
Mixed Speculative Multithreaded Execution

Models

Polychronis Xekalakis

T
H

E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

Doctor of Philosophy

Institute of Computing Systems Architecture

School of Informatics

University of Edinburgh

2009

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Edinburgh Research Archive

https://core.ac.uk/display/429724693?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Abstract

The current trend toward chip multiprocessor architectures has placed great pressure

on programmers and compilers to generate thread-parallel programs. Improved exe-

cution performance can no longer be obtained via traditional single-thread instruction

level parallelism (ILP), but, instead, via multithreaded execution. One notable tech-

nique that facilitates the extraction of parallel threads from sequential applications is

thread-level speculation (TLS). This technique allows programmers/compilers to gen-

erate threads without checking for inter-thread data and control dependences, which

are then transparently enforced by the hardware. Most priorwork on TLS has concen-

trated on thread selection and mechanisms to efficiently support the main TLS opera-

tions, such as squashes, data versioning, and commits.

This thesis seeks to enhance TLS functionality by combiningit with other spec-

ulative multithreaded execution models. The main idea is that TLS already requires

extensive hardware support, which when slightly augmentedcan accommodate other

speculative multithreaded techniques. Recognizing that for different applications, or

even program phases, the application bottlenecks may be different, it is reasonable to

assume that the more versatile a system is, the more efficiently it will be able to execute

the given program.

As mentioned above, generating thread-parallel programs is hard and TLS has

been suggested as an execution model that can speculativelyexploit thread-level par-

allelism (TLP) even when thread independence cannot be guaranteed by the program-

mer/compiler. Alternatively, the helper threads (HT) execution model has been pro-

posed where subordinate threads are executed in parallel with a main thread in order to

improve the execution efficiency (i.e., ILP) of the latter. Yet another execution model,

runahead execution (RA), has also been proposed where subordinate versions of the

main thread are dynamically created especially to cope withlong-latency operations,

again with the aim of improving the execution efficiency of the main thread (ILP).

Each one of these multithreaded execution models works bestfor different appli-

cations and application phases. We combine these three models into a single execution

model and single hardware infrastructure such that the system can dynamically adapt

to find the most appropriate multithreaded execution model.More specifically, TLS
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is favored whenever successful parallel execution of instructions in multiple threads

(i.e., TLP) is possible and the system can seamlessly transition at run-time to the other

models otherwise. In order to understand the tradeoffs involved, we also develop a per-

formance model that allows one to quantitatively attributeoverall performance gains

to either TLP or ILP in such combined multithreaded execution model.

Experimental results show that our combined execution model achieves speedups

of up to 41.2%, with an average of 10.2%, over an existing state-of-the-art TLS system

and speedups of up to 35.2%, with an average of 18.3%, over a flavor of runahead

execution for a subset of the SPEC2000 Integer benchmark suite.

We then investigate how a common ILP-enhancing microarchitectural feature, namely

branch prediction, interacts with TLS. We show that branch prediction for TLS is even

more important than it is for single core machines. Unfortunately, branch prediction for

TLS systems is also inherently harder. Code partitioning andre-executions of squashed

threads pollute the branch history making it harder for predictors to be accurate.

We thus propose to augment the hardware, so as to accommodateMulti-Path (MP)

execution within the existing TLS protocol. Under the MP execution model, all paths

following a number ofhard-to-predictconditional branches are followed. MP execu-

tion thus, removes branches that would have been otherwise mispredicted helping in

this way the processor to exploit more ILP. We show that with only minimal hardware

support, one can combine these two execution models into a unified one, which can

achieve far better performance than both TLS and MP execution.

Experimental results show that our combied execution modelachieves speedups of

up to 20.1%, with an average of 8.8%, over an existing state-of-the-art TLS system and

speedups of up to 125%, with an average of 29.0%, when compared with multi-path

execution for a subset of the SPEC2000 Integer benchmark suite.

Finally, Since systems that support speculative multithreading usually treat all

threads equally, they are energy-inefficient. This inefficiency stems from the fact that

speculation occasionally fails and, thus, power is spent onthreads that will have to

be discarded. We propose a profitability-based power allocation scheme, where we

“steal” power from non-profitable threads and use it to speedup more useful ones. We

evaluate our techniques for a state-of-the-art TLS system and show that, with minimal
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hardware support, we achieve improvements in ED of up to 25.5% with an average of

18.9%, for a subset of the SPEC 2000 Integer benchmark suite.
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Chapter 1

Introduction, Contributions and

Structure

1.1 Multi-Core Systems and Parallel Applications

With the shrinking of transistors continuing to follow Moore’s Law and the non-

scalability of conventional out-of-order processors, Multi-Core systems are becom-

ing the design choice for both industry and academia. Performance extraction is thus

largely alleviated from the hardware and placed on the programmer/compiler camp,

who now have to expose Thread Level Parallelism (TLP) to the underlying system in

the form of explicitly parallel applications.

Unfortunately, parallel programming is hard and error-prone. The programmer has

to parallelize the work, perform the data placement, deal with thread synchronization

and, of course, debug the applications (the non-determinism induced by the different

noise on different cores makes this particularly hard). Although there has been exten-

sive work on making synchronization easier [26, 35, 46], and on allowing deterministic

replays for debugging purposes [37, 56], devising parallel algorithms and dealing with

data placement is still cumbersome.

A convenient alternative to parallel programming is offered by parallelizing com-

pilers [3, 9, 13, 47]. Parallelizing compilers are given sequential applications, which

they try to parallelize by deducing that specific program segments do not contain any

1
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data dependences. Despite many years of research, parallelizing compilers still fail

to parallelize all but the most trivial applications. In fact as pointed out in [75] In-

tel’s state-of-the-art compiler (ICC) actually gets a slowdown for most of the irregular

applications it tries to parallelize. The main reason for this is that either they cannot

staticallyguarantee that specific code segments do not have any dependences (e.g., if

there is use of pointers) or they cannot find large enough sections where this holds so

that their coverage is large.

1.2 Main Contributions

1.2.1 Combining TLS, HT, and RA Execution

As discussed above, with the advent of multi-core systems, the design effort has been

alleviated from the hardware and placed instead on the compiler/programmer camp.

Unfortunately parallel programming is hard and error-prone, sequential programming

is still prevalent, and compilers still fail to automatically parallelize all but the most

regular programs.

One possible solution to this problem is provided by systemsthat support Thread-

Level Speculation (TLS) [32, 45, 53, 68, 71]. In these systems, the compiler/programmer

is free to generate threads without having to consider all possible cross-thread data de-

pendences. Parallel execution of threads then proceeds speculatively and the TLS sys-

tem guarantees the original sequential semantics of the program. Thus, the TLS model

improves overall performance by exploiting Thread-Level Parallelism (TLP) via the

concurrent execution of instructions in multiple threads1 (Figure1.1(a)).

Another possible solution to accelerate program executionin multicore systems

without resorting to parallel programs is provided by systems that support Helper

Threads (HT) [15, 22, 73, 85]. In these systems, the compiler/programmer extracts

small threads, often called slices, from the main thread such that their execution in par-

allel with the main thread will lead to improved execution efficiency of the latter. Most

commonly, HTs are used to resolve highly unpredictable branches and cache misses

1In reality, the basic TLS execution model also provides some indirect non-TLP perfor-
mance benefits as explained later in the thesis.
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Figure 1.1: Different models of multithreaded execution: (a) Thread Level Speculation.

(b) Helper Thread. (c) Runahead Execution. (d) Multi-Path Execution.

before these are required by the main thread. In almost all cases, the benefits of HT

are indirect in the sense that no actual program computationis executed in parallel

with the main thread. Thus, the HT model improves overall performance by exploit-

ing Instruction-Level Parallelism (ILP) via the improved execution efficiency within a

single main thread (Figure1.1(b)).

A solution related to HT is to support Runahead (RA) execution [6, 14, 17, 28, 43,

58]. In these systems, the hardware transparently continues execution of instructions

from the main thread past a long latency operation, such as a cache miss. Unlike

with HT, the instructions in the runahead thread are not explicitly extracted and placed

in a subordinate thread and are not executed concurrently with the main thread. In
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fact, RA can be even implemented in single-core systems with some enhanced context

checkpointing support. Like HT, the benefits from RA are indirect and it improves

overall performance by exploiting ILP (Figure1.1(c)).

Each of these three multithreaded execution models has beenseparately shown to

improve overall performance of some sequential applications. However, given the dif-

ferent nature of the performance benefits provided by each model, one would expect

that combining them in a combined execution model would leadto greater performance

gains and over a wider range of applications compared to eachmodel alone. Moreover,

much of the architectural support required by each model is similar, namely: some sup-

port for checkpointing and/or multiple contexts, some support to maintain speculative

(unsafe) data, and some support for squashing threads. Despite these opportunities

no one (to the best of our knowledge) has attempted to combinethese multithreaded

execution models.

One contribution of this thesis is to combine these three multithreaded execution

models in a super-set combined model that can exploit the benefits of each model de-

pending on application characteristics. More specifically, the resulting system attempts

to exploit TLP speculatively with TLS execution, but when this fails or when additional

opportunities exist for exploiting ILP the system also employs a version of HT that is

based on RA. We chose this model of HT so that its threads interact seamlessly with

TLS threads and only small modifications to the TLS protocol and the TLS architec-

tural support are required. In the thesis we discuss in detail this interaction and how

to tune the HT and TLS models to work synergystically. Another contribution of this

thesis is a simple methodology that allows one to model the performance gains with

TLS and the combined execution model such that gains can be accurately attributed to

either TLP or ILP. This methodology, then, allows one to reason about the behavior of

the execution models and to investigate tradeoffs in the combined model.

Experimental results show that the combined execution model achieves speedups

of up to 41.2%, with an average of 10.2%, over an existing state-of-the-art TLS system

and speedups of up to 35.2%, with an average of 18.3%, over a flavor of RA execution

for a subset of the SPEC2000 Int benchmark suite.

This component of the thesis is organized as follows. Section 3.4 presents our
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methodology for quantifying the contributions to performance gains that come from

TLP and ILP. Chapter2 provides a brief description of the TLS, HT and RA execu-

tion models. Chapter4 presents our proposed scheme to combine the three execution

models. Chapter5 presents results. Finally, Section11.2discusses related work.

1.2.2 Combining TLS and MP Execution

Another possible solution to accelerate program executionwithout resorting to parallel

programs is provided by systems that support Multi Path (MP)Execution [2, 34, 44].

In these systems, the hardware fetches along two paths for the hard-to-predict branches

(Figure1.1(d)). The benefits of MP come from the fact that the processor is relieved

from the misprediction penalty for the branches where it is applied. Some benefits

can also come due to prefetching effects but typically they are not the main source of

performance improvement over sequential execution. Thus,the MP model improves

overall performance by exploiting ILP via the improved execution efficiency within a

single main thread.

The vast majority of prior work on TLS systems has focused on architectural fea-

tures directly related to the TLS support, such as protocolsfor multi-versioned caches

and data dependence violation detection. More recently, ithas been noticed that archi-

tectural features not directly related to the TLS support also have an important impact

on the performance of the TLS system. Moreover, the performance impact of such

features is sometimes other than intuition would expect given their well-understood

impact on non-TLS systems. For instance, [77] shows that TLS systems benefit from

a larger number of Miss Handling Resisters (MSHRs) than non-TLS systems can pos-

sibly exploit. Also, it is sometimes the case that better variations of such common

architectural features can be found that are specifically tailored to TLS systems. For

instance, [20] shows that re-using the history register from previous threads can boost

branch prediction accuracy for TLS systems.

This part of the thesis focuses on the problem of branch prediction for TLS sys-

tems. Its contributions are as follows: We perform an in-depth study of the interaction

between branch prediction and TLS performance. In this process, we show that the

relationship of the performance of TLS systems to branch prediction is often hard to
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model and sometimes different from that of the sequential execution. We then shed

some light on the characteristics of TLS execution that impact branch prediction be-

havior. Based on the above observations, we propose to combine MP Executionwith

TLS as a means of resolving many hard-to-predict branches.

Experimental results show that the combined execution model achieves speedups

of up to 20.1%, with an average of 8.8%, over an existing state-of-the-art TLS system

and speedups of up to 125%, with an average of 29%, when compared with Multi-Path

execution for a subset of the SPEC2000 Int benchmark suite.

This component of the thesis is organized as follows. Chapter6 explores how

branch prediction is affected by TLS and vice-versa, and motivates the combination

of TLS with MP. Chapter2 provides a brief description of the TLS and MP execu-

tion models. Chapter7 presents our combined TLS and MP scheme which enhances

TLS’s performance by removing mispredictions of hard-to-predict branches. Chapter8

presents results and Sections11.5and11.6discusses related work.

1.2.3 Profitability-Based Dynamic Power Allocation

Another contribution of this thesis is to identify threads that provide neither TLP, nor

ILP benefits and distinguish them from those that do. By classifying threads into prof-

itable and non-profitable ones, we can increase the efficiency of our speculative sys-

tem by allocating power according to their profitability. More specifically, threads

predicted to be non-profitable are put in one of the low power modes, allowing us to

spend the power saved to accelerate the profitable ones. We guide our scheme based

on two predictors: a dependence predictor able to detect lack of TLP, and a memory

boundness predictor able to estimate lack of ILP.

Apart from being able to classify threads into profitable andnon-profitable ones,

we also require a mechanism to regulate the power resources accordingly. We could

potentially implement this by supporting multiple types ofcores (i.e., low power ones,

high power ones etc.) and migrate the threads accordingly. However since our threads

are by construction small (so as to require minimal hardwareextensions in order to be

able to buffer all the intermediate results), migration hasserious performance repercus-

sions. We instead choose to implement different power modesby performing Dynamic
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Voltage and Frequency Scaling (DVFS) [52] on each core, which, when done by on-

chip regulators, is a proven and fast way to trade power for performance [41].

Applying our profitability-based power allocation scheme to a state-of-the-art TLS

system, we are able to achieve significant speedups with a reasonable increase in the

power consumed. More specifically, by evaluating our technique for a subset of the

SPEC2000 Int benchmarks, we show that with only minimal hardware support, we are

able to achieve improvements in the overall Energy-Delay2 (ED) of up to 25.5% with

an average of 18.9%. Although the techniques proposed in this part of the thesis are

evaluated only for a TLS system, they are directly applicable to a TM one.

This component of the thesis is organized as follows: Chapter9 provides some

background on DVFS and outlines our proposed scheme. Chapter10 presents our

results. Finally, Section11.7discusses related work.

1.3 Thesis Structure

Chapter2 provides background information on the execution models that we propose

to combine. Chapter3 describes our experimental methodology. We provide details

on the simulation infrastructure and the simulated baseline architecture. In subsequent

chapters where we present the proposed schemes, we will iterate again over the base-

line architecture, for a quick reference, and outline the additional hardware that is

required. In the same chapter we present the compilation infrastructure used and we

provide a brief description and analysis of the benchmarks used. We also present a

statistical analysis using the Placket/Burman [60] technique that pinpoints the archi-

tectural bottlenecks for our baseline system. Finally we present a model that we will

use in later sections to quantify the achieved speedups in terms of the respective ILP

and TLP contributions.

Chapter4 presents the proposed scheme and discusses implementationissues. In

the same chapter we also discuss the extra hardware support required. Chapter5

presents our experimental results and uses the model described earlier to analyze the

source of the achieved speedups.

2Energy Delay is a combined metric, that is the product of the energy a system expended to perform
an operation with the time it required to perform it.
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Chapter6 quantifies what the impact of branch prediction is on TLS and shows that

it is more important than it is for sequential systems. The same chapter also shows,

using the entropy of branches, that branch prediction is harder for TLS and that high-

end branch predictors are likely to provide only minimal improvements. Chapter7

describes how one can lessen the branch prediction problem by allowing speculative

threads to follow multiple paths. Chapter8 presents experimental results that quantify

the performance of the proposed scheme and also performs a sensitivity analysis of the

design parameters.

In Section1.2.3we argued for a profitability-based power allocation schemefor

TLS systems, acknowledging the fact that speculating aftera point comes at dimin-

ishing returns. In fact even for the profiled base TLS systems, some tasks are more

energy efficient than others. Chapter9 describes the proposed scheme and how we

can design profitability predictors to achieve runtime adaptation. Chapter10 presents

experimental results that clearly show the benefits of the proposed scheme.

Chapter11discusses related work and Chapter12summarizes the contributions of

this thesis. Chapter13 describes possible future work based on the proposed schemes

and provides a few concluding remarks.



Chapter 2

Background on TLS, HT, RA and MP

Execution Models

2.1 TLS

Under thethread-level speculation(also calledspeculative parallelizationor specula-

tive multithreading) approach, sequential sections of code are speculatively executed

in parallel hoping not to violate any sequential semantics [32, 45, 53, 68, 71]. The

control flow of the sequential code imposes a total order on the threads. At any time

during execution, the earliest thread in program order isnon-speculativewhile the oth-

ers arespeculative. The termspredecessorandsuccessorare used to relate threads in

this total order. Stores from speculative threads generateunsafeversionsof variables

that are stored in some sort ofspeculative buffer. If a speculative thread overflows its

speculative buffer it must stall and wait to become non-speculative. Loads from specu-

lative threads are provided with potentially incorrect versions. As execution proceeds,

the system tracks memory references to identify any cross-thread data dependence vi-

olation. Any value read from a predecessor thread, is calledan exposed read, and it

has to be tracked since it may expose a Read-After-Write (RAW) dependence. If a

dependence violation is found, the offending thread must besquashed, along with its

successors, thus reverting the state back to a safe positionfrom which threads can be

re-executed. When the execution of a non-speculative threadcompletes itcommits

9
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and the values it generated can be moved to safe storage (usually main memory or

some shared higher-level cache). At this point its immediate successor acquires non-

speculative status and is allowed to commit. When a speculative thread completes it

must wait for all predecessors to commit before it can commit. After committing, the

processor is free to start executing a new speculative thread. An example of TLS exe-

cution is depicted in Figure2.1, where a loop is speculatively parallelized. While there

are no dependences among the threads created from iterations j andj+1 , this is not the

case for the one created from iterationj+2 . In fact this thread has a RAW dependence

with threadj and as such it has to be restarted and its data discarded.

f o r ( i = 0 ; i < 1 0 0 ; i + + ) {

   . . .  = A[L[i ] ]  + .. .

  
 A[K[i ] ]  = . . .

}

. . .  = A[4] + . . .

A[5] = . . .

. . .  = A[2] + . . .

A[2] = . . .

. . .  = A[5] + . . .

A[6] = . . .

I te ra t ion  j I t e ra t i on  j +1 I t e ra t i on  j +2

Orig inal  Loop

RAW

T ime

Figure 2.1: Speculatively parallelizing a loop with TLS. Iterations of a loop are converted

to threads. Iteration j+2 violates the sequential semantics (RAW dependence) and as

such it has to be squashed.

Speculative threads are usually extracted from either loopiterations or function

continuations. The compiler marks these structures with a fork-like spawn instruction,

so that the execution of such an instruction leads to a new speculative thread. The

parentthread continues execution as normal, while thechild thread is mapped to any

available core. For loops, spawn points are placed at the beginning of the loop body,

so that each iteration of the loop spawns the next iteration as a speculative thread

(Figure2.2(a)). Threads formed from iterations of the same loop (and that,thus, have

the same spawn point) are calledsibling threads. For function calls, spawn points

are placed just before the function call, so that the non-speculative thread proceeds

to the body of the function and a speculative thread is created from the function’s
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f o r ( i = 0 ; i < n ; i + + ) {
    spawn_thread();

     loop body
}

Iteration 1

Iteration 2

Iteration n

...

More  Specu la t i ve

(a)

spawn_thread()
Function();

Function continuation

Function

   Function
Continuation

More  Specu la t i ve

(b)

Figure 2.2: Extracting threads from: (a) Loop iterations. (b) Function continuations.

continuation (Figure2.2(b)). In order to extract more parallelism, it is also possible

to create speculative threads from nested subroutines and loop iterations. Under these

schemes threads are spawned in strict reverse order, more speculative first, compared

to their sequential execution. Such schemes are said to haveout-of-order spawnand

have been shown to provide significant performance benefits [63].

2.1.1 Architectural Support

In this section we describe the hardware support that is required so as to fully sup-

port TLS on an existing multi-core system. The architectural support required for any

TLS system consists of six components: i) a mechanism to allow speculative threads

to operate in their own context and to enforce that speculatively modified data be also

kept separate, ii) a mechanism to track data accesses in order to detect any data de-

pendence violations, iii) a mechanism to spawn threads in different cores or contexts,

iv) a mechanism to rollback (i.e., squash and restart) incorrectly executed threads, v)

a mechanism to commit the correctly speculatively modified data to the safe state, and

vi) a mechanism to keep track of the ordering of threads with respect to the original

sequential execution order. Although there are many possible ways to support these

mechanisms, throughout this thesis we assume as our baseline architecture the one

proposed in [63], which has been shown to excel in both performance and energy effi-

ciency. Details about each of these operations are given in the following sections.
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2.1.1.1 Data Versioning

Memory accesses issued by speculative tasks must be carefully handled so as not to

compromise the correct execution of the application. In particular, since some of the

speculative tasks may be incorrect, their state cannot be merged with that of the safe

state of the program. Consequently, the state of each thread is stored separately, typi-

cally in the cache of the processor running the task. Additionally, stores are not allowed

to propagate to lower memory levels. If a violation is detected, the state generated by

the task is discarded. Otherwise, when the task becomes non-speculative, the state is

allowed to propagate to memory. When a non speculative task finishes execution, it

commits. Committing informs the rest of the system that the state generated by the

task is now part of the safe program state. Commit is done in task order and involves

passing a commit token between tasks.

Each task has at most a single version of any given variable. In order to maintain

the correct execution semantics, we have to enforce that each task buffers its interme-

diate values. Since some of the tasks may have to perform stores to the same variables,

and thus produce different values for the same variables, wemust buffer them sepa-

rately. Additionally, reads performed by speculative tasks have to be performed based

on the ordering they would have had, if they were executed sequentially. This can

be achieved if each task read is provided with the closest predecessor version of the

variable. Finally, the variables that have been updated during speculative execution

have to be committed based on the ordering of the tasks. Typically, all three operations

leverage on a special type of cache, theSpeculative Versioning Cache(SVC) [30].

Such a multi-versioned cache can hold state from multiple tasks by tagging each

cache line with a version ID, which records what task the linebelongs to. Intuitively,

such version ID could be the task version. In addition to facilitating the data version-

ing and data movement, there are also two performance reasons why multi-versioned

caches are desirable: they avoid processor stalls when tasks are imbalanced, and en-

able lazy commit. If tasks have load imbalance, a processor may finish a task and the

task is still speculative. If the cache can only hold state for a single task, the proces-

sor has to stall until the task becomes safe. An alternative is to move the task state

to some other buffer, but this complicates the design. Instead, it is best that the cache
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retain the state from the old task and allow the processor to execute another task. Lazy

commit is an approach where, when a task commits, it does not eagerly merge its

cache state with main memory through ownership requests [70] or write backs [45].

Instead, the task simply passes the commit token to its successor. Its state remains in

the cache and is lazily merged with main memory later, usually as a result of cache line

replacements. This approach improves performance becauseit speeds up the commit

operation. However, it requires multi-versioned caches.

2.1.1.2 Detecting Dependence Violations

Data dependences are typically monitored by tracking, for each individual task, the

data written and the data read with exposed reads. The dependence can be tracked at

either word or cache line level. Although tracking dependences at the word granularity

minimizes the amount of false dependences (caused when threads write a different byte

from the one read), the additional hardware cost of doing so renders it a less attractive

approach than tracking dependences at the cache line level.In all cases a write always

marks the cache line as dirty. If the datum size is equal to thegranularity, the protecting

write bit for that datum is set. For example, in a word base granularity, a write to a

word sets the protecting write bit for that word.

When a read is performed, the write bit is checked. If this bit is not set, then

the value is read from a predecessor task and as such it is an exposed read. Exposed

reads are marked by setting a bit for the specific cache line (or word depending on

the granularity). A data dependence violation occurs when atask writes a location

that has been read by a successor task with an exposed read. Inorder to unveil these

violations, the addresses of the performed writes have to appear on the bus, so that

the remaining cores can snoop the bus and perform a check of whether they have

performed an exposed read for that address.

In addition to data dependence violations, tasks are also exposed to control depen-

dence violations. Control violations occur when a task is spawned in a mispredicted

branch path.



Chapter 2. Background on TLS, HT, RA and MP Execution Models 14

2.1.1.3 Spawning Threads

Spawning a new thread is a process that in conventional architectures is typically fairly

slow. In TLS systems, where thread spawns are fairly frequent, this would impair

performance. For this reason special support for fast spawning of threads is required.

More specifically, in TLS systems when a thread encounters a thread spawn instruction,

it creates a small packet containing the stack pointer, the program counter and some

counters that have to do with the thread ordering. This packet is sent to an empty core

which can start execution immediately after initializing its program counter and stack

pointer accordingly. Instead of relying on register communication, as Multiscalar [68]

does, under our framework communication of live-ins is donethrough memory. The

compiler ensures that all values that are live-ins for the newly created thread will be

spilled into memory, so that when the new thread requests them they will be propagated

to it via the TLS protocol.

2.1.1.4 Rolling Back

Rolling back any changes is a fairly important architecturalcomponent of TLS sys-

tems. TLS threads should be able to restore any changes, so that the architectural state

remains valid even when data dependence violations have occurred. When a viola-

tion is detected (control or value), the pipeline and the store buffers are flushed. The

cache lines in the speculative buffer that are not dirty and have not been modified by

any other thread, are kept intact whereas the rest of the cache lines are invalidated.

Squashes come in two forms. In a control violation, the task is squashed with a kill

signal. In a data violation, the task is squashed with a restart signal, which also restarts

the task from its beginning, hoping that the re-execution will not violate another data

dependence. If the thread is restarted or killed, the register state is discarded. For a

restart the stack pointer and program counter are reset to their initial values.

2.1.1.5 Committing State

Committing state can only happen when a thread becomes non-speculative. Becoming

non-speculative implies that the thread can no longer violate any of the sequential
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semantics and as such cannot perform any operations on incorrect data. When such

a thread finishes execution, any cache lines it modified have to be written back to

memory. This is typically done via a lazy policy, where linesthat should be written

back are left in the caches until they are replaced and thus written back to a lower

level cache. With multi-versioned caches, execution of subsequent threads can proceed

despite this effect.

2.1.1.6 Maintaining Thread Ordering

Thread ordering ensures that when threads commit, they commit in an order im-

posed by the sequential semantics. For systems that only support in-order spawn-

ing of threads, maintaining thread ordering is straightforward - it is done by main-

taining a global counter which is incremented before it is passed to any of the chil-

dren threads. Out-of-order spawning makes things much harder. Under out-of-order

spawning, threads are spawned in strictly reverse order than their sequential seman-

tics. Thread ordering here is maintained via splitting timestamps. [63] was the first

to propose such a system, so that the correct ordering is maintained in a distributed

fashion.

2.1.2 Compilation Support

Generating TLS binaries requires some modest compilation support so as to partition

the program into tasks. Each task corresponds to a subset of the execution of the

program. A task is called from a spawn point; this is the pointin execution that starts

the task. A task starts executing from a begin point, which isthe first instruction of the

executing task. A task has only one begin point and only one spawn-point. However,

multiple ending points are possible.

Generally a TLS compiler consists of four main phases: Task selection, spawn

hoisting, task pruning, and live-in generation. Once a taskis selected, the spawn point

is hoisted as much as possible. Tasks with little potential are eliminated by the task

pruning pass. The live-ins are calculated for the remainingtasks and spill and re-load

code is inserted before the spawn point and after the begin point, respectively.
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Additional compilation support can help significantly, although it is not generally

required for correct TLS execution. The compiler can removesome of the dependence

violations either by performing software value predictionfor the induction variables

so as to remove some of the dependences that might cause violations or by explicitly

synchronizing tasks. The POSH [49] compiler is an example of a compiler that uses

value prediction. However, POSH does so only for what it is able to identify as in-

duction variables. The Mitosis [61] compiler adopts a much more general method for

value prediction, inserting precomputation slices at the start of speculative sections.

This is done by traversing the control flow graph backwards starting at the begin point.

Instructions that produce the live-ins to the speculative section are selected. These

instructions are then duplicated at the start of the speculative section.

Although the great advantage of TLS is that synchronizationbetween tasks can be

avoided, often dependences causing squashes in speculatively executed loop iterations

can be statically determined. This observation is exploited in [84] by introducing syn-

chronization instructions when dependences between loop iterations can be identified

at compile time. Mispeculation is avoided by inserting waitand signal primitives, forc-

ing uses to wait until the producing instruction in the predecessor thread has executed.

2.2 HT

Under thehelper threads(also calledsubordinate microthreads) approach [15, 22,

73, 85], small threads are run concurrently with a main thread. Thepurpose of the

helper threads is not to directly contribute to the actual program computation, which

is still performed in full by the main thread, but to facilitate the execution of the main

thread indirectly. Common ways to accelerate the execution of the main thread involve

initiating memory requests ahead of time (i.e., prefetching; such that the results are

hopefully in the cache by the time they are needed by the main thread) and resolving

branches ahead of time. An example of this is shown in Figure2.4, where a loop

suffers from a branch misprediction due to a hard-to-predict branch and subsequently

also suffers a cache miss. By taking the backward slice leading to the cache miss

instruction, a helper thread can be created, which when spawned ahead of time, is able
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Figure 2.3: Different models of multithreaded execution: (a) Thread Level Speculation.

(b) Helper Thread. (c) Runahead Execution. (d) Multi-Path Execution.

to prefetch/warm-up for the main thread and thus improve itsILP.

Usually, depending on how the helper threads are generated (see below), the ex-

ecution of helper threads is speculative in that they may be following some incorrect

control flow path and/or producing and consuming incorrect data. In this multithreaded

execution model there is no particular ordering among multiple helper threads and all

arediscardedat the end of their execution. Figure2.3(b)depicts this execution model.

Helper threads are usually generated by the compiler or programmer and often

consist ofslicesof instructions from the main thread (e.g., only those instructions

directly involved in the computation of some memory addressor branch condition).

Depending on the size and complexity of the helper threads itmay be possible to



Chapter 2. Background on TLS, HT, RA and MP Execution Models 18

keep all their intermediate results in the registers, but itmay be necessary to allow for

spills to the memory hierarchy, which in turn requires providing storage for speculative

versionsof data. The compiler marks the main thread with fork-likespawn instructions

at points where particular helper threads should be initiated.

f o r ( i = 0 ; i < 1 0 0 ; i + + ) {
 
  Computation 

  i f (B[L[ i ] ]  < 0)
     . . .  = A[L[i]] + ...

  Computation
  
  A[K[i] ]  = .. .
}

Orig inal  Loop

f o r ( i = 0 ; i < 1 0 0 ; i + + ) {

  

  Computation 

  i f (B[L[ i ] ]  < 0)
     . . .  = A[L[i]] + ...

  Computation
  
  A[K[i] ]  = .. .
}

 i f (B[L[ i ] ]  < 0)
    . . .  = A[L[i] ]  + ...

Helper  ThreadMa in  Th read

    Branch 
Misprediction

    Cache Miss

    Branch 
Misprediction

    Cache Miss

  Does not 
  affect A[]

T ime

    Spawn HT

Figure 2.4: Helper threads can help with hard-to-predict branches and memory misses.

The original loop suffers from a branch misprediction and a memory miss. The modified

loop spawns a helper thread that is able to resolve the misprediction and the cache

miss, so that when the main thread reaches that point it is able to predict the branch

correctly and find the requested cache line.

The architectural support required by HT consists of three main components: i)

a mechanism to allow helper threads to operate in their own context and, possibly,

to enforce that speculatively modified data be also kept separate, ii) a mechanism to

spawn threads in different cores or contexts, and iii) a mechanism to discard threads

when finished.

2.3 RA

Under theRunaheadapproach [6, 14, 17, 28, 43, 58], when the main thread hits a long-

latency operation (e.g., an L2 miss) it halts execution and arunahead thread continues

execution either ignoring or predicting the outcome of the long-latency operation. The
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purpose of the runahead thread is not to directly contributeto the actual program com-

putation, which is often still performed in full by the main thread once it resumes, but

to facilitate the execution of the main thread indirectly after it resumes. As with HT,

common ways to accelerate the execution of the main thread involve prefetching and

early branch resolution. Unlike HT, runahead threads do notrun concurrently with the

main thread. Thus runahead execution can be seen as a form of HTs which run only

on idle cycles of the processor. The execution of the runahead thread is speculative

since the outcome of the long-latency operation is either ignored or predicted. Thus, in

most proposed models the runahead thread isdiscardedonce the main thread resumes

execution. In more aggressive models, however, if the predicted outcome of the long-

latency operation is correct the execution of the runahead thread is incorporated into

the main thread before stopping the execution of the runahead thread. Figure2.3(c)

depicts this execution model.

Runahead threads are generated on-the-fly by the hardware and, like the common

HT case, consist of a selection of instructions from the mainthread. Strictly speaking,

in many proposals in the literature, the runahead threads are in fact obtained by simply

checkpointingthe main thread and letting it run ahead instead of explicitly spawning

a new thread elsewhere. Also like HT, it may be possible to keep all the intermediate

results of the runahead thread in the registers, but it may benecessary to allow for spills

to the memory hierarchy.

The architectural support required by RA consists of five maincomponents: i) a

mechanism to allow runahead threads to operate in their own context and, possibly,

to enforce that speculatively modified data be also kept separate, ii) a mechanism to

decide when to generate runahead threads or to switch the main thread into runahead

mode, iii) a mechanism to discard incorrectly executed threads, and iv) and v) optional

mechanisms to check if the runahead thread has executed based on correct or incorrect

predicted outcomes and, if so, to incorporate the runahead state and data into the main

thread.
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2.4 MP

Under theMulti-Path (MP) execution model, both paths following a number ofhard-

to-predict conditional branches are followed. More specifically when abranch is

thought1 to be a hard-to-predict one, another thread is created whichis given a copy of

the register file as it is before executing the branch. In order to allow fast register file

copying, all threads are usually executed on the same core, which has multi-threading

support. When the branch that triggered the MP execution is resolved, the thread that

lies on the wrong path is discarded. Threads in MP mode cannotcommit their state,

since they might be executing instructions on the wrong path, thus intermediate stores

are not propagated to the cache hierarchy - they are instead accommodated in the store

buffers (in this model no spills are allowed). While executing in MP mode if there

is no context available, subsequent hard-to-predict conditional branches are typically

treated as normal branches, that is, they are predicted using the branch predictor. MP

is thus able to avoid branch mispredictions at the cost of executing more instructions.

The architectural support required by MP consists of three main components: i) a

mechanism to allow MP threads to operate in their own contextand, possibly, to en-

force that speculatively modified data be also kept separate, ii) a mechanism to decide

when to generate MP threads, and iii) a mechanism to discard incorrectly executed

threads.

Table2.1summarizes the architectural support required by the four multithreaded

execution models in columns 2 to 5 (the last column shows the support used by our

combined TLS/HT/RA scheme, which is described in Section4).

1Confidence estimators are typically used to predict whetherthe branch predictor usually fails to
predict correctly the specific branch.
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Table 2.1: Hardware support required for the different models of multithreaded execu-

tion and for our combined approach. O stands for optional feature, X stands for feature

not required, and Xstands for feature required.

Mechanism TLS HT RA MP Combined

Data Versioning X X X X X

Data Dep. Tracking X X X X X

Spawn Threads X X X X X

Discard/Rollback X X X X X

Commit State X X O X X

Order Threads X X X X X

Checkpoint Threads O X X X X

Value Predict L2 Misses X X O X X



Chapter 3

Evaluation Methodology

Evaluating any proposal in computer architecture, as with any other science, requires

experimental validation. This can be done either by implementing and fabricating a

new chip, that will implement the proposed idea or by simulating it. Although there

are many advantages to fabricating a chip, its cost is prohibitive in most cases, and as

such simulation is the tool of choice for the architectural community.

Simulators are programs that mimic what a real processor would do when running

a specific application. Because simulators are programs, it is easy to instrument any

event we wish and it is relatively easy to implement oracle schemes so as to perform

limit studies. Typically, simulators have errors when compared to real processors that

are in the order of 10%, however since the comparisons between two schemes (the

base case processor and the newly proposed one) use the same simulator, results are

relative and as such this error may not be as important. Throughout this study we

have used the SESC simulator [64], which has been shown to be quite accurate when

compared with a MIPS R1000 (less than 4% error). We provide more details regarding

our experimental methodology in the following sections.

3.1 Simulation Environment

We conduct our experiments using the SESC simulator [64]. In SESC, the actual in-

structions are executed in an emulation module, which emulates the MIPS Instruction

22
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Set Architecture (ISA). It emulates the instructions in theapplication binary in order.

The emulation module is built from MINT, a MIPS emulator. Theemulator returns

instruction objects to SESC which are then used for the timing simulator. These in-

struction objects contain all the relevant information necessary for accurate timing.

This includes the address of the instruction, the addressesof any loads or stores to

memory, the source and destination registers, and the functional units used by the in-

struction. The bulk of the simulator uses this information to calculate how much time

it takes for the instruction to execute through the pipeline.

The main microarchitectural features are listed in Table3.1. The system we sim-

ulate is a multicore with 4 processors, where each processoris 4-issue out-of-order

superscalar. The branch predictor is a hybrid bimodal-gshare predictor. The minimum

branch misprediction latency is 12 cycles while we also employ speculative updates of

the global history register along the lines of [40]. Each processor has a multi-versioned

L1 data cache and a non-versioned L1 instruction cache. All processors share a non-

versioned unified L2 cache. For the TLS protocol we assume out-of-order spawning

[63]. The latencies of all the caches were computed based on CACTI [74] for a 70nm

technology. The power consumption numbers are extracted using CACTI [74] and

wattch [11].

3.2 Compilation Environment

The TLS binaries were obtained with the POSH infrastructure[49]. For reference, the

sequential (non-TLS) binaries where obtained with unmodified code compiled with

the MIPSPro SGI compiler at the O3 optimization level. In order to directly com-

pare them, we need to make sure that both the sequential and the TLS system, execute

the same code segments. Traditionally, this is ensured by executing a given number

of instructions. For TLS systems however, counting the number of instructions does

not guarantee anything, since we speculatively execute many more instructions. For

this reason, we place simulation marks across the code regions we wish to simulate

and make sure that both the sequential and the TLS systems, execute the code seg-

ment between them. This is also necessary because the binaries are different, due to
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Table 3.1: Baseline architectural parameters.

Parameter TLS (4 cores)

Frequency 4GHz

Fetch/Issue/Retire Width 4, 4, 4

L1 ICache 16KB, 2-way, 2 cycles

L1 DCache 16KB, 4-way, 3 cycles

L2 Cache 1MB, 8-way, 10 cycles

L2 MSHR 32 entries

Main Memory 500 cycles

I-Window/ROB 80, 104

Ld/St Queue 54, 46

Branch Predictor 48Kbit Hybrid Bimodal-Gshare

BTB/RAS 2K entries, 2-way, 32 entries

Minimum Misprediction 12 cycles

Task Containers per Core 8

Cycles to Spawn 20

Cycles from Violation to Kill/Restart 20

re-arrangements of the code by POSH. Note that these simulation marks have to be

placed in locations where there is no speculation happening, otherwise threads that

miss speculate might incorrectly end the simulation prematurely. We simulate enough

simulation marks so that the corresponding sequential application graduates more than

750 million instructions, after skipping the initialization phase.

3.3 Benchmarks

We use the integer programs from the SPEC CPU 2000 benchmark suite [72] running

the Reference data set. We use the entire suite excepteon, which cannot be compiled

because our infrastructure does not support C++, andgccandperlbmk, which failed to

compile in our infrastructure. In the next sections we briefly describe each one of the

benchmarks and analyze them both for the sequential and the TLS case.
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3.3.1 Description of Benchmarks

Bzip2: 256.bzip2 is based on Julian Seward’s bzip2 version 0.1. Theonly difference

between bzip2 0.1 and 256.bzip2 is that SPEC’s version of bzip2 performs no file I/O

other than reading the input. All compression and decompression happens entirely in

memory. This is to help isolate the work done to only the CPU andmemory subsystem.

Crafty: Crafty is a high-performance computer chess program that is designed around

a 64bit word. It is primarily an integer code, with a significant number of logical

operations such asAND, OR, XORandSHIFT.

Gap: Gap implements a language and library designed mostly for computing in groups

(GAP is an acronym for Groups, Algorithms and Programming).

Gzip: Gzip (GNU zip) is a popular data compression program which ispart of the

GNU project. It uses Lempel-Ziv coding (LZ77) as its compression algorithm.

Mcf: A benchmark derived from a program used for single-depot vehicle scheduling

in public mass transportation. The program is written in C, the benchmark version uses

almost exclusively integer arithmetic.

Parser: The Link Grammar Parser is a syntactic parser of English, based on link

grammar, an original theory of English syntax. Given a sentence, the system assigns

to it a syntactic structure, which consists of a set of labeled links connecting pairs of

words.

Twolf: The TimberWolfSC placement and global routing package is used in the pro-

cess of creating the lithography artwork needed for the production of microchips.

Specifically, it determines the placement and global connections for groups of tran-

sistors (known as standard cells) which constitute the microchip.

Vortex: VORTEx is a single-user object-oriented database transaction benchmark

which exercises a system kernel coded in C. The VORTEx benchmark is a derivative of

a full OODBMS that has been customized to conform to SPEC CINT2000 (component

measurement) guidelines.

Vpr: Vpr is a placement and routing program. It automatically implements a technol-

ogy mapped circuit (i.e., a netlist, or hypergraph, composed of FPGA logic blocks and

I/O pads and their required connections) in a Field-Programmable Gate Array (FPGA)

chip. It is an example of an integrated circuit computer-aided design program, and
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algorithmically it belongs to the combinatorial optimization class of programs.

3.3.2 Brief Analysis of Benchmark Characteristics

3.3.2.1 Code Bloat

Figure3.1 depicts the static code bloat introduced by the compiler (i.e., the standard

POSH infrastructure). Code bloat results from the extra loads and stores the compiler

has to insert in order to pass the live-ins on task creation. In addition to this the com-

piler inserts extra instructions to spawn new tasks and to mark their end. On average

the TLS binaries have 11% more instructions than the sequential ones. Note that de-

pending on the program, code bloat varies significantly and in some cases likemcf and

parserit may be fairly large.
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Figure 3.1: Code bloat per application.

3.3.2.2 Task Sizes

Partitioning applications to tasks that are small enough sothat their speculative data

can fit in the versioned caches, while being large enough to procure TLP benefits,

is a crucial aspect of TLS systems. Figure3.2 shows a breakdown of the task sizes

for each of the benchmarks considered. On average more than 70% of the tasks are

smaller than 500 instructions, while a reasonable number ofthreads with more than

2000 instructions exist in only three applications (i.e.,crafty, gap,andvortex).
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Note that these tasks are the ones that the POSH profiler foundto be profitable.

Larger tasks either had dependences that would not allow them to provide any TLP

benefits, caused overflows in the speculative buffers, or suffered from load imbalance

so that smaller tasks were favored. Unfortunately, small tasks render the overall per-

formance fairly sensitive to ILP.
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Figure 3.2: Fraction of threads of different sizes.

3.3.2.3 Dependence Violations

Even after profiling, some tasks violate the sequential semantics and as such they must

be squashed. Figure3.3 shows the fraction of cycles spent in tasks that squash over

the total time spent executing all tasks. From all the applications,gap is the worst,

spending 31.5% of its time executing tasks that will not provide any TLP benefits.

Twolf andbzip2on the other hand have only a small number of violations and spend

4.0% and 7.4% of their time in such tasks, respectively.

Figure 3.4 shows how the number of squashes per core varies with the number

of cores. Note that while the number of squashes per core increases when we move

from two to four cores, this is not the case for some of the applications when we
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Figure 3.3: Fraction of time spent in tasks that squash over time spent for all tasks.

move from four to eight cores. The increase in the number of squashes per core in the

former case is the result of the deeper speculation that is possible thanks to a larger

number of cores (some of the thread spawns are suppressed forthe two core case,

leading to serialization). This in turn results in the creation of tasks that are fairly

probable to either cause a violation themselves or have a predecessor thread that caused

a violation. When we move to a larger number of cores, however,we are not always

able to create enough threads so as to utilize all the cores. This brings the average

number of squashes per core for the eight core system, down when compared with

the four core case. Note however, that the total number of squashes increases almost

linearly with the number of cores. This graph suggests that from a power perspective

TLS is prohibitive for a large number of cores, since the amount of threads that do not

provide benefits increases significantly.

3.3.3 Microarchitectural Bottlenecks of TLS Systems

Before trying to optimize cores for TLS, it is essential to understand and quantify the

microarchitectural bottlenecks for TLS systems. Instead of relying on design expe-

rience, we advocate the use of a statistically rigorous scheme, able to quantify the

relative importance of the microarchitectural features for the system’s performance.

More specifically, we use the Placket-Burman (PB) design pattern [60].
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Figure 3.4: Average number of squashes per core with varying number of cores.

Under this design pattern, we first pick the design parameters of interest. We then

define for each parameter two values: the one we expect our system to have and a

larger than normal one. We then proceed to construct a designmatrix. The rows of

the design matrix correspond to different processor configurations while the columns

correspond to the values of the parameters for each of the configurations. Since the

Placket-Burman designs exist only for systems with parameters that are multiples of

four, for the construction of the design matrix we need X simulations, where X is the

next multiple of four that is greater than the number of parameters. When there are

more columns than parameters, the extra columns serve as placeholders and have no

effect on the simulation results. With the simulation results, we can then fill in the

matrix with the performance (or power) for each of the configurations and from that

compute the impact of each of the parameters on the end performance.

From all the possible design parameters, we picked the sevenmore important and

we then performed the aforementioned analysis for both the sequential case and for a

four core TLS system. More specifically, we picked as parameters the size of the level

two cache, the size of the level one data cache, the size of thelevel one instruction

cache, the size of the register file, the size of the ROB, the branch predictor and the

size of the load/store queue. TheNormalvalue for each of the parameters as well as

the High andLow ones can be seen in Table3.2 and correspond to the baseline val-
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Table 3.2: Values of architectural parameters used for the Placket Burman exploration.

Parameter Normal High Low

L2 Cache 1MB 2MB 512KB

L1 DCache 16KB 32KB 8KB

L1 ICache 16KB 32KB 8KB

Reg. File 80 160 40

ROB 104 208 52

Branch Predictor 48Kbit 96Kbit 24Kbit

Ld/St Queue 54/54 108/108 27/27

ues shown earlier in Table3.1. We then performed simulations for the configurations

shown on Table3.3 and collected the execution times for each of them. In Table3.3

processor configurations can be read by inspecting its rows,where a-1 refers to aLow

value and+1 corresponds to aHigh one for the corresponding parameter.

Using this technique we found that the bottlenecks witnessed for the sequential

execution were the same with that of TLS execution, althoughtheir effect was more

pronounced in the latter. This suggests that microarchitectural features will limit the

performance more for TLS system, than they would for simple sequential execution,

and as such they should be more closely examined. The relative importance of the fea-

tures can be found in Table3.4. We see that a larger ROB generally helps significantly,

as does a better memory system. We also see that branch prediction is in the top four

bottlenecks. These numbers are in line with those presentedin [83]. It is important to

note that this ranking is done for the simulated regions of code, which where picked

so as not to favor TLS over sequential execution (i.e., this could be done by simulating

only the parallelizable loops) and as such we believe it is representative of what would

be the bottlenecks of a real TLS system. The techniques proposed in later sections aim

at improving TLS execution by targeting exactly these bottlenecks. More specifically,

by combining TLS with HT and RA (Chapter4) we are able to both improve on the
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Table 3.3: Plackett and Burman design with foldover (X=8).

L2 Cache L1 DCache L1 ICache Reg. File ROB BPred LD/ST

+1 +1 +1 -1 +1 -1 -1

-1 +1 +1 +1 -1 +1 -1

-1 -1 +1 +1 +1 -1 +1

+1 -1 -1 +1 +1 +1 -1

-1 +1 -1 -1 +1 +1 +1

+1 -1 +1 -1 -1 +1 +1

+1 +1 -1 +1 -1 -1 +1

+1 +1 +1 -1 +1 -1 -1

-1 -1 -1 +1 -1 +1 +1

+1 -1 -1 -1 +1 -1 +1

+1 +1 -1 -1 -1 +1 -1

-1 +1 +1 -1 -1 -1 +1

+1 -1 +1 +1 -1 -1 -1

-1 +1 -1 +1 +1 -1 -1

-1 -1 +1 -1 +1 +1 -1

-1 -1 -1 +1 -1 +1 +1
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Table 3.4: Ranking of importance of parameters according to the Placket-Burman tech-

nique (1-Better, 7-Worse). The ranking is the same for sequential and TLS executions.

Ranking Parameter

1 ROB

2 L2cache

3 DCache

4 Bpred

5 Reg. File

6 LD/ST Queue

7 ICache

level two cache behavior and to increase clustering of cachemisses (the effect a larger

ROB would be similar). By combing TLS with MP execution (Chapter 7), we improve

the branch prediction capabilities of the cores.

3.4 Quantifying Performance Gains in Speculative

Multithreaded Executions

With multithreaded execution models part of the performance variation observed is

due to overlapped execution of instructions from multiple threads where these instruc-

tions contribute to the overall computation – we call this a TLP contribution. Another

part of the performance variation is due to indirect contributions that improve (or de-

grade) the efficiency of execution of the threads – we call this an ILP contribution. For

instance, with TLS the parallel execution of threads leads to a TLP contribution but

also prefetching effects may lead to an ILP contribution. This may happen when some

threads share data so that the first thread to incur a cache miss effectively prefetches

for the others such that the others will appear to have an improved ILP. Note that it is
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also possible that due to contention for resources, threadsappear to have a degraded

ILP. Note also that with speculative multithreaded models the possibility of squashes

and re-execution of threads leads to even more intricate relationships between TLP

and ILP contributions. Accurately quantifying the TLP and ILP contributions toward

the final observed performance variation is critical in order to reason and act upon the

behavior of multithreaded execution models. In this section we present a methodology

to quantify these TLP and ILP contributions in multithreaded execution models using

easy to collect timing information from the actual execution. The model is a varia-

tion of that proposed in [63]: it requires one extra simulation run but provides a more

accurate estimate of the ILP contribution (Section3.4.1).

The performance model is based on measuring the following quantities from the

execution: 1) the execution time of the original sequentialcode (Tseq); 2) the execution

time of the modified TLS code when executed in a single core (T1p); 3) the sum of

execution times among all threads that actuallycommit(∑Ti , for all threadsi that com-

mit); and 4) the execution time of the modified TLS code when executed in multiple

cores (Tmt). Figure3.5depicts these quantities for a simple example with two threads.

With these quantities, the overall performance variation (Sall ) is given by Equation3.1

and the performance variation (usually a slowdown) due to the TLS instrumentation

overhead (S1p) is given by Equation3.2. The latter is needed in order to account for

the variations needed in the binaries that execute the sequential and the multithreaded

versions of the program.

Single Thread 

Tseq

Time

Thread 1

Thread 2

T1

T2Time

T1p

Thread 1

Thread 2

T1’

T2’

Tmt

T1’ != T1
T2’ != T2

Time

More speculative

Tsq
Squash

Figure 3.5: Quantifying ILP and TLP benefits.
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Sall =

Tseq

Tmt
(3.1)

S1p =

Tseq

T1p
(3.2)

The overall performance variation of the multithreaded execution over the TLS

code executed in a single core(Scomb) is given by Equation3.3. This performance

variation reflects the combined effects of both ILP and TLP and the equality shown in

Equation3.4holds.

Scomb=

T1p

Tmt
(3.3)

Scomb= Sil p ×Stl p (3.4)

The performance variation of the multithreaded executionover the TLS code exe-

cuted in a single coreand that can be attributed to ILP effects (Sil p) is given by Equa-

tion 3.5.

Sil p =

T1p

∑Ti
(3.5)

Thus,Sil p can be computed with the measurements ofT1p and allTis. The perfor-

mance variation of the multithreaded executionover the TLS code executed in a single

coreand that can be attributed to TLP effects (Stl p) can be computed by substituting

the results of Equations3.3and3.5into Equation3.4. The reason we computeStl p in-

directly is that directly measuring overlap, especially inthe presence of task squashes

and re-executions, is very tricky and can lead to misleadingresults. Finally, we observe

that the equality shown in Equation3.6holds, which shows that the final observed per-

formance variation can be quantitatively attributed to thevariations in the binary, to

the ILP contributions, and to the TLP contributions.

Sall = S1p×Sil p ×Stl p (3.6)

Comparing our model with that proposed in [63] it can be shown that the key dif-

ference is that the ILP estimate in that model is ultimately derived from the “dynamic
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code bloat” factorfbloat, while it is derived in our model from the actual instrumenta-

tion slowdownS1p. The problem with usingfbloat as a proxy for the actual slowdown is

that it implicitly assumes that the CPI of the unmodified sequential execution and that

of the TLS-instrumented sequential execution are the same.In reality, however, the

TLS instrumentation does affect the CPI as it involves the addition of mainly function

calls and memory operations to set up thread spawns, which inturn have a different CPI

from the rest of the thread. Obviously, this impact on CPI willbe more pronounced for

smaller threads than for larger ones. In our experiments (Section 3.4.1) we measured

the difference in CPI and the ultimate impact on the ILP contribution estimation and

found out that it can be significant in several cases.

3.4.1 Performance Model Comparison

The difference between our speedup breakdown model and thatof [63] is that we

propose to measure the actual execution time degradation ofthe TLS execution when

running on a single core compared to the original sequentialexecution (S1p), instead of

estimating this factor with the instruction code bloat (fbloat). In reality 1/S1p 6= fbloat,

which will lead to some inacurracy in the model of [63]. In fact, since the added TLS

instrumentation consists of several memory operations andsome function calls, we

expect that 1/S1p < fbloat and the model of [63] will under-estimatethe contribution

of ILP.

We measured the difference between the ILP and the TLP estimates of both mod-

els for the baseline TLS system and show the results in Table3.5. Although for some

applications the errors are fairly small, this is not the case for some others likegap

andmcf where there is a difference of 15.3% (for ILP estimation) and13% (for TLP

estimation). More importantly, in some cases the two modelsdo not agree, so that the

model proposed in [63] indicates that there is no ILP contribution (or there is a slow-

down due to ILP degradation) whereas our model contradicts this. The benchmarks

where this is the case are shown in Table3.5with bold. We thus believe that the extra

simulations required by our model are well justified, since they provide a much clearer

picture of what happens.
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Table 3.5: Difference of ILP and TLP benefit estimation between our performance model

and the one proposed in [63]. With bold we denote cases where our model presents

speedup whereas the previously proposed does not.

Benchmark bzip2 crafty gap gzip mcf parser twolf vortex vpr avg

% ILP Diff. 1.81 0.45 15.3 2.67 1.11 4.81 2.26 2.97 3.49 3.87

% TLP Diff. 5.09 7.19 0.02 2.89 13.0 9.32 5.98 6.64 2.01 5.79



Chapter 4

Combining TLS, HT, and RA Execution

4.1 Basic Idea

Each of the multithreaded execution models that we consider– TLS, HT, and RA – is

best at exploiting different opportunities for accelerating the performance of a single-

threaded application. We expect a combined scheme both to perform as well as the

best model across a variety of applications and to even outperform the best model. The

latter can happen if the combined scheme can adapt to the different acceleration op-

portunities of different program phases or if the acceleration opportunities are additive

(e.g., if ILP can be exploited in addition to TLP for some program phase).

The basic idea of our proposal for combining TLS, HT, and RA execution is to

start with a TLS execution and to convert some TLS threads into helper threads by

switching them to runahead execution mode. Threads that have been converted to

helper threads execute the same instructions as they would in TLS mode, but runa-

head execution is achieved by allowing them to predict the results of L2 misses in-

stead of stalling, as done in the RA execution model (as opposed to being achieved by

some compiler/programmer slicing mechanism). These converted helper threads can

no longer contribute to the actual parallel computation (i.e., they can never commit)

but can only help the remaining TLS threads execute more efficiently by prefetching

for them in the shared L2 cache. In a multicore environment with TLS this can be

achieved when the converted helper threads bring data into L2 that will be later used

37
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by the remaining TLS threads. Note that in TLS the L1 cache is versioned so that no

sharing and, thus, no prefetching, can occur across helper threads and TLS threads.

Although traditional HTs are able to run ahead of the main thread and thus perform

timely prefetches, in our case the same effect is achieved bymaking the threads faster

(by allowing them to go past long latency misses). In both cases these threads help the

other threads and as such we borrow the term HT and use it for our converted threads

as well.

Combining TLS, HT, and RA execution is a reasonable approach for three main

reasons. Firstly, because we start by employing only TLS, wefirst try to extract all the

available TLP. This makes sense in a system with several cores since, if TLP can be

exploited, it is more likely that this will yield better performance than trying to speed

up a single main thread. When we fail to speculatively extractTLP, we may utilize

the extra hardware resources to improve the ILP of the main thread, whereas a base

TLS system would be idle. Secondly, accommodating HT and RA execution within

the TLS execution model requires only slight modifications to the base TLS system

(Table2.1). Finally, starting from TLS threads and speeding them up using the RA

model is a simple and automatic way of generating helper threads (no programmer

intervention is required).

While the basic idea is simple, developing a fully working system requires dealing

with a few implementation issues. The key issue relates to the policy ofwhen, where

and how to create HT. These decisions are critical because in our HT/RA model threads

do not contribute to TLP and consume TLP resources (e.g., cores, caches), so that a

conversion policy must balance the potential increase in ILP with the potential loss

of TLP. Another aspect of this is whether helper threads are simply converted from

existing TLS threads in place, or whether new TLS threads arespecifically created

elsewhere for the purpose of becoming helper threads. This decision also affects how

to manage helper threads in the context of an extended TLS environment. In particular,

the TLS environment imposes a total ordering on the threads in the system, which is

reasonable for TLS threads, but becomes slightly more involved when some threads

are TLS and some are HT. Also, a question is what to do with a helper thread when

it detects a data dependence violation and when one of its predecessors is squashed.
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These issues are discussed in Section4.2. Finally, another important issue relates to

the policy of converting threads back from HT to TLS threads.Since our simplified

HT/RA model does not allow for their execution to be integrated into the TLS execu-

tion, this latter policy boils down tohow to destroy HTand free up resources for further

TLS threads. This issue is discussed in Section4.3.

4.2 When, Where and How to Create HT

We identify two suitable occasions for creating a helper thread: at thread spawn and

when a TLS thread suffers an L2 cache miss. By creating a helperthread on ev-

ery thread spawn, we make the assumption that the original thread will benefit from

prefetching, which may not be always true. On the other hand,creating a helper thread

on an L2 miss will only help if the original thread will suffermore L2 misses later.

Luckily we find that TLS threads exhibit locality in their misses, that is, they either

suffer many misses in the L2 cache or they do not suffer any (due to changes in the

working set some iterations of loops have a lot of misses. Subsequent iterations of the

same loop find the data in the cache due to temporal/spatial locality). We experimented

with both approaches and found out that indeed this was the case and that the approach

of spawning helper threads on a L2 miss performs better (Section 5.3.1).

As for the location where to execute the helper thread there are two possibili-

ties: in the same core where the original TLS thread was executing (thus, effectively

putting the TLS thread into runahead mode) or in a different idle core (thus, effectively

cloning the original TLS thread and converting the clone into a helper thread, see Fig-

ure 4.1(a)). Obviously, the first option will sacrifice the exploitation of TLP, which

may not be easily recovered by the benefits of the helper thread. On the other hand, the

second option leads to an increased number of threads in the system, which increases

the pressure on resources, possibly leading to performancedegradation. If we decide

to convert an existing thread, we simply have tocheckpointand mark the thread as a

helper thread. This thread will proceed until the end of its execution disregarding long

latency events and restart signals. If we instead create a new thread, we will have to do

so using the existing TLS spawning model and marking the thread as a helper thread.
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We experimented with both approaches and found out that the latter performs better

(Section5.3.2).

Throughout this work we optimistically assume that TLS threads will perform use-

ful work. Since helper threads require resources that couldotherwise be used by TLS

threads, indiscriminately creating helper threads at every L2 cache miss may prove

detrimental to the final system’s performance. Thus, it is important to make the helper

threads as transparent as possible. A simple way of doing this is by allowing only

a small number of helper threads to exist at any given time andto ensure that TLS

threads will always be given priority over these helper threads. Although spawning

on an L2 miss will create helper threads only for the threads that will likely benefit

from prefetching, this may still result in the creation of too many threads. For this

reason we only create a helper thread for the L2 misses if there is a free processor.

Additionally, we do not allow any of the helper threads to perform any thread spawn

themselves. In all cases, if we spawn a normal TLS thread and we do not have any free

processor available, we pre-empt one of the running helper threads by killing it. We

experimented with these different approaches and found outthat keeping the number

of helper threads small with the policies above gives betterresults (Section5.3.3).

We also found that by allowing only the most speculative thread to spawn a helper

thread on an idle core we can achieve most of the benefits one can achieve by allowing

multiple helper threads to co-exist (Section5.3.4). This is to be attributed to a combi-

nation of deeper prefetching and achain-prefetchingeffect. Deeper prefetching is the

result of using as helper threads TLS threads that are far ahead in execution when com-

pared to the least speculative ones. With chain prefetchingwe refer to a phenomenon

under which a helper thread prefetches only for the most speculative thread, which in

turn goes faster and prefetches for its parent thread. An example of this can be seen in

Figure4.2, where under normal TLS (Figure4.2(a)) bothThread 1andThread 2suffer

L2 misses at about the same time. When we cloneThread 2, we manage to get rid only

of the second miss fromThread 2(Figure4.2(b)). However, this makesThread 2reach

the third miss faster and, thus, prefetch it forThread 1.

In addition to throttling the use of resources, another reason for only allowing the

most speculative thread to spawn a helper thread is that it greatly simplifies the com-
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bined TLS/HT protocol. By doing so, we separate the TLS and thehelper threads in

the total thread ordering scheme. This in turn means that we do not have to deal with

complex interactions, such as the case that a helper thread triggers a data dependence

violation with a more speculative TLS thread or that a more speculative TLS thread

attempts to consume a version produced by the helper thread.

4.3 When to Terminate a HT

A helper thread should be terminated in any of the following five cases. The first case

is when the helper thread reaches the commit instruction inserted by the compiler that

denotes the end of the thread. The second case is when the parent thread that created

the helper thread reaches the commit instruction (Figure4.1(a)). The third case is when

the parent thread finds a TLS spawn instruction (Figure4.1(b)). Fourth, if the thread

that created the helper thread receives a restart or kill signal, the helper thread has to be

killed as well to facilitate keeping the ordering of threadsin the system (Figure4.1(c)).

Finally, helper threads use predicted values for the L2 cache misses and as such they

might follow incorrect execution paths. So the fifth case occurs when one of these

paths causes an exception.
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Figure 4.1: Helper threading with clones: (a) A thread is cloned on an L2 miss. (b) The

clone is killed on a thread spawn. (c) The clone is killed on a restart/kill of the thread

that spawned it.
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Figure 4.2: Chain Prefetching effect: (a) Under normal TLS execution both threads find

L2 cache misses concurrently. (b) The clone prefetches for Thread 2, which in turn

prefetches for Thread 1.



Chapter 5

Analysis of the Combined TLS/HT/RA

Scheme

5.1 Additional Hardware Configuration to Support HT

and RA

Our combined TLS/HT/RA scheme requires on top of the baselineTLS support a value

predictor so as to predict the value to be returned by missingloads. Throughout most

of the evaluation we use a simple last-value predictor [48], but we show later that a

better value predictor could improve the overall performance significantly. The value

predictor is address based and it is updated on every L2 cachemiss. Our scheme also

requires to transfer register state on a spawning of a clone thread. This is implemented

using microcode and it adds an additional cost to the creation of a clone thread of 100

cycles, by pessimistically assuming 1 cycle per register transfered. Note that normal

TLS thread spawn only requires 20 cycles, since register state transfer is done through

memory (the compiler inserts spills to memory). Techniquesto speed-up the spawn

process would yield even better results, but as I will show inthe later sections our

techniques do not rely on them.

The main microarchitectural features are listed in Table5.1. The top part lists the

baseline parameters as shown in Table3.1, and the bottom part lists the additional

parameters.

44
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Table 5.1: Architectural parameters with additional parameters required for HT/RA sup-

port.

Parameter TLS (4 cores)

Fetch/Issue/Retire Width 4, 4, 4

L1 ICache 16KB, 2-way, 2 cycles

L1 DCache 16KB, 4-way, 3 cycles

L2 Cache 1MB, 8-way, 10 cycles

L2 MSHR 32 entries

Main Memory 500 cycles

I-Window/ROB 80, 104

Ld/St Queue 54, 46

Branch Predictor 48Kbit Hybrid Bimodal-Gshare

BTB/RAS 2K entries, 2-way, 32 entries

Minimum Misprediction 12 cycles

Task Containers per Core 8

Cycles to Spawn 20

Cycles from Violation to Kill/Restart 20

Extra Hardware per Core

Value Predictor 4K entries, Last-Value
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We start by showing the bottom-line results of our scheme when compared with

both TLS and a flavor of runahead execution that uses value prediction but always

reverts to the checkpoint made before going into Runahead mode (i.e., it discards all

computation done in the Runahead thread and, thus, does not exploit any TLP). We

next try to quantitatively explain how our scheme works and provide a detailed analysis

of the reasons that led us to the proposed design. We do not compare against pure HT

because it involves significant compiler support and there is no single representative

scheme of HT.

5.2 Comparing TLS, Runahead, and the Combined Scheme

5.2.1 Performance Gains

Figure5.1shows how our proposed scheme performs when compared with both TLS

and runahead execution with value prediction. Each of the bars shows the total speedup

and the proportion of the speedup that can be attributed to ILP and TLP based on the

methodology discussed in Section3.4. Speedups are relative to sequential execution

with the original sequential binary. With the light grey shade below the 1.0 point

we denote the base case each of the schemes starts from when running on a single

core (TLS and combined scheme have worse quality of code; this is theS1p factor of

Section3.4) and with the next two shades the proportion of speedup due toILP and

TLP accordingly1. The leftmost bars correspond to the base TLS, the middle bars

to runahead execution with value prediction, and the rightmost bars to our combined

scheme.

Considering the base execution models alone, we first note that while TLS per-

forms better than runahead execution for most applications, for some applications the

performance of both schemes is comparable (gzipandparser). It is interesting that for

the memory boundmcf runahead execution is able to outperform TLS, even though it

uses only one core. On the other hand for two applications, namely gap andvortex,

runahead suffers a slowdown (for this reason the grey shadesof the corresponding bars

1Note that the breakdown shows proportions of speedup due to each category and the height
of each portion cannot be directly read as the speedup coming from ILP and TLP.
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Figure 5.1: Speedup breakdown based on our performance model. Leftmost bar is

for TLS, middle bar is for runahead with value prediction, and rightmost bar is for our

combined approach.

start from below 1.0), due to cache pollution. We also note that, despite the main target

of TLS being the exploitation of TLP, for most applications the benefits of ILP in the

base TLS scheme are comparable to the TLP benefits. For the same set of applica-

tions state-of-the-art parallelizing compilers like Intel’s ICC, are not able to achieve

any speedups (in fact they slow down some of the applications)

Comparing our combined scheme with TLS and runahead, we see that the com-

bined scheme performs at least as well as the best of the otherschemes for all ap-

plications and often outperforms the best scheme. The performance advantage of the

combined scheme indicates that often the speedups of runahead execution and TLS are

additive. In fact, even in applications where runahead execution fails to deliver any

speedups (crafty, gapandvortex), our combined scheme achieves speedups equal to

or better than TLS. When compared with TLS, we see that our combined scheme ob-

tains greater performance gains from ILP while maintainingmost of the TLP benefits.

Interestingly, in some cases our combined scheme is better than the base TLS scheme

even in terms of TLP. One possible reason for this is that faster speculative threads will

uncover violating reads faster and thus perform restarts earlier. This is an effect similar

to having lazy or eager invalidations, where it is known thateager invalidations procure

better results due to increased TLP. When compared with runahead execution, we see
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that our combined scheme obtains gains from TLP while maintaining most of the ILP

benefits. Again, in some cases our combined scheme leads to higher ILP benefits than

the base runahead execution. The likely reason for this is the deeper prefetching ef-

fect that can be achieved by performing runahead execution from a speculative thread,

coupled with the chain-prefetching effect described in Section 4.2. Overall, we see

that our combined execution model achieves speedups of up to41.2%, with an average

of 10.2%, over the existing state-of-the-art TLS system andspeedups of up to 35.2%,

with an average of 18.3%, over runahead execution with valueprediction.

5.2.2 Cache Miss Behavior

Figure5.2depicts the number of L2 misses on thecommitted pathfor all the schemes

normalized to the sequential case. This figure allows us to quantify the amount of

prefetching happening in each scheme. Note that all three schemes have smaller

miss rates than sequential execution on average since all ofthem perform some sort

of prefetching. Runahead execution leads to only a relatively small reduction in L2

misses and, in fact, for some applications likeparserandtwolf it actually slightly in-

creases the number of L2 misses. For TLS prefetching is slightly less than runahead,

and for some applications (likemcf, parserandtwolf) TLS suffers from more misses

than the sequential execution. This happens due to code bloating and the overall lower

quality of the code produced (some compiler optimizations are restricted by the TLS

pass). The combined scheme on the other hand, is able to prefetch significantly more

useful cache lines reducing the miss rate by 41% on average when compared with the

miss rate of sequential execution.

Figure5.3shows the fraction of isolated and clustered misses seenon the commit-

ted pathfor the various execution models. We define a miss as an isolated miss, if

when it reaches the Miss Handling Registers (MSHR) the cache line is not already be-

ing serviced by a previous miss to the cache. Clustering is identified as the presence of

other in-flight memory requests when the commit path suffersanother L2 cache miss.

This figure is then complementary to Figure5.2in explaining the prefetching effects of

each model as it can capturepartial prefetches (i.e., prefetches that do not completely

eliminate a cache miss, but lead to a reduction in the waitingtime). Note that runa-
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Figure 5.2: Normalized L2 misses over sequential execution for the committed path of

TLS, runahead execution, and our combined scheme.

head execution does very well in clustering the misses and infact is able to do much

better than both TLS and our combined scheme. However, as noted above, this sig-

nificant increase in number of outstanding memory requests with runahead execution

does not always translate into fewer L2 misses seen by the commit path (Figure5.2),

but in some cases it does lead to partial prefetches and improved ILP (Figure5.1). Our

combined scheme manages to cluster the misses much better than TLS does, leading

to further benefits from partial prefetches.

5.3 Understanding the Trade-Offs in the Combined Scheme

5.3.1 When to Create a HT

As we discussed earlier in Section4.2, there is a choice to be made whether to create a

new helper thread on an L2 cache miss or at thread spawn time. Figure5.4shows the

speedup of each of the two policies. As the figure clearly shows, cloning on L2 misses

is always better. The reason is that it is more targeted and, thus, it does not increase the

number of running threads unless there are prefetching needs (i.e., at least one actual

L2 miss). This is evident from the ILP/TLP breakdown where wesee that the main

difference between the two policies is mostly in the ILP benefits.
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Figure 5.3: Breakdown of the L2 misses in isolated and clustered for sequential, TLS,

runahead, and our combined scheme.

5.3.2 Converting Existing Threads into HT vs. Spawning New H T

An interesting trade-off is whether one should try to convert some of the normal TLS

threads to helper threads (checkpointing), or whether one should create separate helper

threads (cloning). As we discussed in Section4.2, converting some TLS threads to

helper threads will increase the ILP but it will do so at the expense of the TLP we can

extract. Figure5.5 compares the two policies. As the figure shows, spawning a new

helper thread leads to better performance in all but one case(crafty). It is interesting

to note that in most cases the performance advantage of the cloning approach comes

not only from increased TLP, as one would expect, but also from increased ILP. It is

also worth noting that for the converting approach, although in all of the cases the ILP

gains are significant, for some benchmarks this policy performs even worse than the

base TLS.

5.3.3 Effect of the Load of the System

Helper threads require resources that could otherwise be used by normal TLS threads.

Figure5.6(b)shows the average distribution of number of threads that exist at a given

time in a four core system with TLS (for the whole applications, including sequential

parts). We can see that almost 90% of the time there are only upto two threads running.
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Figure 5.4: Impact of choosing between creating helper threads on an L2 miss or at

thread spawn.

This means that as long as we create a small number of helper threads we should not

harm the extracted TLP. This result also suggests that having more than four cores, will

probably not make any difference for our baseline TLS system.

In Figure5.6(a)we first show a helper thread spawning policy under which we cre-

ate a new helper thread on every L2 cache miss. Under this scheme we allow multiple

helper threads to co-exist. This scheme does not check if there is any available core

to run the new helper thread on (if there is no free core, threads are placed in queues

waiting to execute as we do with normal TLS spawns), and the clones are not killed

when we spawn a new TLS thread. We compare this with our load-aware scheme, un-

der which we only allow one helper thread to exist at a time andwe kill helper threads

in order to pre-empt them. The benefits of employing a load-aware scheme are more

pronounced in applications with a large number of threads like mcf and twolf. The

benefits come mainly from better ILP since, we are making the contention on the com-

mon L2 cache smaller and we are poluting it less. Figure5.6(c)depicts the utilization

for the two different policies. As expected there is a slightshift towards having more

threads running when the system is not aware of the system load.
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Figure 5.5: Converting existing TLS threads to helper threads and spawning distinct

helper threads.

5.3.4 Single vs. Multiple HTs

In our approach, we chose to create a single helper thread by cloning the most specula-

tive thread because of its fairly straightforward implementation overhead and reason-

able expected performance benefits. We compare our scheme with two other schemes:

one where we only allow the safe thread to create a clone, and one where we allow

multiple clones to run in the system. Note that both schemes respect our load-aware

policies (Section5.3.3) so that they do not interfere negatively with the normal TLS

threads. This means that for our four core system we can have at most two normal and

two clone threads running concurrently (as opposed to our scheme where we will only

have one clone thread).

As Figure5.7 shows, cloning only for the safe thread gives only a fractionof the

achievable benefits. This is mainly due to worse ILP, which makes sense if we take

into account that we are only prefetching for one thread. In fact, Figure5.8 shows

that creating a helper thread for the most speculative task performs substantially more

useful prefetching than the scheme where we only create a helper thread for the safe

thread. On the other hand, creating a clone for all the threads is slightly better than

our scheme for all applications exceptmcf. Figure5.9shows the clustering of memory

requests for all three schemes. In most cases the differencein clustering is not very

significant. However, the clustering helps explain the caseof mcf with our scheme and
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Figure 5.6: (a) Evaluating the effect of load aware HT spawning. (b) Average distribution

of number of threads on a four core system across the Spec 2000 Integer Benchmarks.

(c) Average distribution of number of thread for load aware and load unaware schemes

across the Spec 2000 Integer Benchmarks.

with cloning for all threads: even though the miss rates are comparable (Figure5.8),

the effect of partial prefetching is much more pronounced with the combined scheme.

5.3.5 Effect of a Better Value Predictor

Throughout our study we have employed a simple last value predictor for the runahead

helper threads. In this section we perform a sensitivity analysis of our scheme on this

building block. As we see in Figure5.10, a better value predictor (i.e., a perfect one

in this case) would lead to significantly increased benefits for the combined scheme.
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Figure 5.7: Comparing the effect on performance when creating multiple HT or a single

HT.

The improvement will come in terms of better ILP, which is justified by the improved

prefetching capability resulting from always following the correct path. We see that

there is still ample room for improvement for at least four out of the nine benchmarks

used in this thesis. Figure5.11 shows that the improvement in ILP comes from a

significant reduction in the achieved miss rates of the leveltwo cache. The reason

is that the helper threads that we create has a higher probability to follow the correct

path, and as such always perform useful prefetches. Figure5.12shows that the number

of isolated misses are also reduced significantly. This result suggests that there are

many branches that are data dependent on values that our lastvalue predictor tends to

mispredict.

5.4 Sensitivity to Microarchitectural Parameters

5.4.1 Using a Prefetcher

A valid point of concern with all the schemes that perform prefetching/warming-up

is whether a traditional hardware prefetcher could performbetter. Figure5.13shows

what the effect of having an aggressive stride prefetcher inour base cores is. All

comparisons are with sequential execution on a core that uses the same prefetcher.
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Figure 5.8: Normalized L2 misses over sequential execution when creating multiple HT

or a single HT.

Note that although our combined scheme is better than TLS forall of the applications,

when we add a prefetcher to TLS this changes for two applications, namelygapand

parser. Note, however, that when we use a prefetcher with our combined scheme, not

only are we able to perform better for all applications except mcf, but we are able to

perform better in applications where our combined scheme failed to perform signifi-

cant prefetching (forgapandparser). As it has been shown by previous research on

runahead execution [58], we believe that this is due to our Runahead threads initiat-

ing prefetches earlier than they would have been initiated otherwise, and as such more

timely prefetches.

Figure5.14shows that when we compare the combined scheme with a combined

scheme that has hardware prefetching support, there is further L2 miss reduction from

the hardware prefetcher. Note that for the benchmarks wherethe prefetcher helps

the performance of the base combined scheme (gapandparser) there is a significant

improvement in terms of miss rate. It is interesting to see that formcf, which is the only

benchmark for which the base combined scheme was better, themiss rate improves.

Unfortunately, the prefetcher along with our aggresive scheme causes contention for

the shared cache, which results in a slight degradation in performance, although the

miss rates are better.

Figure5.15shows that on average the percentage of isolated misses is larger for
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Figure 5.9: Breakdown of the L2 misses in isolated and clustered when creating multiple

HT or a single HT.

the case where we use the prefetcher. This somewhat strange result, when seen in

conjuction with the improved miss rate shown in the previousfigure, suggests that

the prefetcher helps not by performing prefetches our scheme would not perform oth-

erwise, but by performing them in a more timely way. More specifically, when a

prefetcher is used, clusters of misses are slightly fewer because the lines have been

prefetched and can be found in the cache (thus some of the misses that create a cluster

without prefetching are converted to hits with prefetching).

5.4.2 Scaling the Memory Latency

It is well known that the gap between the speed of the core and that of the memory

keeps growing. Figure5.16shows how our combined scheme will behave if this gap

doubles. As expected the combined scheme performs significantly better than the se-

quential execution with the longer memory latency, since itis able to extract even more

ILP. On average the achieved speedup increases by 33% as a result of the increase of

the memory latency, a fact that denotes that if the memory gapcontinues to widen, this

technique will become increasingly important.
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Figure 5.10: Performance impact of value prediction accuracy.

5.4.3 Scaling the Available Bandwidth

As we move to a higher number of available cores, we expect theavailable bandwidth

per core to lessen. Although in most cases bandwidth is dynamically allocated, we

performed a simple experiment to see what effect a reductionin bandwidth will have

in our scheme. More specifically, we halved the available bandwidth for both the

sequential execution and the proposed combined scheme and compared it with the

combined scheme and the sequential execution with the normal bandwidth. Figure5.17

shows that even when we reduce the available bandwidth quitesignificantly we do not

see significant reductions in the achieved speedups, with the exception ofmcf. Note,

however, that even under this fairly pessimistic scenario the achieved speedup over the

base execution models is still significant (TLS achieved 27%speedup over sequential).
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Figure 5.11: Normalized L2 misses over sequential execution for the combined scheme

with the base value predictor and with an oracle one.
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Figure 5.12: Breakdown of the L2 misses in isolated and clustered for the Combined

scheme with the base value predictor and with an oracle one.
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Figure 5.13: Performance of TLS and our combined scheme with and without a

prefetcher (the baseline sequential execution uses the same prefetcher).
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Figure 5.14: Normalized L2 misses over sequential execution for the combined scheme

and the Combined scheme with a stride prefetcher.
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Figure 5.15: Breakdown of the L2 misses in isolated and clustered for the combined

scheme and the Combined scheme with a stride prefetcher.
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Figure 5.16: Combined scheme for the normal main memory latency of 500 cycles, and

for a latency of 1000 cycles.
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Figure 5.17: Combined scheme for the normal bandwidth (10 GBytes/sec), and for half

the normal bandwidth (5 GBytes/sec).



Chapter 6

Analysis of Branch Prediction in TLS

6.1 Impact of Branch Prediction on TLS

We start our analysis by attempting to verify the importanceof branch prediction accu-

racy on the overall TLS performance. For this purpose, we replace the branch predic-

tor in each processor with an oracle predictor so that we can artificially set any desired

misprediction rate. More specifically, our oracle predictor causes mispredictions based

on a random distribution with a mean with the desired misprediction rate. Details re-

garding the exact micro-architectural parameters used forthis analysis are provided in

Section3. Figure6.1 shows the relative performance improvement of the sequential

execution and TLS executions with 2, 4, and 8 processors, as the branch misprediction

rate decreases from 10% to 0 (i.e., perfect branch prediction). Each line is normalized

to the performance of thesame configurationwith branch prediction with a mispredic-

tion rate of 10% and corresponds to the geometric mean of the performance improve-

ment of all benchmarks. From this figure we can see that branchprediction accuracy

can have a significant impact on TLS performance. In fact, it seems that better branch

prediction accuracy can be more important for TLS performance than for sequential

performance. For instance, reducing the branch misprediction rate from 10% to 2%

improves the performance of TLS on 8 processors by 38%, but improves the perfor-

mance of sequential execution by 32%. Note also that the morecores we assign to

TLS the more important branch prediction is for it. We observed that the main reason

62
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for this increased sensitivity of TLS to branch prediction accuracy is the increased av-

erage observed misprediction penalties in the TLS case. As has been previously noted

in [29] branch misprediction penalty is directly related to observed memory system

latency when branches depend on load values. As memory system latencies are usu-

ally larger with TLS than with sequential execution due to version misses, the average

branch misprediction penalties are higher.
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Figure 6.1: Normalized speedup with varying misprediction rate for sequential execution

and for TLS systems with 2, 4, and 8 processors. Speedups are normalized to those at

10% branch misprediction rate on the same configuration.

6.2 Quantifying Traditional Branch Prediction Enhanc-

ing Techniques

Having shown how important branch prediction is for TLS systems, we will now quan-

tify how suited conventional ways to increase the branch prediction accuracy are for

such systems. More specifically, we will show what the impactis on misprediction

rates of using a better branch prediction algorithm (which removes mispredictions due

to better disambiguation of branch behavior) and what the impact is of making predic-
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tors larger (which removes mispredictions caused by aliasing in the history tables).

We start by showing what the impact is of creating a better branch predictor. For

this experiment we compare the misprediction rates of a single core with that of a four

core system for different branch predictors of the same size. In Figure6.2 we see

for the two cases the misprediction rates as we progress froma bimodal predictor, to

a gshare [55], to a hybrid (bimodal/gshare) [55], to a BcGskew [65] and finally to a

state-of-the-art OGEHL [66] (all of them have a constant 32Kbit budget and we report

numbers only for the committed path for TLS). Note that predictors with no history

(bimodal) are far worse for TLS systems than they are for the sequential ones. The

reason for this is that when data speculation fails (a fact that will cause a squash later

on) the predictor follows a path different than what it wouldif data speculation did not

fail. When the thread receives a restart signal, the predictor may be trained based on

the wrong paths and as such mispredict. The picture is different for predictors with

small histories like the gshare and the hybrid (bimodal/gshare), where they perform

better than they do for single threaded systems. The reason for this is that due to

squashes and re-executions, predictors are trained for sub-sequent executions. Unlike

the bimodal predictors, these predictors are able to disambiguate branches based on

the control-flow-graph followed, so that wrong path training due to data dependent

branches does not affect prediction accuracies. Unfortunately for predictors able to

exploit large histories like BcGskew and OGEHL, the history partitioning with TLS

hurts the prediction accuracies beyond this benefit.

Unfortunately, history partitioning is inevitable for TLSsystems and is a result of

the sequential code being partitioned into threads and distributed among the available

cores. Intuitively, history partitioning should reduce the branch predictors’ accuracy,

since the information on which the predictors rely to make their predictions is reduced

with increase in the number of cores in the system.

This means that traditionally creating predictors with larger history registers is

likely to be less efficient for TLS systems than it is for sequential ones. This has

been previously also reported in [20]. For this reason that work proposed the use of

history register initialization techniques. Our reportednumbers already use that tech-

nique (without it, the picture is far worse for TLS).
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Figure 6.2: Improvement in misprediction rates for TLS execution on 4 processors and

sequential execution for varying predictor types.

Figure6.3 shows how the misprediction rate varies with predictor sizefor a TLS

execution on 4 processors and for sequential execution for the OGEHL branch pre-

dictor. As we can see from this figure, TLS does seem to benefit less from larger

predictors than sequential execution. Note that similarlyto Figure6.2, although we

do see improvements from having a better branch predictor, these are not as much as

they were for sequential systems. This suggests that, although as we have shown in

Section6.1 branch prediction is fairly important for TLS systems, we cannot expect

the same benefits in terms of performance from traditional means as we were used to

have in single threaded systems.

6.3 How Hard is Branch Prediction for TLS

The predictability of a stream of branches can be estimated by how compressible this

stream is. Using the methodology proposed in [50] we compute the number of “bits”

of information conveyed per branch. A larger number of “bits” indicates a stream with

more entropy and that is, thus, likely more difficult to predict. Figure6.4 shows the

number of bits per branch for the sequential execution and for TLS executions with 2,

4, and 8 processors. We can see in this figure that in all cases the number of “bits” per
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Figure 6.3: Misprediction rates for TLS execution on 4 processors and sequential exe-

cution for varying predictor size.

branch is larger with TLS than with sequential execution and, for TLS, increases with

the number of processors. Note also, that the differences here in intrinsic predictability

may or may not lead to similar differences in branch prediction accuracy, as the latter

depends on how well a predictor handles the outcome stream.

In fact branch prediction under TLS execution has to deal with new, previously

non-existing, issues which degrade the performance of branch predictors. First of all,

under TLS the branch history is partitioned among the cores,such that no predictor

has access to the full branch history (a point that also suggests that predictors rely-

ing on large history registers will suffer the most). Additionally, TLS threads may be

squashed and re-executed multiple times – possibly on different processors. Moreover,

threads are dynamically scheduled on processors and often out-of-order (predictors

see random parts of the branch history). We therefore believe that in order to bridge

this inherent gap in predictability, TLS systems should be combined with an execution

model able to deal with hard-to-predict branches (Chapter7). An additional side-effect

of TLS execution is that prediction outcomes (i.e., correctprediction or misprediction)

in re-executed threads distort the measurements of accuracy of predictors. The prob-

lem is that the samedynamicbranch instance may occur multiple times if a thread is
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Figure 6.4: Branch entropy: number of “bits” of information conveyed per branch for

different number of processors.

squashed and re-executed, while it should have been executed only once in a sequen-

tial or non-speculative execution. For this reason, we advocate that when comparing

branch prediction strategies for TLS, the misprediction rates be reported for branches

in the committed threads only1. For the rest of the thesis the reported misprediction

rates are only for the committed threads.

1Note that the same applies for some other metrics, such as cache miss rates.



Chapter 7

Combining TLS and Multi-Path

Execution

7.1 Basic Idea

In the previous Chapter we showed that branch prediction is inherently more difficult

under TLS execution but at the same time more important in terms of performance.

We also showed that resorting to traditional ways of improving the branch prediction

mechanisms are not as effective as they are for single threaded execution. An alterna-

tive way is to use conventional branch prediction for most ofthe branches and employ

Multi-Path for the hard-to-predict ones.

Unfortunately, MP has only been studied for fairly wide single core out-of-order

systems, where it was reported to be able to save many pipeline flushes, albeit at a

high cost in additional instructions executed. For TLS, however, which relies on sim-

pler cores, this is not the case. As we will show in the next sections, MP is able

to dramatically reduce the pipeline flushes due to branch mispredictions, at a reason-

able cost in additional instructions. Multi-Path execution in fact makes more sense

for smaller cores, like the ones we use in our multi-core, than it does for larger ones.

Multi-Path execution is often considered a rather wastefulapproach to remove costly

branch mispredictions, since we typically have to execute asignificant amount of extra

instructions. For our simpler cores, however, due to their shallow pipelines, this is not

68
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the case since branches are resolved relatively fast. Smallresolution times also suggest

that one should be able to employ MP execution to a higher number of branches, since

it is less probable that we will encounter too many branch mispredictions before we

resolve the previous ones. Note that although for sequential execution, smaller resolu-

tion times result in reduced performance benefits, this is not the case for TLS, where

mispredictions cost more than they do for sequential execution. Of course, in order to

be able to support MP execution efficiently, we need to enhance our cores with multi-

threaded execution. The reason for this is that under Multi-Path execution we have to

be able to perform fast register file copying, when we decide to follow alternate paths.

We will further discuss how this affects our system in a subsequent section.

Figure7.1depicts our proposed combined execution model. Under this scheme we

have two operational modes, normal TLS and MP mode (we only show four paths for

clarity). We enter MP mode when we find a hard-to-predict branch and if there is a

free context available on the core running the thread. When the branch is resolved, we

follow the correct path and discard the incorrect one. When all pending hard-to-predict

branches are resolved we exit MP mode. In the next Section we describe the necessary

hardware support as well as how our scheme operates in more detail.

7.2 Extending the TLS Protocol to Accommodate MP

Supporting Multi-Path execution in a TLS system is somewhatdifferent from what

it is for single threaded systems. More specifically, these wrong path threads have

to somehow be accommodated within the speculative multithreading protocol, so that

they are both fed the correct memory values (to the extend this is possible) and also

do not create unnecessary invalidations (for the TLS threads). Additionally, we do

not want threads executing on the wrong path to trigger the squashing of subsequent

threads, which we wouldn’t otherwise squash. In order to deal with these issues, we

have to slightly modify the existing TLS protocol, so that itcan differentiate between

the normal TLS threads and the threads that may be executing on the wrong path. Note

that combining TLS with MP execution is fairly different from the combined execu-

tion model proposed in Chapter4. The reason is that under the combined TLS/MP
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execution model, one of the additionally created threads will have to commit its state

(whereas the HT/RA threads never actually committed their state). We thus have to

make sure that wrong propagation of values to the threads that follow alternate paths

never happens.

7.2.1 Additional Hardware

In order to support this operation we need to keep some extra information which has to

do with the path each of the threads in MP mode is following andhow many outstand-

ing paths we currently have. We thus, hold per thread an extrabit, theMP bit, which

indicates whether the thread runs on MP mode or not. To keep track of the outstanding

paths we require per task an additional three bit counter (weallow six paths). We call

the bits of this counter thePATHSbits, and we increment them every time we create a

MP thread and we decrement each time we kill a MP thread. So far, the two threads that

follow alternate paths are identical. In order to be able to differentiate between them,

we keep per task an additional three bits, theDIR bits, which indicate the direction

that the thread has followed since it started in MP mode(i.e., taken or not-taken). Since

while executing in MP mode, we are not sure which of the two threads will be the one

that will be kept and which will be discarded, we have to treatthem as if they were the

same thread in terms of the version of data they read. At the same time we must be able

to differentiate which exposed reads have been performed bywhich thread so that we

do not unnecessarily kill any thread because its wrong path clone performed a violat-

ing access. Since we keep information about exposed reads atthe cache lines, we have

to augment them with the DIR bits as well. When two threads thatfollow alternate

paths perform a read, they do not need to consult their DIR bits (i.e., they only use the

version ID as normal TLS threads). However, when they keep their own copy of the

cache line, instead of only tagging it with the version ID, they also use the DIR bits. In

this way when a read is found to be violating, we can check whether it was performed

on the wrong or the correct path, and restart only if necessary. When a subsequent

thread wishes to read a value, it may read it without consulting these extra bits. Note

that because under MP mode all the stores are kept in the storebuffers until the branch

commits, control-speculative values are not propagated tothe versioned memory and
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neither are, thus, transparent to the TLS protocol. Thus, threads that run on MP mode,

cannot cause squashes to other threads. When a branch that triggered MP execution

is resolved, the corresponding PATHS bit is decreased by one, and the DIR bits of the

two threads are checked accordingly. Finally, we need an additional three-bit counter,

whose bits we term theCURbits, which denote which is the most recent outstanding

branch that caused the triggering of the MP mechanism (MP branch). When such a

branch is resolved the counter is incremented by one. When theMP bit is set to zero

(no more paths), we reset the CUR bits as well.

If a predecessor thread performs a store that violates a loadin a thread running

on MP-mode, we do not restart the thread immediately. We instead wait until the all

the branches are resolved and we take action then accordingly (in a fashion similar to

delayed disambiguation schemes).

As Figure9.1(a)shows, normal TLS threads have zeroes to all these extra bits.

When a low confidence branch is encountered (Figure9.1(b)), the thread executing

follows the predicted path, while another thread is spawnedthat follows the alternate

path. Both threads set their MP bit to 1, indicating they run inMP mode, update the

PATHS counter and consult it so as to set the DIR bit accordingly (if PATHS is 1, the

first DIR bit should be changed). When a second low confidence branch is encountered

(Figure9.1(c)), the PATH counter is updated (the MP is already set for the two pre-

existing threads so it only needs to be set on the newly created thread). Note that now

the spawnee thread cannot follow any path as it would have to update all of its cache

lines, it thus follows the path that will leave its DIR bits the same (in this case the ’000’

path). Once the first branch is resolved, the thread that was executing on the wrong

path is discarded and the remaining threads decrement theirPATHS counter by one.

Once the PATHS counter is zero again, it means that the TLS thread now operates in

normal TLS mode.

Two implications have to be dealt with: the first is that we have so far silently as-

sumed that the branches will be resolved in the order they created the paths. However,

since this may not be true we must have a way to either prevent it from happening or

keep track of which branch causes the creation of which thread. We choose the first,

since the ROB already provides the required support. More specifically, we do not
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inform the system that the MP branches are resolved if all theprevious MP branches in

the ROB have not yet been resolved. As such we can be sure that the correct ordering

is maintained. The second implication is how do we handle spawn instructions while

in MP mode (so that we don’t create threads on the wrong path).In order to prevent

the spawning of threads while on the wrong path, we pessimistically suppress them,

in our effort to make the MP-execution as transparent as possible to the normal TLS

execution.

Of course in order to create the thread running on the other path, we need fast

register file copying (or fast copying of the rename tables).For this reason we rely on

cores with multi-threaded execution support [78]. MP threads will have to be created

and mapped on the same core. Note that live-in passing from spawnee to spawned

thread for these threads is not performed via memory as it is the case for normal TLS

threads, since the compiler is not aware of their existence.

7.2.2 Mapping TLS Threads

Supporting multiple contexts on the same core for the purposes of MP execution pro-

vides additional mapping options for normal TLS threads as well. If we map TLS

threads on the same core but on a different context, a policy we call SMTFirst, we

will have faster thread spawns and commits. Unfortunately by doing so, we can no

longer use the contexts of the core to perform MP execution. Additionally, because

TLS threads are by construction similar1, they will probably contend for the same

resources and slow each other down. An alternative approachis to first try to map

TLS threads to free cores and use the contexts only if at a given execution point we

have more threads than cores. In this way we both help TLS and also give our sys-

tem more opportunities to exploit MP execution. Because the time spent in MP mode

is far less than that spent executing normal TLS threads, we manage to minimize the

contention we have per core. We call this mapping policyCMPFirst since it gives pri-

ority to empty cores for TLS threads. In Section8.10we compare the two policies and

show that theCMPFirst is the most efficient mapping policy both for TLS and for our

combined scheme.

1As we mentioned in Section2.1.2they are often created from iterations of loops.
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Figure 7.1: Combined TLS/MP Scheme along with the additional MP, DIR, CUR and

PATH bits: (a) Normal TLS spawns threads when it encounters spawn instructions. (b)

On a ”hard-to-predict” branch in T2a we create a clone of the thread that follows the

alternate path. MP and PATH bits are set to one and DIR bits are set accordingly and

the CUR bits are set to one. (c) A second ”hard-to-predict” branch is encountered in

T2b. The MP bit of the new thread is set to one, the PATH bits are incremented and the

DIR bits are set so that they do not change the DIR bits of the spawnee thread. The

CUR bits are left as they were. (d) The first ”hard-to-predict” branch in T2a is resolved,

we discard the thread that was on the wrong path (T2a) and continue execution. We

decrement the PATHS counter and increment the CUR bits.



Chapter 8

Analysis of the Combined TLS/MP

Scheme

8.1 Additional Hardware to Support MP

In addition to the base architecture we require support for multiple contexts, a con-

fidence estimator and some extra bits in the cache. The confidence estimator, is an

important mechanism for MP execution, because it is used to trigger the MP execution

mode. We use a 24-Kbit enhanced JRS confidence estimator [31] which uses 11-bits

of misprediction history. Using CACTI we found that the overhead of the extra L1 bits

needed to store the additional information for keeping track of whether we are on MP

mode and which direction we are following was small enough, that it did not affect

the number of cycles to access it. In order to allow Multithread execution within the

cores all structures were shared among the different contexts. A round robin policy has

been used to select which thread we should fetch from. The main microarchitectural

features are listed in Table8.1. The top part lists the baseline parameters as shown in

Table3.1, and the bottom part lists the additional parameters.
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Table 8.1: Architectural parameters with additional parameters required for MP support.

Parameter TLS (4 cores)

Fetch/Issue/Retire Width 4, 4, 4

L1 ICache 16KB, 2-way, 2 cycles

L1 DCache 16KB, 4-way, 3 cycles

L2 Cache 1MB, 8-way, 10 cycles

L2 MSHR 32 entries

Main Memory 500 cycles

I-Window/ROB 80, 104

Ld/St Queue 54, 46

Branch Predictor 48Kbit Hybrid Bimodal-Gshare

BTB/RAS 2K entries, 2-way, 32 entries

Minimum Misprediction 12 cycles

Task Containers per Core 8

Cycles to Spawn 20

Cycles from Violation to Kill/Restart 20

Extra Hardware per Core

Additional Contexts 3

Confidence Estimator 8K Entries / 3bits JSR
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8.2 Performance of the Combined TLS and MP Execu-

tion Model

Figure8.1depicts the performance of MP execution, TLS execution, a branch predic-

tion enhanced TLS execution, and our combined scheme. The enhanced TLS system

has a branch predictor of double size. Note that MP executioncan only get signifi-

cant benefits over sequential execution forgzip(9.3%),mcf (15.2%) andvpr (23.4%).

Note also that forgapandvortexit is actually slower than the sequential system. This

stems from the inability of the confidence estimator to accurately find branches that

would have been mispredicted and it thus unnecessarily increases the contention for

functional units in the core. Despite the slowdown in these three applications, MP ex-

ecution still manages to improve performance by 5.4% on average, a result which is in

line with those previously reported in [42].
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Figure 8.1: Speedup of 4 core TLS, a TLS system enhanced with a predictor of double

the size, MP execution, and our combined scheme over sequential execution.

For the base TLS system, the performance is always substantially better than that

of sequential execution, as it was shown in previous sections as well. In the same graph

we also see an enhanced TLS scheme, which uses a branch predictor with double size.

As expected from the previous analysis (Section6.2), it is not significantly better than

the base TLS.

The combined scheme is able to perform significantly better than both MP execu-
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Figure 8.2: Reduction in pipeline flushes for MP (over sequential) and the combined

TLS/MP scheme (over the baseline TLS).

tion and the base TLS. More specifically, the combined schemeimproves performance

over TLS by as much as 20.1% (mcf), with an average of 8.8%. The only case where

our combined scheme does not get any improvement over TLS isvortex. However, the

misprediction rate forvortexis below 1% and as such there is little room for improve-

ment. Perhaps the most interesting results are that ofgapandmcf, which although they

lose all of their TLP, they are still able to achieve speedupsover TLS. In fact formcf

due to its parallel execution, it even manages to get a TLP slowdown (the grey shade

is lower than it is for TLS), because tasks executed in parallel are forced to wait for

a long ammount of time before they get squashed. However, these squashed tasks are

still useful since they prefetch for the main thread. When we compare our scheme over

the MP execution, the achieved speedups are even more pronounced (29% on aver-

age). Overall the combined execution model seems to enjoy anadditive effect in terms

of performance and manages to gain speedups over the sequential execution both due

to benefits arising from improved ILP and extracted TLP.

In Figure8.2 we depict the reduction in pipeline flushes that the baselineMP and

our combined scheme are able to achieve compared to sequential execution. It is inter-

esting to note that our combined scheme is able to reduce significantly more pipeline

flushes than the MP system can. The reason for this is that under our scheme, we are

able to perform multiple MP executions across cores, and thus save more branch mis-
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Figure 8.3: Average number of instructions executed on the wrong path for MP and the

combined TLS/MP scheme.

predictions. The only benchmark where MP does better than our combined scheme

is parser, where the confidence estimator of the combined scheme failsto correctly

pinpoint the hard-to-predict branches with the same accuracy it does for the MP case.

As it is to be expected, the increased coverage that the combined TLS/MP scheme en-

joys, comes at an additional cost in the number of instructions executed on the wrong

path over the MP scheme. What is perhaps more interesting to note is that the average

number of instructions executed on the wrong path increasesas well for the combined

scheme. As Figure8.3 shows, the increase is more significant for the memory bound

applicationsgap, mcf and parser. The reason for this is that under the combined

scheme we employ MP more times and thus increase the probability that we will per-

form MP on a branch dependent on an access to the memory. This means that for the

combined scheme the branch resolution time is larger than itis for the MP scheme.

Increased resolution time in turn, results in more time to execute instructions on the

wrong path. Of course in case these branches would have been mispredicted, this also

means that we were able to save a costly miss event.
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8.3 Sensitivity to Microarchitecture Parameters

8.3.1 Better Confidence Estimation

In Figure8.4we can see what the effect is of using a better confidence estimator. The

results suggest that the 48K bit confidence estimator is ableto improve the results only

marginally, from the 24K bit one used throughout this Chapter. More specifically the

fourfold increase in size translates to only 1% improvementon average in the overall

execution time. Of course instead of using a small gshare-like structure to perform the

confidence estimation one could use a perceptron-based one [8] or one coupled with a

value predictor as in [5], which would perform much better. As the same graph shows,

being able to perform better estimation of the hard to predict branches can lead to an

up to 12.1% performance improvement on average over our scheme. Note that the

extent to which better confidence estimation can lead to improved performance is also

conditioned to the system’s load and to how close mispredicted branches are.
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Figure 8.4: Speedup of the proposed combined TLS/MP scheme over sequential exe-

cution for different confidence estimator sizes, and oracle confidence estimation.

Figure8.5, shows that the additional speedup comes from a significant increase

in reduction of the pipeline flushes. In fact the oracle scheme is able to remove al-

most 90% of the pipeline flushes. The remaining mispredictions in fact, correspond to

branches that have a higher degree of clustering than the allowed concurrent paths and

thus cannot be removed. Note that the achieved speedup is notthat of removing 90%
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Figure 8.5: Reduction in pipeline flushes for the combined TLS/MP schemes with the

base 24Kbit confidence estimator, a 48Kbit, and an oracle one.

of the mispredictions, since in this case we execute more instructions which actually

content for the common resources. Additionally, the delayed disambiguation that we

are forced to employ leads to a further slowdown. The averagenumber of instructions

executed on the wrong path on the other hand, does not seem to change significantly

(Figure8.6).

8.3.2 Limiting the Available Paths

By limiting the number of paths we follow, we may still be able to achieve some

speedups, albeit smaller. Figure8.7, shows the bottom line speedups achieved over

sequential execution for our combined scheme when we are only allowed to follow

two paths (Dual-Path) and when we follow four paths. The mostsignificant speedup

is achieved formcf (10.4%), where the combined TLS/MP is 3.8% better than the

combined TLS/DP scheme. This speedup is not achieved because the MP scheme is

able to deal with clustered branches but because it is able toreduce the importance of

the confidence estimator (as mispredictions of the confidence estimator do not remove

opportunities for branch removal). Figure8.8 shows the corresponding reduction in

pipeline flushes. An important thing to notice is that this result suggests that if we were

able to built a more accurate confidence estimator, we may provide similar results with
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Figure 8.6: Average number of instructions executed on the wrong path, for the com-

bined TLS/MP schemes with the base 24Kbit confidence estimator, a 48Kbit, and an

oracle one.

fewer contexts. This in turn means similar results with a smaller amount of wrong path

instructions. Figure8.9shows that the average number of instructions is also reduced

significantly.

8.3.3 Impact of Mapping Policy

In Section7 we noted that correctly mapping the TLS threads is likely beneficial both

for TLS and for our scheme. For TLS the argument for theCMPFirst policy is that

threads are by construction similar, and as such they contend for the same resources.

At the same time mapping TLS threads on different cores allows us to perform MP

execution. As Figure8.10shows, there is a huge improvement when we prioritize the

mapping of newly created threads to empty cores. More specifically, gap improves by

32 % andmcf by 28%, while the average improvement is 19.2% over SMTFirst. Note

that for most of the applications theSMTFirstpolicy loses all the speedup contributed

by prefetching (ILP part) and is able to achieve speedups only due to TLP.
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Figure 8.7: Speedup of the combined TLS/DP and the combined TLS/MP schemes

over sequential execution.

8.3.4 Using a Better Branch Predictor

We finally performed an analysis of how the proposed scheme would perform with

a better branch predictor, namely the highly accurate OGEHL[66]. For this study

we replaced our hybrid predictor with a 32Kbit OGEHL for bothour scheme and the

baseline TLS and sequential executions. Figure8.11 shows the speedups achieved

by the combined scheme when using the simpler hybrid predictor and when using

the complex OGEHL. Interestingly enough although the results are fairly similar, the

hybrid scheme works better, although both of them outperform the baseline TLS.

As Figure8.12reveals the main reason for that is that the confidence estimator is

able to pinpoint the branches that will mispredict more accurately. At the same time

the number of instructions does not change significantly (Figure8.13), so that the over-

all overheads associated with the combined scheme remain the same. Of course the

use of the simple confidence estimator hinders the performance of the OGEHL-based

scheme, but the possibility of using simpler predictors combined with speculative mul-

tithreading techniques is quite interesting and it should be investigated further in future

work.
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Figure 8.8: Reduction in pipeline flushes for the combined TLS/DP and the combined

TLS/MP schemes.

bzip2 crafty gap gzip mcf parser twolf vortex vpr avg
0

25

50

75

100

125

150

A
ve

ra
ge

 W
ro

ng
 P

at
h 

In
st

ru
ct

io
ns

Combined TLS/DP
Combined TLS/MP

Figure 8.9: Average number of instructions executed on the wrong path for the com-

bined TLS/DP and TLS/MP schemes.
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Figure 8.10: Speedup achieved by using the CMPFirst mapping policy and using the

SMTFirst one for our combined scheme.
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Figure 8.11: Speedup of the TLS with an OGEHL predictor, and the combined TLS/MP

scheme when using the Hybrid and the OGEHL branch predictors over sequential exe-
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Figure 8.12: Reduction in pipeline flushes for the combined TLS/MP scheme when

using the hybrid and the OGEHL branch predictors.
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Figure 8.13: Average number of instructions executed on the wrong path for the TLS/MP

scheme when using the Hybrid and the OGEHL branch predictors.



Chapter 9

Profitability-Based Power Allocation

9.1 Background on DVFS

The basic dynamic power equation:P = CV2A f clearly shows that there is a great

opportunity to save power by adjusting voltage and frequency. By reducing the volt-

age by a small amount, we reduce power by the square of that factor. Unfortunately,

reducing the operating voltage means that the transistors need more time in order to

switch on and off, which also forces a reduction in the operating frequency. Dynamic

Voltage and Frequency Scaling (DVFS) [51] techniques try to exploit this relationship

by reducing the voltage and the clock frequency when they discern that they can do so,

without experiencing a proportional reduction in performance.

Adjusting the voltage and frequency is done by means of a DC-DCconverter,

which changes the voltage to the desired levels. The new operating voltage is then

used to drive the frequency generator, which provides the chip with the operating fre-

quency for the corresponding voltage level. Having a means of changing the voltage

and frequency, one has to decide whether to put the DC-DC converter off-chip [59, 81]

or on-chip [1, 33]. Placing the converter off-chip, we are limited in that we can only

change the voltage and frequency of the entire chip. A secondrelated issue is that

off-chip regulators, are generally slow. However, they consume less power and require

a smaller hardware budget than their on-chip counterparts.On the other hand, this

additional area and power consumption grants on-chip regulators faster response times
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and allow changes of the voltage and frequency to parts of thechip.

Most modern processors have support for DVFS in order to savepower or to avoid

thermal emergencies [25]. Experiments done in [27] show that it is advantageous to

reduce the CPU frequency for a memory intensive task, but not for a CPU-intensive

task. The performance of a task with high CPU utilization is linearly dependent on

frequency, and thus will suffer significant throughput losswhen the frequency is low-

ered. A memory intensive task, however, will suffer minimalperformance loss when

the frequency is reduced. If a task is constantly accessing memory, then the CPU is

constantly stalling and waiting for memory. Power consumption can be reduced by

lowering the frequency for a memory intensive task, and system performance can be

increased by running a CPU-intensive task at the highest frequency.

9.2 Basic Idea

Unfortunately, a real-life scenario for TLS systems is thata significant fraction of the

threads has to be rolled-back due to dependence violations.This suggests that from a

performance point of view, some of the threads are profitable, while some others are

not. In fact much of the energy inefficiency of TLS stems from the fact that we spend

the same amount of power to execute threads that will procureperformance benefits

and those that don’t. In this thesis we propose to try to adaptthe power consumed by

threads based on their expected profitability.

We leverage the fact that modern processors, like Intel’s Nehalem [24], are able to

increase the operating frequency of a core if the rest of the cores are either idle or on

one of the low-power modes. Instead of relying on the OS to decide how to allocate

the power resources to each of the cores, we use hardware predictors to guide the

power allocation at run-time. In our system, we assume four power modes: thevery-

low-powermode, thelow-powermode, thenormal-powermode and thehigh-power

mode. Each mode corresponds to a different frequency-voltage pair. We assume that

the normal-power mode is the operating mode when all of the cores are busy. We also

assume that, as with Intel’s Nehalem, the high power mode can’t be used if all of our

cores are operating at normal power mode.
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Figure 9.1: Profitability-based power allocation: (a) When all cores are occupied, only when

one thread goes in low-power mode we put the safe thread in high-power mode. (b) While

there are free processors (clock gated), processor P1 which holds the safe thread T1 is set in

high power mode. (c) When a thread is predicted to squash or to be memory-bound it goes in

low-power mode, when it is predicted to squash and to be memory bound it goes into very-low

power mode. (d) If a safe thread (T1) finishes and the subsequent thread becomes safe (T2),

the high-power core becomes the one holding the current safe thread.
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More specifically, since the only thread that will surely commit in a TLS system

is the safe thread, it intuitively makes sense to try to put itin high-power mode when

this is possible. As we previously mentioned, we are only able to do so only if one

of the other threads is in one of the low-power modes (Figure9.1(a)), or clock-gated

(Figure9.1(b)). On the other hand, we put threads in one of the low-power modes if

we predict that they will squash due to a violation of the sequential semantics or if we

estimate that they are memory bound, and as such increased frequencies/voltages will

only result in minor performance gains (Figure9.1(c)). We keep the remaining threads

in the normal-power mode.

Although allocating more power to the thread that acquires the safe token is straight-

forward, finding the threads that will be victimized is not. One of the difficult aspects

of finding thenon-profitablethreads stems from the fact that our predictions are used to

guide the execution speed of the different threads and the same thread can potentially

be profitable or non-profitable based on our decisions. Fortunately, by using hardware

predictors like the ones presented in the following sections, our system adapts to this

run-time behavior. We use two predictors: one able to predict if a thread has performed

a load that it will cause it to squash, and one able to estimateif the thread is memory

bound. Threads predicted to squash go into the low-power mode, while threads pre-

dicted to squash for more than three times go into the very-low-power mode. Similarly,

threads estimated to be memory bound go to low-power mode.

Note that as is shown in Figure9.1(d), when the safe token is passed to the next

thread, so do the power resources. As we will show in Section10.4, this results in

more uniform distribution of the power consumed than that ofa normal TLS system,

and thus our scheme enjoys a better thermal behavior.

Note also that if our predictions are right and the threads dosquash or are memory

bound, we have saved some power. This is important since thisextra power can be

spent to speed-up safe threads. At the same time the extra power we consume execut-

ing safe threads in high-power mode, does not increase the average power consumed

significantly. On the other hand, if our predictions are wrong, we slow down useful

threads and allocate more power to non-profitable threads. Due to the central role these

predictors play in our design, they have to be quite accurate. In the next two sections
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we describe how they operate and discuss various design options.

9.3 Adapting to TLP

We first target threads that are not going to be useful in termsof TLP. We base our

classification on aSquash Predictor: a dependence predictor able to predict whether a

specific load will squash the thread or not. A dependence predictor has been previously

proposed in [57], but it relies on global information about possibly conflicting loads

and stores. Such a centralized scheme is not practical for a multi-core system like

the one we use. Emulating a centralized scheme by broadcasting all the information

available in a core, to all the other cores (and thus their predictors), is power inefficient

and consumes valuable bandwidth. This has been previously noted in [21], where

the authors designed dependence predictors for a directory-based CC-NUMA system.

Instead of using a centralized scheme, they extended the directories with a few bits so

as to capture the dependence behavior using only memory addresses.

We opt for a similar solution with the one presented in [21]. More specifically,

we maintain a simple table of three bit saturating counters per core as is shown in

Figure9.2(a). When a speculative thread (i.e., all threads but the safe one) tries to

execute a load instruction, we perform a bit-wiseXORof the memory address and the

five least significant bits from the load’s program counter and form an index. We use

this index to lookup the corresponding counter from the table we mentioned before.

If the value of the corresponding counter is larger than three, we then predict that

the specific load is being performed prematurely and will thus cause the thread to

squash, otherwise we predict that the specific load will not cause any problems. At

the same time we also update the tag of the cache line that holds the specific memory

address, with the five least significant bits of the program counter. The predictor is

updated when we perform a store. The memory address of the store is propagated

to all of the cores, since it is used by the TLS protocol to uncover any dependence

violations by checking whether any of the caches holds a violating load. If the store

does reveal a dependence violation, we read out the five bit field that holds the program

counter of the load that last touched the cache line. These bits bit-wiseXORedwith
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the memory address of the store are used to index the table of saturating counters,

which we increment by two. If a thread becomes safe, and thus it cannot be squashed

anymore, it updates the predictor when each of the lines thatbelong to it are written

back. As with the previous case, we read out the PC bits and usethem along with the

address of the write-back request to index the counter and decrement it by one. We

choose to perform this lazy update of the squash predictor, since in this way we can

ensure that for each of the memory addresses for the threads that commit, we only

update the predictor once (as opposed to updating on every store that does not cause

a squash). This allows us to require a small number of bits perentry in the saturating

counter table.

Although the main focus of this section of the thesis is not increating novel de-

pendence predictors, but rather on using them so as to guide power allocation, as we

will show the proposed predictor is better than the previously proposed ones. Note that

similarly to [21] we slightly augment the cache lines, but we only do so to holdinfor-

mation about the program counter that performed the specificload. As we will show

in a subsequent section, this improves the prediction accuracy, since our predictor is

able to disambiguate accesses to the same memory location from different sections of

the code.

Having predicted which threads will get squashed, we now have to decide how

much to slow them down. One option would be to stall them completely. Albeit

simple, this approach can be fairly bad in terms of performance. As was pointed out

in [82] even threads that do squash may be useful for prefetching reasons. By stalling

threads that squash, we remove much of this desirable side-effect of TLS execution. An

additional reason why this approach hurts performance is that although fairly accurate,

our squash predictor may be wrong. Since the cost of being wrong is high, we would

have to make our predictor fairly conservative in predicting that a thread will squash.

This results of course in lost opportunity to put threads in low power mode (i.e., stall

them in this case), which in turn results in not being able to put the safe thread in high

power mode. We thus put these threads in low-power mode. When athread is predicted

to squash more than three times, we can be more aggressive andput the thread in very-

low-power mode. Note that in this way we wrongly put a thread in very-low-power
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only when we mispredict three times in a row, in one task.
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Figure 9.2: (a) Squash Predictor: The components we need are a small table of up/down

counters and five bits from the PC of all loads that will be predicted. (b) Memory-Boundedness

Estimator: The components we need are a level 2 cache miss counter, an instruction counter, a

multiplier and a comparator.

9.4 CPI-Based Adaptation

Although by using the squash predictor we improve energy efficiency significantly, we

can still do a better job by reducing the consumed power according to how much this

will affect the threads performance. In fact, for memory-bound threads, most of their

time is spent waiting for memory operations to be serviced. Executing them in normal-

power mode is wasteful since they will consume valuable power without achieving any

performance benefits out of this.

It is thus clear that we need a mechanism to decide whether a thread will wait the

costly memory operations or not, since this provides an additional source of energy

inefficiency. Our estimator, depicted in Figure9.2(b), uses per core, two five bit satu-

rating counters, a five bit multiplier, and a comparator. In order to predict whether a

thread is memory bound or not, when a thread is executing we keep track of how many

times we have had an unresolved memory access reaching the head of the ROB. This

memory accesses are the ones that are important since they stall the pipeline. At the

same time we also keep track of how many instructions we have successfully commit-

ted. When we wish to make a prediction we multiply the miss counter with the size of
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the instruction window (in number of instructions) , and compare this with the number

of instructions. If the product is larger than the number of instructions, we predict that

we have spent most of our execution time waiting for memory and thus our thread is

memory bound, if it is smaller we predict otherwise. Threadspredicted to be memory

bound are put in very low power mode. We consult the estimator, and thus decide on

the ”memory-boundness” of the thread, each time we have a miss in the shared L2

cache.

There are two interesting points to make here. The first if that we could have

done the same with the branch mispredictions. We believe that for applications with

a considerable number of branch mispredictions and no significant misses in the L2

cache, such a scheme would perform better than the one presented here. The second

interesting thing to note is that we make a decision of whether a thread is memory

bound or not when we miss in the L2 cache. This can happen in arbitrary points in the

threads execution. This also means that we may have a non-representative sample of

the thread and thus make a wrong decision. To deal with this issue, we can apply a

simple heuristic under which we do not allow a thread to go into very low power mode,

unless we have seen a given number of instructions. In our case however, we have seen

that such a heuristic is not necessary.

9.5 Applying Profitability Power Allocation to TM

In the previous sections we showed that allocating power according to profitability,

provides significant benefits in terms of ED. Making speculative multithreading sys-

tems energy efficient is becoming increasingly important, especially for many-core

systems like the ones we will have, according to projectionsmade by both industry

and academia. In fact better energy efficiency will allow more cores to operate at the

same time and thus increase their throughput. We have shown how one can improve

a state-of-art TLS system, despite the fact that it was already optimized by means of

profiling (the POSH compiler used throughout this work optimizes for power as well).

Applying the proposed power allocation scheme to a TM systemis quite straight-

forward. The only difference from a HW perspective between TM and TLS is that
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under TM there is no implicit thread ordering. As such we cannot allocate more power

to a specific thread based on it being safe. However under TM systems there is usually

a conflict resolution policy, which is different based on theTM flavor used. We can

then leverage upon this mechanism to decide which is the “safe” thread and thus guide

our scheme. The squash predictor and the memory boundness estimator presented here

can then be used in a similar fashion to the one described in previous chapters.



Chapter 10

Analysis of the Profitability-Based

Scheme

10.1 Additional Hardware to Support Power Allocation

Each one of the cores along with its associated L1 caches forma separate voltage/frequency

domain. The shared L2 cache together with the interconnection network belong to a

different domain as well (which is fixed). On-chip regulators are placed per core so

as to implement the different power domains, in a similar fashion to [41]. In order to

synchronize communication between the distinct domains that operate asynchronously

to each other we use the mixed-clock FIFO design proposed in [18].

We only assume four voltage and frequency domains, as is shown in Table10.1,

similarly to the offered domains in current commercial designs (i.e., the Super Low

Frequency Mode, Low Frequency Mode, Normal Frequency Mode and High Fre-

quency Mode used in [25]). All cores operate at the normal power mode except if

our predictions dictate we should do otherwise. The cost forchanging a power mode

depends on the voltage swing and it is modeled to be 1 ns per 10mV in accordance

with [41].

Our scheme requires on top of the baseline TLS support, the necessary hardware

to perform the squash prediction and the CPI estimation (per core). More specifically,

for the squash predictor we need to augment the tags of the cache lines to hold the

95
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five least significant bits of the program counter performingthe access. Using CACTI

we found that the overhead of these extra bits was small enough, that as not to affect

the number of cycles we need to access it. We additionally need a 5-bit bitwiseXOR

and one small table of up/down counters For the CPI estimator,we require two 5-bit

counters, a 5-bit bitwiseXOR, a 5-bit multiplier and a comparator.

Since the proposed scheme changes performance and power at the same time, we

need to use a combined metric so as to be able to quantify the different design points.

One such metric proposed in [12] is the Energy Delay product (ED), which allows

us to quantify both power and execution time at the same time.Since the energy

component of ED is already using the execution time (i.e., Energy = Delay x Power),

the metric emphasizes more on execution time than it does on power. Other metrics like

ED2 or ED3 emphasize even more on delay. Since we feel TLS and any speculative

multithreading technique aims at reducing execution time,we believe that emphasizing

more on execution time than on power is the correct thing to todo. At the same time

putting too much emphasis on the execution time component, may make any power

savings/losses negligible. We thus feel that ED is the correct metric to use to evaluate

our technique. All the thermal simulations are performed using Hotspot [67].

10.2 Comparing the Profitability-Based Scheme with Static

Schemes

Figure 10.1 depicts the bottom line results when we compare our scheme with the

three static power modes, namely thevery-low-power, thelow-powerand themedium-

powermodes. Note that we do not compare against thehigh-powermode since we

assume that having all the cores operating in the high-powermode is not allowed due

to physical constraints.

As Figure10.1 shows, the normal-power mode is better than both the very-low-

power mode and the low-power mode, because although both of them consume con-

siderably less power, they are too slow. Interestingly enough for the memory-bound

Mcf the low-power more is better than all the other schemes, since for that frequency

the threads execute in a way that reduces the number of squashes significantly (val-
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Table 10.1: Architectural parameters used along with extra hardware required for the proposed

scheme and the different power modes available in the simulated system.

Parameter TLS (4 cores)

Fetch/Issue/Retire Width 4, 4, 4

L1 ICache 16KB, 2-way, 2 cycles

L1 DCache 16KB, 4-way, 3 cycles

L2 Cache 1MB, 8-way, 10 cycles

L2 MSHR 32 entries

Main Memory 500 cycles

I-Window/ROB 80, 104

Ld/St Queue 54, 46

Branch Predictor 48Kbit Hybrid Bimodal-Gshare

BTB/RAS 2K entries, 2-way, 32 entries

Minimum Misprediction 12 cycles

Task Containers per Core 8

Cycles to Spawn 20

Cycles from Violation to Kill/Restart 20

Extra Hardware per Core

Squash Predictor 2K Entries / 3bit

Instruction Counter 5bits

L2 Miss Counter 5bits

Bitwise XOR 10 x 2-input XOR gates

Comparator 1

Power Modes

High Power Mode 5.0GHz / 1000mV

Normal Power Mode 4.0GHz / 950mV

Low Power Mode 3.0GHz / 900mV

Very Low Power Mode 1.0GHz / 700mV
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Figure 10.1: Improvement in ED over normal-power mode for very-low-power mode,

low-power mode and the profitability-based scheme (%).

ues are consumed right after they are produced). We see that our scheme is able to

provide a better trade-off, and it is thus 18.9% better on average than the best static

scheme. Note that for some benchmarks, likeCrafty andGap, we are able to improve

ED by 25.5% and 24.9% over the normal-power one. The reason for this is that for

this benchmarks our squash prediction scheme works really well. In the next sections,

we provide a detailed analysis of how our system is able to achieve these significant

benefits in ED.

10.3 Performance-Power Analysis

Figure10.2depicts the speedup (or slowdown) of the static power schemes and our

profitability-based scheme over the normal-power mode. Note that frequency changes

are detrimental in terms of performance. In fact the very-low power mode is almost

67% slower than the base frequency system, whereas the low power mode is 16%

slower than it. On the other hand the performance of the profitability-based scheme is

always better than that of the base operating frequency. On average the profitability

scheme is 14% faster, withBzip2, Crafty, GzipandVortexachieving speedups close to
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20%.
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Figure 10.2: Comparing the two static power schemes, the very-low-power and the

low-power modes, and our profitability-based one in terms of speedup (Normalized

over normal-power mode).

At the same time, the power consumed is 7.4% on average more than that of the

normal-power mode scheme. Note that the other static schemes are able to save far

more power (49% for the very-low power mode and 16% for the low-power mode on

average). However as we showed in the previous graph this comes at a fairly large cost

in terms of performance. We thus believe that our profitability based scheme is a far

more reasonable approach in terms of energy efficiency than any of the static schemes.

10.4 Thermal Analysis

Figure?? depicts the transient thermal behavior for the base TLS system operating in

normal-power mode and the profitability-based one forParser. As the figures reveal,

core0consumes most of the power and as such has the highest averagetemperature.

Note that even though the profitability-based scheme consumes more power on average

than the base TLS, the transient behavior is much better. This results in a significant

reduction in the temperatures observed, while it is also interesting that the thermal gap
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Figure 10.3: Comparing the two static power schemes, the very-low-power and the

low-power modes, and our profitability-based one in terms of power (Normalized over

normal-power mode).

between the processors becomes smaller as well. We believe that these two figures

present a strong motivation in employing the proposed form of adaptivity. The results

for the rest of the applications exhibit similar, if not better behavior.

10.5 Effectiveness of the Squash Predictor

Figures??shows how our scheme works when it is guided only by the SquashPredic-

tor only. We only use the squash predictor so as to compare them without interference

from the memory boundness estimator. The left bar in each graph shows the percent-

age breakdown of the power modes for a memory address only predictor, while the

right bars show the same for our squash prediction scheme. InFigure10.6we see that

for the threads that commit, the two predictors exhibit a similar behavior. However

in Figure10.7we see that our scheme performs better than the memory address only

scheme, and it is able to put more threads that will get squashed in low power mode.

What is interesting to point out but it is not shown in these graphs is that when we

also use the memory boundness estimator, the memory-based only scheme performs
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Figure 10.4: Thermal behavior per core for Parser for Base TLS operating at normal-

power mode.

much worse then ours. The reason for this is that it is far moresensitive in the thread

ordering than the proposed predictor. Of course if adding five bits for each cache line

is prohibitive for a specific design, our profitability-based scheme could still perform

better than any static one even with the memory address only predictor.
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Figure 10.5: Thermal behavior per core for Parser for the profitability based scheme.
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Figure 10.6: Guiding our allocation scheme using only a Squash Predictor (the memory

only one and our combined) for threads that commit.
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Related Work

11.1 Related Work on TLS Systems

Thread level speculation has been previously proposed (e.g., [32, 45, 53, 68, 71]) as a

means to provide some degree of parallelism in the presence of data dependences. The

vast majority of prior work on TLS systems has focused on architectural features di-

rectly related to the TLS support, such as protocols for multi-versioned caches and data

dependence violation detection. All these are orthogonal to our work. In particular, we

use the system in [63] as our baseline.

11.2 Related Work on Combined Speculative

Multithreading

The work in [79] showed in a limit study that it might be beneficial to continue running

some threads that are predicted to squash, so as to do prefetching. However, the ben-

efits shown there were minimal if one considers the simplifications in the simulation

infrastructure used. In general, deferring the squashes soas to prefetch is not beneficial

because we negate the TLP benefits. Checkpointing TLS threadswas also proposed

in [23]. However, checkpointing in a TLS execution model is used toimprove TLP

by supporting squash and rollbacks to a checkpointed state instead of to the start of

the thread. In our work we employ checkpointing in a combinedexecution model to

104
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allow for improved ILP while maintaining similar TLP levels. Finally, [63] also pro-

posed a model to quantitatively break down the performance improvements between

TLP and ILP. Our model is slightly more computationally intensive as it requires one

extra simulation run, but our results show that it is much more accurate. Benefits due

to prefetching were also reported for TLS systems in [63]. In our work we show that

by employing a combined speculative multithreading approach, one can obtain further

benefits from prefetching.

11.3 Related Work on Helper Threads

It has been previously proposed to use small helper threads on otherwise idle hard-

ware resources [15, 22, 73, 85]. There, helper threads usually try to resolve highly

unpredictable branches and cache misses that the main thread would have to stall upon

otherwise. Because helper threads try to improve the ILP of the main thread, they fail

to procure any significant benefits in applications where theout-of-order engine is able

to extract most of the ILP. As we showed in previous sections,in these cases we can

achieve some additional improvements by trying to extract TLP as well.

11.4 Related Work on Runahead Execution

Runahead execution [6, 28, 58] is a scheme that generates accurate data prefetches

by speculatively executing past a long latency cache miss, when the processor would

otherwise be stalled. Runahead execution is similar to the helper thread schemes, al-

though instead of using different hardware resources, it uses otherwise idle processor

cycles to perform prefetching. Additionally, runahead execution does not rely on the

programmer to manually extract the prefetching slices. Twomore recent proposals,

Checkpointed Early Load Retirement [43] and CAVA [14], build on [58] by adding

value prediction. In contrast with runahead execution, correctly predicting the value

of a missing load eliminates the need to rollback to a checkpoint when the load re-

turns. The work in [14] showed, however, that most of the benefits from this scheme

do not come from negating the roll-backs, but rather from thefact that by value predict-
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ing, prefetches are more accurate. As with the helper threadcase, runahead execution

tries to improve the ILP of memory bound (mainly) applications by prefetching. Our

scheme is able to achieve speedups even for applications that are not memory bound.

Additionally, because we are able to perform deeper prefetching than runahead execu-

tion, even for memory bound applications we are able to achieve better results.

11.5 Related work on Branch Prediction for TLS and

Speculative Threads.

The work in [39] along with one presented in [10], perform an analysis of branch

prediction for the Multiscalar architecture. Unfortunately, the focus of those works

was very much tied to the Multiscalar architecture. Their aim was efficiently handling

inter-thread branches. Intra-thread branches were not reported to be as important as

the inter-thread ones, which of course was an artifact of howthe threads were created

for the Multiscalar processor. Inter-thread branches are only tangential to our work

since in our flavor of TLS we do not have them. In fact spawning threads can only

happen from control independent areas of the code. The work in [10] does enhance the

intra-thread predictors by using information available inthe inter-thread predictor, and

is thus somewhat closer to our work, but it does not mention MPexecution.

The work in [20] investigates branch prediction for execution models withshort

threads, which include TLS systems. It shows that branch history fragmentation can

be a severe problem in such execution models and proposes a mechanism to initialize

branch history. We also evaluate the effects of history fragmentation and short threads,

but we additionally consider other TLS behaviors, such as re-executions and out-of-

order spawns. We also implement the technique proposed in that paper and show that

our proposed techniques achieve improvements that are additive to that.

The work in [54] has also briefly discussed the effects of branch predictionon TLS

systems, but it does not perform a detailed study of branch prediction per se.

Other related work have dealt with branch prediction in multithreaded environ-

ments. The work in [38] targeted the Multiscalar architecture [68] and shows that

having a global structure to hold history registers for all cores can lead to better predic-
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tion accuracy. This approach provides similar benefits to that of history initialization

in our work and in [20], but such centralized structure would not be practical in aspec-

ulative multicore environment. The work in [62] evaluates the effect that simultaneous

multitreading has on the branch predictors and whether using global or local structures

is better. Unlike TLS, however, simultaneous multithreading does not involve spec-

ulative thread-level execution, which leads to very different interactions between the

execution model and branch prediction.

Additionally, much work has been done on helper threads to improve branch pre-

diction (e.g., [16, 85]). In these schemes speculative threads are specifically created to

run ahead of the main thread to pre-compute branch outcomes for the main thread in

order to accelerate its execution. In this model the computation done in the speculative

threads is discarded and no true parallel execution is achieved. This execution model

is very different from that of TLS as in the latter the purposeof the speculative threads

is to perform useful computation in parallel with the non-speculative thread. Since the

goal in TLS is computation parallelism, the speculative threads do not directly produce

branch outcomes for the non-speculative thread, although this is a potential side-effect

that can be exploited, as we do in our work.

11.6 Execution Along Multiple Control Paths.

Finally, a significant amount of work has been done in the areaof systems able to ex-

ecute multiple control flow paths [2, 34, 44]. All these studies have shown that being

able to follow multiple paths is always beneficial. In fact some of these proposals ad-

vocate following not only one but multiple control flow pathssimultaneously. Recently

[42] showed that combining compiler information with run-timebehavior is the best

approach to follow both in terms of speedup and energy efficiency. As future work we

wish to explore mixing the TLS execution model with a flavor ofthe Diverge-Merge

scheme. All these studies are based on SMT (or SMT-like) systems and assume fast

register copying. The work in [19] employs a form of slipstream execution to allow

multiple-path execution on highly coupled multicores. Unfortunately this proposal as-

sumes very high coupling of the cores, through a communication queue, and it does
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not scale well when the delay of the queue increases.

11.7 Related Work on Power Allocation

The work most relevant to this scheme is the one in [76]. In this work there is only

one core that is fixed in high power mode and three that are fixedin low power mode.

Threads are migrated to the high power core when they are predicted to be critical.

Predictions are made based on a task-level criticality predictor. We showed that with

much simpler predictors one can achieve significantly better results given per core

voltage/frequency regulators. Recently [7] performed run-time adaptation based on

criticality predictors. Although our paper shares the sameambitions, we not only cut

down power but instead allocate it to the threads deemed to beprofitable. An additional

important issue we had to deal with, is the fact that not all our threads commit their

state (in contrast to the explicitly parallel applicationsthey used).

Fast per-core regulators like the one proposed in [80], have been demonstrated to

be both fast and efficient. [41] showed that these regulators can be beneficial for fast

architectural optimizations like ours. Our work assumes such regulators and it builds

on top of work on synchronization among cores in different voltage/frequency isles,

like the one in [18].



Chapter 12

Summary of Contributions

With the scaling of devices continuing to progress according to Moore’s law and with

the non-scalability of out-of-order processors, multi-core systems have become the

norm. Many argue that multi-cores are here to stay, and some people are quick to

argue that we will be able to continue scaling performance aswe did in the past. In my

opinion this will mainly depend on two things: how do we extract performance out of

them, and to which extent we can scale our designs. The ambition of this thesis is to

provide solutions to these questions.

While in the past more transistors would directly translate to performance, in the

multi-core era this only translates to a higher number of cores. Utilizing the available

hardware resources to enhance the performance of the systemis thus silently alleviated

from the hardware designers and placed on the compiler/programmer camp. Unfortu-

nately parallel programming is hard and error-prone, sequential programming is still

prevalent, and compilers still fail to automatically parallelize all but the most regular

programs. This thesis aims at designing systems that will beable, given a sequential

application to speed it up, by first speculatively parallelizing it and then enhancing the

performance of the speculatively parallelized application by improving the instruction

level parallelism.

The main contribution of this thesis is to enhance TLS functionality by combining

it with other speculative multithreading execution models. The main idea is that TLS

already requires extensive hardware support, which when slightly augmented, can ac-

commodate other speculative multithreading techniques. Recognizing that for different
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applications, or even program phases, the architectural bottlenecks may be different, it

is reasonable to assume that the more versatile our system is, the better it will be able

to operate.

In fact as we have shown, existing state-of-the-art TLS can be sped up significantly

when it is complemented by other existing models. Thread Level Speculation, Helper

Threads, Runahead and Multi-Path execution have been separately shown to improve

overall performance of some sequential applications. However, given the different

nature of the performance benefits provided by each model, one would expect that

combining them in a combined execution model would lead to greater performance

gains and over a wider range of applications compared to eachmodel alone. Despite

these opportunities no one has attempted to combine these multithreaded execution

models.

The choice of execution models used for this thesis aimed at tackling two of the

major ILP constraints for TLS systems, memory accesses and branch mispredictions.

The first is done through the creation at runtime of helper threads, which prefetch

for safer threads. The later through the use of Multi-Path execution, where on low

confidence branches a separate thread is forked to follow thealternate path. Exten-

sive experimentation showed that both these techniques areable to greatly enhance

existing TLS systems, because they improve their ILP without harming the extracted

speculative TLP.

Although high performance is always a goal, we can no longer pursue it blindly

anymore as power consumption is a first class design constraint. In fact future multi-

core systems will fundamentally be limited by the on-die power density, which will

limit how many cores will be operating at any given time. Thusmore power effi-

cient designs will benefit from having more cores concurrently available. Under the

proposed speculative multithreaded execution models, power consumption is a major

issue. This thesis showed that profitability-based power allocation schemes can im-

prove the energy efficiency of such speculative multithreaded systems significantly. A

key premise of this work stems from the idea that in a speculative multithreaded system

not all threads contribute equally to performance and as such we should try to allocate

more power to the more useful ones and less to the others. In fact by “stealing” power
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from non-profitable threads and using it to speed up more useful ones, systems that are

far more energy efficient can be designed.



Chapter 13

Concluding Remarks / Future Work

After spending four years working on speculative multithreaded systems, I think their

main weakness when compared with more traditional approaches, is complexity. Cor-

rectly designing even the simplest speculative multithreaded system, is challenging (let

alone verifying it). At the same time, none of the proposed speculative multithreaded

systems does well for all applications, while due to speculation they spend a significant

amount of power. This thesis tried to make them a more attractive solution, by showing

that most of the required hardware (and hopefully complexity), is the same for most

of the speculative multithreaded schemes. By combining themwe can achieve signifi-

cant speedups, mainly because the architecture is more versatile and can cope with all

types of application behavior. In an effort to reduce the sometimes excessive power

consumed, we tried to categorize threads so that we only perform deep speculation if

this will translate to meaningful performance gains.

There are many interesting topics that are direct extensions of this work. The most

obvious one, is to perhaps apply the same techniques to explicitly parallel applications.

Even the most well behaving applications have sequential portions, which limit the

potential speedups [4, 36]. Employing techniques similar to the ones proposed in this

thesis, can potentially make this bottleneck a less significant one. Of course, if we

consider each one of the explicitly parallel threads to be our “sequential” application,

we can directly apply the proposed schemes. An interesting issue that will arise is how

to manage the speculative threads created from different explicitly parallel threads, if

they compete for common resources.
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Another interesting extension of the work proposed in this thesis would be to try

to push parts of the mechanisms/decisions, from the hardware to the software stack.

One example of this would be to try to utilize the compiler to provide information

about the code that is not easy for the hardware predictors touncover. Knowing the

number of dependences that each thread has, or that a specificpart of the code is a

simple hammock, may help for example on deciding how to treata TLS thread or

when one should stop Multi-Path execution (as with Diverge-Merge Processors [42]).

Moreover making the compiler aware of the underlying execution models may create

opportunities for unsafe optimizations for the helper threads that will never commit.

In terms of the power consumed, most the profitability based power allocation

scheme can be directly applied to explicitly parallel applications. Instead of allocating

power based on whether a thread will commit or not, allocation can be done based on

the estimated slack of a specific thread to a barrier, or basedon the memory behavior. It

would also be interesting to investigate whether for specific loops, it is better to spend

the given power budget to have a small number of fast cores, ora larger number of

slower ones. Deciding at runtime whether which approach to follow, may result to a

much more energy efficient result.
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