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Lay Summary

The best description we have for the way the universe behaves at the smallest level
is given by quantum dynamics, which describes how packets of energy interact with
their surroundings. Though much-celebrated, the equations governing the dances of
the atoms are too difficult to solve exactly. However, we can use computer simulation
to find approximations to the evolution of a system of particles in time, by assuming
their motions are classical (like snooker balls) and by moving the system by successive
small jumps forward in time. This procedure is known as molecular dynamics (MD).

We can use MD simulations to answer many questions about a system’s behaviour.
For instance, if we wish to know the likelihood of a group of atoms being arranged in a
certain way in a random sample (e.g., a knotted state of a biomolecule like DNA), we
can perform a long simulation and measure how much time it spends in that particular
configuration. If we assume that our simulation is long enough to be representative,
then we can work out an approximate probability for the system to be found in that
configuration.

Additionally, in simulation, we may add a small random force to the equations
governing every atom’s movement, approximating the effects of a collection of particles
outwith our system of interest, while simultaneously modelling the transfer of heat from
the modelled system to its environment. Such a “heat bath” maintains the system
temperature, exchanging energy just as if it were immersed in a solvent (such as blood,
for biological systems). The challenge then is to design appropriate time-stepping
methods which mimic the physical behaviour of the atoms in the presence of the random
heat bath.

Many algorithms are available to evolve the MD simulation in time. This thesis
is concerned with studying the effect that the choice of algorithm has on the errors
introduced in the averages computed from the overall simulation. We draw on previous
techniques for studying algorithms in a constant-energy setting (without the random
heat bath), to develop a new framework for categorizing methods in the more general
stochastic setting. We implement the new methods in state-of-the-art software, and
compare them using an MD simulation of a biomolecule.
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Abstract

Molecular dynamics (MD) computations aim to simulate materials at the atomic level
by approximating molecular interactions classically, relying on the Born-Oppenheimer
approximation and semi-empirical potential energy functions as an alternative to solv-
ing the difficult time-dependent Schrödinger equation. An approximate solution is
obtained by discretization in time, with an appropriate algorithm used to advance the
state of the system between successive timesteps. Modern MD simulations simulate
complex systems with as many as a trillion individual atoms in three spatial dimen-
sions.

Many applications use MD to compute ensemble averages of molecular systems at
constant temperature. Langevin dynamics approximates the effects of weakly coupling
an external energy reservoir to a system of interest, by adding the stochastic Ornstein-
Uhlenbeck process to the system momenta, where the resulting trajectories are ergodic
with respect to the canonical (Boltzmann-Gibbs) distribution. By solving the resulting
stochastic differential equations (SDEs), we can compute trajectories that sample the
accessible states of a system at a constant temperature by evolving the dynamics in
time. The complexity of the classical potential energy function requires the use of
efficient discretization schemes to evolve the dynamics.

In this thesis we provide a systematic evaluation of splitting-based methods for
the integration of Langevin dynamics. We focus on the weak properties of methods
for configurational sampling in MD, given as the accuracy of averages computed via
numerical discretization. Our emphasis is on the application of discretization algorithms
to high performance computing (HPC) simulations of a wide variety of phenomena,
where configurational sampling is the goal.

Our first contribution is to give a framework for the analysis of stochastic split-
ting methods in the spirit of backward error analysis, which provides, in certain cases,
explicit formulae required to correct the errors in observed averages. A second contribu-
tion of this thesis is the investigation of the performance of schemes in the overdamped
limit of Langevin dynamics (Brownian or Smoluchowski dynamics), showing the in-
consistency of some numerical schemes in this limit. A new method is given that is
second-order accurate (in law) but requires only one force evaluation per timestep.

Finally we compare the performance of our derived schemes against those in com-
mon use in MD codes, by comparing the observed errors introduced by each algorithm
when sampling a solvated alanine dipeptide molecule, based on our implementation of
the schemes in state-of-the-art molecular simulation software. One scheme is found to
give exceptional results for the computed averages of functions purely of position.

vii



viii



Contents

Lay Summary v

Abstract vii

1 Introduction 3

2 Deterministic molecular dynamics 11
2.1 Hamiltonian dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.1.1 General numerical methods for autonomous ODEs . . . . . . . . 14
2.1.2 Symplectic maps . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.1.3 Geometric integration . . . . . . . . . . . . . . . . . . . . . . . . 24
2.1.4 Higher order symplectic methods . . . . . . . . . . . . . . . . . . 34
2.1.5 Scale separation . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

2.2 Sampling the canonical ensemble . . . . . . . . . . . . . . . . . . . . . . 42
2.2.1 Statistical mechanics . . . . . . . . . . . . . . . . . . . . . . . . . 42
2.2.2 The Boltzmann-Gibbs distribution . . . . . . . . . . . . . . . . . 46
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Molecular dynamics (MD) is a technique for probing the behaviour of aggregations
of matter using computer simulation. The form of the aggregation is dependent on
the discipline under study, but in general we imagine a collection of individual atoms,
represented by point masses, whose instantaneous positions and momenta are stored
to high accuracy in a machine. This disregard for the uncertainty principle may be
concerning, but one can rest assured that we will in fact disregard almost all quantum
effects equally.

Our best understanding of how molecular systems evolve and interact at the atomic
level is given by quantum mechanics and the time-dependent Schrödinger equation

i~
∂

∂t
Ψ = HΨ,

for Planck’s constant ~, imaginary unit i and with the system’s global wavefunction (or
instantaneous state function) Ψ and Hamiltonian operator H. The state Ψ is a function
of the positions of all of the electrons and atomic nuclei in the system, as well as time.
In practice, the analytic solution to this partial differential equation (PDE) is known
only for a smattering of small, isolated cases. Numerical treatment of the problem
is also overwhelmed by the high dimensionality of the space in which the equation is
posed.

If we wish to predict or interpret the changes in a large molecular system over time,
outside of special cases where significant reduction is possible, the Schrödinger equation
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as it stands is simply too complex an object for us to tackle.
We instead gain traction in the problem by making the Born-Oppenheimer ap-

proximation. We first assume that we can treat atomic and electronic motions as
independent, owing to the enormous difference in mass between a proton and electron.
Second, we abandon any computations involving the individual electrons, in favour of
approximating their influence with a potential energy function. The movement of atoms
becomes classical–moving in space according to Newton’s equations of motion, like bil-
liard balls on a pool table. Quite unlike billiard balls however, forces felt are not due
to elastic collisions between particles (the atoms have no physical radius), but instead
come from traversing a potential energy landscape derived either from the electronic
part of the Schrödinger equation, or fitted from experimental data (or even chosen for
computational efficiency as in the case of the Lennard Jones potential). Internuclear
interaction within the model is derived from the potential energy itself: states with a
lower potential energy are favoured and higher potential energy regions (such as nuclei
being in very close proximity) are shunned.

For large systems, the colossal number of intramolecular force terms gives an ex-
tremely complex potential energy landscape, with a very large number of metastable
minima. Therefore it is no surprise that if we are interested in the system’s evolution
between two states (or regions in the phase space), we may have to wait for a long time
to observe this change just by evolving the equations of motion.

As we have assumed the system’s behaviour is classical, its behaviour in time is
governed by Newton’s second law, just as the celestial motion of planets and stars. The
evolution is wholly described by a set of ordinary differential equations (ODEs), though
in general we still cannot solve the equations analytically the underlying structure
of the ODEs makes them considerably more amenable to numerical treatment than
the original Schrödinger equation. The positions of all of the atoms q, along with
their momenta p, is assumed to be known exactly and stored in a computer. Solution
trajectories are approximated by computing the total forces on all atoms at any one
instant, giving the atoms a kick in the direction of its force, and then allowing all the
atoms to drift for a small step in time. Assuming the time steps are chosen small
enough (typically of the order of a femtosecond: 10−15s), the results of these MD
simulations yield a good approximation to the dances of the individual atoms, and
allow the simulator to elucidate the behaviour of the system under study.

The dominant computational cost in the simulation is in the force calculation (re-
quired at every step), although this is ironically the mathematician’s biggest asset when
studying molecular dynamics methods. It grants a license to devise all manner of al-
gorithms for evolving the dynamics, as the only cost that matters in simulation is the
evaluation of the instantaneous forces.

The dramatic increase in available scientific computer power after World War II
made molecular dynamics simulations accessible and practical for many material scien-
tists, with the first studies probing the behaviour of small clusters of particles (modelled
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as hard spheres) using computers based at Los Alamos [2, 3, 84, 128]. Computer sim-
ulation of more realistic models (using more complicated potential energy functions)
followed swiftly [46]. Whereas Rahman’s original trailblazing experiment [96] used
864 atoms (with each timestep taking around 45 seconds), the scope of modern MD
is considerably more vast, employing many billions [61] or even a trillion particles
[45] in simulations. Molecular dynamics simulations are prevalent in biology, chemical
physics, material science, engineering and a plethora of other scientific disciplines. It is
frequently used as a tool to test new theories in place of physical experiments (describ-
ing the computer simulations as numerical experiments) which would otherwise be too
costly or impermissible due to the constraints of realizing it in a lab (for example appli-
cations of extreme temperature or pressure). By contrast to physical experiments, the
limits on numerical experiments are proportional to the computer hardware available.

Such limits restrict the amount of data we can reasonably store, and hence the
size of systems (in terms of the dimensionality or number of atoms) we can tackle in
a numerical experiment. The speed and architecture of the computer will decide how
many time steps we can take, and hence dictate the time interval we can observe, as
we cannot push the timestep beyond certain limits without risking instability in our
propagation algorithm.

Molecular dynamics has surfed the wave of computer revolution for the past decades,
enabling larger and more complex simulations to be run with upgraded hardware
and little change in algorithms and approaches [24, 53]. The relation between pro-
cessor speed and power consumption (with Dennard’s scaling law) puts paid to this
philosophy–current machine architectures have hit fundamental physical constraints,
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meaning computers do not get faster, only more numerous [34].
This presents a problem for molecular dynamics. The most computationally expen-

sive part of the simulation is (and has always been) the calculation of the forces between
the atoms at any instant. While these forces are well suited to parallel computation,
the simulation itself is sequential and temporally contiguous: all atoms must be moved
together [23, 92, 95]. This results in repeated reduction operations, forcing data to be
shunted between physical parts of the computer, which itself gives rise to latency issues
slowing simulation. Parallelism can offer gains, but it is no magic bullet.

Breakthroughs in the field are unlikely to come from advancing technical specifica-
tions of hardware, but instead new algorithms (tuned to particular applications) are the
driving force behind the progress in efficient numerical simulation. Currently, many of
the algorithms in general use for generating system trajectories have changed very little
since early numerical work. The Verlet algorithm, ubiquitous in modern MD codes,
can be traced back to geometrical ideas in Newton’s original Principia Mathematica
(see the discussion in [48, Section I.2.1]).

While the use of MD has always been guided by the utility and practical nature of
simulations, in the late 1960s many began to question the usefulness and futility of at-
tempting to approximate atomic trajectories for realistic applications [40]. The chaotic
nature of high dimensional systems means that trajectories that start close together
diverge exponentially fast in time, so small errors in the trajectory (introduced from the
very first step of an algorithm) will compound to render our simulation inaccurate very
quickly. As a result, the conservation of the total system energy is destroyed. Wnergies
reported in simulation exhibit oscillations or drift, which threatens the veracity of the
simulation itself [33, 40, 127].

A revolution came in 1983 after pioneering work by Ruth [101] introduced the no-
tion of geometric integration and symplecticness first present in work by de Vogelaere
[26]. Subsequent work by Channell [21], Menyuk [83], Suris [113] and Feng [36, 37, 38],
followed by work in physics and numerical analysis, laid the groundwork for algorithms
that preserve a nearby energy function exactly, and hence maintain the desired quali-
tative (geometrical) qualities of the original system under study.

But are maintaining these qualitative properties the key? While beneficial, far more
useful would be the ability to relate simulation data to quantitative results pertaining
to the molecular models being studied. However, as we are evolving a chaotic system
in time, we expect that each successive point of the approximated trajectory will be
further away from the true trajectory than the previous point. This leads to a change
of perspective about our MD simulations: rather than attempting to approximate the
exact motion in time, we instead view our trajectory as a representative sample of the
average behaviour of the system (or a system with energy function very close to the
one we are interested in).

The challenge is then to accurately recover these averages from computed trajecto-
ries, and correct any errors we have introduced through our imperfect evolution of the
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system.
Our motivation in this thesis will be to develop new algorithms for computing

canonical (constant temperature) averages in molecular dynamics. Given some system
we are interested in, we imagine immersing it in a large heat bath at some fixed tem-
perature. The heat bath interacts with the target system of interest, equilibrating it
to a matching temperature. For many applications this is a more realistic setting for
simulation than considering the system sealed off in a vacuum with constant energy.

Simulating the heat bath itself presents a wealth of problems. We can choose to
simulate a large number of particles outwith our target system, and imbue an interaction
potential between them to facilitate energy exchange. Of course, the computational cost
of the simulation balloons as the large number of additional particles introduced causes
the evaluation of the interatomic forces to become significantly more expensive. Ideally
we would prefer to approximate the heat bath particle’s interactions, as we are really
only interested in the behaviour of the target system (which will be dimensionally
much smaller). A common strategy is to omit the heat bath completely from the
simulation, and instead approximate its interaction through the use of an auxiliary
device requiring a significantly smaller dimensional footprint, alleviating the volume of
computation required per timestep.

There are many forms of auxiliary device that can be shown to perturb the evolution
of the atoms so that computing an average along the simulation trajectory (such as the
average total potential energy) will give the same answer as if we sampled the system
while it was in equilibrium with the heat bath. The methods we shall be considering for
canonical (constant temperature) sampling will be dynamics-based, perturbing New-
ton’s constant-energy equations in a manner consistent with the approximation of the
heat bath interactions. For obvious reasons, the dynamical equations that give com-
mensurate sampling to constant-temperature simulations are called thermostats. They
can be implemented deterministically, but in general it is more reliable to introduce a
stochastic perturbation, transforming the ODEs into stochastic differential equations
(SDEs). The resulting SDEs will be just as insoluble as in the deterministic case,

We will be primarily motivated by applications in biomolecular modelling that
involve the spectrum of complex nonlinear characteristics (such as long-ranged forces,
steep potentials and stiff harmonic components). However, the molecular dynamics
techniques we develop will be no less helpful for other examples. We shall think of our
system of interest as being a collection of atoms modelling a protein, with a scientist
seeking to calculate average values of some function of the position or momentum
of the system (such function we will call observables, for example the total kinetic
energy). Additionally the system often includes a soup of atoms surrounding the protein
(typically water molecules), replicating the agitating effects of the blood or solvent.

This thesis offers a new strategy for the development and analysis of numerical
methods for the stochastic differential equations that appear in molecular dynamics
thermostats. The focus will be on observed long-time averages computed from trajec-
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tory data obtained through the numerical schemes. Wherever possible we will supple-
ment theory with numerical examples demonstrating the results for model problems.

Chapter 2 presents our notation and reviews necessary background for the analysis
of deterministic numerical methods. The concepts of symplecticness and geometric
integration will be introduced, before turning to statistical mechanics and ergodicity.
We develop the ideas behind using trajectories to sample an ensemble corresponding to a
particular distribution, leading to a change of perspective on the goals of the simulation.
The use of thermostats to sample a system at constant temperature is discussed, while
a lack of ergodicity is demonstrated (at reasonable parameter choices) for the popular
deterministic Nosé-Hoover chains thermostat. These results provide motivation for
stochastic dynamics as an alternative giving ergodic and efficient sampling.

The subsequent chapter develops stochastic (Itō) calculus, giving details on the con-
vergence of distributions and the concept of a spectral gap. We introduce stochastic
thermostats based on perturbations of Newtonian dynamics and prove ergodicity us-
ing a Hörmander condition. Both Langevin and Nosé-Hoover Langevin dynamics will
be discussed, with examples of thermostats resulting from perturbing non-Newtonian
dynamics.

The fourth chapter builds on the splitting approach for deterministic methods, in-
troduced in Chapter 2. We detail a number of available splitting strategies for Langevin
dynamics present in the literature, before extending the GLA splitting scheme of [12]
to create a new class of method. One such new method is found to have a fortu-
nate cancellation at leading order, making it considerably more efficient than existing
schemes. We examine the specific case of harmonic potential energy functions, that is
perticularly relevant for molecular dynamics applications. We also consider the case of
overdamped Langevin (Brownian) dynamics, and discuss the behaviour of the resulting
limiting schemes. The focus of this chapter is to rigorously ground our work originally
published in [68].

Chapter 5 utilizes linear response techniques to numerically compute and correct the
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The computed potential energy distribution for a 1ns simulation of alanine dipeptide in
a vacuum at 300K. The timestep used to evolve the simulation has a dramatic effect on
the resulting distribution (the baseline result comes from a simulation with extremely
small timestep). The differences are the result of errors due to discretization.
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error in observed averages, through the evaluation of integrated correlation functions
(similar to Green-Kubo-type formulas). We additionally consider intentionally perturb-
ing the equations of motion in an effort to provide higher–order sampling possibilities
for a particular observable. We additionally summarize our work in [69], where we apply
the newly developed methods to model problems and compare the performance of the
algorithms with those already present in the literature, for a small solvated molecular
problem.

We conclude this thesis by summarizing our results and presenting our perspective
on their potential impact.
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Chapter 2

Deterministic molecular

dynamics

In this chapter we provide a review of standard mathematical tools for the analysis
of dynamical systems and numerical schemes. In particular we introduce the concept
of the numerical scheme preserving a perturbed quantity exactly, and illustrate the
benefits afforded to such schemes in the deterministic setting. This is a central theme
of the thesis that we revisit in Chapter 4 in the context of stochastic dynamics.

We explain the benefits of using splitting schemes in the context of symplecticness,
before introducing our notation for splitting methods (which we shall rely heavily on
in later chapters). We finish the chapter by changing our perspective on our numerical
method: namely that we think of our trajectory as sampling a distribution, rather than
necessarily giving us meaningful dynamical information.

The material covered in this section can be found in most textbooks on classical
and statistical mechanics, in particular we present material from [4, 6, 42, 48, 72, 74,
104, 106].

2.1 Hamiltonian dynamics

The class of problems we shall consider in this thesis are canonical Hamiltonian sys-
tems in an even dimensional phase space. Consider n atoms existing in d-dimensional
space, where for most applications d = 3, but in simple models we may choose to
lower the dimensionality, confining the atoms to the plane or a line. The ith particle’s
instantaneous position is given by the vector

q(i) =
[
q(i,1), q(i,2), . . . , q(i,d)

]
∈ Rd,

though we will more often refer to the position data of all of the system’s particles,
given in a compact form as the vector q =

[
q(1), . . . , q(n)

]T ∈ RN for total position
dimension N = dn. The ith particle’s instantaneous momenta (its mass mi multiplied

11



by its velocity q̇) is similarly denoted p(i). Any particle’s momentum is independent
of its position, with the overall state of the entire system at any one instant denoted
z = [q, p]T ∈ R2N .

We call Ω = R2N the phase space of the system, representing all possible states
of the system. What a molecular scientist is typically interested in is averages of
functions of z with respect to the evolution of the system in phase space. What we will
be concerned with in this thesis is the evolution of autonomous Hamiltonian systems,
corresponding to the initial value problem

d
dt
z = J∇H(z), z(0) = z0, (2.1)

where H(z) : Ω→ R is at least twice continuously differentiable on some open subset.
The skew-symmetric structure matrix J ∈ R2N×2N is given as

J =

[
0 IN

−IN 0

]
, (2.2)

where Ik is the k × k identity matrix. Differentiating H(z) with respect to time and
using (2.1) we find

d
dt
H(z) = (∇H(z))T J ∇H(z) = 0,

and so H(z) = const is a conserved quantity of the system for all initial conditions,
corresponding to the conservation of the total system energy.

In molecular dynamics, the Hamiltonian is typically separable into functions of
position and momentum,

H(z) = T (p) + U(q), (2.3)

where U(q) : RN → R is the instantaneous potential energy of the system and T (p) is
the kinetic energy, given as

T (p) =
pTM−1p

2
,

with M = diag(m1Id,m2Id, . . . ,mnId) the diagonal mass matrix. The system (2.1)
hence reduces to Newton’s classical equations of motion

dq
dt

= M−1p,

dp
dt

= −∇U(q),
(2.4)

which can be interpreted as a rewriting of Newton’s second law

mass × acceleration = force,

M × d2q

dt2
= −∇U(q).

The ODEs (2.4) will describe the entirety of the evolution of our system, and it may be
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surprising that all of the physics, chemistry and flavour we wish to simulate must be
encapsulated solely within the potential energy function U(q). It is therefore often a
very complicated semi-empirical function of all N variables, defined from experimental
data or from solutions to the Schrödinger equation. Typically in MD, we think of
the force as a ‘black box’ that we have little control over. In simulation, a force field
parameter file is used to parameterize the force terms appropriately for simulation.

As an example, consider a single particle in one dimension (so n = d = 1) with unit
mass, evolving with respect to the Hamiltonian (2.3) with the potential energy function
given as

U(q) =
1
2
ω2q2,

where ω > 0 is a parameter and q ∈ R is a scalar. This potential corresponds to
the one-dimensional harmonic oscillator, often used to approximate bond stretches in
atomic systems, with governing ODEs

dq
dt

= p,

dp
dt

= −ω2q,

(2.5)

which are Hooke’s familiar equations of motion for a particle connected to the origin
by a linear spring, with spring constant ω2. We can rewrite this as

d
dt

[
q

p

]
=

[
0 1
−ω2 0

][
q

p

]
,

which, given an initial value [q(0), p(0)], we can solve to find oscillatory solutions[
q(t)
p(t)

]
=

[
cos(ωt) ω−1 sin(ωt)

ω−1 sin(ωt) cos(ωt)

][
q(0)
p(0)

]
,

with frequency ω. We know these solutions will lie along curves of constant energy

H(z(t)) =
1
2
p(t)2 +

1
2
ω2q(t)2 =

1
2
p(0)2 +

1
2
ω2q(0)2, (2.6)

which give a family of concentric ellipses in the phase space Ω = R2, parameterized by
the initial condition and centred on the origin.

It is perhaps difficult to envisage such a small model with such a mathematically
well-understood solution to have much significance or applicability to molecular mod-
elling, though in practice under the assumptions of the classical nature of atomic
motions such harmonic potential functions are ubiquitous. A bond stretch between
(bonded) atoms i and j is assumed to have a linear restoring force, and hence due to
the linearity of the ∇ operator in (2.4), this force can be added to a molecular model
by adding the harmonic potential energy to the Hamiltonian (where it becomes part of
the total potential energy).
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The total potential energy of the system is chosen to be a superposition of functions
that best fit some prescribed experimental data. Given the natural system one wishes to
emulate, the laws of physics are essentially ‘plug and play’ in the sense that additional
potential energy terms can be summed to tailor the equations of motion to the specific
elements or environmental conditions involved. In the framework we have described,
U(q) is a blank canvas for whatever physical phenomena one can dream up.

If we wish to describe a physical system, the forces (and hence potential energies)
involved in MD simulations will usually be some functions of the distances between
atoms, although some static (non-moving) boundary terms can also be included. Most
numerous are pair potentials, giving either the relative potential energy from a bonded
pair (usually coming from the harmonic oscillator term) or the non-bonded intermolec-
ular forces (such as the van der Waals or Coulombic charge terms).

Additionally, three or many-body potentials may be added to the system to simulate
structural features in the system, such as angular predispositions.

2.1.1 General numerical methods for autonomous ODEs

The high dimensionality and nonlinearity of our evolution equations (2.1) make numer-
ical treatment inevitable, as exactly-solvable cases such as (2.5) seldom occur. Consider
the initial value problem,

d
dt
z = f(z), z(0) = z0 ∈ R2N , (2.7)

with solution written as z(t; z0) at time t. We define the flow map, or solution operator,
for this system to be the map Φt : R2N → R2N such that

Φt(η) = z(t; η),

which takes a point η in the phase space and evolves it forward t units of time, with
respect to the flow of (2.7). The flow map also has a semigroup property; evolving the
flow successively by a time t then s is equivalent to evolution by time t+ s, such that

Φt ◦ Φs = Φt+s.

The flow map can be extremely challenging to compute analytically even for simple,
small dimensional examples. While being able to write Φt down would allow us to
sample as many trajectories as we can find initial conditions, we are fortunate in that
molecular dynamics applications do not require such fidelity. The numerous approx-
imations and simplifications we make in formulating the classical case permits some
margin of error in our computed solutions.

Instead, let us consider a multitude of discrete points along a single trajectory,
equally spaced in time, like the slits around a zoetrope or a collection of frames in a strip
of film. We fix the time between snapshots and define this as our timestep δt > 0, with a
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discretized trajectory written as the ordered set {z(k δt; z0)}∞k=0 = {Φk
δt(z0)}∞k=0, where

the notation Φk represents repeated composition of the flow map k times. Our goal is to
approximate the points in the discretized trajectory, writing successive approximations
as zk ≈ z(k δt; z0).

Time 0 δt 2 δt · · · k δt · · ·
Solution z(0; z0) = z0 z(δt; z0) z(2 δt; z0) · · · z(k δt; z0) · · ·
Flow Φ0

δt(z0) = z0 Φδt(z0) Φ2
δt(z0) · · · Φk

δt(z0) · · ·
Approximation z0 z1 z2 · · · zk · · ·

We think of our successive approximations as being generated through the iteration of
a map Φ̂δt : Ω→ Ω, such that

zk = Φ̂δt(zk−1) = Φ̂k
δt(z0).

The mapping Φ̂ will necessarily depend on the system dynamics (2.7) and hence will be
dependent on the (typically nonlinear) vector field f . Integrating (2.7) between times
t and t+ δt, we find

z(t+ δt; z0) = z(t; z0) +
∫ t+δt

t
f(z(τ ; z0)) dτ, (2.8)

where evaluation of the integral
∫ t+δt
t f(z(τ ; z0)) dτ by quadrature or interpolation gives

an update scheme. For instance, the left-endpoint approximation to the integral∫ t+δt

t
f(z(τ ; z0)) dτ ≈ δt f(z(t; z0)),

yields the explicit Euler (eE) scheme, given as

zn+1 = zn + δtf(zn). (eE)

Whereas using a right-endpoint approximation instead gives yields the implicit Euler
scheme (iE)

zn+1 = zn + δtf(zn+1). (iE)

We can see that the implicit Euler scheme makes it slightly more challenging to compute
the update for nonlinear f(z), as we must use additional computation to solve (iE)
implicitly. Newton or fixed point iteration are practical options to find a solution, but
this extra computational work makes implicit schemes often less efficient than explicit
schemes.

Endpoint approximations provide a suitable starting point, but a wealth of numeri-
cal quadrature schemes are available to estimate the integral in (2.8), so it makes sense
at this point to discuss the quantification of error in our simulation. The simplest way
to grade the quality of our approximation is to consider the difference between the
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solution and approximation at an arbitrary point η ∈ Ω, written as∣∣∣Φδt(η)− Φ̂δt(η)
∣∣∣ ,

which we call the local error of the scheme. For the explicit Euler scheme (eE), the
local error is ∣∣∣Φδt(η)− Φ̂δt(η)

∣∣∣ = |z(δt; η)− (η + δtf(η))| ,

whence utilizing a Maclaurin series expansion of the form

z(δt) = z(0) + δtż(0) +
1
2
δt2z̈(0) + . . .

with the equation ż(t) = f(z(t)), the local error at η becomes

δt2
∣∣∣∣12f ′(η)f(η) +O(δt)

∣∣∣∣ .
If the local error term is of order δts, then we say that the scheme is of local order s.
Hence explicit Euler is a scheme of local order 2.

As our goal is to compute a long trajectory, the local error is perhaps not readily
useful to us. What matters more will be how these errors compound over successive
iterations, affecting the long-term behaviour of zk as k gets large. The global error of a
scheme after k steps, denoted ek, is defined as the error in the scheme at the time kδt,
written as

ek :=
∣∣∣Φk

δt(η)− Φ̂k
δt(η)

∣∣∣ = |z(kδt; z0)− zk| .

This can be difficult to quantify in generality. For Euler’s method, we have

ek+1 = |z((k + 1)δt; z0)− zk+1| ,

=
∣∣∣∣z(k; z0) + δtż(kδt; z0)− (zk + δtf(zk)) +

1
2
δt2z̈(τk; z0)

∣∣∣∣ ,
=
∣∣∣∣z(k; z0)− zk + δt [f(zk; z0))− f(zk)] +

1
2
δt2z̈(τk; z0)

∣∣∣∣ , (2.9)

for some τk ∈ [kδt, (k + 1)δt]. If we assume that f(z) obeys a Lipschitz condition

|f(µ)− f(η)| ≤ L|µ− η|,

for some constant L > 0, then applying the triangle inequality to (2.9) gives

ek+1 ≤ (1 + δtL)ek +
1
2
δt2|z̈(τ ; z0))|.

Using the relation (1 + δtL)n ≤ enδtL, we can solve the recurrence to get a global error
bound of the form

ek+1 ≤ KeTLδt,
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where T = kδt is the total time of integration, and K is a constant that depends on the
vector field f and the initial condition z0. In practice K may be large, but this bound
does give us a quantitative strategy to reduce error; given a fixed time interval, we can
choose our step size sufficiently small such that the global error in our solution is below
any desired threshold. However, we will expect exponential divergence away from our
exact solution: the error grows exponentially when increasing the time interval T . A
scheme is of order s if it has global error proportional to δts, thus the explicit Euler
scheme is first-order (as T is fixed). It can be shown that if a scheme has local error
O(δtp+1), then it has global order p [72, 104].

Given the global error in trajectories, it is natural to ask what happens to observable
functions (such as the energy) under the discretized dynamics. One important example
is the behaviour of first integrals, which are non-constant functions whose derivative
vanishes on solutions to the ODEs. If we define I : R2N → R to be a first integral of
the system (2.7), then by the chain rule

0 =
d
dt
I(z) = ∇I(z) · ż = ∇I(z) · f(z), (2.10)

for all z ∈ Ω. Using an order p method and propagating forward in time, we can apply
the mean value theorem to show that

I(zk) = I(z0) +∇I(z̃) · |zk − z0|,

for some intermediary point z̃ on the line connecting zk and z0. If we assume that
∇I(z) is bounded in some open domain, such that

|∇I(z̃)| < K̃,

for some constant K̃ > 0, then we have

|I(zk)− I(z0)| ≤ K̃ek,

and hence
|I(zk)− I(z0)| ∝ eTLδtp.

Therefore for a given a fixed time interval, reducing the value of δt will allow the value
of I(z) (which is constant for the exact dynamics) to remain in a desired tolerance
corridor. This is useful for Hamiltonian systems where the total energy should be
preserved under the dynamics. An alternative way to proceed is to increase p, the
order of the method. The two Euler methods (iE) and (eE) encountered so far are both
of order p = 1. We can seek higher order estimations of (2.8), rather than the endpoint
approximations used in the Euler schemes. One such technique is the midpoint rule,
employing an implicit Euler estimate for the centrepoint of the time interval zn+1/2,
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Figure 2.1: Energy drift is demonstrated in numerically computed trajectories for the
Lennard-Jones oscillator. Five initial conditions (marked with circles) belonging to
the levelset H(q, p) = 0.45 are propagated forward in time with timestep δt = 0.03.
Trajectories are plotted in phase space (q, p) ∈ R2 for t ∈ [0, 300].

where zn+1/2 ≈ zn + δtf(zn+1)/2. This gives the implicit midpoint rule

zn+1 = zn + δt f(zn + δtf(zn)/2). (imr)

This is a second-order implicit method. Similarly we can use a different second-order
approximation of the integral, such as the trapezoidal rule. To estimate the endpoint,
we can this time use an explicit Euler approximation for f(zn+1), giving Heun’s method
(Hm) as

zn+1 = zn + δt [f(zn) + f(zn + δtf(zn))] /2. (Hm)

This is now an explicit second-order method. We show the qualitative difference in first
and second order methods in Figure 2.1, for the Hamiltonian system f(z) = J∇H(z),
with Hamiltonian as in (2.3) for N = 1. We model the Lennard Jones (6-12) oscillator
with total potential energy function given as

U(q) = φlj(q) = q−12 − 2q−6, (2.11)

with scalar q > 0. The dynamics has a single equilibrium point at (q∗, p∗) = (1, 0),
which solution trajectories will orbit. The results of the experiment show a rapid decay
in the energy for the first-order methods as time increases. The second-order methods
do much better, with a much slower drift in the energy.
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Higher order general methods

We briefly mention that one can consider methods for a higher order approximation
of the solutions z(t; z0) than those given so far, as these will help minimize the global
error drift of the numerical solution. The most common class of high order methods is
the s–stage Runge-Kutta method,

zn+1 = zn + δt
s∑
i=1

bif(Z [i]), Z [i] = zn + δt
s∑
j=1

aijf(Z [j]),

where the constants bi and aij define the method. Runge-Kutta methods can be either
implicit or explicit depending on the choice of the constants, giving a more general
framework for the interpolation of the integral in (2.8). Methods can be constructed
to arbitrary order, providing minimal energy drift in a giving time interval. Obviously
the total number of stages s used can balloon with the order, so it may be that the
required numerical fidelity comes at the cost of a slower running algorithm, due to the
high computational cost (equivalently large number of evaluations of f(z)).

We can use these general methods to solve Newton’s equations (2.4), written in
vector form

d
dt
z =

d
dt

[
q

p

]
=

[
M−1p

−∇U(q)

]
= J∇H(q, p) = f(z),

where H(q, p) is the total energy, given in (2.3). The update scheme for the explicit
Euler method (eE) becomes

qn+1 = qn + δtM−1pn,

pn+1 = pn − δt∇U(qn),

giving us an error of order δt in the long-time dynamics (global error) of the system.
This is a good starting point, but perhaps given our focus is on Hamiltonian systems,
we can cook up a better method by emulating the properties of the exact flow map.

2.1.2 Symplectic maps

Let us consider the evolution of two solutions that start in close proximity. We define
the flow map of the Hamiltonian system (2.1) to be ΦH,t(z), and define

δz0 := z̃0 − z0

to be a small deviation in an initial condition z0. The evolution of this difference is
given by simply comparing solutions at time t,

δz(t) = z(t; z̃0)− z(t; z0) = ΦH,t(z̃0)− ΦH,t(z0).
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As we have a smooth Hamiltonian, the flow map is also smooth (see [72]), and we can
then use a Taylor series expansion to obtain

δz(t) = ΦH,t(z0 + δz0)− ΦH,t(z0),

≈ δz0
∂

∂z
ΦH,t(z0),

and hence the quantity

ξ(t) :=
∂

∂z
ΦH,t(z(0))δz(0)

gives the approximation δz(t) ≈ ξ(t). As we have derived this from a Taylor series, this
approximation is only valid for small initial deviations δz0 and for short time intervals.
To investigate the growth of this quantity, we can substitute z(t) = ΦH,t(z(0)) into
(2.1), to find

∂

∂t
ΦH,t(z(0)) = J∇H(ΦH,t(z(0))).

This gives
∂

∂t
ξ(t) =

∂

∂t

[
∂

∂z
ΦH,t(z(0)) δz(0)

]
,

=
∂

∂z

[
∂

∂t
ΦH,t(z(0)) δz(0)

]
,

=
∂

∂z
[J∇H(ΦH,t(z(0))) δz(0)] ,

= JH ′′(ΦH,t(z(0)))
[
∂

∂z
ΦH,t(z(0)) δz(0)

]
,

= JH ′′(z(t)) ξ(t),

where H ′′(z) := ∇∇TH(z) is the Hessian matrix of mixed partial second derivatives.
This is known as the variational equation, written as

∂

∂t
ξ(t) = JH ′′(z(t)) ξ(t). (2.12)

Other quantities can also satisfy a variational equation. Consider the Jacobian of the
flow map ΦH,t(z(0)), which we abbreviate to ft, i.e. let

ft =
∂

∂z
ΦH,t(z(0)), where t : R2N → R2N .

We can write ξ(t) = ftδz0, where f0 = I2N from the definition of the flow map. It can
be easily verified that the matrix ft also satisfies a variational equation

d
dt
ft = JH ′′(z(t)) ft. (2.13)

Variational equations are an important class of problems, and we will make use of these
results to aid our understanding of the geometrical properties of the flow map.

Differentiating H(z) with respect to time, recalling the formula for a first integral
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(2.10), it is easy to see that the Hamiltonian is invariant under the flow ΦH,t(z0), i.e.
that it is itself a first integral of the dynamics (2.1). We will now study an important
geometrical property of Hamiltonian flow maps, relating to the preservation of area.

Consider two vectors µ, η ∈ Ω in phase space, where

µ =

[
µq

µp

]
, η =

[
ηq

ηp

]
,

with (µq,(1), . . . , µq,(N))T =: µq ∈ RN and similarly defined µp, ηq, ηp ∈ RN . If we
suppose N = 1, then µ and η reduce to two planar vectors, and we define their oriented
area ω̄ : R2 × R2 → R as

ω̄(µ, η) = µpηq − µqηp,

whose magnitude is equal to the area of the parallelogram determined by these vectors.
The ‘oriented’ part of ω̄ refers to the fact that the function is skew, in the sense that

ω̄(µ, η) = −ω̄(η, µ).

It might be expected that for N > 1 we will move to more abstract volumes of paral-
lelepipeds, however our immediate purpose is served by considering instead a sum of
all the oriented areas arising from projecting the coordinates of µ and η on to the (q, p)
coordinate planes. We define this as the symplectic two-form ω : RN ×RN → R, given
as

ω(µ, η) :=
N∑
i=1

ω̄(µ[i], η[i]), (2.14)

where µ[i] = (µq,(i), µp,(i))T ∈ R2 and similarly denoted η[i] = (ηq,(i), ηp,(i))T ∈ R2. The
description of this function as symplectic comes from the Greek adjective meaning a
braiding together, first used mathematically by Weyl [126] to describe the symplectic
area as a bundle (or complex) of lines. We can write (2.14) compactly in matrix form
as

ω(µ, η) = µTJ−1η, (2.15)

where J is the structure matrix given in (2.2). The linear mapping A : R2N → R2N is
a symplectic map if the symplectic two-form is preserved under application, i.e. if

ω(Aµ,Aη) = ω(µ, η), ∀µ, η ∈ R2N .

From (2.15) we can equivalently write this condition as

ATJ−1A = J−1, (2.16)

which implies |det(A)| = 1.
In the case of nonlinear differentiable mappings ψ : U → R2N , where U ⊂ R2N is
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open, we will approximate ψ through linearization. Defining its Jacobian ψ′(q, p) ∈
R2N×2N , we call the map symplectic if

ψ′(q, p)TJ−1ψ′(q, p) = J−1, ∀q, p ∈ U. (2.17)

Notably, the composition of two symplectic maps ψ and φ is itself a symplectic map,
as

(ψ ◦ φ)′TJ−1(ψ ◦ φ)′ = ψ′Tφ′TJ−1φ′ψ′,

= ψ′TJ−1ψ′,

= J−1.

(2.18)

This yields a natural geometric interpretation of symplecticness, namely that sym-
plectic maps conserve area and orientation. To demonstrate this, consider a bounded,
two-dimensional surface S ⊂ R2N , with some continuously differentiable reparameteri-
zation θ : K → S where K ⊂ R2, such that S = θ(K). Consider a point P = (u, v) ∈ K
and construct a rectangle R ⊂ K with a corner set at P and with side lengths ∆u and
∆v. The image of R under the reparameterization θ will be a two-dimensional subre-
gion of S, potentially now with warped or curved boundaries. The co-ordinates of the
corners of the image θ(R) can be estimated through linearization, where for example

θ(u+ ∆u, v) ≈ θ(u, v) +
∂θ

∂u
(u, v)∆u.

Shrinking ∆u and ∆v to infinitesimal size, we can express the entirety of the planar
region K as exactly the union (or tessellation) of all such rectangles R. The image of
each rectangle corresponds to a region on S, hence we can find the total oriented area
of S, defined as α(S), by summing the oriented areas of each rectangle’s image. In this
infinitesimal limit the sum becomes an integral, and hence

α(S) =
∫
K
ω̄

(
∂θ

∂u
(u, v)du,

∂θ

∂v
(u, v)dv

)
=
∫
K
ω̄

(
∂θ

∂u
(u, v),

∂θ

∂v
(u, v)

)
dudv. (2.19)

Given a symplectic map ψ : U → R2N , we know by definition that the symplectic
two-form will be left invariant. In light of (2.19), we can calculate the oriented area of
ψ(S), as

α(ψ(S)) = α(ψ(θ(K))) =
∫ ∫

K
ω̄

(
∂(ψ ◦ θ)
∂u

(u, v),
∂(ψ ◦ θ)
∂v

(u, v)
)

dudv,

=
∫ ∫

K
ω̄

(
ψ′(θ(u, v))

∂θ

∂u
(u, v), ψ′(θ(u, v))

∂θ

∂v
(u, v)

)
dudv,

=
∫ ∫

K
ω̄

(
∂θ

∂u
(u, v),

∂θ

∂v
(u, v)

)
dudv,

= α(S).

Symplectic maps therefore preserve the symplectic two-form ω of a region of phase
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space under transformation. This is an important result in dynamical systems, as the
flow of Hamiltonian systems is symplectic.

Lemma 2.20 (Poincaré Theorem). The flow map ΦH,t of a twice continuously dif-
ferentiable Hamiltonian system (2.3), is symplectic for all t ∈ R and all differentiable
Hamiltonians H(q, p).

Proof. From the definition of symplecticness (2.17), we need to show that

fTt J
−1ft = J−1, where ft =

∂

∂z
ΦH,t(z).

From the definition of the flow map we have ΦH,0(z) = z, and hence f0 = I2N satisfies
the condition. It is sufficient therefore to show

d
dt
g(t) = 0, where g(t) := fTt J

−1ft.

By the chain rule and using the variational equation (2.13), we have

d
dt
g(t) = fTt J

−1ḟt + ḟ(t)TJ−1ft,

= fTt J
−1
[
JH ′′(z(t)) ft

]
+
[
fTt H

′′(z(t))TJT
]
J−1ft,

= fTt H
′′(z(t)) ft − fTt H ′′(z(t))T ft = 0,

as required.

The effect of Lemma 2.20 is readily apparent if we take N = 1, and consider
repeatedly propagating a small region S of initial conditions in the phase space R2,
with respect to some Hamiltonian H(q, p). The symplecticness of the flow map implies
the images Φk

H,t(S) (where k ∈ N) will all have equal area. As an example, consider
the evolution of the system with respect to the Hamiltonian H(q, p) = p2/2 + φdw(q),
where (q, p) ∈ R2 and we define the double well potential as

U(q) = φdw(q) := (q2 − 1)2.

This potential is characterized by disjoint solution curves orbiting equilibria (q∗±, p
∗) =

(±1, 0), unless initial conditions are sufficiently energetic. In Figure 2.2, we plot the
propagation of three disconnected regions forward in time, with each region coloured by
their energy level. The regions have an arrow-shaped hole in the centre that deforms
according to the level set H(q0, p0) = H(q, p). In spite of deformations, the three
regions have commensurate areas under the flow for all time.

Though we have defined symplecticness as a conservation of the image’s symplectic
two-form, for N > 1 it can also be shown that volumes of the phase space are also
conserved as a result of symplecticness (and hence under Hamiltonian flow maps). An
alternate way to demonstrate this property follows from Liouville’s theorem, which
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Figure 2.2: Area preservation under Hamiltonian flow maps due to symplecticness.

implies conservation of phase space volumes if the vector field in (2.7) in divergence-
free. It is easily verified that ∇ · f(z) = 0 for Hamiltonian systems (2.1).

Symplecticness implies the existence of other integral invariants in systems for N >

1, and we therefore consider it a stronger property that simply being volume conserving.

2.1.3 Geometric integration

In an effort to emulate the geometric properties of the Hamiltonian flow map we shall
endeavour to find a numerical approximation that has an associated symplectic flow
map, in order to obtain solution trajectories that are geometrically similar to the exact
result. The resulting schemes will not necessarily preserve invariants (such as the
Hamiltonian) to higher order than other schemes considered, but we will show that the
methods preserve invariants ‘close’ to those in the original system. This is of central
importance in this thesis, as when we move to schemes for stochastic dynamics in
Chapter 4 we will use the same machinery to find ‘close’ invariant properties of the
discretization as a perturbation in powers of the step size.

Additionally, we introduce the strategy we shall employ to create our integrators
in the remaining chapters: splitting methods. The advantages of such methods for
deterministic systems will be presented in this section.

Consider a Hamiltonian H(q, p), and suppose we can additively decompose it into
two pieces, such that

H(q, p) = H1(q, p) +H2(q, p).

We can think of each piece as a Hamiltonian in its own right, with dynamics such as

d
dt
z = J∇H1(z), and

d
dt
z = J∇H2(z).

24



If we are able to solve each independent dynamics exactly, then we can compute the flow
map for each corresponding piece of the Hamiltonian. These flow maps will themselves
be symplectic, by Lemma 2.20. As we have shown in (2.18) that the composition of
symplectic maps is itself a symplectic map, composing the flow maps for each piece will
give us a symplectic map. Note that these flow maps do not commute in general, so

ΦH1,t ◦ ΦH2,t 6= ΦH2,t ◦ ΦH1,t 6= ΦH1+H2,t.

Of course, it is not at all obvious that the composition will be consistent; how do we
know that the composition of the flow maps approximates the full dynamics? Taking
the Taylor series of the composition at an arbitrary point,

ΦH1,δt ◦ ΦH2,δt(z0) = ΦH2,δt(z0) + δtJ∇H1(ΦH2,δt(z0)) +O(δt2),

= z0 + δtJ∇H2(z0) + δtJ∇H1(z0 + δtJ∇H2(z0)) +O(δt2),

= z0 + δtJ∇H(z0) +O(δt2),

= ΦH,δt(z0) +O(δt2),

and hence we see it is consistent, with local error of at least order 2. Given previous
results, we would expect that this method gives us a scheme with global order 1, but
now crucially we have a scheme that is symplectic.

Though it seems like we have doubled our workload in computing two flow maps
rather than one, they key point here is that we are free to choose our splitting of
the Hamiltonian. If we can express the Hamiltonian as a sum of pieces, each one
corresponding to an integrable set of ODEs, then we can decompose the problem into
a multitude of simpler subproblems.

In molecular dynamics, the Hamiltonians we shall consider are of the form

H(q, p) = pTM−1p+ U(q).

This gives a natural splitting strategy, defining the pieces as

HA(p) := pTM−1p, HB(q) := U(q), H(q, p) = HA(p) +HB(q). (2.21)

The flow maps for each piece are then simply linear drift terms

ΦHA,t

([
q

p

])
=

[
q + tM−1p

p

]
, ΦHB ,t

([
q

p

])
=

[
q

p− t∇U(q)

]
.

Of course other splittings can be considered, though these are perhaps the simplest
building blocks for which to construct a splitting method. The methods we will consider
will result from compositions of these basic flow maps. We will introduce a notation
for writing these compositions, based on the notation used in [117].
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Notation

We will use a shorthand to define symplectic methods, coding them by the order in
which we perform our symplectic updates. A symplectic numerical method using
the splitting (2.21) is coded by a string of alternating letters A and B, for example
JABABAK. Such methods corresponds to a composition of flow maps, for ai, bi ∈ R
the string

JAa1Bb1Aa2Bb2 · · ·AamBbmK

corresponds to the method with flow map

Φ
HB ,bbmδt ◦ ΦHA,bamδt ◦ · · · ◦ Φ

HB ,bb2δt ◦ ΦHA,ba2δt ◦ Φ
HB ,bb1δt ◦ ΦHA,ba1δt.

Note that the step sizes used for each step are normalized to ensure the consistency
of the overall method, with

âi :=
ai

a1 + a2 + . . .+ am
and b̂i :=

bi
b1 + b2 + . . .+ bm

.

If a particular ai or bi are 0, then we omit the letter from the string, while if ai or
bi are 1 then we omit the superscript (but keep the letter).

As a simple example, let us consider the method coded as JABK. Composing the
flow maps, we write the overall flow map of the numerical method as

Φ̂JABK,δt := ΦHB ,δt ◦ ΦHA,δt,

where the subscript JABK now denotes the sequential composition of the splitting pieces.
The update scheme reads as

qn+1 = qn + δtM−1pn,

pn+1 = pn − δt∇U(qn+1),
(sE-AB)

which is the symplectic Euler method. We will refer to this method as symplectic
Euler-AB (or sE-AB) as there is the similar method JBAK resulting from the reverse
ordering of the pieces,

Φ̂JBAK,δt := ΦA,δt ◦ ΦB,δt,

where the update scheme instead reads

pn+1 = pn − δt∇U(qn),

qn+1 = qn + δtM−1pn+1.
(sE-BA)
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These are both explicit first-order symplectic methods, but aside from the geometric
properties (i.e. oriented area preservation), it is not obvious why symplectic methods
should be superior for numerical integration. Indeed the differences between the Euler
methods (eE) and (sE-AB) seem primarily cosmetic at a first glance. We can motivate
the use of symplectic methods by returning to the harmonic oscillator, with Hamiltonian

H(q, p) = p2/2 + q2/2, (2.22)

where q, p ∈ R. We have already seen that for a function I(z) to be a first-integral of
the dynamics (2.1) we require

∇I(z) · J∇H(z) = 0,

for all z in our space. It is clear that the function

H̃δt(q, p) =
1
2
p2 +

1
2
q2 +

δt

2
qp (2.23)

is not a first integral of our system defined by (2.22) for δt > 0, however examining the
behaviour of this function when propagating using the symplectic scheme (sE-AB), we
see

H̃δt(qn+1, pn+1) =
1
2
p2
n+1 +

1
2
q2
n+1 +

δt

2
pn+1qn+1,

=
1
2

(pn − δtqn+1)2 +
1
2
q2
n+1 +

δt

2
(pn − δtqn+1)qn+1,

=
1
2
p2
n +

1
2
q2
n+1 −

δt

2
pnqn+1,

=
1
2
p2
n +

1
2

(qn + δtpn)2 − δt

2
pn(qn + δtpn),

=
1
2
p2
n +

1
2
q2
n +

δt

2
pnqn = H̃δt(qn, pn),

and hence the function is preserved under the method. This suggests that the dis-
cretized solutions given by the scheme JABK lie on level sets of H̃δt(q, p), which cor-
respond to conic sections whose type depends on the step size parameter δt. For
0 < δt < 2, the discretization gives points on skewed concentric ellipses centred at
the origin, whereas for δt > 2 we have a multitude of hyperbolae. This suggests
that choosing a step size δt < 2 our discretized approximations zn will lie on closed
curves, and hence our computed solution will be drift-free with respect to the surface
H̃δt(qn+1, pn+1) = const, giving a bounded energy error. An example is shown in Figure
2.3 for δt = 0.1.

One can think of the symplectic Euler methods as providing an exact flow map for
a nearby Hamiltonian to our target system (where ‘nearby’ assumes of course that the
step size δt is sufficiently small). The method solves exactly the ODE

d
dt
z(t) = J∇H̃δt(z),
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Figure 2.3: Numerical and exact solutions for the harmonic oscillator (2.22) are com-
pared for the symplectic Euler method (sE-AB). The left image plots in phase space
the level sets of H̃δt (red) and H (blue) for δt = 0.1. The right plot shows how a
numerical trajectory is confined to the perturbed (modified) Hamiltonian.

for some fixed step size δt. What is perhaps surprising, is that this is true for all
symplectic discretization methods and for Hamiltonians with far more general potential
energy functions U(q). For an order s symplectic method, we can think of a perturbed
function H̃δt(q, p) = H(q, p)+O(δts) preserved after iteration of the numerical method,
or equivalently under applying the method’s symplectic map (H̃δt is sometimes called
the scheme’s shadow Hamiltonian).

To find this shadow Hamiltonian, we could consider perturbing the Hamiltonian H
by powers of δt, and solving successively to find functions preserved by the method. A
more sophisticated technique is known as backward error analysis. Consider splitting
the general vector field in (2.7) into two pieces,

d
dt
z(t) = f1(z) + f2(z), (2.24)

and define the Lie derivative as the differential operator

Lf := f · ∇. (2.25)

For some differentiable function θ(z), by taking its Lie derivative we obtain a new
function

(Lfθ) (z) = f(z) · ∇θ(z).

Note the linearity of the Lie derivative, such that

Lfi+fjθ = (fi + fj) · ∇θ = fi · ∇θ + fj · ∇θ = Lfiθ + Lfjθ. (2.26)

The Lie derivative is directly related to the evolution of functions along solutions to
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the corresponding ODEs. Consider some function θ(z) of solutions along one piece of
the vector field

d
dt
z(t) = fi(z),

then taking the derivative of θ(z) with respect to time, we find

d
dt
θ(z(t)) = ∇θ(z(t)) · ż(t) = (Lfiθ) (z),

by chain rule. Consequently we can use Taylor’s identity and the formula for the
exponential to obtain

θ(z(t)) =
∞∑
j=0

tj

j!
dj

dtj
θ(z(t))

∣∣∣∣∣
z(t)=z0

=
∞∑
j=0

tj

j!
(Ljfiθ)(z0) = exp (tLfi) θ(z0).

Note in particular that for the identity map θ(z) = Id(z) = z, we find that the expo-
nential of the Lie derivative is related to the flow map itself, namely

Φfi,t(z0) = z(t) = exp (tLfi) Id(z0). (2.27)

Returning to our original question, what can we say about the composition of such
methods? Writing the flow map for the scheme denoted JfifjK as Φ̂JfifjK,t, we find

Φ̂JfifjK,t(z0) =
(
Φfj ,t ◦ Φfi,t

)
(z0),

= exp (tLfi) Φfj ,t(z0),

= exp (tLfi) exp
(
tLfj

)
Id(z0).

(2.28)

More generally, splitting the ODE into m pieces such that

d
dt
z(t) =

m∑
i=1

fi(z) = f(z),

we can apply this reasoning inductively to find that, for the method coded Jf1f2 . . . fmK,
we have

Φ̂Jf1f2...fmK,t(z0) = (Φfm,t ◦ . . . ◦ Φf2,t ◦ Φf1,t) (z0),

= exp (tLf1) exp (tLf2) . . . exp (tLfm) Id(z0).

The apparent reversal of the order of the semigroups, compared to the order of the flow
maps, is known as the Vertauschungssatz (see the discussion in [48, Section III.5.1]).
This is the reason behind our notation for a method reading left to right, as our interest
will primarily be in the sequence of the exponential terms, rather than the flow maps.

Given a composition method written Jf1f2 . . . fmK, fixing the time interval to be the
step size dt, we define a differential operator L̂Jf1f2...fmK,dt as

exp
(
δt L̂Jf1f2...fmK,dt

)
:= exp (δtLf1) exp (δtLf2) . . . exp (δtLfm) , (2.29)
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and hence for any smooth differentiable function θ(z), its evolution under the method
is given by

θ(ẑ(δt)) = exp
(
δt L̂Jf1f2...fmK,δt

)
θ(z(0)).

From the Taylor series of exp
(
δt L̂Jf1f2...fmK,δt

)
, we can see that for a function θ(z) to

be invariant under iteration (for any fixed δt), we require L̂Jf1f2...fmK,δtθ(z) ≡ 0. In order
to compute the operator, we will make use of the Baker-Campbell-Hausdorff (BCH)
formula to compute the product of exponentials in (2.29) [48], as for general linear
operators X and Y , we have

exp(δtX) exp(δt Y ) 6= exp(δt (X + Y )),

unless X and Y commute. The BCH formula gives that

exp(δtX) exp(δt Y ) = exp(δt Zδt) = exp(δt Z[1] + δt2Z[2] + δt3Z[3] +O(δt4)), (2.30)

where Z[i] are linear operators given by combinations of X and Y ;

Z[1] = X + Y,

Z[2] =
1
2

[X,Y ],

Z[3] =
1
12

([X, [X,Y ]] + [Y, [Y,X]]) ,

with the commutator of X and Y defined as [X,Y ] := XY − Y X. By repeatedly
applying the BCH formula we can compute L̂Jf1f2...fmK,δt as required, however it imme-
diately becomes apparent that we can expect the terms at higher orders of δt to become
extremely complicated linear combinations of Lfi , particularly as a method becomes
more complex (i.e. as m increases). An additional worry comes from the formal nature
of this approach, given the unbounded nature of each Lie derivative we cannot expect
the BCH series to converge in the general case.

Rather than thinking of the characteristic operator L̂Jf1f2...fmK,δt as a perturbation of
the exact operator LJ∇H , we can instead consider it as the exact operator of a modified
Hamiltonian H̃δt(q, p), such that

exp
(
δt L̂Jf1f2...fmK,δt

)
= exp

(
δtLJ∇H + δt2L̂[1]

Jf1f2...fmK +O(δt3)
)

= exp
(
δtL eHδt

)
.

The function H̃δt(z) will be invariant under the numerical method, as we think of the
numerical method solving exactly the Hamiltonian system

d
dt
z(t) = J∇H̃δt(z).
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Defining the Poisson bracket of two functions F (z) and G(z) as

{F (z), G(z)} := ∇F (z) · J∇G(z),

the Lie derivative can be reformulated elegantly as

LJ∇Hφ = ∇φ · J∇H = {φ,H},

with any first-integral I(z) of the Hamiltonian system (2.1) satisfying {I,H} = 0.

Lemma 2.31. Consider two smooth Hamiltonians G1(z) and G2(z), with correspond-
ing vector fields

g1(z) = J∇G1(z), g2(z) = J∇G2(z).

Given their associated Lie derivatives Lg1 and Lg2, we can write their commutator as

[Lg1 ,Lg2 ] = LJ∇{G2,G1}.

Proof. We make use of the Jacobi identity

{{A,B} , C}+ {{B,C} , A}+ {{C,A} , B} = 0,

where here A,B and C are arbitrary functions. Replacing these with G1, G2 and φ, we
can take advantage of the skew-symmetry of the Poisson bracket to write

{{φ,G2} , G1} − {φ, {G2, G1}} − {{φ,G1} , G2} = 0.

Using the definition of the Lie derivative, this becomes

{Lg2φ,G1} − LJ∇{G2,G1}φ− {Lg1φ,G2} = 0,

and hence
Lg1Lg2φ− Lg2Lg1φ = LJ∇{G2,G1}φ,

as required.

Using the correspondence between Poisson brackets and Lie derivatives, we can
write down the shadow Hamiltonian H̃δt for a method. As an example, we return to
the symplectic Euler method JABK. Using the BCH formula we can compute

L̂JABK,δt = LA + LB +
δt

2
[LA,LB] +

δt2

12
([LA, [LA,LB]] + [LB, [LB,LA]]) +O(δt3),

where we have simplified our notation from LJ∇HA to LA. Using the skew properties
of the Poisson bracket, as well as Lemma 2.31 and (2.26), we can write this as L

J eHδt
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where

H̃δt = H − δt

2
{HA, HB}+

δt2

12
({HA, {HA, HB}}+ {HB, {HB, HA}}) +O(δt3).

For the Hamiltonian splitting H(q, p) = HA(p) +HB(q), where

HA(q, p) =
1
2
pTM−1p, HB(q, p) = U(q),

we have
{HA, HB} = ∇HA · J∇HB,

=

[
0

M−1p

]
·

[
0 IN

−IN 0

][
∇U(q)

0

]
,

= −pTM−1∇U(q),

as the leading term in the expansion for JABK. Similarly we can calculate

{HA, {HA, HB}} = pTM−1∇2U(q)M−1p, {HB, {HB, HA}} = ∇U(q)TM−1∇U(q),
(2.32)

where we denote the Hessian matrix ∇2U(q) := ∇∇TU(q).
Returning to our motivating example, we can see that in a planar phase space for

U(q) = q2 and M = 1, the perturbation given in (2.23) reduces to exactly −{HA, HB}.
It is not at all obvious where the higher order δt terms in the expansion have disappeared
to, but it can be shown that the expansion converges (owing to the simplicity of HA

and HB) to

H̃δt = λδt

(
H +

δt

2
pTM−1q

)
,

for some finite nonzero value λδt that depends only on δt. Fixing the step size, we
can simply divide through by λδt to recover (2.23) as a first integral of the perturbed
dynamics (as all functions of first-integrals are themselves first integrals). This is a
special case however, for simple (in this case, quadratic) Hamiltonians, many of the
Poisson brackets are zero due to high derivatives, whereas for more general systems we
cannot expect the formal series for H̃δt to converge.

For a symplectic order p numerical method, its flow map Φ̂δt is equivalent to the
exact flow map for a perturbed Hamiltonian H̃δt, such that

Φ̂δt = Φ
J∇ eHδt,δt.

For general systems, we can find the perturbed Hamiltonian using the BCH formula,
though it is purely formal approach, making any information we gain suspicious at best
or misleading at worst. We can imagine truncating to order δti (for i > s) writing

H̃δt,[i] = H + δtsH̃ [s] + δts+1H̃ [s+1] + δts+2H̃ [s+2] + . . . δtiH̃ [i].
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We then hope to find an estimate for the difference between the numerical method and
the exact flow of this truncated system. Estimates can be given [48, 72] such that∣∣∣ΦJ∇ eHδt,[i],δt − Φ̂δt

∣∣∣ ≤ c1δt (c2δt (i+ 1))i+1 ,

for positive constants c1 and c2 independent of the step size δt and the truncation index
i. The behaviour of the right hand side suggests that, for fixed small δt, if we take
more terms in the perturbation by increasing i then we will initially converge towards
the flow map of the numerical method. However, we find a strong divergence effect by
increasing i too far, with this divergence tipping point occurring for larger i as δt→ 0.
If we choose the truncation index i = i∗, where

i∗ =
⌊
e−1

c2δt
− 1
⌋
≤ e−1

c2δt
− 1,

then this gives ∣∣∣ΦJ∇ eHδt,[i∗],δt − Φ̂δt

∣∣∣ ≤ c1δt (c2δt (i∗ + 1))i
∗+1 ,

≤ c1δte
−(i∗+1),

≤ κ1δte
−κ2/δt,

for positive constants κ1 = ec1 and κ2 = e−1/c2. The drift in the truncated Hamiltonian
over a discretized trajectory of n steps is then simply

∣∣∣H̃δt,[i∗](zn)− H̃δt,[i∗](z0)
∣∣∣ =

∣∣∣∣∣
n∑
i=1

H̃δt,[i∗](zi)− H̃δt,[i∗](zi−1)

∣∣∣∣∣ ,
≤

n∑
i=1

∣∣∣H̃δt,[i∗](zi)− H̃δt,[i∗](zi−1)
∣∣∣ ,

≤
n∑
i=1

∣∣∣H̃δt,[i∗]

(
Φ̂δt(zi−1)

)
− H̃δt,[i∗]

(
Φ
J∇ eHδt,[i∗],δt(zi−1)

)∣∣∣ ,
≤

n∑
i=1

K
∣∣∣Φ̂δt(zi−1)− Φ

J∇ eHδt,[i∗],δt(zi−1)
∣∣∣ ,

≤ nδtKκ1e
−κ2/δt,

for K > 0 the Lipschitz constant of H̃δt,[i∗], and making the use of the face that H̃δt,[i∗]

is preserved under the flow of the exact flow map Φ
J∇ eHδt,[i∗],δt. Thus the numerically

computed trajectory will remain exponentially close to the perturbed dynamics given
by the truncated shadow Hamiltonian, over an exponentially long time interval

T < T ∗ = n∗δt ≤ eκ2/δt.
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The expected drift in the Hamiltonian over this timescale is then

|H(zn)−H(z0)| =
∣∣∣H̃δt,[i∗](zn)− H̃δt,[i∗](z0)

∣∣∣+O(δtp) = O(δtp), (2.33)

where here n < n∗.
We may hope that we can construct a symplectic method such that the Hamiltonian

itself is preserved under iteration, so

{H̃δt, H} = 0.

If we assume that the only first integrals of the dynamics

d
dt
z(t) = J∇H(z),

are of the form F (H(q, p)), for arbitrary F , then this implies (fixing step size) that the
shadow Hamiltonian itself must be a function of the Hamiltonian,

H̃δt(q, p) = Fδt(H(q, p)),

for some function Fδt. Hence on level sets H(q, p) = E 6= 0, we have

H̃δt(q, p) = Fδt(E) = µH(q, p),

for some fixed value µ, depending on the energy level E and step size δt. Hence the
numerically computed solutions ẑ(t) are such that

d
dt
ẑ(t) = J∇H̃δt(z) = µJ∇H(z) =

d
dt
z(µ t),

suggesting that our perturbed dynamics solves the problem exactly after applying a
time-transformation. Finding a symplectic integrator with this property for a general
Hamiltonian will not be possible, and hence conservation of H(q, p) and symplecticness
are mutually exclusive properties for numerical methods. We elucidate some strategies
for more accurate approximation of H(q, p) using symplectic methods.

2.1.4 Higher order symplectic methods

We can exploit certain features of the BCH series to obtain higher order symplec-
tic methods. For linear operators X and Y , consider symmetrizing a composition of
exponentials, such that

exp
(
t

2
X

)
exp (tY ) exp

(
t

2
X

)
= exp(tZ̃t) = exp(tZ̃[1] + t2Z̃[2] + t3Z̃[3] + t4Z̃[4] + . . .).
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Multiplying by the same expansion using a different time step s, we have

exp
(s

2
X
)

exp (sY ) exp
(s

2
X
)

exp
(
t

2
X

)
exp (tY ) exp

(
t

2
X

)
= exp(sZ̃s) exp(tZ̃t),

(2.34)
where Z̃t commutes with Z̃s, giving

exp
(
sZ̃s

)
exp

(
tZ̃t

)
= exp

(
sZ̃s + tZ̃t

)
,

= exp
(

(s+ t)Z̃[1] + (s2 + t2)Z̃[2] + (s3 + t3)Z̃[3] + (s4 + t4)Z̃[4] + . . .
)
.

Setting s = −t, the left hand side of (2.34) collapses to the identity. Hence the surviving
even-powered terms in the expansion on the right hand side must be zero. Evidently,
composing linear operators symmetrically leave only the odd order terms in the expo-
nent, giving the symmetric BCH formula

exp
(
t

2
X

)
exp (tY ) exp

(
t

2
X

)
= exp(t (X + Y ) + t3Z̃[3] + . . .), (2.35)

where
Z̃[3] =

1
12

[Y, [Y,X]]− 1
24

[X, [X,Y ]]. (2.36)

Hence we would expect that we can easily find a second-order method using a symmetric
(or a Strang) splitting scheme. Returning to Hamiltonian dynamics, recall splitting the
vector field into pieces defined in (2.21), denoted A and B. In light of (2.35), the
simplest splitting schemes giving the desired symmetric structure are denoted simply
JABAK and JBABK, which correspond to the position and velocity Verlet methods
respectively:

Position Verlet: JABAK Velocity Verlet: JBABK

qn+1/2 = qn + (δt/2) M−1pn,

pn+1 = pn − δt∇U(qn+1/2),

qn+1 = qn+1/2 + (δt/2) M−1pn+1.

pn+1/2 = pn − (δt/2) ∇U(qn),

qn+1 = qn + δtM−1pn+1/2,

pn+1 = pn+1/2 − (δt/2) ∇U(qn+1).

(Verlet)

More complicated symmetric second-order schemes can be devised by proceeding
almost arbitrarily and maintaining a symmetric composition, but it is not immediately
clear how these would improve on the two Verlet schemes. The Verlet methods are
seen as the gold-standard for molecular dynamics computations - both require only one
evaluation of∇U(q) per iteration (where the velocity Verlet scheme can reuse∇U(qn+1)
for the next iteration), and offer a second-order symplectic evolution. We can use the
Poisson brackets computed in (2.32) to find the perturbation to the Hamiltonian by
substituting them into (2.36).
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For example, for the velocity Verlet scheme JBABK, defining its shadow Hamiltonian
as H̃δt = H + δt2H̃ [2] + O(δt4), we can use the BCH formula to find the leading
perturbation as

H̃ [2] =
1
12
{HA, {HA, HB}} −

1
24
{HB, {HB, HA}} ,

=
1
12
pTM−1∇2U(q)M−1p− 1

24
∇U(q)TM−1∇U(q).

Yoshida [129] gives an elegant method for creating a scheme of arbitrarily high even
order. If we have some scheme with order 2s and perturbation terms of even order
(such as arises from a symmetric composition), then the evolution of the system under
this method is given by exp(δt L̂δt), where

L̂δt = LJ∇H + δt2sL̂[2s] + δt2s+2L̂[2s+2] + δt2s+4L̂[2s+4] +O(δt2s+6)

is the method’s characteristic operator. The linear operators L̂[2i] are compositions of
Lie derivatives, and can be computed using the symmetric BCH formula.

We now consider the product

exp
(
τ0δt L̂τ0δt

)
exp

(
τ1δt L̂τ1δt

)
exp

(
τ0δt L̂τ0δt

)
= exp

(
δt Z̄δt

)
,

where, using the fact that L̂δt commutes with itself, we find

Z̄δt = 2τ0 L̂τ0δt + τ1 L̂τ1δt,

= (2τ0 + τ1)LJ∇H + (2τ2s+1
0 + τ2s+1

1 )δt2sL̂[2s] +O(δt2s+2).

We have free reign over constants τ0 and τ1, though for the method to be consistent
we require 2τ0 + τ1 = 1. Hence we have an opportunity to annihilate the perturbation
operator at order δt2s by choosing 2τ2s+1

0 + τ2s+1
1 = 0 as well. Solving simultaneously,

there exists a unique real solution

τ0 =
1

2− κ
, τ1 = − κ

2− κ
, κ2s+1 = 2,

giving us a scheme of order 2s+ 2. We can then proceed recursively, as this new order
2s+ 2 scheme can be composed similarly to wipe out successive higher order terms.

Though the fourth-order version of the scheme was given first by Forest and Ruth
[39] (and discovered independently by Yoshida [129] and Candy and Rozmus [19]),
we shall simply refer to these higher-order schemes as Yoshida methods, owing to the
elegant derivation of schemes of arbitrary order.

Using JABAK as a base second-order method (2s = 2), a Yoshida fourth-order
method is written in our notation as JABAA−

3√2B−
3√2A−

3√2ABAK. This scheme re-
quires three evaluations of the force ∇U(q) per iteration, making it significantly more
expensive than the vanilla second-order Verlet method. Note as well that because
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Figure 2.4: We repeat the experiment Figure 2.1 with the symplectic Euler, Verlet and
Yoshida schemes. We plot the absolute deviation in the computed Hamiltonian (left)
as a function of time, for each scheme at a fixed timestep δt = 0.005. Additionally
we vary the timestep and compute the maximum deviation in the Hamiltonian (right),
comparing the results with guide lines of powers of the step size.

|τi| > 1, we expect a shrink in the stability region for this method relative to the
second-order method it is built upon, as we perform iterations of our ‘base’ method at
timesteps τiδt.

We compare the symplectic methods developed so far in Figure 2.4, for t ∈ [0, 100]
using planar phase space and the Lennard Jones oscillator (2.11). As expected, there
is no visible drift in the Hamiltonian as the simulation time increases, compared to
the same problem studied in Figure 2.1. Instead, we see a periodic oscillation in the
fluctuation of the total energy. Additionally we compute trajectories propagated at
different step sizes, and plot the maximum deviation

max |H(q(t), p(t))−H(q(0), p(0))|

over the entire trajectory. We can see that for an order s method, the maximum
deviance in the Hamiltonian is of order s, as is expected from the analysis in (2.33).
Yoshida fourth-order schemes are tested using both the position and velocity Verlet
schemes as their base second-order methods (the base method is denoted in parenthesis
in Figure 2.4), giving similar results.

Of course we need not stop at a fourth-order scheme: we can use the constructed
method to target any higher order terms we wish by composing the new scheme in a
symmetric form and proceeding identically to the above. For the purposes of molecu-
lar sampling however, the computational price-tag of higher order methods outweighs
potential numerical gains. After all, the potential energy functions used in the ODEs
are not perfect reflections of the laws of physics, and past a certain point using a high
order method merely finds a better solution to an approximate model.

For more general applications, such methods are extremely useful. For our purposes
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though, far more important than high quantitative fidelity is the preservation of the
qualitative nature of solutions to Hamiltonian systems. In that respect, second-order
methods provide a ‘good enough’ option for numerical integration, with symplectic
methods the de facto choice for molecular modelling.

2.1.5 Scale separation

Recall that for the harmonic oscillator (2.22), the symplectic Euler method JABK pre-
serves the quantity

H̃δt(q, p) =
1
2
p2 +

1
2
q2 +

δt

2
qp, (2.37)

for all δt > 0. As discussed previously, level sets of this function in the plane are conic
sections parameterized by δt, whose type changes from a family of ellipses to hyperbolae
when δt > 2. Therefore the qualitative merit of numerical solutions is only valid for
this problem in the region δt ∈ (0, 2), introducing the notion of the step size threshold
- a maximum value the step size can take before computed solutions unbounded, or the
numerical method itself becomes unstable.

The presence of such a step size limit is unsurprising; we cannot expect to be able
to push our discretization as far as we would like. The discretized points (zk) are only
an approximation to the true trajectory, and it is perhaps asking too much that the
predictions made by the numerical method are valid for all timesteps. It is common for
systems to exhibit a separation of time scales, where we have two (or more) coupled
process in the overall system that have natural frequencies orders of magnitude apart.
Such systems are ubiquitous in nature, and typically the slowest acting system (with
the longest relaxation timescale) is of primary interest. However, in simulation the
step size threshold is set by the fastest frequencies of the system [4], meaning that one
must take a very large number of small timesteps in order to resolve the behaviour of
interest. Where the separation of timescales is very large, such simulation is infeasible.

We seek ways to increase the step size threshold in systems where there is a large
timescale gap. Let us be given a Hamiltonian with q, p ∈ R2N , such that

H(q, p) = pTM−1p/2 + Uf (q) + Us(q), (2.38)

where we think of the total potential U(q) = Us(q)+Uf (q) being the sum of prescribed
slow and fast potentials Us and Uf respectively. We introduce the splitting

Hf (q, p) := pTM−1p/2 + Uf (q), Hs(q, p) := Us(q), (2.39)

and consider symplectic evolution schemes using these pieces. Just as with the Verlet
schemes, we can use a symmetric composition to give a second-order method. One
popular method is given by the r-RESPA (reversible-REference System Propagation
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Algorithm) scheme [119, 120], written in our notation as JsfsK, with dynamics

pn+1/3 = pn + (δt/2)∇US(qn),(
qn+1, pn+2/3

)
= ΦJ∇HF ,δt(qn, pn+1/3),

pn+1 = pn+2/3 + (δt/2)∇US(qn+1),

(r-RESPA)

where ΦJ∇HF ,δt is the flow map for the fast dynamics. We are forced to write the flow
map into the algorithm as our choice of splitting for Hf in (2.39) means that we cannot
solve the system exactly for general Uf . In practice, a high-order symplectic numerical
method is often used, with a separate timestep δtf � δt, ensuring that the dominant
error in the scheme is a power of the slow (or exterior) timestep δt. This splitting
technique is often known as multiple timestepping, due to the presence of these fast
and slow timesteps. Additional mid-range timescales can be used to optimize efficiency
[105], though we will focus on a binary splitting strategy for simplicity.

This may seem like simply dividing the workload for no real gain, however often
the fast dynamics are harmonic potentials (where the flow map is known exactly), or
a sum of local potentials only involving a few degrees of freedom. Either way, the
computational cost of approximating the central ‘fast’ flow map is assumed to be far
cheaper than the evaluation of the force ∇Us(q).

We would expect that the r-RESPA scheme should benefit from an increased step
size stability threshold, that should allow us to bridge disparities in timescale. However,
in practice we can introduce artificial resonances in the system by choosing the timestep
to be an integer multiple of the fast system’s period [9, 72, 77].

For instance, consider a particle of unit mass in one-dimension, connected to the
origin by two springs, with Hamiltonian as in (2.38) with fast and slow potentials

Us(q) = q2/2, Uf (q) = q2/(2ε2),

where 0 < ε� 1 is a small constant. Using the symplectic Euler method JABK on this
problem with U(q) = Us(q) + Uf (q), the update scheme becomes[

qn+1

pn+1

]
= Φ̂JABK,δt

([
qn

pn

])
= ΨJABK,δt

[
qn

pn

]
,

where the matrix ΨJABK,δt is computed from the definition of the method as

ΨJABK,δt = ΨB,δt ΨA,δt,

=

[
1 0

−δt
(
1 + ε−2

)
1

] [
1 δt

0 1

]
,

=

[
1 δt

−δt
(
1 + ε−2

)
1− δt2

(
1 + ε−2

) ] .
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Figure 2.5: The magnitude of eigenvalues is plotted for the symplectic Euler (left) and
rRESPA (right) methods, as a function of τ = δt/ε, where we fix ε = 1/3. The inset for
each figure plots the evolution of the eigenvalues in the complex plane, as we increase
τ . In the symplectic Euler case we can see divergence along the real line, though the
eigenvalues of the rRESPA scheme move in a more complicated way: the eigenvalues
make a brief sortie into the real line before returning and continuing to orbit the origin
around the unit circle.

The behaviour of the map under repeated iteration is given by the eigenvalues of the
matrix. In order to ensure stability, we require its spectral radius (the supremum of
the eigenvalues’ absolute values) to be no greater than unity. As this is a symplectic
map (and hence the determinant is one) mapping to R2, the eigenvalues are reciprocals
of each other, and a necessary condition for the method’s stability can be written as

∣∣Tr
(
ΨJABK,δt

)∣∣ ≤ 2,

and hence we require (
2− δt2

(
1 + ε−2

))2 ≤ 4,

δt2
(
1 + ε−2

) (
δt2
(
1 + ε−2

)
− 4
)
≤ 0,

δt ≤ 2√
(1 + ε−2)

≤ 2ε.

(2.40)

The region of stable step size is therefore very small when using this general method,
scaling with ε. We plot the eigenvalues in the inset in Figure 2.5, they lie on the unit
circle until the diverge across the real line after half a revolution.

If we instead use the splitting in (2.39) and evolve the system with the r-RESPA
scheme JsfsK, we can compute the propagation matrix similarly as

ΨJsfsK,δt = Ψs,δt/2 Ψf,δt Ψs,δt/2,

=

[
1 0

−δt/2 1

] [
cos(δt/ε) ε sin(δt/ε)
− sin(δt/ε)/ε cos(δt/ε)

] [
1 0

−δt/2 1

]
.

40



The same condition must hold for stability as in the JABK scheme, so

|2 cos(δt/ε)− δtε sin(δt/ε)| ≤ 2,

and rewriting τ = δt/ε, we have instability where

∣∣2 cos(τ)− τε2 sin(τ)
∣∣ > 2. (2.41)

Using a Taylor expansion around τ = π, we see

2 cos(π + δτ)− τε2 sin(π + δτ) = −2 + τε2δτ +O(δτ2),

and hence we expect is instability to occur in a region where δτ < 0, corresponding to
an upper bound on the step size threshold for the r-RESPA scheme as

δt < πε.

As we are solving the ‘fast’ part exactly for all δt, it is potentially unintuitive where
the instability could be coming from in the method. The problem is exactly that of
a mechanical resonance effect: the fast part of the system has a very short oscillatory
period of 2πε, applying the ‘slow’ force in sync with this (i.e. setting τ to be just below
an integer multiple of π) creates (numerical) resonance.

This is a disappointing result; despite our splitting strategy separating the two
timescales of the system, the maximum stable timestep is still limited by the overall
fastest frequency, scaling exactly as in the Euler method. If we wish to push our
timestep far enough to bridge the timescale gap, then this method does not offer a
clear line of attack. Given the oscillatory nature of (2.41), we may hope to choose a
timestep that lies in a stable region sandwiched between instability (see Figure 2.5),
though the timestep τ increases, the island stable regions shrink, making choosing
them a challenge. Of course we only study here the linear case, in the more practical
nonlinear case we expect qualitatively similar behaviour, but a thorough prediction of
stability regions in the general case varies from difficult to impossible.

Resonance effects plague many different strategies for overcoming timescale separa-
tion [9]. There are several approaches for overcoming such effects [43], most popularly
averaging or mollification of the dynamics is used to remove resonances [58, 71, 77].
Alternately, we can remove the fastest degrees of motion completely by locking their
motion so that are fixed. This employs the use of a constraint algorithm to, for ex-
ample, maintain fixed bond lengths or dihedral angles in a molecule. The use of such
algorithms is well-studied [102, 121].

Often in biomolecular modelling, the highest-frequency motions occur in the solvent,
ironically outwith the molecule of interest. We could simply delete the solvent molecules
from the simulation, simulating the molecule as if in a vacuum. This is appealing, as
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removing the solvent would significantly reduce the total number of degrees of freedom
in the model (and hence the simulation cost, which scales with N). However, such a
simulation is completely nonphysical, ignoring much of the thermodynamic behaviour
that might be of interest: the solvent molecules constantly barrage and buffet the
biomolecule, resulting in an exploration of its configuration space that is impossible to
sample in a vacuum constant energy simulation.

The challenge is therefore to take our target Hamiltonian system (the archetype
being a biomolecule), and embed a pseudosolvent into the simulated dynamics; we
employ an artificial device that mimics the behaviour of the solvent on average. We
will make precise how we do this, and to what end, in the next section.

2.2 Sampling the canonical ensemble

2.2.1 Statistical mechanics

We have so far considered evolving a Hamiltonian system along a level-set of constant
energy, with an emphasis on requirements for effective computer simulation (noting
concerns such as computational cost and a disparity of timescales). In order for our
numerical simulations to be commensurate with experiments done in a laboratory, we
would like to be able to compute averages of various quantities that might be observable
to experimentalists. We cannot expect that the trajectories we can compute with our
constant energy simulations will immediately match up with real measurements using
a much larger sample in a Petri dish, taken over a long time.

While we can compute averages from constant energy simulation as well, advancing
the system from an initial condition along its level-set gives a limited microscopic
perspective. In order to establish more general information about the system under
study, we can imagine taking a large collection of initial conditions and propagating
them all forward in time. We can imagine this bundle of trajectories in the phase space
as being a cloud of points, not necessarily equally distributed in space or energy. The
coloured regions in Figure 2.2 are one example.

This distribution of points will evolve in time under the dynamics, just as a point
in phase space does. In fact, we can think of one point in phase space as being a
distribution characterized by a δ function. The discrete bundle of initial conditions will
approximate a continuous density, allowing us to evolve the points forward in time in
order to compute the density. In general, we write a density ρ̂ of points at time t as
ρ̂(z, t), where (q, p) = z ∈ Ω.

In this section we shall adopt a change of perspective, and consider how a disctri-
bution of points is evolved in time under the dynamics, rather than a single trajectory.
Much of this material is standard, and can be found in many statistical mechanics
textbooks [4, 63, 74].

It should be apparent that the evolving density as we have described it is directly
related to a probability measure - each discrete trajectory packet can be thought of as
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one sample of our distribution. In order to make it a probability measure we impose
some normalizing conditions:

ρ̂(z, t) ≥ 0 ∀z ∈ Ω, t ∈ R, and
∫

Ω
ρ̂(z, t)dz <∞ ∀t ∈ R.

This allows us to normalize ρ̂(z, t), such that

ρ(z, t) = Z−1ρ̂(z, t), Z :=
∫

Ω
ρ̂(z, t)dz,

∫
Ω
ρ(z, t)dz = 1.

We shall assume that ρ ∈ L2, so that computed inner products at a time t of any
smooth function φ ∈ L2 are bounded

〈φ(z), ρ(z, t)〉 =
∫

Ω
φ(z) ρ(z, t)dz <∞.

The value of 〈φ(z), ρ(z, t)〉 gives the average of some observable φ(z) at a time t, with
respect to an evolving probability distribution ρ(z, t).

For a system with governing ODE

d
dt
z(t) = f(z),

Liouville’s equation for the evolution of the phase density is defined as

∂

∂t
ρ(z, t) = L∗fρ(z, t) = −∇ · (f(z)ρ(z, t)) . (2.42)

We can see that the macroscopic evolution (or simply the Liouville) operator L∗f looks
similar (both in notation and definition) to the microscopic evolution operator, the Lie
derivative Lf , given in (2.25). The superscript asterisk denotes that they are adjoints,
in the L2 sense. Indeed, if we have observables φ, θ ∈ L2 then

〈φ(z),L∗fθ(z)〉 =
∫

Ω
φ(z)

[
L∗fθ(z)

]
dz,

= −
2N∑
i=1

∫
Ω
φ(z)

∂

∂z(i)

[
f(i)(z)θ(z)

]
dz,

=
2N∑
i=1

∫
Ω

∂

∂z(i)
[φ(z)] f(i)(z)θ(z)dz,

=
∫

Ω
[f · ∇φ(z)] θ(z)dz,

= 〈Lfφ(z), θ(z)〉,

where subscripts in parenthesis denote components.
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In the case of Hamiltonian systems, we can write

d
dt
z(t) = f(z) = J∇H(z),

where H is the Hamiltonian. Recall the dynamics are divergence-free, hence the Liou-
ville operator becomes

L∗fφ(z) = −∇·(f(z)φ(z)) = −φ(z) (∇ · f(z))−f(z)·∇φ(z) = −f(z)·∇φ(z) = −Lfφ(z),

implying that the operator is skew-adjoint. Hence the Liouvillian for Newton’s equa-
tions of motion (2.4) L∗mc becomes

L∗mc = −Lmc = ∇U(q) · ∇p −M−1p · ∇q, (2.43)

where we describe such constant-energy simulations as microcanonical, indicated by the
subscript ‘mc’.

In order to make sense of numerically compute averages, when comparing to lab-
oratory estimates we will think of our molecular dynamics experiment as being one
realization (or sample) from some prescribed probability measure, or ensemble. This
ensemble is established by deciding upon a set of characteristic parameters for the
virtual laboratory experiment. We assume that the experiment is conducted in equi-
librium, so that the overall ensemble density will be stationary with respect to the
evolution of the system. These invariant measures for our system correspond to distri-
butions ρ∗ satisfying

∂

∂t
ρ∗ = L∗ρ∗ = 0, (2.44)

where L∗ is the macroevolution operator for our dynamics. In a constant energy simu-
lation, the skew nature of the Liouvillian operator implies that any first integrals of the
system satisfies (2.44), in particular any density that is a function of the Hamiltonian
will be invariant.

For example, we may choose to fix the number of atoms N in a simulation, as
well as defining a box of fixed volume V in Rd, which our system can evolve in. The
boundary conditions for this box will also need to be decided upon in order to replicate
a sensible experiment, but for the most part we will assume that we use periodic
boundary conditions so that the position space is restricted to a torus.

The system’s evolution is then governed by prescribed initial energy H(z) = E0.
Averages computed with respect to these conditions gives us the microcanonical (or
NVE) ensemble, with associated invariant measure

ρ̂mc(z) := δ [H(z)− E0] .
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The spatial average of an observable φ in the microcanonical ensemble is then

〈φ, ρmc〉 =
∫

Ω
φ ρmc dz, (2.45)

where ρmc is the normalized probability distribution

ρmc = Z−1
mc ρ̂mc, Zmc =

∫
Ω
ρ̂mc(z)dz. (2.46)

The normalization constant Zmc is often called the microcanonical partition function.
The goal of a typical simulation is to compute the average of an observable, with respect
to some ensemble. This reduces to the task of evaluating the integral (2.45), where one
strategy is to discretize the phase space Ω into a mesh, and approximate the integral by
evaluating φ(z)ρmc(z) at each point. The approximation could be improved if necessary
by reducing the distance between the meshpoints.

The sting in the tail though comes when considering the enormous dimensionality
of the problem, coupled with the sparse nature of ρmc. For even a modest sized number
of particles, creating a grid to span the entire phase space is computationally daunting.
For example, taking a näıve approach and considering a small cluster of 100 particles in
3D, the phase space is Ω = R600. If we only use ten points along each degree of freedom,
we still have 10600 gridpoints, which is an unworkable amount of data to process or even
store (1GB of storage can store around 108 double precision numbers). Even worse,
most of the meshpoints considered will lie in regions of phase space that contributes
little or nothing to the integral defining the average of interest (such parts of the phase
space the system will seldom visit - the distribution will be small or vanishing at these
points).

For small problems, and for systems where we have sufficient knowledge as to adapt
our mesh, this strategy may be workable and practical (indeed we can and will do this
to check results for small problems later in this thesis). However, we shall work in the
general case for very large N , looking to use a molecular dynamics approach for the
calculation of averages such as (2.45).

The primary alternative methodology to MD is a Monte-Carlo (MC) approach
[4, 42, 97], which moves the atoms at random in accordance with the equilibrium
distribution to be sampled. In contrast to MD, no information about the approximate
trajectories is required in (or can be generated from using) MC, and hence MD is
the preferred tool for understanding any time-dependent quantitative or qualitative
behaviour of the system. Hybrid approaches that marry MD and MC have also proven
successful in special cases [29], while the flexibility of MC approaches can provide many
benefits to specific applications [47, 52].

Molecular dynamics allows us to compute thermodynamically consistent trajecto-
ries, with the aim of using these trajectories as a tool to sample the integral (2.45),
and calculate averages. This is not as straightforward as it may sound, aside from
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how to compute the integral from our numerically discretized trajectory (which is just
a sequence of points), the system’s dynamics itself may stymie our efforts. One can
imagine that a trajectory may not be able to access the entirety of the measure ρ, and
hence any information about one part of the integral will be lost, skewing the computed
average. The link between the exploration of trajectories in time compared to space is
given by the property of ergodicity. In the microcanonical setting, defining the surface
of fixed energy ΩE ⊂ Ω, we say a system is ergodic if, for any two sets A,B ⊆ ΩE of
nonzero Lebesgue measure,

∀t > 0, Φt(A) = A and Φt(B) = B =⇒ A = B,

where Φt is the system’s flow map. Ergodicity of the system means we cannot split the
energy surface ΩE into multiple disconnected invariant sets. Equivalently, this means
that the system is ergodic if for any trajectory z(t) with z(0) ∈ ΩE , we have

(Time average) lim
T→∞

1
T

∫ T

0
φ(z(t))dt =

∫
Ω
φ ρmc dz (Space average)

i.e. the average of an observable computed along a single trajectory is equal to the
average computed from integrating over the entire space, so the time and space averages
are equal. In the general case this requires the trajectory to be able to access the entirety
of the measure ΩE . As an example, consider (q, p) ∈ R2, with unit mass and potential
energy function given by the triple well potential

U(q) = φtw(q) = q2 (q2 − 1)2 +
3
20

(q + 1), (2.47)

and consider sampling averages for E = 0.35. From Figure 2.6, we can see that the
level sets corresponding to H = E are disconnected, and a single trajectory cannot
sample the measure appropriately. In such cases, the result of the time average will
depend on which invariant set the initial condition is in.

Assuming that have an ergodic dynamics (an ergodic hypothesis), we can approx-
imate the time average by averaging the observable along a discretized trajectory. In
general it can be very difficult to prove that a particular system is ergodic, we shall
demonstrate some provably ergodic examples in Chapter 3.

2.2.2 The Boltzmann-Gibbs distribution

Returning to our original motivation, we seek to sample the system in a more realistic
setting than is provided in the constant-energy framework. We shall present a brief
summary of the standard results presented in [4, 42, 72], introducing an alternate ‘target
distribution’ for us to sample the system in a manner more consistent with laboratory
experiments.

Consider a system of interest embedded in a much larger system, acting as a heat
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Figure 2.6: Level sets of the energy in phase space (left) are plotted for the system
with potential energy given in (2.47), coloured according to their energy level. We also
plot the contribution of the potential energy for each level set (right), as a function
of the position. As both the kinetic and potential energy are bounded below, we can
see in that for some energy levels a high potential energy barrier prevents movement
between invariant sets. Level sets in the shaded regions correspond to energy levels E
where the measure δ[H−E] can be partitioned into two disconnected regions, violating
ergodicity.

bath. The two systems are assumed to be weakly coupled, so energy is continuously
exchanged between them through a dance of jabbing and poking at each other. This
energy is assumed to be heat, and therefore any equilibrium logically comes in the
form of the systems having matching temperature. The sole transfer between the two
is energy, they do not exchange particles or interact through any sort of mechanical
process.

We call our system of interest the active system, or part A. The heat bath, or the
bulk, is denoted part B. We will assume that the total system has some set of constant
parameters defining its evolution, and attempt to “integrate out” over the degrees of
freedom in the heat bath in order to recover a distribution for the particles in just the
active system.

Let us denote the total energy of the combined system AB as simply E. If our
active system has energy EA then the energy of the heat bath is EB = E − EA. In
line with quantum mechanics, we assume that for a constant number of particles, box
volume and energy, there are a discrete number of states that a system can occupy (a
‘state’ here refers to an eigenfunction of the Hamiltonian operator, but the specifics
are not essential). Fixing the box volume for the combined system, we can use our
assumption that the two systems do not exchange particles so that the total number
of states the combined system can be found in depends solely on the energy of the two
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systems. We denote Z(EA, EB) the total number of potential states the system can
occupy with system A,B having energy EA, EB respectively. Combinatorically, we can
write

Z(EA, EB) = ZA(EA)× ZB(EB),

where Zi(Ei) denotes the number of states system i can be found in at energy Ei.
Taking logarithms and replacing the value for EB, we have

lnZ(EA, E − EA) = lnZA(EA) + lnZB(E − EA).

The crucial assumption is that each of the states in Z(E) is equally probable, and hence
we can find the most likely energy distribution between the systems by maximizing the
value of Z(EA, EB), or equivalently maximizing lnZ(EA, E − EA). This value of EA
occurs where

d
dEA

lnZ(EA, E − EA) = 0,

or equivalently where

d
dEA

lnZA(EA) =
d

dEB
lnZB(EB).

We have assumed that our systems are in thermal equilibrium, but if we had not,
and instead invested the heat bath with the total system energy, we could imagine that
energy would transfer back into system A until the point where this equation is satisfied.
We know from the second law of thermodynamics that this equilibrium occurs when the
entropy of the system is at its maximum, so we use Boltzmann’s famous equation (and
in fact, his epitaph) relating the entropy of a system S to the number of eigenstates Z,

S ≡ kB lnZ,

where kB is Boltzmann’s constant kB ≈ 1.38×10−23J/K. The temperature of a system

System of
interest

A

Heat bath
(acts as an energy reservoir)

B

Continuous energy exchange
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T , is defined thermodynamically as

1
T

:=
∂S

∂E
,

giving, when the system is in thermal equilibrium,

d
dEA

lnZA(EA) =
d

dEB
lnZB(EB) =

1
kBT

=: β. (2.48)

We shall refer to the quantity β as the system’s inverse or reciprocal temperature.
Consider now the probability Pi of finding the subsystem A in state i, with energy

EA = ei. This is equal to the probability of finding the energy of the heat bath to be
EB = E − ei, and hence

Pi =
ZB(E − ei)∑
j ZB(E − ej)

,

where the sum in the denominator is over all possible states of the system A.
Expanding the logarithm in a series around E, we have

lnZB(E − ei) = lnZB(E)− βei +O(1/E),

using (2.48). Assuming the total energy of the system is very large, we truncate and
exponentiate to find

Pi ∝ exp(−β ei),

where all the constants are absorbed into the proportionality sign, as we will normalize
the distribution anyway. Hence the probability of the system A being in a particular
state is proportional to the energy of the state, divided by temperature and exponen-
tiated. This gives the Boltzmann-Gibbs (or canonical) distribution for our system A,
sampled at a constant equilibrium temperature T , written (when normalized) as

ρβ(z) := Z−1
β exp(−β H(z)), Zβ :=

∫
Ω

exp(−β H(z))dz, (2.49)

where the parameter β = 1/kBT . This ensemble is sometimes called the NV T en-
semble, due to the a constant number of particles, constant volume, and a constant
(thermodynamical) temperature. As our energy state ei is replaced by our system
Hamiltonian H(z), the energy level of our system should be able to fluctuate as if it
were in equilibrium with our heat bath model.

If our Hamiltonian is of the form

H(q, p) = pTM−1p/2 + U(q),

for (q, p) ∈ Ωq × Ωp = Ω, as we have considered thus far, then the distribution is
decomposable into

ρβ(q, p) = µβ(q)× κβ(p),
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Figure 2.7: We simulate 100 particles in the plane (left) using a periodic box of length
L = 20, with the Lennard-Jones potential governing all pairwise interactions. The
central particle, marked in red, also feels a double-well potential in both coordinates.
The total system energy (top right) is conserved, with some variance due to numerical
error. The distribution is plotted for the x-coordinate (bottom right) averaged over a
single long trajectory. The experimental result (solid red) shows good agreement with
the expected canonically distributed result (dashed black).

where
µβ(q) = Z−1

β,µ e
−βU(q), Zβ,µ :=

∫
Ωq

e−βU(q)dq,

and

κβ(p) = Z−1
β,κ e

−βpTM−1p/2, Zβ,κ :=
∫

Ωp

e−βp
TM−1p/2dp =

(
2π
β

)N/2
(detM)1/2 .

The variables q and p are hence probabilistically independent, with the momenta nor-
mally distributed. Equilibrium averages that are purely a function of momentum be-
come trivial to compute, and our focus will turn to sampling functions of position with
respect to µβ, or canonical configurational sampling.

In order to sample from µβ, one option would be to simulate the virtual particles
we considered in the heat bath, and compute averages along the trajectory for system
A. As an example, consider as our system of interest a single particle confined to the
plane, and write its instantaneous position q = (x, y)T . If we use periodic boundary
conditions with a box length L, we will aim to sample canonically the potential

U(x, y) = φdw(x+ L/2) + φdw(y + L/2),

where recall the double well potential φdw : R → R has minima at ±1, tethering the
particle near to the centre of the box.

In order to simulate the heat bath, we add a multitude of particles around our system
of interest, drawing their initial velocities canonically from κβ, for some prescribed β.
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In our analysis we required the total energy of the system to be much larger than the
energy of the target system, so we need a very large number of particles in the heat
bath to provide a good approximation.

We will use the Lennard Jones potential to simulate all pairwise interaction, in order
to provide the necessary jostling of adjacent particles required for the weak coupling
(energy transfer) between the target system and heat bath. The Lennard Jones (or
6− 12 potential) is defined as

φlj(r) := r−12 − r−6,

where r is the Euclidean distance between any two distinct particles.
We initialise 100 particles on a lattice inside a box of length L = 20, with initial

temperatures drawn from κβ using β = 1. The Verlet JBABK scheme was used with a
step size of δt = 0.01 to propagate the system in time, sampling until T = 6× 104. We
compare the sampled distribution for the x coordinate of the target system with the
analytical result of µβ at β = 1. The results, shown in Figure 2.7, appear surprisingly
good, despite errors from numerical discretization, as well as the finiteness of the heat
bath and time interval.

For more general systems, we could estimate the error in sampling due to the
finiteness of the heat bath by looking at the sampled distribution of momenta, and
comparing it to κβ. However q and p are independent in the canonical distribution,
and so large or small errors in the distribution of one does not imply the same in the
other. Of course, this simulation is extremely inefficient. Though the trajectories for
the central particle appear to sample canonically, the heat bath particles outnumber
the target system particles by 99 to 1. This makes it woefully impractical to scale this
method for the simulation of a large cluster of atoms.

What would be preferable is if we could approximate the force terms coming from
the bulk, without requiring us to simulate them. It should be clear that the constant-
energy dynamics we have used so far (sampling the microcanonical ensemble with con-
stant energy E) will not sample the target system canonically (at least, not ergodically)
if we remove the heat bath - such Newtonian trajectories sampling ρmc cannot access
regions of the phase space where H(z) 6= E. Regions of the phase space outside the
level sets H(z) = E will have nonzero measure in the canonical ensemble.

However, changing perspective to think of trajectories as tools for sampling a dis-
tribution, we are free to develop any dynamics we wish that samples the canonical
distribution. Even grossly non-physical dynamics are permitted, as our equilibrium
formulation does not describe the time evolution of the system [67] (we shall discuss
such non-Newtonian dynamics in a later section).

We shall describe any dynamics that sample ρβ as a thermostat, owing to the
‘constant temperature’ nature of the canonical ensemble.
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2.2.3 The Nosé-Hoover thermostat

We first consider perturbing the vector field for Newtonian dynamics, with an aim to
mimic the effect of the heat bath by adding or removing energy from the system. We
shall introduce s additional degrees of freedom ξ = [ξ(1), ξ(2), . . . , ξ(s)]T ∈ Rs, which will
act as an energy governor in the dynamics. The ‘artificial’ variables ξ have their own
invariant distribution, assumed to be independent of the state variables q, p, such that

ρ(q, p, ξ) = ρβ(q, p)× Ξβ(ξ) = µβ(q)× κβ(p)× Ξβ(ξ).

This distribution allows us to integrate out with respect to the artificial variables ξ and
recover canonical sampling. Nosé introduced an extended Hamiltonian dynamics as a
perturbation of Newtonian dynamics [89, 90], sampling such a distribution. Hoover
later offered a reformulation and time-transformation of Nosé dynamics [55], which
gives the Nosé-Hoover thermostat

d
dt
q = M−1p,

d
dt
p = −∇U(q)− ξ p,

d
dt
ξ =

1
Q

(
pTM−1p−N/β

)
,

(2.50)

for scalar ξ ∈ R, where N is the dimensionality of q and p, and Q > 0 is a mass
parameter to be chosen in order to optimize the rate of convergence of averages.

One immediate problem with the dynamics is that some initial conditions do not
provide suitable trajectories, for example, consider the initial condition (q0, p0, ξ0) =
(q∗, 0, ξ0), where ∇U(q∗) = 0. As the perturbed force ξ p acts along the vector p, if
we start at an equilibrium point for Newtonian dynamics with zero initial momentum,
then the system remains at that point for all time. Such subsets of initial conditions are
called Hoover holes, though as these sets have zero measure (the probability of p = 0
is zero) ergodicity does not suffer.

We may hope to prevent choosing such degenerate initial conditions by sampling
the initial momenta canonically, though this strategy will not always save us. If initial
conditions q0, p0 are chosen such that ∇U(q0 + λp0)× p0 = 0 for all scalar λ, then the
system will remain confined to the space [q0 + λp0, µp0, ξ] for λ, µ, ξ ∈ R.

We show that the Nosé-Hoover dynamics preserve the extended canonical distribu-
tion, given as

ρnh(q, p, ξ) = ρβ(q, p)× exp(−βQξ2/2)×
√
Qβ

2π
.

Recall that the evolution of distribution is given by the Liouville equation

∂

∂t
ρ = L∗ρ.
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Hence we require
∂

∂t
ρnh = L∗nh ρnh = 0,

where L∗nh is the characteristic evolution operator given by the dynamics, and computed
as the adjoint of the Lie derivative. For the Hamiltonian H(q, p) = pTM−1p/2 +U(q),
the dynamics (2.50) can be split up into

d
dt

 q

p

ξ

 = J∇H(q, p)︸ ︷︷ ︸
f1

+

 0
−ξp

1
Q

(
pTM−1p−N/β

)


︸ ︷︷ ︸
f2

.

Using (2.26) we can split the operator similarly, writing L∗nh = L∗f1
+L∗f2

for correspond-
ing vector fields f1 and f2. The operator L∗f1

= L∗mc comes from the Newtonian part
of the splitting, and hence it will preserve any function of the Hamiltonian, including
ρnh. It remains to demonstrate that L∗f2

ρnh = 0, where

L∗f2
ρ = ∇p · (ξ p ρ)− 1

Q

(
pTM−1p−N/β

) ∂
∂ξ
ρ.

From its definition, we compute

L∗f2
ρnh =

√
Qβ

2π
(
∇p · (ξ p κβ(p)) + βξ

(
pTM−1p−N/β

)
κβ(p)

)
µβ(q)e−βQξ

2/2,

=
(
ξ(N − βp ·M−1p) + βξ

(
pTM−1p−N/β

))
ρnh,

= 0,

and hence the canonical distribution is preserved under the dynamics. Thus, assuming
ergodicity, computed trajectories will sample the Boltzmann-Gibbs distribution, as the
time average will equal the space average.

As already discussed, proving ergodicity for the dynamics can be a challenging task.
The Nosé-Hoover thermostat has been shown to be non-ergodic in the case of Q→∞,
but for more practical choices of the ‘thermostat mass’ parameter Q, there is strong
numerical evidence against ergodicity [66]. The qualitative differences between the
canonical distribution and computed distributions for systems of low-dimensionality, or
particularly stiff systems can be dramatic. To try and resolve this ergodicity issue, the
Nosé-Hoover chains dynamics were introduced [78], which add a multitude of additional
artificial degrees of freedom to the system, and couple them together in an effort to more
aggressively thermostat the dynamics. The artificial variables are coupled consecutively
by index: adding s artificial variables, we denote ξ as a vector ξ = [ξ(1), ξ(2), . . . , ξ(s)]T

and think of each ξ(i) variable as being a link in a harmonic chain. The dynamics is
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then
d
dt
q = M−1p,

d
dt
p = −∇U(q)− ξ(1) p,

d
dt
ξ(1) =

1
Q(1)

(
pTM−1p−N/β − ξ(1)ξ(2)

)
,

d
dt
ξ(i) =

1
Q(i)

(
Q(i−1)ξ

2
(i−1) − 1/β − ξ(i)ξ(i+1)

)
, 1 < i < s,

d
dt
ξ(s) =

1
Q(s)

(
Q(s−1)ξ

2
(s−1) − 1/β

)
,

(2.51)

where we recover the original Nosé-Hoover dynamics as a special case for s = 1. The
dynamics can be shown to preserve the target distribution ρnhc, where

ρnhc(q, p, ξ) = ρβ(q, p)× exp

(
−β

s∑
i=1

Q(i)ξ
2
(i)/2

)
×
(
Qβ

2π

)s/2
,

which will give canonical sampling of the (q, p) space, if the sampling is ergodic. In
numerical experiments, ergodicity is shown to be markedly improved when using NHC
over NH, particularly in the case of large s.

The choice of the thermostat masses Q(i) are also a central issue in the dynamics,
we must choose sensible values for the s-many parameters. Ideally the dynamics should
be ergodic for any choice of the masses, but in practice even in simple models we can
easily find ‘wrong’ values in sensible ranges.

We demonstrate this by using the Nosé-Hoover chains thermostat (with s = 2) to
canonically sample the system with Hamiltonian

H(q, p) = q2/2 + p2/2,

where (q, p) ∈ R2, and β = 1. The left plot in Figure 2.8 demonstrates the tail of a 109-
step trajectory of points [qn, pn, ξ(1),n] ∈ R3, computed using thermostat masses Q(1) =
0.07 and Q(2) = 12, propagated numerically at a small step size δt = 5 × 10−4. The
parameter values chosen are reasonable for a simulation, but instead of the normally
distributed cloud of points we would expect in canonical sampling (discretized points
should be weighted according to ρnhc) we find the trajectory traces out a torus. The
small step size used implies that the qualitative behaviour exhibited is not a numerical
artifact, but instead a product of resonance effects in the system.

It is clear from the plot that the value of q2 averaged along the trajectory will not
equal the canonical space average of 1. We can see the effect of varying the thermostat
masses by considering a 100 × 100 grid of points in a small region of parameter space
(Q(1), Q(2)) ∈ R2. We run an experiment for each parameter set defined by a gridpoint,
and plot the resulting error in the time average in the right panel of Figure 2.8. It is
clear that there is a well-defined region in the parameter space where the converged
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Figure 2.8: We plot points along a single trajectory (left) of the Nosé-Hoover chains
dynamics (2.51) for the one-dimensional harmonic oscillator. We use s = 2, with
thermostat masses Q(1) = 0.07 and Q(2) = 12 for initial values q(0) = 1.075, and
p(0) = ξ(1)(0) = ξ(2)(0) = 0. A portion of the trajectory is plotted in red. Results were
computed using a very small step size of δt = 5× 10−4 to ensure numerical error is not
the cause of any sampling errors. The absolute difference between the time and space
averages of q2 is plotted (right) in a 100×100 grid, where each gridpoint corresponding
to a numerical experiment with masses given by the horizontal and vertical positions
(using the same initial condition as the left plot). Gridpoints are coloured according to
the difference between observed averages (along the trajectory) and canonical averages
- ergodicity requires the two be commensurate. The yellow cross marks the gridpoint
whose experiment corresponds to the left figure.

observed average along trajectories is starkly different to the analytic spatial average.
Though in more complicated systems we would perhaps not expect qualitative errors

quite as pronounced as this example, the importance of parameter selection in this
method cannot be overstated. By coupling deterministically to the heat bath and
incorrectly choosing the masses we run the risk of introducing resonance phenomena
that can corrupt averages and warp the trajectories.

The use of the Nosé-Hoover thermostat is still widespread however, as the ergodicity
issues demonstrated are rarely so pronounced in large systems where the dynamics are
not trapped close to one minima. Additionally, numerical experiments have shown that
the thermostat is gentle [35], in the sense that computed dynamical quantities (such
as correlation functions) have an error inversely proportional to the total system size.
We demonstrate a dynamics in Section 3.2 that improves ergodicity without sacrificing
this gentle quality.
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Chapter 3

Stochastic thermostats

In order to resolve the issues of ergodicity, and generate trajectories sampling only the
canonical distribution, we shall move away from deterministic dynamics and consider
approximation of the external heat bath using a stochastic force term. We should
expect that adding a random term to the dynamics in the correct way could banish
ergodicity issues, as the stochasticity could be contrived to give a nonzero probability
of transition between any two regions of the phase space.

3.1 Stochastic dynamics

In this section we shall develop some fundamental concepts and tools for stochastic
analysis, to allow us to extend many of the machinery we have introduced in the
previous chapter to the realm of stochastic differential equations. We present a brief
summary of many of the core results in [44, 63, 86, 91]

3.1.1 The Fokker-Planck equation

We begin with the most fundamental term in stochastic calculus: the Wiener process
W (t). We can think ofW (t) as being a white noise term: a random walk withW (0) := 0
and on average (i.e. taking a large number of realizations of W (t)) W (t) ∼ N (0, t).
Wiener increments between times t and s are independent for non-overlapping intervals,
with

W (t)−W (s) ∼ N (0, |t− s|) ∼
√
|t− s| N (0, 1). (3.1)

The independence of successive increments of the Wiener process gives rise to a Marko-
vian property, in that its future probable behaviour depends solely on its current state,
and not its history. This greatly simplifies the probabilistic analysis.

We shall consider the evolution of stochastic differential equations (SDEs) of the
form

dz = f(z) dt+ g(z) dW, (3.2)

for z ∈ RN , f : RN → RN and g : RN → RN×N . The vector dW represents an
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infinitesimal Wiener increment of N random Wiener processes. In some literature, it is
instead written as a

√
dt due to to the variance given in (3.1). If g(z) ≡ σ for constant

σ 6= 0, then we describe the SDE as using additive noise, whereas for non-constant g(z)
we have the more complicated multiplicative noise case enabling a wide spectrum of
phenomena to be modelled. We shall primarily focus on additive noise in this thesis.

We now seek an analogue to the Lie derivative, governing the evolution of functions
with respect to solutions of (3.2). Evidently, due to the stochastic nature of the solu-
tions, we will instead consider the evolution of averages, rather than the evolution of
specific trajectories.

For any continuously twice-differentiable function φ : R2N → R, the Itō (or Itō-
Doeblin) formula gives its evolution as

dφ = ∇φ · (f(z) dt+ g(z) dW ) +
1
2
(
g(z)g(z)T

)
: ∇2φ dt, (3.3)

where A : B = trace(ABT ) =
∑

i

∑
j AiBj defines the Frobenius product, and recall we

denote ∇2φ = ∇∇Tφ as the Hessian matrix of second derivatives. Taking expectations,
we find

E [dφ] = E [∇φ · f(z)] dt+
1
2

E
[(
g(z)g(z)T

)
: ∇2φ

]
dt,

and hence defining an operator L such that

Lφ = f(z) · ∇φ+
1
2
g(z)g(z)T : ∇2φ, (3.4)

we have the evolution of the expectation of a function φ governed by

E [dφ] = E [Lφ] , or Lφ(z) = lim
t→0

E[φ(z(t))]− φ(z(0))
t

.

This operator L is the infinitesimal generator of the process (3.2) serves a similar
purpose to Lie derivative in the deterministic setting (in fact, it reduces to the Lie
derivative for g(z) ≡ 0). Similarly we seek an analogue to the Liouville equation (2.42)
for the propagation of a distribution of initial conditions ρ(z, t). For any time t, where
φ grows at most polynomially fast as z → ±∞, its expectation with respect to the
distribution ρ(z, t) is well defined:

E [φ(z(t))] = 〈φ(z), ρ(z, t)〉 =
∫

Ω
φ(z)ρ(z, t)dz.

Differentiating with respect to t, we have

d
dt

E [φ(z(t))] =
∫

Ω
φ(z)

∂ρ

∂t
(z, t)dz,

but as this quantity is given by E [Lφ] = 〈Lφ(z), ρ(z, t)〉, taking the adjoint of the
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operator L gives ∫
Ω
φ(z)

∂ρ

∂t
(z, t)dz = 〈φ(z),L∗ρ(z, t)〉,

where L∗ described the L2 adjoint mapping of the generator L, easily computed as

L∗ρ(z, t) = −∇z · (f(z)ρ(z, t)) +
1
2
∇2
z : g(z)g(z)Tρ, (3.5)

where ∇z indicates derivatives with respect to the spatial dimensions. Thus, for the
SDE (3.2) we have the Fokker-Planck (or forward Kolmogorov) equation

∂

∂t
ρ(z, t) = L∗ρ(z, t),

governing the evolution of distributions of trajectories.
A distribution ρ(z) is described as invariant (or stationary) if L∗ρ(z) ≡ 0. In the

special case g(z) ≡ 0 the Fokker-Planck equation becomes the Liouville equation (2.42)
with L∗ reducing to the Liouvillian. Hence we can view L and L∗ as appropriate
generalizations of deterministic dynamics.

The solution to the SDE (3.2) is found exactly as in the deterministic case; contin-
uing to treat integrals in an Itō sense, integration yields

z(t) = z(0) +
∫ t

0
f(z(s))ds+

∫ t

0
g(z(s))dW (s).

In order to evaluate the stochastic integral, we make use of the following standard
proposition:

Proposition 3.6 (Itō Isometry). The stochastic integral I(t) =
∫ t

0 b(s)dW (s) is itself
a normally distributed stochastic process, with mean 0 and variance

∫ t
0 b(s)

2ds.

We omit the proof here but point the interested reader towards any standard text
on SDEs, such as [44, 63].

Of particular use, and of central importance in this thesis, is the Ornstein-Uhlenbeck
(OU) process for z ∈ RN , given as

dz = −γz dt+ σ dW, (3.7)

for a positive real constant γ and positive definite matrix σ = diag(σ1, . . . , σN ). Mul-
tiplying by eγt we can write

d
(
zeγt

)
= σeγt dW,

and hence integrating from 0 to t, we find

z(t) = e−γt z(0) + σ

∫ t

0
eγ(s−t) dW (s).
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Using Proposition 3.6 to evaluate the integral, we have∫ t

0
eγ(s−t) dW (s) ∼ N (0, c(t)) ,

where

c(t) =
∫ t

0

(
eγ(s−t)

)2
ds =

1− e−2γt

2γ
.

This allows us to write the exact solution to (3.7) for t ≥ 0 as

z(t) = e−γt z(0) +
σ√
2γ

√
1− exp(−2γt)Rt,

where we think of Rt ∼ N (0, 1). The Fokker-Planck (forward Kolmogorov) operator
for this process L∗ou can be computed directly from the definition (3.5) as

L∗ouρ = γ∇ · (zρ) +
1
2
∇ · σ∇ρ. (3.8)

If we consider a distribution

ν(z) ∝ exp
(
−zTXz/2

)
,

for diagonal positive-definite matrix X, then

L∗ouν(z) ∝ γ
(
N − zTXz

)
ν(z) +

σ2

2
(
−NX + zTX2z

)
ν(z),

and hence choosing X = 2γσ−2 we have

L∗ouν(z) ≡ 0.

Notably the choice of σ =
√

2γ/βM1/2 provides invariance if X = βM−1. Hence for
this choice of σ and arbitrary γ > 0 we have

L∗ouκβ(z) ≡ 0, (3.9)

where recall κβ defines the normalized canonical momentum distribution function

κβ(p) = Z−1
β,κ e

−βpTM−1p/2, Zβ,κ :=
∫

Ωp

e−βp
TM−1p/2dp =

(
2π
β

)N/2
(detM)1/2 .

The relationship between σ and γ describes the dynamics satisfying a fluctuation-
dissipation law, balancing the σdW (random fluctuation term) with the friction force
γz (dissipation term).

If we imagine (3.7) as a process in the momenta p, then the SDE mimics the force
term resulting from the barrage of surrounding solvent particles, along with the drag
force proportional to its momentum. We can add this SDE term to Hamiltonian dynam-

60



ics (or equivalently replace the −ξp term in Nosé-Hoover dynamics) in the momenta,
to replicate the forces the system feels from the heat bath. By choosing the magnitude
of the fluctuation term to satisfy the fluctuation-dissipation law (which amounts to the
correct choice for the matrix σ in the OU process in (3.7)) gives Langevin dynamics

dq = M−1p dt,

dp = −∇U(q) dt− γpdt+
√

2γ/βM1/2 dW.
(3.10)

Due to the linearity of the Fokker-Planck operator in the deterministic part (Liouvil-
lian), we can see that, splitting the vector field (3.10) into[

dq
dp

]
=

[
M−1p

−∇U(q)

]
dt︸ ︷︷ ︸

mc

+

[
0

−γpdt+
√

2γ/βM1/2 dW

]
︸ ︷︷ ︸

OU

,

the Fokker-Planck operator for Langevin dynamics L∗LD is given by the sum of the
microcanonical Liouvillian term (2.43) and the Ornstein-Uhlenbeck Fokker-Planck op-
erator (3.8) acting in the momentum. The operator is then

L∗LD ρ = L∗mc ρ+ L∗ou ρ,

= ∇U(q) · ∇pρ−M−1p · ∇qρ+ γ∇p · (pρ) +
γ

β
∇p ·M∇pρ.

(3.11)

We have already seen that L∗mc F (H(q, p)) ≡ 0 for arbitrary F , and it is clear that
L∗ouG(q)κβ(p) ≡ 0 for arbitrary G, as the OU process only acts in the momentum.
Hence using (3.9) we plainly have

L∗LD ρβ(q, p) ≡ 0, (3.12)

where ρβ is the canonical Boltzmann-Gibbs distribution given in (2.49). Of course this
statement alone is not all that meaningful for the purposes of canonical sampling: both
Nosé-Hoover dynamics and the constant energy microcanonical dynamics also preserve
this distribution. Recall that the preservation of the canonical measure along with
ergodicity are necessary for the time average of sampled dynamical trajectories to be
commensurate with the spatial average with respect to the weighting ρβ, the latter
being the ultimate goal for our molecular dynamics simulations.

3.1.2 Hörmander’s condition

We would expect that, due to the stochastic nature of the dynamics, evolution under
Langevin dynamics (4.2) provides a means for the system to access almost any state
z ∈ Ω (given sufficient smoothness of U(q)). The implication is that ergodicity will
benefit–how can we separate our phase space into two or more disconnected pieces,
if the momentum could take almost any value? We shall describe a condition for
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ergodicity by checking that this stochastic perturbation is coupled sufficiently to the
system to allow it to access all regions of the phase space Ω.

We have seen that the Fokker-Planck operator (3.5) governing the evolution of the
measure for an SDE is a second order partial differential operator with C∞ coefficients.
Any second order differential operator with C∞ coefficients L is called hypoelliptic on
an open subset U ⊂ Ω if, for all distributional solutions ρ satisfying Lρ ≡ 0, ρ is C∞.
A hypoelliptic Fokker-Planck operator implies that a nontrivial C∞ invariant solution
is unique (up to a constant multiple), as if there were multiple nontrivial solutions
then we could construct a non-smooth solution violating its hypoellipticity [85, 98]. A
sufficient condition for the hypoellipticity of the Fokker-Planck operator of (3.2) comes
from Hörmander’s condition.

Definition 3.13. For an open set U ⊂ Ω, we say the C∞ vector fields

g0, g1, . . . , gN , gi : U → Ω

satisfy Hörmander’s condition at a point z ∈ U if the ideal generated by the vector fields
at a point z constitutes a basis for the phase space Ω,

Ω ⊆ span (g0, g1, . . . gN , [g0, g1] , [g0, g2] , . . . , [gN , gN=1] , [g0, [g0, g1]] , . . .) .

The Lie bracket for two vectors u and v is given as [u, v] = v′u− u′v, where the u′

is the Jacobian of the vector field u. For large systems, computing the basis vectors for
general U(q) can be a daunting task. The central application of Hörmander’s condition
is Hörmander’s theorem [56, 88].

Theorem 3.14 (Hörmander). If the SDE is given as (3.2), with the vector field f(z)
and each of the columns of the matrix g(z) satisfying Hörmander’s condition, then
its associated Fokker-Planck evolution operator L∗ is hypoelliptic. Hence the partial
differential equation

L∗ρ ≡ 0

has a unique C∞ solution.

The strategy for proving ergodicity in the stochastic context is straightforward, if
repetitive. We aim to show the Lie brackets of combinations of the deterministic vector
field f(z) and the columns of g(z) in (3.2) provide a basis for the phase space. For
example, we consider Langevin dynamics (3.10) with q, p ∈ RN , where, comparing with
Definition 3.13, we have

g0 =

[
M−1p

−∇U(q)− γp

]
, gi =

√
2γ
β

[
0

M
1/2
i

]
1 ≤ i ≤ N,

for positive constants γ, β, and positive definite mass matrix M where Mi denotes the
ith column of M . The constant vectors gi for i > 0 span half of the phase space on
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their own (the momentum space RN ), but we require the whole of Ω = R2N to have a
basis for ergodicity. We compute for 1 ≤ i ≤ N

[g0, gi] = 0− g′0gi =
√

2γ
β

[
0 M−1

−∇2U(q) −γIN

][
0

M
1/2
i

]
=
√

2γ
β

[
M
−1/2
i

−γM1/2
i

]
,

and hence the span of the vectors gi and [g0, gi] clearly provide a full basis for the
phase space Ω, verifying Hörmander’s condition. The Langevin dynamics operator
L∗LD is therefore hypoelliptic by Theorem 3.14, and hence by (3.12) ρβ is the unique
invariant solution, assuming smoothness of the potential energy function U(q). We
expect that Langevin dynamics trajectories will sample the canonical distribution er-
godically. What’s more, unlike the case of Nosé-Hoover chains in Figure 2.8 we have
considerable flexibility in our choice of parameter, as for all values of γ > 0 Hörmander’s
condition is satisfied.

3.2 Nosé-Hoover Langevin dynamics

The Nosé-Hoover Langevin dynamics, introduced by Samoletov, Dettmann and Chap-
lain in [103], couples an Ornstein-Uhlenbeck process to the artificial variable in Nosé-
Hoover dynamics (2.50), in an effort to improve the lack of ergodicity demonstrated in
Figure 2.8 whilst still sampling canonically. In the deterministic setting, the behaviour
of the Nosé-Hoover and Nosé-Hoover Chain thermostats were sensitive to the choice of
mass parameters Q, with invariant tori observed in simple models trapping trajectories
in regions of the phase space. Adding the OU process to the artificial variable instead
of the momentum (as in Langevin dynamics (4.2)) gives a milder perturbation to the
dynamics as the particles do not feel a direct random force that leads to fast decorre-
lation. The result is a thermostat that is both provably ergodic (unlike Nosé-Hoover)
and gentle (unlike Langevin dynamics) in that there are smaller random perturbations
to the dynamics [70]. Computational benefits may be derived also as the number of
random values required is independent of the number of degrees of freedom N (as ξ is
a scalar).

The relevant SDEs become

dq = M−1pdt,

dp = −∇U(q) dt− ξp dt,

dξ = Q−1(pTM−1p−N/β) dt− γξdt+ σ dw.

(3.15)

where w is a scalar Wiener process. If a distribution ρ is a stationary solution of the
Fokker-Planck equation for these dynamics, then

L∗nhlρ = (L∗nh + L∗ou) ρ = 0,
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where the L∗ou operator acts on the artificial variable ξ in this context. It was shown
in Section 2.2.3 that the extended canonical distribution

ρnh(q, p, ξ) = ρβ(q, p)× exp(−βQξ2/2)×
√
Qβ

2π
,

was invariant under Nosé-Hoover dynamics, and hence L∗nhρnh = 0. It is easily shown
that choosing σ =

√
2γ/(Qβ) in (3.15) gives L∗ouρnh = 0, and hence

L∗nhlρnh = 0.

We summarize the proof of [70], demonstrating the ergodicity of the dynamics in the
case of a quadratic potential U(q) = qTBq/2, by applying Theorem 3.14 with the results
in [70]. For simplicity, we can choose β = γ = Q = 1, with M = IN (this amounts
to a change of coordinates). Additionally we select a coordinate system such that B
is diagonal, with B = diag(ω1, ω2, . . . , ωN ) where each ωi is positive and distinct. The
deterministic and stochastic vector fields become

g0 =

 p

−Bq − ξp
p · p−N − ξ

 , and g1 =

 0
0√
2

 .
We can then compute the Lie brackets

X0 = − 1√
2

[
g1, ξ g1/

√
2 + g0

]
=

 0
p

0

 ,

X1 = g0 − (p · p−N − ξ) g1/
√

2− ξX0 =

 p

−Bq
0

 ,

Y1 = [X0, X1] =

 p

Bq

0

 ,
and define for k ≥ 1

Zk =
1
2

[Yk, X1] , Yk+1 = −1
2

[Zk, X1] .

It can then be shown by induction that

Yk =

 Bk−1p

Bkq

0

 , Zk =

 Bkq

−Bkp

0

 ,
where it easily checked that the basic case is satisfied for k = 1, and hence assuming
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true for k we have

Yk+1 = −1
2

[Zk, X1] =

 Bkp

Bk+1q

0

 ,
and similarly

Zk+1 =
1
2

[Yk+1, X1] =

 Bk+1q

Bk+1p

0

 ,
as required. Due to the g1 vector spanning the ξ space, it is evidently enough to show
that

span(Y1, Z1, Y2, Z2, . . . , YN , ZN ) = R2N ,

which is equivalent to the condition that for any (x, y) ∈ R2N , we can find coefficients
(a, b) ∈ R2N such that

N∑
k=1

(akYk + bkZk) = (x, y).

We can rewrite this condition as[
diag(B−1p) diag(q)

diag(q) −diag(p)

][
V 0
0 V

][
a

b

]
=

[
x

y

]
, (3.16)

where V is the N ×N Vandermonde matrix given by Vij = ωji , with nonzero determi-
nant. Hence we can solve (3.16) as long as its leftmost matrix has nonzero determinant,
which requires

(q, p) ∈ U =
{

(q, p)
∣∣ (p2

i /ωi + q2
i

)
6= 0 ∀ 1 ≤ i ≤ N

}
⊂ R2N .

Hence the dynamics (3.15) will be ergodic on the space U × R. The complement of U
in R2N is precisely the Hoover holes, discussed in Section 2.2.3, which is unsurprising
given the perturbation made to the original Nosé-Hoover dynamics was solely through
the artificial variable. We could consider adding another OU process to the momenta
if we wished to wipe out the Hoover holes, though. as the measure of the inaccessible
set will be 0, we consider NHL ergodic on R2N+1 for this potential, where we choose
appropriate initial conditions (q(0), p(0), ξ(0)) ∈ U × R for sampling.

The harmonic case (where U(q) quadratic) is one of the most relevant for molecu-
lar dynamics as many molecular models contain strong bonds modelled with a linear
restoring force, that will prevent the thermostat from thermalizing the system effi-
ciently. For more general potential energy functions it is conjectured that ergodicity
is retained, but the more involved calculation for general U(q) makes computation of
the iterated Lie brackets challenging. This is contrary to Langevin dynamics, where
the strong coupling of the OU process to the momenta made ergodicity much easier to
prove using Hörmander’s condition.
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However, it is precisely the mild stochastic coupling that makes NHL dynamics
often a good choice for a thermostatted dynamics. It introduces a relatively small
perturbation to the overall dynamics that makes for a more gentle thermostat than
Langevin dynamics (4.2) which can corrupt correlation functions for modest choices of
friction. If the goal is to calculate system transport constants using Green-Kubo like
formulas (such as integrated correlation functions in the case of the diffusion constant)
then the NHL thermostat provides ergodic dynamics suitable for computing such quan-
tities. The trade-off is that the system will approach equilibrium more slowly compared
to Langevin dynamics, which thermalizes quickly due to the stronger coupling in every
degree of freedom.

3.3 Non-Newtonian dynamical sampling

If equilibrium sampling is our goal, then in principle we may choose any ergodic dynam-
ics that samples canonically. We may use any artificial variables we wish, as long as we
can recover ρβ when taking the marginal distribution (i.e. integrating out). Specifically,
we seek to sample functions purely of position, then we need not even use momentum
at all, as in the case of Brownian (or Smoluchowski) dynamics [32].

Methods of sampling canonically in equilibrium can be devised that use dynamical
information to evolve the system, but artificially regulate the temperature at each step,
such as velocity rescaling or the Andersen thermostat [5]. Alternately methods can be
devised for sampling that are completely dynamics-free, the most popular being Monte
Carlo (MC) methods [47, 52, 75].

Our focus however will remain on dynamical thermostat methods, where system
trajectories are governed solely by differential equations and require no external or
auxiliary devices to maintain sampling. The thermostat methods introduced so far
have been built upon the Newtonian dynamics encountered in Chapter 2, where in
the case of Langevin and Nosé-Hoover Langevin we have added an Ornstein-Uhlenbeck
process (3.7) to the dynamics to improve ergodicity. There is no reason to only perturb
Newtonian dynamics if our sole goal is equilibrium sampling, we can choose a dynamics
that preserves ρβ and add OU processes in any degrees of freedom we wish (as long as
they are normally distributed) in an effort to sample ergodically (such as GBK schemes
introduced in [67]). There are many options for dynamical systems which leave invariant
the canonical measure, one may consider arbitrary extensions of the dynamical system
by the addition of auxiliary variables, together with interactions which have suitable
invariance properties. Potentially these new dynamics could benefit from improved
stability (in terms of a discretized step size threshold), efficiency (in terms of rate-of-
convergence towards equilibrium) or features amenable to computational exploitation.

To illustrate, we introduce a new GBK method stochastic line sampling (SLS) dy-
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namics as dq
dp
dξ

 =

 ξM−1p

0
−Q−1 pTM−1∇U(q)


︸ ︷︷ ︸

sls:det

dt+

 0
−γpdt+

√
2γ/βM1/2 dW

−λξ dt+
√

2γ′/(Qβ) dw


︸ ︷︷ ︸

sls:ou

, (3.17)

for position q ∈ RN , momentum p ∈ RN and an artificial variable ξ ∈ R with real
positive parameters γ, λ and Q, where β is the inverse temperature and there are
independent noise processes W (a vector of length N) and w (a scalar Wiener process).
Noting that the OU process defining the fluctuations in p is completely decoupled from
q and ξ, it is perhaps more natural to think of the dynamics as a random walk on
the reduced space (q, ξ), where its direction of travel is generated by an auxiliary OU
process.

For small γ the momentum vector varies slowly, and we think of the position q

sampling along the line p in phase space, where the scalar artificial variable ξ determines
the velocity in the direction p. Thus we refer to these dynamics as line sampling.

In order to show that these dynamics sample the canonical position distribution
µβ(q) ergodically, we shall demonstrate that the unique stationary solution to its
Fokker-Planck equation ρsls is the distribution

ρsls(q, p, ξ) = ρnh(q, p, ξ) = ρβ(q, p)× exp(−βQξ2/2)×
√
Qβ

2π
. (3.18)

The evolution of measure for the dynamics is governed by its Fokker-Planck opera-
tor, computed as the sum of the operators corresponding to the additive splitting given
in (3.17),

L∗sls = L∗sls:det + L∗sls:ou.

It is obvious that, as the sum of distinct Ornstein-Uhlenbeck processes,

L∗sls:ouf1(q) exp(−βpTM−1p/2− βQξ2/2) ≡ 0,

for arbitrary f1(q), and hence L∗sls:ouρsls ≡ 0. It remains to show that the deterministic
part also preserves the prescribed measure. Taking the Lie derivative, we can see that

L∗sls:det = −ξM−1p · ∇q +Q−1pTM−1∇U(q)
∂

∂ξ
,
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and hence, for arbitrary f2(p) we have

L∗sls:detf2(p) exp(−βU(q)− βQξ2/2)

= f2(p)Q−1pTM−1∇U(q)
∂

∂ξ
exp(−βU(q)− βQξ2/2)

− f2(p)ξM−1p · ∇q exp(−βU(q)− βQξ2/2),

=
(
βM−1p · ∇U(q)− pTM−1∇U(q)

)
ξ exp(−βU(q)− βQξ2/2)g(p),

= 0.

Therefore L∗sls:detρsls ≡ 0 and hence ρsls is preserved under the dynamics (3.17). To
show that we sample ergodically we apply Theorem 3.14 with

b0 =

 ξM−1p

−γp
−Q−1 pTM−1∇U(q)− γ′ξ

 , bi =


0√

2γ
β M

1/2
i

0

 , bN+1 =


0
0√
2γ
Qβ

 ,
where 1 ≤ i ≤ N , denoting the ith column of M by Mi. Defining

c0 = [bN+1, b0] +
λ√

2λ/(Qβ)
bN+1 =


√

2λ/(Qβ)M−1p

0
0

 ,
it is clear that Hörmander’s condition is satisfied for all (q, p, ξ) ∈ Ω, as

span (b1, b2, . . . bN , bN+1, c1, c2, . . . , cN ) = R2N+1 = Ω,

where

ci = [c0, bi] =

 2β−1
√
γλ/(Q)M−1/2

i

0
0

 ,
for 1 ≤ i ≤ N . Hence the operator L∗sls is hypoelliptic, and we expect the stochastic
line sampling dynamics to be ergodic with respect to the distribution ρsls. Due to the
statistical independence of each of the state variables, we can integrate out with respect
to ξ to recover ergodic canonical sampling with respect to ρβ.

We compare the trajectories and invariant distributions of the non-Newtonian ther-
mostat (3.17) with the three Newtonian-based thermostats: Langevin dynamics (4.2),
Nosé-Hoover dynamics (2.50) and Nosé-Hoover Langevin (3.15). We seek to canonically
sample a one-dimensional system with double-well potential energy function given as

U(q) = (q2 − 1)2.

Choosing parameters β = M = γ = λ = Q = 1 for the methods, we select arbitrary
initial conditions (away from Hoover holes) q(0) = p(0) = 1 and ξ(0) = 0.5. We choose
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Figure 3.1: We plot trajectories (left) and long-time distributions (right) for a num-
ber of thermostatted dynamics. A lack of ergodicity in the case of the deterministic
Nosé-Hoover thermostat prevents sampling ergodically, when compared to the exact
distributions in bold.

our timestep δt = 0.01 sufficiently small to eliminate the possibility of numerical errors
warping the results.

In Figure 3.1 we give a realization of a trajectory computed using each dynam-
ics, in the [q, p] plane. The Nosé-Hoover and Nosé-Hoover Langevin trajectories are
significantly smoother than the others, indicating that these offer much more gentle
thermostat techniques to reduce the perturbation to the dynamics. However, the Nosé-
Hoover thermostat appears to remain stuck in a periodic cycle preventing exploration
of the space. This behaviour persisted using other initial conditions and parameter
values, indicating that it is symptomatic of a lack of ergodicity in the system.

By contrast, it is clear that the non-Newtonian thermostat explores the space in a
very different way to the Newtonian-based thermostats. However, even in this small
model we find that this is not necessarily advantageous, as the space is explored very
slowly along the line p (whose direction also changes slowly). It is possible that this

69



different type of exploration of the phase space could be advantageous in certain models
(for example the linear stability threshold for step size may be different), however we
find that exploiting this difference may involve tuning the three parameters γ, Q and
λ, making it more difficult to work with than Langevin dynamics (which only requires
one parameter γ). As such, we think of Stochastic Line Sampling as an illustrative
example, rather than as a practical option.

We also plot a histogram of the distributions of the position and momentum in Fig-
ure 3.1, computed from a single trajectory of 109 discrete points. Overlaying the exact
expected result ρβ, we can see the three stochastic methods perform excellently, whereas
the results from using the Nosé-Hoover thermostat reveal extremely poor sampling as
a result of the trajectory being trapped.

We would expect that using Nosé-Hoover Chains (2.51) may provide deterministic,
ergodic sampling, by using a sufficiently long chain of artificial variables and correctly
chosen mass parameters Qi. However, the choice of these parameter values may prove
crucial to the ergodicity of the dynamics, was shown in Figure 2.8. Therefore, we
suggest that for equilibrium canonical sampling it is far more efficient to use a stochastic
thermostat, in comparison to the ergodicity issues and additional parameter tuning
required in the case of deterministic thermostats.
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Chapter 4

Splitting methods for Langevin

dynamics

In this chapter we provide a framework for the development of suitable numerical
methods for Langevin dynamics and rigorous numerical analysis of the sampling bias
introduced by the discretization, by considering a splitting (additive decomposition)
approach similar to the work presented in Chapter 2. We present the results from work
with B. Leimkuhler in [68] along with work completed in collaboration with G. Stoltz
in Sections 4.1 and 4.3. Section 4.1 defines the splitting strategy we will consider in
the following analysis, as well as presenting a framework for other strategies. Section
4.3 describes the behaviour of the discretization schemes in the case of infinite friction
(the overdamped regime of Langevin dynamics), where one method is shown to have a
superconvergence property owing to a cancellation at leading order.

Section 4.2 combines work for error estimates in harmonic models, originally pre-
sented in [69], with new results computing error estimates using a small nonlinear
perturbation. As the harmonic case is often the most relevant for much of molecular
dynamics simulation, the work gives insight into many of the results presented in Sec-
tion 5.3, where we apply the schemes to a solvated biomolecule. Additionally we give
some results for the stability of Langevin dynamics for linear systems when using mul-
tiple timestepping schemes, that we will directly to the results for the rRESPA scheme
in Section 2.1.5.

4.1 Foundations for stochastic splitting

We focus on the weak accuracy properties of a numerical method, which describes the
corruption in the law of trajectories in the large time limit. In principle such errors can
be eliminated completely through the use of Metropolis acceptance tests [13, 29, 74],
though this can destroy the dynamical properties of the system, or become prohibitively
costly to implement due to the rejection criteria.

In recent years, there has been widespread interest in multiscale methods for en-
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hanced sampling [10, 57, 62, 81] and such methods likely offer the best approach to
bridging the timescale gap. We observe that work on enhanced numerical schemes for
computing thermodynamically sound trajectories in molecular dynamics remains es-
sential, as it plays a crucial underpinning role in all the enhanced sampling approaches.

We will not make explicit mention of hybrid Monte-Carlo [29, 74] or other schemes
based on Metropolis correction [13], although these could be used in conjunction with
several of the splitting methods given for Langevin dynamics. The improvement in
thermodynamic sampling obtained through the use of more accurate Langevin inte-
grators may, in some cases, provide an alternative to Metropolis-based correction in
the practical setting. All methods under discussion require one force evaluation per
iteration, and hence have practically the same computational cost.

Methods constructed and analyzed will be based upon splitting the SDE vector
field just as for deterministic molecular dynamics, where this type of analysis has also
been used for the correction of averages [11, 25]. The approach used here may be
compared to other recent works on stochastic numerical methods, and, in particular
[1, 12, 15, 82, 87, 108, 111, 130]. Our approach differs in that we seek the explicit
quantification of the errors (the perfect sampling bias) introduced in discretization,
through the use of the Baker-Campbell-Hausdorff formula. In typical cases which
would be relevant for molecular simulation, the error introduced in averages using such
methods would be second order in the timestep (i.e. would go to zero quadratically as
the step size is reduced).

Our focus on the error arising from discretization is motivated by the extremely
long-time simulations that are conducted in many molecular dynamics applications. Of
course in practical simulation, many other sources of statistical error exists. Sampling
error is generally considered to be the dominant error term in numerical simulation
This error comes from two sources: generating a finite number of points (or samples)
in our discretized trajectory, and integrating over a finite time interval (as the equality
between time and space average is only in the limit of infinite time).

As sampling error is seperate from discretization error, we shall assume that we
are able to conduct perfect sampling of the dynamics’ native distribution using our
numerical method, and hence the only observed errors will be the perfect sampling bias
introduced in the numerical discretization. We will discuss other sources of error for
particular examples.

4.1.1 Preliminaries

We shall consider a system described by n particles in a d-dimensional setting, with
N = dn the total dimensionality of the instantaneous system position and momenta q, p
respectively. While the momenta are unrestricted (p ∈ RN ), we shall consider only the
case of compact position space for the following analysis. Periodic boundary conditions
shall be assumed, so that q ∈M = (LT)N , where T = R/Z is the unit torus and L > 0
is the box length (this assumption is commensurate with practical MD simulation). We
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write the full state space as Ω where (q, p) = z ∈ Ω =M× RN .
The system Hamiltonian is

H(q, p) = pTM−1p/2 + U(q),

for diagonal mass matrix M , and a C∞ potential energy function U :M→ R (bounded
below) describing all particle interactions. The restriction on the smoothness of the
potential greatly simplifies the later analysis, but in the molecular dynamics context it
can seem far too restrictive. One of the most commonly used potential energy functions
is the Lennard-Jones potential

Ulj(r) =
σ1

r12
− σ2

r6
,

for interatomic separation r and positive constants σi > 0. This potential emulates
the strong repulsion felt between two particles, evidently blowing up as two particles
come in close proximity. However, the salient features of this potential, such as the
steep r−12 wall, can be replicated through the use of smooth functions such as Morse
or Buckingham potentials. In practice, configurations remain far from singular points,
and it is reasonable to expect that identical results are achieved either by restricting
the domain or using a smooth cutoff to remove the singularity.

Our goal is to compute integrals with respect to the canonical distribution

ρβ(q, p) = Z−1e−βH(q,p) = µβ(q)κβ(p), (4.1)

µβ(q) = Z−1
µ e−βU(q), κβ(p) = Z−1

κ e−βp
TM−1p/2,

where β = 1/kBT for Boltzmann’s constant kB and temperature parameter T and

Z =
∫

Ω
e−βH(q,p)dqdp, Zµ =

∫
M
e−βU(q)dq, Zκ =

∫
RN

e−βp
TM−1p/2dp.

The system momenta are Gaussian distributed according to κβ while the configurational
distribution µβ is significantly more complex. A robust and flexible choice for sampling
the canonical distribution ergodically is given by Langevin dynamics,

dq = M−1p dt,

dp = −∇U(q) dt− γpdt+
√

2γ/βM1/2 dW,
(4.2)

where γ > 0 is a (free) scalar parameter modelling friction and W = W (t) denotes a
vector of N i.i.d. Wiener random processes (white noise) that approximate the effects
of a coupled heat bath bombarding the system under study. The infinitesimal generator
for Langevin dynamics, computed from the L2 adjoint of its Fokker-Planck operator
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L∗LD (3.11) or directly using Itō’s formula in (3.5), is given as

LLD = M−1p · ∇q −∇U(q) · ∇p − γp · ∇p +
γ

β
∇p · (M∇p) ,

where for any sufficiently smooth continuous function φ(z), we have

E [φ(z(t)) | z(0) = z0 ] =
(
etLLDφ

)
(z0),

for the evolution operator etLLD . Choosing a Lyapunov function

Ks(q, p) = 1 +
(
pT p

)s
,

for s ∈ N∗, gives the existence of solutions to (4.2) for all time (by, for example, [98,
Theorem 5.9]). We will make make use of hypocoercivity estimates, which give sharper
bounds on the rate of convergence toward the invariant distribution (the spectrum
of LLD). Standard hypocoercivity results [51, 60, 125] demonstrate the existence of
constants K,λ > 0 (whose values depend on the friction γ) such that for any γ, t > 0
we have ∥∥etLLD

∥∥
B(H1)

≤ Ke−tλ,

where ‖ · ‖B(H1) denotes the operator norm on the subspace

H1 =

{
ϕ ∈ H1(ρβ)

∣∣∣∣∣
∫

Ω
ϕρβ dz = 0

}
⊂ H1(ρβ),

endowed with the norm ‖ϕ‖2H1(ρβ) = ‖ϕ‖2 + ‖∇qϕ‖2 + ‖∇pϕ‖2. Notably, the inverse
operator is bounded, where ∥∥L−1

LD

∥∥
B(H1)

≤ K

λ
.

This bound will be important in the upcoming analysis, as

4.1.2 Decomposition into pieces A, B and C

For general potential energy functions U(q), in order to compute consistent trajectories
for the dynamics (4.2) we require the use of an approximation employing a discretization
scheme in time (spatial discretization is impractical in the case of a large number
of particles). We shall focus on numerical methods built by splitting the Langevin
dynamics vector field into additive pieces, and solving each piece exactly in sequence,
as if we were building a symplectic integrator for deterministic dynamics.

Splitting methods for Langevin dynamics have been considered in the past [7, 12, 16,
73, 82, 107, 109, 111, 117] but a wide variety of schemes can be constructed by splitting
and the rational basis for selecting one scheme over another is seldom presented.

Our approach differs in that we offer a new splitting strategy, and a strict focus
on the error of the invariant (numerical) measure being sampled by the discretization
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scheme. Many schemes are evaluated on the basis of their temperature control (par-
ticularly on the convergence of the average of kinetic energy), while we aim to give a
more thorough treatment of the numerical error introduced through discretization.

Just as in Chapter 2, we shall consider the discretized numerical trajectory as sam-
pling a perturbed measure that varies with step size. However, unlike in Chapter 2, we
do not construct a perturbed vector field that we associate to our numerical scheme (see
[130]). Instead we shall exploit the Baker-Campbell-Hausdorff formula demonstrated
for backward error analysis in the deterministic setting (see Section 2.1.3) to approx-
imate the generator of the associated numerical method formed by a composition of
splitting pieces. This generator can be viewed as a perturbation of the exact generator
for Langevin dynamics introduced in Chapter 3.

However, the increased complexity of Langevin dynamics (4.2) over Newtonian dy-
namics (2.4) gives us additional options for splitting the vector field. One option is
to use a splitting strategy that divides the dynamics into position and momentum
components as in [82]. The splitting pieces become[

dq
dp

]
=

[
M−1p dt

0

]
︸ ︷︷ ︸

A

+

[
0

−∇U(q) dt− γpdt+
√

2γ/βM1/2 dW

]
︸ ︷︷ ︸

S

, (4.3)

denoted A and S. As in Section 2.1.2, we solve the vector fields in sequence to create
the method, for example, the stochastic position Verlet method is given by JASAK,
where we extend our notation from the first chapter in the obvious way.

The flow map for the S piece is given by

ΦS,t

([
q0

p0

])
=

[
q0

e−γtp0 + 1−e−γt
γ ∇U(q0) + β−1/2

√
1− e−2γtM1/2R(t),

]
,

for R(t) ∼ N (0, t) a vector of N random noise processes. In the case of a large friction
parameter γ, the influence of the force term on the dynamics will become extremely
small, and in the limit of infinite γ methods using this choice of splitting will become
inconsistent (the force term is wiped out completely, leaving no information about U(q)
in the dynamics). Hence we shall consider coupling the force to the random noise term
as evidently not suitable in the case of large friction, although it is desirable to keep
the friction and noise terms of the Ornstein-Uhlenbeck process together, as we are able
to solve exactly.

An alternative is offered by Owhadi and Bou-Rabee in [12], who suggest a geometric
Langevin algorithm (GLA) splitting, decomposing the dynamics into its microcanonical
part and Ornstein-Uhlenbeck part[

dq
dp

]
=

[
M−1pdt
−∇U(q) dt

]
︸ ︷︷ ︸

mc

+

[
0

−γpdt+
√

2γ/βM1/2 dW

]
︸ ︷︷ ︸

OU

. (4.4)
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Using a general order s symplectic method to evolve the microcanonical dynamics,
followed by exactly solving the OU process, the results of [12] demonstrate that for a
smooth observable ϕ we obtain∫

Ω
ϕρ̂δtdz =

∫
Ω
ϕρβdz +O(δts).

This gives the opportunity to create arbitrary high weak order Langevin dynamics
methods by combining the Yoshida-type methods introduced in Section 2.1.4 with the
exact OU solve. If we are able to solve the Newtonian part of the system exactly (or
in practice to arbitrarily high order through, for example, numerical quadrature) then
though the evolution of the distribution through time will be accurate to only first-
order, we achieve perfect sampling of averages in the infinite-time limit. Of course, in
most cases this is computationally prohibitive.

Utilizing a splitting scheme that isolates all terms involving the friction γ away
from the force term means that we would expect this strategy to be more fruitful at
evolving the system in the high (or infinite) friction regime. However, examples will be
given to show that for some choices of symplectic method we can still fail to sample ρβ
consistently in the case of infinite friction.

We shall provide a framework to analyze and describe a wide class of Langevin
dynamics splitting methods, by generalizing the GLA splitting strategy into what we
term the ABC splitting:[

dq
dp

]
=

[
M−1p dt

0

]
︸ ︷︷ ︸

A

+

[
0

−∇U(q) dt

]
︸ ︷︷ ︸

B

+

[
0

−γpdt+
√

2γ/βM1/2 dW

]
︸ ︷︷ ︸

C

, (4.5)

where the A and B pieces of the vector field are the same as was introduced in Section
2.1.2, and the OU process is labelled C for clarity of notation (in contrast to labelling
it O in [68, 69]). We can solve each part of the vector field (when taken independently)
exactly, with associated flow maps

ΦA,δt

([
q0

p0

])
=

[
q0 + δtM−1p0

p0

]
, ΦB,δt

([
q0

p0

])
=

[
q0

p0 − δt∇U(q0)

]
,

ΦC,δt

([
q0

p0

])
=

[
q0

e−γtp0 + β−1/2
√

1− e−2γtM1/2R(t)

]
.

(4.6)
As the splitting pieces A and B correspond to those used for deterministic Hamiltonian
dynamics, the generators for the evolution of the expectation of observables is given by
their Lie derivatives as derived in Section 2.1.2. The generator for the C piece (as seen
in Chapter 3) comes from Itō’s lemma, where we make explicit the dependence on the
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friction by introducing a friction independent operator, giving

LAψ = M−1p · ∇qψ, LBψ = −∇U(q) · ∇pψ, LCψ = γLC̄ψ,

LC̄ψ = −p · ∇pψ + β−1∇p · (M∇p)ψ,

with the generator of Langevin dynamics given as

LLD = LA + LB + LC .

Its evolution of measure is given by taking its L2 adjoint, where

L∗Aψ = −LAψ, L∗Bψ = −LBψ, L∗Cψ = γL∗C̄ψ,

L∗C̄ψ = ∇ · (pψ) + β−1∇p · (M∇p)ψ.

Our line of attack for the numerical analysis of Langevin dynamics discretization
methods is informed by our work in Section 2.1.2 for deterministic dynamics and draws
on the work of Talay and Tubaro [116] for expansions of invariant measures in a series
of δt. We consider the numerical method to sample from a perturbed problem exactly,
where there exists some generator corresponding to its perturbed dynamics. We use a
macroscopic approach by working directly with the perturbed generator for the numer-
ical process, as in [27, 79]. The generator for the numerical method L̂δt is found exactly
as in the symplectic case, by computing the product of exponentials in sequential order.
Moreover, the evolution of distribution is governed by its adjoint, with

∂

∂t
ρ(q, p, t) = L̂∗δtρ(q, p, t),

with a unique nontrivial stationary (invariant) distribution

L̂∗δt ρ̂δt ≡ 0. (4.7)

For an order s method, we write the adjoint of the generator for the numerical method
by perturbing the exact operator

L̂∗δt = L∗LD + δtsL∗s + δts+1L∗s+1 + . . . . (4.8)

In light of (4.7) it makes sense to write

ρ̂δt = ρβ
(
1 + δtsfs(q, p) + δts+1fs+1(q, p) + . . .

)
, (4.9)

where the perturbation functions f(q, p) satisfy the PDE (4.7). This implies that the
error introduced by a numerical method is itself a stationary average∫

Ω
φ(q, p) ρ̂δt dqdp−

∫
Ω
φ(q, p) ρβ dqdp = δts

∫
Ω
φ(q, p)fs(q, p) ρβ dqdp+O(δts+1).

77



δt=0.005 δt=0.02 δt=0.025 δt=0.03 δt=0.035 δt=0.04

Increasing timestep

Figure 4.1: Invariant configurational distribution functions for the JABCK scheme are
computed through simulation, using a planar potential energy function with two dis-
tinct basins connected by a narrow transition corridor. We plot distributions computed
at various step sizes in the plane, where high/low intensity is coloured red/blue respec-
tively. At simulations with a larger timestep we can see a qualitative change in the
landscape, with the bridge between the two regions disappearing. Equilibrium averages
as well as transport coefficients (such as the diffusion constant) will be perturbed by
the corruption of ρβ.

By solving the PDE (4.7) for the perturbation functions, computed numerical averages
can be corrected to higher orders of δt.

The correction of such averages is important for molecular dynamics simulations,
where the discretization error at large timesteps can warp the potential energy land-
scape to such a degree that it qualitatively influences the system behaviour (see Figure
4.1). We write the evolution operator for such numerical methods as Pδt, where

Pδtϕ(z) = E
(
ϕ (zk+1)

∣∣∣zk = z
)
.

where the subscript on zk indicates an iteration index. The form of this operator will
vary between methods as the generator L̂δt in (4.7) is method-specific. In order to
make clear which method we refer to we shall denote the method as superscript. For
example in the case of the method JABCK, we write

PJABCK
δt = eδtLA eδtLB eδtLC ,

corresponding to the evolution operator for the update scheme

qn+1 = qn + δtM−1pn,

pn+1/2 = pn − δt∇U(qn+1),

pn+1 = e−γδtpn+1/2 + β−1/2
√

1− e−2γδtM1/2Rn,

(4.10)

where Rn ∼ N (0, 1) is a vector of N independent normal random numbers. This
method performs the Symplectic Euler method (sE-AB) followed by an OU exact solve,
making this method one of the class of GLA methods. Note also, that in the large
friction limit the force is again wiped out by the OU process, making this method

78



inconsistent in this regime. This method is referred to GLA-1 in [12], and is shown to
give a first-order error in observable averages.

There are five other first-order methods obtained by composing the three update
operators in the ABC splitting so that the resulting method is consistent and only
performs each update once (we refer to such methods as elementary first-order schemes).
Of these six such schemes, we can split them into two classes

JABCK, JBCAK, JCABK, (4.11)

and

JACBK, JCBAK, JBACK. (4.12)

Iteration of a method in (4.11) or (4.12) can be easily related to another method on the
same line, as these schemes share a common sequence of operations. Other first-order
methods exist, for example the scheme JABCAK is first-order and belongs to the class
of methods in (4.11).

The precise relation between methods that share a common sequence will be made
explicit in Lemma 4.30. It is worth noting that none of these elementary first-order
schemes is consistent in the limit γ →∞.

By employing a Strang (symmetric) splitting approach, we can create six second-
order schemes which can be divided similarly into three classes of method

JABCBAK
and

JCBABCK
,

(i)

JACBCAK
and

JBCACBK
,

(ii)

JBACABK
and

JCABACK
.

(iii)

(4.13)

Methods of class (ii) interpose the B step between two C steps, and hence at infinitely
large friction it is clear the force will be completely wiped out by the redrawing of p.
The two schemes in (ii) must therefore be inconsistent with the dynamics at infinite
friction. It should be noted that none of the schemes considered in (4.13) can be
classed as GLA-type schemes, which instead involve only a single C step at the end of
the deterministic iteration (and as such, are not symmetric).

Other symmetric second-order schemes can be created with the same alphabet,
for example our framework allows us to consider arbitrary symmetric schemes such as
JABCACBAK, though the complexity involved makes such analysis undesirable for no
potential gain. Additionally, these methods could come at a greater computational cost
as they may require more than one force evaluation per timestep. We shall consider
only the schemes of class (i) and (iii) above, and refer to these as the elementary
second-order methods.
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For all such schemes, and for functions in L∞Ks , where

L∞Ks =

{
ϕ measurable

∣∣∣∣∣ ϕ(q, p)
Ks(q, p)

∈ L∞(ρβ)

}

endowed with the norm
‖ϕ‖L∞Ks =

∥∥∥∥ ϕKs
∥∥∥∥
L∞

,

we have the following important ergodicity result:

Theorem 4.14 (Ergodicity of numerical schemes). For fixed s∗, there exists a δt∗ such
that for any positive, finite γ and any 0 < δt < δt∗, we have that the evolution operator
Pδt, for any composition scheme given in (4.11-4.13), has a unique invariant probability
measure ρ̂δt with finite moments ∫

Ω
Ks ρ̂δtdz <∞, (4.15)

for 1 ≤ s ≤ s∗. There exists constants λ,K > 0 such that∣∣∣∣Pnδtf(q, p)−
∫

Ω
f ρ̂δtdz

∣∣∣∣ ≤ KKs(q, p)e−λn‖f‖L∞Ks , (4.16)

for all n ∈ N , all f ∈ L∞Ks and almost all z ∈ Ω.

The proof of the theorem follows immediately from [49] under two assumptions,
which we show to hold from the definition of the schemes themselves. We will demon-
strate proofs in the case of the JBACK scheme, which has concise update

qk+1 = qk + δtM−1pk − δt2M−1∇U(qk), (4.17)

pk+1 = e−γδt (pk − δt∇U(qk)) +

√
(1− e−2γδt)M

β
Rk. (4.18)

with Rk a vector of N i.i.d. normal random numbers distributed as N (0, 1).
Proofs given will use the update formula in the case of the JBACK scheme (other

methods follow very similar lines and are omitted).

Lemma 4.19 (Uniform Lyapunov condition). Consider the evolution operator Pδt for
any composition scheme given in (4.11-4.13), with a Lyapunov function

Ks = 1 + (p · p)s .

For any s∗ ∈ N∗, there exists a δt∗ > 0 and constants C1, C2 > 0 such that for
0 < δt < δt∗ and 1 ≤ s ≤ s∗

PδtKs ≤ aδtKs + bδt, 0 ≤ aδt ≤ e−C1δt, 0 ≤ bδt ≤ C2δt. (4.20)
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Notably, choosing any T > 0, we have

PdT/δteδt Ks ≤ e−C1TKs + C2/C1. (4.21)

Proof. We will initially prove the lemma in the case s = 1, before moving to the slightly
more involved cases where s > 1. Writing α = exp(−γδt) we premultiply (4.18) by its
transpose and take expectations to find

E
(
pTk+1pk+1

∣∣∣Fk) = α2 (pk − δt∇U(qk))
T (pk − δt∇U(qk)) + β−1

(
1− α2

)
Tr (M) ,

≤ α2pTk pk + 2δt‖∇U‖ |pk|+ δt2‖∇U‖2 + β−1
(
1− α2

)
Tr (M) ,

≤
(
α2 + ε2δt

)
pTk pk +

(
ε−2δt+ δt2

)
‖∇U‖2 + β−1

(
1− α2

)
Tr (M) ,

where ε > 0, by virtue of the relation

2δt‖∇U‖ |pk| ≤ 2δt‖∇U‖ |pk|+ δt
(
ε|pk| − ε−1‖∇U‖

)2 = ε2δt|pk|2 + ε−2δt‖∇U‖2.

Choosing ε2 = γ gives

α2 + ε2δt = e−2γδt + γδt ≤ e−γδt/2,

for sufficiently small δt. Hence

E
(
pTk+1pk+1

∣∣∣Fk) ≤ aδtpTk pk + b̃δt,

for
aδt = e−γδt/2, and b̃δt =

2δt
γ
‖∇U‖2 +

4γδt
β

Tr (M) ,

where δt is sufficiently small. Hence for the Lyapunov function K1 = 1 + pT p, we have

E
(
K1(qk+1, pk+1)

∣∣∣Fk) ≤ 1 + aδtp
T
k pk + b̃δt = aδtK1(qk, pk) + bδt,

with
bδt = b̃δt + 1− aδt,

giving (4.20). The case s > 1 follows similarly. We will use the fact that for some ε > 0,
we can bound powers of x ∈ R by considering

|x| ≤ 1
ε

=⇒ |x|2s−m ≤ 1
ε2s−m

, |x| ≥ 1
ε

=⇒ |x|2s−m ≥ εm|x|2s,

for 0 ≤ m ≤ 2s, and hence

|x|2s−m ≤ εm|x|2s +
1

ε2s−m
. (4.22)

Denoting the lth component with a subscript [l] and working componentwise, we take
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powers of (4.18) to obtain

p2s
[l],k+1 =

α(p[l],k − δt
∂

∂q[l]
U(qk)

)
+

√
(1− α2)m[l]

β
R[l],k

2s

,

=
2s∑
i=0

(
2s
i

)
αi
(
p[l],k − δt

∂

∂q[l]
U(qk)

)i√(1− α2)m[l]

β
R[i],k

2s−i

,

≤
2s∑
i=0

i∑
j=0

(
2s
i

)(
i

j

)
αiδti−j |p[l],k|j

∥∥∥∥ ∂

∂q[l]
U

∥∥∥∥i−j
√(1− α2)m[l]

β
R[l],k

2s−i

,

≤ α2s|p[l],k|2s +K

2s−1∑
i=0

(
2s
i

)
αi|p[l],k|i

√(1− α2)m[l]

β
R[l],k

2s−i

+ αδtK
2s∑
i=1

i−1∑
j=0

(
2s
i

)(
i

j

)
|p[l],k|j

√(1− α2)m[l]

β
R[l],k

2s−i

,

using K = max(1,
∥∥∂/∂q[l]U

∥∥2s). Taking expectations, only even powers of R[l],k will
survive. Hence, bounding 1 − α2 ≤ 4γδt and applying (4.22), we obtain (4.20) by
choosing ε sufficiently small. The formula (4.21) follows straightforwardly from iterating
(4.20).

Lemma 4.23 (Uniform minorization condition). Consider

C =
{

(q, p) ∈ Ω
∣∣ |p| < pmax

}
,

with fixed pmax >
√

2C2/C1, where constants C1, C2 are chosen as in Lemma 4.19.
There exists constants δt∗ > 0 and a ∈ (0, 1) with probability measure ν such that for
any bounded measurable non-negative function f , we have

inf
z∈C

(Pδtf(z)) ≥ a
∫

Ω
f(z)ν(z) dz (4.24)

for all 0 < δt < δt∗.

Proof. This proof is made significantly easier by virtue of the compactness of the posi-
tion space M. It is sufficient to prove the lemma in the case of f being the indicator
function for Borel sets Aq ⊂ M and Ap ⊂ RN with A = Aq × Ap ⊂ Ω. The goal is to
show that

P
(
z1 ∈ A

∣∣∣ z0 ∈ C
)
≥ aν(A), (4.25)

where z1 = Pδt(z0). Writing (4.17) as

pk+1 = p̂k+1 +Gk+1, Gk+1 =

√
(1− e−2γδt)M

β
Rk,
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we have that

P
(
z1 ∈ A

∣∣∣ z0 ∈ C
)

= P
(

[0, G1] ∈ (Aq − q1)× (Ap − p̂1)
∣∣∣ [q0, p0] ∈ C

)
,

while by the boundedness of the position space, there exists a constant E > 0 such that

|q1| < E, |p̂1| < E.

Each component of the variable G1 ∈ RN is a Gaussian random variable, with

µ = mean(G1) = 0, σ2 = var(G1) =
(1− e−2γδt)M

β
,

and hence for any X ⊂M and Y ⊂ RN , we have

P([0, G1] ∈ X × Y ) = Z−1

∫
X×Y

exp(−yTσ−2y/2) dx dy,

Z =
∫

Ω
exp(−yTσ−2y/2) dx dy,

for x ∈M and y ∈ RN . This gives

P
(

[0, G1] ∈ (Aq − q1)× (Ap − p̂1)
∣∣∣ [q0, p0] ∈ C

)
= Z−1

∫
(Aq−q1)×(Ap−bp1)

exp(−yTσ−2y/2) dx dy,

and thus we define the probability measure

ν(Aq ×Ap) = Z−1
ν inf
|Q|<E
|P |<E

∫
(Aq−Q)×(Ap−P )

exp(−yTσ−2y)dxdy,

with appropriate normalization constant Z−1
ν . This gives (4.25).

The existence and uniqueness of the method’s invariant measure ρ̂δt is given by
Theorem 1.2 in [49] (where assumption 1 and 2 in [49] are given by Lemmas 4.19 and
4.23 respectively), for the timestep δt chosen sufficiently small. The discrete trajectories
generated by Pδt will be ergodic in the sense that their infinite time average will sample
ρ̂δt.

Proof of Theorem 4.14. The equation (4.16) is given by [49]. It remains to show the
finiteness of the moments of the distribution in equation (4.15). Averaging (4.20) with
respect to the numerical invariant measure gives∫

Ω
PδtKsρ̂δt dz ≤ aδt

∫
Ω
Ks ρ̂δt dz + bδt,

for constants aδt and bδt as in Lemma 4.19. Using the invariance of the distribution
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under Pδt, we have ∫
Ω
PδtKsρ̂δt dz =

∫
Ω
Ksρ̂δt dz,

and hence ∫
Ω
Ksρ̂δt dz ≤ bδt

1− aδt
<∞,

as required.

The theorem states that the approximation scheme inherits the ergodicity property
of Langevin dynamics and that in the infinite-time limit, distributions of initial points
propagated using the discretization scheme will converge exponentially fast towards
some invariant measure ρ̂δt, dependent on the timestep δt. This is very important, as
it allows us to bound on the operator itself for functions whose average vanishes with
respect to the numerical invariant measure, which in turn allows us to bound the terms
appearing in the computed integrals.

As we shall require some control over the derivatives of the observables, we introduce
the Sobolev space W i,∞

s for i ∈ N∗, defined recursively as

W0,∞
s = L∞Ks , W i,∞

s =

{
ϕ ∈ L∞Ks

∣∣∣∣∣∇ϕ ∈ (W i−1,∞
s

)2N}
,

and define the space of sufficiently smooth functions S to be such that for any ϕ ∈ S
and for any m ∈ N, there exists an s ∈ N such that ϕ ∈ Wm,∞

s . If the goal of the
analysis is to simply compute the order of the method, and not find an explicit form
for the perturbing error terms, then we do not need such regularity conditions on the
derivatives (such as [12]). In contrast, for a method of (weak) order k, the goal of our
error analysis will be to find a smooth correction function fk such that∫

Ω
ϕ(z) ρ̂δt dz =

∫
Ω
ϕ(z) ρβ dz + δtk

∫
Ω
fk(z)ϕ(z) ρβ dz + δtk+1rk,δt, (4.26)

for any sufficiently smooth observable ϕ(q, p) and where the remainder term rk,δt is
uniformly bounded for sufficiently small step size.

In order to show that the remainder term is uniformly bounded, we shall make use
of the fact that the space

S̃ =
{
ϕ ∈ S

∣∣∣∣ ∫ ϕρβ = 0
}
, (4.27)

is stable under L−1
LD. Such results can easily be obtained for elliptic operators [27],

and can be generalized to Langevin dynamics through the results of Talay [115], under
appropriate assumptions on the Hamiltonian. Hence, for any sufficiently small δt, we
have that for any ϕ ∈ S̃,

L−1
LDϕ = R ∈ S̃,

84



with ∣∣∣∣∫
Ω
Rρ̂δtdz

∣∣∣∣ ≤ C <∞, (4.28)

for some C > 0.
For a sufficiently smooth function ϕ, we shall denote the resulting average computed

using a composition scheme whose evolution operator has invariant measure ρ̂δt, as

〈ϕ〉δt :=
∫

Ω
ϕ ρ̂δt dz,

where 〈ϕ〉δt is the observed average at step size δt. This is in contrast to the exact
average

〈ϕ〉 :=
∫

Ω
ϕρβ dz.

The next section will concern finding explicit error estimates (〈ϕ〉δt−〈ϕ〉) for particular
discretization schemes.

4.1.3 Computing error estimates for general systems

Our goal is to quantify the errors introduced in the averages computed from schemes
composed of sequential solves of the vector fields introduced in the ABC splitting (4.5).
The evolution operator for a method is computed through a product of semigroups,
where each term corresponds to the sequence of updates codifying the method. Just as
in the backward error analysis introduced in Section 2.1.2, we use a Lie-Trotter splitting
where each individual evolution is exactly integrable.

In the ABC splitting, each update term in a scheme is given by one the flow maps
in (4.6), where the overall evolution operator for a method with M stages is

Pδt = eδt
bLδt = eδtL1 eδtL2 . . . eδtLM ,

where each Li is a scalar multiple of one of LA,LB or LC . Each elementary evolution
semigroup is well-defined, and we can even analytically write down their action:(

etLAφ
)

(q, p) = φ(q + tM−1p, p),(
etLBφ

)
(q, p) = φ(q, p− t∇U(q)),

(
etLCφ

)
(q, p) =

∫
RN

φ

(
q, e−γtp+

√
1− e−2γt

β
M1/2x

)
e−|x|

2/2

(2π)N/2
dx.

The BCH formula (2.30) can be used to compute L̂δt directly, though at higher orders
it becomes cumbersome to work with due to the large number of commutators required
to be computed. The resulting expansion for the generator is purely formal, and gives
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us no guidance on its convergence. We opt instead to make use of Taylor’s theorem

Pδt = P0 + δt
dPt
dt

∣∣∣∣
t=0

+ . . .+
δtn

n!
dnPt
dtn

∣∣∣∣
t=0

+
δtn+1

n!

∫ 1

0
(1− θ)n dn+1Pt

dtn+1

∣∣∣∣
t=θδt

dθ,

with

dPt
dt

= L1 e
δtL1 eδtL2 . . . eδtLM + eδtL1 L2e

δtL2 . . . eδtLM + . . .+ eδtL1 eδtL2 . . . LM eδtLM .

We can see that an intrinsic order is preserved in this sequence through repeated dif-
ferentiation, so that the operator L1 will always be to the left of the operator LM . We
introduce the linear ordering operator T that permutes operators into an order defined
by the splitting from left to right, for example

T
[
(L1 +L2 +L3)2

]
= T

[
L2

1 +L2
2 +L2

3 +L1L2 +L2L1 +L1L3 +L3L1 +L2L3 +L3L2

]
,

= L2
1 + L2

2 + L2
3 + 2L1L2 + 2L1L3 + L2L3.

Applying this operator simplifies notation to

dnPt
dtn

= T [(L1 + . . .+ LM )n Pt] ,

and hence

Pδt = Id + δtT [L1 + . . .+ LM ] + . . .+
δtn−1

(n− 1)!
T
[
(L1 + . . .+ LM )n−1

]
+
δtn

n!
T [(L1 + . . .+ LM )n] +

δtn+1

n!

∫ 1

0
(1− θ)nT

[
(L1 + . . .+ LM )n+1 Pθδt

]
dθ.

(4.29)
This formula is very important in our analysis, as it allows us to find an explicit form of
the remainder terms in the perturbed series. This gives our analysis a distinct advantage
over the formal analysis, using the generator rather than the evolution operator Pδt, as
we can bound the remainder terms.

However, it is often more convenient to compute the terms in the series itself by
computing L̂δt using the BCH formula and matching powers of δt in the expansion

Pδt = Id + δtL̂δt +
δt2

2
L̂2
δt + . . . ,

yielding a more convenient form

T [(L1 + . . .+ LM )n] = (L1 + . . .+ LM )n + Sn,

where Sn is a sum of commutator terms involving the Li. This is particularly useful to
note, as for our purposes (L1 + . . .+ LM )n = LnLD, leading to many cancellations when
taking products.

The form of the correction function itself is method dependent, and hence before
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proceeding with the computation of the correction terms for schemes, we will introduce
the following result allowing us to relate algorithms which have a different final or initial
term, but the same core iteration (such algorithms were grouped together in (4.13)).

Lemma 4.30 (TU Lemma). Consider two ergodic numerical schemes for Langevin
dynamics, with evolution operators Qδt and Pδt and respective invariant measures ρ̂δt,Q
and ρ̂δt,P . If

(Qδt)n = Tδt (Pδt)n−1 Uδt, (4.31)

for all n > 0 for some bounded operators Tδt and Uδt, then∫
Ω
φ(q, p) ρ̂δt,Qdqdp =

∫
Ω

(Uδtφ(q, p)) ρ̂δt,Pdqdp, (4.32)

for all bounded, measurable functions φ(q, p).

Proof. The proof follows directly from the assumption (4.31) and ergodicity estimates.
Assuming a smooth initial distribution ρ0,∫

Ω
φ(q, p) ρ̂δt,Qdqdp = lim

n→∞

∫
Ω

[(Qδt)n φ(q, p)] ρ0 dqdp,

= lim
n→∞

∫
Ω

[
Tδt (Pδt)n−1 (Uδtφ(q, p))

]
ρ0 dqdp.

The lemma then follows by the ergodic property of the method with evolution operator
Pδt, giving the convergence of distribution in the limit.

The effect of this lemma is a dramatic simplification in the analysis of classes of
methods that share a common sequence of updates. For example, letting

Tδt = eδtLA eδtLB and Uδt = eδtLC ,

we can relate the methods

PJABCK
δt = Tδt Uδt and PJCABK

δt = Uδt Tδt,

and hence ∫
Ω
ϕ(q, p) ρ̂JABCK

δt dqdp =
∫

Ω

[
eδtLCϕ(q, p)

]
ρ̂

JCABK
δt dqdp.

From the definition of LC , we can see that if ϕ is a function solely of position then
the equilibrium averages will be equal under both methods (this can be easily verified
by comparison of the corresponding algorithms themselves). Similar such observations
can be made for other classes of methods (or for other special cases of observable ϕ).

We can reduce our workload by considering one scheme in a particular class and
reach conclusions about its related methods through the application of Lemma 4.30.
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First-order schemes

Our aim is now to proceed with the analysis of the first-order schemes listed in (4.11)
and (4.12). We shall approximate the evolution operator by computing itse expansion
(in powers of the step size) using the BCH formula, and ignoring high order terms. By
expanding the invariant density similarly, we shall solve the resulting PDEs to find the
leading order behaviour of the error terms for these schemes.

We shall consider correcting a sufficiently smooth observable ϕ ∈ S̃ defined in (4.27),
and hence

〈ϕ〉 =
∫

Ω
ϕρβdz = 0,

as this simplifies our analysis. The general case (for functions ϕ̂ where the average is
non-zero) can be recovered by using

ϕ = ϕ̂−
∫

Ω
ϕ̂ ρβdz,

in the proof. The goal is to find, for a sufficiently small step size δt, the value of R
where

〈ϕ〉δt = 〈ϕ〉+ δtR+O(δt2), (4.33)

with bounded remainder. We may proceed formally to obtain the form of R, however
this gives us little guidance on the form and boundedness of the remainder higher-
order terms. Our approach differs from the formal analysis presented in [68] as we
use Taylor’s formula to find the explicit form of the remainder terms in our correction
series, however at leading order our results match those that are found formally.

Let us consider one of the elementary first-order schemes of the form JXYZK,
with each X,Y, Z ∈ {A,B,C} distinct, and unique invariant distribution written as
ρ̂δt = ρ̂

JXYZK
δt . By definition, the invariant distribution of the method does not change

under the flow, and hence for a sufficiently smooth observable φ, with 〈φ〉 = 0, we have∫
Ω

(Pδtφ) ρ̂δtdqdp =
∫

Ω
φρ̂δtdqdp, (4.34)

where Pδt = PJXYZK
δt is the method’s evolution operator.

We can compute the generator for the numerical scheme itself as a series in powers
of the step size δt using the BCH formula. Formally we have

L̂δt = LLD +
δt

2
[LY ,LZ ] +

δt

2
[LX ,LY + LZ ] +O(δt2),

though we have no expression for the evaluation of the remainder terms, and the com-
plexity of the series itself makes its general formula difficult to work with. We will
choose not to work with L̂δt, and instead use the formula for the evolution operator
(4.29), where we are able to give the form of the remainder. Matching terms in the
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series expansion, we obtain

Id− Pδt
δt

= −LLD −
δt

2
(
L2

LD + S1

)
− δt2

2
R2,

where

S1 = [LY ,LZ ] + [LX ,LY ] + [LX ,LZ ] , R2 =
∫ 1

0
(1− θ)2Rθδtdθ, (4.35)

with remainder Rt a linear combination of terms of the form LaXetLXLbY etLY LcZetLZ

with non-negative integer powers a + b + c = 3. The remainder can be explicitly
computed using the ordering operator T, but involves at most 6 derivatives.

Introducing a perturbation function f1(q, p), we can compute directly∫
Ω

(
Id− Pδt
δt

φ

)
[1 + δtf1] ρβdz

= −
∫

Ω

([
LLD +

δt

2
(
L2

LD + S1

)
+
δt2

2
R2

]
φ

)
[1 + δtf1] ρβdz,

= −δt
∫

Ω

[
1
2
S1φ+ (LLDφ)f1

]
ρβdz

− δt2

2

∫
Ω

[
(R2φ) (1 + δtf1) +

(
L2

LDφ+ S1φ
)
f1

]
ρβdz.

(4.36)
Taking the adjoints of the operators in the leading term on the right hand side, we have∫

Ω

[
1
2
S1φ+ (LLDφ)f1

]
ρβdz =

∫
Ω
φ

[
1
2
S∗1ρβ + L∗LDf1ρβ

]
dz,

and hence suggests a choice of f1 such that

L∗LDf1ρβ = −1
2
S∗1ρβ. (4.37)

The function f1 is well-defined as the assumed smoothness of the potential energy
function U(q) ensures that ρβ is sufficiently smooth, and the Fredholm alternative is
satisfied: ∫

Ω
S∗1ρβdz = 0.

The homogeneous solution to (4.37) is f1 = constant, hence we can choose the constant
to ensure the correction function has average 0 with respect to ρβ, as required.

Plugging in this choice of f1 into (4.36) leaves only the second order term on the
right hand side, giving∫

Ω

(
Id− Pδt
δt

φ

)
[1 + δtf1] ρβdz

= −δt
2

2

∫
Ω

[
(R2φ) (1 + δtf1) +

(
L2

LDφ+ S1φ
)
f1

]
ρβdz.

(4.38)
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Comparing this result with our target equation (4.33), we seek to correct the average
of ϕ, which requires us to replace our observable φ in (4.38) by(

Id− Pδt
δt

)−1

ϕ,

but we have no control over the derivatives of this function, making bounding the
remainder problematic. However we only require the term at order δt to vanish, so we
can approximate the inverse by any function that gives a remainder in higher powers
of δt. If (

Id− Pδt
δt

)
Qδt = Id + δt2Z2,

then we shall call the operator Qδt an approximate inverse. Writing Qδt = Q0 + δtQ1,
we have (

−LLD −
δt

2
(
L2

LD + S1

)
− δt2

2
R2

)
(Q0 + δtQ1) = Id + δt2Z2,

and hence

Q0 = −L−1
LD, Q1 =

1
2
(
Id + L−1

LDS1L−1
LD

)
, (4.39)

Z2 = −1
2
R2 (Q0 + δtQ1)− 1

2
(
L2

LD + S1

)
Q1. (4.40)

Choosing f1(q, p) to solve the PDE in (4.37), we combine (4.34) with the result of (4.38)
to give∫

Ω

Id− Pδt
δt

φρ̂δtdz −
∫

Ω

Id− Pδt
δt

φ [1 + δtf1(q, p)] ρβdz

= δt2
∫

Ω

[
(R2φ) (1 + δtf1) +

1
2
(
L2

LDφ+ S1φ
)
f1

]
ρβdz.

Since the average of ϕ is 0 with respect to ρβ, setting φ = Qδtϕ is well-defined, and
gives an overall formula∫

Ω
ϕρ̂δtdz =

∫
Ω
ϕ [1 + δtf1(q, p)] ρβdz + δt2r1,δt =

∫
Ω
ϕρβdz + δt

∫
Ω
ϕf1ρβdz + δt2r1,δt,

(4.41)
where the terms in the correction function f1 and remainder term r1,δt will both depend
on the friction γ (and as such may become unbounded in the limiting case of infinite
friction). However, for fixed friction and δt sufficiently small the remainder term r1,δt is
uniformly bounded, as S1 has finitely many derivatives and applying estimates such as
(4.28). It should be noted that this formula can be obtained formally (see [68]), but we
do not obtain the form of the remainder terms, which can be computed (and bounded)
through the approach presented here.

The function f1(q, p) here is method dependent, determined by the right hand side
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of (4.37), where S∗1 is built from the commutators given in (4.35). Using the skew-
symmetry of the commutators, and the fact that

([L∗C ,L∗A] + [L∗C ,L∗B]) ρβ = [L∗C ,L∗A + L∗B] ρβ = 0,

we can see that
f

JABCK
1 = −f JCBAK

1 = f
JCABK
1 = −f JBACK

1 , (4.42)

with f
JABCK
1 solving

L∗LDf
JABCK
1 ρβ =

1
2

[L∗A,L∗B] ρβ =
1
2

(L∗A + L∗B)L∗Bρβ, (4.43)

where
L∗Bρβ = −L∗Aρβ = g(q, p)ρβ, g(q, p) = −βpTM−1∇U(q).

The remaining two methods are related through f
JACBK
1 = −f JBCAK

1 , with

L∗LDf
JACBK
1 ρβ =

1
2

([L∗C ,L∗B − L∗A] + [L∗A,L∗B]) ρβ,

=
1
2

([L∗LD,L∗B − L∗A]− [L∗B + L∗A,L∗B − L∗A]) ρβ + L∗LDf
JABCK
1 ρβ,

= L∗LD (g(q, p)ρβ) + [L∗B,L∗A] ρβ + L∗LDf
JABCK
1 ρβ,

= L∗LD (g(q, p)ρβ)− L∗LDf
JABCK
1 ρβ,

and hence applying L−∗LD we can use (4.42) to relate all of the methods through

f
JACBK
1 = −f JBCAK

1 = g(q, p)− f JABCK
1 . (4.44)

We may also derive (4.44) by applying Lemma 4.30 with

Tδt = eδtLBeδtLC , Uδt = eδtLA ,

giving ∫
Ω
ϕρ̂

JBCAK
δt dz =

∫
Ω

(
eδtLAϕ

)
ρ̂

JABCK
δt dz,

and hence∫
Ω
ϕ
[
1 + δtf

JBCAK
1

]
ρβdz =

∫
Ω
ϕ
[
eδtL

∗
Aρβ + δteδtL

∗
Af

JABCK
1 ρβ

]
dz.

Writing eδtL
∗
A = Id + δtL∗A + δt2R̂ and equating powers of the step size yields

f
JBCAK
1 ρβ = f

JABCK
1 ρβ + L∗Aρβ, and hence f

JBCAK
1 = f

JABCK
1 − g(q, p).

We have seen that the form of the correction function for the JABCK scheme is
defined by the PDE (4.43). If we can solve this, then we can find all of the other first-
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order correction functions by exploiting the relations we have derived between them.
In order to find the solution, we write

L∗LDf
JABCK
1 ρβ =

1
2
(
L∗LD − γL∗C̄

)
g(q, p)ρβ,

where recall LC = γLC̄ . Computing this obfuscating term gives

L∗C̄g(q, p)ρβ = ∇p · (pgρβ) + β−1∇p · (M∇p)gρβ,

= Ngρβ +
(
pT + β−1∇TpM

)
∇pgρβ,

= Ngρβ +
(
pT + β−1∇TpM

) (
−βM−1∇U(q) + β2M−1ppTM−1∇U(q)

)
ρβ,

= Ngρβ + β
(
∇p · ppTM−1∇U(q)

)
ρβ,

= Ngρβ + (N + 1)βpTM−1∇U(q)ρβ,

= −g(q, p)ρβ.

Hence upon applying the relation

L∗LDψ(q)ρβ = −pTM−1∇qψ(q)ρβ

with ψ(q) = βU(q), we can write

L∗C̄g(q, p)ρβ = −g(q, p)ρβ = −βL∗LDU(q)ρβ,

and hence
L∗LDf

JABCK
1 ρβ =

1
2
L∗LDg(q, p)ρβ +

1
2
γβL∗LDU(q)ρβ,

giving an explicit solution to (4.43) as

f
JABCK
1 (q, p) =

β

2
(
γU(q)− pTM−1∇U(q)

)
− cJABCK

1 , (4.45)

for constant
c
JABCK
1 =

γβ

2

∫
Ω
U(q)ρβ dq dp,

ensuring the average of f JABCK
1 is zero. The remaining first-order correction functions

are given through the relations in (4.42) and (4.44).
Replacing ϕ by (ψ − 〈ψ〉) in (4.41), for sufficiently smooth ψ where 〈ψ〉 is not

necessarily zero, gives∫
Ω

(ψ − 〈ψ〉) ρ̂δtdz =
∫

Ω
(ψ − 〈ψ〉) ρβdz + δt

∫
Ω

(ψ − 〈ψ〉) f1ρβdz + δt2r1,δt.

Hence, adding the constant 〈ψ〉, we have that there exists a correction function f1 such
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that for any sufficiently smooth ψ, we have∫
Ω
ψρ̂δtdz =

∫
Ω
ψρβdz + δt

∫
Ω
ψf1ρβdz + δt2r1,δt, (4.46)

for fixed finite friction γ and sufficiently small step size δt. We can rewrite this result
as

〈ψ〉δt = 〈ψ〉+ δt〈ψf1〉+ δt2r1,δt.

Of course, this formula is not very useful in practice, as in order to evaluate the correc-
tion term we need to know 〈ψ f1〉 exactly. The evaluation of f1(q, p) at any instanta-
neous point is also tricky, as the constant c1 was introduced in the solution to ensure it
has average 0, and its evaluation requires the computation of this average. If we write

f1 = f̃1 − 〈f̃1〉,

for some computationally amenable, sufficiently smooth f̃1 (for example, the choice of
f̃1 = f1 + c1 gives an explicit formula), then we can apply the result (4.46) recursively,
and approximate the correction terms by their observed averages (as any errors are
moved to the higher orders in δt). Finally, this gives

〈ψ〉δt = 〈ψ〉+ δt
(〈
ψ f̃1

〉
δt
− 〈ψ〉δt

〈
f̃1

〉
δt

)
+ δt2r̃1,δt, (4.47)

where r̃1,δt is uniformly bounded for sufficiently small δt.
We compare the observed result with the predicted result in (4.46), for the system

with (q, p) ∈ R2, canonically sampling an uneven double well potential

U(q) = (q2 − 1)2 + q/2, (4.48)

at β = 1. We shall look at the error in computed averages of a specific observable

ϕ(q, p) = p2 − qU ′(q) + 2qp, 〈ϕ〉 = 0, (4.49)

and compare the estimates provided by (4.46) in the cases of the six first-order schemes,
whose correction functions are given by combining (4.45) with (4.42) and (4.44). We
run experiments at 32 different values of δt for two different friction values: γ = 1 and
γ = 2. Each of the six schemes are integrated over a fixed time interval t ∈ [0, 108],
using 16 repeat experiments for each average. The results are given in Figure 4.2, where
we plot both the observed average, and the prediction of the observed average from our
analysis.

In the case of unit friction, we see a first-order trend that matches exactly our
expectation: both the magnitude and sign of the error shows good agreement with the
theoretical prediction. However, the JACBK and JBCAK schemes exhibit higher order
behaviour in the simulations computed using γ = 2. As the equilibrium average should
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Figure 4.2: We give the error in computed averages of the observable given in (4.49),
from simulations using the given timestep and friction for each of the six schemes,
with an uneven double-well potential energy function (4.48) at β = 1. The observed
averages (coloured symbols) exactly match the predicted first order error (corresponding
coloured lines) at small δt. For γ = 2, we can see that two of the schemes show higher-
order behaviour, which we can explain using our analysis.

be unaffected by the change in friction, this is evidently a phenomenon of the particular
numerical schemes employed.

This result is entirely commensurate with our analysis. We compute the correction
for JBCAK, as the JACBK and JBCAK schemes have a first order correction that differs
only in sign. Thus for general friction γ > 0, the JBCAK scheme has the first-order
correction∫

Ω
ψf

JBCAK
1 ρβdz =

1
2

∫
Ω

(
p2 − qU ′(q) + 2qp

) (
pU ′(q) + γU(q)− cJBCAK

1

)
ρβdqdp,

=
1
β2

+
γ

2β
〈U〉 − γ

2
〈qUU ′〉,

=
(2− γ)

2β2
.

Hence for a critical choice of γ = 2, the first-order correction term will vanish for the
JACBK and JBCAK schemes, giving (at least) second order errors in observed averages
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of the observable (4.49). Additionally, choosing a friction γ = 2 ± ε (for sufficiently
small ε > 0) shrinks the prefactor of the order δt correction term so that in practice
the observed error is dominated by the larger second order term.

For all of the schemes, at the largest tested step sizes we see the emergence of higher-
order behaviour influencing the observed averages, as there is a sharp turn away from
our prediction. We expect that continuing to find the higher order correction functions
would allow us to account for this difference. A more practical approach however, is to
consider methods that exhibit higher order behaviour without any correction. We can
construct such methods just as in the deterministic case in Section 2.1.4, by considering
a symmetric (Strang) splitting scheme.

Second-order schemes

We consider update schemes of the form JXYZYXK, with each X,Y, Z ∈ {A,B,C}
distinct. The line of attack does not greatly differ from the first-order case, although the
additional terms make the computation of the perturbation terms more cumbersome.
We can use the symmetric BCH formula (2.35–2.36) to formally write

PJXYZYXK
δt = eδtLX/2 eδtLY /2 eδtLZ eδtLY /2 eδtLX/2 = eδt

bLδt ,
where

L̂δt = LX + LY + LZ + δt2S2 +O(δt4),

with

S2 =
1
12

[LZ , [LZ ,LY ]] +
1
12

[LY + LZ , [LY + LZ ,LX ]]

− 1
24

[LY , [LY ,LZ ]]− 1
24

[LX , [LX ,LY + LZ ]] .

(4.50)
We may then identify terms computed with the BCH formula with those in the Taylor
series (4.29), giving

Pδt = Id + δt
(
LLD + δt2S2

)
+
δt2

2
(
L2

LD + δt2 (S2LLD +LLDS2))

+
δt3

6
L3

LD +
δt4

24
L4

LD + δt5R5,δt,

where we will denote PJXYZYXK
δt = Pδt, and use the property LX + LY + LZ = LLD.

Rewriting the series gives

Id− Pδt
δt

= −LLD −
δt

2
L2

LD

− δt2
(
S2 +

1
6
L3

LD

)
− δt3

(
1
24
L4

LD +
1
2

(S2LLD + LLDS2)
)
− δt4R4,δt.
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We then consider a sufficiently smooth observable φ(q, p) with 〈φ〉 = 0, and correction
function f2(q, p) giving∫

Ω

[(
Id− Pδt

δt

)
φ

] [(
1 + δt2f2(q, p)

)
ρβ
]

dz

= −δt2
∫

Ω
φ [S∗2ρβ + L∗LDf2ρβ] dz − δt3

2

∫
Ω

[LLDφ] [S∗2ρβ + L∗LDf2ρβ] dz + δt4R̃δt.

We now proceed exactly as in the first-order case. We shall choose f2(q, p) to satisfy

L∗LDf2ρβ = −S∗2ρβ, (4.51)

with ∫
(Pδtφ) ρ̂δtdz =

∫
φρ̂δtdz,

to give∫
Ω

[(
Id− Pδt

δt

)
φ

]
ρ̂δtdz −

∫
Ω

[(
Id− Pδt

δt

)
φ

] [(
1 + δt2f2(q, p)

)
ρβ
]

dz = −δt4R̃δt.

(4.52)
Choosing an approximate inverse Qδt such that(

Id− Pδt
δt

)
Qδt = Id + δt4Z4,

and plugging φ = Qδtϕ into (4.52) yields∫
Ω
ϕρ̂δtdz =

∫
Ω
ϕρβdz + δt2

∫
Ω
ϕf2ρβdz + δt4r4,δt,

where only even powers of the step size appear due to the symmetric nature of the
considered schemes. Similarly replacing ϕ = ψ−〈ψ〉 for suitable ψ gives the correction
for second schemes to be

〈ψ〉δt = 〈ψ〉+ δt2〈ψ f2〉+ δt4r4,δt, (4.53)

where r4,δt is uniformly bounded for sufficiently small δt and where f2 is the method-
dependent solution to the PDE (4.51). We now desire to solve the PDE in order to
find the correction function f2, so that we may apply this result to obtain higher order
averages. However, solving the equation is evidently not as straightforward as in the
first-order case, owing to the high order derivatives that appear.

We shall attempt to simplify the PDE to solve as much as possible. From the
definition of S2 in (4.50), it is clearly more convenient to initially consider methods
with L∗Xρβ = 0 and (LY + LZ)∗ ρβ = 0, so we shall start by considering the scheme
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JCBABCK, which has

S∗2ρβ =
1
12

[LA, [LA,LB]]∗ ρβ −
1
24

[LB, [LB,LA]]∗ ρβ.

The terms are computed as

[LA, [LA,LB]]∗ ρβ = [L∗A, [L∗A,L∗B]] ρβ,

= (L∗AL∗AL∗B − 2L∗AL∗BL∗A + L∗BL∗AL∗A) ρβ,

= (L∗AL∗A + 2L∗AL∗B − L∗BL∗A) gρβ,

= (L∗A + L∗B)L∗Agρβ + 2 [L∗A,L∗B] gρβ.

Similarly,
[LB, [LB,LA]]∗ ρβ = − (L∗B + L∗A)L∗Bgρβ + 2 [L∗A,L∗B] gρβ,

giving

L∗LDf
JCBABCK
2 ρβ = − 1

12
(L∗A + L∗B)

(
L∗A +

1
2
L∗B
)
gρβ −

1
12

[L∗A,L∗B] gρβ, (4.54)

and by computing the related formula for JCABACK we obtain

L∗LDf
JCABACK
2 ρβ =

1
12

(L∗A + L∗B)
(

1
2
L∗A + L∗B

)
gρβ −

1
12

[L∗A,L∗B] gρβ. (4.55)

The explicit form of each of the right hand sides is given in (4.92). The equations for
the remaining two methods can be computed through the computation of the respective
right-hand sides of (4.51) using their corresponding operators S2, or, alternatively, we
may apply Lemma 4.30 with

Tδt = eδtLA/2 eδtLB/2 eδtLC/2, Uδt = eδtLC/2 eδtLB/2 eδtLA/2,

giving ∫
Ω
ϕρ̂

JABCBAK
δt dz =

∫
Ω

(Uδtϕ) ρ̂JCBABCK
δt ,

and hence∫
Ω
ϕ
[(

1 + δt2f
JABCBAK
2

)
ρβ

]
dz =

∫
Ω
ϕ
[
U∗δtρβ + δt2U∗δtf

JCBABCK
2 ρβ

]
dz. (4.56)

Utilizing the expansion

U∗δt = Id +
δt

2
L∗LD +

δt2

8

(
(L∗LD)2 + [L∗A + L∗B,L∗C ] + [L∗A,L∗B]

)
+ δt3RU,δt,

and equating powers of the step size in (4.56) gives

f
JABCBAK
2 = f

JCBABCK
2 +

1
8

(L∗A + L∗B) g, (4.57)
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and similarly

f
JBACABK
2 = f

JCABACK
2 − 1

8
(L∗A + L∗B) g, (4.58)

where, recall, g(q, p) = −βp ·M−1∇U(q).
Unfortunately, we cannot solve the PDE (4.51) to find explicit solutions for the

correction functions for the second order schemes in the general case. However, we will
give a strategy in Section 5.1 that permits us to numerically compute the correction
terms.

GLA schemes

The first-order GLA schemes reduce to precisely the first order methods considered
in previous sections. The second order GLA schemes are of the form JXYXCK for
X,Y ∈ {A,B} distinct, where we expect an expansion of∫

Ω
ϕρ̂

JXYXCK
δt =

∫
Ω
ϕ
[
ρβ

(
1 + δt2f

JXYXCK
2 + δt3f

JXYXCK
3

)]
+ δt4r4. (4.59)

Unlike the previously considered second-order schemes, the third order terms do not
cancel due to symmetry. Applying Lemma 4.30 with

Tδt = eδtLX/2eδtLY eδtLX/2eδtLC/2, Uδt = eδtLC/2,

gives ∫
Ω
ϕρ̂

JXYXCK
δt dz =

∫
Ω

(Uδtϕ) ρ̂JCXYXCK
δt dz,

=
∫

Ω
(Uδtϕ)

[
ρβ

(
1 + δt2f

JCXYXCK
2

)]
dz + δt4r4,δt,

=
∫

Ω
ϕρβ dz + δt2

∫
Ω

(Uδtϕ) f JCXYXCK
2 ρβ dz + δt4r4,δt.

The perturbation term is∫
Ω

(Uδtϕ) f JCXYXCK
2 ρβ dz =

∫
Ω
eδtLCϕ

(
f

JCXYXCK
2 ρβ

)
dz,

=
∫

Ω
ϕ
(
eδtL

∗
Cf

JCXYXCK
2 ρβ

)
dz,

=
∫

Ω
ϕf

JCXYXCK
2 ρβ dz +

δt

2

∫
Ω
ϕL∗Cf

JCXYXCK
2 ρβ dz + δt2r̃U,δt,

=
∫

Ω
ϕf

JCXYXCK
2 ρβ dz +

δt

2

∫
Ω
ϕρβ

(
LCf JCXYXCK

2

)
dz

+ δt2r̃U,δt,

and hence comparing subsequent powers of δt with those in (4.59) gives

f
JXYXCK
2 = f

JCXYXCK
2 , f

JXYXCK
3 =

1
2
LCf JCXYXCK

2 . (4.60)
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Of course we have∫
Ω
ϕρβ

(
LCf JCXYXCK

2

)
dz =

∫
Ω

(LCϕ) ρβf
JCXYXCK
2 dz,

removing the third order correction for ϕ = ϕ(q). Considering instead the scheme
JCXYXK with similar expansion to (4.59), we can use

Tδt = eδtLC/2eδtLX/2eδtLY eδtLX/2, Uδt = eδtLC/2,

similarly to find∫
Ω
ϕρ̂

JCXYXCK
δt dz =

∫
Ω

(Uδtϕ) ρ̂JCXYXK
δt dz,

=
∫

Ω
(Uδtϕ)

[
ρβ

(
1 + δt2f

JCXYXK
2 + δt3f

JCXYXK
3

)]
dz + δt4r̂4,δt,

=
∫

Ω
ϕρβ dz + δt2

∫
Ω
ϕf

JCXYXK
2 ρβ dz

+ δt3
∫

Ω
ϕ

(
f

JCXYXK
3 +

1
2
LCf JCXYXK

2

)
ρβ dz + δt4r̂T,δt.

Once again equating powers gives correction functions

f
JCXYXK
2 = f

JCXYXCK
2 , f

JCXYXK
3 = −1

2
LCf JCXYXCK

2 . (4.61)

4.2 Performance for harmonic systems

The harmonic case is one of the most relevant for molecular dynamics simulations as
the timestep is inevitably chosen as close as possible to the timestep stability threshold
set by the fastest degrees of freedom in the system: the intramolecular covalent bond
stretches [4]. A great deal of the overall behaviour of the system is determined by the
harmonic bonds as they imbue the structure of the molecule itself, with the length and
frequency of the bonds chosen by chemists with great precision.

4.2.1 Quadratic potential energy functions

We consider a general quadratic potential energy function

V (q) = qTAq/2 + bT q + c,

for constant matrix positive definite matrix A ∈ RN×N , constant vector b ∈ RN and
constant scalar c ∈ R. The Newtonian equations of motion are

dq = M−1p dt, dp = (−Aq − b) dt,
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where upon writing A = X−1DX, for positive diagonal D, we can change variables
Q̂ = Xq −D−1Xb and P̂ = Xp to find

dQ̂ = M−1P̂ dt, dP̂ = −DQ̂dt.

Through a linear change of variables in the system (amounting to a change of basis)
we recover a decoupled system of harmonic oscillators. This simplifies greatly analysis,
as we only have to consider a model with q, p ∈ R.

We shall consider sampling a system with Hamiltonian

H(q, p) = ω2q2/2 + p2/(2m), (4.62)

with constant frequency ω ∈ R and mass m > 0, and investigate the value of the
observed averages

〈
ω2q2

〉
δt

and
〈
p2/m

〉
δt

, which both have exact value β−1 where β
is the reciprocal temperature. We make use of the technique for finding the exact
invariant averages (without solving for the invariant measure) given in [15].

For any scheme using the ABC splitting (4.5) or the ‘AS’ splitting (4.3), we may
write the update scheme as[

qn+1

pn+1

]
=

[
a b

c d

][
qn

pn

]
+

[
Qn

Pn

]
,

where a, b, c, d are constants depending on the step size δt, and Qn, Pn are mean zero
time-dependent processes independent of the system state [q, p]. For our purposes, the
[Qn, Pn] will be normally distributed random numbers with a prescribed mean and
variance depending on γ, β and δt.

Taking products of the update equations, we have

q2
n+1 = a2q2

n + b2p2
n +Q2

n + 2abqnpn + 2aQnqn + 2bQnpn,

p2
n+1 = c2q2

n + d2p2
n + P 2

n + 2cdqnpn + 2cPnqn + 2dPnpn,

qn+1pn+1 = acq2
n + bdp2

n +QnPn + (ad+ bc) qnpn + (cqn + dpn)Qn + (aqn + bpn)Pn.

Then taking expectations in the limit n→∞ we get〈
q2
〉
δt

= a2
〈
q2
〉
δt

+ b2
〈
p2
〉
δt

+
〈
Q2
〉
δt

+ 2ab 〈qp〉δt ,〈
p2
〉
δt

= c2
〈
q2
〉
δt

+ d2
〈
p2
〉
δt

+
〈
P 2
〉
δt

+ 2cd 〈qp〉δt ,

〈qp〉δt = ac
〈
q2
〉
δt

+ bd
〈
p2
〉
δt

+ (ad+ bc) 〈qp〉δt + 〈QP 〉δt ,

where the processes Q and P are statistically independent of the state variables q, p,
and 〈Q〉 = 〈P 〉 = 0. Assuming that we know the distributions of Q and P , and hence
the values of

〈
Q2
〉
δt

and
〈
P 2
〉
δt

, this gives a closed system that can be solved to give
the exact values for the stationary averages for the harmonic system with Hamiltonian
(4.62) in terms of its update parameters under changes in the frequency, temperature
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Scheme 〈q2〉δt/〈q2〉 〈p2〉δt/〈p2〉 〈qp〉δt
JABCK [(1 + α) /α] Λ(αδt2) 2Λ(αδt2) −δtβ−1Λ(αδt2)

JCBAK (1 + α) Λ(δt2) 2Λ(δt2) δtβ−1Λ(δt2)

JCABK [(1 + α) /α] Λ(αδt2) 1 +
δt2ω2Λ(αδt2)
αm(1 + α)

−δtβ−1Λ(αδt2)/α

JBACK (1 + α) Λ(δt2) 1 +
δt2ω2α2Λ(δt2)
m(1 + α)

δtβ−1αΛ(δt2)

JACBK (1 + α) Λ(δt2) 2Λ(δt2) −δtβ−1Λ(δt2)

JBCAK [(1 + α) /α] Λ(αδt2) 2Λ(αδt2) δtβ−1Λ(αδt2)

JABCBAK 1 [1− δt2ω2/(4m)]−1 0

JCBABCK [1− δt2ω2/(4m)]−1 1 0

JBACABK 1 1− δt2ω2/(4m) 0

JCABACK 1− δt2ω2/(4m) 1 0

JASAK γδt(1 + α)/(2− 2α) 2Λ(δt(α− 1)/γ) 0

Table 4.1: The expected long-time computed average using each elementary first and
second-order Langevin dynamics method resulting from the ABC splitting as well as
the Stochastic Position Verlet scheme JASAK, with quadratic Hamiltonian (4.62) and
we use Λ(t) := m(α+ 1)/(ω2t− 2m[α+ 1]) for brevity.

and friction.
As an example, the method coded JABCK has update constants[
a b

c d

]
=

[
1 δt/m

−δtαω2 α
(
1− δt2ω2/m

) ] , [
Qn

Pn

]
=

[
0

β−1/2
√

1− α2Rn

]
,

(4.63)
for Rn ∼ N (0, 1) and α = exp(−γδt). We compute the solution for a number of
methods, and tabulate the results in Table 4.1.

The first order methods do very poorly, with some cross-correlation occurring be-
tween q and p, i.e. 〈qp〉δt 6= 0. The four second-order schemes do much better though,
each one giving either exact position and momentum sampling.

The step size limit δt < 2
√
m/ω is evident for the second order schemes, independent

from the friction γ. The threshold for the first order schemes is more complicated, and is
a function of the friction (though sampling is inconsistent at the limit of large friction).

Similarly we see that for the stochastic position Verlet (JASAK) scheme, also incon-
sistent for large friction, the error in the average position if of the order O(γ2δt2). We
expect that for small friction, this scheme would give excellent configurational sampling
results for harmonic systems.
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4.2.2 Perturbed harmonic oscillator

We consider now perturbing slightly the harmonic oscillator potential, with scalar q
and using

U(q) = q2/2 + εq4/4, (4.64)

where ε > 0 is a small constant. We cannot write the update schemes in the style
of (4.63) as the derivative is no longer linear in q. As a result, the equation for the
expectation of (qn+1)k will always involve powers of (qn)j , for j > k, preventing a closed
system of equations when we take expectations. For example, if we seek 〈q2〉δt, then
computing the update q2

n+1 gives terms q2
n, εq

4
n and ε2q6

n. Taking expectations requires
us to compute 〈q4〉δt and 〈q6〉δt, which in turn give higher powers.

The terms stymieing the closure of the system have powers of ε as prefactors, so if
we are willing to solve for the value of 〈q2〉δt up to order εk, we need only keep terms
of sufficient size. Our strategy will to truncate the system of equations as needed :
appearing powers of qn and pn in the system of equations of order 2j will only need to
be resolved to order εk+1−j . Odd order terms will not appear due to 〈R2j+1

n 〉 = 0, and
the statistical independence of Rn from the state variables.

Therefore, choosing some k as a truncation level, in order to resolve 〈q2〉δt to order
εk we only need to keep the powers of qn and pn up to order 2k + 2. The 2k + 4-many
equations for the state variables of order 2k + 2 will be truncated at order ε0, making
them solvable just as in the vanilla harmonic case.

Considering powers up to εk, we can take expectation of the resulting update equa-
tions to obtain a closed linear system of k(k + 2) equations to solve. As sampling the
momentum in this context is not interesting (it is trivial to sample from its Gaussian
distribution), we instead look solely at the averages of 〈q2〉δt. We find that choosing
k = 2 is sufficient to explicitly resolve the leading order behaviour of the system, and
we give the differences between observed numerical averages and exact averages below,
where the superscript indicates the considered method:

〈
q2
〉JABCBAK
δt

−
〈
q2
〉

=
3δt2ε

[
48ε− 4 + 3γ2(9ε− 1)

]
12γ2 + 16

+O(εδt4 + ε3δt2),

〈
q2
〉JBACABK
δt

−
〈
q2
〉

= − 9δt2ε2

6γ2 + 8
−

3δt4ε2
[
6γ4 + 19γ2 + 16

]
8 (3γ2 + 4)2 +O(ε2δt6 + ε3δt2),

〈
q2
〉JCBABCK
δt

−
〈
q2
〉

= δt2

(
1
4

+
ε
[
144ε+ 81εγ2 − 9γ2 − 12

]
12γ2 + 16

)
+O(δt4 + ε3δt2),

〈
q2
〉JCABACK
δt

−
〈
q2
〉

= −δt2
(

1
4

+
18ε2

12γ2 + 16

)
+O(δt4 + ε3δt2).

(4.65)
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The behaviour of the methods can thus be summarized as〈
q2
〉JABCBAK
δt

−
〈
q2
〉

= O
(
εδt2

)
,〈

q2
〉JBACABK
δt

−
〈
q2
〉

= O
(
ε2δt2

1 + γ2
+ ε2δt4

)
,〈

q2
〉JCBABCK
δt

−
〈
q2
〉

= O
(
δt2
)
,〈

q2
〉JCABACK
δt

−
〈
q2
〉

= O
(
δt2
)
.

(4.66)

We would expect that both the JABCBAK and JBACABK schemes will have a leading
error term proportional to ε, given that it was shown in Table 4.1 that in the pure
harmonic case (at ε = 0) these methods give perfect sampling. The twofold surpris-
ing result though, is that the leading error of the JBACABK scheme has behaviour
proportional to ε2, as well as the leading order term being annihilated for large γ.

It would seem that by ordering the ABC update terms favourably in an algorithm
we are able to achieve significant sampling improvements on systems that are “closely
harmonic”, at no extra cost (in terms of force evaluations).

To illustrate this numerically, we use each of the four given second order methods
to compute the absolute error in

〈
q2
〉
δt

using the perturbed harmonic potential (4.64)
at a range of timesteps δt ∈ [0.1, 2] and nonlinearity parameters ε ∈ [0.0001, 1]. We
choose β = γ = 1 for all experiments, and run the schemes using each parameterset for
a fixed time window of length T = 108. The results are shown in Figure 4.3, and agree
with the results of (4.66).

The JBACABK scheme performs extremely well in this example, even in regimes
of large ε and step size where our formal analysis is no longer valid. Though Table
4.1 demonstrates that both the JABCBAK and JBACABK schemes give exact results
at ε = 0, there remains qualitative difference between the two, owing to the order ε2

leading term in the latter scheme. However, even at large values of the nonlinearity
such as ε = 0.1, we can achieve sampling of a comparable quality to the JCBABCK
scheme by using the JBACABK scheme at timesteps an order of magnitude larger.

There is also an evident kink in the error for the plot of the JCBABCK scheme: for
fixed δt and increasing ε the error decreases (most easily seen by tracing the yellow
contour of constant error). This is explained by considering the leading term in (4.65),
where the prefactor for the δt2 term decreases in size as ε increases, giving rise to the
observed behaviour for fixed δt. In contrast, the prefactor to the second order term in
the JCABACK scheme increases at order ε2, leading to an behaviour in averages that
appears indifferent to ε.

Finally, we comment that the stability of the JBACABK and JCABACK class of
methods is greatly improved over the alternative for small ε. It is unsurprising of
course that these methods share stability properties as they clearly share the same
internal structure when iterated. Indeed, simulations were successfully completed for
all ε ≤ 0.003 at the maximum tested timestep for these methods, whereas JABCBAK
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Figure 4.3: A 128× 128 grid showing the error in
〈
q2
〉
δt

computed with one of the four
elementary second order methods, using step size δt (horizontal) and potential energy
(4.64) at a fixed value of ε (vertical). Pixels are coloured by the absolute error in the
observed average, with white pixels denoting instability at that parameterset.

and JCBABCK required a significant reduction of ∼15% before the methods were stable.
Even at the lowest ε tested, the JABCBAK and JCBABCK schemes were not stable at
the maximum δt used.

4.2.3 Stability for systems with multiple scales

Recall the (r-RESPA) scheme, designed to propagate systems which have a fast highly
oscillatory motion, as well as a slower motion. Splitting the potential energy function
into fast and slow components in the deterministic setting such as equation (2.39)
proved unsuccessful, as we encountered linear resonance phenomena at step sizes that
were integer multiples of half a period [9]. In systems where the timescale gap is very
large, the r-RESPA scheme does not give significant improvement, with the stability
threshold scaling identically to the the Symplectic Euler method [72]. Our hope would
be that using Langevin dynamics to add stochasticity would disrupt resonance effects
and permit larger usable timesteps. While some considerable efficiency improvements
have been demonstrated using multiple timestepping methods for Langevin dynamics
with constraints [30], we shall investigate the simpler fast/slow splitting demonstrated
in Section 2.1.5. We would expect that a full treatment of the weak order for such
constraint algorithms could be achieved in a similar manner to the Langevin splitting
algorithms given in previous sections (for example see [73, 118]).
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We consider propagating a system with Hamiltonian

H(q, p) = p2/2 + U(q), U(q) = UF (q) + US(q)

where q, p ∈ R and US and UF denote the slow and fast components of the potential
energy respectively. For the purposes of analysis, we shall model these with harmonic
potentials, with

US(q) = q2/2, UF (q) = q2/(2ε2), (4.67)

where ε > 0 is a given small constant. The question we shall be interested in is whether
Langevin dynamics gives us any extra stability for methods that do not dynamics into
fast and slow terms, such as those using the general ABC splitting. In the case of the
first order methods, we can see that any stability relationship between the friction and
step size are not at all, useful as the methods are not consistent for general potentials
in the case of large friction. For the remaining second-order methods using the ABC
splitting, examining Table 4.1 with m = 1 and ω2 = (1 + ε−2), we can see all of the
methods are stable only for

δt ≤ 2√
1 + ε−2

,

indicated by a divergence or sign change in the averages. This is the same stability
condition for the deterministic case (2.40), suggesting that the stochasticity has not
bought us extra stability. We can instead split Langevin dynamics into[

dq
dp

]
=

[
pdt

−q/ε2 dt− γpdt+
√

2γ/β dW

]
︸ ︷︷ ︸

Fast

+

[
0
−q dt

]
︸ ︷︷ ︸

Slow

, (4.68)

and proceed as in the case of the rRESPA scheme. As before, we consider the case where
we are able to solve the fast part exactly, though in practice a much smaller timestep is
used as the fast parts are considered cheap, making the error in fast dynamics negligible
in analysis anyway. Writing

F =

[
0 1
−ε−2 −γ

]
,

we can write down the flow map for the solution to the fast dynamics as

ΦFast,t

([
q

p

])
= exp(Ft)

[
q

p

]
+BtRt,

where Rt is a column vector of two i.i.d. random normal numbers distributed asN (0, 1),
and

BtB
T
t =

2γ
β

∫ t

0
exp(F (s− t))

[
0 0
0 1

]
exp(F T (s− t))ds.

Consider a method taking one step of the slow system, followed by a step of the fast
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system, using fixed step size δt > 0. If we denote z = [q, p]T as the system state, then
we can write this scheme as

zn+1 = Xzn + Y Rn,

for

X =

[
1 0
−δt 1

]
exp(δtA), Y =

[
1 0
−δt 1

]
Bδt.

The stability of the method therefore depends solely on the spectral radius of the matrix
X. Denoting ω =

√
γ2 − 4/ε2, then we compute

Det(X) = e−γδt, Tr(X) =
ω − δt
ω

e(ω−γ)δt/2 +
ω + δt

ω
e(−ω−γ)δt/2,

giving a stability condition∣∣∣∣ω − δtω
e(ω−γ)δt/2 +

ω + δt

ω
e(−ω−γ)δt/2

∣∣∣∣ ≤ 1 + e−γδt.

Multiplying by eγδt/2 gives∣∣∣∣cosh
(
ωδt

2

)
+
δt

ω
sinh

(
−ωδt

2

)∣∣∣∣ ≤ cosh
(
γδt

2

)
,

which reduces to the deterministic stability condition (2.41) in the limit γ = 0. For
γ > 0, we can simplify to∣∣∣∣∣∣cosh

(
ωδt

2
− atanh

(
δt

ω

))√
1− δt2

ω2

∣∣∣∣∣∣ ≤ cosh
(
γδt

2

)
.

We consider the case with γ � ε−1, allowing us to write ω = iω̂ for ω̂ ∈ R, and∣∣∣∣∣∣cos
(
ω̂δt

2
− atanh

(
δt

ω̂

))√
1 +

δt2

ω̂2

∣∣∣∣∣∣ ≤ cosh
(
γδt

2

)
.

The term on the left hand side of the inequality is oscillatory in δt, while the term on
the right hand side uniformly grows with step size. This implies that for any suitable
γ > 0, we can find small pocket regions of the step size where the left hand side is
sufficiently minimized in order to give stability. However, just as in the deterministic
case, these island stability regions are difficult to predict the location of in a more
general system.

The oscillatory cosine term is bounded between ±1, implying that we have stability
for all step sizes provided the condition√

1 +
δt2

ω̂2
≤ cosh

(
γδt

2

)
, (4.69)
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Figure 4.4: We repeat the experiment given in Figure 2.5 using Langevin dynamics, with
potential energy function (4.67) choosing ε = 1/3. Each pixel represents a simulation
undertaken with parameters (δt, γ), with the colour of a pixel indicating the absolute
error in

〈
q2
〉
δt

, with white pixels indicating instability. The plotted line gives the
boundary to the region in parameter space where (4.69) is satisfied.

holds. We expect there to exist stability regions for smaller values of the friction where
this condition is violated, but these will be sandwiched between unstable regions coming
from the oscillatory term. We have guaranteed stability where (4.69) holds, which we
can simplify to

δt√
4ε−2 − γ2

≤ sinh
(
γδt

2

)
.

For a fixed value of the friction, if we increase the step size the right hand side will grow
exponentially compared to the linear growth on the left hand side, so it would seem
that for large δt we actually need a smaller friction in order to to be stable. Hence the
minimum required friction for stability can be found by considering the case of small
timestep. This gives a bound

1√
4ε−2 − γ2

≤ γ

2
,

which gives a stability condition for all step sizes δt as long as

γ ≥
√

2− 2
√

1− ε4
ε

≥
√

2ε.

Therefore we expect that the minimum friction value required for stability for all
timesteps δt > 0, scales with the value of ε. Unlike the deterministic case, we are
able to remove linear resonance effects with sufficiently large friction, where γ is an
arbitrary parameter in our dynamics governing the strength of the noise.

We illustrate this numerically in Figure 4.4, by applying the splitting scheme (4.68)
using various timesteps and frictions. Each gridpoint marks an independent simulation
of 108 steps with the given parameter values, where the plotted line marks the boundary
of the region where (4.69) is satisfied. We simulate using ε = 1/3, making our results
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for small friction commensurate with the deterministic case presented in Figure 2.5,
which is the limiting case of zero friction.

The island regions of instability vanish as expected for large values of friction, while
choosing γ =

√
2ε ≈ 0.471 in this example is plainly sufficient to give stability for all

visible step sizes.

4.3 The overdamped regime

We will consider the behaviour of the elementary Langevin splitting methods discussed
in the overdamped (infinite friction) limit of Langevin dynamics. This involves a resam-
ple of momenta from its equilibrium distribution κβ every timestep, removing memory
effects such as inertia. The movement of the system through space becomes purely
diffusive, acting under Brownian dynamics, and evolving with respect to the governing
SDE

dq = −M−1∇U(q) +
√

2/βM1/2dW, (4.70)

with generator Lovd given through Itō’s lemma as

Lovd := −M−1∇U(q) · ∇q + β−1∇q · (M∇q).

Solutions to the so-called overdamped limit of Langevin dynamics, resulting from tak-
ing γ → ∞, can be shown to converge to solutions to (4.70) with matching initial
condition [41, 51]. As such, the dynamics is ergodic with respect to the configurational
distribution µβ.

The limit of infinite friction is known as the Kramers to Smoluchowski limit [51],
where we refer to (4.70) as the Smoluchowski equation. In this limit, the Ornstein-
Uhlenbeck update (the C step in the ABC splitting) becomes a resampling of momenta
from its Gaussian distribution, with its evolution exp(δtLC) replaced by the operator
π, where

(πφ)(q) =
∫

RN
φ(q, p)ρβdp (4.71)

for an observable φ(q, p). Note that as we would expect, step size (and indeed time
itself) plays no role in this resampling step. Our interest in this section will be on
the errors in schemes at the overdamped limit, and the transition between finite and
infinite friction.

4.3.1 Error estimates in the limit of infinite friction

As we have solved the OU process exactly in the ABC splitting, we can simply plug
γ =∞ into the algorithms for any of the methods to derive an algorithm for integrat-
ing (4.70). We can rewrite the schemes compactly in one-line form, for example the
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JCBABCK scheme has the limiting method

qn+1 = qn −
δt2

2
M−1∇U(qn) +

δt√
β
Rn, (4.72)

for Rn ∼ N (0, 1) a vector of N i.i.d normal random numbers. This is evidently the
Euler-Maruyama scheme integrating (4.70), using an effective timestep h = δt2/2 corre-
sponding to a diffusive timescale [63]. In contrast, the limiting method for the JBACABK
scheme is

qn+1 = qn −
δt2

2
M−1∇U(qn) +

δt

2
√
β

(Rn+1 +Rn) , (4.73)

where curiously (qn) is no longer a Markov chain, due to the the correlation between
successive steps (the noise process has a ‘one-step memory’). We can recover the
Markovian property by extending the space as necessary.

We may expect that the overdamped limit may serve to benefit some methods. For
example, the results in equation (4.66) show that for large friction, when using the
perturbed harmonic potential, the leading term of the error for the JBACABK scheme
is pushed to O(δt4), despite it being a second order method. Of course, this could be
a special case for the chosen observable or system.

Other methods are clearly unusable in this limit. The Stochastic Position Verlet
method JASAK, or any method using the splitting (4.3) coupling the force together
with the Ornstein-Uhlenbeck process cannot be used at large or infinite friction, as the
drag term dominates the force term resulting in a random walk. It is not enough to
separate the OU process from the force though: all of the first-order schemes considered
in Section 4.1.3 are inconsistent as γ becomes large. For example, consider the limiting
method of the scheme JABCK

qn+1 = qn +
δt√
β
M1/2Rn,

which is plainly not consistent for any step size as no information about U(q) is used
in the update. Any initial distribution will spread out evenly across the space in a
random walk, evidently making the invariant distribution the uniform distribution in
Ω.

Some second order schemes with exact OU solves are also inconsistent. For exam-
ple the JACBCAK and JBCACBK schemes both sandwich an A step between two C

steps, which redraw the momentum before the position is updated: wiping out all force
information.

Our focus in this section will be to examine the behaviour of averages of observables
with respect to the remaining four elementary second-order discretization methods
presented in Section 4.1.3, in the case of overdamped Langevin dynamics corresponding
to infinite friction. If we could solve (4.51) for the perturbation functions f2 then this
would be trivial, as we would know exactly its behaviour for general potential energy
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functions. Similarly in a formal sense, we expect the results of Table 4.1 and (4.66) to
be consistent with our analysis in the limit of γ →∞.

We shall solely consider averages of functions of position in this section, since in
the limiting case of infinite friction we can think of the system state wholly defined by
instantaneous position. In order to simplify the analysis, we shall take M = IN Recall
we denote by µβ the canonical configurational distribution of position

µβ(q) = Z−1
β,µ exp(−βU(q)), Z−1

β,µ =
∫
M

exp(−βU(q))dq,

where β is reciprocal temperature as usual. Numerical averages of sufficiently smooth
observables φ = φ(q) are taken with respect to the distribution

〈φ〉δt =
∫
M
φ(q)µ̂δtdq,

where we can think of µ̂δt representing a method’s corrupted configurational invariant
distribution.

Let us consider the evolution operator for the overdamped methods, denoted P∞,δt
and where the C operation is replaced by C̃ in our notation to indicate that we are
specifically considering the infinite friction case.

In the overdamped limit, a Langevin dynamics method of the form JC̃XYXC̃K for
X,Y ∈ {A,B} distinct has evolution operator

PJeCXYXeCK
∞,δt = π eδtLX/2 eδtLY eδtLX/2 π = πPJXYXK

δt π,

where PJXYXK
δt is the evolution operator for the deterministic numerical method JXYXK,

which corresponds to either position or velocity Verlet. Using (4.29), we can write

PJeCXYXeCK
∞,δt = π+ δtπLmcπ+

δt2

2
πL2

mcπ+
δt3

6
πS3π+

δt4

24
πS4π+

δt5

120
πS5π+ δt6πR6,δtπ,

(4.74)
using LX + LY = LA + LB = Lmc. The Sj terms can be computed using the BCH
formula, or explicitly through Sj = T

[
(L1 + L2 + L3)j

]
, where L1 = L3 = LX and

L2 = LY . It is easily verified that S1 = Lmc and S2 = L2
mc as they appear in (4.74).

In order to efficiently compute the right hand side of (4.74), we can make use of a
number of observations about the interplay of the different operators. The action of the
LA and LB operators respectively increases or decreases the order of the momentum
terms by 1, while the action of the π operator averages the momentum terms with
respect to a Gaussian weighting, leaving solely a function of position. Given that the
odd moments of a Gaussian distribution are zero, we can exploit a parity argument
in order to simplify terms. From their definitions, we can immediately see that for all
n > 0

πf(q) = f(q), πn = π, LnBπ = 0.
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A consideration of the order of the momentum terms gives that for any i, j, k ∈ N where
i+ j + k is odd,

πLiBL
j
AL

k
Bπ = πLiAL

j
BL

k
Aπ = 0.

Simple computation also yields

πLBLAπ = −∇U · ∇qπ, πL2
Aπ = β−1∆qπ.

In order to simplify (4.74), we note also that terms πSnπ will always be of the form
πLiXL

j
Y LkXπ, where i+ j + k = n and i, j, k ∈ N. Hence for any odd n, the πSnπ term

will be zero.
Applying these relations gives

πS1π = πS3π = πS5π = 0,

πS2π = π(LA + LB)2π = π(L2
A + LBLA)π = πLovdπ.

The term πS4π requires a little more work to obtain. Using the symmetric BCH formula
(2.35)

PJXYXK
δt = Id + δtL̂+

δt2

2
L̂2 +

δt3

6
L̂3 +

δt4

24
L̂4 +O(δt5),

with

L̂ = LX + LY +
δt2

24
(2[LY , [LY ,LX ]]− [LX , [LX ,LY ]]) +O(δt4).

Equating the powers of δt4 gives

S4 = L4
mc +

1
2

(Lmc[2LY + LX , [LY ,LX ]] + [2LY + LX , [LY ,LX ]]Lmc) .

We can simplify greatly by considering πS4π, as many of the terms will cancel. The
only surviving terms are a linear combination of the operators

πL4
Aπϕ = 3πL2

AπL2
Aπϕ = 3β−2∆2ϕ,

πLBL3
Aπϕ = 3πLBLAπL2

Aπϕ = −3β∇U · ∇ (∆ϕ) ,

πL2
ALBLAπϕ = πL2

AπLBLAπϕ = −β−1
(
2∇2U :∇2ϕ+∇U ·∇(∆ϕ)+∇(∆U)·∇ϕ

)
,

πLBLALBLAπϕ = πLBLAπLBLAπϕ = ∇U ·
(
∇2ϕ

)
∇U +∇U ·

(
∇2U

)
∇ϕ,

πLALBL2
Aπϕ = −2β−1

(
∇2U : ∇2ϕ+∇U · ∇(∆ϕ)

)
,

πL2
BL2

Aπϕ = 2∇U ·
(
∇2ϕ

)
∇U.

(4.75)
Here, as ϕ = ϕ(q), we have denoted ∇ = ∇q and ∆ = ∆q = ∇q ·∇q. Using these terms,
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it is easy to compute

πL4
mcπ = π (LA + LB)2 (LA + LB)2 π,

= π
(
LA + LB)2(L2

A + LBLA
)
π,

= π
(
L4
A + LALBL2

A + LBL3
A + L2

BL2
A + L2

ALBLA + LBLALBLA
)
π,

= 3π
(
L2
A + LBLA

)
π
(
L2
A + LBLA

)
π

+ π
(
LALBL2

A + L2
BL2

A − 2L2
ALBLA − 2LBLALBLA

)
π,

= 3πL2
ovdπ + π

(
LALBL2

A + L2
BL2

A − 2L2
ALBLA − 2LBLALBLA

)
π.

Then denoting the commutator term as

Ψ(LX ,LY ) = (LX + LY ) [2LY + LX , [LY ,LX ]] + [2LY + LX , [LY ,LX ]] (LX + LY ) ,

we can write

πΨ(LA,LB)π = π
(
L2
BL2

A + LALBL2
A + L2

ALBLA − 2LBLALBLA − LBL3
A

)
π,

and

πΨ(LB,LA)π = π
(
L2
BL2

A − 2LALBL2
A − 2L2

ALBLA − 2LBLALBLA + 2LBL3
A

)
π.

Hence we can write
πS4π = 3π

(
L2

ovd +D
)
π,

where D is the method dependent operator

DJeCABAeCK =
1
2
LALBL2

A +
1
2
L2
BL2

A −
1
2
L2
ALBLA − LBLALBLA −

1
6
LBL3

A,

DJeCBABeCK =
1
2
L2
BL2

A − L2
ALBLA − LBLALBLA +

1
3
LBL3

A.

It makes sense to denote h := δt2/2 as the Brownian timestep, giving

P∞,δt = π + hπLovdπ +
h2

2
π
(
L2

ovd +D
)
π + h3R2,∞,h.

We can then proceed exactly as in the case of the first-order methods in Section 4.1.3,
writing∫
M

[
π − P∞,δt

h
φ

]
[µβ (1 + hf2,∞)] dq

=
∫
M

[(
−Lovd −

h

2
(
L2

ovd +D
)
− h2R2,∞,h

)
φ

]
[µβ (1 + hf2,∞)] dq

= −h
∫
M

(
Lovdφ [µβf2,∞] +

1
2

[Dφ]µβ

)
dq + h2R̃2,∞,h.
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By taking adjoints in the leading term, it is clear that f2,∞ should satisfy

L∗ovdµβf2,∞ = −1
2
D∗µβ, (4.76)

where D is method dependent with finitely many derivatives. Using∫
M

(P∞,δtφ) µ̂δtdq =
∫
M
φµ̂δtdq,

we can write∫
M

[
π − P∞,δt

h
φ

]
µ̂δtdq −

∫
M

[
π − P∞,δt

h
φ

]
[µβ (1 + hf2,∞)] dq

= h

∫
M

(
Lovdφ [µβf2,∞] +

1
2

[Dφ]µβ

)
dq − h2R̃2,∞,h,

and hence choosing f2,∞ to solve (4.76) we have∫
M

[
π − P∞,δt

h
φ

]
µ̂δtdq =

∫
M

[
π − P∞,δt

h
φ

]
[µβ (1 + hf2,∞)] dq − h2R̃2,∞,h,

Using the result of (4.39), we choose the approximate inverse

Qh = −Lovd +
h

2
(
Id + L−1

ovdDL
−1
ovd

)
,

(
π − P∞,δt

h

)
Qh = Id + h2Z2,

and set φ = Qhϕ to give∫
M
ϕµ̂δtdq =

∫
M
ϕµβdq + h

∫
M
ϕf2,∞µβdq + h2r2,∞,

for method dependent correction function f2,∞, and where r2,∞ in uniformly bounded
by virtue of D having finitely many derivatives and the set S ∩ ker(π) being stable
with respect to L−1

ovd (by arguments similar to (4.28)). The simplification produced by
moving to the overdamped limit (i.e. eliminating momentum) allows us to find explicit
solutions to (4.76) and give formulas for f2,∞. Letting

ψ1 = β2 |∇U |2 − β∆U, ∆µβ = ψ1µβ,

we can compute

DJeCABAeCK =
1

2β
∇(∆U) · ∇ − (∇U) · (∇2U)∇,

= ∇
(

1
2β

∆U − 1
2
|∇U |2

)
· ∇,

= − 1
2β2
∇ψ1 · ∇.
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Taking the adjoint and operating on µβ gives(
DJeCABAeCK

)∗
µβ =

1
2β2
∇ · (µβ∇ψ1) ,

=
1

2β2
(∇µβ · ∇ψ1 + µβ ∆ψ1) ,

=
1

2β2
µβ (−β∇U · ∇+ ∆)ψ1,

=
1

2β
µβLovdψ1,

=
1

2β
L∗ovdψ1µβ.

This gives the solution

f
JeCABAeCK
2,∞ = − 1

4β
ψ1 =

1
4

(
∆U − β |∇U |2

)
, f

JeCABAeCK
2,∞ µβ = − 1

4β
∆µβ. (4.77)

From the definition of ψ1, we can also write∫
M
ϕf

JeCABAeCK
2,∞ µβdq = − 1

4β

∫
M
ϕ∆µβdq = − 1

4β

∫
M

∆ϕµβdq,

giving a more succinct correction∫
M
ϕµ̂

JeCABAeCK
δt dq =

∫
M
ϕµβdq − h

4β

∫
M

∆ϕµβdq + h2R̂∞.

Similarly

DJeCBABeCK =
2
β
∇2U : ∇2 +

1
β
∇∆U · ∇ −∇U ·

(
∇2U

)
∇,

and defining

ψ2 = β∆U − β2

2
|∇U |2 ,

we can compute the adjoint operator as(
DJeCBABeCK

)∗
µβ =

1
β2
∇ · (µβ∇ψ2) =

1
β
L∗ovdψ2µβ.

Hence we obtain the solution

f
JeCBABeCK
2,∞ = c

JeCBABeCK
2,∞ − 1

2β
ψ2 = c

JeCBABeCK
2,∞ − 1

2

(
∆U − β

2
|∇U |2

)
,

where the constant c
JeCBABeCK
2,∞ is chosen so that

〈
f

JeCBABeCK
2,∞

〉
= 0 as required. As〈

f
JeCABAeCK
2,∞

〉
= 0, it is easy to see that

c
JeCBABeCK
2,∞ =

1
2β
〈ψ2〉 =

〈
∆U

4

〉
.
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The correction can be written as∫
M
ϕµ̂

JeCBABeCK
δt dq =

∫
M
ϕµβdq +

h

4β

∫
M

(∆ϕ+ β (1− ϕ) ∆U)µβdq + h2R̂∞.

The remaining limiting solutions can be computed using Lemma 4.30. We set

U∞,δt = πeδtLB/2eδtLA/2, T∞,δt = eδtLA/2eδtLB/2π

so that
PJeCBABeCK
∞,δt = U∞,δtT∞,δt, PJABeCBAK

∞,δt = T∞,δtU∞,δt.

Using the BCH formula,

U∞,δt = π

(
Id +

δt

2
(LA + LB) +

δt2

8
G2 +

δt3

4
8G3 + δt4RU,4

)
, (4.78)

where

π (LA + LB)π = 0, πG2π = π
(

(LA + LB)2 + [LB,LA]
)
π = Lovd + πLBLAπ,

using the above rules. The G3 term will be a linear combination of terms LiBL
j
A, where

i, j ∈ N and i+ j = 3. Hence, by a parity argument πG3π = 0. Then applying Lemma
4.30, with ϕ = πϕ, we have∫

M
ϕµ̂

JABeCBAK
δt dq =

∫
M

(U∞,δtϕ) µ̂JeCBABeCK
δt dq

=
∫
M

(U∞,δtϕ)
[
µβ(1 + hf

JeCBABeCK
2,∞ )

]
dq + h2r̂2,h,

and equating powers of h we have

f
JABeCBAK
2,∞ µβ = f

JeCBABeCK
2,∞ µβ +

1
4

(πG2π)∗ µβ.

Computing
(πLBLAπ)∗ µβ = µβ

(
∆U − β |U |2

)
,

gives

f
JABeCBAK
2,∞ = f

JeCBABeCK
2,∞ +

1
4

(
∆U − β |U |2

)
=
〈

∆U
4

〉
− ∆U

4
.

Alternately, setting

U∞,δt = πeδtLA/2eδtLB/2, T∞,δt = eδtLB/2eδtLA/2π,

gives
PJeCABAeCK
∞,δt = U∞,δtT∞,δt, PJBAeCABK

∞,δt = T∞,δtU∞,δt.
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We can then proceed by exchanging the LA and LB symbols in G2, to give

f
JBAeCABK
2,∞ µβ = f

JeCABAeCK
2,∞ µβ +

1
4

(
π
(

(LA + LB)2 + [LA,LB]
)
π
)∗
µβ,

= f
JeCABAeCK
2,∞ µβ +

1
4
(
πL2

Aπ
)∗
µβ,

= f
JeCABAeCK
2,∞ µβ +

1
4β

∆µβ,

= 0,

(4.79)

by (4.77). This is perhaps a surprising result, as it implies that the scheme (4.73) is
second-order in h, or equivalently fourth-order in δt, for any potential energy function
U(q) and any smooth observable ϕ. Schemes have been previously been constructed for
Langevin dynamics with order > 2 [86, 114], but these require multiple evaluations of
the force; for this reason they are not normally viewed as competitive alternatives for
molecular sampling [65]. By contrast, the JBACABK scheme (like all Langevin splitting
schemes considered in this thesis) requires only one force-evaluation per timestep.

In summary, we give the correction terms for all four of the limiting schemes as

f
JeCABAeCK
2,∞ =

1
4

(
∆U − β |∇U |2

)
, f

JeCBABeCK
2,∞ = c− 1

2

(
∆U − β

2
|∇U |2

)
,

f
JBAeCABK
2,∞ = 0, f

JABeCBAK
2,∞ = c−∆U/4,

(4.80)

where c = 〈∆U/4〉. It can be verified that the above correction terms match those
given for the perturbed harmonic oscillator in (4.65) for q ∈ R and using the observable
ϕ(q) = q2 with potential energy function

U(q) = q2/2 + εq4/4,

when taking the limit γ →∞, and truncating at O(ε3).

4.3.2 Large and finite friction

in this section we consider the behaviour of the composition schemes as we approach
the limit of infinite friction. We shall make use of the following lemma that allows us
to bound the inverse of the Langevin dynamics operator for large friction, which gives
us a step towards bounding remainder terms of our solution in this limit.

Lemma 4.81. For any ϕ ∈ H1
⊥, where

H1
⊥ =

{
ϕ ∈ H1

∣∣∣∣∣ (πϕ) (q) is constant

}
⊂ H1,

there exists a constant K > 0 such that for any γ ≥ 1

‖L−1
LDϕ‖H1(ρβ) ≤ K‖f‖H1(ρβ).
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Proof. Defining
L1 = LA + LB + LC̄ ,

using γLC̄ = LC we have
LLD = L1 + (γ − 1)LC̄ .

We will make use of a result in [51], showing that for all smooth functions u ∈ H1 there
exists a θ > 0 such that

−〈〈u,L1u〉〉 ≥ θ〈〈u, u〉〉,

where the bilinear form is defined as

〈〈u, v〉〉 = a〈u, v〉+ b〈∇qu,∇qv〉+ b〈∇pu,∇pv〉 − 〈∇pu,∇qv〉 − 〈∇qu,∇pv〉,

for appropriate constants a � b � 1. The norm defined by this bilinear form is
equivalent to the norm defined on H1(ρβ).

Thus we have

−〈〈u,LLDu〉〉 ≥ θ〈〈u, u〉〉 − (γ − 1)〈〈u,LC̄u〉〉. (4.82)

Denoting the ith component of p as pi, can write

LC̄ = −p · ∇p + β−1∆p = − 1
β

N∑
i=1

∂∗pi∂pi , (4.83)

where ∂pi = ∂/∂pi, and ∂∗pi = −∂pi + βpi is the adjoint map of ∂pi in L2(ρβ). Hence
direct computation yields

〈〈u, ∂∗pi∂piu〉〉 = a‖∂piu‖2 + b‖∇q∂piu‖2 + b‖∇p∂iu‖2 + bβ‖∂piu‖2

− 2〈〈∇q∂piu,∇p∂piu〉〉 − β〈〈∂qiu, ∂piu〉〉,

≥
(
a+ β

(
b− 1

2

))
‖∂piu‖2 + (b− 1)‖∇q∂piu‖2 + (b− 1)‖∇p∂iu‖2

− β

2
‖∂qiu‖2,

using the identities

−2〈〈∇q∂piu,∇p∂piu〉〉 = ‖(∇q −∇p)∂piu‖2 − ‖∇q∂piu‖2 − ‖∇p∂piu‖2,

−β〈〈∂qiu, ∂piu〉〉 =
β

2
‖(∂qi − ∂pi)u‖2 −

β

2
‖∂qiu‖2 −

β

2
‖∂piu‖2.

We can bound the remaining negative term as the Gaussian momentum measure κβ(p)
satisfies a Poincaré inequality, and hence there exists a constant K ′ > 0 such that for
all i = 1, . . . , N we have

‖∂qiu‖ ≤ K ′‖∇p∂qiu‖,
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by virtue of
π∂qiu = ∂qiπu = 0,

for all u ∈ H1
⊥. Thus, for appropriate choices of a and b, we have

〈〈u, ∂∗pi∂piu〉〉 > 0,

and hence combining this result with (4.82) and (4.83), we can deduce there exists some
K > 0 such that

∀γ ≥ 1, ‖u‖H1(ρβ) ≤ K‖LLD‖H1(ρβ),

for any u ∈ H1
⊥ ∩H2(ρβ). Taking the inverse gives us the desired result.

For sufficiently large finite friction γ, we would expect the behaviour of computed
averages to approach the limiting behaviour of the overdamped scheme. In order to
make this behaviour precise, we give a bound on the difference between the under-
damped and overdamped Ornstein-Uhlenbeck evolution operators.

Lemma 4.84. For any fixed S ∈ N∗, there exists constants K,α > 0 such that for all
1 ≤ s ≤ S and δt > 0 ∥∥∥eδtLC − π∥∥∥

B(L∞Ks )
≤ Ke−αγδt. (4.85)

Proof. The result follows by, for instance, an application of [98, Theorem 8.7] when
considering the Ornstein-Uhlenbeck process with unit friction and mass M = Id

dp = −pdt+ β−1 dW,

with generator
LC̄ = −p · ∇p + β−1∆p.

The action of the operator on the Lyapunov function Ks = 1 + (p · p)s is such that for

LC̄Ks = −2s (p · p)s + β−1
(

2Ns (p · p)s−1 + 4s(s− 1) (p · p)s−1
)
≤ −Ks + αs,

where αs ≥ 0 is an appropriate constant. Thus we have constants K,λ > 0 such that
for any t > 0 ∣∣∣∣etLC̄ψ(p)−

∫
RN

ψ(p)κβ(p) dp
∣∣∣∣ ≤ Ke−λ tKs(p)||ψ||L∞Ks ,

giving exponential convergence towards its average. Plugging in t = γδt and noting
that LC = γLC̄ gives (4.85) by applying the bound to any function ϕ(q, p) ∈ L∞Ks and
taking the supremum with respect to q.

We can apply this lemma to bound the differences between the evolution of the
Ornstein-Uhlenbeck process in a scheme at finite and infinite friction. Consider the
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over and underdamped evolution operators of a method JCXYXCK, for X,Y ∈ {A,B}
distinct. Writing

PJCXYXCK
δt − PJeCXYXeCK

∞,δt =
(
eδtLC/2 − π

)
PJXYXK
δt π + eδtLC/2PJXYXK

δt

(
eδtLC/2 − π

)
,

(4.86)
allows us to bound their difference. This implies that for a smooth function solely of
position φ(q), we have∫

Ω

(
Id− PJCXYXCK

δt

)
φρ̂

JCXYXCK
δt dz =

∫
Ω

(
Id− PJeCXYXeCK

∞,δt

)
φρ̂

JCXYXCK
δt dz + r1 = 0,

where the remainder

r1 =
∫

Ω

(
PJeCXYXeCK
∞,δt − PJCXYXCK

δt

)
φρ̂

JCXYXCK
δt dz,

can be bounded through an application of Lemma 4.84 with (4.86), for δt sufficiently
small. Choosing a function f

JeCXYXeCK
2,∞ such that (4.76) is satisfied, we have

∫
Ω

(
Id− PJeCXYXeCK

∞,δt

)
φ

[
ρβ

(
1 +

δt2

2
f

JeCXYXeCK
2,∞

)]
dz = δt4r2,∞,

by virtue of ρβ = κβ(p)× µβ(q). Hence∫
Ω

(
Id− PJeCXYXeCK

∞,δt

)
φ

[
ρβ

(
1 +

δt2

2
f

JeCXYXeCK
2,∞

)]
dz

−
∫

Ω

(
Id− PJeCXYXeCK

∞,δt

)
φρ̂

JCXYXCK
δt dz = r1 + δt4r2,∞.

Through the appropriate approximate inverse Qδt, and replacing φ = −Qδtϕ as in the
underdamped case, we can then write∫

Ω
ϕρ̂

JCXYXCK
δt dz =

∫
Ω
ϕρβdz +

δt2

2

∫
Ω
ϕf

JeCXYXeCK
2,∞ ρβdz + δt4r̂2,∞ + r1, (4.87)

where the r1 can be bounded by terms exponentially small in γδt, while r̂2,∞ is uniformly
bounded for sufficiently small step size. Hence for sufficiently large frictions, we expect
the leading δt2 error term for the underdamped schemes of the form JCXYXCK, to be
the same as the leading error term in their corresponding overdamped schemes.

It remains to consider the two schemes with the central Ornstein-Uhlenbeck update,
where we used the TU lemma to compute the f2,∞ terms. Let us consider the JYXCXYK
scheme, again with X,Y ∈ {A,B} distinct. We choose

Tδt = eδtLY /2eδtLX/2eδtLC/2, Uδt = eδtLC/2eδtLX/2eδtLY /2, U∞,δt = πeδtLX/2eδtLY /2,
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then by application of lemma 4.30, we have∫
Ω
ϕρ̂

JYXCXYK
δt dz =

∫
Ω

(Uδtϕ) ρ̂JCXYXCK
δt dz,

=
∫

Ω
(U∞,δtϕ) ρ̂JCXYXCK

δt dz +
∫

Ω
([Uδt − U∞,δt]ϕ) ρ̂JCXYXCK

δt dz.

The second integral on the right hand side can be bounded by an exponentially small
term through Lemma 4.84, while the first term is precisely of the form (4.87). Expand-
ing the operator as in (4.78), we find an identical result to the overdamped case. Thus
for γ ≥ 1 and sufficiently small δt, for any of the symmetric second order schemes that
are consistent at large friction, for sufficiently smooth observable ϕ(q) we have∫

Ω
ϕ(q)ρ̂δt =

∫
Ω
ϕ(q)ρβ + h

∫
Ω
ϕ(q)f2,∞(q)ρβ +R,

where f2,∞ is the corresponding overdamped correction given in (4.80), with h = δt2/2
and

|R| ≤ K1h
2 +K2e

−bλγδt,
for appropriate constants K1,K2, λ̂ > 0. Thus we have the same result for schemes
with a central Ornstein-Uhlenbeck update, and schemes with two Ornstein-Uhlenbeck
steps book-ending the method.

This implies that for sufficiently large γδt, the JBACABK scheme (still in the under-
damped regime) gives an effective fourth-order result for averages of any configurational
observables. Note that the restriction on ϕ to be solely a function of position is of little
consequence, as we have already described that sampling the momentum is trivial and
irrelevant in practical tasks. However, the price paid for this superconvergence property
may be too steep: the increasing the friction to make γδt sufficiently large may have an
adverse effect on the rate of exploration through phase space. As a consequence, it may
not always be optimal (when sampling with Langevin dynamics) to blindly increase γ
to improve the accuracy.

Let us illustrate the convergence of the correction function from f2 to f2,∞ as γ
increases. We generalize the form of the correction function’s governing PDE for each
method in (4.51) by considering u as the solution to the Poisson equation

LLDu(q, p) = W (q, p), (4.88)

where W (q, p) is independent of the friction γ. In (4.51), the form of W (q, p) is de-
termined by the method we consider and the solution u is the second order correction
function. We make the ansatz that we can write

u = γu−1 + u0 +
1
γ
u1 +

1
γ2
u2 + . . .
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and seek to rigorously ground this assumption. From (4.88), we have

(LA + LB)u+ γLC̄u = W (q, p),

and plugging in our ansatz and equating powers of the friction gives

LC̄u−1 = 0,

(LA + LB)u−1 + LC̄u0 = 0,

(LA + LB)u0 + LC̄u1 = W,

(LA + LB)ui + LC̄ui+1 = 0, for i ∈ N∗.

The first equation implies u−1 = u−1(q), and hence LBu−1 = 0. The second equation
then becomes

LC̄u0 = −LAu−1 = −p · ∇qu−1,

with general solution
u0 = p · ∇qu−1 + ũ0(q),

for some function of position ũ0(q). Plugging this solution into the third equation gives
the formula

LC̄u1 = W − (LA + LB)u0 = W +∇U(q) · ∇qu−1 − pT (∇2u−1)p− p · ∇qũ0, (4.89)

which has solution only when the right hand side has average 0 with respect to the
distribution κβ, or equivalently when it is in the kernel of π. We therefore need
πW = π(LA + LB)u0, and hence

πW =
1
β

∆u−1 −∇U(q) · ∇qu−1 = Lovdu−1,

giving u−1 = L−1
ovdπW . Substituting this into (4.89) gives

LC̄u1 = W − πW +
1
β

∆u−1 − pT (∇∇Tu−1)p− p · ∇qũ0,

and using the identity

LC̄ (p ·Xp+ p · Y ) = −p · (X +XT )p+
2
β

Tr(X)− p · Y,

for matrix X and vector Y , we choose X = XT = ∇2u−1/2 and Y = ∇qũ0 to give

LC̄u1 = W − πW + LC̄(pT (∇2u−1)p/2 + p · ∇qũ0),

and hence
u1 = L−1

C̄
(W − πW ) + pT (∇2u−1)p/2 + p · ∇qũ0 + ũ1(q),

121



for some arbitrary function of position ũ1. The next equation gives

LC̄u2 = −(LA + LB)u1,

with solvability condition π(LA + LB)u1 = 0, which amounts to the choice of

π(LA + LB)L−1
C̄

(W − πW ) = −π(LA + LB)p · ∇qũ0 = −Lovdũ0,

giving ũ0 = −L−1
ovdπ(LA + LB)L−1

C̄
(W − πW ). Hence we have that

LLD

(
u− γu−1 − u0 −

1
γ
u1

)
= −1

γ
(LA + LB)u1.

Using Lemma 4.81, for γ ≥ 1 there exists a constant K > 0 such that for any v ∈ H1
⊥

we have ∥∥L−1
LDv

∥∥
H1(ρβ)

≤ K‖v‖H1(ρβ). (4.90)

Setting v = −(LA + LB)u1/γ, we obtain∥∥∥∥u− γu−1 − u0 −
1
γ
u1

∥∥∥∥
H1(ρβ)

≤ K

γ
‖(LA + LB)u1‖H1(ρβ)

and hence there exists some constant K̃ > 0 such that for any γ ≥ 1 we have

‖u− γu−1 − u0‖H1(ρβ) ≤
K̃

γ
,

for our choices of u−1 and u0, giving

∥∥∥L−1
LDW − γL

−1
ovdπW − p · ∇qL

−1
ovdπW − L

−1
ovdπ(LA + LB)L−1

C̄
(W − πW )

∥∥∥
H1(ρβ)

≤ K̃

γ
.

(4.91)
Returning to methods denoted by JCXYXCK, using (4.51) we can make use of the

identity L∗LDf2ρβ = −ρβLLDf2 to find

LLDf2 = w,

where wρβ = S∗2ρβ, such that w is independent of the friction γ and computed from
the right hand sides of (4.54–4.55). By the invariance (L∗A + L∗B)ρβ = 0, we have

[L∗A,L∗B] gρβ = (L∗A + L∗B)(g2ρβ)− gρβ(L∗A + L∗B)g = gρβ(L∗A + L∗B)g,(
L∗A +

1
2
L∗B
)
gρβ = ρβ

(
L∗A +

1
2
L∗B
)
g − 1

2
g2ρβ,(

1
2
L∗A + L∗B

)
gρβ = ρβ

(
1
2
L∗A + L∗B

)
g +

1
2
g2ρβ,
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where recall g(q, p)ρβ = L∗Bρβ = −βp · ∇Uρβ, and hence

(L∗A + L∗B)
(
L∗A +

1
2
L∗B
)
gρβ + [L∗A,L∗B] gρβ = ρβ (L∗A + L∗B)

(
L∗A +

1
2
L∗B
)
g,

(L∗A + L∗B)
(

1
2
L∗A + L∗B

)
gρβ − [L∗A,L∗B] gρβ = ρβ (L∗A + L∗B)

(
1
2
L∗A + L∗B

)
g.

We can compute(
L∗A +

1
2
L∗B
)
g =

(
−p · ∇q +

1
2
∇U · ∇p

)
g = β

(
pT
(
∇2U

)
p− 1

2
|∇U |2

)
,

and hence

(L∗A + L∗B)
(
L∗A +

1
2
L∗B
)
g = β

(
3pT

(
∇2U

)
∇U −∇3U : p⊗ p⊗ p

)
,

similarly

(L∗A + L∗B)
(

1
2
L∗A + L∗B

)
g = β

(
3pT

(
∇2U

)
∇U − 1

2
∇3U : p⊗ p⊗ p

)
.

Comparing with (4.54–4.55), we have

LLDf
JCBABCK
2 = wJCBABCK =

β

12
(
∇3U : p⊗ p⊗ p− 3pT

(
∇2U

)
∇U

)
,

LLDf
JCABACK
2 = wJCABACK =

β

12

(
3pT

(
∇2U

)
∇U − 1

2
∇3U : p⊗ p⊗ p

)
.

(4.92)

Noting that πw = 0 in both cases, we can make use of the bound (4.91) to show that
there exists some constant K > 0 such that for γ ≥ 1∥∥∥f2 − L−1

ovdπ(LA + LB)L−1
C̄
w
∥∥∥
H
≤ K

γ
. (4.93)

Using the formulas

LC̄
(
∇3U : p⊗ p⊗ p

)
= −3∇3U : p⊗ p⊗ p+

6
β
pT∇q∆qU,

LC̄
(
pT∇q∆qU

)
= −pT∇q∆qU, LC̄

(
pT
(
∇2U

)
∇U

)
= −pT

(
∇2U

)
∇U,

it is clear that

wJCBABCK =
β

12
LC̄
(
−1

3
∇3U : p⊗ p⊗ p− 2

β
pT∇q∆qU + 3pT

(
∇2U

)
∇U

)
,

wJCABACK =
β

12
LC̄
(

1
6
∇3U : p⊗ p⊗ p+

1
β
pT∇q∆qU − 3pT

(
∇2U

)
∇U

)
.
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Considering the JCBABCK scheme, we can use the formulas

∇3U : p⊗ p⊗ p = L3
AU = L3

AπU, (4.94)

pT∇q∆qU = LA∆qU = LAπ∆qU, pT
(
∇2U

)
∇U =

1
2
LA|∇U |2 =

1
2
LAπ|∇U |2,

(4.95)

to write

π(LA + LB)L−1
C̄
wJCBABCK =

β

12
π(LA + LB)

(
3pT

(
∇2U

)
∇U − 1

3
∇3U : p⊗ p⊗ p

− 2
β
pT∇q∆qU

)
,

=
β

12
π(LA + LB)

(
3
2
LAπ|∇U |2 −

1
3
L3
AπU −

2
β
LAπ∆qU

)
,

=
β

12
π

(
3
2
(
L2
A + LBLA

)
π|∇U |2 − 2

β

(
L2
A + LBLA

)
π∆qU

−1
3
LBL3

AπU −
1
3
L4
AπU

)
.

Recall the formulas in (4.75), giving

π
(
L2
A + LBLA

)
π = πLovdπ,

πL4
Aπ = 3πL2

AπL2
Aπ, πLBL3

Aπ = 3πLBLAπL2
Aπ.

Using πL2
AπU = ∆qU/β, we have

π(LA + LB)L−1
C̄
wJCBABCK =

β

12

(
3
2
Lovd|∇U |2 −

3
β
Lovd∆qU

)
,

and hence

L−1
ovdπ(LA + LB)L−1

C̄
wJCBABCK =

1
8
(
c+ β|∇U |2 − 2∆qU

)
, (4.96)

where the constant c is chosen to ensure the right hand side has average 0. Similarly
for the JCABACK scheme,

π(LA + LB)L−1
C̄
wJCABACK =

β

12
π

(
1
6
(
L4
A + LBL3

A

)
πU +

1
β

(
L2
A + LBLA

)
π∆qU

−3
2
(
L2
A + LBLA

)
|∇U |2

)
,

giving the result

L−1
ovdπ(LA + LB)L−1

C̄
wJCABACK =

1
8
(
∆qU − |∇U |2

)
. (4.97)

For the other second order schemes, we can perform a similar procedure to find equiv-
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alent results. Alternately, we make use of (4.57-4.58) with

(L∗A + L∗B) g = β
(
pT
(
∇2U

)
p− |∇U |2

)
,

to yield the relations

f
JCBABCK
2 = f

JABCBAK
2 − β

8
(
pT
(
∇2U

)
p− |∇U |2

)
,

f
JCABACK
2 = f

JBACABK
2 +

β

8
(
pT
(
∇2U

)
p− |∇U |2

)
.

Combining this result with the results (4.96) and (4.97), we can use (4.93) to write∥∥∥∥f JCBABCK
2 − 1

8
(
c+ β|∇U |2 − 2∆qU

)∥∥∥∥
H

≤ K

γ
, (4.98)∥∥∥∥f JCABACK

2 − 1
8
(
∆qU − β|∇U |2

)∥∥∥∥
H

≤ K

γ
, (4.99)∥∥∥∥f JABCBAK

2 − 1
8
(
c+ βpT

(
∇2U

)
p− 2∆qU

)∥∥∥∥
H

≤ K

γ
, (4.100)∥∥∥∥f JBACABK

2 − 1
8
(
∆qU − βpT

(
∇2U

)
p
)∥∥∥∥
H

≤ K

γ
, (4.101)

where c = 〈∆U〉. By taking averages of the limiting functions with respect to the
canonical momentum distribution κβ, it is evident that in the limit of large friction
the underdamped correction functions converge to their corresponding overdamped
corrections, given in (4.80) (where h = δt2/2). The rate of this convergence is at
least 1/γ, although in the case of the JBACABK scheme for the perturbed harmonic
oscillator, it is observed in (4.66) to converge at a rate 1/γ2. We would expect that by
continuing to find more terms in our ansatz, we could solve to find the leading order
perturbation for this special case.

4.3.3 Numerical experiment

We consider the one-dimensional system with the uneven double-well potential

U(q) = (q2 − 1)2 + q/2,

and consider using each of the four second order schemes to compute the average of
ϕ = q2 − 〈q2〉. We use β = 1 with friction parameters γ = 0.5 and γ = 5, verifying
the results of (4.98). For each timestep, we run 128 experiments of 109 total iterations,
using each of the four schemes. We then plot the error and magnitude of the computed
averages for each method in Figure 4.5.

We also plot the expected limiting results for the overdamped case as solid lines,
except in the case of the JBACABK scheme where we expect higher order behaviour. We
demonstrate the approximate convergence of the JBACABK scheme using a fourth-order
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Figure 4.5: We give the error in computed averages of q2−〈q2〉 at β = 1 for the uneven
double well potential (4.48), from simulations using the given timestep and friction for
each of the second order schemes. We plot the observed averages (coloured symbols)
with the results expected from our analysis of the overdamped limit (corresponding
coloured lines). All methods give a second-order trend at low friction, but at high
friction the JBACABK method demonstrates a superconvergence property. As expected,
as friction is increased the errors in the averages converge towards the errors given for
their overdamped versions. We plot a fourth-order line (black,dotted) to estimate the
behaviour of the JBACABK method.

guideline (black, dashed) in Figure 4.5.
As we expect, for small friction the schemes all give second-order errors. Increas-

ing γ has a dramatic effect on the JBACABK scheme, where despite the relatively
large number of computations we are unable to demonstrate any trend in its errors for
timesteps below 0.2, due to sampling error dominating the results. The other schemes
show reasonable convergence towards their respective limiting curves, where we would
expect that increasing the friction would reduce the deviation further.
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Chapter 5

Applications in molecular

sampling

This chapter will focus on practical applications for the framework and numerical dis-
cretization schemes we have developed in previous sections. We begin with describing
two strategies for evaluating the error term during simulation.

Section 5.1 summarizes work in collaboration with G. Stoltz on numerical estimation
of the perfect sampling bias error on-the-fly during simulation. Using a linear response
identity, we are able to evaluate the leading error term as the integral of a correlation
function.

Section 5.2 details new work on perturbing the Langevin dynamics vector field
in order to target higher-order sampling for one specific observable, by manipulating
the PDE governing the leading error term to ensure that the correction function is
orthogonal to the desired observable, with respect to the canonical weighting ρβ.

We conclude the chapter by giving detailed results of a molecular simulation com-
paring the four second-order schemes developed with four schemes in current use in
MD packages. This work combines new simulation results with those presented in
collaboration with B. Leimkuhler in [69].

5.1 Error estimation using linear response techniques

The results of Chapter 4 show that by using an order s numerical method, we can find
a suitable correction function fs such that for a sufficiently smooth observable ϕ(q, p)
we have ∫

Ω
ϕρ̂δtdz =

∫
Ω
ϕρβdz + δts

∫
Ω
fsϕρβdz + δts+1rs,δt, (5.1)

for uniformly bounded rs,δt, and where fs is a solution to the Poisson equation

L∗LDfsρβ = wsρβ, (5.2)
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for method dependent function ws(q, p). We are able to solve for fs in only select cases
due to the complexity of the Langvin dynamics operator LLD, such as the first-order
schemes in (4.43) or the overdamped case in (4.80). However, in the general case it
is very challenging to solve (5.2) and difficult to compute a numerical solution (using
finite difference methods, for example) due to the extremely high dimensionality in
which the PDE is posed. Thus we are unable to correct the second order methods
at arbitrary, finite friction, as we cannot solve their corresponding partial differential
equations (4.51).

Instead, in order to compute the correction value we will work with the right hand
side of (5.2), which is easily found using the BCH formula and commutator expansion.
The correction can then be written as an integrated correlation function by virtue of
the linear response identity

L−1
LD = −

∫ ∞
0

etLLDdt,

as an operator on H1 (see [50, 51, 93] for precise justfication of this equality). For any
value of τ , we have ∫

Ω

(
eτLLDφ

)
ψρβdz = E [φ(z(τ))ψ(z(0))] ,

where the expectation is taken with respect to all initial conditions z(0) ∈ Ω distributed
canonically according to ρβ. Combining these formulas, we can express the correction
as a double integral in space and time, and evaluate the integral using simulation data.
By switching the order of integration, the correction term becomes∫

Ω
fsϕρβdz =

∫
Ω

(
L−∗LDwsρβ

)
ϕdz = −

∫ ∞
0

∫
Ω

(
etLLDϕ

)
wsρβdtdz

= −
∫ ∞

0
E [ϕ(z(t))ws(z(0))] dt. (5.3)

In order to calculate this correction value accurately, we shall consider appropriate
methods for computing the integral to high order, using a Riemann sum with a per-
turbed observable function much in the style of backward error analysis and Section
2.1.2.

Let us consider two sufficiently smooth observables φ, ψ ∈ S̃, so

〈φ〉 = 〈ψ〉 = 0.

We seek a perturbed observable φδt that allows us to approximate a correlation function
to order α ∈ N∗, such that∫ ∞

0
E [φ(z(t))ψ(z(0))] dt = δt

∞∑
k=0

Eδt (φδt(zk)ψ(z0)) +O(δtα),
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where Eδt denotes that the expectation is taken with respect to all initial conditions
z0 ∈ Ω, distributed according to ρ̂δt. The (zk) are the discretized points from the
trajectory, where the subscript indicates iteration number, such that z0 = z(0).

Assume we have a numerical scheme with evolution operator Pδt and invariant
distribution ρ̂δt such that for sufficiently smooth ϕ and sufficiently small δt∫

ϕρβdz =
∫
ϕρ̂δt +O(δtα),

and
−
(

Id− Pδt
δt

)
= LLD + δtS1 + . . .+ δtα−1Sα−1 + δtαRα,

where Rα uses finitely many derivatives. Assuming we have sufficiently small step size,
we introduce the invariant numerical distribution through 〈φ〉 =

〈
L−1

LDφ
〉

= 0, where∫
Ω

(
L−1

LDφ
)
ψρβdz =

∫
Ω

(
L−1

LDφ
)

(ψ − 〈ψ〉δt) ρβdz,

=
∫

Ω

(
L−1

LDφ
)

(ψ − 〈ψ〉δt) ρ̂δtdz +O(δtα).

Then using (
δt

∞∑
k=0

Pkδt

)(
Id− Pδt

δt

)
= Id,

we have

−L−1
LD =

(
δt
∞∑
k=0

Pkδt

)(
Id + δtS1L−1

LD + . . .+ δtα−1Sα−1L−1
LD + δtαRαL−1

LD

)
,

allowing us to write

∫
Ω

(
L−1

LDφ
)

(ψ − 〈ψ〉δt) ρ̂δtdz = −δt
∫

Ω

( ∞∑
k=0

Pkδtφ̂δt

)
(ψ − 〈ψ〉δt) ρ̂δtdz +O(δtα), (5.4)

for
φ̂δt =

(
Id + δtS1L−1

LD + . . .+ δtα−1Sα−1L−1
LD

)
φ.

Making use of the identity∫
Ω

(Pnδtφ) (ψ − 〈ψ〉δt) ρ̂δtdz =
∫

Ω

(
Pnδt (φ− 〈φ〉δt)

)
(ψ − 〈ψ〉δt) ρ̂δtdz,

=
∫

Ω

(
Pnδt (φ− 〈φ〉δt)

)
ψρ̂δtdz,

we find∫
Ω

( ∞∑
k=0

Pkδtφ̂δt

)
(ψ − 〈ψ〉δt) ρ̂δtdz =

∫
Ω

( ∞∑
k=0

Pkδt
(
φ̂δt − 〈φ̂δt〉δt

))
ψρ̂δtdz,
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and hence we can combine the formulas to give∫ ∞
0

E [φ(z(t))ψ(z(0))] dt =
∫

Ω

∫ ∞
0

(
etLLDφ

)
ψρβdtdz,

= −
∫

Ω

(
L−1

LDφ
)
ψρβdz,

= −
∫

Ω

(
L−1

LDφ
)

(ψ − 〈ψ〉δt) ρ̂δtdz +O(δtα)

= δt

∫
Ω

( ∞∑
k=0

Pkδt
(
φ̂δt −

〈
φ̂δt

〉
δt

))
ψρ̂δtdz +O(δtα).

Thus, choosing φδt = φ̂δt −
〈
φ̂δt

〉
δt

, where

φ̂δt = φ+ δtS1L−1
LDφ+ . . .+ δtα−1Sα−1L−1

LDφ,

we have ∫ ∞
0

E [φ(z(t))ψ(z(0))] dt = δt

∞∑
k=0

Eδt [φδt(zk)ψ(z0)] + δtαr̃α, (5.5)

for sufficiently small δt, and sufficiently smooth functions φ and ψ with uniformly
bounded r̃α.

If we choose α = 1, then φδt = φ
[1]
δt = φ− 〈φ〉δt, reducing (5.5) to a Riemann sum.

In the more relevant case of symmetric second order methods, we have α = 2 and
S1 = L2

LD/2. In this case, we choose φδt = φ
[2]
δt where

φ
[2]
δt = φ− 〈φ〉δt + δt (LLDφ− 〈LLDφ〉δt) /2, (5.6)

and hence using (5.4) we have

∞∑
k=0

Eδt
[
φ

[2]
δt (zk)ψ(z0)

]
=
∞∑
k=0

Eδt
[
φ

[1]
δt (zk)ψ(z0)

]
− 1

2

∫ (
L−1

LD (LLDφ− 〈LLDφ〉δt)
)
ψρ̂δtdz.

Of course,

1
2

∫ (
L−1

LD (LLDφ− 〈LLDφ〉δt)
)
ψρ̂δtdz =

1
2
〈(φ− 〈φ〉δt)ψ〉δt +O(δt2),

giving

∞∑
k=0

Eδt
[
φ

[2]
δt (zk)ψ(z0)

]
=

1
2
〈φ[1]
δt ψ〉δt +

∞∑
k=1

Eδt
[
φ

[1]
δt (zk)ψ(z0)

]
+O(δt2).

This is precisely the ‘trapezoidal rule’, although we would not expect identical results
in comparison to the trapezoidal rule as the remainder terms will differ, leading to
different behaviour at higher orders. For schemes of higher order than 2 (for example
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Figure 5.1: Left: The error in the value of the integrated velocity autocorrelation func-
tion is compared at a number of time steps when computed using a Riemann sum (blue)
or the correction term provided in (5.5) (red). The result from computing the integral
using the trapezoidal rule (green) is also shown. Right: The error in the computed
average of total energy is plotted (blue), with the correction term computed using the
same step size (green) demonstrating the practical application of the method. We can
test the validity of (5.7) in principle by computing the correction more accurately at
a smaller time step in a separate simulation, this result is plotted in green. All results
are computed using the scheme JCBABCK with β = γ = 1.

a Yoshida-type scheme) we would expect to be able to continue with this procedure to
evaluate the required expectation functions at equally high order.

Returning to (5.3), we can approximate the correction function by choosing φ = ϕ

and ψ = ws in (5.5), to yield

∫
Ω
fsϕρβdz = −δt

∞∑
k=0

Eδt [ϕδt(zk)ws(z0)] + δtsr̃s, (5.7)

for appropriate ϕδt. Thus instead of solving (4.51) to find explicit solutions for the
correction functions f2, we can compute the correction on-the-fly during simulation
using this method. This allows us to correct an average, or gauge the quality of the
discretized sampling.

The function ws(q, p), which comes from the right hand side of (4.51), may itself
be computationally expensive to evaluate at every timestep, so this method may not
be practical in all cases (although fs may also be expensive).

We illustrate numerically the results of (5.5) and (5.7). We consider a small planar
model q = (x, y) ∈M = (2πT)2, with the potential energy function

U(q) = 2 cos(2x) + cos(y).

We fix temperature β = 1, with γ = 1 and M = Id, and use the JCBABCK scheme
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to evolve the dynamics. We aim to correct the average energy
〈
p2
x/2 + p2

y/2 + U(q)
〉

using (5.1) to yield a fourth-order average, by evaluating the correction term through
(5.7), where the ws function was computed in (4.92) as

w
JCBABCK
2 (q, p) =

β

12
(
∇3U : p⊗ p⊗ p− 3pT

(
∇2U

)
∇U

)
.

We compare the observed and corrected averages to the exact average, where the exact
average can be computed to arbitrary numerical precision (due to the simplicity of the
model) using standard solvers.

Additionally we seek to compute the diffusion constant in the x-direction Dx, as
the integral of the velocity autocorrelation function

Dx =
1
2

∫
E [px(t)px(0)] dt,

to order α = 2. As well as using the trapezoidal rule, we use the perturbed Riemann
sum given in (5.5), where we set φ(q, p) = px and ψ(q, p) = px/4. The perturbed
observable we use is given by (5.6) as

φδt(q, p) = φ(q, p) +
δt

2
LLDφ(q, p)− 〈φ(q, p) +

δt

2
LLDφ(q, p)〉δt,

=
(

1− γδt

2

)
px −

δt

2
Fx(q)−

〈(
1− γδt

2

)
px −

δt

2
Fx(q)

〉
δt

,

where Fx(q) is the force in the x-direction. The computed value for Dx is compared to
a baseline value computed using a much smaller step size (δt = 0.05).

For both sets of results, we run 103 repeat simulations for a fixed time interval of 2×
108, where δt ∈ [0.2, 0.4]. The required Riemann sums were computed during simulation
by maintaining a history of discretized points. This history was kept at fixed time length
20, at which point φ and ψ were suitably decorrelated, minimizing the expected error.
We accept that truncating the length of the Riemann sums in time would lead to errors,
however this is both a necessity of the hardware, as well as a computational concern:
due to the relative simplicity of the model, the computational bottleneck in simulation
was maintaining the history for computing the correction estimates.

We give the results for the simulations in Figure 5.1. The left plot demonstrates that
we are able to compute the velocity autocorrelation to second order accuracy, with the
result improving on the trapezoidal rule. The difference between the two comes from
the presence of the additional higher order terms when using φδt, whose interplay may
help or hinder the sampling. We do not expect this method to consistently outperform
the trapezoidal rule for more general systems.

The right hand plot in Figure 5.1 shows that the observed error in the average
energy is second-order, as expected. We can apply (5.7) to correct the average, giving
a fourth-order relation (marked in red). However at higher values of δt, we find that
the numerical estimation of the correction introduces large errors itself, that come close

132



to complementing the observed average, introducing more error rather than correcting
it. We can remove this behaviour by computing the correction in a separate simulation,
using (5.7) with a much smaller step size (δt = 0.1), and then use this value to correct
the average. This result (green) is shown to be far more robust, even at larger step
sizes.

5.2 Modified Langevin dynamics equation

We consider using the framework presented in Chapter 4 to analyze the weak order
of schemes integrating a perturbed version of the Langevin dynamics equation, with
a view to increase the weak order of a desired method with respect to ρβ. While
introducing modified equations to increase the order of symplectic methods is well-
studied [18, 48, 99], we are motivated by recent results for modified SDE equations
[1, 108, 130] and attempt to optimize the efficiency of a scheme by considering only one
class of perturbation to the standard Langevin dynamics. We shall proceed under the
assumption that the step size is sufficiently small and the perturbation is sufficiently
smooth such that the evolution operator of the method (and its derivatives) remain
bounded.

For a fixed step size δt > 0, we will consider perturbing Langevin dynamics by a
smooth function ν(q, p) ∈ RN , with a new splitting strategy[

dq
dp

]
=

[
M−1pdt

0

]
︸ ︷︷ ︸

A

+

[
0

−∇U(q) + δt2ν(q, p) dt

]
︸ ︷︷ ︸bB

+

[
0

−γpdt+
√

2γ/βM1/2 dW

]
︸ ︷︷ ︸

C

.

(5.8)
The reason we perturb the B piece and not the A or C pieces is for reasons of
computation–we anticipate that the function ν will require some system information
in the form derivatives of the potential energy function. As the B step requires a force
evaluation anyway (and hence calculation of all interatomic distances), it will be most
efficient to evaluate higher derivatives of U(q) at the same time (see [76] for examples
with Hessian-vector products). However, we accept that some additional computational
cost will be required.

We cannot necessarily solve the B̂ piece exactly, though as q remains constant we
expect that a high-accuracy solution is attainable using implicit methods or numerical
quadrature. As in the case of multiple time stepping in Section 4.2, we assume that the
evolution is computed to sufficient accuracy that we are able to use the exact evolution
operator in our analysis.

Proceeding as in Section 4.1.2, we define our method through a composition of the
corresponding evolution operators, where we have the L2 generator for the B̂ vector
field

L bB = LB + δt2ν(q, p) · ∇p, L∗bB = L∗B − δt2∇p · (ν(q, p) · ) .
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We shall assume that for sufficiently small step size δt, the evolution operator and
its derivatives can be bounded in such a way that we retain sufficient control over any
remainder terms in the Taylor expansion of the method operator (4.29). As an example,
let us set M = IN consider the scheme JCAB̂ACK, where

PJCAbBACK
δt = eδtLC/2 eδtLA/2 eδtL bB eδtLC/2 eδtLA/2 = eδt

bLδt ,
with

L̂δt = LA + L bB + LC + δt2S
JCABACK
2 +O(δt4) = LLD + δt2S

JCAbBACK
2 +O(δt4),

where we have introduced

S
JCAbBACK
2 = S

JCABACK
2 + ν(q, p)∇p.

Proceeding as in Section 4.1.3 using (4.51), we obtain

L∗LDf
JCAbBACK
2 ρβ = −

(
S

JCAbBACK
2

)∗
ρβ = −

(
S

JCABACK
2

)∗
ρβ +∇p · (ν ρβ) ,

and hence
LLDf

JCAbBACK
2 = wJCABACK +∇p · ν(q, p)− βp · ν(q, p). (5.9)

This gives us the ability to edit the right-hand side of (4.51) as we see fit. Recall that
for any sufficiently smooth observable ϕ with 〈ϕ〉 = 0, the correction is of the form∫

Ω
ϕf2 ρβdqdp.

Hence if we seek high order sampling for only one particular observable, we need not
necessarily rely on a method that gives higher order for all observables (which may
be computationally prohibitive). If we can choose a correction function f2 (such that
〈f2〉 = 0) orthogonal to ϕ with respect to the weighting ρβ, then we obtain higher order
sampling if we are able to tailor the right-hand side of (5.9) (through judicious choice
of ν) such that f2 is a solution.

The resulting method is not a higher-order method, but instead it is tuned for a
particular observable (or class of observables) to give higher order. As an example, if
we seek higher order sampling for any function solely of position ϕ(q), then choosing a
suitable pair of functions ν and f2, such that f2 is a solution of (5.9) and πf2 = 0, will
give high order sampling.

The practical benefit of this approach is that by choosing an appropriate splitting
scheme (our choice of JCABACK is motivated by the simplicity of wJCABACK and its
independence with respect to γ ), we can search for any such suitable f2 that makes
ν(q, p) a computationally amenable function.

The approach also allows for more general corrections, if the computational weight

134



of ν is not a central issue. Completely annihilating the right hand side of (5.9) will
give a higher order scheme for all observables. For example, recall from (4.92) that

wJCABACK =
β

12

(
3p ·

(
∇2U

)
∇U − 1

2
∇3U : p⊗ p⊗ p

)
.

Direct computation yields that for

ν1(q, p) = ∇q · pT
(
∇2U

)
p, ν2(q, p) = ∇Tq

(
∇2U

)
, ν3(q, p) =

(
∇2U

)
∇U,

we have
∇p · ν1 − βp · ν1 = 2∇q ·

(
∇2U

)
p− β∇3U : p⊗ p⊗ p,

∇p · ν2 − βp · ν2 = −β∇q ·
(
∇2U

)
p,

∇p · ν3 − βp · ν3 = −βp ·
(
∇2U

)
∇U.

Hence, choosing

ν(q, p) =
1
4
ν3(q, p)− 1

24
ν1(q, p)− 1

12β
ν2(q, p),

we have
LLDf

JCAbBACK
2 = wJCABACK +∇p · ν(q, p)− βp · ν(q, p) = 0,

giving higher order weak sampling for any suitable ϕ(q, p), as f JCAbBACK
2 = 0.

We test this method on the uneven double well potential for (q, p) ∈ R2, where

U(q) =
(
q2 − 1

)2 + q/2.

We will correct the average of

ϕ(q) = q2 − 〈q2〉, (5.10)

at β = γ = 1. We compare the results of the JCABACK and JCAB̂ACK schemes in
Figure 5.2, where each datapoint is an average from 128 runs of 108 iterations.

While we do indeed achieve fourth-order sampling from this scheme, comparing the
results of the JCAB̂ACK scheme with results in Figure 4.5 we see that at the larger tested
step sizes of δt = 0.2 the error computed using the JBACABK scheme is approximately
two orders of magnitude smaller than the JCAB̂ACK scheme (which has a nontrivial
increase in computational cost due to the required computation of ∇3U).

5.3 Application of Langevin dynamics schemes to config-

urational sampling

In this section we shall compare the elementary second-order methods developed in
Chapter 4 with popular Langevin dynamics methods in the literature that are derived
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Figure 5.2: We verify that the modification to the Langevin dynamics method gives
higher-order sampling for the observable given in (5.10), in the case of the JCAB̂ACK
scheme.

through different approaches than the ABC splitting (4.5). All methods we consider
will be second order and require one force evaluation per timestep: hence we consider
them all to have the same computational cost as this is the dominant computational
bottleneck in large systems. In smaller systems, the complexity of the algorithm (such
as repeated state updates or generating multiple random numbers) will become more
of a factor, though we will not consider this here.

Numerical methods using Metropolis conditioning, or any form of accept/reject
branching will not be used, although these techniques complement trajectory-based
algorithms nicely. Our focus will remain on methods that produce trajectory data
that is consistent with Langevin dynamics. The metric we shall use to grade methods
will be the computed error in the configurational sampling resulting from taking the
average along the trajectory. This gives an indication of the corruption to the invariant
measure.

As well as the four elementary methods

JCBABCK, JCABACK, JABCBAK, JBACABK, (5.11)

we shall test four additional numerical schemes from the literature by implementing
them in the NAMD (Not Another Molecular Dynamics) package [94].

In comparison to alternate MD packages such as GROMACS (Groningen MAchine
for Chemical Simulation) [122] , NAMD offers a lightweight version of the package
(while retaining much of its functionality) called NAMD Lite, designed specifically
for the purpose of testing new algorithms [54]. This allows utilization of the NAMD
force routines, enabling testing using forcefields applied to standard problems in the
literature. Procedures such as load balancing (for parallel simulation) or file handling
are inherited from the NAMD source, making the implementation of the four elementary
methods given in (5.11) very simple, owing to the modular nature of our splitting
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approach. The velocity Verlet scheme JBABK is standard in almost all MD codes,
making the JCBABCK and JBACABK schemes particularly easily to implement.

As many packages do not offer a choice of algorithms for the numerical integration of
Langevin dynamics, for our implementation we have adapted the existing workflow and
routines (such as random number generation) utilized in the software. In collaboration
with D. Hardy, we have added the JBACABK algorithm to the standard NAMD package.

We list the four additional methods that we will compare the schemes in (5.11)
against:

Brünger, Brooks and Karplus (BBK)

Derived in [14], this extremely popular method is the common benchmark for many
MD codes. Packages such as NAMD use this scheme as standard for the generation of
Langevin dynamics trajectories.

Stochastic Position Verlet (SPV or JASAK)

The stochastic versions of the position and velocity Verlet schemes were proposed in
[82] by Melchionna, using the splitting strategy given in (4.3) splitting the momentum
from the position. At large friction, the force becomes dominated by the noise term
(leading to inconsistency), while at low friction we expect JASAK and JABCBAK to
have very similar behaviour.

Van Gunsteren and Berendsen (VGB)

Used as standard in packages such as GROMACS [122], this method was proposed in
[123] and later revised in a more compact form in [124]. It is not derived from an
additive decomposition of the vector field, but instead from local consideration of the
trajectory itself.

Langevin Impulse (LI)

The Langevin impulse scheme was suggested by Skeel and Izaguirre in [111]. The
version of the algorithm we consider is for sampling functions solely of position.

While the BBK and SPV methods are very simple to implement, we found that
the LI and VGB schemes required significant time investment to ensure they were
working correctly, due to the high complexity of the algorithms (all of the schemes are
summarized in the Appendix). Some popular schemes reduce to algorithms we have
already considered, these are given below:
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Bussi-Parrinello

Proposed by Bussi and Parrinello [16], this scheme can be rewritten as exactly the
JCBABCK scheme. Similarly, the scheme given in [109] is equivalent to JCBABCK
using a reparameterized timestep.

Reverse leapfrog

The reverse leapfrog scheme [15] of Burrage and Lythe was derived to sample positions
of harmonic potentials exactly by design, using a Runge-Kutta partioning strategy. Its
update scheme (using unit masses) is

pn+1/4 = pn − δt∇U(qn)/2,

pn+2/4 =
(
pn+1/4 +

1
2

√
2γδt/βRn

)
(1 + γδt/2)−1 ,

qn+1 = qn + δtpn+2/4,

pn+3/4 = (1− γδt/2) pn+2/4 +
1
2

√
2γδt/βRn,

pn+1 = pn+3/4 − δt∇U(qn+1)/2.

For some fixed constant η > 0, plugging in

γ =
4
δt

((
1 + e−ηδt

)−1
− 1

2

)
,

reduces the reverse leapfrog method to precisely the JBACABK update scheme, using
friction η. Correspondingly, using infinite friction in the symmetric ABC schemes is
equivalent to setting γ = 2/δt in the reverse leapfrog method, giving the overdamped
method in (4.73). Noting that γ = η+O(δt2η3), we expect much of the same behaviour
as the JBACABK method for low friction, though the reverse leapfrog scheme is plainly
not suitable at large frictions.

GLA methods

Geometric Langevin Methods were introduced in [12], using splitting strategy given in
equation (4.4). The Newtonian part is separated from the Ornstein-Uhlenbeck process,
with the pieces integrated in sequence. The correction functions for the second order
GLA methods (using the Verlet schemes for the Newtonian part) were shown in (4.60-
4.61) to be identical to the symmetric methods JCBABCK and JCABACK up to order
δt4 for configurational sampling. In fact, as the A step is the only operation to affect
the position, we expect all of the methods denoted by

JBCBAK, JCBABK, JCBABCK, JBABCK, JABCBK,

to give identical averages when sampling functions of position.
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Figure 5.3: The structure of the alanine dipeptide protein is shown (left) with a visu-
alization of the molecule in simulation (right).

As our focus will be on configurational sampling we will not specifically include
comparisons with GLA schemes as the observed averages in experiments will be exactly
as the either the JCBABCK or JCABACK scheme, depending on the flavour of Verlet
chosen as the second-order integrator.

5.3.1 A description of the alanine dipeptide molecule

We study the alanine dipeptide molecule, a classic test case for molecular dynamics. We
implement each of the eight considered methods into the NAMD lite package [54], and
observe the effect of discretization error (if any) on computed configurational averages.
The CHARM22 force field was used to parameterize the potential energy functions
suitably for simulation.

The alanine dipeptide model has 22 atoms with d = 3, where each atom is bonded
to at least one other atom through a harmonic potential. Additionally there are 41
dihedral potential terms confining its shape, however only two of these dihedral terms
are internal, making extensive sampling of its dihedral states computationally painless.

One of the most important features of a numerical method for ergodic dynamics
(such as Langevin dynamics) is its preservation of the theoretical global phase space
exploration rate. The spectral properties of the operator L∗LD guarantee that we will
explore the entire phase space, while the relatively small perturbations to the operator
induced by numerical discretization do not significantly alter the rate of search. Ul-
timately, pushing the timestep up is the only way to breach timescale gaps, although
this comes at the cost of corruption to the long-time averages.

The self-diffusion coefficient gives a metric quantifying the diffusion rate. It is
often used as a way to compare the rate of phase space exploration between methods,
and typically calculated using the integral of the velocity auto-correlation function.
However, arbitrary methods can be constructed to artificially scale the velocity auto-
correlation function, hence giving inaccurate diffusion constants.

Indeed the calculation of a system’s average temperature using the average of kinetic
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energy (the equipartition theorem) by

NkBT =
〈
pTM−1p

〉
, (5.12)

gives a similar problem: methods can be created that give perfect sampling of this
quantity but give comparatively poor sampling of configurations. For example, con-
sider the results in Table 4.1 using the JCBABCK scheme with the harmonic oscillator.
We see that we achieve exact results for (5.12) for any suitable step size δt, whereas
configurational sampling suffers. Conversely for the JABCBAK scheme, we have perfect
configurational sampling, but poor results for the average temperature when computed
using the momenta.

In the overdamped case, where momentum (if one chooses to use it) is resampled
at each step, it is clearly not appropriate to use any averages of momentum as they
are completely decoupled from the dynamics. Many alternative functions, including
functions of q only, can be obtained whose averages are proportional to the system
temperature [59, 64, 100]. For an arbitrary vector field B : R2N → R2N we have

kBT =
〈∇H ·B〉
〈∇ ·B〉

, (5.13)

where H is the system Hamiltonian and B is chosen such that the above numerator
and denominator are nonzero and finite. Choosing B = [0, p]T gives exactly (5.12),
while choosing B = [q, 0]T gives Clausius’ virial theorem

NkBT = −〈q · ∇U(q)〉 , (5.14)

which we shall refer to as the configurational temperature. Of course there are many
other possibilities, a measure of configurational temperature is given in [17, 28] as

kBT =

〈
|∇U |2

〉
〈∆U〉

,

by taking B = [∇U(q), 0]T in (5.13). However, due to the extra computation required
by evaluating the Laplacian at each step, as well as the relatively unpredictable denom-
inator at large δt, we will use the virial theorem (5.14) to compute the configurational
temperature of the system.

Were one able to solve the dynamics exactly, the kinetic and configurational tem-
peratures would of course be commensurate. However, using a numerical method in
the large-timestep regime we instead sample expectations with respect to the perturbed
density ρ̂δt, that may introduce discrepancies between configurational and kinetic tem-
peratures. A configuration-based temperature calculation is normally more useful and
relevant for assessing the quality of configurational sampling methods.

In a similar way, the speed of exploration of the space should not be determined
solely from functions of momentum, but should use actual barrier crossing rates or times
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to reach some target region of phase space as a metronome to gauge the exploration
rate.

5.3.2 Numerical results for vacuum simulation

Our initial test involves running the alanine dipeptide model without boundary condi-
tions or solvent. This approach allows us to run a huge number of simulations in order
to get a flavour for the performance of the algorithms.

We simulate the alanine dipeptide molecule at 300K for a fixed time interval of 2.5ns,
using each of the eight second-order schemes. Multiple runs using different step sizes
and friction constants are used to observe how different simulation parameters affect the
computed averages. A region of the parameter space (where (δt, γ) ∈ R2) was divided
into a 50×50 grid, with each point on the grid corresponding to a (δt, γ) parameter set
for a simulation. Values for the friction range from 0.01/ps to 100/ps while step size runs
from 1fs to 3.29fs, with both parameter ranges increased by logarithmic increments.
This parameter spectrum is considered broad enough to contain values that would
realistically be used in computation, but was not so wide as to yield a large number of
unsuitable parameter sets (for example, using an unstable step size) leading to wasted
computation. All the schemes were unstable for the maximum step size tested, ensuring
we gain some information about the relative stability of the schemes.

The results of the 20,000 total independent simulations are given in Figure 5.4,
where we colour points on the 50 × 50 grid of parameter sets to indicate the results
from that respective simulation. The colouring gives the relative error in the computed
simulation’s average, where the “exact” comparison value is taken from averaging ten
2.5ns runs using the JBACABK scheme at δt = 0.25fs, where it is expected that dis-
cretization error is not significant.

We give errors of four averages–the average total potential energy and average
total bond energy, as well as the error in the average temperature computed using
kinetic data (5.12) or configuration data (5.14). As our focus is on configurational
sampling, we include the kinetic temperature data to verify any correlation between
errors in sampling q and p. Indeed, the results are similar to those of the harmonic
oscillator in Table 4.1, with the JBACABK and JABCBAK schemes giving excellent
results for the bond energy (which is quadratic in position), while the JCABACK and
JCBABCK schemes give superior results for the kinetic temperature (which is quadratic
in momentum). Evidently judging one by the other is not an optimal strategy, and at
worst would be misleading.

Simulating on such a short timescale, we would perhaps expect to see a very “noisy”
result: high variances due to the sampling error vastly outweighing the discretization
error. But in fact the discretization error dominates in most of the results and is plainly
observable at step sizes significantly below the stability threshold. The results for the
average total potential energy for the JBACABK, JABCBAK and SPV schemes do show
high variance due to sampling error, though we would expect this to decrease given
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Figure 5.4: We simulate an alanine dipeptide molecule at 300K in a vacuum for 2.5ns
using each of the eight schemes. Pixels colours denote the relative errors of computed
averages in simulations with the prescribed timestep and friction parameters. White
pixels denote instability.
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Figure 5.5: The rate of exploration through the phase space for the alanine dipeptide
molecule in a vacuum is estimated by counting the number of orientation switches the
particle makes (top) and computing the auto-diffusion coefficient using a Green-Kubo
relation (bottom). We achieve similar results for all schemes tested.

additional repeat experiments. Alternatively we could use an interpolation scheme, as
neighbouring gridpoints use have only small differences in their parameter sets. We
elect to leave the noise as it is however, in favour of showing a ‘clean’ unfiltered result.

White pixels in each grid in Figure 5.4 represent parameters where the method is
unstable, showing that in general there is a small stability threshold increase for the
large-friction case, though there is no significant increase in this threshold between the
methods. Recall that the threshold is set by the fastest degrees of freedom in this
system, which in this case are the N −H bond stretches. In the case of the harmonic
oscillator, all of the consistent second order methods tested had the same step size
limit equivalent to the Verlet step size threshold. Therefore we would not expect any
significant differences in stability where the fastest motion is harmonic.

Of course a step size can be stable but unusable if we desire the error in averages
below some tolerance. For example, if we require at most a 10% error in the computed
average potential energy, then the BBK scheme is evidently unusable at any step size
that we have considered, regardless of the time interval sampled over.

One salient feature of the results of Figure 5.4, is that for the JBACABK scheme
there is consistently less than a 1% error in the computed configurational temperature
(for moderate friction) across all step sizes - even the largest stable timesteps tested.
The relative errors obtained were so small that no discernible trend (with step size) can
be shown, (due to the sampling error dominating below this value), whereas the other
schemes tested show smooth error growth consistent with second-order schemes.

Self-diffusion coefficients are calculated from integrating the computed velocity au-
tocorrelation function, where a history is kept of the velocities for 1ps. The values
plotted in Figure 5.5 show that changing the step size within the indicated range us-
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ing any of the schemes has only a very slight effect on the diffusion coefficient, while
increasing the friction can dramatically reduce it. Examining the graphs, we settle on
γ = 1/ps as the largest value of γ for which the diffusion coefficient is unperturbed for
all the schemes.

Additionally we compute a physical measure to compare the passage of time. We
count the number of recrossings the molecule makes, which gives the number of times
the orientation of the φ and ψ dihedral angles switch between their two states. For a
fixed value of friction, for all methods this rate of recrossing remains constant, but is
severely decreased for large values of γ above 1/ps.

It is interesting that larger damping parameters do not substantially improve nu-
merical stability for any of the methods, except in an extreme case for the VGB method
(γ ≈ 100/ps), where the diffusion constant is drastically reduced). From our analysis
in Section 4.2 and Section 4.3, we would expect that for large friction the JBACABK
scheme should give a superconvergence property. It is likely that we do not see this
effect due to the dominance of sampling error preventing any reliable statistics at suf-
ficient accuracy.

5.3.3 Numerical results from simulations using solvent

In order to provide a more realistic com-
parison, we immerse the alanine dipep-
tide molecule in a sphere of TIP3P wa-
ter (10Å radius, total system contains 424
atoms) and equilibrate for 1ns at 300K to
generate an initial configuration. Simula-
tions were completed using each scheme
considered in the unsolvated case, using
a 10Å cutoff for the electrostatic and van

der Waals potentials. The value of friction was fixed at 1/ps in all simulations, given
the optimal performance of this parameter in Figure 5.5. We test a range of timesteps,
starting from δt = 1fs, with subsequent simulations increasing the step size by 5%,
until reaching a step size where all of the methods fail. This was found after 22 such
increments in the timestep, giving a maximum stable step size of approximately 2.8fs
for this model. Each simulation runs for 5ns at 300K using spherical (harmonically
restrained) boundary conditions to maintain the shape of the molecule.

In order to have a good baseline ‘exact’ result to compare our results, we average 10
comparable simulations using a 0.5fs step size. The baseline simulations were computed
using the JBACABK scheme, though we expect that using a discretization parameter so
small means that sampling error should dominate over discretization error and hence
the exact result should be effectively independent of scheme.

We plot the results of the growth in discretization error in Figure 5.6 for the 176
independent simulations. As this model is considerably larger than the vacuum model
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Figure 5.6: We plot the relative error of observed averages computed using each scheme
for the solvated alanine dipeptide model with γ = 1/ps and at 300K. Errors are com-
puted against a baseline solution averaged from ten 5ns simulations using the JBACABK
scheme at δt = 0.5fs. We omit some results at the smaller step sizes for the average
temperature results due to the high accuracy of some schemes giving results with high
variance.

considered in Section 5.3.2, it becomes prohibitively expensive to perform repeat exper-
iments to drive down the variance. Averaging techniques such as importance sampling
[75] or block averaging [74] could be employed to give greater accuracy in the results.

Instead, we recognize that the errors we record provide only an approximation of
the overall behaviour. In the case of the average temperature results, some schemes give
extremely accurate results of around 0.1% error below the step size of 2fs. At smaller
step sizes, the sampling error becomes too large for any trend to be approximated.

Noticeably the JBACABK scheme provides an order of magnitude improvement in
the configurational temperature results at all step sizes tested. However, the results
for its average kinetic temperature are rather poor, especially compared to its twin
method JCABACK produced from shuffling the terms around. This foregrounds the
potentially misleading assumption of equivalence between the two types of sampling,
as configurational sampling is of primary concern.

The surprising downward trend of the error using the JBACABK scheme could be
indicative of higher-order terms dominating in the error expansion, showing that our
asymptotic approach does not give definitive answers about behaviour in the large step
size regime. The analytic results obtained for are understood only for δt→ 0.
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Figure 5.7: We plot the normalized potential energy distributions for simulations of
solvated alanine dipeptide using each scheme, coloured for increasing step size (1fs in
blue to 2.8fs in red) with successive lines indicating a 5% increase in the step size. Ver-
tical dotted lines indicate the corresponding progression of the average total potential
energy.

The greater restriction on the step size compared to the vacuum case (where schemes
were stable above 3fs) is due to the introduction of the higher frequency O-H bonds.
The slight differences in stability between some of the schemes is surprising as we have
seen that in models where the step size threshold is governed by the harmonic terms all
of the schemes have commensurate stability regions for fixed friction. It is likely that
for multiple repeats, or a longer integration time, similar stability properties would be
observed.

We additionally compute a histogram of the distribution of potential energy for
each simulation, by dividing the interval [−1500,−1000] (kcal/mol) into 150 bins and
normalizing the resulting density. We compare the computed distributions with a
baseline distribution computed using the same ‘exact’ results from Figure 5.6. We plot
all of the resulting histograms in Figure 5.7, colouring the results according to the step
size used to obtain them (increasing step size is marked from blue to red), overlaying
the exact distribution in black.

The JABCBAK and SPV schemes perform very well, with only a noticeable differ-
ence from the exact distribution as the step size approaches the stability limit. Some
schemes, such as BBK or JCABACK perform very poorly, with even the smallest step
sizes tested giving a visible difference between the distributions. This indicates that the
system is able to access much higher energy states than it would do in exact sampling.
At the highest step sizes the exact and observed distributions have very little overlap,
suggesting a complete failure to sample the system.

The distributions generated from trajectories computed using the JBACABK scheme
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deviate by only a very small amount, even at the highest step sizes tested. Comparing
the energy breakdown, primarily the average bond and dihedral energy terms are re-
sponsible for the errors in average potential energy. From the results of the perturbed
harmonic analysis in equation (4.66), the annihilation of the leading term in the error
series (at order ε) appears to lead to the behaviour of the JBACABK scheme. The par-
allel success of the JABCBAK and SPV schemes (which share a similar update strategy,
especially at small friction) support this observation, as such schemes also give excellent
configurational sampling properties in (4.66).

The success of the JBACABK scheme suggests that large improvements could be
made to any methods that use Langevin dynamics as a tool for trajectory generation.
Improving a method’s efficiency (e.g. allowing the use of a larger basic timestep in
simulation) thus has a knock-on effect on the efficiency of all the methods that rely on
such trajectories. While relative improvements of a few percentages in efficiency can
already warrant a minor change in software implementation, our analysis points to a
more dramatic (even qualitative) difference among various methods leading to prospects
for much greater efficiencies by selecting a suitable method.

The contribution of error coming from the restraining boundary condition energy
was extremely small, suggesting that the properties of the bulk water in the model
are responsible for the differences in efficiency seen here. Hence we would expect the
observed corruption of averages to be generalizable to any simulations involving other
boundary conditions, or other simulations involving water. Note that we would not
expect similar results had we looked at the momentum distribution, but instead this
behaviour is unique to configurational sampling.
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Summary and conclusion

The research given in this thesis is devoted to explicit computation of the errors in-
troduced through numerical discretization of Langevin dynamics, with a focus on the
computed trajectories used to sample canonical configurational averages of a molecular
dynamics system..

We have analyzed and tested four new second-order Langevin dynamics discretiza-
tion schemes that require one force evaluation per timestep, based upon a new (ABC)
splitting strategy for the SDEs. In a molecular dynamics simulation of a solvated pro-
tein, one of the new schemes was found to significantly outperform all other methods in
tests involving configurational sampling. At large step size, the discretization error was
found to dominate the random sampling error for typical integrators found in standard
MD packages.

This has a potentially large impact on many disciplines that rely on molecular
dynamics simulation. If simulations can significantly increase the timestep without
compromising on the sampling quality, then either the required wall-clock simulation
time is dramatically decreased, or it enables a longer the integration interval to sample
over.

We make rigorous the error estimates given in [68], and make precise statements on
the relations between errors in the observed averages of different schemes, solving to
find the leading correction terms in the case of the first order methods. In the case of
the second order methods, we use a linear response technique to numerically estimate
the required correction. Alternatively we discuss methods of modifying the Langevin
dynamics equations to provide higher-order sampling tuned to specific observables.

Schemes for the overdamped (infinite friction) limit of Langevin dynamics (or Brow-
nian dynamics) are studied as the limiting cases of methods splitting the Ornstein-
Uhlenbeck process up from the Newtonian dynamics. We solve to find the correction
term for these overdamped schemes, and prove that one scheme has a superconvergence
property in this limit. The limiting method of this scheme gives a fourth-order error
in observed averages, while requiring only one force evaluation per timestep.

There are a wide variety of future directions for this work. The framework we use
can be naturally extended to provide explicit weak error estimates for SDEs other than
Langevin dynamics (such as Nosé-Hoover Langevin dynamics (3.15) or line sampling
(3.17)), assuming similar hypocoercivity results hold allowing us to bound the remain-
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der terms. Potentially this would allow estimation of weak sampling errors between
schemes that integrate different dynamics, although we would not necessarily expect to
find the cancellations at higher order that we demonstrate in some Langevin dynamics
schemes.

The results of perturbing the Langevin equation in Section 5.2 suggest that the
framework presented could be extended to include schemes that compute averages of
non-equilibrium systems, which amounts to perturbing the force in a similar manner.
This could allow greater fidelity in the computation as static quantities such as the
diffusion coefficient.

To overcome some numerical stability issues in simulation, holonomic constraints
are sometimes used in molecular dynamics to fix bond lengths or angles between nuclei.
It is not obvious whether discretization schemes for Langevin dynamics with constraints
that use a splitting analagous to those presented in this thesis inherit the same prop-
erties as discretization methods without constraints (e.g. exact sampling of harmonic
potentials). This is particularly relevant for the method with the superconvergence
property.

We conclude by stating that the JBACABK scheme, and its limiting method in
(4.73), demonstrate excellent configurational sampling properties in both experiment
and analysis. The scheme shows great potential to significantly improve the weak accu-
racy of many algorithms employing Langevin dynamics to sample molecular dynamics
systems.
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[14] A. Brünger, C. L. Brooks, and M. Karplus. Stochastic boundary conditions
for molecular dynamics simulations of ST2 water. Chemical Physics Letters,
105(5):495–500, 1984.

[15] K. Burrage and G. Lythe. Accurate stationary densities with partitioned nu-
merical methods for stochastic differential equations. SIAM J. Numer. Anal.,
47(3):1601–1618, Apr. 2009.

[16] G. Bussi and M. Parrinello. Accurate sampling using Langevin dynamics. Phys.
Rev. E, 75:056707, May 2007.

[17] B. D. Butler, G. Ayton, O. G. Jepps, and D. J. Evans. Configurational tempera-
ture: Verification of monte carlo simulations. The Journal of Chemical Physics,
109(16):6519–6522, 1998.

[18] M. Calvo and J. Sanz-Serna. The development of variable-step symplectic inte-
grators, with application to the two-body problem. SIAM Journal on Scientific
Computing, 14(4):936–952, 1993.

[19] J. Candy and W. Rozmus. A symplectic integration algorithm for separable
Hamiltonian functions. Journal of Computational Physics, 92(1):230 – 256, 1991.

[20] M. Ceriotti, G. Bussi, and M. Parrinello. Colored-noise thermostats á la carte.
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Appendix A

Numerical Methods

We give the numerical methods used in this thesis, assuming timestep δt, friction
constant γ with diagonal mass matrix M and position and momentum vectors q, p ∈ RN

respectively. The force is F (q) := −∇U(q), where we use temperature T and kB is
Boltzmann’s constant. Rn is an N -vector of independent, identically distributed normal
random numbers with zero mean and unit variance. Where J > 1 random numbers are
required per degree of freedom, multiple independent (uncorrelated) random vectors
are denoted R

(j)
n , j = 1, . . . , J in the schemes.

−− JBACABK −−

Note: This scheme is available in recent versions of NAMD (after Jan 2013) by including
options ‘langevin on’ and ‘langevinBAOAB on’ in the input parameter file.

pn+1/3 = pn +
δt

2
F (qn),

qn+1/2 = qn +
δt

2
M−1pn+1/3,

pn+2/3 = e−γδtpn+1/3 +
√
kBT (1− e−2γδt)M1/2Rn,

qn+1 = qn+1/2 +
δt

2
M−1pn+2/3,

pn+1 = pn+2/3 +
δt

2
F (qn+1)

−− JABCBAK −−

qn+1/2 = qn +
δt

2
M−1pn,

pn+1/3 = pn +
δt

2
F (qn+1/2),

pn+2/3 = e−γδtpn+1/3 +
√
kBT (1− e−2γδt)M1/2Rn,

pn+1 = pn+2/3 +
δt

2
F (qn+1/2),

qn+1 = qn+1/2 +
δt

2
M−1pn+1
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−− JCBABCK −−

pn+1/4 = e−γδt/2pn +
√
kBT (1− e−γδt)M1/2R(1)

n ,

pn+2/4 = pn+1/4 +
δt

2
F (qn),

qn+1 = qn + δtM−1pn+2/4,

pn+3/4 = pn+2/4 +
δt

2
F (qn+1),

pn+1 = e−γδt/2pn+3/4 +
√
kBT (1− e−γδt)M1/2R(2)

n

−− JCABACK −−

pn+1/3 = e−γδt/2pn +
√
kBT (1− e−γδt)M1/2R(1)

n ,

qn+1/2 = qn +
δt

2
M−1pn+1/3,

pn+2/3 = pn+1/3 + δtF (qn+1/2),

qn+1 = qn+1/2 +
δt

2
M−1pn+2/3,

pn+1 = e−γδt/2pn+2/3 +
√
kBT (1− e−γδt)M1/2R(2)

n

−− Van Gunsteren/Berendsen (VGB) −−

We must initialize the vector X ∈ RN ,

X1 = κ4M
−1/2R

(3)
0 ,

and then iterate

Vn+1 = κ1M
−1/2R(1)

n ,

V̂n+1 = κ2Xn + κ3M
−1/2R(2)

n ,

pn+1 = e−γδtpn +
1− e−γδt

γ
F (qn) +M

(
Vn+1 − e−γδtV̂n+1

)
,

Xn+1 = κ4M
−1/2R(3)

n ,

X̂n+1 = κ5Vn+1 + κ6M
−1/2R(4)

n ,

qn+1 =
eγδt/2 − e−γδt/2

γ
M−1pn+1 +Xn+1 − X̂n+1,
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where we use vectors X, X̂, V, V̂ ∈ RN . Constants κi ∈ R are given as

κ1 =
√
kBT (1− e−γδt),

κ2 =
2γ − γeγδt/2 − γe−γδt/2

γδt− 3 + e−γδt
(
4eγδt/2 − 1

) ,
κ3 =

√
kBT

√√√√γδt (eγδt − 1)− 4
(
eγδt/2 − 1

)2
γδt− 3 + e−γδt

(
4eγδt/2 − 1

) ,
κ4 = γ−1

√
kBT

√
γδt− 3 + e−γδt

(
4eγδt/2 − 1

)
,

κ5 = γ−1

(
2− eγδt − e−γδt

e−2γδt − 1

)
,

κ6 = γ−1
√
kBT

√
γδt (e−γδt − 1) + 4

(
e−γδt/2 − 1

)2
e−γδt − 1

.

−− Stochastic Position Verlet (SPV) −−

qn+1/2 = qn +
δt

2
M−1pn,

pn+1 = e−γδtpn +
1− e−γδt

γ
F (qn+1/2) +

√
kBT (1− e−2γδt)M1/2Rn,

qn+1 = qn+1/2 +
δt

2
M−1pn+1

−− Langevin Impulse (LI) −−

We use the algorithm designed for configurational sampling; a correction term is given in
[111] to improve the sampling of momenta, though this has no effect on configurational
averages. We must initialize the vector Z ∈ RN ,

Z1 = M1/2 (α0R0 + α̂R1) .

and then iterate

pn+1/4 = pn + ωδtF (qn),

pn+2/4 = e−γδt/2
(
pn+1/4 + ωZn

)
,

qn+1 = qn +
1− e−γδt

γe−γδt/2
M−1pn+2/4,

Zn+1 = M1/2 (αRn + α̂Rn+1) ,

pn+3/4 = e−γδt/2pn+2/4 + ω̂Zn+1,

pn+1 = pn+3/4 + ω̂F (qn+1),
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where

ω =
e−γδt + γδt− 1
γδt (1− e−γδt)

, ω̂ = 1− ω,

a = kBT
(
2ω2γδt+ ω − ω̂

)
,

b = kBT (2ωω̂γδt+ ω̂ − ω) ,

c = kBT
(
2ω̂2γδt+ ω − ω̂

)
,

α = 2−1/2
√
c+ a+

√
(c+ a)2 − 4b2,

α̂ = 2−1/2
√
c+ a−

√
(c+ a)2 − 4b2,

α0 =
√
α2 − c.

−− Brünger/Brooks/Karplus (BBK) −−

pn+1/2 =
(

1− γδt

2

)
pn +

δt

2
F (qn) +

1
2

√
2γkBTδtM1/2Rn,

qn+1 = qn + δtM−1pn+1/2,

pn+1 =
(

1 +
γδt

2

)−1(
pn+1/2 +

δt

2
F (qn+1) +

1
2

√
2γkBTδtM1/2Rn+1

)
.

164


	PhD coversheet April 2012
	thesis
	Lay Summary
	Abstract
	Introduction
	Deterministic molecular dynamics
	Hamiltonian dynamics
	General numerical methods for autonomous ODEs
	Symplectic maps
	Geometric integration
	Higher order symplectic methods
	Scale separation

	Sampling the canonical ensemble
	Statistical mechanics
	The Boltzmann-Gibbs distribution
	The Nosé-Hoover thermostat


	Stochastic thermostats
	Stochastic dynamics
	The Fokker-Planck equation
	Hörmander's condition

	Nosé-Hoover Langevin dynamics
	Non-Newtonian dynamical sampling

	Splitting methods for Langevin dynamics
	Foundations for stochastic splitting
	Preliminaries
	Decomposition into pieces A, B and C
	Computing error estimates for general systems

	Performance for harmonic systems
	Quadratic potential energy functions
	Perturbed harmonic oscillator
	Stability for systems with multiple scales

	The overdamped regime
	Error estimates in the limit of infinite friction
	Large and finite friction
	Numerical experiment


	Applications in molecular sampling
	Error estimation using linear response techniques
	Modified Langevin dynamics equation
	Application of Langevin dynamics schemes to configurational sampling
	A description of the alanine dipeptide molecule
	Numerical results for vacuum simulation
	Numerical results from simulations using solvent


	Summary and conclusion
	Bibliography
	Numerical Methods


