
Equivalence semantics for concurrency:
comparison and application

Vashti Christina Galpin

Doctor of Philosophy
University of Edinburgh

1998

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Edinburgh Research Archive

https://core.ac.uk/display/429724569?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Abstract

Since the development of CCS and other process algebras, many extensions

to these process algebras have been proposed to model different aspects of con-

current computation. It is important both theoretically and practically to under-

stand the relationships between these process algebras and between the semantic

equivalences that are defined for them.

In this thesis, I investigate the comparison of semantic equivalences based

on bisimulation which are defined for process algebras whose behaviours are de-

scribed by structured operational semantics, and expressed as labelled transition

systems. I first consider a hierarchy of bisimulations for extensions to CCS, using

both existing and new results to describe the relationships between their equival-

ences with respect to pure CCS terms. I then consider a more general approach

to comparison by investigating labelled transition systems with structured labels.

I define bisimulation homomorphisms between labelled transition systems with

different labels, and show how these can be used to compare equivalences.

Next, I work in the meta-theory of process algebras and consider a new format

that is an extension of the tyft/tyxt format for transition system specifications.

This format treats labels syntactically instead of schematically, and hence I use

a definition of bisimulation which requires equivalence between labels instead of

exact matching. I show that standard results such as congruence and conservative

extension hold for the new format.

I then investigate how comparison of equivalences can be approached through

the notion of extension to transition system specifications. This leads to the main

results of this study which show how in a very general fashion the bisimulations

defined for two different process algebras can be compared over a subset of terms

of the process algebras.

I also consider what implications the conditions which are required to obtain

these results have for modelling process algebras, and show that these conditions

do not impose significant limitations. Finally, I show how these results can be

applied to existing process algebras. I model a number of process algebras with

the extended format and derive new results from the meta-theory developed.

ii

Acknowledgements

I would first like to thank my supervisor, Julian Bradfield, for his guidance

and support through this long and at times arduous process. I would also like to

thank Jane Hillston for her comments on a draft of this document.

I would like to thank Scott Hazelhurst, Ian Sanders and Conrad Mueller of the

Department of Computer Science, University of the Witwatersrand, for encour-

aging me to pursue a doctoral degree outside of South Africa, and for providing

me with working space in which to finish my thesis once I had returned to Johan-

nesburg. I would also like to thank Conrad Mueller for introducing me to Robin

Milner’s work on CCS.

Finally, I would like to thank András Salamon for his support, proofread-

ing and frequent visits, as well as my family in South Africa and my friends in

Edinburgh for their support.

I would also like to thank the following organisations for the funding which

made my time at the University of Edinburgh possible.

• The Patrick and Margaret Flanagan Scholarship

• The Overseas Research Students Awards Scheme

• The Foundation for Research and Development

• The Canon Collins Educational Trust for Southern Africa

iii

Declaration

I declare that this thesis was composed by myself and that the work contained

therein is my own, except where explicitly stated otherwise in the text.

(Vashti Christina Galpin)

iv

Table of Contents

Abstract i

Acknowledgements iii

Declaration iv

Table of Contents v

List of Figures ix

List of Tables xi

List of Definitions xiii

List of Results xv

List of Examples xvii

List of Counter-Examples xviii

Notation xix

1 Introduction 1

1.1 Organisation of the thesis . 2

2 Background and motivation 4

2.1 Introduction . 4

2.2 Background . 4

2.2.1 True concurrency/non-interleaving equivalences 6

2.2.1.1 Causal approaches 7

v

2.2.1.2 Distributed/location-based equivalences 8

2.2.2 Equivalences involving duration or time 13

2.2.3 Equivalences based on with priorities 18

2.2.4 Probabilistic equivalences 18

2.2.5 Equivalences based on proved transitions 19

2.2.6 Other approaches . 22

2.2.7 Comparison . 25

2.2.8 Formats . 28

2.3 Related work . 31

2.4 Motivation . 32

2.5 Conclusion . 33

3 Two approaches to comparison 34

3.1 Introduction . 34

3.2 Comparison over pure CCS terms 34

3.3 A syntax-free approach to comparison 43

3.3.1 A general model of transition systems 43

3.3.2 Bisimulation homomorphisms 47

3.3.3 Discussion . 55

3.4 Conclusion . 60

4 A new format 61

4.1 Introduction . 61

4.2 Definitions . 62

4.2.1 Many-sorted signatures and algebras 62

4.2.2 Labelled transition systems 64

4.3 Extended transition system specifications 65

4.3.1 Extended tyft/tyxt format 72

4.3.2 Congruence theorem . 78

4.3.3 Counter-examples . 84

4.3.4 Comparison with other formats 93

4.4 Conclusion . 96

vi

5 Comparison results for the new format 97

5.1 Introduction . 97

5.2 Sums of eTSSs and conservative extensions 98

5.2.1 Counter-examples . 103

5.2.2 Related work . 104

5.3 Extensions up to bisimulation . 105

5.3.1 Counter-examples . 115

5.3.1.1 Refining extensions 116

5.3.1.2 Abstracting extensions 118

5.4 A different approach to extensions up to bisimulation 123

5.4.1 Counter-examples . 128

5.5 Conclusion . 128

6 Application of results 129

6.1 Introduction . 129

6.2 Implications of conditions . 130

6.2.1 Implications of congruence compatibility 130

6.2.2 Sums of congruences and Σ-algebras 132

6.2.2.1 Conservativity 138

6.2.2.2 Compatibility . 138

6.3 Using extended tyft/tyxt format to express process algebras 141

6.3.1 CCS . 142

6.3.2 Variants of CCS . 147

6.3.2.1 CCS with locations 149

6.3.2.2 CCS with n locations 151

6.3.2.3 Multiprocessor CCS 153

6.3.3 Discussion . 155

6.4 Comparing two semantic equivalences 157

6.4.1 Multiprocessor CCS . 159

6.4.1.1 Definition of n multiprocessor equivalence 159

6.4.1.2 Expressing n multiprocessor equivalence 159

6.4.2 An extension . 161

vii

6.4.2.1 Definition of pomset equivalence 161

6.4.2.2 Expressing pomset equivalence as an extension . 162

6.4.3 A refining extension . 169

6.5 Discussion . 171

6.6 Conclusion . 172

7 Conclusion and further work 173

7.1 Summary and conclusions . 173

7.2 Further work . 175

A Proof of Theorem 5.3.2 178

A.1 Proof of Theorem 5.3.2 . 178

B Proofs for comparison example 187

B.1 Introduction . 187

B.2 Equivalence result required in Section 6.4.3 187

B.3 Semantic equivalence result required in Section 6.4.3 190

Bibliography 200

viii

List of Figures

2.1 Examples of processes which are not causally equivalent [DD90] . 8

2.2 Example of processes which are not distributed bisimulation equi-

valent . 9

2.3 Example of processes which are not location bisimulation equivalent 10

2.4 Example of processes which are not local/global cause equivalent . 11

2.5 Example of processes which are not (Krishnan) distributed bisim-

ulation equivalent . 12

2.6 Example of processes which are not ST-bisimulation equivalent . . 14

2.7 Example of processes which are not (Aceto and Murphy) timed

bisimulation equivalent . 15

2.8 Example of processes which are not pomset bisimulation equivalent 20

2.9 Example of processes which are not read-write bisimulation equi-

valent . 21

2.10 Example of processes which are not equated by bisimulation over

asynchronous transition systems [MN92] 23

2.11 Example of processes which are not multiprocessor bisimulation

equivalent . 24

2.12 Proof technique used by Gorrieri and Laneve [GL91] 27

2.13 Hierarchy of formats [Gro93] . 30

3.1 A hierarchy of equivalences for finite CCS terms 36

3.2 Examples of transition systems 52

4.1 LTS given by term from Example 4.3.1 71

4.2 Counter-example 4.3.2 . 86

ix

4.3 Counter-example 4.3.3 . 86

4.4 Counter-example 4.3.4 . 87

4.5 Counter-example 4.3.5 . 88

4.6 Counter-example 4.3.6 . 89

4.7 Counter-example 4.3.7 . 91

5.1 Example 5.2.1 . 100

5.2 Counter-example 5.2.1 . 104

5.3 Counter-example 5.3.1 . 116

5.4 Counter-example 5.3.2 . 117

5.5 Counter-example 5.3.3 . 118

5.6 Counter-example 5.3.4 . 120

5.7 Counter-example 5.3.5 . 121

5.8 Counter-example 5.3.6 . 122

5.9 Counter-example 5.3.7 . 123

x

List of Tables

3.1 Equivalences that form the hierarchy 35

3.2 CCS processes used for comparison 39

3.3 Summary of relationship between equivalences 40

3.4 Summary of relationship between equivalences continued 41

3.5 Summary of relationship between equivalences continued 42

6.1 Rules for CCS . 144

6.2 Rule schemas for CCS . 145

6.3 Rules for CCSGen . 148

6.4 Rule schemas for CCSGen . 149

6.5 Functions AL . 150

6.6 Carrier sets for AL . 151

6.7 Carrier sets for ALn . 151

6.8 Functions for ALn . 152

6.9 Carrier sets for Am . 153

6.10 Functions for Am . 154

6.11 Rules and rule schemas for MP 158

6.12 Rules for n multiprocessor CCS 160

6.13 Carrier sets for An . 160

6.14 Functions for An . 161

6.15 Rules for pomset CCS . 163

6.16 Rules and rule schemas for MPExt 165

6.17 Carrier sets for Apom . 166

6.18 Functions for Apom . 166

6.19 Carrier sets for Apomn . 167

xi

6.20 Functions for Apomn . 168

B.1 Rules and rule schemas for MP 191

B.2 Rules and rule schemas for MPExt 192

B.3 Carrier sets for Apom . 193

B.4 Functions for Apom . 194

B.5 Carrier sets for Apomn . 195

B.6 Functions for Apomn . 196

xii

List of Definitions

2.2.1 Labelled transition system . 5

2.2.2 Strong bisimulation . 5

3.3.1 Extended labelled transition system 44

3.3.2 Strong generalised bisimulation with respect to a relation 44

3.3.3 Weak generalised bisimulation with respect to a relation 45

3.3.4 Bisimulation homomorphism . 47

3.3.5 Consistency . 48

3.3.6 Separation property . 53

4.2.1 Sorted set . 62

4.2.2 Signature . 62

4.2.3 Open and closed terms . 62

4.2.4 Sensible signature . 63

4.2.5 Variables contained within a term 63

4.2.6 Substitution . 63

4.2.7 Σ-algebra . 63

4.2.8 Σ-homomorphism . 64

4.2.9 Σ-congruence . 64

4.2.10 Sorted labelled transition system 65

4.3.1 Suitable signature . 67

4.3.2 Extended transition system specification 68

4.3.3 Proof . 69

4.3.4 LTS specified by an eTSS . 70

4.3.5 Transition equivalence . 71

xiii

4.3.6 Strong bisimulation with respect to an equivalence over a sorted

set . 71

4.3.7 Extended tyft/tyxt format . 73

4.3.8 Compatibility . 74

4.3.9 Well-foundedness . 75

4.3.10 Freeness of variables . 77

4.3.11 Pureness of rules . 77

5.2.1 Sum of two signatures . 98

5.2.2 Sum of two eTSSs . 98

5.2.3 Asymmetric sum of two signatures 98

5.2.4 Asymmetric sum of two eTSSs 99

5.2.5 Conservative extension . 99

5.2.6 Label-free variable . 100

5.2.7 Label-pure rule . 100

5.3.1 Conservative extension up to bisimulation with respect to an

equivalence . 105

5.3.2 Conservative extension with respect to an equivalence 106

5.3.3 Refining extension up to bisimulation with respect to an equivalence107

5.3.4 Abstracting extension up to bisimulation with respect to an equi-

valence . 107

5.3.5 Type-1 asymmetric sum . 108

5.3.6 Type-0 asymmetric sum . 108

5.3.7 Sum of two congruences . 111

5.3.8 Conservativity of the sum of two congruences 111

5.4.1 Safety of a signature . 123

6.2.1 Union of many-sorted sets . 133

6.2.2 Sort-similar sum of signatures 133

6.2.3 Sum of algebras . 134

xiv

List of Results

Proposition 3.3.1 Properties of strong generalised bisimulation with

respect to a relation . 45

Proposition 3.3.2 Properties of weak generalised bisimulation with

respect to a relation . 46

Proposition 3.3.3 Bisimulation homomorphisms and generalised bisim-

ulation . 48

Proposition 3.3.4 Bisimulation homomorphism defines a generalised

bisimulation . 49

Proposition 3.3.5 States that are images of a common state are bisimilar 51

Proposition 3.3.6 States that have a common image are bisimilar . . 53

Proposition 3.3.7 States that are bisimilar have a common image . . 54

Proposition 4.3.1 Terms over a suitable signature 68

Lemma 4.3.1 Closed transitions are provable by closed proofs 70

Lemma 4.3.2 Well-founded extended tyft/tyxt can be transformed to

well-founded extended tyft . 76

Lemma 4.3.3 Well-founded extended tyft/tyxt can be transformed to

pure extended tyft . 77

Theorem 4.3.1 Congruence . 78

Theorem 5.2.1 Conservative extension 101

Proposition 5.3.1 Conservative extension implies conservative exten-

sion up to bisimulation with respect to an equivalence 106

xv

Proposition 5.3.2 Conservative extension with respect to an equival-

ence implies conservative extension up to bisimulation with re-

spect to that equivalence . 107

Proposition 5.3.3 Refining and abstracting extensions up to bisimula-

tion if and only if conservative extension up to bisimulation . . . 108

Lemma 5.3.1 Application of rules . 109

Lemma 5.3.2 Equivalences and sums of congruences 111

Theorem 5.3.1 Refining extension up to bisimulation with respect to

a congruence . 112

Theorem 5.3.2 Abstracting extension up to bisimulation with respect

to a congruence . 114

Corollary 5.3.1 Conservative extension up to bisimulation with respect

to a congruence . 114

Lemma 5.4.1 Implications of safety of a signature 124

Theorem 5.4.1 Conservative extension without label-pureness and with

safety . 124

Lemma 5.4.2 Application of rules without label-pureness and with safety126

Theorem 5.4.2 Refining extension up to bisimulation with respect to

a congruence without label-pureness and with safety) 126

Theorem 5.4.3 Abstracting extension up to bisimulation with respect

to a congruence without label-pureness and with safety 127

Corollary 5.4.1 Conservative extension up to bisimulation with respect

to a congruence without label-pureness and with safety 127

Proposition 6.2.1 Conditions on Σ-algebra ensuring compatibility . . 131

Proposition 6.2.2 Sort-similarity . 134

Proposition 6.2.3 Sum of algebras . 136

Theorem 6.2.1 Equivalence induced by sums of algebras 136

Proposition 6.2.4 Sum of algebras induces conservative equivalence . 138

Proposition 6.2.5 Sum of algebras induces compatibility 139

xvi

List of Examples

4.3.1 Example of an eTSS . 69

4.3.2 Transition equivalence . 71

4.3.3 Well-foundedness . 76

4.3.4 Congruence . 84

5.2.1 Example of the asymmetric sum of two eTSSs 99

5.2.2 Conservative extension . 103

5.3.1 Refining extension up to bisimulation 115

5.3.2 Abstracting extension up to bisimulation 115

5.4.1 Conservative extension with safety 125

6.2.1 Omission of sort-similarity . 135

xvii

List of Counter-Examples

4.3.1 Signature and rules for counter-examples 85

4.3.2 Distinctness of label variables in premise labels 85

4.3.3 Distinctness of label variables in source of conclusion 86

4.3.4 Distinctness of label variables in source of conclusion and labels

of premises . 86

4.3.5 Compatibility of form . 87

4.3.6 Compatibility of variables . 87

4.3.7 More compatibility . 88

5.2.1 Label-pureness . 103

5.3.1 Conservativity of equivalence 116

5.3.2 Type-1 sum . 117

5.3.3 Pureness for refining extensions up to bisimulation 118

5.3.4 Pureness for abstracting extensions up to bisimulation 119

5.3.5 Label-pureness for abstracting extensions up to bisimulation . . 119

5.3.6 First example of type-0 sum . 121

5.3.7 Second example of type-0 sum 122

6.3.1 Location equivalence not comparable with multiprocessor equi-

valence . 155

6.3.2 Global cause equivalence not comparable with multiprocessor

equivalence . 156

6.4.1 Restricted pomset equivalence and multiprocessor equivalence . 170

xviii

Notation

states S s, t

actions A a, b

transitions T s
a−→ t

labelled transition system (LTS) L = (S,A, T)

strong bisimulation ∼

weak bisimulation ≈

strong generalised bisimulation
with respect to a relation B

∼B

weak generalised bisimulation with
respect to a relation B

≈B

identity relation Id

bisimulation homomorphism (hS , hA, hT)

S-sorted set {As}s∈S
S ′-sorted subset of S-sorted set AS′

signature Σ = (S, F)

(s1, s2, . . . ; f1, f2, . . . ; g1, g2, . . .)

variables V,W x

set of open terms over a subset of
variables W

T (Σ,W)

set of open terms over a subset of
variables W of sort s

T (Σ,W)s

set of open terms over Σ T(Σ) t

set of closed terms over Σ T(Σ)

set of open terms over Σ of sort s T(Σ)s

set of closed terms over Σ of sort s T(Σ)s

xix

variables of sort s that appear in a
term t

Vars(t)

variables that appear in a term t Var(t)

substitution σ, ρ

Σ-algebra A

process sort P

S-sorted set A with P 6∈ S AP

process variables VP x, y

non-process variables VS, VP z

open process terms T(Σ)P p, q

closed process terms T(Σ)P u, v

open non-process terms T(Σ)S, T(Σ)P λ, η

closed non-process terms T(Σ)S, T(Σ)P α, β, µ, ν

extended transition specification
system (eTSS)

E = (Σ, R)

transitions φ, ψ, χ

bisimulation up to an equivalence
≡

∼≡

bisimulation up to an equivalence
≡ on an eTSS E

∼E≡

sum of two signatures Σ0 ⊕Σ1

sum of two eTSSs E0 ⊕ E1

asymmetric sum of two signatures Σ0⊕>Σ1

asymmetric sum of two eTSSs E0⊕>E1

sum of two equivalences ≡0 ⊕ ≡1

sum of two algebras A0 ⊕A1

schema variables V

process schema variables VP X, Y

non-process schema variables VS,VP Z

xx

Chapter 1

Introduction

Concurrency is a core issue in computer science, and it is vital to have theoretical

foundations from which to understand it. There are many different approaches in

the literature—Petri nets, automata and process algebras being just a few. This

thesis will focus on process algebras.

Since the development of CCS and other process algebras, many extensions to

these process algebras have been proposed to model different aspects of concurrent

computation. It is important both theoretically and practically to understand the

relationships between these process algebras and between the semantic equival-

ences that are defined for them. In this thesis, I investigate the comparison of

semantic equivalences based on bisimulation which are defined for process al-

gebras whose behaviours are described by structured operational semantics, and

expressed as labelled transition systems.

A significant aspect of the different approaches to extensions to process al-

gebras is the introduction of non-atomic labels; by this, I mean labels that have

structure or contain information beyond what the action is. In CCS and CSP, ba-

sic actions are thought of as atomic, and are drawn from single set A. However in

CCS, additional types of actions are required—to effect communication, a barred

version of each action is required, drawn from a set A, and then to represent

an internal action, or the result of a communication, a distinguished action τ

is required. So, even in CCS, the actions have in some sense more structure or

information than simple atomic actions. In some timed transition systems, there

are labels which represent actions and those that represent the passing of time.

In transition systems obtained from the operational semantics of process algebras

1

that look at the dependency (locational or causal) between actions, tags or mark-

ers appear in the labels (and are stored in the process terms) to keep a record of

these dependencies.

As this short discussion shows, structured labels are used in many different

types of process algebras, and hence their nature is of interest for study. Moreover,

as can be seen by the proliferation of process algebras, it is relatively easy to design

a new process algebra with features for the specific use one may want to put it

to. This indicates that the notion of a process algebra has wide application and is

flexible. A negative aspect to the proliferation of process algebras is that it is not

immediately obvious how a process algebra and any semantic equivalences defined

for its labelled transition system relate to other process algebras and equivalences.

The aim of this thesis is to investigate how this comparison can be done. This

research draws on the meta-theory of process algebras, specifically formats, to

address this question.

1.1 Organisation of the thesis

Chapter 2 This chapter gives an overview of process algebras proposed in the

literature, and looks at their differences and similarities. I also look at related

work and give motivation for the results in this document.

Chapter 3 This chapter looks at two approaches to comparison of equivalences.

In the first, a number of equivalences defined for extensions to CCS are compared

in terms of which pure CCS term they equate. The shortcomings of this approach

are discussed. Next, I look at using bisimulation homomorphisms as a way to

compare equivalences.

Chapter 4 In this chapter, I start with a more syntactic approach to the com-

parison of equivalences, and develop a new format that explicitly deals with struc-

tured labels. I prove that this format gives congruence.

Chapter 5 In this chapter, a number of results are presented for the new format

that relate to combining process algebras.

2

Chapter 6 In this chapter, I look at the implications of some of the conditions

on the results for the underlying algebras used to represent structured labels.

Next, a notion of rule schemas is developed to allow the expression of infinite rule

sets. Finally, a number of process algebras are expressed in the new format and

existing and new results are shown for the comparison of equivalences over these

process algebras.

Chapter 7 This chapter presents conclusions and issues for further work.

3

Chapter 2

Background and motivation

2.1 Introduction

In this chapter, I present existing material that provides a background to the re-

search presented in this thesis. I first spend some time looking at the extensions

to process algebras based on structured operational semantics, labelled transition

systems and process equivalences which are the inspiration and spur for my re-

search. I also describe other approaches to comparing these extensions. I present

background material on formats, as I will describe a new format in the body of

this work. Finally, I discuss related research and give some motivation, including

motivation for the particular subset of process algebras that I will be focusing on,

namely those concerned with non-interleaving equivalences.

2.2 Background

Structured operational semantics (SOS) [Plo88] have been used to give labelled

transition system semantics to models of concurrency called process algebras or

process calculi. CCS [Mil89] is defined using this approach, together with notions

of equivalences over processes to equate those processes which have the same be-

haviour. Other well-known process algebras that can be defined in this manner

are CSP [OH86] and ACP [vG87]. These process algebras are based on the no-

tion of atomic actions and communication via simple interaction. The labelled

transitions embody the notion that actions take place one at a time, and these

process algebras are interleaving, in the sense that nondeterministic sequentiality

cannot be distinguished from concurrency. Other early process algebras took a

4

slightly different approach and allowed for a number of actions to happen simul-

taneously, such as Meije [Bou84] and SCCS [Mil89]. Since then there has been

an explosion of process algebras—many of them extensions of these first process

algebras—developed to deal with different aspects of concurrency, such as true

concurrency/non-interleaving, time, priorities, probabilistic and stochastic beha-

viour. These extensions have been approached in a number of different ways. In

this section of this chapter, I give an overview of how these extensions have been

developed without going into detail—my aim is here is to give a flavour of the

ways in which extensions have been done, and how information can be added to

labelled transition systems. I will also discuss approaches to the comparison of

these process algebras and equivalences that have appeared in the literature. To

support the descriptions of these process algebras and equivalences, I will also

give some diagrammatic examples of processes. Many of these examples will use

the ‘canonical’ non-interleaving examples a.b.nil+ b.a.nil and a | b.
Since labelled transition systems and bisimulation will play a large part in the

work I am reviewing here, I present some definitions, and describe some phrases

that I will be using to make the presentation more concise. The following two

definitions are standard.

Definition 2.2.1 (Labelled transition system)

A labelled transition system (LTS) is defined as:

L = (S,A, T)

where S is a set of states, A is a set of (not necessarily atomic) actions, T ⊆

(S ×A× S). I write s a−→s′ for (s, a, s′) ∈ T .

Definition 2.2.2 (Strong bisimulation)

Let L = (S,A, T) be an LTS. A strong bisimulation is a binary relationR ⊆ S×S
such that (s, s′) ∈ R only if for all a ∈ A,

1. whenever s a−→ t, then there exists t′ ∈ S such that s′ a−→ t′ and (t, t′) ∈ R

2. whenever s′ a−→ t′, then there exists t ∈ S such that s a−→ t and (t, t′) ∈ R.

5

Two states, s and s′ are said to be strongly bisimilar, s ∼ s′, if there exists a

strong bisimulation R such that (s, s′) ∈ R.

It can be shown that ∼ is the largest bisimulation. Note that it is also possible

to define a bisimulation between the states of two different labelled transition

systems if they have the same set of actions. In some of the extensions I will be

discussing below, modified versions of the above definition are used, in that the

elements of A that appear on the transitions do not have to be equal. Often in

these extensions, the set A contains more than atomic actions, and hence it is

possible to require equality on some components of the action and not others.

Other extensions introduce a number of different sets for the transition labels

(sometimes called multi-coloured transition systems [Tof94]) and there may be

additional clauses in the bisimulation definition to deal with transitions with

labels drawn from another set. I will use the phrase ‘matching on . . . ’ to describe

the equality of selected components of an action that are required for clauses

(1) and (2) (or any additional clauses) in the above definition. I will also use the

phrase ‘bisimulation has the expected definition’ when all components are matched

on.

I now discuss different extensions under headings which describe their main

focus. Note that some equivalences may capture more than one aspect of concur-

rent behaviour.

2.2.1 True concurrency/non-interleaving equivalences

As discussed above, most process algebras are interleaving and the issue of how to

describe true concurrency in the algebraic and compositional framework provided

by process algebras is an ongoing one. By interleaving, I refer to process algebras

where the semantic equivalence does not distinguish between non-deterministic

sequentiality and concurrency; for example when a.b.nil + b.a.nil and a | b are

equated. Process algebras that are non-interleaving have semantic equivalences

which do not equate processes such as the two given above.

One approach to achieving non-interleaving/true concurrency is to map the

syntax of a process algebra onto some construct that allows for definition of true

6

concurrency semantics such as event structures or Petri nets. Examples of this

approach are [BC94,BKLL95,DM87b,DDNM88a,DDNM88b,DDNM88c,GM84,

Gol90, Lu93, Mur93, Tau90, vGV87, Win82]. In many of these papers, semantic

equivalences are not defined—the authors are concerned with true concurrency at

an operational level only. Since the focus of my research is on labelled transition

systems, and semantic equivalences on these systems, I will not discuss these

further. There are also attempts to take the type of semantic equivalences defined

on labelled transition systems and apply them to other domains for processes.

Examples of research that uses event structures are [BMC94, BC88a, GKP92,

GL95, DDNM88c, ADNF87, Mur91, vGG90] and Petri nets [Old88, AS92, JM92,

Pom85, PRS92]. A discussion of these approaches is beyond the scope of this

document.

A second approach is to modify the underlying labelled transition system so

that it contains the information that allows for the distinction between concur-

rency and nondeterministic sequentiality. I now discuss process algebras where

this approach has been taken.

2.2.1.1 Causal approaches

In [DD89, DD90], information about the causal structure of processes is used to

distinguish nondeterminism from concurrency. In [DD90], causal trees are defined

and they can be viewed as a labelled transition system with transitions of the form
〈a,K〉−−−→ where a is the action and K ⊂ N is a set that contains information describ-

ing which of the previous transitions the current transition is causally dependent

on. Causal equivalence requires that the matching transition has the same set of

causes. Figure 2.1 gives an examples of two processes that are not equated by

causal equivalence. In the case of the sequential process, the second transition is

dependent on the first, whereas in the concurrent process,the transitions are inde-

pendent. Degano and Gorrieri have investigated action refinement in the setting

of causal trees [DG93]. In [CdCC92], strong and weak bisimulations are defined in

a framework that takes causality into account. Kiehn [Kie94] investigates notions

of global and local causality which I will give details of below.

7

a.nil | b.nil

�
�	

@
@R

? ?

〈a, ∅〉 〈b, ∅〉

〈b, ∅〉 〈a, ∅〉

a.b.nil+ b.a.nil

�
�	

@
@R

? ?

〈a, ∅〉 〈b, ∅〉

〈b, {1}〉 〈a, {1}〉

Figure 2.1: Examples of processes which are not causally equivalent [DD90]

2.2.1.2 Distributed/location-based equivalences

A number of different approaches to location-based bisimulation have been de-

veloped over the last few years. In [Cas88,CH89,Hen88b,Kie,Kie89], the structure

of states in the labelled transition system is modified to have the following form:

p
a−→〈p′, p′′〉. The first component p′ is a local residual of the transition and the

second component p′′ is the global residual. Hence, there are no structured labels

in the sense I have used above. Distributed bisimulation requires that actions are

matched exactly and that local residuals are bisimilar and global residuals are

bisimilar. Figure 2.2 illustrates how sequential processes have different residuals

to concurrent processes. In a recent paper, Corradini and De Nicola [CDN97],

give an alternative characterisation of this equivalence, that relies on decompos-

ing processes into their sequential components called grapes. They also present a

new equivalence over these decomposed processes called generalized distributed

equivalence.

In [BCHK92,BCHK94], a location transition system is defined and transitions

have the form p
a−→
u
p′ where u ∈ Loc∗ where Loc is a set of atomic locations, and

Loc∗ is the set of strings over this set of locations. A new operator, location

prefixing (l :: p) is introduced to the process algebra. Each time an action is

performed, a location is introduced. Location bisimulation requires matching on

both actions and location strings. Figure 2.3 gives an example of two processes

which are not location bisimulation equivalent. Note that the dotted lines indicate

that other transitions involving different locations are possible. In the case of the

sequential process, an action that occurs at the same location as a previous action,

8

a.b.nil+ b.a.nil

�
�
�	

@
@
@R

a b

〈b.nil, nil〉 〈a.nil, nil〉

a.nil | b.nil
�

�
�	

@
@
@R

a b

〈nil, nil | b.nil〉 〈nil, a.nil | nil〉

Figure 2.2: Example of processes which are not distributed bisimulation equival-
ent

has a location string that consists of a new location as well as the action string of

the previous action. In the concurrent process, actions occur at different locations

and hence have different location strings. Parameterised location bisimulation

[BCHK94] is defined with respect to a location relation R ⊆ (Loc∗ × Loc∗), and

does not require that actions are identical, but rather that the two locations are in

R. It has been shown that location bisimulation can be expressed in the ordinary

interleaving observation equivalence of the π–calculus, a process algebra that

expresses mobility of processes [San96]. In [Ace94c], an equivalence defined with

static locations is shown to be equivalent to location bisimulation [BCHK92]. This

work is further developed in [Cas95]. Corradini and De Nicola [CDN94, CDN97]

develop distributed grapes/maximal distribution equivalence which coincides with

location bisimulation on CCS terms.

In earlier work, Boudol et al. [BC91,BCHK93], investigated a slightly different

process algebra involving locations. In this algebra, a new string of locations are

introduced for each action. Bisimulation requires matching on actions and strings

of locations.

In [Kie94], a labelled transition system that allows for the capturing of inform-

ation about local causality and global causality is defined. Specific instantiations

of the general bisimulation defined gives rise to three equivalences, one of which

coincides with location equivalence [BCHK92] on CCS processes and one of which

coincides with causal bisimulation [DD89] on CCS processes. The third equival-

ence combines both local and global causality and is called local/global cause

9

a.b.nil+ b.a.nil

�
�
�	

@
@
@R R	

a

l

b

m

l :: b.nil m :: a.nil

? ? R	
mlb lm a

l :: m :: nil m :: l :: nil

a.nil | b.nil
�

�
�	

@
@
@R R	

a

l

b

m

l :: nil | b.nil a.nil | m :: nil

@
@
@R

�
�
�	 R	

b

m

a

l

l :: nil | m :: nil

Figure 2.3: Example of processes which are not location bisimulation equivalent

10

a.b.nil+ b.a.nil

�
�
�	

@
@
@R R	

a

∅, ∅, l
b

∅, ∅, m

l :: b.nil m :: a.nil

? ? R	
b {l}, {l}, m a{m}, {m}, l

l :: m :: nil m :: l :: nil

a.nil | b.nil
�
�
�	

@
@
@R R	

a

∅, ∅, l ∅, ∅, m
b

l :: nil | b.nil a.nil | m :: nil

@
@
@R

�
�
�	 R	

b

∅, ∅, m
a

∅, ∅, l

l :: nil | m :: nil

Figure 2.4: Example of processes which are not local/global cause equivalent

equivalence. Figure 2.4 illustrates how sequential and concurrent processes can

differ with respect to local/global bisimulation. Each action has a cause associ-

ated with it, and has a local and global cause set to describe previous causes upon

which the action may be dependent. This example has similarities to Figure 2.3.

Again the dotted lines indicate that other transitions are possible—these trans-

itions involve associating a different cause with the action under consideration.

In [Kri96, Kri91], a notion of location is used which is stricter in that syn-

chronisation can only take place between processes at the same locality, hence it

is necessary to use special sending actions to send an action to a specific location.

Moreover, actions which happen in the same location must use the same location

identifier. The labelled transition system is defined such that each transition is

labelled with a location and an action. A bisimulation is defined with respect

to this labelled transition system. Figure 2.5 illustrates how sequential and con-

11

a.b.nil+ b.a.nil

�
�
�	

@
@
@R R	

〈l, a〉 〈m, b〉

l :: b.nil m :: a.nil

? ?

〈l, b〉 〈m, a〉

l :: nil m :: nil

a.nil | b.nil
�

�
�	

@
@
@R R	

〈l, a〉 〈m, b〉

l :: nil | b.nil a.nil | m :: nil

@
@
@R

�
�
�	 R	

〈m, b〉 〈l, a〉

l :: nil | m :: nil

Figure 2.5: Example of processes which are not (Krishnan) distributed bisimula-
tion equivalent

current processes can be distinguished. The dotted transitions for the sequential

process indicate that the action could have occurred at other locations; however

this is not the case for successive actions which occur at the same location as the

initial action. In the concurrent process, there is a choice of location for each

action. Note that this example does not demonstrate the communication aspects

of this process algebra.

In [BB93b], a real-space process algebra is defined where actions are associ-

ated with three space co-ordinates and which are composed into multi-actions by

operators which describe the relationship between the locations of the actions.

Bisimulation has the expected definition. Another approach to distribution is

given in [Fan92].

12

2.2.2 Equivalences involving duration or time

In [AH94, AH93], it is assumed that actions have non-zero duration. A modified

labelled transition system is defined where the label on the transition can indic-

ate the start or finish of an action, and a new prefixing operator is introduced

to indicate actions that have not been completed. It is possible to distinguish

concurrency and nondeterminism, since it can be distinguished whether actions

can overlap or not. A number of different bisimulation equivalences have been

defined for this transition system [AH94, AH93, Hen88a, Hen91, GL91] based on

the notion of ST-bisimulation which was originally defined on Petri nets [vGV87].

In [Hen95] a testing equivalence is defined. Figure 2.6 gives an example of two

processes that are not ST-bisimulation equivalent. Here, actions consist of a start

s(a) and a finish f(a).

In [AM96], Aceto and Murphy define a transition system where transitions

come with an action, a duration and the time at which the action occurred. Each

non-τ action has a fixed duration associated with it. Operators are defined to

indicate waiting and to specify the time at which a process starts. A timed

branching bisimulation is defined which requires matching on all components of

the transition label. Ill-timed paths (which are sequences of actions and times

where the ordering does not reflect the order given by time) can be used to discover

independent (concurrent) states. In Figure 2.7, two processes are illustrated.

Each process has an associated clock, and each transition is labelled with the

action, the time at which it occurred and a duration for the action. As can be

seen, the sequential process has two actions which occur one after the other, and

take total time ∆(a) + ∆(b); whereas each component in the concurrent process

has its own clock and hence it is possible for each action to start at time 0.

Gorrieri et al. [GRS95] define a performance equivalence. Each action has

duration associated with it specified by a function from actions to durations, and

the equivalence is parameterised by this function. Each transition is labelled with

an action, time of occurrence and locational information; however the locational

information is ignored for the purposes of defining the performance equivalence.

A clock prefixing operator is introduced and is used to prefix all sequential agents.

13

a.b.nil+ b.a.nil

�
�
�	

@
@
@R

s(a) s(b)

f(a).b.nil f(b).a.nil

? ?

f(a) f(b)

b.nil a.nil

? ?

s(b) s(a)

f(b).nil f(a).nil

@
@
@R

�
�
�	

f(b) f(a)

nil

a.nil | b.nil
�

�
�	

@
@
@R

s(a) s(b)

f(a).nil | b.nil a.nil | f(b).nil

@
@
@R

�
�
�	

s(b) s(a)

f(a).nil | f(b).nil

�
�
�	

@
@
@R

f(a) f(b)

nil | b.nil a.nil | nil
@
@
@R

�
�
�	

s(b) s(a)�
�
�	

@
@
@R

f(a) f(b)

nil | f(b).nil f(a).nil | nil
@
@
@R

�
�
�	

f(b) f(a)

nil | nil

Figure 2.6: Example of processes which are not ST-bisimulation equivalent

14

(a.b.nil+ b.a.nil) 0

�
�
�
�	

@
@
@
@R

a@0
∆(a) ∆(b)

b@0

b.nil ∆(a) a.nil ∆(b)

@
@
@
@R

�
�

�
�	

b@∆(a)

∆(b)

a@∆(b)

∆(a)

nil (∆(a) + ∆(b))

(a.nil ‖ b.nil) 0

�
�

�
�	

@
@
@
@R

a@0
∆(a) ∆(b)

b@0

(nil ∆(a)) ‖ (b.nil 0) (a.nil 0) ‖ (nil ∆(b))

@
@
@
@R

�
�

�
�	

b@0
∆(b)

a@0
∆(a)

(nil ∆(a)) ‖ (nil ∆(b))

Figure 2.7: Example of processes which are not (Aceto and Murphy) timed bisim-
ulation equivalent

15

A diagram of the processes a.b.nil+b.a.nil and a.nil | b.nil (without the locational

information) would be similar to Figure 2.7.

Baeten and Bergstra have investigated a number of notions related to time for

ACP. In [BB91b], a real-time process algebra is introduced where some trans-

itions have both an action and an element of the reals to represent the time at

which the action occurred, and others are unlabelled and represent idling. States

consist of pairs of process algebra terms and times. Bisimulation requires match-

ing on steps, idling and termination. A number of time related operators are

introduced, and the notion of relative time is investigated. This work is further

extended by the introducing nonstandard reals, resulting in a process algebra that

can express aspects of other process algebras involving time [BB95]. In [BB91a]

a real space-time algebra is defined. Each action has four co-ordinates which

can either be interpreted as three space co-ordinates and an independent time

co-ordinate as in classical (Newtonian) mechanics, or as four related co-ordinates

as in special relativity. Equivalences are defined with respect to these two view-

points.

Chen [Che93,Che92] defined a timed bisimulation on a timed version of CCS,

that distinguishes concurrency from nondeterministic sequentiality. Transitions

are labelled with actions and the time at which the action occurs, or alternatively

they can just be labelled with time which denotes idling up until that time is

reached. Action prefixing has two new parameters indicating the earliest and

latest the action can be performed. Bisimulation requires matching on actions

and times. As an example, consider the process a(t) |61 .b(s) |10
0 .nil(0) which can

perform the a action at any time between 1 and 6 time units, after which it can

immediately perform the b action or delay for 0 to 10 ten units before b happens,

and then can do no further actions nor let time proceed. The operational version

of Timed CSP [Sch95] uses a similar type of transition system, and uses wait

and timeout operators in the process algebra. Daniels [Dan91] also uses a similar

transition system.

In [Yi90, Yi91, MT90, Jef92, QdFA93], a different transition system is used in

which there are two different types of evolution of state—one in which an action

16

can be performed (and the transition is labelled with the action) and one in

which time passes (and the transition is labelled with a time value). Consider the

following process with respect to Moller and Tofts’ semantics [MT90] a.(2).b.nil

which can perform an a action, and become (2).b.nil which has the transitions

(2).b.nil 1−→(1).b.nil 1−→b.nil or (2).b.nil 2−→b.nil after which it can perform b and

then not be capable of performing any further actions or of letting time proceed.

Ho-Stuart et al. [HSZM93] take a similar approach, but use a monoid of actions

as in SCCS and define two notions of bisimulation over this transition system.

Aceto and Jeffrey [AJ95] generalise the approach of Wang Yi [Yi90] and introduce

a time domain that is a left-cancellative anti-symmetric monoid.

A simpler notion of the passage of time is used in [HR95, NS94, BB96] where

a distinguished action is added that is understood as passage of time to the next

time slice. In each case, a number of time-related operators are introduced. In

the semantics of Baeten and Bergstra, the process σrel(a.b)+σrel(a.c) can perform

a unit delay to become a.b + a.c. Note that for the sum of two processes to

be able to delay to the next time unit, both components must be able to delay.

The action a is one that must occur in the current time slice (the action a is

allowed to delay until the next time slice). Hence a.b + a.c can perform an a

action and then b or alternatively an a action and then c, all without further

delays. In [Jef91a], a partially ordered time domain is used and operational and

denotational semantics are given. Although partially ordered time is used, it is

not used to distinguish between concurrency and nondeterminism. An overview

of the way in which timed process algebras differ is presented in [NS92].

Stochastic process algebras also assume that actions have duration, and this

duration is characterised by a random variable, usually taken to be exponen-

tially distributed. In [Hil96], transitions are labelled with an action and a rate

(which defines the exponential distribution used for that action). From the multi-

transition system, it is possible to obtain a Markov process. A number of notions

of equivalences are proposed including a bisimulation that requires matching of

actions as well as the matching of the rates at which each possible action can

occur.

17

2.2.3 Equivalences based on with priorities

There have been a number of different approaches to priority in process algebras.

One approach taken is to have prioritised actions, indicated by some annotation of

the action as in [CH90,NCCC94]. Operators are introduced to prioritise and de-

prioritise actions, and bisimulation requires matching on actions. In the process

τ.nil+b.nil the only transition possible is τ since as a prioritised action (indicated

by the underline) it has priority over the unprioritised b action. In [CLN96], a

process algebra based on the notion of distributed priorities is presented where

actions can only pre-empt other actions that appear in the same location.

In [Cam91, CW95] a number of priority-related operators are introduced, in-

cluding an unless operator, and a prisum operator which is weighted in favour of

the first operand. Transitions are decorated with actions and readysets of output

actions. Bisimulation requires matching on actions and readysets.

In [Gro93], an operational version of the prioritised process algebra of Baeten

et al. [BBK86] is presented. Here it is assumed that there is a partial ordering over

actions representing their relative priorities. Bisimulation requires matching on

actions. Assuming that a < b in the partial order, and Θ is the priority operator,

then Θ(a+ b) can only perform a b action.

Gerber and Lee [GL94] define a process algebra where priorities are used to de-

termine the interleaving of processes in situations where there are not sufficient re-

sources for them to run simultaneously. Jeffrey [Jef91b] investigates the relation-

ship between time and priority. A calculus of broadcast systems (CBS) [Pra95]

which is based on a broadcast notion of communication as opposed to pairwise

communication as in CCS, can be extended to include priorities (PCBS). Each

broadcast has a priority associated with it, and this affects which broadcasts can

occur.

2.2.4 Probabilistic equivalences

Larsen and Skou [LS92b] present a probabilistic process algebra in a SCCS-like

style that defines a probabilistic transition system where each transition is labelled

with an action and probability. Conditions are imposed on the probabilities that

18

appear on the transitions and bisimulation requires matching on both actions

and probabilities. Jou and Smolka [JS90] take a slightly different approach and

define process algebras where there are two different types of transitions—those

which are labelled with actions, and those that are labelled with probabilities.

Bisimulation requires that the total probability of evolving into an equivalent

state is the same. Tofts [Tof94] defines a bisimulation that takes into account

the notion of relative frequency of actions. Smolka and Steffen [SS96] investigate

priority in the framework of probabilistic process algebras. All of these process

algebras introduce some sort of probabilistic choice operator.

2.2.5 Equivalences based on proved transitions

In the literature, there are a number of labelled transition systems defined where

the set of actions contains information about the inference rules that are used to

prove that transitions can happen. In [Cas88], pomset bisimulation is defined on a

transition system labelled with actions that indicate the use of specific transition

rules from the structured operational semantics. A congruence is defined over the

actions, and a bisimulation is defined with respect to these actions—a transition

has to be matched by a transition with a congruent action. Figure 2.8 illustrates

two processes and demonstrates how the additional transitions are added. In

[BC88b,BC88c], proved transition systems are defined where the actions contain

information about the proofs used for a CCS-like language.

In [FM90, CFM90], a categorical notion of structured transition systems is

defined with algebraic structure on both states and transitions for a language

in the style of CCS. The structure of the actions is used to determine which

transitions are independent and hence can be permuted. Equivalence is defined

in terms of permutations of these actions. In [FM91], observation algebras are

defined. Here the actions in the transition form an algebra and contain inform-

ation about which transition rules were used. Equivalence classes of processes

are induced by a concurrency relation. In [FGM91], a similar approach is taken

to [FM91]. The actions form an observation algebra for a CCS-like algebra of

processes; however the equivalence defined is a bisimulation that is parameterised

by the observation algebra.
19

(a.b.nil+ b.a.nil)

�
�
�	

@
@
@R

? ?

a b

a : b b : ab.nil a.nil

@
@
@R

�
�
�	

b a

nil

(a.nil | b.nil)
�
�
�	

@
@
@R

?

a b

a | bnil | b.nil a.nil | nil
@
@
@R

�
�
�	

b a

nil | nil

Figure 2.8: Example of processes which are not pomset bisimulation equivalent

20

a.b.nil+ b.a.nil

�
�
�	

@
@
@R

+0a +1b

b.nil a.nil

? ?
b a

nil nil

-

a.b.nil+ b.a.nil

�
�
�	

@
@
@R

〈a, ∅〉 〈b, ∅〉

b.nil a.nil

? ?
〈b, {1}〉 〈a, {1}〉

nil nil

a.nil | b.nil
�
�
�	

@
@
@R

‖0a ‖1b

nil | b.nil a.nil | nil

? ?
‖1b ‖0a

nil | nil nil | nil

-

a.nil | b.nil
�

�
�	

@
@
@R

〈a, ∅〉 〈b, ∅〉

nil | b.nil a.nil | nil

? ?
〈b, ∅〉 〈a, ∅〉

nil | nilnil | nil

Figure 2.9: Example of processes which are not read-write bisimulation equivalent

In [DDNM92, DDNM93], observation trees are defined, and bisimulation is

defined with respect to an observation function on the observation trees. Obser-

vation trees form unlabelled transition systems with structured states that store

details of the computation up until that state. In [MY92, MY95], observation

trees are used to present a parametric approach to localities in CCS.

A slightly different approach is taken in [DP92] where the transition system is

labelled with proofs (of the transitions of CCS terms) to form proved trees after

which an observation function is used to extract the relevant information from

these proofs. In [PY94], an equivalence based on read–write causality is defined

using this approach. An example of this is given in Figure 2.9. The proved trees

on the left hand side are transformed by an observation function to the trees on

the right hand side. Note that this example does not involve communication and

hence does not demonstrate the read-write features.

21

In [IPY93, IPY94], extended transition systems for CCS terms are defined.

These incorporate ideas from observation trees [DDNM92, DDNM93], proved

transition systems [BC88b] and proved trees [DP92], and are unlabelled trans-

ition systems with nodes labelled with summations of regular expressions over

the alphabet of proof terms which represent all computations from the root to

the current node. Bisimulation is parameterised by an observation function.

2.2.6 Other approaches

Labelled transition systems can come equipped with sets of axioms that de-

termine which transitions are allowed. Examples are concurrent transition sys-

tems [Sta89], asynchronous transitions systems [Bed87], elementary transition

systems [NRT92] and transition systems with independence [NC94]. In [MN92],

a notion of bisimulation that preserves independence is defined and the author

conjectures that this equivalence coincides with location equivalence [BCHK92].

Figure 2.10 gives an examples of two processes from which asynchronous trans-

ition systems can be extracted. In the sequential process, there are four distinct

events; whereas in the concurrent one, there are two distinct independent events.

In [BB93a], a non-interleaving process algebra is defined using multiset actions

and step bisimulation semantics. In [DM87a], distributed transition systems are

defined where states are sets of processes and transitions specify which processes

stay idle. Bisimulation is defined on nondeterministic measurement systems which

are unfoldings of computations from the distributed transition system defined by

an observation function. This type of transition system is further developed

in [DDNM88b,DDNM90].

Krishnan [Kri96,Kri92] investigates a process algebra to model the behaviour

of multiprocessors. Transitions are labelled with observations that capture the

idea that one can observe at most n actions in one step if there are n processors.

Bisimulation requires matching on observations. Figure 2.11 illustrates an ex-

ample where there are 2 multiprocessors. In both processes, it is possible for any

action to be executed on one processor with the other idle (δ indicates idleness);

however only the concurrent process has the possibility of executing both actions

22

(a.b.nil+ b.a.nil)

�
�

�
�	

@
@
@
@R

a

[ab+ ba][b] [ab+ ba][a]

b

b.nil a.nil

@
@
@
@R

�
�
�
�	

b

[b][nil]
a

[a][nil]

nil

(a.nil ‖ b.nil)
�

�
�
�	

@
@
@
@R

a

0[a][nil] 1[b][nil]
b

nil ‖ b.nil a.nil ‖ nil
@
@
@
@R

�
�
�
�	

b

1[b][nil]
a

0[a][nil]

nil ‖ nil

Figure 2.10: Example of processes which are not equated by bisimulation over
asynchronous transition systems [MN92]

23

a.b.nil+ b.a.nil

�
��
C
CCW

Q
QQ
�
���

�

J
J
J
JĴ

〈a, δ〉 〈b, δ〉〈δ, a〉 〈δ, b〉

b.nil a.nil

a.nil | b.nil
�
�
�
C
CCW

Q
Q
Q
�
���

�

J
J
J
JĴ

〈a, δ〉 〈b, δ〉〈δ, a〉 〈δ, b〉

nil | b.nil a.nil | nilnil | nil
?

〈a, b〉

?

〈b, a〉

Figure 2.11: Example of processes which are not multiprocessor bisimulation
equivalent

simultaneously—one on each processor.

Other papers of interest deal with modified labelled transition systems but

do not involve equivalences. Examples are [LRT88] where distributed transition

systems are defined with transitions labelled with sets of actions and the notion

of a concurrent step is presented, but no equivalences are defined.

Process algebras have also been used to investigate fault-tolerant systems.

Krishnan [Kri94] proposes a process algebra for replicated systems with voting

and introduces a replication operator. The labelled transition system involves

transitions that can be perceived as internal moves which occur before voting has

happened, and transitions that represent the external behaviour of the system.

Bisimulation is defined over the external actions only. Janowski [Jan94] uses two

levels of transitions—the first represents the actions of the system in a fault-

free environment and the second the actions in the environment with faults. He

defines a number of equivalences which involve matching of actions on transitions

from the different levels.

24

2.2.7 Comparison

Some research has attempted an overview of the different semantics and mod-

els. Category theoretical approaches are taken in [KLP90,Mes90,MY89,SNW93]

and other approaches appear in [BC94, DN87, Fer93, Sha92, vG90a]. Many of

these approaches do not investigate semantic equivalences; for example, [KLP90,

Mes90,MY89,SNW93] and [BC94] where three equivalent semantics for CCS are

presented—one based on proved transition systems, one on flow event structures

and one on flow nets—and it is shown that the three notions coincide by using

transition systems of ‘trace computations’ that record the past.

In [DN87], an early investigation into equivalences on labelled transition sys-

tems is given. In [Sha92], the issue of language embedding is investigated for

a number of concurrent programming languages, and in [Fer93], the concept of

data is introduced into labelled transition systems—five different labelled trans-

ition systems are defined, a labelled transition system is derived that can be used

to express any one of the five, and bisimulation equivalence is investigated in

this setting. Different notions of equivalence have been investigated on event

structures [vG90a].

I now discuss the approaches to comparison which are most relevant to my

work.

• Interleaving semantics defined on labelled transition systems have been ex-

tensively investigated by van Glabbeek [vG90b, vG93], both with respect

to linear and branching time, and abstraction from internal actions. In

the first of two papers about semantic equivalences [vG90b], he looks at

processes defined in labelled transition systems, specifically those that are

interleaving (which he refers to as sequential), finitely branching, with uni-

form concurrency and no abstraction from internal actions, and develops

a complete lattice of 11 different semantic notions. The equivalence se-

mantics range from the finest, bisimulation, to the coarsest, trace equival-

ence. More recent equivalences which could be added to this framework are

undo-trace equivalence and undo-failure equivalence [Sch91]. In the second

paper [vG93], he investigates the linear time/branching time spectrum for

25

semantics which abstract from internal actions, and presents a hierarchy of

155 different equivalences. A number of these equivalences are compared

over probabilistic processes in [JS90].

• Some of the approaches discussed in Section 2.2.5 allow for the comparison

of different equivalences over CCS terms. The observation trees of Degano et

al. [DDNM92,DDNM93] permit different types of observations to be made

and hence it is possible to compare the different equivalences generated by

these observations. In [MY92, MY95] the equivalences defined by taking

combinations of mixed orderings and partial orderings, and localities and

causalities are compared. In [IPY94] the authors describe how a number of

different equivalences can be defined on extended transition systems.

• In [Kie94], Kiehn defines a new transition system based on local and global

causes. Each transition is labelled with an action, a set of local causes and

a set of global causes. Local causes are understood to be due to actions that

occurred in the component from which the current action came, and global

causes are understood to come from an action in any component. Bisimula-

tion equivalence is parameterised by a function which extracts information

from the causes on a transition. She shows that causal bisimulation and

location equivalence can be characterised by appropriate instantiations of

this function. In [KH94], it is shown that ST-equivalence can also be for-

mulated using a variant of this transition system where only local causes

are considered, with the start of an action having an empty cause set and

the completion of the action having a singleton cause set.

• Gorrieri and Laneve [GL91] compare different split action transition sys-

tems. Their approach to split actions differs from that of Aceto and Hen-

nessy [AH94, AH93] in that they assume that τ actions are split as well as

non-τ actions. Their approach to comparison is of interest and I describe

it here. Given two labelled transition systems Li = (Si,Ai, Ti), generated

by two processes algebras, and their respective strong equivalences ∼i for

i = 1, 2, it is required to prove ∼1 ⊆ ∼2, i.e. given s and t that appear

26

s ∼1 tww� ww�
s′ ∼′1 t′yh yh
s ∼2 t

Figure 2.12: Proof technique used by Gorrieri and Laneve [GL91]

as states in both transition systems, such that s ∼1 t, show that s ∼2 t.

First, transform L1 to L′1 = (S ′1,A2, T ′1) by a set of transformation rules.

Next show that the transformations of s and t, s′ and t′ respectively, are

equated by ∼′1 in L′1, by exhibiting a suitable bisimulation. Finally, show

that each relevant state (s′ and t′) in L′1 is equivalent to a state in L2—

this is achieved by finding a suitable transition system/transition preserving

homomorphism [AD89,Arn93] that maps from the subtransition system∗ as-

sociated with the state in L′1 onto the subtransition system associated with

the state in L2. The existence of such a homomorphism implies the two

subtransition systems are bisimilar, and hence any state u is bisimilar to

its image h(u). So to sum up, if two states s and t are equated by ∼1 in

L1, show that their transformations s′ and t′ are bisimilar in L′1, then by

using the transition preserving homomorphism h, show that s′ is bisimilar

to h(s′) and t′ is bisimilar to h(t′), but h is chosen so that s = h(s′) and

t = h(t′), hence s ∼2 t as required. This is illustrated in Figure 2.12, where

the double arrows indicate the transformation rules.

A crucial part of this proof is the use of homomorphisms between transition

systems. This notion has been introduced in a number of places in the lit-

erature but with some confusing terminology. These homomorphisms map

states to states and transitions to transitions in the expected manner and

have a condition that requires the resultant state of a transition from a state
∗A subtransition system associated with a state consists of the states and transitions that

are reachable from that state.

27

in the image, to be equal to the image of the resultant state of that transition

from the state in the domain. A number of authors call these homomorph-

isms transition preserving [GL91,FMM91,CFM90,FM90,DDNM88a], they

have also been referred to as transition system homomorphisms [AD89] and

bisimulation homomorphisms [Arn93]. In [AD89], it is shown how these ho-

momorphisms can be used in proving that two labelled transition systems

are strongly bisimilar. These homomorphisms have also been investigated in

a categorical setting [BBS88,CFM90,FM90,FMM91]. More recently, Arnold

and Castellani [AC96] have considered homomorphisms for weak bisimula-

tion. They define transition system homomorphisms as homomorphisms

between transition systems, but without the condition described above.

They then define homomorphisms which are saturating for all operators

drawn from the action set of the transition system under consideration and

show that this saturating condition holds if and only if the homomorphism

satisfies a weak variant of the condition described above (which they refer to

as the zig-zag condition.) They also compare these saturating homomorph-

isms to Castellani’s abstraction homomorphisms. [Cas88].

2.2.8 Formats

In the main part of this research, I will work with formats. A format is a class

of rules used to describe models such as process algebras defined by structured

operational semantics which generate labelled transition systems. There are a

number of different formats and in the discussion below, I will describe their

differences. To start, consider the following very general rule

{ti
ai−→ yi | i ∈ I}{uj 6

bj−→ | j ∈ J}
f(x1, . . . , xn) a−→ t

where I and J are index sets, the yi’s and xk’s are distinct variables and the ti’s,

uj’s and t are open terms over a set of operators and f is an operator. I refer

to the transitions above the line as premises, the transition below the line as the

conclusion, the left-hand side of a transition as the source of the transition, and

the right-hand side of a transition as the target. Also the first set of premises are

28

called positive premises and the second set are called negative premises. (For a

formal treatment of this, please consult the start of Chapter 4.)

The first format proposed was the De Simone format [dS85] which requires

that there only be positive premises. Moreover the only terms that can appear

in the sources of the premises are variables from the source of the conclusion and

each can appear at most once. This means there can be no copying of terms in

the premises. There are also restrictions on which variables can appear in t. This

format also allows for a condition over the labels that appear in the premises and

conclusion, and specifies a finite set of labels.

GSOS format [BIM95] is more general than De Simone format. Variables from

the source of the conclusion can appear repeatedly in the sources of premises;

however they are the only terms that can appear in sources of premises. The

term t must only contain variables that appear in the rules, and there can only

be a finite number of premises. Again a finite label set is assumed.

Another format that is more general than the De Simone format is the tyft/tyxt

format [GV92]. This format does not allow negative premises, but the ti’s and

t can be any terms. It allows lookahead since variables which appear as targets

of the premises can also appear in the sources of premises. This format has been

extended to deal with predicates [BV93].

There is a format that is more general than both GSOS and (pure∗) tyft/tyxt

format, and that is (pure) ntyft/ntyxt format [Gro93]. The ntyft/ntyxt format

is similar to tyft/tyxt but allows negative premises. Stratification techniques are

used to prevent inconsistent rules. Recently a more general technique has been

developed to ensure consistent rules for the ntyft/ntyxt format [BG96]. This

format has also been extended to deal with predicates resulting in the panth

format [Ver95].

Groote [Gro93] characterises the relationship between these formats as shown

in Figure 2.13 where positive GSOS refers to GSOS without negative premises.

An important issue in the research involving formats is that of congruence

of the format with respect to a semantic equivalence defined over the terms of
∗This concept will be defined in Chapter 4.

29

(pure) ntyft/ntyxt

�
��

@
@@

(pure) tyft/tyxt GSOS
@
@@

�
��

positive GSOS

De Simone

Figure 2.13: Hierarchy of formats [Gro93]

the process algebra, such as testing equivalence or bisimulation. It is of interest

because first it is a desirable property for process algebra operators to have, and

second because each format induces a trace and completed trace congruence. In

the case of De Simone format, it induces a completed trace congruence that is the

same as failure equivalence, whereas ntyft/ntyxt induces bisimulation equivalence,

and the other formats in Figure 2.13 induce completed trace congruences which

fall between these two [Gro93].

Other research directions for formats include looking at formats in the light

of bisimulation with silent moves—Bloom [Blo95] considers four different bisim-

ulations and identifies what sort of rules preserve congruence in each case, and

Ulidowski [Uli92] defines the ISOS format and shows that ISOS trace congruence

coincides with copy+refusal equivalence. It has also been shown that any GSOS

format can be converted to a finite complete equational axiom system with pos-

sibly one infinitary induction principle [ABV94]. Aceto also considers a class of

infinitary GSOS formats which have a countable action set, signature and set of

rules [Ace94a] and a restricted version of GSOS which generates finite labelled

transition systems [Ace94b]. Aceto and Ingólfsdóttir have given denotational

semantics for a class of GSOS formats and shown full abstraction [AI96].

30

There are other results related to formats [Ver94,FvG96] that are of relevance

to the research I am presenting here, and I will discuss them in the appropriate

places in this document.

Verhoef considers a general conservative extension theorem for process algeb-

ras [Ver94]. By considering each transition as a separate relation, he is able to find

a wider range of rules that are allowed in extensions of transition systems specified

by a certain format, and still obtain a conservative extension. I will describe later

in this document how this compares with the approach I have taken.

Fokkink and van Glabbeek [FvG96] have shown that the well-foundedness is

not required to show congruence in the ntyft/ntyxt format. I will discuss how this

relates to my research later in the document.

2.3 Related work

Because of the number of formalisms proposed to model concurrency, as well as

the proliferation of process algebras, there are a number of articles that look at

comparing these approaches or that present unifying frameworks. In the following,

I describe some approaches that have been taken.

Astesiano et al. [AG92] define observational structures, where process algebras

are modelled as many-sorted algebras with predicates. Equivalence semantics

are defined in terms of observations, where processes have observable sorts, and

an abstract generalisation of bisimulation is defined by experiments considered

similar by a similarity law. Propagation laws allow relations over processes to

be propagated to relations over elements of non-observable sorts, such as actions.

This approach gives a generalisation for bisimulation that allows for different

process algebras to be expressed, including CCS, a process algebra with mobility

and distributed CCS. However, the approach is not used to compare different

process algebras or equivalences.

In Section 2.2.7, I have discussed related work that deals with the compar-

ison of process algebras and their equivalences. As mentioned, many approaches

only consider the comparison of operational semantics, whereas my focus here

is equivalence semantics. Some of the research discussed such as Van Glab-

31

beek [vG90b,vG93] focuses on the linear-time/branching-time spectrum and gives

a very full account of it. Other work such as Kiehn’s [Kie94] and Gorrieri and

Laneve’s focus on the comparison of specific process algebras without providing

a general theory for the comparison of process algebras. Degano and Priami’s

proved trees [DP92] allow for the comparison of location, causal, interleaving

and read-write causal equivalences for CCS terms. The most wide-reaching com-

parisons in terms of the number of equivalences considered are the observation

trees of Degano et al. [DDNM92,DDNM93] and the extended transition systems

of [IPY93, IPY94]. However as the underlying theory of these relies on the SOS

of CCS, they are not a general approach for comparing equivalences of process

algebras.

2.4 Motivation

As can be seen from the Background section in this chapter, there are many

different process algebras, designed to cover a range of concurrent behaviours.

It is important to be able to understand how the different process algebras and

equivalences relate to each other, so that it is possible to choose which one to

use in a particular set of circumstances, or when designing a new one, to see

how it differs from existing process algebras. In the previous section, I have

discussed how others have approached comparing and unifying different process

algebras. In this document, I look at three different approaches. The first looks

at a comparison of extensions to CCS over pure CCS terms, based on ad hoc

results and counter-examples. The second approach moves away from syntax,

and works with an extended notion of a bisimulation homomorphism. Neither

of these two approaches is entirely satisfactory. The third approach is to work

with the meta-theory of process algebra. This is based on the notion of format,

and I prove results about formats that allow for the comparison of process algebra

equivalences. This is a new approach to comparison, and gives a broad theoretical

basis upon which further work can be developed.

In this document, I will focus on a subset of process algebras, specifically

those based on dependencies of some sort or involving true concurrency or non-

32

interleaving features. This includes process algebras and equivalences which

have been investigated in studies of comparison, such as location equivalences

[BCHK93, BCHK94], cause-based equivalences [Kie94], ST-equivalences [AH94,

AH93, Hen88a, Hen91, GL91], as well as those that have not been considered in

studies of comparison such as the various process algebras proposed by Krish-

nan [Kri91,Kri92,Kri94,Kri96] and the pomset equivalence of Castellani [Cas88].

I have chosen this subset for a number of reasons; first, these are some of process

algebras that piqued my interest because of the ways in which they distinguish

interleaving versus concurrent behaviour, and drew me to this area of study; and

second they cover a range of process algebras that have and have not been used

in comparisons before. I wish to look at the application of the results here to

other process algebras as further work.

2.5 Conclusion

In this chapter, I presented background to this thesis, including a broad survey of

different process algebras, a discussion of existing approaches to comparison and

work that has been done in the area of formats. Finally, I presented a motivation

for the approaches I will investigate in this thesis.

33

Chapter 3

Two approaches to comparison

3.1 Introduction

In this chapter I will investigate two different approaches to comparing equival-

ences. The first approach works with the various ad hoc comparison results and

counter-examples. By ad hoc, I mean that each result is individually obtained

using techniques specific to the equivalences being compared. I collect these res-

ults and counter-examples to give a hierarchy of equivalences for non-interleaving

extensions to CCS. The second approach involves considering the underlying

process domain, namely the labelled transition systems, and obtaining results

which describe how equivalences can be compared—an important aspect of this

approach is the notion of bisimulation homomorphism.

3.2 Comparison over pure CCS terms

In this section, I will look at existing results for the comparison of extensions to

CCS, and some of my own. These results will yield a hierarchy of equivalences

with respect to pure CCS terms. I will also give examples of process algebras

which cannot be included in this hierarchy, and explain why it is not possible to

include them.

As mentioned above, a number of extensions have been proposed to CCS which

permit non-interleaving semantics. It is possible to compare the equivalences on

finite CCS terms, although most of the process algebras used for the definition of

these equivalences have additional operators. This comparison is possible because

pure CCS terms are still valid terms in these process algebras and they also display

34

≈ observation equivalence [Mil89]

≈d distributed bisimulation [Cas88,CH89,Kie89]

≈da K-grapes distributed bisimulation [CDN97]

≈g generalised distributed bisimulation [CDN97]

≈l location bisimulation [BCHK94]

≈ll loose location bisimulation [BCHK93]

≈sl static location bisimulation [Cas93]

≈dg distributed grapes equivalence [CDN94]
maximal distribution equivalence [CDN97]

≈loc equivalence with location observations [MY92]

≈c weak causal bisimulation [DD89]

≈lc local cause bisimulation [Kie94]

≈gc global cause bisimulation [Kie94]

≈lg local/global cause bisimulation [Kie94]

≈rw read-write bisimulation [PY94]

≈ST ST-bisimulation [Hen91]

Table 3.1: Equivalences that form the hierarchy

the specific concurrent behaviour for which the process algebra is designed. I wish

to do this comparison over pure CCS terms because

• many authors give some comparison when presenting new process algebras,

and I wish to present an overview of this, and

• many of the existing comparisons are done for process algebras for which

pure CCS terms are of interest, hence my overview takes this approach,

since it allows consideration of a number of process algebras. I will detail

below the process algebras that cannot be compared in this manner.

In the spirit of van Glabbeek, I have developed a hierarchy of equivalences that

are finer than Milner’s observation equivalence, by assembling results from the

literature and providing additional counter-examples. Table 3.1 lists the equi-

valences that appear in the hierarchy and Figure 3.1 displays the relationship

between these equivalences. A path from an equivalence to one lower in the dia-

gram means that the higher equivalence is contained in the lower one. This means

that the lower equivalence equates the same terms that the higher one does, but

35

≈
�
�
��

B
B
BB

≈d ≈da≈ll

≈g

≈l ≈sl ≈lc ≈dg ≈loc

�
�
�
�
�
�
�
�
�
��
≈c ≈gc

S
S
S
S
S
S
S
S
S
S
S
S
S

≈rw

c
c
c

c
c

c
c

c
c

c
c

c
c

c
c

cc

≈ST

PP
PP

P
��
��
�
≈lg

Figure 3.1: A hierarchy of equivalences for finite CCS terms

also equates other terms as well, namely it is coarser∗. Note that observation

equivalence is the coarsest of all these equivalences as would be expected. The

equivalences that are not connected by a downwards path are incomparable; that

is, it is possible to find two pairs of terms such that the first pair is equated by the

first equivalence but not the second, and such that the second pair are equated

by the second equivalence, but not the first. The details of this comparison are

presented below. It is also known that on finite restriction and renaming free CCS,

≈d, ≈l and ≈ll coincide [BCHK94], as do ≈d, ≈da, ≈g and ≈dg [CDN97]; and that

on finite restriction and renaming free CCS without communication, ≈l, ≈c and

≈ST have the same axiomatisation [Kie93]. Aceto and Murphy show that their

timed bisimulation also coincides with these equivalences on this subset [AM96].

There are a number of equivalences based on extensions to CCS that are not

suitable to add to this hierarchy using this type of comparison. They are as

follows:

[Kri96,Kri91] In this extension to CCS, the action set consists of local and send

actions, local actions come from a set of actions as in CCS, whereas send

actions are more complex objects. Although pure CCS terms do lead to
∗An equivalence that makes more equations than another equivalence is said to be coarser,

and an equivalence that makes fewer equations than another equivalence is said to be finer. This
usage is consistent with the fact that a finer equivalence results in more equivalence classes than
one that is coarser.

36

some non-interleaving behaviour (see Figure 2.5), since they do not express

all the different aspects of the process algebra, I have chosen not to add this

to the hierarchy. Moreover, there is only a strong version of the equivalence.

[Kri96,Kri92] This extension to CCS presents a multiprocessor model of con-

currency. Since there is only a strong version of the equivalence, I have not

included it. However, I do obtain results relating to this process algebra

and equivalence in Chapter 6.

[Fan92] This extension is unsuitable for inclusion since the pure CCS terms do

not express non-interleaving behaviour.

[MN92] In this paper, CCS with guarded sums is used, hence the set of base

CCS terms (those consisting of the CCS operators) are only a subset of

the pure CCS terms. Therefore, the comparison cannot be done over the

pure terms of CCS, and hence it is not included in the hierarchy. The

equivalence defined coincides with the equivalence of Aceto [Ace94c] on

nets of automata (see the next point), and the authors conjecture that their

equivalence coincides with location bisimulation [BCHK94] on CCS with

guarded sums.

[Ace94c] Here, a subset of CCS terms is used, where the static operators, namely

parallel, renaming and relabelling, can only appear at the highest level of a

term. These terms are called nets of automata. Hence a comparison cannot

be made over the pure terms of CCS. The author has shown that on the

set of nets, his equivalence coincides with location bisimulation [BCHK94].

Moreover, this work has been generalised, and the generalisation ≈sl [Cas93]

is included in the hierarchy.

[Mur93] In this paper a subset of CCS is used where terms represent parallel

combinations of sequential process. Once again, this is a subset and does

not allow for comparison.

[AH93,AH94] The ST-equivalences of Aceto and Hennessy which have been

developed to investigate action refinement are based on a process algebra

37

consisting of actions (as opposed to prefixed actions) and a termination

predicate, and hence the basic terms of the process algebra differ from those

of CCS.

[GL91] The split-action bisimulations of Gorrieri and Laneve involve the split-

ting of non-τ actions and τ actions, and is defined only for a strong version

of bisimulation. It is not clear how this approach can be extended to weak

bisimulation.

As seen in the previous chapter, there are many other process algebras; however,

I have chosen here to focus on a certain subset, and this is sufficient to demon-

strate this approach. Also note that for many other process algebras that are

extensions of CCS, especially for those based on time, priorities and probabilit-

ies, when considering the equivalence on pure CCS terms, then it is no different

from weak bisimulation over CCS terms. Hence this method of comparison does

not help, since the comparison method is not powerful enough to distinguish

meaningful differences.

I now give the details of the comparisons which are summarised in Figure 3.1.

These are presented as follows:

• Table 3.2 contains pairs of processes that are used to show when two equi-

valences are incomparable.

• Tables 3.3, 3.4 and 3.5 describe the relationship between each pair of equi-

valences. For each pairwise comparison, there is a block in the table. In the

centre of each block, there is a symbol giving the relationship—# indicates

when the two equivalences in question are incomparable. As an example,

the block at the fourth column and third row of Table 3.3 is to be read as

≈g ⊂ ≈da. If the result of the comparison comes from the literature, there

will be a citation at the bottom of the block. Finally, if the two equivalences

are incomparable, there may be two letters at the top of the block, each of

which refer to a pair of processes in Table 3.2. The first pair are equated

by the equivalence that appears in the column, and not equated by the

38

A (ca | b(c+ a))\c (bc | ca)\c

B (e(cΣa + dΠb + cΣa + dΠb | (e(cΣa + dΠb + cΣa + dΠb |

(dΣb + cΠb + cΣa + dΠa))\{c, d} (cΣb + dΠb + dΣa + cΠa))\{c, d}

C (aec | bed)\e (aed | bec)\e

D (ab | cd) (a(eb+ b) | c(ed+ d)\e

E (ac+ bd | cb+ da) (ac+ bd | cb+ da) + ab

F (ac+ bd | cb+ da) (ac+ bd | cb+ da) + (a | b)

G (ab | bc)\b ac

H (aec | bed)\e (aec | bed)\e

I (abd | bc)\b+ (cb | bad)\b (ad | c)

J (a | b) + (ac | cb)\c (a | b)

K (ab | bc) + ac (ab | bc)

L a(b+ τ.c) + ac a(b+ τ.c)

M (e.l.(m.a.p | n.c) | (l.f.s.(m.a.b | p.c) |
((m.a.n | b.c) | s.m)))\{b, l,m, n, p, s}

(e.l.(m.a.p | n.c) | (l.f.s.(m.a.b | b.c) |
((m.a.n | p.c) | s.m)))\{b, l,m, n, p, s}

where Σa = a1a2 + a2a1 and Πa = a1 | a2.

Table 3.2: CCS processes used for comparison

equivalence that appears in the row; and the second pair are not equated

by the equivalence that appears in column, and are equated by the equival-

ence that appears in the row. These pairs of letters do not appear for all

incomparable equivalences—since there are a number of equal equivalences

in the table, I have only given letters pairs to one (usually the first one) in

a group of equal equivalences.

As can be seen, this ad hoc approach is somewhat limited since it is based upon

pure CCS terms. In the next section and the following three chapters, I look at

more general approaches to the comparison of process algebras and equivalences.

39

≈ ≈d ≈da ≈g ≈ll

≈ — ⊂ ⊂ ⊂ ⊂
[Cas88] [BCHK93]

A, B
≈d — = ⊂ #

[CDN97] [CDN97] [BCHK91a]
A, B

≈da — ⊂ #

A, M
≈g — #

[CDN97]

≈ll —

≈l

≈sl

≈lc

≈dg

≈loc

≈c

≈gc

≈lg

≈rw

≈ST

Table 3.3: Summary of relationship between equivalences

40

≈l ≈sl ≈lc ≈dg ≈loc

≈ ⊂ ⊂ ⊂ ⊂ ⊂

≈d ⊂ ⊂ ⊂ ⊂ ⊂
[BCHK94]

≈da ⊂ ⊂ ⊂ ⊂ ⊂

≈g ⊂ ⊂ ⊂ ⊂ ⊂
[CDN97]

≈ll ⊂ ⊂ ⊂ ⊂ ⊂
[BCHK94]

≈l — = = = =
[Cas93] [Kie94] [CDN94] [MY92]

≈sl — = = =

≈lc — = =

≈dg — =

≈loc —

≈c

≈gc

≈lg

≈rw

≈ST

Table 3.4: Summary of relationship between equivalences continued

41

≈c ≈gc ≈lg ≈rw ≈ST

≈ ⊂ ⊂ ⊂ ⊂ ⊂
[Kie94] [PY94] [Hen91]

E, F A, H A, F
≈d # # ⊂ # #

E, F A, H A, F
≈da # # ⊂ # #

E, F A, H A, J
≈g # # ⊂ # #

C, D G, H G, J
≈ll # # ⊂ # #

[BCHK93]
E, F G, H G, J

≈l # # ⊂ # #
[BCHK91b] [PY94]

≈sl # # ⊂ # #

≈lc # # ⊂ # #
[Kie94]

≈dg # # ⊂ # #

≈loc # # ⊂ # #

≈c — = ⊂ # #
[Kie94] [PY94]

G, H G, L
≈gc — ⊂ # #

[Kie94]
I, H D, K

≈lg — # #

H, I
≈rw — #

≈ST —

Table 3.5: Summary of relationship between equivalences continued

42

3.3 A syntax-free approach to comparison

As seen in the previous section, it is possible to consider a number of ad hoc

results and use them to compare equivalences. However, it would be preferable

to approach the comparison in a more systematic manner. In this section, I

look at the underlying process domain, namely the labelled transition systems

that describe the behaviour of process algebra terms and develop an approach to

comparison.

As discussed in Chapter 2, the notion of transition system/transition pre-

serving/saturating/bisimulation homomorphism has been defined and can be used

to show that two labelled transition systems or states within a labelled transition

system are bisimilar. As there are a number of different names used in the literat-

ure, in sometimes conflicting ways, I will use the term bisimulation homomorphism

to describe these functions.

In the existing work that relates to bisimulation homomorphisms, it is assumed

that the transition systems under consideration have labels that come from the

same set. In the material that follows I will relax that assumption and broaden

the definition of bisimulation homomorphism.

3.3.1 A general model of transition systems

I propose a model which will formalise the notions encapsulated in a number of

the labelled transition systems that have been presented in the previous chapter.

These labelled transition systems are characterised by transitions which are la-

belled with actions that are not necessarily atomic, i.e. they may have some

structure. I will refer to them as extended labelled transition systems—‘extended’

because of the structured action. This is essentially the same as Definition 2.2.1.

I am restating it here to emphasise the nature of the label set, and to add the

definition of weak transitions.

43

Definition 3.3.1 (Extended labelled transition system)

An extended labelled transition system (LTS) is defined as

L = (S,A, T)

where S is a set of states, A is a set of (not necessarily atomic) actions, and

T ⊆ (S ×A× S).

I will usually write s
a−→ s′ for (s, a, s′) ∈ T , and if it is required to prevent

confusion, I will use s a−→T s′. Additionally, I am interested in transition systems

that have a distinguished action τ and I have the following definitions which define

a new labelled transition system over the states of S, using standard notation.

=⇒ = (τ−→)∗ and a=⇒ = =⇒ a−→=⇒ and τ=⇒ = =⇒ τ−→=⇒

I want to work with a general definition of bisimulation and I will make this

more specific as required.

Definition 3.3.2 (Strong generalised bisimulation with respect to a re-

lation)

Let Li = (Si,Ai, Ti) for i = 0, 1 be two LTSs, and let B be a relation on A0×A1.

A strong generalised bisimulation with respect to a relation B is a binary relation

R ⊆ S0 × S1 such that (s0, s1) ∈ R only if

1. for all a0 ∈ A0, whenever s0
a0−→T0 t0, then there exists t1 ∈ S1 and a1 ∈ A1

such that s1
a1−→T1 t1, (a0, a1) ∈ B and (t0, t1) ∈ R,

2. for all a1 ∈ A1, whenever s1
a1−→T1 t1, then there exists t0 ∈ S0 and a0 ∈ A0

such that s0
a0−→T0 t0, (a0, a1) ∈ B and (t0, t1) ∈ R.

Two states, s0 and s1 are said to be strongly generalised bisimilar with respect

to B, s0 ∼B s1, if there exists a strong generalised bisimulation R such that

(s0, s1) ∈ R. Let ∼B =
⋃
{R | R is a strong generalised bisimulation with

respect to B }.

44

Proposition 3.3.1 (Properties of strong generalised bisimulation with

respect to a relation)

Let Li = (Si,Ai, Ti) for i = 0, 1 be two LTSs, and let B be a relation on A0×A1.

1. ∼B is the largest strong generalised bisimulation with respect to B.

2. If L0 = L1 and B is an equivalence relation then ∼B is an equivalence

relation.

Proof: Straightforward.

Note that the use of a symmetrical relation symbol, namely ∼, is not intended

to indicate that the relation is necessarily symmetric or an equivalence∗. If I

take B to be the identity relation then I obtain the standard definition of strong

bisimulation, and I will use ∼ for ∼Id.

I am interested in the definition of weak bisimulation and also make a general

definition. Here I assume that I have an element τ that is distinct from all other

actions, and use the transitions defined above. Transitions labelled with τ play an

important rôle in process algebras, as they indicate internal actions which result

from communication. One often wishes to abstract away from these actions when

observing the external behaviour of a process, and hence the notion of weak

bisimulation is required. So although I wish to work in a syntax-free manner, the

τ action is an important facet of the notion of equivalence.

Definition 3.3.3 (Weak generalised bisimulation with respect to a rela-

tion)

Let Li = (Si,Ai ∪ {τ}, Ti) for i = 0, 1 be two LTSs, and let B be a relation on

A0×A1. A weak generalised bisimulation with respect to a relation B is a binary

relation R ⊆ S0 × S1 such that (s0, s1) ∈ R only if

∗The word equivalence is used both to mean equivalence relation and semantic equivalence
(which may or may not be an equivalence relation) in this document. When there may be
confusion, I will use the longer phrases.

45

1. for all a0 ∈ A0, whenever s0
a0−→T1 t0, then there exists t1 ∈ S1 and a1 ∈ A1

such that s1
a1=⇒T0 t1, (a0, a1) ∈ B and (t0, t1) ∈ R

2. for all a1 ∈ A1, whenever s1
a1−→T1 t1, then there exists t0 ∈ S0 and a0 ∈ A0

such that s0
a0=⇒T0 t0, (a0, a1) ∈ B and (t0, t1) ∈ R.

3. whenever s0
τ−→T0 t0, then there exists t1 ∈ S1 such that s1 =⇒T1 t1 and

(t0, t1) ∈ R,

4. whenever s1
τ−→T0 t1, then there exists t0 ∈ S0 such that s0 =⇒T1 t0 and

(t0, t1) ∈ R.

Two states, s0 and s1 are said to be weakly generalised bisimilar with respect to

B, s0 ≈B s1, if there exists a weak generalised bisimulation R such that (s0, s1) ∈
R. Let ≈B =

⋃
{R | R is a weak generalised bisimulation with respect to B }.

Proposition 3.3.2 (Properties of weak generalised bisimulation with re-

spect to a relation)

Let Li = (Si,Ai, Ti) for i = 0, 1 be two LTSs, and let B be a relation on A0×A1.

1. ≈B is the largest weak generalised bisimulation with respect to B.

2. If L0 = L1 and B is an equivalence relation then ≈B is an equivalence

relation.

Proof: Straightforward.

Again if I take B to be the identity relation then I obtain the standard definition

of weak bisimulation, and I will use ≈ for ≈Id. I choose in this chapter to work

with weak bisimulation for two reasons: first, most of the examples presented

in the literature use a weak form of bisimulation, and second, in this setting,

working with τ transitions and weak bisimulation does not add significantly to

the complexity of the results. I will use the term bisimulation when referring to

the notion of weak bisimulation.

46

3.3.2 Bisimulation homomorphisms

I first present a general result that relates the bisimulations defined on different

extended LTSs. I define homomorphisms on extended LTSs.

Definition 3.3.4 (Bisimulation homomorphism)

A bisimulation homomorphism is a mapping

(hS, hA, hT) : (S0,A0, T0)→ (S1,A1, T1)

with hS : S0 → S1, hA : A0 → A1 and hT : T0 → T1 such that

hT (s a−→T0 s
′) = hS(s)

hA(a)−−−→T1 hS(s′) and

hT (s τ−→T0 s
′) = hS(s) τ−→T1 hS(s′) if hS(s) 6= hS(s′)

(hence hT is determined by hS and hA) satisfying the following conditions

1. for each t
a1−→T1 t

′ ∈ hT (T0) and each s such that hS(s) = t, there exists

s
a0−→T0 s

′ ∈ T0 such that hS(s′) = t′ and hA(a0) = a1,

2. for each t τ−→T1 t
′ ∈ hT (T0) with t 6= t′ and each s such that hS(s) = t, there

exists s τ−→T0 s
′ ∈ T0 such that hS(s′) = t′.

Notation For convenience and where there is no confusion, I will refer to bisim-

ulation homomorphisms as single functions, such as h.

This differs from Arnold and Castellani’s definition of a transition system ho-

momorphism with zig-zag condition (given as conditions 1 and 2 in the definition

above) [AC96], in that here I do not assume that the two transition systems have

the same set of labels, and introduce a map between the two different label sets.

Note that this definition ignores τ loops in the image by only requiring a τ

transition in the image when the end points are different—this also means that

the image does not need to have a τ transition when the endpoints are the same.

The intuition behind this is that this function is to have similar properties to

bisimulation and hence certain (but not all) τ actions can be ignored. The second

condition ensures that only the correct τ actions can be ignored. Moreover, the

47

condition that t 6= t′ in the second point of the definition ensures that τ loops in

the image do not have to be matched by τ transitions in the domain.

I am now interested in relating the above definition to weak bisimulation, with

respect to both the identity relation and to other relations over the set of labels.

As I will be working with a definition of bisimulation which requires that

labels be related by a relation rather than matching, I first need to consider how

a bisimulation homomorphism will interact with this relation.

Definition 3.3.5 (Consistency)

Given two sets A0 and A1, a function f : A0 → A1 and relations Bi ⊆ Ai ×Ai
for i = 0, 1. Then f is consistent with B0 and B1 if for a, a′ ∈ A0,

a B0 a
′ ⇒ f(a) B1 f(a′)

Proposition 3.3.3 (Bisimulation homomorphisms and generalised bisim-

ulation)

Let Li = (Si,Ai, Ti) for i = 0, 1 be two LTSs with Bi a binary relation over Ai for

i = 0, 1. If s ≈B0 s
′ in the LTS (S0,A0, T0), and if there exists a bisimulation ho-

momorphism h : (S0,A0, T0) → (S1,A1, T1) such that h : A0 → A1 is consistent

with B0 and B1, then h(s) ≈B1 h(s′) in (h(S0),A1, h(T0)).

Proof: Since s ≈B0 s
′, there exists a generalised bisimulation R0 ⊆ S0 × S0

such that (s, s′) ∈ R0. Define R1 = {(s1, s′1)|∃(s0, s′0) ∈ R0 such that h(s0) =

s1 and h(s′0) = s′1}. I wish to show that R1 is a bisimulation. Consider (s1, s′1) ∈
R1. From the definition of R1, there exists (s0, s′0) ∈ R0 such that h(s0) = s1

and h(s′0) = s′1. There are two cases.

1. Suppose that s1
a1−→ t1. Now since s1 = h(s0) for some s0 ∈ S0, and

from condition 1 in Definition 3.3.4, there exists s0
a0=⇒ t0 ∈ T0 such that

h(t0) = t1 and h(a0) = a1. Now since R0 is a bisimulation, it can easily be

shown that s′0
a′0=⇒ t′0 for some a′0 ∈ A0 and t′0 ∈ S0 with (a0, a′0) ∈ B0 and

(t0, t′0) ∈ R0. Furthermore, h(s′0)
h(a′0)
=⇒ h(t′0) and since h is consistent with

B0 and B1, it is clear that h(a0)B1h(a′0). But since h(s′0) = s′1, s′1
h(a′0)
=⇒ h(t′0)

and (t1, h(t′0)) ∈ R1 as required.

48

2. Suppose that s1
τ−→ t1. First consider when s1 6= t1. Now since s1 = h(s0)

for some s0 ∈ S0, and from condition 2 in Definition 3.3.4, there exists

s0
τ=⇒ t0 ∈ T0 such that h(t0) = t1. Now since R0 is a bisimulation, it can

easily be shown that s′0 =⇒ t′0 for some t′0 and (t0, t′0) ∈ R1. Furthermore,

it can also be shown that h(s′0) =⇒ h(t′0). Hence, h(s′0) = s′1, therefore

s′1 =⇒ h(t′0) and (t1, h(t′0)) ∈ R1 as required. Next consider when s1 = t1,

hence s1
τ−→ s1. Also s′1 =⇒ s′1 and (s1, s′1) ∈ R1 as required.

The symmetric conditions can be proved by similar arguments.

Because of the fact that bisimulation homomorphisms are functions, the con-

verse (given two pairs of equivalent states in different transition systems and a

function between the labels) does not hold. For example, if the two states in the

first transition system are s1 and s2 with the transitions s1
a−→ s′1 and s2

a−→ s′2,

then clearly s1 and s2 are equivalent. Moreover if the states in the second trans-

ition system are t1 and t2 with the transitions t1
b−→ t′1, t2

b−→ t′2 and t2
b−→ t′′2,

then clearly t1 and t2 are equivalent. Suppose the function f(a) = b is given,

then I have the conditions for the converse of the theorem. But because I am

trying to find a bisimulation homomorphism (which is a function), I cannot find

a satisfactory way to map from the transition s2
a−→ s′2 to the transitions t2

b−→ t′2

and t2
b−→t′′2.

An obvious candidate for the relation on A1 in the above is the one induced

by h, namely for a1, a′1 ∈ A1, a1 B1 a′1 if

∃a0, a
′
0 ∈ A0, h(a0) = a1, h(a′0) = a′1 and a0 B0 a

′
0.

Proposition 3.3.3 describes the relationship between generalised bisimulations

between states from the same LTS. The next result shows how to obtain a gen-

eralised bisimulation between states in different LTSs.

Proposition 3.3.4 (Bisimulation homomorphism defines a generalised

bisimulation)

Let Li = (Si,Ai, Ti) for i = 0, 1 be two LTSs. If there exists a bisimulation

homomorphism h : (S0,A0, T0)→ (S1,A1, T1), then for all s ∈ S0,

s ≈h h(s).

49

Proof: Define a relation R over S0 × S1 as R = {(s, h(s)) | s ∈ S0}. I

wish to show that this is a generalised bisimulation with respect to the function

h : A0 → A1 (viewed as a binary relation). Consider (s0, h(s0)) ∈ R; there are

four cases.

• If s0
a0−→ t0 for a0 ∈ A0 and t0 ∈ S0, then h(s0)

h(a0)−−−→ h(t0) and clearly

(a0, h(a0)) ∈ h and (t0, h(t0)) ∈ R as required.

• If s0
τ−→ t0 for t0 ∈ S0, then either h(s0) = h(t0) and hence h(s0) =⇒

h(t0) or h(s0) τ−→ h(t0) and also h(s0) =⇒ h(t0). Moreover, in both cases

(t0, h(t0)) ∈ R as required.

• If h(s0)
a1−→ t1 with h(s0) 6= t1 for a1 ∈ A1 and t1 ∈ S1 then since h is a

bisimulation homomorphism, there exists a0 ∈ A0 and t0 ∈ S0 such that

h(a0) = a1, h(t0) = t1 and s0
a0−→ t0. Clearly (a0, a1) ∈ h and (t0, t1) ∈ R as

required.

• If h(s0) τ−→ t1 for t1 ∈ S1 and h(s0) 6= t1 then since h is a bisimulation

homomorphism, there exists t0 ∈ S0 such that h(t0) = t1 and s0
τ−→ t0, and

clearly (t0, t1) ∈ R as required. If h(s0) = t1, then h(s0)
τ−→ h(s0) and also

s0 =⇒ s0 and (s0, h(s0)) ∈ R as required.

Note that the surjectivity of hT is not needed for this result, since these results

hold for the transition system that is reachable from h(S) and because I only work

with the transition system that is the image of the homomorphism. A different

approach can be taken by requiring that h(T0) = T1.

Arnold and Dicky [AD89] give two results that relate bisimulation and homo-

morphisms

• transition systems are (strongly) bisimilar if and only if they are bisimula-

tion homomorphic images of a common transition system,

• states of a transition system are (strongly) bisimilar if and only if they have

a common image by a bisimulation homomorphism.

I now investigate whether it is possible to obtain general results for weak

generalised bisimulation along similar lines.

50

Proposition 3.3.5 (States that are images of a common state are bisim-

ilar)

Let Li = (Si,Ai, Ti) for i = 0, 1 be two LTSs with B a binary relation overA0×A1.

Given two states si ∈ Si for i = 0, 1, then s0 ≈B s1 if there exists a transition

system L = (S,A, T) and two bisimulation homomorphisms hi : L → Li for

i = 0, 1 such that s0 and s1 are the images under h0 and h1 respectively of a state

s ∈ S, and for any a ∈ A, h0(a) B h1(a).

Proof:

Let R = {(s′0, s′1) | ∃s′ ∈ S, h0(s′) = s′0 and h1(s′) = s′1}. I need to show

that this is a generalised weak bisimulation with respect to B. Let (s′0, s′1) ∈ R

and consider s′0
a0−→ s′′0. There exists s′ ∈ S such that h0(s′) = s′0 (and also

h1(s′) = s′1), therefore there exists s′′ and a such that s′ a−→ s′′, h0(s′′) = s′′0

and h0(a) = a0. Consider h1(s′)
h1(a)−−−→ h1(s′′), namely s′1

h1(a)−−−→ h1(s′′). Hence

a0 B h1(a) and (s′′0, h1(s′′)) ∈ R. Next, consider s′0
τ−→ s′′0 with s′0 6= s′′0. By a

similar argument, there exists s′′ such that s′ τ−→ s′′ and h0(s′′) = s′′0, and hence

s′1
τ−→h1(s′′), with (s′′0, h0(s′′)) ∈ R as required. If s′0 = s′′0 then s′0

τ−→ s′0, and also

s′1 =⇒ s′1 and (s′0, s′1) ∈ R as required. The other conditions for the bisimulation

is shown in a similar way.

Note that the condition on the elements of A0 and A1 could have been

made more specific to include only those that occur in the sub-transition sys-

tem; however it does not seem necessary here. Arnold and Dicky’s original result

related to whole transition systems; here I prefer to deal with states, but the

proposition can be generalised by considering a collection of states and requiring

that all states in L0 and L1 fall into the image of L.

The question arises as to whether the converse of this theorem holds. An

obvious approach is to use a product construction and projection functions. Note,

however, that for the construction and projection functions to fit the definitions of

eLTS and bisimulation homomorphism, they must treat τ actions in a particular

manner, and hence the standard construction cannot be used. The following

example illustrates the difficulties with this approach.

51

s0

�
�
�	

@
@
@R

a0 a0

s1 s′1

�
�
�	

@
@
@R

a1 τ

s2 s3

t0

?

b0

t1

�
�
�	

@
@
@R

b1 τ

t2 t3

Figure 3.2: Examples of transition systems

Consider the two transition systems in Figure 3.2 and assume that a0 B b0,

a1 B b1 and there are no other elements of B. Then s0 ≈B t0—consider the bisim-

ulation {(s0, t0), (s1, t1), (s2, t2), (s3, t3), (s′1, t3)}. It appears reasonable to use this

bisimulation to define the states of the product transition system. However the

state (s′1, t3) is problematic and it cannot be omitted. If there is a transition

(s0, t0)
(a0,b0)−−−→ (s′1, t3) then the projection function from the product to the second

transition system maps this transition to t0
b0−→ t3 which does not exist. However,

to omit the transition in the product means there is no transition to map onto

s0
a0−→ s′1. The definition of bisimulation homomorphism does not permit the

removal of transitions from the range, and it is clear that the transition in the

product cannot not be mapped to t0
b0−→ t1. This situation occurs because of

the manner in which weak bisimulation is defined. Since s0 ≈B t0, s0
a0−→ s′1 is

matched by t0
b0−→ t1

τ−→ t3 with s′1 ≈B t3. However, it is not the case that s′1 ≈B t1.

It is not clear whether this can be resolved by looking for a different LTS and

bisimulation homomorphisms. I now look at a generalisation of the second result.

52

Proposition 3.3.6 (States that have a common image are bisimilar)

Let Li = (Si,Ai, Ti) for i = 0, 1 be two LTSs with B a binary relation overA0×A1.

Given two states si ∈ Si for i = 0, 1, then s0 ≈B s1 if there exist a transition

system L = (S,A, T) and two bisimulation homomorphisms hi : Li → L for

i = 0, 1 such that h0(s0) = h1(s1), and for a0 ∈ A0 and a1 ∈ A1, h0(a0) = h1(a1)

implies a0 B a1.

Proof: Define R = {(s′0, s′1) | h0(s′0) = h1(s′1)}. I need to show that this

is a generalised weak bisimulation with respect to B. Consider s′0
a0−→ s′′0 , then

h0(s′0)
h0(a0)−−−→ h0(s′′0), namely h1(s′1)

h0(a0)−−−→ h0(s′′0). By the definition of bisimula-

tion homomorphism, there exist a1 and s′′1 such that s′1
a1−→ s′′1 , h1(a1) = h0(a0) and

h1(s′′1) = h0(s′′0). Hence a0 B a1 and (s′′0, s′′1) ∈ R. Next consider s′0
τ−→ s′′0. There

are two cases. Firstly if h0(s′0) = h0(s′′0), then s′1 =⇒ s′1, and h0(s′′0) = h1(s′1) as

required. Next, if h0(s′0)
τ−→ h0(s′′0) then by a similar argument to above, I can

show that s′1
τ−→ s′′1 with (s′′0, s′′1) ∈ R. The other conditions for bisimulation can

be shown by a symmetric argument.

Since B is an arbitrary relation in the above proposition, I need to the ad-

ditional condition on h0 and h1 that h0(a0) = h1(a1) implies that a0 B a1 to

obtain the fact that it is a bisimulation with respect to B. If I wish to prove the

converse of this above proposition, including the relationship between B and the

bisimulation homomorphisms, I require an additional condition on B.

Definition 3.3.6 (Separation property)

Let B be a binary relation over A0 ×A1. Let B be the reflexive, symmetric and

transitive closure of B over the disjoint union of A0 and A1 (A0] A1). Then B
has the separation property if for a0 ∈ A0 and a1 ∈ A1,

a0 B a1 ⇒ a0 B a1

Examples of relations with this property are

• B ⊆ A×A where B is an equivalence relation,

• B ⊆ A0 ×A1 where B is an injective function.

53

Proposition 3.3.7 (States that are bisimilar have a common image)

Let Li = (Si,Ai, Ti) for i = 0, 1 be two LTSs with B a binary relation overA0×A1

having the separation property. Given two states si ∈ Si for i = 0, 1, then if

s0 ≈B s1 there exist a transition system L = (S,A, T) and two bisimulation

homomorphisms hi : Li → L for i = 0, 1 such that h0(s0) = h1(s1), and for

a0 ∈ A0 and a1 ∈ A1, h0(a0) = h1(a1) implies a0 B a1.

Proof: I wish to construct a transition system and two bisimulation homo-

morphisms. I work with the disjoint unions S0] S1 and A0] A1. First, let B
be the reflexive, symmetric and transitive closure of B over A0] A1. Since B

is an equivalence relation, ≈B is an equivalence over S0] S1 with respect to the

transitions T ′ = {s a−→ s′ | s a−→ s′ ∈ T0 or s a−→ s′ ∈ T1} ∪ {s
τ−→ s′ | s τ−→ s′ ∈

T0 or s τ−→ s′ ∈ T1} by Proposition 3.3.2. Consider the following transition system

L

S = (S0] S1)/≈B

A = (A0]A1)/B

T = {S A−→ S ′ | S, S ′ ∈ S, A ∈ A, ∃s ∈ S, s′ ∈ S ′, a ∈ A such that

s
a−→s′ ∈ T ′} ∪ {S τ−→S ′ | S, S ′ ∈ S, ∃s ∈ S, s′ ∈ S ′, such that

s
τ−→ s′ ∈ T ′}.

For i = 0, 1 and s, s′ ∈ Si, a ∈ Ai, define the following homomorphisms

hi(s) = [s]≈B

hi(a) = [a]B

hi(s
a−→s′) = hi(s)

hi(a)−−→ hi(s′)

hi(s
τ−→ s′) = hi(s)

τ−→hi(s′) if hi(s) 6= hi(s′).

I now need to show that they are bisimulation homomorphisms. Consider S A−→ S ′

with S = [s0]≈B for some s0 ∈ S0. I need to find s′0 ∈ S0 and a0 ∈ A0 such that

[s′0]≈B = S ′ and [a0]B = A. By definition of T , there exists a ∈ A and s ∈ S ′

such that s0
a−→ s ∈ T ′, but by definition of T ′, a ∈ A0 and s ∈ S0, as required.

The condition for τ transitions can be shown in a similar way, and a similar proof

can be used to show that h1 is a bisimulation homomorphism. Finally I need to

54

show that given a0 ∈ A0 and a1 ∈ A1, h0(a0) = h1(a1) implies a0 B a1, Clearly,

if h0(a0) = h1(a1) then a0 B a1. However, since B has the separation property,

a0 B a1.

This result is more general than Arnold and Dicky’s, both because it deals

with different label sets, and because it considers two transition systems instead

of a single one. Note that Proposition 3.3.4 is a special case of this proposition,

with L = L0, h0 = id, h1 = h, and B = h.

3.3.3 Discussion

My general aim in this thesis is to compare semantic equivalences. In this section,

I will discuss the difficulties that occur when trying to use the results of Section 3.3

to effect a comparison of semantic equivalences. These results relate to labelled

transition systems, which are the objects upon which semantic equivalences are

defined in process algebras (within the context of this document). The results do

not involve any notion of process algebra syntax, hence the term syntax-free. I

first look at two possible approaches, and then will discuss the second approach

in more detail.

• In the comparison over extensions to CCS given in the first part of this

chapter, I am comparing the equivalences over the same states, i.e. over

states with the same syntactic form, so given two equivalences, ≈1 and ≈2,

≈1 ⊆ ≈2 is equivalent to the statement that for all p and q, p ≈1 q implies

p ≈2 q, or that ≈1 equates fewer states than ≈2. It is not clear here how

to chose the states that one wants to compare the equivalence over. A

possible approach when comparing two equivalences defined by relations B0

over A0 and B1 over A1 on two LTSs Li = (Si,Ai, Ti) for i = 0, 1, is to

define an relation over S0×S1 which equates the states are to be considered

equivalent. Then I can use the following definition:

Let Φ be a relation over S0×S1. Then≈B0⊆Φ≈B1 if for all (s0, s1), (s′0, s
′
1) ∈

Φ, s0 ≈B0 s
′
0 ⇒ s1 ≈B1 s

′
1

55

This definition can be written informally as follows: if two states are equated

in the first transition system by the first equivalence, then any Φ-related

pair of states must be equated in the second transition system by the second

equivalence. Note that this involves LTSs where the equivalence is defined

within the LTS, and not between different LTSs. The definition could be

extended to allow this, although this would add complexity.

• The approach taken by van Glabbeek to comparing equivalence [vG90b]

involves using LTSs with the standard atomic label set. He doesn’t concern

himself with process algebra syntax—counter-examples are given by means

of process graphs. This an approach that I will discuss in more detail.

For the rest of this section, I will assume that the semantic equivalences under

consideration are based on bisimulation within an LTS that involves the identity

of labels on transitions.

First assume that there is a notion of canonical LTS—by this I refer to a

manner in constructing an LTS for a given label set that is in some sense as

complete as possible, namely such that the equivalence classes induced by the

expected definition of bisimulation for the label set cover as many different pro-

cesses as is possible. As I have not pursued this research at a detailed level, I

will leave this concept somewhat vague. Hence, although it is not possible to

compare equivalences over LTSs based on the same label set as in van Glabbeek’s

work, it may be possible to compare between canonical LTSs. An obvious tool to

consider using is a bisimulation homomorphism. If the two LTSs are formed in a

similar way which one would expect as they are both canonical LTSs, and there is

suitable function between label sets, then it seems it should be possible to define

a surjective bisimulation homomorphism between the LTSs. The crucial question

then relates to what function should be used to map between the labels—ideally

it should lose as little information as possible—for example, in the LTS for loc-

ations [BCHK93,BCHK94], each transition is labelled with a string of locations,

and hence the ordering given by the string can be viewed as information that

should be retained.

56

As an example of some of the difficulties involved, consider canonical LTSs for

CCS with locations [BCHK94] and CCS with local/global causes [Kie94]. In the

first case, each transition of the LTS will be labelled with an action and a string

of location; and in the second, each transition will be labelled with an action and

two sets of causes and a cause (See Section 2.2.1.2 for more details). I will ignore

τ transitions for the purposes of this discussion. Assume that the set of locations

and causes are the same (or that there is some bijective map between them). It is

not clear how a map can be constructed from the labels of one transition system

to the labels of the other. Taking an approach whereby the action is mapped to

the action and any string of locations is mapped to the empty set, the empty set,

and the first (or last) location in the string, does not fit well with the principle

of retaining as much information as possible. A better approach may be to map

the string of locations to the set of of the elements of the string, the set of the

elements of the string and the last location in the string.

However, neither of these mappings take into account the implied semantics

of the local/global cause labels, namely that the first set is a set of global cause

and the second is a set of local causes. To successfully map from the two label

sets, one requires an algebra to describe how these labels can be built up, and one

must ensure that the map is a homomorphism with respect to the operators. I

investigated some work in this direction, but it has not been particularly fruitful.

Another complication occurs when considering the LTS created by a particular

SOS. Looking at the same example, when considering a comparison using algebras

to reflect the way labels are constructed, it seems that the two label sets are not

comparable—in the location labels, there is no constructor for anything similar

to global causes, so it is not clear how to map from the string of locations to

the global cause set; and for the local/global cause labels, there is no notion of

order because only sets are used and hence there is no obvious way to map from

the local cause set to the string of locations. However, looking at the way the

labels are generated by the SOS, I end with a situation (when working with the

pure CCS terms) that ≈lg ⊂ ≈l, since the way the labels appear in the LTS are

constrained by the SOS, and the local/global cause labels actually contain more

57

information than the location labels. This can be explained informally by the

fact that in CCS with locations, any location can be used to label an action and

hence the ordering of locations is not used differentiate between processes.

The above example illustrates that comparing over canonical LTSs may give

different results to comparing over the LTSs generated by SOS. Hence it is not

clear how to interpret results that could come out of this approach. Is it acceptable

that the results from the comparison over the canonical LTSs don’t coincide

with those for comparison over pure CCS terms (or other process algebra based

comparisons), or more generally over LTSs with different characteristics to the

canonical LTSs, and it is possible to come up with formal explanations for why

this is this case?

Another approach then is to perform the comparison over the LTSs generated

by SOS instead of the canonical LTSs. This approach still uses the canonical

LTSs as a basis for the comparison, so the problems described above still need to

be dealt with. A suitable bisimulation homomorphism is chosen to map between

the two canonical LTSs with a suitable map between the label sets. Assuming

the semantic equivalence under consideration is an equivalence relation, then the

states of each canonical LTS can be partitioned by the equivalence. Moreover, it

should be possible to show that there is an function on the equivalence classes

induced by the bisimulation homomorphism that is surjective. Next, consider the

equivalence classes induced by the semantic equivalences over the specific LTSs.

Each equivalence class from the set of states of a specific LTS can be mapped

into the equivalence class of the relevant canonical LTSs such that the elements

of the equivalence classes are bisimilar (this should be possible if the definition

of canonical LTS is correct). This map should be injective since in each case the

same equivalence is being used. It may then be possible to induce a function

from the equivalence classes of one specific LTS to the equivalence classes of the

other, and hence then possible to do a comparison of the semantic equivalences

by investigating which equivalence classes from the specific LTSs are mapped

to each other by this construction. The interpretation of these results is still

unclear, however. If there is a relation Φ over the states of the two specified

58

LTSs, it is possible to check whether Φ is satisfied. However, this is dependent on

the function used to map between the label sets and it is unclear how to ensure

that this is satisfactory.

As an example, consider the two CCS extensions with locations by Boudol et

al. [BCHK93, BCHK94]. They have slightly different approaches for how strings

of locations are added to transitions—in the one case, only one location can be

added per action, whereas in the other case, a string of locations can be added

(including the empty string). However in both case, the bisimulation definition

is the same (if in the case of parameterised bisimulation, the assumption is made

that the relation is the identity relation) in that they require matching on actions

and strings of locations. For this example, I will assume that these notions of

bisimulation are identical (this assumption is open to question) and hence it is

necessary only to work with one canonical LTS which has transitions labelled with

actions and strings of locations (I will ignore τ transitions for the purposes of this

discussion). Then I need to consider the two specific transition systems, one

which is generated by the SOS of the ‘strict’ locations and the one generated by

the ‘loose’ locations. In this case, I will assume that Φ is the relation that relates

states with the same process names. Considering the processes P = (a.c | c.b)\c

and Q = (a.(c + b) | c.b)\c [BCHK94]. Since P 6≈l Q and P ≈ll Q, one would

expect that P and Q to be in different equivalence classes in the strict location

LTS and to be in the same class in the loose location LTS, and that the map on

equivalence classes will map both [P]≈l and [Q]≈l to [P]≈ll (= [Q]≈ll). It is not

clear how to interpret the results if this does not hold—a possible consideration

is to review the assumption that it is possible to use the same canonical LTS.

As can be seen from the above, the details of this approach have not been

formalised and the benefits of this approach are not clear. Additional complexity

is introduced if the equivalences to be compared do not require exact matches

of labels. Hence, I have chosen to look at a syntactic approach to comparison.

However, in the course of this exploration, I have developed extensions of results

relating to bisimulation homomorphism that cater for labelled transitions system

with differing sets of labels.

59

3.4 Conclusion

In this chapter, I have considered two approaches to the comparison of process

algebra equivalences. Neither are entirely satisfactory; the first relies on an ad

hoc approach to comparison; and the second abstracts away from the syntax of

the process algebra in a manner that makes it difficult to determine how to do

the comparison. I have, however, in second section of the chapter, introduced

some results about LTSs that involve a more general notion of bisimulation. In

the next two chapters, I look at a method of comparison that is based on the

operational semantics of process algebras.

60

Chapter 4

A new format

4.1 Introduction

In this chapter, I start to look at how an understanding of the syntax of process

algebras can be used to compare equivalences over process algebras. As was

seen in the previous chapter, there is a limit to what can be achieved without

considering the syntax. In this chapter, I take existing work on formats and

extend it by considering structured labels. I then show under which conditions

congruence with respect to strong bisimulation can be obtained.

I will first start with a number of standard definitions for many-sorted signa-

tures and algebras, so that I can fix the notation which will be used in the rest

of the document. Then in Section 4.3, I will present justification for why a new

format is required and then present the new format—this involves working with

a specific kind of many-sorted signature. I then extend a number of results to

the new format. As the new format is somewhat more complex due to the fact

that labels of transitions are dealt with syntactically instead of schematically, I

require some additional conditions to ensure that congruence holds. I end the

chapter with counter-examples to show that most of the conditions cannot be

relaxed without losing congruence, and discuss the situation with the conditions

for which I have no counter-examples.

61

4.2 Definitions

4.2.1 Many-sorted signatures and algebras

Definition 4.2.1 (Sorted set)

For any set S, an S-sorted set A is a family {As}s∈S of sets indexed by S.

Consider two S-sorted sets A and B. Intersection, union, difference and subset

are defined component-wise. For example, A ∩B = {As ∩Bs}s∈S. The union of

sorted sets over different index sets is given in Definition 6.2.1 in Chapter 6.

Definition 4.2.2 (Signature)

A signature Σ is a pair (S, F) where S is a set of sorts and F is a set of function

symbols such that F is equipped with a mapping type : F → S∗×S. If type(f) =

(ε, s) for some s ∈ S, then f is called a constant symbol. I write f : w → s for

f ∈ F with type(f) = (w, s), and f : s1 . . . sn → s if w = s1 . . . sn. If w = ε is the

empty string, then I write f :→ s.

In some texts, F is viewed as an S∗×S-sorted set, which allows ‘overloading’

of function symbols. I will not go into this in detail here.

Let V be an S-sorted set of variables disjoint from F . The set of terms over

V can be formed.

Definition 4.2.3 (Open and closed terms)

Let Σ = (S, F) be a signature, and let W be an S-sorted subset of V . For each

s ∈ S, the set T (Σ,W)s of Σ-terms of sort s is the least set containing

• every x ∈Ws of sort s and every constant symbol f → s ∈ F ,

• every f(t1, . . . , tn) where f : s1 . . . sn → s is a function symbol in F with

range s and every ti (1 6 i 6 n) is a term of sort si in T (Σ,W)si.

I use T (Σ,W) to denote the S-sorted set {T (Σ,W)s}s∈S and call this the set of

Σ-terms over W .

T (Σ, ∅) is called the set of closed or ground terms, and is abbreviated T(Σ).

T (Σ, ∅)s (abbreviated T(Σ)s) is called the set of closed terms of sort s or ground

terms of sort s.

62

T (Σ, V) (abbreviated T(Σ)) is called the set of open terms, and T (Σ, V)s

(abbreviated T(Σ)s) is called the set of open terms of sort s.

Notation Let S ′ ⊆ S, then T(Σ)S′ is the S ′-sorted set of closed terms with a

sort in S ′ and T(Σ)S′ is the S ′-sorted set of open terms with a sort in S′.

Definition 4.2.4 (Sensible signature)

Let Σ = (S, F) be a signature. Σ is called sensible if it admits one ground term

for each sort, i.e. for all s ∈ S, T(Σ)s 6= ∅.

Definition 4.2.5 (Variables contained within a term)

Let Σ = (S, F) be a signature, and let t ∈ T(Σ). I define the variables of sort s

in t, Vars(t), as follows

Vars(t) =

{x} if t = x and x ∈ Vs
Vars(t1) ∪ . . . ∪Vars(tn) if t = f(t1, . . . , tn),f ∈ F
∅ otherwise

Var(t) denotes the S-sorted set {Vars(t)}s∈S.

Definition 4.2.6 (Substitution)

Let Σ = (S, F) be a signature. A substitution σ is a mapping in V → T(Σ)

which preserves sorts, i.e. σ|Vs : Vs → T(Σ)s for each s ∈ S. A substitution σ is

extended to a mapping σ : T(Σ) → T(Σ) in the standard way by the following

definition for f ∈ F with f : s1 . . . sn → s

σ(f(t1, . . . , tn)) = f(σ(t1), . . . , σ(tn)) for f ∈ F, ti ∈ T(Σ)si, 1 6 i 6 n.

If σ and ρ are substitutions, then the substitution σ ◦ ρ is defined by (σ ◦ ρ)(x) =

σ(ρ(x)).

Definition 4.2.7 (Σ-algebra)

Let Σ = (S, F) be a signature. A Σ-algebra consists of an S-sorted family of

non-empty carrier sets {As}s∈S, also denoted A; and a total function fA : As1 ×
. . .×Asn → As for each f ∈ F such that f : s1 . . . sn → s.

63

Definition 4.2.8 (Σ-homomorphism)

Let Σ = (S, F) be a signature and let A and B be two Σ-algebras. A Σ-

homomorphism h : A → B is a family of maps {hs : As → Bs}s∈S such that

for each f ∈ F where f : s1 . . . sn → s, and a1 ∈ As1, . . . , an ∈ Asn ,

hs(fA(a1, . . . , an)) = fB(hs1(a1), . . . , hsn(an)).

Both T(Σ) and T(Σ) form Σ-algebras and it can be shown that there is a

unique homomorphism denoted iA from T(Σ) to any Σ-algebra A.

Definition 4.2.9 (Σ-congruence)

Let Σ = (S, F) be a signature and let A be a Σ-algebra. A Σ-congruence on A is

an S-sorted equivalence relation ≡ which is compatible with all function symbols,

i.e. ≡ = {≡s}s∈S , and for all s ∈ S, ≡s ⊆ As × As is reflexive, symmetric and

transitive, and for any f ∈ F such that f : s1 . . . sn → s and for all ai, bi ∈ Asi
for 1 6 i 6 n

ai ≡si bi (1 6 i 6 n)⇒ fA(a1, . . . , an) ≡s fA(b1, . . . , bn).

For each Σ-algebra, there exists a congruence over T(Σ), defined as t ≡A t′

whenever iA(t) = iA(t′) for t, t′ ∈ T(Σ). I will sometimes use the following

notation for a signature Σ

(s1, s2, . . . ; f1, f2, . . . ; g1, g2, . . .)

where s1, s2, . . . is a list of the sorts of S; f1, f2, . . . is a list of the functions from

F with type→ s for s ∈ S; and g1, g2, . . . is a list of the remaining functions from

F . A Σ-algebra A will also be written in a similar fashion

(As1,As2, . . . ; fA1 , f
A
2 , . . . ; gA1 , g

A
2 , . . .).

4.2.2 Labelled transition systems

In the previous chapter, I defined labelled transition systems. I am now interested

in labelled transition systems which have a sorted set of labels. The definition

can be extended in the obvious way.

64

Definition 4.2.10 (Sorted labelled transition system)

Let S be a set. An S-sorted labelled transition system (LTS) is defined as L =

(S,A, T) where S is a set of states, A is an S-sorted set of transition labels, and

the relation T ⊆ S ×A× S describes which transitions occur between states.

Generally, I write s a−→ s′ for (s, a, s′) ∈ T .

4.3 Extended transition system specifications

I wish to use many-sorted signatures and algebras as a way of extending the notion

of format. Prior work in formats relies on using a single-sorted signature and the

corresponding term algebra to represent the processes, and assumes an atomic set

of actions. Moreover, the actions are treated in a different manner to the process

terms, since they are treated in a schematic way, namely a rule is understood

to represent a number of rules, each with a different label appearing on each

transition. This approach is satisfactory for dealing with an atomic action set,

but quite soon becomes unsatisfactory when dealing with more complex action

sets. The general idea behind this new format is that all components will be dealt

with syntactically, both processes and transition labels (actions), and this will be

done by using the term algebra of a given signature, Σ. Then the actual labels

of the process algebra will be represented as terms in a Σ-algebra. Since there is

a unique homomorphism from the term algebra to any Σ-algebra which induces

an equivalence on the elements of the term algebra, this equivalence can then be

used to match labels in the definition of bisimulation.

Since the aim of formats is to be able to prove theorems about process algebras

based on SOS in a syntactic manner, taking the approach I have taken here is a

logical extension to the existing notion of format. It introduces some additional

complexity, since in essence it requires that there is also a semantic equivalence

over the labels (by this, I refer to the equivalence which equates syntactic forms

which I wish to view as the same) as well as one over the processes (bisimulation).

The fact that the semantic equivalence over the labels is induced by another Σ-

algebra, means that it is possible to work with an equivalence over the labels

without considering the specific Σ-algebra, and this is how I will proceed for the

65

next two chapters. Then in Chapter 6, I will investigate what effect the conditions

required in this chapter for congruence have on the Σ-algebras that can be used

to represent process algebra labels.

Another reason for dealing with labels in a syntactic manner is the fact that in

some of the newer process algebras, the equivalence on processes does not require

an exact match between labels. It is not clear that the existing formats can fit

with a more general definition of bisimulation, because of the schematic use of

variables.

Finally, an important aspect of some of the extensions to CCS is the fact that

information about the computation is stored in the process terms. Examples

of process algebras that use this technique are CCS with locations [BCHK93,

BCHK94], CCS with local and global causes [Kie94] and CCS with causalities

[DD89,DD90]. Using labels syntactically gives a full account of how this passing

of information is performed.

The issue of schemas will be returned to in Chapter 6 where I make use of

schematic representation as a means to express large rule sets, and I will explain

why these schemas differ from the variables used in the format.

I have focussed on extending the tyft/tyxt format, and hence will not concern

myself in this document with negative premises or predicates, but leave these as

an issue for further work. I will discuss this further in Chapter 7.

As I am interested in process algebras which have more complex sets of actions,

I will now take this into account in my model of these process algebras and define

a new format. As will be seen in Chapter 5, taking this syntactic approach and

permitting different sorts in the labels is a powerful tool when comparing process

algebras and their equivalences.

I will start by defining a specific type of sorted set and signature which I will

use to represent the terms that appear in the rules of the format.

I will assume that the S-sorted sets under consideration do not contain a

distinguished sort P (named for processes), and will insist that the functions of

the signatures of interest have the following constraint

66

for any function symbol f : s1 . . . sn → s, if s 6= P then for all 1 6 i 6
n, si 6= P.

This means that only functions with range of sort P can take arguments of sort

P, and this will mean that only process terms can contain process terms. This is

reasonable because it is the way process algebras are specified; moreover if there

is a need for a label term to contain a process term, it would be possible to define

a label term that would be understood to represent the process term.

Definition 4.3.1 (Suitable signature)

A signature Σ = (S ∪ {P}, F) is called suitable if and only if

• S does not contain the distinguished element P and is non-empty,

• for any function symbol f ∈ F such that f : s1 . . . sn → s, whenever s 6= P

then for all 1 6 i 6 n, si 6= P.

At this stage of the work, I wish to work with signatures that are both sensible

and suitable. However, I will not insist that suitable signatures are sensible

because in the next chapter when I consider extensions, I wish to use the two

concepts separately.

For convenience, I will assume that functions that have a range of sort P, will

be written with the non-P arguments first and then the arguments of sort P; for

example, f : s1 . . . smP . . .P → P; and will also assume that there are n > 0

arguments with sort P, making the total number of arguments that f takes to be

m+ n.

Notation Let Σ = (S∪{P}, F) be a suitable signature and let V be an S-sorted

set of variables. I will use both VS and VP for V − VP, both T(Σ)S and T(Σ)P for

T(Σ) − T(Σ)P, and both T(Σ)S and T(Σ)P for T(Σ) − T(Σ)P. For variables, I

will use x, x′, y, y′, . . . to range over VP, and z, z′, . . . to range over variables from

VP. However, I will also occasionally use x, x′, . . . to range over V . I will use

p, p′, q, q′, . . . to range over T(Σ)P and u, u′, v, v′, . . . to range over T(Σ)P. I will

use t, t′, . . . to range over all terms from T(Σ) and λ, λ′, η, η′, . . . to range over

67

terms from T(Σ)P. Furthermore, I will use α, α′, β, β ′, µ, µ′, ν, ν′, . . . to range over

terms from T(Σ)P.

Note that the requirement on functions with range P implies that terms from

T(Σ)P contain no variables from VP or functions with range P.

Proposition 4.3.1 (Terms over a suitable signature)

Let Σ = (S ∪ {P}, F) be a suitable signature. Then t ∈ T(Σ)P contains no

variables from VP or functions with range P.

Proof: Let t ∈ T(Σ)P. If t = x, then t has sort s for some s 6= P. If

t = f(t1, . . . , tn), then f : s1 . . . sn → s and si 6= P for all 1 6 i 6 n since s 6= P.

So by an inductive argument based on the structure of the term, it is clear that

no ti contains a variable from VP or function with range P, hence t does not.

Note that the definitions that follow could have been given in a more general

fashion, by not specifying the sorts of the labels, targets and sources; and this

distinction could have been made when the extended tyft/tyxt format was defined.

However, since there appears to be an inherent lack of symmetry in the way

processes and actions are treated, I have chosen to be more specific in the following

definitions.

I now define an extended transition system specification. This definition ex-

tends the earlier definitions by allowing a richer structure for the labels.

Definition 4.3.2 (Extended transition system specification)

An extended transition system specification (eTSS) is a pair (Σ, R) with Σ a

suitable signature and R a set of rules of the form

{pi
λi−→ p′i | i ∈ I}
p

λ−→ p′

where I is an index set, pi, p′i, p, p′ ∈ T(Σ)P, and λi, λ ∈ T(Σ)P for i ∈ I .

If r is a rule in the format above, then the elements of {pi λi−→ p′i | i ∈ I} are

called the premises or hypotheses of r, and p
λ−→ p′ is called the conclusion of r.

A rule with I = ∅ is called an axiom and is written p λ−→ p′. An expression of the

form p
λ−→ p′ with λ ∈ T(Σ)P and p, p′ ∈ T(Σ) is called a transition (labelled with

68

λ); p is called the source, and p′ is called the target of the transition. φ, ψ, χ, . . .

are used to range over transitions. The notions of closed, substitution and Var

can be extended to transitions in the obvious way.

Definition 4.3.3 (Proof)

Let E = (Σ, R) be an eTSS with Σ a sensible signature. A proof of a transition ψ

from E is a well-founded, upwardly branching tree of which the nodes are labelled

by transitions p λ−→ p′ with λ ∈ T(Σ)P and p, p′ ∈ T(Σ)P, such that

• the root is labelled with ψ,

• if χ is the label of a node π and {χi | i ∈ I} is the set of labels of the nodes

directly above π, then there is a rule

{φi | i ∈ I}
φ

in R and a substitution σ : V → T(Σ) such that χ = σ(φ) and χi = σ(φi)

for all i ∈ I .

If a proof ψ from E exists, I say that ψ is provable from E, notation E ` ψ. A

proof is closed if it only contains closed transitions.

I now present a running example which I will use in this chapter and the

next. It is based on a subset of CCS. Note that instead of a schematic prefix

operator a.x as used in tyft/tyxt format, I now use a prefix operator with two

arguments, pref(z, x)—the first argument is for the label and the second for the

process. Hence instead of an infinite number of prefix operators, I now have only

one. More detailed examples will be given in Chapter 6.

Example 4.3.1 (Example of an eTSS)

Let A be a disjoint set, disjoint from the variables and any other function symbols.

I will also use A as a sort name—this does not cause problems. Consider the

signature ΣCCSSub, (A,P; {a}a∈A, nil; pref, plus) with the types a :→ A ∀a ∈ A,

nil :→ P, plus : P,P→ P, pref : A,P → P. Clearly this is a sensible and suitable

signature. Consider the rule set RCCSSub

pref(z, x) z−→x

x
z−→y

plus(x, x′) z−→y

x
z−→y

plus(x′, x) z−→y

69

and define ECCSSub = (ΣCCSSub, RCCSSub). Then ECCSSub is an eTSS. I can prove

the transition plus(pref(a, nil), pref(b, nil)) b−→nil in the following manner. Consider

the proof tree

pref(b, nil) b−→nil

plus(pref(a, nil), pref(b, nil)) b−→nil
.

It is possible to find suitable rules and substitutions to construct this proof tree.

For example, taking the last rule, and the substitution σ with σ the identity

except that σ(x) = pref(b, nil), σ(x′) = pref(a, nil), σ(y) = nil and σ(z) = b, the

conditions are satisfied for the bottom node and the node above it. For the top

node, the rule to use is the axiom together with the substitution σ′ with σ′ the

identity everywhere except σ′(z) = b and σ′(x) = nil.

Lemma 4.3.1 (Closed transitions are provable by closed proofs)

Let E = (Σ, R) be an eTSS with Σ a sensible signature, let λ ∈ T(Σ)P, u, u′ ∈

T(Σ)P such that E ` u λ−→ u′. Then u
λ−→u′ is provable by a closed proof.

Proof: Since E ` u
λ−→ u′ there is a proof tree T for u λ−→ u′. Define the

substitution σ : V → T(Σ) by σ(xs) = t for xs ∈ Vs where t is a closed term

from T(Σ). Such a t exists for each sort since Σ is sensible. Applying σ to all

transitions in the proof T yields a closed proof tree T ′ which is also a proof of

u
λ−→u′.

I can define the labelled transition system generated by an eTSS.

Definition 4.3.4 (LTS specified by an eTSS)

Let E = (Σ, R) be an eTSS with Σ, a sensible signature. The LTS TS(E) specified

by E is given by

TS(E) = (T(Σ)P,T(Σ)P,−→)

where −→⊆ T(Σ)P ×T(Σ)P ×T(Σ)P is defined by u α−→ u′ ⇐⇒ E ` u α−→ u′.

Part of the LTS described by the eTSS ECCSSub is given in Figure 4.1. In the

figure, I give the transitions from the term plus(pref(a, nil), pref(b, nil)).

70

plus(pref(a, nil), pref(b, nil))

&- %�

a b

nil

Figure 4.1: LTS given by term from Example 4.3.1

Definition 4.3.5 (Transition equivalence)

Two eTSSs E and E ′ are transition equivalent if TS(E) = TS(E ′).

Example 4.3.2 (Transition equivalence)

Consider the eTSS from Example 4.3.1. If I define a new eTSS that is the same

as ECCSSub but with the additional rule

x
z−→y

x
z−→y

then the two eTSSs are transition equivalent.

I could work with the standard definition of bisimulation, but that would not

be of much interest since I would only be comparing labels which are syntactically

equal. I will assume that I have an S-sorted equivalence that equates terms I wish

to view as the same, hence I have the following definition.

Definition 4.3.6 (Strong bisimulation with respect to an equivalence

over a sorted set)

Let S be a set. Let L = (S,A,−→) be an S-sorted LTS, and let ≡ be an S-sorted

equivalence relation on A. A strong bisimulation with respect to an equivalence

relation ≡ is a binary relationR ⊆ S×S such that (s, t) ∈ R only if for all a ∈ A

1. whenever s a−→ s′, then there exists t′ ∈ S and b ∈ A such that t b−→t′, a ≡ b
and (s′, t′) ∈ R

2. whenever t a−→ t′, then there exists s′ ∈ S and b ∈ A such that s b−→s′, a ≡ b

and (s′, t′) ∈ R.

71

Two states, s and t are strongly bisimilar with respect to ≡, s ∼≡ t, if there exists

a strong bisimulation R such that (s, t) ∈ R. The relation ∼≡ =
⋃
{R | R is a

strong bisimulation with respect to ≡ } is the largest strong bisimulation with

respect to ≡ and is an equivalence relation, hence the name strong equivalence

with respect to ≡.

This definition means that I am only interesting in comparing transitions with

labels of the same sort and this appears to be a reasonable requirement, and as

will be shown in the rest of the document, a powerful mechanism for comparing

process algebras. I have chosen an equivalence in the definition above, as I wish

the bisimulation to be an equivalence.

As mentioned earlier, when expressing process algebras, a Σ-algebra will be

used to define the semantics of the actual labels and this will induce an equivalence

over the terms of the term algebra. This can expressed as a requirement that the

transition system of the process algebra is isomorphic to the transition system

(
T(Σ)P/≡,T(Σ)P/≡, T

)
,

T = {S A−→ S ′ | S, S ′ ∈ T(Σ)P/≡, A ∈ T(Σ)P/≡, ∀s ∈ S, s′ ∈ S ′, a ∈ A, s
a−→ s′}.

Note I am working with strong bisimulation as a starting point, because weak

bisimulation would introduce additional complications. I wish to investigate weak

bisimulation as further work, and will discuss it further in the final chapter.

4.3.1 Extended tyft/tyxt format

I now have a general definition of an eTSS, but I would like to find a more

specific definition that has desirable properties, such as being a congruence with

respect to bisimulation equivalence. In the rest of this chapter, I follow much the

same path as Groote and Vaandrager [GV92] in showing congruence, although

my definitions and results require more care because of the new way of dealing

with labels, and I also need a new condition on how the equivalence and labels

interact. I propose the following definition.

72

Definition 4.3.7 (Extended tyft/tyxt format)

Let Σ = (S ∪ {P}, F) be a suitable signature and let E = (Σ, R) be an eTSS. A

rule in R is in extended tyft format if it has the form

{pi
λi−→ yi | i ∈ I}

f(η1, . . . , ηm, x1, . . . , xn) λ−→ p

with

• I an index set,

• f ∈ F such that f : s1 . . . smP . . .P→ P with sk 6= P for all 1 6 k 6 m,

• xj (1 6 j 6 n) and yi (i ∈ I) all different variables from VP,

• p ∈ T(Σ)P, λ ∈ T(Σ)P,

• ηk ∈ T(Σ)sk such that VarP(ηk) ⊂ VP −
⋃

16l6m
l 6=k

VarP(ηl) for 1 6 k 6 m,

• λi ∈ T(Σ)P for i ∈ I such that

VarP(λi) ⊂ VP − (
⋃

l∈I,l 6=i
VarP(λl) ∪

⋃
16k6m

VarP(ηk)) for all i ∈ I .

• pi ∈ T(Σ)P such that VarP(pi) ⊂ VP −
⋃
l∈I

VarP(λl) for i ∈ I .

A rule in R is in extended tyxt format if it has the form

{pi
λi−→ yi | i ∈ I}
x

λ−→ p

with

• I an index set,

• x and yi (i ∈ I) all different variables from VP,

• p ∈ T(Σ)P, λ ∈ T(Σ)P,

• λi ∈ T(Σ)P such that VarP(λi) ⊂ VP −
⋃

l∈I,l 6=i
VarP(λl) for all i ∈ I .

• pi ∈ T(Σ)P such that VarP(pi) ⊂ VP −
⋃
l∈I

VarP(λl) for i ∈ I .

73

E is in extended tyft/tyxt format if every rule in R is either in extended tyft

format or extended tyxt format. A labelled transition system L is called extended

tyft/tyxt specifiable if there exists an eTSS E in extended tyft/tyxt format with

L = TS(E).

To summarise, I require for this definition that all the xj’s and yi’s are distinct.

λ and p can contain any variables; however the λi’s must have distinct variables

from each other and from the pi’s and the ηk’s. Also the ηk’s must have distinct

variables from each other. Example 4.3.1 is in tyft/tyxt format.

I will proceed to show that for certain equivalences, bisimulation with respect

to those equivalences is a congruence. This is similar to the standard requirement

for formats. Congruence is an important property of process algebra equivalences,

since it can be used to show that systems composed of bisimilar components are

bisimilar. Hence, because of this importance, it is reasonable to first evaluate

a format’s effectiveness in terms of whether congruence can be shown for any

process algebra in that format.

I will also give counter-examples to show that the requirements cannot be

further relaxed without losing congruence. However, it is not yet known whether

the requirement for the pi’s and λi’s to have distinct variables is necessary for the

congruence result. To achieve the congruence result, I require some additional

definitions. Firstly, I need some conditions for the type of equivalence that

will allow congruence to work. If I were to go for a simpler format, where only

variables are allowed to appear in the positions of the pi’s, λi’s and ηk’s then any

congruence could be used, but then the format would not have the features that

would allow it to be general enough to capture many process algebras of interest.

Definition 4.3.8 (Compatibility)

Let Σ = (S ∪ {P}, F) be a suitable signature and let E = (Σ, R) be an eTSS in

extended tyft/tyxt format. Let ≡ be a congruence on T(Σ). ≡ is compatible with

r ∈ R if for any η ∈ T(Σ)P that appears on a transition in a premise of r or as

an argument to the function in the source of the conclusion of r, then

74

whenever σ(η) ≡ µ for µ ∈ T(Σ)P, there exists a substitution σ′ such

that µ = σ′(η) and σ(z) ≡ σ′(z) for all z ∈VarP(η).

I say that ≡ is compatible with E if ≡ is compatible with all rules in R.

Note that if η = z, then the required condition is always fulfilled since one

can define σ′(z) = µ, and obviously σ(z) ≡ σ′(z). Furthermore, note that the

occurrence of repeated variables in η results in the only compatible congruence

being syntactic equivalence. Consider a function symbol g with arity 2, and let

η = g(z, z). Moreover, assume there exist µ1 ≡ µ2 with µ1 and µ2 syntactically

different and consider the substitution σ such that σ(z) = µ1. It is clear that

σ(g(z, z)) ≡ g(µ1, µ2), however it is not possible to find a substitution σ′ such

that σ′(g(z, z)) = g(µ1, µ2). So although the extended tyft/tyxt format does not

rule out repeated variables in labels in premises or in the arguments to the function

in the source of the conclusion, generally I will not use these in practice because

they are not of interest. Examples of rules that do not exhibit compatibility will

be given in the counter-examples that appear after Theorem 4.3.1. This issue will

be raised again in Chapter 6 when I consider the implications of compatibility for

Σ-algebras.

The following definition is required to ensure that there are no cycles of vari-

able references appearing in the premises. I will discuss recent work relating to

well-foundedness at the end of this chapter.

Definition 4.3.9 (Well-foundedness)

Let E = (Σ, R) be an eTSS. Let U = {pi
λi−→ p′i | i ∈ I} be a set of transitions of

E. The dependency graph of U is a directed (unlabelled) graph with

• Nodes:
⋃
i∈I VarP(pi

λi−→ p′i),

• Edges: {〈x, y〉 | x ∈ VarP(pi), y ∈ VarP(p′i) for some i ∈ I}.

A set of transitions is called well-founded if any backward chain of edges in the

dependency graph of these transitions is finite. A rule is called well-founded if

the set of its premises is so. Finally, an eTSS is called well-founded if all of its

rules are well-founded.

75

To prove the congruence result, this condition is required. Recently it has

been shown that for the original tyft/tyxt format that any rule can be written

in a well-founded form [FvG96]. As yet I do not know if it is possible to show

a similar result for the extended tyft/tyxt format. However, it is not a condition

that in any way affects the process algebras which I will consider later in this

thesis, and hence I will not concern myself with it, except for a short discussion

in the counter-examples sections in this chapter and as an issue for further work.

Example 4.3.3 (Well-foundedness)

ECCSSub is well-founded. Note also that for any congruence over the set of terms, it

is compatible, since there are only variables that appear on transitions in premises,

or in the source of the conclusion.

I require some additional definitions that allow us to work with eTSSs conveni-

ently, and I need to ensure that I can preserve compatibility and well-foundedness

when I use the results.

Lemma 4.3.2 (Well-founded extended tyft/tyxt can be transformed to

well-founded extended tyft)

Let Σ = (S ∪ {P}, F) be a suitable, sensible signature and let E = (Σ, R) be

a well-founded eTSS in extended tyft/tyxt format. Let ≡ be an congruence on

T(Σ) such that ≡ is compatible with R. Then there is a transition equivalent

well-founded eTSS E ′ = (Σ, R′) in extended tyft format such that ≡ is compatible

with R′.

Proof: Define R′ by

• every extended tyft rule of R is in R′,

• for every extended tyxt rule r ∈ R and for every function symbol f ∈ F such

that f : s1 . . . smP . . .P→ P, rf is in R′ where rf is obtained by substituting

f(z1, . . . , zm, x1, . . . , xn) for x in r with zk ∈ Vsk−Varsk(r) (1 6 k 6 m)

and {x1, . . . , xn} ⊆ VP−VarP(r).

If the rules in R are well-founded, then it is clear that the rules in R′ are well-

founded, since none of the premises of rules have been changed. Note that ≡ is

76

compatible with R′ since only function symbols of form f(z1, . . . , zm, x1, . . . , xn)

have been added.

Suppose that u α−→ u′ is a transition in TS(E). Then there is a closed proof

from E of this transition. One can easily see that this is also a proof of u α−→ u′

from E ′. A similar argument shows that every transition of TS(E ′) is a transition

TS(E).

Definition 4.3.10 (Freeness of variables)

Let E = (Σ, R) be an eTSS, and let r be a rule in R. A variable in VarP(r) is

called free if it does not occur in the left hand side of the conclusion or in the

right hand side of a premise.

Definition 4.3.11 (Pureness of rules)

Let E = (Σ, R) be an eTSS. A rule r ∈ R is called pure if it is well-founded and

contains no free variables from VP. The eTSS E is called pure if all its rules are

pure.

Lemma 4.3.3 (Well-founded extended tyft/tyxt can be transformed to

pure extended tyft)

Let E = (Σ, R) be a well-founded eTSS in extended tyft/tyxt format with Σ a

sensible signature. Let ≡ be a congruence on T(Σ) such that ≡ is compatible

with R. Then there is a transition equivalent pure eTSS E ′ = (Σ, R′) in extended

tyft format such that ≡ is compatible with R′.

Proof: From Lemma 4.3.2, it can be assumed that E is in extended tyft format.

Define R′ by

• every pure rule of R is in R′,

• every rule r inR that is not pure is replaced by a set of new rules where every

possible substitution of terms from T(Σ)P is applied to the free variables.

The rules in R′ are well-founded, since the rules in R are well-founded and for

each rule, in effect only edges have been removed from its dependency graph. ≡

is compatible with R′ since neither the labels of the premises nor the arguments

77

to the function in the source of the conclusion have been modified, and also only

closed terms have been used in the substitution, hence the variables in the sources

of the premises are still distinct from the variables in the labels of the premises

and the variables in the arguments to the function in the source of the conclusion.

R′ is in extended tyft format since no left hand side of any conclusion has been

modified. Clearly every closed proof for a transition u α−→ u′ from E is also a proof

for u α−→ u′ from E and vice versa.

4.3.2 Congruence theorem

I now prove a general result which shows the congruence of bisimulation under

certain conditions. I work with a very general definition of congruence, and

assume that I have an S-sorted congruence over the terms of T(Σ)P. Note that

this is slightly different to the use of the congruence in earlier definitions and

results where I assumed a congruence over all of T(Σ). However, note that since

the definition of bisimulation is only concerned with the congruence over T(Σ)P,

it is not necessary for the congruence to be defined on T(Σ)P. In any case, since

the congruence respects sorts, when given a congruence on T(Σ)P, one can extend

it to the identity on T(Σ)P and this results in a congruence over the whole set of

closed terms.

The result states that given any terms that are related by this congruence

or related by bisimulation up to that congruence if they have sort P, then I

know that terms of sort P with subterms that are related are bisimilar up to the

congruence. Hence it can be concluded that the bisimulation up to the congruence

is a congruence itself.

Theorem 4.3.1 (Congruence)

Let Σ = (S ∪ {P}, F) be a suitable, sensible signature, let E = (Σ, R) be a well-

founded eTSS in extended tyft/tyxt format and let ≡ be a congruence on T(Σ)P

compatible with E. Then for all f ∈ F such that f : s1 . . . smP . . .P→ P, for all

terms µk, νk ∈ T(Σ)P (1 6 k 6 m), and for all terms ui, vi ∈ T(Σ)P (1 6 i 6 n),

µi ≡ νi (1 6 k 6 m) and ui ∼≡ vi (1 6 i 6 n)⇒

f(µ1, . . . , µm, u1, . . . , un) ∼≡ f(ν1, . . . , νm, v1, . . . vn).

78

Proof: Let R ⊆ T(Σ)P ×T(Σ)P be the least relation satisfying

• ∼≡ ⊆ R,

• for all f ∈ F such that f : s1 . . . smP . . .P→ P, for all terms µk, νk ∈ T(Σ)P

(1 6 k 6 m), and for all terms ui, vi ∈ T(Σ)P (1 6 i 6 n),

µi ≡ νi (1 6 k 6 m) and ui R vi (1 6 i 6 n)⇒

f(µ1, . . . , µm, u1, . . . , un)R f(ν1, . . . , νm, v1, . . . vn).

It is enough to show R ⊆ ∼≡ since ∼≡ ⊆ R; hence I need to show that R is a

bisimulation. Assume uR v. I have two cases—the first is simple since u ∼≡ v.

The second requires us to show that:

Whenever E ` f(µ1, . . . , µm, u1, . . . , un) α−→ u′, µk ≡ νk for 1 6 k 6 m
and ui R vi for 1 6 i 6 n then there is a v′ ∈ T(Σ)P and α′ ∈ T(Σ)P

such that E ` f(ν1, . . . , νm, v1, . . . , vn) α′−→ v′, α ≡ α′ and u′R v′.

By the lemmas, there is a proof T of f(µ1, . . . , µm, u1, . . . , un) α−→ u′ that

contains only closed transitions, and I can assume that the rules in R0 are pure

and in extended tyft format. I will proceed by induction on the length of the

proof. Let r be the last rule used in proof T , in combination with a substitution

σ. Assume r is equal to

{pi
λi−→ yi | i ∈ I}

f(η1, . . . , ηm, x1, . . . , xn) λ−→ p

Then I know that σ(ηk) = µk for 1 6 k 6 m, σ(xi) = ui for 1 6 i 6 n, σ(p) = u′

and σ(λ) = α. I want to find a substitution σ′ that I can use to show that

f(ν1, . . . , νm, v1, . . . , vn)
α′−→ v′ with α ≡ α′ and u′R v′.

Consider the dependency graph G of the premises of r. Because r is in ex-

tended tyft format, each node in G has at most finitely many incoming nodes,

since each yi is distinct and each ti is a finite term. Hence G is a finitely branch-

ing tree, since it can have no cycles. For each node x of G, its subgraph is a

finitely branching tree, since there are no cycles. If this graph were infinite, then

by Koenig’s Lemma, there would exist an infinite backward chain, contradicting

79

the well-foundedness of G. Hence this graph is finite, and it is possible to define

depth(x) ∈ N as the length of the maximal backward chain of edges.

Define

• X = {xi | 1 6 i 6 n}

• Y = {yi | i ∈ I}

• Yd = {y ∈ Y | depth(y) = d} for d > 0.

Observe that for any variable x ∈ X, depth(x) = 0, and the sets Yd form a

partition of Y . Since E is pure, this covers all the variables from VP in r. Next I

consider variables from VP. These can be partitioned in four sets.

• Z =
⋃

16k6m VarP(ηk)

• Z ′ =
⋃
i∈I VarP(λi)

• Z ′′ =
⋃
i∈I VarP(pi)− Z

• Z ′′′ = VarP(λ) ∪VarP(p)− (Z ∪ Z ′ ∪ Z ′′).

I can partition Z ′ into Z ′0, Z
′
1, . . . by defining Z ′d =

⋃
yi∈YdVarP(λi) for each d > 0.

I will define a substitution σ′ that satisfies the following properties on VP and VP

• σ′(xi) = vi for 1 6 i 6 n

• σ(y)R σ′(y) for y ∈ X ∪ Y

• E ` σ′(pi λi−→ yi) for i ∈ I

• σ′(z) ≡ σ(z) for z ∈ Z ∪ Z ′ ∪ Z ′′ ∪ Z ′′′.

Substitution σ′ will be constructed in stepwise fashion. To begin, let

• σ′(xi) = vi for 1 6 i 6 n

• σ′(y) = σ(y) for y ∈ VP − (X ∪
⋃
d>0 Yd)

• σ′(z) = σ(z) for z ∈ VP − (Z ∪
⋃
d>0 Z

′
d ∪ Z ′′).

80

Note therefore that for all variables z ∈ VP− (Z∪
⋃
d>0 Z

′
d∪Z ′′), σ(z) ≡ σ′(z).

I still have to define σ′ on
⋃
d>0 Yd,

⋃
d>0 Z

′
d, Z and Z ′′.

First consider Z. Since for a given k such that 1 6 k 6 m, σ(ηk) = µk ≡ νk

and ≡ is compatible with R0, I know that there is a substitution σ′′ such that

σ′′(ηk) = νk and for all z ∈ VarP(ηk), σ(z) ≡ σ′′(z). So let σ′(z) = σ′′(z). I can

do this for all 1 6 k 6 m since there are no variables shared between the terms.

When σ′ is defined for y ∈ X ∪ Y0 ∪ . . . ∪ Yd and z ∈ Z ∪ Z ′0 ∪ . . . ∪ Z ′d (d >
0), I will show that β(d), γ(d) and δ(d) hold.

• β(d) : σ(y)R σ′(y) for yi ∈ X ∪ Y0 ∪ . . . ∪ Yd

• γ(d) : E ` σ′(pi
λi−→ yi) for yi ∈ Y0 ∪ . . . ∪ Yd.

• δ(d) : σ′(z) ≡ σ(z) for z ∈ Z ′0 ∪ . . . ∪ Z ′d.

So if I can show that β(d), γ(d) and δ(d) hold for all d > 0, then I know that

the second and third properties hold, and that the fourth property will hold for

Z∪Z ′∪Z ′′′. For z ∈ Z ′′, when dealing with a particular transition pi
λi−→ yi, I will

simply define σ′(z) = σ(z) for any z ∈ VarP(pi) that has not yet been defined.

Hence once I have shown β(d), γ(d) and δ(d) hold for all d > 0, I will have defined

all z ∈ Z ′′ and moreover σ(z) ≡ σ′(z) for all z ∈ Z ′′, so the fourth property will

be satisfied. I know that the first property holds by definition.

I first need to show that β(0), δ(0) and γ(0) hold. First note that for any

x ∈ X then x = xi for some 1 6 i 6 n and since σ(xi) = ui and σ′(xi) = vi, and

ui R vi, I have σ(xi)R σ′(xi).

Next consider y∗ ∈ Y0. There exists i ∈ I such that y∗ = yi, so I can consider

the transition pi
λi−→ yi. If VarP(pi)∩Z = ∅, then the situation is straightforward.

Let σ′(z) = σ(z) for z ∈ VarP(pi) ∪ VarP(λi) and let σ′(yi) = σ(yi). Then

σ(yi) ∼≡ σ′(yi) and hence σ(yi) R σ′(yi), and for all z ∈ VarP(pi) ∪ VarP(λi),

σ(z) ≡ σ′(z) since σ′(z) = σ(z). Moreover, σ′(pi
λi−→ yi) = σ′(pi)

σ′(λi)−−−→ σ′(yi) =

σ(pi)
σ(λi)−−−→ σ(yi) = σ(pi

λi−→ yi) Therefore E ` σ′(pi
λi−→ yi) since E ` σ(pi

λi−→ yi).

However, if VarP(pi) ∩ Z 6= ∅ then I need to take more care. σ′ is already

defined on z ∈ VarP(pi) ∩ Z, and I can define σ′(z) = σ(z) for z ∈ VarP(pi) − Z

81

for which σ′ is not defined. Hence I know that σ(z) ≡ σ′(z) for z ∈ VarP(pi). I

need the following fact to proceed.

Fact Let p ∈ T(Σ)P and let ρ, ρ′ : V → T (Σ) be substitutions such that for all x

in VarP(t), ρ(x)R ρ′(x) and for all z in VarP(p), ρ(z) ≡ ρ′(z). Then ρ(p)R ρ′(p).

Proof: I will proceed by structural induction. If p = x then I have the result.

If p = f(η1, . . . , ηm, p1, . . . , pn), then I know by the induction hypothesis that

ρ(pi)R ρ′(pi) for 1 6 i 6 n, and also that ρ(ηk) ≡ ρ′(ηk) for 1 6 k 6 m (since ≡

is a congruence), hence ρ(t)R ρ′(t) by the definition of R.

Since VarP(pi) = ∅, I know from the fact above that σ(pi)R σ′(pi). I have two

cases to consider

• σ(pi) ∼≡ σ′(pi). Since E ` σ(pi)
σ(λi)−−−→ σ(yi), I can find w ∈ T (Σ)P and

αi ∈ T (Σ)P such that E ` σ′(pi)
αi−→ w, σ(λi) ≡ αi and σ(yi)R w. So I can

define σ′(y∗) = σ′(yi) = w.

Moreover, since ≡ is compatible with R0, I know there exists a substitution

σ′′ such that αi = σ′′(λi) and σ(z) ≡ σ′′(z) for all z ∈ VarP(λi). Let

σ′(z) = σ′′(z) whence αi = σ′(λi). (Since VarP(pi) ∩ VarP(λi) = ∅, it is

clear that the use of σ′′ does not affect values assigned to VarP(pi).)

• there is a function symbol h ∈ F such that h : s′1 . . . s′mP . . .P → P, and

there are terms µ′k′ , ν
′
k′ ∈ T(Σ)P for 1 6 k′ 6 m′, wi′ , w′i′ ∈ T(Σ)P for

1 6 i′ 6 n′ such that

σ(pi) = h(µ′1, . . . , µ
′
m′ , w1, . . . , wn′)

and

σ′(pi) = h(ν′1, . . . , ν
′
m′ , w

′
1, . . . , w

′
n′)

with µ′k′ ≡ ν′k′ (1 6 k′ 6 m′) and wi′ R w′i′ (1 6 i′ 6 n′). Now I can apply

the induction hypothesis. Since E ` h(µ′1, . . . , µ′m′ , w1, . . . , wn′)
σ(λi)−−−→ σ(yi),

I can find a w, and αi such that E ` h(ν′1, . . . , ν
′
m′ , w

′
1, . . . , w

′
n′)

αi−→ w,

σ(λi) ≡ αi, and σ(yi)R w. Again I can define σ′(yi) = w.

82

Since ≡ is compatible with R0, I know there exists a substitution σ′′ such

that αi = σ′′(λi) and σ(z) ≡ σ′′(z). Let σ′(z) = σ′′(z) for all z ∈ VarP(λi)

whence αi = σ′(λi).

Hence I know for y∗ = yi, that σ(yi)R σ′(yi), E ` σ′(pi
λi−→ yi) and σ(z) ≡ σ′(z)

for all z ∈ VarP(pi)∪ VarP(λi). I can do this for all y ∈ Y0 and thereby show that

β(0), δ(0) and γ(0) hold.

Let d > 0, and suppose that σ′ has been defined for all variables in X ∪ Y0 ∪

. . . Yd−1 and Z ′0 ∪ . . . ∪ Z ′d−1 such that β(d− 1), γ(d− 1) and δ(d− 1) hold.

I now define σ′ on Yd and Z ′d such that β(d), γ(d) and δ(d) hold. Consider

y∗ ∈ Yn. Then there exists i ∈ I such that y∗ = yi, and so I can consider

the transition pi
λi−→ yi. Since yi ∈ Yn, then VarP(pi) ⊆ X ∪ Y0 ∪ . . . ∪ Yd−1 so

σ(y)Rσ′(y) for y ∈ VarP(pi). For z ∈ VarP(pi) such that σ′(z) is as yet undefined,

let σ′(z) = σ(z). Hence I know that by the fact above σ′(pi)R σ(pi). I have two

cases as before and the treatment is identical. From this it is easy to see that

β(d), γ(d) and δ(d) hold for all d > 0, and hence I know that the four properties

hold.

So I know that for all i ∈ I , E ` σ′(pi)
σ′(λi)−−−→ σ′(yi) where σ′(z) ≡ σ(z) for all

z ∈
⋃
i∈IVarP(λi). Hence I can conclude that

E ` σ′(f(η1, . . . , ηm, x1, . . . , xn) λ−→ p)

namely

E ` f(ν1, . . . , νm, v1, . . . , vn)
σ′(λ)−−→ σ′(p)

To see that σ′(λ) ≡ α, recall that α = σ(λ), and I know that for all z ∈ VarP(λ),

σ(z) ≡ σ′(z) and since ≡ is a congruence, I have the required result. To see that

uR σ′(p), recall that u = σ(p), and for all x ∈ VarP(p), σ(x)R σ′(x) and for all

z ∈VarP(p), σ(z) ≡ σ′(z), hence by the fact above, σ(p)R σ′(p).

From this theorem I can conclude that ∼≡ is a congruence with respect to

terms from T(Σ)P for all function symbols with sort P. This definition may

seem unusual since for a given f ∈ F such that f : s1 . . . smP . . .P → P, there

are arguments that are not related by ∼≡, but are related by ≡. But since the

83

arguments of sort P are those that represent processes, whereas the other sorts

represent actions or information that is stored in process terms, this does not

seem unreasonable. Consider the location set prefix X :: p in Kiehn’s local/global

cause bisimulation. If there are two equivalent processes p and q, then it seems

reasonable to want X :: p and X :: q to be equivalent, no matter how X has been

constructed. So in fact, it is desirable for X1 :: p and X2 :: p to be equivalent if

X1 = X2.

Example 4.3.4 (Congruence)

Since ECCSSub is in tyft/tyxt format, and is compatible with any congruence on the

set of label terms, bisimulation up to that congruence is a congruence with respect

to all function symbols with range P. Let the congruence under consideration be

the identity. Since

plus(pref(a, nil), pref(a, nil)) ∼Id pref(a, nil)

by the above theorem, it is known that

pref(b, plus(pref(a, nil), pref(a, nil)) ∼Id pref(b, pref(a, nil))

This format has been taken almost as far as it can go in its current form. For

most of the conditions that constrain the format, removal of a condition would

result in the falsity of the above theorem. In the next section, I will give counter-

examples to demonstrate the necessity of the constraints. There is, however, one

condition that I have not yet shown to be necessary and that is the requirement

that the variables in the pi’s be distinct from those in the λi’s. I will discuss this

further in the next section.

4.3.3 Counter-examples

In this section, I will give counter-examples to show that the constraints on the

extended tyft/tyxt format cannot be relaxed for the above theorem. First, note

that the relationship between the variables from VP in a rule are the same as those

in the paper by Groote and Vaandrager [GV92] where counter-examples are given

to show the constraints on these variables are necessary. So here I will focus on

84

the relationship between the variables from VP. All but the first counter-example

have accompanying diagrams that demonstrate some of the transitions possible

from the terms under consideration. I have chosen to highlight why the terms are

not bisimilar as opposed to giving the LTS defined by the rules.

Counter-example 4.3.1 (Signature and rules for counter-examples)

For these counter-examples, I will start with the following basic signature and

add rules not in extended tyft/tyxt format for each counter-example

Σ = (P, s, s′; nil, ok, {ga | a ∈ A}; k, f,+, ‖, h, h′)

with

ok :→ s′ + : P,P→ P
ga :→ s ∀ a ∈ A ‖: P,P→ P
nil :→ P h : s,P→ P
k : P→ P h′ : s, s,P→ P
f : s→ P

and the axiom

f(zs)
zs−→ nil

where the variable is subscripted to indicate its sort. This axiom can be seen as

the BPA axiom a
a−→nil. I will write + and ‖ using infix notation.

I will assume that the congruence ≡ equates no terms except ga and gb.

Counter-example 4.3.2 (Distinctness of label variables in premise la-

bels)

To see why the variables that appear in the labels of premises need to be distinct,

consider adding the following rule

x
zs−→ y x′

zs−→ y′

x ‖ x′ ok−→ nil
.

So it is clear that f(ga) ∼≡ f(gb). However, f(ga) ‖ f(ga)6∼≡f(ga) ‖ f(gb) since

f(ga) ‖ f(ga)
ok−→ nil ‖ nil, but f(ga) ‖ f(gb) cannot perform an ok action. This

example is illustrated in Figure 4.2.

85

f(ga) ∼≡ f(gb)

? ?
ga ≡ gb

nil ∼≡ nil

f(ga) ‖ f(ga) 6∼≡ f(ga) ‖ f(gb)

?
ok

nil ‖ nil

Figure 4.2: Counter-example 4.3.2

nil ∼≡ nil h′(ga, ga, nil) 6∼≡ h′(ga, gb, nil)

?
ok

nil

Figure 4.3: Counter-example 4.3.3

Counter-example 4.3.3 (Distinctness of label variables in source of con-

clusion)

To see why the variables that appear in the arguments to the function in the

source of the conclusion need to be distinct, consider adding the following axiom

h′(zs, zs, x) ok−→ nil
.

It is clear that nil ∼≡ nil. However, it is not possible to show h′(ga, ga, nil) ∼≡
h′(ga, gb, nil) since h′(ga, ga, nil)

ok−→ nil, but h′(ga, gb, nil) cannot perform an ok

action. Figure 4.3 illustrates this counter-example.

Counter-example 4.3.4 (Distinctness of label variables in source of con-

clusion and labels of premises)

To see why it is not desirable to have the same variable appearing in an argument

to the function in the source of the conclusion and in a label of a premise, consider

86

f(ga) ∼≡ f(gb)

? ?
ga ≡ gb

nil ∼≡ nil

h(ga, f(ga)) 6∼≡ h(ga, f(gb))

?
ok

nil

Figure 4.4: Counter-example 4.3.4

adding the following rule

x
zs−→ y

h(zs, x) ok−→ nil
.

Hence f(ga) ∼≡ f(gb); however h(ga, f(ga)) 6∼≡ h(ga, f(gb)) since h(ga, f(ga))
ok−→

nil, but h(ga, f(gb)) cannot perform an ok action. This example is illustrated in

Figure 4.4.

Next I have examples to show why compatibility is required.

Counter-example 4.3.5 (Compatibility of form)

First of all to see that why it is necessary for labels in premises to have compat-

ibility of form, consider adding the rule

x
ga−→ y

k(x) ok−→ nil
.

The rule is not compatible with ≡, since ga ≡ gb and for any substitution σ,

there does not exist a substitution σ′ such that σ′(gb) = σ(ga). It is clear that

f(ga) ∼≡ f(gb); however k(f(ga)) 6∼≡ k(f(gb)) since k(f(ga))
ok−→ nil but k(f(gb))

cannot perform an ok action. Figure 4.5 illustrates this counter-example.

Counter-example 4.3.6 (Compatibility of variables)

Next to see why it is necessary for the values assigned to the variables to be

equivalent, consider the following example. Add a new symbol g : s → s to

the signature Σ and assume that g(gc) ≡ g(gd). By the axiom f(zs)
zs−→ nil,

87

f(ga) ∼≡ f(gb)

? ?
ga ≡ gb

nil ∼≡ nil

k(f(ga)) 6∼≡ k(f(gb))

?
ok

nil

Figure 4.5: Counter-example 4.3.5

f(g(gc)) ∼≡ f(g(gd)). Then consider adding the rule

x
g(zs)−−→ y

k(x) zs−→ nil
.

This rule is not compatible with ≡ since g(gc) ≡ g(gd) and although it is clear

that given σ such that σ(g(zs)) = g(gc), any σ′ such that σ′(zs) = gd is a suitable

substitution to ensure that σ(g(zs)) ≡ σ′(g(zs)), it is not the case that σ(zs) ≡

σ′(zs) (since gc 6≡ gd). So f(g(gc)) ∼≡ f(g(gd)), but k(f(g(gc))) 6∼≡ k(f(g(gd))),

since k(f(g(gc)))
gc−→ nil, but k(f(g(gd))) can only perform a gd action, and gc 6≡

gd.

Similarly it can be shown that it is necessary for the values of the variables

which appear both in labels of premises and in the target of the conclusion to be

equivalent.

x
g(zs)−−→ y

k(x) ok−→ f(zs)
.

By a similar argument to above, it is clear that this rule is not compatible with ≡.

k(f(g(gc))) 6∼≡ k(f(g(gd))), since k(f(g(gc)))
ok−→ f(gc), but k(f(g(gd)))

ok−→ f(gd),

and f(gc) 6∼≡ f(gd). Figure 4.6 illustrates these counter-examples.

Counter-example 4.3.7 (More compatibility)

In a similar way, I can show why it is important to consider the variables in the

arguments to the function in the source of the conclusion when defining compat-

ibility. Consider adding the axiom

h(ga, x) ok−→ nil
.

88

f(g(gc)) ∼≡ f(g(gd))

? ?
g(gc) ≡ g(gd)

nil ∼≡ nil

k(f(g(gc))) 6∼≡ k(f(g(gd)))

? ?
gc 6≡ gd

nil nil

k(f(g(gc))) 6∼≡ k(f(g(gd)))

? ?
ok ok

f(gc) 6∼≡ f(gd)

? ?
gc 6≡ gd

nil nil

Figure 4.6: Counter-example 4.3.6

The rule is not compatible with ≡ since ga ≡ gb and for any substitution σ,

there does not exist a substitution σ′ such that σ′(gb) = σ(ga). It is clear that

nil ∼≡ nil; however h(ga, nil) 6∼≡ h(gb, nil) (and I want them to be strongly

equivalent because ga ≡ gb), since h(ga, nil)
ok−→ nil but h(gb, nil) cannot perform

an ok action.

(Note that this means that I cannot have an axiom of the form f(ga)
ga−→ x, if I

wish to have elements of {ga | a ∈ A} equivalent to each other. However, if I wish

them all to be distinct then it is not a problem. But if I do wish to equate some

of the elements, it requires having a more general rules such as f(zs)
zs−→ x, which

also allows us to prove that f(g(gc)) ∼≡ f(g(gd)) which may not be desirable.

But since I am working in a many-sorted framework, it is possible to have a new

sort s′′ and let g : s→ s′′, thereby preventing the equation of these two terms.)

I also need to show why the values of the variables that appear in the ar-

guments to the function in the source of the conclusion and in the label on the

89

conclusion need to be equivalent. Consider adding the axiom

h(g(zs), x) zs−→ nil
.

This rule is not compatible with ≡ (see Counter-example 4.3.6 for reasons).

nil ∼≡ nil, but h(g(gc), nil) 6∼≡ h(g(gd), nil) since h(g(gc), nil)
gc−→ nil, but

h(g(gd), nil) can only perform a gd action and gc 6≡ gd.

Finally, I need to show why the values of the variables that appear in the

arguments to the function in the source of the conclusion and in the target on

the conclusion need to be equivalent. Consider adding the axiom

h(g(zs), x) ok−→ f(zs)
.

By a similar argument to above, it is clear that this rule is not compatible with ≡.

Clearly, nil ∼≡ nil, but h(g(gc), nil) 6∼≡ h(g(gd), nil) since h(g(gc), nil)
ok−→ f(gc),

but h(g(gd), nil)
ok−→ f(gd) and f(gc) 6∼≡ f(gd). These counter-examples are

illustrated in Figure 4.7.

Finally in this section, I will look at the requirement that the variables that

appear in the source of a premise should be distinct from the variables that appear

in the labels of the premises. This requirement can be considered as follows

• First note that in the case of a variable from VP appearing in the source

of the conclusion as well as in the source of the premise, then this variable

cannot appear in the label of a premise, since the variables in the source of

the conclusion and in labels of premises must be distinct.

• Next consider the case when a variable that appears in the source of one

premise also appears in the label of a different premise. Consider the eTSS

used in Counter-Example 4.3.1 as well as the following rules

h(zs, x) zs−→ x.

h(zs, x)
z′s−→ y y

zs−→ y′

k(x) ok−→ nil
.

I know f(ga) ∼≡ f(gb) and can show that k(f(ga)) ∼≡ k(f(gb)) by the

proofs

h(ga, f(ga))
ga−→ f(ga) f(ga)

ga−→ nil

k(f(ga))
ok−→ nil

90

nil ∼≡ nil h(ga, nil) 6∼≡ h(gb, nil)

?
ok

nil

h(g(gc), nil) 6∼≡ h(g(gd), nil)

? ?
gc 6≡ gd

nil nil

h(g(gc), nil) 6∼≡ h(g(gd), nil)

? ?
ok ok

f(gc) 6∼≡ f(gd)

? ?
gc 6≡ gd

nil nil

Figure 4.7: Counter-example 4.3.7

91

and

h(gb, f(gb))
gb−→ f(gb) f(gb)

gb−→ nil

k(f(gb))
ok−→ nil

.

However, because the well-foundedness is used crucially in the proof of the

theorem, the first premise of the second rule will be dealt with first since

it has depth 1, whereas as the second has depth 2. Therefore zs will be

assigned the value ga, since it does not appear in the source of the conclu-

sion and hence it will be assigned the same value in the substitution being

constructed as it had in the original substitution, and hence the following

proof would be obtained.

h(ga, f(gb))
ga−→ f(gb) f(gb)

ga−→ nil

k(f(gb))
ok−→ nil

.

However, f(gb) cannot perform a ga transition and hence this is not a valid

proof of the final transition. Moreover, it is not clear how to modify the

proof to obtain the correct substitution.

• Next consider the case when a variable that appears in the source of a

premise also appears in the label of that premise. Then using the proof

technique of the congruence theorem, the variable in the premise (which can

not appear in the source of the conclusion) will be assigned the same value

as under the original substitution. The question now arises as to whether

this value is different to the one that may be assigned to the occurrence of

the variable on the label by the use of compatibility. I have neither proof

nor counter-example to answer this question.

As can be seen from the above discussion, the well-foundedness requirement

as well as the order in which the new substitutions are created may make it

impossible to find the correct substitution. Hence I retain the requirement that

variables in sources of premises should be distinct from those in labels of premises.

It may be possible to find a unification style technique that will work, however.

Fokkink and van Glabbeek [FvG96] have shown that any TSS in tyft/tyxt

format can be expressed as a TSS in tree format. A TSS is in tree format when

92

it consists of pure well-founded xyft rules, namely rules where the sources of

premises can only be variables which appear either in the target of premises

or in the source of the conclusion. Hence the well-founded requirement can be

dropped for congruence for the tyft/tyxt format. The technique they use relies

on a different notion of proof and makes use of results from unification theory. It

is not clear whether this results extend to the new format I have proposed, and

this is an area for further work.

However, even if the well-foundedness condition is not required for congruence,

it is still open as to whether a counter-example can be found to show that sharing

variables between source of premises and labels of premises breaks congruence.

4.3.4 Comparison with other formats

As mentioned earlier in the chapter, this work does not concern itself with negative

premises or predicates, so clearly it is not comparable with formats that involve

negative premises and/or predicates. How does this compare with formats that

do not use negative premises or predicates?

As can be seen in Figure 2.12, there is a hierarchy of formats, and the most

general format without negative premises and predicates is the tyft/tyxt format.

In this section, I will compare this with the extended tyft/tyxt format (which I

will also refer to as the new format for convenience).

The definition of tyft/tyxt format involves a single-sorted algebra for the op-

erators of the process algebra and a infinite set of labels which are used in the

rules in a schematic manner and are essentially atomic. Tyft/tyxt rules have the

following forms:

{ti ai−→ yi | i ∈ I}
f(x1, . . . , xn) a−→ t

{ti ai−→ yi | i ∈ I}
x

a−→ t

where all the variables are distinct, the ti’s and t are open terms from the term

algebra associated with the signature, and the ai’s and a are from the set of

labels. The labels are understood to be any labels from the label set, as long as

multiple occurrences of a label within a rule are preserved. Proofs are constructed

by finding substitutions for the variables, as well as choosing suitable labels. The

93

definition implicitly permits operators to be created from the elements of the set

of labels, such as prefix operators.

To translate from tyft/tyxt format to the new format, the first step is to start

with a many-sorted algebra consisting of sorts, P and a label sort A; as well as

operators which are not created from elements of the label set. The next step is

to make all labels constants of sort A and then to take all operators created from

elements of the label set, and modify them to take an argument of the label set

type.

Finally, each rule needs to be modified. This is where schematic treatment

of actions has some advantages, since matching labels across transitions in the

premises, such as in the CCS parallel communication rule or in the CSP parallel

merge rule can be easily done. First, consider rules where no matching occurs

in contravention of the rules for label variables in the new format. Here, it is

simple to replace each different label with a different variable of the sort A, so for

example a rule such as

a.x a−→x

will become

pref(zA, x) zA−→ x
.

In the case of matching of actions in a way which contravenes the conditions of

label variables, there are two approaches. One involves the use of rule schemata

which will be defined in Chapter 6, and the other involves the use of a specific

type of algebra with constants to indicate undefined transitions, to represent the

actual process algebra labels. I will discuss both of these in more detail; however

they both deal with the issue successfully.

To see that the new format has more power than tyft/tyxt format consider

the following example. In CCS with locations [BCHK94], the rule for commu-

nication involves only action transitions. As mentioned earlier in Section 2.2.1.2,

the definition of bisimulation can be parameterised by a relation over the set of

location strings (Loc∗), hence the strings that are matched in the transitions need

only match up to the relation. I will assume for the purposes of this example,

94

that the relation is the identity relation plus the pairs (l1, l2) and (l2, l1) for two

distinguished elements l1 and l2. (Note that this is an equivalence relation.) Also

assume that a new rule is introduced for the parallel operator involving commu-

nication (and the old rule removed), where communication can only take place if

the actions have the same string of locations. This rule can be expressed as

x
a−→
u
y x′

a−→
u
y′

x | x′ τ−→y | y′

On the surface, it is tempting to view this as a tyft/tyxt rule by treating the string

of locations in a schematic manner. However doing this leads to an operator that

does not preserve congruence, because of the fact that different strings may be

equated by the relation over strings. To see this, consider the following rules

(taken from the SOS for CCS with locations)

a.x
a−→
l
l :: x

∀l ∈ Loc
x

a−→
u
y

l :: x a−→
lu
l :: y

and the new parallel communication rule given above. Then l1 :: a.nil ≈l l2 :: a.nil

but l1 :: a.nil | l1 :: a.nil 6≈l l2 :: a.nil | l1 :: a.nil, since the first term can perform

a τ action which the second cannot.

So it can be seen from this example, that the introduction of a relation over

elements of a label set can lead to a situation where congruence is lost. Relations

over a label set are also introduced whenever the labels become more complex

and hence it is necessary to equate labels which have been constructed in different

ways, but which are to be viewed as semantically identical.

Hence it is possible to translate a transition system specification in tyft/tyxt

format into one in extended tyft/tyxt, and moreover, the extended tyft/tyxt format

can deal with more complex definitions of bisimulation, particularly those that

equate different elements of the label set. The introduction of labels with different

sorts will also have a rôle to play in the next chapter, where results are presented

relating to the summing of eTSSs.

95

4.4 Conclusion

In this chapter, I have introduced a number of concepts that allow me to define ex-

tended transition system specifications, and moreover I have shown how a specific

class of eTSSs give operators which are congruent with respect to bisimulation.

96

Chapter 5

Comparison results for the new
format

5.1 Introduction

In this chapter, I will look at extensions to eTSSs. I prove a standard extension

result, and then look at new definitions of extensions, and results which can be

used to compare equivalences. These results look at combining two eTSSs and

give conditions under which new transitions may be added or not. This allows

one to compare equivalences on the original eTSSs and the new combined eTSS,

and hence is a starting place for a comparison of equivalences based on a syntactic

approach.

I first look at extension of an existing result to the new format; that of

conservative extension where conditions are given for when two eTSSs can be

combined without adding new transitions, and I compare this with a result by

Verhoef [Ver94]. Next, I look at extensions up to bisimulation, and investigate

under which conditions it is possible to achieve various relationships between the

original equivalences and the equivalences of the combined eTSSs. There are two

approaches to this and I present both of them.

The conservative extension result is an extension of the work of Groote and

Vaandrager [GV92] to the new format where I use a different definition of the sum

of two eTSSs, hence in the counter-examples section, I only deal with counter-

examples that relate to label variables. The extension up to bisimulation results

are new results which are not extensions of existing results, and hence I give full

counter-examples for these results.

97

5.2 Sums of eTSSs and conservative extensions

I will now define the notion of the sum of two eTSSs which I require to define the

notion of an extension.

Definition 5.2.1 (Sum of two signatures)

Let Σi = (Si∪{P}, Fi) for i = 0, 1 be two signatures such that f ∈ F0∩F1 implies

that type0(f) = type1(f). The sum of Σ0 and Σ1, Σ0 ⊕ Σ1 is the signature

Σ0 ⊕Σ1 = (S0 ∪ S1 ∪ {P}, F0 ∪ F1).

It is clear that the sum of two suitable signatures is also suitable.

Definition 5.2.2 (Sum of two eTSSs)

Let Ei = (Σi, Ri) for i = 0, 1 be two eTSSs with Σ0 ⊕ Σ1 defined. The sum of E0

and E1, E0 ⊕ E1, is the eTSS

E0 ⊕ E1 = (Σ0 ⊕ Σ1, R0 ∪R1).

The two preceding definitions are essentially the same as Groote and Vaandrager

[GV92]. However, for reasons which will be become clearer later, I wish to work in

the situation where the second component does not necessarily involve a sensible

signature, and so I will extend these definitions to asymmetric definitions. This

is reasonable in light of the fact that I often will be considering E0⊕>E1 as an

extension of E0 and hence there is an inherent lack of symmetry in the view. I

make the following definitions.

Definition 5.2.3 (Asymmetric sum of two signatures)

Let Σi = (Si ∪ {P}, Fi) for i = 0, 1 be two suitable signatures such that Σ0 ⊕ Σ1

is defined. If Σ0 is sensible, and Σ0 ⊕ Σ1 is sensible, then I say that Σ0 ⊕ Σ1 is

asymmetric and denote it Σ0⊕>Σ1.

Note that in the case of an asymmetric sum, Σ1 can be either sensible or not

sensible.

98

Definition 5.2.4 (Asymmetric sum of two eTSSs)

Let Ei = (Σi, Ri) for i = 0, 1 be two eTSSs with E0 ⊕ E1 defined. If Σ0 ⊕ Σ1 is

asymmetric, then I say that E0 ⊕ E1 is asymmetric and denote it E0⊕>E1.

Before I continue with results, I present an example that is based on the eTSS

defined in Example 4.3.1 on page 69.

Example 5.2.1 (Example of the asymmetric sum of two eTSSs)

Consider the asymmetric sum of ECCSSub and the eTSS consisting of ΣCCSSub and

the rules

x1
z−→y1 x2

z−→y2

plus(x1, x2)
z−→plus(y1, y2)

x
z1−→ y1 y1

z2−→ y2

x
z1−→ pref(z2, y2)

.

Call this new eTSS E. By adding these rules, it is possible to lose the branching

time characteristic of CCS behaviour. Consider that in ECCSSub

pref(a, plus(pref(b, nil), pref(c, nil)))
6∼ECCSSub

Id plus(pref(a, pref(b, nil)), pref(a, pref(c, nil)))

but

pref(a, plus(pref(b, nil), pref(c, nil)))
∼EId plus(pref(a, pref(b, nil)), pref(a, pref(c, nil)))

The two new rules have added transitions to each process in such a way to make

them bisimilar. The second new rule uses lookahead which is a feature of tyft/tyxt-

style formats, and reduces branching behaviour to traces. Figure 5.1 illustrates

the two terms and their transitions. The transitions that are created by the

formation of the sum are indicated by dashed lines.

Now I look at some results relating to sums of eTSSs.

Definition 5.2.5 (Conservative extension)

Let Ei = (Σi, Ri) for i = 0, 1 be two eTSSs with E = E0⊕>E1 defined and let

E = (Σ, R). I say that E is a conservative extension of E0 and that E1 can be

added conservatively to E0 if for all t0 ∈ T(Σ0)P, α ∈ T(Σ)P, and t ∈ T(Σ)P,

E ` t0 α−→ t⇐⇒ E0 ` t0 α−→ t.

99

pref(a, plus(pref(b, nil), pref(c, nil)))

? R	

@
@
@R

�
�
�	 ??

a a a

b b c c

plus(pref(a, pref(b, nil)), pref(a, pref(c, nil)))

@
@
@R

�
�
�	 ?

?? R	

a a a

b b c c

Figure 5.1: Example 5.2.1

Note that the implication E ` t0
α−→ t ⇐ E0 ` t0

α−→ t holds trivially since all

transitions generated by E0 are also generated by E. The eTSS E in Example 5.2.1

is not a conservative extension. I will now give a result which gives conditions

under which eTSSs can be conservatively extended. I first require some definitions

about the label variables which can appear in rules.

Definition 5.2.6 (Label-free variable)

Let E = (Σ, R) be an eTSS, and let r be a rule in R. A variable in VarP(r) is

called label-free if it does not occur in the label of a premise or in the left hand

side of the conclusion.

Definition 5.2.7 (Label-pure rule)

Let E = (Σ, R) be an eTSS. A rule r ∈ R is called label-pure if it contains no

label-free variables from VP. The eTSS E is called label-pure if all its rules are

label-pure.

The following theorem works by preventing the addition of rules which may

cause new transitions to occur from terms in the first signature.

100

Theorem 5.2.1 (Conservative extension)

Let E0 = (Σ0, R0) be an eTSS in pure, label-pure extended tyft/tyxt format and

let E1 = (Σ1, R1) be an eTSS in extended tyft format such that there is no rule in

R1 that contains a function symbol from Σ0 in the source of the conclusion. Let

E = E0⊕>E1 be defined. Then E1 can be added conservatively to E0.

Proof: I will use a similar strategy to that used in Theorem 4.3.1. Let E =

(Σ, R). Let t0 ∈ T(Σ0)P, α ∈ T(Σ)P, t ∈ T(Σ)P. Let T be a proof of t0
α−→ t from

E. With induction on the length of T , I will show that T is also a proof of t0
α−→ t

from E0, namely that α ∈ T(Σ0)P and t ∈ T(Σ0)P.

Let r be the last rule used in T . Since t0 ∈ T(Σ0)P and all rules in R1 are

extended tyft and contain no functions from Σ0 in the source of their conclusions,

r must be in R0. Suppose r is pure, label-pure extended tyft (the case that r is

pure, label-pure extended tyxt can be proved in a similar fashion). I proceed by

induction on the length of T . First suppose that r is an axiom, i.e. r is

f(η1, . . . , ηm, x1, . . . , xn) λ−→ p

and let σ be the substitution used in the last step of the proof T . Hence

σ(f(η1, . . . , ηm, x1, . . . , xn)) = t0, σ(λ) = α and σ(p) = t, so σ(x) ∈ T(Σ0)

for all x ∈
⋃

16i6n xi ∪
⋃

16k6mVarP(ηk). Since r is pure, VarP(p) ⊆
⋃

16i6n xi,

and since r is label-pure, VarP(p)∪VarP(λ) ⊆
⋃

16k6mVarP(ηk). Therefore, it is

immediate that α ∈ T(Σ0)P, t ∈ T(Σ0)P and E0 ` t0
α−→ t.

Next suppose that r is

{pi
λi−→ yi | i ∈ I}

f(η1, . . . , ηm, x1, . . . , xn) λ−→ p

and let σ be the substitution used in the last step of the proof T . Hence

σ(f(η1, . . . , ηm, x1, . . . , xn)) = t0, σ(λ) = α and σ(p) = t. Again I need to

consider the variables in r.

By considering the dependency graph G of the premises of r, depth(x) ∈ N can

be defined for all x ∈VarP(r) in a similar fashion to the proof of Theorem 4.3.1.

Define

• X = {xi | 1 6 i 6 n}

101

• Y = {yi | i ∈ I}

• Yd = {y ∈ Y | depth(y) = d} for n > 0.

Observe that for any variable x ∈ X, depth(x) = 0, and the sets Yd form a

partition of Y . Next I need to consider the labels from VP that appear in r.

Define

• Z =
⋃

16k6m VarP(ηk)

• Z ′ =
⋃
i∈I VarP(λi)

• Z ′d =
⋃
yi∈YdVarP(λi).

Note that since r is label-pure, VarP(r) = Z∪Z ′. Also the sets Z ′d form a partition

of Z ′ since variables cannot be shared between labels of premises.

With induction on d, I prove that σ(x) ∈ T(Σ0)P for all x ∈ X ∪ Y , and that

σ(z) ∈ T(Σ0)P for all z ∈ Z ∪ Z ′.

Because t0 ∈ T(Σ0)P and σ(f(η1, . . . , ηm, x1, . . . , xn)) = t0, σ(x) ∈ T(Σ0)P

for all x ∈ X, and σ(z) ∈ T(Σ0)P for all z ∈ Z.

Let d ∈ N and suppose that σ(x) ∈ T(Σ0)P for all x ∈ X ∪ Y0 ∪ . . . ∪ Yd−1

and σ(z) ∈ T(Σ0)P for all z ∈ Z ∪ Z ′0 ∪ . . . ∪ Z ′d−1. Let y∗ ∈ Yd, then there is a

unique i ∈ I such that y∗ = yi. Since r is pure, VarP(pi) ⊆ X ∪ Y0 ∪ . . . ∪ Yd−1,

and since r is label-pure, VarP(pi) ⊆ Z, therefore σ(pi) ∈ T(Σ0)P. Hence, by the

the induction hypothesis, σ(λi) ∈ T(Σ0)P, σ(yi) ∈ T(Σ0)P and E0 ` t0 α−→ t.

So this is true for all y ∈ Yd, and this is true for all d ∈ N, so σ(x) ∈ T(Σ0)P

for all x ∈ X ∪Y and σ(z) ∈ T(Σ0)P for all z ∈ Z ∪Z ′. Since r is pure and label-

pure, Var(p) ⊆ X∪Y ∪Z∪Z ′, therefore t = σ(p) ∈ T(Σ0)P, and Var(λ) ⊆ Z∪Z ′,

so α = σ(λ) ∈ T(Σ0)P and E0 ` t0 α−→ t.

Note that the sum in Example 5.2.1 is not a conservative extension, since

new transitions are added. Next, I present an example which is a conservative

extension.

102

Example 5.2.2 (Conservative extension)

Consider ECCSPar consisting of ΣCCSSub with the added symbol par : P,P → P

(call this ΣCCSPar) and the rules

x
z−→y

par(x, x′) z−→par(y, x′)
x

z−→y

par(x′, x) z−→par(x′, y)

Then this is an conservative extension of ECCSPar since the added rules have the

correct form. Clearly these rules cannot add new transitions to the terms of the

first signature.

5.2.1 Counter-examples

I will now give some counter-examples to show why label-pureness is required.

Counter-example 5.2.1 (Label-pureness)

Consider the many-sorted signature

Σ = (P, s, s′; ok, g, nil; f, f ′, f ′′)

with ok :→ s′, g :→ s, nil :→ P , f : P → P , f ′ : s→ P and f ′′ : s, P → P .

Consider the eTSS E consisting of Σ and the axiom f(x) zs−→ nil. If I add a

new constant g′ :→ s, then I obtain a new transition f(nil) g′−→ nil which is not

in TS(E) since g′ 6∈ T(Σ).

Next, consider the eTSS E ′ consisting of Σ and the axiom f(x) ok−→ f ′(zs). If

I add a new constant g′ :→ s, then I obtain a new transition f(nil) ok−→ f ′(g′)

which is not in TS(E ′) since f ′(g′) 6∈ T(Σ).

Finally consider the eTSS E ′′ consisting of Σ and the rules

f ′′(zs, x) ok−→ f ′(zs)

f ′′(zs, x) ok−→ y

f(x) ok−→ y

Then if I add a new constant g′ :→ s, I obtain a new transition f(nil) ok−→ f ′(g′)

by the proof

f ′′(g′, nil) ok−→ f ′(g′)

f(nil) ok−→ f ′(g′)

and this transition is not in TS(E ′′) since f ′(g′) 6∈ T(Σ).

103

f(nil)

�
�
�	 R

g g′

nil nil

f(nil)

�
�
�	 R
ok ok

f ′(g) f ′(g′)

Figure 5.2: Counter-example 5.2.1

The terms and transitions are illustrated in Figure 5.2. The solid arrows indic-

ate transitions from the original eTSS, and the dashed arrows indicate transitions

that result from the summing of the two eTSSs. The second and third counter-

examples have the same diagram.

Since all of these counter-examples involve the addition of new terms with an

existing sort, it may be possible to have a slightly different result where label-

pureness is not required, but there is a restriction on what can be added. I will

return to this point later in the chapter.

5.2.2 Related work

Verhoef has given a general extension theorem [Ver94] for the panth format which

has weaker conditions than the above results. He works with relations and pre-

dicates, and by grouping together transitions with the same labels as relations

over processes, is able to use a similar mechanism to that which I will use later

in the chapter by using sorts. The conditions required for his extension result

can be expressed as follows in the extended tyft/tyxt format. Note that I am not

considering negative premises or predicates here.

104

Let E0 = (Σ0, R0) be an eTSS in pure, label-pure extended tyft/tyxt format

and let E1 = (Σ1, R1) be an eTSS in extended tyft/tyxt format. Let E =

E0⊕>E1 be defined. For any rule r ∈ R1 in tyxt format or tyft format with

the function symbol from Σ0

1. r is pure, label-pure and well-founded

2. all terms in the sources of premises come from T(Σ0)

3. there is a premise consisting of only terms from T(Σ0) in source and

target, and where the label term has a sort in Σ1 −Σ0.

Then E1 can be added conservatively to E0.

So in comparison to Theorem 5.2.1, this result allows tyxt rules and tyft rules

with function symbols from Σ0, in R1. However, the third condition requires that

one of the premises combines process terms from the first signature and label

terms from the second signature, and hence there can be no suitable transitions

to fit this premise and hence allow the rule to be used in any proof. In the

next section, I will use the differentiating power of the different sorts in a similar

fashion to ensure that only the ‘right’ transitions are added, although I take a

slightly different approach in that instead of specifying which terms can appear

in the premises, I specify the sorts of label terms appearing in the conclusions.

This approach has the advantage that it permits new axioms. Also the results I

obtain relate to different notions of extension, specifically to those that preserve

transitions up to bisimulation.

5.3 Extensions up to bisimulation

So how does the notion of a conservative extension relate to definitions of bisim-

ulation? A notion of a conservative extension up to bisimulation can be defined

in the following manner.

Definition 5.3.1 (Conservative extension up to bisimulation with re-

spect to an equivalence)

Let Ei = (Σi, Ri) for i = 0, 1 be two eTSSs with E = E0⊕>E1 defined and let

105

E = (Σ, R). Let ≡ be a congruence on T(Σ)P compatible with E. I say that E

is a conservative extension of E0 up to bisimulation with respect to ≡ if for all

t0, u0 ∈ T(Σ0)P,

t0 ∼E≡ u0 ⇐⇒ t0 ∼E0≡ u0.

This type of definition could be useful in comparing semantic equivalences. In

what follows I will present and discuss a number of definitions, as well as looking

at whether they are likely to be useful to achieve my goals. The following result

is immediate.

Proposition 5.3.1 (Conservative extension implies conservative exten-

sion up to bisimulation with respect to an equivalence)

Let Ei = (Σi, Ri) for i = 0, 1 be two eTSSs with E = E0⊕>E1 defined and let

E = (Σ, R). Let ≡ be a congruence on T(Σ)P compatible with E. If E is a conser-

vative extension of E0, then E is a conservative extension of E0 up to bisimulation

with respect to ≡.

The proof of this proposition relies on that fact that for every action one

process can make, the other process can make the syntactically identical action.

I now present a slight different definition of conservative extension—one which is

relative to an congruence.

Definition 5.3.2 (Conservative extension with respect to an equival-

ence)

Let Ei = (Σi, Ri) for i = 0, 1 be two eTSSs with E = E0⊕>E1 defined and let

E = (Σ, R). Let ≡ be a congruence on T(Σ)P compatible with E. I say that

E is a conservative extension of E0 with respect to ≡ and that E1 can be added

conservatively to E0 with respect to ≡ if for all t0 ∈ T(Σ0)P, α ∈ T(Σ)P, and

t ∈ T(Σ)P, then there exists α0 ∈ T(Σ0)P such that

E ` t0 α−→ t⇒ E0 ` t0 α0−→ t and α ≡ α0.

The reverse implication that there exists α ∈ T(Σ)P such that E0 ` t0 α0−→ t⇒

E ` t0 α−→ t and α ≡ α0 is trivial since E ` t0
α0−→ t. I obtain a new result.

106

Proposition 5.3.2 (Conservative extension with respect to an equival-

ence implies conservative extension up to bisimulation with respect to

that equivalence)

Let Ei = (Σi, Ri) for i = 0, 1 be two eTSSs with E = E0⊕>E1 defined and let

E = (Σ, R). Let ≡ be a congruence on T(Σ)P compatible with E. If E is a con-

servative extension of E0 with respect to ≡, then E is a conservative extension of

E0 up to bisimulation with respect to ≡.

However, it is not clear that this definition is useful, since the requirement that

both transitions result in the same state is a very strong condition. Hence I will

work with the notion of conservative extension up to bisimulation with respect

to an equivalence, and related definitions which I present immediately.

Definition 5.3.3 (Refining extension up to bisimulation with respect to

an equivalence)

Let Ei = (Σi, Ri) for i = 0, 1 be two eTSSs with E = E0⊕>E1 defined and let

E = (Σ, R). Let ≡ be a congruence on T(Σ)P compatible with E. I say that

E is a refining extension of E0 up to bisimulation with respect to ≡ if for all

t0, u0 ∈ T(Σ0)P,

t0 ∼E≡ u0 ⇒ t0 ∼E0≡0
u0.

I will also write this as ∼E≡ ⊆ ∼E0≡ .

Definition 5.3.4 (Abstracting extension up to bisimulation with respect

to an equivalence)

Let Ei = (Σi, Ri) for i = 0, 1 be two eTSSs with E = E0⊕>E1 defined and let

E = (Σ, R). Let ≡ be a congruence on T(Σ)P compatible with E. I say that E
is an abstracting extension of E0 up to bisimulation with respect to ≡ if for all

t0, u0 ∈ T(Σ0)P,

t0 ∼E0≡0
u0 ⇒ t0 ∼E≡ u0.

I will also write this as ∼E0≡ ⊆ ∼E≡.

The next result is immediate.

107

Proposition 5.3.3 (Refining and abstracting extensions up to bisimula-

tion if and only if conservative extension up to bisimulation)

Let Ei = (Σi, Ri) for i = 0, 1 be two eTSSs with E = E0⊕>E1 defined and let

E = (Σ, R). Let ≡ be a congruence on T(Σ)P compatible with E. Then E is both

a refining and an abstracting extension up to bisimulation with respect to ≡ if

and only if it is a conservative extension up to bisimulation with respect to ≡.

In the following, I will look at conditions under which I can achieve these

types of extensions. As this is fairly complex, I will proceed by making a number

of definitions that capture these conditions. I then prove a general lemma that

I need for the theorems, and then look at some definitions and results about

congruences and sums of eTSSs. Finally I proceed to prove the two theorems.

First I define to different kinds of rule sets for asymmetric sums of eTSSs.

Definition 5.3.5 (Type-1 asymmetric sum)

Let Σi = (Si ∪ {P}, Fi) for i = 0, 1 be two signatures, and let Ei = (Σi, Ri) for

i = 0, 1 be two eTSSs in extended tyft/tyxt format such that E0⊕>E1 is defined.

Then the asymmetric sum E0⊕>E1 is said to be of type-1 if

• there is no extended tyft rule in R1 containing a function symbol from F0

in the source of the conclusion that has a conclusion label with a sort from

S0,

• there is no extended tyxt rule in R1 that has a conclusion label of a sort

from S0.

These conditions go beyond those of the conservative extension result, since

tyxt rules and tyft rules with function symbols from Σ0 are now allowed, but with

additional condition that the labels in the conclusion do not have sorts from S0.

However, for one result a stronger condition is required where no tyft rules with

function symbols from Σ0 are allowed.

Definition 5.3.6 (Type-0 asymmetric sum)

Let Σi = (Si ∪ {P}, Fi) for i = 0, 1 be two signatures and let Ei = (Σi, Ri) for

i = 0, 1 be two eTSSs in extended tyft/tyxt format such that E0⊕>E1 is defined.

108

Then the asymmetric sum E0⊕>E1 is said to be type-0 if it is type-1 and there is

no extended tyft rule in R1 that contains a function symbol from F0.

Clearly, if E0⊕>E1 is type-0 then it is also type-1.

I require the following lemma first before I can prove the main results of this

section. This lemma says that given a type-1 sum and a proof of a transition

where the last rules used came from R0 then the transition can be proved in E0.

Lemma 5.3.1 (Application of rules)

Let Ei = (Σi, Ri) for i = 0, 1 be two eTSSs in extended tyft/tyxt format such that

E = E0⊕>E1 is defined. Moreover, let E0 be pure and label-pure, and let E0⊕>E1

be type-1. Let E ` t0 α−→ t with t0 ∈ T(Σ0)P. If the last rule used in the proof of

E ` t0 α−→ t is an extended tyft/tyxt rule from R0 then E0 ` t0 α−→ t.

Proof: Let E = (Σ, R). Let t0 ∈ T(Σ0)P, α ∈ T(Σ)P, t ∈ T(Σ)P. Let T be a

proof of t0
α−→ t from E with the last step of T involving an extended tyft/tyxt rule

from R0. With induction on the length of T , I will show that T is also a proof of

t0
α−→ t from E0 and that α ∈ T(Σ0)P and t ∈ T(Σ0)P.

Let r be the last rule used in T . I assume it is an extended tyft/tyxt rule from

R0. Suppose r is pure, label-pure extended tyft (the case that r is pure, label-pure

extended tyxt can be proved in a similar fashion). I proceed by induction on the

length of T . First suppose that r is an axiom, i.e. r is

f(η1, . . . , ηm, x1, . . . , xn) λ−→ p

and let σ be the substitution used in the last step of the proof T . Hence

σ(f(η1, . . . , ηm, x1, . . . , xn)) = t0, σ(λ) = α and σ(p) = t, so σ(x) ∈ T(Σ0)

for all x ∈
⋃

16i6n xi ∪
⋃

16k6mVarP(ηk). Since r is pure, VarP(p) ⊆
⋃

16i6n xi,

and since r is label-pure, VarP(p)∪VarP(λ) ⊆
⋃

16k6mVarP(ηk). Therefore, it is

immediate that α ∈ T(Σ0)P, t ∈ T(Σ0)P and E0 ` t0
α−→ t.

Next suppose that r is

{pi
λi−→ yi | i ∈ I}

f(η1, . . . , ηm, x1, . . . , xn) λ−→ p

and let σ be the substitution used in the last step of the proof T . Hence

σ(f(η1, . . . , ηm, x1, . . . , xn)) = t0, σ(λ) = α and σ(p) = t.

109

By considering the dependency graph G of the premises of r, depth(x) ∈ N can

be defined for all x ∈VarP(r) in a similar fashion to the proof of Theorem 4.3.1.

Define

• X = {xi | 1 6 i 6 n}

• Y = {yi | i ∈ I}

• Yd = {y ∈ Y | depth(y) = d} for n > 0.

Observe that for any variable x ∈ X, depth(x) = 0, and the sets Yd form a

partition of Y . Next I need to consider the labels from VP that appear in r.

Define

• Z =
⋃

16k6m VarP(ηk)

• Z ′ =
⋃
i∈I VarP(λi)

• Z ′d =
⋃
yi∈YdVarP(λi).

Note that since r is label-pure, VarP(r) = Z∪Z ′. Also the sets Z ′d form a partition

of Z ′ since variables cannot be shared between labels of premises.

With induction on d, I prove that σ(x) ∈ T(Σ0)P for all x ∈ X ∪ Y , and

that σ(z) ∈ T(Σ0)P for all z ∈ Z ∪ Z ′. Because t0 ∈ T(Σ0)P and because also

σ(f(η1, . . . , ηm, x1, . . . , xn)) = t0, σ(x) ∈ T(Σ0)P for all x ∈ X, and σ(z) ∈
T(Σ0)P for all z ∈ Z.

Let d ∈ N and suppose that σ(x) ∈ T(Σ0)P for all x ∈ X ∪Y0 ∪ . . .∪Yd−1 and

σ(z) ∈ T(Σ0)P for all z ∈ Z ∪Z ′0 ∪ . . .∪Z ′d−1. Let y∗ ∈ Yd, then there is a unique

i ∈ I such that y∗ = yi. Since r is pure, VarP(pi) ⊆ X ∪ Y0 ∪ . . .∪Yd−1, and since

r is label-pure, VarP(pi) ⊆ Z, therefore σ(pi) ∈ T(Σ0)P. Consider the transition

σ(pi)
σ(λi)−−−→ σ(yi). It is clear that this transition must be generated by a proof

whose last step involves a rule from R0, since E = E0⊕>E1 is type-1 and hence no

extended tyft/tyxt rule from R1 can generate a transition that has a label with

the same sort as σ(λi). Hence, by the the induction hypothesis, σ(λi) ∈ T(Σ0)P,

σ(yi) ∈ T(Σ0)P and E0 ` t0 α−→ t.

110

So this is true for all y ∈ Yd, and this is true for all d ∈ N, so σ(x) ∈ T(Σ0)P

for all x ∈ X ∪Y and σ(z) ∈ T(Σ0)P for all z ∈ Z ∪Z ′. Since r is pure and label-

pure, Var(p) ⊆ X∪Y ∪Z∪Z ′, therefore t = σ(p) ∈ T(Σ0)P, and Var(λ) ⊆ Z∪Z ′,

so α = σ(λ) ∈ T(Σ0)P and E0 ` t0 λ−→ t.

I need some definitions concerning congruences to achieve extension up to bisim-

ulation results. Since I would like each signature to have its own congruence, I

define the following way to combine congruences.

Definition 5.3.7 (Sum of two congruences)

Let Σi = (Si∪{P}, Fi) for i = 0, 1 be two signatures with Σ = Σ0⊕Σ1 defined. Let

≡0 and ≡1 be two congruence defined on T(Σ0) and T(Σ1) respectively. Define

the sum of ≡0 and ≡1 (≡0 ⊕ ≡1) as the smallest congruence over T(Σ0 ⊕ Σ1)

containing both ≡0 and ≡1.

Notation Let ≡ be an equivalence over a set A, and let B ⊆ A. Define

≡�B = ≡∩ (B ×B).

But for the main results to work, it is necessary to have a specific relation

between the original congruences and their sum.

Definition 5.3.8 (Conservativity of the sum of two congruences)

Let Σi = (Si∪{P}, Fi) for i = 0, 1 be two signatures with Σ = Σ0⊕Σ1 defined. Let

≡0 and ≡1 be two congruences defined on T(Σ0) and T(Σ1) respectively. ≡0⊕≡1

is said to be conservative with respect to ≡i if (≡0 ⊕≡1) �T(Σi)P
= ≡i �T(Σi)P

.

I also need the following lemma to make the proofs simpler.

Lemma 5.3.2 (Equivalences and sums of congruences)

Let Σi = (Si ∪ {P}, Fi) for i = 0, 1 be two signatures with Σ = Σ0 ⊕ Σ1 defined.

Let ≡0 and ≡1 be congruences over T(Σ0)P and T(Σ1)P respectively and let

≡ = ≡0 ⊕≡1. Then for t0, u0 ∈ T(Σ0)P

1. t0 ∼E0≡0
u0 ⇒ t0 ∼E0≡ u0,

2. if ≡ is conservative with respect to ≡0 then t0 ∼E0≡ u0 ⇒ t0 ∼E0≡0
u0.

111

Proof:

1. Assume t0 ∼E0≡0
u0. Consider t0

α−→ t′, then there exists u′ ∈ T(Σ0)P and

β ∈ T(Σ0)P, such that u0
β−→ u′ and α ≡0 β. But since ≡ = ≡0 ⊕≡1, α ≡ β

as required.

2. Assume t0 ∼E0≡ u0. Consider t0
α−→ t′, then there exists u′ ∈ T(Σ0)P and

β ∈ T(Σ0)P, such that u0
β−→ u′ and α ≡ β. But since ≡ is conservative

with respect to ≡0, and α, β ∈ T(Σ0), α ≡0 β as required.

In the rest of this section, I prove two theorems about extensions—one for

refining extensions and one for abstracting extensions. Both of these results rely

on the fact that the congruence I am working with respects sorts, and hence

transitions with different sorts cannot be matched. I give examples after the

theorems.

I can now prove the following result for refining extensions. The proof requires

the conservativity of ≡0 ⊕ ≡1 with respect to ≡0 to ensure that no additional

matches can be made under ≡0 ⊕≡1 on the transitions from terms from T(Σ0)P

generated by rules from R0. Because new transitions from terms in T(Σ)P gen-

erated by extended tyxt rules from R1 are guaranteed to have sorts outside S0,

they cannot match any existing transitions under≡0⊕≡1. Therefore, terms that

are not equated under ∼E0≡0
are also not equated under ∼E≡0⊕≡1

.

Theorem 5.3.1 (Refining extension up to bisimulation with respect to

a congruence)

Let Ei = (Σi, Ri) for i = 0, 1 be two eTSSs in extended tyft/tyxt format such that

E0⊕>E1 is defined. Moreover, let ≡0 and ≡1 be congruences over T(Σ0)P and

T(Σ1)P respectively such that ≡0 ⊕ ≡1 is conservative with respect to ≡0. If E0

is pure and label-pure, and E0⊕>E1 is type-1, then E0⊕>E1 is a refining extension.

Proof: Let t0, u0 ∈ T(Σ0) and let ≡ = ≡0 ⊕≡1. I wish to show that E is a

refining extension of E0 up to bisimulation with respect to ≡ so I need to show

that t0 ∼E≡ u0 ⇒ t0 ∼E0≡0
u0.

I prove this by showing the contrapositive. Assume t0 6∼E0≡0
u0. Hence, I can

assume (without loss of generality) that from t0 or some derivative of t0, there

112

is a transition that cannot be matched by a transition from u0 or by any trans-

itions from a possible corresponding derivative of u0. First note, that since ≡ is

conservative with respect to ≡0, no more transitions can be equated in E0 under

≡ then under ≡0, hence I only need to consider the new transitions generated

under E. I will prove that none of the new transitions can match this transition.

Note also that new transitions can be derived from the new rules and function

symbols, but existing transitions cannot be removed, hence I need only consider

the new transitions. I have a number of cases to consider for any new transition.

• The transition was generated by the use of an extended tyft/tyxt rule from

R0. Then by Lemma 5.3.1, I know that this transition is in fact not a new

transition, hence it can have no effect on the bisimilarity of t0 and u0 under

E.

• The transition was generated by the use of an extended tyxt rule from R1.

Then because E0⊕>E1 is type-1 and hence there is the restriction that ex-

tended tyxt rules in R1 cannot have a label in the conclusion that has a sort

that appears in S0, any transition generated by such a rule cannot match

an old transition from E0 since matching of actions under a congruence can

only occur within a sort.

• The transition was generated by the use of an extended tyft rule form R1.

Then because E0⊕>E1 is type-1 and hence there is the restriction that ex-

tended tyft rules in R1 with a function symbol from F0 in the source of

the conclusion cannot have a label in the conclusion that has a sort that

appears in S0, any transition generated by such a rule cannot match an old

transition from E0 since matching of actions under a congruence can only

occur within a sort.

Hence it is clear that the transition that is not matched by any of the existing

transitions cannot be matched by any of the new transitions, therefore t0 6∼E≡u0.

I need stronger conditions to show a similar result for abstracting extensions,

namely that the sum is type-0 and the second component is well-founded.

113

Theorem 5.3.2 (Abstracting extension up to bisimulation with respect

to a congruence)

Let Ei = (Σi, Ri) for i = 0, 1 be two eTSSs in extended tyft/tyxt format such

that E0⊕>E1 is defined. Moreover, let ≡0 and ≡1 be congruences over T(Σ0)P

and T(Σ1)P respectively such that ≡0 ⊕ ≡1 is compatible with E0⊕>E1. If E0 is

pure and label-pure, E1 is well-founded, and E0⊕>E1 is type-0, then E0⊕>E1 is an

abstracting extension.

Proof: The details of this proof are included in Appendix A. It proceeds in a

similar fashion to Theorem 4.3.1, but with greater intricacy since the relation that

is to be shown a bisimulation is more complex. Given a transition from a state,

a substitution must be found to show that an equivalent state has a transition

that satisfies the definition of bisimulation. The proof proceeds by induction on

the length of the proof tree for a transition and then induction on a partition of

the variables that appear in the final rule used in the proof tree.

Corollary 5.3.1 (Conservative extension up to bisimulation with re-

spect to a congruence)

Let Ei = (Σi, Ri) for i = 0, 1 be two eTSSs in extended tyft/tyxt format such

that E0⊕>E1 is defined. Moreover, let ≡0 and ≡1 be congruences over T(Σ0)P

and T(Σ1)P respectively such that ≡0 ⊕ ≡1 is conservative with respect to ≡0

and compatible with E0⊕>E1. If E0 is pure and label-pure, E1 is well-founded, and

E0⊕>E1 is type-0, then E0⊕>E1 is a conservative extension.

Proof: It is clear that E0⊕>E1 is a refining extension because E0 is pure and

label-pure, and E0⊕>E1 is type-0, and hence type-1. It is also clear that E0⊕>E1 is

an abstracting extension because if E0 is pure and label-pure, E1 is well-founded,

and E0⊕>E1 is type-0. Hence E0⊕>E1 is a conservative extension.

Example 5.2.1 is neither an refining extension up to bisimulation nor an ab-

stracting extension up to bisimulation, since the sum is not even type-1. I now

consider two examples that do give interesting extensions.

114

Example 5.3.1 (Refining extension up to bisimulation)

Consider the eTSS ECCSSub from Example 4.3.1. Consider also the signature,

ΣCCSTau,

(P, τAct; τ ; plus)

with the types τ :→ τAct and plus : P,P→ P. and the rule set RCCSTau

plus(x, x′) τ−→y
.

Let Id be the congruence for both eTSSs, then conservativity and compatibility

are satisfied. Then by Theorem 5.3.1, ECCSSub ⊕ ECCSTau is a refining extension

up to bisimulation with respect to Id, since the sum is type-1, and ECCSSub is

pure and label-pure. Clearly the only transitions added to those terms from the

first signature are those with a new sort and hence they cannot cause unidentified

terms to become identified.

Example 5.3.2 (Abstracting extension up to bisimulation)

Consider again ECCSSub and the eTSS ECCSTauNew consisting of the signature

ECCSTau from the previous example and the rule set RCCSTauNew

x
τ−→y

.

Let Id be the congruence for both eTSSs, then compatibility is satisfied. Then by

Theorem 5.3.2, ECCSSub⊕ECCSTauNew is an abstracting extension up to bisimulation

with respect to Id, since the sum is type-0, ECCSSub is pure and label-pure, and

ECCSTau is trivially well-founded. Informally, it can be said that because the new

transitions with a new sort are added to every term from the first signature,

equivalence is retained.

5.3.1 Counter-examples

Again I need counter-examples to show that the conditions in the two main results

above cannot be weakened, although as I show in the next section, it is possible

to obtain similar results with different conditions.

115

f(nil)
6∼E0Id

∼E0⊕>E
′
0

Id⊕≡1

f ′(nil)

? ?

g ≡1 g′

nil nil

Figure 5.3: Counter-example 5.3.1

5.3.1.1 Refining extensions

I wish to show that conservativity, pureness, label-pureness and type-1 sum are

necessary conditions. I now present counter-examples for conservativity and type-

1 sum. In each of these counter-examples, I will work with two closed terms which

are not equivalent, and show how by relaxing the conditions, the result is lost.

In the figures that accompany the counter-examples, my aim is to illustrate

the additional transitions that result from the sum of the two eTSSs. These

transitions are given by dashed arrows. As in the previous chapter, I do not give

all transitions or the LTS associated with terms under consideration.

Counter-example 5.3.1 (Conservativity of equivalence)

This example considers conservativity of ≡0 ⊕ ≡1 with respect to ≡0. First

consider the signature

Σ0 = (P, s; g, g′, nil; f, f ′)

with g :→ s, g′ :→ s, nil :→ P, f : P → P, and f ′ : P → P. Assume ≡0 is the

identity relation Id.

Consider the eTSS E0 consisting of Σ0 and the axioms f(x) g−→x and f ′(x) g′−→
x. Clearly f(nil)6∼E0Idf

′(nil). Consider summing with this the eTSS E ′0 consist-

ing of the same signature and ≡1 which is the identity relation plus g ≡1 g′.

Then Id⊕ ≡1 is not conservative with respect to Id, and f(nil)∼E0⊕>E
′
0

Id⊕≡1
f ′(nil).

Figure 5.3 illustrates this counter-example.

116

f(nil)
6∼E1Id

∼E1⊕>E
′
1

Id

nil

? ?

g g

nil nil

f(nil)
6∼E2Id

∼E2⊕>E
′
2

Id

f ′(nil)

? ?

g g

nil nil

Figure 5.4: Counter-example 5.3.2

Counter-example 5.3.2 (Type-1 sum)

I now look at the requirement for a type-1 sum. This has two parts. Consider first

allowing a tyxt rule in R1 which has a sort from S0. Let E1 be the signature from

the previous example, as well as the rule f(x)
g−→ x. Then clearly f(nil)6∼E1Idnil.

However if the sum of E1 and E ′1 is formed where E ′1 consists of Σ0 and the axiom

x
g−→nil, then f(nil) ∼E1⊕>E

′
1

Id nil.

Next, consider allowing a tyft rule in R1 with a function symbol from Σ0 and

a sort from S0. Let E2 be the signature from the previous example plus the rule

f(x) g−→x. Clearly, f(nil)6∼Idf
′(nil). However if E2 is summed with E ′2 where E ′2

consists of the same signature and the rule f ′(x)
g−→ x, then f(nil) ∼Id f ′(nil).

Diagrams of these counter-examples are given in Figure 5.4.

I now look at pureness and label-pureness. It is not clear that these conditions

are required for the theorem, except for the specific condition of not having a free

variable in the source of a premise for which I give a counter-example below.

However, it can be shown fairly easily that all of these conditions are required for

Lemma 5.3.1 which is used in the theorem. Hence it may be the case that it is

117

f(nil)
6∼E3Id

∼E3⊕>E
′
3

Id

f ′(nil)

? ?

g g

nil nil

Figure 5.5: Counter-example 5.3.3

possible to prove the theorem with weaker conditions on the free variables and

without the use of Lemma 5.3.1.

Counter-example 5.3.3 (Pureness for refining extensions up to bisim-

ulation)

In this example, I will look at one condition of pureness. A rule is not pure when

there is a free variable in the source of a premise. Consider the signature

Σ3 = (P, s, s′; g, g′, nil; f, f ′)

with g :→ s, g′ :→ s′, nil :→ P, f : P → P and f ′ : P → P; together with the

rules

f(x)
g−→x

x1
z′s−→ y

f ′(x)
g−→y

and call this eTSS E3. Clearly the second rule is not pure. It can be shown that

f(nil)6∼E3Idf
′(nil), since f ′(nil) has no transitions. However, adding the eTSS E ′3

consisting of Σ plus f ′′ :→ P and the axiom f ′′
g′−→ nil causes f(nil)∼E3⊕>E

′
3

Id f ′(nil)

since now f ′(nil) has a matching transition. This counter-example is illustrated

by Figure 5.5.

5.3.1.2 Abstracting extensions

I wish to show that pureness, label-pureness and type-0 sum are necessary condi-

tions. Note that the earlier comments about well-foundedness apply to this proof

also, as does the counter-example for compatibility in Counter-example 4.3.5.

118

Counter-example 5.3.4 (Pureness for abstracting extensions up to bisim-

ulation)

In this example, I will look at pureness. A rule is not pure either when there

is a free variable in the source of a premise or in the target of the conclusion.

Consider the signature Σ0 used in Counter-example 5.3.1 together with the rule

x1
zs−→ y

f(x) zs−→ y

and call this eTSS E4. Clearly this rule is not pure. It can be shown that

nil ∼E4Id f(nil), since neither have any transitions. However, adding the eTSS E ′4
consisting of Σ0 plus f ′′ :→ P and the axiom f ′′

g−→ nil causes nil 6∼E4⊕>E
′
4

Id f(nil)

since now f(nil) has a transition.

Next consider the signature

Σ5 = (P, s, s′; g, g′, nil1, nil2)

with g :→ s, g′ :→ s′, nil1 :→ P and nil2 :→ P.

Let E5 be the eTSS consisting of Σ5 and the axioms

nil1
g−→nil1 nil2

g−→x
.

The second axiom is not pure. It can be shown that nil1 ∼E5Id nil2. Let E ′5 be

the eTSS consisting of Σ5 with nil3 :→ P added. Clearly nil1 6∼E5⊕>E
′
5

Id nil2. These

counter-examples are illustrated in Figure 5.6.

Counter-example 5.3.5 (Label-pureness for abstracting extensions up

to bisimulation)

This example will deal with label-pureness. There are three ways in which a set

of rules can fail the label-pureness condition. Consider the many-sorted signature

Σ6 = (P, s, s′; ok, g, nil; f, f1, f2, f
′, f ′′)

with ok :→ s′, g :→ s, nil :→ P, f : P → P, f1 : P → P, f2 : P → P, f ′ : s → P

and f ′′ : s,P→ P.

Consider the eTSS E6 consisting of Σ6 and the axioms f1(x) g−→ nil and

f2(x) zs−→ nil. It is clear that f1(nil) ∼E6Id f2(nil). If I add a new constant

119

nil
∼E4Id

6∼E4⊕>E
′
4

Id

f(nil)

?

g

nil

nil1

��
?

g

nil2

��
?

g

� g

∼E5Id

6∼E5⊕>E
′
5

Id

?

g

nil3

Figure 5.6: Counter-example 5.3.4

g′ :→ s to form the eTSS E ′6, then I obtain a new transition f2(nil)
g′−→ nil, and

hence f1(nil)6∼E6⊕>E
′
6

Id f2(nil).

Next, consider the eTSS E7 consisting of Σ6 and the axioms f1(x) ok−→ f ′(zs),

f2(x) ok−→ f ′(g), and f ′(zs)
zs−→ nil. Clearly, f1(nil) ∼E7Id f2(nil). If I add a

new constant g′ :→ s to create the eTSS E ′7, then I obtain a new transition

f1(nil)
ok−→ f ′(g′), and hence f1(nil)6∼E7⊕>E

′
7

Id f2(nil), since f1(nil) ok−→ f ′(g′) and

f ′(g′)6∼E7⊕>E
′
7

Id f ′(g).

Finally consider the eTSS E8 consisting of Σ6 and the rules

f ′′(zs, x) ok−→ f ′(zs)

f ′′(zs, x) ok−→ y

f1(x) ok−→ y

f ′′(g, x) ok−→ y

f2(x) ok−→ y f ′(zs)
zs−→ nil

.

Consider the proofs

f ′′(g, nil) ok−→ f ′(g)

f1(nil) ok−→ f ′(g)

f ′′(g, nil) ok−→ f ′(g)

f2(nil) ok−→ f ′(g)
.

From these, it is clear that f1(nil) ∼E8Id f2(nil). If I add a new constant g′ :→ s

to form the eTSS E ′8, I obtain a new transition f ′′(nil) ok−→ f ′(g′), and hence

f1(nil)6∼E8⊕>E
′
8

Id f2(nil), since f1(nil) ok−→ f ′(g′) and f ′(g′)6∼E8⊕>E
′
8

Id f ′(g).

120

f1(nil)
∼E6Id

6∼E6⊕>E
′
6

Id

f2(nil)

? ? R

g g g′

nil nil nil

f1(nil)

∼E7Id

6∼E7⊕>E
′
7

Id

∼E8Id

6∼E8⊕>E
′
8

Id

f2(nil)

? ? R
ok ok ok

f ′(g) f ′(g) f ′(g′)

? ? ?

g g g′

nil nil nil

Figure 5.7: Counter-example 5.3.5

Figure 5.7 illustrates these counter-examples. The second and third counter-

example have the same diagrams.

Similarly to the counter-examples for the conservative extension result, these

counter-examples all rely on adding new functions of an existing sort. It may be

possible to exclude this possibility and achieve a different result. I also need to

show why type-0 sums are required. The next counter-example considers what

happens if one of the new tyxt rules can have a label with a sort from the first

signature.

Counter-example 5.3.6 (First example of type-0 sum)

Using the same signature as in the above example, consider the eTSS consisting

of Σ6 and the rules

f1(x) g−→nil f2(x) g−→nil

f(x)
zs′−→ y

f2(x)
zs′−→ y

121

f1(nil)
∼E9Id

6∼E9⊕>E
′
9

Id

f2(nil)

? ? R

g g ok

nil nil nil

Figure 5.8: Counter-example 5.3.6

and call this eTSS E9. From these rules, it can be seen that f1(nil) ∼E9Id f2(nil).

If I add a new axiom x
ok−→ nil to give the eTSS E ′9, then I can derive a new

transition f2(nil) ok−→ nil by the proof

f(nil) ok−→ nil

f2(nil)
ok−→ nil

and hence f1(nil)6∼E9⊕>E
′
9

Id f2(nil). This is illustrated in Figure 5.8.

I need a counter-example to show that when E0⊕>E1 is type-1, it is not possible

to obtain a refining extension and hence a type-0 sum is required.

Counter-example 5.3.7 (Second example of type-0 sum)

Consider the many-sorted signature

Σ10 = (P, s, s′; ok, g, nil; f, f ′, f ′′)

with ok :→ s′, g :→ s, nil :→ P, f : s,P→ P and f ′ : s,P→ P.

Consider the eTSS E10 consisting of Σ10 and the axioms f ′(zs, x) zs−→ x and

f(zs, x) zs−→ x. Also consider the eTSS E ′10 consisting of Σ10 and the axiom

f ′(zs, x) ok−→ x. Hence E10⊕>E ′10 is type-1 but not type-0.

Then f(g, nil) ∼E10
Id f ′(g, nil), but f(g, nil)6∼E10⊕>E ′10

Id f ′(g, nil) since f(g, nil) ok−→
nil, but f ′(g, nil) cannot perform an ok action. This counter-example is illustrat-

ing in Figure 5.9.

122

f(g, nil)
∼E10

Id

6∼E10⊕>E ′10
Id

f ′(g, nil)

? ? R

g g ok

nil nil nil

Figure 5.9: Counter-example 5.3.7

5.4 A different approach to extensions up to
bisimulation

In this section, I will describe how it is possible to change the label-pureness

requirement in some of the previous results by giving additional requirements on

Σ1. In the Counter-examples 5.2.1 and 5.3.5 which show that label-pureness was

required, a new constant with sort from S0 was introduced in Σ1 to show that the

required result was lost. It is possible then to impose restrictions on Σ1 disallowing

such function symbols and hence remove the label-pureness requirement in the

results under discussion. I first need a new definition to describe the sort of

function symbols I want in this kind of signature.

Definition 5.4.1 (Safety of a signature)

Let Σi = (Si∪{P}, Fi) for i = 0, 1 be two signatures. It is said that Σ1 is safe for

S0 if no function symbol in F1 − F0 has a range with a sort from the set S0.

Note that if (S0∩S1) 6= ∅ and Σ1 is safe for S0, then Σ1 may not be a sensible

signature since there may be no closed terms for the sorts that appear in the

intersection (although there are open terms since there are variables with these

sorts). This is why I introduced the notion of asymmetric sum earlier in the

chapter, so that it was possible to consider non-sensible signatures as extensions.

Also note that from the point of view of this chapter, algebras are associated

with arbitrary equivalences. When these results are applied to process algebras,

equivalences are induced by an algebra which represents the labels of the process

123

algebras. Hence, signatures which are not sensible are less likely to occur and

moreover, it may be necessary to define the equivalence for functions from F0. So

although it would be possible to change Definition 5.4.1 to require that no label

in F1 has a range with a sort from S0, it is more practical to allow functions from

F0 to appear in F1. Therefore, the above definition only requires that any new

functions added do not have a range with a sort from S0.

The following technical lemma shows that all closed terms in the sum with a

sort from S0 are in T(Σ0)P.

Lemma 5.4.1 (Implications of safety of a signature)

Let Σi = (Si ∪ {P}, Fi) for i = 0, 1 be two suitable signatures with Σ0⊕>Σ1

defined. If Σ1 is safe for S0, then for all t ∈ T(Σ0⊕>Σ1)P −T(Σ0)P, the sort of t

is in S1 − S0; namely for all s ∈ S0

t ∈ T(Σ0⊕>Σ1)s ⇒ t ∈ T(Σ0)P.

Proof: Let t′ ∈ T(Σ0⊕>Σ1)s for s ∈ S0. Then since t′ is not a variable, t′

has the form f(η1, . . . , ηm) with f ∈ F0 ∪ F1 such that f : s1 . . . sm → s and

s ∈ S0. But since no function in F1 − F0 has range with sort from S0, f ∈ F0

and s1, . . . , sm ∈ S0. Since ηk (1 6 k 6 m) has less structure than t′, I can use

induction and assume that for 1 6 k 6 m, ηk ∈ T(Σ0)P, since each ηk has a sort

from S0. Hence I can conclude that f(η1, . . . , ηm) ∈ T(Σ0)P.

Theorem 5.2.1 can then be rephrased with the safeness condition added and

label-pureness removed. It works because the only terms that can be substituted

into the free label variables in rules from R0 are those from T(Σ0), since terms

with sorts from S0 are in T(Σ0)P.

Theorem 5.4.1 (Conservative extension without label-pureness and with

safety)

Let Σi = (Si ∪ {P}, Fi) for i = 0, 1 be two signatures with Σ1 safe for S0. Let

E0 = (Σ0, R0) be an eTSS in pure extended tyft/tyxt format and let E1 = (Σ1, R1)

be an eTSS in extended tyft format such that there is no rule in R1 that contains

124

a function symbol from Σ0 in the source of the conclusion. Let E = E0⊕>E1 be

defined. Then E1 can be added conservatively to E0.

Proof: This proof is similar to the proof of the Theorem 5.2.1. The differences

are that in the base case here, I use the fact that only terms from T(Σ0) can be

assigned to variables in a rule from R0 by Lemma 5.4.1, whereas in the earlier

proof, label-pureness was used to show that the only variables that could appear

were those that already had been shown to have been assigned terms from T(Σ0).

Also in the inductive step here, I use the fact that only terms from T(Σ0) can be

assigned to variables in the source of a premise, whereas previously, the variables

that appeared in the source of a premise were shown to appear in the source of

the conclusion and hence had been assigned terms from T(Σ0). In the final step

of the proof, I use a similar approach to the earlier proof.

Example 5.2.2 cannot be used as an example here since ΣCCSPar is not safe for

{A}, the set of P sorts for ΣCCSSub.

Example 5.4.1 (Conservative extension with safety)

Consider the eTSS ECCSSub and new eTSS ECCSParTau consisting of the signature

(P, τAct; τ ; par)

with the types τ :→ τAct and par : P,P→ P. and the rule set RCCSTau

par(x, x′) τ−→y
.

Then by the previous theorem, ECCSSub ⊕ ECCSParTau is a conservative extension.

Clearly the new rule only allows transitions with a label with the new sort and

hence cannot add any transitions with a label of a sort from the first signature.

The lemma and the refining, abstracting and conservative extension up to

bisimulation results can be rephrased in a similar way. In each of these new

statements, I have added the safety condition, and removed the label-pureness

condition.

It may look as though it is also possible in the next lemma to remove the

condition that no extended tyxt rule from R1 has a label in the conclusion with

125

a sort from S0, since the safety condition prevents this from happening because

the terms in T(Σ1)P have sorts from S1−S0. This, however, is not correct since I

need to consider terms from T(Σ1)P when considering rules, and included in this

are variables from VP which have sorts from S0. This could be ‘fixed’ by insisting

that (S0 ∩ S1) = ∅, but this is too strong, as I want functions in F1 which accept

arguments with sorts from S0. So I want to keep the weaker condition and hence

I have to keep the condition on extended tyxt rules from R1.

Lemma 5.4.2 (Application of rules without label-pureness and with

safety)

Let Σi = (Si ∪ {P}, Fi) for i = 0, 1 be two signatures with Σ1 safe for S0. Let

Ei = (Σi, Ri) for i = 0, 1 be two eTSSs in extended tyft/tyxt format such that

E0⊕>E1 is defined. Moreover, let E0 be pure, and let E0⊕>E1 be type-1. Let

E ` t0 α−→ t with t0 ∈ T(Σ0)P. If the last rule used in the proof of E ` t0 α−→ t is

an extended tyft/tyxt rule from R0 then E0 ` t0
α−→ t.

Proof: The proof of this lemma is similar to the proof of Theorem 5.4.1. The

differences are that in the base case, the fact that a rule from R0 is being used is

the result of the conditions in the theorem, whereas in this lemma, it is assumed.

In the inductive step, in the theorem, I can apply induction directly from the fact

that σ(pi) ∈ T(Σ0)P, whereas in this lemma, I require some argument from the

conditions to show that a rule from R0 has been used and hence the induction

hypothesis can be applied.

I can also rephrase Theorems 5.3.1 and 5.3.2.

Theorem 5.4.2 (Refining extension up to bisimulation with respect to

a congruence without label-pureness and with safety))

Let Σi = (Si ∪ {P}, Fi) for i = 0, 1 be two signatures with Σ1 safe for S0. Let

Ei = (Σi, Ri) for i = 0, 1 be two eTSSs in extended tyft/tyxt format such that

E0⊕>E1 is defined. Moreover, let ≡0 and ≡1 be congruences over T(Σ0)P and

T(Σ1)P respectively such that ≡0 ⊕ ≡1 is conservative with respect to ≡0. If E0

is pure, and E0⊕>E1 is type-1, then E0⊕>E1 is a refining extension.

126

Proof: This proof is almost identical to the proof of Theorem 5.3.1. The only

place where label-pureness is considered in Theorem 5.3.1 is in the first item

where Lemma 5.3.1 is used, hence in this proof I can use Lemma 5.4.2 instead.

I need stronger conditions to show a similar result for abstracting extensions

as before.

Theorem 5.4.3 (Abstracting extension up to bisimulation with respect

to a congruence without label-pureness and with safety)

Let Σi = (Si ∪ {P}, Fi) for i = 0, 1 be two signatures with Σ1 safe for S0. Let

Ei = (Σi, Ri) for i = 0, 1 be two eTSSs in extended tyft/tyxt format such that

E0⊕>E1 is defined. Moreover, let ≡0 and ≡1 be congruences over T(Σ0)P and

T(Σ1)P respectively such that ≡0 ⊕≡1 is compatible with E0⊕>E1. If E0 is pure,

E1 is well-founded and E0⊕>E1 is type-0, then E0⊕>E1 is an abstracting extension.

Proof: This proof is almost identical to the proof of Theorem 5.3.2. The only

place where label-pureness is considered in Theorem 5.3.2 is when Lemma 5.3.1 is

used. Since E0⊕>E1 is type-0 and hence type-1, Lemma 5.4.2 can be used instead.

Corollary 5.4.1 (Conservative extension up to bisimulation with re-

spect to a congruence without label-pureness and with safety)

Let Σi = (Si ∪ {P}, Fi) for i = 0, 1 be two signatures with Σ1 safe for S0. Let

Ei = (Σi, Ri) for i = 0, 1 be two eTSSs in extended tyft/tyxt format such that

E0⊕>E1 is defined. Moreover, let ≡0 and ≡1 be congruences over T(Σ0)P and

T(Σ1)P respectively such that ≡0 ⊕≡1 is compatible with E0⊕>E1. If E0 is pure,

E1 is well-founded, and E0⊕>E1 is type-0, then E0⊕>E1 is a conservative extension.

Both Example 5.3.1 and Example 5.3.2 can be used as examples for these new

theorems since the signatures involved are safe.

In this section, I have given a different approach to dealing with the issue of

label-pureness. As will be seen in the next chapter, safety plays an important

rôle in comparing equivalences.

127

5.4.1 Counter-examples

All the previous counter-examples given in Sections 5.2.1 and 5.3.1 for label-

pureness are also counter-examples for safety, since they involve adding new func-

tion symbols with a range sort of the first eTSS. All the other counter-examples

in these sections also apply to the other condition in the theorems since none of

them involve adding function symbols with the incorrect sort.

5.5 Conclusion

In this chapter, I have looked at extensions to eTSSs achieved by summing two

eTSSs in a particularly manner. This extends previous results, and introduces

new definitions and results relating to extension up to bisimulation. I will discuss

the application of these results in the next chapter.

128

Chapter 6

Application of results

6.1 Introduction

This chapter looks at how the results of the previous two chapters can be applied

to process algebras. This needs to be done in two parts. The first involves

looking at the conditions required for the results of the previous two chapters

and seeing how this affects which algebras can be used to represent the labels of

the process algebras. The second part looks at how specific process algebras can

be represented in the extended tyft/tyxt format and how process algebras can be

compared.

In the first section, I take conditions from theorems of the previous two

chapters, and see what implications these conditions have on algebras that can

be used to represent the labels of a process algebra that is to be expressed in ex-

tended tyft/tyxt format. As described in earlier chapters, the extended tyft/tyxt

format is purely syntactic, and a mapping is required from the syntactic form of

the labels to the semantics of the labels of the process algebras. This is achieved

by using a Σ-algebra to represent the labels and then taking the unique homo-

morphism from the term algebra to this Σ-algebra. This homomorphism induces

a congruence over the terms and hence this can be used in the bisimulation that

is applied to process terms. My aim in this section is to show that the conditions

are not unreasonable, and in fact an additional condition, that of sort-similarity

can, in certain situations, ensure some of the conditions are met.

In the second section, I look at how certain process algebras can be expressed

in tyft/tyxt format. In order to express infinite rule sets, I introduce schemas and

129

schema variables. In the third section, I look at how the results of the previous

chapter can be applied to two process algebras.

6.2 Implications of conditions

A number of conditions were required to achieve the results in the previous two

chapters. For the congruence result, compatibility is required and for the ex-

tension results, sum of congruences are considered. I now investigate how these

affect the application of the results.

6.2.1 Implications of congruence compatibility

In the previous two chapters, compatibility (Definition 4.3.8, page 74) was re-

quired for a number of results, most notably the congruence result. I now look

at conditions on Σ-algebras which will ensure compatibility.

Given a set of rules R, I require that for each r ∈ R, and for any η in T(Σ)P

that appears on a transition in a premise of r or as in an argument to the function

in the conclusion of r, then

whenever σ(η) ≡ µ for µ ∈ T(Σ)P, there exists a substitution σ′ such

that µ = σ′(η) and σ(z) ≡ σ′(z) for all z ∈ VarP(η).

As an additional definition, for convenience, define a congruence ≡ to be com-

patible with η ∈ T(Σ)P if the above holds for η.

First, note that I am only interested in those function symbols that appear

in rules, since those are the only ones that can be considered when looking at

compatibility. Consider σ(η) ≡ µ, and assume that there is a Σ-algebra A, and

iA, the unique homomorphism from T(Σ) to A. The congruence ≡ is defined by

iA(λ) = iA(λ′)⇐⇒ λ ≡ λ′ ∀λ, λ′ ∈ T(Σ).

So if σ(η) ≡ µ, then iA(σ(η)) = iA(µ).

I wish to obtain a general result that holds for any signature Σ. Note that I

require that the term in question contains no repeated variables. This is not a

serious limitation—see the comments after Definition 4.3.8.

130

Proposition 6.2.1 (Conditions on Σ-algebra ensuring compatibility)

Let Σ = (S, F) be a signature, and let A be a Σ-algebra. Let ≡ be the congruence

associated with iA and let λ ∈ T(Σ) be a term with no repeated variables, then

≡ is compatible with λ if for all function symbols g that appear in λ with gA :

As1 × . . .×Asn → As,

• Im(gA) ∩ Im(gA1) = ∅ for all gA1 : As′1 × . . .×As′m → As,

• gA is injective.

Proof: Let α ≡ σ(λ) for some α ∈ T(Σ) and a closed substitution σ. I need

to find a substitution σ′ such that σ′(λ) = α and σ(z) ≡ σ′(z) for all z ∈ Var(λ).

The proof will be proceed by induction on the structure of λ. For the base case,

assume λ = z for z ∈ V and define σ′ as follows

σ′(z′) =

{
α if z′ = z

σ(z′) otherwise.

Then it is clear that the conditions for compatibility are satisfied. Next consider

λ = g(λ1, . . . , λn) where g : s1 . . . sn → s. Hence

iA(σ(g(λ1, . . . , λn))) = iA(α)

iA(g(σ(λ1), . . . , σ(λn))) = iA(α)

gA(iA(σ(λ1)), . . . , iA(σ(λn))) = iA(α).

Fact 1 gA(a1, . . . , an) = iA(α)⇒ α = g(µ1, . . . , µn) for some µ1, . . . , µn.

Proof: Suppose not, i.e. α = g1(µ′1, . . . , µ′m) for g1 6= g with g1 : s′1 . . . s′m → s.

Then

gA(a1, . . . , an) = iA(α)

= iA(g1(µ′1, . . . , µ
′
m))

= gA1 (iA(µ′1), . . . , iA(µ′m)).

Contradiction since Im(gA) ∩ Im(gA1) = ∅.

131

So by this fact, there exist µ1, . . . µn such that α = g(µ1, . . . , µn). Hence

gA(iA(σ(λ1)), . . . , iA(σ(λn))) = iA(g(µ1, . . . , µn))

gA(iA(σ(λ1)), . . . , iA(σ(λn))) = gA(iA(µ1), . . . , iA(µn))

iA(σ(λi)) = iA(µi) for all 1 6 i 6 n

(since gA is injective)

σ(λi) ≡ µi for all 1 6 i 6 n.

By the inductive hypothesis, there are substitutions σi such that for each 1 6 i 6
n, σi(λi) = µi, and σ(z) ≡ σi(z) for all z ∈ Var(λi). From these substitutions,

construct a substitution that fulfils the compatibility requirements. Let σ′ be

defined as follows

σ′(z) =

{
σi(z) if z ∈ Var(λi)
σ(z) otherwise.

This is well-defined since there are no repeated variables. Recall that

σ′(λ) = σ′(g(λ1, . . . , λn))

= g(σ′(λ1), . . . , σ′(λn))

= g(σ1(λ1), . . . , σn(λn))

= g(µ1, . . . , µn)

= α.

Also for any z ∈ Var(λ), σ′(z) = σi(z) for a unique 1 6 i 6 n, and σi(z) ≡ σ(z),

hence σ′(z) ≡ σ(z).

Hence, I have shown some conditions under which compatibility is obtained.

To sum up, for the congruence induced over the term algebra by another algebra

to be compatible for a certain open term, any function which appears in the open

term must be injective and must have an image which is disjoint from the image

of any other function.

6.2.2 Sums of congruences and Σ-algebras

In this section, I will prove some important results concerned with sums of con-

gruences and algebras. Although in the material presented so far, I have been

132

working with congruences in an abstract manner, it is also important to investig-

ate them as congruences induced by the Σ-algebras that model the actual process

algebra labels. If there are two signatures Σi = (Si, Fi), and two Σi-algebras, Ai,

for i = 0, 1, with Σ0⊕>Σ1 defined, under what circumstances can I construct a

Σ0⊕>Σ1-algebra, from A0 and A1? Note that here I am considering signatures

in general, and do not need to consider the distinguished sort P. I first require

some new definitions. The definition of the union of two many-sorted sets is

straightforward.

Definition 6.2.1 (Union of many-sorted sets)

Let S0 and S1 be two sets, and let Ai = {Ai,s}s∈Si be an Si-sorted set for i = 0, 1.

Let S = S0∪S1. Then the S-sorted union of A0 and A1 is defined as A = {As}s∈S
where

• As = A0,s if s ∈ S0 − S1

• As = A1,s if s ∈ S1 − S0

• As = A0,s ∪A1,s if s ∈ S0 ∩ S1

and is denoted s
⋃
i=0,1Ai.

I am interested in a particular class of signatures, namely those whose sums

satisfy the following definition.

Definition 6.2.2 (Sort-similar sum of signatures)

Let Σi = (Si, Fi) for i = 0, 1 be two signatures with Σ0⊕>Σ1 defined. Σ0⊕>Σ1 is

said to be sort-similar if for each s ∈ S0 ∩ S1, f ∈ F0 ∪ F1 with f : s1 . . . sn → s

implies f ∈ F0 ∩ F1.

This definition goes beyond that of the sum of two signatures where if a

function appears in the intersection of the two signatures, then it has the same

type in each signature, since here I require that any function that has a shared

result sort, must appear in both signatures. Note that this definition does not

contradict safety, since if f : s1 . . . sn → s ∈ F1 − F0, then it is possible under

sort-similarity that s 6∈ S0.

133

A result follows from this definition, which I will use later in this section.

Proposition 6.2.2 (Sort-similarity)

Let Σi = (Si, Fi) for i = 0, 1 be two signatures with Σ0⊕>Σ1 defined and sort-

similar. If t ∈ T(Σ0⊕>Σ1) has sort s ∈ S0∩S1, then t ∈ T(Σ0)∩T(Σ1). Moreover

T(Σ0⊕>Σ1) = T(Σ0) ∪T(Σ1).

Proof: For the first part of the result, consider t ∈ T(Σ0⊕>Σ1)s for s ∈ S0∩S1.

I proceed by induction on the structure of t. If t is a constant f :→ s then

f ∈ F0∩F1 and clearly t ∈ T(Σ0)∩T(Σ1). If t = f(t1, . . . , tn) for f : s1 . . . sn → s,

then f ∈ F0∩F1 and by the induction hypothesis ti ∈ T(Σ0)∩T(Σ1) for 1 6 i 6 n,

hence t ∈ T(Σ0) ∩T(Σ1).

Since clearly T(Σ0) ∪ T(Σ1) ⊆ T(Σ0⊕>Σ1), I need to show for any t ∈

T(Σ0⊕>Σ1) that either t ∈ T(Σ0) or t ∈ T(Σ1). I will proceed by induction

on the structure of t.

If t is a constant symbol, then clearly t ∈ T(Σ0)∪T(Σ1). Otherwise consider

t = f(t1, . . . , tn). Assume that f ∈ F0 without loss of generality, and that

f : s1 . . . sn → s, then s1 . . . sn, s ∈ S0. By the induction hypothesis, for 1 6 i 6 n,

ti ∈ T(Σ0) ∪T(Σ1). If any ti ∈ T(Σ1), then since si ∈ S0 ∩ S1, ti ∈ T(Σ0) also.

Hence for 1 6 i 6 n, ti ∈ T(Σ0), and hence t ∈ T(Σ0).

This result shows how under the condition of sort-similarity, no closed terms

can be created from operators from both signatures without being in both sets of

closed terms. I now look at how the sum of two algebras can be defined.

Definition 6.2.3 (Sum of algebras)

Let Σi = (Si, Fi) for i = 0, 1 be two signatures with Σ0⊕>Σ1 defined and sort-

similar. For i = 0, 1, let Ai = {Ai,s}s∈Si together with {fAi | f ∈ Fi} be

Σi-algebras such that the following conditions hold.

134

• for s ∈ S0 ∩ S1, A0,s = A1,s,

• for f ∈ F0∩F1 with f : s1 . . . sn → s, fA0(a1, . . . , an) = fA1(a1, . . . , an) for

all aj ∈ A0,sj for 1 6 j 6 n.

Define A0 ⊕A1 = s
⋃
i=0,1Ai plus the functions

⋃
i=0,1{fAi | f ∈ Fi}.

Note that the second condition relies on the fact that since f ∈ F0 ∩ F1,

si ∈ S0 ∩S1 for 1 6 i 6 n, hence fA0 and fA1 are defined on the same sets. Note

that because of the sort-similarity, the second condition applies to any function

that has a sort in S0 ∩ S1.

It is possible to omit the sort-similarity condition in Definition 6.2.3. Then

the second condition is still acceptable in that fA0 and fA1 are defined on the

same sets; however, it is too weak for the theorem I wish to prove. I give an

example.

Example 6.2.1 (Omission of sort-similarity)

Consider the {s}-sorted signature, Σ0 = ({s}, {f}) with f :→ s, and the {s}-
sorted signature, Σ1 = ({s}, {g}) with g :→ s. Clearly the sum of these two

signatures is not sort-similar. I will use the same set {a} for both the Σ0-algebra

A0 and Σ1-algebra A1. Let fA0 = a and gA1 = a. Then f ≡A0⊕A1 g since

iA0⊕A1(f) = iA0⊕A1(g), but f and g are not equated by ≡A0 ⊕≡A1.

It may be possible to work without sort-similarity—possibly the definition of

≡A0 ⊕ ≡A0 could be modified or the theorem could be changed to have a one-

way implication. However, as far as I can tell, sort-similarity is not problematic,

except for the fact that I need to show that I can define a Σ-algebra to represent

labels without having to consider terms with sort P. The reason I need to consider

this is because when giving an extension to a process algebra, I often want to add

new function symbols to sort P, however for sorts other than P, I am are only

interested in adding new sorts. I will present an argument below to show that

this does not cause problems.

There are other choices one could make for A0 ⊕ A1, such as defining the

carrier set for a sort s as the intersection of A0,s and A1,s. As far as I can see

there is no utility in taking this approach.

135

I now show that the following result holds.

Proposition 6.2.3 (Sum of algebras)

Let Σi = (Si, Fi) for i = 0, 1 be two signatures with Σ0⊕>Σ1 defined and sort-

similar. For i = 0, 1, let Ai = {Ai,s}s∈Si together with {fAi | f ∈ Fi} be

Σi-algebras with A0 ⊕A1 defined. Then A0 ⊕A1 is a (Σ0 ⊕Σ1)-algebra.

Proof: Σ0⊕>Σ1 = (S0 ∪ S1, F0 ∪ F1), and s
⋃
i=0,1Ai is an S0 ∪ S1-sorted family

of non-empty carrier sets. Moreover, it is clear that for each f ∈ F0 ∪ F1 there

is a total function fA0⊕A1 with the appropriate argument sorts and result sort,

regardless of whether f is in the intersection of F0 and F1 or not.

Since I have a (Σ0⊕>Σ1)-algebra, I can consider the unique homomorphism

iA0⊕A1 from T(Σ0⊕>Σ1) to A0 ⊕ A1. I would like to show that the equivalence

induced by this is the same as ≡A0⊕≡A1, and then I will know that when applying

these results to process algebras, I can merely form the sum of the algebras under

consideration.

Theorem 6.2.1 (Equivalence induced by sums of algebras)

Let Σi = (Si, Fi) for i = 0, 1 be two signatures with Σ0⊕>Σ1 defined and sort-

similar. For i = 0, 1, let Ai = {Ai,s}s∈Si together with {fAi | f ∈ Fi} be

Σi-algebras with A0⊕A1 defined. Let ≡A0⊕A1 denote the congruence defined by

the unique homomorphism from T(Σ0⊕>Σ1) to A0⊕A1; similarly, ≡A0 and ≡A1.

Then ≡A0⊕A1 = ≡A0 ⊕≡A1.

Proof: First note, that for any t ∈ T(Σ0⊕>Σ1), t ∈ T(Σ0) ∪ T(Σ1) by Pro-

position 6.2.2. I first wish to show that if t ∈ T(Σi), then iA0⊕A1(t) = iAi(t) for

i = 0, 1. I proceed by induction on the structure of t.

If t is a constant symbol, then this is clearly true. If t = f(t1, . . . , tn), then as-

sume t ∈ T(Σ0) without loss of generality. iA0⊕A1(f(t1, . . . , tn)) = fA0(iA0⊕A1(t1),

. . . , iA0⊕A1 (tn)) = fA0(iA0(t1), . . . , iA0(tn)) by the induction hypothesis and this

gives the required result.

136

Next, let t, t′ ∈ T(Σ0⊕>Σ1).

t ≡A0⊕A1 t
′ ⇒ t ≡A0 ⊕≡A1t

′: Let t ≡A0⊕A1 t
′, then since I have equivalence

this means that t and t′ have the same sort and hence they must be both in

T(Σ0) or T(Σ1). Assume without loss of generality that t, t′ ∈ T(Σ0). By

definition iA0⊕A1(t) = iA0⊕A1(t′), hence iA0(t) = iA0(t′). Therefore t ≡A0 t
′

and hence t ≡A0 ⊕≡A1t
′ as required.

t ≡A0 ⊕≡A1t
′ ⇒ t ≡A0⊕A1 t

′: I will proceed by induction on the definition of

≡A0 ⊕≡A1.

• t ≡A0 t
′ or t ≡A1 t

′. Assume t ≡A0 t
′, then by definition iA0(t) = iA0(t′)

and also t, t′ ∈ T(Σ0). It can be shown by a simple induction proof that

iA0(t) = iA0⊕A1(t). If t is a constant then this is immediate; otherwise

if t = f(t1, . . . , tn) then iA0(f(t1, . . . , tn) = fA0(iA0(t1), . . . , iA(tn)) =

fA0⊕A1(iA0⊕A1(t1), . . . , iA0⊕A1(tn)) by the induction hypothesis and

the definition of A0 ⊕A1, and this gives the required result.

• Clearly both t ≡A0⊕A1 t
′ and t ≡A0 ⊕≡A1t

′ if t = t′.

• If t ≡A0 ⊕≡A1t
′ by a symmetry argument, then t′ ≡A0 ⊕≡A1t, by a

shorter inference, hence t′ ≡A0⊕A1 t and therefore t ≡A0⊕A1 t
′ since

≡A0⊕A1 is symmetric.

• If t ≡A0 ⊕≡A1t
′ by a transitivity argument, then there exists t′′ ∈

T(Σ0⊕>Σ1) such that t ≡A0 ⊕≡A1t
′′ and t′′ ≡A0 ⊕≡A1t

′, hence by a

shorter inference t ≡A0⊕A1 t
′′ and t′′ ≡A0⊕A1 t

′, and therefore t ≡A0⊕A1

t′ since ≡A0⊕A1 is transitive.

• If t ≡A0 ⊕≡A1t
′ by a congruence argument, then t = f(t1, . . . , tn),

t′ = f ′(t′1, . . . , t′n) and ti ≡A0 ⊕≡A1t
′
i for 1 6 i 6 n, so by a shorter

inference ti ≡A0⊕A1 t
′
i for 1 6 i 6 n. Hence t ≡A0⊕A1 t

′, since ≡A0⊕A1

is a congruence.

These are general results for Σ-algebras. However, in my work with formats,

I deal with specific signatures that contain a distinguished element P and with

137

specific conditions on function symbols that do not have a result sort P. To recap,

given a signature Σ = (S ∪ {P}, F) where S does not contain P,

for any function symbol f ∈ F such that f : s1 . . . sn → s, whenever

s 6= P then for all 1 6 i 6 n, si 6= P.

Hence

Σ′ = (S, {f | f ∈ F, f : s1 . . . sn → s, s ∈ S})

is a valid signature, and in fact T(Σ′) = T(Σ)P because of the fact that all function

symbols in Σ′ do not refer to P. This is very convenient since I am interested in

congruences over T(Σ)P when considering bisimulations over T(Σ)P, and hence I

can consider T(Σ)P as the term algebra T(Σ′), and therefore consider Σ′-algebras

as representations of the labels of process algebras.

6.2.2.1 Conservativity

It can also be shown that ≡A0⊕A1 is conservative with respect to ≡A0 and ≡A1.

Proposition 6.2.4 (Sum of algebras induces conservative equivalence)

Let Σi = (Si, Fi) for i = 0, 1 be two signatures with Σ0⊕>Σ1 defined and sort-

similar. For i = 0, 1, let Ai = {Ai,s}s∈Si together with {fAi | f ∈ Fi} be

Σi-algebras with A0⊕A1 defined. Let ≡A0⊕A1 denote the congruence defined by

the unique homomorphism from T(Σ0⊕>Σ1) to A0⊕A1; similarly, ≡A0 and ≡A1.

Then ≡A0 ⊕≡A1 is conservative with respect to both ≡A0 and ≡A1 .

Proof: Let t, t′ ∈ T(Σ0) (without loss of generality) such that t ≡A0 ⊕≡A1t
′.

Hence t ≡A0⊕A1 t
′, so iA0⊕A1(t) = iA0⊕A1(t′). Hence since t, t′ ∈ T(Σ0), iA0(t) =

iA0(t′) and t ≡A0 t
′ as required.

6.2.2.2 Compatibility

Finally, I need to consider compatibility in the light of sums of algebras. In

the results that involve compatibility, I have only required that ≡0 ⊕ ≡1 be

compatible with R0 ∪ R1. As I have said previously, it is not clear that this can

be dealt with in a more general manner since compatibility depends on the label

138

terms that appear in the rules. One approach could be to require the congruences

to be compatible with any label term, but as seen earlier in this chapter, this would

impose very strong restrictions on the Σ-algebras that could be used, and is not

ideal.

However, it seems in the case of sums of algebras, I can make headway because

of the additional condition required on the signature.

Proposition 6.2.5 (Sum of algebras induces compatibility)

Let Σi = (Si, Fi) for i = 0, 1 be two signatures with Σ0⊕>Σ1 defined and sort-

similar. For i = 0, 1, let Ai = {Ai,s}s∈Si together with {fAi | f ∈ Fi} be

Σi-algebras with A0⊕A1 defined. Let ≡A0⊕A1 denote the congruence defined by

the unique homomorphism from T(Σ0⊕>Σ1) to A0⊕A1; similarly, ≡A0 and ≡A1.

Moreover, let Ei = (Σi, Ri) for i = 0, 1 be two eTSSs such that ≡Ai is compatible

with Ri. Then ≡A0 ⊕≡A1 is compatible with R0 ∪R1.

Proof: Since ≡Ai is compatible for Ri for i = 0, 1, I have two Si-sorted sets of

terms Ci for i = 0, 1 containing terms that appear on a transition in a premise

or as an argument to the function in the source of the conclusion of a rule in Ri

such that

whenever σ(η) ≡Ai µ for µ ∈ T(Σ)P, there exists a substitution σ′

such that µ = σ′(η) and σ(z) ≡Ai σ′(z) for all z ∈ VarP(η).

So I need to consider the following sorts:

s ∈ S0 − S1: Consider η ∈ T(Σ0)s. Since s 6∈ S1, then clearly no terms in T(Σ1)

can be equivalent under ≡A0⊕≡A1 to σ(η) for any σ. So consider σ(η)≡A0⊕

≡A1µ for some µ ∈ T(Σ0)s, then I can show that σ(η)≡A0µ and hence there

exists a substitution σ′ such that µ = σ′(η) and σ(z) ≡A0 σ
′(z) for all z ∈

VarP(η). But since≡A0 is contained in ≡A0⊕≡A1, then σ(z)≡A0 ⊕≡A1σ
′(z)

for all z ∈ VarP(η).

s ∈ S1 − S0: this is proved in a similar way to the previous one.

s ∈ S0 ∩ S1 Consider η ∈ T(Σ0)s ∩ T(Σ1)s. Consider σ(η)≡A0 ⊕ ≡A1µ for some

µ ∈ T(Σ0)s ∩ T(Σ1)s. It can be shown that σ(η) ≡A0 µ (and also that

139

σ(η) ≡A1 µ). Hence there exists a substitution σ′ such that µ = σ′(η) and

σ(z) ≡A0 σ
′(z) for all z ∈ VarP(η). But since ≡A0 is contained in ≡A0⊕≡A1,

then σ(z)≡A0 ⊕≡A1σ
′(z) for all z ∈ VarP(η).

To see why this does not hold in general for two equivalences≡0 and≡1 defined

on T(Σ0) and T(Σ1) compatible with two sets of rules R0 and R1 respectively, it

may be that for η that appears in the rules of R0, that σ(η) is also in T(Σ1) and

there exists µ′ ∈ T(Σ1), such that σ(η) ≡1 µ
′ but it is not possible to find σ′ such

that µ′ = σ′(η) and σ(z) ≡1 σ′(z) for all z ∈ VarP(η), since η does not appear in

the rules of R1.

The results relating to sums can be summarised as follows. Given the sort-

similar sum of two signatures, and two algebras of each signature respectively,

then

• the sum of two algebras is an algebra of the sum of the signatures,

• the equivalence induced by the sum of two algebras is the sum of the equi-

valences induced by each algebra,

• moreover, this equivalence is conservative with respect to each of the other

two equivalences,

• furthermore if given the sum of two eTSSs with the two congruences com-

patible with each eTSS respectively, then the equivalence induced by the

sum of the algebras is compatible with the sum of the eTSSs.

Hence, the condition of sort similarity is sufficient to obtain these relationships

between algebras and their sums.

In this section, I have looked at what constraints the conditions required for

the results of the previous two chapter impose on the algebras that are used to

represent structured labels, and I have also defined a new concept which produces

some positive results in the situations where it can be applied. It is clear that

these are not serious constraints and hence I will now proceed to look at applying

these results to process algebras from the literature.

140

6.3 Using extended tyft/tyxt format to express
process algebras

In this section, I look at how process algebras can be expressed in the extended

tyft/tyxt format. Before proceeding with the examples, I need to present a way

in which to specify infinite sets of rules by the use of rule schemas. Schemas

also allow the description of constants, and rules that do matching on labels.

This method of describing rules also is useful for expressing communication in

CCS, where because of the restrictions of the format, it is not possible to have

repeating variables in the labels of the premises. I assume a set of schema variables

V disjoint from any other variable set and any collection of function symbols.

Definition 6.3.1 (Rule schema)

Let Σ = (S ∪ P, F) be a suitable signature. Let V be an (S ∪ P)-sorted set of

schema variables, and V a (S ∪ P)-sorted set of variables. Consider T (Σ, V ∪ V),

the set of open terms over variables and schema variables. A rule schema is

denoted{{pi λi−→ p′i | i ∈ I}
p

λ−→ p′
| C1, . . . , Cn

}
where I is an index set, pi, p′i, p, p′ ∈ T (Σ, V ∪ V)P, and λi, λ ∈ T (Σ, V ∪ V)P for

i ∈ I . C1, . . . , Cn are conditions on the schema variables involving equality and

inequality, and conditions on whether terms are open or closed and which sorts

they may have. This notation is understood to mean the set of rules created by

replacing each schema variable by any closed term in T(Σ) in accordance with the

conditions specified. This can also be viewed as applying all closed substitutions

on schema variables which satisfy the conditions.

Proposition 6.3.1 (Rule schemas in extended tyft/tyxt format)

Let Σ = (S ∪ P, F) be a suitable signature. Given a rule schema

{{pi λi−→ p′i | i ∈ I}
p

λ−→ p′
| C1, . . . , Cn

}
in extended tyft/tyxt format, i.e. the conditions hold for the extended tyft/tyxt

format on the variables from V and with respect to the form of the rule, but the

141

terms are drawn from T (Σ, V ∪ V); then the rules generated by the schema are

in extended tyft/tyxt format. Moreover, if the rule schema is well-founded with

respect to the variables in V , then all the rules generated are well-founded.

Proof: The conditions on the variables from V hold, and replacing any schema

variable with a closed term, cannot add new variables from V to the rules, hence

any rules generated by the rules schema is in extended tyft/tyxt format. By a

similar argument, it is possible to show that well-founded schema rules generate

well-founded rules.

It is not possible to do a similar proof for compatibility since a schema variable

(with a sort that is not P) may be replaced by a term in the transitions of a premise

or as an argument to the function in the source of the conclusion. To check for

compatibility with respect to a given congruence it is necessary to ensure that

any closed term that may be substituted for an schema variable is not congruent

to any other closed term. This may appear to be a strong condition, but since

the congruence respects sorts, it may only mean that congruence must be the

identity on one sort.

In the earlier work involving formats, most authors have used schemas, al-

though not explicitly. In my work, because of the need to give an account of how

information is passed from action terms to process terms, these concerns are dealt

with in a more explicit manner.

Notation In the following, I use x, y, . . . to denote variables of sort P, z, . . .

subscripted with a sort to denote variables of sort P. I also use X, Y, . . . to denote

schema variables of sort P and Z, . . . subscripted with a sort to denote schema

variables of sort P.

6.3.1 CCS

Here I will look at expressing CCS in this format. Let A and Const be two disjoint

sets, disjoint from the variables and schema-variables and any other function

symbols. I will also use A as a sort name—this does not cause problems. Consider

the algebra, ΣCCS,

142

(A,Act, τAct,P;

{a}a∈A, τ, nil, {Cn}Cn∈Const;

act, act, pref, pref, prefτ , plus, par, rename, restrict)

with the sorts

a :→ A ∀a ∈ A act : A→ Act plus : P,P→ P

τ :→ τAct act : A→ Act par : P,P→ P

nil :→ P pref : A,P→ P rename : A,A,P→ P

Cn :→ P ∀Cn ∈ Const pref : A,P→ P restrict : A,P→ P

prefτ : P→ P

Also assume that there is a way in which closed terms are assigned to elements

of Const, as in the standard CCS approach where the meaning of constant agent

A is given by a process P , and this is described by a defining equation A
def= P .

The rules and rules schemas are given in Tables 6.1 and 6.2. Let the rules from

Table 6.1 and the rules generated by the rule schemas in Table 6.2 be denoted

RCCS, and the eTSS defined by ΣCCS and RCCS be ECCS. I have used names for

the operators, as opposed to symbols, for clarity. I have defined the signature

so that the non-τ actions and τ actions have different sorts. This is not strictly

necessary.

In most cases the rules are straightforward. There are three different prefix

operators pref, pref and prefτ , and two label operators act and act giving the cor-

rect form to the action depending on the prefix function. The choice and parallel

operator rules in Table 6.1 are straightforward. The parallel communication rule

schema in Table 6.2 requires that actions are matched, hence the form. Note that

this rule schema could have been written as{ x
act(ZA)
−−−−→ y x′

act(ZA)
−−−−→ y′

par(x, x′) τ−→par(y, y′)

}
This may look as though it is not in extended tyft/tyxt form because of the

repeated variables in the labels of the premises; however since they are schema

variables and by the argument above, it is clear that all rules generated by this

schema are in extended tyft/tyxt format.

143

pref(zA, x)
act(zA)−−−−→ x pref(zA, x)

act(zA)
−−−−→ x prefτ(x) τ−→x

x
zAct−−→ y

plus(x, x′)
zAct−−→ y

x
zAct−−→ y

plus(x′, x)
zAct−−→ y

x
τ−→y

plus(x, x′) τ−→y

x
τ−→y

plus(x′, x) τ−→y

x
zAct−−→ y

par(x, x′)
zAct−−→ par(y, x′)

x
zAct−−→ y

par(x′, x)
zAct−−→ par(x′, y)

x
τ−→y

par(x, x′) τ−→par(y, x′)
x

τ−→y

par(x′, x) τ−→par(x′, y)

x
τ−→y

rename(zA, z
′
A, x) τ−→ rename(zA, z

′
A, y)

x
τ−→y

restrict(z′A, x) τ−→ restrict(z′A, y)

Table 6.1: Rules for CCS

144

{ x
act(ZA)
−−−−→ y x′

act(Z′A)
−−−−→ y′

par(x, x′) τ−→par(y, y′)
| ZA = Z ′A

}
{ x

act(ZA)−−−−→ y x′
act(Z′A)−−−−→ y′

par(x′, x) τ−→par(y′, y)
| ZA = Z ′A

}
{ x

act(ZA)
−−−−→ y

rename(Z ′A, Z
′′
A, x)

act(Z′′A)
−−−−→ rename(Z ′A, Z

′′
A, y)

| ZA = Z ′A
}

{ x
act(ZA)
−−−−→ y

rename(Z ′A, Z
′′
A, x)

act(Z′′A)
−−−−→ rename(Z ′A, Z

′′
A, y)

| ZA = Z ′A
}

{ x
act(ZA)−−−−→ y

rename(Z ′A, Z
′′
A, x)

act(ZA)
−−−−→ rename(Z ′A, Z

′′
A, y)

| ZA 6= Z ′A
}

{ x
act(ZA)−−−−→ y

rename(Z ′A, Z
′′
A, x)

act(ZA)−−−−→ rename(Z ′A, Z
′′
A, y)

| ZA 6= Z ′A
}

{ x
act(ZA)
−−−−→ y

restrict(Z ′A, x)
act(ZA)−−−−→ restrict(Z ′A, y)

| ZA 6= Z ′A
}

{ x
act(ZA)−−−−→ y

restrict(Z ′A, x)
act(ZA)
−−−−→ restrict(Z ′A, y)

| ZA 6= Z ′A
}

{ X
zAct−−→ y

Cn
zAct−−→ y

| Cn def= X,Cn ∈ Const
}

{ X
τ−→ y

Cn τ−→ y
| Cn def= X,Cn ∈ Const

}

Table 6.2: Rule schemas for CCS

145

The τ -forms of the restriction and relabelling operators are straightforward

and given in Table 6.1. The non-τ forms given as rule schemas are more complex

and require some discussion. Because of the syntactic nature of the rules, and

the need to do syntactic matching in the parallel communication rule, relabelling

has been difficult to implement and what I have achieved here is a subset of CCS

relabelling. The operator has three arguments—the action to be changed, the

action that it should be changed to and the process, and the rules are defined

in the obvious way. Hence for any finite subset of A, it is possible to define a

function, by repeated (but only finite) use of the rename operator. However, in

general, it is not possible to define a function on all of A, if A is infinite. There

is an exception to this and that involves constant functions and can be done by

introducing a new operator rename′ and the rules

x
act(zA)
−−−−→ y

rename′(z′A, x)
act(z′A)
−−−→ rename(z′A, y)

x
act(zA)
−−−−→ y

rename′(z′A, x)
act(z′A)−−−→ rename(z′A, y)

x
τ−→ y

rename′(z′A, x) τ−→ rename(z′A, y)

The restriction rules have a similar limitation—restriction can only be done on

a finite subset of A, by repeated use of the restriction operator which takes as

arguments the action to be restricted on and the process term. There may be

ways to get around these limitations and reasonably remain within the world of

rules and rule schemas, but I have not yet seen how to do this.

The next step in the definition is to look for the algebra that will be used to

represent the actual process algebra labels. In this case, there is no requirement for

an equivalence relation between labels, and hence the term algebra and syntactic

equivalence can be used.

In conclusion, it is clear that CCS is not simple to represent in this format,

mainly because of the matching required in the communication rules. There is

another approach to matching which involves the use of undefined transitions—I

will demonstrate this in the next example.

Finally, since all rules in RCCS are in extended tyft/tyxt format, ∼ECCS
Id is a con-

gruence for nil, pref, pref, prefτ , plus, par, rename, rename′, restrict and {Cn}Cn∈Const.

146

6.3.2 Variants of CCS

I now look at how one signature and rule set can be used to represent different

process algebras by varying the algebra used to represent the labels.

Let A be a (countably infinite) set of labels (denoted a) disjoint from previously

defined sets and let L be a (countably infinite) set of labels (denoted l) disjoint

from previously defined sets. I also use A and L as sort names.

Consider the signature ΣCCSGen,

(A, L,Act,P;

{a}a∈A, τ, {l}l∈L, nil, {Cn}Cn∈Const,⊥A,⊥Act,⊥L;

pref, pref, prefτ , plus, par, rename, restrict, loc

act, act, comb, app, ren, restr)

with the sorts

a :→ A ∀a ∈ A nil :→ P

l :→ L ∀l ∈ L Cn :→ P ∀Cn ∈ Const

τ :→ Act prefτ : P→ P

act : A, L→ Act pref : A,P→ P

act : A, L→ Act pref : A,P→ P

app : L,Act→ Act loc : L,P→ P

comb : Act,Act→ Act par : P,P→ P

restr : A,Act→ Act restrict : A,P→ P

ren : A,A,Act→ Act rename : A,A,P→ P

⊥A :→ A plus : P,P→ P

⊥L :→ L

⊥Act :→ Act

Also assume that there is a way in which closed terms are assigned to elements

of Const. The rules are given in Table 6.3 and the rules schemas in Table 6.4.

Let the rules given by these rules and rule schemas be denoted RCCSGen, and the

eTSS defined by ΣCCSGen and RCCSGen be ECCSGen.

Note that I have introduced a ‘bottom’ element for each label sort. I carry

this through to the carrier sets for the label algebra, and use these elements to

147

pref(zA, x)
act(zA,new(zL))
−−−−−−−−→ loc(zL, x)

pref(zA, x)
act(zA,new(zL))−−−−−−−−→ loc(zL, x)

prefτ(x) τ−→x

x
zAct−−→ y

plus(x, x′)
zAct−−→ y

x
zAct−−→ y

plus(x′, x)
zAct−−→ y

x
zAct−−→ y

par(x, x′)
zAct−−→ par(y, x′)

x
zAct−−→ y

par(x′, x)
zAct−−→ par(x′, y)

x
zAct−−→ y

rename(zA, z
′
A, x)

ren(zA,z
′
A,zAct)−−−−−−−−→ rename(zA, z

′
A, y)

x
zAct−−→ y

restrict(zA, x)
restr(zA,zAct)−−−−−−−→ restrict(zA, y)

x
zAct−−→ y x′

z′Act−−→ y′

par(x, x′)
comb(zAct,z

′
Act)−−−−−−−−→ par(y, y′)

x
zAct−−→ y

loc(zL, x)
app(zL ,zAct)−−−−−−→ loc(zL, y)

Table 6.3: Rules for CCSGen

148

{ X
zAct−−→ y

Cn
zAct−−→ y

| Cn def= X,Cn ∈ Const
}

Table 6.4: Rule schemas for CCSGen

represent labels which are undefined. Any transition with a label term that is

equivalent to an undefined constant is not considered in the bisimulation. This

allows for a simpler definition of communication. Instead of requiring matching

in the communication rule, there is now a term on the transition that is the com-

bination of the two terms from the transitions of each premise. If the combination

is meaningful (for example, in CCS, if one label is the complement of the other),

then the transition will be considered in the bisimulation. This also permits use

of the same signature and rule set for different process algebras.

6.3.2.1 CCS with locations

In CCS with locations, transitions are labelled with an additional string of atomic

locations and a location prefixing operator is introduced. Each time an action is

performed, a location is associated with it, and the location prefixing operator

ensures that location information about past actions with similar locations are

added to the transition of a new action. See page 10 for an example.

I need to define a ΣCCSGen-algebra AL to represent the actual process algebra

labels of CCS with locations. For all the algebras in this section, I will assume

that there is a set of actions A (with an action denoted a) such that there is an

action in A for each a in A. I will also assume that there is a set of labels L (with

a label denoted l) such that there is a label in L for each l in L. I need to define

the carrier set for each sort (see Table 6.6), and each function of the algebra (see

Table 6.5). The function combAL illustrates how the labels for communication

work.

149

τAL = τ

aAL = a ∀a ∈ A
lAL = l ∀l ∈ L

actAL(ζ1, ζ2) =

{
(ζ1, ζ2) if ζ1 ∈ A ∪A and ζ2 ∈ L+

⊥Act otherwise

actAL(ζ1, ζ2) =

{
(ζ1, ζ2) if ζ1 ∈ A and ζ2 ∈ L+

⊥Act otherwise

appAL(ζ1, ζ2) =

(ζ2,1, ζ1ζ2,2) if ζ1 ∈ L and ζ2 = (ζ2,1, ζ2,2)

with ζ2,1 ∈ A and ζ2,2 ∈ L+

⊥Act otherwise

combAL(ζ1, ζ2) =

τ if for i = 1, 2, ζi = (ζi,1, ζi,2), ζi,1 ∈ A ∪ A,

ζi,2 ∈ L+ and ζ1,1 = ζ2,1

⊥Act otherwise

renAL(ζ1, ζ2, ζ3) =

(ζ2, ζ3,2) if ζ1, ζ2 ∈ A, ζ3 = (ζ3,1, ζ3,2) with ζ3,1 ∈ A,
ζ3,2 ∈ L+ and ζ1 = ζ3,1

(ζ2, ζ3,2) if ζ1, ζ2 ∈ A, ζ3 = (ζ3,1, ζ3,2) with ζ3,1 ∈ A,
ζ3,2 ∈ L+ and ζ1 = ζ3,1

ζ3 if ζ1, ζ2 ∈ A, ζ3 = (ζ3,1, ζ3,2) with ζ3,1 ∈ A ∪A,
ζ3,2 ∈ L+, ζ1 6= ζ3,1 and ζ1 6= ζ3,1

⊥Act otherwise

restrAL(ζ1, ζ2) =

ζ2 if ζ1 ∈ A, ζ2 = (ζ2,1, ζ2,2) with ζ2,1 ∈ A ∪ A,

ζ2,2 ∈ L+, ζ1 6= ζ2,1 and ζ1 6= ζ2,1

⊥Act otherwise

⊥ALA = ⊥A

⊥ALL = ⊥L

⊥ALAct = ⊥Act

Table 6.5: Functions AL

150

Sort Carrier set

A A ∪ {⊥A}
L L ∪ {⊥L}
Act ((A ∪A)× L+) ∪ {τ} ∪ {⊥Act}

Table 6.6: Carrier sets for AL

Sort Carrier set

A A ∪ {⊥A}
L L

Act ((A ∪A)× L+) ∪ {τ} ∪ {⊥Act}

Table 6.7: Carrier sets for ALn

6.3.2.2 CCS with n locations

A variant on CCS with locations is to only allow a finite set of locations. This

can be done by defining a ΣCCSGen-algebra ALn to represent the actual process

algebra labels. Let num be a bijection from L to N, and assume that n, the

number of locations, is given. Denote l such that num(l) = k as lk. The carrier

sets and functions for ALn are given in Tables 6.7 and 6.8 respectively. Note that

the only difference from AL is in actALn and actALn .

There are different choices that can be made for sorts and functions. For

example, the carrier for L could be {l1, . . . , ln} ∪ {⊥L} and the function lALn

could be defined as

lALn =

{
li if num(l) = i and 1 6 i 6 n

⊥L otherwise

or

lALn =

{
li if num(l) = i and 1 6 i 6 n

ln if num(l) = i and i > n

151

τALn = τ

aALn = a ∀a ∈ A
lALn = l ∀l ∈ L

actALn (ζ1, ζ2) =

{
(ζ1, ζ2) if ζ1 ∈ A ∪A, ζ2 ∈ L and num(l) 6 n

⊥Act otherwise

actALn (ζ1, ζ2) =

{
(ζ1, ζ2) if ζ1 ∈ A, ζ2 ∈ L and num(l) 6 n
⊥Act otherwise

appALn (ζ1, ζ2) =

(ζ2,1, ζ1ζ2,2) if ζ1 ∈ L and ζ2 = (ζ2,1, ζ2,2)

with ζ2,1 ∈ A and ζ2,2 ∈ L+

⊥Act otherwise

combALn (ζ1, ζ2) =

τ if for i = 1, 2, ζi = (ζi,1, ζi,2), ζi,1 ∈ A ∪A,

ζi,2 ∈ L+ and ζ1,1 = ζ2,1

⊥Act otherwise

renALn (ζ1, ζ2, ζ3) =

(ζ2, ζ3,2) if ζ1, ζ2 ∈ A, ζ3 = (ζ3,1, ζ3,2) with ζ3,1 ∈ A,
ζ3,2 ∈ L+ and ζ1 = ζ3,1

(ζ2, ζ3,2) if ζ1, ζ2 ∈ A, ζ3 = (ζ3,1, ζ3,2) with ζ3,1 ∈ A,
ζ3,2 ∈ L+ and ζ1 = ζ3,1

ζ3 if ζ1, ζ2 ∈ A, ζ3 = (ζ3,1, ζ3,2) with ζ3,1 ∈ A ∪A,
ζ3,2 ∈ L+, ζ1 6= ζ3,1 and ζ1 6= ζ3,1

⊥Act otherwise

restrALn (ζ1, ζ2) =

ζ2 if ζ1 ∈ A, ζ2 = (ζ2,1, ζ2,2) with ζ2,1 ∈ A ∪A,

ζ2,2 ∈ L+, ζ1 6= ζ2,1 and ζ1 6= ζ2,1

⊥Act otherwise

⊥ALnA = ⊥A

⊥ALnL = ⊥L

⊥ALnAct = ⊥Act

Table 6.8: Functions for ALn

152

Sort Carrier set

A A ∪ {⊥A}
L N
Act Am = ((A ∪ A ∪ {τ} ∪ {δ})× . . .× (A ∪A ∪ {τ} ∪ {δ})︸ ︷︷ ︸

m times

∪{⊥Act}

Table 6.9: Carrier sets for Am

Note that in the second definition that the bottom element is not used. Instead

all constants that would be mapped to an element outside the finite label set are

mapped to ln.

6.3.2.3 Multiprocessor CCS

Multiprocessor CCS has transition labels which are m-tuples and represent m

processors upon which actions can occur. Each element of the tuple can either

be idle (represented by δ) or be filled with an action or τ -action. See page 24 for

an example. A formal definition of a subset of this process algebra is given in

Section 6.4.

I now need to define a ΣCCSGen-algebra Am to represent the actual process

algebra labels. The carrier sets and functions for Am are given in Tables 6.9

and 6.10 respectively. Let (a1, . . . , am) +m (b1, . . . , bm) be defined as equal to

(c1, . . . , cm) where for all 1 6 i 6 n

ci =

ai if bi = δ

bi if ai = δ

τ if ai = bi

This partial function is used in communication.

An important issue is whether these process algebras expressed in this format

are actually the same as the original process algebras, or at least whether they

result in bisimulations that are identical. For the location process algebras, I have

used a slight modification whereby transitions with both actions and locations are

153

τAm = τ

aAm = a ∀a ∈ A
lAm = num(l) ∀l ∈ L

actAm(ζ1, ζ2) =

m︷ ︸︸ ︷

(δ, . . . , ζ1, . . . , δ) if ζ1 ∈ A ∪ {τ} and ζ2 ∈ N+ where
ζ1 is in the ζ2-th position of the vector

⊥Act otherwise

actAm(ζ1, ζ2) =

m︷ ︸︸ ︷

(δ, . . . , ζ1, . . . , δ) if ζ1 ∈ A and ζ2 ∈ N+ where
ζ1 is the ζ2-th position of the vector

⊥Act otherwise

appAm(ζ1, ζ2) =

{
ζ2 if ζ1 ∈ N+ and ζ2 ∈ Am − {⊥Act}
⊥Act otherwise

combAm(ζ1, ζ2) =

{
ζ1 +m ζ2 if ζ1, ζ2 ∈ Am − {⊥Act} and ζ1 +m ζ2 defined
⊥Act otherwise

renAm(ζ1, ζ2, ζ3) =
{
⊥Act otherwise

restrAm(ζ1, ζ2) =

ζ2 if ζ1 ∈ Am− {⊥Act}, ζ2 = (ζ2,1, . . . , ζ2,n)

with ζ1 6= ζ2,i and ζ1 6= ζ2,i for all 1 6 i 6 n
⊥Act otherwise

⊥AmA = ⊥A

⊥AmL = 0
⊥AmAct = ⊥Act

Table 6.10: Functions for Am

154

used in the communication rules, whereas in the original definition, transitions

with τ -actions were derived from basic CCS rules. This does not result in a

different transition system. For the case of multiprocessor CCS, it can be seen by

inspection that when quotiented by the induced equivalence, the same transition

system is obtained.

6.3.3 Discussion

In the previous section, I showed three different algebras for representing the

labels of three different actual process algebras. Each of these algebras induce an

equivalence over the ground terms of the signature, and this equivalence can then

be used to define a bisimulation or semantic equivalence. Let the equivalence

defined by the algebra AL be denoted ∼L (this is the bisimulation for standard

CCS with locations). Let the equivalence defined by ALn be denoted ∼Ln (this is

the bisimulation for CCS with n locations). Finally, let the equivalence defined

by Am be denoted ∼m (this is the bisimulation for CCS with m multiprocessors).

Note that ∼1 is the same as Milner’s strong equivalence over CCS [Kri96].

It is clear that all of these equivalences are congruences with respect to the

process operators, since they are all in extended tyft/tyxt format.

I next look at the relationships between these equivalences. First note that

for m = 1, ∼L ⊂ ∼1 = ∼. For m > 2, ∼L 6= ∼m. The counter-examples are as

follows.

Counter-example 6.3.1 (Location equivalence not comparable with mul-

tiprocessor equivalence)

(a.c | c)\{c}+ (c | c.a)\{c}
∼L
6∼m

a | τ

(a.c+ b.d | c.b+ d.a)\{c, d}
∼m
6∼L

(a.c+ b.d | c.b+ d.a)\{c, d}+ a.τ.b

(I give the processes in slightly different notation to that used earlier in the

chapter to aid readability.)

155

The second pair above would seem to indicate multiprocessor bisimulation

may be the same as global cause bisimulation (causal bisimulation). However,

the following counter-examples show that this is not the case.

Counter-example 6.3.2 (Global cause equivalence not comparable with

multiprocessor equivalence)

(a.c | c)\{c}+ (c | c.a)\{c}
∼c
6∼m

a | τ

a | b
∼m
6∼c

a | b+ a.b

(I give the processes in slightly different notation to that used earlier in the

chapter to aid readability.)

I now look at ∼L and ∼Ln. First note that ∼L1 ⊂ ∼ since a | b 6∼L1
a.b+ b.a.

Also ∼L ⊂ ∼L1, for example

(a.c.b | d.c.b)\{c}
∼L1

6∼L
(a.c.(b | b) | d.c)\{c}

This example also shows that ∼Ln ⊂ ∼L1 for all n > 2.

An interesting question relates to how many locations are required to obtain

full location equivalence. Intuitively, it seems that at least that two locations are

needed to distinguish between different parallel components, and this is supported

by the above processes. Because each action may occur at any location, and the

greatest arity of any dynamic operator (namely the parallel operator) is two, it

may be possible to show that at most two location are needed. This question

cannot be answered by the results in Chapter 5 and is an issue for further work.

Finally, I need to consider ∼Ln and ∼n. For n = 1, ∼L1 ⊂ ∼1 = ∼. For n > 2,

the processes give in Counter-Example 6.3.1 can be used to show that ∼Ln and

∼n are not comparable.

Since these process algebras are not comparable for the most part, it is not

possible to apply the results of Chapter 6. I will consider some different process

algebras in the next section. In this section I have demonstrated that a number

of process algebras can be expressed in this format. An obvious question relates

156

to whether there are any process algebras which cannot be expressed. The global

process algebra of Kiehn [Kie94] gives some problems. First, in the definition of

the parallel operator for communication, syntactic substitution is used to take

information from the transitions of the premises into the processes in the target

of the conclusion, and this information then affects further transitions made by

the target term. However, in this case (but perhaps not generally) it is possible

to define a new operator to achieve the same effect. A more serious problem is

the fact that the definition of the bisimulation requires that only transitions with

fresh causes are to be considered in the bisimulation, and if this is weakened a

different equivalence is obtained. It is not clear how this can be dealt with in the

new format.

6.4 Comparing two semantic equivalences

In this section, I will compare the multiprocessor equivalence of Krishnan [Kri96]

and the pomset bisimulation of Castellani [Cas88]. These equivalences have not

been compared previously. The approach I will take involves results from the

previous chapter, and is done in two distinct steps. The first step involves to

showing that the extension is a refining one, and the second step involves showing

two equivalences are the same.

I will work with a similar signature to that of the previous examples; however,

it will be somewhat simplified to deal only with the operators for which pomset

bisimulation is defined.

Let A be a set of actions disjoint from any collection of variables and let L be

a set of labels disjoint from previously defined sets. Consider the signature ΣMP

with SMP and FMP as follows,

(A, L,Act,P; {a}a∈A, {l}l∈L, nil, {Cn}Cn∈Const,⊥A,⊥Act,⊥L;

pref, plus, par, act, comb,)

and

157

pref(zA, x)
act(zA,new(zL))
−−−−−−−−→ x

x
zAct−−→ y

plus(x, x′)
zAct−−→ y

x
zAct−−→ y

plus(x′, x)
zAct−−→ y

x
zAct−−→ y

par(x, x′)
zAct−−→ par(y, x′)

x
zAct−−→ y

par(x′, x)
zAct−−→ par(x′, y)

x
zAct−−→ y x′

z′Act−−→ y′

par(x, x′)
comb(zAct,z

′
Act)−−−−−−−−→ par(y, y′)

{ X
zAct−−→ y

Cn
zAct−−→ y

| Cn def= X,Cn ∈ Const
}

Table 6.11: Rules and rule schemas for MP

a :→ A ∀a ∈ A nil :→ P

l :→ L ∀l ∈ L Cn :→ P ∀Cn ∈ Const

act : A, L→ Act pref : A,P→ P

comb : Act,Act→ Act par : P,P→ P

⊥A :→ A plus : P,P→ P

⊥L :→ L

⊥Act :→ Act

Also assume that there is a way in which closed terms are assigned to elements

of Const. The rules and rule schemas are given in Table 6.11. Let the rules given

by these rules and rule schemas be denoted RMP, and the eTSS defined by ΣMP

and RMP be EMP.

158

6.4.1 Multiprocessor CCS

Multiprocessor CCS was mentioned in the previous section, but here I give the

rules for the subset with which I am dealing.

6.4.1.1 Definition of n multiprocessor equivalence

Let A be a set of actions and consider the grammar P

P ::= a.P | 0 | P + P | P |P

for a ∈ A. The elements of A are atomic actions.

Let On denote the set of n-tuples over A ∪ {δ}, and let Allocate(a) = {O ∈

On | ∃i, O(i) = a, ∀j 6= i, O(j) = δ}. Also define the partial function +n on

O ×O → O as O1 +n O2 = O where

O(x) =

{
O1(x) if O2(x) = δ

O2(x) if O1(x) = δ

(Note that the notation used in this section does not follow the conventions used

in the rest of the document.) The rules are given in Table 6.12. The bisimulation

is defined in the standard manner.

An n multiprocessor bisimulation R is a binary relation such that for any

(p, q) ∈ R and S ∈ On, the following holds

1. p S−→ p′ implies there exists q′ such that q S−→ q′ and (p′, q′) ∈ R.

2. q S−→ q′ implies there exists p′ such that p S−→ p′ and (p′, q′) ∈ R.

6.4.1.2 Expressing n multiprocessor equivalence

I now need to define a ΣMP-algebra An to represent the actual process algebra

labels for multiprocessor CCS. I assume that L is a infinite countable set and

num is a bijection from L to N, and moreover that n, the number of processors,

is given.

Also let (a1, . . . , an) +n (b1, . . . , bn) be defined as equal to (c1, . . . , cn) where

for all 1 6 i 6 n

ci =

{
ai if bi = δ

bi if ai = δ

159

a.p
O−→ p

∀O ∈ Allocate(a)

p
S−→ p′

p + q
S−→ p′

p
S−→ p′

q + p
S−→ p′

p
S−→ p′

p | q S−→ p′ | q
p

S−→ p′

q | p S−→ q | p′

p
S−→ p′ q

S′−→ q′

p | q S+nS′−−−→ p′ | q′

Table 6.12: Rules for n multiprocessor CCS

Sort Carrier set

A A ∪ {⊥A}
L N
Act An = ((A ∪ {δ})× . . .× (A ∪ {δ})︸ ︷︷ ︸

n times

∪{⊥Act}

Table 6.13: Carrier sets for An

160

aAn = a ∀a ∈ A
lAn = num(l) ∀l ∈ L

actAn(ζ1, ζ2) =

(

ζ2−1︷ ︸︸ ︷
δ, . . . , δ, ζ1,

n−ζ2︷ ︸︸ ︷
δ, . . . , δ) if ζ1 ∈ A ∪ {τ} and ζ2 ∈ N+

where ζ1 is in the ζ2-th
position of the vector

⊥Act otherwise

combAn(ζ1, ζ2) =

{
ζ1 +n ζ2 if ζ1, ζ2 ∈ An − {⊥Act} and ζ1 +n ζ2 defined
⊥Act otherwise

⊥AnA = ⊥A

⊥AnL = 0
⊥AnAct = ⊥Act

Table 6.14: Functions for An

The carrier sets and functions for An are given in Tables 6.13 and 6.14.

An important point to note is that the bisimulation equivalences that will

be considered in this section will disregard transitions which are labeled with

elements that are equivalent to undefined elements. Hence any transition label

with sort s that is equivalent under the induced equivalence to ⊥s will be ignored

when defining semantic equivalence between process terms. However, I will use

the same notation, namely ∼E≡A .

6.4.2 An extension

I now wish to create a new process algebra to represent pomset CCS. I do this

by giving an extension to EMP. I first give the definition of pomset CCS.

6.4.2.1 Definition of pomset equivalence

Let A be a set of actions and consider the grammar P with a ∈ A

P ::= a : P | NIL | P + P | P |P

161

The elements of A are atomic actions. General actions come from the grammar

B with a ∈ A

B ::= a : B | NIL | B|B.

These actions are referred to as Act. There are two axioms over Act

u | v = v | u

u | (v | w) = (u | v) | w

and they define an equivalence ≡ over Act (Note that the notation used in this

section does not follow the conventions of the rest of the document.) The rules

are given in Table 6.15. The bisimulation is defined with respect to ≡, but apart

from that has the standard definition.

A pomset bisimulation R is a binary relation such that for any (p, q) ∈ R and

u ∈ Act, the following holds

1. p u−→ p′ implies there exist q′ and v such that q v−→q′, u ≡ v and (p′, q′) ∈ R.

2. q u−→ q′ implies there exist p′ and v such that p v−→p′, u ≡ v and (p′, q′) ∈ R.

6.4.2.2 Expressing pomset equivalence as an extension

Consider the signature ΣMPExt with SMPExt and FMPExt as follows,

(A, L,Act,Actnew,P;

{a}a∈A, {l}l∈L, nil, {Cn}Cn∈Const,⊥A,⊥Act,⊥Actnew,⊥L;

pref, plus, par, act, comb, combnew, concat)

and

162

a : p a:NIL−−−→ p

p
u−→ p′

a : p a:u−→ p′

p
u−→ p′

p + q
u−→ p′

p
u−→ p′

q + p
u−→ p′

p
u−→ p′

p | q u−→ p′ | q
p

u−→ p′

q | p u−→ q | p′

p
u−→ p′ q

v−→q′

p | q u|v−→ p′ | q′

Table 6.15: Rules for pomset CCS

a :→ A ∀a ∈ A nil :→ P

l :→ L ∀l ∈ L Cn :→ P ∀Cn ∈ Const

act : A, L→ Act pref : A,P→ P

concat : A,Act→ Actnew

concat : A,Actnew → Actnew

comb : Act,Act→ Act par : P,P→ P

combnew : Act,Act→ Actnew

combnew : Act,Actnew → Actnew

combnew : Actnew,Act→ Actnew

combnew : Actnew,Actnew → Actnew

⊥A :→ A plus : P,P→ P

⊥L :→ L

⊥Act :→ Act

⊥Actnew :→ Actnew

163

Notice the overloading of concat and combnew. Also assume that there is a

way in which closed terms are assigned to elements of Const. The rules and rule

schemas are given in Table 6.16. Let the rules given by these rules and rule

schemas be denoted RMPExt, and the eTSS defined by ΣMPExt and RMPExt be

EMPExt. Since ΣMPExt contains everything that ΣMP contains, I will use ΣMPExt

for ΣMP⊕>ΣMPExt.

I now need to define a ΣMPExt-algebra Apom to represent the actual process

algebra labels where C is defined as c ::= a | a : c | c|c for a ∈ A. Also let C′ be

defined as c′ ::= a | c′|c′ for a ∈ A. Clearly A ⊂ C′ ⊂ C. I will assume there is an

congruence ≡C on C′ and C generated by the following axioms as in Castellani’s

original definition [Cas88]

c | c′ = c′ | c and c | (c′ | c′′) = (c | c′) | c′′.

The carrier sets and functions for Apom are given in Tables 6.17 and 6.18.

Define ≡Ap as follows: if α, β ∈ T(ΣMPExt)P, then

α ≡Ap β ⇐⇒

iApom(α) = iApom(β)
or
iApom(α) ≡C iApom(β).

I would now like to show that EMP⊕>EMPExt together with the equivalence

≡Ap provide a refining extension of EMP. Consider the theorem statement

Let Ei = (Σi, Ri) for i = 0, 1 be two eTSSs in extended tyft/tyxt format

such that E0⊕>E1 is defined. Moreover, let ≡0 and ≡1 be congruences over

T(Σ0)P and T(Σ1)P respectively such that ≡0 ⊕ ≡1 is conservative with

respect to ≡0. If E0 is pure and label-pure, and E0⊕>E1 is type-1, then

E0⊕>E1 is a refining extension.

However this is problematic since ≡An ⊕≡Ap is not conservative with respect to

≡An . Conservativity requires that for α, β ∈ T(ΣMP)P,

α≡An ⊕≡Ap β ⇐⇒ α ≡Ap β.

However act(a, l1)≡An ⊕≡Ap act(a, l2) but act(a, l1) 6≡An
act(a, l2).

164

x
zAct−−→ y

pref(zA, x)
concat(zA,zAct)−−−−−−−−→ x

x
zActnew−−−→ y

pref(zA, x)
concat(zA,zActnew

)
−−−−−−−−−→ x

x
zActnew−−−→ y

plus(x, x′)
zActnew−−−→ y

x
zActnew−−−→ y

plus(x′, x)
zActnew−−−→ y

x
zActnew−−−→ y

par(x, x′)
zActnew−−−→ par(y, x′)

x
zActnew−−−→ y

par(x′, x)
zActnew−−−→ par(x′, y)

x
zAct−−→ y x′

z′Act−−→ y′

par(x, x′)
combnew(zAct,z

′
Act)−−−−−−−−−−→ par(y, y′)

x
zActnew−−−→ y x′

z′Act−−→ y′

par(x, x′)
combnew(zActnew

,z′Act)−−−−−−−−−−−→ par(y, y′)

x
zAct−−→ y x′

z′Actnew−−−→ y′

par(x, x′)
combnew(zAct,z

′
Actnew

)
−−−−−−−−−−−→ par(y, y′)

x
zActnew−−−→ y x′

z′Actnew−−−→ y′

par(x, x′)
combnew(zActnew

,z′Actnew
)

−−−−−−−−−−−−−→ par(y, y′)

{ X
zActnew−−−→ y

Cn
zActnew−−−→ y

| Cn def= X,Cn ∈ Const
}

Table 6.16: Rules and rule schemas for MPExt

165

Sort Carrier set

A A ∪ {⊥A}
L N
Act C′ ∪ {⊥Act}
Actnew C ∪ {⊥Actnew}

Table 6.17: Carrier sets for Apom

aApom = a ∀a ∈ A
lApom = num(l) ∀l ∈ L

actApom(ζ1, ζ2) =

{
ζ1 if ζ1 ∈ A and ζ2 ∈ N+

⊥Act otherwise

combApom(ζ1, ζ2) =

{
ζ1 | ζ2 if ζ1, ζ2 ∈ C′

⊥Act otherwise

concatApom(ζ1, ζ2) =

{
ζ1 : ζ2 if ζ1 ∈ A, ζ2 ∈ C
⊥Actnew otherwise

combnew
Apom(ζ1, ζ2) =

{
ζ1 | ζ2 if ζ1, ζ2 ∈ C
⊥Actnew otherwise

⊥ApomA = ⊥A

⊥ApomL = 0

⊥ApomAct = ⊥Act

⊥ApomActnew
= ⊥Actnew

Table 6.18: Functions for Apom

166

Sort Carrier set

A A ∪ {⊥A}
L N
Act D =

⋃n
j>1{(c′, a1 . . . aj) | c′ ∈ C′, acts(c′) = j,

a1, . . . , aj ∈ {1, . . . , j}, pairwise disjoint} ∪ {⊥Act}
Actnew C ∪ {⊥Actnew}

Table 6.19: Carrier sets for Apomn

The solution is to work with a different algebra over the labels and show

that this algebra generates an equivalence which will result in the same semantic

equivalence as is obtained by using≡Ap . Notice that the new operators introduced

work with a different label set. Clearly the different algebra can be the same on

that sort, however on the sort Act, it should be the same as An.

I now want a slightly different algebra to represent the labels of a different

process algebra based around pomset bisimulation but with some restriction on

which processes can contribute to parallel computation for transitions with sort

Act. I will call this ΣMPExt-algebra Apomn.

Let N and M be sequences of positive natural numbers without repetition,

and let N ∩M indicate the intersection of sequences. Then let (a,N) +n (b,M)

where a, b ∈ C′, be defined as equal to (a | b,NM) whenever N ∩M = ∅. Also

define a function acts : C′ → N as

acts(c | c′) = acts(c) + acts(c′)

acts(a) = 1.

Extend ≡C to D in the obvious manner. The carrier sets and functions for

Apomn are given in Tables 6.19 and 6.20.

167

aApomn = a ∀a ∈ A
lApomn = num(l) ∀l ∈ L

actApomn(ζ1, ζ2) =

{
(ζ1, ζ2) if ζ1 ∈ A and ζ2 6 n

⊥Act otherwise

combApomn(ζ1, ζ2) =

ζ1 +n ζ2 if ζ1, ζ2 ∈ D

and ζ1 +n ζ2 defined
⊥Act otherwise

concatApomn(ζ1, ζ2) =

ζ1 : ζ2,1 if ζ1 ∈ A, ζ2 ∈ D and

ζ2 = (ζ2,1, ζ2,2)
ζ1 : ζ2 if ζ1 ∈ A, ζ2 ∈ C
⊥Actnew otherwise

combnew
Apomn(ζ1, ζ2) =

ζ1,1 | ζ2,1 if ζ1 ∈ D,
ζ2 ∈ D and
ζ1 = (ζ1,1, ζ1,2)
ζ2 = (ζ2,1, ζ2,2)

ζ1,1 | ζ2 if ζ1 ∈ D, ζ2 ∈ C and
ζ1 = (ζ1,1, ζ1,2)

ζ1 | ζ2,1 if ζ1 ∈ C, ζ2 ∈ D and
ζ2 = (ζ2,1, ζ2,2)

ζ1 | ζ2 if ζ1, ζ2 ∈ C
⊥Actnew otherwise

⊥ApomnA = ⊥A

⊥ApomnL = 0

⊥ApomnAct = ⊥Act

⊥ApomnActnew
= ⊥Actnew

Table 6.20: Functions for Apomn

168

Define ≡Apn as follows: if α, β ∈ T(ΣMPExt)P, then

α ≡Apn β ⇐⇒

iApomn(α) = iApomn(β)
or
iApomn(α) ≡C iApomn(β).

I will first consider why this gives a refining extension to EMP, then I will show

that this defines an equivalence ∼≡Apn similar to ∼≡Ap .

6.4.3 A refining extension

First note that since EMP is not label-pure (it is the axiom which is not label-pure),

it is necessary to use Theorem 5.4.2

Let Σi = (Si ∪ {P}, Fi) for i = 0, 1 be two signatures with Σ1 safe for S0.

Let Ei = (Σi, Ri) for i = 0, 1 be two eTSSs in extended tyft/tyxt format

such that E0⊕>E1 is defined. Moreover, let ≡0 and ≡1 be congruences over

T(Σ0)P and T(Σ1)P respectively such that ≡0 ⊕ ≡1 is conservative with

respect to ≡0. If E0 is pure, and E0⊕>E1 is type-1, then E0⊕>E1 is a refining

extension.

Clearly ΣMPExt is safe for SMP since no function in FMPExt−FMP (the functions

concat and combnew) have a range with a sort from SMP. EMP and EMPExt are both

in extended tyft/tyxt format. EMP is pure, and EMP⊕>EMPExt is type-1 since there

is no extended tyft rule in RMPExt containing a function symbol from FMP with a

conclusion label with a sort from SMP; in other words, all extended tyft rules with

a function symbol from FMP have a conclusion transition label with sort actnew.

Finally I need to show that ≡An ⊕≡Apn is conservative with respect to ≡An.

First note, that for all s ∈ {L,A}, α, β ∈ T(ΣMPExt)s

α≡An ⊕≡Apn β ⇐⇒ α≡An β

It is not necessary to consider terms with sort Actnew since these only occur in

T(ΣMPExt). Hence it is only necessary to consider terms with sort Act. See

Appendix B for conservativity on Act. Note that it is not possible to use the

results from Section 6.2.2 since the sum of the two algebras is not defined. This

169

is the case because the algebras do not have the same carrier sets for sorts that

appear in both signatures.

Hence by applying the above result, I can conclude that for t, u ∈ T(ΣMP)P

t∼EMP⊕>EMPExt
≡An⊕≡Apn u =⇒ t∼EMP

≡Anu

In other words, on the process terms of T(ΣMPExt), the restricted version of pom-

set equivalence is a subset of n multiprocessor equivalence. This is a proper sub-

set since for each n there exist processes which are identified by n multiprocessor

equivalence, but not by restricted pomset equivalence.

Counter-example 6.4.1 (Restricted pomset equivalence and multipro-

cessor equivalence)

For arbitrary n, with + and
∑

for plus, and | and
∏

for par,
n∏
k=1

pref(ak, nil) +
n∑
i=1

n∑
j=1
j 6=i

(
pref(ai, pref(aj, nil)) |

n∏
k=1
k 6=i
k 6=j

pref(ak, nil)
)

∼EMP
≡An−1

n∑
i=1

n∑
j=1
j 6=i

(
pref(ai, pref(aj , nil)) |

n∏
k=1
k 6=i
k 6=j

pref(ak, nil)
)

However these processes are not equated by the other equivalence since the

first process can perform an transition involving all possible actions, namely a

transition whose label is mapped by iApn to a1 | . . . | an, whereas the second

process does not have a transition that consists of all n actions.

Consider this counter-example in light of Theorem 5.4.3. For the theorem to

be applicable, compatibility is required, EMPExt is required to be well-founded,

and EMP⊕>EMPExt must be type-0. Clearly, compatibility is assured since all

terms of sort P that occur on the transitions of premises and in the source of the

conclusion are variables. EMPExt is clearly well-founded. Hence, the reason why

the theorem is not applicable is because the sum is not type-0, namely there are

rules in EMPExt with functions from FMP in the sources of the conclusions.

Note also that T(ΣMP)P = T(ΣMP⊕>ΣMPExt)P, and hence no additional pro-

cess terms have been introduced by the extension, only additional transitions.

170

I now need to show that ∼EMP⊕>EMPExt
≡An⊕≡Apn and ∼EMP⊕>EMPExt

≡An⊕≡Ap are the same. The

details of this are given in Appendix B. Hence, I can conclude that for t, u ∈
T(ΣMP)P

t∼EMP⊕>EMPExt
≡An⊕≡Ap u =⇒ t∼EMP

≡Anu

In other words, on the process terms of T(ΣMP), pomset equivalence equivalence

is a proper subset of n multiprocessor equivalence.

6.5 Discussion

As has been shown in this chapter it is possible to express a number of process

algebras with structured labels in the extended tyft/tyxt format, as well as use

the results from Chapter 5 to compare equivalences. It has not been possible to

use the abstracting extension result as it is very strong, and an issue for further

work is to look for a weaker result. It has also been shown that the conditions

required to achieve the results of Chapter 5 are reasonable.

In terms of the procedure for applying the results, I will describe which areas

require work and which come out easily. There are number of decisions to be taken

when choosing how to represent the process algebra labels and it may be the case

that a few different approaches need to be tried. Usually the carrier sets can be

chosen to be those used in the process algebra, but often there are choices about

when to introduce terms to represent undefined transitions. Obviously, the rules

must be in extended tyft/tyxt format, and it can take some time to understand

how this can be achieved for a particular process algebra. If one dealing with

sums, as in extension results, the results in Section 6.2.2 give conservativity and

compatibility if sort-similarity holds and if the two algebras can form a sum;

otherwise these need to be shown directly. Compatibility is often easy since most

label terms on transitions of premises and in the source of the conclusion consist

of a single variable. Sometimes, as in the example in this chapter, it is necessary

to show that two algebras give the same equivalence. An area for further work

is to find a simpler way to do this, particularly in the case where there are rules

which only vary in the sort of the labels on the transitions as in the example here.

171

6.6 Conclusion

In this chapters, I have looked at some aspects of application of the results from

earlier chapters, including the implications of some of the conditions required

to obtain the results, and applications of the new format and related results to

process algebras.

172

Chapter 7

Conclusion and further work

In this chapter, I will give a summary of work presented in this thesis, and the

conclusions that can be drawn from this research. Finally, I will discuss some

items for further work.

7.1 Summary and conclusions

The focus of this thesis has been to look at ways to compare different equivalences

for process algebras. This work is motivated by the large number of process

algebras that are present in the literature, since to deepen understanding of the

different process algebras it is necessary to compare and contrast them and their

equivalences.

The second chapter of the thesis gave an overview of different process algebras

which have been developed to demonstrate and distinguish different aspects of

concurrent behaviour.

In the third chapter, I looked at two approaches to this comparison—one was

based on comparing equivalences on CCS terms, and the other looked at the

underlying process domains, namely the labelled transition systems, and invest-

igated if it was possible to do the comparison at that level. Neither of these

approaches was satisfactory. The first was too limited in that it relied on pure

CCS terms and moreover, it required that the terms demonstrated the concur-

rent behaviour that the equivalence distinguished. The second approach extends

existing work on bisimulation homomorphisms by considering label transitions

systems with different label sets. As an approach to comparing equivalences, it

173

was not satisfactory since it was unclear how to use the results of the theorem

in comparison of equivalences. Issues not resolved include which states to com-

pare, how to find a suitable mapping between label sets and how to compare

equivalences over different labelled transitions systems with the same label set.

The rest of the thesis is devoted to looking at a new format and investigating

how it can be used to compare equivalences. The approach taken was to extend

the syntactic notions used in previous formats for process terms to label terms,

and to use an equivalence over these terms to represent the semantics of the

labels of the actual process algebras being expressed in the new format. I first

showed that some standard results such as congruence and conservative extension

hold. I then provided new definitions for extensions up to bisimulation and gave

conditions under which they hold. The major results are two theorems relating

to refining extensions up to bisimulation with respect to an equivalence and two

theorems resulting to abstracting extensions up to bisimulation with respect to

an equivalence

The material in Chapters 4 and 5 is presented in an abstract fashion, assuming

an equivalence over the label terms. In Chapter 6, I look at how these results can

be applied to actual process algebras, and investigate what impact the conditions

required for the theorems of the previous chapters have on the process algebras

that can be specified in the format. I show that a number of process algebras can

be expressed in the new format—CCS, CCS with locations and multiprocessor

CCS. Finally I use the results to show that pomset equivalence equivalence is a

proper subset of n multiprocessor equivalence.

In conclusion, this research has successfully shown that by introducing a new

format which caters for structured labels, equivalence comparison results can be

obtained and applied to process algebras from the literature.

174

7.2 Further work

There are a number of issues for further work, a number of which lead automat-

ically from the fact that I have developed a new format.

• The new format is only concerned with positive premises. An area of further

research is negative premises and predicates.

• I have only looked at strong bisimulation. Weak bisimulation has been

considered by Bloom [Blo95]. He categorises operators by the form of their

rules and uses this to develop an understanding of congruence with respect

to weak bisimulation. It may be possible to take a similar approach with

the new format.

Another area for further work are some issues that have not been resolved in this

thesis.

• An issue to consider is whether well-foundedness is required for the new

format. This would involve taking the notion of proof and unification from

the work of Fokkink and van Glabbeek [FvG96] and extending it to the new

format.

• As yet, I do not know whether the label variables in the sources of premises

need to be distinct from those in the terms on the transitions. As seen in

Section 4.3.3, when proving congruence in a manner which requires well-

foundedness, it is clear that that the distinctness is required in the case

where variables are shared across premises. However if the well-foundedness

condition can be dropped, it may be possible to drop this condition as well.

I also do not know whether a variable can be shared within a source and

label of a premise or whether this conflicts with the use of compatibility.

• For the refining extension theorem, it is not clear that all the conditions

of pureness and label-pureness are required. An area of further work is to

attempt to prove the theorem without the use of the lemma.

175

Other areas of further work are as follows.

• I wish to see if the new format can be applied to other process algebras

outside of those considered in this thesis.

• In this research, I have assumed that processes can only have one specific

sort. However, a number of process algebras do not have ‘single level’ syn-

tax, namely the processes may have more than one sort. An example of this

is the way processes are constructed for Kiehn’s local/global cause process

algebra [KH94] where the only terms that can appear within the scope of a

prefix operator are pure CCS terms. An area of further work is to extend

the format to take this into account. Operators with label sorts would still

require the condition that no arguments can have a process sort.

Finally, there are some more results of interest that would be useful for comparing

equivalences.

• As mentioned in Section 6.5, the abstracting extension result is very strong

in that no transitions can be added from existing process—for an example of

this, see Counter-Example 5.3.7. I wish to find a more applicable result. An

approach to take here is obtain conditions that apply to all rules, and ensure

that any transitions that are added are also added to equivalent terms. This

would involve an understanding of which transitions are possible from the

first eTSS. It may be the case that a general result cannot be found.

• In certain situations, such as expressing location CCS as an extension of

CCS, it would be desirable to filter out terms of a certain sort. In the

example, the τ transitions would be retained, but the non-τ transitions

would be discarded. It may be possible to do this in a manner where it

can be shown that the added transitions have a similar enough structure

to the removed transitions to be able to derive a relationship between the

equivalences. It may be possible to use bisimulation homomorphisms in

gaining such a result.

176

In some labelled transition systems there are transitions which do not add

any further information to the equivalence and hence it is possible to remove

them. If it is possible to do this for a subset of terms that appear on these

transitions, it may be possible to obtain a result about the equivalence of

the labelled transition systems and hence about the equivalences.

The proof in Section B.3 involves comparing two equivalences for equality,

and takes some work. It would be useful to have a general result that permits

this to be done more easily. Such a result could be based on the fact that

the same rules are present for different sorts. Hence the labelled transition

system has similar structure for different sorts, and it may be possible to

use this information as well as information about the label equivalences to

show that the equivalences are the same.

• Another question of interest look at the tags used in process algebras. By

tags, I mean operators and constants (such as location prefixing) that are

added to a process when an action occurs, and which appear on later trans-

itions to shown which actions the current action is related to. This is the

idea behind both local cause bisimulation and global cause bisimulation. As

mentioned in Section 6.3.3, it may be possible to obtain a general results

about the number of tags required to retain bisimulation. A number of

issues to consider are arity of operators, characteristics of the label equi-

valences, pureness and label-pureness, and type of operator (static versus

dynamic). Arity appears to be a key issue. The label-pureness issue relates

to how new tags can be introduced.

177

Appendix A

Proof of Theorem 5.3.2

A.1 Proof of Theorem 5.3.2

Theorem A.1.1 (Abstracting extension up to bisimulation with respect

to a congruence)

Let Ei = (Σi, Ri) for i = 0, 1 be two eTSSs in extended tyft/tyxt format such

that E0⊕>E1 is defined. Moreover, let ≡i be congruences over T(Σi)P for i = 0, 1

such that ≡0 ⊕≡1 is compatible with E0⊕>E1. If E0 is pure and label-pure, E1 is

well-founded, and E0⊕>E1 is type-0, then E0⊕>E1 is an abstracting extension.

Proof: Let t0, u0 ∈ T(Σ0) and let ≡ = ≡0 ⊕≡1. I wish to show that E is an

abstracting extension up to bisimulation with respect to ≡ so I need to show that

t0 ∼E0≡0
u0 ⇒ t0 ∼E≡ u0.

I will exhibit a bisimulation with respect to ≡ under E containing ∼E0≡0
. Let

R ⊆ T(Σ0)P ×T(Σ0)P be the least relation satisfying

• ∼E≡ ⊆ R,

• ∼E0≡0
⊆ R,

• for all f ∈ F such that f : s1 . . . smP . . .P→ P, for all terms µk, νk ∈ T(Σ)P

(1 6 k 6 m), and for all terms ui, vi ∈ T(Σ)P (1 6 i 6 n),

µk ≡ νk (1 6 k 6 m) and ui R vi (1 6 i 6 n)⇒
f(µ1, . . . , µm, u1, . . . , un)R f(ν1, . . . , νm, v1, . . . vn).

It is enough to show R ⊆ ∼E≡ since ∼E≡ ⊆ R, hence I need to show that R is a

bisimulation with respect to ≡ under E. Assume uR v. I have three cases—the

178

first is simple since u ∼E≡ v. The second requires us to show that:

∗ Whenever E ` u α−→ u′ and u ∼E0≡0
v then there is a v′ ∈ T(Σ)P such that

E ` v α′−→ v′ with α′ ≡ α and u′R v′.

The third case requires us to show that:

∗∗ Whenever E ` f(µ1, . . . , µm, u1, . . . , un) α−→ u′, µk ≡ νk for 1 6 k 6 m

and ui R vi for 1 6 i 6 n then there is a v′ ∈ T(Σ)P such that E `

f(ν1, . . . , νm, v1, . . . , vn))
α′−→ v′ with α′ ≡ α and u′ R v′.

I need to consider these two cases together as the proof will proceed by induction

on the length of the proof required to prove a transition.

In the second case, I have u ∼E0≡0
v with u, v ∈ T(Σ0). For a given u ∈ T(Σ0),

I can consider the transitions from it. Either they are the result of extended

tyft/tyxt rules from R0 or they are the result of extended tyxt rules from R1, since

extended tyft rules from R1 cannot have functions from F0 in the source of the

conclusion.

In the case of extended tyft/tyxt rules from R0, I can apply Lemma 5.3.1 since

E = E0⊕>E1 is type-0 and hence type-1. Therefore, for any transition u α−→ u′ then

α ∈ T(Σ0)P and u′ ∈ T(Σ0)P, since u ∈ T(Σ0)P. Moreover, for any transition

of the form u
α−→ u′ with α ∈ T(Σ0)P and u′ ∈ T(Σ0)P, I can use the fact that

u ∼E0≡0
v to find α′ ∈ T(Σ0)P and v′ ∈ T(Σ0)P such that v α′−→ v′ and u′ ∼E0≡0

v′.

Hence u′R v′, as required.

For the case of a transition from u being generated by a extended tyxt rule from

R1, I need to do induction on the proof of the transition. I need also to consider

the third case in the induction, since I will need to consider the relationship

between pairs of processes with the syntactic form of the third case. I will need

the following throughout this proof.

Fact Let p ∈ T(Σ)P and let ρ, ρ′ : V → T(Σ) be substitutions such that for all x

in VarP(t), ρ(x)R ρ′(x) and for all z in VarP(p), ρ(z) ≡ ρ′(z). Then ρ(p)R ρ′(p).

Proof: I proceed by induction on the structure of p. If p = x then I have the

result immediately. If p = f(η1, . . . , ηm, p1, . . . , pn), then I know by the induction

179

hypothesis that ρ(pi) R ρ′(pi) for 1 6 i 6 n, and also that ρ(ηk) ≡ ρ′(ηk) for

1 6 k 6 m (since ≡ is an equivalence), hence ρ(t)R ρ′(t) by the definition of R.

From Lemma 4.3.1, I know that there is a proof T of u α−→ u′ containing only

closed transitions. Let r be the last rule used in proof T , in combination with a

substitution σ. Assume first that the proof consists of only one step, then I have

the following two cases.

• u ∼E0≡0
v, and r ∈ R1 has the form x

λ−→ p with σ(x) = u, σ(λ) = α and

σ(p) = u′. Let σ′(x) = v, σ′(z) = σ(z) for all z ∈ VarP(r), and σ′(y) = σ(y)

for all y ∈ VarP(p) − {x}. Then v
σ′(λ)−−→ σ′(p) with σ′(λ) ≡ α, and by the

fact above σ(p)R σ′(p) as required.

• I have f(µ1, . . . , µm, u1, . . . , un) and f(ν1, . . . , νm, v1, . . . vn) with µi ≡ νi

for all 1 6 k 6 m and ui R vi for all 1 6 i 6 n. I have two cases:

– r ∈ R0 has the form x
λ−→ p. (Since the terms are drawn from T(Σ0)

it is not possible that an extended tyft rule from R1 could be used.)

This is done in a similar fashion to the case above.

– r ∈ R0∪R1 has the form f(η1, . . . , ηm, x1, . . . , xn) λ−→ p with σ(ηk) = µk

for 1 6 k 6 m, σ(xi) = ui for 1 6 i 6 n, σ(p) = u′ and σ(λ) = α. Let

σ′(xi) = vi for 1 6 i 6 n, σ′(z) = σ(z) for all z ∈VarP(r)−
⋃

16k6m ηk,

and σ′(y) = σ(y) for all y ∈VarP(r)−
⋃

16i6n xi.

I need to take more care with ηk (1 6 k 6 m). Since for a given k such

that 1 6 k 6 m, σ(ηk) = µk ≡ νk and ≡ is compatible with R0 ∪ R1,

I know that there is a substitution σ′′ such that σ′′(ηk) = νk and for

all z ∈ VarP(ηk), σ(z) ≡ σ′′(z). Hence define σ′(z) = σ′′(z). I can do

this for all 1 6 k 6 m since there are no variables shared between the

terms.

Then f(ν1, . . . , νm, v1, . . . , vn)
σ′(λ)−−→ σ′(p) with σ′(λ) ≡ α and by the

fact above σ(p)R σ′(p) as required.

180

I next assume that the two statements (∗) and (∗∗) are true for proofs with n

or fewer steps. I will now show that the statements are true for proofs with n+ 1

steps. I will only give the details of the proof for the case of an extended tyft rule

from R0 for (∗∗). The cases of an extended tyxt rule from R1 ∪ R0 for (∗∗) and

of an extended tyxt rule from R1 for (∗) are proved in a similar manner—they

are less complex to prove because they both deal with extended tyxt rules and

hence there is only a single variable in the source of the conclusion. This makes

the assignment of terms to label variables simpler. Note that when dealing with

rules from R0∪R1 I treat them as arbitrary non-pure, non-label-pure rules, hence

I do not use the fact that rules from R0 are pure and label-pure in this part of

the proof.

Let r be the last rule used in the proof of u α−→ u′ in combination with a

substitution σ. Assume r is equal to

{pi
λi−→ yi | i ∈ I}

f(η1, . . . , ηm, x1, . . . , xn) λ−→ p
.

Then I know that σ(ηk) = µk for 1 6 k 6 m, σ(xi) = ui for 1 6 i 6 n, σ(p) = u′

and σ(λ) = α. I want to find a substitution σ′ that I can use to show that v α−→ v′

with u′R v′.

I proceed with an analysis of the variables that occur in r, and then I use an

induction technique to define σ′. By considering the dependency graph G of the

premises of r, depth(x) ∈ N can be defined for all x ∈VarP(r) in a similar fashion

to the proof of Theorem 4.3.1. Define

• X = {xi | 1 6 i 6 n}

• Y = {yi | i ∈ I}

• Yd = {y ∈ Y | depth(y) = d} for n > 0.

• Yf =VarP(r)− (X ∪ Y).

Observe that for any variable x ∈ X, depth(x) = 0, and the sets Yd form a

partition of Y . Next I consider variables from VP. These can be partitioned in

four sets.

181

• Z =
⋃

16k6m VarP(ηk)

• Z ′ =
⋃
i∈I VarP(λi)

• Z ′′ =
⋃
i∈I VarP(pi)− Z

• Zf = (VarP(λ) ∪VarP(p))− (Z ∪ Z ′ ∪ Z ′′).

I can partition Z ′ into Z ′0, Z ′1, . . . by defining Z ′d =
⋃
yi∈YdVarP(λi) for each d >

0. This is possible because the variables that appear in the premise labels are

disjoint.

I will define a substitution σ′ that satisfies the following properties on VP and

VP

1. σ′(xi) = vi for 1 6 i 6 n

2. σ(y)R σ′(y) for y ∈ X ∪ Y

3. E ` σ′(pi
λi−→ yi) for i ∈ I

4. σ′(z) ≡ σ(z) for z ∈ Z ∪ Z ′ ∪ Z ′′ ∪ Zf .

Substitution σ′ will be constructed in stepwise fashion. To begin, let

• σ′(xi) = vi for 1 6 i 6 n

• σ′(y) = σ(y) for y ∈ VP − (X ∪
⋃
d>0 Yd)

• σ′(z) = σ(z) for z ∈ VP − (Z ∪
⋃
d>0 Z

′
d ∪ Z ′′).

Note therefore that for all variables z ∈ VP− (Z∪
⋃
d>0 Z

′
d∪Z ′′), σ(z) ≡ σ′(z).

I still have to define σ′ on
⋃
d>0 Yd,

⋃
d>0 Z

′
d, Z and Z ′′.

When σ′ is defined for y ∈ X ∪ Y0 ∪ . . . ∪ Yd and z ∈ Z ∪ Zf ∪ Z ′0 ∪ . . . ∪ Z ′d
(d > 0), I will show that β(d), γ(d) and δ(d) hold.

• β(d) : σ(y)R σ′(y) for yi ∈ X ∪ Yf ∪ Y0 ∪ . . . ∪ Yd

• γ(d) : E ` σ′(pi
λi−→ yi) for yi ∈ Y0 ∪ . . . ∪ Yd.

• δ(d) : σ′(z) ≡ σ(z) for z ∈ Z ∪ Zf ∪ Z ′0 ∪ . . . ∪ Z ′d.

182

If I can show that β(d), γ(d) and δ(d) hold for all d > 0, then I know that

the second and third properties hold, and that the fourth property will hold for

Z ∪Zf ∪Z ′. For z ∈ Z ′′, when dealing with a particular transition pi
λi−→ yi, I will

simply define σ′(z) = σ(z) for any z ∈ VarP(pi) that has not yet been defined.

Hence once I have shown β(d), γ(d) and δ(d) hold for all d > 0, I will have defined

σ′ for all z ∈ Z ′′ and moreover σ(z) ≡ σ′(z) for all z ∈ Z ′′, so the fourth property

will be satisfied. I know that property one holds by definition.

I first need to show that β(0), δ(0) and γ(0) hold. First note that for any

x ∈ X then x = xi for some 1 6 i 6 n and since σ(xi) = ui and σ′(xi) = vi, and

ui R vi, I have σ(xi)R σ′(xi). Also σ(y)R σ′(y) for y ∈ Yf since σ(y) = σ′(y).

Then consider Z. Since for a given k such that 1 6 k 6 m, σ(ηk) = µk ≡ νk

and ≡ is compatible with R0 ∪ R1, I know that there is a substitution σ′′ such

that σ′′(ηk) = νk and for all z ∈ VarP(ηk), σ(z) ≡ σ′′(z). So let σ′(z) = σ′′(z).

I can do this for all 1 6 k 6 m since there are no variables shared between the

terms. Also σ(z) ≡ σ′(z) for z ∈ Zf since σ(z) = σ′(z).

Next consider y∗ ∈ Y0. There exists i ∈ I such that y∗ = yi, so I can

consider the transition pi
λi−→ yi. If VarP(pi) ∩ Z = ∅, then the situation is

straightforward. Let σ′(z) = σ(z) for z ∈ VarP(pi)∪VarP(λi) and let σ′(yi) =

σ(yi). Then σ(yi)R σ′(yi), and for all z ∈ VarP(pi)∪VarP(λi), σ(z) ≡ σ′(z) since

σ′(z) = σ(z). Moreover, σ′(pi
λi−→ yi) = σ′(pi)

σ′(λi)−−−→ σ′(yi) = σ(pi)
σ(λi)−−−→ σ(yi) =

σ(pi
λi−→ yi) Therefore E ` σ′(pi

λi−→ yi) since E ` σ(pi
λi−→ yi).

However, if VarP(pi) ∩ Z 6= ∅ then I need to take more care. σ′ is already

defined on z ∈ VarP(pi)∩Z, and I can define σ′(z) = σ(z) for z ∈ VarP(pi)−Z on

which σ′ is not defined. Hence I know that σ(z) ≡ σ′(z) for z ∈ VarP(pi). Since

VarP(pi) = ∅, I know from the fact above that σ(pi)R σ′(pi). I have three cases

to consider:

• σ(pi) ∼E≡ σ′(pi). Since E ` σ(pi)
σ(λi)−−−→ σ(yi), I can find w ∈ T (Σ)P and

αi ∈ T (Σ)P such that E ` σ′(pi)
αi−→ w, σ(λi) ≡ αi and σ(yi)R w. So I can

define σ′(y∗) = σ′(yi) = w.

Moreover, since ≡ is compatible with R0, I know there exists a substitution

σ′′ such that αi = σ′′(λi) and σ(z) ≡ σ′′(z) for all z ∈ VarP(λi). Let

183

σ′(z) = σ′′(z) whence αi = σ′(λi). (Since VarP(pi)∩ VarP(λi) = ∅, it is clear

that the use of σ′′ does not affect values assigned to VarP(pi).)

• σ(pi) ∼E0≡0
σ′(pi). I have two cases depending on whether the transition is

generated by an extended tyft/tyxt rule from R0 or an extended tyxt rule

from R1:

– If σ(λi) ∈ T(Σ0)P, then since E0 ` σ(pi)
σ(λi)−−−→ σ(yi), I can find w ∈

T(Σ0)P and αi ∈ T (Σ)P such that E0 ` σ(pi)
αi−→ w with αi ≡0 σ(λi)

and σ(yi)R w. So I can define σ′(y∗) = σ′(yi) = w.

Since ≡ = ≡0 ⊕≡1, αi ≡ σ(λi). Moreover, since ≡ is compatible with

R0 ∪ R1, I know there exists a substitution σ′′ such that αi = σ′′(λi)

and σ(z) ≡ σ′′(z) for all z ∈ VarP(λi). Again let σ′(z) = σ′′(z) whence

αi = σ′(λi).

– If σ(λi) 6∈ T(Σ0)P, then this means that this transition is generated

by an extended tyxt rule from R1 and hence I can use the induction

hypothesis for proofs of this form. To see why this is the case, consider

that the proof of σ(pi)
σ(λi)−−−→ σ(yi) is a subproof of the proof of u α−→ u′.

Therefore it must have fewer steps than the proof of u α−→ u′. But I have

assumed that (∗) and (∗∗) are true for all proofs of fewer steps, hence

I can apply the induction hypothesis. Since E ` σ(pi)
σ(λi)−−−→ σ(yi), I

can find w ∈ T (Σ)P such that E ` σ′(pi)
αi−→ w with σ(λi) ≡ αi and

σ(yi)R w. So I can define σ′(y∗) = σ′(yi) = w.

Moreover, since ≡ is compatible with R0 ∪ R1, I know there exists a

substitution σ′′ such that αi = σ′′(λi) and σ(z) ≡ σ′′(z) for all z ∈

VarP(λi). Again let σ′(z) = σ′′(z) whence αi = σ′(λi).

• there is a function symbol h ∈ F such that h : s′1 . . . s′mP . . .P → P, and

there are terms µ′k′ , ν
′
k′ ∈ T(Σ)P for 1 6 k′ 6 m′, wi′ , w′i′ ∈ T(Σ)P for

1 6 i′ 6 n′ such that

σ(pi) = h(µ′1, . . . , µ
′
m′ , w1, . . . , wn′) and

184

and

σ′(pi) = h(ν′1, . . . , ν
′
m′ , w

′
1, . . . , w

′
n′)

with µ′k′ ≡ ν′k′ (1 6 k′ 6 m′) and wi′Rw′i′ (1 6 i′ 6 n′). Now I can apply the

induction hypothesis. To see why this is the case, consider that the proof of

h(µ′1, . . . , µ
′
m′ , w1, . . . , wn′)

σ(λi)−−−→ σ(yi) is a subproof of the proof of u α−→ u′.

Therefore it must have fewer steps than the proof of u α−→ u′ and so I can

apply the induction hypothesis. Since E ` h(µ′1, . . . , µ′m′ , w1, . . . , wn′)
σ(λi)−−−→

σ(yi), I can find a w, and αi such that E ` h(ν′1, . . . , ν
′
m′ , w

′
1, . . . , w

′
n′)

αi−→ w,

σ(λi) ≡ αi, and σ(yi)R w. Again I can define σ′(yi) = w.

Since ≡ is compatible with R0, I know there exists a substitution σ′′ such

that αi = σ′′(λi) and σ(z) ≡ σ′′(z). Let σ′(z) = σ′′(z) for all z ∈ VarP(λi)

whence αi = σ′(λi).

Hence I know for y∗ = yi, that σ(yi)R σ′(yi), E ` σ′(pi
λi−→ yi) and σ(z) ≡ σ′(z)

for all z ∈ VarP(pi)∪VarP(λi). I can do this for all y ∈ Y0 and thereby show that

β(0), γ(0) and δ(0) hold.

Now let d > 0, and suppose that σ′ has been defined for all variables in

X∪Yf ∪Y0∪ . . . Yd−1 and Z∪Zf ∪Z ′0∪ . . .∪Z ′d−1 such that β(d−1), γ(d−1) and

δ(d− 1) hold. I now define σ′ on Yd and Z ′d such that β(d), γ(d) and δ(d) hold.

Consider y∗ ∈ Yd. Then there exists i ∈ I such that y∗ = yi, and so I can consider

the transition pi
λi−→ yi. Since yi ∈ Yd, then VarP(pi) ⊆ X ∪ Yf ∪ Y0 ∪ . . . ∪ Yd−1

so σ(y) R σ′(y) for y ∈ VarP(pi). For z ∈ VarP(pi) such that σ′(z) is as yet

undefined, let σ′(z) = σ(z). Hence I know that by the fact above σ′(pi)R σ(pi).

I have three cases as before and the treatment is identical. From this it is easy

to see that β(d), γ(d) and δ(d) hold for all d > 0, and hence I know that the four

properties hold.

So I know that for all i ∈ I , E ` σ′(pi)
σ′(λi)−−−→ σ′(yi) where σ′(z) ≡ σ(z) for all

z ∈
⋃
i∈IVarP(λi). Hence I can conclude that

E ` σ′(f(η1, . . . , ηm, x1, . . . , xn) λ−→ p)

185

namely

E ` f(ν1, . . . , νm, v1, . . . , vn)
σ′(λ)−−→ σ′(p).

To see that σ′(λ) ≡ α, recall that α = σ(λ), and I know that for all z ∈ VarP(λ),

σ(z) ≡ σ′(z) and since ≡ is a congruence, I have the required result. To see that

uR σ′(p), recall that u = σ(p), and for all x ∈ VarP(p), σ(x)R σ′(x) and for all

z ∈VarP(p), σ(z) ≡ σ′(z), hence by the fact above, σ(p)R σ′(p).

186

Appendix B

Proofs for comparison example

B.1 Introduction

This appendix contains two results which are required for the comparison in

Chapter 6.

B.2 Equivalence result required in Section 6.4.3

I wish to show that for α, β ∈ T(ΣMP)Act

α≡An ⊕≡Apn β ⇐⇒ α≡An β

Clearly α ≡An β =⇒ α≡An ⊕≡Apn β. To prove the opposite implication, I will

provide a homomorphism h from Apomn to An for the sorts A, L and Act. I also

need to show that h ◦ iApomn = iAn since then

α ≡Apomn β

iApomn(α) = iApomn(β)

h(iApomn(α)) = h(iApomn(β))

iAn(α) = iAn(β)

α ≡An β

and hence α ≡Apomn β =⇒ α ≡An β. I then need to show that α ≡Apn β =⇒

α ≡An β and then I can conclude that α ≡An ⊕≡Apn β =⇒ α ≡An β, since ≡Apn
can equate no more than ≡An .

187

Consider the following functions

h(a) = a ∀a ∈ A

h(i) = i ∀0 6 i 6 n

h(c′ | c′′, N ′N ′′) = h(c′, N ′) +n h(c′′, N ′′)

for N ′ ∩N ′′ = ∅ and

|N ′| = acts(c′), |N ′′| = acts(c′′)

h(a, {i}) = (
i−1︷ ︸︸ ︷

δ, . . . , δ, a,

n−i︷ ︸︸ ︷
δ, . . . , δ)

h(⊥A) = ⊥A

h(⊥Act) = ⊥Act

I need to show that h is a homomorphism, hence I need to show that

h(actApomn(ζ1, ζ2)) = actAn(h(ζ1), h(ζ2))

h(combApomn(ζ1, ζ2)) = combAn(h(ζ1), h(ζ2)).

This is straightforward for most cases. I only consider the case of comb when

ζ1 = (c′, N ′) and ζ2 = (c′′, N ′′).

h(combApomn((c′, N ′), (c′′, N ′′)) = h((c′, N ′) +n (c′′, N ′′))

=

{
⊥Act if N ′ ∩N ′′ 6= ∅
h(c′ | c′′, N ′N ′′)

h(c′ | c′′, N ′N ′′) = h(c′, N ′) +n h(c′′, N ′′)

combAn(h(c′, N ′), h(c′′, N ′′)) = h(c′, N ′) +n h(c′′, N ′′)

Note that if N ′ ∩ N ′′ 6= ∅ then h(c′, N ′) +n h(c′′, N ′′) is not defined since each

operand will have an action at the shared position and hence +n will not be

defined for this case.

I now need to show that h ◦ iApomn = iAn. Again this straightforward for most

cases and proceeds by induction. I give the proof for comb.

188

h(iApomn(comb(α1, α2))) = h(combApomn(iApomn(α1), iApomn(α2))

= h(iApomn(α1) +n iApomn(α2))

= h(iApomn(α1)) +n h(iApomn(α2))

by the above proof

= (iAn(α1)) +n iAn(α2))

by induction

iAn(comb(α1, α2)) = combAn(iAn(α1), iAn(α2))

= (iAn(α1)) +n iAn(α2))

Finally I need to show that ≡Apn =⇒≡An Recall the definition of ≡Apn.

α ≡Apn β ⇐⇒

iApomn(α) = iApomn(β)
or
iApomn(α) ≡C iApomn(β)

Since≡Apomn =⇒≡An , I need only consider the case where iApomn(α) ≡C iApomn(β).

There are two cases:

• iApomn(α) = ((c | c′) | c′′, N) and iApomn(β) = (c | (c′ | c′′), N). Hence

h(((c | c′) | c′′, N)) = (h(c,M) +n h(c′,M ′′)) +n h(c′′,M ′′)

for suitable MM ′M ′′ = N

= h(c,M) +n (h(c′,M ′′) +n h(c′′,M ′′))

since +n is assocative

= h((c | (c′ | c′′), N))

Therefore h(iApomn(α)) = h(iApomn(β)), Hence iAn(α) = iAn(β), and α ≡An
β as required.

• iApomn(α) = (c | c′, N) and iApomn(β) = (c′ | c,N). This is done in a similar

manner to the above case, using the commutativity of +n.

Hence I have shown conservativity as required to apply the refining extension

theorem.

189

B.3 Semantic equivalence result required in Sec-
tion 6.4.3

Consider the signature ΣMPExt,

(A, L,Act,Actnew,P;

{a}a∈A, {l}l∈L, nil, {Cn}Cn∈Const,⊥A,⊥Act,⊥Actnew,⊥L;

pref, plus, par, act, comb, combnew, concat)

with the sorts

a :→ A ∀a ∈ A nil :→ P

l :→ L ∀l ∈ L Cn :→ P ∀Cn ∈ Const

act : A, L→ Act pref : A,P→ P

concat : A,Act→ Actnew

concat : A,Actnew → Actnew

comb : Act,Act→ Act par : P,P→ P

combnew : Act,Act→ Actnew

combnew : Act,Actnew → Actnew

combnew : Actnew,Act→ Actnew

combnew : Actnew,Actnew → Actnew

⊥A :→ A plus : P,P→ P

⊥L :→ L

⊥Act :→ Act

⊥Actnew :→ Actnew

Assume that there is a way in which closed terms are assigned to elements of

Const. I give here rules for both EMP and EMPExt. The rules and rule schemas

are given in Tables B.1 and B.2. Let the rules given by these rules and rule

schemas be denoted RMPExt, and the eTSS defined by ΣMPExt and RMPExt be

EMPExt. Since ΣMPExt contains everything that ΣMP contains, I will use ΣMPExt

for ΣMP⊕>ΣMPExt.

190

pref(zA, x)
act(zA,new(zL))
−−−−−−−−→ x

x
zAct−−→ y

plus(x, x′)
zAct−−→ y

x
zAct−−→ y

plus(x′, x)
zAct−−→ y

x
zAct−−→ y

par(x, x′)
zAct−−→ par(y, x′)

x
zAct−−→ y

par(x′, x)
zAct−−→ par(x′, y)

x
zAct−−→ y x′

z′Act−−→ y′

par(x, x′)
comb(zAct,z

′
Act)−−−−−−−−→ par(y, y′)

{ X
zAct−−→ y

Cn
zAct−−→ y

| Cn def= X,Cn ∈ Const
}

Table B.1: Rules and rule schemas for MP

191

x
zAct−−→ y

pref(zA, x)
concat(zA,zAct)−−−−−−−−→ x

x
zActnew−−−→ y

pref(zA, x)
concat(zA,zActnew

)
−−−−−−−−−→ x

x
zActnew−−−→ y

plus(x, x′)
zActnew−−−→ y

x
zActnew−−−→ y

plus(x′, x)
zActnew−−−→ y

x
zActnew−−−→ y

par(x, x′)
zActnew−−−→ par(y, x′)

x
zActnew−−−→ y

par(x′, x)
zActnew−−−→ par(x′, y)

x
zAct−−→ y x′

z′Act−−→ y′

par(x, x′)
combnew(zAct,z

′
Act)−−−−−−−−−−→ par(y, y′)

x
zActnew−−−→ y x′

z′Act−−→ y′

par(x, x′)
combnew(zActnew

,z′Act)−−−−−−−−−−−→ par(y, y′)

x
zAct−−→ y x′

z′Actnew−−−→ y′

par(x, x′)
combnew(zAct,z

′
Actnew

)
−−−−−−−−−−−→ par(y, y′)

x
zActnew−−−→ y x′

z′Actnew−−−→ y′

par(x, x′)
combnew(zActnew

,z′Actnew
)

−−−−−−−−−−−−−→ par(y, y′)

{ X
zActnew−−−→ y

Cn
zActnew−−−→ y

| Cn def= X,Cn ∈ Const
}

Table B.2: Rules and rule schemas for MPExt

192

Sort Carrier set

A A ∪ {⊥A}

L N

Act C′ ∪ {⊥Act}

Actnew C ∪ {⊥Actnew}

Table B.3: Carrier sets for Apom

I define a ΣMPExt-algebra Apom to represent the actual process algebra labels

of pomset CCS, where C is defined as follows c ::= a | a : c | c|c for a ∈ A. Also

let C′ be defined as follows c′ ::= a | c′|c′ for a ∈ A. Clearly A ⊂ C′ ⊂ C.

I will also assume there is an congruence ≡C on C′ and C generated by the

following axioms as in Castellani’s original definition [Cas88]

c | c′ = c′ | c and c | (c′ | c′′) = (c | c′) | c′′.

Define ≡Ap as follows: if α, β ∈ T(ΣMPExt)P, then

α ≡Ap β ⇐⇒

iApom(α) = iApom(β)
or
iApom(α) ≡C iApom(β).

The carrier sets and functions for Apom are given in Tables B.3 and B.4.

I now want a slightly different algebra to represent the labels of a different

process algebra based around pomset bisimulation but with some restriction on

which processes can contribute to parallel computation. I will call this ΣMPExt-

algebra Apomn.

Let N and M be sequences of positive natural numbers without repetition,

and let N ∩M indicate the intersection of sequences. Then let (a,N) +n (b,M)

where a, b ∈ C′, be defined as equal to (a | b,NM) whenever N ∩M = ∅.

193

aApom = a ∀a ∈ A
lApom = num(l) ∀l ∈ L

actApom(ζ1, ζ2) =

{
ζ1 if ζ1 ∈ A and ζ2 ∈ N+

⊥Act otherwise

combApom(ζ1, ζ2) =

{
ζ1 | ζ2 if ζ1, ζ2 ∈ C′

⊥Act otherwise

concatApom(ζ1, ζ2) =

{
ζ1 : ζ2 if ζ1 ∈ A, ζ2 ∈ C
⊥Actnew otherwise

combnew
Apom(ζ1, ζ2) =

{
ζ1 | ζ2 if ζ1, ζ2 ∈ C
⊥Actnew otherwise

⊥ApomA = ⊥A

⊥ApomL = 0

⊥ApomAct = ⊥Act

⊥ApomActnew
= ⊥Actnew

Table B.4: Functions for Apom

194

Sort Carrier set

A A ∪ {⊥A}

L N

Act D =
⋃n
j>1{(c′, a1 . . . aj) | c′ ∈ C′, acts(c′) = j,

a1, . . . , aj ∈ {1, . . . , j}, pairwise disjoint} ∪ {⊥Act}

Actnew C ∪ {⊥Actnew}

Table B.5: Carrier sets for Apomn

Also define a function acts : C′ → N as

acts(c | c′) = acts(c) + acts(c′)

acts(a) = 1.

Extend ≡C to D in the obvious manner. The carrier sets and functions for

Apomn are given in Tables B.5 and B.6.

Define ≡Apn as follows: if α, β ∈ T(ΣMPExt)P, then

α ≡Apn β ⇐⇒

iApomn(α) = iApomn(β)
or
iApomn(α) ≡C iApomn(β).

I want to show that for u, v ∈ T(ΣMPExt)P

u ∼≡Apn v ⇐⇒ u ∼≡Ap v.

Here I am working with a definition of bisimulation which does not consider

the transitions that are labelled with terms indicating undefined—in this case the

terms in the set {⊥A,⊥L,⊥Act,⊥Actnew}.
If I can show that ≡Apn ⊆ ≡Ap then it will follow that ∼≡Apn ⊆ ∼≡Ap .

However, because some terms are equated to ⊥Act by Apn and not by Ap, this

approach cannot be used.

195

aApomn = a ∀a ∈ A
lApomn = num(l) ∀l ∈ L

actApomn(ζ1, ζ2) =

{
(ζ1, ζ2) if ζ1 ∈ A and ζ2 6 n

⊥Act otherwise

combApomn(ζ1, ζ2) =

ζ1 +n ζ2 if ζ1, ζ2 ∈ D

and ζ1 +n ζ2 defined
⊥Act otherwise

concatApomn(ζ1, ζ2) =

ζ1 : ζ2,1 if ζ1 ∈ A, ζ2 ∈ D and

ζ2 = (ζ2,1, ζ2,2)
ζ1 : ζ2 if ζ1 ∈ A, ζ2 ∈ C
⊥Actnew otherwise

combnew
Apomn(ζ1, ζ2) =

ζ1,1 | ζ2,1 if ζ1 ∈ D,
ζ2 ∈ D and
ζ1 = (ζ1,1, ζ1,2)
ζ2 = (ζ2,1, ζ2,2)

ζ1,1 | ζ2 if ζ1 ∈ D, ζ2 ∈ C and
ζ1 = (ζ1,1, ζ1,2)

ζ1 | ζ2,1 if ζ1 ∈ C, ζ2 ∈ D and
ζ2 = (ζ2,1, ζ2,2)

ζ1 | ζ2 if ζ1, ζ2 ∈ C
⊥Actnew otherwise

⊥ApomnA = ⊥A

⊥ApomnL = 0

⊥ApomnAct = ⊥Act

⊥ApomnActnew
= ⊥Actnew

Table B.6: Functions for Apomn

196

It is possible though to show that for α, β 6≡Apnγ for γ ∈ {⊥A,⊥L,⊥Act,⊥Actnew}

α ≡Apn β =⇒ α ≡Ap β

Let α≡Apnβ then I need to consider the four possible sorts for these terms. Clearly

α, β ∈ T(ΣMPExt)A or T(ΣMPExt)L, the implication holds since both algebras are

the same for these terms.

If α, β ∈ T(ΣMPExt)Act − {⊥Act} then iApomn(α) = (c,N) for some c ∈ C′ and

N sequence of natural numbers with no repeats; and iApom(α) = c. Similarly for

β. Since iApomn(α) = iApomn(β), then iApom(α) = iApom(β). A similar argument

can be used for iApomn(α) ≡C iApomn(β).

If α, β ∈ T(ΣMPExt)Actnew − {⊥Actnew} then iApomn(α) = c for some c ∈ C′,
iApom(α) = c and hence the implication holds. A similar argument can be used

for iApomn(α) ≡C iApomn(β).

In light of the above, I need to prove ∼≡Apn ⊆ ∼≡Ap by dealing directly with

the eTSS and equivalences. Assume t ∼≡Apn u. I wish to show that t ∼≡Ap u.

Consider a transition t
α−→ t′ with α 6≡Ap⊥Act and α 6≡Ap⊥Actnew. It is not possible

to use the argument that t ∼≡Apn u′ and hence a matching transition can be

found, since it may be the case that α ≡Apn ⊥Act or α ≡Apn ⊥Actnew.

Hence I need to work with the proofs which are generated. I will refer to the

following rule as the Act parallel rule.

x
zAct−−→ y x′

z′Act−−→ y′

par(x, x′)
comb(zAct,z

′
Act)−−−−−−−−→ par(y, y′)

• First consider α ∈ T(ΣMPExt)Act. Note that it is possible to show that

t
α−→ t′, α ∈ T(ΣMPExt)Act ⇐⇒ t

α′−→ t′, α′ ∈ T(ΣMPExt)Actnew

with iAp(α) = iAp(α′). (Note that α and α′ cannot be equivalent because

they have different sorts.) Moreover, it can be shown that there is a proof

of t α′−→ t′ for α′ ∈ T(ΣMPExt)Actnew which does not use the Act parallel rule,

and such that no term of the form act(a, l) has an l such that lApomn > n.

Therefore α′ 6≡Apn⊥Actnew and t
α′−→ t′ with α′ ∈ T(ΣMPExt)Actnew. Since

197

t ∼≡Apn u, there exist β ′ and u′ such that u β′−→ u′ with α′ ≡Apn β ′ and

since neither α′ nor β ′ are equivalent to ⊥Actnew, α′ ≡Ap β ′. In other words,

iAp(α′) = iAp(β ′).

By the above, I can find β ∈ T(ΣMPExt)Act such that u β−→ u′ and iAp(β ′) =

iAp(β). Hence I have found a transition u β−→ u′ with α ≡Ap β and t′ ∼≡Apn u′

as required.

• Next consider α ∈ T(ΣMPExt)Actnew. By a similar argument it is possible to

find t
α′−→ t′ such that α ≡Ap α′ and the proof of the new transition does

not use the Act parallel rule, and where no term of the form act(a, l) has an

l such that lApomn > n. Hence α′ 6≡Apn⊥Actnew.

Since t ∼≡Apn u, there exist β ′ and u′ such that u
β′−→ u′ with α′ ≡Apn β ′ and

since neither α nor β are equivalent to ⊥Actnew, α′ ≡Ap β ′. In other words,

α ≡Ap β ′ as required.

I also need to show the converse of this, namely that ∼≡Ap ⊆ ∼≡Apn . Consider

t ∼≡Ap u. I wish to show that t ∼≡Apn u. Consider a transition t
α−→ t′ with

α 6≡Apn⊥Act and α 6≡Apn⊥Actnew. It is not possible to use the argument that t ∼≡Ap
u′ since α ≡Ap β 6=⇒ α ≡Apn β for α, β 6∈ {⊥Act,⊥Actnew}. Hence, a different

approach is required.

• First consider α ∈ T(ΣMPExt)Act. Since α 6≡Apn⊥Act, it can be argued that

the term li appears in α at most n times and moreover all occurrences are

distinct and for all i, lApomni 6 n. Since t ∼≡Ap t′, there exist β and u′ such

that u ∼≡Ap u′ and α ≡Ap β.

Moreover, it can be shown that there are the same number of occurrences of

terms of the form li in β (otherwise it would not be equivalent to α). Hence

it is possible (by suitable choice of which li’s appear in the term) to find a

term β ′ such that u β−→ u′ and β ′ 6≡Apn⊥Act with β ′ ≡Apn α as required.

• Next consider α ∈ T(ΣMPExt)Actnew. Since t ∼≡Ap u, there exist β and u′

such that u β−→ u′ and α ≡Ap β. As before it is possible to find an β ′ such

that u β′−→ u′ and such that the Act parallel rule is not used in the proof

198

and no term of the form act(a, l) has an l such that lApomn > n. Hence

β ′ 6≡Apn⊥Act. Moreover it can be shown (by suitable choice of which li’s

appear in the term) that α ≡Apn β ′ as required.

Hence I have shown that ∼≡Ap = ∼≡Apn as required.

199

Bibliography

[ABV94] L. Aceto, B. Bloom, and F. Vaandrager. Turning SOS rules into equations.
Information and Computation, 111, 1–52, 1994. (p 30)

[AC96] A. Arnold and I. Castellani. An algebraic characterisation of observation equi-
valence. Theoretical Computer Science, 156, 289–299, 1996. (pp 28, 47)

[Ace94a] L. Aceto. Deriving complete inference systems for a class of GSOS languages
generating regular behaviours. In Jonsson and Parrow [JP94], 449–464. (p 30)

[Ace94b] L. Aceto. GSOS and finite labelled transition systems. Theoretical Computer
Science, 131, 181–195, 1994. (p 30)

[Ace94c] L. Aceto. A static view of localities. Formal Aspects of Computing, 6(2), 201–
222, 1994. (pp 9, 37)

[AD89] A. Arnold and A. Dicky. An algebraic characterisation of transition system
equivalences. Information and Computation, 82, 198–229, 1989. (pp 27, 28,
50)

[ADCRDR89] G. Ausiello, M. Dezani-Ciancaglini, and S. Ronchi Della Rocca, (eds). ICALP
88, Lecture Notes in Computer Science 372. Springer-Verlag, 1989. (p 203)

[ADNF87] L. Aceto, R. De Nicola, and A. Fantechi. Testing equivalences for event struc-
tures. In Venturini Zilli [VZ87], 1–20. (p 7)

[AG92] E. Astesiano and Reggio G. Observational structures and their logic. Theoretical
Computer Science, 96, 249–283, 1992. (p 31)

[AH93] L. Aceto and M. Hennessy. Towards action refinement in process algebras. In-
formation and Computation, 103, 204–269, 1993. (pp 13, 26, 33, 37)

[AH94] L. Aceto and M. Hennessy. Adding action refinement to a finite process algebra.
Information and Computation, 115, 179–247, 1994. (pp 13, 26, 33, 37)

[AI96] L. Aceto and A. Ingólfsdóttir. CPO models for compact GSOS languages. In-
formation and Computation, 129, 107–141, 1996. (p 30)

[AJ95] L. Aceto and A. Jeffrey. A complete axiomatisation of timed bisimulation for a
class of timed regular behaviours. Theoretical Computer Science, 152, 251–268,
1995. (p 17)

[AM91a] S. Abramsky and T.S.E. Maibaum, (eds). TAPSOFT ’91, Lecture Notes in
Computer Science 493. Springer-Verlag, 1991. (p 204)

[AM91b] S. Abramsky and T.S.E. Maibaum, (eds). TAPSOFT ’91, Lecture Notes in
Computer Science 494. Springer-Verlag, 1991. (p 204)

[AM96] L. Aceto and D. Murphy. Timing and causality in process algebra. Acta Inform-
atica, 33, 317–350, 1996. (pp 13, 36)

[Apt84] K.R. Apt, (ed). Logics and models of concurrent systems, Volume F13 of Nato
ASI Series. Springer-Verlag, 1984. (p 202)

200

[Arn90] A. Arnold, (ed). CAAP 90, Lecture Notes in Computer Science 431. Springer-
Verlag, 1990. (p 204)

[Arn93] A. Arnold. Verification and comparison of transition systems. In Gaudel and
Jouannaud [GJ93], 121–135. (pp 27, 28)

[AS92] C. Autant and Ph. Schnoebelen. Place bisimulations in Petri nets. In Jensen
[Jen92], 45–61. (p 7)

[AS94] S. Abiteboul and E. Shamir, (eds). ICALP ’94, Lecture Notes in Computer
Science 820. Springer-Verlag, 1994. (p 203)

[BB91a] J.C.M. Baeten and J.A. Bergstra. Real space process algebra. In Baeten and
Groote [BG91], 96–110. (p 16)

[BB91b] J.C.M. Baeten and J.A. Bergstra. Real time process algebra. Formal Aspects of
Computing, 3, 142–188, 1991. (p 16)

[BB93a] J.C.M. Baeten and J.A. Bergstra. Non interleaving process algebra. In Best
[Bes93], 308–232. (p 22)

[BB93b] J.C.M. Baeten and J.A. Bergstra. Real space process algebra. Formal Aspects
of Computing, 5, 481–529, 1993. (p 12)

[BB95] J.C.M. Baeten and J.A. Bergstra. Real time process algebra with infinitesimals.
In Ponse et al. [PVvV95], 148–187. (p 16)

[BB96] J.C.M. Baeten and J.A. Bergstra. Discrete time process algebra. Formal Aspects
of Computing, 8, 188–208, 1996. (p 17)

[BBK86] J.C.M. Baeten, J.A. Bergstra, and J.W. Klop. Syntax and defining equations
for an interrupt mechanism in basic process algebra. Fundamenta Informatica,
IX, 127–168, 1986. (p 18)

[BBS88] D.B. Benson and O. Ben-Shachar. Bisimulation of automata. Information and
Computation, 79, 60–83, 1988. (p 28)

[BC88a] G. Boudol and I. Castellani. Concurrency and atomicity. Theoretical Computer
Science, 59, 25–84, 1988. (p 7)

[BC88b] G. Boudol and I. Castellani. A non-interleaving semantics for CCS based on
proved transitions. Fundamenta Informatica, XI, 433–452, 1988. (pp 19, 22)

[BC88c] G. Boudol and I. Castellani. Permutations of transitions: an event structure
semantics for CCS and SCCS. In de Bakker et al. [dBdRR88], 411–427. (p 19)

[BC91] G. Boudol and I. Castellani. Observing localities. In Tarlecki [Tar91], 93–102.
(p 9)

[BC94] G. Boudol and I. Castellani. Flow models of distributed computations—three
equivalent semantics for CCS. Information and Computation, 114, 247–314,
1994. (pp 7, 25)

[BCHK91a] G. Boudol, I. Castellani, M. Hennessy, and A. Kiehn. Observing localities.
Technical Report 4/91, Computer Science, University of Sussex, 1991. (p 40)

[BCHK91b] G. Boudol, I. Castellani, M. Hennessy, and A. Kiehn. A theory of processes with
localities. Technical Report 13/91, Computer Science, University of Sussex,
1991. (p 42)

[BCHK92] G. Boudol, I. Castellani, M. Hennessy, and A. Kiehn. A theory of processes with
localities. In Cleaveland [Cle92], 108–122. (pp 8, 9, 22)

[BCHK93] G. Boudol, I. Castellani, M. Hennessy, and A. Kiehn. Observing localities.
Theoretical Computer Science, 114, 31–61, 1993. (pp 9, 33, 35, 40, 42, 56, 59,
66)

201

[BCHK94] G. Boudol, I. Castellani, M. Hennessy, and A. Kiehn. A theory of processes with
localities. Formal Aspects of Computing, 6(2), 165–200, 1994. (pp 8, 9, 33, 35,
36, 37, 41, 56, 57, 59, 66, 94)

[Bed87] M. Bednarczyk. Categories of asynchronous systems. Technical Report 3/87,
PhD Thesis, Department of Computer Science, University of Sussex, 1987.
(p 22)

[Bes93] E. Best, (ed). CONCUR ’93, Lecture Notes in Computer Science 715. Springer-
Verlag, 1993. (pp 201, 202, 208, 209)

[BG91] J.C.M. Baeten and J.F. Groote, (eds). CONCUR ’91, Lecture Notes in Com-
puter Science 527. Springer-Verlag, 1991. (pp 201, 202, 204, 205, 206, 207,
208)

[BG96] R. Bol and J.F. Groote. The meaning of negative premises in transition system
specifications. Journal of the ACM, 43, 863–914, 1996. (p 29)

[BIM95] B. Bloom, S. Istrail, and A.R. Meyer. Bisimulation can’t be traced. Journal of
the ACM, 42, 232–268, 1995. (p 29)

[BJKB+93] E. Börger, G. Jäger, H. Kleine Büning, S. Martini, and M.M. Ritchter, (eds).
CSL ’92, Lecture Notes in Computer Science 702. Springer-Verlag, 1993. (p 204)

[BK90] J.C.M. Baeten and J.W. Klop, (eds). CONCUR ’90, Lecture Notes in Computer
Science 458. Springer-Verlag, 1990. (pp 206, 207, 209)

[BKLL95] E. Brinksma, J.-P. Katoen, R. Langerak, and D. Latella. A stochastic causality-
based process algebra. Computer Journal, 38, 552–565, 1995. (p 7)

[Blo95] B. Bloom. Structural operational semantics for weak bisimulations. Theoretical
Computer Science, 146, 25–68, 1995. (pp 30, 175)

[BMC94] C. Baier and M.E. Majster-Cederbaum. The connection between event structure
semantics and an operational semantics for TCSP. Acta Informatica, 31, 81–104,
1994. (p 7)

[Bou84] G. Boudol. Notes on algebraic calculi of processes. In Apt [Apt84], 261–303.
(p 5)

[BS93] A.M. Borzyszkowski and S. Sokolowski, (eds). MFCS ’93, Lecture Notes in
Computer Science 711. Springer-Verlag, 1993. (pp 202, 206, 207)

[BV93] J.C.M. Baeten and C. Verhoef. A congruence theorem for structured operational
semantics with predicates. In Best [Bes93], 477–492. (p 29)

[BVNW87] F.J. Brandenburg, G. Vidal-Naquet, and M. Wirsing, (eds). STACS ’87, Lecture
Notes in Computer Science 247. Springer-Verlag, 1987. (p 209)

[Cam91] J. Camilleri. A conditional operator for CCS. In Baeten and Groote [BG91],
142–156. (p 18)

[Cas88] I. Castellani. Bisimulations for concurrency. Technical Report CST-51-88, PhD
Thesis, Department of Computer Science, University of Edinburgh, 1988. (pp 8,
19, 28, 33, 35, 40, 157, 164, 193)

[Cas93] I. Castellani. Observing distribution in processes. In Borzyszkowski and Soko-
lowski [BS93], 321–331. (pp 35, 37, 41)

[Cas95] I. Castellani. Observing distribution in processes: static and dynamic localities.
International Journal of Foundations of Computer Science, 6, 353–393, 1995.
(p 9)

[CdCC92] R.J. Coelha da Costa and J.-P. Courtiat. A causality-based semantics for CCS.
In Purushothaman and Zwarico [PZ92]. (p 7)

202

[CDN94] A. Corradini and R. De Nicola. Distribution and locality of concurrent systems.
In Abiteboul and Shamir [AS94], 154–165. (pp 9, 35, 41)

[CDN97] A. Corradini and R. De Nicola. Localitty based semantics for process algebras.
Acta Informatica, 34, 291–324, 1997. (pp 8, 9, 35, 36, 40, 41)

[CFM90] A. Corradini, G.L. Ferrari, and U. Montanari. Transition systems with algebraic
structure as models of computation. In Guessarian [Gue90], 185–222. (pp 19,
28)

[CH89] I. Castellani and M. Hennessy. Distributed bisimulations. Journal of the ACM,
36(4), 887–911, October 1989. (pp 8, 35)

[CH90] R. Cleaveland and M. Hennessy. Priorities in process algebra. Information and
Computation, 87, 58–77, 1990. (p 18)

[Che92] L. Chen. An interleaving model for real-time systems. In Nerode and Taitslin
[NT92], 81–92. (p 16)

[Che93] L. Chen. Timed processes: models, axioms and decidability. Technical Re-
port CST-101-93, PhD Thesis, Department of Computer Science, University of
Edinburgh, 1993. (p 16)

[Cle92] W.R. Cleaveland, (ed). CONCUR ’92, Lecture Notes in Computer Science 630.
Springer-Verlag, 1992. (pp 201, 204, 205, 206, 208)

[CLN96] R. Cleaveland, G. Lüttgen, and V. Natarajan. A process algebra with distributed
priorities. [MS96], 34–49. (p 18)

[CW95] J. Camilleri and G. Winskel. CCS with priority choice. Information and Com-
putation, 116, 26–37, 1995. (p 18)

[Dan91] M. Daniels. Modeling real-time behaviour with an interval time calculus. In
Vytopil [Vyt91], 53–71. (p 16)

[dBdRR88] J.W. de Bakker, W.-P. de Roever, and G. Rozenberg, (eds). Linear time, branch-
ing time and partial orders in logics and models for concurrency. Lecture Notes
in Computer Science 354. Springer-Verlag, 1988. (pp 201, 203, 205, 206, 207)

[dBHdR92] J.W. de Bakker, C. HUizing, and G. de Roever, W.P. amd Rozenberg, (eds).
Real-time: theory in practice, Lecture Notes in Computer Science 600. Springer-
Verlag, 1992. (p 207)

[dBNT87] J.W. de Bakker, A.J. Nijman, and P.C. Treleaven, (eds). PARLE ’87, Lecture
Notes in Computer Science 259. Springer-Verlag, 1987. (p 209)

[DD89] P. Darondeau and P. Degano. Causal trees. In Ausiello et al. [ADCRDR89],
234–248. (pp 7, 9, 35, 66)

[DD90] P. Darondeau and P. Degano. Causal trees, interleaving + causality. In Guessar-
ian [Gue90], 239–255. (pp ix, 7, 8, 66)

[DDNM88a] P. Degano, R. De Nicola, and U. Montanari. A distributed operational semantics
for CCS based on condition/event systems. Acta Informatica, 26, 59–91, 1988.
(pp 7, 28)

[DDNM88b] P. Degano, R. De Nicola, and U. Montanari. On the consistency of “truly
concurrent” operational and denotational semantics. [LIC88], 133–141. (pp 7,
22)

[DDNM88c] P. Degano, R. De Nicola, and U. Montanari. Partial ordering descriptions and
observations of nondeterministic concurrent processes. In de Bakker et al. [dB-
dRR88], 438–466. (p 7)

[DDNM90] P. Degano, R. De Nicola, and U. Montanari. A partial ordering semantics for
CCS. Theoretical Computer Science, 75, 223–262, 1990. (p 22)

203

[DDNM92] P. Degano, R. De Nicola, and U. Montanari. Observation trees. In Pur-
ushothaman and Zwarico [PZ92]. (pp 21, 22, 26, 32)

[DDNM93] P. Degano, R. De Nicola, and U. Montanari. Universal axioms for bisimulations.
Theoretical Computer Science, 114, 63–91, 1993. (pp 21, 22, 26, 32)

[DG93] P. Degano and R. Gorrieri. A causal operational semantics of action refinement.
Information and Computation, 122, 97–119, 1993. (p 7)

[DM87a] P. Degano and U. Montanari. Concurrent histories: a basis for observing dis-
tributed systems. Journal of Computer and System Sciences, 34, 442–461, 1987.
(p 22)

[DM87b] P. Degano and U. Montanari. A model of distributed systems based on graph
rewriting. Journal of the ACM, 34, 411–449, 1987. (p 7)

[DN87] R. De Nicola. Extensional equivalences for transition systems. Acta Informatica,
24, 211–237, 1987. (p 25)

[DP92] P. Degano and C. Priami. Proved trees. In Kuich [Kui92], 629–640. (pp 21, 22,
32)

[dS85] R. de Simone. Higher-level synchronising devices in Meije-SCCS. Theoretical
Computer Science, 37, 245–267, 1985. (p 29)

[ES92] D. Etiemble and J.-C. Syre, (eds). PARLE ’92, Lecture Notes in Computer
Science 605. Springer-Verlag, 1992. (p 204)

[Fan92] J. Fanchon. Dynamic concurrent processes. In Etiemble and Syre [ES92], 859–
874. (pp 12, 37)

[Fer93] T. Fernando. Comparative transition system semantics. In Börger et al.
[BJKB+93], 146–166. (p 25)

[FGM91] G.L. Ferrari, R. Gorrieri, and U. Montanari. An extended expansion theorem.
In Abramsky and Maibaum [AM91a], 29–48. (p 19)

[FM90] G.L. Ferrari and U. Montanari. Toward the unification of models for concurrency.
In Arnold [Arn90], 162–176. (pp 19, 28)

[FM91] G.L. Ferrari and U. Montanari. The observation algebra of spatial pomsets. In
Baeten and Groote [BG91], 108–122. (p 19)

[FMM91] G.L. Ferrari, U. Montanari, and M. Mowbray. On causality observed increment-
ally, finally. In Abramsky and Maibaum [AM91b], 26–41. (p 28)

[FvG96] W. Fokkink and R. van Glabbeek. Ntyft/nyxt rules reduce to ntree rules. In-
formation and Computation, 126, 1–10, 1996. (pp 31, 76, 92, 175)

[GJ93] M.-C. Gaudel and J.-P. Jouannaud, (eds). TAPSOFT ’93, Lecture Notes in
Computer Science 668. Springer-Verlag, 1993. (p 201)

[GKP92] U. Goltz, R. Kuiper, and W. Peczek. Propositional temporal logics and eqi-
valences. In Cleaveland [Cle92], 222–236. (p 7)

[GL91] R. Gorrieri and C. Laneve. The limit of splitn-bisimulations for CCS agents. In
Tarlecki [Tar91], 170–180. (pp ix, 13, 26, 27, 28, 33, 38)

[GL94] R. Gerber and I. Lee. A resource-based prioritized bisimulation for real-time
systems. Information and Computation, 113, 102–142, 1994. (p 18)

[GL95] R. Gorrieri and C. Laneve. Split and ST bisimulation semantics. Information
and Computation, 118, 272–288, 1995. (p 7)

[GM84] U. Goltz and A. Mycroft. On the relationship of CCS and Petri nets. In
Paredaens [Par84], 196–208. (p 7)

204

[Gol90] U. Goltz. CCS and Petri nets. In Guessarian [Gue90], 334–357. (p 7)

[Gro93] J.F. Groote. Transition systems specifications with negative premises. Theoret-
ical Computer Science, 118, 263–299, 1993. (pp ix, 18, 29, 30)

[GRS95] R. Gorrieri, M. Roccetti, and E. Stancampiano. A theory of processes with
durational actions. Theoretical Computer Science, 140, 73–94, 1995. (p 13)

[Gue90] I. Guessarian, (ed). Semantics of Systems of Concurrent Processes. Lecture
Notes in Computer Science 469. Springer-Verlag, 1990. (pp 203, 205, 206,
209)

[GV92] J.F. Groote and F. Vaandrager. Structured operational semantics and bisim-
ulation as a congruence. Information and Computation, 100, 202–260, 1992.
(pp 29, 72, 84, 97, 98)

[Hen88a] M. Hennessy. Axiomatising finite concurrent processes. SIAM Journal on Com-
puting, 17(5), 997–1017, October 1988. (pp 13, 33)

[Hen88b] M. Hennessy. Observing processes. In de Bakker et al. [dBdRR88], 173–200.
(p 8)

[Hen91] M. Hennessy. A proof system for weak ST-bisimulation over a finite process
algebra. Technical Report 6/91, Computer Science, University of Sussex, 1991.
(pp 13, 33, 35, 42)

[Hen95] M. Hennessy. Concurrent testing of processes. Acta Informatica, 32, 509–543,
1995. (p 13)

[Hil96] J. Hillston. A compositional approach to performance modelling. Cambridge
University Press, 1996. (p 17)

[HR95] M. Hennessy and T. Regan. A process algebra for timed systems. Information
and Computation, 117, 221–239, 1995. (p 17)

[HSZM93] C. Ho-Stuart, H.S.M. Zedan, and Fang. M. Congruent weak bisimulation with
dense real-time. Information Processing Letters, 46, 55–61, 1993. (p 17)

[IPY93] P. Inverardi, C. Priami, and D. Yankelevich. Extended transition systems for
parametric bisimulation. In Lingas et al. [LKC93], 558–569. (pp 22, 32)

[IPY94] P. Inverardi, C. Priami, and D. Yankelevich. Automatizing parametric reasoning
on distributed concurrent systems. Formal Aspects of Computing, 6, 676–695,
1994. (pp 22, 26, 32)

[Jan94] T. Janowski. Fault-tolerant bisimulations and process transformations. In Lang-
maack et al. [LdRV94], 373–392. (p 24)

[Jef91a] A. Jeffrey. Abstract timed observation and process algebra. In Baeten and
Groote [BG91], 332–345. (p 17)

[Jef91b] A. Jeffrey. Translating timed process algebra into prioritzed process algebra. In
Vytopil [Vyt91], 493–506. (p 18)

[Jef92] A. Jeffrey. A linear time algebra. In Larsen and Skou [LS92a], 432–442. (p 16)

[Jen92] K. Jensen, (ed). 13th International Conference on Application and Theory of
Petri Nets, Lecture Notes in Computer Science 616. Springer-Verlag, 1992.
(p 201)

[JM92] L. Jategaonkar and A. Meyer. Testing equivalence for Petri nets with action
refinement. In Cleaveland [Cle92], 17–31. (p 7)

[JP94] B. Jonsson and J. Parrow, (eds). CONCUR ’94, Lecture Notes in Computer
Science 836. Springer-Verlag, 1994. (pp 200, 206, 207)

205

[JS90] C.C. Jou and S.A. Smolka. Equivalences, congruences, and complete axiomatisa-
tions for probabilitics processes. In Baeten and Klop [BK90], 367–383. (pp 19,
26)

[KB92] B. Krieg-Brückner, (ed). ESOP ’92, Lecture Notes in Computer Science 582.
Springer-Verlag, 1992. (p 206)

[KH94] A. Kiehn and M. Hennessy. On the decidability of non-interleaving process
equivalences. In Jonsson and Parrow [JP94], 18–33. (pp 26, 176)

[Kie] A. Kiehn. Distributed bisimulation for finite CCS. Unpublished document. (p 8)

[Kie89] A. Kiehn. Distributed bisimulations for finite CCS. Technical Report 7/89,
Computer Science, University of Sussex, 1989. (pp 8, 35)

[Kie93] A. Kiehn. Proof systems for cause based equivalences. In Borzyszkowski and
Sokolowski [BS93], 547–556. (p 36)

[Kie94] A. Kiehn. Comparing locality and causality based equivalences. Acta Informat-
ica, 31(8), 697–718, 1994. (pp 7, 9, 26, 32, 33, 35, 41, 42, 57, 66, 157)

[KLP90] S. Kasangian, A. Labella, and A. Pettorossi. Observers, experiments and agents:
a comprehensive approach to parallelism. In Guessarian [Gue90], 393–407. (p 25)

[Kri91] P. Krishnan. Distributed CCS. In Baeten and Groote [BG91], 393–407. (pp 11,
33, 36)

[Kri92] P. Krishnan. A semantics for multiprocessor systems. In Krieg-Brückner [KB92],
307–320. (pp 22, 33, 37)

[Kri94] P. Krishnan. A semantic characterisation for faults in replicated systems. The-
oretical Computer Science, 128, 159–177, 1994. (pp 24, 33)

[Kri96] P. Krishnan. Architectural CCS. Formal Aspects of Computing, 162, 162–187,
1996. (pp 11, 22, 33, 36, 37, 155, 157)

[Kui92] W. Kuich, (ed). ICALP 92, Lecture Notes in Computer Science 623. Springer-
Verlag, 1992. (pp 204, 207)

[LAMRA91] J. Leach Albert, B. Monien, and M. Rodŕiguez Artalejo, (eds). ICALP ’91,
Lecture Notes in Computer Science 510. Springer-Verlag, 1991. (p 209)

[LdRV94] H. Langmaack, W.-P. de Roever, and J. Vytopil, (eds). Formal Techniques for
Real-Time and Fault-Tolerant Systems, Lecture Notes in Computer Science 863.
Springer-Verlag, 1994. (p 205)

[LIC88] LICS 88. Computer Science Press, 1988. (p 203)

[LIC92] LICS 92. IEEE Computer Society Press, 1992. (p 208)

[LKC93] A. Lingas, R. Karlsson, and S. Carlsson, (eds). ICALP ’93, Lecture Notes in
Computer Science 700. Springer-Verlag, 1993. (p 205)

[LRT88] K. Lodaya, R. Ramanujam, and P.S. Thiagarajan. A logic from distributed
transition systems. In de Bakker et al. [dBdRR88], 508–522. (p 24)

[LS92a] K.G. Larsen and A. Skou, (eds). CAV ’91, Lecture Notes in Computer Sci-
ence 575. Springer-Verlag, 1992. (p 205)

[LS92b] K.G. Larsen and A. Skou. Compositional verificaton of probabilistic processes.
In Cleaveland [Cle92], 456–471. (p 18)

[Lu93] R.Q. Lu. A true concurrency model of CCS semantics. Theoretical Computer
Science, 113, 231–258, 1993. (p 7)

[Mes90] J. Meseguer. Rewriting as a unified model of concurrency. In Baeten and Klop
[BK90], 384–400. (p 25)

206

[Mil89] R. Milner. Communication and concurrency. Prentice Hall, 1989. (pp 4, 5, 35)

[MN92] M. Mukund and M. Nielsen. CCC, locations and asynchronous transition sys-
tems. In Shyamasundar [Shy92], 328–341. (pp ix, 22, 23, 37)

[MS96] U. Montanari and V. Sassone, (eds). CONCUR ’96, Lecture Notes in Computer
Science 1119. Springer-Verlag, 1996. (p 203)

[MT90] F. Moller and C. Tofts. A temporal calculus of communicating systems. In
Baeten and Klop [BK90], 401–415. (pp 16, 17)

[Mur91] D. Murphy. Testing, betting and timed true concurrency. In Baeten and Groote
[BG91], 439–454. (p 7)

[Mur93] D. Murphy. Observing located concurrency. In Borzyszkowski and Sokolowski
[BS93], 473–484. (pp 7, 37)

[MY89] U. Montanari and D.N. Yankelevich. An algebraic view of interleaving and
distributed operational semantics for CCS. In Pitt et al. [PRD+89], 5–20. (p 25)

[MY92] U. Montanari and D.N. Yankelevich. A parametric approach to localities. In
Kuich [Kui92], 617–628. (pp 21, 26, 35, 41)

[MY95] U. Montanari and D.N. Yankelevich. Location equivalence in a parametric set-
ting. Theoretical Computer Science, 149, 299–332, 1995. (pp 21, 26)

[NC94] M. Nielsen and C. Clausen. Bisimulation for models in concurrency. In Jonsson
and Parrow [JP94], 385–400. (p 22)

[NCCC94] V. Natarajan, I Christoff, L. Christoff, and R. Cleaveland. Priority and abstrac-
tion in process algebra. In Thiagarajan [Thi94], 217–230. (p 18)

[NRT92] M. Nielsen, G. Rozenburg, and P.S. Thiagarajan. Elementary transition systems.
Theoretical Computer Science, 96, 3–33, 1992. (p 22)

[NS82] M. Nielsen and E.M. Schmidt, (eds). ICALP 82, Lecture Notes in Computer
Science 140. Springer-Verlag, 1982. (p 209)

[NS92] X. Nicollin and J. Sifakis. An overview and synthesis on timed process algebras.
In de Bakker et al. [dBHdR92], 526–548. (p 17)

[NS94] X. Nicollin and J. Sifakis. The algebra of timed processes, ATP—theory and
application. Information and Computation, 114, 131–178, 1994. (p 17)

[NT92] A. Nerode and M. Taitslin, (eds). Symposuim on Logical Foundations of Com-
puter Science, Lecture Notes in Computer Science 620. Springer-Verlag, 1992.
(p 203)

[OH86] E.-R. Olderog and C.A.R. Hoare. Specification-oriented semantics for commu-
nicating processes. Acta Informatica, 23, 9–66, 1986. (p 4)

[Old88] E.-R. Olderog. Strong bisimilarity on nets: a new concept for comparing net
semantics. In de Bakker et al. [dBdRR88], 549–573. (p 7)

[Par84] J. Paredaens, (ed). ICALP 84, Lecture Notes in Computer Science 172.
Springer-Verlag, 1984. (p 204)

[Plo88] G. Plotkin. A structural approach to operational semantics. Report DAIMI
FN-19, Computer Science Department, Aarhus University, 1988. (p 4)

[Pom85] L. Pomello. Some equivalence notions for concurrent systems—an overview. In
Rozenberg [Roz85], 381–400. (p 7)

[Pra95] K.V.S. Prasad. A calculus of broadcasting systems. Science of Computer Pro-
gramming, 25, 285–327, 1995. (p 18)

207

[PRD+89] D.H. Pitt, D.E. Rydeheard, P. Dybjer, A.M. Pitts, and A. Poigné, (eds). Cat-
egory Theory and Computer Science. Lecture Notes in Computer Science 389.
Springer-Verlag, 1989. (p 207)

[PRR94] I. Pŕivara, B. Rovan, and P. Ružička, (eds). NAPAW 92, Lecture Notes in
Computer Science 841. Springer-Verlag, 1994. (p 208)

[PRS92] L. Pomello, G. Rozenberg, and C. Simone. A survey of equivalence notions for
net based systems. In Rozenberg [Roz92], 410–472. (p 7)

[PVvV95] A. Ponse, C. Verhoef, and S.F.M. van Vlijmen, (eds). Algebra of Communicating
Processes 94. Springer-Verlag, 1995. (p 201)

[PY94] C. Priami and D. Yankelvich. Read-write causality. In Pŕivara et al. [PRR94],
567–576. (pp 21, 35, 42)

[PZ92] S. Purushothaman and A. Zwarico, (eds). Participants’ proceedings of NAPAW
92. Technical Report 92-15, Department of Computer Science, John Hopkins
University, 1992. (pp 202, 204)

[QdFA93] J. Quemada, D. de Frutos, and A. Azcorra. TIC: a timed calculus. Formal
Aspects of Computing, 5, 224–252, 1993. (p 16)

[Roz85] G. Rozenberg, (ed). Advances in Petri nets 1985, Lecture Notes in Computer
Science 222. Springer-Verlag, 1985. (p 207)

[Roz92] G. Rozenberg, (ed). Advances in Petri nets 1992, Lecture Notes in Computer
Science 609. Springer-Verlag, 1992. (p 208)

[San96] D. Sangiorgi. Locality and interleaving semantics in calculi for mobile processes.
Information and Computation, 155, 39–84, 1996. (p 9)

[Sch91] Ph. Schnoebelen. Experiments on processes with backtracking. In Baeten and
Groote [BG91], 480–494. (p 25)

[Sch95] S. Schneider. An operational semantics for Timed CSP. Information and Com-
putation, 116, 193–213, 1995. (p 16)

[Sha92] E. Shapiro. Embeddings among concurrent programming languages. In Cleave-
land [Cle92], 486–504. (p 25)

[Shy92] R. Shyamasundar, (ed). FST&TCS 92, Lecture Notes in Computer Science 652.
Springer-Verlag, 1992. (p 207)

[SNW93] V. Sassone, M. Neilsen, and G. Winskel. A classification of models for concur-
rency. In Best [Bes93], 308–232. (p 25)

[SS96] S. Smolka and B. Steffen. Priority as extremal probability. Formal Aspects of
Computing, 8, 585–606, 1996. (p 19)

[Sta89] A. Stark. Concurrent transition systems. Theoretical Computer Science, 64,
221–269, 1989. (p 22)

[Tar91] A. Tarlecki, (ed). MFCS ’91, Lecture Notes in Computer Science 520. Springer-
Verlag, 1991. (pp 201, 204)

[Tau90] D. Taubner. Representing CCS programs by finite predicate nets. Acta Inform-
atica, 27, 533–565, 1990. (p 7)

[Thi94] P.S. Thiagarajan, (ed). Foundations of Software Technology and Theoretical
Computer Science, Lecture Notes in Computer Science 880. Springer-Verlag,
1994. (p 207)

[Tof94] C. Tofts. Processes with probabilities, priorities and time. Formal Aspects of
Computing, 30, 536–564, 1994. (pp 6, 19)

[Uli92] I. Ulidowski. Equivalences on observable processes. [LIC92], 148–159. (p 30)

208

[Ver94] C. Verhoef. A general conservative extension theorem in process algebra. IFIP
Transactions A, 56, 149–168, 1994. (pp 31, 97, 104)

[Ver95] C. Verhoef. A congruence theorem of structured operational semantics with
predicates and negative premises. Nordic Journal of Computing, 2, 274–302,
1995. (p 29)

[vG87] R.J. van Glabbeek. Bounded nondeterminism and the approximation induction
principle in process algebras. In Brandenburg et al. [BVNW87], 336–347. (p 4)

[vG90a] R.J. van Glabbeek. Comparative concurrency semantics and refinement of ac-
tions. PhD thesis, Free University, Amsterdam, 1990. (p 25)

[vG90b] R.J. van Glabbeek. The linear time—branching time spectrum. In Baeten and
Klop [BK90], 278–297. (pp 25, 32, 56)

[vG93] R.J. van Glabbeek. The linear time—branching time spectrum II (the semantics
of sequential systems with silent moves). In Best [Bes93], 66–81. (pp 25, 32)

[vGG90] R.J. van Glabbeek and U. Goltz. Equivalences and refinement. In Guessarian
[Gue90], 309–333. (p 7)

[vGV87] R. van Glabbeek and F. Vaandrager. Petri net models for algebraic theories of
concurrency. In de Bakker et al. [dBNT87], 224–242. (pp 7, 13)

[Vyt91] J Vytopil, (ed). Formal Techniques on Real-Time and Fault-Tolerant Systems,
Lecture Notes in Computer Science 571. Springer-Verlag, 1991. (pp 203, 205)

[VZ87] M. Venturini Zilli, (ed). Proceedings of the Advanced School on Mathemat-
ical Models for the Semantics of Parallelism, Lecture Notes in Computer Sci-
ence 280. Springer-Verlag, 1987. (p 200)

[Win82] G. Winskel. Event structures for CCS and related languages. In Nielsen and
Schmidt [NS82], 561–576. (p 7)

[Yi90] Wang Yi. Real-time behaviour of asynchronous agents. In Baeten and Klop
[BK90], 502–520. (pp 16, 17)

[Yi91] Wang Yi. CCS + time = an interleaving model for real-time systems. In
Leach Albert et al. [LAMRA91], 217–228. (p 16)

209

