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ESSAYS ON DYNAMIC PROCUREMENT

Abstract

by Justus Laugwitz,
University of Edinburgh

January 2020

This thesis studies the impact of uncertainty and its sequential resolution on the design

of procurement mechanisms and, in particular, auctions. Procurement contracts constitute

a considerable fraction of output in developed economies. These contracts are typically

long-term agreements between a buyer (e.g., the government) and a seller (a supplier of a

good or service). This long-term nature of procurement contracts makes renegotiation after

the resolution of uncertainty more likely. As a consequence, analysing how these ex-post

dynamics affect the ex-ante design of procurement mechanisms becomes very important.

The first chapter of this thesis provides a survey and critical review of the theoretical

literature on dynamic procurement. It provides a summary of the seminal contributions

studying the optimal design of procurement mechanisms and reviews them in light of recent

advancements in the theory of dynamic procurement. We describe the issue of procurement

from a mechanism design standpoint, the dominant scoring auction, as well as the problems of

adverse selection and corruption. The second part of this review describes different channels

through which dynamic considerations impact this environment. In particular, we consider

issues such as renegotiation and ex-post adaptions, the non-contractible nature of some

relationships, repeated interactions, as well as the unique aspects relevant for large and
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complex projects. In the final part of the first chapter, we explore how the findings from the

literature on dynamic procurement help us cast new light on the key static ideas from the

seminal papers.

The second chapter of this thesis explores the effect of cost-uncertainty on the optimal

procurement mechanism. We make three main contributions to the literatures on mechanism

design and procurement. First, contributing to the research on dynamic mechanism design,

we derive the optimal mechanism for a multidimensional environment with sequential gen-

eration of private information. Unlike in the one-dimensional analysis of Eső and Szentes

(2007), in our multidimensional dynamic model, the second stage private information does

affect the agents’ rent. Second, contributing to the literature on procurement auctions,

we show that, unlike in Che (1993), the scoring auction is no longer able to implement

the optimal mechanism if contracts are renegotiated in response to the realisations of cost

shocks. Finally, the paper introduces a stylised model of procurement with renegotiation

that matches several features of observed procurement auctions.

The third and final chapter of this thesis addresses a question that naturally emerges from

the results of the second chapter. Scoring auctions with renegotiation are not the optimal

procurement mechanism for the buyer. However, despite their sub-optimality, scoring auc-

tions are the predominant mechanism used in practice. This chapter addresses the question

of optimality within the class of scoring auctions: What is the optimal scoring rule? Further-

more, we quantify the gap between the overall optimal mechanism and the optimal scoring

auction in terms of buyer payoffs. In addressing these questions, this chapter introduces a

methodology that imposes further restrictions on a direct mechanism optimisation problem

to find the optimum among a class of sub-optimal mechanisms. We further extend the re-

sult of the second chapter to a discrete type-space. This type-space facilitates an analytic

solution to the optimisation problem for the restricted mechanism design problem. Finally,

we introduce an auction with reserve-scores and show that it is the optimal scoring auction

with renegotiation for discrete type-spaces.
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LAY SUMMARY

This thesis studies how a buyer, such as a government, should design the process through

which she purchases goods and services when many sellers are competing to provide it. Sev-

eral distinct features often characterise the procurement process. Usually the good or service

is not offered as a one-off, but rather over a substantial length of time. As a consequence

procurement contracts are commonly long-term agreements. Moreover, in procurement, the

good or service to be purchased is not usually valued exclusively in terms of the price. For

example, if a government decides to build a road, it is not just concerned about the cost

of the road, but considerations such as the length of disruption to traffic or the expected

time until repairs are necessary are also important. We refer to this aspect of procurement

as multidimensionality. Finally, as a consequence of the multidimensionality and long-term

nature of procurement contracts, they are frequently renegotiated in practice. I.e. after the

initial agreement between the buyer and one or more sellers, the parties may alter or add to

the purchasing contract.

In this thesis, we address how the dynamics arising from renegotiation should affect the

initial process through which the buyer allocates the good to a seller. In the first chapter,

we review existing literature on this topic. Here we summarise recent developments in the

literature and explore the different approaches to modelling a dynamic procurement process.

In the second chapter, we introduce a model of procurement that is both multidimensional

and allows for the possibility of renegotiation. With this model, we describe the properties,

such as expected payment by each seller, an optimal auction would have to satisfy. However,

in this chapter, we show that there is a strong negative result. One of the most commonly

used auctions for procurement, the scoring auction, is not optimal for the buyer. Finally, in
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the third chapter, we introduce a simplified version of the model from chapter 2. This model

allows us to explore the optimal mechanism in more detail. Furthermore, it enables us to

describe how much is lost relative to the optimum if we do use the scoring auction that is

popular in practice.
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Chapter One

DYNAMIC ISSUES IN THE THEORY

OF PROCUREMENT

1.1 Introduction

Procurement, both public and private, makes up a considerable fraction of total economic

activity in developed nations. According to the handbook of procurement, not accounting

for the value of transactions and private sector procurement, public procurement alone made

up 16% of GDP in EU countries and 20% in the US in 2009 (Dimitri, Piga, and Spagnolo,

2006). Recent estimates suggest this number is steadily increasing. As a consequence,

procurement has received considerable attention in the economic literature. This literature

is in part reviewed by Klemperer (1999) and Armstrong and Sappington (2007) with a

focus on procurement auctions and the theory of regulation, respectively. Key issues in

the literature include the design of the optimal procurement auction and the impact and

prevention of corruption, among others. In this review, we will summarise the literature of

procurement while focusing on one particular aspect of it: the dynamics arising from the

long-term nature of procurement contracts.

Many procurement contracts are long-term agreements. For example, contracts for the

provision of public utilities, construction projects, or supply agreements for complex goods
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such as machinery can last anywhere from multiple years up to several decades. In these kinds

of long-term commitments, ex-post adaptations of the initial agreement are commonplace.

Evidence for this is readily available. E.g., Arve and Martimort (2016) cite evidence that

most of UK procurement contracts for public utility provision are revised ex-post. Bajari,

Tadelis, et al. (2001) argue that procured construction projects frequently use change orders

to adapt the initial agreement whenever needed. For public procurement projects, Jung

et al. (2019) claim that most, if not all, projects are renegotiated after the initial tender.

Given the likelihood of ex-post adaptation for the initial agreement in procurement, we

might wonder what impact this has on the procurement market as a whole. Contributions

in the theory of procurement have considered many different channels through which the dy-

namics affect the strategic interaction between sellers and the buyer in procurement. Early

contributions such as by Dewatripont (1989) and Laffont and Tirole (1990) considered how

the possibility of adjusting contracts ex-post changes the incentives in the initial allocation

setting. We can show that long-term procurement contracts are not ‘renegotiation proof’.

‘Renegotiation’ here simply refers to any adjustment of the initial contract without neces-

sarily having to specify the mechanism of renegotiation. ‘Renegotiation proof’ thus means

the initial contract is set up in such a way that renegotiation is not incentive compatible

for both sides, i.e. mutual gains from re-agreeing the contract cannot be made. As a conse-

quence, incentive distortions that may be favourable to the buyer in the allocation may not

be possible due to the possibility of renegotiation. In response to this finding, some, such

as Wang (2000) and Bajari, Tadelis, et al. (2001), considered whether the allocation stage

of long-term procurement contracts is meaningful at all or just ‘cheap talk’ on the way to

ex-post adaptations. Others, such as Arve and Martimort (2016) or the later chapters of this

PhD thesis attempted to consolidate the findings of incentive theory and mechanism design

with dynamic models of procurement. We will introduce these and other contributions in

section 1.3 of this paper.

We might further wonder how if at all, the key findings of seminal static procurement
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analyses would change if we account for the fact that the initial assumption of a static

procurement environment is so often not satisfied. For example, is the optimal static multi-

dimensional mechanism of McAfee and J. McMillan (1987), Riordan and Sappington (1987a),

and Laffont and Tirole (1987) used in much of the procurement literature still optimal when

there is initial uncertainty that is resolved before the contract is (fully) implemented? Does

the Che (1993) prediction that scoring auctions can implement the optimal procurement

mechanism hold up in the face of this? Or how are the results on the design of the optimal

procurement auction by Branco (1997), Asker and Cantillon (2005), and Asker and Cantillon

(2008) impacted by allowing for potential dynamics? Are the predictions for corrupt procure-

ment auctions of Ganuza (2007) and Burguet and Che (2004) affected by these dynamics?

We will describe a selection of the most influential findings from the part of procurement

theory that treats the environment as static and review them in light of the results of the

dynamic literature.

This paper is set up as follows. Section 1.2 will introduce a selection of seminal works

on static procurement to highlight key issues that have been addressed in the literature.

Section 1.3 will follow up by giving a summary of recent developments in the theory of

dynamic procurement. Section 1.4 will then discuss how the findings of section 1.3 can shed

light on the results of the papers from section 1.2 from a different perspective, accounting

for the possibility of dynamic effects. Section 1.5 will conclude and summarise the discussion

presented.

1.2 Seminal Contributions to the Theory of Procurement

A defining feature of procurement auctions is that they usually do not meet an assumption

central to most other auction environments. The assumption here is that the good to be

auctioned is a well-defined object, and thus the only aspect to be determined is the price. In

most procurement environments, this assumption is not tenable. For example,in construc-
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tion, the build time and design specification of a project may be of considerable importance

and receive appropriate attention in the tender. Even seemingly straightforward goods, such

as latex gloves for medical services, vary considerably across firms in design, reliability, ma-

terial, speed of delivery, and many other factors the auctioneer (buyer) may have preferences

over. In this multidimensional context, especially if firms face varying costs of production

for the non-price elements, the optimal allocation mechanism should take these into account.

In the literature on multidimensional procurement, for simplicity, most papers focus on one

composite non-price aspect we will refer to as ‘quality’. This is in line with the notation of

Che (1993).1 Quality might refer to any non-price factor relevant to the procurer. Restrict-

ing attention to this composite element allows us to develop stylised models which are still

able to capture many of the crucial issues arising in multidimensional environments.

McAfee and J. McMillan (1987), Riordan and Sappington (1987a), and Laffont and Tirole

(1987) initially describe the optimal allocation mechanism relevant for the multidimensional

procurement context. Here the trade-offs for the procurer are considerably different com-

pared to single dimensional environments. Unlike the latter, if the model is multidimensional,

the procurer faces two potential inefficiencies – allocative inefficiency and quality inefficiency.

The former arises when the good is not allocated to the seller with the lowest cost of pro-

ducing quality or not allocated to any seller. In this situation, we can achieve a higher social

surplus by changing the allocation. In other words, the allocation is inefficient. The latter

inefficiency arises when the seller produces the good at a quality that does not maximise

the difference between benefit (for the buyer) and cost (for the seller). Here the quality is

inefficient since changing it could increase social surplus. It is a well-known result in single-

dimensional auction environments that the auctioneer should sacrifice allocative efficiency to

reduce the informational rent obtained by the bidder (Myerson, 1981). In multi-dimensional

1We can equivalently think of this as ‘effort’ such as in Laffont and Tirole (1987), or the overall design

specification of the procurement project. Depending on the exact contex, either definition might be more

appropriate.
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models, this trade-off is not usually present. Instead, the buyer-optimal mechanisms of

McAfee and J. McMillan (1987), Riordan and Sappington (1987a), and Laffont and Tirole

(1987) solely introduce inefficiency in the quality of the good to achieve a similar reduction

in the sellers’ rent. A trade-off to reduce the quality aspect of the procurement good below

its social optimum allows the buyer to extract a higher surplus by reducing the surplus of

all other agents.

One of the most predominantly used mechanisms in procurement, when the good is

multidimensional, is the scoring auction. This mechanism allows the bidders to bid a design

specification, achieving scores on different non-price elements according to the scoring rule

set up by the auctioneer. For example, an auctioneer might decide to reward an earlier

expected completion date for a building project in the scoring rule. Che (1993) describes

different scoring auctions for two-dimensional procurement, where bidders bid a price as well

as a composite quality level. The auctions described by Che closely match the most common

single-dimensional auction mechanisms. For instance, in a sealed-bid first-score auction the

bidders privately submit a bid consisting of a price p and a quality q that achieve score

S(p, q) according to the scoring rule S laid out by the auctioneer. The contract is then

awarded to the bidder who bid the highest score. He will be asked to implement q and

paid p. In intuition and result, this mechanism closely resembles the first-price auction from

price-only auction theory. Che shows that if the buyer can commit to a scoring rule and

if the sellers’ types are independent of each other, the scoring auction can implement the

optimal mechanism of McAfee and J. McMillan (1987), Riordan and Sappington (1987a),

and Laffont and Tirole (1987) with a quasilinear scoring rule.

In these analyses, although the good is treated as multidimensional, the assumption is

maintained that sellers’ private information only varies in one dimension: in their cost of

producing quality.2 Asker and Cantillon (2008) and (2010) argue that this assumption is un-

realistic. They extend the McAfee and J. McMillan (1987), Riordan and Sappington (1987a),

2Or exerting effort.
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Laffont and Tirole (1987), and Che (1993) papers to allow not just for a multidimensional

object but also multidimensional private information. This extension enables the authors to

better match the equilibrium behaviour from the scoring auction model to what is observed

in the data (Asker and Cantillon, 2008). They are also able to derive the optimal mechanism

for this environment. However, although the scoring rule gets closer to implementing it than

a simple bargaining mechanism, a scoring auction is no longer optimal (Asker and Cantillon,

2010).

For simplicity and stylisation, many multidimensional models of procurement restrict

attention to environments where the sellers’ private information is not correlated. This is a

strong assumption that arguably does not correspond well with reality in many procurement

settings. For example, in construction, many projects require subcontracting and firms

may choose among a similar pool of firms to subcontract to. Such firms’ costs are unlikely

independent of each other. Branco (1997) agrees with the papers described above that one

key aspect of procurement auctions is the complexity of the strategy space, where firms

compete in several dimensions over the allocation of the contract. However, he argues that

the assumption of independence between the firms’ cost types maintained by Che (1993)

is unrealistic in the procurement environment. Branco shows that if an auction is both

multidimensional and has bidders with correlated types, the design of the optimal auction

is very different from auctions with either homogeneous goods or independent types. In

particular, the optimal auction must consist of two stages, wherein the first stage a bidder is

selected who negotiates the quality aspect with the auctioneer in the second stage. Moreover,

unlike in Che (1993), the quality will be a function of all bidders’ bid qualities and as such

a two-dimensional scoring auction is not an appropriate implementation mechanism.

Manelli and Vincent (1995) look at the quality aspect of procurement auctions through a

different lens than the papers introduced so far. Here quality is not something chosen by the

sellers. Rather each seller is endowed with the ability to produce the good at a fixed level

of quality. Moreover, this quality is the private information of each seller. The sellers know
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the quality of their good and the buyer’s valuation of the good is dependent on the selected

seller’s good’s quality. This model lends itself to explain the potential for adverse selection

in procurement auctions. If quality is not ex-post verifiable, an auction mechanism such

as a first-price auction may not select the seller who would produce the greatest economic

surplus in many environments. A seller with a low quality good may be able to produce the

good more cheaply and will thus be able to undercut the high-quality sellers in an auction.

This finding is contradictory to the result of Myerson (1981) that auctions, as they induce

competition among bidders, reach a socially desirable outcome. In the Manelli and Vincent

(1995) analysis, the buyer may be better off selecting sellers individually and giving them

a take-it-or-leave-it offer. Manelli and Vincent describe the exact conditions for when the

adverse selection effect makes it such that this process outperforms the simple first-price

auction.

A final aspect that has received considerable attention in the procurement literature is

the issue of corruption. Procurement is often seen as susceptible to corruption in both the

media as well as the economic literature. Much EU as well as government policy is dedicated

to reducing the presence of corruption in procurement. Two critical questions on corruption

in procurement are at the heart of most of the literature. The first is on the source of

the corruption. One argument here is that it exists due to a lack of competition. When

firms can extract large rents it may create a strong incentive for them to appropriate these

(Rose-Ackerman, 1996). Celentani and Ganuza (2002) describe a model of procurement with

equilibrium corruption that allows for a theoretical analysis of this claim and tests whether

increased competition among sellers would lead to a decrease in corruption. Here the authors

find that the Rose-Ackerman (1996) prediction does not generally hold: competition among

sellers has an ambiguous effect on corruption.

The second key question addressed in the literature on corruption in procurement is on

how to limit its adverse impact. In an early contribution, Laffont and Tirole (1991) discuss

measures to achieve reductions in corruption for procurement auctions. They find that when
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there is a possibility of collusive behaviour, auction mechanisms that do not distinguish

between non-price elements tend to perform better. In effect, corruption limits the possibility

of bidding on quality. This result is also found by Burguet and Che (2004) who endogenise the

favouritism by introducing a corruptible third-party responsible for evaluating the quality-

bids of sellers. Since the corruption occurs through the channel of non-price elements, the

optimal (scoring) auction in this environment de-emphasises the importance of quality. This

model additionally shows two surprising results. First, if the power of the third-party is

limited, the corruption can benefit the buyer, since it reduces the informational rent of the

agents by forcing them to bid more aggressively. Second, the optimal corruption-limiting

auction may have favouritism embedded. By lowering the handicap on the efficient firm, the

auctioneer increases this firm’s bidding advantage and limits the scope for the other firm to

use corruption.

1.3 The Literature on Dynamic Procurement

The literature so far discussed has mostly treated the procurement problem as static. Many

sellers are willing to provide a good or service to the single buyer and once agreed, the

contract is assumed to play out as specified. In reality, this assumption is hardly tenable.

The frequency of ex-post renegotiation of procurement contracts is well documented. On top

of this, repeated interaction and consequently reputation effects are commonplace. Although

for example, the model of Branco (1997) features a dynamic implementation, this is still with

a static environment in mind. In this section, we will introduce papers that explore how the

dynamic nature of the procurement environment should impact our understanding of it.

In the wider auction literature, the optimal design of auctions and mechanisms for dy-

namic settings is a broad and active literature. Bergemann and Said (2010) classify dynamic

auctions into two broad sets: (i) auctions with a dynamic population of agents with fixed

private information, and (ii) auctions with a fixed population of agents whose private infor-
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mation changes across time. Bergemann and Said summarise the literature for both these

subsets of dynamic auctions. An example of (i) is the analysis of optimal dynamic auctions

with index rules by Pai and Vohra (2013). Here many agents arrive at the auction over time

and may choose to submit a bid for one of several goods before a deadline. This environment

is similar to the sale of flight tickets online and Pai and Vohra (2013) show that an index

rule, similar in concept to the scoring rule of Che (1993) for the procurement setting, can

implement the optimal allocation under standard assumptions on the distribution of valua-

tions. A recent example of (ii) is the theory of indicative bidding by Quint and Hendricks

(2018). Selling a business through an auction is one of the most common ways auctions are

used in practice in terms of monetary value sold. In these environments nonbinding prelim-

inary (indicative) bids are a commonly used mechanism to filter out serious bidders from

a large pool. Quint and Hendricks (2018) describe an auction mechanism with indicative

bids formally and show that it outperforms an open auction when entry is costly in many

environments. This paper fits into (ii) since agents learn their true valuation only after sub-

mitting an indicative bid. Unlike the literature review by Bergemann and Said (2010), in

our review we restrict attention to specifically the field of procurement.

1.3.1 Procurement and Renegotiation

Many possible reasons for the frequency of renegotiation in the procurement environment

have been explored in the literature. The long-term and multidimensional nature of pro-

curement contracts makes it challenging to write a complete contract for every contingency

that may arise over the course of it. Other factors, such as poor governance and regulatory

weakness, can also play a role. In the theory of renegotiation of procurement, it is often

a different impetus for renegotiation that leads to the varying conclusions of the models.

Estache et al. (2009) provide a good introductory summary of the issue of renegotiation in

multidimensional procurement. In this part of the literature review, we will summarise the
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key findings of a selection of papers on renegotiation in light of the varying reason for why

renegotiation occurs. We will see that this reason is strongly connected to the conclusions

of the papers and helps to explain the difference in their findings.

In an early contribution to the literature on renegotiation in procurement by Tirole

(1986), renegotiation arises due to incomplete contracts. This model predates the optimal

mechanism for multidimensional procurement. Instead, a two-stage model is introduced.

Here a seller invests in a project and then he and the buyer realise their cost and value

of the project afterwards. Tirole examines the question of whether we should expect un-

derinvestment in this context. Without having to specify a bargaining mechanism, Tirole

shows that underinvestment will occur so long as the bargaining process is inefficient. I.e.,

as long as the seller loses some rent from the investment he will underinvest in equilibrium.

This underinvestment relative to the social optimum may be considerable depending on the

bargaining mechanism.

The impetus for renegotiation in Laffont and Tirole (1990) comes from the seminal work

of McAfee and J. McMillan (1987), Riordan and Sappington (1987a), and Laffont and Tirole

(1987) on the optimal mechanism for multidimensional procurement environments. In par-

ticular, Laffont and Tirole (1990) examine what would happen if we allow for the distorted

optimal qualities of the multidimensional procurement mechanism to, later on, be renegoti-

ated. They show that generally for any previously agreed quality, the principal would like to

ex-post reagree the quality with the agent. By moving from distorted to the socially optimal

qualities, gains from trade can always be made. If the principal cannot commit not to rene-

gotiate the qualities in this way, however, it becomes impossible for her to implement any

incentive-distorting qualities from McAfee and J. McMillan (1987), Riordan and Sappington

(1987a), and Laffont and Tirole (1987). The qualities of the first stage become ‘cheap talk’

waiting to be renegotiated.

A critical question that arises when we allow in our models of procurement for the

possibility of renegotiation is the question of when the bids for the project in the allocation
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phase are meaningful or just ‘cheap talk’. In Tirole (1986) and Laffont and Tirole (1990),

the first stage of the procurement mechanism was cheap talk as a consequence of a lack of

commitment. Wang (2000) addresses this question in a model of auctions with renegotiation

that allows for commitment. In this model, the impetus for renegotiation comes from the

commitment rather than from a lack of it. Here the buyer can commit to not awarding

the contract to any of the bidders. This commitment power allows the government to use

potential information it might learn about the bidders in the auction to approach them with

take it or leave it offers rather than accept their offers. Wang shows that in this model,

the initial bids matter and are not just ‘cheap talk’. Intuitively, since renegotiation is not

guaranteed to take place, when it does take place the buyer can learn about the sellers’ cost

from their bids.

The Wang (2000) model gives one reason for why renegotiation might occur in practice,

namely that it can help the buyer obtain lower prices. Arguably, however, in practice, this is

not usually the reason why procurement contracts are renegotiated. Instead they tend to be

renegotiated either because changing a design specification can be beneficial to the buyer or

the seller or, as Chang, Salmon, and Saral (2016) argue, because the seller would otherwise

go bankrupt. Chang, Salmon, and Saral describe the procurement environment as one that

(i) very commonly has a common value aspect to the auction and (ii) as one whereas a

consequence the winning bidder frequently suffers from the winners curse. Furthermore, in

equilibrium, the winner’s curse should be eliminated, so observing it in practice points to

something else going on. In their 2016 model, they allow for wealth constraints to examine

whether renegotiation can be an effective tool in mitigating the winner’s curse. Generally,

this is not the case, however, except for those smaller sellers who can credibly threaten to

go bankrupt. In equilibrium, renegotiation thus mostly benefits weaker sellers by allowing

them to make use of this commitment device to submit a more competitive bid. This model

therefore suggests that smaller firms may use the commitment to go bankrupt to force

beneficial renegotiation in the procurement process.
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In an essential contribution to understanding long term dynamics in procurement, Arve

and Martimort (2016) focus on the effect of risk aversion and cost observability on the

design of the optimal dynamic contract. They consider a two-period model of a procurement

process that involves an uncertain add-on. Arve and Martimort consider both the cases

where the cost of the second-period add-on is verifiable and where it is the seller’s private

information. In either case, the necessity of the add-on can be expected, and the buyer and

seller are allowed to contract over it with full commitment in the initial period. Unlike in the

former case, in the more realistic second scenario where the cost is private information, Arve

and Martimort show that under the assumption of risk aversion the rent from this private

information will be distorted through the insurance channel.

Arve and Martimort show that allowing for risk aversion changes the incentives present

for the firm in both periods of the model. They distinguish between two main effects. The

‘income effect’ of risk aversion refers to reduced first-period distortions of the optimal contract

from moving payments to the second stage and in this way reducing the informational rent

of the firm. On the other hand, the ‘risk effect’ refers to a reduction of the size of the second

stage add-on below the first-best efficient level stemming from the firm having to bear part

of the add-on risk in order to reveal its costs in the second stage. This risk cannot be fully

insured against it.

The literature introduced so far described several different channels of how renegotiation

can occur in procurement. Bajari, Tadelis, et al. (2001) go one step further and argue that

“[...] the procurement problem is primarily one of ex-post adaptations rather than ex-ante

screening”. Their 2001 paper argues that previous literature is too fixated on the issue of

ex-ante screening and evidence from management science shows that this focus is misplaced

as little evidence points to the existence and relevance of strong ex-ante informational dis-

crepancies. As such, in their model Bajari, Tadelis, et al. take the opposite approach and

completely ignore the ex-ante hidden information problem. In this way, they can restrict

attention to the adaptation to changes arising from the inherently incomplete design. In
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this model, the sellers have private information about the cost of these changes and Ba-

jari, Tadelis, et al. detail a trade-off between effort inducing incentives and adaptability to

changes in the product design. The more complex the procurement project, the more ben-

eficial become incomplete (‘cost-plus’) contracts with high adaptability. On the contrary,

simple projects are best served by complete effort inducing (‘fixed-price’) contracts.

Strategic Bidding

A key consideration for models of renegotiation in procurement is how the presence of rene-

gotiation will affect the strategic bidding in the allocation stage of the model. The models

we introduced in the previous section address this to a varying extent. However, it is worth

examining those papers that explicitly focus on these issues.

There is strong evidence that firms respond to the presence of renegotiation in their bid-

ding behaviour. In their (2014) paper Bajari, Houghton, and Tadelis develop an empirical

model to test for the presence and implications of adaptation cost to renegotiation in pro-

curement. The ask if there is evidence for strategic bidding in response to the incompleteness

of contracts. According to their estimation, adaptation costs are shown to be considerable,

and there is support for the existence of strategic bidding in response to it. They find ev-

idence in support of a Bajari, Tadelis, et al. (2001) thesis. Namely, when sellers expect

renegotiation in response to incompleteness, it should reduce their incentive to bid for this

contract if renegotiation is costly. Furthermore, this effect takes a higher priority for the

sellers’ bidding behaviour in the allocation mechanism than the initial private information.

Jung et al. (2019) extend the Bajari, Houghton, and Tadelis (2014) analysis to incorporate

bid-level data. This additional information allows the authors to obtain an estimate of the

extent to which firms shade their bids in a procurement auction, i.e. their projected markup

over cost for each item. With this analysis Jung et al. find a positive correlation between

the bid markup and the presence of ex-post (quantity) renegotiation. Firms conversely lower

the markup on non-renegotiated items to maximise their surplus after the allocation of the
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contract. This behaviour leads to increases in cost to the procurer that may far exceed

previous estimates. Given how commonplace renegotiation is in procurement – Jung et al.

(2019) argue that most, if not all, procurement contracts are later renegotiated – possibly

too much of the procurement literature is reduced to a static private information problem

rather than considering its dynamic issues. Failing to account for the considerable effects the

frequent post-tender renegotiation of procurement contracts has on the design of the contract

and the nature of the optimal allocation mechanism could lead us to make significant errors

in predicting the social and buyer-optimal mechanisms for this context.

1.3.2 Cost Overruns and Complex Projects

One aspect of procurement that receives a particularly large amount of media coverage is the

occurrence of significant cost overruns in sizeable public procurement projects. These cost

overruns are often due to changes in the initial design specification that were not anticipated

at the time of the allocation of the contract. Ganuza (2007) discusses the problem of cost

overruns in complex procurement contexts as a problem of underinvestment. In his model,

a procurer faces a trade-off to invest in the initial design specification. Higher investment

reduces the likelihood of costly renegotiation and increases the probability of selecting the

most efficient firm for the project. However, the lower investment allows the procurer to

reduce the competitive advantage of efficient firms and thus reduces informational rent.

Ganuza’s model predicts underinvestment in the design specification as a result of this trade-

off – leading to extensive renegotiation.

Herweg and Schmidt (2017,2018) and Herweg and Schwarz (2018) approach the feature

of large, complex procurement projects to have significant cost overruns from a different

perspective. Herweg and Schmidt (2018) consider a model of large procurement projects in

which the buyer is aware of potential flaws in her design. Herweg and Schmidt argue for

an arbitrator that verifies and rewards sellers who reveal design flaws before a procurement
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auction over ignoring the presence of potential flaws, using a simple price only auction, and

renegotiating flaws after the allocation. Herweg and Schmidt (2018) assume that the cost

of fixing a design flaw is higher after the assignment of the contract than before. This

assumption drives the result that having an independent arbitrator find flaws before the

allocation is preferable. However, should the buyer’s choice of a procurement mechanism

be unconstrained, it is not clear why it should be more expensive to fix design flaws after

the allocation has been decided. An unexplored research question would be whether the

common value aspect of the design flaws as well as the gains from allocative efficiency would

be sufficient to generate a similar result like the one presented here.

Herweg and Schwarz (2018) analyse the problem of cost overruns in large multidimen-

sional procurement projects when the buyer is constrained in the design of the procurement

mechanism and an arbitrator is not available, and the procurer cannot commit not to rene-

gotiate. The authors suggest a procurement mechanism that consists of two stages. In the

initial stage, the procurer can extract rent from the firms through horizontal competition in

a price only ‘fixed design’ auction. In the second stage, the procurer can achieve an efficient3

design for the winning firm through Coasian bargaining. This mechanism can deliver both

an efficient design and allocative efficiency, i.e. it selects the most productive firm and the

most appropriate design for this firm. Herweg and Schwarz further argue that the procurer

cannot benefit from allowing for multidimensional auctions in the first stage. However, this

result is crucially dependent on the assumptions on the type of renegotiation in the second

stage. Mainly, it is dependent on an implicit assumption that the procurer cannot effectively

commit to distort their preferences over both phases of the procurement mechanism. Given

the authors’ assumption that the procurer cannot commit not to renegotiate in the second

stage, this is a reasonable assumption, and the result stands. In chapter 2 and 3 of this

thesis we introduce a related model of procurement with renegotiation, where the procurer

has commitment power and gains from being able to use multidimensional auctions.

3Minimising the distance between social benefit and social cost
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A seminal result of auction theory is that auctions strongly outperform negotiations.

Bulow and Klemperer (1994) show that the addition of just one more bidder leads to a more

substantial increase in payoffs for the auctioneer than the total gain made from moving

from a simple to the optimal auction mechanism without the additional bidder. Herweg and

Schmidt (2017) use their research on large procurement projects to show that in procurement,

this is not as straightforward. Based on empirical findings of Bajari, R. McMillan, and

Tadelis (2008), negotiations between the buyer and one seller are far more common in private

procurement than auctions. To investigate why Herweg and Schmidt build a simple and

compelling model of procurement with renegotiation. The authors show a trade-off between

negotiations and auctions unexplored by Bulow and Klemperer (1994). Whereas the latter

outperforms the former in the extraction of private rent, negotiations can improve on auctions

by improving the communication between the two parties and thus facilitating less costly

design improvements and improving overall efficiency. For complex procurement projects

where scoring auctions are not feasible, negotiation between one seller and the buyer can

often outperform price only auctions with renegotiation.

1.3.3 Long term relationships and non-contractible issues

We understand that in procurement settings, non-price elements may often play a crucial

role. However, the buyer cannot always fully anticipate the importance of every element.

Originally Hart, Shleifer, and Vishny (1997) and later Dalen, Moen, and Riis (2006) describe

a process known as ‘quality dumping’, where firms exploit incomplete contracts by reducing

an uncontracted quality aspect of the good in the production process to save costs. Hart,

Shleifer, and Vishny (1997) use this to justify a trade-off between contracting out services and

providing them in-house. Dalen, Moen, and Riis (2006) on the other hand, argue that endo-

genising the length of the contract can provide an effective incentive scheme against quality

dumping in long-term dynamic procurement settings. In this way, “[...] contract-renewals
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may be considered as an alternative to monetary rewards[...]” in long-term procurement

settings (Dalen, Moen, and Riis, 2006).

In other cases, the buyer may not be able to fully contract each non-price element even

when she does anticipate them. For instance, an element may not be verifiable by a third

party, such as a court. Dellarocas, Dini, and Spagnolo (2006) argue that this can lead to

two forms of opportunism: ex-ante and post-contracting opportunism. The former refers to

situations where firms cannot credibly signal their desirable non-verifiable qualities leading

to a mismatch. The latter refers to the ‘quality dumping’ described above. Dellarocas,

Dini, and Spagnolo (2006) cite evidence that e-commerce marketplaces have adopted various

kinds of reputation mechanisms to overcome these issues from opportunism. The authors

provide an informal analysis of the mechanisms used by e-commerce providers at the time of

writing. Calzolari and Spagnolo (2009) study the relationship between contract enforcement

and competitive screening. Under the presence of non-contractibility issues the principal

wants to restrict access to a subset of one or more of the agents and negotiates with these

exclusively. In this way the principal trades off the gains from competition with gains from

overcoming non-contractibility issues through ‘loyalty’.

1.3.4 Repeated Interaction

Another interesting research avenue on the implication of long-term dynamics in procure-

ment settings is the dynamics arising from repeated interaction between sellers and buyers

rather than the dynamics arising within one interaction. Jofre-Bonet and Pesendorfer (2000)

introduce a model of repeated procurement where some bidders are capacity constrained and

where bidders can improve their technology through learning. Jofre-Bonet and Pesendor-

fer provide an empirical estimation of their model and show that there is indeed evidence

for both the bidders’ costs and the presence of capacity constraints affecting their bidding

behaviour. This paper also gives an excellent introduction to the earlier literature on this
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topic.

In much of the static procurement literature, it is implicitly assumed that different firms

produce the same good, or that, at most, it might be the same good of different quality.

In many environments, however, Lewis and Yildirim (2005) argue that even when goods

are almost perfect substitutes, there may be costs to switch from one firm to another. For

example, there may be a considerable cost for training and software, on top of the cost of

new computers, to switch an economics department’s computers from Microsoft to Apple

and vice versa. In these environments, incumbent firms can price less competitively as the

procurer is disincentivised to switch due to switching costs.

Lewis and Yildirim (2005) find that in procurement environments where the buyer is

large enough to enjoy considerable market power, the result of the seller-buyer interaction

may be very different. With commitment power, a large buyer may credibly threaten to

switch from the incumbent seller to a new one and incur switching costs. Since the in-

cumbent should realise that switching back will be made more expensive due to switching

costs, he has a strong incentive to lower prices to maintain the relationship with the buyer.

Lewis and Yildirim (2005) show in a simple model of switching cost that this effect may be

strong enough to cause the buyer to achieve lower prices than she might in an environment

without switching costs. Lewis and Yildirim (2006) summarise the findings from their joint

research on switching costs in procurement. Procurers should generally prefer to stay with

the incumbent. Except if by committing to switch unless their demands are met they can

credibly force the incumbent to reduce prices - but as a trade-off will have to switch if he

does not. This is work closely related to the wider literature on switching costs. Farrell and

Klemperer (2007) give a good summary of the critical issues in, and contributions to this

literature.

When buyers and sellers interact repeatedly, it also creates scope for the buyer to try

and influence the sellers’ bidders through releasing information in the bidding stages. For

example, the question arises if it is optimal for the buyer to release all, some, or no infor-
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mation about the firms’ bids of the previous procurement round. Thomas (2010) addresses

this question in a stylised two-round model of procurement with two identical contracts.

She finds that the buyer usually achieves the best price by revealing as little information as

possible, and ideally procures the two contracts simultaneously. However, if the contracts

are offered sequentially, Thomas shows conditions on the strategic behaviour of the agents

for which the buyer prefers to reveal all of the available information. This is possible as it

can reduce the winner’s incentive to make a worse offer in the second round believing the

other seller to likely be a high-cost type.

In procurement practice, past performance in contracts is often rewarded for the allo-

cation of new contracts. Intuitively, the buyer can learn about the sellers’ types as well as

trustworthiness over non-contractible issues and should reward those who perform well in the

future to induce better performance during the contract. On the contrary, we may also argue

that these rewards restrict entry and thus the buyer may suffer losses from reduced compe-

tition among the sellers. Butler et al. (2020) study this question in an experimental setting

where the buyer sets varying rewards for past performance. They find that rewarding quality

too much does indeed restrict entry. However, with appropriately balanced rewards for past

performance both entry and quality provision can be improved for the buyer. However, in

an empirical study of scoring rule auctions in Italian canteen services, Camboni, Valbonesi,

et al. (2019) find that if the auction is rewarded to incumbents over new entrants, on av-

erage the buyer overpays for the good provision. This can be interpreted as evidence that

in practice buyers overvalue the past performance of incumbents and are too risk-adverse in

selecting a new, perhaps unknown entrant.

The study of repeated procurement auctions finally also allows for an analysis of the

evolving dynamics of corruption. Chassang and Ortner (2019) develop a dynamic model of

corruption in repeated procurement with minimum prices. In the context of procurement,

this minimum price acts as a price-ceiling would in a regular auction. A standard result

in auction theory is that in competitive environments, a minimum price should either not
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affect the outcome of the procurement auction or make the outcome worse for the procurer.

However, Chassang and Ortner (2019) show that under the presence of a cartel, a minimum

price can improve the outcome for the procurer in expectation. This counterintuitive result

is due to the constraints lowering the ability of the cartel to use price wars to punish de-

fectors. Chassang and Ortner further support this argument with evidence from repeated

procurements in Japanese procurement auctions. They find that within a prefecture previ-

ously shown to have a considerable presence of collusion by Ishii (2008), when a procurement

auction had a minimum price, the impact of collusion is reduced, all else equal.

1.4 Dynamics for Key Contributions

In the previous subsection, we summarised a broad sample of important contributions to

understanding how dynamics affect our predictions for the procurement environment. To

put these into context, in the following section, we discuss how our understanding of the

core principles of procurement should be affected by the papers discussed. How would the

seminal papers of section 1.2 be affected if they take into account the lessons learnt from

dynamic procurement? Furthermore, which, if any, of the results from the static literature

are validated in the dynamic setting?

1.4.1 The Optimal Mechanism

The optimal static mechanism for multidimensional procurement described by Riordan and

Sappington (1987a), McAfee and J. McMillan (1987), and Laffont and Tirole (1987) has

been under much scrutiny in the dynamic procurement literature. Laffont and Tirole (1990)

showed that even with no external impetus for renegotiation via some kind of shock, rene-

gotiation dynamics considerably alter the outcome of a multidimensional auction. In this

context, as we learnt above, the buyer-optimal mechanism distorts the non-price element

away from the social optimum to limit the sellers’ informational rent. Given full commit-

20



ment and no additional generation of private information after the initial stage, the optimal

long-run contract thus also distorts these non-price elements such as quality or effort. De-

watripont (1989) showed that these contracts are not renegotiation-proof. In the context

of procurement, this means that ex-post gains from trade can always be made if the buyer

and seller agree to renegotiate the distorted buyer-optimal contract to socially optimal ones.

Laffont and Tirole (1990) describe the optimal renegotiation-proof contract for the case of

no commitment. They show that it implements the social optimum rather than the buyer

optimum with full commitment.

Another question on the optimal mechanism is how it is affected if new private information

is sequentially generated rather than available ex-ante. In the context of single-dimensional

auctions, Eső and Szentes (2007) show that private information generated after the initial

stage (second stage private information) does not create rent for the agents who hold it

in the optimal dynamic mechanism. However, when private information is generated se-

quentially, and the environment is multidimensional, the second stage private information

can affect the agents’ rents (chapter 2). Thus for many procurement contexts, the seminal

multidimensional optimal mechanism from Riordan and Sappington (1987a), McAfee and

J. McMillan (1987), and Laffont and Tirole (1987) may not be the relevant guideline for a

dynamic implementation. Finally, we saw above that Bajari, Tadelis, et al. (2001) argue that

looking at the usually dynamic procurement environment through the lens of an asymmetric

information problem is misleading. If their argument holds, and there is some evidence in

support of it, looking at the procurement problem with mechanism design may be the wrong

approach entirely.

In summary, therefore, from a perspective of mechanism design, whether a procurement

setting is more accurately described as static or dynamic considerably changes both the

environment and therefore the resulting optimal mechanism. Although some of the ideas from

the static setting are validated, such as distorting the non-price element in multidimensional

settings, we will see that many key results that rely on the optimal mechanism no longer hold
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in the dynamic setting. For example, in chapter 2 of this thesis we see that the key result

of Che (1993) about the optimality of scoring auctions no longer holds when the setting is

dynamic.

1.4.2 The Optimal Scoring Auction

Given the popularity of scoring auctions in practice, we may wonder how their optimal design

is affected by ex-post renegotiation. The crucial step to any extension of the seminal Che

(1993) model to incorporate dynamics is the design of the renegotiation stage. In Herweg

and Schwarz (2018), the procurer and seller use Coasian bargaining to agree on a price and

quality in response to the cost shock. Herweg and Schwarz show that a multidimensional

auction in the first stage as proposed by Che does not yield any benefit to the auctioneer.

This result is a corollary of the more general result by Dewatripont (1989) that these types of

auctions are not renegotiation proof. If the renegotiation stage for an extension of Che (1993)

just maximises social surplus, then the Dewatripont result holds, and we cannot ‘squeeze’

the informational rent of agents in the first stage.

We propose another extension of Che (1993) to incorporate dynamics in chapter 3. Here

the buyer commits to renegotiate only if the new price and quality still match the same score

as the old ones at the original scoring rule. We argue that this commitment is a commitment

to ‘fairness’, such that the buyer commits not to give the winning bidder advantages that

the losing bidders did not have access to during the auction. In this environment, we show in

chapter 3 that the scoring auction from Che (1993) is no longer able to implement the optimal

mechanism with any scoring rule even with independent types. Bearing in mind the result

from Branco (1997) that with correlated types, the scoring auction is also not optimal, these

findings cast doubts on the performance of the scoring auction in practice. An extension of

the Branco (1997) analysis to incorporate ex-post adaptations or renegotiation when types

are correlated could make a valuable contribution to further the research on scoring auctions.
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1.4.3 Adverse Selection

The Manelli and Vincent (1995) paper presents an insightful alternative angle to the analysis

of multidimensional procurement as an adverse selection model which supports the conclusion

that auctions may not be optimal. Dynamic models of adverse selection exist in other

literatures (Guerrieri and Shimer, 2014; Hendel, Lizzeri, and Siniscalchi, 2005). Johnson

(2013) provides a somewhat related model of adverse selection and dynamic moral hazard

for procurement where the optimal dynamic contract can mitigate the inefficiency from

adverse selection. These models show that considering dynamics can alter the predictions

of adverse selection models considerably. However, in different contexts, for example in

Bajari, Tadelis, et al. (2001), we find that auction mechanisms can become inefficient when

there are considerable dynamics from renegotiation and add-on costs. This is supported

by Doni (2006) who show that the auction mechanism further suffers from inefficiency in

dynamic models as it leads to moral hazard issues. Whether the conclusion of the Manelli

and Vincent (1995) adverse selection model on the inefficiency of auctions is retained in

dynamic environments is thus an open question.

1.4.4 Corruption

The question of whether corruption in procurement is lessened with increased competition

raised by Ganuza (2007) can be meaningfully extended by looking at the issue of corruption

and renegotiation. Estache et al. (2009) argue that the presence of renegotiation increases

the susceptibility of procurement to corruption. This argument is based on a common

argument from auction theory that the presence of multiple bidders is in some way adverse

to corruption.4 Renegotiation, however, is a bilateral game and as such, lends itself more to

corruption (Estache et al., 2009). Estache et al. (2009) find that anti-corruption policies are

correlated with a significantly lower frequency of renegotiation. Estache et al. interpret this

4See for example Krishna (2009).

23



as evidence for a link between renegotiation and corruption. Guasch, Straub, and Laffont

(2003) support this link and find empirical evidence for the theoretical model of Guasch,

Laffont, and Straub (2006) that renegotiation is a factor that can lead to corruption. If the

increase in corruption is due to the bilateral nature of renegotiation, this evidence supports

the auction as a mechanism against corruption and goes against the arguments developed in

Ganuza (2007).

Another avenue through which dynamics can impact the presence of corruption in pro-

curement is through the repeated nature of many procurement environments. Factors such

as reputation effects as discussed by Doni (2006) have an ambiguous effect. They could

lead to increased corruption through increased rents from corruption in an environment with

repeated interaction. Conversely, reputation punishments from corruption can also have a

strong deterrent effect. Chassang and Ortner (2019) discuss a model of repeated procure-

ment with cartels. Here the auctioneer has the option to set a minimum price, which is

equivalent to a maximum price in a regular auction and would not usually be beneficial in

an environment without corruption. However, Chassang and Ortner show that this mech-

anism constrains cartels in their scope for punishing defectors. In this way, depending on

the extent of corruption, a minimum price can make the auctioneer better off. The authors

support this theory by drawing on evidence from Japanese procurement where they show

that a minimum price is associated with reduced levels of corruption in the data.

1.5 Conclusion

The procurement environment has received considerable attention in the economic literature

over recent years. This paper introduced a summary of a selection of these contributions.

We summarised seminal works that formed our understanding of procurement today and

important new ideas originating from the real-life observation that procurement is hardly

ever a static game. Finally, we considered how these new works may influence the way we
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should interpret the results of the seminal works.

Central to the theory of procurement are developments in mechanism design. From the

early procurement literature centred around the work of Laffont and Tirole in the 1980s,

the discovery of the optimal mechanism for multidimensional environments by McAfee and

J. McMillan (1987), Riordan and Sappington (1987a), and Laffont and Tirole (1987), and

the implementation of it through scoring auctions, mechanism design lies at the heart of

many of the key contributions to our understanding of procurement. Perhaps unsurprisingly

then, the recent development of considering dynamic issues to procurement coincides with

a surge in our comprehension of optimal dynamic mechanism design. Works such as Arve

and Martimort (2016), or the chapters 2 and 3 of this thesis build on and contribute to this

field.

As discussed in this review, the branch of the literature centred around the work from

Bajari and Tadelis provides a critical perspective on the strong link between procurement

and mechanism design. By reducing this environment to a game of private information,

important ideas may be lost. In particular, Bajari and Tadelis argue that the mechanism

design approach to procurement has failed to properly take into account many of the rel-

evant considerations for firms arising from the frequency that procurement contracts are

renegotiated. The literature on dynamic procurement in part addresses these concerns, but

a disconnect still persists. Renegotiation in practice is often a costly inefficiency that nec-

essarily arises due to incomplete contracting. However, in many theoretical works, this is

not reflected well. In some cases, the renegotiation is instead considered the opposite - a

costless adaptation tool to exploit gains from trade arising through the inherent dynamics

of the model. A convincing model of procurement that addresses these concerns is perhaps

one of the biggest research gaps left to explore.
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Chapter Two

RENEGOTIATION IN

PROCUREMENT - DYNAMIC

MULTIDIMENSIONAL AUCTION

DESIGN

2.1 Introduction

Procurement today makes up a large share of developed nations’ GDP. Public government

procurement alone accounted for 12% of GDP across OECD nations over the last decade

(OECD, 2015). The benefits of purchasing through procurement are well documented, and

evidence from the private and public sector is readily available.

The design of the procurement process is of critical importance to both governments and

private institutions seeking to undertake a procurement project. As such, this process has

been studied extensively in economic theory. Several aspects make procurement a partic-

ularly interesting topic to study from the standpoint of theory. For one, goods or services

to be procured tend to have multiple dimensions of interest in addition to merely the price.

Depending on the application, the timing of delivery, the reliability of the product, or even
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the design may be as important to the procurer as the price. Even procurement contracts for

seemingly simple goods such as latex gloves for hygiene and protection can involve multiple

quality considerations such as the thickness of the gloves and their durability. Further-

more, as the procurement process can be lengthy and expensive, procurers usually prefer to

set out long term contracts which introduce dynamic considerations. Contracts have to be

set to allow for various contingencies and the contract and its terms may be changed and

renegotiated.

In this paper, one particularly popular procurement process is analysed: the scoring

auction. A scoring auction is a reverse auction format in which the sellers’ bids are ranked

by scores determined by a scoring rule that rewards price and non-price elements of the

procurement project. The procurer chooses the scoring rule to reflect their preferences

over the price and non-price aspects. Scoring auctions provide a decision rule to compare

complex and possibly widely different contract offers and are commonly applied in practice.

In economics these auctions have been studied among others by Che (1993), Branco (1997),

Chao and Wilson (2002), and Asker and Cantillon (2008). This paper adds to the existing

literature by analysing how the design of the optimal scoring auction changes when allowing

for the possibility of post-allocation renegotiation.

The prevalence of renegotiation in procurement is partly a consequence of two of the

distinguishing characteristics of procurement processes described above. As procurement

contracts are usually long term, unforeseen contingencies such as cost shocks, changes in

preferences over non-price aspects, or technology developments, may occur during the term

of the supply contract. Furthermore, the multidimensionality of the contract allows for the

procurer and the supplier to renegotiate the terms of the different dimensions in response to

these shocks. There are thus two motivations for renegotiation in multidimensional procure-

ment, one negative and one positive. In long term contracts, unexpected shocks that were

not contracted on inevitably arise. However, given a shock to the cost of producing a non-

price element, both the seller and the buyer can usually benefit from reagreeing the element
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In this way gains from trade can be realised that are not available in a single-dimensional

environment.

In this paper, the model environment of Che (1993) on scoring auctions and procurement

is extended to include uncertainty for the seller about the cost of procuring a good. This

extension allows us to address several research questions. First and foremost, we want

to understand whether scoring auctions can implement the optimal mechanism when the

contracts are renegotiated in response to these cost shocks. Here we describe the properties

of the buyer-optimal mechanism and show that scoring auctions with renegotiation (SAWR)

are not able to implement it.

The optimal mechanism problem in this setting has several interesting features. The

problem is multidimensional so that a social choice function specifies quality policies in

addition to transfers and an allocation rule for each agent. Furthermore, the problem is

dynamic and includes two stages, an allocation, and a renegotiation stage, with sequential

generation of private information. Finally, to match the feature of a procurer renegotiating

with only one agent, the problem restricts participation in the renegotiation phase to only

the agent winning the allocation decision. Laffont and Tirole (1987), McAfee and J. McMil-

lan (1987), and Riordan and Sappington (1987a) extend the Myerson (1981) framework to a

multidimensional setting. Unlike these papers, we consider a multidimensional and dynamic

auction setting. This paper thus relates to Eső and Szentes (2007), Pavan, Segal, and Toikka

(2014) and the literature on dynamic mechanism design. Eső and Szentes describe the op-

timal mechanism for a two-stage single-dimensional (price only) auction with all bidders

taking part in both stages, whereas here the setting is of a multidimensional reverse auction

with all but one bidders being excluded from the second stage (renegotiation). Pavan, Segal,

and Toikka (2014) describe necessary conditions for incentive compatibility and the use of

the envelope formula in general dynamic mechanism design problems. Unlike these seminal

contributions to dynamic mechanism design, our analysis maintains a static choice rule over

the allocation of the good to an agent and generates dynamics through the multidimension-
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ality of the agents’ preferences. In the sense that only one bidder remains in the second stage

and the project is multidimensional, this work is thus more closely related to Riordan and

Sappington (1987b). However, where Riordan and Sappington are concerned with how the

choice of optimal operational mode is driven by the correlation of the private information in

the two stages of a principal-agent model. Whereas here the focus lies on the optimal design

of the allocation mechanism to one of several agents.

Some notable research on procurement and renegotiation or procurement with cost un-

certainty was done by Tirole (1986), Laffont and Tirole (1990), and more recently Arve and

Martimort (2016) as well as Herweg and Schmidt (2018). Tirole (1986) focus on the issue of

adverse selection given an incomplete contract whereas we study complete contracts. Laffont

and Tirole (1990) study the implications of lack of commitment not to renegotiate whereas

we study renegotiation under full commitment. Arve and Martimort (2016) study how the

buyer can exploit the risk aversion of agents for the design of the optimal contract. We

assume risk neutrality throughout and study the impact of sequential private information

on the rent distortion through an optimal mechanism. Finally, Herweg and Schmidt (2018)

restrict attention to particularly large and complex procurement projects whereas we make

no such assumption. Other related literature to our work is done by Eső and Szentes (2007)

on dynamic mechanisms and Pai and Vohra (2013) as well as Quint and Hendricks (2018) on

dynamic auctions. We extend the work of Eső and Szentes (2007) to allow for multidimen-

sional type spaces and focus in particular on dynamic procurement auctions. Pai and Vohra

(2013) focus on dynamic auctions with bidders arriving over time and the multidimension-

ality of the auction stemming from changing arrival and departure times. In our case all

bidders arrive at the same time and the multidimensionality is inherent to the good and not

just the bidder. In Quint and Hendricks (2018), the auction is dynamic due to entry costs but

otherwise single-dimensional. In our analysis there are no entry costs and the renegotiation

dynamics arise due to the multidimensionality of the good. It is to the best of our knowledge

fully unexplored in the literature how the design of the scoring auction is affected by the
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possibility of renegotiation. The main contributions of this paper are thus twofold. First, we

show that when allowing for the possibility of renegotiation, the result of Che (1993) breaks

down and scoring auctions are no longer able to implement the optimal mechanism. Second,

we contribute to the literature on dynamic mechanism design by outlining the solution to

the multidimensional dynamic mechanism design programme detailed above. Here we show

that unlike in Eső and Szentes (2007) the second stage private information does affect the

informational rent an agent can extract.

This paper is organised as follows. Section 2.2 outlines the model. Section 2.3 sets up

the mechanism design problem and describes its solution. Section 2.4 introduces a scoring

auction with renegotiation (SAWR) implementation game and shows that it cannot imple-

ment the social choice function of the optimal mechanism design problem from section 2.3.

The appendices contain proofs and derivations for various theorems and lemmas introduced

throughout the analysis.

2.2 The Model

N agents indexed i = {1, ..., N} are competing to sell an indivisible good to the principal.

Agent i has cost-type θi ∈ Θ drawn (i.i.d.) from a continuous distribution with density f(θ)

and cumulative density F (θ). Let [θ, θ] be the support of this distribution where θ is the

lowest θ with a positive density and θ is the highest. If agent i supplies the good at quality

q for a price p, the principal obtains utility U(p, q) = V (q) − p. The agent makes profits

π from (p, q). Here π = p − c(q, θi, ε) is the difference between the transfers p from the

principal to the agent and the cost c(q, θi, ε) to the agent of producing the good at quality

q. The cost depends on the agent’s cost parameter θi and a parameter ε. This ε denotes the

realisation of a shock drawn from a continuous distribution with probability density g(ε) and

cumulative density G(ε) on the support [ε, ε]. The realisation ε is drawn independently of

the agents’ realisations of types θ = (θi,θ-i) and is unobserved by the principal. The timing
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of events is as follows:

1. The principal commits to a mechanism.

2. The agents privately learn their cost type θ.

3. The agents choose a strategy denoting messages at each node of the game tree of the

mechanism.

4. The mechanism may allocate the procurement of the good to an agent given the agents’

messages.

5. If and only if an agent has been allocated the procurement contract, he privately

realises the shock ε and thus knows his true cost parameter θ, ε. He may choose any

additional message after the shock in response to this new private information.

6. The agent from step 5 produces the good for the principal given the outcome function

and the agents’ messages before and after the shock.

The principal’s preferences over quality V (q) satisfies V ′(q) > 0 and V ′′(q) < 0 (∀q > 0)

and the Inada conditions limq→0 V
′(q) = ∞ and limq→∞ V

′(q) = 0 to guarantee an interior

solution. The cost functions are increasing in all arguments everywhere and are convex

in quality: c1 > 0, c2 > 0, c3 > 0, c11 ≥ 0. The cross derivatives additionally satisfy:

c12 ≥ 0 and c13 ≥ 0, i.e. marginal cost is increasing in the cost-type as well as the shock.1

We additionally assume all agents and the principal to be risk neutral. This assumption

simplifies the division of the two stages of the mechanism before and after the shock. Since

agents may face an ex-post loss, without risk neutrality the analysis is considerably more

complicated. Intuitively, we can think of risk-neutral sellers and buyers as profit maximising

agents for which the size of the procurement contract is small relative to the overall firm.
1Functions that satisfy these conditions and the model assumptions are for example (θ + ε)kq for k ≥ 1

for the cost functions and ql for l ∈ (0, 1) for the utility function of the principal.
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If we consider a smaller firm then the assumption of risk neutrality might not be tenable

since with a large procurement contract, making an ex-post loss might create a possibility

of bankruptcy. The following additional assumptions simplify the analysis considerably:

Assumption 1. Monotone Hazard Rates Both F (θ) and G(ε) satisfy the increasing

hazard rate property, i.e. F (θ)/f(θ) is nondecreasing in θ and G(ε)/g(ε) is nondecreasing

in ε.

Assumption 2. Dynamic Regularity c1 + F
f

(c12− G
g
c123) is nondecreasing in θ, ε, and q.

This assumption is to ensure monotonicity in the optimal quality policies q for both θ

and ε and to guarantee concavity of the optimisation programme in q. It serves the same

purpose as assumption 1 in Che (1993) and works in conjunction with assumption 1 to rule

out some very steep cost functions such as (θ+ε)kq with large k. This is a strong assumption

that rules out many reasonable cost functions. It, or a functionally equivalent assumption,

is necessary for the problem to be monotonic and for us to describe an analytical solution.

Assumption 3. There are gains from trade to be made even with a firm of the highest cost

type θ and the highest possible cost shock ε, i.e. for some q, V (q) > c(q, θ, ε).

2.3 The Optimal Mechanism

The principal’s objective is to maximise her expected utility by designing a mechanism that

defines to every agent for every realisation of agents’ strategies a probability of being allocated

the contract xi, transfers to the agent from the principal ti, and a quality qi to be implemented

by the agent if they win the allocation decision. Of interest are only mechanisms in which

the allocation choice is made before the realisation of the shock to the cost. In other words,

the ti and qi may be contingent on the agents’ strategies after the realisation of the shock ε,

but the xi cannot. By an extension of the revelation principle, the strategies available to the

agents can be simplified, and attention can be restricted to mechanisms in which the agents
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simultaneously, directly, and truthfully reveal their types and the winning agent reveals the

cost shock directly and truthfully:

Lemma 2.3.1. A Revelation Principle Any perfect Bayesian equilibrium outcome of

any mechanism of the model setup described in section 2.2 can be implemented by a direct

mechanism in which the N initial agents simultaneously and truthfully reveal their type θ to

the principal and the one remaining agent truthfully reveals ε to the principal.

See appendix A.1 for a full proof of this extension of the revelation principle and a full

definition of a direct mechanism in this environment. There are thus two stages to the

direct mechanism. The first stage comprises of an initial transfer and a decision rule for the

allocation of the second stage. In the subsequent stage, there may be further transfers and

the qualities are chosen in response to the revelation of the shock.

2.3.1 The Principal’s Optimisation Programme

The principal’s problem is then to choose {xi(·), t1i (·), t2i (·, ·), qi(·, ·)} for all i, θ, and ε to

maximise her expected utility subject to incentive and participation constraints. Here t1i

and t2i denote the first and second stage transfers, respectively. The agent i’s total trans-

fers from the mechanism are denoted ti(θ, ε) = t1i (θ) + t2i (θ, ε)xi(θ). Also let: t(θ, ε) =

(t1(θ, ε), · · · , tN(θ, ε)), x(θ) = (x1(θ), · · · , xN(θ)), and q(θ, ε) = (q1(θ, ε), · · · , qN(θ, ε)) for

all θ, ε. We initially assume that the principal chooses not to reveal to the winning agent any

information about the other agents’ types. This restriction will turn out to not be restrictive.

The principal’s problem is thus to solve:

max
{x(θ),t(θ,ε),q(θ,ε)}

N∑
i=1

Eε,θ

[
V (qi(θ, ε))xi(θ)− ti(θ, ε)

]
, (2.1)

subject to the constraints of first stage participation:

Eε,θ-i

[
ti(θ, ε)− c(qi(θ, ε), θi, ε)xi(θ)

]
≥ 0 (2.2)
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(∀i, θi), first stage truthtelling:

θi ∈ argmax
θ̃i

Eε,θ-i

[
vi(θ̃i, θi, ε)xi(θ̃i,θ-i) + t1i (θ̃i,θ-i)

]
(2.3)

(∀i, θi), where:

vi(θ̃i, θi, ε) = max
ε̃
Eθ-i

[
t2i (θ̃i,θ-i, ε̃)− c(qi(θ̃i,θ-i, ε̃), θi, ε)

]
(2.4)

(∀i, θi, θ̃i), and second stage truthtelling:

ε ∈ argmax
ε̃

Eθ-i

[
t2i (θi,θ-i, ε̃)− c(qi(θi,θ-i, ε̃), θi, ε)

]
(2.5)

(∀i, θi, ε). In this formulation of the incentive constraints, the possibility of double deviations

is taken into account. I.e. if the constraints (2.3) and (2.5) are satisfied it cannot be profitable

(in expectation) for an agent to misreport θ in the first stage, planning to misreport ε in

the second stage. As such, the second stage truthtelling constraint only needs to be satisfied

given truthtelling in the first stage. vi(θ̃i, θi, ε) denotes the expectation over the value of

reaching the second stage and realising shock ε given a type θi and first stage report θ̃i.

It’s possible here to draw comparisons to the model environment of other analyses to

better place this paper in the literature. First, if the second stage is ignored, the model

setup here is identical to Che (1993). Second, more interestingly, if N = 1, the model setup

is similar to the setup of Riordan and Sappington (1987b), but with a unit quantity and

without the principal being given the option to acquire the ability to produce the good

themselves by buying up the agent. This last difference is due to the focus of Riordan

and Sappington (1987b) on vertical integration (organisational mode), which is not within

the scope of the analysis here. Finally, there are some parallels to the setup of Eső and

Szentes (2007). Aside from being single rather than multidimensional, as their focus is not

on renegotiation, Eső and Szentes (2007) allow all N agents to partake in the second stage

of the mechanism. The second stage of their model thus enables the principal to realise

efficiency gains by potentially choosing a different (ex-post more efficient) agent rather than
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the most efficient one in expectation. In contrast, in the multidimensional setting of this

analysis, the second stage allows the principal to realise efficiency gains by choosing a different

price and quality combination in response to the shock. This type of second stage is only

made possible by the multidimensionality of the environment.

2.3.2 The Optimal Direct Mechanism

To proceed, we provide a step-by-step solution to the direct mechanism optimisation pro-

gramme. First, we can simplify the principal’s optimisation programme with the following

lemma:

Lemma 2.3.2. The optimal quality policies q which form part of the solution to the princi-

pal’s problem from section 2.3.1 do not depend on the realisations of θ of the N − 1 agents

who do not win the allocation.

See appendix A.2 for a proof of this lemma, where we use Jensen’s inequality to show

that when an agent’s quality policies depend on the realisation of other agents’ types, the

principal can improve the optimisation programme, leading to a contradiction. This proof is

adapted from Laffont and Tirole (1987) who also give an intuitive justification of the result.

We can thus write qi(θi,θ-i, ε) as qi(θi, ε) without loss of generality.

Corollary 2.3.2.1. The second stage transfers t2i (θi,θ-i, ε) can be restricted to not depend

on the other agents’ types without loss of generality.

This result is immediate from Lemma 2.3.2 and the risk neutrality of the agents. We can

thus write t2i (θi,θ-i, ε) as t2i (θi, ε) without loss of generality. Since all second stage variables

do not depend on the other agents’ types, our initial assumption that the principal does not

disclose any information about these to the winning agent was not restrictive. We can now

obtain an expression of the agent’s value of participating in the second stage for a given

shock ε.
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Lemma 2.3.3. By the envelope theorem, we can equivalently write the agent i’s expected

value of the second stage subject to second stage truthtelling from equation (2.5) as:

vi(θ̃i, θi, ε) =

∫ ε

ε

c3(qi(θ̃i, s), θi, s)ds+ vi(θ̃i, θi, ε) (2.6)

(∀i, θ̃i, θi, ε such that θ̃i = θi).

See appendix A.3 for a full derivation of this result, where we assume the optimal quality

policies to be non-increasing in ε, which will later be verified to be true. Using the envelope

theorem in the same way as for lemma 2.3.3, we can use equation (2.6) to find an expression

for the expected value of participating in the mechanism for an agent i of type θi.

Lemma 2.3.4. By the envelope theorem, given the first and second stage truthtelling con-

straints from equations (2.3) and (2.5) as well as the participation constraint (2.2), the value

Wi(θi) for an agent i of type θi to participate in the mechanism can be written as:

Wi(θi) = Eε,θ-i

[∫ θ

θi

(
c2(qi(t, ε), t, ε)−

∫ ε

ε

c32(qi(t, s), t, s)ds
)
xi(t,θ-i)dt

]
(2.7)

(∀i, θi).

See appendix A.4 for the proof of lemma 2.3.4. Note that we can also express the value

Wi(θi) of participating in the mechanism in truthtelling equilibrium as:

Wi(θi) = Eε,θ-i

[
ti(θi,θ-i, ε)

]
− Eε,θ-i

[
c(qi(θi, ε), θi, ε)xi(θi,θ-i)

]
(2.8)

(∀i, θi). For a given Eθ-i [xi(θi,θ-i)] ex-ante symmetry allows us to decompose the optimisa-

tion problem from equation (2.1) into N problems of the type:

max
ti(θ,ε),qi(θi,ε)

Eε,θi,θ-i

[
V (qi(θi, ε))xi(θi,θ-i)− ti(θi,θ-i, ε)

]
, (2.9)

subject to (2.2), (2.3), and (2.5) (∀i). We can now substitute for Eε,θ-i
[
ti(θi,θ-i, ε)

]
from

equation (2.8) to get:

max
qi(θi,ε)

Eε,θi

[(
V (qi(θi, ε))− c(qi(θi, ε), θi, ε)

)
Eθ-i

[
xi(θi,θ-i)

]
−Wi(θi)

]
(2.10)
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(∀i). Finally, substituting forWi(θi) from (2.7) in Lemma 2.3.4 and thus enforcing constraints

(2.2), (2.3), and (2.5) we get:

max
qi(θi,ε)

Eε,θi

[(
V (qi(θi, ε))− c(qi(θi, ε), θi, ε)

)
Eθ-i

[
xi(θi,θ-i)

]
−
∫ θ

θi

(
c2(qi(t, ε), t, ε)−

∫ ε

ε

c32(qi(t, s), t, s)ds
)
Eθ-i

[
xi(t,θ-i)

]
dt
]

(2.11)

(∀i) as an equivalent expression of the principal’s optimisation programme. Writing out the

expectation and using Fubini and Tonelli’s theorems for changing the order of integration,

we can integrate by parts twice to simplify this messy expression. First2, to get:

max
qi(θi,ε)

∫ ε

ε

∫ θ

θ

((
V (qi(θi, ε))− c(qi(θi, ε), θi, ε)

)
Eθ-i

[
xi(θi,θ-i)

]
g(ε)

−
∫ θ

θi

(
c2(qi(t, ε), t, ε)g(ε)− c32(qi(t, ε), t, ε)G(ε)

)
Eθ-i

[
xi(t,θ-i)

]
dt
)
f(θi)dθidε. (2.12)

And second3, to get:

max
qi(θi,ε)

∫ ε

ε

∫ θ

θ

((
V (qi(θi, ε))− c(qi(θi, ε), θi, ε)

)
g(ε)f(θi)

−
(
c2(qi(θi, ε), θi, ε)g(ε)− c32(qi(θi, ε), θi, ε)G(ε)

)
F (θi)

)
Eθ-i

[
xi(θi,θ-i)

]
dθidε. (2.13)

As everything is additively separable, maximising this double integral is equivalent to point-

wise maximising its integrand. This quality also allows us to treat Eθ-i [xi(θi,θ-i)] as given

for the time being since, for any optimal decision rule xi(θi,θ-i), it acts as a scalar on the

integrand. Therefore:

max
qi(θi,ε)

(
V (qi(θi, ε))− c(qi(θi, ε), θi, ε)

)
g(ε)f(θi)

−
(
c2(qi(θi, ε), θi, ε)g(ε)− c32(qi(θi, ε), θi, ε)G(ε)

)
F (θi) (2.14)

2When u =
∫ ε
ε
c32(qi(t, s), t, s)ds and v′ = g(ε), then

∫ ε
ε
uv′dε =

[
uv
]ε
ε
−
∫ ε
ε
u′vdε. Thus∫ ε

ε

∫ ε
ε
c32(qi(t, s), t, s)dsg(ε)dε =

[∫ ε
ε
c32(qi(t, s), t, s)dsG(ε)

]ε
ε
+
∫ ε
ε
c32(qi(t, ε), t, ε)G(ε)dε. This is the same

as
∫ ε
ε
c32(qi(t, ε), t, ε)G(ε)dε, since the first part of the expression is 0.

3Let u =
∫ θ
θi

(
c2(qi(t, ε), t, ε)g(ε)− c32(qi(t, ε), t, ε)G(ε)

)
Eθ-i

[xi(t,θ-i)]dt and v′ = f(θi). Then follow the

same steps as before.
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is an equivalent representation of the principal’s problem for any given optimal Eθ-i [xi(θi,θ-i)].

Finally, from ex-ante symmetry, the subscript i can be dropped and the optimisation pro-

gramme may be rewritten as:

max
q(θ,ε)

(
V (q(θ, ε))− c(q(θ, ε), θ, ε)

)
g(ε)f(θ)

−
(
c2(q(θ, ε), θ, ε)g(ε)− c32(q(θ, ε), θ, ε)G(ε)

)
F (θ). (2.15)

Solving the principal’s problem for the optimal quality policies q(θ, ε) thus involves solving

(2.15) with respect to q. The first-order conditions of the optimisation problem give necessary

and sufficient4 conditions for the optimal qualities:

V ′(q(θ, ε) = c1(q(θ, ε), θ, ε)g(ε)f(θ)− c21(q(θ, ε), θ, ε)g(ε)F (θ)

− c321(q(θ, ε), θ, ε)G(ε)F (θ) (2.16)

(∀θ, ε). From assumption 2, q(θi, ε) is a nonincreasing function of θi and ε. Given the

maximand from equation (2.15) is concave in q and q is nonincreasing in θ, the maximand is

decreasing in θ. Thus a lower θ is worth strictly more selecting, and the optimal xi(θ) are:

xi(θi,θ-i) = 1 if θi < minθ-i (2.17)

and xi(θi,θ-i) = 0 if θi > minθ-i (2.18)

(∀i,θ). Substituting equation (A.29) into equation (2.8) we can get an expression for the

expected equilibrium transfers of agent i:

Eε,θ-i

[
ti(θi,θ-i, ε)

]
= Eε,θ-i

[∫ θ

θi

(
c2(qi(t, ε), t, ε)−

∫ ε

ε

c32(qi(t, s), t, s)ds
)
xi(t,θ-i)dt

+ c(qi(θi, ε), θi, ε)xi(θi,θ-i)
]

(2.19)

4Sufficient, since the maximand is concave in q (from assumption 2) and the assumptions on the principal’s

preferences over quality guarantee an interior solution.
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(∀i, θi). Given equations (2.17) and (2.18), we can rewrite this equation as:

Eε,θ-i

[
ti(θi,θ-i, ε)

]
= Eε

[∫ θ

θi

(
c2(qi(t, ε), t, ε)−

∫ ε

ε

c32(qi(t, s), t, s)ds
)
Xi(t)dt

+ c(qi(θi, ε), θi, ε)Xi(θi)
]

(2.20)

(∀i, θi), where Xi(θi) is the probability Pr(θi < minθ-i). Since Xi(θi) is decreasing in θi

and since q(θ, ε) is non-increasing in both ε (from Assumption 2) and θ, the second-order

conditions about the two truthtelling constraints previously assumed to hold after equations

(A.16) and (A.20) are satisfied. We are now ready to describe the first main result of our

paper:

Theorem 1. Together with the optimal decision rule x(θ) from equations (2.17) and (2.18),

as well as the transfers from equation (2.20), the quality policies q(θ, ε) that form part of the

buyer optimal mechanism are given by the q(θ, ε) which solve:

V ′(q(θ, ε)) = c1(q(θ, ε), θ, ε) +
F (θ)

f(θ)

(
c21(q(θ, ε), θ, ε)−

G(ε)

g(ε)
c321(q(θ, ε), θ, ε)

)
(2.21)

(∀θ, ε)5.

To make sense of this condition, note that the first-best socially optimal quality policies

that maximise overall welfare and which the principal would prefer to implement without

the presence of asymmetric information are instead given by the q(θ, ε) that solve:

V ′(q(θ, ε)) = c1(q(θ, ε), θ, ε) (2.23)

(∀θ, ε). In order to limit the informational rent of the agents, the principal distorts the quality

q(θ, ε) to be implemented by: F (θ)
f(θ)

(
c21(q(θ, ε), θ, ε)− G(ε)

g(ε)
c321(q(θ, ε), θ, ε)

)
. Equation (2.21)

can also be compared to the equation determining the buyer-optimal qualities used in Che
5We can equivalently express the first-order condition from equation (2.21) as:

V ′(q(θ, ε)) = c1(q(θ, ε), θ, ε) +
F (θ)

f(θ)

(
c21(q(θ, ε), θ, ε) +

1−G(ε)
g(ε)

c321(q(θ, ε), θ, ε)

)
(2.22)

(∀θ, ε). To see this express the integral from equation (A.17) in terms of vi(θ̃i, θi,θ-i, ε).
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(1993) as discovered by Laffont and Tirole (1987), McAfee and J. McMillan (1987), and

Riordan and Sappington (1987a):

V ′(q(θ)) = c1(q(θ), θ) +
F (θ)

f(θ)
c21(q(θ), θ) (2.24)

(∀θ). Here what determines the informational rent of the sellers is solely their type θ. In our

adapted model with cost shocks, it also matters how the informational rent of an agent of

type θ changes with the cost-shock ε. However, the effect of ε on the informational rent on

the sellers is solely in how it changes how the informational rent changes with θ. The hazard

rate of the θ distribution (through the ratio F (θ)/f(θ)) determines how the optimal qualities

are adjusted downwards through the change in marginal cost for any ε. The hazard rate

(through the ratio G(ε)/g(ε)) of the ε distribution determines how this adjustment changes

with the cross derivative c321(q(θ, ε), θ, ε). The derivative c31(q(θ, ε), θ, ε) that determines

how the informational rent changes with changes in the shock ε is not relevant to the optimal

qualities which reflects that the shock is only relevant to the ‘squeeze’ in how it changes the

squeeze as θ changes.

Crucial to how the squeeze changes with ε is the cross derivative c321. When c321 > 0,

the optimal mechanism squeezes lower realisations of the shock relatively more. On the

contrary, when c321 < 0 we find that the squeeze for ε is decreasing in ε. As we would

expect, if the distribution of the cost shock is degenerate, the squeeze of equation (2.21)

becomes equivalent to the squeeze of Che from equation (2.24). Perhaps more interestingly,

this is also the case when c321 is zero6, since here c21(q, θ, ε) = c21(q, θ, ε). Unlike in Eső and

Szentes (2007), when neither of these conditions is satisfied, i.e. when ε > ε and c21(q, θ, ε) 6=

c21(q, θ, ε), the agents’ second stage private information affects their informational rents.

In the optimal mechanism, the principal realises that the distribution of an agent’s cost

function is determined by their θ parameter (or their initial productivity) as well as the ε

shock. Depending on the interactive term c321(q, θ, ε), it is profitable for the principal to

6For example when c(q, θ, ε) = (θ + ε) · q.
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distinguish the make-up of the agents’ costs in terms of θ and ε to optimally restrict the

agents’ informational rents.

2.4 Scoring Auctions with Renegotiation

Procurement contracts in practice are commonly awarded by some form of sealed bid first-

price scoring auction. Here the bidders submit sealed bids with both price and scores for

several quality attributes of a product or basket of products. The winner is selected as

the bidder with the highest score and is asked to implement their bid of quality and price.

Another in practice less commonly used scoring auction is the open bid ascending score

auction. See Che (1993) for a discussion on different scoring auctions. In this section, we

will introduce a scoring auction implementation game with built-in renegotiation, a model

of scoring auctions with renegotiation (SAWR).

2.4.1 The SAWR Implementation Game

In this section a particular implementation game of scoring auctions with renegotiation for

the model environment described in section 2.2 is introduced: the SAWR implementation

game. This game is a stylised and streamlined timeline for procurement processes with cost

shocks and renegotiation. Though stylised, it is designed to account for some of the critical

characteristics of the process observed in collaboration with NHS Procurement Scotland. In

summary, the SAWR implementation has the following timeline of events:

1. Agents realise their type θ.

2. The principal announces an auction with scoring rule S(p, q) and whether the auction

is first- or second-score.

3. The agents simultaneously bid a score S consisting of a price p and a quality q.
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4. The agent with the highest score wins the auction at S1 with the highest losing score

being S2. Without renegotiation, the agent would be asked to implement their bid p

and q in a first-score auction. In a second-score auction the agent will be asked to

implement their bid quality q at price p2 such that S(p2, q) = S2.

5. Before any implementation, the winning agent realises ε.

6. The winning agent may choose a new p′ and q′ such that S(p′, q′) ≥ S1 at the original

scoring rule in a first-score auction or S(p′, q′) ≥ S2 in a second-score auction.

7. The new p′ and q′ are now implemented.

Here 1 through to 4 mirror exactly the first-score and second-score auction as outlined by

Che (1993). Point 5 crucially occurs after the winner is decided by the restriction imposed

in the model setup of section 2.2. Point 6 details what will be referred to as the ‘same-score

restriction’ for renegotiation. This restriction says that the seller can unilaterally decide a

new price and quality after the realisation of the shock so long as the new price and quality

match the original score S1 they submitted to win the auction in point 3 and 4 (or S2 in

a second-score auction). This restriction serves two ends. First, by being unilateral, it is a

very convenient and easy to model form of renegotiation. Second, it proxies for a ‘fairness’

restriction that describes the pertinent feature of many public procurement awards that the

losing agents cannot be unfairly discriminated against by giving the winning agent post-

allocation advantages (such as renegotiating to a lower score would be). In practice this is

one of the most important considerations to public procurement institutions (such as NHS

Procurement) when considering renegotiating the terms of a contract as the possibility of

being sued by the losing agents is real and costly. Point 7 states that any implementation of

price and quality only occurs after the renegotiation of price and quality. This is a stylisation

that simplifies the analysis but does not qualitatively change the main results.
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2.4.2 Equilibrium of SAWR

We restrict attention to quasilinear scoring rules that are linear in price in the same way as

Che (1993):

Assumption 4. S(p, q) = s(q) − p, where s(q) − c(q, θ, ε) has a unique interior maximum

in q (∀θ, ε) and s(·) is increasing at least for q ≤ argmax s(q)− c(q, θ, ε).

These type of scoring rules are widespread in a procurement environment in practice.

They can also be justified by the quasilinear preferences of our model. In equilibrium of the

second stage of SAWR, an agent of type θ and shock ε thus chooses q(θ, ε) such that:

q(θ, ε) = argmax
q

s(q)− c(q, θ, ε). (2.25)

In equilibrium of both first- and second score auctions the agent will choose the price p(θ, ε)

in the second stage as:

p(θ, ε) = s(q(θ, ε))− S, (2.26)

where S is the first stage score of the winning agent bid in the first-score auction and the

score of the highest losing agent in the second-score auction. The quality choice in the second

stage may thus be written in a value function:

So(θ) = Eε

[
max
q

{
s(q)− c(q, θ, ε)

}]
, (2.27)

where So(θ) is the expected value of participation in the second stage of SAWR for an agent

of type θ. The choice of the price p in the second stage is fully described by the choice of a

score to bid in the first stage and the optimal qualities by equation (2.26). Now, the solution

methodology of Che (1993) can be applied in expectation over the shock ε to reduce the first

stage bidding of SAWR into a one-dimensional problem where agents bid according to their
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expected value of the second stage. To this end, let as in Che (1993):

v ≡ So(θ), (2.28)

F̃ (v) ≡ 1− F (S-1
o (v)), (2.29)

and b ≡ Eε

[
S(q(θ, ε), p)

]
. (2.30)

So(θ) is strictly decreasing and therefore, its inverse exists. The bidding in the first stage of

SAWR can then be described as agents choosing a bid b based on their productive potential

v to maximise:

Eε[π] = Eε

[
p− c(q(θ, ε), θ, ε)

]
· Prob

(
win
∣∣∣S(q(θ, ε, p))

)
(2.31)

= [v − b] · F̃ (b-1(b))N−1. (2.32)

Leading to the following proposition:7

Proposition 2.4.1. (i) A unique symmetric equilibrium of a quasilinear first-score SAWR

mechanism is one in which each winning firm chooses:

q(θ, ε) = argmax
q

s(q)− c(q, θ, ε) (2.33)

and:

p(θ, ε) = s(q(θ, ε))− S1
(θ), (2.34)

where S1
(θ) is the first stage score bid by the winning agent. In equilibrium of the first stage

auction each agent bids:

S(θ) = Eε

[
s(q(θ, ε))

]
− Eε

[
c(q(θ, ε))

]
−
∫ θ

θ

Eε

[
cθ(q(t, ε), t, ε)

]( 1− F (t)

1− F (θ)

)N−1
dt. (2.35)

(ii) A unique symmetric equilibrium of a second-score SAWR mechanism is one in which

each winning firm chooses:

q(θ, ε) = argmax
q

s(q)− c(q, θ, ε) (2.36)

7Analogous to proposition 2 in Che (1993).
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and:

p(θ, ε) = s(q(θ, ε))− S2
(θ), (2.37)

where S2
(θ) is the highest first stage score bid by a losing agent. In this equilibrium the agent

has a dominant strategy in the first stage auction to bid:

S(θ) = Eε

[
s(q(θ, ε))− c(q(θ, ε), θ, ε)

]
. (2.38)

Proof. This is a straightforward extension of the equilibrium in proposition 2 of Che (1993).

(i) and (ii) share the same second stage equilibrium. The first stage equilibrium of (i) follows

from the usual equilibrium in first-price auctions as in Riley and Samuelson (1981). The first

stage equilibrium of (ii) follows from Vickrey (1961).

The equilibrium expected profits of an agent of type θ in a first-score SAWR mechanism

E[πFS] are thus:

E[πFS] = Eε[p− c(q(θ, ε), θ, ε)] · P(win|θ) (2.39)

= Eε

[∫ θ

θ

cθ(q(t, ε), t, ε)

(
1− F (t)

1− F (θ)

)N−1
dt · (1− F (θ))N−1

]
(2.40)

= Eε

[∫ θ

θ

cθ(q(t, ε), t, ε)(1− F (t))N−1dt
]

= E[πSS]. (2.41)

Where E[πSS] are the expected equilibrium payoffs of a second score SAWR auction. Thus

first and second score auctions are revenue equivalent for any general quasilinear scoring

rule.

2.4.3 Does SAWR Implement the Optimal Mechanism?

Again we restrict attention to quasilinear scoring rules as proposed by Che (1993) and widely

applied in practice.

Theorem 2. When c321 6= 0, no quasi-concave scoring rule S(p, q) = s(q) − p exists with

which the scoring auction with renegotiation (SAWR) mechanism described above can imple-

ment the optimal mechanism.
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Proof. This is proved by contradiction: assume a scoring rule S(p, q) exists that implements

the optimal mechanism. From the quasi-concavity we know that the upper contour set of

S(p, q) is convex. For any given score S, the set of p and q such that S(p, q) = S, can thus

be mapped as a convex and non-decreasing function in the p, q space: an isoscore curve.

The indifference curves of a seller with preferences π = p − c(q, θ, ε) in the p, q space

are strictly concave and strictly increasing given the assumptions on c(q, θ, ε). Thus, since

πq < 0 and πp > 0, the bundle p∗, q∗ that are the optimal way for the seller to achieve score S

are unique and found where the seller’s indifference curve is tangential to the isoscore curve

of S. See figure 2.1 for an illustration.

Q

P

isoscore
curve

isoprofit
curve

p∗

q∗

Figure 2.1 Isoscore and Isoprofit Curves

For two sellers 1, 2 with (θ1, ε1) and (θ2, ε2) it’s possible to get:

c(q, θ1, ε1) = c(q, θ2, ε2) (2.42)

with θ1 6= θ2, ε1 6= ε2, and:

F (θ1)

f(θ1)

(
c21(q(θ1, ε), θ1, ε)−

G(ε1)

g(ε1)
c321(q(θ1, ε1), θ1, ε1)

)
6= F (θ2)

f(θ2)

(
c21(q(θ2, ε), θ2, ε)−

G(ε2)

g(ε2)
c321(q(θ2, ε2), θ2, ε2)

)
(2.43)

(since c321 6= 0). Given equation (2.42), at any score S, the optimal p, q for both sellers are

the same. However, from equation (2.21), equation (2.43) implies that

q(θ1, ε1) 6= q(θ2, ε2). (2.44)
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Thus a contradiction is reached.

Scoring rules that are non-linear in price would need to reward a change in price differently

at different levels of quality. We can convince ourselves that these would not help with this

implementation problem by revisiting equation (2.43). The only way for sellers who have

different θ and ε (and the same overall cost) to choose to procure the good at different

qualities is for them to be indifferent between all these qualities. It is hard to conceive even

a nonlinear scoring rule with which it is possible to ensure this condition while simultaneously

ensuring that no sellers would want to procure the good at a quality meant for a seller with

a different cost. However, a formal proof of this is beyond the scope of this analysis.

2.4.4 Naïve Scoring Auctions

In Che (1993), when s(q) = V (q) the scoring auction implements the socially optimal ‘first-

best’ level of qualities. This result extends to the SAWR mechanism:

Proposition 2.4.2. If s(q) = V (q) the SAWR implementation game implements the socially

optimal quality policies q∗ that solve:

q∗ = argmax
q

V (q)− c(q, θ, ε) (2.45)

(∀θ, ε).

Proof. This is immediate from section 2.4.2 since S(p, q) = V (q)− p is a quasilinear scoring

rule.

In the model without renegotiation, Che argues these qualities to be too high from

the buyer’s perspective as the naïve scoring rule ‘fails to internalise the informational cost

associated with increasing quality’ (Che, 1993). However, an argument may be made that in

government procurement, the government should at least to some extent care about the social

welfare of its procurement mechanisms rather than exclusively expected buyer utility. Our
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findings on the (sub)optimality of scoring auctions given renegotiation can be interpreted as

furthering the case for ‘naïve’ auction and simplicity in procurement. First, note that a naïve

scoring rule does not just implement the socially optimal qualities both in Che’s analysis

as well as in SAWR, but said scoring rule is exactly identical across the two models. The

naïve scoring rule is thus robust to renegotiation and able to implement a socially optimal

allocation even with unexpected renegotiation when the same score constraint is satisfied.

Furthermore, in the limit as N grows large, the naïve SAWR approximates the optimal

mechanism since the sellers’ individual rent is decreasing in N . If in fact the government

does allow for renegotiation of this form but does not foresee any shock, it may not take it

into account in their scoring rule and decide to misrepresent their preferences in exactly the

same way as Che suggests. In light of the following result, this can be a very costly mistake.

Proposition 2.4.3. No quasilinear scoring rule in which the buyer’s preferences are mis-

represented can maintain the property of approximating the optimal mechanism as N grows

large.

Instead of a formal proof, we only provide the following heuristic to see this result. First,

it is immediate from theorem 2 that no quality policies implementable by a quasilinear

SAWR can squeeze θ and ε differently. This includes squeezing only θ or only ε. Second,

from equation (2.21), note that in the optimal mechanism as N grows large the expected

distortion of the quality policies of the eventual winner approaches zero in the limit since

the expected first-order statistic of θ approaches θ. However, as N grows large, if the quality

is distorted for both θ and ε in the same way, the limit of the distortion for the winner is

never zero. Even though the first-order statistic for θ of the winning agent approaches θ, as

there is only one remaining agent in the second stage the expectation of the shock ε does

not change.

49



2.5 Conclusion

We extend a standard model of procurement to allow for the possibility of uncertainty about

the true cost of production. Our main result is the description of the optimal mechanism in

our multidimensional dynamic environment. This description allows us to make inferences

about the performance of the popular scoring auction implementation game when we take

into account the possibility of renegotiating in response to shocks. We show that the result of

Che (1993) breaks down and scoring auctions are no longer optimal in this environment. Our

analysis further suggests a policy recommendation for the design of government procurement

auctions.

A crucial question in the design of public procurement processes is whether the govern-

ment or public agency intending to procure a production process should only consider its

own budget and preferences or whether a consideration to the sellers should also be made.

Many argue the government’s primary objective ought to be maximising social welfare. Laf-

font and Tirole (1987) view the objective function of the government as maximising the sum

of its own utility and the bidders’ utility but allow for some transaction costs to give some

spiel to the government ‘preferring its own preferences’. In both Che (1993) as well as our

paper this is abstracted away, and the government is only concerned about maximising its

own preferences. This is a key aspect of the design of scoring auctions. If the government

does not care about the sellers’ welfare, it should, as Che suggests, distort its preferences

over non-price aspects of the procurement contract to implement as close to the optimal

mechanism as possible. Here it accepts a socially worse outcome to reduce the informational

rent of the sellers and increase its relative share of the overall gains from trade. On the other

hand, if the government is equally interested in the sellers’ welfare (and there are no transac-

tion costs), the government is best off implementing a ‘naïve’ procurement auction in which

it does not distort its own preferences and thus implements a socially optimal ‘first-best’

mechanism.

50



Our analysis can be used to further the case for transparency and simplicity in the design

of procurement auctions by giving support to the argument for truthtelling and ‘naïve’

preference revelation in government procurement. We show that there are potential Pareto

gains from renegotiation in multidimensional procurement environments and that revealing

their true preferences over the non-price aspects of the good allows the procurer to realise

these gains without requiring any distributional knowledge of the shock distribution. The

naïve scoring auction here has the desirable property of being able to make use of the same

scoring rule to allocate the contract as well as to use in a renegotiation phase, should the

need for one arise. In this sense, it is robust to renegotiation and can ensure that the scoring

auction implements a dynamic contract that is robust to the potential of double deviations

and satisfies a government’s commitment to fairness over favouritism in the procurement

process. In contrast, scoring auctions with preference distortions aimed at reducing the

sellers’ rents, on top of being computationally demanding and requiring strong informational

assumptions to be implemented correctly, do not satisfy this property of being robust to

renegotiation. They implement an allocation that is undesirable for both a government

concerned about its own utility and a government maximising social welfare.
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Appendix

A.1 Proof of Lemma 2.3.1

Two difficulties arise when showing the revelation principle holds in this environment. First,

the mechanism design problem is dynamic, with two stages and sequential generation of

information. Second, the mechanism design problem is restricted by enforcing a winner of

the contract before the realisation of the shock.

A general mechanism Γ in our model setting defines: (i) the strategies available to each

agent Φ1, · · · ,ΦN and (ii) an outcome function g for each realisation of strategies by the

agents. A realisation φi(θi) ∈ Φi of a strategy for an agent i ∈ {1, · · · , N} dictates an action

for the agent at every possible node of the game tree. The strategy thus determines the

agent’s actions before the allocation decision and after when the shock ε has been realised.

The outcome function g defines (a) an allocation decision xi (∀i), (b) transfers ti to the agent,

and finally (c) a quality qi to be implemented (∀i) if the agent is chosen by the allocation

rule xi. Here g is a function of the agents’ realisations of strategies. Thus g defines x ≡

(x1, · · · , xN), t ≡ (t1, · · · , tN), and q ≡ (q1, ..., qN) for all φ(θ) ≡ (φ1(θ1), · · · , φN(θN)) ∈

(Φ1, · · · ,ΦN) ≡ Φ.

The principal can design both the strategy space Φ as well as the function g. In an

equilibrium of Γ, agents use equilibrium strategies φ∗1(θ1), · · · , φ∗N(θN) ≡ φ∗(θ) resulting in

equilibrium outcome g(φ∗(θ)). To characterise the equilibrium strategies with the perfect

Bayesian equilibrium concept, a division is helpful. Let φ1
i (θi) denote the part of the strategy
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φi(θi) that comprises of all decisions in the game tree taken before the realisation of ε (∀i).

Similarly, let φ2
i (θi, ε|φ1

i (θi)) denote the part of the strategy φi(θi) that comprises of all

decisions in the game tree taken after the realisation of ε (∀i) conditional on the agent’s

type, the realised shock, and the decisions taken before the shock. φi(θi) is thus described

by φ1
i (θi) as well as φ2

i (θi, ε|φ1
i (θi)).

The aim is to show that any perfect Bayesian equilibrium outcome of any general mech-

anism Γ can be implemented in perfect Bayesian equilibrium by a direct mechanism ΓDM

in which the agents simultaneously and truthfully reveal their type θ to the principal and

the agent winning the allocation decision reveals ε directly and truthfully to the principal.

The first thing to note here is that in the direct mechanism, the winning agent does not

observe the other agents’ type reports (they only observe that they win). We have not,

however, ruled out general mechanisms in which the agent can observe part of or all of the

other agents’ actions and make inferences about their strategies and types. The expectation

over θ-i in the second stage is implicitly conditional on whatever was observed in the first

stage and may thus be different across the direct mechanism and some general mechanisms.

To circumvent this informational disparity in the conditional expectations, we require the

principal to be able to reveal to the winning agent information about the other agents’ types

before the beginning of the second stage (and to commit to doing so truthfully)1.

A direct mechanism is thus a constraint on the general mechanism such that Φ1
i = Θ

(∀i) and Φ2
i = E (∀i). It specifies further a message Î about the other agents’ types from

the principal to the remaining agent in the second stage of the game tree. In order for ΓDM

to implement the same equilibrium outcome as Γ, we adjust the outcome function gDM in

1Ultimately, given lemma 2.3.2 and corollary 2.3.2.1 of section 2.3, we find that under independent

private valuations this revelation is not relevant for the optimal direct mechanism. However, to show that

restricting attention to direct mechanisms does not restrict the principal’s optimisation problem over all

possible mechanisms, we first need to show that any general mechanism can be implemented with a direct

one. Ruling out by assumption any mechanism in which the agents learn about each others’ types is thus

not obviously non-restrictive to the principal.
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such a way that any vector of reports θ̂ jointly with any report ε̂ by the remaining agent j

results in the same outcome g as the realisation φ∗(θ̂) would have in Γ.

Lemma A.1.1. The Revelation Principle Suppose that there exists a mechanism Γ =

(Φ1
1, · · · ,Φ1

N ,Φ
2
1, · · · ,Φ2

N , g(·)) that implements2 an outcome function f in perfect Bayesian

Nash equilibrium. Then f is truthfully implementable in perfect Bayesian Nash equilibrium

by a direct mechanism ΓDM as defined above.

Proof. This proof is adapted from proposition 23.D.1 in Mas-Colell, Whinston, Green, et al.

(1995).

As will become clear below, we require the principal to commit to revealing to any

winning agent i (with first stage report θ̂i) before stage 2 of the DM whatever information

the agent would have observed in stage 1 of the general mechanism had he followed φ1∗
i (θ̂i).

This information is available to the principal before the second stage as she observes the

vector of type reports and it is otherwise not available to the winning agent in the direct

mechanism as he does not observe it.

If Γ implements f(·) in perfect Bayesian equilibrium, then there exists a profile of equi-

librium strategies φ∗1(θ),φ∗2(θ, ε) such that g(φ∗1(θ),φ∗2(θ, ε)) = f(θ, ε). Thus the equi-

librium first stage strategies have to satisfy:

φ1∗
i (θi) ∈ argmax

φ̃1i (θi)

Eε,θ-i

[
πi

(
g
(
φ̃1
i (θi), φ̂

2
i (θi, ε|φ̃1

i (θi)),φ
∗
-i(θ-i)

)
, θi, ε

) ∣∣∣I1i (φ̃1
i (θi)

)]
(A.1)

(∀i, θi), here Ii(φ) represents the information3 the agent i learns about the other agents’ types

θ-i when following strategy φ. φ̂2
i (θi, ε|φ̃1

i (θi)) is an optimal second stage response defined

by:

φ̂2
i ∈ argmax

φ̃2i (θi,ε|φ̃1i (θi)
Eθ-i

[
πi

(
g
(
φ̃1
i (θi), φ̃

2
i (θi, ε|φ̃1

i (θi)),φ
∗
-i(θ-i)

)
, θi, ε

) ∣∣∣Ii (φ̃1
i (θi)

)]
(A.2)

2We are not assuming uniqueness here.
3Given its role in the analysis, it is not necessary to describe the functional form of this message explicitly.
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(∀i, θi, ε, φ̃1
i (θi)). In words, the equilibrium first stage strategies have to be optimal in expec-

tation over ε given subgame perfection in the second stage. This implies that the equilibrium

second stage strategies have to satisfy:

φ2∗
i ∈ argmax

φ̃2i (θi,ε|φ1∗i (θi))

Eθ-i

[
πi

(
g
(
φ1∗
i (θi), φ̃

2
i (θi, ε|φ1∗

i (θi)),φ
∗
-i(θ-i)

)
, θi, ε

) ∣∣∣Ii (φ1∗
i (θi)

)]
(A.3)

(∀i, θi, ε, φ1∗
i (θi)). In words, given equation (A.1) and (A.2) and using the perfect Bayesian

equilibrium concept, the second stage equilibrium strategies only have to be optimal at the

optimal first stage strategy φ1∗
i for the bundle φ1∗

i , φ
2∗
i to be an equilibrium strategy. Now,

for f(·) to be implementable in truthtelling equilibrium it has to be that:

θi ∈ argmax
θ̃i

Eε,θ-i

[
πi

(
f
(
θ̃i,θ-i, ε̂

)
, θi, ε

)∣∣∣Îi (θ̃i)] (A.4)

(∀i, θi), Here Îi
(
θ̃i

)
is the information revealed to agent i if they win the allocation of the

second stage given type report θ̃i in the first stage of the DM. ε̂ is the best response defined

by:

ε̂ ∈ argmax
ε̃

Eθ-i

[
πi

(
f
(
θ̃i,θ-i, ε̃

)
, θi, ε

)∣∣∣Îi (θ̃i)] (A.5)

(∀i, θi, θ̃i, ε). Furthermore, it has to hold that:

ε ∈ argmax
ε̃

Eθ-i

[
πi

(
f (θi,θ-i, ε̃) , θi, ε

)∣∣∣Îi (θi)] (A.6)

(∀i, θi, ε). Since f(θ, ε) = g(φ∗1(θ),φ∗2(θ, ε)), the first step is to confirm that:

θi ∈ argmax
θ̃i

Eε,θ-i

[
πi

(
g
(
φ1∗
i (θ̃i), φ

2∗
i (θ̃i, ε̂|φ1∗

i (θ̃i)),φ
∗
-i(θ-i)

)
, θi, ε

) ∣∣∣Îi (θ̃i)] (A.7)

(∀i, θi), with:

ε̂ ∈ argmax
ε̃

Eθ-i

[
πi

(
g
(
φ1∗
i (θ̃i), φ

2∗
i (θ̃i, ε̃|φ1∗

i (θ̃i)),φ
∗
-i(θ-i)

)
, θi, ε

) ∣∣∣Îi (θ̃i)] (A.8)

(∀i, θi, θ̃i, ε).

If the principal reveals to agent i with report θ̃i the information they would acquire

following the strategy φ1∗
i (θ̃i), i.e. if Îi

(
θ̃i

)
= Ii

(
φ1∗
i (θ̃i)

)
the conditional expectations over
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θ-i in equation (A.2) and (A.5) are identical. Thus, since φ2∗
i (θ̃i, ε̃|φ1∗

i (θ̃i)) is available as a

deviation φ̃2
i (θi, ε|φ̃1

i (θi)) in equation (A.2) and since φ1∗
i (θ̃i) is available as a deviation φ̃1

i (θi)

in equation (A.1), φ1∗
i (θi) being an equilibrium strategy guarantees that (A.7) with (A.8)

and thus (A.4) with (A.5) are satisfied. To confirm that f(·) is implementable in truthtelling

equilibrium in this case, it now only needs to be checked whether:

ε ∈ argmax
ε̃

Eθ-i

[
πi

(
g
(
φ1∗
i (θi), φ

2∗
i (θi, ε̃|φ1∗

i (θi)),φ
∗
-i(θ-i)

)
, θi, ε

) ∣∣∣Îi (θi)] (A.9)

(∀i, θi, ε). This is relatively straightforward. First, note that the expectations over θ-i in

equation (A.3) and (A.6) are identical when Îi (θi) = Ii (φ
1∗
i (θi)). Now, φ2∗

i (θi, ε̃|φ1∗
i (θi)) is

available as a deviation φ̃2
i (θi, ε|φ1∗

i (θi)) in equation (A.3). Thus φ2∗
i (θi, ε|φ1∗

i (θi)) being an

equilibrium strategy guarantees that (A.9) and thus (A.6) are satisfied since the expectations

over θ-i are the same in equations (A.3) and (A.9) given the discussion above.

A.2 Proof of Lemma 2.3.2

This is proven by contradiction. Suppose there is some agent i for whom the optimal quality

policy denoted qi depends not only on their own cost type θi as well as the shock ε, but also

on the vector θ-i of the N − 1 other agents’ type realisations. For this agent i, it has to be

such that there are at least two different realisations of θ-i denoted θ1-i and θ
2
-i such that the

quality to be implemented by agent i is different between θ1-i and θ
2
-i, but the agent i wins

the allocation at both θ1-i and θ
2
-i. Denote the two different qualities q1i and q2i , respectively.

If the principal were to offer a different mechanism to the N agents, in which at both θ1-i

and θ2-i agent i is asked to implement E[q] such that4:

q(θi,θ
1
-i, ε) = q(θi,θ

2
-i, ε) =

Pr(θ1-i)

Pr(θ1-i) + Pr(θ2-i)
· q1i +

Pr(θ2-i)

Pr(θ1-i) + Pr(θ2-i)
· q2i ≡ E[qi] (A.10)

4Here Pr(·) denotes the likelihood of a particular vector θ-i.
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the principal would make an expected profit. To see this, notice that if transfers and al-

location decisions in the new mechanism remain unchanged, due to the concavity of the

principal’s preferences over quality, the principal increases their expected utility by changing

the mechanism in this way. Mathematically:

V (E[q]) >
Pr(θ1-i)

Pr(θ1-i) + Pr(θ2-i)
· V (q1i ) +

Pr(θ2-i)

Pr(θ1-i) + Pr(θ2-i)
· V (q2i ) (A.11)

by Jensen’s inequality and given V ′(q) > 0 and V ′′(q) < 0. Furthermore, from the convexity

of the agents’ cost:

c(E[q], θi, ε) <
Pr(θ1-i)

Pr(θ1-i) + Pr(θ2-i)
· c(q1i , θi, ε) +

Pr(θ2-i)

Pr(θ1-i) + Pr(θ2-i)
· c(q2i , θi, ε) (A.12)

by Jensen’s inequality and given c1(q, θi, ε) > 0 and c11(q, θi, ε) > 0 using the independence

of values assumed for the cost function. The expected cost of implementing E[qi] is thus

lower than the expected cost of implementing q1i and q2i . Thus replacing q1i and q2i by E[qi]

improves the optimisation programme. This contradicts the earlier assertion that q1i and q2i

are optimal.

A.3 Proof of Lemma 2.3.3

From equation (2.4) the expected value of winning the allocation decision for agent i of type

θi when realising shock ε and reporting type θ̃i in the first stage is:

vi(θ̃i, θi, ε) = max
ε̃
Eθ-i

[
t2i (θ̃i, ε̃)− c(qi(θ̃i, ε̃), θi, ε)

]
(A.13)

= max
ε̃

{
t2i (θ̃i, ε̃)− c(qi(θ̃i, ε̃), θi, ε)

}
(A.14)

Thus letting:

∂vi(θ̃i, θi, ε)

∂ε
= −c3(qi(θ̃i, ε̃), θi, ε)

∣∣∣
ε̃=ε

(A.15)

= −c3(qi(θ̃i, ε), θi, ε) (A.16)
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(∀i, θ̃i, θi, ε such that θ̃i = θi) is a necessary condition for the truthtelling constraint to be

satisfied (by the envelope theorem)5. This condition is sufficient if q(θi, ε) is non-increasing in

ε. This will be assumed for the time being and can later be shown to hold under assumption

2. Since condition 2.5 only has to hold at θ̃i = θi, truthtelling about ε in the second stage is

enforced when the derivative of v fulfils this condition at θ̃i = θi. Integrating both sides of

(A.16):

vi(θ̃i, θi, ε) =

∫ ε

ε

c3(qi(θ̃i, s), θi, s)ds+ vi(θ̃i, θi, ε) (A.17)

gives the value of the second stage (∀i, θ̃i, θi, ε such that θ̃i = θi) given constraint (2.5).

A.4 Proof of Lemma 2.3.4

First note that:

Wi(θi) = max
θ̃i

Eε,θ-i

[
vi(θ̃i, θi, ε)xi(θ̃i,θ-i) + t1i (θ̃i,θ-i)

]
(A.18)

(∀i, θi). From the truthtelling constraint in equation (2.3) to get:

Wi(θi) = Eε,θ-i

[
vi(θ̃i, θi, ε)xi(θ̃i,θ-i) + t1i (θ̃i,θ-i)

]∣∣∣
θ̃i=θi

(A.19)

(∀i, θi). Thus letting:

dWi(θi)

dθi
= Eε,θ-i

[
∂vi(θ̃i, θi, ε)

∂θi
xi(θ̃i,θ-i)

]∣∣∣∣∣
θ̃i=θi

(A.20)

(∀θi) is a necessary condition for truthtelling about θ (by the envelope theorem)6. When

Eθ-i [xi(θ)] is non-increasing in θi, and qi(θi, ε) is non-increasing in θi it is a sufficient condition

for truthtelling. We will later show these to be satisfied under assumption 2 and proceed as

though they are for now. Notice that:

Eε

[
vi(θ̃i, θi, ε)

]∣∣∣
θ̃i=θi

= Eε

[∫ ε

ε

c3(qi(θ̃i, s), θi, s)ds+ vi(θ̃i, θi, ε)
]∣∣∣∣
θ̃i=θi

(A.21)

5The differentiability of v stems from the differentiability of c.
6W is differentiable because v is differentiable; v because c is.
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(∀i, θi). Here we could substitute for equation (2.6) in the last line since we are evaluating

at θ̃i = θi. Taking the derivative w.r.t. θi on both sides we get:

∂Eε

[
vi(θ̃i, θi, ε)

]
∂θi

∣∣∣∣∣∣
θ̃i=θi

=
∂Eε

[∫ ε
ε
c3(qi(θ̃i, s), θi, s)ds+ vi(θ̃i, θi, ε)

]
∂θi

∣∣∣∣∣∣
θ̃i=θi

(A.22)

= Eε

[∫ ε

ε

c32(qi(θ̃i, s), θi, s)ds+
∂vi(θ̃i, θi, ε)

∂θi

]∣∣∣∣∣
θ̃i=θi

(A.23)

(∀i, θi). From equation (A.13) we can get:

∂vi(θ̃i, θi, ε)

∂θi
= − −c2(qi(θ̃i, ε̃), θi, ε)

∣∣∣
ε̃=ε∗

(A.24)

(∀i, θi) using the envelope theorem. Here ε∗ represents the optimal choice for ε given the

state variables. Therefore:

∂
[
vi(θ̃i, θi, ε)

]
∂θi

∣∣∣∣∣∣
θ̃i=θi

= −c2(qi(θ̃i, ε̃), θi, ε)
∣∣∣ ε̃=ε∗
θ̃i=θi

(A.25)

(∀i, θi). Given second stage truthtelling, ε∗ = ε when θ̃i = θi, thus:

∂vi(θ̃i, θi, ε)

∂θi

∣∣∣∣∣
θ̃i=θi

= −c2(qi(θ̃i, ε), θi, ε)
∣∣∣
θ̃i=θi

(A.26)

(∀i, θi). Substituting into equation (A.20) we get:

dWi(θi)

dθi
= Eε,θ-i

[(∫ ε

ε

c32(qi(θ̃i, s), θi, s)ds− c2(qi(θ̃i, ε), θi, ε)
)
xi(θ̃i,θ-i)

]∣∣∣∣
θ̃i=θi

= Eε,θ-i

[(∫ ε

ε

c32(qi(θi, s), θi, s)ds− c2(qi(θi, ε), θi, ε)
)
xi(θi,θ-i)

] (A.27)

(∀i, θi). From (A.27), Wi(θi) is non-increasing in θi since c32 ≥ 0 and c2 > 0. Thus for the

participation constraint (2.2) to be satisfied it is enough for it to be satisfied for a agent of

type θ, i.e. for:

Wi(θ) = 0 (A.28)

to hold (∀i). Thus:

Wi(θi) = Eε,θ-i

[∫ θ

θi

(
c2(qi(t, ε), t, ε)−

∫ ε

ε

c32(qi(t, s), t, s)ds
)
xi(t,θ-i)dt

]
(A.29)

(∀i, θi), which concludes the proof.
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Chapter Three

OPTIMAL SCORING AUCTIONS

WITH RENEGOTIATION

3.1 Introduction

Mechanism design adds an element of reverse engineering to game-theoretic applications.

In strategic settings, when agents hold private information, we can use game theory to

describe the equilibrium outcomes of the agents’ interactions. For example, in the context

of first-price auctions, we can describe agents’ bidding strategies as best response functions

to the other agents’ strategies. Equilibrium is reached where all agents are best responding

to one another’s best response. This analysis allows us to predict the expected revenue

for the auctioneer, or an optimal strategy for a bidder in the auction. However, often the

auctioneer is not constrained to selling the good through first-price auctions. There might be

a large number of possible implementation games she can choose from when selling a good.

Asides from a first-price auction, there are second-price auctions, double auctions, all-pay

auctions, and many others. On top of that, she could negotiate with one of the bidders,

hold a contest, or even just set a price and sell the good to a randomly selected bidder. The

possibilities are endless. Mechanism design allows us to abstract away from the specifics of

the implementation game and describe the properties of the best possible allocation that
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can be implemented in equilibrium by a general mechanism in a given model environment.

As such, it allows us to evaluate our chosen implementation games by comparing their

equilibrium allocations with that of the best possible allocation.

In environments with complex type-spaces and dynamics, the description of the optimal

mechanism becomes more and more complex. With this added complexity, identifying a

realistic implementation game of the optimal mechanism becomes increasingly difficult. The

informational assumptions may be too strong, or the computational demands too high to

expect the optimal mechanism to find real-world application. Moreover, there may be im-

plementation games that are appealing even if they are unable to implement the allocation

of the theoretically optimal mechanism. For example, in the context of government procure-

ment, goods are commonly contracted over various non-price elements and long time frames

in which unforeseen dynamics can quickly arise. In chapter two of this thesis, we show that

the prevalent procurement mechanism, scoring auctions with renegotiation in response to

unforeseen changes, is not able to implement the optimal mechanism if shocks to production

cost can arise after the initial auction. Despite this, scoring auctions remain of interest,

primarily due to their common use in practice. However, we are only able to give a negative

result about scoring auctions with renegotiation. We do not learn what the best scoring rule

for an auction with renegotiation looks like and how much is lost compared to the optimal

mechanism.

In this chapter, we will introduce a simplified environment compared to chapter 2. We

will restrict attention to a discrete type-space and cost-shock. This simplification has several

benefits. Firstly, reproducing the key result of chapter 2, that the scoring auction with

renegotiation is not optimal, in a discrete setting provides some helpful intuition to guide our

understanding of this finding. Secondly, the discrete environment allows us to conceptualise

and analytically describe the optimal scoring auction. That is, given that scoring auctions are

sub-optimal, we discover the optimal mechanism among the sub-class of mechanisms that are

implementable through the scoring auction with renegotiation implementation game. This
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analysis is, to the best of our understanding, a new and unique contribution to the theory

of mechanism design. Finally, having described the optimal scoring auctions, we can, using

a simple numerical example, develop an understanding of how much, relative to the optimal

mechanism, is lost by a government’s commitment to the scoring auction.

The outline of this paper is as follows. Section 3.2 describes the general model setup.

Section 3.3 outlines a motivating numerical example which we use to guide the analysis

throughout the paper intuitively. In section 3.4, we derive the solution to the optimal

mechanism problem and compare it to previous literature. Section 3.5 introduces a scoring

auction with renegotiation mechanism formally. In section 3.6 we describe the properties of

the optimal scoring auction with renegotiation using a restricted mechanism design approach.

Section 3.7 offers some concluding remarks.

3.2 The General Nx2 Model

This model setup takes the model from chapter 2 to a discrete type-space. There are N ∈ IR+

risk-neutral sellers (agents) indexed i trying to sell to a single risk-neutral buyer (principal)

a single indivisible good. The agents and the principal have preferences over two-dimensions

of the good to be contracted: its price p and its quality q. The sellers differ in their cost

of producing quality c(q, θi, ε) by a cost parameter θi = {θ, θ} (∀i) and a common shock

parameter ε = {y, n}.

Ex-ante, the probability for an agent i to be the high-cost type θi = θ is γ and conversely

the probability to be the low-cost type θi = θ is 1−γ. These probabilities are independent of

the other agents’ types. Any initial type θi has the same probability δ of realising a positive

shock ε = y to their production cost. Conversely, with the same probability of 1 − δ the

agents realise no shock denoted ε = n. The probabilities γ and δ are identical between the

agents and independent of the type and shock of both agents. We assume that the cost types

are ordered such that c(q, θ, ε) < c(q, θ, ε) (∀ε and q). Furthermore, without a shock (ε = n)
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both types have a lower cost than with a shock, i.e. c(q, θ, n) < c(q, θ, y) (∀θ and q). Finally,

we focus on the case where c(q, θ, y) < c(q, θ, n), i.e. where the shock does not disturb the

initial ordering of types. We can think of this as the initial type being more important in

determining the cost type of an agent than the shock. This assumption is maintained in the

motivating example as well as the general model.

A seller with type θ and shock ε makes quasilinear profits

π = p− c(q, θ, ε) (3.1)

of selling the good at price p and quality q. The buyer’s preferences U(p, q) over (p, q) are

quasilinear of the form:

U(p, q) = V (q)− p. (3.2)

In the event of no trade taking place, the buyer and the sellers all receive a payoff of 0.

We assume that the cost c(q, θ, ε) is increasing in q (cq(q, θ, ε) > 0) at an increasing rate

(cqq(q, θ, ε) < 0) for all θ, ε and q > 0. We additionally assume that there are always gains

from trade to be made (V (q) − c(q, θ, y) > 0 for some q) and that V (q) satisfies the Inada

conditions to guarantee an interior solution, i.e. limq→0 V
′(q) = ∞ and limq→∞ V

′(q) = 0

are satisfied.

A general mechanism in this environment consists of an outcome function and messages

from the agents to the principal before and after the shock.

The timing of events is as in chapter 2:

1. The principal commits to a mechanism.

2. The agents privately learn their cost type θ.

3. The agents choose a strategy denoting messages at each node of the game tree of the

mechanism.

4. The mechanism may allocate the procurement of the good to an agent given the agents’

messages.
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5. If and only if an agent has been allocated the procurement contract, he privately

realises the shock ε and thus knows his true cost parameter θ, ε. He may choose any

additional message after the shock in response to this new private information.

6. The agent from step 5 produces the good for the principal given the outcome function

and the agents’ messages before and after the shock.

In the utilitarian social optimum, given the assumption of risk-neutrality, prices do not

matter since they are a direct and costless transfer of utilities. Here, given the model

assumptions, the contract should always be allocated to the seller with the lowest type θ and

lowest shock ε. He will be asked to implement a quality such that the difference between the

valuation of quality by the buyer and the cost of producing quality of the seller is maximised.

For any cost type and shock, the socially optimal quality levels are given by the solutions to

the set of equations:

Vq (q) =cq(q, θ, ε) (3.3)

(∀θ, ε). The qualities that solve these equations are referred to as the ‘undistorted’ or ‘socially

optimal’ qualities.

The model described here is an abstraction of the complex procurement environment.

There are N firms of 2 different possible types competing to sell a single two-dimensional

good to the procurer. The uncertainty modelled is only one of two realisations for each of the

types. This simplification is owed to the additional complexity introduced when discussing

the optimal scoring auction. This model is an abstraction from the more complex continuous

setting in chapter 2. The introduced stylisation will, however, allow us to extend the analysis

conducted in that paper and can provide additional intuition to the continuous type results.
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3.3 Motivating Example

To understand more clearly the model and results of our analysis, we present a motivating

example below. This example lets N = 2 and defines specific functional forms satisfying our

assumptions made above. In this way, we will be able to get numerical results for each of

the findings presented in the paper. The example itself is based on the experience working

with the National Health Service (NHS) procurement services in Scotland. The example is

fictional. It is meant to illustrate critical issues that can arise if a procurement contract is

complex, multidimensional, and dynamic. It is not meant to be an accurate representation

of the procurement market for MRI scanners.

The NHS is comparing a centralised procurement process to letting each hospital manage

its own purchasing of supplies. Over recent years, the NHS found that with many goods

and services, it can achieve a better average price and lower administrative costs using the

centralised procurement process compared to the decentralised scheme in place before. The

NHS believes this gain in efficiency is primarily due to increased market power and reduced

overhead costs. In this way, the centralised procurement process represents a less ineffi-

cient bureaucracy. Recent empirical evidence from Decarolis et al. (2018) for US federal

procurement and Bucciol, Camboni, and Valbonesi (2020) suggest that a more competent

procurement bureau can significantly reduce delays, cost-overruns, and the likelihood of

costly renegotiation. A centralised scheme can be a positive factor moving in the direction

of a more competent procurement bureau. Consequently, the NHS started to transition the

purchasing of many basic goods and services, for example, the purchasing of sanitary prod-

ucts or cleaning and waste services, to a centralised procurement scheme. The mechanism

the NHS uses for its procurement is a sealed bid scoring auction where firms submit a score

made up of the combination of a price and a good that is rated on various quality aspects

relevant to the particular context. This mechanism is very close to the first score auction as

introduced in Che (1993), and for this reason, following Che’s result, the NHS believes this
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mechanism to be close to optimal for its purposes.

Due to the success of this process, the NHS is considering to switch more purchasing

processes to a centralised procurement scheme. One of these decisions is the purchasing of

MRI scanning equipment. The NHS knows that there are two large international companies

supplying MRI scanners to its hospitals at the moment. Its preference over MRI scanners

are two-dimensional, preferring a lower price (p) and a higher probability of accurate ailment

detection and location per single scan (q ∈ [0, 1]). We refer to this probability as the quality

of the MRI scanner. The NHS’s preferences over p and q given by U(p, q) = 2
√
q − p. The

NHS knows that the two available suppliers indexed i = 1, 2 make quasilinear profits of the

form πi(p, q) = p − 1
2
(θi + ε)q2 from supplying MRI scanners of quality q at price p. There

are two factors contributing to a firm’s overall cost of producing q. The firm’s initial type

θi and a cost shock ε. The NHS understands any of the firms may be of an efficient type

with θi = 1 with probability 1/3 or an inefficient type with θi = 2 with probability 2/3.

Furthermore, the reason the NHS is unsure about whether its existing procurement scheme

will be efficient for the purpose of MRI scanners, is that this area is subject to frequent

technology shocks ε. The NHS believes that in the time-frame after signing a procurement

contract with a firm and before the supply of the scanners, there is a probability δ = 1/3

of a positive cost shock to a computing component that is common to both firms’ scanners.

This shock is independent of which firm is selected for the procurement contract. The shock

ε would raise the cost of producing any quality q for either type θi according to the cost

function above by ε = 0.5.1

The NHS is interested in what the best procurement process for this context is. At

the least, it would like to know whether the existing scoring auction scheme is optimal here.

1These numbers are chosen to ensure the qualities of the numerical example are monotone in the cost of

producing quality throughout the paper. We ensure this for illustration purposes only and often do not need

to assume such monotonicity. We do not need to assume this for the general model and for many reasonable

model environments, the qualities will not be monotonic in this way.
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Finally, given its previous success with the scoring auction, if the scoring auction is no longer

optimal, the NHS would like to know how much is lost relative to the theoretic optimum if

it were to continue to use the scoring auction.

3.4 The Optimal Mechanism

The principal is designing a mechanism to maximise her expected utility. A mechanism

here defines to the agent for every realisation of the agent’s strategy a probability of being

allocated the contract xi, transfers to the agent from the principal ti, and a quality q to be

implemented by the agent chosen for the second stage. To capture the idea of reagreeing the

contract with a single agent, we are only interested in mechanisms in which the allocation

choice is made before the realisation of the cost shock. The revelation principle applies

in this context, as shown in chapter 2, lemma 2.3.1. We can thus restrict attention to

direct mechanisms where the agents directly and truthfully reveal their initial type θi to

the principal first, and the winning agent directly and truthfully reveals their shock εi to

the principal in the second stage subject to truthtelling and participation constraints. The

principal may choose to disclose to the winning agent information about the losing agents’

types. However, given we are in a private cost setting, she does not gain anything by doing

so.

3.4.1 The Optimisation Problem

There are two stages to the direct mechanism. The first stage comprises an initial transfer

t1i and a decision rule xi for the allocation of the second stage in response to the revelation

of the initial types. In the subsequent stage there may be further transfers t2i and the

qualities q are chosen in response to the revelation of the cost shock. Let θ = {θ1, .., θN}

be the vector of the agents’ types. The principal’s optimisation programme is to choose

{xi(θ), t1i (θ), t2i (θ, ε), q(θ, ε)} for all i,θ and ε to maximise her expected utility subject to
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incentive and participation constraints. The agent’s total transfers from the mechanism are

denoted ti(θ, ε) = t1i (θ) + t2i (θ, ε)xi(θ). The principal thus solves:

max
{x,t,q}

N∑
i=1

Eθ,ε

[
V (q(θ, ε))xi(θ)− ti(θ, ε)

]
(3.4)

Subject to the first stage participation constraints:

Eθ-i,ε

[
ti(θi,θ-i, ε)− c(q(θi,θ-i, ε), θi, ε)xi(θi,θ-i)

]
≥ 0 (3.5)

(∀i, θi). Subject to the first stage incentive constraints:

θi ∈ argmax
θ̃i

Eθ-i,ε

[
vi(θ̃i,θ-i, ε)xi(θ̃i,θ-i) + t1i (θ̃i,θ-i)

]
(3.6)

(∀i, θi), where:

vi(θ̃i, θi, ε) = max
ε̃
Eθ-i

[
t2i (θ̃i,θ-i, ε̃)− c(q(θ̃i,θ-i, ε̃), θi, ε)

∣∣∣Ii] (3.7)

(∀i, θi, ε, θ̃i). Here Ii denotes the information the winning agent i may learn about the other

agent’s type conditional on winning the second stage2. Finally, the optimisation is subject

to second stage incentive constraints:

ε ∈ argmax
ε̃

Eθ-i

[
t2i (θi,θ-i, ε̃)− c(q(θi,θ-i, ε̃), θi, ε)

∣∣∣Ii] (3.8)

(∀i, ε). Constraint (3.5) dictates that an agent i of either type θi should not make a loss

from the mechanism in expectation over the shock. In other words, the agent has an outside

option of zero. Note that we are not allowing the agent and principal to re-agree whether

the good will be produced at all but only allow a change in price and quality. As such, the

agent may thus incur a loss ex-post3. The constraints in equation (3.6) and (3.7) say that

the agent of any type θi should see it profitable to reveal his true type in the first stage even
2This will turn out to be unimportant in equilibrium but is included here for completeness.
3Due to the risk-neutrality of the agents and the principal, voluntary participation in the second stage

can be achieved with an increase in transfers after the shock compensated by a decrease in transfers before

the shock. This is thus not restrictive.
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if they are allowed to double deviate (i.e. lie about θi planning to also lie about ε). Given

this first stage truthtelling constraint, the constraint (3.8) about second stage truthtelling

states that the agent of type θi, if allocated the second stage, has to want to reveal his shock

ε truthfully if there was first stage truthtelling about θi. Jointly these constraints ensure

truthtelling on the equilibrium path but do not enforce truthtelling off the path.

3.4.2 The Optimal Mechanism

We impose the following assumption on the cost functions and model parameters:

Assumption 5. Monotonicity 1: The optimal quality policies q∗, which form part of the

solution to the mechanism design problem, are non-increasing in ε and θ separately. I.e.

q∗(θ, ε) ≥ q∗(θ, ε) (∀ε) and q∗(θ, n) ≥ q∗(θ, y) (∀θ).

This assumption guarantees that the quality policies of the buyer optimal mechanism

are non-increasing in each of the two parameters determining the cost of the agent. This

assumption implies some restriction on the functional form of the cost functions and utility

functions of the agents and the principal and is sufficiently strong for the purpose of sim-

plifying the analytical solution to the mechanism design programme. An assumption of this

type is common in the literature and in this form is not particularly restrictive. In section

(3.6) we will use a stronger monotonicity condition given by assumption 3.6.1.

Given the symmetry between the agents we may simplify the solution programme by

dropping the i subscript. Further, let x(θ) and t1(θ) be shorthand for Eθ-i [x(θi,θ-i)] and

Eθ-i [t
1(θi,θ-i)]. The optimisation problem can be further simplified by realising that an

agent’s optimal quality policies will not depend on the other agents’ types in the optimal

mechanism.4 Finally, we can make the second stage transfers independent of the other

agents’ types. Due to the assumed independence and risk-neutrality, this is without loss of

4This is ensured by the assumptions on the principal’s utility function and the agents’ cost functions. See

the appendix A.2 in chapter 2 for a more thorough exposition.
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generality. Thus t2(θ, ε) and q(θ, ε) will denote the second stage transfers and quality for an

agent who announces type θ in the first stage and shock ε in the second. We can then write

the representative agent’s participation constraints from equation (3.5) for the unproductive

type θ = θ as:

t1(θ) + Eε

[
t2(θ, ε)− c(q(θ, ε), θ, ε)

]
x(θ) ≥ 0. (3.9)

The first stage IC from equation (3.6) for type θ = θ to ensure he does not wish to pretend

to be type θ = θ may be expressed as:

t1(θ) + Eε

[
v(θ, θ, ε)x(θ)

]
≥ t1(θ) + Eε

[
v(θ, θ, ε)x(θ)

]
. (3.10)

As a reminder, v(θ̂, θ, ε) denotes the value of an agent of type θ and shock ε reaching the

second stage after announcing θ̂ in the first stage. It is straightforward to show that the

relevant first stage incentive and participation constraints for the optimal direct mechanism

are the ones in equations (3.9) and (3.10).5 The second stage IC constraints from equation

(3.8) for an agent without a shock ε = n pretending to have received one can be written as:

t2(θ, n)− c(q(θ, n), θ, n) ≥ t2(θ, y)− c(q(θ, y), θ, n) (3.11)

(∀θ). If the optimal quality policies are decreasing in the cost shock for all initial types θ,

then the above will be the relevant second stage incentive constraint. Letting

t2(θ, y)− c(q(θ, y), θ, y) = 0 (3.12)

for all θ is without loss of generality as by the risk-neutrality of the agents we may move any

transfer from the first to the second stage and vice versa without affecting the optimisation
5This is a standard result. The least productive type will end up with their reservation utility (normalised

to zero) in equilibrium, and we only need to ensure he does not get less (and thus participates). However,

since the more productive type mimicking the less productive type end up with larger profits because of

their lower costs, we need to ensure the more productive types do not want to mimic the less productive

type (incentive compatibility).
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programme as long as we are still ensuring the constraints. It follows from equation (3.11)

that:

t2(θ, n) ≥ c(q(θ, n), θ, n) + c(q(θ, y), θ, y)− c(q(θ, y), θ, n) (3.13)

(∀θ). Since the incentive constraint is satisfied at the lowest transfers when it is binding, it

will be optimal for the principal to set:

t2(θ, n) = c(q(θ, n), θ, n) + c(q(θ, y), θ, y)− c(q(θ, y), θ, n) (3.14)

(∀θ). From equation (3.7) we know that v(θ, θ, ε) is given by:

v(θ, θ, ε) = max
ε̃

{
t2(θ, ε̃)− c(q(θ, ε̃), θ, ε)

}
(3.15)

(∀θ, ε). Using the second stage truthtelling constraint, we can write the value function v

when telling the truth in the first stage such that θ̂ = θ as:

v(θ, θ, ε) = t2(θ, ε)− c(q(θ, ε), θ, ε) (3.16)

(∀θ, ε). From equation (3.12) we get:

v(θ, θ, y) = 0 (3.17)

(∀θ). And using (3.14) we get:

v(θ, θ, n) = c(q(θ, n), θ, n) + c(q(θ, y), θ, y)− c(q(θ, y), θ, n)− c(q(θ, n), θ, n) (3.18)

= c(q(θ, y), θ, y)− c(q(θ, y), θ, n) (3.19)

(∀θ). Next, we want to use the first stage incentive constraints to learn more about the first

stage transfers. Going back to and rewriting the first stage incentive constraint for an agent

of type θ = θ pretending to be of type θ = θ we get:

t1(θ) + Eε

[
v(θ, θ, ε)x(θ)

]
≥ t1(θ) + Eε

[
v(θ, θ, ε)x(θ)

]
. (3.20)
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We next want to describe the agents’ value functions when misreporting in the first stage. A

sufficient condition for an agent of type θ = θ, ε = y to prefer reporting ε = n in the second

stage if they misreported θ = θ in the first stage is given by:

t2(θ, n)− c(q(θ, n), θ, y) > t2(θ, y)− c(q(θ, y), θ, y). (3.21)

We can substitute for the second stage transfers to get:

c(q(θ, n), θ, n)− c(q(θ, n), θ, y) > c(q(θ, y), θ, n)− c(q(θ, y), θ, y). (3.22)

Since c(q, θ, y) < c(q, θ, n) for any q, and since q(θ, n) > q(θ, y) from the assumed monotonic-

ity in ε, by the convexity of the cost function the inequality holds. Similarly, for an agent of

type θ = θ, ε = n reporting θ = θ in the first stage we need:

c(q(θ, n), θ, n)− c(q(θ, n), θ, n) > c(q(θ, y), θ, n)− c(q(θ, y), θ, n) (3.23)

to hold for him to report ε = n in the second stage. Using the same logic as before we can

show that it does. Therefore, any agent of type θ = θ misreporting to θ = θ prefers to report

ε = n in the second stage no matter whether they realise ε = n or y. Thus:

v(θ, θ, n) = t2(θ, n)− c(q(θ, n), θ, n) (3.24)

= c(q(θ, n), θ, n) + c(q(θ, y), θ, y)− c(q(θ, y), θ, n)− c(q(θ, n), θ, n). (3.25)

For ε = y we get:

v(θ, θ, y) = t2(θ, n)− c(q(θ, n), θ, y) (3.26)

= c(q(θ, n), θ, n) + c(q(θ, y), θ, y)− c(q(θ, y), θ, n)− c(q(θ, n), θ, y) (3.27)

We now need to obtain an expression for the first stage incentive constraints with only

one transfer. To this end, we can see that cheapest way for the principal to satisfy the

participation constraint of an agent of the least productive type θ = θ in equation (3.9) is

at binding. Thus using (3.9) and (3.16) we get:

t1(θ) = −Eε
[
v(θ, θ, ε)

]
x(θ). (3.28)
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The productive type θ = θ will be able to extract informational rent from the mechanism

in expectation. Thus the only participation constraint we need to satisfy is the above. For

an agent of type θ = θ, we need to ensure he does not wish to report being type θ = θ.

Substituting for t1(θ) into the incentive constraint of equation (3.20) for θ = θ we get:

t1(θ) = −Eε
[
v(θ, θ, ε)x(θ)

]
+ Eε

[
v(θ, θ, ε)− v(θ, θ, ε)

]
x(θ). (3.29)

Here we used again the fact that the cheapest way for the principal to ensure incentive

compatibility is at binding. By the convexity of the cost function, the constraints in equation

(3.28) and (3.29) are sufficient to ensure participation and incentive compatibility if the

expected quality policies (over the shock ε) are monotonic in the cost of producing q. We

can further simplify these constraints using equation (3.17); however to save on notation, we

proceed with (3.29) for now. Substituting for first and second stage transfers from equations

(3.12), (3.14), (3.28), and (3.29) into the optimisation programme we get:

max
{x,q}

N · Eθ

[(
(1− δ)

(
V (q(θ, n))− c(q(θ, n), θ, n)− c(q(θ, y), θ, y) + c(q(θ, y), θ, n)

)
+δ
(
V (q(θ, y))− c(q(θ, y), θ, y)

))
x(θ) + Eε

[
v(θ, θ, ε)x(θ)

]]
(3.30)

−(1− γ)Eε

[
v(θ, θ, ε)− v(θ, θ, ε)

]
x(θ).

Note that Eε
[
v(θ, θ, ε)x(θ)

]
= (1−δ)

(
c(q(θ, y), θ, y)−c(q(θ, y), θ, n)

)
and that we can ignore

any multiplicative scalar. This equation thus simplifies to:

max
{x,q}

Eθε

[(
V (q(θ, ε))− c(q(θ, ε), θ, ε)

)
x(θ)

]
− (1− γ)Eε

[
v(θ, θ, ε)− v(θ, θ, ε)

]
x(θ). (3.31)

The principal thus maximises the difference between the total expected social surplus from

the procurement project:

Eθε

[(
V (q(θ, ε))− c(q(θ, ε), θ, ε)

)
x(θ)

]
(3.32)

and the total expected informational rent extracted by the agent:

(1− γ)Eε

[
v(θ, θ, ε)− v(θ, θ, ε)

]
x(θ) (3.33)
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for each agent. Taking the first order conditions of this optimisation programme with respect

to the qualities q and collecting terms we find:

V ′(q∗θn) =cq(q
∗
θn, θ, n) (3.34)

V ′(q∗θy) =cq(q
∗
θy, θ, y) (3.35)

V ′(q∗
θn

) =cq(q
∗
θn
, θ, n) +

1− γ
γ

(
cq(q

∗
θn
, θ, n)− cq(q∗θn, θ, n)

+
δ

1− δ

(
cq(q

∗
θn
, θ, n)− cq(q∗θn, θ, y)

))
(3.36)

V ′(q∗
θy

) =cq(q
∗
θy
, θ, y) +

1− γ
γ

(
cq(q

∗
θy
, θ, y)− cq(q∗θy, θ, n)

)
(3.37)

as necessary conditions for an interior solution to the optimal mechanism design programme

under the assumptions made (for any given optimal allocation rule).

Proposition 3.4.1. For any given optimal transfers and allocation rule, the qualities q∗θε

given in equation (3.34) to (3.37) are the quality policies of the optimal mechanism.

Proof. We have shown above that these conditions are part of any interior solution given the

model assumptions above. By the assumed Inada conditions on V (q), an interior solution is

guaranteed, and the conditions are thus both necessary and sufficient.

As we can see, in this simple dynamic model, the ‘squeeze’ of the quality policies for the

type θ = θ, ε = n, i.e. the reduction of his buyer-optimal qualities against the socially optimal

ones, features an additional term we cannot find in comparable analyses. For example, a

key result of the seminal dynamic mechanism design analysis by Eső and Szentes (2007) is

that the agents’ second stage private information does not affect the agents’ informational

rent. Our paper mirrors this, since the agent gives up all the additional informational rent

he obtains from receiving no shock in the second stage through first stage transfers. Thus

the two value functions v(θ, θ, n) exactly cancel out in the simplification of the optimisation

programme in equation (3.31). However, crucially this informational rent also becomes
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relevant to the overall rent of an agent as it affects the profitability of a deviation to some

other type θ̃ in the first stage of the direct mechanism. In particular, the productive agent

deviating to the unproductive type in their first stage report prefers to report the low shock

no matter what shock they realise as shown in equation (3.22) and (3.23). As a consequence,

holding all else equal, in order to decrease the productive agent’s rent, the principal should

punish the unproductive type with the shock less than without the shock. As such, even

though like previous analyses on related topics such as Eső and Szentes (2007) it is the first

stage private information that primarily determines the agent’s rent, the private information

of the second stage is not irrelevant since it determines the value of first stage deviations.

Since this expected value of a first stage deviation is nothing but the expected informational

rent an agent can obtain from the mechanism, the second stage private information directly

matters to the informational rent an agent can extract.

3.4.3 Numerical Example

In the case of the NHS, where N = 2 and the functions and probabilities are given as in

section 3.3, the socially optimal qualities qoθε for agents of type θ with shock ε that maximise

social welfare defined by equation (3.3) can be found as:

qoθn = 100%, qoθy = 76%, qo
θn

= 63%, and qo
θy

= 54%. (3.38)

Here we expressed the qualities as percentage probabilities of ailment discovery and location.

Note that U(p, 1) = 2 − p and U(p, 0) = −p.Thus the NHS values the difference between a

100% and a 0% quality of the scanner at 2 units of p. We can apply the functional forms

of the numerical example to the solution of the generalised direct mechanism optimisation

problem to find the buyer optimal qualities q∗θε for agents of type θ with shock ε:

q∗θn = 100%, q∗θy = 76%, q∗
θn

= 53%, and q∗
θy

= 51%. (3.39)

We can see that in the optimal mechanism, the principal does not wish to distort the qualities

of the most productive firm with or without the shock. From equations (3.34) and (3.35),
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this is a general result for the N × 2 type-space. This also extends to a continuous type-

space with a continuous shock, as seen in chapter 2. Furthermore, the absolute and relative

decrease in the optimal mechanism qualities away from the socially optimal ones is larger

for the less productive types without the shock than with the shock. This can be attributed

to the additional squeeze present in equation (3.36) but not (3.37). Intuitively, the principal

can decrease the informational rent paid to the agents by making a deviation to the less

productive type worse. As we learnt, given monotonicity in q, the more productive type will

always pretend not to have realised the cost shock in the second stage if they pretend to

be less productive in the first stage. As such, in order to make a deviation for these types

worse, the optimal mechanism squeezes the quality q∗
θn

more than q∗
θy
.

3.5 Scoring Auctions with Renegotiation (SAWR)

Now that we understand the properties of the theoretically optimal procurement mechanism

for the NHS, we want to know whether the current system of a scoring auction can implement

it. The NHS is planning to run a sealed bid second-score auction and respond to potential

cost shocks by renegotiating the contract. We restrict attention to second-score auctions

since by the result of Che (1993) and chapter 2, scoring auctions are revenue equivalent in

first- and second-score without and with renegotiation. Since in this chapter we are facing a

discrete type space, restricting attention to second-score auction allows us to focus on pure

strategies and we do not need to consider mixed strategies for the equilibrium. Since the

uncertainty in our example is on the supply side, the NHS is planning to allow the supplier

to unilaterally make an offer to the NHS, which it may choose to accept or reject. In order

to not be seen to favour any firm in the procurement process unfairly, the decision rule for

accepting or rejecting a contract amendment is that the new offer must achieve the same

score of the previous contract to be accepted. A description of the implementation game for

the general N × 2 setup is given below.
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3.5.1 The SAWR Implementation Game for Discrete Type-Spaces

The SAWR implementation has the following timeline of events:

1. The N agents realise their types θ = {θ1, · · · , θN}.

2. The principal announces an auction with scoring rule S(p, q). Given the discrete type-

space it makes sense to restrict attention to second-score auctions.

3. The agents simultaneously bid scores S = {S1, · · · , SN}.

4. The agent with the highest score bid wins the auction at S1 with the second-highest

score bid being S2. If S1 = S2, the principal uses a tiebreaker to randomly select one

of the agents bidding this score with equal probability.

5. Before any implementation of the qualities, the winning agent realises the shock ε.

6. The winning agent may choose a price p and quality q such that S(p, q) ≥ S2.

7. The p and q are implemented.

This model is adapted from the original setup of the scoring auction in Che (1993). The

restriction to second-scoreauctions in the discrete type environment simplifies the analysis

as we do not need to consider mixed strategies. Point 3 simplifies the bidding to just a

score S. In our model, we assume that no price and quality are implemented before the

shock is realised in point 5. Given this stylisation of events after the allocation decision is

made, the initial bid only matters in deciding the winner and setting the score to be satisfied

in the renegotiation stage. As such, the composition of the bid score in terms of p and q

does not matter. Point 4 restricts attention to efficient auctions in which the good is always

allocated. In the optimal mechanism, this assumption is not restrictive. Point 6 explains

the basic second-scoreauction. We will see in section 3.6.2 that the principal can do better

by setting a reserve score system. However, we do not consider this at this point. Point 7
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just states that the payoffs for the principal and the agents are realised at the end of the

mechanism, and the good is not supplied before the realisation of the shock.

We want to check whether the optimal mechanism of section 3.4 can be implemented using

the SAWR game described here for the general model as well as our motivating example.

3.5.2 Equilibrium of second-score SAWR in discrete Type-Spaces

We restrict attention to quasilinear scoring rules that are linear in price in the same way as

Che (1993) and in chapter 2. Furthermore, in discrete type-spaces it makes sense to focus

on scoring rules that take the form of a step function:

Assumption 6. S(p, q) = s(q) − p, where s(q) is an increasing step function, i.e. a linear

combination of finite number of indicator functions for intervals such that s(q) ≥ s(q′) if

q > q′.

These type of scoring rules very closely resemble scoring rules used in procurement envi-

ronments in practice. Here the score is usually linearly decreasing in the price, and quality

aspects are awarded an increase in score for reaching certain levels. These scoring rules

further ensure that agents do not deviate to qualities different from the optimal qualities

suggested by the optimal mechanism solution. When there is only one quality dimension

setting s(0) = 0 works as a minimum standard since V (0) = 0.

To describe the equilibrium of SAWR it will be helpful to introduce two concepts. First,

an isoscore curve is a combination of p and q that achieve the same score S. Second, an

isoprofit curve is a combination of p and q that achieve the same profit π(θ, ε) for an agent

of cost type θ and shock ε. In equilibrium of the second stage of SAWR an agent of type

θ, ε maximises their profits π = p− c(q, θ, ε) subject to satisfying the same score restriction

S(p, q) = S2. Substituting in this simplifies to the supplier choosing:

q(θ, ε) = argmax
q

s(q)− c(q, θ, ε) (3.40)
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Figure 3.1 Isoscore and Isoprofit Curves with Discrete Types

subject to S(p, q) = S2. Graphically, this is represented in figure 3.1. It is important to

distinguish the quality defined by equation (3.40) from the ‘pseudotype’ as defined by Asker

and Cantillon (2008) which looks deceptively similar. The former is the optimal quality that

a seller in the second stage will select once they realised the shock whereas the latter is the

quasi social surplus generated by a seller for a given scoring rule once they have chosen the

quality with equation (3.40). By the assumptions on the buyer’s cost function, the isoprofit

curves will be strictly convex in the (p, q) space and given assumption 6, the isoscore curves

are increasing step functions as shown here. By the assumption of quasilinearity for the cost

functions and scoring rules, both the map of the isoprofit curves and the map of the isoscore

curves are parallel shifts up/down the p axis. The best way to achieve any score S given the

step function isoscore curves is to select the quality and price q∗, p∗ that are on the highest

isoprofit curve. Note, this will necessarily be at one of the black dots depicted in figure 3.1.

Furthermore, the optimal quality q∗ will be the same for a given cost function no matter the

score S required to be matched by the price and quality. That is, the score to be matched

only determines the price paid to the agent but not the quality the agent will choose to

implement.

In equilibrium of second-scoreauctions, the agent will thus choose the price p(θ, ε) in the

second stage as:

p(θ, ε) = s(q(θ, ε))− S. (3.41)

80



Here S is the score required to be matched in the second-score auction and q(θ, ε) is the

quality from equation (3.40). In the discrete type-space the equilibrium of SAWR is described

by the following proposition:

Proposition 3.5.1. A symmetric equilibrium of an efficient second-score SAWR mecha-

nism6 with discrete types is one in which each winning firm of type θ, ε chooses:

q(θ, ε) = argmax
q

s(q)− c(q, θ, ε) (3.42)

and:

p(θ, ε) = s(q(θ, ε))− S (3.43)

where S is the score required to be implemented by the agent in the second stage. The

equilibrium price choice is, exactly as in Che (1993) and Asker and Cantillon (2008) thus

determined after the quality. There is a unique dominant strategy equilibrium of the first

stage where each agent of type θ bids:

Ŝ(θ) = Eε

[
s(q(θ, ε))− c(q(θ, ε), θ, ε)

]
. (3.44)

Proof. The second stage strategies are equilibrium strategies by the argument outlined above

the proposition. To see the first stage strategies first note that neither type has any incentive

to bid a different score. This is a straightforward extension of Vickrey (1961) and Che (1993).

For instance, a type θ has no incentive to bid higher as although he wins the auction more

often, those additional times where he wins, he makes a loss in expectation over ε.

3.5.3 The Implementation Problem

We can show that no scoring rule can implement the optimal mechanism by considering

conditions that such a scoring rule would have to meet and illustrating that satisfying these

properties would lead to higher expected transfers than the optimal mechanism.
6I.e. one where the contract is always allocated.

81



Proposition 3.5.2. When c(q, θ, y) < c(q, θ, n), no scoring rule S(p, q) satisfying assump-

tion 6 exists with which the SAWR implementation game detailed above implements the

optimal mechanism for all possible model environments.

Proof. This proof is for when the quality policies are monotonic in the cost of producing

quality and not just in θ and ε separately. We know that such cases exist, since in the

numerical example, the qualities are monotonic in the cost of producing q. To show that

this proposition holds, we will begin by assuming that it does not and that some scoring

rule S(p, q) = s(q) − p exists that implements the optimal mechanism. For the principal

to incentivise agents to produce qualities at the levels from the optimal mechanism in the

equations (3.34) to (3.37) she can use scoring rules whose isoscore curves are step functions.

Here, if the steps occur at the qualities of the optimal mechanism, the agents will always

procure one of these qualities in equilibrium. To ensure the agents procure the qualities

designed for them, the s(q) functions will have to satisfy incentive constraints. For an agent

of type θ, ε to produce quality q∗θε in equilibrium of SAWR it has to hold that:

s(q(θ, ε))− c(q, θ, ε) ≥ s(q̃)− c(q̃, θ, ε) (3.45)

Note that in the order {(θ, n), (θ, y), (θ, n), (θ, y)} the cost functions are monotonically in-

creasing. If the quality policies of the optimal mechanism are monotonically decreasing, since

the cost functions are convex, the principal can achieve full separation when the following

set of equations are satisfied:

s(q∗
θy

)− c(q∗
θy
, θ, y) = S, (3.46)

s(q∗
θn

)− c(q∗
θn
, θ, n) = s(q∗

θy
)− c(q∗

θy
, θ, n), (3.47)

s(q∗θy)− c(q∗θy, θ, y) = s(q∗
θn

)− c(q∗
θn
, θ, y), (3.48)

and s(q∗θn)− c(q∗θn, θ, n) = s(q∗θy)− c(q∗θy, θ, n). (3.49)

Here S ∈ IR+ is an arbitrary positive constant. These equations exactly identify scores s(·)

for the qualities q∗θn through to q∗
θy

from equations (3.34) to (3.37). Raising or lowering the
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score for all qualities by the same constant has no effect in equilibrium as the score of one

quality only matters relative to the score of other qualities and has no intrinsic benefit to

the principal or the agents and we can set S arbitrarily. For a given S, the principal the

principal wants to minimise the scores awarded to each of the qualities whilst maintaining

incentive compatibility. To see why note that the buyer’s expected utility is decreasing in

the price and raising any score above the one determined by the above equations (weakly)

increases the expected price paid to the agents. Equations (3.46) to (3.49) thus are necessary

and sufficient conditions to fix the optimal scoring rule S(p, q) under assumption 6.

To show that the SAWR implementation game does not implement the optimal mech-

anism, we consider the expected utility of the principal in the optimal mechanism as well

as the SAWR implementation game. Given the equilibrium bidding strategy of the agents

outlined above, the principal earns

Eθε [U(p, q)] = Eθε

[(
V (q∗θε)− c(q∗θε, θ, ε)

)
Prob(θ ∈ min{θ})

]
−N · Eθε[πSc(θ)] (3.50)

from each agent. Here

Eθε[π
Sc(θ)] = (1− γ)Eε[π

Sc(θ)] (3.51)

= (1− γ)Prob(θ-i = {θ}N−1)Eε
[
Ŝ(θ)− Ŝ(θ)

]
(3.52)

are the expected profits of an agent in SAWR before realising their type θ. Ŝ(θ) is the

equilibrium score bid by an agent of type θ as defined in equation (3.44). Using the definition

of Ŝ(θ) in equation (3.44) we get:

Eε

[
Ŝ(θ)− Ŝ(θ)

]
=(1− δ)

(
c(q∗θy, θ, y)− c(q∗θy, θ, n)

)
+
(
c(q∗

θn
, θ, n)− c(q∗

θn
, θ, y)

)
+ δ
(
c(q∗

θy
, θ, y)− c(q∗

θy
, θ, n)

)
. (3.53)

In the optimal mechanism, the principal earns

Eθε [U ] = Eθε

[(
V (q∗θε)− c(q∗θε, θ, ε)

)
Prob(θ ∈ min{θ})

]
−N(1− γ)Eε

[
v(θ), θ, ε)− v(θ), θ, ε)

]
x(θ). (3.54)
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To compare the expected payoffs to the principal of the two mechanisms first note that the

two expressions end with the identical social surplus but differ in how they allocate rent to

the agents. We can write the rent term from the second line of equation (3.54) in terms of

the cost functions of the agents. First, note that using equations (3.17), (3.19), (3.25), and

(3.27) we get:

Eε

[
v(θ), θ, ε)− v(θ), θ, ε)

]
=(1− δ)

(
c(q∗

θn
, θ, n)− c(q∗

θn
, θ, n)

)
+ δ
(
c(q∗

θn
, θ, n)− c(q∗

θn
, θ, y)

+ c(q∗
θy
, θ, y)− c(q∗

θy
, θ, n)

)
(3.55)

(∀θ). Thus the rent term of equation (3.54) becomes:

N(1− γ)

(
Eε

[
c(q∗

θn
, θ, n)− c(q∗

θn
, θ, ε)

]
+ δ
(
c(q∗

θy
, θ, y)− c(q∗

θy
, θ, n)

))
x(θ). (3.56)

In equilibrium of the optimal mechanism the probability x(θ) of winning the allocation if

you report type θ = θ is the probability of there being no θ = θ among the other agents’

reports multiplied by the probability of winning the tiebreaker (1/N):

x(θ) =
1

N
· Prob(θ-i = {θ}N−1). (3.57)

Thus to compare the expected utility for the principal from the optimal mechanism and

SAWR, we can take the difference between equation (3.50) and (3.54). If the following

inequality holds the rent paid to the agents is larger in SAWR than the optimal mechanism:

N(1− γ)Prob(θ-i = {θ}N−1)

(
(1− δ)

(
c(q∗θy, θ, y)− c(q∗θy, θ, n)

)
+
(
c(q∗

θn
, θ, n)

−c(q∗
θn
, θ, y)

)
+ δ
(
c(q∗

θy
, θ, y)− c(q∗

θy
, θ, n)

))
> N(1− γ)

1

N
Prob(θ-i = {θ}N−1)

·

(
Eε

[
c(q∗

θn
, θ, n)− c(q∗

θn
, θ, ε)

]
+ δ
(
c(q∗

θy
, θ, y)− c(q∗

θy
, θ, n)

))
(3.58)

It is straightforward to show the inequality holds. Furthermore, the SAWR mechanism is

worse than the optimal mechanism in two ways. First of all, since

Prob(θ-i = {θ}N−1) > 1

N
Prob(θ-i = {θ}N−1), (3.59)
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in SAWR, the agents are paid the full difference between the productive type and the unpro-

ductive type if they are the only productive type. In the optimal mechanism, this is reduced

by the probability of having to win a tiebreaker which the agent only does 1/N of the time in

the scenario where all other agents are of the high-cost type. Furthermore, we can compare

the right-hand side of the two informational rents on each side of the equality in equation

(3.58) to find:

(1− δ)
(
c(q∗θy, θ, y)− c(q∗θy, θ, n)

)
+
(
c(q∗

θn
, θ, n)− c(q∗

θn
, θ, y)

)
+ δ
(
c(q∗

θy
, θ, y)

−c(q∗
θy
, θ, n)

)
>
(
Eε

[
c(q∗

θn
, θ, n)− c(q∗

θn
, θ, ε)

]
+ δ
(
c(q∗

θy
, θ, y)− c(q∗

θy
, θ, n)

)
. (3.60)

Cancelling out terms and rewriting, this inequality reduces to:

c(q∗θy, θ, y)− c(q∗θy, θ, n) > c(q∗
θn
, θ, y)− c(q∗

θn
, θ, n). (3.61)

By the assumed monotonicity of q in the cost of producing quality, the convexity of the cost

function, and since c(q, θ, y) > c(q, θ, n) for all q > 0, this inequality holds.

Intuitively, in the renegotiation stage, the SAWR implementation game does not make

optimal use of the relevant information about the winning agent’s type θ, which he already

revealed in the first stage through their bidding behaviour. As such, the agent can extract

more informational rent than in the optimal mechanism.

The proof for proposition 3.5.2 shows that when trying to implement the optimal mech-

anism of section 3.4 through scoring auctions with renegotiation the agents are able to

extract excessive rent through two channels. First, as an artefact of the discrete type-space,

in the optimal mechanism, deviation to worse initial types is discouraged by the possibility

of tie-breakers arising in the allocation rule. By decreasing a deviating agent’s probability

of winning the contract when misreporting to a higher type, in the optimal mechanism we

can decrease the transfers to the agent to take this into account. Second-scoreSAWR does

not decrease the transfers to the agent to take into account that they have to face more

tiebreakers should they deviate to a worse type. As such, the agent can extract more rent
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in SAWR than in the optimal mechanism. This first shortcoming of SAWR relative to the

optimal mechanism can be made up by introducing a reserve score system which effectively

reallocates the excessive rent from not having to face tiebreakers to the principal. This will

is described in section 3.6.2.

Unlike the issue with not accounting for the agent suffering from tiebreakers in the optimal

mechanism, the second shortcoming of SAWR relative to the optimal mechanism is harder

to overcome. Intuitively, the quality policies of the optimal mechanism, when implemented

through SAWR, lead to excessive rent because the implicit incentive constraints of SAWR

are stronger than the constraints of the optimal direct mechanism. This problem is worse

than it seems. As we will show in the numerical section below, in many model environments,

SAWR with the OM qualities but without a reserve score system is considerably worse off

than in the optimal mechanism. Furthermore, it only marginally outperforms a naïve scoring

rule where S(p, q) = U(p, q).

3.5.4 Numerical Example

Using the above analysis, we are able to quantify the loss for the NHS due to implementing

an inefficient scoring auction with renegotiation rather than the optimal mechanism. The

expected utility from the optimal mechanism for the NHS is given by

E[U ] = 1.279,Total Rent = 0.030, Social Benefit− Cost = 1.309. (3.62)

For SAWR without a reserve score and with the qualities of the optimal mechanism we get:

E[U ] = 1.226,Total Rent = 0.083, Social Benefit− Cost = 1.309. (3.63)

Finally, for SAWR with a naïve scoring rule and no reserve score system we get:

E[U ] = 1.217,Total Rent = 0.098, Social Benefit− Cost = 1.315. (3.64)

In this particular example, therefore, the NHS loses 4.14% of it’s expected utility from using

the inefficient SAWR mechanism relative to the optimal mechanism. For the naïve scoring
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rule, in this example, this number is even higher at a 4.88% loss of efficiency. The former

constitutes the equivalent of lowering the probability of both agents being a low type from

1/3 to slightly under 1/5, over a 40% decrease. The final thing to note here is that the

increase in expected utility of the principal from using SAWR with the optimal mechanism

qualities versus a naïve SAWR is only 0.002 units. However, the former is computationally

significantly more demanding and comes with a loss of 0.05 units of social surplus. A factor

of 20 times the gain in expected utility.

We can also use these numbers to show what proportion of the loss is due to the inefficient

reduction of the agents’ rent through not accounting for tiebreakers and how much is due to

the q maximising the wrong maximand. Assuming that SAWR with the optimal mechanism

q allocated rent at the same probability as the optimal mechanism, the expected utilities

become:

E[U ] = 1.268,Total Rent = 0.042, Social Benefit− Cost = 1.309. (3.65)

SAWR only loses 0.89% efficiency vs the optimal mechanism in this case, implying that

roughly 79% of the loss in efficiency is due to SAWR not accounting for tiebreakers correctly

and 21% due to the wrong q.

Fortunately for SAWR, we can overcome its apparent main shortcoming, ignoring the

possibility of tiebreakers in the optimal mechanism, by introducing a reserve score system.

We do this in section 3.6.2. However, the problem of the qualities is not as easily overcome.

Furthermore, if the qualities of the OM were designed to optimally disturb the social surplus

given a different set of incentive constraints than those pertinent to SAWR, then the qual-

ities of the OM are not the optimal qualities for SAWR. As such, SAWR with the optimal

mechanism qualities is not the best possible SAWR. This raises another question. If we are

still interested in finding the best scoring auction under the presence of renegotiation, and

we argue that given its popularity in practice we should be since we can no longer use the

qualities of the optimal mechanism for the design of the scoring auction, what methodology

can we use for finding the optimal SAWR as the best among a class of suboptimal mech-
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anisms? In section 3.6, we propose one such methodology and use it to identify the best

SAWR.

3.6 Restricted Optimal Mechanism Design

Rather than optimising over scoring auctions directly, a relaxed programme can be solved to

derive the optimal scoring rule for the SAWR implementation game indirectly. In particular,

it is possible to get towards the optimal SAWR mechanism using a direct mechanism design

problem where an additional restriction is imposed to reduce the mechanism space. In figure

3.2 an illustration is provided for reference.

R

S

G

b
a

Figure 3.2 Illustration of Solution Methodology

Let the rectangle area G in the illustration be the set of social choice functions imple-

mentable in equilibrium by any general mechanism. By the revelation principle, any social

choice function within this set can be implemented in truthtelling equilibrium with a direct

mechanism of the form discussed. The buyer-optimal social choice function is marked by

a ∈ G. The solution to the direct mechanism optimisation programme in section 3.4 gives

the buyer optimal social choice function. The subset S ⊂ G gives the (non-empty7) set of

social choice functions that are implementable by SAWR implementation games with dif-

7To show that this is non-empty it is enough to convince oneself that SAWR with the ‘naïve’ scoring rule

S(p, q) = V (q)− p implements a socially optimal (but not buyer optimal) social choice function.
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ferent scoring rules. From proposition 3.5.2, a /∈ S. One approach to get towards b ∈ S,

the social choice function implemented by the optimal SAWR mechanism, is to solve for the

buyer-optimal scoring rule within SAWR directly. Such an optimisation problem is compli-

cated: the optimal scoring rule as well as the optimal quality and price policies as functions

of agents’ bids would have to be identified simultaneously. As such, we do not pursue this

approach in this paper but rather use an alternative approach suggested by figure 3.2 to get

to b by solving a constrained mechanism design problem.

The aim is to identify a constraint on the mechanism design problem that allows searching

for the optimal social choice function in the restricted subset R ⊂ G rather than all of G. If

within the restricted subset R, b is optimal, and if all of S is contained within R, it is possible

to optimise over the restricted set to get towards b. A restriction on the direct mechanism

design problem thus has to satisfy two key properties in order for this relaxed optimisation

programme to work. First, the imposed restriction needs to be wide enough to not rule out

any potential scoring rules of the SAWR game, i.e. the restriction needs to satisfy that (i)

Any SAWR equilibrium social choice function is implementable by a direct mechanism that

satisfies the imposed restriction (S ⊆ R). Second, the restriction also needs to ensure that

R is narrow enough that b is optimal within R, i.e. it has to hold that (ii) The social choice

function of the optimal direct mechanism with the restriction is implementable by SAWR. If

we can find a restriction that satisfies these conditions, the optimal scoring rule (and thus

the optimal SAWR mechanism) can be found as the scoring rule that implements the social

choice function of the optimal mechanism from this restricted set.

In summary, rather than finding the optimal SAWRmechanism by optimising over scoring

rules, the optimal SAWR is found by solving a direct mechanism programme to describe the

properties any optimal SAWR mechanism would have to satisfy. The optimal SAWR is

then identified by a scoring rule that implements these properties. This approach has the

advantage of decomposing the optimisation problem into different components. First, the

optimal qualities, transfers, and allocation decisions of the restricted optimal mechanism are
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found. Second, a scoring auction is found that implements these.

A pertinent feature of the SAWR implementation game is that the renegotiation is set

up in such a way that the principal does not make optimal use of the information revealed

by the agent in the first stage. In terms of menus of options, in the second stage of SAWR,

the agent’s menu still includes all quality options q that were available in the first stage. If

the principal wants to incentivise an agent to select a particular p, q bundle in the second

stage, she needs to make sure that this agent prefers p, q over any other bundle that achieve

at least the same score. The p, q have to be robust to deviations to other combinations. Not

just for agents of the same type and a different shock, but also for agents of different types.

In the optimal direct mechanism, however, the type θ is reported truthfully in the first stage

and thus taken as given in the second stage. As such, the winning agent’s second stage menu

of options is limited to only those θ, ε bundles that are possible given their first stage report,

i.e. θ, n and θ, y. It no longer includes the bundles of the other types θ̃ 6= θ. Given this

feature of SAWR, we can guess a restriction on the direct mechanism design problem that

may satisfy both (i) and (ii).

Guess Restriction 1. Restrict the mechanism space to direct mechanisms which satisfy a

stronger truthtelling constraint for the second stage:

θi, ε = argmax
θ̃i,ε̃

[
t2i (θ̃i, ε̃)− c(qi(θ̃i, ε̃), θi, ε)

]
(3.66)

(∀i, θi, ε). I.e. direct mechanisms in which truthtelling is satisfied about both θ and ε in the

second stage (not just about ε) and in which the second stage qualities and transfers may not

depend on first stage reports.

The guess restriction can be shown to satisfy both features (i) and (ii) described above.

First, for (i):

Lemma 3.6.1. Any SAWR equilibrium social choice function is implementable by a re-

stricted direct mechanism that enforces the guess restriction.
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The proof of lemma 3.6.1 involves adapting the proof of the revelation principle from

chapter 2. However, rather than showing that any equilibrium outcome of any mechanism

can be implemented by a direct mechanism, here we show that any equilibrium outcome

of one particular mechanism can be implemented with a restricted direct mechanism. See

appendix B.1 for a full derivation of this result.

To show that (ii) is satisfied by the guess restriction, we first derive the optimal restricted

direct mechanism and second show that its outcome function can be implemented by SAWR.

Below, the optimisation problem and its solution are presented. Theorem 3.6.1 describes the

result of the optimisation programme. We then show in section 3.6.3 that with the scoring

rule from section 3.5.3 SAWR implements the optimal restricted direct mechanism. This

concludes part (ii) of the analysis and verifies the guess restriction.

3.6.1 The Optimal Restricted Direct Mechanism

In a restricted direct mechanism that satisfies the guess restriction, the principal commits

to a mechanism consisting of transfers t, qualities q, and an allocation decision rule x as

functions of the agents’ reports of types θ and the winning agent’s report of θ and ε in the

second stage. Given the constraint from equation (3.66) and that the allocation decision is

made before the realisation of the shock, the second stage transfers t2 and the qualities q

may depend only on the winning agent’s second stage report: θ̂, ε̂. The allocation decision

rule x and the first stage transfers t1 may only depend on the agents’ type reports: θ̂.

The principal’s problem is thus to design the variables t1 = {t11(θ), · · · , t1N(θ)}, x(θ) =

{x1(θ), · · · , xN(θ)}, q(θ, ε) = {q1(θ1, ε), · · · , qN(θN , ε)}, and t2(θ, ε) = {t21(θ1, ε), · · · ,

t2N(θN , ε)} for all θ, ε to maximise her utility subject to the restrictions that the agents

wish to participate in the mechanism, truthfully reveal θ in the first stage, and truthfully

reveal {θ, ε} in the second stage. The principal thus solves:

max
t1,t2,x,q

N∑
i=1

Eθ,ε

[(
V (qi(θi)− t2i (θi)

)
xi(θ)− t1i (θ)

]
(3.67)
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subject to first stage participation:

Eθ-i,ε

[
t1i (θi,θ-i) +

(
t2i (θi, ε)− c(qi(θi, ε), θi, ε)

)
x(θi,θ-i)

]
≥ 0 (3.68)

(∀i, θi). As well as subject to second stage truthtelling from the guess restriction in equation

(3.66):

θi, ε = argmax
θ̂i,ε̂

{
t2i (θ̂i, ε̂)− c(qi(θ̂i, ε̂), θi, ε)

}
(3.69)

(∀i, θi, ε). Note that given this strong second stage truthtelling constraint, the value vi(θ̃i, θi, ε)

of an agent i with a first stage report of θ̃i, a type θi and a shock ε of reaching the second

stage:

vi(θ̃i, θi, ε) = max
θ̂i,ε̂

{
t2i (θ̂i, ε̂)− c(qi(θ̂i, ε̂), θi, ε)

}
(3.70)

reduces to:

vi(θ̃i, θi, ε) = t2i (θi, ε)− c(qi(θi, ε), θi, ε) (3.71)

(∀i, θi, θ̃i). As such, unlike in section 3.4 and equation (3.7), the value of reaching the second

stage is independent of the first stage report θ̃i. The final constraint of first stage truthtelling

thus becomes:

θi ∈ argmax
θ̃i

Eθ-i,ε

[(
t2i (θi, ε)− c(qi(θi, ε), θi, ε)

)
xi(θ̃i,θ-i) + t1i (θ̃i,θ-i)

]
(3.72)

(∀i, θi).

Since all agents are identical ex-ante and since we are in an i.i.d. environment, we can

restrict attention to symmetric mechanisms in which agents are treated identically to simplify

notation and drop the i subscript. Because of the assumed risk-neutrality, a change in second

stage transfers can be compensated by an appropriate change in first stage transfers without

affecting the agents’ first stage behaviour. We may thus fix any one second stage transfer

at an arbitrary constant and let the rest of the second stage transfers be determined by the

second stage incentive constraint. The transfer we will want to fix depends on whether the

quality policies are monotonic in the cost of producing quality. We cover both cases here.
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Monotonicity

Assumption 7. Monotonicity 2. The optimal quality policies qr, which form part of

the solution to the restricted mechanism design problem, are non-increasing in the cost of

producing quality. I.e. qr(θ, n) ≤ qr(θ, y) ≤ qr(θ, n) ≤ qr(θ, y).

This assumption is stronger than assumption 5. Any time it is satisfied, assumption 5

will also be. This assumption also excludes many reasonable model environments. It is used

here since it allows us to show an analytical solution to the optimisation problem. Given

monotonicity, we impose binding second stage participation for the unproductive type with

the shock, i.e. {θ = θ, ε = y}:

t2(θ, y) = c(q(θ, y), θ, y). (3.73)

By the convexity of the cost function, since the quality policies are monotonic in the cost

of producing quality, second stage truthtelling is ensured in the least costly way for the

principal when the following constraints are binding:

t2(θ, n) = t2(θ, y) + c(q(θ, n), θ, n)− c(q(θ, y), θ, n), (3.74)

t2(θ, y) = t2(θ, n) + c(q(θ, y), θ, y)− c(q(θ, n), θ, y), (3.75)

and t2(θ, n) = t2(θ, y) + c(q(θ, n), θ, n)− c(q(θ, y), θ, y). (3.76)

The second stage transfers are thus completely determined by the agents’ cost of producing

different qualities q by equations (3.73) to (3.76). Let W (θ) denote the value of reaching the

second stage for an agent of type θ. Given the previous analysis, we know that:

W (θ = θ) = (1− δ)
(
c(q(θ, y), θ, y)− c(q(θ, y), θ, n)

)
. (3.77)

The value of the second stage is strictly positive in expectation over the shock even for the

less productive type. Given binding first stage participation, agents of this type are willing

to pay to the buyer in the first stage up to equal the amount of informational rent they can

realise in the second stage (times the probability of getting there).
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To get a formulation for W (θ) we need to use the first stage incentive constraints to

get towards Eθ-i
[
t1(n,θ-i)

]
. To save on notation, we again let t1(θ) denote Eθ-i

[
t1(θ,θ-i)

]
and x(θ) denote Eθ-i

[
x(θ,θ-i)

]
. The expected first stage transfers for an unproductive type

agent t1(θ) can then be found using the second stage transfers and the first stage participation

constraint.

t1(θ) = −Eε
[
t2(θ, ε)− c(q(θ, ε), θ, ε)

]
x(θ) (3.78)

= −(1− δ)
(
c(q(θ, y), θ, y)− c(q(θ, y), θ, n)

)
x(θ) (3.79)

= −W (θ)x(θ). (3.80)

Using equations (3.73) to (3.76) we can get an expression for W (1) in terms of the cost

functions:

W (θ) =(1− δ)
(
c(q(θ, y), θ, y)− c(q(θ, y), θ, n)

)
+ c(q(θ, n), θ, n)− c(q(θ, n), θ, y)

+ c(q(θ, y), θ, y)− c(q(θ, y), θ, n). (3.81)

The expected value of an agent of type n to reach the second stage is thus the cumulative

informational rent he can extract from being able to be the other type and shock.

Interestingly, the first stage of the restricted optimal mechanism design problem resembles

the standard setup of a basic optimal auction problem with private and independent values.

We have N ex-ante identical agents with private information over their own type θ, which

determines their valuation of the goodW (θ) (i.e. the second stage). The principal’s problem

is to design transfer and allocation rules t1 and x in order to maximise their expected revenue.

However, crucially different from the simple private value auction, here for the agents the

value of reaching the second stage W is endogenously determined by the quality policies q

of the second stage. For the design of the optimal q, we thus have to evaluate their impact

on the first and second stage simultaneously.

By the convexity of the cost function, the cheapest way for the principal to satisfy the

first stage incentive constraints from equation (3.72) is to set it at binding for any type θ = θ
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agent pretending to be type y. The constraints from (3.72) thus reduce to:

W (θ)x(θ) + t1(θ) = W (θ)x(θ) + t1(θ). (3.82)

Substituting for t1(θ) from equation (3.80) and rearranging we get:

t1(θ) =
(
W (θ)−W (θ)

)
x(θ)−W (θ)x(θ). (3.83)

We are now ready to substitute the constraints into the optimisation programme and begin

solving for the optimal x,t, and q. Rewriting the maximand from equation (3.67) we get:

max
t1,t2,x,q

N · Eθ,ε

[(
V (q(θ, ε))− t2(θ, ε)

)
· x(θ)− t1(θ)

]
. (3.84)

Writing out the expectation over the representative agent’s type θ and substituting for first

stage transfers from equations (3.80) and (3.83) we get:

max
t2,x,q

N ·Eθ,θ-i,ε

[(
V (q(θ, ε))−t2(θ, ε)

)
x(θ)+W (θ)x(θ)−(1−γ)

(
W (θ)−W (θ)

)
x(θ)

]
. (3.85)

Using equations (3.73) to (3.76) to solve for Eε[t2(θ, ε)] we find:

Eε

[
t2(θ, ε)

]
= W (θ) + Eε

[
c(q(θ, ε), θ, ε)

]
(3.86)

(∀θ). Substituting into the above (3.85) simplifies to:

max
x,q

N · Eθ,θ-i,ε

[(
V (q(θ, ε))− c(q(θ, ε), θ, ε)

)
x(θ)− (1− γ)

(
W (θ)−W (θ)

)
x(θ)

]
. (3.87)

From equation (3.77) and (3.81) we get:

W (θ)−W (θ) =(1− δ)
(
c(q(θ, y), θ, y)− c(q(θ, y), θ, n)

)
+ δ
(
c(q(θ, y), θ, y)

− c(q(θ, y), θ, n)
)

+
(
c(q(θ, n), θ, n)− c(q(θ, n), θ, y)

)
. (3.88)

Taking the first order conditions of the restricted optimal mechanism design programme
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w.r.t. the optimal restricted qualities we get:

V ′(qrθn) =cq(q
r
θn, θ, n), (3.89)

V ′(qrθy) =cq(q
r
θy, θ, y) +

1− δ
δ

x(θ)

x(θ)

(
cq(q

r
θy, θ, y)− cq(qrθy, θ, n)

)
, (3.90)

V ′(qr
θn

) =cq(q
r
θn
, θ, n) +

1− γ
γ

1

1− δ

(
cq(q

r
θn
, θ, n)− cq(qrθn, θ, y)

)
, (3.91)

and V ′(qr
θy

) =cq(q
r
θy
, θ, y) +

1− γ
γ

(
cq(q

r
θy
, θ, y)− cq(qrθy, θ, n)

)
. (3.92)

Here qrθε is the optimal quality of the restricted mechanism design programme given assump-

tion 3.6.1.

These conditions for the optimal qualities of the restricted direct mechanism design prob-

lem are considerably different from the optimal quality conditions of the unrestricted pro-

gramme. For the lowest cost type without the shock, the optimal qualities are undistorted in

the restricted optimal mechanism. This is the same for the socially optimal qualities and the

qualities of the optimal unrestricted mechanism. However, unlike the optimal mechanism,

for the productive type with the cost shock the optimal qualities are now distorted if the

fraction x(θ)
x(θ)

is positive, i.e. if there is a positive probability that an agent of the high type y

is selected for the second stage. We have not yet said anything about the optimal allocation

rules x, and in order to do so, we need first to notice that the distortion to the qualities qrθy

is weakly positive. I.e., if there is a distortion, the qualities that solve equation (3.90) are

smaller than the socially optimal qualities. Given this:

Eε

[
V (qrθε)− c(q(qrθε), θ, ε)

]
> 0 (3.93)

is immediate under the assumed functional forms. It is therefore optimal for the principal

to set x(θ, n) = 0.5 and x(θ, y) = 1 − x(θ, n). I.e., in the optimal restricted procurement

mechanism it never pays for the principal to select no agent for the second stage if an agent

of type n is available.

Unlike the low type, the high-cost type’s optimal qualities are distorted with and without
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the shock. Given the conditions for the optimal re qualities above,

Eε

[
V (q(qrθε))− c(qrθε, θ, ε)

]
> Eε

[
V (q(qr

θε
))− c(qr

θε
, θ, ε)

]
(3.94)

always holds. Furthermore, W (θ)−W (θ) is strictly greater than zero. Therefore it is always

better for the principal to select an agent of type n for the second stage and we get x(θ, y) = 1

and x(θ, n) = 0. Finally, from the optimisation programme we can derive the inequality:

γEε

[
V (q(qr

θε
))− c(qr

θε
, θ, ε)

]
≥ (1− γ)

(
W (θ)−W (θ)

)
. (3.95)

If the inequality is satisfied, it is optimal for the principal to set x(θ, y) = 0.5. If it does

not hold, she should set x(θ, y) = 0. Intuitively, the difference between W (θ) and W (θ)

represents the informational rent the principal has to give up to agents of type n. If this rent

exceeds the benefit of choosing an agent of type y when no agents of type n are available,

the principal prefers in expectation to set x(θ, y) to zero and thus limit the type rent of type

n agents by making it worse for them to deviate their first stage report.

Proposition 3.6.1. Given assumption 6, necessary and sufficient conditions for the optimal

quality policies qrθε that form of the solution to the restricted mechanism design problem are

given by the q that solve equations (3.89) to (3.92).

Proof. The proof follows from the above analysis and the assumptions on the cost and utility

functions.

3.6.2 A Reserve Score System for SAWR

The principal can use a reserve score system to improve her expected utility from the SAWR

mechanism for any scoring rule. The SAWR implementation with a reserve score system is

different from the one outlined in section 3.5.1 in the following points. In the timeline of

events point 2 becomes:

2. The principal announces a second-scoreauction with scoring rule S(p, q) and a reserve

score system consisting of two reserve scores S1 and S2 with S1 ≤ S
2.
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Furthermore, point 6 becomes:

6. If the winning agent’s bid exceeds the first reserve score but the second-highest bid does

not, i.e. if S1 > S
1 and S2 ≤ S̃1 are satisfied, the winning agent may choose a price

p and quality q such that S(p, q) matches the second reserve score, i.e. S(p, q) ≥ S
2.

If this condition is not satisfied, the winning agent may choose p and q to match the

score bid by the second-highest bidder, i.e. S(p, q) ≥ S2.

Finally points 1, 2-5, and 7 are the same as SAWR without a reserve score system in section

3.5.1. This peculiar reserve score system allows the principal to adjust SAWR such that even

in a discrete type setting it sufficiently reduces the agents’ rent to take into account that a

deviation is made worse by the possibility of tie breakers. To understand how it works, we

describe an equilibrium of SAWR with the reserve score system below.

Proposition 3.6.2. A symmetric equilibrium of an efficient second-score SAWR mecha-

nism8 with discrete types and a reserve score system is one in which each winning firm of

type θ, ε chooses:

q(θ, ε) = argmax
q

s(q)− c(q, θ, ε) (3.96)

and:

p(θ, ε) = s(q(θ, ε))− S (3.97)

where S is the score required to be implemented by the agent in the second stage as described

above and given the reserve scores below. There is an equilibrium of the first stage where

each agent of type θ bids:

Ŝ(θ) = Eε

[
s(q(θ, ε))− c(q(θ, ε), θ, ε)

]
(3.98)

and the principal chooses

S
1

= Ŝ(θ) = ES

[
s(q(θ, ε))− c(q(θ, ε), θ, ε)

]
(3.99)

8I.e. one where the contract is always allocated to an agent.
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and

S
2

= Ŝ(θ) +
N − 1

N

(
Ŝ(θ)− Ŝ(θ)

)
. (3.100)

Proof. The second stage strategies are equilibrium strategies by the argument outlined above

the proposition. To see the first stage strategies first note that neither type has any incentive

to bid a different score. This is mostly a straightforward extension of Vickrey (1961) and

Che (1993). For instance, a productive type has no incentive to bid higher as although he

wins the auction 100% of the time, if there is another productive agent he does not make

any profits and if there is no other productive agent he makes the same profits and would

have won either way. He also has no incentive to bid lower as he will still be asked to match

the same score S2 if no other agent is the productive type. However, note that bidding as

described here is no longer a dominant strategy for the agents. Finally, to see that type θ = θ

does not want to deviate and bid Ŝ(θ) note that this would lead to winning the contract

1
N
γN−1 of the time and when winning realising profits of Ŝ(θ) − Ŝ(θ). If the agent bids

Ŝ(θ) he wins γN−1 of the time and when winning realises profits
(
1− N−1

N

)
(Ŝ(θ) − Ŝ(θ)).

Thus the expected profits are exactly the same, and this is not a profitable deviation for the

risk-neutral agent.

3.6.3 Equilibrium Implementation by SAWR

The final step to showing that we have identified the optimal scoring auction with renego-

tiation mechanism is to show that SAWR can implement the optimal restricted mechanism

in equilibrium. To this end, consider a scoring auction as in section 3.6.2 where the scoring

rule satisfies assumption 6 and equations (3.46) to (3.49) at the qualities given by equations

(3.89) to (3.92). We know by the analysis above that the expected utility for the principal of

this scoring auction when the inequality in equation (3.95) is satisfied will be as in equation
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(3.50), except that Eθε[πSc(θ)] will now be given by:

Eθε[π
Sc(θ)] =(1− γ)γN−1

(
1− N − 1

N

)(
(1− δ)

(
c(qrθy), θ, y)− c(qrθy, θ, n)

)
+ δ
(
c(qr

θy
, θ, y)− c(qr

θy
, θ, n)

)
+ c(qr

θn
, θ, n)− c(qr

θn
, θ, y)

)
. (3.101)

In the optimal restricted mechanism, the principal earns

N · Eθ,θ-i,ε

[(
V (qrθε)− c(qrθε, θ, ε)

)
x(θ)− (1− γ)

(
W (θ)−W (θ)

)
x(θ)

]
. (3.102)

where by equation (3.88), W (θ)−W (θ) are:

W (θ)−W (θ) =(1− δ)
(
c(qrθy, θ, y)− c(qrθy, θ, n)

)
+ δ
(
c(qr

θy
, θ, y)

− c(qr
θy
, θ, n)

)
+
(
c(qr

θn
, θ, n)− c(qr

θn
, θ, y)

)
. (3.103)

We can thus rewrite equation (3.101) as:

Eθε[π
Sc(θ)] =(1− γ)γN−1

(
1− N − 1

N

)(
W (θ)−W (θ)

)
. (3.104)

The difference in expected utility between SAWR and the optimal restricted mechanism is

thus zero if the condition

N(1− γ)γN−1
(

1− N − 1

N

)
= N(1− γ)x(θ) (3.105)

is satisfied. For any allocative efficient restricted optimal mechanism (where condition (3.95)

holds), the optimal allocation rule x(θ) is given by:

x(θ) = Prob(θ-i = θ
N-1

) · 1

N
(3.106)

= γN -1 1

N
. (3.107)

Equation (3.105) thus holds at equality. Since the two mechanisms lead to the same expected

utility, and since they implement the same qualities and allocation rules, SAWR implements

the optimal restricted mechanism.
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Proposition 3.6.3. A SAWR mechanism with a reserve score system as in proposition

3.6.2, the qualities of the restricted optimal mechanism in section 3.6, and a scoring rule that

implements these qualities with the lowest possible total transfers as described by equations

(3.73) to (3.76) is the best possible SAWR mechanism subject to assumption 3.6.1.

Proof. The proof is given by the above analysis. Lemma 3.6.1 shows that the guess restriction

does not exclude any possible SAWR mechanisms. Proposition 3.6.1 describes the optimal

mechanism given the guess restrictio, and the above analysis shows that SAWR with a reserve

score system as in proposition 3.6.2 implements the optimal restricted mechanism.

3.6.4 Numerical Example

In the previous sections, we derived the optimal scoring auction with renegotiation. To

determine how much is lost by going from the optimal mechanism to this optimal SAWR

mechanism, we can compare the expected payoffs to the principal between the two mecha-

nisms. Recall that the payoffs for the NHS from the different mechanisms are given in section

3.5.1. We summarise these as well as the payoffs of using the optimal SAWR mechanism in

table 3.1.

As is the case with the naïve SAWR and the one with the qualities of the optimal mecha-

nism previously, unsurprisingly the optimal SAWR leads to a loss in expected utility for the

buyer relative to the optimal mechanism. We can also see that the optimal SAWR mecha-

nism is only able to recoup one third (half) of the loss in EU of the SAWR mechanism with

the OM qualities (naïve SAWR). The optimal SAWR mechanism only allocates 76% of the

rent of the naïve SAWR and 88% of the rent of SAWR with OM qualities. This is equivalent

to a 24% and 12% decrease in profitability for the agents. Figure 3.3 depicts graphically

how the social surplus, the expected utility of the buyer, and the total rent extracted by

the agents varies across the mechanisms. From left to right, the optimal mechanism (OM)

has the highest expected buyer utility and the lowest rent paid to the agents. With a naïve
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Mechanism
Expected

Utility

Total

Rent

Social

Surplus
% loss

Optimal Mechanism 1.279 0.030 1.309 0 %

SAWR with OM q 1.226 0.083 1.309 4.15 %

- with reserve score 1.268 0.042 1.309 0.89 %

Naïve SAWR 1.217 0.098 1.315 4.88 %

- with reserve score 1.266 0.049 1.315 1.05 %

Optimal SAWR 1.234 0.074 1.308 3.49 %

- with reserve score 1.271 0.037 1.308 0.59 %

Table 3.1 Expected utilities

scoring auction and no reserve score system we have the highest social surplus, the lowest

buyer utility, and consequently the highest total rent. The scoring auction that comes clos-

est to implementing the optimal mechanism is the scoring auction with qualities from the

restricted optimal mechanism and a reserve score system. This is depicted at the very right.

3.7 Conclusion

In this chapter, we derived the optimal mechanism for a dynamic procurement problem in

which there is uncertainty about the future cost of the project. This is a kind of environment

that we see commonly in the practice of procurement, as we saw in chapter 1. We showed

that one of the most prominent mechanisms used to account for the multidimensionality of

procurement problems is not optimal from the buyer’s perspective if renegotiation is used to

respond to the cost-uncertainty. Following this, we introduced a methodology that allowed

us to describe the optimal scoring auction with renegotiation as the best of a sub-optimal
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social surplus

expected utility

total rent

OM Naïve OM q ROM q Naïve
reserve

OM q
reserve

ROM q
reserve

Figure 3.3 Social Surplus, Expected Utilities, and Agent Rent in the different
mechanisms (not to scale)

class of mechanisms and the scoring rule associated with it.

In the numerical example of the NHS, the relative percentage gains in utility for the NHS

from implementing the optimal SAWR over a naïve or sub-optimal one are small. Largely,

this is because the rent extracted by the agents is low relative to the utility gain from the

procurer even with a simple auction mechanism. Since the changes are considerably larger

from the perspective of the agents’ profitability, and since these numbers were arbitrarily

chosen with no consideration to realism, this cannot be interpreted as strong evidence that

the gains are too small for an attempt to implement the optimum to be not worth it. However,

there are several important points we can take away.

First, the loss from not implementing a reserve price system was consistently larger than

the loss from using the wrong scoring rule. This, however, will depend on the number of

agents taking part in the auction and will not necessarily hold for auctions with more bidders.

Second, the private gain for the buyer from the optimal mechanism or the optimal scoring

auction, relative to the loss in social surplus is very small. This is particularly the case

when the qualities are not calculated correctly, for example, in the scoring auction with the

qualities from the optimal mechanism. In order to appropriate qualities and scoring rules,
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we needed to impose strong assumptions on functional forms. Additionally, we are assuming

that the buyer knows these forms as well as the distributions of types and shocks. If we

consider these factors, the “naïve” scoring auction with renegotiation becomes a robust and

well-performing option. It does not require the buyer to know anything other than her own

preferences, it achieves the highest social surplus possible, and it considerably simplifies the

auction as well as the renegotiation procedure.
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Appendix

B.1 Proof of Lemma 3.6.1

The bundle p∗i , q∗i chosen by any winning agent i in equilibrium of the second stage of SAWR

are the p, q that maximise the agent’s utility given the scoring rule S(p, q), subject to the

restriction that S(p∗i , q
∗
i ) ≥ S where S is some score to be satisfied by the winning agent. To

this end, the agent may choose any p, q as long as they achieve the desired score. In other

words:

p∗i , q
∗
i ∈ argmax

p,q
{p− c(q, θ, ε)} (B.1)

(∀i, θ, ε) s.t. S(p, q) ≥ S. The agent’s utility optimising strategy is to choose the pair of p

and q that maximise the difference between the price and the cost of producing the quality.

With more general notation, the second stage strategy φ2
i of agent i thus depends on the

agent’s cost type θi, the shock ε, as well as his first stage strategy φ1
i , which includes the

score he bids in the first stage. We can thus equivalently write equation (B.1) as:

φ2∗
i (θi, ε|φ1

i (θi)) ∈ argmax
φ̃2i

{
πi

(
g
(
φ1
i (θi), φ̃

2
i ,φ

1∗
-i (θ-i)

)
, θi, ε

)}
(B.2)

(∀i, θ, ε, φ1
i (θi),φ

1∗
-i (θ-i)). The agent’s equilibrium second stage strategy in SAWR, denoted

φ2∗
i (θi, ε|φ1

i (θi)), is thus the strategy that maximises his profits πi as a function of the outcome

g and his type θi, ε. The outcome function g here just specifies the price and quality for

the agent given his second stage strategy, first stage strategy, as well as the other agent’s
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equilibrium strategy. Note that in SAWR, by winning the auction and being asked to

implement a certain score, the agent effectively learns the other agent’s type by the second

stage (given he is following the equilibrium strategy).

In the first stage of SAWR, an agent bids p and q such as to achieve the score S∗

that maximises his expected profits. Through the probability of winning and the second

stage renegotiation mechanism, this choice is influenced by his type θi, his expectation over

the shock ε, and his expectation over the other agents’ types θ-i and equilibrium bidding

behaviour φ∗
-i(θ-i). We can summarise this strategy in the above notation as:

φ1∗
i (θi) ∈ argmax

φ̃1
Eε,θ-i

[
πi

(
g
(
φ̃1, φ2∗

i (θi, ε|φ̃1),φ1∗
-i (θ-i)

)
, θi, ε

)]
(B.3)

(∀i, θi). Here φ2∗
i is as defined above. So agents in the first stage choose the score they

bid optimally to maximise their expected utility, knowing that in the second stage they will

behave optimally whatever their first stage bid.

Let f(·) be the equilibrium outcome function implemented by a SAWR mechanism in

perfect Bayesian Nash equilibrium. As shown in chapter 2, by the revelation principle, this

function can be implemented by a direct mechanism ΓDM of the form used in section 3.4

where agents directly reveal their type θ first and the winning agent reveals the shock ε.

However, to show lemma 3.6.1 holds, we need to show that this social choice function can

also be implemented with a direct mechanism subject to the added truthtelling constraint

from equation (3.66).

To this end, assume an agent i of private information type θi and shock ε reaches the

second stage with an arbitrary first stage strategy φ̃1
i . The principal may ask the agent

to report a cost parameter and a shock bundle θ̂i, ε, figure out φ2∗
i (θ̂i, ε|φ̃1

i ) and assign the

agent g(φ̃1
i , φ

2∗
i (θ̂i, ε|φ̃1

i ),φ-i
∗). Since the deviation φ2∗

i (θ̃i, ε|φ̃1), θ̃i, ε 6= θi, ε was available as

a deviation φ̃2∗
i (θi, ε|φ̃1) in equation (B.2)1, the agent will reveal θi, ε truthfully in equilib-

1In any second stage of SAWR, an agent may behave as would be optimal for an agent of any different

θi, ε given the first stage score φ̃1.
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rium of this new second stage. As in appendix A.1 of chapter 2, we need to account for a

possible difference in the expectation over θ-i between the direct mechanism and the SAWR

mechanism since the winning agent may learn about the other agents’ types by winning. To

do this, we can assume in the same way as in chapter 2 that in the direct mechanism the

principal reveals to the winning agent whatever she would have learnt in SAWR, i.e. she

reveals to the winning agent the second-highest agent’s type. In the more general language

introduced above:

θi, ε ∈ argmax
θ̃i,ε

{
πi

(
g
(
φ̃1
i , φ

2∗
i (θ̃i, ε|φ̃1

i ),φ
∗
-i(θ-i)

)
, θi, ε

)}
(B.4)

(∀i, θi, ε, φ̃1). From equation (B.3), φ1∗
i (θi) will still be a first stage equilibrium strategy given

the new second stage if the first stage remains unchanged. The principal may then replace

the first stage with an alternative in which the agents are asked to reveal a type θ̂i and are

allocated a strategy φ1∗
i (θ̂i) according to their type reports. Since any deviation φ1∗

i (θ̃i) was

available as part of φ̃1
i (θi) in equation (B.3), truthtelling is an equilibrium strategy for any

agent in the new mechanism. In other words:

θi ∈ argmax
T̃i

Eθ-i,ε

[
πi

(
g
(
φ1
i (θ̃i), φ

2∗
i (θi, ε|φ1

i (θ̃i)),φ
∗
-i(θ-i)

)
, θi, ε

)]
(B.5)

(∀i, θi). This holds as long as the buyer commits to not using the revealed θi to infer the

agent’s type for the second stage.2 Conditions (B.4) and (B.5) are precisely the conditions

for the social choice function f(·) of the SAWR mechanism to be truthfully implementable in

Bayesian Nash equilibrium of a direct mechanism subject to the additional constraint given

by equation (3.66), which concludes the proof.

2Of course this is not optimal for the buyer. This is not surprising since SAWR is not an optimal

mechanism, as it does not make optimal use of the revealed private information of the agents.
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