− µh)m−1ηk,1 + γ(1− 2hL̂)(1− µh)m−1ξk,0 ≤ (1− µh)mηk,0 + 2h2L̂(1− µh)m−1ξk,0.

By summing up the above m inequalities, we get:

ηk,m + γ(1− 2hL̂)

m−1∑

t=0

(1− µh)tξk,m−1−t ≤ (1− µh)mηk,0 + 2h2L̂βξk,0,

It follows from the strong convexity assumption (3.3) that P (wk)−P (w∗) ≥ µ
2 ‖wk−w∗‖2, that

is, ξk,0 ≥ µηk,0. Therefore, together with (3.33) we get:

h(1− 2hL̂)ξk+1,0 ≤
(

(1− µh)m

βµ
+ 2h2L̂

)
ξk,0

Hence if 0 < 2hL̂ < 1, then we obtain:

ξk+1,0 ≤
(

(1− µh)m

(1− (1− µh)m)(1− 2hL̂)
+

2hL̂

1− 2hL̂

)
ξk,0,

which finishes the proof.

53

54

Part II

Parallel and Distributed Methods
with Variance Reduction

55

Chapter 4

Mini-batch Semi-Stochastic
Gradient Descent in the
Proximal Setting

4.1 Introduction

In this work we are concerned with the problem of minimizing the sum of two convex functions,

min
w∈Rd

{P (w) := f(w) +R(w)}, (4.1)

where the first component, f , is smooth, and the second component, R, is possibly nonsmooth
(and extended real-valued, which allows for the modeling of constraints).

In the last decade, an intensive amount of research was conducted into algorithms for solving
problems of the form (4.1), largely motivated by the realization that the underlying problem
has a considerable modeling power. One of the most popular and practical methods for (4.1)
is the accelerated proximal gradient method of Nesterov [128], with its most successful variant
being FISTA [11].

In many applications in optimization, signal processing and machine learning, f has an
additional structure. In particular, it is often the case that f is the average of a number of
convex functions:

f(w) =
1

n

n∑

i=1

fi(w). (4.2)

Indeed, even one of the most basic optimization problems—least squares regression—lends
itself to a natural representation of the form (4.2).

4.1.1 Stochastic methods.

For problems of the form (4.1)+(4.2), and especially when n is large and when a solution of
low to medium accuracy is sufficient, deterministic methods do not perform as well as classical
stochastic methods. The prototype method in this category is stochastic gradient descent
(SGD), dating back to the 1951 seminal work of Robbins and Monro [153]. SGD selects an
index i ∈ {1, 2, . . . , n} uniformly at random, and then updates the variable w using ∇fi(w) —
a stochastic estimate of ∇f(w). Note that the computation of ∇fi is n times cheaper than
the computation of the full gradient ∇f . For problems where n is very large, the per-iteration
savings can be extremely large, spanning several orders of magnitude.

These savings do not come for free, however (modern methods, such as the one we propose,
overcome this – more on that below). Indeed, the stochastic estimate of the gradient embodied
by ∇fi has a non-vanishing variance. To see this, notice that even when started from an
optimal solution w∗, there is no reason for ∇fi(w∗) to be zero, which means that SGD drives
away from the optimal point. Traditionally, there have been two ways of dealing with this

57

issue. The first one consists in choosing a decreasing sequence of stepsizes. However, this
means that a much larger number of iterations is needed. A second approach is to use a subset
(“minibatch”) of indices i, as opposed to a single index, in order to form a better stochastic
estimate of the gradient. However, this results in a method which performs more work per
iteration. In summary, while traditional approaches manage to decrease the variance in the
stochastic estimate, this comes at a cost.

4.1.2 Modern stochastic methods

Very recently, starting with the SAG [156], SDCA [163], SVRG [80] and S2GD [89] algorithms
from year 2013, it has transpired that neither decreasing stepsizes nor mini-batching are neces-
sary to resolve the non-vanishing variance issue inherent in the vanilla SGD methods. Instead,
these modern stochastic1 method are able to dramatically improve upon SGD in various dif-
ferent ways, but without having to resort to the usual variance-reduction techniques (such as
decreasing stepsizes or mini-batching) which carry with them considerable costs drastically re-
ducing their power. Instead, these modern methods were able to improve upon SGD without
any unwelcome side effects. This development led to a revolution in the area of first order meth-
ods for solving problem (4.1)+(4.2). Both the theoretical complexity and practical efficiency of
these modern methods vastly outperform prior gradient-type methods.

In order to achieve ε-accuracy, that is,

E
[
P (wk)− P (w∗)

]
≤ ε[P (w0)− P (w∗)], (4.3)

modern stochastic methods such as SAG, SDCA, SVRG and S2GD require only

O((n+ κ) log(1/ε)) (4.4)

units of work, where κ is a condition number associated with f , and one unit of work corresponds
to the computation of the gradient of fi for a random index i, followed by a call to a prox-
mapping involving R. More specifically, κ = L/µ, where L is a uniform bound on the Lipschitz
constants of the gradients of functions fi and µ is the strong convexity constant of P . These
quantities will be defined precisely in Section 4.4.

The complexity bound (4.4) should be contrasted with that of proximal gradient descent
(e.g., ISTA), which requires O(nκ log(1/ε)) units of work, or FISTA, which requires
O(n
√
κ log(1/ε)) units of work2. Note that while all these methods enjoy linear convergence

rate, the modern stochastic methods can be many orders of magnitude faster than classical
deterministic methods. Indeed, one can have

n+ κ� n
√
κ ≤ nκ.

Based on this, we see that these modern methods always beat (proximal) gradient descent
(n + κ � nκ), and also outperform FISTA as long as κ ≤ O(n2). In machine learning, for
instance, one usually has κ ≈ n, in which case the improvement is by a factor of

√
n when

compared to FISTA, and by a factor of n over ISTA. For applications where n is massive, these
improvements are indeed dramatic.

For more information about modern dual and primal methods we refer the reader to the
literature on randomized coordinate descent methods [129, 148, 151, 122, 59, 163, 111, 121, 149,
57, 140, 36] and stochastic gradient methods [156, 196, 105, 79, 172, 132, 140, 155], respectively.

4.1.3 Linear systems and sketching.

In the case when R ≡ 0, all stationary points (i.e., points satisfying ∇f(w) = 0) are optimal
for (4.1)+(4.2). In the special case when the functions fi are convex quadratics of the form

1These methods are randomized algorithms. However, the term “stochastic” (somewhat incorrectly) appears
in their names for historical reasons, and quite possibly due to their aspiration to improve upon stochastic
gradient descent (SGD).

2However, it should be remarked that the condition number κ in these latter methods is slightly different
from that appearing in the bound (4.4).

58

fi(w) = 1
2 (aTi w − bi), the equation ∇f(w) = 0 reduces to the linear system ATAw = AT b,

where A = [a1, . . . , an]. Recently, there has been considerable interest in designing and ana-
lyzing randomized methods for solving linear systems; also known under the name of sketching
methods. Much of this work was done independently from the developments in (non-quadratic)
optimization, despite the above connection between optimization and linear systems. A ran-
domized version of the classical Kaczmarz method was studied in a seminal paper by Strohmer
and Vershynin [170]. Subsequently, the method was extended and improved upon in several
ways [123, 204, 103, 135]. The randomized Kaczmarz method is equivalent to SGD with a
specific stepsize choice [124, 68]. The first randomized coordinate descent method, for linear
systems, was analyzed by Lewis and Leventhal [97], and subsequently generalized in various
ways by numerous authors (we refer the reader to [140] and the references therein). Gower
and Richtárik [68] have recently studied randomized iterative methods for linear systems in a
general sketch and project framework, which in special cases includes randomized Kaczmarz,
randomized coordinate descent, Gaussian descent, randomized Newton, their block variants,
variants with importance sampling, and also an infinite array of new specific methods. For
approaches of a combinatorial flavor, specific to diagonally dominant systems, we refer to the
influential work of Spielman and Teng [169].

4.2 Contributions

In this chapter we equip modern stochastic methods—methods which already enjoy the fast rate
(4.4)—with the ability to process data in mini-batches. None of the primal3 modern methods
have been analyzed in the mini-batch setting. This work fills this gap in the literature.

While we have argued above that the modern methods, S2GD included, do not have the
“non-vanishing variance” issue that SGD does, and hence do not need mini-batching for that
purpose, mini-batching is still useful. In particular, we develop and analyze the complexity
of mS2GD (Algorithm 5) — a mini-batch proximal variant of semi-stochastic gradient descent
(S2GD) [89]. While the S2GD method was analyzed in the R = 0 case only, we develop
and analyze our method in the proximal4 setting (4.1). We show that mS2GD enjoys several
benefits when compared to previous modern methods. First, it trivially admits a parallel
implementation, and hence enjoys a speedup in clocktime in an HPC environment. This is
critical for applications with massive datasets and is the main motivation and advantage of our
method. Second, our results show that in order to attain a specified accuracy ε, mS2GD can
get by with fewer gradient evaluations than S2GD. This is formalized in Theorem 19, which
predicts more than linear speedup up to a certain threshold mini-batch size after which the
complexity deteriorates. Third, compared to [187], our method does not need to average the
iterates produced in each inner loop; we instead simply continue from the last one. This is the
approach employed in S2GD [89].

4.3 The Algorithm

In this section we first briefly motivate the mathematical setup of deterministic and stochastic
proximal gradient methods in Section 4.3.1, followed by the introduction of semi-stochastic
gradient descent in Section 4.3.2. We will the be ready to describe the mS2GD method in
Section 4.3.3.

3By a primal method we refer to an algorithm which operates directly to solve (4.1)+(4.2) without explicitly
operating on the dual problem. Dual methods have very recently been analyzed in the mini-batch setting. For a
review of such methods we refer the reader to the paper describing the QUARTZ method [143] and the references
therein.

4Note that the Prox-SVRG method [187] can also handle the composite problem (4.1).

59

4.3.1 Deterministic and stochastic proximal gradient methods

The classical deterministic proximal gradient approach [11, 35, 136] to solving (4.1) is to form
a sequence {yt} via

yt+1 = arg min
w∈Rd

U t(w),

where U t(w)
def
= f(yt) +∇f(yt)T (w− yt) + 1

2h‖w− yt‖2 +R(w). Note that in view of Assump-
tion 16, which we shall use in our analysis in Section 4.4, U t is an upper bound on P whenever
h > 0 is a stepsize parameter satisfying 1/h ≥ L. This procedure can be compactly written
using the proximal operator as follows:

yt+1 = proxhR(yt − h∇f(yt)),

where

proxhR(z)
def
= arg min

w∈Rd

{
1

2
‖w − z‖2 + hR(w)

}
.

In a large-scale setting it is more efficient to instead consider the stochastic proximal gradient
approach, in which the proximal operator is applied to a stochastic gradient step:

yt+1 = proxhR(yt − hGt), (4.5)

where Gt is a stochastic estimate of the gradient ∇f(yt).

4.3.2 Semi-stochastic methods

Of particular relevance to our work are the SVRG [80], S2GD [89] and Prox-SVRG [187] methods
where the stochastic estimate of ∇f(yt) is of the form

Gt = ∇f(w) +
1

nqit
(∇fit(yt)−∇fit(w)), (4.6)

where w is an “old” reference point for which the gradient ∇f(w) was already computed in the

past, and it ∈ [n]
def
= {1, 2, . . . , n} is a random index equal to i with probability qi > 0. Notice

that Gt is an unbiased estimate of the gradient of f at yt:

Eit
[
Gt
] (4.6)

= ∇f(w) +

n∑

i=1

qi
1

nqi
(∇fi(yt)−∇fi(w))

(4.2)
= ∇f(yt).

Methods such as S2GD, SVRG, and Prox-SVRG update the points yt in an inner loop,
and the reference point w in an outer loop (“epoch”) indexed by k. With this new outer
iteration counter we will have wk instead of w, yk,t instead of yt and Gk,t instead of Gt. This
is the notation we will use in the description of our algorithm in Section 4.3.3. The outer loop
ensures that the squared norm of Gk,t approaches zero as k, t → ∞ (it is easy to see that this
is equivalent to saying that the stochastic estimate Gk,t has a diminishing variance), which
ultimately leads to extremely fast convergence.

4.3.3 Mini-batch S2GD

We are now ready to describe the mS2GD method5 (Algorithm 5).

5 A more detailed algorithm and the associated analysis (in which we benefit from the knowledge of lower-
bound on the strong convexity parameters of the functions f and R) can be found in the arXiv preprint [81].
The more general algorithm mainly differs in tk being chosen according to a geometric probability law which
depends on the estimates of the convexity constants.

60

Algorithm 5 mS2GD

1: Input: m (max # of stochastic steps per epoch); h > 0 (stepsize); w0 ∈ Rd (starting
point); mini-batch size b ∈ [n]

2: for k = 0, 1, 2, . . . do
3: Compute and store gk ← ∇f(wk) = 1

n

∑
i∇fi(wk)

4: Initialize the inner loop: yk,0 ← wk

5: Choose tk ∈ {1, 2, . . . ,m} uniformly at random
6: for t = 0 to tk − 1 do
7: Choose mini-batch Akt ⊆ [n] of size b; uniformly at random
8: Compute a stochastic estimate of ∇f(yk,t):

ij Gk,t ← gk + 1
b

∑
i∈Akt(∇fi(yk,t)−∇fi(wk))

9: yk,t+1 ← proxhR(yk,t − hGk,t)
10: end for
11: Set wk+1 ← yk,t

k

12: end for

The algorithm includes an outer loop, indexed by epoch counter k, and an inner loop,
indexed by t. Each epoch is started by computing gk, which is the (full) gradient of f at wk. It
then immediately proceeds to the inner loop. The inner loop is run for tk iterations, where tk

is chosen uniformly at random from {1, . . . ,m}. Subsequently, we run tk iterations in the inner
loop (corresponding to Steps 6–10). Each new iterate is given by the proximal update (4.5),
however with the stochastic estimate of the gradient Gk,t in (4.6), which is formed by using a
mini-batch of examples Akt ⊆ [n] of size |Akt| = b. Each inner iteration requires 2b units of
work6.

4.4 Analysis

In this section, we lay down the assumptions, state our main complexity result, and comment
on how to optimally choose the parameters of the method.

4.4.1 Assumptions

Our analysis is performed under the following two assumptions.

Assumption 16. Function R : Rd → R ∪ {+∞} (regularizer/proximal term) is convex and
closed. The functions fi : Rd → R have Lipschitz continuous gradients with constant L > 0.
That is, ‖∇fi(w)−∇fi(y)‖ ≤ L‖w − y‖, for all x, y ∈ Rd, where ‖ · ‖ is the `2-norm.

Hence, the gradient of f is also Lipschitz continuous with the same constant L.

Assumption 17. P is strongly convex with parameter µ > 0. That is for all x, y ∈ dom(R)
and any ξ ∈ ∂P (x),

P (y) ≥ P (x) + ξT (y − x) +
µ

2
‖y − x‖2, (4.7)

where ∂P (x) is the subdifferential of P at x.

Lastly, by µf ≥ 0 and µR ≥ 0 we denote the strong convexity constants of f and R,
respectively. We allow both of these quantities to be equal to 0, which simply means that
the functions are convex (which we already assumed above). Hence, this is not an additional
assumption.

4.4.2 Main result

We are now ready to formulate our complexity result.

6It is possible to finish each iteration with only b evaluations for component gradients, namely
{∇fi(yk,t)}i∈Akt , at the cost of having to store {∇fi(wk)}i∈[n], which is exactly the way that SAG [156]
works. This speeds up the algorithm; nevertheless, it is impractical for big n.

61

Theorem 18. Let Assumptions 16 and 17 be satisfied, let w∗
def
= arg minw P (w) and choose

b ∈ {1, 2 . . . , n}. Assume that 0 < h ≤ 1/L, 4hLα(b) < 1 and that m,h are further chosen so
that

c
def
=

1

mhµ(1− 4hLα(b))
+

4hLα(b) (m+ 1)

m(1− 4hLα(b))
< 1, (4.8)

where α(b)
def
= n−b

b(n−1) . Then mS2GD has linear convergence in expectation with rate c:

E
[
P (wk)− P (w∗)

]
≤ ck[P (w0)− P (w∗)].

Notice that for any fixed b, by properly adjusting the parameters h and m we can force
c to be arbitrarily small. Indeed, the second term can be made arbitrarily small by choosing
h small enough. Fixing the resulting h, the first term can then be made arbitrarily small by
choosing m large enough. This may look surprising, since this means that only a single outer
loop (k = 1) is needed in order to obtain a solution of any prescribed accuracy. While this is
indeed the case, such a choice of the parameters of the method (m, h, k) would not be optimal
– the resulting workload would to be too high as the complexity of the method would depend
sublinearly on ε. In order to obtain a logarithmic dependence on 1/ε, i.e., in order to obtain
linear convergence, one needs to perform k = O(log(1/ε)) outer loops, and set the parameters
h and m to appropriate values (generally, h = Θ(1/L) and m = Θ(κ)).

4.4.3 Special cases: b = 1 and b = n

In the special case with b = 1 (no mini-batching), we get α(b) = 1, and the rate given by
(4.8) exactly recovers the rate achieved by Prox-SVRG [187] (in the case when the Lipschitz
constants of ∇fi are all equal). The rate is also identical to the rate of S2GD [89] (in the case
of R = 0, since S2GD was only analyzed in that case). If we set the number of outer iterations
to k = dlog(1/ε)e, choose the stepsize as h = 1

(2+4e)L , where e = exp(1), and choose m = 43κ,

then the total workload of mS2GD for achieving (4.3) is (n+ 43κ) log(1/ε) units of work. Note
that this recovers the fast rate (4.4).

In the batch setting, that is when b = n, we have α(b) = 0 and hence c = 1/(mhµ). By
choosing k = dlog(1/ε)e, h = 1/L, and m = 2κ, we obtain the rate O (nκ log(1/ε)). This is the
standard rate of (proximal) gradient descent.

Hence, by modifying the mini-batch size b in mS2GD, we interpolate between the fast rate
of S2GD and the slow rate of GD.

4.4.4 Mini-batch speedup

In this section we will derive formulas for good choices of the parameter m,h and k of our
method as a function of b. Hence, throughout this section we shall consider b fixed.

Fixing 0 < c < 1, it is easy to see that in order for wk to be an ε-accurate solution (i.e.,
in order for (4.3) to hold), it suffices to choose k ≥ (1 − c)−1 log(ε−1). Notice that the total
workload mS2GD will do in order to arrive at wk is

k(n+ 2m) ≈ (1− c)−1 log(ε−1)(n+ 2m)

units of work. If we now consider c fixed (we may try to optimize for it later), then clearly the
total workload is proportional to m. The free parameters of the method are the stepsize h and
the inner loop size m. Hence, in order to set the parameters so as to minimize the workload
(i.e., optimize the complexity bound), we would like to (approximately) solve the optimization
problem

minm subject to 0 < h ≤ 1

L
, h <

1

4Lα(b)
, c is fixed.

Let (h∗b ,m
∗
b) denote the optimal pair (we highlight the dependence on b as it will be useful).

Note that if m∗b ≤ m∗1/b for some b > 1, then mini-batching can help us reach the ε-solution
with smaller overall workload. The following theorem presents the formulas for h∗b and m∗b .

62

Theorem 19. Fix b and 0 < c < 1 and let

h̃b
def
=

√(
1 + c

cµ

)2

+
1

4µα(b)L
− 1 + c

cµ
.

If h̃b ≤ 1
L , then h∗b = h̃b and

m∗b =
2κ

c





(
1 +

1

c

)
4α(b) +

√
4α(b)

κ
+

(
1 +

1

c

)2

[4α(b)]2



 , (4.9)

where κ
def
= L

µ is the condition number. If h̃b >
1
L , then h∗b = 1

L and

m∗b =
κ+ 4α(b)

c− 4α(b)(1 + c)
. (4.10)

Note that if b = 1, we recover the optimal choice of parameters without mini-batching.
Equation (4.9) suggests that as long as the condition h̃b ≤ 1

L holds, m∗b is decreasing at a rate
faster than 1/b. Hence, we can find the solution with less overall work when using a minibatch
of size b than when using a minibatch of size 1.

4.4.5 Convergence rate

In this section we study the total workload of mS2GD in the regime of small mini-batch sizes.

Corollary 20. Fix ε ∈ (0, 1), choose the number of outer iterations equal to

k = dlog(1/ε)e ,

and fix the target decrease in Theorem 19 to satisfy c = ε1/k. Further, pick a mini-batch size
satisfying 1 ≤ b ≤ 29, let the stepsize h be as in (4.33) and let m be as in (4.32). Then in order
for mS2GD to find wk satisfying (4.3), mS2GD needs at most

(n+ 2bmb)dlog(1/ε)e (4.11)

units of work, where bmb = O(κ), which leads to the overall complexity of

O ((n+ κ) log(1/ε))

units of work.

Proof. Available in Section 4.7.1.

This result shows that as long as the mini-batch size is small enough, the total work per-
formed by mS2GD is the same as in the b = 1 case. If the b updates can be performed in
parallel, then this leads to linear speedup.

4.4.6 Comparison with Acc-Prox-SVRG

The Acc-Prox-SVRG [132] method of Nitanda, which was not available online before the first
version of this work appeared on arXiv, incorporates both a mini-batch scheme and Nesterov’s
acceleration [127, 128]. The author claims that when b < db0e, with the threshold b0 defined as

8
√
κn√

2p(n−1)+8
√
κ

, the overall complexity of the method is

O
((

n+
n− b
n− 1

κ

)
log(1/ε)

)
;

and otherwise it is
O
((
n+ b

√
κ
)

log(1/ε)
)
.

63

This suggests that acceleration will only be realized when the mini-batch size is large, while for
small b, Acc-Prox-SVRG achieves the same overall complexity, O ((n+ κ) log(1/ε)), as mS2GD.

We will now take a closer look at the theoretical results given by Acc-Prox-SVRG and
mS2GD, for each ε ∈ (0, 1). In particular, we shall numerically minimize the total work of
mS2GD, i.e.,

(n+ 2bdmbe) dlog(1/ε)/ log(1/c)e ,
over c ∈ (0, 1) and h (compare this with (4.11)); and compare these results with similar fine-
tuned quantities for Acc-Prox-SVRG.7

Fig. 4.1 illustrates these theoretical complexity bounds for both ill-conditioned and well-
conditioned data. With small-enough mini-batch size b, mS2GD is better than Acc-Prox-
SVRG. However, for a large mini-batch size b, the situation reverses because of the acceleration
inherent in Acc-Prox-SVRG.8 Plots with b = 64 illustrate the cases where we cannot observe
any differences between the methods.

10
−4

10
−3

10
−2

10
−1

10
0

10
4

10
5

10
6

κ=n
0.5

, b=8

Accuracy ε

To
ta

l
W

o
rk

 D
o

n
e

Acc−Prox−SVRG

mS2GD

10
−4

10
−3

10
−2

10
−1

10
0

10
4

10
5

10
6

κ=n
0.5

, b=64

Accuracy ε

To
ta

l
W

o
rk

 D
o

n
e

Acc−Prox−SVRG

mS2GD

10
−4

10
−3

10
−2

10
−1

10
0

10
4

10
5

10
6

κ=n
0.5

, b=128

Accuracy ε

To
ta

l
W

o
rk

 D
o

n
e

Acc−Prox−SVRG

mS2GD

10
−4

10
−3

10
−2

10
−1

10
0

10
9

10
10

10
11

10
12

κ=n
2
, b=8

Accuracy ε

To
ta

l
W

o
rk

 D
o

n
e

Acc−Prox−SVRG

mS2GD

10
−4

10
−3

10
−2

10
−1

10
0

10
10

10
11

10
12

κ=n
2
, b=64

Accuracy ε

To
ta

l
W

o
rk

 D
o

n
e

Acc−Prox−SVRG

mS2GD

10
−4

10
−3

10
−2

10
−1

10
0

10
10

10
11

10
12

κ=n
2
, b=128

Accuracy ε

To
ta

l
W

o
rk

 D
o

n
e

Acc−Prox−SVRG

mS2GD

Figure 4.1: Complexity of Acc-Prox-SVRG and mS2GD in terms of total work done for n = 10, 000, and small
(κ =

√
n; top row) and large (κ = n2; bottom row) condition number.

Note however that accelerated methods are very prone to error accumulation. Moreover, it
is not clear that an efficient implementation of Acc-Prox-SVRG is possible for sparse data. As
shall show in the next section, mS2GD allows for such an implementation.

4.5 Efficient implementation for sparse data

Let us make the following assumption about the structure of functions fi in (4.2).

Assumption 21. The functions fi arise as the composition of a univariate smooth function `i
and an inner product with a datapoint/example ai ∈ Rd: fi(w) = `(aTi w) for i = 1, . . . , n.

Many functions of common practical interest satisfy this assumption including linear and
logistic regression. Very often, especially for large scale datasets, the data are extremely sparse,
i.e. the vectors {ai} contains many zeros. Let us denote the number of non-zero coordinates
of ai by ωi = ‖ai‖0 ≤ d and the set of indexes corresponding to non-zero coordinates by
support(ai) = {j : (ai)j 6= 0}, where (ai)j denotes the jth coordinate of vector ai.

Assumption 22. The regularization function R(w) is separable in coordinates of w.

7mb is the best choice of m for Acc-Prox-SVRG and mS2GD, respectively. Meanwhile, h is within the safe
upper bounds for both methods.

8We have experimented with different values for n, b and κ, and this result always holds.

64

This includes the most commonly used regularization functions as λ
2 ‖w‖2 or λ‖w‖1.

Let us take a brief detour and look at the classical SGD algorithm with R(w) = 0. The
update would be of the form

wk+1 ← wk − h∇`i(aTi wk)ai = wk − h∇fi(wk). (4.12)

If evaluation of the univariate function ∇`i takes O(1) amount of work, the computation of ∇fi
will account for O(ωi) work. Then the update (4.12) would cost O(ωi) too, which implies that
the classical SGD method can naturally benefit from sparsity of data.

Now, let us get back to the Algorithm 5. Even under the sparsity assumption and structural
Assumption 21 the Algorithm 5 suggests that each inner iteration will cost O(ω + d) ∼ O(d)
because gk is in general fully dense and hence in Step 9 of Algorithm 5 we have to update all
d coordinates.

However, in this Section, we will introduce and describe the implementation trick which
is based on “lazy/delayed” updates. The main idea of this trick is not to perform Step 9 of
Algorithm 5 for all coordinates, but only for coordinates j ∈ ∪i∈Akt support(ai). The efficient
algorithm is described in Algorithm 6.

Algorithm 6 ”Lazy” updates for mS2GD (these replace steps 6–10 in Algorithm 5)

1: χj ← 0 for j = 1, 2, . . . , d
2: for t = 0 to tk − 1 do
3: Choose mini-batch Akt ⊆ [n] of size b; uniformly at random
4: for i ∈ Akt do
5: for j ∈ support(ai) do

6: yk,tj ← proxt−χj [yk,χjj , gkj , R, h]
7: χj ← t
8: end for
9: end for

10: yk,t+1 ← yk,t − h
b

∑
i∈Akt

(
∇`i(aTi yk,t)−∇`i(aTi wk)

)
ai

11: end for
12: for j = 1 to d do

13: yk,t
k

j ← proxt
k−χj [yk,χjj , gkj , R, h]

14: end for

To explain the main idea behind the lazy/delayed updates, consider that it happened that
during the fist τ iterations of the inner loop, the value of the fist coordinate in all datapoints
which we have used was 0. Then given the values of yk,01 and gk1 we can compute the true value

of yk,t1 easily. We just need to apply the prox operator τ times, i.e. yk,τ1 = proxτ1 [yk,0, gk, R, h],
where the function proxτ1 is described in Algorithm 7.

Algorithm 7 proxτj [y, g,R, h]

ỹ0 = y
for s = 1, 2, . . . , τ do

ỹs ← proxhR(ỹs−1 − hg)
end for
return ỹτj

The vector χ in Algorithm 6 is enabling us to keep track of the iteration when corresponding
coordinate of y was updated for the last time. E.g. if in iteration t we will be updating the
1st coordinate for the first time, χ1 = 0 and after we compute and update the true value of y1,
its value will be set to χ1 = t. Lines 5-8 in Algorithm 6 make sure that the coordinates of yk,t

which will be read and used afterwards are up-to-date. At the end of the inner loop, we will
updates all coordinates of y to the most recent value (lines 12-14). Therefore, those lines make

sure that the yk,t
k

of Algorithms 5 and 6 will be the same.

65

However, one could claim that we are not saving any work, as when needed, we still have to
compute the proximal operator many times. Although this can be true for a general function
R, for particular cases R(w) = λ

2 ‖w‖2 and R(w) = λ‖w‖21, we provide following Lemmas which
give a closed form expressions for the proxτj operator.

Lemma 23 (Proximal Lazy Updates with `2-Regularizer). If R(w) = λ
2 ‖w‖2 with λ > 0 then

proxτj [y, g,R, h] = βτyj −
hβ

1− β (1− βτ) gj ,

where β
def
= 1/(1 + λh).

Lemma 24 (Proximal Lazy Updates with `1-Regularizer). Assume that R(w) = λ‖w‖1 with
λ > 0. Let us define M and m as follows,

M = [λ+ gj]h, m = −[λ− gj]h,

and let [·]+ def
= max{·, 0}. Then the value of proxτj [y, g,R, h] can be expressed based on one of

the 3 situations described below:

1. If gj ≥ λ, then by letting p
def
=
⌊ yj
M

⌋
, the operator can be defined as

proxτj [y, g,R, h] =

{
yj − τM, if p ≥ τ,
min{yj − [p]+M,m} − (τ − [p]+)m, if p < τ.

2. If −λ < gj < λ, then the operator can be defined as

proxτj [y, g,R, h] =

{
max{yj − τM, 0}, if yj ≥ 0,

min{yj − τm, 0}, if yj < 0.

3. If gj ≤ −λ, then by letting q
def
=
⌊yj
m

⌋
, the operator can be defined as

proxτj [y, g,R, h]

=

{
yj − τm, if q ≥ τ,
max{yj − [q]+m,M} − (τ − [q]+)M, if q < τ.

The proofs of Lemmas 23 and 24 are available in Section 4.7.2.
Remark: Upon completion of this work, we learned that similar ideas of lazy updates were

proposed in [91] and [28] for online learning and multinomial logistic regression, respectively.
However, our method can be seen as a more general result applied to a stochastic gradient
method and its variants under Assumptions 21 and 22.

4.6 Experiments

In this section we perform numerical experiments to illustrate the properties and performance
of our algorithm. In Section 4.6.1 we study the total workload and parallelization speedup
of mS2GD as a function of the mini-batch size b. In Section 4.6.2 we compare mS2GD with
several other algorithms. Finally, in Section 4.6.3 we briefly illustrate that our method can be
efficiently applied to a deblurring problem.

In Sections 4.6.1 and 4.6.2 we conduct experiments with R(w) = λ
2 ‖w‖2 and f of the form

(4.2), where fi is the logistic loss function:

fi(w) = log[1 + exp(−biaTi w)]. (4.13)

These functions are often used in machine learning, with (ai, bi) ∈ Rd×{+1,−1}, i = 1, . . . , n,
being a training dataset of example-label pairs. The resulting optimization problem (4.1)+(4.2)

66

takes the form

P (w) =
1

n

n∑

i=1

fi(w) +
λ

2
‖w‖2, (4.14)

and is used in machine learning for binary classification. In these sections we have performed
experiments on four publicly available binary classification datasets, namely rcv1, news20, cov-
type 9 and astro-ph 10.

In the logistic regression problem, the Lipschitz constant of function ∇fi is equal to Li =
‖ai‖2/4. Our analysis assumes (Assumption 16) the same constant L for all functions. Hence, we
have L = maxi∈[n] Li. We set the regularization parameter λ = 1

n in our experiments, resulting

in the problem having the condition number κ = L
µ = O(n). In Table 4.1 we summarize the four

datasets, including the sizes n, dimensions d, their sparsity levels as a proportion of nonzero
elements, and the Lipschitz constants L.

Dataset n d Sparsity L

rcv1 20,242 47,236 0.1568% 0.2500

news20 19,996 1,355,191 0.0336% 0.2500

covtype 581,012 54 22.1212% 1.9040

astro-ph 62,369 99,757 0.0767% 0.2500

Table 4.1: Summary of datasets used for experiments.

4.6.1 Speedup of mS2GD

Mini-batches allow mS2GD to be accelerated on a computer with a parallel processor. In
Section 4.4.4, we have shown in that up to some threshold mini-batch size, the total workload
of mS2GD remains unchanged. Figure 4.2 compares the best performance of mS2GD used with
various mini-batch sizes on datasets rcv1 and astro-ph. An effective pass (through the data)
corresponds to n units of work. Hence, the evaluation of a gradient of f counts as one effective
pass. In both cases, by increasing the mini-batch size to b = 2, 4, 8, the performance of mS2GD
is the same or better than that of S2GD (b = 1) without any parallelism.

0 5 10 15 20 25 30

10
−15

10
−10

10
−5

10
0

Number of Effective Passes

P
(x

)
−

 P
(x

*)

b=1

b=2

b=4

b=8

b=16

b=32

0 5 10 15 20 25 30

10
−15

10
−10

10
−5

10
0

Number of Effective Passes

P
(x

)
−

 P
(x

*)

b=1

b=2

b=4

b=8

b=16

b=32

Figure 4.2: Comparison of mS2GD with different mini-batch sizes on rcv1 (left) and astro-ph (right).

Although for larger mini-batch sizes mS2GD would be obviously worse, the results are
still promising with parallelism. In Figure 4.3,we show the ideal speedup—one that would be
achievable if we could always evaluate the b gradients in parallel in exactly the same amount of
time as it would take to evaluate a single gradient.11.

4.6.2 mS2GD vs other algorithms

In this part, we implemented the following algorithms to conduct a numerical comparison:
1) SGDcon: Proximal stochastic gradient descent method with a constant step-size which gave

9rcv1, covtype and news20 are available at http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/.
10Available at http://users.cecs.anu.edu.au/~xzhang/data/.
11In practice, it is impossible to ensure that the times of evaluating different component gradients are the

same.

67

http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/
http://users.cecs.anu.edu.au/~xzhang/data/

0 5 10 15 20 25 30

10
−15

10
−10

10
−5

10
0

Number of Effective Passes / b

P
(x

)
−

 P
(x

*)

b=1

b=2

b=4

b=8

b=16

b=32

0 5 10 15 20 25 30

10
−15

10
−10

10
−5

10
0

Number of Effective Passes / b

P
(x

)
−

 P
(x

*)

b=1

b=2

b=4

b=8

b=16

b=32

Figure 4.3: Parallelism speedup for rcv1 (left) and astro-ph (right) in theory (unachievable in practice).

the best performance in hindsight.
2) SGD+: Proximal stochastic gradient descent with variable step-size h = h0/(k + 1), where
k is the number of effective passes, and h0 is some initial constant step-size.
3) FISTA: Fast iterative shrinkage-thresholding algorithm proposed in [11].
4) SAG: Proximal version of the stochastic average gradient algorithm [156]. Instead of using
h = 1/16L, which is analyzed in the reference, we used a constant step size.
5) S2GD: Semi-stochastic gradient descent method proposed in [89]. We applied proximal
setting to the algorithm and used a constant stepsize.
6) mS2GD: mS2GD with mini-batch size b = 8. Although a safe step-size is given in our
theoretical analyses in Theorem 18, we ignored the bound, and used a constant step size.

In all cases, unless otherwise stated, we have used the best constant stepsizes in hindsight.

0 5 10 15 20 25 30

10
−15

10
−10

10
−5

10
0

Number of Effective Passes

P
(x

)
−

 P
(x

*)

mS2GD

S2GD

SAG

SGDcon

SGD+

FISTA

0 5 10 15 20 25 30

10
−15

10
−10

10
−5

10
0

Number of Effective Passes

P
(x

)
−

 P
(x

*)

mS2GD

S2GD

SAG

SGDcon

SGD+

FISTA

0 5 10 15 20 25 30

10
−15

10
−10

10
−5

10
0

Number of Effective Passes

P
(x

)−
P
(x

*)

mS2GD

S2GD

SAG

SGDcon

SGD+

FISTA

0 5 10 15 20 25 30

10
−15

10
−10

10
−5

10
0

Number of Effective Passes

P
(x

)
−

 P
(x

*)

mS2GD

S2GD

SAG

SGDcon

SGD+

FISTA

Figure 4.4: Comparison of several algorithms on four datasets: rcv1 (top left), news20 (top right), covtype
(bottom left) and astro-ph (bottom right). We have used mS2GD with b = 8.

Figure 4.4 demonstrates the superiority of mS2GD over other algorithms in the test pool
on the four datasets described above. For mS2GD, the best choices of parameters with b = 8
are given in Table 4.2.

Parameter rcv1 news20 covtype astro-ph

m 0.11n 0.10n 0.26n 0.08n

h 5.5/L 6/L 4.5/L 6.5/L

Table 4.2: Best choices of parameters in mS2GD.

68

4.6.3 Image deblurring

In this section we utilize the Regularization Toolbox [72].12 We use the blur function available
therein to obtain the original image and generate a blurred image (we choose following values of
parameters for blur function: N = 256, band=9, sigma=10). The purpose of the blur function
is to generate a test problem with an atmospheric turbulence blur. In addition, an additive
Gaussian white noise with stand deviation of 10−3 is added to the blurred image. This forms
our testing image as a vector b. The image dimension of the test image is 256 × 256, which
means that n = d = 65, 536. We would not expect our method to work particularly well on
this problem since mS2GD works best when d � n. However, as we shall see, the method’s
performance is on a par with the performance of the best methods in our test pool.

Our goal is to reconstruct (deblur) the original image x by solving a LASSO problem:
minw ‖Aw−b‖22 +λ‖w‖1. We have chosen λ = 10−4. In our implementation, we normalized the
objective function by n, and hence our objective value being optimized is in fact minw

1
n‖Aw−

b‖22 + λ‖w‖1, where λ = 10−4

n , similarly as was done in [11].

Figure 4.5: Original (left) and blurred & noisy (right) test image.

0 20 40 60 80 100

10
−8

10
−6

10
−4

10
−2

10
0

Number of Effective Passes

P
(x

)
−

 P
(x

*)

mS2GD b=8

mS2GD b=4

S2GD

SGD+

FISTA

Figure 4.6: Comparison of several algorithms for the deblurring problem.

Figure (4.5) shows the original test image (left) and a blurred image with added Gaussian
noise (right). Figure 4.6 compares the mS2GD algorithm with SGD+, S2GD and FISTA. We
run all algorithms for 100 epochs and plot the error. The plot suggests that SGD+ decreases
the objective function very rapidly at beginning, but slows down after 10-20 epochs.

Finally, Fig. 4.7 shows the reconstructed image after T = 20, 60, 100 epochs.

4.7 Technical Results

We first state technical results used in this chapter, followed by proofs deferred from the main
body.

Lemma 25 (Lemma 3.6 in [187]). Let R be a closed convex function on Rd and x, y ∈ dom(R),
then ‖ proxR(x)− proxR(y)‖ ≤ ‖x− y‖.

Note that non-expansiveness of the proximal operator is a standard result in optimization
literature [118, 154].

12Regularization Toolbox available for Matlab can be obtained from http://www.imm.dtu.dk/~pcha/

Regutools/ .

69

http://www.imm.dtu.dk/~pcha/Regutools/
http://www.imm.dtu.dk/~pcha/Regutools/

T = 20

FISTA SGD+ S2GD mS2GD (b = 4) mS2GD (b = 8)

T = 60

T = 100

Figure 4.7: Reconstruction of the test image from Figure 4.5 via FISTA, SGD+, S2GD and mS2GD after
T = 20, 60, 100 epochs (one epoch corresponds to work equivalent to the computation of one gradient.)

Lemma 26. Let {ξi}ni=1 be vectors in Rd and ξ̄
def
= 1

n

∑n
i=1 ξi ∈ Rd. Let Ŝ be a random subset of

[n] of size τ , chosen uniformly at random from all subsets of this cardinality. Taking expectation
with respect to Ŝ, we have

E




∥∥∥∥∥∥
1

τ

∑

i∈Ŝ

ξi − ξ̄

∥∥∥∥∥∥

2

 ≤ 1

nτ

n− τ
(n− 1)

n∑

i=1

‖ξi‖2 . (4.15)

Following from the proof of Corollary 3.5 in [187], by applying Lemma 26 with ξi :=
∇fi(yk,t)−∇fi(wk), we have the bound for variance as follows.

Theorem 27 (Bounding Variance). Let α(b)
def
= n−b

b(n−1) . Considering the definition of Gk,t in

Algorithm 5, conditioned on yk,t, we have E
[
Gk,t

]
= ∇f(yk,t) and the variance satisfies,

E
[
‖Gk,t −∇f(yk,t)‖2

]

≤ 4Lα(b)[P (yk,t)− P (w∗) + P (wk)− P (w∗)]. (4.16)

4.7.1 Proofs

Proof of Lemma 26

As in the statement of the lemma, by E [·] we denote expectation with respect to the random
set Ŝ. First, note that

η
def
=E




∥∥∥∥∥∥
1

τ

∑

i∈Ŝ

ξi − ξ̄

∥∥∥∥∥∥

2

 = E


 1

τ2

∥∥∥∥∥∥
∑

i∈Ŝ

ξi

∥∥∥∥∥∥

2

− ‖ξ̄‖2

=
1

τ2
E


∑

i∈Ŝ

∑

j∈Ŝ

ξTi ξj


− ‖ξ̄‖2.

70

If we let C
def
=
∥∥ξ̄
∥∥2

= 1
n2

(∑
i,j ξ

T
i ξj

)
, we can thus write

η = 1
τ2


 τ(τ − 1)

n(n− 1)

∑

i 6=j
ξTi ξj +

τ

n

n∑

i=1

ξTi ξi


− C

= 1
τ2


 τ(τ − 1)

n(n− 1)

∑

i,j

ξTi ξj +

(
τ

n
− τ(τ − 1)

n(n− 1)

) n∑

i=1

ξTi ξi


− C

=
1

nτ


−

(
− (τ − 1)

(n− 1)
+
τ

n

)∑

i,j

ξTi ξj +
n− τ
n− 1

n∑

i=1

ξTi ξi




=
1

nτ

n− τ
(n− 1)




n∑

i=1

ξTi ξi −
1

n

∑

i,j

ξTi ξj


 ≤ 1

nτ

n− τ
(n− 1)

n∑

i=1

‖ξi‖2 ,

where in the last step we have used the bound 1
n

∑
i,j ξ

T
i ξj = n

∥∥∑n
i=1

1
nξi
∥∥2 ≥ 0.

Proof of Theorem 18

The proof is following the core steps in [187]. For convenience, let us define the stochastic
gradient mapping

dk,t =
1

h
(yk,t − yk,t+1) =

1

h
(yk,t − proxhR(yk,t − hGk,t)),

then the iterate update can be written as yk,t+1 = yk,t − hdk,t. Let us estimate the change of
‖yk,t+1 − w∗‖. It holds that

‖yk,t+1 − w∗‖2 = ‖yk,t − hdk,t − w∗‖2

= ‖yk,t − w∗‖2 − 2h
〈
dk,t, yk,t−1 − w∗

〉
+ h2‖dk,t‖2. (4.17)

Applying Lemma 3.7 in [187] (this is why we need to assume that h ≤ 1/L) with x = yk,t,
v = Gk,t, x+ = yk,t+1, g = dk,t, y = x∗ and ∆ = ∆k,t = Gk,t −∇f(yk,t), we get

−
〈
dk,t, yk,t − w∗

〉
+
h

2
‖dk,t‖2 ≤ P (w∗)− P (yk,t+1)−

〈
∆k,t, yk,t+1 − w∗

〉

− µF
2
‖yk,t − w∗‖2 − µR

2
‖yk,t+1 − w∗‖2, (4.18)

and therefore,

‖yk,t+1 − w∗‖2
(4.17),(4.18)

≤ 2h
(
P (w∗)− P (yk,t+1) −

〈
∆k,t, yk,t+1 − w∗

〉)
+ ‖yk,t − w∗‖2

= ‖yk,t − w∗‖2 − 2h
〈
∆k,t, yk,t+1 − w∗

〉
− 2h[P (yk,t+1)− P (w∗)]. (4.19)

In order to bound −
〈
∆k,t, yk,t+1 − w∗

〉
, let us define the proximal full gradient update as13

ȳk,t+1 = proxhR(yk,t − h∇f(yk,t)). We get

−
〈
∆k,t, yk,t+1 − w∗

〉
= −

〈
∆k,t, yk,t+1 − ȳk,t+1

〉
−
〈
∆k,t, ȳk,t+1 − w∗

〉

= −
〈
∆k,t, ȳk,t+1 − w∗

〉

−
〈
∆k,t,proxhR(yk,t − hGk,t)− proxhR(yk,t−1 − h∇f(yk,t−1))

〉

13Note that this quantity is never computed during the algorithm. We can use it in the analysis nevertheless.

71

Using Cauchy-Schwarz and Lemma 25, we conclude that

−
〈
∆k,t, yk,t+1 − w∗

〉
≤ ‖∆k,t‖‖(yk,t − hGk,t)− (yk,t − h∇f(yk,t))‖
−
〈
∆k,t, ȳk,t+1 − w∗

〉

= h‖∆k,t‖2 −
〈
∆k,t, ȳk,t+1 − w∗

〉
. (4.20)

Further, we obtain

‖yk,t+1 − w∗‖2
(4.20),(4.19)

≤
∥∥yk,t − w∗

∥∥2

+ 2h
(
h‖∆k,t‖2 −

〈
∆k,t, ȳk,t+1 − w∗

〉
− [P (yk,t+1)− P (w∗)]

)
.

By taking expectation, conditioned on yk,t14 we obtain

E
[
‖yk,t+1 − w∗‖2

]
≤
∥∥yk,t − w∗

∥∥2
+ 2h

(
hE
[
‖∆k,t‖2

]
− E

[
P (yk,t+1)− P (w∗)

])
, (4.21)

where we have used that E
[
∆k,t

]
= E

[
Gk,t

]
−∇f(yk,t) = 0, thus E

[
−
〈
∆k,t, ȳk,t+1 − w∗

〉]
=

015. Now, if we substitute (4.16) into (4.21) and decrease index t by 1, we obtain

E
[
‖yk,t − w∗‖2

]
≤
∥∥yk,t−1 − w∗

∥∥2 − 2hE
[
P (yk,t)− P (w∗)

]

+ θ[P (yk,t−1)− P (w∗) + P (wk)− P (w∗)], (4.22)

where θ
def
= 8Lh2α(b) and α(b) = n−b

b(n−1) . Note that (4.22) is equivalent to

E
[
‖yk,t − w∗‖2

]
+ 2h(E

[
P (yk,t)− P (w∗)

]
) ≤

∥∥yk,t−1 − w∗
∥∥2

+ θ
(
P (yk,t−1)− P (w∗) + P (wk)− P (w∗)

)
.

(4.23)

Now, by the definition of wk in Algorithm 5 we have that

E
[
P (wk+1)

]
=

1

m

m∑

t=1

E
[
P (yk,t)

]
. (4.24)

By summing (4.23) for 1 ≤ t ≤ m, we get on the left hand side

LHS =

m∑

t=1

E
[
‖yk,t − w∗‖2

]
+ 2hE

[
P (yk,t)− P (w∗)

]
(4.25)

and for the right hand side we have:

RHS =

m∑

t=1

{
E
[
‖yk,t−1 − w∗‖2

]
+ θE

[
P (yk,t−1)− P (w∗) + P (wk)− P (w∗)

]}

≤
m−1∑

t=0

E
[
‖yk,t − w∗‖2

]
+ θ

m∑

t=0

E
[
P (yk,t)− P (w∗)

]
+ θE

[
P (wk)− P (w∗)

]
m. (4.26)

14For simplicity, we omit the E
[
· | yk,t

]
notation in further analysis

15ȳk,t+1 is constant, conditioned on yk,t

72

Combining (4.25) and (4.26) and using the fact that LHS ≤ RHS, we have

E
[
‖yk,m − w∗‖2

]
+ 2h

m∑

t=1

E
[
P (yk,t)− P (w∗)

]
≤ E

[
‖yk,0 − w∗‖2

]
+ θE

[
P (wk)− P (w∗)

]
m

+ θ

m∑

t=0

E
[
P (yk,t)− P (w∗)

]
.

Now, using (4.24), we obtain

E
[
‖yk,m − w∗‖2

]
+ 2hmE

[
P (wk+1)− P (w∗)

]
≤ E

[
‖yk,0 − w∗‖2

]
+ θmE

[
P (wk)− P (w∗)

]

+ θmE
[
P (wk+1)− P (w∗)

]

+ θE
[
P (yk,0)− P (w∗)

]
. (4.27)

Strong convexity (4.7) and optimality of w∗ imply that 0 ∈ ∂P (w∗), and hence for all w ∈ Rd
we have

‖w − w∗‖2 ≤ 2

µ
[P (w)− P (w∗)]. (4.28)

Since E
[
‖yk,m − w∗‖2

]
≥ 0 and yk,0 = wk, by combining (4.28) and (4.27) we get

m(2h− θ)E
[
P (wk+1)− P (w∗)

]
≤ (P (wk)− P (w∗))

(
2

µ
+ θ (m+ 1)

)
.

Notice that in view of our assumption on h and definition of θ, we have 2h > θ, and hence

E
[
P (wk+1)− P (w∗)

]
≤ c[P (wk)− P (w∗)],

where c = 2
mµ(2h−θ) + θ(m+1)

m(2h−θ) . Applying the above linear convergence relation recursively with

chained expectations, we finally obtain E
[
P (wk)− P (w∗)

]
≤ ck[P (w0)− P (w∗)].

Proof of Theorem 19

Clearly, if we choose some value of h then the value of m will be determined from (4.8) (i.e. we
need to choose m such that we will get desired rate). Therefore, m as a function of h obtained
from (4.8) is

m(h) =
1 + 4α(b)h2Lµ

hµ(c− 4α(b)hL(c+ 1))
. (4.29)

Now, we can observe that the nominator is always positive and the denominator is positive only
if c > 4α(b)hL(c+ 1), which implies 1

4α(b)L · c
c+1 > h (note that c

c+1 ∈ [0, 1
2]). Observe that this

condition is stronger than the one in the assumption of Theorem 18. It is easy to verify that

lim
h↘0

m(h) = +∞, lim
h↗ 1

4α(b)L
· c
c+1

m(h) = +∞.

Also note that m(h) is differentiable (and continuous) at any h ∈
(

0, 1
4α(b)L · c

c+1

)
=: Ih. The

derivative of m is given by m′(h) = −c+4α(b)hL(2+(2+hµ)c)
h2µ(c−4α(b)hL(1+c))2 . Observe that m′(h) is defined and

continuous for any h ∈ Ih. Therefore there have to be some stationary points (and in case that
there is just on Ih) it will be the global minimum on Ih. The first order condition gives

h̃b =
−2α(b)L(1 + c) +

√
α(b)L(µc2 + 4α(b)L(1 + c)2)

2α(b)Lµc

=

√
1

4α(b)Lµ
+

(1 + c)2

µ2c2
− 1 + c

µc
. (4.30)

73

If this h̃b ∈ Ih and also h̃b ≤ 1
L then this is the optimal choice and plugging (4.30) into (4.29)

gives us (4.9).

Claim #1 It always holds that h̃b ∈ Ih. We just need to verify that

√
1

4α(b)Lµ
+

(1 + c)2

µ2c2
− 1 + c

µc
<

1

4α(b)L
· c

c+ 1
,

which is equivalent to µc2 + 4α(b)L(1 + c)2 > 2(1 + c)
√
α(b)L(µc2 + 4α(b)L(1 + c)2). Because

both sides are positive, we can square them to obtain the equivalent condition

µc2(µc2 + 4α(b)L(1 + c)2) > 0.

Claim #2 If h̃b >
1
L then h∗b = 1

L . The only detail which needs to be verified is that the
denominator of (4.10) is positive (or equivalently we want to show that c > 4α(b)(1 + c). To
see that, we need to realize that in that case we have 1

L ≤ h̃b ≤ 1
4α(b)L · c

c+1 , which implies that

4α(b)(1 + c) < c.

Proof of Corollary 20

By substituting definition of h̃b in Theorem 19, we get

h̃b <
1

L
⇐⇒ b < b0

def
=

8cnκ+ 8nκ+ 4cn

cnκ+ (7c+ 8)κ+ 4c
, (4.31)

where κ = L/µ. Hence, it follows that if b < db0e, then hb = h̃b and mb is defined in (4.9);
otherwise, hb = 1

L and mb is defined in (4.10). Let e be the base of the natural logarithm. By
selecting b0 = 8nκ+8enκ+4n

nκ+(7+8e)κ+4 , choosing mini-batch size b < db0e, and running the inner loop of

mS2GD for

mb =

⌈
8eα(b)κ

(
e+ 1 +

√
1

4α(b)κ
+ (1 + e)2

)⌉
(4.32)

iterations with constant stepsize

hb =

√(
1 + e

µ

)2

+
1

4µα(b)L
− 1 + e

µ
, (4.33)

we can achieve a convergence rate

c
(4.8)
=

1

mbhbµ(1− 4hbLα(b))
+

4hbLα(b) (mb + 1)

mb(1− 4hbLα(b))

(4.32),(4.33)
=

1

e
. (4.34)

Since k = dlog(1/ε)e ≥ log(1/ε) if and only if ek ≥ 1/ε if and only if e−k ≤ ε, we can conclude

that ck
(4.34)

= (e−1)k = e−k ≤ ε. Therefore, running mS2GD for k outer iterations achieves ε-
accuracy solution defined in (4.3). Moreover, since in general κ� e, n� e, it can be concluded
that

b0
(4.31)

=
8(1 + e)nκ+ 4n

nκ+ (7 + 8e)κ+ 4
≈ 8 (e+ 1) ≈ 29.75,

then with the definition α(b) = (n−b)
b(n−1) , we derive

bmb
(4.32)

=

⌈
8eκ

(n− b)
(n− 1)

(
e+ 1 +

√
1

4α(b)κ
+ (1 + e)2

)⌉

1≤b<30

≤
⌈

8eκ

(
(e+ 1) +

√
b

4κ
+ (1 + e)2

)⌉
= O(κ),

74

so from (4.11), the total complexity can be translated to O ((n+ κ) log(1/ε)) . This result shows
that we can reach efficient speedup by mini-batching as long as the mini-batch size is smaller
than some threshold b0 ≈ 29.75, which finishes the proof for Corollary 20.

4.7.2 Proximal lazy updates for `1 and `2-regularizers

Proof of Lemma 23

For any s ∈ {1, 2, . . . , τ} we have ỹs = proxhR(ỹs−1−hg) = β(ỹs−1−hg), where β
def
= 1/(1+λh).

Therefore,

ỹτ = βτ ỹ0 − h




τ∑

j=1

βj


 g = βτy − hβ

1− β [1− βτ] g.

Proof of Lemma 24

Proof. For any s ∈ {1, 2, . . . , τ} and j ∈ {1, 2, . . . , d},

ỹsj = arg min
x∈R

1

2
(x− ỹs−1

j + hgj)
2 + λh|x|

=





ỹs−1
j − (λ+ gj)h, if ỹs−1

j > (λ+ gj)h,

ỹs−1
j + (λ− gj)h, if ỹs−1

j < −(λ− gj)h,
0, otherwise,

=





ỹs−1
j −M, if ỹs−1

j > M,

ỹs−1
j −m, if ỹs−1

j < m,

0, otherwise.

where M
def
= (λ + gj)h, m

def
= −(λ − gj)h and M − m = 2λh > 0. Now, we will distinguish

several cases based on gj :

(1) When gj ≥ λ, then M > m = −(λ− gj)h ≥ 0, thus by letting p =
⌊ yj
M

⌋
, we have that: if

yj < m, then ỹτj = yj − τm; if m ≤ yj < M , then ỹτj = −(τ − 1)m; and if yj ≥M , then

ỹτj =





yj − τM, if τ ≤ p,
yj − pM − (τ − p)m, if τ > p & yj − pM < m,

−(τ − p− 1)m, if τ > p & yj − pM ≥ m,

=

{
yj − τM, if τ ≤ p,
min{yj − pM,m} − (τ − p)m, if τ > p.

(2) When −λ < gj < λ, then M = (λ+ gj)h > 0,m = −(λ− gj)h < 0, thus we have that

ỹτj =

{
max{yj − τM, 0}, if yj ≥ 0,

min{yj − τm, 0}, if yj < 0.

(3) When gj ≤ −λ, then m < M = (λ+ gj)h ≤ 0, thus by letting q =
⌊yj
m

⌋
, we have that: if

yj ≤ m, then

ỹτj =





yj − τm, if τ ≤ q,
yj − pm− (τ − q)M, if τ > q & yj − qm > M,

−(τ − q − 1)M, if τ > q & yj − qm ≤M,

=

{
yj − τm, if τ ≤ q,
max{yj − qm,M} − (τ − q)M, if τ > q;

75

if m < yj ≤M , then ỹτj = −(τ − 1)M ; if yj > M , then ỹτj = yj − τM.

Now, we will perform a few simplifications: Case (1). When yj < M , we can conclude that
ỹτj = min{yj ,m} − τm. Moreover, since the following equivalences hold if gj ≥ λ: yj ≥ M ⇔
yj
M ≥ 1 ⇔ p ≥ 1, and yj < M ⇔ yj

M < 1 ⇔ p ≤ 0, the situation simplifies to

ỹτj =





yj − τM, if p ≥ τ,
min{yj − pM,m} − (τ − p)m, if 1 ≤ p < τ,

min{yj ,m} − τm, if p ≤ 0,

=

{
yj − τM, if p ≥ τ,
min{yj − [p]+M,m} − (τ − [p]+)m, if p < τ,

where [·]+ def
= max{·, 0}. For Case (3), when yj > m, we can conclude that ỹτj = max{yj ,M}−

τM, and in addition, the following equivalences hold when gj ≤ −λ:

yj ≤ m ⇔ yj
m
≥ 1 ⇔ q ≥ 1,

yj > m ⇔ yj
m
< 1 ⇔ q ≤ 0,

which summarizes the situation as follows:

ỹτj =





yj − τm, if q ≥ τ,
max{yj − qm,M} − (τ − q)M, if 1 ≤ q < τ,

max{yj ,M} − τM, if q ≤ 0,

=

{
yj − τm, if q ≥ τ,
max{yj − [q]+m,M} − (τ − [q]+)M, if q < τ.

4.8 Conclusion

We have proposed mS2GD—a mini-batch semi-stochastic gradient method—for minimizing a
strongly convex composite function. Such optimization problems arise frequently in inverse
problems in signal processing and statistics. Similarly to SAG, SVRG, SDCA and S2GD, our
algorithm also outperforms existing deterministic method such as ISTA and FISTA. Moreover,
we have shown that the method is by design amenable to a simple parallel implementation.
Comparisons to state-of-the-art algorithms suggest that mS2GD, with a small-enough mini-
batch size, is competitive in theory and faster in practice than other competing methods even
without parallelism. The method can be efficiently implemented for sparse data sets.

76

Chapter 5

Distributed Optimization with
Arbitrary Local Solvers

5.1 Motivation

Regression and classification techniques, represented in the general class of regularized loss
minimization problems [178], are among the most central tools in modern big data analysis,
machine learning, and signal processing. For these tasks, much effort from both industry and
academia has gone into the development of highly tuned and customized solvers. However,
with the massive growth of available datasets, major roadblocks still persist in the distributed
setting, where data no longer fits in the memory of a single computer, and computation must
be split across multiple machines in a network [19, 111, 106, 8, 149, 53, 173, 57, 32, 108, 166,
167, 140, 199, 82].

On typical real-world systems, communicating data between machines is several orders of
magnitude slower than reading data from main memory, e.g., when leveraging commodity
hardware. Therefore when trying to translate existing highly tuned single machine solvers
to the distributed setting, great care must be taken to avoid this significant communication
bottleneck [79, 188].

While several distributed solvers for the problems of interest have been recently developed,
they are often unable to fully leverage the competitive performance of their tuned and cus-
tomized single machine counterparts, which have already received much more research atten-
tion. More importantly, it is unfortunate that distributed solvers cannot automatically benefit
from improvements made to the single machine solvers, and therefore are forced to lag behind
the most recent developments.

In this chapter we make a step towards resolving these issues by proposing a general
communication-efficient distributed framework that can employ arbitrary single machine lo-
cal solvers and thus directly leverage their benefits and problem-specific improvements. Our
framework works in rounds, where in each round the local solvers on each machine find a (pos-
sibly weak) solution to a specified subproblem of the same structure as the original master
problem. On completion of each round, the partial updates between the machines are effi-
ciently combined by leveraging the primal-dual structure of the global problem [188, 79, 105].
The framework therefore completely decouples the local solvers from the distributed communi-
cation. Through this decoupling, it is possible to balance communication and computation in
the distributed setting, by controlling the desired accuracy and thus computational effort spent
to determine the solution to each local subproblem. Our framework holds with this abstraction
even if the user wishes to use a different local solver on each machine.

5.1.1 Contributions

Reusability of Existing Local Solvers. The proposed framework allows for distributed opti-
mization with the use of arbitrary local solvers on each machine. This abstraction makes
the resulting framework highly flexible, and means that it can easily leverage the benefits of

77

well-studied, problem-specific single machine solvers. In addition to increased flexibility and
ease-of-use, this can result in large performance gains, as single machine solvers for the prob-
lems of interest have typically been thoroughly tuned for optimal performance. Moreover, any
performance improvements that are made to these local solvers can be automatically translated
by the framework into the distributed setting.

Adaptivity to Communication Cost. On real-world compute systems, the cost of communica-
tion versus computation typical varies by many orders of magnitude, from high-performance
computing environments to very slow disk-based distributed workflow systems such as MapRe-
duce/Hadoop. For optimization algorithms, it is thus essential to accommodate varying amounts
of work performed locally per round, while still providing convergence guarantees. Our frame-
work provides exactly such control.

Strong Theoretical Guarantees. In this chapter we extend and improve upon the CoCoA [79]
method. Our theoretical convergence rates apply to both smooth and non-smooth losses, and for
both CoCoA as well as CoCoA+, the more general framework presented here. Our new rates
exhibit favorable strong scaling properties for the class of problems considered, as the number
of machines K increases and the data size is kept fixed. More precisely, while the convergence
rate of CoCoA degrades as K is increased, the stronger theoretical convergence rate here is—in
the worst case complexity—independent of K. As only one vector is communicated per round
and worker, this favorable scaling might be surprising. Indeed, for existing methods, splitting
data among more machines generally increases communication requirements [166, 7], which can
severely affect overall runtime.

Primal-Dual Convergence. We additionally strengthen the rates by showing stronger primal-
dual convergence for both algorithmic frameworks, which are almost tight to their dual-only
(or primal-only) counterparts. Primal-dual rates for CoCoA had not previously been analyzed
in the general convex case. Our primal-dual rates allow efficient and practical certificates for
the optimization quality, e.g., for stopping criteria.

Experimental Results. Finally, we provide an extensive experimental comparison that high-
lights the impact of using various arbitrary solvers locally on each machine, with experi-
ments on several real-world, distributed datasets. We compare the performance of CoCoA
and CoCoA+ across these datasets and choices of solvers, in particular illustrating the per-
formance on a 280 GB dataset. Our code is available in an open source C++ library, at:
https://github.com/optml/CoCoA.

5.1.2 Outline

The rest of the chapter is organized as follows. Section 5.2 provides context and states the
problem of interest, including necessary assumptions and their consequences. In Section 5.3
we formulate the algorithm in detail and explain how to implement it efficiently in practice.
The main theoretical results are presented in Section 5.4, followed by a discussion of relevant
related work in Section 5.5. Practical experiments demonstrating the strength of the proposed
framework are given in Section 5.6. Finally, we prove the main results in Section 5.8.4.

5.2 Background and Problem Formulation

To provide context for our framework, we first state traditional complexity measures and con-
vergence rates for single machine algorithms, and then demonstrate that these must be adapted
to more accurately represent the performance of an algorithm in the distributed setting.

When running an iterative optimization algorithm A on a single machine, its performance
is typically measured by the total runtime:

TIME(A) = IA(ε)× TA . (T-A)

78

https://github.com/optml/CoCoA

Here, TA stands for the time it takes to perform a single iteration of algorithm A, and IA(ε) is
the number of iterations A needs to attain an ε-accurate objective.1

On a single machine, most of the state-of-the-art first-order optimization methods can
achieve quick convergence in practice in terms of (T-A) by performing a large amount of
relatively fast iterations. In the distributed setting, however, time to communicate between
two machines can be several orders of magnitude slower than even a single iteration of such
an algorithm. As a result, the overall time needed to perform this single iteration can increase
significantly.

Distributed timing can therefore be more accurately illustrated using the following practical
distributed efficiency model (see also [111]), where

TIME(A) = IA(ε)× (c+ TA) . (T-B)

The extra term c is the time required to perform one round of communication.2 As a result,
an algorithm that performs well in the setting of (T-A) does not necessarily perform well in
the distributed setting (T-B), especially when implemented in a straightforward or näıve way.
In particular, if c � TA, we could intuitively expect less potential for improvement from fast
computation, as most of the time in the method will be spent on communication, not on actual
computational effort to solve the problem. In this setting, novel optimization procedures are
needed that carefully consider the amount of communication and the distribution of data across
multiple machines.

One approach to this challenge is to design novel optimization algorithms from scratch,
designed to be efficient in the distributed setting. This approach has one obvious practical
drawback: There have been numerous highly efficient solvers developed and fine-tuned to par-
ticular problems of interest, as long as the problem fits onto a single machine. These solvers are
ideal if run on a single machine, but with the growth of data and necessity of data distribution,
they must be re-designed to work in modern data regimes.

Recent work [79, 105, 188, 189, 191, 168] has attempted to address this issue by designing
algorithms that reduce the communication bottleneck by allowing infrequent communication,
while utilizing already existing algorithms as local sub-procedures. The presented work here
builds on the promising approach of [188, 79] in this direction. See Section 5.5 for a detailed
discussion of the related literature.

The core idea in this line of work is that one can formulate a local subproblem for each
individual machine, and run an arbitrary local solver dependent only on local data for a number
of iterations—obtaining a partial local update. After each worker returns its partial update, a
global update is formed by their aggregation.

The big advantage of this is that companies and practitioners do not have to implement new
algorithms that would be suitable for the distributed setting. We provide a way for them to uti-
lize their existing algorithms that work on a single machine, and provide a novel communication
protocol on top of this.

In the original work on CoCoA [79], authors provide convergence analysis only for the
case when the overall update is formed as an average of the partial updates, and note that in
practice it is possible to improve performance by making a longer step in the same direction.
The main contribution of this work is a more general convergence analysis of various settings,
which enables us to do better than averaging. In one case, we can even sum the partial updates
to obtain the overall update, which yields the best result, both in theory and practice. We will
see that this can result in significant performance gains, see also [105, 168].

In the analysis, we will allow local solvers of arbitrarily weak accuracy, each working on its
own subproblem which is defined in a completely data-local way for each machine. The relative
accuracy obtained by each local solver will be denoted by Θ ∈ [0, 1], where Θ = 0 describes an
exact solution of the subproblem, and Θ = 1 means that the local subproblem objective has not

1While for many algorithms the cost of a single iteration will vary throughout the iterative process, this
simple model will suffice for our purpose to highlight the key issues associated with extending algorithms to a
distributed framework.

2For simplicity, we assume here a fixed network architecture, and compare only to classes of algorithms that
communicate a single vector in each iteration, rendering c to be a constant, assuming we have a fixed number
of machines. Most first-order algorithms would fall into this class.

79

Loss function `i(a) `∗i (b) Property of `

Quadratic 1
2 (a− yi)2 1

2b
2 + yib Smooth

Hinge max{0, yi − a} yib, b ∈ [−1, 0] Continuous

Squared hinge (max{0, yi − a})2 b2

4 , b ∈ [−∞, 0] Smooth

Logistic log(1 + exp (−yia)) − b
yi

log
(
− b
yi

)
+
(

1 + b
yi

)
log
(

1 + b
yi

)
Smooth

Table 5.1: Examples of commonly used loss functions.

improved at all, for this run of the local solver. This paradigm results in a substantial change
in how we analyze efficiency in the distributed setting. The formula practitioners are interested
in minimizing thus changes to become:

TIME(A,Θ) = I(ε,Θ)× (c+ TA(Θ)) . (T-C)

Here, the function TA(Θ) represents the time the local algorithm A needs to obtain an accuracy
of Θ on the local subproblem. Note that the number of outer iterations I(ε,Θ) is independent
of choice of the inner algorithm A, which will also be reflected by our convergence analysis
presented in Section 5.4. Our convergence rates will hold for any local solver A achieving local

accuracy of Θ. For strongly convex problems, the general form will be I(ε,Θ) = O(log(1/ε))
1−Θ . The

inverse dependence on 1−Θ suggests that there is a limit to how much we can gain by solving
local subproblems to high accuracy, i.e., for Θ close to 0. There will always be on the order of
log(1/ε) outer iterations needed. Hence, excessive local accuracy should not be necessary. On
the other hand, if Θ→ 1, meaning that the cost and quality of the local solver diminishes, then
the number of outer iterations I(ε,Θ) will increase dramatically, which is to be expected.

To illustrate the strength of the paradigm (T-C) compared to (T-B), suppose that we run
just a single iteration of gradient descent as the local solver A. Within our framework, choosing
this local solver would lead to a method which is equivalent to naively distributed gradient
descent3. Indeed, running gradient descent for a single iteration would attain a particular value
of Θ. Note that we typically do not set this explicitly: Θ is implicitly chosen by the number
of iterations or stopping criterion specified by the user for the local solver. There is no reason
to think that the value attained by single iteration of gradient descent would be optimal. For
instance, it may be the case that running gradient descent for, say, 200 iterations, instead of just
one, would give substantially better results in practice, due to better communication efficiency.
Considerations of this form are discussed in detail in Section 5.6.

In general, one would intuitively expect that the optimal choice would be to have Θ such
that TA(Θ) = O(1) × c. In practice, however, the best strategy for any given local solver is
to estimate the optimal choice by trying several values for the number of local iterations. We
discuss the importance of Θ, both theoretically and empirically, in Sections 5.4 and 5.6.

5.2.1 Problem Formulation

Let the training data {xi ∈ Rd, yi ∈ R}ni=1 be the set of input-output pairs, where yi can be real
valued or from a discrete set in the case of classification problems. We will assume without loss
of generality that ∀i : ‖xi‖ ≤ 1. Many common tasks in machine learning and signal processing
can be cast as the following optimization problem:

min
w∈Rd

{
P (w)

def
=

1

n

n∑

i=1

`i(x
T
i w) + λg(w)

}
, (5.1)

where `i is some convex loss function and g is a regularizer. Note that yi is typically hidden
in the formulation of functions `i. Table 5.1 lists several common loss functions together with
their convex conjugates `∗i [164].

3Note that this is not obvious at this point. They are identical, subject to choice of local subproblems as
specified in Section 5.3.1.

80

The dual optimization problem for formulation (5.1)—as a special case of Fenchel duality—
can be written as follows [192, 164]:

max
α∈Rn

{
D(α)

def
=

1

n

(
n∑

i=1

−`∗i (−αi)
)
− λg∗

(
1

λn
Xα

)}
, (5.2)

where X = [x1, x2, . . . , xn] ∈ Rd×n, and `∗i and g∗ are the convex conjugate functions of `i and
g, respectively. The convex (Fenchel) conjugate of a function φ : Rk → R is defined as the
function φ∗ : Rk → R, with φ∗(u) := sups∈Rk{sTu− φ(s)}.

For simplicity throughout the chapter, let us denote

f(α)
def
= λg∗

(
1

λn
Xα

)
and R(α)

def
=

1

n

n∑

i=1

`∗i (−αi) , (5.3)

such that D(α)
(5.2)+(5.3)

= −f(α)−R(α).
It is well known [143, 172, 164, 55] that the first-order optimality conditions give rise to a

natural mapping that relates pairs of primal and dual variables. This mapping employs the
linear map given by the data X, and maps any dual variable α ∈ Rn to a primal candidate
vector w ∈ Rd as follows:

w(α) := ∇g∗(v(α)) = ∇g∗
(

1

λn
Xα

)
,

where we denote v(α) := 1
λnXα .

For this mapping, under the assumptions that we make in Section 5.2.2 below, it holds that
if α? is an optimal solution of (5.2), then w(α?) is an optimal solution of (5.1). In particular,
strong duality holds between the primal and dual problems. If we define the duality gap function
as

Gap(α) := P (w(α))−D(α), (5.4)

thenGap(α?) = 0, which ensures that by solving the dual problem (5.2) we also solve the original
primal problem of interest (5.1). As we will later see, there are many benefits to leveraging this
primal-dual relationship, including the ability to use the duality gap as a certificate of solution
quality, and, in the distributed setting, the ability to effectively distribute computation.

Notation. We assume that to solve problem (5.2), we have a network of K machines at our
disposal. The data {xi, yi}ni=1 is residing on the K machines in a distributed fashion, with every
machine holding a subset of the whole dataset. We distribute the dual variables in the same
manner, with each dual variable αi corresponding to an individual data point xi. The given
data distribution is described using a partition P1, . . . ,PK that corresponds to the indices of
the data and dual variables residing on machine k. Formally, Pk ⊆ {1, 2, . . . , n} for each k;

Pk ∩ Pl = ∅ whenever k 6= l; and
⋃K
k=1 Pk = {1, 2, . . . , n}.

Finally, we introduce the following notation dependent on this partitioning. For any h ∈ Rn,
let h[k] be the vector in Rn defined such that (h[k])i = hi if i ∈ Pk and 0 otherwise. Note that,

in particular, h =
∑K
k=1 h[k]. Analogously, we write X[k] for the matrix consisting only of the

columns i ∈ Pk, padded with zeros in all other columns.

5.2.2 Technical Assumptions

Here we first state the properties and assumptions used throughout the chapter. We assume
that for all i ∈ {1, . . . , n}, the function `i in (5.1) is convex, i.e., ∀λ ∈ [0, 1] and ∀x, y ∈ R we
have `i(λx+ (1− λ)y) ≤ λ`i(x) + (1− λ)`i(y) .

We also assume that the function g is 1-strongly convex, i.e., for all w, u ∈ Rd it holds that
g(w + u) ≥ g(w) + 〈∇g(w), u〉 + 1

2‖u‖2, where ∇g(w) is any subgradient4 of the function g.

4A subgradient of a convex function φ in a point x′ ∈ Rd is defined as any ξ ∈ Rd satisfying for all x ∈ Rd,
φ(x) ≥ φ(x′) + 〈ξ, x− x′〉.

81

Here, ‖ · ‖ denotes the standard Euclidean norm.
Note that we use subgradients in the definition of strong convexity. This is due to the fact

that while we will need the function g to be strongly convex in our analysis, we do not require
smoothness. An example used in practice is g(w) = ‖w‖2 + λ′‖w‖1 for some λ′ ∈ R. Also note
that in the problem formulation (5.1) we have a regularization parameter λ, which controls
the strong convexity parameter of the entire second term. Hence, fixing the strong convexity
parameter of g to 1 is not restrictive in this regard. For instance, this setting has been used
previously in [164, 143, 37].

The following assumptions state properties of the functions `i, which we use only in certain
results in the chapter. We always explicitly state when we require each assumption.

Assumption 28 ((1/γ)-Smoothness). Functions `i : R→ R are 1/γ-smooth, if ∀i ∈ {1, . . . , n}
and ∀x, h ∈ R it holds that

`i(x+ h) ≤ `i(x) + h∇`i(x) +
1

2γ
h2, (5.5)

where ∇`i(x) denotes the gradient of the function `i.

Assumption 29 (L-Lipschitz Continuity). Functions `i : R → R are L-Lipschitz continuous,
if ∀i ∈ {1, . . . , n} and ∀x, h ∈ R it holds that

|`i(x+ h)− `i(x)| ≤ L|h|. (5.6)

Remark 30. As a consequence of having 1/γ-smoothness of `i and 1-strong convexity of g,
we have that the functions `∗i (·) are γ-strongly convex and g∗(·) is 1-smooth [154]. These are
the properties we will ultimately use as we will be solving the dual problem (5.2). Note that
1-smoothness of g∗ : Rd → R means that for all x, h ∈ Rd,

g∗(x+ h) ≤ g∗(x) + 〈∇g∗(x), h〉+
1

2
‖h‖2. (5.7)

The following lemma, which is a consequence of 1-smoothness of g∗ and the definition
of f , will be crucial in deriving a meaningful local subproblem for the proposed distributed
framework.

Lemma 31. Let f be defined in (5.3). Then for all α, h ∈ Rn we have

f(α+ h) ≤ f(α) + 〈∇f(α), h〉+
1

2λn2
hTXTXh. (5.8)

Remark 32. Note that although the above inequality appears as a consequence of the problem
structure (5.2) and of the strong convexity of g, there are other ways to satisfy it. Hence,
our dual analysis holds for all optimization problems of the form maxαD(α), where D(α) =
−f(α)−R(α), and where f satisfies inequality (5.8). However, for the duality gap analysis we
naturally do require that the dual problem arises from the primal problem, with g being strongly
convex.

5.3 The Framework

In this section we start by giving a general view of the proposed framework, explaining the
most important concepts needed to make the framework efficient. In Section 5.3.1 we discuss
the formulation of the local subproblems, and in Section 5.3.2 we provide specific details and
best practices for implementation.

The data distribution plays a crucial role in Algorithm 8, where in each outer iteration
indexed by t, machine k runs an arbitrary local solver on a problem described only by the data
that particular machine owns and other fixed constants or linear functions.

The crucial property is that the optimization algorithm on machine k changes only coor-
dinates of the dual optimization variable αt corresponding to the partition Pk to obtain an
approximate solution to the local subproblem. We will formally specify this in Assumption 35.

82

After each such step, updates from all machines are aggregated to form a new iterate αt+1.
The aggregation parameter ν will typically be between ν = 1/K, corresponding to averaging,
and ν = 1, adding.

Algorithm 8 Improved CoCoA+ Framework

1: Input: starting point α0 ∈ Rn, aggregation parameter ν ∈ (0, 1], data partition {Pk}Kk=1

2: for t = 0, 1, 2, . . . do
3: for k ∈ {1, 2, . . . ,K} in parallel over machines do
4: Let ht[k] be an approximate solution of the local problem (LO), i.e.

max
h[k]∈Rn

Gk(h[k];α
t)

5: end for
6: Set αt+1 := αt + ν

∑K
k=1 h

t
[k]

7: end for

Here we list the core conceptual properties of Algorithm 8, which are important qualities
that allow it to run efficiently.

Locality. The local subproblem Gk (LO) is defined purely based on the data points residing
on machine k, as well as a single shared vector in Rd (representing the state of the αt

variables of the other machines). Each local solver can then run independently and in
parallel, i.e., there is no need for communication while solving the local subproblems.

Local changes. The optimization algorithm used to solve the local subproblem Gk outputs
a vector ht[k] with nonzero elements only in coordinates corresponding to variables α[k]

stored locally (i.e., i ∈ Pk).

Efficient maintenance. Given the description of the local problem Gk(· ;αt) at time t, the
new local problem Gk(· ;αt+1) at time t + 1 can be formed on each machine, requiring
only communication of a single vector in Rd from each machine k to the master node,
and vice versa, back to each machine k.

Let us now comment on these properties in more detail. Locality is important for making
the method versatile, and is the way we escape the restricted setting described by (T-B) that
allows us much greater flexibility in designing the overall optimization scheme. Local changes
result from the fact that we distribute coordinates of the dual variables α in the same manner
as the data, and thus only make updates to the coordinates stored locally. As we will see,
efficient maintenance of the subproblems can be obtained. For this, a communication-efficient
encoding of the current shared state α is necessary. To this goal, we will in Section 5.3.2 show
that communication of a single d-dimensional vector is enough to formulate the subproblems
(LO) in each round, by carefully exploiting their partly separable structure.

Note that Algorithm 8 is the “analysis friendly” formulation of our algorithm framework,
and it is not yet fully illustrative for implementation purposes. In Section 5.3.2 we will precisely
formulate the actual communication scheme, and illustrate how the above properties can be
achieved.

Before that, we formulate the precise subproblem Gk in the following section.

5.3.1 The Local Subproblems

We can define a data-local subproblem of the original dual optimization problem (5.2), which
can be solved on machine k and only requires accessing data which is already available locally,
i.e., datapoints with i ∈ Pk. More formally, each machine k is assigned the following local
subproblem, depending only on the previous shared primal vector w ∈ Rd, and the change in
the local dual variables αi with i ∈ Pk:

max
h[k]∈Rn

Gσ′k (h[k];α). (5.9)

83

We are now ready to define the local objective Gσ′k (· ;α) as follows:

Gσ′k (h[k];α) := − 1

K
f(α)−

〈
∇f(α), h[k]

〉
− λσ′

2

∥∥∥∥
1

λn
X[k]h[k]

∥∥∥∥
2

−Rk
(
α[k] + h[k]

)
, (LO)

where Rk(α[k])
def
= 1

n

∑
i∈Pk `

∗
i (−αi). The role of the parameter σ′ ≥ 1 is to measure the

“difficulty” of the data partition, in a sense which we will discuss in detail in Section 5.3.3.

The interpretation of the subproblems defined above is that they will form a quadratic
approximation of the smooth part of the true objective D, which becomes separable over the
machines. The approximation keeps the non-smooth R part intact. The variable h[k] expresses
the update proposed by machine k. In this spirit, note also that the approximation coincides
with D at the reference point α, i.e.

∑K
k=1 Gσ

′

k (0;α) = D(α). We will discuss the interpretation
and properties of these subproblems in more detail below in Section 5.3.3.

5.3.2 Practical Communication-Efficient Implementation

We now discuss how Algorithm 8 can efficiently be implemented in a distributed environment.
Most importantly, we clarify how the “local” subproblems can be formulated and solved while
using only local information from the corresponding machines, and we make precise what in-
formation needs to be communicated in each round.

Recall that the local subproblem objective Gσ′k (· ;α) was defined in (LO). We will now
equivalently rewrite this optimization problem, illustrating how it can be expressed using only
local information. To do so, we use our simplifying notation v = v(α) := 1

λnXα for a given α.
As we see in the reformulation, it is precisely this vector v ∈ Rd which contains all the necessary
shared information between the machines. Given the vector v, the subproblem (LO) can be
equivalently written as

Gσ′k (h[k]; v, α[k]) := − λ

K
g∗(v)−

〈
1

n
XT

[k]∇g∗(v), h[k]

〉
− λ

2
σ′
∥∥∥∥

1

λn
X[k]h[k]

∥∥∥∥
2

(LO’)

−Rk
(
α[k] + h[k]

)
.

Here for the reformulation of the gradient term, we have simply used the chain rule on the

objective f (recall the definition f(α)
def
= λg∗(v)), giving

∇f(α)[k] =
1

n
XT

[k]∇g∗(v).

Practical Distributed Framework. In summary, we have seen that each machine can formulate
the local subproblem given purely local information (the local data X[k] as well as the local
dual variables α[k]). No information about the data or variables α stored on the other machines
is necessary.

The only requirement for the method to work is that between the rounds, the changes in the
α[k] variables on each machine and the resulting global change in v are kept consistent, in the

sense that vt = v(αt) := 1
λnXα

t must always hold. Note that for the evaluation of ∇g∗(v), the
vector v is all that is needed. In practice, g as well as its conjugate g∗ are simple vector-valued
regularization functions, the most prominent example being g(v) = g∗(v) = 1

2‖v‖2.

In the following more detailed formulation of the CoCoA+ framework shown in Algorithm 9
(an equivalent reformulation of Algorithm 8), the crucial communication pattern of the frame-
work finally becomes more clear: Per round, only a single vector (the update on v ∈ Rd) needs
to be sent over the communication network. The reduce-all operation in line 10 means that each
machine sends their vector ∆vtk ∈ Rd to the network, which performs the addition operation
of the K vectors to the old vt. The resulting vector vt+1 is then communicated back to all
machines, so that all have the same copy of vt+1 before the beginning of the next round.

The framework as shown below in Algorithm 9 clearly maintains the consistency of αt and
vt = vt(αt) after each round, no matter which local solver is used to approximately solve
(LO’). A diagram illustrating the communication and computation involved in the first two

84

worker machine 1
stored data

X[1]

↵[1]

worker machine K
stored data

X[K]

↵[K]

broadcast v0

v0

v0

t=0
worker machine 1

stored data

X[1]

↵[1]

worker machine K
stored data

X[K]

↵[K]

t=1

�v0
K

�v0
1 �v1

1

�v1
K

v1

v1

1. precompute XT
[1]rg⇤(v0)

2. find approximate solution
h0

[1] to local subproblem

3. update local variables
↵[1] = ↵[1] + ⌫h0

[1]

1. precompute XT
[K]rg⇤(v0)

2. find approximate solution
h0

[K] to local subproblem

3. update local variables
↵[K] = ↵[K] + ⌫h0

[K]

1. precompute XT
[K]rg⇤(v1)

2. find approximate solution
h1

[K] to local subproblem

3. update local variables
↵[K] = ↵[K] + ⌫h1

[K]

1. precompute XT
[1]rg⇤(v1)

2. find approximate solution
h1

[1] to local subproblem

3. update local variables
↵[1] = ↵[1] + ⌫h1

[1]

v2:= v1 + ⌫
PK

k=1 �v1
k

v1:= v0 + ⌫
PK

k=1 �v0
k

Figure 5.1: The first two iterations of the improved framework (practical implementation).

full iterations of Algorithm 9 is given in Figure 5.1.

Algorithm 9 Improved CoCoA+ Framework, Practical Implementation

1: Input: starting point α0 ∈ Rn, aggregation parameter ν ∈ (0, 1], data partition {Pk}Kk=1

2: v0 := 1
λnXα

0 ∈ Rd
3: for t = 0, 1, 2, . . . do
4: for k ∈ {1, 2, . . . ,K} in parallel over machines do
5: Precompute XT

[k]∇g∗(vt)
6: Let ht[k] be an approximate solution of the local problem (LO’), i.e.

max
h[k]∈Rn

Gσ′k (h[k]; v
t, αt[k])

. computation
7: Update local variables αt+1

[k] := αt[k] + νht[k]

8: Let ∆vtk := 1
λnX[k]h

t
[k]

9: end for
10: reduce all to compute vt+1 := vt + ν

∑K
k=1 ∆vtk . communication

11: end for

5.3.3 Compatibility of the Subproblems for Aggregating Updates

In this subsection, we shed more light on the local subproblems on each machine, as defined in
(LO) above, and their interpretation. More formally, we show how the aggregation parameter ν
(controlling the level of adding versus averaging the resulting updates from each machine) and
σ′ (the subproblem parameter) interplay together, so that in each round they achieve a valid
approximation to the global objective function D.

The role of the subproblem parameter σ′ is to measure the difficulty of the given data
partition. For the convergence results discussed below to hold, σ′ must be chosen not smaller
than

σ′ ≥ σ′min
def
= ν · max

h∈Rn
{
hTXTXh

∣∣ hTGh ≤ 1
}
. (5.10)

Here, G is the block diagonal submatrix of the data covariance matrix XTX, corresponding
to the partition {Pk}Kk=1, i.e.,

Gij
def
=

{
xTi xj = (XTX)ij , if ∃k such that i, j ∈ Pk,
0, otherwise.

(5.11)

In this notation, it is easy to see that the crucial quantity defining σ′min above is written as

hTGh =
∑K
k=1 ‖X[k]h[k]‖2.

The following lemma shows that if the aggregation and subproblem parameters ν and σ′

satisfy (5.10), then the sum of the subproblems
∑
k Gσ

′

k will closely approximate the global
objective function D. More precisely, this sum is a block-separable lower bound on D.

85

Lemma 33. Let σ′ ≥ 1 and ν ∈ [0, 1] satisfy (5.10) (that is σ′ ≥ σ′min). Then ∀α, h ∈ Rn, it
holds that

D

(
α+ ν

K∑

k=1

h[k]

)
≥ (1− ν)D(α) + ν

K∑

k=1

Gσ′k (h[k];α), (5.12)

The following lemma gives a simple choice for the subproblem parameter σ′, which is trivial
to calculate for all values of the aggregation parameter ν ∈ R, and safe in the sense of the
desired condition (5.10) above. Later we will show experimentally (Section 5.6) that the choice
of this safe upper bound for σ′ only has a minimal effect on the overall performance of the
algorithm.

Lemma 34. For any aggregation parameter ν ∈ [0, 1], the choice of the subproblem parameter
σ′ := νK is valid for (5.10), i.e., νK ≥ σ′min.

5.4 Main Results

In this section we state the main theoretical results of this chapter. Before doing so, we elaborate
on one of the most important aspects of the algorithmic framework: the quality of approximate
local solutions.

5.4.1 Quality of Local Solutions

The notion of approximation quality provided by the local solvers is measured according to the
following:

Assumption 35 (Quality of local solution). Let Θ ∈ [0, 1) and α ∈ Rn be fixed, and let h?[k] be

the optimal solution of a local subproblem Gk(· ;α). We assume the local optimization procedure
run on every node k ∈ [K] in each iteration t produces a (possibly random) output h[k] satisfying

E
[
Gk(h?[k];α)− Gk(h[k];α)

]
≤ Θ

[
Gk(h?[k];α)− Gk(0;α)

]
. (5.13)

The assumption specifies the (relative) accuracy Θ obtained on solving the local subproblem
Gk. Considering the two extreme examples, setting Θ = 0 would require to find the exact
maximum, while Θ = 1 states that no improvement was achieved at all by the local solver.
Intuitively, we would prefer Θ to be small, but spending many computational resources to drive
Θ to 0 can be excessive in practice, since Gk is actually not the problem we are interested in
solving (5.2), but is the problem to be solved per communication round. The best choice in
practice will therefore be to choose Θ such that the local solver runs for a time comparable
to the time it takes for a single communication round. This freedom of choice of Θ ∈ [0, 1]
is a crucial property of our proposed framework, allowing it to adapt to the full range of
communication speeds on real world systems, ranging from supercomputers on one extreme to
very slow communication rounds like MapReduce systems on the other extreme.

In Section 5.6 we study the impact of different values of this parameter on the overall
performance of solving (5.2).

5.4.2 Complexity Bounds

Now we are ready to state the main results. Theorem 36 covers the case when ∀i, the loss
function `i is 1/γ smooth, and Theorem 37 covers the case when `i is L-Lipschitz continuous.
For simplicity in the rates, we define the following two quantities:

∀k : σk
def
= max

α[k]∈Rn
‖X[k]α[k]‖2
‖α[k]‖2

and σ
def
=

K∑

k=1

σk|Pk|.

86

Theorem 36 (Smooth loss functions). Assume the loss functions functions `i are (1/γ)-smooth
∀i ∈ [n]. We define σmax = maxk∈[K] σk. Then after T iterations of Algorithm 9, with

T ≥ 1

ν(1−Θ)

λγn+ σmaxσ
′

λγn
log

1

εD
,

it holds that E
[
D(α?)−D(αT)

]
≤ εD.

Furthermore, after T iterations with

T ≥ 1

ν(1−Θ)

λγn+ σmaxσ
′

λγn
log

(
1

ν(1−Θ)

λγn+ σmaxσ
′

λγn

1

εGap

)
, (5.14)

we have the expected duality gap

E
[
P (w(αT))−D(αT)

]
≤ εGap.

Theorem 37 (Lipschitz continuous loss functions). Consider Algorithm 9 with Assumption
35. Let `i(·) be L-Lipschitz continuous, and εGap > 0 be the desired duality gap (and hence an
upper-bound on primal sub-optimality). Then after T iterations, where

T ≥ T0 + max

{⌈
1

ν(1−Θ)

⌉
,

4L2σσ′

λn2εGapν(1−Θ)

}
, (5.15)

T0 ≥ t0 + max

{
0,

2

ν(1−Θ)

(
8L2σσ′

λn2εGap
− 1

)}
,

t0 ≥ max

{
0,

⌈
1

ν(1−Θ)
log

(
2λn2(D(α?)−D(α0))

4L2σσ′

)⌉}
,

we have that the expected duality gap satisfies

E [P (w(α))−D(α)] ≤ εGap,

at the averaged iterate

α :=
1

T − T0

T−1∑

t=T0+1

αt. (5.16)

The most important observation regarding the above result is that we do not impose any
assumption on the choice of the local solver, apart from the sufficient decrease condition on the
local objective in Assumption 35.

Let us now comment on the leading terms of the complexity results. The inverse dependence
on 1−Θ suggests that it is worth pushing the rate of local accuracy Θ down to zero. However,
when thinking about overall complexity, we have to bear in mind that achieving high accuracy
on the local subproblems might be too expensive. The optimal choice would depend on the time
we estimate a round of communication would take. In general, if communication is slow, it would
be worth spending more time on solving local subproblems, but not so much if communication
is relatively fast. We discussed this tradeoff in Section 5.2.

We achieve a significant speedup by replacing the slow averaging aggregation (as in [79]) by
more aggressive adding instead, that is ν = 1 instead of ν = 1/K. Note that the safe subproblem
parameter for the averaging case (ν = 1/K) is σ′ := 1, while for adding (ν = 1) it is given by
σ′ := K, both proven in Lemma 34. The speedup that results from more aggressive adding is
reflected in the convergence rate as shown above, when plugging in the actual parameter values
ν and σ′ for the two cases, as we will illustrate more clearly in the next subsection.

5.4.3 Discussion and Interpretations of Convergence Results

As the above theorems suggest, it is not possible to meaningfully change the aggregation pa-
rameter ν in isolation. It comes naturally coupled with a particular subproblem.

In this section, we explain a simple way to be able to set the aggregation parameter as ν = 1,

87

that is to aggressively add up the updates from each machine. The motivation for this comes
from a common practical setting. When solving the SVM dual (Hinge loss: `i(a) = max{0, yi−
a}), the optimization problem comes with “box constraints”, i.e., for all i ∈ {1, . . . , n}, we
have αi ∈ [0, 1] (see Table 5.1). The particular values of αi being 0 or 1 have a particular
interpretation in the context of original problem (5.1). If we used ν < 1, we would never be
able reach the upper boundary of any variable αi, when starting the algorithm with all-zeros
α. This example illustrates some of the downsides of averaging vs. adding updates, coming
from the fact that the step-size from using averaging (by being 1/K times shorter) can result
in 1/K times slower convergence.

For the case of aggressive adding, the convergence from Theorem 36 becomes:

Corollary 38 (Smooth loss functions - adding). Let the assumptions of Theorem 36 be satisfied.
If we run Algorithm 8 with ν = 1, σ′ = K for

T
(5.14)

=
1

1−Θ

λγn+ σmaxK

λγn
log

(
1

1−Θ

λγn+ σmaxK

λγn

1

εGap

)
(5.17)

iterations, we have E
[
P (w(αT))−D(αT)

]
≤ εGap.

On the other hand, if we would just average results (as proposed in [79]), we would obtain
following corollary:

Corollary 39 (Smooth loss functions - averaging). Let the assumptions of Theorem 36 be
satisfied. If we run Algorithm 8 with ν = 1/K, σ′ = 1 for

T
(5.14)

≥ 1

1−Θ

Kλγn+ σmaxK

λγn
log

(
1

1−Θ

Kλγn+ σmaxK

λγn

1

εGap

)
(5.18)

iterations, we have E
[
P (w(αT))−D(αT)

]
≤ εGap.

Comparing the leading terms in Equations (5.17) and (5.18), we see that the leading term
for the ν = 1 choice is O(λγn + σmaxK), which is always better than for the ν = 1/K case,
when the leading term is O(Kλγn+σmaxK). This strongly suggests that adding in Framework
9 is preferable, especially when λγn� σmax.

An analogous improvement (by a factor on the order of K) follows for the case of the
sub-linear convergence rate for general Lipschitz loss functions, as shown in Theorem 37.

Note that the differences in the convergence rate are bigger for relatively big values of the
regularizer λ. When the regularizer is O(1/n), the difference is negligible. This behavior is also
present in practice, as we will illustrate in Section 5.6.

5.5 Discussion and Related Work

In this section, we review a number of methods designed to solve optimization problems of the
form of interest here, which are typically referred to as regularized empirical risk minimization
(ERM) problems in the machine learning literature. This problem class (5.1), which is formally
described in Section 5.2.1, underlies many prominent methods in supervised machine learning.

Single-Machine Solvers. Stochastic Gradient Descent (SGD) is the simplest stochastic method
one can use to solve (5.1), and dates back to the work of Robbins and Monro [153]. We refer the
reader to [120, 124, 125, 20] for a recent theoretical and practical assessment of SGD. Generally
speaking, the method is extremely easy to implement, and converges to modest accuracies
very quickly, which is often satisfactory in applications in machine learning. On the other
hand, the method can sometimes be rather cumbersome because it can be difficult to tune its
hyperparameters, and it can be impractical if higher solution accuracy is needed.

The current state of the art for empirical loss minimization with strongly convex regu-
larizers is randomized coordinate ascent on the dual objective—Stochastic Dual Coordinate
Ascent (SDCA) [163]. In contrast to primal SGD methods, the SDCA algorithm family is of-
ten preferred as it is free of learning-rate parameters, and has faster (geometric) convergence

88

guarantees. This algorithm and its variants are increasingly used in practice [186, 164]. On the
other hand, primal-only methods apply to a larger problem class, not only of form (5.1) that
enables formation of dual problem (5.2) as considered here.

Another class of algorithms gaining attention in recent very few years are ‘variance reduced’
modifications of the original SGD algorithm. They are applied directly to the primal problem
(5.1), but unlike SGD, have the property that the variance of estimates of the gradients tend
to zero as they approach the optimal solution. Algorithms such as SAG [158], SAGA [45] and
others [159, 46] come at the cost of extra memory requirements—they have to store a gradient
for each training example. This can be addressed efficiently in the case of generalized linear
models, but prohibits its use in more complicated models such as in deep learning. On the other
hand, Stochastic Variance Reduced Gradient (SVRG) and its variants [80, 89, 187, 81, 132] are
often interpreted as ‘memory-free’ methods with variance reduction. However, these methods
need to compute the full gradient occasionally to drive the variance reduction, which requires a
full pass through the data and is an operation one generally tries to avoid. This and several other
practical issues have been recently addressed in [74]. Finally, another class of extensions to SGD
are stochastic quasi-Newton methods [17, 26]. Despite their clear potential, a lack of theoretical
understanding and complicated implementation issues compared to those above may still limit
their adoption in the wider community. A stochastic dual Newton ascent (SDNA) method was
proposed and analyzed in [142]. However, the method needs to modified substantially before it
can be implemented in a distributed environment.

SGD-based Algorithms. For the empirical loss minimization problems of interest, stochastic
subgradient descent (SGD) based methods are well-established. Several distributed variants of
SGD have been proposed, many of which build on the idea of a parameter server [133, 149, 53].
Despite their simplicity and accessibility in terms of implementation, the downside of this
approach is that the amount of required communication is equal to the amount of data read
locally, since one data point is accessed per machine per round (e.g., mini-batch SGD with
a batch size of 1 per worker). These variants are in practice not competitive with the more
communication-efficient methods considered in this work, which allow more local updates per
communication round.

One-Shot Communication Schemes. At the other extreme, there are distributed methods using
only a single round of communication, such as [198, 203, 114, 76, 75]. These methods require
additional assumptions on the partitioning of the data, which are usually not satisfied in practice
if the data are distributed “as is”, i.e., if we do not have the opportunity to distribute the data
in a specific way beforehand. Furthermore, some cannot guarantee convergence rates beyond
what could be achieved if we ignored data residing on all but a single computer, as shown in
[167]. Additional relevant lower bounds on the minimum number of communication rounds
necessary for a given approximation quality are presented in [8, 7].

Mini-Batch Methods. Mini-batch methods (which instead of just one data-example use updates
from several examples per iteration) are more flexible and lie within these two communication
vs. computation extremes. However, mini-batch versions of both SGD and coordinate descent
(CD) [151, 149, 164, 111, 188, 176, 150, 140, 141, 143, 38, 40] suffer from their convergence rate
degrading towards the rate of batch gradient descent as the size of the mini-batch is increased.
This follows because mini-batch updates are made based on the outdated previous parameter
vector w, in contrast to methods that allow immediate local updates like CoCoA.

Another disadvantage of mini-batch methods is that the aggregation parameter is harder to
tune, as it can lie anywhere in the order of mini-batch size. The optimal choice is often either
unknown, or difficult to compute. In the CoCoA setting, the parameter lies in the typically
much smaller range given by K. In this work the aggregation parameter is further simplified
and can be simply set to 1, i.e., adding updates, which is achieved by formulating a more
conservative local problem as described in Section 5.3.1.

Distributed Batch Solvers. With traditional batch gradient solvers not being competitive for
the problem class (5.1), improved batch methods have also received much research attention

89

recently, in the single machine case as well as in the distributed setting. In distributed envi-
ronments, popular methods include the alternating direction method of multipliers (ADMM)
[23] as well as quasi-Newton methods such as L-BFGS, which can be attractive because of
their relatively low communication requirements. Namely, communication is in the order of a
constant number of vectors (the batch gradient information) per full pass through the data.

ADMM also comes with an additional penalty parameter balancing between the equality
constraint on the primal variable vector w and the original optimization objective [23], which
is typically hard to tune in many applications. Nevertheless, the method has been used for
distributed SVM training in, e.g., [60]. The known convergence rates for ADMM are weaker
than the more problem-tailored methods mentioned we study here, and the choice of the penalty
parameter is often unclear in practice.

Standard ADMM and quasi-Newton methods do not allow a gradual trade-off between
communication and computation available here. An exception is the approach of Zhang, Lee
and Shin [194], which is similar to our approach in spirit, albeit based on ADMM, in that they
allow for the subproblems to be solved inexactly. However, this work focuses on L2-regularized
problems and a few selected loss functions, and offers no complexity results.

Interestingly, our proposed CoCoA+ framework—despite being aimed at cheap stochastic
local solvers—does have similarities to block-wise variants of batch proximal methods. In
particular, the purpose of our subproblems as defined in (LO) is to form a data-dependent block-
separable quadratic approximation to the smooth part of the original (dual) objective (5.2),
while leaving the non-smooth part R intact (recall that R(α) was defined to collect the `∗i
functions, and is separable over the coordinate blocks). Now if hypothetically each of our
regularized quadratic subproblems (LO) were to be minimized exactly, the resulting steps could
be interpreted as block-wise proximal Newton-type steps on each coordinate block k of the dual
(5.2), where the Newton-subproblem is modified to also contain the proximal part R. This
connection only holds for the special case of adding (ν = 1), and would correspond to a carefully
adapted step-size in the block-wise Newton case.

One of the main crucial differences of our proposed CoCoA+ framework compared to all
known batch proximal methods (no matter if block-wise or not) is that the latter do require
high accuracy subproblem solutions, and do not allow arbitrary solvers of weak accuracy Θ such
as we do here, see also the next paragraph. Distributed Newton methods have been analyzed
theoretically only when the subproblems are solved to high precision, see e.g. [167]. This makes
the local solvers very expensive and the convergence rates less general than in our framework
(which allows weak local solvers). Furthermore, the analysis of [167] requires additional strong
assumptions on the data partitioning, such that the local Hessian approximations are consistent
between the machines.

Distributed Methods Allowing Local Optimization. Developing distributed optimization meth-
ods that allow for arbitrary weak local optimizers requires carefully devising data-local sub-
problems to be solved after each communication round.

By making use of the primal-dual structure in the line of work of [191, 137, 188, 189, 94],
the CoCoA and CoCoA+ frameworks proposed here are the first to allow the use of any
local solver—of weak local approximation quality—in each round. Furthermore, the approach
here also allows more control over the aggregation of updates between machines. The practical
variant of the DisDCA algorithm of [188], called DisDCA-p, also allows additive updates but is
restricted to coordinate decent (CD) being the local solver, and was initially proposed without
convergence guarantees. The work of [189] has provided the first theoretical convergence anal-
ysis for an ideal case, when the distributed data parts are all orthogonal to each other, which is
an unrealistic setting in practice. DisDCA-p can be recovered as a special case of the CoCoA+

framework when using CD as a local solver, if |Pk| = n/K, and when using the conservative
bound σ′ := K; see also [94, 105]. The convergence theory presented here therefore also covers
that method, and extends it to arbitrary local solvers.

Since the first version of this work, Accelerated Inexact Dane (AIDE) [147]—a method based
on related set of ideas but applied to the primal problem—was developed. Like CoCoA+, AIDE
promotes an efficient balance between communication and computation costs in the sense of
(T-C).

90

Inexact Block Coordinate Descent. Our framework is related, but not identical, to running
an inexact version of block coordinate ascent, applied to all blocks in parallel, and to the
dual problem. From this perspective, the level of inexactness is controlled by the parameter
Θ through the use of a (possibly randomized) iterative “local” solver applied to the local
subproblems. For previous work on randomized block coordinate descent we refer to the reader
to [175] and [174].

5.6 Numerical Experiments

In this section we explore numerous aspects of our distributed framework and demonstrate its
competitive performance in practice. Section 5.6.1 first explores the impact of the local solver
on overall performance, by comparing examples of various local solvers that can be used in
the framework (the improved CoCoA+ framework as shown in Algorithms 8 and 9) as well
as testing the effect of approximate solution quality. The results indicate that the choice of
local solver can have a significant impact on overall performance. In Sections 5.6.2 and 5.6.3 we
further explore framework parameters, looking at the impact of the aggregation parameter ν and
the subproblem parameter σ′, respectively. Finally, Section 5.6.5 demonstrates the competitive
practical performance of the overall framework on a large 280GB distributed dataset.

We conduct experiments on three datasets of moderate and large size, namely rcv1 test ,
epsilon and splice-site.t5. The details of these datasets are listed in Table 5.2.

Dataset n d size (GB)

rcv1 test 677,399 47,236 1.2
epsilon 400,000 2,000 3.1

splice-site.t 4,627,840 11,725,480 273.4

Table 5.2: Datasets used for numerical experiments.

For solving subproblems, we compare numerous local solver methods, as listed in Table 5.3.
We use the Euclidean norm as the regularizer g(x) = ‖x‖2 for all the experiments. All the
algorithms are implemented in C++ with MPI, and experiments are run on a cluster of 4 Amazon
EC2 m3.xlarge instances. Our open-source code is available online at: https://github.com/

optml/CoCoA.

CD Coordinate Descent [148]
APPROX Accelerated, Parallel and Proximal Coordinate Descent [59]
GD Gradient Descent with Backtracking Line Search [134]
CG Conjugate Gradient Method [77]
L-BFGS Quasi-Newton with Limited-Memory BFGS Updating [27]
BB Barzilai-Borwein Gradient Method [9]
FISTA Fast Iterative Shrinkage-Thresholding Algorithm [11]

Table 5.3: Local solvers used in numerical experiments.

5.6.1 Exploration of Local Solvers within the Framework

In this section we compare the performance of our framework for various local solvers and
various choices of inner iterations performed by a given local solver, resulting in different local
accuracy measures Θ. For simplicity, we choose the subproblem parameter σ′ := νK (see
Lemma 34) as a simple obtainable and theoretically safe value.

5The datasets are available at http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/.

91

https://github.com/optml/CoCoA
https://github.com/optml/CoCoA
http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/

Comparison of Different Local Solvers

Here we compare the performance of the seven local solvers listed in Table 5.3. We show
results for the quadratic loss function `i(a) = 1

2 (a − yi)
2 with three different values of the

regularization parameter, λ=10−3, 10−4, and 10−5, and g(·) being the default Euclidean squared
norm regularizer: g(·) = 1

2‖ · ‖2. The dataset is rcv1 test and we ran the CoCoA+ framework
for a maximum of T := 100 communication rounds. We set ν = 1 (adding) and choose H which
gave the best performance in CPU time (see Table 5.4) for each solver.

Local Solver CD APPROX GD CG L-BFGS BB FISTA
H 40,000 40,000 20 5 10 15 20

Table 5.4: Optimal H for different local solvers and the rcv1 test dataset.

From Figure 5.2, we find that if a high-enough accuracy solution is needed, the coordinate
descent (CD) local solver always outperforms the other solvers. However, when a low accuracy
solution is sufficient, as is often the case in machine learning applications, and if the regular-
ization parameter is not too small, then L-BFGS performs best. The local subproblems arising
with the rcv1 test dataset are reasonably well conditioned. If more ill-conditioning was present,
however, we would expect the APPROX local solver to do better than CD. This is because this
method is an accelerated variant of CD. In summary, randomized methods, such as CD and
APPROX, and quasi-Newton methods (L-BFGS), perform best on this dataset.

Based on the above observations, it seems reasonable to expect that a method combining the
power of both of these successful approaches—randomization and second-order information—
would perform even better. One might therefore want to look at local solvers based on ideas
appearing in [142] or [67].

Note that it is not the goal of this work to decide on what the best local solver is. Our goals
are quite the opposite, we provide a framework which allows the incorporation of any local solver.
This choice might depend on which solvers are readily available to the practitioner/company.
It will also depend on the conditioning of the local subproblems, their size, and other similar
considerations. Future research will undoubtedly lead to the development of new and better
local solvers which can be incorporated within CoCoA+.

Finally, note that some of the solvers cannot guarantee strict decrease of the duality gap,
and sometimes this fluctuation can be very dramatic.

92

10
0

10
1

10
2

10
−8

10
−6

10
−4

10
−2

10
0

rcv1_test, compare solvers, λ=1e−3

Number of Communications

D
u

a
lit

y
 G

a
p

CD

APPROX

GD

CG

L−BFGS

BB

FISTA

10
0

10
1

10
2

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

rcv1_test, compare solvers, λ=1e−4

Number of Communications

D
u

a
lit

y
 G

a
p

CD

APPROX

GD

CG

L−BFGS

BB

FISTA

10
0

10
1

10
2

10
−4

10
−3

10
−2

10
−1

10
0

rcv1_test, compare solvers, λ=1e−5

Number of Communications

D
u

a
lit

y
 G

a
p

CD

APPROX

GD

CG

L−BFGS

BB

FISTA

10
−1

10
0

10
1

10
2

10
−8

10
−6

10
−4

10
−2

10
0

rcv1_test, compare solvers, λ=1e−3

Elapsed Time [s]

D
u

a
lit

y
 G

a
p

CD

APPROX

GD

CG

L−BFGS

BB

FISTA

10
−1

10
0

10
1

10
2

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

rcv1_test, compare solvers, λ=1e−4

Elapsed Time [s]

D
u

a
lit

y
 G

a
p

CD

APPROX

GD

CG

L−BFGS

BB

FISTA

10
−1

10
0

10
1

10
2

10
−4

10
−3

10
−2

10
−1

10
0

rcv1_test, compare solvers, λ=1e−5

Elapsed Time [s]

D
u

a
lit

y
 G

a
p

CD

APPROX

GD

CG

L−BFGS

BB

FISTA

Figure 5.2: Performance of 7 local solvers on rcv1 test dataset for three values of the regular-
ization parameter.

Effect of the Quality of Local Solver Solutions on Overall Performance

Here we discuss how the quality of subproblem solutions affects the overall performance of
Algorithm 9. In order to do so, we denote H as the number of iterations the local solver is run
for, within each communication round of the framework. We choose various values for H for the
two local solvers that had the best performance in general, CD [148, 163] and L-BFGS [27]. For
CD, H represents the number of local iterations performed on the subproblem. For L-BFGS,
H not only means the number of iterations, but also stands for the size of past information
used to approximate the Hessian (i.e., the size of limited memory).

Looking at Figures 5.3 and 5.4, we see that for both of these local solvers and all values of λ,
increasing H will lead to less iterations of Algorithm 9. Of course, increasing H comes at the
cost of the time spent on local solvers increasing. Hence, a larger value of H is not always the
optimal choice with respect to total elapsed time. For example, for the rcv1 test dataset, when
choosing CD to solve the subproblems, choosing H to be 40, 000 uses less time and provides
faster convergence. When using L-BFGS, H = 10 seems to be the best choice.

93

10
0

10
1

10
2

10
−8

10
−6

10
−4

10
−2

rcv1_test, CD, λ=1e−3

Number of Communications

D
u

a
lit

y
 G

a
p

H=1000

H=10000

H=40000

H=80000

H=150000

10
0

10
1

10
2

10
−5

10
−4

10
−3

10
−2

rcv1_test, CD, λ=1e−4

Number of Communications

D
u

a
lit

y
 G

a
p

H=1000

H=10000

H=40000

H=80000

H=150000

10
0

10
1

10
2

10
−4

10
−3

10
−2

rcv1_test, CD, λ=1e−5

Number of Communications

D
u

a
lit

y
 G

a
p

H=1000

H=10000

H=40000

H=80000

H=150000

10
−2

10
−1

10
0

10
−8

10
−6

10
−4

10
−2

rcv1_test, CD, λ=1e−3

Elapsed Time [s]

D
u

a
lit

y
 G

a
p

H=1000

H=10000

H=40000

H=80000

H=150000

10
−2

10
−1

10
0

10
−5

10
−4

10
−3

10
−2

rcv1_test, CD, λ=1e−4

Elapsed Time [s]

D
u

a
lit

y
 G

a
p

H=1000

H=10000

H=40000

H=80000

H=150000

10
−2

10
−1

10
0

10
−4

10
−3

10
−2

rcv1_test, CD, λ=1e−5

Elapsed Time [s]

D
u

a
lit

y
 G

a
p

H=1000

H=10000

H=40000

H=80000

H=150000

Figure 5.3: Varying the number of iterations of CD as a local solver.

10
0

10
1

10
2

10
−10

10
−8

10
−6

10
−4

10
−2

rcv1_test, L−BFGS, λ=1e−3

Number of Communications

D
u

a
lit

y
 G

a
p

H=2

H=5

H=10

H=20

H=30

H=40

10
0

10
1

10
2

10
−5

10
−4

10
−3

10
−2

10
−1

rcv1_test, L−BFGS, λ=1e−4

Number of Communications

D
u

a
lit

y
 G

a
p

H=2

H=5

H=10

H=20

H=30

H=40

10
0

10
1

10
2

10
−4

10
−3

10
−2

10
−1

rcv1_test, L−BFGS, λ=1e−5

Number of Communications

D
u

a
lit

y
 G

a
p

H=2

H=5

H=10

H=20

H=30

H=40

10
0

10
1

10
2

10
−10

10
−8

10
−6

10
−4

10
−2

rcv1_test, L−BFGS, λ=1e−3

Elapsed Time [s]

D
u

a
lit

y
 G

a
p

H=2

H=5

H=10

H=20

H=30

H=40

10
0

10
1

10
2

10
−5

10
−4

10
−3

10
−2

10
−1

rcv1_test, L−BFGS, λ=1e−4

Elapsed Time [s]

D
u

a
lit

y
 G

a
p

H=2

H=5

H=10

H=20

H=30

H=40

10
0

10
1

10
2

10
−4

10
−3

10
−2

10
−1

rcv1_test, L−BFGS, λ=1e−5

Elapsed Time [s]

D
u

a
lit

y
 G

a
p

H=2

H=5

H=10

H=20

H=30

H=40

Figure 5.4: Varying the number of iterations of L-BFGS as a local solver.

5.6.2 Averaging vs. Adding the Local Updates

In this section, we compare the performance of our algorithm using two different schemes
for aggregating partial updates: adding vs. averaging. This corresponds to comparing two
extremes for the parameter ν, either ν := 1

K (averaging partial solutions) or ν := 1 (adding
partial solutions). As discussed in Section 5.4, adding the local updates (ν = 1) will lead to
less iterations than averaging, due to choosing different σ′ in the subproblems. We verify this
experimentally by considering several of the local solvers listed in Table 5.3.

We show results for the rcv1 test dataset, and we apply the quadratic loss function with

94

three different choices for the regularization parameter, λ=1e− 03, 1e− 04, and 1e− 05. The
experiments in Figures 5.6–5.11 indicate that the “adding” strategy will always lead to faster
convergence than averaging, even though the difference is minimal when we apply a large
number of iterations in the local solver. All the blue solid plots (adding) outperform the red
dashed plots (averaging), which indicates the advantage of choosing ν = 1. Another note here
is that for smaller λ, we will have to spend more iterations to get the same accuracy, because
the original objective function (5.1) is less strongly convex.

10
0

10
1

10
2

10
−8

10
−6

10
−4

10
−2

rcv1_test, CD, λ=1e−3

Number of Communications

D
u

a
lit

y
 G

a
p

ν=1/K,H=10000

ν=1/K,H=40000

ν=1/K,H=80000

ν=1/K,H=150000

ν=1,H=10000

ν=1,H=40000

ν=1,H=80000

ν=1,H=150000

10
0

10
1

10
2

10
−5

10
−4

10
−3

10
−2

rcv1_test, CD, λ=1e−4

Number of Communications

D
u

a
lit

y
 G

a
p

ν=1/K,H=10000

ν=1/K,H=40000

ν=1/K,H=80000

ν=1/K,H=150000

ν=1,H=10000

ν=1,H=40000

ν=1,H=80000

ν=1,H=150000

10
0

10
1

10
2

10
−4

10
−3

10
−2

rcv1_test, CD, λ=1e−5

Number of Communications

D
u

a
lit

y
 G

a
p

ν=1/K,H=10000

ν=1/K,H=40000

ν=1/K,H=80000

ν=1/K,H=150000

ν=1,H=10000

ν=1,H=40000

ν=1,H=80000

ν=1,H=150000

10
−1

10
0

10
−8

10
−6

10
−4

10
−2

rcv1_test, CD, λ=1e−3

Elapsed Time [s]

D
u

a
lit

y
 G

a
p

ν=1/K,H=10000

ν=1/K,H=40000

ν=1/K,H=80000

ν=1/K,H=150000

ν=1,H=10000

ν=1,H=40000

ν=1,H=80000

ν=1,H=150000

10
−1

10
0

10
1

10
−5

10
−4

10
−3

10
−2

rcv1_test, CD, λ=1e−4

Elapsed Time [s]

D
u

a
lit

y
 G

a
p

ν=1/K,H=10000

ν=1/K,H=40000

ν=1/K,H=80000

ν=1/K,H=150000

ν=1,H=10000

ν=1,H=40000

ν=1,H=80000

ν=1,H=150000

10
−1

10
0

10
−4

10
−3

10
−2

rcv1_test, CD, λ=1e−5

Elapsed Time [s]

D
u

a
lit

y
 G

a
p

ν=1/K,H=10000

ν=1/K,H=40000

ν=1/K,H=80000

ν=1/K,H=150000

ν=1,H=10000

ν=1,H=40000

ν=1,H=80000

ν=1,H=150000

Figure 5.5: Adding (blue solid line) vs Averaging (red dashed line) for CD as the local solver.

10
0

10
1

10
2

10
−6

10
−4

10
−2

rcv1_test, APPROX, λ=1e−3

Number of Communications

D
u

a
lit

y
 G

a
p

ν=1/K,H=10000

ν=1/K,H=40000

ν=1/K,H=80000

ν=1/K,H=150000

ν=1,H=10000

ν=1,H=40000

ν=1,H=80000

ν=1,H=150000

10
0

10
1

10
2

10
−5

10
−4

10
−3

10
−2

rcv1_test, APPROX, λ=1e−4

Number of Communications

D
u

a
lit

y
 G

a
p

ν=1/K,H=10000

ν=1/K,H=40000

ν=1/K,H=80000

ν=1/K,H=150000

ν=1,H=10000

ν=1,H=40000

ν=1,H=80000

ν=1,H=150000

10
0

10
1

10
2

10
−4

10
−3

10
−2

rcv1_test, APPROX, λ=1e−5

Number of Communications

D
u

a
lit

y
 G

a
p

ν=1/K,H=10000

ν=1/K,H=40000

ν=1/K,H=80000

ν=1/K,H=150000

ν=1,H=10000

ν=1,H=40000

ν=1,H=80000

ν=1,H=150000

10
−1

10
0

10
1

10
−6

10
−4

10
−2

rcv1_test, APPROX, λ=1e−3

Elapsed Time [s]

D
u

a
lit

y
 G

a
p

ν=1/K,H=10000

ν=1/K,H=40000

ν=1/K,H=80000

ν=1/K,H=150000

ν=1,H=10000

ν=1,H=40000

ν=1,H=80000

ν=1,H=150000

10
−1

10
0

10
1

10
−5

10
−4

10
−3

10
−2

rcv1_test, APPROX, λ=1e−4

Elapsed Time [s]

D
u

a
lit

y
 G

a
p

ν=1/K,H=10000

ν=1/K,H=40000

ν=1/K,H=80000

ν=1/K,H=150000

ν=1,H=10000

ν=1,H=40000

ν=1,H=80000

ν=1,H=150000

10
−1

10
0

10
1

10
−4

10
−3

10
−2

rcv1_test, APPROX, λ=1e−5

Elapsed Time [s]

D
u

a
lit

y
 G

a
p

ν=1/K,H=10000

ν=1/K,H=40000

ν=1/K,H=80000

ν=1/K,H=150000

ν=1,H=10000

ν=1,H=40000

ν=1,H=80000

ν=1,H=150000

Figure 5.6: Adding (blue solid line) vs Averaging (red dashed line) for APPROX as the local
solver.

95

10
0

10
1

10
2

10
−8

10
−6

10
−4

10
−2

rcv1_test, GD, λ=1e−3

Number of Communications

D
u

a
lit

y
 G

a
p

ν=1/K,H=5

ν=1/K,H=10

ν=1/K,H=15

ν=1/K,H=20

ν=1,H=5

ν=1,H=10

ν=1,H=15

ν=1,H=20

10
0

10
1

10
2

10
−5

10
−4

10
−3

10
−2

10
−1

rcv1_test, GD, λ=1e−4

Number of Communications

D
u

a
lit

y
 G

a
p

ν=1/K,H=5

ν=1/K,H=10

ν=1/K,H=15

ν=1/K,H=20

ν=1,H=5

ν=1,H=10

ν=1,H=15

ν=1,H=20

10
0

10
1

10
2

10
−3

10
−2

10
−1

rcv1_test, GD, λ=1e−5

Number of Communications

D
u

a
lit

y
 G

a
p

ν=1/K,H=10

ν=1/K,H=15

ν=1/K,H=20

ν=1/K,H=30

ν=1,H=10

ν=1,H=15

ν=1,H=20

ν=1,H=30

10
0

10
1

10
2

10
−8

10
−6

10
−4

10
−2

rcv1_test, GD, λ=1e−3

Elapsed Time [s]

D
u

a
lit

y
 G

a
p

ν=1/K,H=5

ν=1/K,H=10

ν=1/K,H=15

ν=1/K,H=20

ν=1,H=5

ν=1,H=10

ν=1,H=15

ν=1,H=20

10
0

10
1

10
2

10
−5

10
−4

10
−3

10
−2

10
−1

rcv1_test, GD, λ=1e−4

Elapsed Time [s]

D
u

a
lit

y
 G

a
p

ν=1/K,H=5

ν=1/K,H=10

ν=1/K,H=15

ν=1/K,H=20

ν=1,H=5

ν=1,H=10

ν=1,H=15

ν=1,H=20

10
1

10
2

10
−3

10
−2

10
−1

rcv1_test, GD, λ=1e−5

Elapsed Time [s]

D
u

a
lit

y
 G

a
p

ν=1/K,H=10

ν=1/K,H=15

ν=1/K,H=20

ν=1/K,H=30

ν=1,H=10

ν=1,H=15

ν=1,H=20

ν=1,H=30

Figure 5.7: Adding (blue solid line) vs Averaging (red dashed line) for Gradient Descent as the
local solver.

10
0

10
1

10
2

10
−10

10
−8

10
−6

10
−4

10
−2

rcv1_test, L−BFGS, λ=1e−3

Number of Communications

D
u

a
lit

y
 G

a
p

ν=1/K,H=2

ν=1/K,H=5

ν=1/K,H=10

ν=1/K,H=20

ν=1,H=2

ν=1,H=5

ν=1,H=10

ν=1,H=20

10
0

10
1

10
2

10
−5

10
−4

10
−3

10
−2

10
−1

rcv1_test, L−BFGS, λ=1e−4

Number of Communications

D
u

a
lit

y
 G

a
p

ν=1/K,H=2

ν=1/K,H=5

ν=1/K,H=10

ν=1/K,H=20

ν=1,H=2

ν=1,H=5

ν=1,H=10

ν=1,H=20

10
0

10
1

10
2

10
−4

10
−3

10
−2

10
−1

rcv1_test, L−BFGS, λ=1e−5

Number of Communications

D
u

a
lit

y
 G

a
p

ν=1/K,H=2

ν=1/K,H=5

ν=1/K,H=10

ν=1/K,H=20

ν=1,H=2

ν=1,H=5

ν=1,H=10

ν=1,H=20

10
0

10
1

10
2

10
−10

10
−8

10
−6

10
−4

10
−2

rcv1_test, L−BFGS, λ=1e−3

Elapsed Time [s]

D
u

a
lit

y
 G

a
p

ν=1/K,H=2

ν=1/K,H=5

ν=1/K,H=10

ν=1/K,H=20

ν=1,H=2

ν=1,H=5

ν=1,H=10

ν=1,H=20

10
0

10
1

10
2

10
−5

10
−4

10
−3

10
−2

10
−1

rcv1_test, L−BFGS, λ=1e−4

Elapsed Time [s]

D
u

a
lit

y
 G

a
p

ν=1/K,H=2

ν=1/K,H=5

ν=1/K,H=10

ν=1/K,H=20

ν=1,H=2

ν=1,H=5

ν=1,H=10

ν=1,H=20

10
0

10
1

10
2

10
−4

10
−3

10
−2

10
−1

rcv1_test, L−BFGS, λ=1e−5

Elapsed Time [s]

D
u

a
lit

y
 G

a
p

ν=1/K,H=2

ν=1/K,H=5

ν=1/K,H=10

ν=1/K,H=20

ν=1,H=2

ν=1,H=5

ν=1,H=10

ν=1,H=20

Figure 5.8: Adding (blue solid line) vs Averaging (red dashed line) for L-BFGS as the local
solver.

96

10
0

10
1

10
2

10
−10

10
−8

10
−6

10
−4

10
−2

rcv1_test, CG, λ=1e−3

Number of Communications

D
u

a
lit

y
 G

a
p

ν=1/K,H=1

ν=1/K,H=3

ν=1/K,H=5

ν=1/K,H=10

ν=1,H=1

ν=1,H=3

ν=1,H=5

ν=1,H=10

10
0

10
1

10
2

10
−5

10
−4

10
−3

10
−2

10
−1

rcv1_test, CG, λ=1e−4

Number of Communications

D
u

a
lit

y
 G

a
p

ν=1/K,H=1

ν=1/K,H=3

ν=1/K,H=5

ν=1/K,H=10

ν=1,H=1

ν=1,H=3

ν=1,H=5

ν=1,H=10

10
0

10
1

10
2

10
−4

10
−3

10
−2

rcv1_test, CG, λ=1e−5

Number of Communications

D
u

a
lit

y
 G

a
p

ν=1/K,H=5

ν=1/K,H=10

ν=1/K,H=20

ν=1/K,H=40

ν=1,H=5

ν=1,H=10

ν=1,H=20

ν=1,H=40

10
0

10
1

10
−10

10
−8

10
−6

10
−4

10
−2

rcv1_test, CG, λ=1e−3

Elapsed Time [s]

D
u

a
lit

y
 G

a
p

ν=1/K,H=1

ν=1/K,H=3

ν=1/K,H=5

ν=1/K,H=10

ν=1,H=1

ν=1,H=3

ν=1,H=5

ν=1,H=10

10
0

10
1

10
−5

10
−4

10
−3

10
−2

10
−1

rcv1_test, CG, λ=1e−4

Elapsed Time [s]

D
u

a
lit

y
 G

a
p

ν=1/K,H=1

ν=1/K,H=3

ν=1/K,H=5

ν=1/K,H=10

ν=1,H=1

ν=1,H=3

ν=1,H=5

ν=1,H=10

10
0

10
1

10
2

10
−4

10
−3

10
−2

rcv1_test, CG, λ=1e−5

Elapsed Time [s]

D
u

a
lit

y
 G

a
p

ν=1/K,H=5

ν=1/K,H=10

ν=1/K,H=20

ν=1/K,H=40

ν=1,H=5

ν=1,H=10

ν=1,H=20

ν=1,H=40

Figure 5.9: Adding (blue solid line) vs Averaging (red dashed line) for Conjugate Gradient
Method as the local solver.

10
0

10
1

10
2

10
−8

10
−6

10
−4

10
−2

10
0

rcv1_test, BB, λ=1e−3

Number of Communications

D
u

a
lit

y
 G

a
p

ν=1/K,H=2

ν=1/K,H=5

ν=1/K,H=10

ν=1/K,H=15

ν=1,H=2

ν=1,H=5

ν=1,H=10

ν=1,H=15

10
0

10
1

10
2

10
−4

10
−2

10
0

10
2

rcv1_test, BB, λ=1e−4

Number of Communications

D
u

a
lit

y
 G

a
p

ν=1/K,H=2

ν=1/K,H=5

ν=1/K,H=10

ν=1/K,H=15

ν=1,H=2

ν=1,H=5

ν=1,H=10

ν=1,H=15

10
0

10
1

10
2

10
−4

10
−2

10
0

10
2

rcv1_test, BB, λ=1e−5

Number of Communications

D
u

a
lit

y
 G

a
p

ν=1/K,H=10

ν=1/K,H=15

ν=1/K,H=20

ν=1/K,H=30

ν=1,H=10

ν=1,H=15

ν=1,H=20

ν=1,H=30

10
1

10
2

10
−8

10
−6

10
−4

10
−2

10
0

rcv1_test, BB, λ=1e−3

Elapsed Time [s]

D
u

a
lit

y
 G

a
p

ν=1/K,H=2

ν=1/K,H=5

ν=1/K,H=10

ν=1/K,H=15

ν=1,H=2

ν=1,H=5

ν=1,H=10

ν=1,H=15

10
1

10
2

10
−4

10
−2

10
0

10
2

rcv1_test, BB, λ=1e−4

Elapsed Time [s]

D
u

a
lit

y
 G

a
p

ν=1/K,H=2

ν=1/K,H=5

ν=1/K,H=10

ν=1/K,H=15

ν=1,H=2

ν=1,H=5

ν=1,H=10

ν=1,H=15

10
1

10
2

10
−4

10
−2

10
0

10
2

rcv1_test, BB, λ=1e−5

Elapsed Time [s]

D
u

a
lit

y
 G

a
p

ν=1/K,H=10

ν=1/K,H=15

ν=1/K,H=20

ν=1/K,H=30

ν=1,H=10

ν=1,H=15

ν=1,H=20

ν=1,H=30

Figure 5.10: Adding (blue solid line) vs Averaging (red dashed line) for BB as the local solver.

97

10
0

10
1

10
2

10
−6

10
−4

10
−2

rcv1_test, FISTA, λ=1e−3

Number of Communications

D
u

a
lit

y
 G

a
p

ν=1/K,H=5

ν=1/K,H=10

ν=1/K,H=15

ν=1/K,H=20

ν=1,H=5

ν=1,H=10

ν=1,H=15

ν=1,H=20

10
0

10
1

10
2

10
−5

10
−4

10
−3

10
−2

10
−1

rcv1_test, FISTA, λ=1e−4

Number of Communications

D
u

a
lit

y
 G

a
p

ν=1/K,H=5

ν=1/K,H=10

ν=1/K,H=15

ν=1/K,H=20

ν=1,H=5

ν=1,H=10

ν=1,H=15

ν=1,H=20

10
0

10
1

10
2

10
−2

10
−1

rcv1_test, FISTA, λ=1e−5

Number of Communications

D
u

a
lit

y
 G

a
p

ν=1/K,H=5

ν=1/K,H=10

ν=1/K,H=15

ν=1/K,H=20

ν=1,H=5

ν=1,H=10

ν=1,H=15

ν=1,H=20

10
1

10
2

10
−6

10
−4

10
−2

rcv1_test, FISTA, λ=1e−3

Elapsed Time [s]

D
u

a
lit

y
 G

a
p

ν=1/K,H=5

ν=1/K,H=10

ν=1/K,H=15

ν=1/K,H=20

ν=1,H=5

ν=1,H=10

ν=1,H=15

ν=1,H=20

10
1

10
2

10
−5

10
−4

10
−3

10
−2

10
−1

rcv1_test, FISTA, λ=1e−4

Elapsed Time [s]

D
u

a
lit

y
 G

a
p

ν=1/K,H=5

ν=1/K,H=10

ν=1/K,H=15

ν=1/K,H=20

ν=1,H=5

ν=1,H=10

ν=1,H=15

ν=1,H=20

10
1

10
2

10
−2

10
−1

rcv1_test, FISTA, λ=1e−5

Elapsed Time [s]

D
u

a
lit

y
 G

a
p

ν=1/K,H=5

ν=1/K,H=10

ν=1/K,H=15

ν=1/K,H=20

ν=1,H=5

ν=1,H=10

ν=1,H=15

ν=1,H=20

Figure 5.11: Adding (blue solid line) vs Averaging (red dashed line) for FISTA as the local
solver.

5.6.3 The Effect of the Subproblem Parameter σ′

In this section we consider the effect of the choice of the subproblem parameter on convergence
(Figure 5.12). We plot the duality gap over the number of communications for the rcv1 test
and epsilon datasets with quadratic loss, and set K = 8, λ = 10−5. For ν = 1 (adding the
local updates), we consider several different values of σ′, ranging from 1 to 8. The value σ′ = 8
represents the safe upper bound of νK, as given in Lemma 34.

Decreasing σ′ improves performance in terms of communication until a certain point, after
which the algorithm diverges. For the rcv1 test dataset, the optimal convergence occurs around
σ′ = 5, and diverges fast for σ′ ≤ 3. For the epsilon dataset, σ′ around 6 is the best choice and
the algorithm will not converge to the optimal solution if σ′ ≤ 5. However, more importantly,
the “safe” upper bound of σ′ := νK = 8 has only slightly worse performance than the practically
best (but “un-safe”) value of σ′.

10
0

10
1

10
2

10
−4

10
−2

10
0

10
2

rcv1_test, Quadratic Loss, λ=1e−5, H=40000

Number of Communications

D
u

a
lit

y
 G

a
p

σ′=1

σ′=3

σ′=4

σ′=5

σ′=6

σ′=8

σ′=16

10
0

10
1

10
2

10
−4

10
−2

10
0

10
2

epsilon, Quadratic Loss, λ=1e−5, H=80000

Number of Communications

D
u

a
lit

y
 G

a
p

σ′=1

σ′=3

σ′=4

σ′=5

σ′=6

σ′=8

σ′=16

Figure 5.12: The effect of σ′ on convergence for the rcv1 test and epsilon datasets distributed
across 8 machines.

98

5.6.4 Scaling Property

2 4 6 8 10 12 14 16

0

5

10

15

rcv1_test, Quadratic Loss, λ = 1e−5

Number of Machines (K)

Ti
m

e
(s

)
to

 1
e

−
4
 D

u
a

lit
y
 G

a
p

ν=1/K

ν=1

5 10 15 20 25 30

0

5

10

15

20

25

30

epsilon, Quadratic Loss, λ = 1e−5

Number of Machines (K)

Ti
m

e
(s

)
to

 1
e

−
2
 D

u
a

lit
y
 G

a
p

ν=1/K

ν=1

Figure 5.13: The effect of increasing the number of machines K on the time (s) to reach a
solution with expected duality gap.

Here we demonstrate the ability of our framework to scale with K (number of machines). We
compare the runtime to reach a specific tolerance on duality gap (10−4 and 10−2) for two choices
of ν. Looking at Figure 5.13, we see that when choosing ν = 1, the performance improves as
the number of machines increases. However, when ν = 1

K , the algorithm slows down as K
increases. These observations support our analysis in Section 4.

5.6.5 Performance on a Big Dataset

As shown in Figure 5.14, we test the algorithm on the splice-site.t dataset, whose size is about
280 GB. We show experiments for three different loss functions `, namely logistic loss, hinge
loss and least squares loss (see Table 5.1). We set λ = 10−6 for the squared norm regularizer.
The dataset is distributed across K = 4 machines and we use CD as the local solver with
H = 50, 000. In all the cases, an optimal solution can be reached in about 20 minutes and
again, we observe that setting the aggregation parameter ν := 1 leads to faster convergence
than ν := 1

K (averaging).

Also, the number of communication rounds for the three different loss functions are almost
the same if we set all the other parameters to be same. However, the duality gap decreases in
a different manner for the three loss functions.

99

10
0

10
1

10
2

10
3

10
−15

10
−10

10
−5

splice−site.t, Logistic Loss, H=50k, K=4

Number of Communications

D
u

a
lit

y
 G

a
p

ν=1/K

ν=1

10
0

10
1

10
2

10
3

10
−4

10
−3

10
−2

splice−site.t, Hinge Loss, H=50k, K=4

Number of Communications

D
u

a
lit

y
 G

a
p

ν=1/K

ν=1

10
0

10
1

10
2

10
3

10
−8

10
−7

10
−6

10
−5

10
−4

10
−3
splice−site.t, Quadratic Loss, H=50k, K=4

Number of Communications

D
u

a
lit

y
 G

a
p

ν=1/K

ν=1

10
1

10
2

10
3

10
4

10
−15

10
−10

10
−5

splice−site.t, Logistic Loss, H=50k, K=4

Elapsed Time [s]

D
u

a
lit

y
 G

a
p

ν=1/K

ν=1

10
1

10
2

10
3

10
4

10
−4

10
−3

10
−2

splice−site.t, Hinge Loss, H=50k, K=4

Elapsed Time [s]

D
u

a
lit

y
 G

a
p

ν=1/K

ν=1

10
1

10
2

10
3

10
4

10
−8

10
−7

10
−6

10
−5

10
−4

10
−3
splice−site.t, Quadratic Loss, H=50k, K=4

Elapsed Time [s]

D
u

a
lit

y
 G

a
p

ν=1/K

ν=1

Figure 5.14: Performance of Algorithm 9 on splice-site.t dataset, with three different loss func-
tions.

5.6.6 Comparison with other distributed methods

Finally, we compare the CoCoA+ framework with several competing distributed optimization
algorithms. The DiSCO algorithm [199] is a Newton-type method, where in each iteration
the updates on iterates are computed inexactly using a Preconditioned Conjugate Gradients
(PCG) method. As suggested in [199], in our implementation of DISCO we apply the Stochas-
tic Average Gradient (SAG) method [158] as the solver to get the initial solutions for each
local machine and solve the linear system during PCG. DiSCO-F [107], improves on the com-
putational efficiency of original DiSCO, by partitioning the data across features rather than
examples. The DANE algorithm [167] is another distributed Newton-type method, where in
each iteration there are two rounds of communication. Also, a subproblem is to be solved in
each iteration to obtain updates. For each of these algorithms, we tune the hyperparameters
manually to optimize performance.

The experiments are conducted on a compute cluster with K = 4 machines. We run all
algorithms using two datasets. Since not all methods are primal-based in nature, it is difficult
to continue using duality gap as a measure of optimality. Instead, the norm of the gradient
of the primal objective function (5.1) is used to compare the relative quality of the solutions
obtained.

As shown in Figure 5.15, in terms of the number of communications, CoCoA+ usually
converges more rapidly than competing methods during the early iterations, but tends to get
slower later on in the iterative process. This illustrates that the Newton-type methods can
accelerate in the vicinity of the optimal solution, as expected. However, CoCoA+ can still
beat other methods in running time. The main reason for this is the fact that the subproblems
in our framework can be solved more efficiently, compared with DiSCO and DANE.

100

0 50 100 150
10

−10

10
−8

10
−6

10
−4

10
−2

10
0

rcv1_test, Quadratic loss, λ =1e−4

Number of Communications

N
o

rm
 o

f
G

ra
d

ie
n

t

DiSCO−F

DiSCO

DANE

CoCoA+

0 5 10 15 20
10

−10

10
−8

10
−6

10
−4

10
−2

10
0

rcv1_test, Quadratic loss, λ =1e−4

Elapsed Time (s)

N
o

rm
 o

f
G

ra
d

ie
n

t

DiSCO−F

DiSCO

DANE

CoCoA+

0 50 100 150
10

−10

10
−8

10
−6

10
−4

10
−2

10
0

rcv1_test, Logistic loss, λ =1e−4

Number of Communications

N
o

rm
 o

f
G

ra
d

ie
n

t

DiSCO−F

DiSCO

DANE

CoCoA+

0 5 10 15
10

−10

10
−8

10
−6

10
−4

10
−2

10
0

rcv1_test, Logistic loss, λ =1e−4

Elapsed Time (s)

N
o

rm
 o

f
G

ra
d

ie
n

t

DiSCO−F

DiSCO

DANE

CoCoA+

0 50 100 150 200
10

−10

10
−8

10
−6

10
−4

10
−2

10
0

splice−site.t, Quadratic loss

Number of Communications

N
o

rm
 o

f
G

ra
d

ie
n

t

DiSCO−F

DiSCO

DANE

CoCoA+

0 1 2 3 4

x 10
4

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

splice−site.t, Quadratic loss

Wall Clock Time (s)

N
o

rm
 o

f
G

ra
d

ie
n

t

DiSCO−F

DiSCO

DANE

CoCoA+

0 10 20 30 40 50
10

−10

10
−8

10
−6

10
−4

10
−2

10
0

splice−site.t, Logistic loss

Number of Communications

N
o

rm
 o

f
G

ra
d

ie
n

t

DiSCO−F

DiSCO

DANE

CoCoA+

0 1 2 3 4

x 10
4

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

splice−site.t, Logistic loss

Wall Clock Time (s)

N
o

rm
 o

f
G

ra
d

ie
n

t

DiSCO−F

DiSCO

DANE

CoCoA+

Figure 5.15: Performance of several distributed frameworks on solving (5.1) with different losses
on two datasets.

5.7 Conclusion

We present CoCoA+, a novel framework that enables fast and communication-efficient addi-
tive aggregation in distributed primal-dual optimization. We analyze the theoretical complexity
of CoCoA+, giving strong primal-dual convergence rates with outer iterations scaling inde-
pendently of the number of machines. We extended the basic theory to allow for non-smooth
loss functions, arbitrary strongly convex regularizers, and primal-dual convergence results. Our
experimental results show significant speedups in terms of runtime over previous methods,
including the original CoCoA framework as well as other state-of-the-art methods.

5.8 Proofs

5.8.1 Proof of Lemma 31

Since g is 1-strongly convex, g∗ is 1-smooth, and thus we can use (5.7) as follows

f(α+ h) = λg∗
(

1

λn
Xα+

1

λn
Xh

)

(5.7)

≤ λ

(
g∗
(

1

λn
Xα

)
+

〈
∇g∗

(
1

λn
Xα

)
,

1

λn
Xh

〉
+ 1

2

∥∥∥∥
1

λn
Xh

∥∥∥∥
2
)

= f(α) + 〈∇f(α), h〉+
1

2λn2
hTXTXh.

101

5.8.2 Proof of Lemma 33

Indeed,

D(α+ ν

K∑

k=1

h[k]) = D(α+ νh)

(5.2)
=

1

n

n∑

i=1

−`∗i (−αi − νhi)− λg∗
(

1

λn
X(α+ νh)

)

(5.3)
=

1

n

n∑

i=1

−`∗i (−αi − νhi)− f(α+ νh)

(5.8)

≥ 1− ν
n

n∑

i=1

−`∗i (−αi) + ν
1

n

n∑

i=1

−`∗i (−αi − hi)

− f(α)− ν 〈∇f(α), h〉 − ν2 1

2λn2
hTXTXh

(5.2),(5.10)

≥ (1− ν)D(α)− ν
K∑

k=1

Rk
(
α[k] + h[k]

)

− ν 1

K

K∑

k=1

f(α)− ν
K∑

k=1

〈
∇f(α), h[k]

〉
− νσ′ 1

2λn2
hTGh

(LO)
= (1− ν)D(α) + ν

1

K
Gσ′k (h[k];α),

where the first inequality follows from Jensen’s inequality and the last equality follows from the
block diagonal definition of G given in (5.11), i.e.

hTGh =

K∑

k=1

h[k]X
T
[k]X[k]h[k]. (5.19)

5.8.3 Proof of Lemma 34

Considering h ∈ Rn with zeros in all coordinates except those that belong to the k-th block
Pk, we have hTXTXh = hTGh, and thus σ′ ≥ ν. Let h[k,l] denote h[k] − h[l]. Since XTX is a
positive semi-definite matrix, for k, l ∈ {1, . . . ,K}, k 6= l we have

0 ≤ hT[k,l]XTXh[k,l] = hT[k]X
TXh[k] + hT[l]X

TXh[l] − 2hT[k]X
TXh[l]. (5.20)

By taking any h ∈ Rn for which hTGh ≤ 1, in view of (5.10), we get

hTXTXh =

K∑

k=1

K∑

l=1

hT[k]X
TXhT[l] =

K∑

k=1

hT[k]X
TXhT[k] +

∑

k 6=l
hT[k]X

TXhT[l]

(5.20)

≤
K∑

k=1

hT[k]X
TXhT[k] +

∑

k 6=l

1

2

[
hT[k]X

TXh[k] + hT[l]X
TXh[l]

]

= K

K∑

k=1

hT[k]X
TXh[k] = KhTGh ≤ K.

Therefore we can conclude that νhTXTXh ≤ νK for all h included in the definition (5.10) of
σ′min, proving the claim.

5.8.4 Proofs of Theorems 36 and 37

Before we state the proofs of the main theorems, we will write and prove a few crucial lemmas.

102

Lemma 40. Let `∗i be strongly6 convex with convexity parameter γ ≥ 0 with respect to the norm
‖ · ‖, ∀i ∈ [n]. Then for all iterations t of Algorithm 8 under Assumption 35, and any s ∈ [0, 1],
it holds that

E
[
D(αt+1)−D(αt)

]
≥ ν(1−Θ)

(
sGap(αt)− σ′s2

2λn2
Rt
)
, (5.21)

where

Rt := −λγn(1− s)
σ′s

‖ut − αt‖2 +

K∑

k=1

∥∥X(ut − αt)[k]

∥∥2
, (5.22)

for ut ∈ Rn with
− uti ∈ ∂`i(w(αt)Txi). (5.23)

Proof. For sake of notation, we will write α instead of αt, w instead of w(αt) and u instead of
ut.

Now, let us estimate the expected change of the dual objective. Using the definition of the
dual update αt+1 := αt + ν

∑
k h[k] resulting in Algorithm 9, we have

E
[
D(αt)−D(αt+1)

]
= E

[
D(α)−D(α+ ν

K∑

k=1

h[k])

]

(5.12)

≤ E

[
D(α)− (1− ν)D(α)− ν

K∑

k=1

Gσ′k (ht[k];α)

]

= νE

[
D(α)−

K∑

k=1

Gσ′k (ht[k];α)

]

= νE

[
D(α)−

K∑

k=1

Gσ′k (h?[k];α) +

K∑

k=1

Gσ′k (h?[k];α)−
K∑

k=1

Gσ′k (ht[k];α)

]

(5.13)

≤ ν

(
D(α)−

K∑

k=1

Gσ′k (h?[k];α) + Θ
(K∑

k=1

Gσ′k (h?[k];α)−
K∑

k=1

Gσ′k (0;α)

︸ ︷︷ ︸
D(α)

))

= ν(1−Θ)
(
D(α)−

K∑

k=1

Gσ′k (h?[k];α)

︸ ︷︷ ︸
C

)
. (5.24)

6Note that the case of weakly convex `∗i (.) is explicitly allowed here as well, as the Lemma holds for the case
γ = 0.

103

Now, let us upper bound the C term (we will denote by h? =
∑K
k=1 h

?
[k]):

C
(5.2),(LO)

=
1

n

n∑

i=1

(`∗i (−αi − h∗i)− `∗i (−αi)) + 〈∇f(α), h〉+

K∑

k=1

λ

2
σ′
∥∥∥ 1

λn
Xh?[k]

∥∥∥
2

≤ 1

n

n∑

i=1

(`∗i (−αi − s(ui − αi))− `∗i (−αi)) + 〈∇f(α), s(u− α)〉

+

K∑

k=1

λ

2
σ′
∥∥∥ 1

λn
Xs(u− α)[k]

∥∥∥
2

Strong conv.
≤ 1

n

n∑

i=1

(
s`∗i (−ui) + (1− s)`∗i (−αi)−

γ

2
(1− s)s(ui − αi)2 − `∗i (−αi)

)

+ 〈∇f(α), s(u− α)〉+

K∑

k=1

λ

2
σ′
∥∥∥ 1

λn
Xs(u− α)[k]

∥∥∥
2

=
1

n

n∑

i=1

(
s`∗i (−ui)− s`∗i (−αi)−

γ

2
(1− s)s(ui − αi)2

)

+ 〈∇f(α), s(u− α)〉+

K∑

k=1

λ

2
σ′
∥∥∥ 1

λn
Xs(u− α)[k]

∥∥∥
2

.

The convex conjugate maximal property implies that

`∗i (−ui)
(5.23)

= −uiw(α)Txi − `i(w(α)Txi). (5.25)

Moreover, from the definition of the primal and dual optimization problems (5.1), (5.2), we can
write the duality gap as

Gap(α) := P (w(α))−D(α)

(5.1),(5.2)
=

1

n

n∑

i=1

(
`i(x

T
i w(α)) + `∗i (−αi)

)
+ λg(w(α)) + λg∗(v(α))

=
1

n

n∑

i=1

(
`i(x

T
i w(α)) + `∗i (−αi)

)
+ λg(∇g∗(v(α))) + λg∗(v(α))

=
1

n

n∑

i=1

(
`i(x

T
i w(α)) + `∗i (−αi)

)
+ λv(α)Tw(α)

=
1

n

n∑

i=1

(
`i(x

T
i w(α)) + `∗i (−αi) + w(α)Txiαi

)
. (5.26)

104

Hence,

C
(5.25)

≤ 1

n

n∑

i=1


−suiw(α)Txi − s`i(w(α)Txi)− s`∗i (−αi)−sw(α)Txiαi + sw(α)Txiαi︸ ︷︷ ︸

0




+
1

n

n∑

i=1

(
−γ

2
(1− s)s(ui − αi)2

)
+ 〈∇f(α), s(u− α)〉+

K∑

k=1

λ

2
σ′
∥∥∥ 1

λn
Xs(u− α)[k]

∥∥∥
2

=
1

n

n∑

i=1

(
−s`i(w(α)Txi)− s`∗i (−αi)− sw(α)Txiαi

)

+
1

n

n∑

i=1

(
sw(α)Txi(αi − ui)−

γ

2
(1− s)s(ui − αi)2

)

+
1

n
w(α)TXs(u− α) +

K∑

k=1

λ

2
σ′
∥∥∥ 1

λn
Xs(u− α)[k]

∥∥∥
2

(5.26)
= −sGap(α)− γ

2
(1− s)s 1

n

n∑

i=1

‖u− α‖2 +
σ′s2

2λn2

K∑

k=1

‖X(u− α)[k]‖2. (5.27)

Now, the claimed improvement bound (5.21) follows by plugging (5.27) into (5.24).

Lemma 41. If `i are L-Lipschitz continuous for all i ∈ [n], then

∀t : Rt ≤ 4L2
K∑

k=1

σk|Pk|
︸ ︷︷ ︸

=:σ

, (5.28)

where

σk
def
= max

α[k]∈Rn
‖X[k]α[k]‖2
‖α[k]‖2

. (5.29)

Proof. For general convex functions, the strong convexity parameter is γ = 0, and hence the
definition of Rt becomes

Rt
(5.22)

=

K∑

k=1

‖X(ut − αt)[k]‖2
(5.29)

≤
K∑

k=1

σk‖(ut − αt)[k]‖2
[163, Lemma 3]

≤
K∑

k=1

σk|Pk|4L2.

Proof of Theorem 37

At first let us estimate expected change of dual feasibility. By using the main Lemma 40, we
have

E
[
D(α?)−D(αt+1)

]
= E

[
D(α?)−D(αt+1) +D(αt)−D(αt)

]

(5.21)
= D(α?)−D(αt)− ν(1−Θ)sGap(αt) + ν(1−Θ)

σ′

2λ

(s
n

)2

Rt

(5.4)
= D(α?)−D(αt)− ν(1−Θ)s(P (w(αt))−D(αt)) + ν(1−Θ)

σ′

2λ

(s
n

)2

Rt

≤ D(α?)−D(αt)− ν(1−Θ)s(D(α?)−D(αt)) + ν(1−Θ)
σ′

2λ

(s
n

)2

Rt

(5.28)

≤ (1− ν(1−Θ)s) (D(α?)−D(αt)) + ν(1−Θ)
σ′

2λ

(s
n

)2

4L2σ. (5.30)

105

Using (5.30) recursively we have

E
[
D(α?)−D(αt)

]
= (1− ν(1−Θ)s)

t
(D(α?)−D(α0))

+ ν(1−Θ)
σ′

2λ

(s
n

)2

4L2σ

t−1∑

j=0

(1− ν(1−Θ)s)
j

= (1− ν(1−Θ)s)
t
(D(α?)−D(α0)) + ν(1−Θ)

σ′

2λ

(s
n

)2

4L2σ
1− (1− ν(1−Θ)s)

t

ν(1−Θ)s

≤ (1− ν(1−Θ)s)
t
(D(α?)−D(α0)) + s

4L2σσ′

2λn2
. (5.31)

The choice of s := 1 and t = t0 := max{0, d 1
ν(1−Θ) log(2λn2(D(α?) −D(α0))/(4L2σσ′))e} will

lead to

E
[
D(α?)−D(αt)

]
≤ (1− ν(1−Θ))

t0 (D(α?)−D(α0)) +
4L2σσ′

2λn2

≤ 4L2σσ′

2λn2
+

4L2σσ′

2λn2
=

4L2σσ′

λn2
. (5.32)

Now, we are going to show that

∀t ≥ t0 : E
[
D(α?)−D(αt)

]
≤ 4L2σσ′

λn2(1 + 1
2ν(1−Θ)(t− t0))

. (5.33)

Clearly, (5.32) implies that (5.33) holds for t = t0. Now imagine that it holds for any t ≥ t0
then we show that it also has to hold for t+ 1. Indeed, using

s =
1

1 + 1
2ν(1−Θ)(t− t0)

∈ [0, 1] (5.34)

we obtain

E
[
D(α?)−D(αt+1)

] (5.30)

≤ (1− ν(1−Θ)s) (D(α?)−D(αt)) + ν(1−Θ)
σ′

2λ

(s
n

)2

4L2σ

(5.33)

≤ (1− ν(1−Θ)s)
4L2σσ′

λn2(1 + 1
2ν(1−Θ)(t− t0))

+ ν(1−Θ)
σ′

2λ

(s
n

)2

4L2σ

(5.34)
=

4L2σσ′

λn2

(
1 + 1

2ν(1−Θ)(t− t0)− ν(1−Θ) + ν(1−Θ) 1
2

(1 + 1
2ν(1−Θ)(t− t0))2

)

=
4L2σσ′

λn2

(
1 + 1

2ν(1−Θ)(t− t0)− 1
2ν(1−Θ)

(1 + 1
2ν(1−Θ)(t− t0))2

)

︸ ︷︷ ︸
E

.

Now, we will upperbound E as follows

E =
1

1 + 1
2ν(1−Θ)(t+ 1− t0)

(1 + 1
2ν(1−Θ)(t+ 1− t0))(1 + 1

2ν(1−Θ)(t− 1− t0))

(1 + 1
2ν(1−Θ)(t− t0))2

︸ ︷︷ ︸
≤1

≤ 1

1 + 1
2ν(1−Θ)(t+ 1− t0)

,

where in the last inequality we have used the fact that geometric mean is less or equal to
arithmetic mean.

106

If α is defined as in (5.16) then we obtain that

E [Gap(α)] = E

[
Gap

(
T−1∑

t=T0

1

T − T0
αt

)]
≤ 1

T − T0
E

[
T−1∑

t=T0

Gap
(
αt
)
]

(5.21),(5.28)

≤ 1

T − T0
E

[
T−1∑

t=T0

(
1

ν(1−Θ)s
(D(αt+1)−D(αt)) +

4L2σσ′s
2λn2

)]

=
1

ν(1−Θ)s

1

T − T0
E
[
D(αT)−D(αT0)

]
+

4L2σσ′s
2λn2

≤ 1

ν(1−Θ)s

1

T − T0
E
[
D(α?)−D(αT0)

]
+

4L2σσ′s
2λn2

. (5.35)

Now, if T ≥
⌈

1
ν(1−Θ)

⌉
+ T0 such that T0 ≥ t0 we obtain

E [Gap(α)]
(5.35),(5.33)

≤ 1

ν(1−Θ)s

1

T − T0

(
4L2σσ′

λn2(1 + 1
2ν(1−Θ)(T0 − t0))

)
+

4L2σσ′s
2λn2

=
4L2σσ′

λn2

(
1

ν(1−Θ)s

1

T − T0

1

1 + 1
2ν(1−Θ)(T0 − t0)

+
s

2

)
. (5.36)

Choosing

s =
1

(T − T0)ν(1−Θ)
∈ [0, 1] (5.37)

gives us

E [Gap(α)]
(5.36),(5.37)

≤ 4L2σσ′

λn2

(
1

1 + 1
2ν(1−Θ)(T0 − t0)

+
1

(T − T0)ν(1−Θ)

1

2

)
. (5.38)

To have right hand side of (5.38) smaller then εGap it is sufficient to choose T0 and T such that

4L2σσ′

λn2

(
1

1 + 1
2ν(1−Θ)(T0 − t0)

)
≤ 1

2
εGap, (5.39)

4L2σσ′

λn2

(
1

(T − T0)ν(1−Θ)

1

2

)
≤ 1

2
εGap. (5.40)

Hence, if

t0 +
2

ν(1−Θ)

(
8L2σσ′

λn2εGap
− 1

)
≤ T0,

T0 +
4L2σσ′

λn2εGapν(1−Θ)
≤ T,

then (5.39) and (5.40) are satisfied.

107

Proof of Theorem 36

If the function `i(.) is (1/γ)-smooth then `∗i (.) is γ-strongly convex with respect to the ‖ · ‖
norm. From (5.22) we have

Rt
(5.22)

= −λγn(1− s)
σ′s

‖ut − αt‖2 +

K∑

k=1

‖X(ut − αt)[k]‖2

(5.29)

≤ −λγn(1− s)
σ′s

‖ut − αt‖2 +

K∑

k=1

σk‖(ut − αt)[k]‖2

≤ −λγn(1− s)
σ′s

‖ut − αt‖2 + σmax

K∑

k=1

‖(ut − αt)[k]‖2

=

(
−λγn(1− s)

σ′s
+ σmax

)
‖ut − αt‖2. (5.41)

If we plug

s =
λγn

λγn+ σmaxσ′
∈ [0, 1] (5.42)

into (5.41) we obtain that ∀t : Rt ≤ 0. Putting the same s into (5.21) will give us

E
[
D(αt+1)−D(αt)

] (5.21),(5.42)

≥ ν(1−Θ)
λγn

λγn+ σmaxσ′
Gap(αt)

≥ ν(1−Θ)
λγn

λγn+ σmaxσ′
D(α?)−D(αt). (5.43)

Using the fact that E
[
D(αt+1)−D(αt)

]
= E

[
D(αt+1)−D(α?)

]
+D(α?)−D(αt) we have

E
[
D(αt+1)−D(α?)

]
+D(α?)−D(αt)

(5.43)

≥ ν(1−Θ)
λγn

λγn+ σmaxσ′
D(α?)−D(αt)

which is equivalent with

E
[
D(α?)−D(αt+1)

]
≤
(

1− ν(1−Θ)
λγn

λγn+ σmaxσ′

)
D(α?)−D(αt). (5.44)

Therefore if we denote by εtD = D(α?)−D(αt) we have that

E
[
εtD
] (5.44)

≤
(

1− ν(1−Θ)
λγn

λγn+ σmaxσ′

)t
ε0D ≤

(
1− ν(1−Θ)

λγn

λγn+ σmaxσ′

)t

≤ exp

(
−tν(1−Θ)

λγn

λγn+ σmaxσ′

)
.

The right hand side will be smaller than some εD if

t ≥ 1

ν(1−Θ)

λγn+ σmaxσ
′

λγn
log

1

εD
.

Moreover, to bound the duality gap, we have

ν(1−Θ)
λγn

λγn+ σmaxσ′
Gap(αt)

(5.43)

≤ E
[
D(αt+1)−D(αt)

]
≤ E

[
D(α?)−D(αt)

]
.

108

Therefore Gap(αt) ≤ 1
ν(1−Θ)

λγn+σmaxσ
′

λγn εtD. Hence if εD ≤ ν(1 − Θ) λγn
λγn+σmaxσ′

εGap then

Gap(αt) ≤ εGap. Therefore after

t ≥ 1

ν(1−Θ)

λγn+ σmaxσ
′

λγn
log

(
1

ν(1−Θ)

λγn+ σmaxσ
′

λγn

1

εGap

)

iterations we have obtained a duality gap less than εGap.

109

110

Part III

Federated Optimization and
Learning

111

Chapter 6

Federated Optimization:
Distributed Machine Learning for
On-device Intelligence

6.1 Introduction

Mobile phones and tablets are now the primary computing devices for many people. In many
cases, these devices are rarely separated from their owners [34], and the combination of rich
user interactions and powerful sensors means they have access to an unprecedented amount of
data, much of it private in nature. Models learned on such data hold the promise of greatly
improving usability by powering more intelligent applications, but the sensitive nature of the
data means there are risks and responsibilities to storing it in a centralized location.

We advocate an alternative — federated learning — that leaves the training data distributed
on the mobile devices, and learns a shared model by aggregating locally computed updates via
a central coordinating server. This is a direct application of the principle of focused collection
or data minimization proposed by the 2012 White House report on the privacy of consumer
data [182]. Since these updates are specific to improving the current model, they can be purely
ephemeral — there is no reason to store them on the server once they have been applied.
Further, they will never contain more information than the raw training data (by the data
processing inequality), and will generally contain much less. A principal advantage of this
approach is the decoupling of model training from the need for direct access to the raw training
data. Clearly, some trust of the server coordinating the training is still required, and depending
on the details of the model and algorithm, the updates may still contain private information.
However, for applications where the training objective can be specified on the basis of data
available on each client, federated learning can significantly reduce privacy and security risks
by limiting the attack surface to only the device, rather than the device and the cloud.

If additional privacy is needed, randomization techniques from differential privacy can
be used. The centralized algorithm could be modified to produce a differentially private
model [29, 56, 3], which allows the model to be released while protecting the privacy of the
individuals contributing updates to the training process. If protection from even a malicious
(or compromised) coordinating server is needed, techniques from local differential privacy can
be applied to privatize the individual updates [54]. Details of this are beyond the scope of the
current work, but it is a promising direction for future research.

A more complete discussion of applications of federated learning as well as privacy ram-
ifications can be found in [115]. Our focus in this work will be on federated optimization,
the optimization problem that must be solved in order to make federated learning a practical
alternative to current approaches.

113

6.1.1 Problem Formulation

The optimization community has seen an explosion of interest in solving problems with finite-
sum structure in recent years. In general, the objective is formulated as

min
w∈Rd

P (w) where P (w)
def
=

1

n

n∑

i=1

fi(w). (6.1)

The main source of motivation are problems arising in machine learning. The problem struc-
ture (6.1) covers linear or logistic regressions, support vector machines, but also more compli-
cated models such as conditional random fields or neural networks.

We suppose we have a set of input-output pairs {xi, yi}ni=1, and a loss function, giving rise
to the functions fi. Typically, xi ∈ Rd and yi ∈ R or yi ∈ {−1, 1}. Simple examples include

• linear regression: fi(w) = 1
2 (xTi w − yi)2, yi ∈ R

• logistic regression: fi(w) = − log(1 + exp(−yixTi w)), yi ∈ {−1, 1}

• support vector machines: fi(w) = max{0, 1− yixTi w}, yi ∈ {−1, 1}

More complicated non-convex problems arise in the context of neural networks, where rather
than via the linear-in-the-features mapping xTi w, the network makes prediction through a non-
convex function of the feature vector xi. However, the resulting loss can still be written as
fi(w), and gradients can be computed efficiently using backpropagation.

The amount of data that businesses, governments and academic projects collect is rapidly
increasing. Consequently, solving problem (6.1) arising in practice is often impossible on a single
node, as merely storing the whole dataset on a single node becomes infeasible. This necessitates
the use of a distributed computational framework, in which the training data describing the
problem is stored in a distributed fashion across a number of interconnected nodes and the
optimization problem is solved collectively by the cluster of nodes.

Loosely speaking, one can use any network of nodes to simulate a single powerful node, on
which one can run any algorithm. The practical issue is that the time it takes to communicate
between a processor and memory on the same node is normally many orders of magnitude
smaller than the time needed for two nodes to communicate; similar conclusions hold for the
energy required [165]. Further, in order to take advantage of parallel computing power on
each node, it is necessary to subdivide the problem into subproblems suitable for indepen-
dent/parallel computation.

State-of-the-art optimization algorithms are typically inherently sequential. Moreover, they
usually rely on performing a large number of very fast iterations. The problem stems from
the fact that if one needs to perform a round of communication after each iteration, practical
performance drops down dramatically, as the round of communication is much more time-
consuming than a single iteration of the algorithm.

These considerations have lead to the development of novel algorithms specialized for dis-
tributed optimization (we defer thorough review until Section 6.2). For now, we note that most
of the results in literature work in the setting where the data is evenly distributed, and further
suppose that K � n/K where K is the number of nodes. This is indeed often close to reality
when data is stored in a large data center. Additionally, an important subfield of the field of
distributed learning relies on the assumption that each machine has a representative sample of
the data available locally. That is, it is assumed that each machine has an IID sample from
the underlying distribution. However, this assumption is often too strong; in fact, even in the
data center paradigm this is often not the case since the data on a single node can be close to
each other on a temporal scale, or clustered by its geographical origin. Since the patterns in
the data can change over time, a feature might be present frequently on one node, while not
appear on another at all.

The federated optimization setting describes a novel optimization scenario where none of
the above assumptions hold. We outline this setting in more detail in the following section.

114

6.1.2 The Setting of Federated Optimization

The main purpose of this work is to bring to the attention of the machine learning and optimiza-
tion communities a new and increasingly practically relevant setting for distributed optimiza-
tion, where none of the typical assumptions are satisfied, and communication efficiency is of
utmost importance. In particular, algorithms for federated optimization must handle training
data with the following characteristics:

• Massively Distributed: Data points are stored across a large number of nodes K. In
particular, the number of nodes can be much bigger than the average number of training
examples stored on a given node (n/K).

• Non-IID: Data on each node may be drawn from a different distribution; that is, the
data points available locally are far from being a representative sample of the overall
distribution.

• Unbalanced: Different nodes may vary by orders of magnitude in the number of training
examples they hold.

In this work, we are particularly concerned with sparse data, where some features occur
on a small subset of nodes or data points only. Although this is not necessary characteristic
of the setting of federated optimization, we will show that the sparsity structure can be used
to develop an effective algorithm for federated optimization. Note that data arising in the
largest machine learning problems being solved nowadays, ad click-through rate predictions,
are extremely sparse.

We are particularly interested in the setting where training data lives on users’ mobile devices
(phones and tablets), and the data may be privacy sensitive. The data {xi, yi} is generated
through device usage, e.g., via interaction with apps. Examples include predicting the next
word a user will type (language modeling for smarter keyboard apps), predicting which photos
a user is most likely to share, or predicting which notifications are most important.

To train such models using traditional distributed learning algorithms, one would collect
the training examples in a centralized location (data center) where it could be shuffled and
distributed evenly over proprietary compute nodes. In this chapter we propose and study
an alternative model: the training examples are not sent to a centralized location, potentially
saving significant network bandwidth and providing additional privacy protection. In exchange,
users allow some use of their devices’ computing power, which shall be used to train the model.

In the communication model of this chapter, in each round we send an update δ ∈ Rd to
a centralized server, where d is the dimension of the model being computed/improved. The
update δ could be a gradient vector, for example. While it is certainly possible that in some
applications the δ may encode some private information of the user, it is likely much less
sensitive (and orders of magnitude smaller) than the original data itself. For example, consider
the case where the raw training data is a large collection of video files on a mobile device. The
size of the update δ will be independent of the size of this local training data corpus. We show
that a global model can be trained using a small number of communication rounds, and so this
also reduces the network bandwidth needed for training by orders of magnitude compared to
copying the data to the datacenter.

Further, informally, we choose δ to be the minimum piece of information necessary to
improve the global model; its utility for other uses is significantly reduced compared to the
original data. Thus, it is natural to design a system that does not store these δ’s longer than
necessary to update the model, again increasing privacy and reducing liability on the part of
the centralized model trainer. This setting, in which a single vector δ ∈ Rd is communicated in
each round, covers most existing first-order methods, including dual methods such as CoCoA+
[104].

Communication constraints arise naturally in the massively distributed setting, as network
connectivity may be limited (e.g., we may wish to deffer all communication until the mobile
device is charging and connected to a wi-fi network). Thus, in realistic scenarios we may be
limited to only a single round of communication per day. This implies that, within reasonable
bounds, we have access to essentially unlimited local computational power. Consequently, the
practical objective is solely to minimize the number of communication rounds.

115

The main purpose of this work is initiate research into, and design a first practical im-
plementation of federated optimization. Our results suggest that with suitable optimization
algorithms, very little is lost by not having an IID sample of the data available, and that even
in the presence of a large number of nodes, we can still achieve convergence in relatively few
rounds of communication.

6.2 Related Work

In this section we provide a detailed overview of the relevant literature. We particularly focus on
algorithms that can be used to solve problem (6.1) in various contexts. First, in Sections 6.2.1
and 6.2.2 we look at algorithms designed to be run on a single computer. In Section 6.2.3 we
follow with a discussion of the distributed setting, where no single node has direct access to all
data describing f . We describe a paradigm for measuring the efficiency of distributed methods,
followed by overview of existing methods and commentary on whether they were designed with
communication efficiency in mind or not.

6.2.1 Baseline Algorithms

In this section we shall describe several fundamental baseline algorithms which can be used to
solve problems of the form (6.1).

Gradient Descent. A trivial benchmark for solving problems of structure (6.1) is Gradient
Descent (GD) in the case when functions fi are smooth (or Subgradient Descent for non-smooth
functions) [127]. The GD algorithm performs the iteration

wt+1 = wt − ht∇P (wt),

where ht > 0 is a stepsize parameter. As we mentioned earlier, the number of functions, or
equivalently, the number of training data pairs, n, is typically very large. This makes GD
impractical, as it needs to process the whole dataset in order to evaluate a single gradient and
update the model.

Gradient descent can be substantially accelerated, in theory and practice, via the addition
of a momentum term. Acceleration ideas for gradient methods in convex optimization can be
traced back to the work of Polyak [139] and Nesterov [126, 127]. While accelerated GD methods
have a substantially better convergence rate, in each iteration they still need to do at least one
pass over all data. As a result, they are not practical for problems where n very large.

Stochastic Gradient Descent. At present a basic, albeit in practice extremely popular,
alternative to GD is Stochastic Gradient Descent (SGD), dating back to the seminal work of
Robbins and Monro [153]. In the context of (6.1), SGD samples a random function (i.e., a
random data-label pair) it ∈ {1, 2, . . . , n} in iteration t, and performs the update

wt+1 = wt − ht∇fit(wt),

where ht > 0 is a stepsize parameter. Intuitively speaking, this method works because if it is
sampled uniformly at random from indices 1 to n, the update direction is an unbiased estimate
of the gradient — E [∇fit(w)] = ∇P (w). However, noise introduced by sampling slows down
the convergence, and a diminsihing sequence of stepsizes hk is necessary for convergence. For a
theoretical analysis for convex functions we refer the reader to [125, 120, 124] and [162, 172] for
SVM problems. In a recent review [21], the authors outline further research directions. For a
more practically-focused discussion, see [20]. In the context of neural networks, computation of
stochastic gradients is referred to as backpropagation [93]. Instead of specifying the functions fi
and its gradients explicitly, backpropagation is a general way of computing the gradient. Perfor-
mance of several competitive algorithms for training deep neural networks has been compared
in [130].

One common trick that has been practically observed to provide superior performance, is
to replace random sampling in each iteration by going through all the functions in a random

116

order. This ordering is replaced by another random order after each such cycle [18]. Theoretical
understanding of this phenomenon had been a long standing open problem, understood recently
in [71].

The core differences between GD and SGD can be summarized as follows. GD has a fast
convergence rate, but each iteration in the context of (6.1) is potentially very slow, as it needs
to process the entire dataset in each iteration. On the other hand, SGD has slower convergence
rate, but each iteration is fast, as the work needed is independent of number of data points n.
For the problem structure of (6.1), SGD is usually better, as for practical purposes relatively
low accuracy is required, which SGD can in extreme cases achieve after single pass through
data, while GD would make just a single update. However, if a high accuracy was needed, GD
or its faster variants would prevail.

6.2.2 A Novel Breed of Randomized Algorithms

Recent years have seen an explosion of new randomized methods which, in a first approxima-
tion, combine the benefits of cheap iterations of SGD with fast convergence of GD. Most of
these methods can be said to belong to one of two classes — dual methods of the randomized
coordinate descent variety, and primal methods of the stochastic gradient descent with variance
reduction variety.

Randomized Coordinate Descent. Although the idea of coordinate descent has been
around for several decades in various contexts (and for quadratic functions dates back even
much further, to works on the Gauss-Seidel methods), it came to prominence in machine learn-
ing and optimization with the work of Nesterov [129] which equipped the method with a ran-
domization strategy. Nesterov’s work on Randomized Coordinate Descent (RCD) popularized
the method and demonstrated that randomization can be very useful for problems of structure
(6.1).

The RCD algorithm in each iteration chooses a random coordinate jt ∈ {1, . . . , d} and
performs the update

wt+1 = wt − hjt∇jtP (wt)ejt ,

where hjt > 0 is a stepsize parameter, ∇jP (w) denotes the jth partial derivative of function f ,
and ej is the jth unit standard basis vector in Rd. For the case of generalized linear models,
when the data exhibits certain sparsity structure, it is possible to evaluate the partial derivative
∇jP (w) efficiently, i.e., without need to process the entire dataset, leading to a practically
efficient algorithm, see for instance [148, Section 6].

Numerous follow-up works extended the concept to proximal setting [148], single processor
parallelism [24, 151] and develop efficiently implementable acceleration [96]. All of these three
properties were connected in a single algorithm in [59], to which we refer the reader for a review
of the early developments in the area of RCD, particularly to overview in Table 1 therein.

Stochastic Dual Coordinate Ascent. When an explicit strongly convex, but not neces-
sarily smooth, regularizer is added to the average loss (6.1), it is possible to write down its
(Fenchel) dual and the dual variables live in n-dimensional space. Applying RCD leads to an
algorithm for solving (6.1) known under the name Stochastic Dual Coordinate Ascent [163].
This method has gained broad popularity with practicioners, likely due to the fact that for a
number of loss functions, the method comes without the need to tune any hyper-parameters.
The work [163] was first to show that by applying RCD [148] to the dual problem, one also
solves the primal problem (6.1). For a theoretical and computational comparison of applying
RCD to the primal versus the dual problems, see [39].

A directly primal-dual randomized coordinate descent method called Quartz, was developed
in [143]. It has been recently shown in SDNA [142] that incorporating curvature information
contained in random low dimensional subspaces spanned by a few coordinates can sometimes
lead to dramatic speedups. Recent works [160, 38] interpret the SDCA method in primal-only
setting, shedding light onto why this method works as a SGD method with a version of variance
reduction property.

117

We now move the the second class of novel randomized algorithms which can be generally
interpreted as variants of SGD, with an attempt to reduce variance inherent in the process of
gradient estimation.

Stochastic Average Gradient. The first notable algorithm from this class is the Stochastic
Average Gradient (SAG) [156, 158]. The SAG algorithm stores an average of n gradients of
functions fi evaluated at different points in the history of the algorithm. In each iteration,
the algorithm, updates randomly chosen gradient out of this average, and makes a step in the
direction of the average. This way, complexity of each iteration is independent of n, and the
algorithm enjoys a fast convergence. The drawback of this algorithm is that it needs to store n
gradients in memory because of the update operation. In the case of generalized linear models,
this memory requirement can be reduced to the need of n scalars, as the gradient is a scalar
multiple of the data point. This methods has been recently extended for use in Conditional
Random Fields [157]. Nevertheless, the memory requirement makes the algorithm infeasible for
application even in relatively small neural networks.

A followup algorithm SAGA [45] and its simplification [44], modifies the SAG algorithm to
achieve unbiased estimate of the gradients. The memory requirement is still present, but the
method significantly simplifies theoretical analysis, and yields a slightly stronger convergence
guarantee.

Stochastic Variance Reduced Gradient. Another algorithm from the SGD class of meth-
ods is Stochastic Variance Reduced Gradient1 (SVRG) [80] and [89, 187, 81]. The SVRG al-
gorithm runs in two nested loops. In the outer loop, it computes full gradient of the whole
function, ∇P (wt), the expensive operation one tries to avoid in general. In the inner loop, the
update step is iteratively computed as

w = w − h[∇fi(w)−∇fi(wt) +∇P (wt)].

The core idea is that the stochastic gradients are used to estimate the change of the gradient
between point wt and w, as opposed to estimating the gradient directly. We return to more
detailed description of this algorithm in Section 6.3.2.

The SVRG has the advantage that it does not have the additional memory requirements of
SAG/SAGA, but it needs to process the whole dataset every now and then. Indeed, comparing
to SGD, which typically makes significant progress in the first pass through data, SVRG does
not make any update whatsoever, as it needs to compute the full gradient. This and several
other practical issues have been recently addressed in [74], making the algorithm competitive
with SGD early on, and superior in later iterations. Although there is nothing that prevents
one from applying SVRG and its variants in deep learning, we are not aware of any systematic
assessment of its performance in this setting. Vanilla experiments in [80, 146] suggest that
SVRG matches basic SGD, and even outperforms in the sense that variance of the iterates seems
to be significantly smaller for SVRG. However, in order to draw any meaningful conclusions,
one would need to perform extensive experiments and compare with state-of-the-art methods
usually equipped with numerous heuristics.

There already exist attempts at combining SVRG type algorithms with randomized coordi-
nate descent [84, 180]. Although these works highlight some interesting theoretical properties,
the algorithms do not seem to be practical at the moment; more work is needed in this area.
The first attempt to unify algorithms such as SVRG and SAG/SAGA already appeared in the
SAGA paper [45], where the authors interpret SAGA as a midpoint between SAG and SVRG.
Recent work [145] presents a general algorithm, which recovers SVRG, SAGA, SAG and GD
as special cases, and obtains an asynchronous variant of these algorithms as a byproduct of the
formulation. SVRG can be equipped with momentum (and negative momentum), leading to a
new accelerated SVRG method known as Katyusha [5]. SVRG can be further accelerated via
a raw clustering mechanism [6].

1The same algorithm was simultaneously introduced as Semi-Stochastic Gradient Descent (S2GD) [89]. Since
the former work gained more attention, we will for clarity use the name SVRG throughout this chapter.

118

Stochastic Quasi-Newton Methods. A third class of new algorithms are the Stochastic
quasi-Newton methods [26, 17]. These algorithms in general try to mimic the limited memory
BFGS method (L-BFGS) [100], but model the local curvature information using inexact gradi-
ents — coming from the SGD procedure. A recent attempt at combining these methods with
SVRG can be found in [119]. In [67], the authors utilize recent progress in the area of stochastic
matrix inversion [69] revealing new connections with quasi-Newton methods, and devise a new
stochastic limited memory BFGS method working in tandem with SVRG. The fact that the
theoretical understanding of this branch of research is the least understood and having several
details making the implementation more difficult compared to the methods above may limit its
wider use. However, this approach could be most promising for deep learning once understood
better.

One important aspect of machine learning is that the Empirical Risk Minimization prob-
lem (6.1) we are solving is just a proxy for the Expected Risk we are ultimately interested
in. When one can find exact minimum of the empirical risk, everything reduces to balancing
approximation–estimation tradeoff that is the object of abundant literature — see for instance
[179]. An assessment of asymptotic performance of some optimization algorithms as learning
algorithms in large-scale learning problems2 has been introduced in [22]. Recent extension in
[74] has shown that the variance reduced algorithms (SAG, SVRG, . . .) can in certain setting
be better learning algorithms than SGD, not just better optimization algorithms.

Further Remarks. A general method, referred to as Universal Catalyst [99, 63], effectively
enables conversion of a number of the algorithms mentioned in the previous sections to their
‘accelerated’ variants. The resulting convergence guarantees nearly match lower bounds in a
number of cases. However, the need to tune additional parameter makes the method rather
impractical.

Recently, lower and upper bounds for complexity of stochastic methods on problems of the
form (6.1) were recently obtained in [185].

6.2.3 Distributed Setting

In this section we review the literature concerning algorithms for solving (6.1) in the distributed
setting. When we speak about distributed setting, we refer to the case when the data describing
the functions fi are not stored on any single storage device. This can include setting where one’s
data just don’t fit into a single RAM/computer/node, but two is enough. This also covers the
case where data are distributed across several datacenters around the world, and across many
nodes in those datacenters. The point is that in the system, there is no single processing unit
that would have direct access to all the data. Thus, the distributed setting does not include
single processor parallelism3. Compared with local computation on any single node, the cost of
communication between nodes is much higher both in terms of speed and energy consumption
[12, 165], introducing new computational challenges, not only for optimization procedures.

We first review a theoretical decision rule for determining the practically best algorithm for a
given problem in Section 6.2.3, followed by overview of distributed algorithms in Section 6.2.3,
and communication efficient algorithms in Section 6.2.3. The following paradigm highlights
why the class of communication efficient algorithms are not only preferable choice in the trivial
sense. The communication efficient algorithms provide us with much more flexible tools for
designing overall optimization procedure, which can make the algorithms inherently adaptive
to differences in computing resources and architectures.

A Paradigm for Measuring Distributed Optimization Efficiency

This section reviews a paradigm for comparing efficiency of distributed algorithms. Let us
suppose we have many algorithms A readily available to solve the problem (6.1). The question
is: “How do we decide which algorithm is the best for our purpose?” Initial version of this
reasoning already appeared in [104], and applies also to [147].

2See [22, Section 2.3] for their definition of large scale learning problem.
3It should be noted that some of the works presented in this section were originally presented as parallel

algorithms. We include them anyway as many of the general ideas in carry over to the distributed setting.

119

First, consider the basic setting on a single machine. Let us define IA(ε) as the number of
iterations algorithm A needs to converge to some fixed ε accuracy. Let TA be the time needed
for a single iteration. Then, in practice, the best algorithm is one that minimizes the following
quantity.4

TIME = IA(ε)× TA. (6.2)

The number of iterations IA(ε) is usually given by theoretical guarantees or observed from
experience. The TA can be empirically observed, or one can have idea of how the time needed
per iteration varies between different algorithms in question. The main point of this simplified
setting is to highlight key issue with extending algorithms to the distributed setting.

The natural extension to distributed setting is the following. Let c be time needed for
communication during a single iteration of the algorithm A. For sake of clarity, we suppose
we consider only algorithms that need to communicate a single vector in Rd per round of
communication. Note that essentially all first-order algorithms fall into this category, so this
is not a restrictive assumption, which effectively sets c to be a constant, given any particular
distributed architecture one has at disposal.

TIME = IA(ε)× (c+ TA) (6.3)

The communication cost c does not only consist of actual exchange of the data, but also
many other things like setting up and closing a connection between nodes. Consequently, even if
we need to communicate very small amount of information, c always remains above a nontrivial
threshold.

Most, if not all, of the current state-of-the-art algorithms that are the best in setting of (6.2),
are stochastic and rely on doing very large number (big IA(ε)) of very fast (small TA) iterations.
As a result, even relatively small c can cause the practical performance of those algorithms drop
down dramatically, because c� TA.

This has been indeed observed in practice, and motivated development of new methods,
designed with this fact in mind from scratch, which we review in Section 6.2.3. Although this
is a good development for academia — motivation to explore new setting, it is not necessarily
a good news for the industry.

Many companies have spent significant resources to build excellent algorithms to tackle
their problems of form (6.1), fine tuned to the specific patterns arising in their data and side
applications required. When the data companies collect grows too large to be processed on
a single machine, it is understandable that they would be reluctant to throw away their fine
tuned algorithms. This issue was first time explicitly addressed in CoCoA [104], which is
rather framework than a algorithm, which works as follows (more detailed description follows
in Section 6.2.3).

The CoCoA framework formulates a general way to form a specific subproblem on each
node, based on data available locally and a single shared vector that needs to be distributed
to all nodes. Within a iteration of the framework, each node uses any optimization algorithm
A, to reach a relative Θ accuracy on the local subproblem. Updates from all nodes are then
aggregated to form an update to the global model.

The efficiency paradigm changes as follows:

TIME = I(ε,Θ)× (c+ TA(Θ)) (6.4)

The number of iterations I(ε,Θ) is independent of choice of the algorithm A used as a local
solver, because there is theory predicting how many iterations of the CoCoA framework are
needed to achieve ε accuracy, if we solve the local subproblems to relative Θ accuracy. Here,
Θ = 0 would mean we require the subproblem to be solved to optimality, and Θ = 1 that we
don’t need any progress whatsoever. The general upper bound on number of iterations of the

CoCoA framework is I(ε,Θ) = O(log(1/ε))
1−Θ [79, 105, 104] for strongly convex objectives. From

the inverse dependence on 1 − Θ, we can see that there is a fundamental limit to the number
of communication rounds needed. Hence, it will probably not be efficient to spend excessive
resources to attain very high local accuracy (small Θ). Time per iteration TA(Θ) denotes the
time algorithm A needs to reach the relative Θ accuracy on the local subproblem.

4Considering only algorithms that can be run on a given machine.

120

This efficiency paradigm is more powerful for a number of reasons.

1. It allows practicioners to continue using their fine-tuned solvers, that can run only on
single machine, instead of having to implement completely new algorithms from scratch.

2. The actual performance in terms of number of rounds of communication is independent
from the choice of optimization algorithm, making it much easier to optimize the overall
performance.

3. Since the constant c is architecture dependent, running optimal algorithm on one node
network does not have to be optimal on another. In the setting (6.3), this could mean
moving from one cluster to another, a completely different algorithm is optimal, which is
a major change. In the setting (6.4), this can be improved by simply changing Θ, which
is typically implicitly determined by number of iterations algorithm A runs for.

In this work we propose a different way to formulate the local subproblems, which does not
rely on duality as in the case of CoCoA. We also highlight that some algorithms seem to be
particularly suitable to solve those local subproblems, effectively leading to novel algorithms
for distributed optimization.

Distributed Algorithms

As discussed below in Section 6.2.3, this setting creates unique challenges. Distributed optimiza-
tion algorithms typically require a small number (1–4) of communication rounds per iteration.
By communication round we typically understand a single MapReduce operation [43], imple-
mented efficiently for iterative procedures [61], such as optimization algorithms. Spark [193]
has been established as a popular open source framework for implementing distributed iterative
algorithms, and includes several of the algorithms mentioned in this section.

Optimization in distributed setting has been studied for decades, tracing back to at least
works of Bertsekas and Tsitsiklis [14, 13, 177]. Recent decade has seen an explosion of inter-
est in this area, greatly motivated by rapid increase of data availability in machine learning
applications.

Much of the recent effort was focused on creating new optimization algorithms, by building
variants of popular algorithms suitable for running on a single processor (See Section 6.2.1). A
relatively common feature of many of these efforts is a) The computation overhead in the case
of synchronous algorithms, and b) The difficulty of analysing asynchronous algorithms without
restrictive assumptions. By computation overhead we mean that if optimization program runs
in a compute-communicate-update cycle, the update part cannot start until all nodes finish
their computation. This causes some of the nodes be idle, while remaining nodes finish their
part of computation, clearly an inefficient use of computational resources. This pattern often
diminishes or completely reverts potential speed-ups from distributed computation. In the
asynchronous setting in general, an update can be applied to a parameter vector, followed by
computation done based on a now-outdated version of that parameter vector. Formally grasping
this pattern, while keeping the setting realistic is often quite challenging. Consequently, this is
very open area, and optimal choice of algorithm in any particular case is often heavily dependent
on the problem size, details in its structure, computing architecture available, and above all,
expertise of the practitioner.

This general issue is best exhibited with numerous attempts at parallelizing the Stochastic
Gradient Descent and its variants. As an example, [47, 51] provide theoretically linear speedup
with number of nodes, but are difficult to implement efficiently, as the nodes need to syn-
chronize frequently in order to compute reasonable gradient averages. As an alternative, no
synchronization between workers is assumed in [133, 4, 53]. Consequently, each worker reads
wt from memory, parameter vector w at time point t, computes a stochastic gradient ∇fi(wt)
and applies it to already changed state of the parameter vector wt+τ . The above mentioned
methods assume that the delay τ is bounded by a constant, which is not necessarily realistic
assumption5. Some of the works also introduce assumptions on the sparsity structures or con-
ditioning of the Hessian of f . Asymptotically optimal convergent rates were proven in [52] with

5A bound on the delay τ can be deterministic or probabilistic. However, in practice, the delays are mostly
about the number of nodes in the network, and there rare very long delays, when a variety of operating system-

121

considerably milder assumptions. Improved analysis of asynchronous SGD was also presented in
[41], simultaneously with a version that uses lower-precision arithmetic was introduced without
sacrificing performance, which is a trend that might find use in other parts of machine learning
in the following years.

The negative effect of asynchronous distributed implementations of SGD seem to be negli-
gible, when applied to the task of training very large deep networks — which is the ultimate
industrial application of today. The practical usefulness has been demonstrated for instance by
Google’s Downpour SGD [42] and Microsoft’s Project Adam [33].

The first distributed versions of Coordinate Descent algorithms were the Hydra and its
accelerated variant, Hydra2, [149, 57], which has been demonstrated to be very efficient on large
sparse problems implemented on a computing cluster. An extended version with description
of implementation details is presented in [111]. Effect of asynchrony has been explored and
partially theoretically understood in the works of [102, 101]. Another asynchronous, rather
framework than an algorithm, for coordinate updates, applicable to wider class of objectives is
presented in [138].

The data are assumed to be partitioned to nodes by features/coordinates in the above
algorithms. This setting can be restrictive if one is not able to distribute the data beforehand,
but instead the data are distributed “as is” — in which case the data are most commonly
distributed by data points. This does not need to be an issue, if a dual version of coordinate
descent is used — in which the distribution is done by data points [173] followed by works
on Communication Efficient Dual Coordinate Ascent, described in next section. The use of
duality however requires usage of additional explicit strongly convex regularization term, hence
can be used to solve smaller class of problems. Despite the apparent practical disadvantages,
variants of distributed coordinate descent algorithms are among the most widely used methods
in practice.

Moving to variance reduced methods, distributed versions of SAG/SAGA algorithms have
not been proposed yet. However, several distributed versions of the SVRG algorithm already
exist. A scheme for replicating data to simulate iid sampling in distributed environment was
proposed in [95]. Although the performance is well analyzed, the setting requires significantly
stronger control of data distribution which is rarely practically feasible. A relatively similar
method to Algorithm 12 presented here has been proposed in [147], which was analyzed, and in
[109], a largely experimental work that can be also cast as communication efficient — described
in detail in Section 6.2.3.

Another class of algorithms relevant for this work is Alternating Direction Method of Mul-
tipliers (ADMM) [23, 49]. These algorithms are in general applicable to much broader class of
problems, and hasn’t been observed to perform better than other algorithms presented in this
section, in the machine learning setting of (6.1).

Communication-Efficient Algorithms

In this Section, we describe algorithms that can be cast as “communication efficient”. The
common theme of the algorithms presented here, is that in order to perform better in the sense
of (6.3), one should design algorithms with high TA, in order to make the cost of communication
c negligible.

Before moving onto specific methods, it is worth the noting some of the core limits concerning
the problem we are trying to solve in distributed setting. Fundamental limitations of stochastic
versions of the problem (6.1) in terms of runtime, communication costs and number of samples
used are studied in [166]. Efficient algorithms and lower bounds for distributed statistical
estimation are established in [198, 197].

However, these works do not fit into our framework, because they assume that each node
has access to data generated IID from a single distribution. In the case of [198, 197] also
K � n/K, that the number of nodes K is much smaller than the number of data point on each
node is also assumed. As we stress in the Introduction, these assumptions are far from being

related events can temporarily postpone computation of a single node. To the best of our knowledge, no formal
assumptions reflect this setting well. In fact, two recent works [110, 92] highlight subtle but important issue
with labeling of iterates in the presence of asynchrony, rendering most of the existing analyses of asynchronous
optimization algorithms incorrect.

122

satisfied in our setting. Intuitively, relaxing these assumptions should make the problem harder.
However, it is not as straightforward to conclude this, as there are certainly particular non-iid
data distributions that simplify the problem — for instance if data are distributed according
to separability structure of the objective. Lower bounds on communication complexity of
distributed convex optimization of (6.1) are presented in [7], concluding that for IID data
distributions, existing algorithms already achieve optimal complexity in specific settings.

Probably first, rather extreme, work [203] proposed to parallelize SGD in a single round of
communication. Each node simply runs SGD on the data available locally, and their outputs
are averaged to form a final result. This approach is however not very robust to differences in
data distributions available locally, and it has been shown [167, Appendix A] that in general it
cannot perform better than using output of a single machine, ignoring all the other data.

Shamir et al. proposed the DANE algorithm, Distributed Approximate Newton [167], to
exactly solve a general subproblem available locally, before averaging their solutions. The
method relies on similarity of Hessians of local objectives, representing their iterations as an
average of inexact Newton steps. We describe the algorithm in greater detail in Section 6.3.4 as
our proposed work builds on it. A quite similar approach was proposed in [109], with richer class
class of subproblems that can be formulated locally, and solved approximately. An analysis of
inexact version of DANE and its accelerated variant, AIDE, appeared recently in [147]. Inexact
DANE is closely related to the algorithms presented in this chapter. We, however, continue in
different direction shaped by the setting of federated optimization.

The DiSCO algorithm [199] of Zhang and Xiao is based on inexact damped Newton method.
The core idea is that the inexact Newton steps are computed by distributed preconditioned
conjugate gradient, which can be very fast, if the data are distributed in an IID fashion, enabling
a good preconditioner to be computed locally. The theoretical upper bound on number of rounds
of communication improves upon DANE and other methods, and in certain settings matches
the lower bound presented in [7]. The DiSCO algorithm is related to [98, 202], a distributed
truncated Newton method. Although it was reported to perform well in practice, the total
number of conjugate gradient iterations may still be high to be considered a communication
efficient algorithm.

Common to the above algorithms is the assumption that each node has access to data points
sampled IID from the same distribution. This assumption is not required only in theory, but can
cause the algorithms to converge significantly slower or even diverge (as reported for instance
in [167, Table 3]). Thus, these algorithms, at least in their default form, are not suitable for
the setting of Federated Optimization presented here.

An algorithm that bypasses the need for IID data assumption is CoCoA, which provably
converges under any distribution of the data, while the convergence rate does depend on prop-
erties of the data distribution. The first version of the algorithm was proposed as DisDCA in
[188], without convergence guarantees. First analysis was introduced in [79], with further im-
provements in [105], and a more general version in [104]. Recently, its variant for L1-regularized
objectives was introduced in [168].

The CoCoA framework formulates general local subproblems based on the dual form of (6.1)
(See for instance [104, Eq. (2)]). Data points are distributed to nodes, along with correspond-
ing dual variables. Arbitrary optimization algorithm is used to attain a relative Θ accuracy
on the local subproblem — by changing only local dual variables. These updates have their
corresponding updates to primal variable w, which are synchronously aggregated (could be
averaging, adding up, or anything in between; depending on the local subproblem formulation).

From the description in this section it appears that the CoCoA framework is the only usable
tool for the setting of Federated Optimization. However, the theoretical bound on number of
rounds of communications for ill-conditioned problems scales with the number of nodes K.
Indeed, as we will show in Section 6.4 on real data, CoCoA framework does converge very
slowly.

6.3 Algorithms for Federated Optimization

In this section we introduce the first algorithm that was designed with the unique challenges
of federated optimization in mind. Before proceeding with the explanation, we first revisit

123

two important and at first sight unrelated algorithms. The connection between these algo-
rithms helped to motivate our research. Namely, the algorithms are the Stochastic Variance
Reduced Gradient (SVRG) [80, 89], a stochastic method with explicit variance reduction, and
the Distributed Approximate Newton (DANE) [167] for distributed optimization.

The descriptions are followed by their connection, giving rise to a new distributed optimiza-
tion algorithm, at first sight almost identical to the SVRG algorithm, which we call Federated
SVRG (FSVRG).

Although this algorithm seems to work well in practice in simple circumstances, its perfor-
mance is still unsatisfactory in the general setting we specify in Section 6.3.3. We proceed by
making the FSVRG algorithm adaptive to different local data sizes, general sparsity patterns
and significant differences in patterns in data available locally, and those present in the entire
data set.

6.3.1 Desirable Algorithmic Properties

It is a useful thought experiment to consider the properties one would hope to find in an algo-
rithm for the non-IID, unbalanced, and massively-distributed setting we consider. In particular:

(A) If the algorithm is initialized to the optimal solution, it stays there.

(B) If all the data is on a single node, the algorithm should converge in O(1) rounds of
communication.

(C) If each feature occurs on a single node, so the problems are fully decomposable (each
machine is essentially learning a disjoint block of parameters), then the algorithm should
converge in O(1) rounds of communication6.

(D) If each node contains an identical dataset, then the algorithm should converge in O(1)
rounds of communication.

For convex problems, “converges” has the usual technical meaning of finding a solution suf-
ficiently close to the global minimum, but these properties also make sense for non-convex
problems where “converge” can be read as “finds a solution of sufficient quality”. In these
statements, O(1) round is ideally exactly one round of communication.

Property (A) is valuable in any optimization setting. Properties (B) and (C) are extreme
cases of the federated optimization setting (non-IID, unbalanced, and sparse), whereas (D) is
an extreme case of the classic distributed optimization setting (large amounts of IID data per
machine). Thus, (D) is the least important property for algorithms in the federated optimization
setting.

6.3.2 SVRG

The SVRG algorithm [80, 89] is a stochastic method designed to solve problem (6.1) on a single
node. We present it as Algorithm 10 in a slightly simplified form.

Algorithm 10 SVRG

1: parameters: m = number of stochastic steps per epoch, h = stepsize
2: for s = 0, 1, 2, . . . do
3: Compute and store ∇P (wt) = 1

n

∑n
i=1∇fi(wt) . Full pass through data

4: Set w = wt

5: for t = 1 to m do
6: Pick i ∈ {1, 2, . . . , n}, uniformly at random
7: w = w − h (∇fi(w)−∇fi(wt) +∇P (wt)) . Stochastic update
8: end for
9: wt+1 = w

10: end for

6This is valid only for generalized linear models.

124

The algorithm runs in two nested loops. In the outer loop, it computes gradient of the
entire function P (Line 3). This constitutes for a full pass through data — in general expensive
operation one tries to avoid unless necessary. This is followed by an inner loop, where m fast
stochastic updates are performed. In practice, m is typically set to be a small multiple (1–5) of
n. Although the theoretically optimal choice for m is a small multiple of a condition number
[89, Theorem 6], this is often of the same order as n in practice.

The central idea of the algorithm is to avoid using the stochastic gradients to estimate the
entire gradient ∇P (w) directly. Instead, in the stochastic update in Line 7, the algorithm
evaluates two stochastic gradients, ∇fi(w) and ∇fi(wt). These gradients are used to estimate
the change of the gradient of the entire function between points wt and w, namely ∇P (w) −
∇P (wt). Using this estimate together with ∇P (wt) pre-computed in the outer loop, yields an
unbiased estimate of ∇P (w).

Apart from being an unbiased estimate, it could be intuitively clear that if w and wt are
close to each other, the variance of the estimate ∇fi(w) − ∇fi(wt) should be small, resulting
in estimate of ∇P (w) with small variance. As the inner iterate w goes further, variance grows,
and the algorithm starts a new outer loop to compute new full gradient ∇P (wt+1) and reset
the variance.

The performance is well understood in theory. For λ-strongly convex P and L-smooth
functions fi, convergence results are in the form

E
[
P (wt)− P (w∗)

]
≤ ct[P (w0)− P (w∗)], (6.5)

where w∗ is the optimal solution, and c = Θ
(

1
mh

)
+ Θ(h).7

It is possible to show [89, Theorem 6] that for appropriate choice of parameters m and h,
the convergence rate (6.5) translates to the need of

(n+O(L/λ)) log(1/ε)

evaluations of ∇fi for some i to achieve E [P (w)− P (w∗)] < ε.

6.3.3 Distributed Problem Formulation

In this section, we introduce notation and specify the structure of the distributed version of the
problem we consider (6.1), focusing on the case where the fi are convex. We assume the data
{xi, yi}ni=1, describing functions fi are stored across a large number of nodes.

Let K be the number of nodes. Let Pk for k ∈ {1, . . . ,K} denote a partition of data point
indices {1, . . . , n}, so Pk is the set stored on node k, and define nk = |Pk|. That is, we assume

that Pk ∩ Pl = ∅ whenever k 6= l, and
∑K
k=1 nk = n. We then define local empirical loss as

Fk(w)
def
=

1

nk

∑

i∈Pk
fi(w), (6.6)

which is the local objective based on the data stored on machine k. We can then rephrase the
objective (6.1) as

P (w) =

K∑

k=1

nk
n
Fk(w) =

K∑

k=1

nk
n
· 1

nk

∑

i∈Pk
fi(w). (6.7)

The way to interpret this structure is to see the empirical loss P (w) = 1
n

∑n
i=1 fi(w) as a

convex combination of the local empirical losses Fk(w), available locally to node k. Problem
(6.1) then takes the simplified form

min
w∈Rd

P (w) ≡
K∑

k=1

nk
n
Fk(w). (6.8)

7See [89, Theorem 4] and [80, Theorem 1] for details.

125

6.3.4 DANE

In this section, we introduce a general reasoning providing stronger intuitive support for the
DANE algorithm [167], which we describe in detail below. We will follow up on this reasoning
in Appendix 6.6 and draw a connection between two existing methods that was not known in
the literature.

If we wanted to design a distributed algorithm for solving the above problem (6.8), where
node k contains the data describing function Fk. The first, and as we shall see, a rather naive
idea is to ask each node to minimize their local functions, and average the results (a variant of
this idea appeared in [203]):

wt+1
k = arg min

w∈Rd
Fk(w), wt+1 =

K∑

k=1

nk
n
wt+1
k .

Clearly, it does not make sense to run this algorithm for more than one iteration as the
output w will always be the same. This is simply because wt+1

k does not depend on t. In
other words, this method effectively performs just a single round of communication. While
the simplicity is appealing, the drawback of this method is that it can’t work. Indeed, there
is no reason to expect that in general the solution of (6.8) will be a weighted average of the
local solutions, unless the local functions are all the same — in which case we do not need
a distributed algorithm in the first place and can instead solve the much simpler problem
minw∈Rd F1(w). This intuitive reasoning can be also formally supported, see for instance [167,
Appendix A].

One remedy to the above issue is to modify the local problems before each aggregation
step. One of the simplest strategies would be to perturb the local function Fk in iteration t
by a quadratic term of the form: −(atk)Tw + µ

2 ‖w − wt‖2 and to ask each node to solve the
perturbed problem instead. With this change, the improved method then takes the form

wt+1
k = arg min

w∈Rd
Fk(w)− (atk)Tw +

µ

2
‖w − wt‖2, wt+1 =

1

K

K∑

k=1

wt+1
k . (6.9)

The idea behind iterations of this form is the following. We would like each node k ∈ [K]
to use as much curvature information stored in Fk as possible. By keeping the function Fk in
the subproblem in its entirety, we are keeping the curvature information nearly intact — the
Hessian of the subproblem is ∇2Fk + µI, and we can even choose µ = 0.

As described, the method is not yet well defined, since we have not described how the
vectors atk would change from iteration to iteration, and how one should choose µ. In order to
get some insight into how such a method might work, let us examine the optimality conditions.
Asymptotically as t → ∞, we would like atk to be such that the minimum of each subproblem
is equal to w∗; the minimizer of (6.8). Hence, we would wish for w∗ to be the solution of

∇Fk(w)− atk + µ(w − wt) = 0.

Hence, in the limit, we would ideally like to choose atk = ∇Fk(w∗)+µ(w∗−wt) ≈ ∇Fk(w∗),
since w∗ ≈ wt. Not knowing w∗ however, we cannot hope to be able to simply set atk to this
value. Hence, the second option is to come up with an update rule which would guarantee that
atk converges to ∇Fk(w∗) as t → ∞. Notice at this point that it has been long known in the
optimization community that the gradient of the objective at the optimal point is intimately
related to the optimal solution of a dual problem. Here the situation is further complicated by
the fact that we need to learn K such gradients. In the following, we show that DANE is in
fact a particular instantiation of the scheme above.

DANE. We present the Distributed Approximate Newton algorithm (DANE) [167], as Al-
gorithm 11. The algorithm was originally analyzed for solving the problem of structure (6.7),
with nk being identical for each k — i.e., each computer has the same number of data points.
Nothing prevents us from running it in our more general setting though.

126

Algorithm 11 Distributed Approximate Newton (DANE)

1: Input: regularizer µ ≥ 0, parameter η (default: µ = 0, η = 1)
2: for s = 0, 1, 2, . . . do
3: Compute ∇P (wt) = 1

n

∑n
i=1∇fi(wt) and distribute to all machines

4: For each node k ∈ {1, . . . ,K}, solve

wk = arg min
w∈Rd

{
Fk(w)−

(
∇Fk(wt)− η∇P (wt)

)T
w +

µ

2
‖w − wt‖2

}
(6.10)

5: Compute wt+1 = 1
K

∑K
k=1 wk

6: end for

As alluded to earlier, the main idea of DANE is to form a local subproblem, dependent
only on local data, and gradient of the entire function — which can be computed in a single
round of communication (Line 3). The subproblem is then solved exactly (Line 4), and updates
from individual nodes are averaged to form a new iterate (Line 5). This approach allows
any algorithm to be used to solve the local subproblem (6.10). As a result, it often achieves
communication efficiency in the sense of requiring expensive local computation between rounds
of communication, hopefully rendering the time needed for communication insignificant (see
Section 6.2.3). Further, note that DANE belongs to the family of distributed method that
operate via the quadratic perturbation trick (6.9) with

atk = ∇Fk(wt)− η∇P (wt).

If we assumed that the method works, i.e., that wt → w∗ and hence ∇P (wt) → ∇P (w∗) = 0,
then atk → ∇Fk(w∗), which agrees with the earlier discussion.

In the default setting when µ = 0 and η = 1, DANE achieves desirable property (D)
(immediate convergence when all local datasets are identical), since in this case ∇Fk(wt) −
η∇P (wt) = 0, and so we exactly minimize Fk(w) = P (w) on each machine. For any choice of µ
and η, DANE also achieves property (A), since in this case ∇P (wt) = 0, and wt is a minimizer
of Fk(w) − ∇Fk(wt) · w as well as of the regularization term. Unfortunately, DANE does not
achieve the more federated optimization-specific desirable properties (B) and (C).

The convergence analysis for DANE assumes that the functions are twice differentiable, and
relies on the assumption that each node has access to IID samples from the same underlying
distribution. This implies that that the Hessians of ∇2Fk(w) are similar to each other [167,
Lemma 1]. In case of linear regression, with λ = O(1/

√
n)-strongly convex functions, the

number of DANE iterations needed to achieve ε-accuracy is O(K log(1/ε)). However, for general
L-smooth loss, the theory is significantly worse, and does not match its practical performance.

The practical performance also depends on the additional local regularization parameter
µ. For small number of nodes K, the algorithm converges quickly with µ = 0. However, as
reported [167, Figure 3], it can diverge quickly with growing K. Bigger µ makes the algorithm
more stable at the cost of slower convergence. Practical choice of µ remains an open question.

6.3.5 SVRG meets DANE

As we mentioned above, the DANE algorithm can perform poorly in certain settings, even with-
out the challenging aspects of federated optimization. Another point that is seen as drawback
of DANE is the need to find the exact minimum of (6.10) — this can be feasible for quadratics
with relatively small dimension, but infeasible or extremely expensive to achieve for other prob-
lems. We adapt the idea from the CoCoA algorithm [104], in which an arbitrary optimization
algorithm is used to obtain relative Θ accuracy on a locally defined subproblem. We replace the
exact optimization with an approximate solution obtained by using any optimization algorithm.

Considering all the algorithms one could use to solve (6.10), the SVRG algorithm seems to
be a particularly good candidate. Starting the local optimization of (6.10) from point wt, the
algorithm automatically has access to the derivative at wt, which is identical for each node —
∇P (wt). Hence, the SVRG algorithm can skip the initial expensive operation, evaluation of

127

the entire gradient (Line 3, Algorithm 10), and proceed only with the stochastic updates in the
inner loop.

It turns out that this modified version of the DANE algorithm is equivalent to a distributed
version of SVRG.

Proposition 42. Consider the following two algorithms.

1. Run the DANE algorithm (Algorithm 11) with η = 1 and µ = 0, and use SVRG (Algo-
rithm 10) as a local solver for (6.10), running it for a single iteration, initialized at point
wt.

2. Run a distributed variant of the SVRG algorithm, described in Algorithm 12.

The algorithms are equivalent in the following sense. If both start from the same point wt,
they generate identical sequence of iterates {wt}.

Proof. We construct the proof by showing that single step of the SVRG algorithm applied to
the problem (6.10) on computer k is identical to the update on Line 8 in Algorithm 12.

The way to obtain a stochastic gradient of (6.10) is to sample one of the functions composing
Fk(w) = 1

nk

∑
i∈Pk fi(w), and add the linear term ∇Fk(wt)−ηP (wt), which is known and does

not need to be estimated. Upon sampling an index i ∈ Pk, the update direction follows as

[
∇fi(w)−∇Fk(wt)−∇P (wt)

]
−
[
∇fi(wt)−∇Fk(wt)−∇P (wt)

]
+∇P (wt) =

∇fi(w)−∇fi(wt) +∇P (wt)

which is identical to the direction in Line 8 in Algorithm 12. The claim follows by chaining the
identical updates to form identical iterate wt+1.

Algorithm 12 naive Federated SVRG (FSVRG)

1: parameters: m = # of stochastic steps per epoch, h = stepsize, data partition {Pk}Kk=1

2: for s = 0, 1, 2, . . . do . Overall iterations
3: Compute ∇P (wt) = 1

n

∑n
i=1∇fi(wt)

4: for k = 1 to K do in parallel over nodes k . Distributed loop
5: Initialize: wk = wt

6: for t = 1 to m do . Actual update loop
7: Sample i ∈ Pk uniformly at random
8: wk = wk − h (∇fi(wk)−∇fi(wt) +∇P (wt))
9: end for

10: end for
11: wt+1 = wt + 1

K

∑K
k=1(wk − wt) . Aggregate

12: end for

Remark 43. The algorithms considered in Proposition 42 are inherently stochastic. The state-
ment of the proposition is valid under the assumption that in both cases, identical sequence of
samples i ∈ Pk would be generated by all nodes k ∈ {1, 2, . . . ,K}.

Remark 44. In the Proposition 42 we consider the DANE algorithm with particular values of
η and µ. The Algorithm 12 and the Proposition can be easily generalized, but we present only
the default version for the sake of clarity.

Since the first version of this work, this connection has been mentioned in [147], which ana-
lyzes an inexact version of the DANE algorithm. We proceed by adapting the above algorithm
to other challenges arising in the context of federated optimization.

6.3.6 Federated SVRG

Empirically, the Algorithm 12 fits in the model of distributed optimization efficiency described in
Section 6.2.3, since we can balance how many stochastic iterations should be performed locally

128

against communication costs. However, several modifications are necessary to achieve good
performance in the full federated optimization setting (Section 6.3.3). Very important aspect
that needs to be addressed is that the number of data points available to a given node can differ
greatly from the average number of data points available to any single node. Furthermore, this
setting always comes with the data available locally being clustered around a specific pattern,
and thus not being a representative sample of the overall distribution we are trying to learn.
In the Experiments section we focus on the case of L2 regularized logistic regression, but the
ideas carry over to other generalized linear prediction problems.

Notation

Note that in large scale generalized linear prediction problems, the data arising are almost
always sparse, for example due to bag-of-words style feature representations. This means that
only a small subset of d elements of vector xi have nonzero values. In this class of problems,
the gradient ∇fi(w) is a multiple of the data vector xi. This creates additional complications,
but also potential for exploitation of the problem structure and thus faster algorithms. Be-
fore continuing, let us summarize and denote a number of quantities needed to describe the
algorithm.

• n — number of data points / training examples / functions.
• Pk — set of indices, corresponding to data points stored on device k.
• nk = |Pk| — number of data points stored on device k.
• nj =

∣∣{i ∈ {1, . . . , n} : xTi ej 6= 0}
∣∣ — the number of data points with nonzero jth coordi-

nate
• njk =

∣∣{i ∈ Pk : xTi ej 6= 0}
∣∣ — the number of data points stored on node k with nonzero

jth coordinate
• φj = nj/n — frequency of appearance of nonzero elements in jth coordinate
• φjk = njk/nk — frequency of appearance of nonzero elements in jth coordinate on node k

• sjk = φj/φjk — ratio of global and local appearance frequencies on node k in jth coordinate

• Sk = Diag(sjk) — diagonal matrix, composed of sjk as jth diagonal element

• ωj =
∣∣∣{Pk : njk 6= 0}

∣∣∣ — Number of nodes that contain data point with nonzero jth

coordinate
• aj = K/ωj — aggregation parameter for coordinate j
• A = Diag(aj) — diagonal matrix composed of aj as jth diagonal element

With these quantities defined, we can state our proposed algorithm as Algorithm 13. Our
experiments show that this algorithm works very well in practice, but the motivation for the
particular scaling of the updates may not be immediately clear. In the following section we
provide the intuition that lead to the development of this algorithm.

Algorithm 13 Federated SVRG (FSVRG)

1: parameters: h = stepsize, data partition {Pk}Kk=1,
diagonal matrices A,Sk ∈ Rd×d for k ∈ {1, . . . ,K}

2: for s = 0, 1, 2, . . . do . Overall iterations
3: Compute ∇P (wt) = 1

n

∑n
i=1∇fi(wt)

4: for k = 1 to K do in parallel over nodes k . Distributed loop
5: Initialize: wk = wt and hk = h/nk
6: Let {it}nkt=1 be random permutation of Pk
7: for t = 1, . . . , nk do . Actual update loop
8: wk = wk − hk (Sk [∇fit(wk)−∇fit(wt)] +∇P (wt))
9: end for

10: end for
11: wt = wt +A

∑K
k=1

nk
n (wk − wt) . Aggregate

12: end for

129

Intuition Behind FSVRG Updates

The difference between the Algorithm 13 and Algorithm 12 is in the introduction of the following
properties.

1. Local stepsize — hk = h/nk.

2. Aggregation of updates proportional to partition sizes — nk
n (wk − wt)

3. Scaling stochastic gradients by diagonal matrix — Sk

4. Per-coordinate scaling of aggregated updates — A(wk − wt)

Let us now explain what motivated us to get this particular implementation.
As a simplification, assume that at some point in time, we have for some w, wk = w for all

k ∈ [K]. In other words, all the nodes have the same local iterate. Although this is not exactly
the case in practice, thinking about the issue in this simplified setting will give us insight into
what would be meaningful to do if it was true. Further, we can hope that the reality is not
too far from the simplification and it will still work in practice. Indeed, all nodes do start from
the same point, and adding the linear term ∇Fk(wt)−∇P (wt) to the local objective forces all
nodes to move in the same direction, at least initially.

Suppose the nodes are about to make a single step synchronously. Denote the update
direction on node k as Gk = ∇fi(w) − ∇fi(wt) + ∇P (wt), where i is sampled uniformly at
random from Pk.

If we had only one node, i.e., K = 1, it is clear that we would have E [G1] = ∇P (wt). If K
is more than 1, the values of Gk are in general biased estimates of ∇P (wt). We would like to

achieve the following: E
[∑K

k=1 αkGk

]
= ∇P (wt), for some choice of αk. This is motivated by

the general desire to make stochastic first-order methods to make a gradient step in expectation.
We have

E

[
K∑

k=1

αkGk

]
=

K∑

k=1

αk
1

nk

∑

i∈Pk

[
∇fi(w)−∇fi(wt) +∇P (wt)

]
.

By setting αk = nk
n , we get

E

[
K∑

k=1

αkGk

]
=

1

n

K∑

k=1

∑

i∈Pk

[
∇fi(w)−∇fi(wt) +∇P (wt)

]
= ∇P (w).

This motivates the aggregation of updates from nodes proportional to nk, the number of
data points available locally (Point 2).

Next, we realize that if the local data sizes, nk, are not identical, we likely don’t want to
do the same number of local iterations on each node k. Intuitively, doing one pass through
data (or a fixed number of passes) makes sense. As a result, the aggregation motivated above
does not make perfect sense anymore. Nevertheless, we can even it out, by setting the stepsize
hk inversely proportional to nk, making sure each node makes progress of roughly the same
magnitude overall. Hence, hk = h/nk (Point 1).

To motivate the Point 3, scaling of stochastic gradients by diagonal matrix Sk, consider the
following example. We have 1, 000, 000 data points, distributed across K = 1, 000 nodes. When
we look at a particular feature of the data points, we observe it is non-zero only in 1, 000 of them.
Moreover, all of them happen to be stored on a single node, that stores only these 1, 000 data
points. Sampling a data point from this node and evaluating the corresponding gradient, will
clearly yield an estimate of the gradient ∇P (w) with 1000-times larger magnitude. This would
not necessarily be a problem if done only once. However, repeatedly sampling and overshooting
the magnitude of the gradient will likely cause the iterative process to diverge quickly.

Hence, we scale the stochastic gradients by a diagonal matrix. This can be seen as an
attempt to enforce the estimates of the gradient to be of the correct magnitude, conditioned on
us, algorithm designers, being aware of the structure of distribution of the sparsity pattern.

130

Let us now highlight some properties of the modification in Point 4. Without any extra
information, or in the case of fully dense data, averaging the local updates is the only way
that actually makes sense — because each node outputs approximate solution of a proxy to
the overall objective, and there is no induced separability structure in the outputs such as
in CoCoA [104]. However, we could do much more in the other extreme. If the sparsity
structure is such that each data point only depends on one of disjoint groups of variables, and
the data were distributed according to this structure, we would efficiently have several disjoint
problems. Solving each of them locally, and adding up the results would solve the problem in
single iteration — desired algorithm property (C).

What we propose is an interpolation between these two settings, on a per-variable basis. If
a variable appears in data on each node, we are going to take average. However, the less nodes
a particular variable appear on, the more we want to trust those few nodes in informing us
about the meaningful update to this variable — or alternatively, take a longer step. Hence the
per-variable scaling of aggregated updates.

6.3.7 Further Notes

Looking at the Proposition 42, we identify equivalence of two algorithms, take the second one
and try modify it to make it suitable for the setting of federated optimization. A question
naturally arise: Is it possible to achieve the same by modifying the first algorithm suitable for
federated optimization — by only altering the local optimization objective?

We indeed tried to experiment with idea, but we don’t report the details for two reasons.
First, the requirement of exact solution of the local subproblem is often impractical. Relaxing it
gradually moves us to the setting we presented in the previous sections. But more importantly,
using this approach we have only managed to get results significantly inferior to those reported
later in the Experiments section.

6.4 Experiments

In this section we present the first experimental results in the setting of federated optimization.
In particular, we provide results on a dataset based on public Google+ posts8, clustered by
user — simulating each user as a independent node. This preliminary experiment demonstrates
why none of the existing algorithms are suitable for federated optimization, and the robustness
of our proposed method to challenges arising there.

6.4.1 Predicting Comments on Public Google+ Posts

The dataset presented here was generated based on public Google+ posts. We randomly picked
10, 000 authors that have at least 100 public posts in English, and try to predict whether a post
will receive at least one comment (that is, a binary classification task).

We split the data chronologically on a per-author basis, taking the earlier 75% for training
and the following 25% for testing. The total number of training examples is n = 2, 166, 693.
We created a simple bag-of-words language model, based on the 20, 000 most frequent words in
dictionary based on all Google+ data. This results in a problem with dimension d = 20, 002.
The extra two features represent a bias term and variable for unknown word. We then use a
logistic regression model to make a prediction based on these features.

We shape the distributed optimization problem as follows. Suppose that each user corre-
sponds to one node, resulting in K = 10, 000. The average nk, number of data points on node
k is thus roughly 216. However, the actual numbers nk range from 75 to 9, 000, showing the
data is in fact substantially unbalanced.

It is natural to expect that different users can exhibit very different patterns in the data
generated. This is indeed the case, and hence the distribution to nodes cannot be considered
an IID sample from the overall distribution. Since we have a bag-of-words model, our data
are very sparse — most posts contain only small fraction of all the words in the dictionary.

8The posts were public at the time the experiment was performed, but since a user may decide to delete the
post or make it non-public, we cannot release (or even permanently store) any copies of the data.

131

This, together with the fact that the data are naturally clustered on a per-user basis, creates
additional challenge that is not present in the traditional distributed setting.

0 0.5 1 1.5 2

×10
4

0

2000

4000

6000

8000

10000

Figure 6.1: Features vs. appearance on nodes. The x-axis is a feature index, and the y-axis
represents the number of nodes where a given feature is present.

Figure 6.1 shows the frequency of different features across nodes. Some features are present
everywhere, such as the bias term, while most features are relatively rare. In particular, over
88% of features are present on fewer than 1, 000 nodes. However, this distribution does not
necessarily resemble the overall appearance of the features in data examples. For instance,
while an unknown word is present in data of almost every user, it is far from being contained
in every data point.

Naive prediction properties. Before presenting the results, it is useful to look at some of
the important basic prediction properties of the data. We use L2-regularized logistic regression,
with regularization parameter λ = 1/n. We chose λ to be the best in terms of test error in the
optimal solution.

• If one chooses to predict −1 (no comment), classification error is 33.16%.

• The optimal solution of the global logistic regression problem yields 26.27% test set error.

• Predicting the per-author majority from the training data yields 17.14% test error. That
is, predict +1 or −1 for all the posts of an author, based on which label was more common
in that author’s training data. This indicates that knowing the author is actually more
useful than knowing what they said, which is perhaps not surprising.

In summary, this data is representative for our motivating application in federated opti-
mization. It is possible to improve upon naive baseline using a fixed global model. Further,
the per-author majority result suggests it is possible to improve further by adapting the global
model to each user individually. Model personalization is common practice in industrial ap-
plications, and the techniques used to do this are orthogonal to the challenges of federated
optimization. Exploring its performance is a natural next step, but beyond the scope of this
work.

While we do not provide experiments for per user personalized models, we remark that this
could be a good descriptor of how far from IID the data is distributed. Indeed, if each node
has access to an IID sample, any adaptation to local data is merely over-fitting. However, if we
can significantly improve upon the global model by per user/node adaptation, this means that
the data available locally exhibit patterns specific to the particular node.

The performance of the Algorithm 13 is presented below. The only parameter that remains
to be chosen by user is the stepsize h. We tried a set of stepsizes, and retrospectively choose
one that works best — a typical practice in machine learning.

In Figure 6.2, we compare the following optimization algorithms9:

9We thank Mark Schmidt for his prettyPlot function, available on his website.

132

0 5 10 15 20 25 30

Rounds of Communication

0.5

0.55

0.6

0.65

0.7

P
r
i
m
a
l

s
u
b
o
p
t
i
m
a
l
i
t
y

OPT

F
S

V
R

G

F
S

V
R

G
R

GD

COCOA

0 5 10 15 20 25 30

Rounds of Communication

0.26

0.27

0.28

0.29

0.3

0.31

0.32

0.33

0.34

T
e
s
t

c
l
a
s
s
i
f
i
c
a
t
i
o
n

e
r
r
o
r

OPT

F
S
V
R

G

F
S

V
R

G
R

GD

COCOA

Figure 6.2: Rounds of communication vs. objective function (left) and test prediction error
(right).

• The blue squares (OPT) represent the best possible offline value (the optimal value of
the optimization task in the first plot, and the test error corresponding to the optimum
in the second plot).

• The teal diamonds (GD) correspond to a simple distributed gradient descent.

• The purple triangles (COCOA) are for the CoCoA+ algorithm [104].

• The green circles (FSVRG) give values for our proposed algorithm.

• The red stars (FSVRGR) correspond to the same algorithm applied to the same problem
with randomly reshuffled data. That is, we keep the unbalanced number of examples per
node, but populate each node with randomly selected examples.

The first thing to notice is that CoCoA+ seems to be worse than trivial benchmark —
distributed gradient descent. This behavior can be predicted from theory, as the overall conver-
gence rate directly depends on the best choice of aggregation parameter σ′. For sparse problems,
it is upperbounded by the maximum of the values reported in Figure 6.1, which is K, and it
is close to it also in practice. Although it is expected that the algorithm could be modified to
depend on average of these quantities (which could be orders of magnitude smaller), akin to
coordinate descent algorithms [148], it has not been done yet. Note that other communication
efficient algorithms fail to converge altogether.

The algorithm we propose, FSVRG, converges to optimal test classification accuracy in just
30 iterations. Recall that in the setting of federated optimization we introduced in Section 6.1.2,
minimization of rounds of communication is the principal goal. However, concluding that the
approach is stunningly superior to existing methods would not be completely fair nor correct.
The conclusion is that the FSVRG is the first algorithm to tackle federated optimization, a
problem that existing methods fail to generalize to. It is important to stress that none of the
existing methods were designed with these particular challenges in mind, and we formulate the
first benchmark.

Since the core reason other methods fail to converge is the non-IID data distribution, we
test our method on the same problem, with data randomly reshuffled among the same number
of nodes (FSVRGR; red stars). Since the difference in convergence is subtle, we can conclude
that the techniques described in Section 6.3.6 serve its purpose and make the algorithm robust
to challenges present in federated optimization.

This experiment demonstrates that learning from massively decentralized data, clustered on
a per-user basis is indeed problem we can tackle in practice. Since the earlier version of this
work [82], additional experimental results were presented in [115]. We refer the reader to this
paper for experiments in more challenging setting of deep learning, and a further discussion on
how such system would be implemented in practice.

133

6.5 Conclusions and Future Challenges

We have introduced a new setting for distributed optimization, which we call federated opti-
mization. This setting is motivated by the outlined vision, in which users do not send the data
they generate to companies at all, but rather provide part of their computational power to be
used to solve optimization problems. This comes with a unique set of challenges for distributed
optimization. In particular, we argue that the massively distributed, non-IID, unbalanced, and
sparse properties of federated optimization problems need to be addressed by the optimization
community.

We explain why existing methods are not applicable or effective in this setting. Even the
distributed algorithms that can be applied converge very slowly in the presence of large number
of nodes on which the data are stored. We demonstrate that in practice, it is possible to design
algorithms that work surprisingly efficiently in the challenging setting of federated optimization,
which makes the vision conceptually feasible.

We realize that it is important to scale stochastic gradients on a per-coordinate basis, dif-
ferently on each node to improve performance. To the best of our knowledge, this is the first
time such per-node scaling has been used in distributed optimization. Additionally, we use
per-coordinate aggregation of updates from each node, based on distribution of the sparsity
patterns in the data.

Even though our results are encouraging, there is a lot of room for future work. One natural
direction is to consider fully asynchronous versions of our algorithms, where the updates are
applied as soon as they arrive. Another is developing a better theoretical understanding of
our algorithm, as we believe that development of a strong understanding of the convergence
properties will drive further research in this area.

Study of the federated optimization problem for non-convex objectives is another important
avenue of research. In particular, neural networks are the most important example of a machine
learning tool that yields non-convex functions fi, without any convenient general structure.
Consequently, there are no useful results describing convergence guarantees of optimization
algorithms. Despite the lack of theoretical understanding, neural networks are now state-of-
the-art in many application areas, ranging from natural language understanding to visual object
detection. Such applications arise naturally in federated optimization settings, and so extending
our work to such problems is an important direction.

The non-IID data distribution assumed in federated optimization, and mobile applications
in particular, suggest that one should consider the problem of training a personalized model
together with that of learning a global model. That is, if there is enough data available on a
given node, and we assume that data is drawn from the same distribution as future test examples
for that node, it may be preferable to make predictions based on a personalized model that is
biased toward good performance on the local data, rather than simply using the global model.

6.6 Appendix: Distributed Optimization via Quadratic
Perturbations

This appendix follows from the discussion motivating DANE algorithm by a general algorithmic
perturbation template (6.9) for λ-strongly convex objectives. We use this to propose a similar
but new method, which unlike DANE converges under arbitrary data partitioning {Pk}Kk=1,
and we highlight its relation to the dual CoCoA algorithm for distributed optimization.

For simplicity and ease of drawing the above connections we assume that nk is identical for
all k ∈ {1, 2, . . . ,K} throughout the appendix. All the arguments can be simply extended, but
would unnecessarily complicate the notation for current purpose.

6.6.1 New Method

We now present a new method (Algorithm 14), which also belongs to the family of quadratic
perturbation methods (6.9). However, the perturbation vectors atk are different from those of

134

Algorithm 14 Primal Method

1: Input: σ ∈ [1,K]
2: Choose: α0

k ∈ R|Pk| for k = 1, 2, . . . ,K
3: Set: η = K

σ , µ = λ(η − 1)

4: Set: w0 = 1
λn

∑K
k=1Xkα

0
k

5: Set: g0
k = η(KnXkα

0
k − λw0) for k = 1, 2, . . . ,K

6: for t = 0, 1, 2, . . . do
7: for k = 1 to K do
8: wt+1

k = arg minw∈Rd Fk(w)− (∇Fk(wt)− (η∇Fk(wt) + gtk))
T
w + µ

2 ‖w − wt‖2
9: end for

10: wt+1 = 1
K

∑K
k=1 w

t+1
k

11: for k = 1 to K do
12: gt+1

k = gtk + λη(wt+1
k − wt+1)

13: end for
14: return wt

15: end for

DANE. In particular, we set

atk
def
= ∇Fk(wt)− (η∇Fk(wt) + gtk),

where η > 0 is a parameter, and the vectors gtk are maintained by the method. As we show in
Lemma 45, Algorithm 14 satisfies

K∑

k=1

gtk = 0

for all iterations t. This implies that 1
K

∑K
k=1 a

t
k = (1 − η)∇P (wt). That is, both DANE and

the new method use a linear perturbation which, when averaged over the nodes, involves the
gradient of the objective function f at the latest iterate wt. Therefore, the methods have one
more property in common beyond both being of the form (6.9). However, as we shall see in
the rest of this section, Algorithm 14 allows an insightful dual interpretation. Moreover, while
DANE may not converge for arbitrary problems (even when restricted to ridge regression)—
and is only known to converge under the assumption that the data stored on each node are
in some precise way similar, Algorithm 14 converges for any ridge regression problem and any
data partitioning.

Let us denote by Xk the matrix obtained by stacking the data points xi as column vectors
for all i ∈ Pk. We have the following Lemma.

Lemma 45. For all t ≥ 0 we have
∑K
k=1 g

t
k = 0.

Proof. The statement holds for t = 0. Indeed,

K∑

k=1

gtk = η

K∑

k=1

(
K

n
Xkα

0
k − λw0

)
= 0,

where the last step follows from the definition of w0. Assume now that the statement hold for
t. Then

K∑

k=1

gt+1
k =

K∑

k=1

(
gtk + ηλ(wt+1

k − wt+1)
)

= ηλ

K∑

k=1

(wt+1
k − wt+1).

The first equation follows from the way gk is updated in the algorithm. The second equation
follows from the inductive assumption, and the last equation follows from the definition of wt+1

in the algorithm.

135

6.6.2 L2-Regularized Linear Predictors

In the rest of this section we consider the case of L2-regularized linear predictors. That is, we
focus on problem (6.1) with fi of the form

fi(w) = φi(x
T
i w) +

λ

2
‖w‖2,

where λ > 0 is a regularization parameter. This leads to L2 regularized empirical risk mini-
mization (ERM) problem

min
w∈Rd

{
P (w)

def
=

1

n

n∑

i=1

φi(x
T
i w) +

λ

2
‖w‖2

}
. (6.11)

We assume that the loss functions φi : R → R are convex and 1/γ-smooth for some γ > 0;
these are standard assumptions. As usual, we allow the loss function φi to depend on the label
yi. For instance, we may choose the quadratic loss: φi(t) = 1

2 (t− yi)2 (for which γ = 1).

Let X = [x1, . . . , xn] ∈ Rd×n. As described in Section 6.3.3, we assume that the data
(xi, yi)

n
i=1 is distributed among K nodes of a computer cluster as follows: node k = 1, 2, . . . ,K

contains pairs (xi, yi) for i ∈ Pk, where P1, . . . ,PK forms a partition of the set [n] = {1, 2, . . . , n}.
Letting X = [X1, . . . , XK], where Xk ∈ Rd×|Pk| is a submatrix of A corresponding to columns
i ∈ Pk, and yk ∈ R|Pk| is the subvector of y corresponding to entries i ∈ Pk. Hence, node k
contains the pair (Xk, yk). With this notation, we can write the problem in the form (6.8),
where

Fk(w) =
K

n

∑

i∈Pk
φi(x

T
i w) +

λ

2
‖w‖2. (6.12)

6.6.3 A Dual Method: Dual Block Proximal Gradient Ascent

The dual of (6.11) is the problem

max
α∈Rn

{
D(α)

def
= − 1

2λn2
‖Xα‖2 − 1

n

n∑

i=1

φ∗i (−αi)
}
, (6.13)

where φ∗i is the convex conjugate of φi. Since we assume that φi is 1/γ smooth, it follows that
φ∗i is γ strongly convex. Therefore, D is a strongly concave function.

From dual solution to a primal solution. It is well known that if α∗ is the optimal

solution of the dual problem (6.11), then w∗
def
= 1

λnXα
∗ is the optimal solution of the primal

problem. Therefore, for any dual algorithm producing a sequence of iterates αt, we can define
a corresponding primal algorithm via the linear mapping

wt
def
=

1

λn
Xαt. (6.14)

Clearly, if αt → α∗, then wt → w∗. We shall now design a method for maximizing the dual
function D and then in Theorem 46 we claim that for quadratic loss functions, Algorithm 14
arises as an image, defined via (6.14), of dual iterations of this dual ascent method.

Design of the dual gradient ascent method. Let ξ(α)
def
= 1

2‖Xα‖2. Since ξ is a convex
quadratic, we have

ξ(α+ h) = ξ(α) + 〈∇ξ(α), h〉+
1

2
hT∇2ξ(α)h, ≤ ξ(α) + 〈∇ξ(α), h〉+

σ

2
‖h‖2B ,

136

Algorithm 15 Dual Method

1: Input: σ ∈ [1,K]
2: Choose: α0

k ∈ R|Pk| for k = 1, 2, . . . ,K
3: for t = 0, 1, 2, . . . do
4: for k = 1 to K do
5: ht+1

k = arg minu∈R|Pk| D
t
k(u) . See (6.15)

6: end for
7: αt+1 = αt + ht

8: end for
9: return wt

where ∇ξ(α) = XTXα and ∇2ξ(α) = XTX. Further, we define the block-diagonal matrix

B
def
= Diag(XT

1 X1, . . . , X
T
KXK), and a norm associate with this matrix:

‖h‖2B
def
=

K∑

k=1

‖Xkhk‖2.

By σ we refer to a large enough constant for which XTX � σB. In order to avoid unnecessary
technicalities, we shall assume that the matrices XT

k Xk are positive definite, which implies that
‖ · ‖B is a norm. It can be shown that 1 ≤ σ ≤ K. Clearly, ξ is σ-smooth with respect to the
norm ‖ · ‖B . In view of the above, for all h ∈ Rn we can estimate D from below as follows:

D(αt + h) ≥ − 1

λn2

(
ξ(αt) + 〈∇ξ(αt), h〉+

σ

2

K∑

k=1

‖Xkhk‖2
)
− 1

n

n∑

i=1

φ∗i (−αti − hi)

= − 1

λn2
ξ(αt)−

K∑

k=1

[
1

λn2
〈∇kξ(αt), hk〉+

σ

2λn2
‖Xkhk‖2 +

1

n

∑

i∈Pk
φ∗i (−αti − hi)

]
,

where ∇kξ(αt) corresponds to the subvector of ∇ξ(αt) formed by entries i ∈ Pk.
We now let ht = (ht1, . . . , h

t
K) be the maximizer of this lower bound. Since the lower bound

is separable in the blocks {htk}k, we can simply set

htk := arg min
u∈R|Pk|

{
Dt
k(u)

def
=

1

λn2
〈∇kξ(αt), u〉+

σ

2λn2
‖Xku‖2 +

1

n

∑

i∈Pk
φ∗i (−αti − ui)

}
.

(6.15)
Having computed htk for all k, we can set αt+1

k = αtk+htk for all k, or equivalently, αt+1 = αt+ht.
This is formalized as Algorithm 15. Algorithm 15 is a proximal gradient ascent method applied
to the dual problem, with smoothness being measured using the block norm ‖h‖B . It is known
that gradient ascent converges at a linear rate for smooth and strongly convex (for minimization
problems) objectives.

One of the main insights of this section is the following equivalence result.

Theorem 46 (Equivalence of Algorithms 14 and 15 for Quadratic Loss). Consider the ridge
regression problem. That is, set φi(t) = 1

2 (t − yi)2 for all i. Assume α0
1, . . . , α

0
K is chosen in

the same way in Algorithms 14 and 15. Then the dual iterates αt and the primal iterates wt

produced by the two algorithms are related via (6.14) for all t ≥ 0.

Since the dual method converges linearly, in view of the above theorem, so does the primal
method. Here we only remark that the popular algorithm CoCoA+ [104] arises if Step 5 in
Algorithm 15 is done inexactly. Hence, we show that duality provides a deep relationship
between the CoCoA+ and DANE algorithms, which were previously considered completely
different.

6.6.4 Proof of Theorem 46

In this part we prove the theorem.

137

Primal and Dual Problems. Since φi(t) = 1
2 (t− yi)2, the primal problem (6.11) is a ridge

regression problem of the form

min
w∈Rd

P (w) =
1

2n
‖XTw − y‖2 +

λ

2
‖w‖2, (6.16)

where X ∈ Rd×n and y ∈ Rn. In view of (6.13), the dual of (6.16) is

min
α∈Rn

D(α) =
1

2λn2
‖Xα‖2 +

1

2n
‖α‖2 − 1

n
yTα. (6.17)

Primal Problem: Distributed Setup. The primal objective function is of the form (6.8),
where in view of (6.12), we have Fk(w) = K

2n‖XT
k w − yk‖2 + λ

2 ‖w‖2. Therefore,

∇Fk(w) =
K

n
Xk(XT

k w − yk) + λw (6.18)

and ∇P (w) = 1
K

∑
k∇Fk(w) = 1

K

∑
k

(
K
nXk(XT

k w − yk) + λw
)
.

Dual Method. Since D is a quadratic, we have

D(αt + h) = D(αt) +∇D(αt)Th+
1

2
hT∇2D(αt)h,

with

∇D(αt) =
1

λn2
XTXαt +

1

n
(αt − y), ∇2D(αt) =

1

λn2
XTX +

1

n
I.

We know that XTX � σDiag(XT
1 X1, . . . , X

T
KXK). With this approximation, for all h ∈ Rn

we can estimate D from above by a node-separable quadratic function as follows:

D(αt + h) ≤ D(αt) +

(
1

λn2
XTXαt +

1

n
(αt − y)

)T
h+

1

2n
‖h‖2 +

σ

2λn2

K∑

k=1

‖Xkhk‖2

= D(αt) +
1

n

[
1

λn
(Xαt)TXh+ (αt − y)Th+

1

2
‖h‖2 +

σ

2λn

K∑

k=1

‖Xkhk‖2
]

= D(αt) +
1

n

K∑

k=1

(
(wt)TXkhk + (αtk − yk)Thk +

1

2
‖hk‖2 +

σ

2λn
‖Xkhk‖2

)
.

Next, we shall define

htk
def
= arg min

hk∈R|Pk|
σ

2λn
‖Xkhk‖2 +

1

2
‖hk‖2 − (yk −XT

k w
t − αtk)Thk (6.19)

for k = 1, 2, . . . ,K and then set
αt+1 = αt + ht. (6.20)

Primal Version of the Dual Method. Note that (6.19) has the same form as (6.17), with
X replaced by Xk, λ replaced by λ/σ and y replaced by ck := yk − XT

k w
t − αtk. Hence, we

know that

stk
def
=

1

(λ/σ)n
Xkh

t
k (6.21)

is the optimal solution of the primal problem of (6.22):

stk = arg min
s∈Rd

1

2n
‖XT

k s− ck‖2 +
λ/σ

2
‖s‖2. (6.22)

138

Hence, the primal version of method (6.20) is given by

wt+1 (6.14)
=

1

λn
Xαt+1 (6.20)

=
1

λn
X(αt + ht)

(6.14)
= wt +

1

λn

K∑

k=1

Xkh
t
k

=
1

K

K∑

k=1

(
wt +

K

σ

σ

λn
Xkh

t
k

)
(6.21)

=
1

K

K∑

k=1

(
wt +

K

σ
stk

)
.

With the change of variables w := wt + K
σ s (i.e., s = σ

K (w−wt)), from (6.22) we know that

wt+1
k := wt + K

σ s
t
k solves

wt+1
k = arg min

w∈Rd

{
Lk(w)

def
=

1

2n

∥∥∥XT
k

σ

K
(w − wt)− ck

∥∥∥
2

+
λ/σ

2

∥∥∥ σ
K

(w − wt)
∥∥∥

2
}

(6.23)

and wt+1 = 1
K

∑K
k=1 w

t+1
k .

Let us now rewrite the function in (6.23) so as to connect it to Algorithm 14:

Lk(w) =
1

2n

∥∥∥XT
k

σ

K
(w − wt)− ck

∥∥∥
2

+
λ/σ

2

∥∥∥ σ
K

(w − wt)
∥∥∥

2

=
1

2n

σ2

K2

∥∥∥∥∥∥∥∥∥
(XT

k w − yk)−
(
XT
k w

t − yk +
K

σ
ck

)

︸ ︷︷ ︸
dk

∥∥∥∥∥∥∥∥∥

2

+
λσ2

2K3
‖w‖2 − λσ2

2K3
‖w‖2 +

λ/σ

2

∥∥∥ σ
K

(w − wt)
∥∥∥

2

=
1

2n

σ2

K2

(∥∥XT
k w − yk

∥∥2
+ ‖dk‖2 − 2(XT

k w − yk)T dk

)

+
λσ2

2K3
‖w‖2 − λσ2

2K3
‖w‖2 +

λσ

2K2

∥∥w − wt
∥∥2

=
σ2

K3

(
K

2n

∥∥XT
k w − yk

∥∥2
+
K

2n
‖dk‖2 −

K

n
(XT

k w − yk)T dk

)
+
λσ2

2K3
‖w‖2

− λσ
2

2K3
‖w‖2 +

λσ

2K2

∥∥w − wt
∥∥2

=
σ2

K3

(
K

2n

∥∥XT
k w − yk

∥∥2
+
λ

2
‖w‖2

)

︸ ︷︷ ︸
Fk(w)

+
σ2

K3

(
K

2n
‖dk‖2 −

K

n
(XT

k w − yk)T dk

)

− λσ
2

2K3
‖w‖2 +

λσ

2K2

∥∥w − wt
∥∥2

=
σ2

K3
Fk(w)− σ2

K2n
(XT

k w − yk)T dk +
σ2

2nK2
‖dk‖2 −

λσ2

2K3
‖w‖2 +

λσ

2K2

∥∥w − wt
∥∥2

=
σ2

K3
Fk(w)− σ2

K2n
(Xkdk)Tw − λσ2

2K3
‖w‖2 +

λσ

2K2

∥∥w − wt
∥∥2

+

(
σ2

2nK2
‖dk‖2 +

σ2

K2n
yTk dk

)

︸ ︷︷ ︸
β1

.

Next, since ‖w‖2 = ‖w − wt‖2 − ‖wt‖2 + 2(wt)Tw, we can further write

139

Lk(w) =
σ2

K3
Fk(w)− σ2

K2n
(Xkdk)Tw − λσ2

2K3
(‖w − wt‖2 − ‖wt‖2 + 2(wt)Tw)

+
λσ

2K2

∥∥w − wt
∥∥2

+ β1

=
σ2

K3
Fk(w)− σ2

K2n
(Xkdk)Tw − λσ2

K3
(wt)Tw +

(
λσ

2K2
− λσ2

2K3

)∥∥w − wt
∥∥2

+
λσ2

2K3
‖wt‖2 + β1

︸ ︷︷ ︸
β2

=
σ2

K3

(
Fk(w)−

(
K

n
Xkdk + λwt

)T
w +

λ

2

(
K

σ
− 1

)
‖w − wt‖2

)
+ β2

=
σ2

K3

(
Fk(w)−

(
∇Fk(wt)− K2

σn
Xk(XT

k w
t − yk + αtk)

)T
w +

µ

2
‖w − wt‖2

)
+ β2

=
σ2

K3


Fk(w)−


∇Fk(wt)− K

σ

K

n
Xk(XT

k w
t − yk + αtk)

︸ ︷︷ ︸
ztk




T

w +
µ

2
‖w − wt‖2


+ β2

=
σ2

K3

(
Fk(w)−

(
∇Fk(wt)− (η∇Fk(wt) + gtk)

)T
w +

µ

2
‖w − wt‖2

)
+ β2,

where the last step follows from the claim that ηztk = η∇Fk(wt) + gtk. We now prove the claim.
First, we have

ηztk = η
K

n
Xk(XT

k w
t − yk + αtk)

= η
K

n
Xk(XT

k w
t − yk) + η

K

n
Xkα

t
k

= η

(
K

n
Xk(XT

k w
t − yk) + λwt

)
+ η

(
K

n
Xkα

t
k − λwt

)

(6.18)
= η∇Fk(wt) + η

(
K

n
Xkα

t
k − λwt

)
.

Due to the definition of g0
k in Step 5 of Algorithm 14 as g0

k = η(KnXkα
0
k − λw0), we observe

that the claim holds for t = 0. If we show that

gtk = η

(
K

n
Xkα

t
k − λwt

)

for all t ≥ 0, then we are done. This can be shown by induction. This finishes the proof of
Theorem 46.

140

Chapter 7

Randomized Distributed Mean
Estimation: Accuracy vs
Communication

7.1 Introduction

In this chapter, we address the problem of approximately computing the arithmetic mean of n
vectors, X1, . . . , Xn ∈ Rd, stored in a distributed fashion across n compute nodes, subject to a
constraint on the communication cost.

In particular, we consider a star network topology with a single server at the center and n
nodes connected to it. All nodes send an encoded (possibly via a lossy randomized transforma-
tion) version of their vector to the server, after which the server performs a decoding operation
to estimate the true mean

X
def
=

1

n

n∑

i=1

Xi.

The purpose of the encoding operation is to compress the vector so as to save on communication
cost, which is typically the bottleneck in practical applications.

To better illustrate the setup, consider the naive approach in which all nodes send the
vectors without performing any encoding operation, followed by the application of a simple
averaging decoder by the server. This results in zero estimation error at the expense of maximum
communication cost of ndr bits, where r is the number of bits needed to communicate a single
floating point entry/coordinate of Xi.

7.1.1 Background and Contributions

The distributed mean estimation problem was recently studied in a statistical framework where
it is assumed that the vectors Xi are independent and identically distributed samples from some
specific underlying distribution. In such a setup, the goal is to estimate the true mean of the
underlying distribution [200, 197, 65, 25]. These works formulate lower and upper bounds on
the communication cost needed to achieve the minimax optimal estimation error.

In contrast, we do not make any statistical assumptions on the source of the vectors, and
study the trade-off between expected communication costs and mean square error of the es-
timate. Arguably, this setup is a more robust and accurate model of the distributed mean
estimation problems arising as subproblems in applications such as reduce-all operations within
algorithms for distributed and federated optimization [149, 105, 104, 147, 83]. In these ap-
plications, the averaging operations need to be done repeatedly throughout the iterations of a
master learning/optimization algorithm, and the vectors {Xi} correspond to updates to a global
model/variable. In these applications, the vectors evolve throughout the iterative process in a
complicated pattern, typically approaching zero as the master algorithm converges to optimal-
ity. Hence, their statistical properties change, which renders fixed statistical assumptions not

141

satisfied in practice.
For instance, when training a deep neural network model in a distributed environment,

the vector Xi corresponds to a stochastic gradient based on a minibatch of data stored on
node i. In this setup we do not have any useful prior statistical knowledge about the high-
dimensional vectors to be aggregated. It has recently been observed that when communication
cost is high, which is typically the case for commodity clusters, and even more so in a federated
optimization framework, it is can be very useful to sacrifice on estimation accuracy in favor of
reduced communication [115, 88].

In this chapter we propose a parametric family of randomized methods for estimating the
mean X, with parameters being a set of probabilities pij for i = 1, . . . , n and j = 1, 2, . . . , d and
node centers µi ∈ Rd for i = 1, 2, . . . , n. The exact meaning of these parameters is explained
in Section 7.3. By varying the probabilities, at one extreme, we recover the exact method de-
scribed, enjoying zero estimation error at the expense of full communication cost. At the oppo-
site extreme are methods with arbitrarily small expected communication cost, which is achieved
at the expense of suffering an exploding estimation error. Practical methods appear somewhere
on the continuum between these two extremes, depending on the specific requirements of the
application at hand. Suresh et al. [171] propose a method combining a pre-processing step via
a random structured rotation, followed by randomized binary quantization. Their quantization
protocol arises as a suboptimal special case of our parametric family of methods.

To illustrate our results, consider the special case in which we choose to communicate a
single bit per element of Xi only. We then obtain an O

(
r
nR
)

bound on the mean square error,
where r is number of bits used to represent a floating point value, and R = 1

n

∑n
i=1 ‖Xi−µi1‖2

with µi ∈ R being the average of elements of Xi, and 1 the all-ones vector in Rd (see Example
7 in Section 7.5). Note that this bound improves upon the performance of the method of [171]
in two aspects. First, the bound is independent of d, improving from logarithmic dependence.
Further, due to a preprocessing rotation step, their method requires O(d log d) time to be
implemented on each node, while our method is linear in d. This and other special cases are
summarized in Table 7.1 in Section 7.5.

While the above already improves upon the state of the art, the improved results are in
fact obtained for a suboptimal choice of the parameters of our method (constant probabilities
pij , and node centers fixed to the mean µi). One can decrease the MSE further by optimizing
over the probabilities and/or node centers (see Section 7.6). However, apart from a very low
communication cost regime in which we have a closed form expression for the optimal probabil-
ities, the problem needs to be solved numerically, and hence we do not have expressions for how
much improvement is possible. We illustrate the effect of fixed and optimal probabilities on the
trade-off between communication cost and MSE experimentally on a few selected datasets in
Section 7.6 (see Figure 7.1).

7.1.2 Outline

In Section 7.2 we formalize the concepts of encoding and decoding protocols. In Section 7.3
we describe a parametric family of randomized (and unbiased) encoding protocols and give a
simple formula for the mean squared error. Subsequently, in Section 7.4 we formalize the notion
of communication cost, and describe several communication protocols, which are optimal under
different circumstances. We give simple instantiations of our protocol in Section 7.5, illustrating
the trade-off between communication costs and accuracy. In Section 7.6 we address the question
of the optimal choice of parameters of our protocol. Brief remarks on possible extensions that are
summarized in Section 7.7. Finally, we present experimental application in Federated Learning
in Section 7.8.

7.2 Three Protocols

In this work we consider (randomized) encoding protocols α, communication protocols β and
decoding protocols γ using which the averaging is performed inexactly as follows. Node i com-
putes a (possibly stochastic) estimate of Xi using the encoding protocol, which we denote
Yi = α(Xi) ∈ Rd, and sends it to the server using communication protocol β. By β(Yi) we

142

denote the number of bits that need to be transferred under β. The server then estimates X
using the decoding protocol γ of the estimates:

Y
def
= γ(Y1, . . . , Yn).

The objective of this work is to study the trade-off between the (expected) number of bits
that need to be communicated, and the accuracy of Y as an estimate of X.

In this work we focus on encoders which are unbiased, in the following sense.

Definition 47 (Unbiased and Independent Encoder). We say that encoder α is unbiased if
Eα [α(Xi)] = Xi for all i = 1, 2, . . . , n. We say that it is independent, if α(Xi) is independent
from α(Xj) for all i 6= j.

Example 48 (Identity Encoder). A trivial example of an encoding protocol is the identity
function: α(Xi) = Xi. It is both unbiased and independent. This encoder does not lead to any
savings in communication that would be otherwise infeasible though.

We now formalize the notion of accuracy of estimating X via Y . Since Y can be random,
the notion of accuracy will naturally be probabilistic.

Definition 49 (Estimation Error / Mean Squared Error). The mean squared error of protocol
(α, γ) is the quantity

MSEα,γ(X1, . . . , Xn) = Eα,γ
[
‖Y −X‖2

]

= Eα,γ
[
‖γ(α(X1), . . . , α(Xn))−X‖2

]
.

To illustrate the above concept, we now give a few examples:

Example 50 (Averaging Decoder). If γ is the averaging function, i.e., γ(Y1, . . . , Yn) = 1
n

∑n
i=1 Yi,

then

MSEα,γ(X1, . . . , Xn) =
1

n2
Eα



∥∥∥∥∥
n∑

i=1

α(Xi)−Xi

∥∥∥∥∥

2

 .

The next example generalizes the identity encoder and averaging decoder.

Example 51 (Linear Encoder and Inverse Linear Decoder). Let A : Rd → Rd be linear and

invertible. Then we can set Yi = α(Xi)
def
= AXi and γ(Y1, . . . , Yn)

def
= A−1

(
1
n

∑n
i=1 Yi

)
. If A is

random, then α and γ are random (e.g., a structured random rotation, see [190]). Note that

γ(Y1, . . . , Yn) =
1

n

n∑

i=1

A−1Yi =
1

n

n∑

i=1

Xi = X,

and hence the MSE of (α, γ) is zero.

We shall now prove a simple result for unbiased and independent encoders used in subsequent
sections.

Lemma 52 (Unbiased and Independent Encoder + Averaging Decoder). If the encoder α is
unbiased and independent, and γ is the averaging decoder, then

MSEα,γ(X1, . . . , Xn) =
1

n2

n∑

i=1

Eα
[
‖Yi −Xi‖2

]
=

1

n2

n∑

i=1

Varα [α(Xi)] .

143

Proof. Note that Eα [Yi] = Xi for all i. We have

MSEα(X1, . . . , Xn) = Eα
[
‖Y −X‖2

]

(∗)
=

1

n2
Eα



∥∥∥∥∥
n∑

i=1

Yi −Xi

∥∥∥∥∥

2



(∗∗)
=

1

n2

n∑

i=1

Eα
[
‖Yi − Eα [Yi]‖2

]

=
1

n2

n∑

i=1

Varα [α(Xi)] ,

where (*) follows from unbiasedness and (**) from independence.

One may wish to define the encoder as a combination of two or more separate encoders:
α(Xi) = α2(α1(Xi)). See [171] for an example where α1 is a random rotation and α2 is binary
quantization.

7.3 A Family of Randomized Encoding Protocols

Let X1, . . . , Xn ∈ Rd be given. We shall write Xi = (Xi(1), . . . , Xi(d)) to denote the entries of
vector Xi. In addition, with each i we also associate a parameter µi ∈ R. We refer to µi as the
center of data at node i, or simply as node center. For now, we assume these parameters are
fixed and we shall later comment on how to choose them optimally.

We shall define support of α on node i to be the set Si
def
= {j : Yi(j) 6= µi}. We now define

two parametric families of randomized encoding protocols. The first results in Si of random
size, the second has Si of a fixed size.

7.3.1 Encoding Protocol with Variable-size Support

With each pair (i, j) we associate a parameter 0 < pij ≤ 1, representing a probability. The
collection of parameters {pij , µi} defines an encoding protocol α as follows:

Yi(j) =

{
Xi(j)
pij
− 1−pij

pij
µi with probability pij ,

µi with probability 1− pij .
(7.1)

Remark 53. Enforcing the probabilities to be positive, as opposed to nonnegative, leads to
vastly simplified notation in what follows. However, it is more natural to allow pij to be zero,
in which case we have Yi(j) = µi with probability 1. This raises issues such as potential lack
of unbiasedness, which can be resolved, but only at the expense of a larger-than-reasonable
notational overload.

In the rest of this section, let γ be the averaging decoder (Example 50). Since γ is fixed and
deterministic, we shall for simplicity write Eα [·] instead of Eα,γ [·]. Similarly, we shall write
MSEα(·) instead of MSEα,γ(·).

We now prove two lemmas describing properties of the encoding protocol α. Lemma 54
states that the protocol yields an unbiased estimate of the average X and Lemma 55 provides
the expected mean square error of the estimate.

Lemma 54 (Unbiasedness). The encoder α defined in (7.1) is unbiased. That is, Eα [α(Xi)] =
Xi for all i. As a result, Y is an unbiased estimate of the true average: Eα [Y] = X.

Proof. Due to linearity of expectation, it is enough to show that Eα [Y (j)] = X(j) for all j. Since
Y (j) = 1

n

∑n
i=1 Yi(j) and X(j) = 1

n

∑n
i=1Xi(j), it suffices to show that Eα [Yi(j)] = Xi(j):

Eα [Yi(j)] = pij

(
Xi(j)

pij
− 1− pij

pij
µi(j)

)
+ (1− pij)µi(j) = Xi(j),

144

and the claim is proved.

Lemma 55 (Mean Squared Error). Let α = α(pij , µi) be the encoder defined in (7.1). Then

MSEα(X1, . . . , Xn) =
1

n2

∑

i,j

(
1

pij
− 1

)
(Xi(j)− µi)2

. (7.2)

Proof. Using Lemma 52, we have

MSEα(X1, . . . , Xn) =
1

n2

n∑

i=1

Eα
[
‖Yi −Xi‖2

]

=
1

n2

n∑

i=1

Eα




d∑

j=1

(Yi(j)−Xi(j))
2




=
1

n2

n∑

i=1

d∑

j=1

Eα
[
(Yi(j)−Xi(j))

2
]
. (7.3)

For any i, j we further have

Eα
[
(Yi(j)−Xi(j))

2
]

= pij

(
Xi(j)

pij
− 1− pij

pij
µi −Xi(j)

)2

+ (1− pij) (µi −Xi(j))
2

=
(1− pij)2

pij
(Xi(j)− µi)2

+ (1− pij) (µi −Xi(j))
2

=

(
1− pij
pij

)
(Xi(j)− µi)2

.

It suffices to substitute the above into (7.3).

7.3.2 Encoding Protocol with Fixed-size Support

Here we propose an alternative encoding protocol, one with deterministic support size. As we
shall see later, this results in deterministic communication cost.

Let σk(d) denote the set of all subsets of {1, 2, . . . , d} containing k elements. The protocol
α with a single integer parameter k is then working as follows: First, each node i samples
Di ∈ σk(d) uniformly at random, and then sets

Yi(j) =

{
dXi(j)
k − d−k

k µi if j ∈ Di,
µi otherwise.

(7.4)

Note that due to the design, the size of the support of Yi is always k, i.e., |Si| = k. Naturally,
we can expect this protocol to perform practically the same as the protocol (7.1) with pij = k/d,
for all i, j. Lemma 57 indeed suggests this is the case. While this protocol admits a more efficient
communication protocol (as we shall see in Section), protocol (7.1) enjoys a larger parameters
space, ultimately leading to better MSE. We comment on this tradeoff in subsequent sections.

As for the data-dependent protocol, we prove basic properties. The proofs are similar to
those of Lemmas 54 and 55 and we defer them to Appendix 7.9.

Lemma 56 (Unbiasedness). The encoder α defined in (7.1) is unbiased. That is, Eα [α(Xi)] =
Xi for all i. As a result, Y is an unbiased estimate of the true average: Eα [Y] = X.

Lemma 57 (Mean Squared Error). Let α = α(k) be encoder defined as in (7.4). Then

MSEα(X1, . . . , Xn) =
1

n2

n∑

i=1

d∑

j=1

(
d− k
k

)
(Xi(j)− µi)2

. (7.5)

145

7.4 Communication Protocols

Having defined the encoding protocols α, we need to specify the way the encoded vectors
Yi = α(Xi), for i = 1, 2, . . . , n, are communicated to the server. Given a specific communication
protocol β, we write β(Yi) to denote the (expected) number of bits that are communicated by
node i to the server. Since Yi = α(Xi) is in general not deterministic, β(Yi) can be a random
variable.

Definition 58 (Communication Cost). The communication cost of communication protocol β
under randomized encoding α is the total expected number of bits transmitted to the server:

Cα,β(X1, . . . , Xn) = Eα

[
n∑

i=1

β(α(Xi))

]
. (7.6)

Given Yi, a good communication protocol is able to encode Yi = α(Xi) using a few bits
only. Let r denote the number of bits used to represent a floating point number. Let r̄ be the
the number of bits representing µi.

In the rest of this section we describe several communication protocols β and calculate their
communication cost.

7.4.1 Naive

Represent Yi = α(Xi) as d floating point numbers. Then for all encoding protocols α and all i
we have β(α(Xi)) = dr, whence

Cα,β = Eα

[
n∑

i=1

β(α(Xi))

]
= ndr.

7.4.2 Varying-length

We will use a single variable for every element of the vector Yi, which does not have constant
size. The first bit decides whether the value represents µi or not. If yes, end of variable, if not,
next r bits represent the value of Yi(j). In addition, we need to communicate µi, which takes
r̄ bits1. We thus have

β(α(Xi)) = r̄ +

d∑

j=1

(
1(Yi(j)=µi) + (r + 1)× 1(Yi(j)6=µi)

)
, (7.7)

where 1e is the indicator function of event e. The expected number of bits communicated is
given by

Cα,β = Eα

[
n∑

i=1

β(α(Xi)))

]
(7.7)
= nr̄ +

n∑

i=1

d∑

j=1

(1− pij + (r + 1)pij)

= nr̄ +

n∑

i=1

d∑

j=1

(1 + rpij)

In the special case when pij = p > 0 for all i, j, we get

Cα,β = n(r̄ + d+ pdr).

1The distinction here is because µi can be chosen to be data independent, such as 0, so we don’t have to
communicate anything (i.e., r̄ = 0)

146

7.4.3 Sparse Communication Protocol for Encoder (7.1)

We can represent Yi as a sparse vector; that is, a list of pairs (j, Yi(j)) for which Yi(j) 6= µi.
The number of bits to represent each pair is dlog(d)e+ r. Any index not found in the list, will
be interpreted by server as having value µi. Additionally, we have to communicate the value of
µi to the server, which takes r̄ bits. We assume that the value d, size of the vectors, is known
to the server. Hence,

β(α(Xi)) = r̄ +

d∑

j=1

1(Yi(j)6=µi) × (dlog de+ r) .

Summing up through i and taking expectations, the the communication cost is given by

Cα,β = Eα

[
n∑

i=1

β(α(Xi))

]
= nr̄ + (dlog de+ r)

n∑

i=1

d∑

j=1

pij . (7.8)

In the special case when pij = p > 0 for all i, j, we get

Cα,β = nr̄ + (dlog de+ r)ndp.

Remark 59. A practical improvement upon this could be to (without loss of generality) assume
that the pairs (j, Yi(j)) are ordered by j, i.e., we have {(js, Yi(js))}ks=1 for some k and j1 <
j2 < · · · < jk. Further, let us denote j0 = 0. We can then use a variant of variable-length
quantity [183] to represent the set {(js− js−1, Yi(js))}ks=1. With careful design one can hope to
reduce the log(d) factor in the average case. Nevertheless, this does not improve the worst case
analysis we focus on in this chapter, and hence we do not delve deeper in this.

7.4.4 Sparse Communication Protocol for Encoder (7.4)

We now describe a sparse communication protocol compatible only with fixed length encoder
defined in (7.4). Note that subset selection can be compressed in the form of a random seed,
letting us avoid the log(d) factor in (7.8). This includes the protocol defined in (7.4) but also
(7.1) with uniform probabilities pij .

In particular, we can represent Yi as a sparse vector containing the list of the values for
which Yi(j) 6= µi, ordered by j. Additionally, we need to communicate the value µi (using
r̄ bits) and a random seed (using r̄s bits), which can be used to reconstruct the indices j,
corresponding to the communicated values. Note that for any fixed k defining protocol (7.4),
we have |Si| = k. Hence, communication cost is deterministic:

Cα,β =

n∑

i=1

β(α(Xi)) = n(r̄ + r̄s) + nkr. (7.9)

In the case of the variable-size-support encoding protocol (7.1) with pij = p > 0 for all i, j,
the sparse communication protocol described here yields expected communication cost

Cα,β = Eα

[
n∑

i=1

β(α(Xi))

]
= n(r̄ + r̄s) + ndpr. (7.10)

7.4.5 Binary

If the elements of Yi take only two different values, Y mini or Y maxi , we can use a binary com-
munication protocol. That is, for each node i, we communicate the values of Y mini and Y maxi

(using 2r bits), followed by a single bit per element of the array indicating whether Y maxi or
Y mini should be used. The resulting (deterministic) communication cost is

Cα,β =

n∑

i=1

β(α(Xi)) = n(2r) + nd. (7.11)

147

7.4.6 Discussion

In the above, we have presented several communication protocols of different complexity. How-
ever, it is not possible to claim any of them is the most efficient one. Which communication
protocol is the best, depends on the specifics of the used encoding protocol. Consider the ex-
treme case of encoding protocol (7.1) with pij = 1 for all i, j. The naive communication protocol
is clearly the most efficient, as all other protocols need to send some additional information.

However, in the interesting case when we consider small communication budget, the sparse
communication protocols are the most efficient. Therefore, in the following sections, we focus
primarily on optimizing the performance using these protocols.

7.5 Examples

In this section, we highlight on several instantiations of our protocols, recovering existing tech-
niques and formulating novel ones. We comment on the resulting trade-offs between communi-
cation cost and estimation error.

7.5.1 Binary Quantization

We start by recovering an existing method, which turns every element of the vectors Xi into a
particular binary representation.

Example 60. If we set the parameters of protocol (7.1) as µi = Xmin
i and pij =

Xi(j)−Xmini

∆i
,

where ∆i
def
= Xmax

i − Xmin
i (assume, for simplicity, that ∆i 6= 0), we exactly recover the

quantization algorithm proposed in [171]:

Yi(j) =

{
Xmax
i with probability

Xi(j)−Xmini

∆i
,

Xmin
i with probability

Xmaxi −Xi(j)
∆i

.
(7.12)

Using the formula (7.2) for the encoding protocol α, we get

MSEα =
1

n2

n∑

i=1

d∑

j=1

Xmax
i −Xi(j)

Xi(j)−Xmin
i

(
Xi(j)−Xmin

i

)2 ≤ d

2n
· 1

n

n∑

i=1

‖Xi‖2.

This exactly recovers the MSE bound established in [171, Theorem 1]. Using the binary commu-
nication protocol yields the communication cost of 1 bit per element if Xi, plus a two real-valued
scalars (7.11).

Remark 61. If we use the above protocol jointly with randomized linear encoder and decoder
(see Example 51), where the linear transform is the randomized Hadamard transform, we recover
the method described in [171, Section 3] which yields improved MSEα = 2 log d+2

n · 1n
∑n
i=1 ‖Xi‖2

and can be implemented in O(d log d) time.

7.5.2 Sparse Communication Protocols

Now we move to comparing the communication costs and estimation error of various instantia-
tions of the encoding protocols, utilizing the deterministic sparse communication protocol and
uniform probabilities.

For the remainder of this section, let us only consider instantiations of our protocol where
pij = p > 0 for all i, j, and assume that the node centers are set to the vector averages, i.e.,

µi = 1
d

∑d
j=1Xi(j). Denote R = 1

n

∑n
i=1

∑d
j=1(Xi(j) − µi)2. For simplicity, we also assume

that |S| = nd, which is what we can in general expect without any prior knowledge about the
vectors Xi.

The properties of the following examples follow from Equations (7.2) and (7.10). When
considering the communication costs of the protocols, keep in mind that the trivial benchmark
is Cα,β = ndr, which is achieved by simply sending the vectors unmodified. Communication

148

Example p Cα,β MSEα,γ
Example 62 (Full) 1 ndr 0

Example 63 (Log MSE) 1/ log d n(r̄s + r̄) + ndr
log d (log(d)− 1)Rn

Example 64 (1-bit) 1/r n(r̄s + r̄) + nd (r − 1)Rn
Example 66 (below 1-bit) 1/d n(r̄s + r̄) + nr (d− 1)Rn

Table 7.1: Summary of achievable communication cost and estimation error, for various choices
of probability p.

cost of Cα,β = nd corresponds to the interesting special case when we use (on average) one bit
per element of each Xi.

Example 62 (Full communication). If we choose p = 1, we get

Cα,β = n(r̄s + r̄) + ndr, MSEα,γ = 0.

In this case, the encoding protocol is lossless, which ensures MSE = 0. Note that in this case,
we could get rid of the n(r̄s + r̄) factor by using naive communication protocol.

Example 63 (Log MSE). If we choose p = 1/ log d, we get

Cα,β = n(r̄s + r̄) +
ndr

log d
, MSEα,γ =

log(d)− 1

n
R.

This protocol order-wise matches the MSE of the method in Remark 61. However, as long as
d > 2r, this protocol attains this error with smaller communication cost. In particular, this is
on expectation less than a single bit per element of Xi. Finally, note that the factor R is always
smaller or equal to the factor 1

n

∑n
i=1 ‖Xi‖2 appearing in Remark 61.

Example 64 (1-bit per element communication). If we choose p = 1/r, we get

Cα,β = n(r̄s + r̄) + nd, MSEα,γ =
r − 1

n
R.

This protocol communicates on expectation single bit per element of Xi (plus additional r̄s + r̄
bits per client), while attaining bound on MSE of O(r/n). To the best of out knowledge, this
is the first method to attain this bound without additional assumptions.

Example 65 (Alternative 1-bit per element communication). If we choose p = d−r̄s−r̄
dr , we get

Cα,β = nd, MSEα,γ =
dr

d−r̄s−r̄ − 1

n
R.

This alternative protocol attains on expectation exactly single bit per element of Xi, with (a
slightly more complicated) O(r/n) bound on MSE.

Example 66 (Below 1-bit communication). If we choose p = 1/d, we get

Cα,β = n(r̄s + r̄) + nr, MSEα,γ =
d− 1

n
R.

This protocol attains the MSE of protocol in Example 60 while at the same time communicating
on average significantly less than a single bit per element of Xi.

We summarize these examples in Table 7.1.
Using the deterministic sparse protocol, there is an obvious lower bound on the commu-

nication cost — n(r̄s + r̄). We can bypass this threshold by using the sparse protocol, with
a data-independent choice of µi, such as 0, setting r̄ = 0. By setting p = ε/d(dlog de + r),
we get arbitrarily small expected communication cost of Cα,β = ε, and the cost of exploding
estimation error MSEα,γ = O(1/εn).

149

Note that all of the above examples have random communication costs. What we present
is the expected communication cost of the protocols. All the above examples can be modified
to use the encoding protocol with fixed-size support defined in (7.4) with the parameter k set
to the value of pd for corresponding p used above, to get the same results. The only practical
difference is that the communication cost will be deterministic for each node, which can be
useful for certain applications.

7.6 Optimal Encoders

Here we consider (α, β, γ), where α = α(pij , µi) is the encoder defined in (7.1), β is the associated
the sparse communication protocol, and γ is the averaging decoder. Recall from Lemma 7.2
and (7.8) that the mean square error and communication cost are given by:

MSEα,γ =
1

n2

∑

i,j

(
1

pij
− 1

)
(Xi(j)− µi)2

, Cα,β = nr̄ + (dlog de+ r)

n∑

i=1

d∑

j=1

pij . (7.13)

Having these closed-form formulae as functions of the parameters {pij , µi}, we can now ask
questions such as:

1. Given a communication budget, which encoding protocol has the smallest mean squared
error?

2. Given a bound on the mean squared error, which encoder suffers the minimal communi-
cation cost?

Let us now address the first question; the second question can be handled in a similar fashion.
In particular, consider the optimization problem

minimize
∑

i,j

(
1

pij
− 1

)
(Xi(j)− µi)2

subject to µi ∈ R, i = 1, 2, . . . , n∑

i,j

pij ≤ B (7.14)

0 < pij ≤ 1, i = 1, 2, . . . , n; j = 1, 2, . . . , d, (7.15)

where B > 0 represents a bound on the part of the total communication cost in (7.13) which
depends on the choice of the probabilities pij .

Note that while the constraints in (7.14) are convex (they are linear), the objective is not
jointly convex in {pij , µi}. However, the objective is convex in {pij} and convex in {µi}. This
suggests a simple alternating minimization heuristic for solving the above problem:

1. Fix the probabilities and optimize over the node centers,

2. Fix the node centers and optimize over probabilities.

These two steps are repeated until a suitable convergence criterion is reached. Note that the
first step has a closed form solution. Indeed, the problem decomposes across the node centers to
n univariate unconstrained convex quadratic minimization problems, and the solution is given
by

µi =

∑
j wijXi(j)∑

j wij
, wij

def
=

1

pij
− 1. (7.16)

The second step does not have a closed form solution in general; we provide an analysis of this
step in Section 7.6.1.

Remark 67. Note that the upper bound
∑
i,j(Xi(j)−µi)2/pij on the objective is jointly convex

in {pij , µi}. We may therefore instead optimize this upper bound by a suitable convex optimiza-
tion algorithm.

150

Remark 68. An alternative and a more practical model to (7.14) is to choose per-node budgets
B1, . . . , Bn and require

∑
j pij ≤ Bi for all i. The problem becomes separable across the nodes,

and can therefore be solved by each node independently. If we set B =
∑
iBi, the optimal

solution obtained this way will lead to MSE which is lower bounded by the MSE obtained through
(7.14).

7.6.1 Optimal Probabilities for Fixed Node Centers

Let the node centers µi be fixed. Problem (7.14) (or, equivalently, step 2 of the alternating
minimization method described above) then takes the form

minimize
∑

i,j

(Xi(j)− µi)2

pij

subject to
∑

i,j

pij ≤ B (7.17)

0 < pij ≤ 1, i = 1, 2, . . . n, j = 1, 2, . . . , d.

Let S = {(i, j) : Xi(j) 6= µi}. Notice that as long as B ≥ |S|, the optimal solution is to set
pij = 1 for all (i, j) ∈ S and pij = 0 for all (i, j) /∈ S.2 In such a case, we have MSEα,γ = 0.
Hence, we can without loss of generality assume that B ≤ |S|.

While we are not able to derive a closed-form solution to this problem, we can formulate
upper and lower bounds on the optimal estimation error, given a bound on the communication
cost formulated via B.

Theorem 69 (MSE-Optimal Protocols subject to a Communication Budget). Consider prob-
lem (7.17) and fix any B ≤ |S|. Using the sparse communication protocol β, the optimal
encoding protocol α has communication complexity

Cα,β = nr̄ + (dlog de+ r)B, (7.18)

and the mean squared error satisfies the bounds

(
1

B
− 1

)
R

n
≤MSEα,γ ≤

(|S|
B
− 1

)
R

n
, (7.19)

where R = 1
n

∑n
i=1

∑d
j=1(Xi(j) − µi)

2 = 1
n

∑n
i=1 ‖Xi − µi1‖2. Let aij = |Xi(j) − µi| and

W =
∑
i,j aij. If, moreover, B ≤ ∑(i,j)∈S aij/max(i,j)∈S aij (which is true, for instance, in

the ultra-low communication regime with B ≤ 1), then

MSEα,γ =
W 2

n2B
− R

n
. (7.20)

Proof. Setting pij = B/|S| for all (i, j) ∈ S leads to a feasible solution of (7.17). In view of
(7.13), one then has

MSEα,γ =
1

n2

(|S|
B
− 1

) ∑

(i,j)∈S
(Xi(j)− µi)2

=

(|S|
B
− 1

)
R

n
,

where R = 1
n

∑n
i=1

∑d
j=1(Xi(j)− µi)2 = 1

n

∑n
i=1 ‖Xi − µi1‖2.

If we relax the problem by removing the constraints pij ≤ 1, the optimal solution satisfies
aij/pij = θ > 0 for all (i, j) ∈ S. At optimality the bound involving B must be tight, which
leads to

∑
(i,j)∈S aij/θ = B, whence θ = 1

B

∑
(i,j)∈S aij . So, pij = aijB/

∑
(i,j)∈S aij . The

2We interpret 0/0 as 0 and do not worry about infeasibility. These issues can be properly formalized by
allowing pij to be zero in the encoding protocol and in (7.17). However, handling this singular situation requires
a notational overload which we are not willing to pay.

151

optimal MSE therefore satisfies the lower bound

MSEα,γ ≥
1

n2

∑

(i,j)∈S

(
1

pij
− 1

)
(Xi(j)− µi)2

=
1

n2B
W 2 − R

n
,

where W
def
=
∑

(i,j)∈S aij ≥
(∑

(i,j)∈S a
2
ij

)1/2

= (nR)1/2. Therefore, MSEα,γ ≥
(

1
B − 1

)
R
n . If

B ≤ ∑(i,j)∈S aij/max(i,j)∈S aij , then pij ≤ 1 for all (i, j) ∈ S, and hence we have optimality.

(Also note that, by Cauchy-Schwarz inequality, W 2 ≤ nR|S|.)

7.6.2 Trade-off Curves

To illustrate the trade-offs between communication cost and estimation error (MSE) achievable
by the protocols discussed in this section, we present simple numerical examples in Figure 7.1,
on three synthetic data sets with n = 16 and d = 512. We choose an array of values for B,
directly bounding the communication cost via (7.18), and evaluate the MSE (7.2) for three
encoding protocols (we use the sparse communication protocol and averaging decoder). All these
protocols have the same communication cost, and only differ in the selection of the parameters
pij and µi. In particular, we consider

(i) uniform probabilities pij = p > 0 with average node centers µi = 1
d

∑d
j=1Xi(j) (blue

dashed line),

(ii) optimal probabilities pij with average node centers µi = 1
d

∑d
j=1Xi(j) (green dotted line),

and

(iii) optimal probabilities with optimal node centers, obtained via the alternating minimization
approach described above (red solid line).

In order to put a scale on the horizontal axis, we assumed that r = 16. Note that, in practice,
one would choose r to be as small as possible without adversely affecting the application utilizing
our distributed mean estimation method. The three plots represent Xi with entries drawn in an
i.i.d. fashion from Gaussian (N (0, 1)), Laplace (L(0, 1)) and chi-squared (χ2(2)) distributions,
respectively. As we can see, in the case of non-symmetric distributions, it is not necessarily
optimal to set the node centers to averages.

As expected, for fixed node centers, optimizing over probabilities results in improved per-
formance, across the entire trade-off curve. That is, the curve shifts downwards. In the first
two plots based on data from symmetric distributions (Gaussian and Laplace), the average
node centers are nearly optimal, which explains why the red solid and green dotted lines co-
alesce. This can be also established formally. In the third plot, based on the non-symmetric
chi-squared data, optimizing over node centers leads to further improvement, which gets more
pronounced with increased communication budget. It is possible to generate data where the
difference between any pair of the three trade-off curves becomes arbitrarily large.

Finally, the black cross represents performance of the quantization protocol from Exam-
ple 60. This approach appears as a single point in the trade-off space due to lack of any
parameters to be fine-tuned.

7.7 Further Considerations

In this section we outline further ideas worth consideration. However, we leave a detailed
analysis to future work.

7.7.1 Beyond Binary Encoders

We can generalize the binary encoding protocol (7.1) to a k-ary protocol. To illustrate the
concept without unnecessary notation overload, we present only the ternary (i.e., k = 3) case.

Let the collection of parameters {p′ij , p′′ij , X̄ ′i, X̄ ′′i } define an encoding protocol α as follows:

152

Figure 7.1: Trade-off curves between communication cost and estimation error (MSE) for four
protocols. The plots correspond to vectors Xi drawn in an i.i.d. fashion from Gaussian, Laplace
and χ2 distributions, from left to right. The black cross marks the performance of binary
quantization (Example 60).

Yi(j) =





X̄ ′i with probability p′ij ,

X̄ ′′i with probability p′′ij ,
1

1−p′ij−p′′ij

(
Xi(j)− p′ijX̄ ′i − p′′ijX̄ ′′i

)
with probability 1− p′ij − p′′ij .

(7.21)

It is straightforward to generalize Lemmas 54 and 55 to this case. We omit the proofs for
brevity.

Lemma 70 (Unbiasedness). The encoder α defined in (7.21) is unbiased. That is, Eα [α(Xi)] =
Xi for all i. As a result, Y is an unbiased estimate of the true average: Eα [Y] = X.

Lemma 71 (Mean Squared Error). Let α = α
(
p′ij , p

′′
ij , X̄

′
i, X̄

′′
i

)
be the protocol defined in

(7.21). Then

MSEα(X1, . . . , Xn) =
1

n2

n∑

i=1

d∑

j=1

(
p′ij
(
Xi(j)− X̄ ′i

)2
+ p′′ij

(
Xi(j)− X̄ ′′i

)2
+
(
p′ijX̄

′
i + p′′ijX̄

′′
i

)2)
.

We expect the k-ary protocol to lead to better (lower) MSE bounds, but at the expense of
an increase in communication cost. Whether or not the trade-off offered by k > 2 is better than
that for the k = 2 case investigated in this work is an interesting question to consider.

7.7.2 Preprocessing via Random Rotations

Following the idea proposed in [171], one can explore an encoding protocol αQ which arises as
the composition of a random rotation, Q, applied to Xi for all i, followed by the protocol α
described in Section 7.3. Letting Zi = QXi and Z = 1

n

∑
i Zi, we thus have

Yi = α(Zi), i = 1, 2, . . . , n.

With this protocol we associate the decoder γ(Y1, . . . , Yn) = 1
n

∑n
i=1Q

−1Yi.
Note that

MSEα,γ = E
[
‖γ(Y1, . . . , Yn)−X‖2

]

= E
[∥∥Q−1γ(Y1, . . . , Yn)−Q−1Z

∥∥2
]

= E
[
‖γ(α(Z1), . . . , α(Zn))− Z‖2

]

= E
[
E
[
‖γ(α(Z1), . . . , α(Zn))− Z‖2 | Q

]]
.

This approach is motivated by the following observation: a random rotation can be identified
by a single random seed, which is easy to communicate to the server without the need to
communicate all floating point entries defining Q. So, a random rotation pre-processing step

153

implies only a minor communication overhead. However, if the preprocessing step helps to
dramatically reduce the MSE, we get an improvement. Note that the inner expectation above
is the formula for MSE of our basic encoding-decoding protocol, given that the data is Zi = QXi

instead of {Xi}. The outer expectation is over Q. Hence, we would like the to find a mapping
Q which tends to transform the data {Xi} into new data {Zi} with better MSE, in expectation.

From now on, for simplicity assume the node centers are set to the average, i.e., Z̄i =
1
d

∑d
j=1 Zi(j). For any vector x ∈ Rd, define

σ(x)
def
=

d∑

j=1

(x(j)− x̄)2 = ‖x− x̄1‖2,

where x̄ = 1
d

∑
j x(j) and 1 is the vector of all ones. Further, for simplicity assume that pij = p

for all i, j. Then using Lemma 55, we get

MSE =
1− p
pn2

n∑

i=1

EQ
[
‖Zi − Z̄i1‖2

]
=

1− p
pn2

n∑

i=1

EQ [σ(QXi)] .

It is interesting to investigate whether choosing Q as a random rotation, rather than identity
(which is the implicit choice done in previous sections), leads to improvement in MSE, i.e.,
whether we can in some well-defined sense obtain an inequality of the type

∑

i

EQ [σ(QXi)]�
∑

i

σ(Xi).

This is the case for the quantization protocol proposed in [171], which arises as a special case
of our more general protocol. This is because the quantization protocol is suboptimal within
our family of encoders. Indeed, as we have shown, with a different choice of the parameter we
can obtained results which improve, in theory, on the rotation + quantization approach. This
suggests that perhaps combining an appropriately chosen rotation pre-processing step with our
optimal encoder, it may be possible to achieve further improvements in MSE for any fixed
communication budget. Finding suitable random rotations Q requires a careful study which we
leave to future research.

7.8 Application to Federated Learning

In this Section, we experiment with applying some of these techniques in the context of Fed-
erated learning [83, 115, 82]. As discussed in previous chapter, by Federated Optimization or
Learning we refer to a setting where we train a shared global model under the coordination of
a central server, from a federation of participating devices. The participating devices (clients)
are typically large in number and have slow or unstable internet connections. A motivating
example for federated optimization arises when the training data is kept locally on users’ mo-
bile devices, and the devices are used as nodes performing computation on their local data in
order to update a global model. The framework differs from conventional distributed machine
learning [147, 104, 167, 199, 42, 33] due to the the large number of clients, highly unbalanced
and non-i.i.d. data and unreliable network connections.

Federated learning offers distinct practical advantages compared to performing learning in
the data center. The model update is generally less privacy-sensitive than the data itself,
and the server never needs to store these updates. Thus, when applicable, federated learning
can significantly reduce privacy and security risks by limiting the attack surface to only the
device, rather than the device and the cloud. This approach also leverages the data-locality
and computational power of the large number of mobile devices.

For simplicity, we consider synchronized algorithms for federated learning [115, 30], where
a typical round consists of the following steps:

1. A subset of clients is selected, each of which downloads the current model.
2. Each client in the subset computes an updated model based on their local data.

154

3. The updated models are sent from the selected clients to the sever.
4. The server aggregates these models (typically by averaging) to construct an improved

global model.

A naive implementation of the above framework requires that each client sends a full model
(or a full model gradient) back to the server in each round. For large models, this step is
likely to be the bottleneck of federated learning due to the asymmetric property of internet
connections: the uplink is typically much slower than downlink. The US average broadband
speed was 55.0Mbps download vs. 18.9Mbps upload, with some ISPs being significantly more
asymmetric, e.g., Xfinity at 125Mbps down vs. 15Mbps up [1]. Cryptographic protocols used to
protect individual update [15] further increase the size of the data needed to be communicated
back to server. It is therefore important to investigate methods which can reduce the uplink
communication cost. In this section, we study two general approaches:

• Structured updates, where we learn an update from a restricted lower-dimensional space.

• Sketched updates, where we learn a full model update, but then compress it before sending
to the server.

These approaches can be combined, e.g., first learning a structured update and then sketching
it; however, we do not experiment with this combination in the current work.

In the following, we formally describe the problem. The goal of federated learning is to learn
a model with parameters embodied in a real matrix W ∈ Rd1×d2 from data stored across a large
number of clients. We first provide a communication-naive version of the federated learning.
In round t ≥ 0, the server distributes the current model Wt to a subset St of nt clients (for
example, to a selected subset of clients whose devices are plugged into power, have access to
broadband, and are idle). These clients independently update the model based on their local
data. Let the updated local models be W 1

t ,W
2
t , . . . ,W

nt
t , so the updates can be written as

Hi
t := W i

t −Wt, for i ∈ St. Each selected client then sends the update back to the sever, where
the global update is computed by aggregating3 all the client-side updates:

Wt+1 = Wt + ηtHt, Ht :=
1

nt

∑

i∈St
Hi
t .

The sever chooses the learning rate ηt (for simplicity, we choose ηt = 1). Recent works show
that a careful choice of the server-side learning rate can lead to faster convergence [105, 104, 83].

In this chapter, we describe federated learning for neural networks, where we use a separate
2D matrix W to represent the parameters of each layer. We suppose that W gets right-
multiplied, i.e., d1 and d2 represent the output and input dimensions respectively. Note that
the parameters of a fully connected layer are naturally represented as 2D matrices. However,
the kernel of a convolutional layer is a 4D tensor of the shape #input×width×height×#output.
In such a case, W is reshaped from the kernel to the shape (#input×width×height)×#output.

The goal of increasing communication efficiency of federated learning is to reduce the cost of
sending Hi

t to the server. We propose two general strategies of achieving this, discussed next.

7.8.1 Structured Update

The first type of communication efficient update restricts the updates Hi
t to have a pre-specified

structure. Two types of structures are considered:
Low rank. We enforce Hi

t ∈ Rd1×d2 to be low-rank matrices of rank at most k, where k is
a fixed number. We express Hi

t as the product of two matrices: Hi
t = AitB

i
t, where Ait ∈ Rd1×k,

Bit ∈ Rk×d2 , and Ait is generated randomly and fixed, and only Bit is optimized. Note that Ait
can then be compressed in the form of a random seed and the clients only need to send Bit to
the server. We also tried fixing Bit and training Ait, as well as training both Ait and Bit; neither
performed as well. Our approach seems to perform as well as the best techniques considered in
[50],

3A weighted sum might be used to replace the average based on specific implementations.

155

Random mask. We restrict the update Hi
t to be sparse matrices, following a pre-defined

random sparsity pattern (i.e., a random mask). The pattern is generated afresh in each round
and for each client. Similar to the low-rank approach, the sparse pattern can be fully specified
by a random seed, and therefore it is only required to send the values of the non-zeros entries
of Hi

t . This strategy can be seen as the combination of the master training method and a
randomized block coordinate minimization approach [143, 140].

7.8.2 Sketched Update

The second type of communication-efficient update, which we call sketched, first computes the
full unconstrained Hi

t , and then encodes the update in a (lossy) compressed form before sending
to the server. The server decodes the updates before doing the aggregation. Such sketching
methods have application in many domains [184]. This technique corresponds to the general
focus of previous sections of this chapter.

We propose two ways of performing the sketching:
Subsampling. Instead of sending Hi

t , each client only communicates matrix Ĥi
t which

is formed from a random subset of the (scaled) values of Hi
t . The server then averages the

sampled updates, producing the global update Ĥt. This can be done so that the average of the

sampled updates is an unbiased estimator of the true average: E
[
Ĥt

]
= Ht. Similar to the

random mask structured update, the mask is randomized independently for each client in each
round, and the mask itself is stored as a synchronized seed. It was recently shown that, in a
certain setting, the expected iterates of SGD converge to the optimal point [152]. Perturbing
the iterates by a random matrix of zero mean, which is what our subsampling strategy would
do, does not affect this type of convergence.

Probabilistic quantization. Another way of compressing the updates is by quantizing
the weights. We first describe the algorithm of quantizing each scalar to one bit. Consider the
update Hi

t , let h = (h1, . . . , hd1×d2) = vec(Hi
t), and let hmax = maxj(hj), hmin = minj(hj).

The compressed update of h, denoted by h̃, is generated as follows:

h̃j =

{
hmax, with probability

hj−hmin

hmax−hmin

hmin, with probability
hmax−hj
hmax−hmin

.

It is easy to show that h̃ is an unbiased estimator of h. This method provides 32× of compression
compared to a 4 byte float. One can also generalize the above to more than 1 bit for each scalar.
For b-bit quantization, we first equally divide [hmin, hmax] into 2b intervals. Suppose hi falls
in the interval bounded by h′ and h′′. The quantization operates by replacing hmin and hmax

of the above equation by h′ and h′′, respectively. Incremental, randomized and distributed
optimization algorithms can be similarly analyzed in a quantized updates setting [144, 66, 64].

Improving the quantization by structured random rotations. The above 1-bit and
multi-bit quantization approaches work best when the scales are approximately equal across
different dimensions. For example, when max = 100 and min = −100 and most of values are 0,
the 1-bit quantization will lead to large quantization error. We note that performing a random
rotation of h before the quantization (multiplying h by an orthogonal matrix) will resolve this
issue. In the decoding phase, the server needs to perform the inverse rotation before aggregating
all the updates. Note that in practice, the dimension of h can be as high as d = 1e6, and it is
computationally prohibitive to generate (O(d3)) and apply (O(d2)) a rotation matrix. In this
work, we use a type of structured rotation matrix which is the product of a Walsh-Hadamard
matrix and a binary diagonal matrix, motivated by the recent advance in this topic [190].
This reduces the computational complexity of generating and applying the matrix to O(d) and
O(d log d).

7.8.3 Experiments

We conducted the experiments using federated learning to train deep neural networks for the
CIFAR-10 image classification task [90]. There are 50,000 training examples, which we par-
titioned into 100 clients each containing 500 training examples. The model architecture was

156

taken from the TensorFlow tutorial [2], which consists of two convolutional layers followed by
two fully connected layers and then a linear transformation layer to produce logits, for a total
of over 1,000,000 parameters. While this model is not the state-of-the-art, it is sufficient for
our needs, as our goal is to evaluate our compression methods, not achieve the best possible
accuracy on this task.

We employ the Federated Averaging algorithm [115], which significantly decreases the num-
ber of rounds of communication required to train a good model. However, we expect our
techniques will show a similar reduction in communication costs when applied to synchronized
SGD. For Federated Averaging, on each round we select 10 clients at random, each of which
performs 10 epochs of SGD with a learning rate of η on their local dataset using minibatches
of 50 images, for a total of 100 local updates. From this updated model we compute the deltas
for each layer Hi

t .

(Low) Rank Sampling Probabilities model size reduction

Full Model (baseline) 64, 64, 384, 192 1, 1, 1, 1 4.075 MB —
Medium subsampling 64, 64, 12, 6 1, 1, 0.03125, 0.03125 0.533 MB 7.6×
High subsampling 8, 8, 12, 6 0.125, 0.125, 0.03125, 0.03125 0.175 MB 23.3×

Table 7.2: Low rank and sampling parameters for the CIFAR experiments. The Sampling Probabilities
column gives the fraction of elements uploaded for the two convolutional layers and the two fully-connected
layers, respectively; these parameters are used by StructMask, SketchMask, and SketchRotMask. The Low Rank
column gives the rank restriction k for these four layers. The final softmax layer is small, so we do not compress
updates to it.

We define medium and high low-rank/sampling parameterizations that result in the same
compression rates for both approaches, as given in Table 7.2. The left and center columns of
Figure 7.2 present non-quantized results for test-set accuracy, both as a function of the number
of rounds of the algorithm, and the total number of megabytes uploaded. For all experiments,
learning rates were tuned using a multiplicative grid of resolution

√
2 centered at 0.15; we plot

results for the learning rate with the best median accuracy over rounds 400 – 800. We used a
multiplicative learning-rate decay of 0.988, which we selected by tuning only for the baseline
algorithm.

0 1000 2000 3000 4000

Total upload communication (MB)

0.60

0.65

0.70

0.75

0.80

T
e
st

 s
e
t

a
cc

u
ra

cy

Medium subsampling (7.6×)

0 1000 2000 3000 4000

Total upload communication (MB)

0.60

0.65

0.70

0.75

0.80

T
e
st

 s
e
t

a
cc

u
ra

cy

High subsampling (23.3×)

101 102 103

Total upload MB (log-10 scale)

0.60

0.65

0.70

0.75

0.80

T
e
st

 s
e
t

a
cc

u
ra

cy

Medium subsampling (7.6×)

0 200 400 600 800

communication rounds

0.60

0.65

0.70

0.75

0.80

T
e
st

 s
e
t

a
cc

u
ra

cy

Medium subsampling (7.6×)

Baseline, η=0.106
SketchMask, η=0.075
StructLowRank, η=0.3
StructMask, η=0.3

0 200 400 600 800

communication rounds

0.60

0.65

0.70

0.75

0.80

T
e
st

 s
e
t

a
cc

u
ra

cy

High subsampling (23.3×)

Baseline, η=0.106
SketchMask, η=0.075
StructLowRank, η=0.106
StructMask, η=0.849

0 200 400 600 800

communication rounds

0.60

0.65

0.70

0.75

0.80

T
e
st

 s
e
t

a
cc

u
ra

cy

Medium subsampling (7.6×)

Baseline, η=0.106
SketchMask, η=0.075
SketchMaskBin, η=0.038
SketchRotMask, η=0.106
SketchRotMaskBin, η=0.053

Figure 7.2: Non-quantized results (left and middle columns), and results including binary quantization (dashed
lines SketchRotMaskBin and SketchMaskBin, right column). Note the x-axis is on a log scale for top-right plot.
We achieve over 70% accuracy with fewer than 100MB of communication.

For medium subsampling, all three approaches provide a dramatic improvement in test

157

set accuracy after a fixed amount of bandwidth usage; the lower row of plots shows little
loss in accuracy as a function of the number of update rounds. The exception is that the
StructLowRank approach performs poorly for the high subsampling parameters. This may
suggest that requiring a low-rank update structure for the convolution layers works poorly.
Also, perhaps surprisingly, we see no advantage for StructMask, which optimizes for a random
sparse set of coefficients, as compared to SketchMask, which chooses a sparse set of parameters
to update after a full update is learned.

The right two plots in Figure 7.2 give results for SketchMask and SketchRotMask, with and
without binary quantization; we consider only the medium subsampling regime which is repre-
sentative. We observe that (as expected) introducing the random rotation without quantization
has essentially no effect (solid red and orange lines). However, binary quantization dramatically
decreases the total communication cost, and further introducing the random rotation signifi-
cantly speeds convergence, and also allows us to converge to a higher level of accuracy. We
are able to learn a reasonable model (70% accuracy) in only ∼100MB of communication, two
orders of magnitude less than the baseline.

7.9 Additional Proofs

In this section we provide proofs of Lemmas 56 and 57, describing properties of the encoding
protocol α defined in (7.4). For completeness, we also repeat the statements.

Lemma 72 (Unbiasedness). The encoder α defined in (7.1) is unbiased. That is, Eα [α(Xi)] =
Xi for all i. As a result, Y is an unbiased estimate of the true average: Eα [Y] = X.

Proof. Since Y (j) = 1
n

∑n
i=1 Yi(j) andX(j) = 1

n

∑n
i=1Xi(j), it suffices to show that Eα [Yi(j)] =

Xi(j):

Eα [Yi(j)] =
1

|σk(d)|
∑

σ∈σk(d)

[
1(j∈σ)

(
dXi(j)

k
− d− k

k
µi

)
+ 1(j 6∈σ)µi

]

=

(
d

k

)−1 [(
d− 1

k − 1

)(
dXi(j)

k
− d− k

k
µi

)
+

(
d− 1

k

)
µi

]

=

(
d

k

)−1 [(
d− 1

k − 1

)
d

k
Xi(j) +

((
d− 1

k

)
−
(
d− 1

k − 1

)
d− k
k

)
µi

]

= Xi(j)

and the claim is proved.

Lemma 73 (Mean Squared Error). Let α = α(k) be encoder defined as in (7.4). Then

MSEα(X1, . . . , Xn) =
1

n2

n∑

i=1

d∑

j=1

d− k
k

(Xi(j)− µi)2
.

Proof. Using Lemma 52, we have

MSEα(X1, . . . , Xn) =
1

n2

n∑

i=1

Eα
[
‖Yi −Xi‖2

]

=
1

n2

n∑

i=1

Eα




d∑

j=1

(Yi(j)−Xi(j))
2




=
1

n2

n∑

i=1

d∑

j=1

Eα
[
(Yi(j)−Xi(j))

2
]
. (7.22)

158

Further,

Eα
[
(Yi(j)−Xi(j))

2
]

=

(
d

k

)−1 ∑

σ∈σk(d)

[
1(j∈σ)

(
dXi(j)

k
− d− k

k
µi −Xi(j)

)2

+ 1(j 6∈σ) (µi −Xi(j))
2

]

=

(
d

k

)−1 [(
d− 1

k − 1

)
(d− k)2

k2
(Xi(j)− µi)2

+

(
d− 1

k

)
(µi −Xi(j))

2

]

=
d− k
k

(Xi(j)− µi)2
.

It suffices to substitute the above into (7.22).

159

160

Part IV

Conclusion

161

Chapter 8

Conclusion and Future
Challenges

In this thesis, we addressed the problem of minimizing a finite average of functions:

min
w∈Rd

1

n

n∑

i=1

fi(w).

In Chapters 2 and 3, we formulated two stochastic algorithms with a variance reduction
property for solving the above optimization problem. By using stochastic gradients in a par-
ticular way, relying on computation of the entire gradient occasionally, we are able to achieve
progressive reduction of variance of the stochastic estimates of the gradients. We have demon-
strated that these approaches vastly outperform traditional methods at the optimization task.

In Chapters 4 and 5, we described methods that can utilize parallel and distributed com-
puting architectures. The CoCoA framework for distributed optimization addresses primarily
communication efficiency — a common problem of many distributed optimization algorithms.
In particular, Section 5.2 introduces a conceptual framework in which one can think of the over-
all efficiency of distributed optimization algorithms, and explains the usefulness of decomposing
the choice of local optimization procedure from design of general local subproblems closely re-
lated to the overall optimization objective. The CoCoA framework is the first systematic
realization of this approach.

In Chapters 6 and 7, we introduced the concept of Federated Optimization, which goes
beyond what is usually addressed in the area of distributed optimization, by changing the often
implicit assumptions on distribution of data among different computing nodes. A particular
motivating example arises in the case of user-generated data. Instead of collecting the data and
storing them in datacenters, one could keep the data in users’ possession, and run optimization
algorithms on this massively distributed collection of user devices. We have shown that this
idea is conceptually feasible, and has since been experimentally deployed by Google in Android
Keyboard [117].

In the following, we try to highlight some of the important challenges that are remaining
open in the field.

The area of single-machine optimization algorithms for finite average of functions recently
saw numerous contributions, such as [163, 158, 80, 89, 45, 5, 131]. Two major questions spanning
all of these works concern the adaptability to strong convexity which is not explicitly known,
and the use of stochastic higher-order information.

In general, methods relying on duality, such as SDCA [163], are easier to use in practice,
compared to their primal-only alternatives. This is because for a number of problems structures,
SDCA comes without the need to tune any hyperparameters. However, the construction of the
dual relies on explicit knowledge of the strong convexity parameter of the objective, or a lower
bound of it, which then drives the convergence speed of the algorithm, both in theory and in
practice. The explicit knowledge usually comes from the use of regularizer. Nevertheless, the
true strong convexity parameter can be larger, caused by for instance structure in the data or

163

can be larger locally near optimum. In contrast, the primal-only algorithms in general adapt
to whatever is the true strong convexity, without the having to explicitly know what it is.

These benefits cause disagreements in the community over which algorithms are more useful
in practice. It is likely that primal methods can be enhanced with adaptive techniques, removing
the need of tuning hyperparameters, and the dual methods can be made adaptive to strong
convexity without its explicit knowledge. Both of these ideas were to some extent addressed,
but none of them provide a satisfactory answer. In particular, the authors of [158] provide a
heuristic stepsize which ‘usually works’ for their method, but to the best of our knowledge, there
is no such method supported by theory. Recent contribution in [181] shows that an existing
primal-dual method can be made adaptive to the true strong convexity from data, if explicitly
known, or can be estimated during the run of the algorithm. While this presents a step forward,
it falls short of the simplicity of primal methods in handling this issue.

On another front, it is expected that the use of higher-order information will improve the
performance of existing methods on this task. The challenge is to do so utilizing stochastic
information arising from the structure of the problem, while maintaining computational stability
and efficiency. There have been several attempts to do this recently, see [21, Section 3.4] for
a detailed overview. However, all of them either fail to be computationally efficient and thus
inferior to the existing methods, or work well only under restrictive assumptions. It is widely
expected that progress in this regard will have significant influence.

An expected theoretical advance in communication-efficient distributed algorithms is the
acceleration of the CoCoA+ framework in the sense of [126]. It is commonly agreed that
this is possible, but it has not been successfully done yet. In terms of practice, scalability and
robustness are the major issues going forward. All of the existing methods to some extent either
don’t scale to large number of nodes, or require assumptions about the way data is distributed
across individual nodes. In particular, many method assume that each node has access to data
drawn iid from the same distribution.

Assumptions on the distribution of data are problematic even in the datacenter setting,
where the data are commonly partitioned ‘as is’, and reshuffling data to match the assump-
tions is either infeasible of very impractical. The data can be naturally clustered based on
its geographical origin and/or time at which it was collected. Methods that can converge for
any distribution of the data, such as CoCoA+, are naturally very useful in many practical
applications. Nevertheless, the performance of CoCoA+ was observed to degrade when scaled
to large number of nodes such as in the context of Federated Optimization, see for instance
Figure 6.2.

An interesting question bridging traditional distributed optimization with Federated Op-
timization, is whether the latter could serve as useful computational model for the former.
Scaling distributed training of deep neural networks has been particularly problematic, gen-
erating large number of works in recent years. A recent work [31] revisits the conventional
belief that synchronous methods are inferior to their asynchronous variants, showing that a
synchronous alternative with backups can be superior to both. In a sense this can be thought
of as a negative result for the optimization and systems community, showing the lack of suf-
ficient robustness of methods used in practice. Nevertheless, the task of training large modes
very fast remain of significant interest, see for instance [70], in which the authors use up to 256
GPUs. This is considered to be a huge number, yet nowhere near the scale of convex problems
in click-through rate prediction systems [116].

The concept of Federated Optimization offers a systematic way to decompose the necessary
computation into more independent blocks, alleviating most of the issues related to commu-
nication necessary between individual nodes. As the concept seems stable enough to scale to
support training of recurrent neural networks on phones [117], it could support scaling paral-
lelism of training deep neural networks to many more computing nodes in a stable way. To the
best of our knowledge, none experiments in this direction has been done yet.

Deployment of Federated Optimization in general opens up many new research questions.
For instance, if the goal of the overall system is to make sure servers do not get any data
about individual users, a natural question to ask is whether server can reconstruct what data
could have caused the observed communication patterns. In this regard, recent work proposed a
cryptographic protocol for secure aggregation, ensuring that the server can only see an aggregate
function of individual updates, such as an average, across many participating users [16].

164

While the secure aggregation protocol provides an intuitive and practical obstacle for re-
covering the data of a participating user, it does not provide any formal guarantees. Another
option is to provide quantitative guarantees for differential privacy [56]. Adding a carefully
designed noise to each user’s update would likely ensure the final trained model is differentially
private. While this have not been done, it is an important problem to address.

As we remarked in Section 7.8, communication is a likely candidate to be a bottleneck in
practice. We proposed few techniques to reduce the amount of bits each user has to upload.
However, it is not as straightforward to make all of the ideas compatible with the above se-
cure aggregation protocol, or noise insertion commonly used to obtain differential privacy. As
an example, the secure aggregation protocol expects a vector of a particular structure where
on which addition can be performed directly. This structure can be obtained by naive up-
date compression mechanisms, but not using data adaptive ones, which naturally give better
performance.

Finally, if and when Federated Optimization becomes commonly used tool in machine learn-
ing practice, it will require innovation in tools for machine learning engineers. Many of the
common blocks of machine learning workflow will become unavailable. For instance, it will be
harder to rapidly experiment with novel network architectures if they are not trained only in a
datacenter, increasing the need to get more theoretical understanding into what makes training
of neural networks hard or easy, and what makes them generalize well. Further, any concerns
about system stability are mostly irrelevant for machine learning engineers, as it is not an issue
if a system does not train or crashes in datacenter. However, crashing every phone an exper-
iment runs on would be a major issue. These examples and many more will drive thorough
rethinking of how machine learning tools are used to ultimately design products.

165

166

Bibliography

[1] Speedtest market report. http://www.speedtest.net/reports/united-states/, Au-
gust 2016.

[2] Tensorflow convolutional neural networks tutorial. http://www.tensorflow.org/

tutorials/deep_cnn, 2016.

[3] Mart́ın Abadi, Andy Chu, Ian Goodfellow, Brendan H McMahan, Ilya Mironov, Kunal
Talwar, and Li Zhang. Deep learning with differential privacy. arXiv:1607.00133, 2016.

[4] Alekh Agarwal and John C Duchi. Distributed delayed stochastic optimization. In Ad-
vances in Neural Information Processing Systems 24, pages 873–881, 2011.

[5] Zeyuan Allen-Zhu. Katyusha: The first direct acceleration of stochastic gradient methods.
arXiv:1603.05953, 2016.

[6] Zeyuan Allen-Zhu, Yang Yuan, and Karthik Sridharan. Exploiting the structure: Stochas-
tic gradient methods using raw clusters. arXiv:1602.02151, 2016.

[7] Yossi Arjevani and Ohad Shamir. Communication complexity of distributed convex learn-
ing and optimization. In Advances in Neural Information Processing Systems, pages
1756–1764, 2015.

[8] Maria-Florina Balcan, Avrim Blum, Shai Fine, and Yishay Mansour. Distributed learning,
communication complexity and privacy. In 25th Annual Conference on Learning Theory,
pages 26.1–26.22, 2012.

[9] Jonathan Barzilai and Jonathan M Borwein. Two-point step size gradient methods. IMA
Journal of Numerical Analysis, 8(1):141–148, 1988.

[10] Fabian Bastin, Cinzia Cirillo, and Philippe L Toint. Convergence theory for nonconvex
stochastic programming with an application to mixed logit. Mathematical Programming,
108(2):207–234, 2006.

[11] Amir Beck and Marc Teboulle. A fast iterative shrinkage-thresholding algorithm for linear
inverse problems. SIAM Journal on Imaging Sciences, 2(1):183–202, 2009.

[12] Ron Bekkerman, Mikhail Bilenko, and John Langford. Scaling up machine learning:
Parallel and distributed approaches. Cambridge University Press, 2011.

[13] Dimitri P Bertsekas. Distributed asynchronous computation of fixed points. Mathematical
Programming, 27(1):107–120, 1983.

[14] Dimitri P Bertsekas and John N Tsitsiklis. Parallel and distributed computation: numer-
ical methods. Prentice-Hall, Inc., 1989.

[15] Keith Bonawitz, Vladimir Ivanov, Ben Kreuter, Antonio Marcedone, Brendan H McMa-
han, Sarvar Patel, Daniel Ramage, Aaron Segal, and Karn Seth. Practical secure aggre-
gation for federated learning on user-held data. arXiv:1611.04482, 2016.

167

http://www.speedtest.net/reports/united-states/
http://www.tensorflow.org/tutorials/deep_cnn
http://www.tensorflow.org/tutorials/deep_cnn

[16] Keith Bonawitz, Vladimir Ivanov, Ben Kreuter, Antonio Marcedone, H Brendan McMa-
han, Sarvar Patel, Daniel Ramage, Aaron Segal, and Karn Seth. Practical secure aggrega-
tion for privacy preserving machine learning. IACR Cryptology ePrint Archive, 2017:281,
2017.

[17] Antoine Bordes, Léon Bottou, and Patrick Gallinari. SGD-QN: Careful quasi-Newton
stochastic gradient descent. The Journal of Machine Learning Research, 10:1737–1754,
2009.

[18] Léon Bottou. Curiously fast convergence of some stochastic gradient descent algorithms.
In Proceedings of the Symposium on Learning and Data Science, 2009.

[19] Léon Bottou. Large-scale machine learning with stochastic gradient descent. In Pro-
ceedings of 19th International Conference on Computational Statistics, pages 177–186.
Springer, 2010.

[20] Léon Bottou. Stochastic gradient descent tricks. In Neural Networks: Tricks of the Trade,
pages 421–436. Springer, 2012.

[21] Léon Bottou, Frank E Curtis, and Jorge Nocedal. Optimization methods for large-scale
machine learning. arXiv:1606.04838, 2016.

[22] Olivier Bousquet and Léon Bottou. The tradeoffs of large scale learning. In Advances in
Neural Information Processing Systems 21, pages 161–168, 2008.

[23] Stephen Boyd, Neal Parikh, Eric Chu, Borja Peleato, and Jonathan Eckstein. Distributed
optimization and statistical learning via the alternating direction method of multipliers.
Foundations and Trends in Machine Learning, 3(1):1–122, 2010.

[24] Joseph Bradley, Aapo Kyrola, Daniel Bickson, and Carlos Guestrin. Parallel coordinate
descent for L1-regularized loss minimization. In Proceedings of the 28th International
Conference on Machine Learning, pages 321–328, 2011.

[25] Mark Braverman, Ankit Garg, Tengyu Ma, Huy L Nguyen, and David P Woodruff.
Communication lower bounds for statistical estimation problems via a distributed data
processing inequality. arXiv:1506.07216, 2015.

[26] Richard H Byrd, Samantha L Hansen, Jorge Nocedal, and Yoram Singer. A stochas-
tic quasi-Newton method for large-scale optimization. SIAM Journal on Optimization,
26(2):1008–1031, 2016.

[27] Richard H Byrd, Peihuang Lu, Jorge Nocedal, and Ciyou Zhu. A limited memory al-
gorithm for bound constrained optimization. SIAM Journal on Scientific Computing,
16(5):1190–1208, 1995.

[28] Bob Carpenter. Lazy sparse stochastic gradient descent for regularized multinomial lo-
gistic regression. Technical Report, 2008.

[29] Kamalika Chaudhuri, Claire Monteleoni, and Anand D Sarwate. Differentially private
empirical risk minimization. Journal of Machine Learning Research, 12:1069–1109, 2011.

[30] Jianmin Chen, Rajat Monga, Samy Bengio, and Rafal Jozefowicz. Revisiting distributed
synchronous SGD. In 4th International Conference on Learning Representations Work-
shop Track, 2016.

[31] Jianmin Chen, Rajat Monga, Samy Bengio, and Rafal Jozefowicz. Revisiting distributed
synchronous sgd. arXiv:1604.00981, 2016.

[32] Weizhu Chen, Zhenghao Wang, and Jingren Zhou. Large-scale L-BFGS using MapReduce.
In Advances in Neural Information Processing Systems 27, pages 1332–1340, 2014.

168

[33] Trishul Chilimbi, Yutaka Suzue, Johnson Apacible, and Karthik Kalyanaraman. Project
adam: Building an efficient and scalable deep learning training system. In 11th USENIX
Symposium on Operating Systems Design and Implementation (OSDI 14), pages 571–582,
2014.

[34] CNN. Where (and when) do you use your smartphone: Bedroom? Church? News article
http://edition.cnn.com/2013/07/13/tech/smartphone-use-survey/, 2013.

[35] Patrick Louis Combettes and Jean-Christophe Pesquet. Proximal splitting methods in
signal processing. In Fixed-Point Algorithms for Inverse Problems in Science and Engi-
neering, volume 49, pages 185–212. Springer, 2011.

[36] Patrick Louis Combettes and Jean-Christophe Pesquet. Stochastic quasi-fejér block-
coordinate fixed point iterations with random sweeping. SIAM Journal on Optimization,
25(2):1221–1248, 2015.

[37] Dominik Csiba, Zheng Qu, and Peter Richtárik. Stochastic dual coordinate ascent with
adaptive probabilities. In Proceedings of the 32nd International Conference on Machine
Learning, pages 674–683, 2015.

[38] Dominik Csiba and Peter Richtárik. Primal method for ERM with flexible mini-batching
schemes and non-convex losses. arXiv:1506.02227, 2015.

[39] Dominik Csiba and Peter Richtárik. Coordinate descent face-off: primal or dual?
arXiv:1605.08982, 2016.

[40] Dominik Csiba and Peter Richtárik. Importance sampling for minibatches.
arXiv:1602.02283, 2016.

[41] Christopher M De Sa, Ce Zhang, Kunle Olukotun, and Christopher Ré. Taming the
wild: A unified analysis of hogwild-style algorithms. In Advances in Neural Information
Processing Systems 28, pages 2656–2664, 2015.

[42] Jeffrey Dean, Greg Corrado, Rajat Monga, Kai Chen, Matthieu Devin, Mark Mao, An-
drew Senior, Paul Tucker, Ke Yang, Quoc V Le, et al. Large scale distributed deep
networks. In Advances in Neural Information Processing Systems 25, pages 1223–1231,
2012.

[43] Jeffrey Dean and Sanjay Ghemawat. MapReduce: Simplified data processing on large
clusters. Communications of the Association for Computing Machinery, 51(1):107–113,
2008.

[44] Aaron Defazio. A simple practical accelerated method for finite sums. arXiv:1602.02442,
2016.

[45] Aaron Defazio, Francis Bach, and Simon Lacoste-Julien. SAGA: A fast incremental
gradient method with support for non-strongly convex composite objectives. In Advances
in Neural Information Processing Systems 27, pages 1646–1654, 2014.

[46] Aaron Defazio, Justin Domke, and Tiberio Caetano. Finito: A faster, permutable incre-
mental gradient method for big data problems. In Proceedings of the 31st International
Conference on Machine Learning, pages 1125–1133, 2014.

[47] Ofer Dekel, Ran Gilad-Bachrach, Ohad Shamir, and Lin Xiao. Optimal distributed online
prediction using mini-batches. The Journal of Machine Learning Research, 13(1):165–202,
2012.

[48] Geng Deng and Michael C Ferris. Variable-number sample-path optimization. Mathe-
matical Programming, 117(1):81–109, 2009.

[49] Wei Deng and Wotao Yin. On the global and linear convergence of the generalized
alternating direction method of multipliers. Journal of Scientific Computing, 66(3):889–
916, 2016.

169

http://edition.cnn.com/2013/07/13/tech/smartphone-use-survey/

[50] Misha Denil, Babak Shakibi, Laurent Dinh, Marc’Aurelio Ranzato, and Nando de Freitas.
Predicting parameters in deep learning. In Advances in Neural Information Processing
Systems 26, pages 2148–2156, 2013.

[51] John C Duchi, Alekh Agarwal, and Martin J Wainwright. Dual averaging for distributed
optimization: convergence analysis and network scaling. IEEE Transactions on Automatic
Control, 57(3):592–606, 2012.

[52] John C Duchi, Sorathan Chaturapruek, and Christopher Ré. Asynchronous stochastic
convex optimization. arXiv:1508.00882, 2015.

[53] John C Duchi, Michael I Jordan, and Brendan H McMahan. Estimation, optimization,
and parallelism when data is sparse. In Advances in Neural Information Processing Sys-
tems 26, pages 2832–2840, 2013.

[54] John C Duchi, Michael I Jordan, and Martin J Wainwright. Privacy aware learning.
Journal of the Association for Computing Machinery, 2014.

[55] Celestine Dünner, Simone Forte, Martin Takáč, and Martin Jaggi. Primal-Dual Rates and
Certificates. In Proceedings of the 33th International Conference on Machine Learning,
2016.

[56] Cynthia Dwork and Aaron Roth. The Algorithmic Foundations of Differential Privacy.
Foundations and Trends in Theoretical Computer Science. Now Publishers, 2014.

[57] Olivier Fercoq, Zheng Qu, Peter Richtárik, and Martin Takáč. Fast distributed coordinate
descent for non-strongly convex losses. In IEEE International Workshop on Machine
Learning for Signal Processing, pages 1–6, 2014.

[58] Olivier Fercoq and Peter Richtárik. Smooth minimization of nonsmooth functions with
parallel coordinate descent methods. arXiv:1309.5885, 2013.

[59] Olivier Fercoq and Peter Richtárik. Optimization in high dimensions via accelerated,
parallel, and proximal coordinate descent. SIAM Review, 58(4):739–771, 2016.

[60] Pedro A Forero, Alfonso Cano, and Georgios B Giannakis. Consensus-based distributed
support vector machines. Journal of Machine Learning Research, 11:1663–1707, 2010.

[61] The MPI Forum. MPI: A message passing interface standard, Version 3.1. Document
available at http://www.mpi-forum.org/, 2015.

[62] Michael P Friedlander and Mark Schmidt. Hybrid deterministic-stochastic methods for
data fitting. SIAM Journal on Scientific Computing, 34(3):A1380–A1405, 2012.

[63] Roy Frostig, Rong Ge, Sham M Kakade, and Aaron Sidford. Un-regularizing: approxi-
mate proximal point and faster stochastic algorithms for empirical risk minimization. In
Proceedings of the 32nd International Conference on Machine Learning, 2015.

[64] Mostafa El Gamal and Lifeng Lai. On randomized distributed coordinate descent with
quantized updates. arXiv:1609.05539, 2016.

[65] Ankit Garg, Tengyu Ma, and Huy L Nguyen. On communication cost of distributed
statistical estimation and dimensionality. In Advances in Neural Information Processing
Systems 27, pages 2726–2734, 2014.

[66] Daniel Golovin, D Sculley, Brendan H McMahan, and Michael Young. Large-scale learning
with less ram via randomization. In Proceedings of the 30th International Conference on
Machine Learning, pages 325–333, 2013.

[67] Robert M Gower, Donald Goldfarb, and Peter Richtárik. Stochastic block bfgs: squeezing
more curvature out of data. In Proceedings of the 33rd International Conference on
Machine Learning, pages 1869–1878, 2016.

170

http://www.mpi-forum.org/

[68] Robert M Gower and Peter Richtárik. Randomized Iterative Methods for Linear Systems.
arXiv:1506.03296, 2015.

[69] Robert M Gower and Peter Richtárik. Randomized quasi-Newton updates are linearly
convergent matrix inversion algorithms. arXiv:1602.01768, 2016.

[70] Priya Goyal, Piotr Dollár, Ross Girshick, Pieter Noordhuis, Lukasz Wesolowski, Aapo
Kyrola, Andrew Tulloch, Yangqing Jia, and Kaiming He. Accurate, large minibatch sgd:
Training imagenet in 1 hour. arXiv:1706.02677, 2017.

[71] Mert Gürbüzbalaban, Asu Ozdaglar, and Pablo Parrilo. Why random reshuffling beats
stochastic gradient descent. arXiv:1510.08560, 2015.

[72] Per Christian Hansen. Regularization tools version 4.0 for matlab 7.3. Numerical algo-
rithms, 46(2):189–194, 2007.

[73] Filip Hanzely, Jakub Konečný, Nicolas Loizou, Peter Richtárik, and Dmitry Grishchenko.
Privacy preserving randomized gossip algorithms. arXiv:1706.07636, 2017.

[74] Reza Harikandeh, Mohamed Osama Ahmed, Alim Virani, Mark Schmidt, Jakub Konečný,
and Scott Sallinen. Stop wasting my gradients: Practical SVRG. In Advances in Neural
Information Processing Systems 28, pages 2251–2259, 2015.

[75] Christina Heinze, Brian McWilliams, and Nicolai Meinshausen. DUAL-LOCO: Distribut-
ing Statistical Estimation Using Random Projections. In Proceedings of the 20th Inter-
national Conference on Artificial Intelligence and Statistics, pages 875–883, 2016.

[76] Christina Heinze, Brian McWilliams, Nicolai Meinshausen, and Gabriel Krummenacher.
Loco: Distributing ridge regression with random projections. arXiv:1406.3469, 2014.

[77] Magnus R. Hestenes and Eduard Stiefel. Methods of conjugate gradients for solving linear
systems. Journal of Research of the National Bureau of Standards, 1952.

[78] Cho-Jui Hsieh, Kai-Wei Chang, Chih-Jen Lin, S Sathiya Keerthi, and Sellamanickam
Sundararajan. A dual coordinate descent method for large-scale linear svm. In Proceedings
of the 25th International Conference on Machine Learning, pages 408–415, 2008.

[79] Martin Jaggi, Virginia Smith, Martin Takáč, Jonathan Terhorst, Sanjay Krishnan,
Thomas Hofmann, and Michael I Jordan. Communication-efficient distributed dual co-
ordinate ascent. In Advances in Neural Information Processing Systems 27, pages 3068–
3076, 2014.

[80] Rie Johnson and Tong Zhang. Accelerating stochastic gradient descent using predictive
variance reduction. In Advances in Neural Information Processing Systems 26, pages
315–323, 2013.

[81] Jakub Konečný, Jie Liu, Peter Richtárik, and Martin Takáč. Mini-batch semi-stochastic
gradient descent in the proximal setting. IEEE Journal of Selected Topics in Signal
Processing, 10(2):242–255, 2016.

[82] Jakub Konečný, Brendan H McMahan, and Daniel Ramage. Federated optimization:
Distributed optimization beyond the datacenter. arXiv:1511.03575, 2015.

[83] Jakub Konečný, Brendan H McMahan, Daniel Ramage, and Peter Richtárik. Federated
optimization: Distributed machine learning for on-device intelligence. arXiv:1610.02527,
2016.

[84] Jakub Konečný, Zheng Qu, and Peter Richtárik. Semi-stochastic coordinate descent.
arXiv:1412.6293, 2014.

[85] Jakub Konečný and Peter Richtárik. Simple complexity analysis of simplified direct
search. arXiv:1410.0390, 2014.

171

[86] Jakub Konečný and Peter Richtárik. Randomized distributed mean estimation: Accuracy
vs communication. arXiv:1611.07555, 2016.

[87] Jakub Konečný, Jie Liu, Peter Richtárik, and Martin Takáč. mS2GD: Mini-batch semi-
stochastic gradient descent in the proximal setting. Optimization for Machine Learning
workshop, 2014.

[88] Jakub Konečný, Brendan H McMahan, Felix X Yu, Peter Richtárik, Ananda Theertha
Suresh, and Dave Bacon. Federated learning: Strategies for improving communication
efficiency. arXiv:1610.05492, 2016.

[89] Jakub Konečný and Peter Richtárik. Semi-stochastic gradient descent methods.
arXiv:1312.1666, 2013.

[90] Alex Krizhevsky. Learning multiple layers of features from tiny images. Technical report,
2009.

[91] John Langford, Lihong Li, and Tong Zhang. Sparse online learning via truncated gradient.
Journal of Machine Learning Research, 10:777–801, 2009.

[92] Rémi Leblond, Fabian Pedregosa, and Simon Lacoste-Julien. ASAGA: Asynchronous
parallel saga. arXiv:1606.04809, 2016.

[93] Yann A LeCun, Léon Bottou, Genevieve B Orr, and Klaus-Robert Müller. Efficient
backprop. In Neural networks: Tricks of the trade, pages 9–48. Springer, 2012.

[94] Ching-Pei Lee and Dan Roth. Distributed box-constrained quadratic optimization for dual
linear SVM. In Proceedings of the 32th International Conference on Machine Learning,
pages 987–996, 2015.

[95] Jason Lee, Tengyu Ma, and Qihang Lin. Distributed stochastic variance reduced gradient
methods. arXiv:1507.07595, 2015.

[96] Yin Tat Lee and Aaron Sidford. Efficient accelerated coordinate descent methods and
faster algorithms for solving linear systems. In IEEE 54th Annual Symposium on Foun-
dations of Computer Science, pages 147–156, 2013.

[97] Dennis Leventhal and Adrian S Lewis. Randomized methods for linear constraints: con-
vergence rates and conditioning. Mathematics of Operations Research, 35(3):641–654,
2010.

[98] Chieh-Yen Lin, Cheng-Hao Tsai, Ching-Pei Lee, and Chih-Jen Lin. Large-scale logis-
tic regression and linear support vector machines using spark. In IEEE International
Conference on Big Data, pages 519–528, 2014.

[99] Hongzhou Lin, Julien Mairal, and Zaid Harchaoui. A universal catalyst for first-order
optimization. In Advances in Neural Information Processing Systems 28, pages 3366–
3374, 2015.

[100] Dong C Liu and Jorge Nocedal. On the limited memory BFGS method for large scale
optimization. Mathematical programming, 45(1-3):503–528, 1989.

[101] Ji Liu and Stephen J Wright. Asynchronous stochastic coordinate descent: Parallelism
and convergence properties. SIAM Journal on Optimization, 25(1):351–376, 2015.

[102] Ji Liu, Stephen J Wright, Christopher Ré, Victor Bittorf, and Srikrishna Sridhar. An asyn-
chronous parallel stochastic coordinate descent algorithm. Journal of Machine Learning
Research, 16:285–322, 2015.

[103] Anna Ma, Deanna Needell, and Aaditya Ramdas. Convergence properties of the random-
ized extended gauss–seidel and kaczmarz methods. SIAM Journal on Matrix Analysis
and Applications, 36(4):1590–1604, 2015.

172

[104] Chenxin Ma, Jakub Konečný, Martin Jaggi, Virginia Smith, Michael I Jordan, Peter
Richtárik, and Martin Takáč. Distributed optimization with arbitrary local solvers.
arXiv:1512.04039, 2015.

[105] Chenxin Ma, Virginia Smith, Martin Jaggi, Michael I Jordan, Peter Richtárik, and Martin
Takáč. Adding vs. averaging in distributed primal-dual optimization. In Proceedings of
the 32nd International Conference on Machine Learning, pages 1973–1982, 2015.

[106] Chenxin Ma and Martin Takáč. Partitioning data on features or samples in
communication-efficient distributed optimization? arXiv:1510.06688, 2015.

[107] Chenxin Ma and Martin Takáč. Distributed inexact damped newton method: Data
partitioning and load-balancing. arXiv:1603.05191, 2016.

[108] Chenxin Ma, Rachael Tappenden, and Martin Takáč. Linear convergence of the
randomized feasible descent method under the weak strong convexity assumption.
arXiv:1506.02530, 2015.

[109] Dhruv Mahajan, Nikunj Agrawal, S Sathiya Keerthi, Sundararajan Sellamanickam, and
Léon Bottou. An efficient distributed learning algorithm based on effective local functional
approximations. arXiv:1310.8418, 2013.

[110] Horia Mania, Xinghao Pan, Dimitris Papailiopoulos, Benjamin Recht, Kannan Ram-
chandran, and Michael I Jordan. Perturbed iterate analysis for asynchronous stochastic
optimization. arXiv:1507.06970, 2015.

[111] Jakub Mareček, Peter Richtárik, and Martin Takáč. Distributed block coordinate descent
for minimizing partially separable functions. Numerical Analysis and Optimization 2014,
Springer Proceedings in Mathematics and Statistics, 134:261–288, 2015.

[112] Kurt Marti and Erich Fuchs. On solutions of stochastic programming problems by descent
procedures with stochastic and deterministic directions. Methods of Operations Research,
33:281–293, 1979.

[113] Kurt Marti and Erich Fuchs. Rates of convergence of semi-stochastic approximation
procedures for solving stochastic optimization problems. Optimization, 17(2):243–265,
1986.

[114] Ryan Mcdonald, Mehryar Mohri, Nathan Silberman, Dan Walker, and Gideon S Mann.
Efficient large-scale distributed training of conditional maximum entropy models. In
Advances in Neural Information Processing Systems 22, pages 1231–1239, 2009.

[115] Brendan H McMahan, Eider Moore, Daniel Ramage, and Blaise Aguera y Arcas. Feder-
ated learning of deep networks using model averaging. arXiv:1602.05629, 2016.

[116] H Brendan McMahan, Gary Holt, David Sculley, Michael Young, Dietmar Ebner, Julian
Grady, Lan Nie, Todd Phillips, Eugene Davydov, Daniel Golovin, et al. Ad click predic-
tion: a view from the trenches. In Proceedings of the 19th ACM SIGKDD international
conference on Knowledge discovery and data mining, pages 1222–1230. ACM, 2013.

[117] H. Brendan McMahan and Daniel Ramage. Federated learn-
ing: Collaborative machine learning without centralized training data.
https://research.googleblog.com/2017/04/federated-learning-collaborative.html, 2017.

[118] Jean-Jacques Moreau. Fonctions convexes duales et points proximaux dans un espace
hilbertien. In Reports of the Paris Academy of Sciences, volume 255 of A, pages 2897–
2899, 1962.

[119] Philipp Moritz, Robert Nishihara, and Michael Jordan. A linearly-convergent stochastic
L-BFGS algorithm. In Proceedings of the 19th International Conference on Artificial
Intelligence and Statistics, pages 249–258, 2016.

173

[120] Eric Moulines and Francis R Bach. Non-asymptotic analysis of stochastic approximation
algorithms for machine learning. In Advances in Neural Information Processing Systems
24, pages 451–459, 2011.

[121] Ion Necoara and Dragos Clipici. Distributed coordinate descent methods for composite
minimization. arXiv:1312.5302, 2013.

[122] Ion Necoara and Andrei Patrascu. A random coordinate descent algorithm for optimiza-
tion problems with composite objective function and linear coupled constraints. Compu-
tational Optimization and Applications, 57(2):307–337, 2014.

[123] Deanna Needell. Randomized kaczmarz solver for noisy linear systems. BIT Numerical
Mathematics, 50(2):395–403, 2010.

[124] Deanna Needell, Nathan Srebro, and Rachel Ward. Stochastic gradient descent, weighted
sampling, and the randomized kaczmarz algorithm. Mathematical Programming, 155(1-
2):549–573, 2016.

[125] Arkadi Nemirovski, Anatoli Juditsky, Guanghui Lan, and Alexander Shapiro. Robust
stochastic approximation approach to stochastic programming. SIAM Journal on Opti-
mization, 19(4):1574–1609, 2009.

[126] Yurii Nesterov. A method of solving a convex programming problem with convergence
rate O(1/k2). Soviet Mathematics Doklady, 27(2):372–376, 1983.

[127] Yurii Nesterov. Introductory Lectures on Convex Optimization: A Basic Course. Kluwer,
Boston, 2004.

[128] Yurii Nesterov. Gradient methods for minimizing composite objective function. CORE
Discussion Papers, 2007/76.

[129] Yurii Nesterov. Efficiency of coordinate descent methods on huge-scale optimization prob-
lems. SIAM Journal on Optimization, 22:341–362, 2012.

[130] Jiquan Ngiam, Adam Coates, Ahbik Lahiri, Bobby Prochnow, Quoc V Le, and Andrew Y
Ng. On optimization methods for deep learning. In Proceedings of the 28th International
Conference on Machine Learning, pages 265–272, 2011.

[131] Lam Nguyen, Jie Liu, Katya Scheinberg, and Martin Takáč. Sarah: A novel method for
machine learning problems using stochastic recursive gradient. arXiv:1703.00102, 2017.

[132] Atsushi Nitanda. Stochastic proximal gradient descent with acceleration techniques. In
Advances in Neural Information Processing Systems 27, pages 1574–1582, 2014.

[133] Feng Niu, Benjamin Recht, Christopher Ré, and Stephen J Wright. Hogwild: A lock-free
approach to parallelizing stochastic gradient descent. In Advances in Neural Information
Processing Systems 24, pages 693–701, 2011.

[134] Jorge Nocedal and Stephen J. Wright. Numerical Optimization. Springer series in Oper-
ations Research and Financial Engineering. Springer, 2. ed. edition, 2006.

[135] Peter Oswald and Weiqi Zhou. Convergence analysis for Kaczmarz-type methods in a
Hilbert space framework. Linear Algebra and its Applications, 478:131–161, 2015.

[136] Neal Parikh and Stephen Boyd. Proximal algorithms. Foundations and Trends in
Opimization, 1(3):127–239, 2014.

[137] Dmitry Pechyony, Libin Shen, and Rosie Jones. Solving large scale linear svm with
distributed block minimization. In ACM International Conference on Information and
Knowledge Management, 2011.

[138] Zhimin Peng, Yangyang Xu, Ming Yan, and Wotao Yin. ARock: an algorithmic frame-
work for asynchronous parallel coordinate updates. SIAM Journal on Scientific Comput-
ing, 38(5):2851–2879, 2016.

174

[139] B. T. Polyak. Some methods of speeding up the convergence of iteration methods. USSR
Computational Mathematics and Mathematical Physics, 4(5):1–17, 1964.

[140] Zheng Qu and Peter Richtárik. Coordinate descent with arbitrary sampling I: Algorithms
and complexity. Optimization Methods and Software, 31(5):829–857, 2016.

[141] Zheng Qu and Peter Richtárik. Coordinate descent with arbitrary sampling II: Expected
separable overapproximation. Optimization Methods and Software, 31(5):858–884, 2016.

[142] Zheng Qu, Peter Richtárik, Martin Takáč, and Olivier Fercoq. SDNA: Stochastic dual
newton ascent for empirical risk minimization. In Proceedings of the 33rd International
Conference on Machine Learning, pages 1823–1832, 2016.

[143] Zheng Qu, Peter Richtárik, and Tong Zhang. Quartz: Randomized dual coordinate ascent
with arbitrary sampling. In Advances in Neural Information Processing Systems 28, pages
865–873, 2015.

[144] M.G. Rabbat and R.D. Nowak. Quantized incremental algorithms for distributed opti-
mization. IEEE Journal on Selected Areas in Communications, 23(4):798–808, 2005.

[145] Sashank J Reddi, Ahmed Hefny, Suvrit Sra, Barnabás Póczós, and Alex Smola. On vari-
ance reduction in stochastic gradient descent and its asynchronous variants. In Advances
in Neural Information Processing Systems 28, pages 2647–2655, 2015.

[146] Sashank J Reddi, Ahmed Hefny, Suvrit Sra, Barnabás Póczós, and Alex Smola. Stochastic
variance reduction for nonconvex optimization. arXiv:1603.06160, 2016.

[147] Sashank J Reddi, Jakub Konečný, Peter Richtárik, Barnabás Póczós, and Alex Smola.
AIDE: Fast and communication efficient distributed optimization. arXiv:1608.06879,
2016.

[148] Peter Richtárik and Martin Takáč. Iteration complexity of randomized block-coordinate
descent methods for minimizing a composite function. Mathematical Programming, 144(1-
2):1–38, 2014.

[149] Peter Richtárik and Martin Takáč. Distributed coordinate descent method for learning
with big data. Journal of Machine Learning Research, 17(75):1–25, 2016.

[150] Peter Richtárik and Martin Takáč. On optimal probabilities in stochastic coordinate
descent methods. Optimization Letters, 10(6):1233–1243, 2016.

[151] Peter Richtárik and Martin Takáč. Parallel coordinate descent methods for big data
optimization. Mathematical Programming, 156(1-2):433–484, 2016.

[152] Peter Richtárik and Martin Takáč. Stochastic reformulation of linear systems and fast
stochastic iterative methods. Technical report, 2016.

[153] Herbert Robbins and Sutton Monro. A stochastic approximation method. The Annals of
Mathematical Statistics, 22(3):400–407, 1951.

[154] Ralph T Rockafellar. Convex Analysis. Princeton University Press, 1970.

[155] Lorenzo Rosasco, Silvia Villa, and Bang Công Vũ. Convergence of stochastic proximal
gradient algorithm. arXiv:1403.5074, 2014.

[156] Nicolas Le Roux, Mark Schmidt, and Francis Bach. A stochastic gradient method with an
exponential convergence rate for finite training sets. In Advances in Neural Information
Processing Systems 25, pages 2663–2671, 2012.

[157] Mark Schmidt, Reza Babanezhad, Mohamed Ahmed, Aaron Defazio, Ann Clifton, and
Anoop Sarkar. Non-uniform stochastic average gradient method for training conditional
random fields. In Proceedings of the 18th International Conference on Artificial Intelli-
gence and Statistics, pages 819–828, 2015.

175

[158] Mark Schmidt, Nicolas Le Roux, and Francis Bach. Minimizing finite sums with the
stochastic average gradient. Mathematical Programming, pages 1–30, 2013.

[159] Shai Shalev-Shwartz. SDCA without duality. arXiv:1502.06177, 2015.

[160] Shai Shalev-Shwartz. SDCA without duality, regularization, and individual convexity.
arXiv:1602.01582, 2016.

[161] Shai Shalev-Shwartz and Shai Ben-David. Understanding machine learning: From theory
to algorithms. Cambridge university press, 2014.

[162] Shai Shalev-Shwartz, Yoram Singer, Nathan Srebro, and Andrew Cotter. Pegasos: Primal
estimated sub-gradient solver for SVM. Mathematical programming, 127(1):3–30, 2011.

[163] Shai Shalev-Shwartz and Tong Zhang. Stochastic dual coordinate ascent methods for
regularized loss. Journal of Machine Learning Research, 14(1):567–599, 2013.

[164] Shai Shalev-Shwartz and Tong Zhang. Accelerated proximal stochastic dual coordinate
ascent for regularized loss minimization. Mathematical Programming, pages 1–41, 2014.

[165] John Shalf, Sudip Dosanjh, and John Morrison. Exascale computing technology chal-
lenges. In International Conference on High Performance Computing for Computational
Science, pages 1–25, 2010.

[166] Ohad Shamir and Nathan Srebro. Distributed stochastic optimization and learning. In
52nd Annual Allerton Conference on Communication, Control and Computing, pages
850–857, 2014.

[167] Ohad Shamir, Nathan Srebro, and Tong Zhang. Communication efficient distributed
optimization using an approximate Newton-type method. In Proceedings of the 31st
International Conference on Machine Learning, 2014.

[168] Virginia Smith, Simone Forte, Michael I Jordan, and Martin Jaggi. L1-
Regularized Distributed Optimization: A Communication-Efficient Primal-Dual Frame-
work. arXiv:1512.04011, 2015.

[169] Daniel A Spielman and Shang-Hua Teng. Nearly linear time algorithms for precondition-
ing and solving symmetric, diagonally dominant linear systems. SIAM Journal on Matrix
Analysis and Applications, 35(3):835–885, 2014.

[170] Thomas Strohmer and Roman Vershynin. A Randomized Kaczmarz Algorithm with
Exponential Convergence. Journal of Fourier Analysis and Applications, 15(2):262–278,
2009.

[171] Ananda Theertha Suresh, Felix X Yu, Brendan H McMahan, and Sanjiv Kumar. Dis-
tributed mean estimation with limited communication. arXiv:1611.00429, 2016.

[172] Martin Takáč, Avleen Bijral, Peter Richtárik, and Nathan Srebro. Minibatch primal
and dual methods for support vector machines. In Proceedings of the 30th International
Conference on Machine Learning, 2013.

[173] Martin Takáč, Peter Richtárik, and Nathan Srebro. Distributed mini-batch SDCA.
arXiv:1507.08322, 2015.

[174] Rachael Tappenden, Peter Richtárik, and Burak Büke. Separable approximations and de-
composition methods for the augmented Lagrangian. Optimization Methods and Software,
30(3):643–668, 2015.

[175] Rachael Tappenden, Peter Richtárik, and Jacek Gondzio. Inexact coordinate descent:
complexity and preconditioning. Journal of Optimization Theory and Applications,
170(1):144–176, 2016.

176

[176] Rachael Tappenden, Martin Takáč, and Peter Richtárik. On the complexity of parallel
coordinate descent. arXiv:1503.03033, 2015.

[177] John N Tsitsiklis. Problems in decentralized decision making and computation. Technical
report, DTIC Document, 1984.

[178] Vladimir N Vapnik. Statistical Learning Theory, volume 1. Wiley New York, 1998.

[179] Vladimir N Vapnik. An overview of statistical learning theory. IEEE transactions on
Neural Networks, 10(5):988–999, 1999.

[180] Huahua Wang and Arindam Banerjee. Randomized block coordinate descent for online
and stochastic optimization. arXiv:1407.0107, 2014.

[181] Jialei Wang and Lin Xiao. Exploiting strong convexity from data with primal-dual first-
order algorithms. arXiv:1703.02624, 2017.

[182] White House Report. Consumer data privacy in a networked world: A framework for
protecting privacy and promoting innovation in the global digital economy. Journal of
Privacy and Confidentiality, 2013.

[183] Wikipedia. Variable-length quantity, 2016. [Online; accessed 9-Nov-2016].

[184] David P Woodruff. Sketching as a tool for numerical linear algebra. Foundations and
Trends in Theoretical Computer Science, 10(12):1–157, 2014.

[185] Blake Woodworth and Nathan Srebro. Tight complexity bounds for optimizing composite
objectives. arXiv:1605.08003, 2016.

[186] Stephen J Wright. Coordinate descent algorithms. Mathematical Programming, 151(1):3–
34, 2015.

[187] Lin Xiao and Tong Zhang. A proximal stochastic gradient method with progressive
variance reduction. SIAM Journal on Optimization, 24(4):2057–2075, 2014.

[188] Tianbao Yang. Trading computation for communication: Distributed stochastic dual
coordinate ascent. In Advances in Neural Information Processing Systems 26, pages 629–
637, 2013.

[189] Tianbao Yang, Shenghuo Zhu, Rong Jin, and Yuanqing Lin. Analysis of distributed
stochastic dual coordinate ascent. arXiv:1312.1031, 2013.

[190] Felix X Yu, Ananda Theertha Suresh, Krzysztof Choromanski, Daniel Holtmann-Rice,
and Sanjiv Kumar. Orthogonal random features. In Advances in Neural Information
Processing Systems 29, pages 1975–1983, 2016.

[191] Hsiang-Fu Yu, Cho-Jui Hsieh, Kai-Wei Chang, and Chih-Jen Lin. Large linear classifica-
tion when data cannot fit in memory. ACM Transactions on Knowledge Discovery from
Data, 5(4):1–23, 2012.

[192] Guo-Xun Yuan, Chia-Hua Ho, and Chih-Jen Lin. Recent advances of large-scale linear
classification. Proceedings of the IEEE, 100(9):2584–2603, 2012.

[193] Matei Zaharia, Mosharaf Chowdhury, Michael J Franklin, Scott Shenker, and Ion Stoica.
Spark: cluster computing with working sets. In Proceedings of the 2nd USENIX conference
on Hot topics in cloud computing, volume 10, page 10, 2010.

[194] C Zhang, H Lee, and K G Shin. Efficient distributed linear classification algorithms via
the alternating direction method of multipliers. Proceedings of the 15th International
Conference on Artificial Intelligence and Statistics, 2012.

[195] Lijun Zhang, Mehrdad Mahdavi, and Rong Jin. Linear convergence with condition num-
ber independent access of full gradients. In Advances in Neural Information Processing
Systems, pages 980–988, 2013.

177

[196] Tong Zhang. Solving large scale linear prediction problems using stochastic gradient
descent algorithms. In Proceedings of the 21st International Conference on Machine
Learning, pages 116–123, 2004.

[197] Yuchen Zhang, John Duchi, Michael I Jordan, and Martin J Wainwright. Information-
theoretic lower bounds for distributed statistical estimation with communication con-
straints. In Advances in Neural Information Processing Systems, pages 2328–2336, 2013.

[198] Yuchen Zhang, John C Duchi, and Martin J Wainwright. Communication-efficient algo-
rithms for statistical optimization. Journal of Machine Learning Research, 14:3321–3363,
2013.

[199] Yuchen Zhang and Xiao Lin. DiSCO: Distributed optimization for self-concordant em-
pirical loss. In Proceedings of the 32th International Conference on Machine Learning,
pages 362–370, 2015.

[200] Yuchen Zhang, Martin J. Wainwright, and John C Duchi. Communication-efficient algo-
rithms for statistical optimization. In Advances in Neural Information Processing Systems
25, pages 1502–1510, 2012.

[201] Peilin Zhao and Tong Zhang. Stochastic optimization with importance sampling for
regularized loss minimization. In Proceedings of the 32nd International Conference on
Machine Learning, pages 1–9, 2015.

[202] Yong Zhuang, Wei-Sheng Chin, Yu-Chin Juan, and Chih-Jen Lin. Distributed newton
methods for regularized logistic regression. In Advances in Knowledge Discovery and Data
Mining, pages 690–703. 2015.

[203] Martin Zinkevich, Markus Weimer, Lihong Li, and Alex J Smola. Parallelized stochastic
gradient descent. In Advances in Neural Information Processing Systems 23, pages 2595–
2603, 2010.

[204] Anastasios Zouzias and Nikolaos M Freris. Randomized extended kaczmarz for solving
least squares. SIAM Journal on Matrix Analysis and Applications, 34(2):773–793, 2013.

178

	cover sheet
	thesis
	Abstract
	Introduction
	Empirical Risk Minimization
	Approximation-Estimation-Optimization tradeoff
	Notation

	Baseline Algorithms
	Part I: Stochastic Methods with Variance Reduction
	Semi-Stochastic Gradient Descent
	Semi-Stochastic Coordinate Descent

	Part II: Parallel and Distributed Methods
	Mini-batch Semi-Stochastic Gradient Descent in the Proximal Setting
	Distributed Optimization with Arbitrary Local Solvers

	Part III: Federated Optimization
	Distributed Machine Learning for On-device Intelligence
	Distributed Mean Estimation with Communication Constraints

	Summary

	I Variance Reduced Stochastic Methods
	Semi-Stochastic Gradient Descent
	Introduction
	Motivation
	Brief literature review
	Outline

	Semi-Stochastic Gradient Descent
	S2GD
	S2GD+

	Summary of Results
	Complexity Analysis: Strongly Convex Loss
	Optimal Choice of Parameters
	Complexity Analysis: Convex Loss
	Implementation for sparse data
	Numerical Experiments
	Comparison with theory
	Comparison with other methods
	Boosted variants of S2GD and SAG

	Conclusion

	Semi-Stochastic Coordinate Descent
	Introduction
	S2CD Algorithm
	Complexity Result
	Proof of Lemma 10
	Proof of the Main Result
	Coordinate co-coercivity
	Recursion
	Proof of Theorem 11

	II Parallel and Distributed Methods with Variance Reduction
	Mini-batch Semi-Stochastic Gradient Descent in the Proximal Setting
	Introduction
	Stochastic methods.
	Modern stochastic methods
	Linear systems and sketching.

	Contributions
	The Algorithm
	Deterministic and stochastic proximal gradient methods
	Semi-stochastic methods
	Mini-batch S2GD

	Analysis
	Assumptions
	Main result
	Special cases: b=1 and b=n
	Mini-batch speedup
	Convergence rate
	Comparison with Acc-Prox-SVRG

	Efficient implementation for sparse data
	Experiments
	Speedup of mS2GD
	mS2GD vs other algorithms
	Image deblurring

	Technical Results
	Proofs
	Proximal lazy updates for 1 and 2-regularizers

	Conclusion

	Distributed Optimization with Arbitrary Local Solvers
	Motivation
	Contributions
	Outline

	Background and Problem Formulation
	Problem Formulation
	Technical Assumptions

	The Framework
	The Local Subproblems
	Practical Communication-Efficient Implementation
	Compatibility of the Subproblems for Aggregating Updates

	Main Results
	Quality of Local Solutions
	Complexity Bounds
	Discussion and Interpretations of Convergence Results

	Discussion and Related Work
	Numerical Experiments
	Exploration of Local Solvers within the Framework
	Averaging vs. Adding the Local Updates
	The Effect of the Subproblem Parameter '
	Scaling Property
	Performance on a Big Dataset
	Comparison with other distributed methods

	Conclusion
	Proofs
	Proof of Lemma 31
	Proof of Lemma 33
	Proof of Lemma 34
	Proofs of Theorems 36 and 37

	III Federated Optimization and Learning
	Federated Optimization: Distributed Machine Learning for On-device Intelligence
	Introduction
	Problem Formulation
	The Setting of Federated Optimization

	Related Work
	Baseline Algorithms
	A Novel Breed of Randomized Algorithms
	Distributed Setting

	Algorithms for Federated Optimization
	Desirable Algorithmic Properties
	SVRG
	Distributed Problem Formulation
	DANE
	SVRG meets DANE
	Federated SVRG
	Further Notes

	Experiments
	Predicting Comments on Public Google+ Posts

	Conclusions and Future Challenges
	Appendix: Distributed Optimization via Quadratic Perturbations
	New Method
	L2-Regularized Linear Predictors
	A Dual Method: Dual Block Proximal Gradient Ascent
	Proof of Theorem 46

	Randomized Distributed Mean Estimation: Accuracy vs Communication
	Introduction
	Background and Contributions
	Outline

	Three Protocols
	A Family of Randomized Encoding Protocols
	Encoding Protocol with Variable-size Support
	Encoding Protocol with Fixed-size Support

	Communication Protocols
	Naive
	Varying-length
	Sparse Communication Protocol for Encoder (7.1)
	Sparse Communication Protocol for Encoder (7.4)
	Binary
	Discussion

	Examples
	Binary Quantization
	Sparse Communication Protocols

	Optimal Encoders
	Optimal Probabilities for Fixed Node Centers
	Trade-off Curves

	Further Considerations
	Beyond Binary Encoders
	Preprocessing via Random Rotations

	Application to Federated Learning
	Structured Update
	Sketched Update
	Experiments

	Additional Proofs

	IV Conclusion
	Conclusion and Future Challenges

