
The Flux and Dissipation of Energy in the LET

Theory of Turbulence

T
H

E

U
N I V E

R
S

I
T

Y

O
F

E
D

I N B
U

R

G
H

Matthew Salewski

A thesis submitted in fulfilment of the requirements
for the degree of Doctor of Philosophy

to the
University of Edinburgh

2010





Abstract

The first part of this thesis examines and compares the separate closure formalisms

of Wyld and Martin, Siggia, and Rose (MSR). The simplicity of Wyld’s perturbation

scheme is offset by an incorrect renormalisation, this contrasts with the formally exact

analysis of MSR. The work here shows that a slight change in Wyld’s renormalisation

keeps the main results intact and, in doing so, demonstrates that this formalism is

equivalent to MSR.

The remainder of the thesis is concerned with turbulent dissipation. A numerical

solution of the Local Energy Transfer theory, or LET, is reworked and extended

to compute decaying and forced turbulence at large Reynolds numbers. Using this

numerical simulation, the phenomenon of turbulent dissipation is investigated.

In order to use decaying turbulence to study the turbulent dissipation rate as a

function of Reynolds number, it is necessary to choose an appropriate time with which

a measurement can be taken. Using phenomenological arguments of the evolution of a

turbulent fluid, criteria for establishing such a time are developed.

An important study in turbulence is the dissipation rate in the limit of vanishing

viscosity, also known as the dissipation anomaly. This thesis derives an equation for the

dissipation rate from the spectral energy balance equation. Using the LET computation

for both decaying and forced turbulence, results are obtained that can be used along

with the equation to study the mechanisms behind the dissipation anomaly. It is found

that there is a difference in the behaviour of the normalised dissipation rate between

decaying and forced turbulence and, for both cases, it is largely controlled by the energy

flux.
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Chapter 1

Introduction to Turbulence

1.1 Introduction

Turbulence is claimed to be the last unsolved problem of classical physics [1–3]. This

statement is appropriately justified by numerous attempts made over the past century

to understand how a simple system such as a near-continuous, incompressible fluid

can exhibit such complex behaviours. In addition, the equations used to describe fluid

motion are equally complex. The Navier-Stokes equations (NSE) have existed for well

over one hundred years, but there has been little in the way of general solutions to

these highly nonlinear equations. Questions arise over whether to solve these equations

to help understand turbulence, or to solve turbulence to help understand the Navier-

Stokes equations.

The extent of turbulence is wide and has applications ranging from human

physiology [4–6], to weather and climate modelling [7, 7–9], to aero/hydrodynamic

engineering [10–13]. Turbulent phenomena are also found beyond the atmosphere of

Earth as the surface of the sun expels turbulent plumes; understanding how these

dissipate may aid in predicting how they will affect the earth [14, 15].

The persistence of the Great Red Spot in Jupiter’s southern hemisphere, and indeed

its entire surface, also illustrates the complex motion of turbulent flows [16]. Beyond

the solar system, the stars making up the galaxy swirl in a vortex familiar to scientists

studying turbulence. Even cosmological models seeking to understand the dynamics of

the early universe have been known to employ turbulence [17, 18], demonstrating its

far-reaching extent.

In this introductory chapter, concepts and ideas relevant to the scope of this thesis

are presented. Most are well documented and generally accepted in the turbulence

community. Further detail can be found in texts that focus on the Navier-Stokes

equations [19, 20], fluid motion [21–23], and turbulence [24–28]. At the end of this
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Chapter 1. Introduction to Turbulence

chapter, there is an outline of the remaining chapters of the thesis.

1.2 The Dynamical Equations of Fluid Turbulence

The study of fluid motion has a long history and there is a wealth of scientific effort that

attests to this [29]. From that endeavour comes such concepts as continuum systems,

vector fields, convection, and viscosity which are used to define and describe a fluid.

Using these concepts in a first-principles derivation of a fluid and its dynamics [21, 30] is

too involved for this present work. Instead, the use of the Navier-Stokes and continuity

equations presented here imply these foundations.

1.2.1 The Navier-Stokes Equations

In this thesis, a fluid is described by a velocity vector field that is space- and time-

dependent, u(x, t). The Navier-Stokes and continuity equations,

∂

∂t
uα(x, t) +

(
u(x, t) · ∇

)
uα(x, t) = −

1

ρ

[
∇p(x, t)

]
α
− ν∇2uα(x, t) + fα(x, t)

(1.1)

and

∇ ·
(
ρ(x, t)u(x, t)) = 0 (1.2)

explain the conservation of momentum and mass of a (flowing) fluid. The first equation

connects the rate of change of the fluid at a point in space and time to its being

convected by the fluid surrounding it, the pressure forces acting upon it, the viscous

strains and stresses applied to it, and other external forces such as gravity or the Coriolis

force. The continuity equation demands that the fluid contained within an arbitrary

volume depend on the flow into and out-of the volume’s boundary. In the case of the

present work where the fluid is incompressible, the continuity equation further reduces

to
∂

∂xα
uα(x, t) = 0, (1.3)

where the mass density is then implied to be a constant. The Einstein summation

convention is introduced here and used throughout the thesis.

Of great interest to the study of turbulence is the nonlinear term, u · ∇u. This

term contains much of the complexity that underlies turbulent motion. Attempts to

determine whether solutions mathematically exist for the Navier-Stokes equation have

been undermined by this complicated term [19, 20, 31]. Among more pure mathematical

open problems, the NSE holds its status as one the Millennium Prizes [32] to be solved.

2



1.2. The Dynamical Equations of Fluid Turbulence

1.2.2 The Reynolds Number

Of particular importance to turbulence is the comparison of the non-linear and viscous

terms. Turbulence is found to occur when the strength of the inertial forces are large

compared to those of viscous dissipation, and the Reynolds number provides a measure

of this. It is a dimensionless parameter that weighs the inertial forces against the

viscous. It can be derived from the NSE by considering dimensionless variables,

x∗
α ≡

1

l
xα, (1.4)

u∗
α(x, T ) ≡

1

U
uα(x, t), (1.5)

scaled by reference lengthscale, l, and velocity U (a time scale, T , can be constructed

from these T = l/U). Using these to scale the pressure, density, and force terms, and

then substituting all into the NSE

U2

l

∂

∂T
u∗

α +
U2

l

(
u∗ · ∇l

)
u∗

α = −
ρ∗U2

ρ∗l

[
∇lp

∗
]
α
−

νU

l2
∇2

l u
∗
α +

U2

l
f∗

α,

(1.6)

which simplifies to

∂

∂T
u∗

α +
(
u∗ · ∇l

)
u∗

α = −
[
∇lp

∗
]
α
−

(
ν

Ul

)
∇2

l u
∗
α + f∗

α.

(1.7)

Considering the ratio of dimensionless inertial and viscous terms gives

(
u∗ · ∇l

)
u∗

α

∇2
l u

∗
α

=
Ul

ν
, (1.8)

which is the Reynolds number, R. When the Reynolds number is large, which can

typically be made to occur by increasing the (mean) velocity or decreasing the viscosity,

the inertial interactions are much stronger than the dissipative, and turbulent motion

ensues.

A final word about the lengthscales commonly used for the Reynolds number. For

the turbulence considered in this reseach, there are two lengthscales that are used in

for the Reynolds numbers, the integral lengthscale, L, and the Taylor lengthscale λ.

The integral lengthscale gives the scale at which energy is injected into a flow, for

example the diameter of a pipe or the size of a grid. The Taylor lengthscale, or Taylor

microscale, is an estimate of the largest eddy to be affected by viscosity. Reynolds

3



Chapter 1. Introduction to Turbulence

numbers defined by these quantities will be denoted with relevant subscripts:

RL ≡
UL

ν
, (1.9)

and

Rλ ≡
Uλ

ν
. (1.10)

These will be referred to here as the Integral-lengthscale Reynolds and Taylor-Reynolds

numbers, respectively.

1.2.3 Statistical Methods and Turbulence

The intractability of the NSE or the inherent complexity of turbulent fluid motion

does not preclude advances in understanding either. As a tool for furthering

understanding, statistical methods are used to decipher fluid motion. One could argue

that theoretical description, like experimental description, must also employ statistics

to make connections between prediction and realisation.

However, the nonlinearity contained in the NSE leads to additional problems. To

illustrate this, one can consider the time evolution of the mean velocity field, given here

in schematic form (
∂t + ν∇2

)〈
U

〉
= −∇ ·

(〈
UU

〉)
−∇〈P 〉 (1.11)

The correlation of two velocity fields, where 〈· · ·〉 is used to denote averages, gives

the connection to the average kinetic energy contained in a turbulent fluid in a domain

V ∫

V

dx tr
{〈

u(x, t) ⊗ u(x, t)
〉}

∝ u(t)2 ∝ E(t). (1.12)

The notation tr{· · · } denotes the trace over vector indices. This shows that knowledge

of the correlation of three velocity fields is needed,

(
∂t + ν∇2

)〈
UU

〉
= −∇ ·

(〈
UUU

〉)
−∇〈PU〉. (1.13)

This is an example of the so-called closure problem where statistical quantities of a

given order are dependent on quantities of higher order,

(
∂t + ν∇2

)〈
Un

〉
= −∇ ·

(〈
Un+1

〉)
−∇

〈
P (Un−1)

〉
. (1.14)

Unless additional equations are introduced that can make approximate connections

between low- and high-order correlations, this open set of equations offers little in the

way of a solution.
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1.2.4 Homogeneous Isotropic Turbulence

A quote from Sir S. F. Edwards referring to the use of homogeneous isotropic turbulence

[33] reads,

The problem of understanding the statistical dynamics of turbulence is

a difficult one for many reasons. It is reasonable to study the problem

under the simplest non-trivial conditions and enquire whether if, under

any physically possible conditions, solutions describing the statistical

distribution of fluid velocities of a turbulent system can be obtained, even if

by ‘physically possible’ one may mean situations which, though conceivable,

are not obtainable in a laboratory.

Idealisations are ubiquitous in science; the study of turbulence is no different.

Homogeneous Isotropic Turbulence (HIT), gives a turbulent velocity field in an infinite,

or periodic, domain free of boundary conditions. Such a system allows major

simplifications to the NSE with reasonable returns.

The use of homogeneity and isotropy bring some constraints to the NSE that allow

for some simplifications to be made on statistical quantities of interest.

The 2-point, 2-time correlation tensor,

Cαβ(x,x′; t, t′) ≡
〈
uα(x, t)uβ(x′, t′)

〉

=
〈
uα(x, t)uβ(x + r, t′)

〉
(1.15)

for a (statistically) homogeneous turbulent environment becomes a function only of the

separation vector, r as the velocity-components are invariant to their position in space.

Adding to it the constraint of isotropy gives the correlation tensor invariance under

rotation and reflection operations. The combination of these allows a decoupling of

the tensors from the correlation, leaving a scalar function of the separation distance

multiplied by a general isotropic tensor Pαβ(r),

〈
uα(x, t)uβ(x′, t′)

〉
= C(r; t, t′)

(
δαβ −

rαrβ

r2

)

= C(r; t, t′)Pαβ(r). (1.16)

This, and its wave-vector analogue, is found in many calculations considering isotropic

turbulence.

Time Dependence in Turbulence

Levying a further constraint of stationarity, taking the NSE and statistical quantities

to be independent of time, additionally simplifies the equations. However, the viscous
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Chapter 1. Introduction to Turbulence

forces remove energy from the fluid and this drain needs to be offset by the introduction

of an external mechanism to drive the system. External sources force the system to

behave in a manner that reflects the external input rather than the intrinsic properties

of the turbulence. Choosing instead the time-dependent case, usually in the form of

freely-decaying or decaying turbulence allows the non-linear nature of the fluid system

to be more observable [3, 24, 34]. It is common practise to distinguish between the

cases of time-dependent and time-independent as freely-decaying and forced turbulence

respectively.

1.2.5 The Spectral Dynamics of Turbulence

The use of spectral methods is of great importance in describing turbulence and proves

its worth time and again in a vast majority of computational models wishing to solve

the NSE for a turbulent (and otherwise) fluids [35, 36]. Spectrally transformed systems

can have properties that help in finding solutions to some differential equations [37, 38].

They also provide a different perspective with how the energy is organised, for example

in various length-scales, and how it changes within a system.

Spectral Navier-Stokes Equations

Using the following spectral conventions for the velocity field, the pressure, and the

forcing field,

uα(x, t) =

∫
dkuα(k, t)eik·x, uα(k, t) =

1

(2π)3

∫
dxuα(x, t)e−ik·x (1.17)

p(x, t) =

∫
dk p(k, t)eik·x, p(k, t) =

1

(2π)3

∫
dx p(x, t)e−ik·x (1.18)

fα(x, t) =

∫
dk fα(k, t)eik·x, fα(k, t) =

1

(2π)3

∫
dx fα(x, t)e−ik·x (1.19)

the Fourier-space or spectral Navier-Stokes equations become

(
∂t + νk2

)
uα(k, t) = Mαβγ(k)

∫∫

j+l=k

dj dluβ(j, t)uγ(l, t) + fα(k, t) (1.20)

kαuα(k, t) = 0. (1.21)

The notation j + l = k under the integral signs indicates that the integration variables

must obey this constraint due to the convolution. The pressure term has been removed

using the analogue of the continuity equation, (1.21) (see [35]). The tensor Mαβγ(k) is
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1.2. The Dynamical Equations of Fluid Turbulence

the momentum transfer operator and is defined by

Mαβγ(k) ≡
1

2i

(
kβδαγ −

kαkβkγ

k2
+ kγδαβ −

kαkβkγ

k2

)
(1.22)

≡
1

2i

(
kβPαγ(k) + kγPαβ(k)

)
. (1.23)

The tensors that show up in the last line are those referred to earlier in (1.16).

The Spectral Distribution of Energy

The spectral NSE can be used along with an averaging procedure to derive a dynamical

equation for the spectral energy density of a turbulent fluid,

∂tE(k, t) = T (k, t) + W (k, t) − D(k, t). (1.24)

Note that this is a 1-D projection in wavenumber-space. This equation is commonly

referred to as the ‘Spectral Energy-balance Equation’.

Similar to the NSE itself, this equation describes how the energy contained in a

particular mode k changes via the input work done on the fluid, W (k, t), adding energy

into k; the transfer, T (k, t), of energy to k from all other modes and vice versa; and

the removal of energy via dissipation, D(k, t). It is instructive to consider a schematic

representation of these quantities in terms of their 1-D spectral projection as given in

fig. 1.1 which shows the general forms of these functions. The total energy is shown

with its maximum in the lower wavenumber region; this is due to the dissipation of

energy which by virtue of its definition,

D(k, t) ≡ 2νk2E(k, t), (1.25)

has a greater influence in the higher wavenumbers, essentially damping out all but the

lowest and most energetic modes.. In order to conserve the total energy, an inertial

transfer mechanism exists that takes the energy out of the low wavenumber, or ‘low-k’,

region and effectively delivers it to the dissipation region. Finally, the energy in the

low-k either decreases from an initial state, or is maintained by a steady or time-varying

input, W (k, t). The region of small wavenumbers corresponds to large (macroscopic)

scales where the typical instigators of fluid motion exist.

The dissipation and transfer of energy play a fundamental and important role in

turbulence; to stress this, the following subsections are given to them.
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E(k)

−D(k)

T (k)

Figure 1.1: A schematic plot of the spectral energy density, E(k), spectral energy-
dissipation density, D(k), and the spectral energy-transfer density, T (k). It is usual
that E(k) is peaked in the low-k region as representing an amount of energy that will
freely decay or that is injected via external forcing. The negative of the dissipation
spectrum is given to emphasise its role in the removing energy in the large-k region.
The characteristic shape of the transfer spectrum illustrates its role in absorbing energy
in the low-k region and emitting it in the high-k region.

Energy Dissipation and the Universal Equilibrium Range

The dissipation of energy occurs most prominently on the smallest of scales where the

molecular forces of viscosity are comparable to the size and mean free-path lengthscale

of the fluid’s constituent particles [24]. On the continuum scale of the fluid, the sum of

these interactions creates a considerable drain of energy for the entire fluid.

The idea that all fluids behave similarly under the influence of viscosity has led the

way to some important theories in the study of turbulence. Most notably among these

are those of Kolmogorov [39, 40]. In two papers from 1941, Kolmogorov made two

hypotheses and derived some of the longest standing results available to turbulence

knowledge. The first hypothesis is based on the notion that at small scales where

dissipation is most apparent, there is a significant separation from the activities of the

large scales.

The decoupling of these two scales implies that they do not influence each other.

Large-scale motion does not directly feed into small scales but rather advects regions of

small-scale motion. Likewise, the dissipative forces in the small scale are not significant
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1.2. The Dynamical Equations of Fluid Turbulence

enough to impede upon the large scales. The relatively quick dynamics of the dissipative

scales ensures that they are in a statistical equilibrium compared to the large scales and

therefore, they destroy any anisotropy imparted to them from the large scales. These

arguments paraphrase §5.2 in Davidson [24] where further details can be found. What

is important is that this decoupling allows a description of the energy spectrum in this

region to be based solely on parameters of the energy input/destruction rate ε and the

viscosity ν [25].

A similarity hypothesis is given for the energy spectrum in the dissipation region

[27],

Eeq.(k) = v2lf(kl). (1.26)

where v and l are arbitrary velocity- and length-scales and f is a dimensionless function;

the ‘eq.’ subscript on the energy spectrum denotes it as in statistical equilibrium.. As

v and l are determined by ν and ε, dimensional arguments can be used to construct

them as

v → vD ≡ (νε)1/4, l → η ≡

(
ν3

ε

)1/4

, (1.27)

the dissipation velocity- and length-scales respectively. The inverse of η is often used

as the dissipation wave-vector,

kD ≡

(
ε

ν3

)1/4

(1.28)

Inserting these into (1.26) gives

Eeq.(k) = ν5/4ε1/4f(kη). (1.29)

The proof of the universality and the similarity of this dissipation scales can be seen

in fig. 1.2; when appropriately scaled using the dissipation parameters, ε and ν, the

energy spectra of various experimental observations begin to collapse onto the same

curve.

Energy Conservation and the Inertial Range

As energy is created in the large scales and then dissipated in the small scales, there

exists a mechanism to transfer the energy among these scales called the energy cascade

[41]. This has been alluded to previously and is due to the non-linear terms.

It can be shown that this transfer conserves energy, resulting in the vanishing of

the transfer spectrum,
∞∫

0

dk T (k, t) = 0. (1.30)
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The equation below demonstrates the relation of the transfer spectrum to the triple-

correlation of the velocity field,

∞∫

0

dk T (k, t) =

∞∫

0

dk 2πk2Mαβγ(k)

∞∫

0

dj ×

(
〈uβ(j, t)uγ(k − j, t)uα(−k, t)〉

− 〈uβ(−j, t)uγ(−k + j, t)uα(k, t)〉

)
. (1.31)

Using the properties of the momentum-transfer operator, Mαβγ(k) defined in (1.22),

and the continuity relation, (k− j)γuγ(k− j, t) = 0, the interchange of the wave-vectors

k and j, shows the transfer spectrum is anti-symmetric and must therefore vanish.

Thus, the transfer term neither adds nor subtracts energy from the system, but instead

recycles it throughout all wave-numbers; the viscosity is the only drain of energy.

As the transfer spectrum only shuffles energy throughout k-space, it can be said to

connect various scales. In fully turbulent systems with large Reynolds number, though,

the scales can become separated. The low-k region which contains all the energy is not

affected by the high-k properties, namely viscosity; nor does the high-k region feel the

effects of the large-energy fluctuations below, except where they enter the equilibrium

range after traversing the energy cascade [24, 25].

A second similarity hypothesis is given for this region and the result is the most

famous of Kolmogorov’s results [39]. It is the derivation of the inertial range spectrum.

Using simple dimensional arguments and the hypotheses outlined above, Kolmogorov

found that the energy spectrum should only depend on the dissipation rate and the

wavenumber.

Recalling that the equilibrium range where dissipation is relevant can be described

using

Eeq.(k) = ν5/4ε1/4f(kη) (1.32)

where f(kη) is a non-dimensional function of the wavenumber and the dissipation

length-scale. Matching this against inertial range where the viscosity is to be negligible

requires

f(kη) ∝ (kη)c (1.33)

where the exponent, c, is determined by requiring that the form of this inertial region

does not depend on viscosity. Inserting this into the above and employing the constraint
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that the viscosity vanish from this equation (ν → 1),

EI(k) = ν5/4ε1/4α(kη)c

= αν5/4ε1/4kcν3c/4ε−c/4 (1.34)

ν−5/4+3c/4=0 ⇒ c = −5/3

⇒ EI(k) = αε2/3k−5/3. (1.35)

This result, often referred to as the “five-thirds” law, is among the most well-known

in turbulence. Indeed, this results has long-standing experimental evidence supporting

and is even viewed as a benchmark in numerical studies. Figure 1.2 is often cited as a

testament to the five-thirds law, and can be found in many texts.
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Figure 1.2: Experimental evidence supporting Kolmogorov (adapted from McComb
[35]). These results show a variety of Reynolds numbers in different experimental set-
ups, including a tidal channel. The red line shows the k−5/3 scaling predicted for
the inertial ranges. The collapse of data-points onto a similar curve labelled as the
‘Universal equilibrium range’ suggests the universality of the high-end wavenumbers in
turbulent systems.

When R is large, the energy in the low-k scales is relatively larger than that in the
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viscous scales. Increasing the amount of energy in the low-k region increases the rate at

which it enters the cascade and, as it is conserved, the rate at which it will be transferred

to the dissipation region. However, decreasing the viscosity will not have this effect; the

amount in the large scales does not change, nor does its rate passing into and through

the energy cascade. In any case, the rate of energy leaving the cascade must equal

the rate at which energy is dissipated; therefore, one can argue that even in the limit

where viscosity is reduced to an infinitesimal amount, there will be a non-vanishing

dissipation rate equal to the rate of energy moving through the cascade.

The matter of intermittency with relation to Kolmogorov’s theories also needs

addressing. This was first brought about by Kolmogorov’s contemporary Landau

[21, 42] and was enough to cause Kolmogorov to revise his theory some twenty years

later [43]. Landau’s objection relates to primarily using ε which is the global average of

the dissipation, rather than the more relevant locally averaged dissipation rate, which

will fluctuate, hence intermittency, much more than its global cousin leading to what are

referred to as ‘intermittency corrections’ to the inertial range of energy spectra. Useful

information on Kolmogorov and intermittency can be found in Frisch [44], and for more

recent work see [45]. For the purposes of this thesis, the contribution of intermittency

corrections will be ignored when evaluating the energy spectra encountered later.

1.2.6 The Flow of Energy in Spectral Space

Another spectral quantity of importance is the transport energy flux, or ‘flux’. It is

defined as a partial integration of the transfer spectrum,

Π(k, t) ≡ −

k∫

0

dj T (j, t) =

∞∫

k

dj T (j, t) (1.36)

This dual definition is provided by the anti-symmetry of the transfer spectrum. The

spectral flux is then a measure of the rate of energy being transferred through a

particular wavenumber k. Differentiating both sides of this definition leads to an

alternate equation,

T (k, t) ≡ −
∂Π(k, t)

∂k
, (1.37)

which shows that the transfer spectrum is slope of the flux spectrum. The particular

shape and the anti-symmetry of the transfer spectrum tells that the flux is always

positive or zero, thus the rate, T (k, t), of energy entering a given wavenumber is such

that the flow of energy goes from low to high wavenumbers.

At this point it is worth noting a few more aspects about the flux. As it is the flow

of energy from modes j < k to modes j > k, the anti-symmetry of T (k, t), guarantees
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two characteristics of the flux: (1) the amount of energy coming from modes j < k is

equal to that going to modes j > k; (2) the flux is maximal when the largest amount of

energy can be transferred which occurs for Π(k0, t) where k0 is the zero-crossing point

of the transfer spectrum, T (k0, t) = 0.

The first remark reiterates the property of energy conservation of the transfer

spectrum; the second remark requires further clarity. For Π(k, t) to be a maximum

point, this entails that
∂Π(k, t)

∂k
= −T (k, t) = 0, (1.38)

and this occurs at exactly three points, k = 0, k0 and k → ∞. Furthermore,

∂2Π(k, t)

∂k
< 0 ⇒

∂T (k, t)

∂k
> 0, (1.39)

only occurs, by inspection of the schematic in figure 1.1, at the zero-crossing

wavenumber, k = k0. Physically, for a given wavenumber k, T (k, t) is negative when

the net flow of energy leaves k, and requiring Π(k, t) to be maximal implies the integral

over j must capture the largest amount of energy leaving all wavenumbers j < k. Thus

the range of wavenumbers is given by j = [0, k0].

A new quantity can be defined which denotes the maximal flux,

Πmax(t) ≡ −

k0∫

0

dj T (j, t) =

∞∫

k0

dj T (j, t). (1.40)

The maximum-flux will be seen as an important quantity in what is to come in later

chapters.

1.3 Thesis Overview

This thesis can be divided into two main parts: The first part is chapter 2 while

the second consist of chapters 3-6. Chapter 2 deals with statistical methods devised

to get around the closure problem. Two formalisms employing renormalisation, one

perturbative and the other non-perturbative, are explored in detail and compared

against each other. Understanding how these approaches differ is beneficial to devising

a closure based on first principles.

The second part deals primarily with a numerical investigation of turbulent

dissipation. Chapter 3 gives an account of a numerical solution based on a particular

closure, the Local Energy Transfer (LET), which is used to model moderately turbulent

systems in both freely decaying and forced scenarios.
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Chapter 5 explores the measurement times of turbulent paragraphmeters needed to

investigate dissipation in decaying turbulence. Using the time dependent properties of

turbulent paragraphmeters may help in finding times within which measurements can

be made that indicate the dynamics of decaying turbulence.

Finally, chapter 6 investigates turbulent dissipation, most notably its dependence

on the Reynolds number in both freely-decaying and forced turbulence. It will be shown

that there are intrinsic differences in the behaviour of the normalised dissipation rate

for decaying and forced turbulence with supporting evidence from the numerical work

using the LET-model.
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Chapter 2

Field-Theoretic Closure

Formalisms for Eulerian Fluid

Turbulence

2.1 Statistical Closures in Turbulence

In turbulence, statistical closures are, in a general sense, techniques employed to

close the moment-hierarchy established in a statistical treatment of the Navier-Stokes

equation. These theories postulate a relationship between high- and low-order moments

by way of physical arguments. The goal is to accurately describe and predict the

statistics of a turbulent system while maintaining a strong connection to the underlying

dynamics of the NSE. Closure theories can, in principle, allow efficient computation of

turbulent statistics without the computationally intensive demands of Direct Numerical

Simulation (DNS). This quality makes closure theories particularly attractive when

computational power is severely limited. Although the ability to compute the full

Navier-Stokes equations using DNS is currently and increasingly more tractable,

closure-based computations are still able to provide useful insights into turbulent

systems at a smaller computational cost.

There are a number of closure theories to be found in turbulence and no one closure

seems adequate to cover the standard turbulent systems, whether bounded-flows or

HIT. For the latter, it is possible to classify these closures into two main groups

distinguished by dynamics with respect to a reference frame, Eulerian and Lagrangian

closures. The former case focuses on describing a fluid from a ‘lab’ frame of reference,

where the fluid moves relative to a fixed frame of reference outside the fluid, as in the

Navier-Stokes equations. The Lagrangian description is in fact a re-formulation of fluid

dynamics that calculates statistics by following fluid particle dynamics; closures similar
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to those developed for Eulerian systems are then applied to these formulations. While

it is a recognisable study, the work presented here does not consider the Lagrangian

closures but instead focuses on those of the standard Eulerian formulation.

The quasi-normal approximation was one of the ealiest closures to be applied to

homogeneous isotropic turbulence. Treating the velocity field as a random-Gaussian

variable, the quasi-normal approximation allows the fourth-order correlation to be

written in terms of products of second-order correlations [46, 47]. The primary problem

in such a procedure is that turbulence is highly non-Gaussian [44] and the resultant

predictions for the total kinetic energy take on negative values [48]. The failure of

quasi-normality triggered research that made improvements upon it, resulting in the

EDQNM-methods (see for example [27]). The focus here will be on a subset of this

latter direction, Renormalised Perturbation Theories.

Renormalised Perturbation Theories, or RPTs, take conventional perturbation

expansions and re-sum the infinite terms generated in such expansions into a more

tractable form while keeping the necessary details. There is a body of literature that

has grown up around this work and some principle sources elaborating these directions

are Leslie [49] and McComb [35]. There is one RPT that deserves to be mentioned, on

historical grounds but also in terms of what is to follow later in this chapter.

2.1.1 The Direct Interaction Approximation

Kraichnan’s Direct Interaction Approximation (DIA) [50–52] is perhaps one of the best

known renormalised perturbation theories of homogeneous isotropic turbulence. To

understand the basis for the DIA it is helpful to consider the spectral NSE,

[
R(0)(k, t, s)

]−1
uα(k, s) = Mαβγ(k)

∫

j+l=k

d3j d3luβ(j, t)uγ(l, t), (2.1)

where

[
R(0)(k, t, s)

]−1
≡ ∂t + νk2. (2.2)

A general solution for uα(l, t) is

uα(l, t) =

t∫

−∞

ds R(0)(l, t, s)Mαβγ(l)

∫

m+n=l

d3m d3n uβ(m, s)uγ(n, s). (2.3)
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The product of velocity-field coefficients in the integrand of (2.1) can be written as

[
R(0)(k, t, s)

]−1
uα(k, t) = Mαβγ(k)

∫

j+m+n=k

d3j d3l d3m d3n R(0)(l, t)Mγδǫ(l) ×

(
uβ(j, t)uδ(m, t)uǫ(n, t)

)
, (2.4)

It can be seen that while the original velocity coefficients uβ(j, t) and uγ(l, t) are directly

coupled to uα(k, t), the two new velocity coefficients in the integrand of (2.4) are only

indirectly coupled, via R(0)(l, t) and Mγδǫ(l), to uα(k, t). These define what Kraichnan

called the ‘direct’ and ‘indirect interactions’.

These interactions are characterised by their wave-vector couplings and can be

seen graphically as in fig. 2.1 where examples of direct and indirect couplings are

given. The direct interactions only form triangles whereas the indirect interactions form

polygons of greater order, though in general the indirectly interacting wave-vectors are

not constrained to the same plane as the directly interacting wave-vectors.

k

j

l

k

j

(l)

m

n

k

(j)

(l)

m

n

i

h

(a) (b) (c)

Figure 2.1: A direct interaction (a) and indirect interactions (b, c).

Kraichnan exploited this concept and used it to create a somewhat unique

perturbation expansion that could be used to bring about a closure to the statistical

hierarchy and derive an equation of motion for the correlation of velocity-field

coefficients,

(
∂t + νk2

)
Cαα′(k; t, t′) = Mαβγ(k)

∫

j+l=k

d3j d3l ×

{
2

t∫

−∞

ds Rββ′(j; t, s)Mβ′δǫ(j)Cγδ(l; t, s)Cǫα′(k; s, t′)

}

−

t′∫

−∞

ds Rα′ᾱ(k; t′, s)Mᾱβ′γ′(k)Cγγ′(l; t, s)Cββ′(j; t, s)

}
(2.5)

17



Chapter 2. Field-Theoretic Closure Formalisms for Eulerian Fluid Turbulence

along with an equation of motion for the response function or propagator,

(
∂t + νk2

)
Rαα′(k;t, t′) − 4Mαβγ(k)

∫

j+l=k

d3j d3l ×

{ t∫

t′

ds Rββ′(j; t, s)Mβ′γ′ᾱ(j)Cγγ′(l; t, s)Rα′ᾱ(k; s, t′)

}

= Pαα′(k)δ(t − t′). (2.6)

The derivation of the DIA for homogeneous isotropic turbulence is beyond the scope of

the current chapter; some useful references found to be the most faithful to the original

derivation of the DIA are Beran[53], Kida and Gotoh [54], and Krommes [55]. Leslie’s

book [49] is largely dedicated to Kraichnan’s works and provides many insights.

The DIA, although successful in low- to moderate-Reynolds numbers fails to

produce a Kolmogorov inertial range. Kraichnan himself showed that the DIA gives

an inertial range with k−3/2 [51] and associated it with the DIA’s not properly dealing

with the indirect interactions [56, 57], manifest by the DIA’s inability to decouple the

large-scales from the viscous scales [27]. As will later be seen the momentum transfer

terms are in effect vertex functions. The indirect interactions are intrinsically associated

with these vertex functions leading to the notion that “the whole problem of strong

turbulence is contained in a proper treatment of vertex renormalisation”[58].

The success and failings of the DIA led to further closures based on renormalised

perturbation theories. Notable ones are those of Wyld [59], Herring [60, 61], Nakano

[62], and McComb [35]. Convinced of the perceived intrinsic failings of the DIA

based on an Eulerian framework, Kraichnan reformulated fluid dynamics to use

Lagrangian variables and produced the Lagrangian-DIA [63]. This also led to many

off-shoots notably those of Kraichnan [35, 49, 64] and the LRA of Kaneda [54, 65, 66].

The Eulerian-DIA still enjoys some use notably in the regularised-DIA (RDIA) of

Frederiksen [67–70]

The sections to follow detail two formalisms that aim to achieve a statistical closure

that properly deals with both the direct and indirect interactions. These formalisms

are more general in their respective approaches to classical dynamics, but were applied

to turbulence in their original sources. It will be shown that both formalisms are

equivalent in their reproduction of the DIA result at lowest order, but differ in their

treatments of higher-orders where vertex renormalisation occurs.
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2.2 The Wyld Formalism

The Wyld formalism [59] is a perturbative analysis of the statistical turbulence. It

represents one of the earlier attempts [62, 71] to extend the methods of quantum field

theory, specifically those of diagrammatic representation, to the problem of classical

turbulence.

In the approach used by Wyld, a statistical average is taken of two velocity-fields

which are expanded as diagrammatic perturbation series, thus establishing a two-point

velocity correlation function. As the perturbation series are in fact infinite, a systematic

renormalisation method is employed to reduce the series into a more manageable format.

This results in integral equations that, which at lowest non-trivial order, reproduce the

Kraichnan DIA result.

While being formally correct, the method breaks down in the renormalisation

process where different choices in the diagrammatic resummations result in different

outcomes to the exact propagator function. Wyld’s original method was updated in a

later paper by Lee, who corrected some of the problems with an ad hoc fix.

2.2.1 Wyld’s Perturbation Method

The main focus in examining Wyld’s method is the renormalisation procedure. How-

ever, the fundamental or ‘bare’ equations must be established prior to renormalisation.

The following account briefly explains Wyld’s construction of the velocity correlation

function via a perturbation expansion of the velocity field.

There are a few points in which the following summary of Wyld’s method deviates

from Wyld’s original work; these deviations are trivial in the sense that they do not

obscure the method under investigation.

Wyld’s perturbation expansion

The NSE in Fourier space, but without the Fourier transform of the time variable, is:

(
∂t + νk2

)
uα(k, t) = fα(k, t) +

1

(2π)3
M 0

αβγ(k)

∫
d3j uβ(j, t)uγ(k − j, t). (2.7)

Already this is different than Wyld in that the time variable is Fourier-transformed as

well. The wave-vector k and wave-frequency ω are then lumped together into a 4-vector

k ≡ (k,−ω) and the tensorial NSE is abandoned in favour of a simpler one-dimensional

‘model’ equation. These changes do not affect the overall analysis and will not be

implemented here.

Inverting the linear differential operator on the LHS of (2.7) to the RHS results
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in a form of the NSE that is more amenable to the ensuing analysis,

uα(k, t) =

t∫

−∞

dt′R(0)

αα′(k; t, t′)fα′(k, t′)

+ λ
1

(2π)3

t∫

−∞

dt′R(0)

αα′(k; t, t′)M 0
α′βγ(k)

∫
d3j uβ(j, t

′)uγ(k− j, t′).

(2.8)

A bookkeeping parameter, λ < 1, has been multiplied to the nonlinear term for the

purposes of the perturbation expansion; it will later be set equal to unity.

The next step is to consider a perturbation expansion of the NSE,

uα(k, t) = u(0)
α (k, t) + λu(1)

α (k, t) + λ2u(2)
α (k, t) + . . . , (2.9)

This can be substituted for each velocity field in (2.8) and then expressions can be

matched by powers of λ. At the lowest order,

u(0)
α (k, t) =

t∫

−∞

dt′R(0)

αα′(k; t, t′)fα′(k, t′), (2.10)

and one can establish a response function R(0)

αβ(k; t, t′) such that

(
∂t + νk2

)[
R(0)

αβ(k; t, t′)
]

= Pαβ(k)δ(t − t′). (2.11)

Already, it may be seen that there are many variables, arguments, and indices to

keep track of, therefore it is useful here to introduce a reduced notation:

u(0)
α (k, t) → u(0)

k (2.12a)

R(0)

αβ(k; t, t′) → R(0)

k (2.12b)

1

(2π)3
M 0

αβγ(k)

∫
d3j → M0

k. (2.12c)

This notation provides a more-intuitive format for the reader to follow; vector indices

and time arguments can be determined secondarily where needed. The spectral NSE

in the new notation becomes

(∂t + νk2)uk = fk + λM0
kujuk−j, (2.13)
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and the perturbation equations are similarly

uk = R(0)

k fk + λR(0)

k M0
kujuk−j (2.14)

uk = u(0)

k + λu(1)

k + λ2u(2)

k + λ3u(3)

k . . . (2.15)

In using this notation, the integral following the momentum transfer operator is always

a convolution where the wave-vector arguments of the convoluted functions must add up

to the wave-vector of the momentum transfer operator immediately preceding them.

Some care may be initially needed to keep track of these integrated wave-vectors; a

simple rule that adjusts for this is that all non-k wave-vectors are integrated out.

The perturbation terms by order in λ are

λ0 : u(0)

k = R(0)

k fk (2.16a)

λ1 : u(1)

k = λR(0)

k M0
ku(0)

j u(0)

k−j (2.16b)

λ2 : u(2)

k = λ2R(0)

k M0
k

(
2u(0)

j u(1)

k−j

)
(2.16c)

...

The term u(1)

k−j in the integrand of the expression for u(2)

k can be replaced by its definition,

leaving u(2)

k written only in terms of u(0). In fact, any order u(n) may be written as product

of (n + 1) u(0)’s. For example, the last term in the above equation for the perturbation

expansion of u(2)

k can now be written as

λ2 : u(2)

k
= 2λ2R(0)

k
M0

kR(0)

k−j
M0

k−ju
(0)

j
u(0)

l
u(0)

k−j−l
. (2.17)

This provides a major simplification that will help to enable the closure of the

correlation equations.

Wyld’s correlation

Wyld approaches the correlation of two velocity fields very simply by considering the

average of the product of two velocity field expansions of u’s:

〈
uα(k, t)uω(k′, t′)

〉
=

〈(
u(0)

α (k, t) + λu(1)
α (k, t) + · · ·

)
×

(
u(0)

ω (k′, t′) + λu(1)
ω (k′, t′) + · · ·

)〉
(2.18)
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The functions for the zeroth-order and exact correlators are given respectively by

C(0)
αω(k; t, t′)δ(k′ + k) ≡ 〈u(0)

α (k, t)u(0)
ω (k′, t′)〉 = 〈u(0)

k u(0)

k′〉, (2.19)

Cαω(k; t, t′)δ(k′ + k) ≡ 〈uα(k, t)uω(k′, t′)〉 = 〈ukuk′〉; (2.20)

and their reduced-notation counterparts are

C(0)
αω(k; t, t′)δk+k′ → C(0)

k
δk+k′ , (2.21)

Cαω(k; t, t′)δk+k′ → Ckδk+k′ . (2.22)

The delta-function on the LHS of these definitions is a result of the construction of

the Fourier-transform of the real-space correlation equation,

〈uα(k, t)uω(k′, t′)〉 =

〈∫
d3x

∫
d3r uα(x, t)uω(x + r, t′)e−ik′·xe−ik·(x+r)

〉

=

∫
d3x

∫
d3r

〈
uα(0, t)uω(r, t′)

〉
e−i(k′+k)·xe−ik·r

=

∫
d3r Cαω(r; t, t′)e−ik·rδ(k′ + k)

= Cαω(k; t, t′)δ(k′ + k). (2.23)

The second line uses the homogeneity constraint,
〈
uα(x, t)uω(x + r, t′)

〉
=

〈
uα(0, t)uω(r, t′)

〉
.

It is appropriate to point out here that the zeroth-order velocity field expansion

terms are random-Gaussian functions; this is implied in (2.11) by their being delta-

function correlated in time. A well-known and easily proved fact of random-

Gaussian variables is that correlations of odd-numbered products of them vanish.

Fortunately, the present analysis has been fashioned such that correlations of odd-

numbered products of velocity fields correspond to odd-orders in λ. These odd-ordered

correlations can be excluded.

Continuing in reduced notation (without odd-order moments), a series-expansion
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for the exact correlator is obtained,

〈ukuk′〉 =

Ckδk+k′ = C(0)

k δk+k′

+ λ2
(
〈u(0)

k u(2)

k′〉 + 〈u(1)

k u(1)

k′〉 + 〈u(2)

k u(0)

k′〉
)

+ λ4
(
〈u(0)

k u(4)

k′〉 + 〈u(1)

k u(3)

k′〉 + 〈u(2)

k u(2)

k′〉 + 〈u(3)

k u(1)

k′〉 + 〈u(0)

k u(4)

k′〉
)

+ O(λ6). (2.24)

As mentioned above, all terms can be written as products of zeroth-order velocity field

terms. For example consider the last of the second-order correlations or moments:

〈u(2)

k u(0)

k′〉 = 2R(0)

k M0
kR(0)

k−jM
0
k−j〈u

(0)

j u(0)

l u(0)

k−j−lu
(0)

k′〉 (2.25)

Another property of random-Gaussian variables is that any n-th order moment may

be decomposed into a sum of products of lesser-order moments. In the example, the

fourth-order moment is decomposed into three pairs of second-order moments,

〈u(2)

k
u(0)

k′〉 = 2R(0)

k
M0

kR(0)

k−j
M0

k−j ×(
〈u(0)

j
u(0)

l
〉〈u(0)

k−j−l
u(0)

k′〉 + 〈u(0)

j
u(0)

k−j−l
〉〈u(0)

l
u(0)

k′〉 + 〈u(0)

l
u(0)

k−j−l
〉〈u(0)

j
u(0)

k′〉
)
.

(2.26)

Note that all possible combinations of second-order moments are created in this

decomposition. What is immediately useful here is that the fourth-order moment can be

written as pairs of second-order moments or more importantly, zeroth-order correlation

functions.

Using the definition of the (zeroth-order) correlator, the above equation becomes

〈u(2)

k u(0)

k′〉 = 2R(0)

k M0
kR(0)

k−jM
0
k−j

(
C(0)

j C(0)

k δk+k′ + C(0)

j C(0)

k δk+k′ + 0
)
. (2.27)

The last term vanishes as it implies M0
k−jδk−j, which vanishes by definition. Cleaning

up leaves

〈u(2)

k u(0)

k′〉 = 4R(0)

k M0
kR(0)

k−jM
0
k−jC

(0)

j C(0)

k δk+k′ . (2.28)

A similar calculation can be made for the other terms, giving the correlation equation
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to second-order,

Ckδk+k′ = C(0)

k δk+k′

+ 4R(0)

k M0
kR(0)

k−jM
0
k−jC

(0)

j C(0)

k δk+k′

+ 4R(0)

k′ M
0
k′R

(0)

k′−j′
M0

k′−j′C
(0)

k C(0)

j′
δk+k′

+ 2R(0)

k M0
kR(0)

k′ M
0
k′C

(0)

j C(0)

k−jδk+k′

+ O(λ4). (2.29)

This can be applied to all orders; however, as this is an infinite expansion, a full

calculation will be intractable. This led Wyld to use a diagrammatic resummation,

an approach that would contain the effects of all orders generated by the perturbation

expansions into a more manageable set of equations.

2.2.2 Wyld’s Diagrammatic Method

Wyld introduced a set of diagrams relating to the terms of the perturbation expansion.

The diagrams generated could then be combined amongst themselves in forming the

correlations of velocity expansion terms. These combinations resulted in a new set of

diagrams, a graphical expansion for the exact correlator function. The assignment of

diagrams to functions is presented for the perturbation and the formation of correlations

from these is demonstrated.

Defining diagrams

Wyld begins his diagrammatic notation by assigning symbols to the various terms

obtained in the perturbation expansion of the velocity field:

α
k,t

↔ u(0)
α (k, t) → u(0)

k

Zeroth-order

velocity term
(2.30)

α β

t t′k ↔ R(0)

αβ(k; t, t′) → R(0)

k
Bare propagator (2.31)

α

β

γ
k

j

k j
↔ M 0

αβγ(k) → M0
k Bare vertex (2.32)

These are placed into the relevant equations for the perturbed expressions.

Following the examples given previously, the second-order velocity term in the

perturbation expansion,

u(2)

k = 2R(0)

k M0
ku(0)

j R(0)

kjM
0
kj

(
u(0)

l u(0)

kjl

)
, (2.33)
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R
(0)
k M0

k

u
(0)
j

R
(0)
k j

u
(0)
l

M0
k j

u
(0)
k j l

Temporarily breaking away from the reduced notation, the effectiveness of this

diagrammatic approach is highlighted by seeing it with all variables, arguments, and

indices restored:

R
(0)

αα′
(k; t,t′)

M0
α′βγ

(k)

u
(0)
β

(j,t′)

R
(0)

γγ′
(kj; t′,t′′)

u
(0)
δ

(l,t′′)

M0
γ′δǫ

(kj)

u
(0)
ǫ (kjl,t′′) .

For completeness, the analytic form of this equation is

u(2)
α (k, t) = λ22

t∫

−∞

dt′R(0)

αα′(k; t, t′)Mα′βγ(k) ×

∫
d3j u(0)

β (j, t′)

t′∫

−∞

dt′′R(0)

γγ′(k− j; t′, t′′)M 0
γ′δǫ(k − j) ×

∫
d3l

(
u(0)

δ (l, t′′) u(0)
ǫ (k − j − l, t′′)

)
. (2.34)

Perturbation or ‘Tree’ Diagrams

The terms of the perturbation expansion diagrams begin on a propagator and end in

the zeroth-order velocity terms. The equations and their diagrammatic representations

for these terms are given below to fourth-order:

u(1)

k = R(0)

k M0
ku(0)

j u(0)

kj

u
(0)
j

u
(0)
k j ,

(2.35)

u(2)

k
= 2R(0)

k
M0

kR(0)

kj
M0

kju
(0)

j

(
u(0)

l
u(0)

kjl

)
u
(0)
j

u
(0)
l

u
(0)
kj l ,

(2.36)
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u(3)

k
= R(0)

k
M0

kR(0)

j
M0

j R(0)

kj
M0

kj×(
u(0)
g u(0)

jg
u(0)

l
u(0)

kjl

)

u
(0)
g

u
(0)
j g

u
(0)
l

u
(0)
kj l

+ 4R(0)

k
M0

kR(0)

kj
M0

kjR
(0)

kjl
M0

kjl×(
u(0)

j
u(0)

l
u(0)
mu(0)

kjlm

)
u
(0)
j

u
(0)
l

u
(0)
m

u
(0)
k j lm ,

(2.37)

u(4)

k = 2R(0)

k M0
kR(0)

kjM
0
kjR

(0)

l M0
l R(0)

kjlM
0
kjl×(

u(0)

j u(0)

h u(0)

lhu(0)
mu(0)

kjlm

)
u
(0)
j u

(0)
l

u
(0)
lh

u
(0)
m

u
(0)
kj lm

+ 4R(0)

k M0
kR(0)

j M0
j R

(0)

kjM
0
kjR

(0)

kjlM
0
kjl×(

u(0)
g u(0)

jg
u(0)

l
u(0)
mu(0)

kjlm

)

u
(0)
g

u
(0)
j g

u
(0)
l

u
(0)
m

u
(0)
k j lm

+ 8R(0)

k
M0

kR(0)

kj
M0

kjR
(0)

kjl
M0

kjlR
(0)

kjlm
M0

kjlm×
(
u(0)

j
u(0)

l
u(0)
mu(0)

n u(0)

kjlmn

)
u
(0)
j

u
(0)
l

u
(0)
m

u
(0)
n

u
(0)
k j lmn .

(2.38)

These are the so-called “tree-level” diagrams.

Correlation diagrams

Correlation diagrams arise from attaching tree-level diagrams together by fusing the

velocity field terms at the ends of branches. These become the zeroth-order correlation

functions.

The diagram for the zeroth-order correlation term or ‘bare correlator’ is given by

↔ C(0)

αβ(k; t, t′)α β

t t′k → C(0)

k (2.39)

To see how the diagrams operate in place of the traditional mathematics, it is instructive

to examine the construction of second-order correlation terms from the tree-level

diagrams.

The first term considered here is the last of the second-order terms in (2.24),

〈u(2)

k u(0)

k′〉 = 2R(0)

k M0
kR(0)

kjM
0
kj〈u

(0)

j u(0)

l u(0)

kjlu
(0)

k′〉

= 4R(0)

k
M0

kR(0)

kj
M0

kjC
(0)

j
C(0)

k′ δk+k′ . (2.40)
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Diagrammatically this corresponds to

u
(0)
k j

u
(0)
g

u
(0)
j g

u
(0)

k′ = 2

C
(0)
j

C
(0)

k′

(2.41)

An extra factor of 2 arises from the combinatorics, analogous to the Wick contractions

of the fourth-order moment into products of second-order moments,

〈u(0)

j u(0)

l 〉〈u(0)

k−j−lu
(0)

k′〉

u
(0)
j u

(0)

k′

u
(0)
l

u
(0)
kj l

+

+ 〈u(0)

j u(0)

k−j−l〉〈u
(0)

l u(0)

k′〉

u
(0)
j

u
(0)

k′

u
(0)
l

u
(0)
k j l

+

+ 〈u(0)

j u(0)

k′〉〈u
(0)

l u(0)

k−j−l〉

u
(0)
j

u
(0)

k′

u
(0)
l

u
(0)
k j l

The last term above vanishes as in (2.27) thereby establishing a rule that any diagram

with a closed loop that is connected to the diagram by a single propagator line will

vanish.

The other diagrams in the second-order terms are obtained by a similar construction,

〈u(0)

k u(2)

k′〉 = 2R(0)

k M0
kR(0)

k′−j′
M0

k′−j′〈u
(0)

k u(0)

j′
u(0)

l′
u(0)

k′−j′−l′
〉

= 4R(0)

k M0
kR(0)

k′−j′
M0

k′−j′C
(0)

k C(0)

k′−j′
δk+k′ (2.42)

u
(0)
k

u
(0)

j′

u
(0)

l′

u
(0)

k′ j′ l′

= 2

C
(0)

k′ j′C
(0)
k

(2.43)

〈u(1)

k u(1)

k′〉 = R(0)

k M0
kR(0)

k′ M
0
k′〈u

(0)

j u(0)

kju
(0)

j′
u(0)

k′ j′
〉

= 2R(0)

k
M0

kR(0)

k′ M
0
k′C

(0)

j
C(0)

kj
δk+k′ (2.44)

u
(0)
j

u
(0)
kj

u
(0)
j

u
(0)
k j

= 2

C
(0)
j

C
(0)
k j (2.45)

This procedure can be applied to all orders, and it can be shown that a one-to-one

correspondence is established between diagrams and their analytical counterparts, with
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the correct numerical prefactors. A reproduction of primitive correlator diagrams to

fourth-order is given in the figure below.

(W1) (W2) (W4) (W3)
2 4 4

16
(W5)

(W29) (W28) (W6) (W7)
8 8 8 16

(W21) (W20) (W13) (W12)
16 16 16 16

(W33) (W24) (W25) (W32)
16 16 16 16

(W17) (W16) (W9) (W8)
16 16 8 8

(W19) (W18) (W31) (W30)
16 16 16 16

(W26) (W27) (W23) (W22)
16 16 16 16

(W14) (W15) (W10) (W11)
8 8 16 16

Figure 2.2: Wyld’s diagrams representing the correlator expansion up to and including
the fourth-order terms. The labels shown on each diagram correspond to those given
in figure 2 of the original paper.

Wyld’s perturbation method is formally exact and uses Gaussian statistics to enable

the closure; it does however retain an infinite number of terms in the expansion of the

correlation function. The next subsection sees the systematic renormalisation of these

terms into a more manageable formula.

2.2.3 Wyld’s Renormalisation

Wyld’s method of renormalisation is a resummation of diagrams based on the emergence

and recurrence of fundamental, irreducible diagram units. An analogy can be made with

finding the irreducible diagrams in other diagrammatic methods, most appropriately

those in particle physics [72].
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2.2. The Wyld Formalism

The main controversies associated with Wyld’s formalism are due to the renormal-

isation, and therefore, the procedure here will be different than Wyld’s. Explanations

will be given at points where it differs from the Wyld method.

The new starting point is the spectral NSE which multiplied by a second velocity-

field coefficient, uα′(−k, t′) and then averaged,

( ∂

∂t
+ νk2

)〈
uα(k, t)uα′(−k, t′)

〉
=

〈
fα(k, t)uα′(−k, t′)

〉

+
1

(2π)3
M 0

αβγ(k)

∫
d3j

〈
uβ(j, t)uγ(k − j, t)uα′(−k, t′)

〉
. (2.46)

This formulation has been used by Kraichnan [50] and also for the LET [35]. It must be

noted that this formulation gives exactly the same result as Wyld’s formulation when

the velocity-field coefficient on the RHS are expanded perturbatively, thus the terms

given in fig. 2.2 can be obtained from the above equation.

There are two reasons why this formulation will be considered. The first is that

the bare propagator (see on the LHS of (2.46) in its inverted form) will remain

unrenormalised. The second point is that the vertex associated with the momentum-

transfer operator M 0
αβγ(k) is outside of the average, and will also not be included in

the resummation. These points are more explicit in the formulation considered here

rather than being embedded in Wyld’s method.

The first criterion by which to classify diagrams is the ability to separate a diagram

into two parts by severing a single correlator. Diagrams that can be split into two

separate diagrams by cutting a single correlator are labelled by Wyld as ‘Class-A’. The

procedure here will further distinguish two types of Class-A diagrams: those diagrams

with the correlators on the LHS of the left-most vertex, and those with separable

diagrams connected by a single bare correlator that occurs on the RHS of the left-

most vertex. These are labelled Class-AL and Class-AR, respectively.

The classification for Class-AR includes diagrams with an internal correlator line,

such as

.

Bare correlators are given analytically by

〈u(0)
α (k, t)u(0)

ω (k′, t′)〉 =
〈
R(0)

αα′(k; t, s)fα′(k, s)fω′(k′, s′)R(0)

ω′ω(k; s′, t′)
〉
, (2.47)

which reveals the propagators within each. This identification is what will allow the

derivation of the propagator diagrams to come. Cutting of an external correlator differs

from field theoretic methods of particle physics as external lines are typically not

cut, for details see [72, 73]. An example of cutting an external correlator is given
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diagrammatically by

∣∣∣ →
( )( )

→
( )

fa

( )
fk′ ,

with its analytic counterpart given by

R(0)

k M0
kR(0)

j M0
j C(0)

kjC
(0)

k′

∣∣∣ →
(
R(0)

k M0
kR(0)

j M0
j C(0)

kju
(0)
a

)(
u(0)

k′

)

→
(
R(0)

k
M0

kR(0)

j
M0

j C(0)

kj
R(0)

a fa

)(
fk′R(0)

k′

)
.

The same can be applied to diagram (W4), a member of the Class-AL diagrams, and

in general to any diagram with an external correlator. Using fig. 2.2 as a reference,

the Class-AL diagrams are: 4, 17-25(odd), 26, 29-33(odd); and the Class-AR diagrams

are: 3, 5, 16-24(even),27, 28-32(even).

It can now be seen that these diagrams can be written with the correlation in the

form of a force-force correlation. For example,

〈fkfk′〉 = 〈fkfk′〉 + 4 〈fkfk′〉 + O(λ4), (2.48)

R(0)

k 〈fkfk′〉Rk′ = R(0)

k 〈fkfk′〉R(0)

k′ + 4R(0)

k 〈fkfk′〉R(0)

k′ R
(0)

k′ M
0
kRjM

0
j C(0)

k′ + O(λ4). (2.49)

A new function, the exact propagator, has been established as well as a new diagram

associated with it,

= + 4 + O(λ4), (2.50)

Rk = R(0)

k
+ 4λ2R(0)

k
M0

j C(0)

j
R(0)

kj
M0

kR(0)

k
+ O(λ4). (2.51)
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The complete expansion to fourth-order is given below:

= +

+ 4 + 16 + 16 +

+ 8 + 16 + 16 +

+ 16 + 16 + 16 +

+ 16 + O(λ6)

(WP1)

(WP2) (WP3) (WP4)

(WP5) (WP6) (WP7)

(WP8) (WP9) (WP10)

(WP11)

(2.52)

Note that while the method used here to obtain these terms is different from Wyld’s,

the same terms are obtained for the expansion.

The procedure for dealing with Class-AR diagrams will be postponed as it is similar

to that used to re-sum the remaining diagrams. Diagrams not classified as Class-

A are designated as Class-B diagrams; these are further classified into reducible and

irreducible based on finding embedded elements of low-order within diagrams of higher-

order. An example of this can be seen by examining the diagram W6 in fig. 2.2,

(W6)

.

It is readily seen that the elements between the two outermost vertices is the diagram

W2 in fig. 2.2; this is also equivalent to the W2 diagram by replacing the top correlator

with itself. This will be given in more detail below however it will be useful to include

another function at this time.

Wyld introduced an exact vertex function as an expansion without giving a detailed

method of how it was dervied but instead wrote a diagram series expansion for the exact

vertex function,

= + 4 + 4 + 4 + O(λ5)
(2.53)
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Mk = M0
k + 4M0

kC(0)

j
R(0)

kj
M0

aR(0)
a M0

b

+ 4M0
kC(0)

kjR
(0)

j M0
aR(0)

a M0
b + 4M0

kR(0)

j R(0)

kjM
0
aC(0)

a M0
b + O(λ5). (2.54)

Starting with these irreducible diagrams, Wyld generated the full expansion by

replacing any of the constituent elements with a higher-order element. For example,

replacing the correlator, a propagator, or a vertex in the first term of (2.53) results in

the following terms, respectively:

.

Irreducible diagrams can then be found by selectively removing correlators,

propagators, and vertex corrections from Class-B diagrams. The set is left with

diagrams that cannot be constructed from non-trivial (bare correlators, propagators,

or vertices) elements. Under this classification, there are two up to fourth order,

(2)
,

(7)
.

Starting with the second-order Class-B irreducible diagrams, all Class-B diagrams

(except the Class-B irreducible diagrams that arise at higher orders) can be generated

by replacing the appropriate correlator, propagator, and vertex corrections with their

respective expansions. This is demonstrated by considering three correlator diagrams

as examples,

(W6)

,
(W8)

,
(W14)

and examining their construction.

1. Construction with a Correlator Correction

( )
→

( )
=

= + + · · ·
(W6) (2.55)

Replacing a bare correlator with an exact one in the irreducible second-order correlator

diagram is equivalent to inserting the series for the correlator, giving rise to the
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anticipated diagram as well as others.

2. Construction with a Propagator Correction

( ) → ( ) =

= + + · · ·
(W8) (2.56)

Inserting the exact propagator and its expansion obtains the desired term, (W8).

3. Construction with a Vertex Correction

( ) → ( ) =

= + + · · ·
(W14) (2.57)

As with the others, the inclusion of the vertex expansion in this case produces (W14)

and (W15), not shown, plus others at higher orders.

Taking this one step further, all bare quantities in the irreducible second-order

correlator can be replaced by their exact counterparts,

→
( )( )

( )

( )
( )( )

(
+ 2 + ···

)(
+ 4 + 4 + 4 + ···

)

(
+ 4 + 4 + 2 + ···

)

(
+ 4 + 4 + 2 + ···

)

(
+ 4 + 4 + 4 + ···

)(
+ 2 + ···

)

This procedure generates all Class-AR terms and Class-B reducible terms given in

fig. 2.2.

Collecting the irreducibles, where each bare term is replaced with its respective

exact term, together with the Class-AL terms expressed in (2.52) leads to an equation

for the exact correlator,

= 〈ff〉 + 2 + 16 + O(λ6)

︸ ︷︷ ︸
Class-AL diagrams

︸ ︷︷ ︸
Class-B diagrams

+ Class-AR diagrams
.

(2.58)
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This is similar to Wyld’s exact correlator equation,

= 〈ff〉 + 2 + 16 + O(λ6).

︸ ︷︷ ︸
Class-A diagrams

︸ ︷︷ ︸
Class-B diagrams

,

(2.59)

where the first term on the RHS contains both AL and AR diagrams. Further remarks

about the exact correlator will be made later in this section; at this point it is more

pertinent to deal with the exact propagator.

The approach Wyld used to determine an equation for the exact correlator could

not be used for the exact propagator. Using both Classes AL and AR, the result is a

primitive expansion for the propagator with some of the terms redundantly generated,

specifically diagrams (WP3), (WP6), and (WP7) in (2.52). Wyld circumvented

this by using a Dyson equation for the propagator, expressing his arguments only

mathematically and without a diagram equation for the exact propagator. The result

was to introduce modified vertex functions and use the Ward-Takashi identities to relate

these to the propagators, as in quantum field theory [72]. Wyld’s final complete set of

equations has a diagrammatic expansion for the exact correlator, two diagram series

for the exact and modified-exact vertex functions, and the Ward-Takashi identities.

It was however argued by Lee that the method using the Dyson equation and

Ward-Takashi identities cannot be applied to the full 3-dimensional NSE as they were

to Wyld’s scalar model [74]. Lee had adapted Wyld’s method to magnetohydrodynamic

(MHD) turbulence and found the same problem but introduced the following equation

for the exact propagator:

= + 4 + O(λ4) (2.60)

The left-most propagator and vertex have both been left bare. The former clears the

redundant generation of propagator diagram (WP3); while the latter does the same

for diagrams (WP6) and (WP7). This equation for the propagator does correct the

redundancies, however, the asymmetry introduced by Lee also does not generate Wyld’s

diagram (W10) hence the inclusion of a fourth-order irreducible propagator term not

found in Wyld. Lee’s exact propagator is

= + 4 + 16 + O(λ6).

(2.61)

Lee introduced this as an ad hoc fix, however the above equation can be derived by

adopting a scheme where the left-most propagator and vertex stay unrenormalised when
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constructing the exact diagrams. Finding the irreducible propagator diagrams from the

set of Class-AL diagrams while maintaining that the left-most propagator and vertex

remain unrenormalised results in (2.61). This can be applied to classes AR and B. The

result is the following subset of diagrams,

{ }

AR, B

= 4 + 16

+ 2 + 16

+ 16 + 16 + O(λ6) .

(2.62)

The brackets with subscripts denote the terms of the exact correlator from classes AR

and B. The classes have been segregated by line with the top line containing those

of Class-AR. The vertices postulated by Wyld, given in (2.53), have been used in

constructing these sets. The exact vertex expansion from Wyld is still valid to O(λ5)

and can be used here,

= + 4 + 4 + 4 + O(λ5) .
(2.63)

Using all classes together, the expansion for the exact correlator can now be given

= 〈ff〉 + 2 + 4

+ 16 + 16

+ 16 + 16 + O(λ6).

(2.64)

This equation is very different from Wyld’s equation for the exact correlator, (2.59); the
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inclusion of these terms will prove an important feature of the new renormalisation when

comparing the the method of MSR in the following section. Considering only terms up

to second-order and noting that the bare propagator is equivalent to (∂t + νk2)−1, the

equation above and the equation for the propagator (2.61) give the result of the DIA,

(2.5) and (2.6), given earlier. Wyld required some rearrangement of his exact correlator

equation, (2.59), and was able show the same result diagrammatically in his paper.

The set of equations, (2.61), (2.63), and (2.64), contains the same information of

the correlator expansion up to fourth-order, fig. 2.2, and describes turbulence insofar

as the NSE can be treated perturbatively, with the Gaussian statistics assumed in the

external forcing introduced to facilitate the closure. The above equations are still,

in principle, infinite series however the resummation contains the detail of a greater

number of terms and allows a truncation that retains more of this information.”

Ignoring the perturbative treatment of a strongly-coupled system, Wyld’s formalism

and diagrammatic treatment of the initial correlator expansion is rigorous and can be

extended to the 3-dimensional NSE. The renormalisation procedure is systematic and

though it formally works for Wyld’s model-NSE, it cannot be generalised to the actual

NSE. Lee’s reworking of the formalism to MHD fixed the issue of the propagator but

did so with an ad hoc choice without a systematic derivation as in the correlator or

vertex terms.

It has been found here that a different resummation method, which maintains that

the left-most propagator and vertex be kept out of the resummation, is suitable in

obtaining a set of closed equations. The equations and methods here have only been

used to fourth-order and are correct under this constraint. The approach borrowed

ideas from both the Kraichnan and Wyld formalisms, and successfully derived the

DIA. It also derived the correct propagator expansion found empirically by Lee.

As the DIA does not give the Kolmogorov spectrum, it is thought that the Wyld

formalism is incorrect. The exclusion of the renormalised vertex terms, which are said

to contain the information of the nonlinear couplings in the NSE, is thought to be

responsible [58]. The Class-AR terms of (2.64) are additional terms which were not

part of Wyld’s original derivation; these extra terms will be important in the following

section.

2.3 The Martin-Siggia-Rose Formalism

The MSR Formalism [58] is by now a well-known theory that can be used to calculate

the “statistical dynamics of classical systems.” The formalism establishes a operator

theory where the observables are defined as Heisenberg operators. This permits a
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non-perturbative treatment akin to the Schwinger formalism [75–77] in quantum field

theory which formally closes the statistical moment hierarchy. The operator formalism

introduces an adjoint operator which can be used in the construction of nontrivial

commutation relations leading to correlation and response functions [55]. Employing

the Schwinger formalism for statistical closure involves the use of a generating or

characteristic functional. An alternative to the construction of such operators comes

from functional or path integrals [78].

Notable sources providing detailed information on MSR are works by Rose [79],

Phythian [80–82], Andersen [83] and Krommes [55]. As demonstrated in their original

paper, the formalism is applicable to the turbulence problem which has inspired further

work in the analysis of least-action principles [84, 85] and gauge symmetries [86–88] in

the study of turbulence.

MSR is by their own account comparable to perturbative formalisms of Kraichnan

and Wyld. However, it is their claim supported by Kraichnan (see footnote 11 in in their

paper) that Wyld is incorrect in his renormalisation procedure specifically with regard

to his vertex corrections. As it is possible to work directly from their diagrammatic

interpretation and compare it to Wyld, it is shown here that this assertion is not

accurate and that both formalisms are equivalent to fourth order.

2.3.1 Setting up the Formalism

It has been seen already that the velocity field uα(x, t) is a fundamental observeable

in fluid dynamics. The MSR formalism extends the common notion of it to that of

a classical statistical operator [80, 83]. In the language of quantum field theory, it is

similar to a Heisenberg operator, in that it is time dependent [72]. This is an essential

first-step in establishing the formalism.

A remark about notation is in order. MSR use a single variable to stand for all

space and time arguments, as well as indices. Their notation will not be employed here,

rather, their formalism will be written in the notation used in earlier chapters. To see

how their notation is set-up, consider the following example

uα(x, t) → uα1(x1, t1) → u(1). (2.65)

It can easily be seen that their notation is much more compact and is helpful in working

through their paper.
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Dynamical Equations

A generalised equation of motion for a field variable, uα(x, t) is introduced,

∂tuα(x, t) = Ûα(x; t) + Ûαβ(x,x′; t, t′)uβ(x′, t′)

+ Ûαβγ(x,x′,x′′; t, t′, t′′)uβ(x′, t′)uγ(x′′, t′′). (2.66)

The quantities defined within,

Ûα(x; t) ↔ 0-point potential/external force (2.67)

Ûαβ(x,x′; t, t′) ↔ 1-point potential (2.68)

Ûαβγ(x,x′,x′′; t, t′, t′′) ↔ 2-point potential, (2.69)

are the generalised interaction potential functions. Integration of repeated arguments

and summation of indices are implied.

It is argued that (2.66) can accommodate many dynamical systems, and in principle,

can be generalised to higher orders of interaction. MSR cite several example systems

and demonstrate how the interaction potential functions may be written to adapt to

these examples. One such example is the Navier Stokes Equation, where,

Ûα(x; t) → F̂ external forcing (2.70)

Ûαβ(x,x′; t, t′) → D̂ dissipation term (2.71)

Ûαβγ(x,x′,x′′; t, t′, t′′) → T̂ inertial term. (2.72)

To see this, the nonlinear inertial term in the NSE can be written as

T̂αβγ(x,x′,x′′; t, t′, t′′)uβ(x′, t′)uγ(x′′, t′′)

≡

∫
d3x′

∫
d3x′′

∫
dt′

∫
dt′′ T̂αβγ(x,x′,x′′; t, t′, t′′)uβ(x′, t′)uγ(x′′, t′′)

=

∫
d3x′

∫
d3x′′

∫
dt′

∫
dt′′

∂

∂x′
β

δαγδ(x − x′)δ(x − x′′)δ(t − t′)δ(t − t′′)

×
(
uβ(x′, t′)uγ(x′′, t′′)

)

= uβ(x, t)
∂

∂xβ
uα(x, t). (2.73)

The last step uses the incompressibility condition, ∇ · u = 0.

In keeping the goal of an analogous formalism to QFT, an adjoint operator is
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introduced by way of a commutation relation,

[
uα(x, t), ûβ(x′, t)

]
= δαβ δ(x − x′). (2.74)

which defines the adjoint operator accordingly,

ûα(x, t) ≡
−δ

δuα(x, t)
. (2.75)

In the path-integral formalism, the Fourier conjugate of the adjoint field readily occurs

in the treatment of the delta-functional (see for example Jensen [78] and Krommes

[55]).

An equation of motion for the adjoint field,

−∂tûα(x, t) = D̂βα(x′,x; t′, t)ûβ(x′, t′)

+ T̂αβγ(x′,x′′,x; t, t′, t′′)ûβ(x′, t′)uγ(x′′, t′′), (2.76)

may be constructed using (2.66) and the commutation relation, (2.74).

Both fields are collected together in what Krommes calls an ‘extended field vector’,

Uα(x; t) =

[
uα(x, t)

ûα(x, t)

]

. (2.77)

The commutator for the ‘extended field vector’ is

[
Uα(x; t), Uβ(x′; t)

]
= iσ2δαβ δ(x − x′), (2.78)

where

σ2 ≡

[
0 i

i 0

]

. (2.79)

As argument labels are about to increase, a new notation will been used where

all arguments are combined into the spatial argument and placed in the subscript,

Uα(x; t) → Ux. One can begin to appreciate how the MSR single-variable notation was

so useful.

An equation of motion for the ‘extended field vector’ is then simply constructed

from the dynamical equations of u and û,

−iσ2∂tUx = F̂x + D̂x,x′Ux′ +
1

2
T̂x,x′,x′′Ux′Ux′′ . (2.80)

The curly-script used for the potentials distinguishes them from their predecessors.
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Statistics

A generating functional is introduced and used to create all statistical quantities,

Z =
{

exp
[

tf∫

ti

Uxηx

]}

T

, (2.81)

where {· · ·}T denotes time-ordering. The term ηx ≡ η(x, t) plays the role of the source

term that is standard to these techniques; it is in effect a perturbation to the 0-point

potential.

Using the generating functional, one can find the statistical moments or cumulants

as needed through functional differentiation of the generating functional with respect to

the source term. In practise, the cumulants are obtained by functionally differentiating

the logarithm of the generating functional, returning what are called the connected

Green’s functions [72]. As an example, the first- and second-order cumulants are

produced respectively via

G(x, t) =
δ

δη(x, t)
ln〈Z〉

=

〈{
ZU(x, t)

}
T

〉

〈Z〉
, (2.82)

G(x,x′; t, t′) =
δ2

δη(x, t)η(x′, t′)
ln〈Z〉

=
δ

δη(x, t)
G1(x

′, t′). (2.83)

In the reduced notation, G(x; t) → Gx and G(x,x′; t, t′) → Gx,x′ .

A pause is needed here to consider what has been achieved at this point; the

correlator and propagator functions are contained within the second-order cumulant

of the extended field vector,

G(x,x′; t, t′)
∣∣∣
η=0

=

[ 〈
uα(x, t)uβ(x′, t′)

〉 〈
uα(x, t)ûβ(x′, t′)

〉
〈
ûα(x, t)uβ(x′, t′)

〉
0

]

=

[
Cαβ(x,x′; t, t′) Rαβ (x,x′; t, t′)

Rβα (x′,x; t′, t) 0

]

. (2.84)

The interest is in obtaining a dynamical equation for a particular statistical quantity,

which for example can be the second-order correlation function of two velocity fields
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of a turbulent fluid. Using (2.80), (2.82), and (2.83), one can construct an equation of

motion for the mean-field,

−iσ2∂tGx = F̂x + ηx + D̂x,yGy +
1

2
T̂x,y,z

(
Gy,z + GyGz

)
. (2.85)

Note that a second-order cumulant is present in this equation, suggesting the problem

of statistical closure. Differentiating (2.85) by ηx′ gives

−iσ2∂tGx,x′ = δx,x′ + D̂x,yGy,x′ + T̂x,y,z

(
GyGz,x′ +

1

2

δGy,z

δηx′

)
. (2.86)

In this case, the problem of closure occurs with the last term where a third-order

cumulant is introduced,
δGx,y

δηz

= Gx,y,z. (2.87)

A method is needed to proceed further without the introduction of ad hoc hypotheses

to link various moments or cumulants.

Closure

The problem of closure can now be addressed. The method employed by MSR, the

Schwinger-Dyson formalism, which has been used to deal with the closure problem in

QFT [72], closes the hierarchy of successive statistical quantities. By way of a Legendre

transform,

L[Gy] = lnZ[ηy] − Gxηx, (2.88)

a closure can be found through the introduction of vertex functions that can be related

to cumulants of various orders. Obtaining functional derivatives with respect to Gy of

this equation results in terms that can be related to the triple-order cumulant. It is a

straight-forward calculation to determine that the three-point vertex function is

ΓABC(x,y, z; t, t′, t′′) =
δ3L[GA’(x

′; s′)]

δGA(x; t)δGB(y; t′)δGC(z; t′′)
(2.89)

= −
δ

δGA(x; t)

[
GBC(y, z; t′, t′′)

]−1
. (2.90)

In a less straight-forward calculation, the last term in (2.86) may be rewritten to
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contain the three-point vertex

1

2
T̂x,y,z

δGy,z

δηx′

=
1

2
T̂x,y,zGy,y′Gz,z′

(
−δ

[
Gy′,z′

] 1

δGw

)
Gw,x′

=
1

2
T̂x,y,zGy,y′Gz,z′Γw,y′,z′Gw,x′ . (2.91)

Another function that has proved useful in QFT in concept and calculation is the

self-energy function [89]. The self-energy is responsible for attributing a particle with

a ‘dressed’ or renormalised mass, which is an observable quantity. In the present

calculation, the self-energy is defined using the three-point vertex,

Σx,x′ ≡
1

2
T̂x,y,zGy,y′Gz,z′Γx′,y′,z′ . (2.92)

Now the dynamical equation for the second-order cumulant, (2.86), can be rewritten

with the self-energy term,

−iσ2∂tGx,x′ = δx,x′ + D̂x,yGy,x′ + T̂x,y,zGyGz,x′ + Σx,yGy,x′ . (2.93)

The inclusion of the self-energy leads to the establishment of the well-known Dyson

equation [90]
[
G0

x,y

] 1
Gy,x′ = δx,x′ + Σx,yGy,x′ . (2.94)

The Dyson equation is an equation of motion for the second-order cumulant, which is

directly obtained from (2.92). It necessitates the addition of the inverse bare second-

order cumulant, defined by

[
G0

x,x′

] 1
≡ −iσ2∂tδx,x′ − D̂x,x′ − T̂x,y,x′Gy. (2.95)

Written in a different way,

[
Gx,x′

] 1
=

[
G0

x,x′

] 1
− Σx,x′ , (2.96)

this equation gives (Dyson) equations relating the bare and exact propagators,

[
Rx,x′

] 1
=

[
R0

x,x′

] 1
−

[
Σx,x′

]
±∓

, (2.97)

which are the off-diagonal components in
[
Gx,x′

] 1
. This equation can be inverted to

give

Rx,x′ = R0
x,x′ + R0

x,y

[
Σy,y′

] 1

±∓
Ry′,x′ . (2.98)

Immediately, one can see that the renormalisation is carried in this term by the self-
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energy term. Furthermore, this can be compared to the ‘Kraichnan-Wyld propagator’

to second order,

Rαβ(k; t, t′) = R(0)

αβ(k; t, t′)

+R(0)

αβ(k; t, t′′)

(
Mαδγ(k)Rδδ′ (k − j; t′′, t′′ − s)

×Cγγ′(j; t′′, s)Mβ′δ′γ′(−k)

)
Rβ′β(−k; s, t′). (2.99)

Returning to the vertex function which can be rewritten in terms of the self-energy

and itself:

Γx,y,z = T̂x,y,z +
δΣx,y

δGx′,y′

(
Gx′,x′′Gy′,y′′Γx′′,y′′,z

)
. (2.100)

This effectively completes this brief exposition of the MSR formalism. However, in

their present form, the set of equations employing the Dyson equations require mutual

iterations which can extend to infinite orders. Truncations are then necessary to deliver

practical results. The first approximation is given with a first order truncation of the

vertex function

Γx,y,z ≈ T̂x,y,z (2.101)

with the self-energy as

Σx,x′ =
1

2
T̂x,y,zGy,y′Gz,z′ T̂y′,z′,x′ (2.102)

While it may not be evident in this form, this approximation gives the DIA; this will

become more apparent when the diagrammatic representation of MSR is given.

The next order of approximation is given with a third order truncation of the vertex

function,

Γx,y,z ≈ T̂x,y,z + T̂x,x′,j′′Gj′′,k′′ T̂y,y′,k′′Gy′,y′′Gx′,x′′ T̂x′′,y′′,z, (2.103)

and the self-energy as

Σx,x′ =
1

2
T̂x,y,zGy,y′Gz,z′ T̂y′,z′,x′

+
1

2
T̂x,y,zGy,y′Gz,z′ T̂y′,v′,v′′Gv′′,w′′ T̂z′,w′,w′′Gw′,w′′Gv′,v′′ T̂v′′,w′′,x′ .

(2.104)

Similarly, this approximation generates fourth-order terms given in Wyld, as will be

seen in the following section.
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2.3.2 The Diagrammatic Representation of MSR

The formalism invented by Martin, Siggia, and Rose was directly demonstrated to be

applicable to the turbulence problem, and is by their account comparable to that of

Wyld. It is possible to work directly from their diagrammatic interpretation and make

a direct comparison to Wyld.

The second-order cumulant diagrams

The correlator and propagators are obtained from the second-order cumulant tensor,

G(x,x′; t, t′)
∣∣∣
η=0

=

[
Cαβ(x,x′; t, t′) Rαβ (x,x′; t, t′)

Rβα (x′,x; t′, t) 0

]

. (2.105)

Borrowing the same notation for exact correlators and propagators from the Wyld

analysis, this can be transcribed diagrammatically as

=




0



.

(2.106)

Several points need to be addressed before continuing. The first is quite simply that

though the current derivation has been worked out in real space, there is no problem

that prevents redoing it in spectral space. Real space has been used here in order for

one to follow MSR’s original paper. The remainder of the analysis will switch to Fourier

space in order to facilitate a comparison with Wyld’s diagrammatic method.

A second point is while the external force was introduced as F̂, this term would

not survive in the second-order cumulant equation, (2.86). This term is needed for

stationary turbulence, as was shown in Wyld though its presence there was primarily

for generating the statistics. MSR avoids this difficulty by introducing the forcing into

the 1-point potential, D̂. This may be justified by noting that the forcing can be

constructed as a linear function of the velocity field, see for example [91, 92].

The final point is that in the case of turbulence considered here, the mean field is

considered to be zero, hence Gk = 0. These points are included in a new form of (2.95),

[
G0

k,k′

] 1
= −iσ2∂tδk,k′ − D̂k,k′ − f̂k,k′. (2.107)

It is important to note that all arguments have been changed to their Fourier counter-

parts, the 1-point forcing potential f̂k,k′ where only
[
f̂k,k′

]

−−
= 〈fα(k, t)fα′(k′, t′)〉 is

nonzero has been introduced, and the mean-field has been set to zero.
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Using (2.96), an equation for Gk,k′ can be constructed,

Gk,k′ = Gk,j

[
G0

j,j′
] 1

Gj′,k′ − Gk,jΣj,j′Gj′,k′ . (2.108)

From the architecture of these matrices and using the Dyson equation for the propagator

given in (2.98) one can construct a graphical interpretation for the second-order

cumulant equation,

=




0





−



 0




.

Σ−+

Σ+−Σ−−

(2.109)

Equating (2.106) and (2.109), one can obtain a diagrammatic equation for the exact

correlator

Σ1= +
, (2.110)

where

Σ1 ≡
[
Σk,k′

]
. (2.111)

and
=

〈
f(k, t) ⊗ f(k′, t′)

〉
(2.112)

is the external force contribution, which in the case of NSE turbulence is the correlation

of two random forces. The mathematical formula for this is then

Ck,k′ = Rk,j

〈
f(j, t) ⊗ f(j′, t′)

〉
Rj′,k′ − Rk,j

[
Σj,j′

]
Rj′,k′ . (2.113)

The graphical equation for the exact propagator can likewise be extracted from

(2.109),

Σ2= +
, (2.114)
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with its analytic counterpart

Rk,k′ = R0
k,k′ − R0

k,j

[
Σj,j′

]
∓±

Rj′,k′ . (2.115)

The lowest order correlator term can be constructed from the bare propagators and the

correlation of the forcing functions,

= . (2.116)

To proceed further, the self-energy equations must be expressed in diagrams. From

(2.92) and, borrowing from previous section, the graphical notation for the bare and

exact vertices, the self-energy can be presented as

Σk,k′ = T̂k,j,k−j

Gj,j′

Gk−j,k′−j′

Γj′,k′−j′,k′ .

(2.117)

The diagrammatic analogue of the exact vertex function of (2.100), is

Γk,j,k−j

=

T̂k,j,k−j

+ I4

Gk′,k′′

Gj′,j′′

Γk′′,j′′,k−j

; (2.118)

the quantity I4 is used here in place of δΣk,j/δGk′,j′ . This equation can be substituted

into the vertex term of (2.117), giving

=

T̂

G

G T̂

+
T̂

G

G

I4

G

G

Γ ;

(2.119)

where wave-vector labels have been suppressed; the analogous equation to this diagram

is

Σk,k′ =
1

2
T̂k,j,lGj,j′Gl,l′T̂k′,j′,l′ +

1

2
T̂k,j,lGj,j′Gl,l′

[
δΣj′,l′

δGm,n

]
Gm,m′Gn,n′Γk′,m′,n′ . (2.120)
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The four-point term I4 can be written as

I4 =
δ

δGm,n

(
1

2
T̂j′,g,hGg,g′Gh,h′Γl′,g′,h′

)

=
1

2
T̂j′,m,hGh,h′Γl′,n,h′ +

1

2
T̂j′,g,mGg,g′Γl′,g′,n

+
1

2
T̂j′,g,hGg,g′Gh,h′

δ

δGm,n

(
Γl′,g′,h′

)
, (2.121)

with the corresponding diagram

I4 =
T̂

+
T̂

G

Γ T̂

G

Γ
+

T̂
G

G
I5

. (2.122)

The term I5 ≡ δΓl′,g′,h′/δGm,n has been introduced merely as a label. Temporarily

abandoning all labels, it can be seen that by inserting this term into (2.119) results in

= + + · · ·

; (2.123)

which can be further written with the bare vertices as

= + + · · ·

. (2.124)

Note that T̂ is a 2 × 2 × 2 tensor, and it can be shown [55, 79] to be symmetric with

three nonzero entries, labelled here with its “extended field vector” indices,

[
T̂k,j,l

]

++−

=
[
T̂k,j,l

]

+−+

=
[
T̂k,j,l

]

−++

. (2.125)

Using this and noting that only [Ga,b]
−−

vanishes, the self-energy is constrained to have

only one zero component, [Σa,b]
++

. The remaining terms of the self-energy are found
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to be

− + = + + +

+ + + + + · · · ;

(2.126)

for the off-diagonal terms (recall that Σa,b is a 2×2 tensor), and

− − = + + +

+ + + + + · · · ;

(2.127)

as the non-vanishing diagonal component. Both of these equations have been shown

only to fourth-order in T̂ as this is the extent of this study.

To make a connection to the original work of MSR, note that the non-vanishing

elements of the self-energy tensor obtained above can be written as

Σ1 = 1
2

α + 1
2 β + 1

2 β + 1
2

γ , (2.128)

Σ2 = 1
2

α + 1
2

α + 1
2 β , (2.129)

where α, β, and γ are arbitrary labels for the vertex corrections,

= + + + + O(T̂ 5) ,α

(2.130)

= + + + O(T̂ 5) ,β

(2.131)

= + O(T̂ 5).γ

(2.132)

These three terms correspond to the non-vanishing elements of Γ, which are Γ
−++,
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Γ
−−+, and Γ

−−−
, again using the extended field-vector indices. In their paper, (2.128)

and (2.129) are given as

Σ1 = 1
2

α + β + 1
2

γ , (2.133)

Σ2 = α + 1
2 β , (2.134)

with a slightly different set of vertices, namely

β = + + O(T̂ 5) ;

(2.135)

only a term has been removed from the β-correction and all other corrections are the

same. While their analytic formalism is intact, this mis-interpretation into diagrams

leads to some confusion in the number of diagrams present and seemingly results in the

absence of a particular diagram; these issues are addressed in the next section.

The nonzero entries of G connect to those of T̂ to give expressions for the three

nonzero vertex corrections of Γ. Inserting these into their respective positions in the

self-energy diagrams (2.133) and (2.134) gives the self-energy diagrams to fourth-order.

Then, the expanded self-energies are inserted into (2.114) to obtain the propagator

diagrams to fourth-order,

= + + +℘2 ℘4 ℘4

+ + +
℘4

2
℘4 ℘4

+ + +
℘4

2
℘4

2
℘4

2

+ + +
℘4

2
℘4

2
℘4

2

+ +
℘4

2
℘4

2
.

(2.136)

A factor ℘ has been introduced for each vertex as the relative weightings of these terms

are different between MSR and Wyld.
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Using this propagator expansion, the terms in (2.110) for the exact correlator may

now be determined. Those terms obtained from the forcing function are

= + ℘2
+ ℘2

(W1) (W4) (W3)

+ ℘4
+ ℘4 ℘4

(W21) (W20) (W5)

+ ℘4
+ ℘4 ℘4

2(W17) (W16) (W29)

+
℘4

2
+ ℘4 ℘4

(W28) (W33) (W24)

+ ℘4
+ ℘4 ℘4

2(W32) (W25) (W31∗)

+
℘4

2
+

℘4

2
℘4

2(W22∗) (W26∗) (W27∗)

+
℘4

2
+

℘4

2
℘4

2(W19∗) (W18∗) (W31∗)

+
℘4

2
+

℘4

2
+

℘4

2(W22∗) (W19∗) (W18∗)

+
℘4

2
+

℘4

2
+

℘4

2(W26∗) (W27∗) (W23∗)

+
℘4

2
+

℘4

2
+

℘4

2(W30∗) (W23∗) (W30∗)

.

(2.137)

The labels (Wn) correspond to Wyld’s diagrams as seen in fig. 2.2. Additionally,

the diagrams whose labels contain an asterisk denote diagrams which have half the

weighting as their Wyld counterparts but for a given (Wn), there are two such diagrams

in this equation and their sum gives the correct weighting. The reason for this can be

seen in that the diagrams are symmetric when reflected about a horizontal line. In

Wyld’s formalism such diagrams are equivalent.

50



2.4. Comparison

Those diagrams representing the self-energy interaction are expressed by

Σ1 = + +
℘2

2 ℘4 ℘4

+ + +
℘2

2
℘4

2
℘4

2

+ + +
℘2

2
℘2

2
℘2

2

+ + +℘4 ℘2

2
℘2

2

+ +
℘2

2
℘2

2

(W2) (W13) (W12)

(W6) (W8) (W9)

(W15) (W11∗) (W11∗)

(W10∗) (W7∗) (W10∗)

(W7∗) (W14)

.

(2.138)

Combining (2.137) and (2.138) together gives the diagrammatic equation for the exact

correlator function expanded to fourth-order in the bare vertex as obtained via the

MSR formalism. There are 44 diagrams counted in these two equations, confirming

a statement made by the authors. Note that some of the diagrams are repeated but

these are still accounted for by their adjusted weighting factors. Comparing these two

equations to the diagrams given in fig. 2.2, it can be concluded that the MSR formalism

gives the primitive correlator expansion of Wyld provided the factor ℘ = 2.

2.4 Comparison

The renormalised diagrammatic expressions for homogeneous isotropic turbulence have

been presented here according to the formalisms of Wyld (sections §2.2.2, 2.2.3) and

Martin, Siggia, and Rose (§2.3.2). It is at this stage that some comparisons between

the two formalisms can be made. The first of the following sections compares the

new resummation of Wyld presented in section §2.2.3 to the exact expressions for the

self-energy and vertex diagrams derived in MSR. The next section follows with a few

remarks on MSR’s original expansion for the correlator in terms of bare diagrams.
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2.4.1 The Resummation of Wyld

In order to make a better comparison of the diagram equations as obtained in their

respective formalisms, some rearrangement of terms is necessary.

Looking again at the propagator expression of Wyld in (2.61), this equation can

be written in such a way as to anticipate the MSR form of the propagator with the

self-energy term









= + 4 + 16 + O(λ6)

= + 4 + 16 +O(λ6) .

(2.139)

This can be done since the construction of the propagator expansion from the 〈f ⊗ u〉-

term maintains the left-most propagator and vertex remain unrenormalised. Noting the

reflection-symmetry of Wyld diagrams, the fourth-order term in (2.139) can be written

as a sum of two terms,

2 = +

. (2.140)

This allows the above equation for the propagator, (2.139), to be written using two of

the MSR-vertex terms, Γ(α) and Γ(β) (see (2.130) and (2.135)):







= + 4 α + 8 β +O(λ6)
. (2.141)

In all further diagrams of both formalisms, diagrams that are equivalent through this

symmetry will be combined.

The “O(λ6)” has been kept explicit as the above only applies to fourth-order; the

next order has not been analysed. If however, all terms of O(λ6) can be contained

in either of these two self-energy components, the MSR propagator given in (2.114) is

recovered,

ΣB= +
.
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Before continuing with Wyld, it will be helpful to rewrite the diagram equation for

the exact MSR-correlator, seen in (2.110) and reproduced here,

ΣA= +
.

It is this equation that MSR give as part of their DIA equation (see fig. 8 in

[58]). However, it requires some slight modification to accurately depict the DIA-

correlator. Substituting the propagator equation given above (from (2.114)) for the

exact propagator on the left of the force-force correlation, 〈f ⊗ f〉 and the self-energy

term, Σ
−−

, the correlator equation can be made to resemble the DIA equation more

accurately,

= + ΣB

+ ΣA + ΣB ΣA

. (2.142)

= +

+ + O(λ4) .
(2.143)

However, in making the comparison with Wyld, it will be better to use (2.142). The

self-energy terms ΣA and ΣB can be written explicitly as

ΣA = ℘2

2 + ℘4

2 + ℘4

+ ℘4 + ℘4 + ℘4

2

, (2.144)

ΣB = ℘2 + ℘4 + ℘4

+ ℘4 + ℘4

. (2.145)

The factor ℘, associated with each vertex, has been included for convenience.
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The terms with only one self-energy component are given as

ΣA = ℘2

2 + ℘4

2

+ ℘4 + ℘4

+ ℘4 + ℘4

2

, (2.146)

and

ΣB = ℘2 + ℘4

+ ℘4 + ℘4

+ ℘4

. (2.147)

The term with both ΣA and ΣB will not be expanded. This term can be combined with

(2.147) to give

ΣB + ΣB ΣA = ΣB . (2.148)

Using the expressions (2.146)-(2.148), these equations can be substituted back into
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(2.142),

= + 4 + 2

+ 16 + 16 + 16

+ 16 + 16 + 8

+ 16 + 16 + 8

.

(2.149)

The term ℘ = 2 has been used; this will enable the comparison with Wyld. To make a

comparison with this correlator, some adjustment is required for the Wyld correlator.

The equation for the correlator given in (2.64),

= 〈ff〉 + 2 + 4

+ 16 + 16

+ 8 + 16 + O(λ6) ,

(2.150)

can be expanded using the renormalised vertex expansion of (2.53) and truncated to
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fourth-order, leaving

= 〈ff〉 + 2 + 4

+ 16 + 8 + 16

+ 16 + 8 + 16

+ 16 + 16 + 16

.

(2.151)

This equation can be readily compared to (2.149). The double-force correlation term

in Wyld can be connected with that given in MSR (see (2.116)), 〈ff〉 = .

The equations (2.149) and (2.151) are equivalent. It can be said that the results

produced by both formalisms are equivalent to fourth-order. This raises questions on

the claims by MSR and Kraichnan over the mistreatment of the vertex renormalisation

by Wyld. Their claim was that Wyld was missing certain classes of vertex corrections,

namely (2.132) and (2.135). It was shown that ‘new’ irreducible diagrams were found

by applying a different resummation method, resulting in (2.64). Therefore, their claim

is somewhat substantiated as Wyld’s original resummation did not distinguish these

terms.

2.4.2 Remarks on the Primitive Correlator Expansion of MSR

At the end of the last section, it was shown that the primitive correlator expansion of

MSR is indeed equivalent to that of Wyld up to and including fourth-order. While the

exposition here has taken care to demonstrate all steps in the MSR diagrammatic

treatment of homogeneous, isotropic turbulence, it must be noted that it is not

immediately obvious from their paper that they are able to reproduce the Wyld

diagrams for the primitive correlator expansion.

The main problem that has been found in this study is their equations for the vertex

corrections, which are seen here in (2.130), (2.132), and (2.135). It was noted previously

that (2.135) lacks a particular diagram which can be seen by comparing this equation

to (2.131). These vertex corrections along with the self-energy equations, (2.133) and
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(2.134), and the diagrams for the exact correlator and propagator, (2.110) and (2.114),

respectively, are those found in their paper. Using these, one will find that all diagrams

of the primitive correlator expansion of Wyld are not reproduced. This is not to suggest

that Wyld’s equation is a benchmark, but obtaining the primitive correlator expansion

is expected.

The result of their vertex corrections is the absence of

,

which is diagram (W10) in fig. 2.2. This diagram cannot in general occur according

to the original MSR diagrams. Thus it appears that there has been a slight mis-

interpretation of their formalism for HIT to diagrams.

Additionally, the proper-weighting is left to confusion as there is no specification

of it within the paper itself. It has been assumed here that one exists, to which ℘ has

been used. Setting ℘ = 2 does give the proper Wyld weightings but this cannot be

known a priori.

None of these remarks are meant to discredit the MSR formalism as these are not

serious flaws of their work. For the purposes of using it for homogeneous, isotropic

turbulence with Gaussian statistics, it appears to work very well. The problems

mentioned here only refer to the transposition of their formalism to diagrams as

presented in their original work.

2.5 Discussion

The formalisms of Wyld and Martin, Siggia, and Rose have been presented in detail is

this chapter. Specific attention has been given to the diagrammatic interpretations of

both formalisms, as this is where the primary discrepancies occur.

2.5.1 Conclusions

A new derivation of the propagator for the Wyld formalism has been demonstrated that

obtains the propagator proposed by Lee. The main feature of this resummation is that

the left-most propagator and left-most vertex remain unrenormalised; these quantities

are by construction not included in the correlation of the triple-moment of (2.46) and

are effectively not part of the closure. Applying this method for the propagator, one

directly obtains the DIA results when truncated to lowest nontrivial order but finds

additional irreducible diagrams. These irreducible diagrams have counterparts in the

MSR equation for the exact correlator.
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The MSR formalism was also presented here with a detailed the diagrammatic

application to homogeneous isotropic turbulence. It has been found here that the

diagrams given in their original paper correctly give the Wyld results as MSR claim.

Following the diagrammatic treatment demonstrated here, their formalism produces a

correlator expansion that is a one-to-one correspondence with that of Wyld to fourth-

order.

Furthermore, using the resummation introduced here, the Wyld equations for the

exact correlator and propagator have been shown to be those of MSR. The ‘missing’

vertex corrections were found in the new irreducible terms generated by the new

resummation.

It is therefore the conclusion of this work that both formalisms agree to fourth-

order. This means that the Wyld formalism with the diagrammatic resummation used

here produces equations for the exact correlator, propagator, and vertex corrections

that are the same as those obtained using the formalism of MSR.

2.5.2 Further Work

A primary motivation in this chapter has been to attempt to resolve a long-standing

debate on why these formalisms clashed. There seems to have been a complete rejection

of Wyld’s method on the basis of his failure to renormalise the propagator correctly.

It has been shown here that Wyld’s method is nearly equivalent to that of MSR. If

the Wyld formalism can be brought to the sort of acceptance that the MSR formalism

enjoys, then it could offer turbulence some of the usefulness of diagram equations found

in high-energy physics.

It is not fully understood whether such diagrammatic representations in turbulence

can be related to the physical system it is constructed to represent, as in the case of

particle physics where the diagrams create a conceptual analogue [93]. As in particle

physics, the diagrams of these formalisms convey a sense of histories embedded in the

network of propagators and correlations found in higher-order diagrams. This does help

in illustrating the dynamics the diagrams are meant to convey but it is not clear what

role the topology plays. Furthermore, the resummation of propagators and vertices can

be said to account for the short memory of the collective interactions of a turbulent

fluid, allowing meaningful truncations to be applied. Analogous to mass and charge

renormalisation in QED [89], one may consider this to be ‘viscosity’ and ‘interaction’

renormalisation, though further work is needed to establish this firmly.

In attempting to resolve the discrepancy here, it is believed that these formalisms

can offer a stronger foundation of the Local Energy Transfer (LET) theory of McComb,
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which is the subject of the following chapter and is used in subsequent chapters

of this thesis. In its present state, the LET-correlator equation uses diagrammatic

resummation much like that of Wyld but postulates a relationship between the

correlators and propagators using a fluctuation-dissipation relation. It is thought that

studying these formalisms will offer insight on how to derive the correlator-propagator

relationship that is essential to the LET.
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Chapter 3

LET Theory of Turbulence and

its Numerical Solution

This chapter summarises the construction and operation of the LET2008 code, a

numerical solution of the Local Energy Transfer (LET) theory of turbulence. A brief

overview of the LET is discussed, focusing on the equations that are key to the theory

and the method of numerical solution. Results comparing the current code to results

of direct numerical simulation (DNS) as well as to past versions show that the current

code’s operation is in order for decaying turbulence. Similar comparisons against a past

version for forced turbulence show adequate results. Details are also given for a new

time-truncation method employed in the current code.

3.1 The Local Energy Transfer Theory of Turbulence

The Local Energy Transfer theory is a statistical closure for homogeneous, isotropic

turbulence. It uses a closure based on the hypothesis that the dominant interactions

of the mode-coupled velocity field coefficients in the nonlinear term are local in

wavenumber space. This was originally created in the 1970s as an eddy-viscosity

model of turbulence [94, 95]. It has since been redeveloped [96–98] as a renormalised

perturbation theory like the early Eulerian theories of Kraichnan [50–52].

The LET’s most important feature is its use of a fluctuation-dissipation relation;

this was introduced in the earlier versions to connect the Fourier coefficients of the

velocity field at different times via a propagator function,

uα(k, t) = Rαβ(k; t, t′)uβ(k, t′). (3.1)

However, defined in this way, unphysical mathematical constraints were imposed on
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them. The breakthrough [35, 98, 99] came in noting that the problems associated

with the velocity field coefficients were alleviated when the fluctuation-dissipation

relationship was applied to the correlation of the velocity field coefficients:

uα(k, t) = Rαβ(k; t, t′)uβ(k, t′)
︸ ︷︷ ︸

LET ca. 1978

→ Cαβ(k; t, t′) = Rαγ(k; t, t′)Cγβ(k; t′, t′)
︸ ︷︷ ︸

LET ca. 1992

. (3.2)

This addressed the problem of unphysical fixed-phase relationships expressed in the

early derivations; for a full discussion see [35].

The LET claims successes in producing satisfactory results in decaying and

forced turbulence. In the past, it has been shown to display the correct turbulent

phenomenology for decaying turbulence and compared well to Kraichnan’s DIA [100].

It has succeeded in producing proper velocity-field statistics [97] and has been used in

investigating the passive scalar convection [98]. In more recent times it has been tested

against DNS and adapted to incorporate forced turbulence, also tested against DNS

[101, 102]. It is considered the only Eulerian closure capable of producing a Kolmogorov

inertial range [103]. Further developments have seen the LET reformulated and re-

derived to obtain more computationally tractable Markovian versions, see [104–108].

3.1.1 The LET Equations

It is generally the case that when dealing with closure models, the primary quantity

of interest in homogeneous isotropic turbulence is the correlation, or correlator, of the

velocity field. The LET is no exception to this but does make the point of using both

single- and two-time correlators, which distinguishes it from other closures. According

to the LET, the time-evolution of these quantities is given by

∂tC(k; t, t) = −2νk2C(k; t, t) + 2P (k; t, t) (3.3)

∂tC(k; t, t′) = −νk2C(k; t, t′) + P (k; t, t′) (3.4)

where
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P (k; t, t′) =

∞∫

0

dj 2πj2
−1∫

1

dµL(k, j, µ) ×

( t′∫

0

dsR(k; t′, s)C(j; t, s)C(|k − j|; t, s)

−

t∫

0

dsR(j; t, s)C(k; s, t′)C(|k− j|; t, s)

)
. (3.5)

As in most closure hypotheses, an additional function, the propagator or response

function R(k; t′, s), is included to effect the closing of the statistical hierarchy. For the

LET this is the addition of a fluctuation-dissipation relation to connect the single- and

two-time correlators via the response function,

C(k; t, t′) = R(k; t, t′)C(k; t′, t′). (3.6)

As the response functions in the time-evolution equations can be replaced by a ratio of

two- and single-time correlators, a closed set of equations is now achieved. This set of

equations, (3.3)-(3.6), is called the LET equations. A summary derivation of (3.3) is

given in the chapter appendix 3.A.

Given the form of these equations, they may be numerically integrated forward in

time from an initial condition, in the form of a energy spectrum, to give a dynamical

simulation for the statistics of a turbulent fluid. They may also be adapted to include

an external forcing term to compute for stationary systems.

3.1.2 Decaying Turbulence versus Forced Turbulence in the LET

The investigation of homogeneous isotropic turbulence is generally split among two

canonical directions: freely-decaying turbulence and externally-forced turbulence. The

case of decaying turbulence has a unique position in that it gives access to studying

the effects of the inertial transfer mechanisms first-hand, without the encumbrances

of boundary conditions and/or external forces which may skew the dynamics thereby

masking the true mechanisms at work [3]. Examination of this kind of turbulence

requires an initial condition strong enough to induce turbulence from which the system

decays. Conversely, the use of external forcing intentionally perturbs the system to

study the response of the inertial mechanisms to continual or periodic energy injection.

This effect biases the observable parameters of the system based on how and where (in

terms of the physical length scales or wavenumber spectrum) the forcing is implemented
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[24].

The current numerical solution of the LET has been constructed to deal with

both cases. The very early instances of the computation were developed solely for

decaying turbulence [97, 98, 100], and only rather recently has it been extended to

forced turbulence [101]. The current LET code computes both freely-decaying and

forced turbulence, and extends the Reynolds number in both cases. These results are

given in the next chapter.

3.2 Numerical Analysis of the LET

The LET has been computed previously, most notably in 1984 [100], 1989 [97], 1992

[98], and most recently in 2000 [101]. The current code, hereafter called ‘LET2008’, is

a re-build of the previous code, LET2000 from [101]. LET2000 was itself a rebuild of

LET1984 and included the functionality to directly compute and compare the results

of both codes. In addition, LET2000 provides functionality to compute Kraichnan’s

DIA equations. The LET2000 code has shown its robustness in handling both decaying

and forced turbulence with successful comparisons to DNS of up to Taylor-Reynolds

numbers of Rλ ∼ 129 and Rλ ∼ 230 for decaying and forced turbulence, respectively.

3.2.1 Numerical Solution Method

The solution of the LET equations is the numerical integration of the discretised single-

and two-time LET equations of the form

C(k; ti, ti) = e−2νk2∆tC(k; ti−1, ti−1) +
1

2νk2

(
1 − e−2νk2∆t

)
×

(
P (k; ti−1, ti−1) + P (k; ti, ti)

)
, (3.7)

C(k; ti, tj) = e−νk2∆tC(k; ti−1, tj) +
1

2νk2

(
1 − e−νk2∆t

)
×

(
P (k; ti−1, tj) + P (k; ti, tj)

)
, (3.8)

with the response functions contained within the functions P (k; ti, tj) being replaced

by

R(k; ti, tj) =
C(k; ti, tj)

C(k; tj, tj)
. (3.9)
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The complete derivation of these equations may be found in [101].

Discretised Equations of Motion

As implied in the equations given above, the domain used for computation is discretised

in both time and wavenumber space. Though past versions of the LET have employed

both variable and logarithmic time- and wavenumber-stepping, see for example [100],

the current code uses fixed, linear stepping in both domains.

The time discretisation uses a physical time appropriate for a physical system to

evolve which in the present case ranges from 1.5-15 s. This length of time is divided into

a number of timesteps of length ∆t with the constraints that ∆t . 1/U(t)ktop, 1/νk2
top,

depending on which is smaller. These represent the characteristic convection and

decay times, respectively. The quantity ktop marks the largest wavenumber used in

the computation; it also resolves the dynamics of lengthscales on the order of 1/ktop.

Ideally an adaptive algorithm would be applied at all times to ensure ∆t conforms to

the convection constraints, however it has been found that ensuring ∆t . 1/U(0)ktop

is sufficient for present purposes.

The discretisation of the wavenumber range takes a similar approach. However,

rather than using the endpoint values as in the time-discretisation, a midpoint method

is used such that for an array of wavenumbers ki separated by a stepsize of ∆k, the

value for a wavenumber used in the computation is kn = (ki + ki+1)/2. This definition

sidesteps possible divide-by-zero errors when ki=0 = 0.

In making the projection from the 3-dimensional to a 1-dimensional system, the

parameter µ ≡ (k · j)/kj has been introduced (see (3.43) and (3.44) in the appendix

3.A to ths chapter). This parameter is the cosine of the angle between the two wave-

vectors k and j and ranges from [1,-1]; it occurs in the so-called “L-coefficient” as well

as in the computation of C(|k− j|; t, t′). There is a singularity in the L-coefficient

corresponding to µ = 1 and k || j which is navigated by choosing the midpoints on

the µ-array as was done in the case of the array of wave-vectors. It is important to

point out that an analytical or empirical relationship exists linking the stepsizes ∆k

and ∆µ to ensure maximum coverage of the wave-vector space with a minimum of

computation. No investigation was made into the relationship between the stepsizes

∆k and ∆µ; Quinn used a standard ∆µ = .02 for all computations where ∆k = 1 and

this has been followed here.

3.2.2 The Time Integration Algorithm

The well-known predictor-corrector algorithm [109, 110] was employed to create and

use this information to step the system forward in time.
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The predictor-corrector method involves the use of an initial condition or known

solution for functions of ti−1 to be used in the place of ti in the equation(s) that relates

functions of ti−1 to those of ti. More specifically, in (3.7) and (3.8), the functions

P (k, ti, ∗) depend on correlations C(j, ti, ∗); these transfer-correlation function terms

are replaced with their ti−1-values, giving a ‘predicted’ value for C(k, ti, ∗). The

predicted correlators are then used in the transfer-correlation, leading to a prediction

for those terms. The process is iterated with the predicted functions being replaced by

‘corrected’ functions. Further corrector iterations are used if needed for convergence

upon a solution.

Decreasing the Memory Kernel

Noting that for a given time, ti, (3.7) and (3.8) depend on functions of all previous time

points. This can be explicitly seen in the time integrals of P (k; ti, ti) in (3.5) which

involve correlation functions of all times 0 ≤ t ≤ ti; this is referred to as the “memory

kernel” as it comprises all information about the system’s evolution in time.

As the system evolves this information increases. In practise, this implies that

the amount of memory needed and the number of computations required will increase

exponentially with time. A method for memory truncation developed by Quinn in the

LET2000 code called the “Time History Integral Truncation” (THIT). It reduces the

number of computations by eliminating elements from the two-time P -transfer function,

P (k; ti, tj). The truncation resets the lower limits on the time-integrals in (3.5) to a

value that is a fixed number of timesteps below the larger of the two times ti and tj.

For ti > tj , the new limit would be ti − NT:

PT(k; ti, tj) =

∫
d3jL(k, j, µ)

( tj∫

ti−NT

dsR(k; tj, s)C(j; ti, s)C(|k− j|; ti, s)

−

ti∫

ti−NT

dsR(j; ti, s)C(k; s, tj)C(|k − j|; ti, s)

)
. (3.10)

The effect is that the turbulence remembers only N timesteps, thereby reducing the

number of calculations significantly.

This may be seen as retaining some of the near neighbours of the time diagonal.

One may consider a N × N = 5 × 5 array Pi,j such that
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Pi,j =





P0,0 P0,1 P0,2 P0,3 P0,4

P1,0 P1,1 P1,2 P1,3 P1,4

P2,0 P2,1 P2,2 P2,3 P2,4

P3,0 P3,1 P3,2 P3,3 P3,4

P4,0 P4,1 P4,2 P4,3 P4,4




.

This array corresponds with the P -transfer function for a particular wavenumber

P (k; ti, tj). Keeping only NT = 3 timesteps, the array reduces to

PT
i,j =





P0,0 P0,1 P0,2

P1,0 P1,1 P1,2 P1,3

P2,0 P2,1 P2,2 P2,3

P3,1 P3,2 P3,3 P3,4

P4,2 P4,3 P4,4




,

which is a calculation involving (N − NT)(NT − 1) + NNT-terms rather than N2 (for

the present case of N = 5 and NT = 3, 25 terms are reduced to 19).

The LET2000 code truncation reduces only the P -transfer functions while still

computing all two-time correlators; the LET2008 code truncation does not compute

those correlators which do not occur in the time kernel of the P -transfer function

eliminating further computations. The result is a negligible difference in all parameters

showing this truncation to be useful. Examples of the effectiveness of this method

are given later in this chapter. It is interesting to note that through the fluctuation-

dissipation relation, there exist versions of the LET that are Markovian, eliminating

the need for such truncations; for details see Oberlack et al [104], and the work of

McComb and Kiyani [105, 108].

3.3 Benchmarking the LET2008 Code

The original codes of 1984, and in 1992, were contructed using Fortran-77. Later, in

2000, the code was rebuilt using the Fortran-90 architecture and was benchmarked

against its precursors. Detailed comparisons were made showing the new LET2000

code’s ability to reproduce the workings of the LET1984 code with success. In addition,

the LET2000 was also the first to be tested directly against DNS for decaying and forced

turbulence. All details of this testing are given in Quinn [101].
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3.3.1 Turbulence Quantities

For what is to follow, it is useful to define various quantities that will be presented in

the plots. As given in the previous section, there are two quantities that are directly

computed in the LET2008 code, the correlation C(k; t, t) and transfer-correlation

function P (k; t, t).

Spectral Quantities

There are four spectral quantities that will be presented below. These have been seen

in the first chapter and are given here using C(k; t, t) and P (k; t, t):

Energy Spectrum E(k, t) = 4πk2C(k; t, t), (3.11)

Dissipation Spectrum D(k, t) = 2νk2E(k; t)

= 8πνk4C(k; t, t), (3.12)

Energy Transfer Spectrum T (k, t) = 8πk2P (k; t, t). (3.13)

The factor 4πk2 that arises in each of these definitions is due to the total energy being

related to the velocity correlation (see chapter appendix 3.B). The fourth spectral

quantity used is the flux,

Π(k, t) ≡ −

k∫

0

dj T (j, t) =

∞∫

k

dj T (j, t), (3.14)

also defined in chapter 1.

Integral Parameters

The integral parameters include the mean total kinetic energy, the rms velocity,

the mean dissipation rate two lengthscales. These are computed from the spectral

quantities defined above. Thus, the mean total kinetic energy and mean dissipation

rate are defined by integrating the spectral quantities over the whole of wavenumber

space,

E(t) ≡

∞∫

0

dkE(k, t), (3.15)

and

ε(t) ≡

∞∫

0

dkD(k, t) =

∞∫

0

dk 2νk2E(k, t). (3.16)
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The rms-velocity is obtained from the mean total kinetic energy using

E(t) ≡
3

2
U(t)2. (3.17)

There are two lengthscales commonly encountered in the turbulence community: the

integral lengthscale, L(t) and the Taylor lengthscale, λ(t) [111]. These are defined as

follows:

L(t) ≡
3π

4E(t)2

∞∫

0

dk k−1E(k, t), (3.18)

and

λ(t) ≡

(
15νU(t)2

ε(t)

)1/2

. (3.19)

Note that the integrals here span the full wavenumber range, however this is not

possible in practise as the limits are bounded by the lowest and largest wavenumbers

specified by the computation parameters. Therefore, the limits in the integral are set

to kbottom and ktop.

One further quantity used here is the velocity derivative skewness,

S(t) ≡ −

〈
(∂u1(x, t)/∂x1)

3
〉

〈
(∂u1(x, t)/∂x1)2

〉3/2
. (3.20)

The notation here may be misleading as the velocity skewness, similarly defined [28],

can be found with the same notation. An alternate definition [25] that utilises the

spectral equations used in the computations here is

S(t) ≡ −
2

35

(
15ν

ε(t)

)3/2
∞∫

0

dk k2T (k, t). (3.21)

The velocity-derivative skewness offers an important quantity for the comparison of

computational models based on the DIA or LET theories as it is considered a sensitive

measure of turbulence (see [112]). The skewness was used frequently in Quinn to check

the resolution and memory-kernel truncation.

3.3.2 Initial Energy Spectra

In computations of decaying turbulence, an initial state with nonzero energy is needed

from which the system will evolve. All spectra used have the same general form:

E(k, 0) = c1k
c2 exp(−c3k

c4) (3.22)
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where the constants are given in Table 3.1. The spectra are given labels that roughly

Spectrum c1 c2 c3 c4

I 0.00524169 4 0.088388 2
II 0.0662912 1 0.022097 2

III 0.0662912 1 0.210224 1
IV 0.4 1 0.5 1
V 0.001702 4 0.08 2

VI 0.031913 2 0.08 2

Table 3.1: Initial energy spectra parameter values

correspond to their chronology. Spectra I and II were originally found in Ogura [48],

and reused in Kraichnan along with Spectrum III [113]. All three of these spectra were

used for the LET1984 code in [100], which also introduced Spectrum IV. Quinn [101]

added an additional spectrum, V. All spectra with the exception of Spectra V and VI

may be integrated analytically to give the initial total kinetic energy density 1.5 m2/s2,

which implies an initial rms velocity U(0) = 1 m/s. The following figure shows the

shape of all initial energy spectra.
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Figure 3.1: The six initial spectra used in the computation of LET2008. Spectra V
and VI were extended to higher Reynolds numbers for freely-decaying turbulence, and
Spectrum I was extended to higher Reynolds numbers for forced turbulence (see next
chapter).

In forced turbulence, the initial energy spectrum is wiped away by the effects of

the forcing, which after some time establishes a steady-state with a new (constant)
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energy spectrum that takes shape according to the intensity, the injection rate, and

wavenumber(s) in which the energy is input. Figure 3.2 shows the same final

steady-state energy spectrum dictated by the forcing using different initial spectra I-V

(compare to the initial shapes in fig. 3.1). Correspondingly, the inset gives the total

kinetic energy density of the same initial spectra, showing how they evolve over time

to the same final state.

3.3.3 Decaying Turbulence with the LET

In this section, the LET2008 code is used to investigate the LET’s ability to reproduce

appropriate turbulent quantities for the case of free-decay. Some results can be checked

against the LET2000 code, which, as noted earlier, has been checked against the

LET1984 code and DNS computations using the same initial energy spectra. This

includes computations using initial spectra I-V, which all occur in previous studies (see

above). As spectrum VI is new to this project, there are no previous results to compare

against, but there exists new data from current DNS computations that can be used

for comparison. Spectra V and VI are shown in comparison to the DNS-based results.
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Comparison with LET2000

The LET2008 code is negligibly different than the LET2000 code and all expectations

are that it should perform up to the same standard.

To demonstrate the current code’s reliability in matching the earlier code, plots

of the integral parameters, computed using the spectra I-IV, are given in figs. 3.3,3.4,

and similar plots using a single initial energy spectrum, Spectrum V, and different

viscosities are given in figs. 3.5, 3.6. All computations shown here use the same input

parameters as those set by Quinn (see Appendix A of [101]).

For most parameters in figs. 3.3-3.6, the matching is fairly good. The dissipation

rate ε(t) and the skewness S(t) consistently show the largest discrepancies between the

two codes, but never more than 10%. The skewness of LET2008 is, in all cases, lower

than that of LET2000. The lengthscales of Rλ(0) ∼ 2.58 in fig. 3.5, also show growing

deviations among the two computations but this seems to resolve as the Reynolds

number is increased.

Comparison with DNS

As Spectra VI has been newly introduced for the current study, there are no historical

measures to compare it against. However, recent work by Yoffe [114] has allowed some

comparisons to be made against DNS. The following baseline results for spectra V and

VI will be given for some viscosities in much the same manner as Quinn’s Spectrum V,

except in this case the viscosities will be ν = .1, .05, .01, .005. These viscosities do not

achieve the moderate Taylor-Reynolds numbers as given in Quinn as these were not

available for comparison using the current DNS.
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Figure 3.3: Comparison plots of integral parameters from the LET2000 (blue) and
LET2008 (red) for LET computations of Spectrum I (left) and Spectrum II (right).
The error-bars on the LET2000 plots represent ±10%; the LET2008 results typically
fall well within these bounds. The 0-subscripts designate initial values for integral
parameters, e.g. E(0) ≡ E0.
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Figure 3.4: Comparison plots of integral parameters from the LET2000 (blue) and
LET2008 (red) for LET computations of Spectrum III (left) and Spectrum IV (right).
The error-bars on the LET2000 plots represent ±10%; the LET2008 results typically
fall well within these bounds. The 0-subscripts designate initial values for integral
parameters, e.g. E(0) ≡ E0.
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Figure 3.5: Comparison plots of integral parameters from the LET2000 (blue) and
LET2008 (red) for LET computations of Spectrum V, ν = .1 (left) and Spectrum V,
ν = .01 (right). The error-bars on the LET2000 plots represent ±10%; the LET2008
results typically fall well within these bounds. The 0-subscripts designate initial values
for integral parameters, e.g. E(0) ≡ E0.
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Figure 3.6: Comparison plots of integral parameters from the LET2000 (blue) and
LET2008 (red) for LET computations of Spectrum V, ν = .0027 (left) and Spectrum
V, ν = .002 (right). The error-bars on the LET2000 plots represent ±10%; the LET2008
results typically fall well within these bounds. The 0-subscripts designate initial values
for integral parameters, e.g. E(0) ≡ E0.
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(blue) and LET2008 (red) computations of Spectrum V, ν = 0.1.
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Figure 3.8: Comparison plots of energy (left) and transfer (right) spectra from the DNS
(blue) and LET2008 (red) computations of Spectrum V, ν = 0.05.
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Figure 3.11: Comparison plots of integral parameters from the DNS (blue) and
LET2008 (red) computations of Spectrum V, ν = 0.1.

79



Chapter 3. LET Theory of Turbulence and its Numerical Solution

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.5  1  1.5  2  2.5

E
(t

)/
E

0
, 

 U
(t

)/
U

0

t U
0
/L

0

E(t)
U(t)

 0.8

 1.2

 1.6

 2

 0  0.5  1  1.5  2  2.5
L

(t
)/

L
0
, 
λ(

t)
/λ

0

t U
0
/L

0

L(t)
λ(t)

 0

 0.25

 0.5

 0.75

 1

 0  0.5  1  1.5  2  2.5

ε(
t)

/ε
0

t U
0
/L

0

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0  0.5  1  1.5  2  2.5

S
(t

)

t U
0
/L

0

 0

 1

 2

 3

 4

 5

 6

 7

 0  0.5  1  1.5  2  2.5

R
e L

(t
)

t U
0
/L

0

 0

 1

 2

 3

 4

 5

 6

 0  0.5  1  1.5  2  2.5

R
e λ(

t)

t U
0
/L

0

Figure 3.12: Comparison plots of integral parameters from the DNS (blue) and
LET2008 (red) computations of Spectrum V, ν = 0.05.
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Figure 3.13: Comparison plots of integral parameters from the DNS (blue) and
LET2008 (red) computations of Spectrum V, ν = .01.
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Figure 3.14: Comparison plots of integral parameters from the DNS (blue) and
LET2008 (red) computations of Spectrum V, ν = 0.005.
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Figure 3.15: Comparison plots of energy (left) and transfer (right) spectra from the
DNS (blue) and LET2008 (red) computations of Spectrum VI, ν = 0.1.
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Figure 3.16: Comparison plots of energy (left) and transfer (right) spectra from the
DNS (blue) and LET2008 (red) computations of Spectrum VI, ν = 0.05.
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Figure 3.17: Comparison plots of energy (left) and transfer (right) spectra from the
DNS (blue) and LET2008 (red) computations of Spectrum VI, ν = 0.01.
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Figure 3.18: Comparison plots of energy (left) and transfer (right) spectra from the
DNS (blue) and LET2008 (red) computations of Spectrum VI, ν = 0.005.
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Figure 3.19: Comparison plots of integral parameters from the DNS (blue) and
LET2008 (red) computations of Spectrum VI, ν = 0.1.
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Figure 3.20: Comparison plots of integral parameters from the DNS (blue) and
LET2008 (red) computations of Spectrum VI, ν = 0.05.
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Figure 3.21: Comparison plots of integral parameters from the DNS (blue) and
LET2008 (red) computations of Spectrum VI, ν = .01.
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Figure 3.22: Comparison plots of integral parameters from the DNS (blue) and
LET2008 (red) computations of Spectrum VI, ν = 0.005.
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3.3.4 Forced Turbulence with the LET

Forced turbulence was introduced to the LET in the work of Quinn, who also developed

DNS forcing with which to compare the LET2000’s results. The results compared

well to those of the forced DNS computations, achieving a Taylor-Reynolds number of

Rλ ∼ 230.

The forcing routine which Quinn developed is completely reproduced in the current

version. It consists of injecting energy at the low-k scales, typically k=1, such that the

dissipation rate attains a steady-state with a constant value, ε = 1m2/s3. The routine

operates by adding a fixed amount of energy per time, ∆Ef , to a chosen wavenumber, kf ,

in a single timestep ∆t. The energy injection rate, ∆Ef , is chosen to fix the dissipation

rate to a desired value given the relation,

ε(t) = ∆Ef (3.23)

(see chapter appendix 3.C for this derivation). Then, for each timestep, the quantity

∆Ef∆t is added to the wavemunber kf in the energy spectrum.

It is important that implementation of the forcing routine occurs after the last

iteration of the predictor-corrector routine, prior to advancing to the next timestep,

ti + 1. This means that for the LET code, all measurements of the correlator and P -

transfer functions must be taken just before running the forcing as recording after the

routine will give ‘artificial’ results that the system will not have been able to respond

to when the measurement of these quantities is made.

It was mentioned above that the initial spectra are inconsequential to the steady-

state energy spectra that the system settles to. For the purposes of comparison,

Spectrum I was used as the initial energy spectrum. Quinn developed a DNS which

used a forcing routine that was analogous to that used in the LET2000 code. Using the

forced-DNS, the LET2000 code was shown to reasonably reproduce the same results.

In the following section, the results of the LET2008 computations for forced

turbulence are presented.

Comparison with LET2000

The LET2000 was the first application of the LET model to forced turbulence and

therefore the only available benchmark against which to test the current LET code. As

with the decaying turbulence calculations, the LET2008 results were checked against

the energy, dissipation, transfer, and flux spectra as well as the integral parameter

calculations of the LET2000 code.

There was a second spectrum included in [101] that was used in the forced turbulence
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Figure 3.23: A comparison of integral parameters from the LET2000 (blue) and
LET2008 (red) from forced computations of Spectrum I, ν = 0.01189.
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LET. This spectrum was tried in LET2008 however it was found to be unstable. A

logarithmic wavestepping was used in LET2000 whereas linear-wavestepping is used

in LET2008. Multiple resolutions in wavenumber and timesteps were attempted to

reproduce the previous results. Higher Reynolds number calculations were obtained

using Spectrum I and so further investigation in order to remedy the problems for the

second forced spectrum was abandoned.

3.3.5 Memory Kernel Truncation in LET2008

A significant reduction in time occurs when using the memory-kernel truncation

described earlier. As the current method is a further reduction from that of the THIT,

it is necessary to determine how it differs from its predecessor. The following figures

give examples the effects of the truncations on the skewness for decaying (fig. 3.24) and

forced (fig. 3.25) turbulence using the LET2008 code.

The plots of the skewness S(t) given in fig. 3.24 show how the LET2000 THIT

scheme compares to the current version. The figure shows both schemes with various-

sized memory kernels. In case of the smallest sized kernel (30 timesteps), the THIT

performs no better than the LET2008-truncation with both deviating just prior to the

40th timestep. However, in all other curves, the two schemes are indistinguishable

according to their respective kernel sizes. Note that the figure exaggerates the

differences; the inset shows the comparison of the LET2000-THIT and the LET2008

truncation, but at 30 timesteps and, at this scale, the differences are quite small.

While the truncation can save time, it does ignore information needed to correctly

model the behaviour of a turbulent system. This becomes most apparent for cases of

low Reynolds numbers where viscous effects are more important. For this reason,

computations for decaying turbulence computed here using spectra V and VI, the

truncation was only used when the viscosities were less than ν = .005. In the results of

the following chapters, the kernel was reduced to 50 timesteps where the viscosity met

this criterion.

The truncations for forced turbulence, fig. 3.25, showed no noteworthy differences

between the LET200 and LET2008 truncation schemes. There was a slight deviation

for the memory kernels of 50 steps, but this deviation was never greater than 1% and

tended to remain constant. Larger memory kernels made no significant improvements.

Unlike the case for decaying turbulence, there seemed to be no significant dependence

on the viscosity and the size of the memory kernel for the sizes (> 50 timesteps) used

in this research. In the results given in the following chapters, the memory kernel was

usually truncated to 50 timesteps for forced turbulence.
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3.4 Discussion

The LET theory of homogeneous isotropic turbulence has been outlined along with

a method of numerical computation of its solution, the LET2008 code. Like its

predecessor, LET2000, the current model is capable of computing both freely-decaying

and forced turbulence.

3.4.1 Conclusions

The LET2008 has been evaluated against LET2000 and, in some cases, tested against

DNS, specifically for the newly introduced Spectrum VI. It has been shown to

satisfactorily reproduce the results of the predecessor code in the case of freely-decaying

turbulence. Comparisons made between LET and DNS for Spectra V and VI show

some reasonable similarities in the energy spectra but consistently show differences in

the transfer spectra.

The current results for the forced turbulence benchmarks against the LET2000 code

show some discrepancies, but qualitatively the codes compare well.

Lastly, the use of a new memory-kernel truncation matches the behaviour of an

earlier truncation used by Quinn. The new truncation is relatively more efficient, and

therefore faster than that used by Quinn.

3.4.2 Future Work

As the LET is a closure, one suggestion for future work would be to use the EDQNM

for comparison. The use of EDQNM is well-documented, see for example [27, 115–119],

and can provide a useful comparison to further check the LET against.

The usefulness of the LET is limited by the ability to compute solutions to it within

a reasonable error and within a reasonable time. Using the results from [104, 105, 108],

one could construct a computation for the single-time LET. This would retain the

information of the two-time LET, but would do so at a smaller computational cost,

in both memory and time, allowing higher Reynolds numbers to be attained. This is

intriguing as no numerical computations have been made from these later analyses of

the LET.

3.A Summary Derivation of the LET Equations

The starting point for the LET is the evolution equation for the two-time correlation

tensor:
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(
∂t + νk2

)
Cαα′(k; t, t′)δ(k + k′) =

〈
fα(k, t)uα′(k′, t′)

〉
δ(k + k′)

+ Mαβγ(k)

∫
d3j

〈
uβ(j, t)uγ(k j, t)uα′(k′, t′)

〉

(3.24)

where Cαα′(k; t, t′) is defined below as

Cαα′(k; t, t′)δ(k + k′) = 〈uα(k, t)uα′(k′, t′)〉. (3.25)

This equation is obtained directly from the Fourier-space NSE by multiplying it by

uα′(k′, t′) and taking an ensemble average.

As the notation of the functions are complicated by multiple arguments, indices,

and labels, the derivation will proceed using a reduced notation (as seen previously in

section 2.2 of this thesis). The starting equation above, (3.24), in reduced notation is

L0Ckδk+k′ = 〈fkuk′〉δk+k′ + Mk〈ujuk−juk′〉 (3.26)

The velocity field is expanded perturbatvely using a bookkeeping-parameter, λ, and

equated to a perturbative expansion of the NSE,

uk = R(0)

k
fk + λR(0)

k
Mk

(
(u(0)

j
+ λu(1)

j
+ · · · )(u(0)

k−j
+ λu(1)

k−j
+ · · · )

)

= R(0)

k fk + λR(0)

k Mk

(
u(0)

j u(0)

k−j

)
+ λ2R(0)

k Mk

(
u(0)

j u(1)

k−j + u(1)

j u(0)

k−j

)
+ O(λ3)

= u(0)

k + λu(1)

k + λ2u(2)

k + O(λ3).

(3.27)

All terms may now be written in terms of the zeroth-order term defined as,

u(0)

k
= R(0)

k
fk

=
[
∂t + νk2

]−1
fk. (3.28)

Substituting (3.27) for the velocity-field terms in the triple-moment of (3.26) leaves

an expansion that is of even-orders in lambda,
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L0Ckδk+k′ = 〈fkuk′〉δk+k′ +

+ λ2
(
Mk〈u

(0)

j u(0)

k−ju
(1)

k′〉 + Mk〈u
(0)

j u(1)

k−ju
(0)

k′〉

+ Mk〈u
(1)

j u(0)

k−ju
(0)

k′〉
)

+ O(λ4); (3.29)

as the quantities u(0) ∝ f are Gaussian-random, and correlations containing odd-

numbers of them vanish accordingly. The term 〈fkuk′〉δk+k′ will be left unexpanded

and will be hereafter denoted as W(k).

For convenience, the remainder of this analysis will not work beyond second order;

henceforth, λ = 1. The correlation equation may be summarised as

L0Ckδk+k′ = W(k, t) + T (k) (3.30)

where

T (k) ≡ Mk〈u
(0)

j u(0)

k−ju
(1)

k′〉 + Mk〈u
(0)

j u(1)

k−ju
(0)

k′〉 + Mk〈u
(1)

j u(0)

k−ju
(0)

k′〉 (3.31)

Note that W(k, t) and T (k) are defined such that 2πk2W(k, t) = W (k) and

2πk2T (k) = T (k) where W (k) is the input energy term, and T (k) is the inertial

energy transfer term. For decaying turbulence W(k, t) = 0; this will be taken for the

remainder of this derivation.

Letting T (k) be the sum of three similar terms and then expanding all terms of u(1)

in the triple-moments leaves

T (k) = T1(k) + T2(k) + T3(k)

= MkR(0)

k′ Mk′〈u(0)

j
u(0)

k−j
u(0)
a u(0)

k′−a
〉

+ MkR(0)

k−jMk−j〈u
(0)

j u(0)
a u(0)

k−j−au
(0)

k′〉

+ MkR(0)

j Mj〈u
(0)
a u(0)

j−au
(0)

k−ju
(0)

k′〉 (3.32)

As the u(0)’s are Gaussian, the 4th order moments can be factorised into combinations

of 2nd order moments. Using this and the definition of the zeroth-order correlator,

C(0)

k δk+k′ ≡ 〈u(0)

k u(0)

k′〉, T1 may be written as

T1(k) = MkR(0)

k′ Mk′

(
C(0)

j
δj+k−jC

(0)
a δa+k′−a

+C(0)

j δj+aC
(0)

k−jδk−j+k′−a + C(0)

k−jδk−j+aC
(0)

j δj+k′−a

)
. (3.33)
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The first of these terms vanishes (as Mkδk = M(0) = 0), and integrating over the

dummy variable a leaves

T1(k) = MkR(0)

k′ Mk′

(
C(0)

j C(0)

k−jδk+k′ + C(0)

k−jC
(0)

j δk+k′

)
(3.34)

Applying this procedure to T2 and T3 gives

T (k) = 2MkR(0)

k′ Mk′C(0)

j C(0)

k−jδk+k′

+ 2MkR(0)

k−jMk−jC
(0)

j C(0)

k δk+k′

+ 2MkR(0)

j MjC
(0)

k−jC
(0)

k δk+k′ (3.35)

and hence

L0Ckδk+k′ = 2MkR(0)

k′ Mk′C(0)

j C(0)

k−jδk+k′ +

+ 4MkR(0)

j MjC
(0)

k−jC
(0)

k δk+k′ (3.36)

Integrating both sides over k′

L0Ck = −2MkR(0)

k
MkC(0)

j
C(0)

k−j
+ 4MkR(0)

j
MjC

(0)

k−j
C(0)

k
(3.37)

For the following steps, it will be more sensible to return to the full notation.

L0Cαω(k; t, t′) = −Mαβγ(k)

∞∫

−∞

d3j

(
2Mω′δǫ(k)

t′∫

0

ds R(0)

ωω′(k; t′, s)C(0)

βδ (j; t, s)C(0)
γǫ (k− j; t, s)

− 4Mβ′δǫ(j)

t∫

0

ds R(0)

ββ′(j; t, s)C(0)

δω (k; s, t′)C(0)
γǫ (k − j; t, s)

)

(3.38)

The renormalisation comes in and it is simply to replace zero-order terms by their exact

terms,
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C(0)

αα′(k; t, t′) → Cαα′(k; t, t′) (3.39)

R(0)

αα′(k; t, t′) → Rαα′(k; t, t′). (3.40)

The justification for this comes from diagrammatic re-summation as in the Wyld

formalism (see section 2.2) or from power-series regression, for details see Leslie [49].

All tensors are isotropic and may be written in terms of a scalar function and an

isotropic tensor,

Cαα′(k; t, t′) = Pαα′(k)C(k; t, t′). (3.41)

Applying this to (3.38) with the renormalisation gives

L0Cαω(k; t, t′) = −2

∞∫

−∞

d3jMαβγ(k)Mω′δǫ(k)Pωω′(k)Pβδ(j)Pγǫ(k − j) ×

t′∫

0

ds R(k; t′, s)C(j; t, s)C(|k − j|; t, s)

+ 4

∞∫

−∞

d3jMαβγ(k)Mβ′δǫ(j)Pββ′(j)Pδω(k)Pγǫ(k− j) ×

t∫

0

ds R(j; t, s)C(k; s, t′)C(|k − j|; t, s) (3.42)

Taking the trace over tensor indices α and ω, and then contracting the tensors

leaves

L0C(k; t, t′) =

∞∫

−∞

d3jL(k, j)
( t′∫

0

ds R(k; t′, s)C(j; t, s)C(|k − j|; t, s)

−

t∫

0

ds R(j; t, s)C(k; s, t′)C(|k − j|; t, s)
)
. (3.43)

The geometric factor, L(k, j), referred to as the “L-coefficient”, takes a scalar form

with µ = k·j/(kj),

L(k, j, µ) =
kj(1 − µ2)

(
µ(k2 + j2) − kj(1 + 2µ2)

)

k2 + j2 − 2µkj
. (3.44)
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The calculation leading to this equation can be found in Leslie [49] and McComb[35].

Projecting onto a spherical-polar coordinate system with some rearrangement leaves

∂tC(k; t, t′) = −νk2C(k; t, t′) +

∞∫

0

dj 2πj2
−1∫

1

dµL(k, j, µ) ×

( t′∫

0

ds R(k; t′, s)C(j; t, s)C(|k − j|; t, s)

−

t∫

0

ds R(j; t, s)C(k; s, t′)C(|k − j|; t, s)
)
. (3.45)

This is the equation for the two-time correlation function as given in (3.3)-(3.5). Note

that the single-time correlator equation is not simply to substitute t′ = t in the above

equation; it follows from defining two NSEs with uα(k, t) and uα′(k′, t), summing and

then averaging; the general procedure from above then applies.

3.B Derivation of the Energy Spectrum

The total kinetic energy (density) is formally obtained from the volume integral of the

L2-norm of the velocity field,

E(t) ≡
1

2

∫

x∈V

dx
(
u(x, t) · u(x, t)

)
, (3.46)

and the dissipation rate can be similarly defined

ε(t) ≡

∫

x∈V

dx
(
u(x, t) ·

(
∇2u(x, t)

))
. (3.47)

These quantities would also be suitably averaged, time- or ensemble-averaged, so as to

give the statistical quantities that are of interest in turbulence studies.

The spectral energy density, or energy spectrum, can be obtained from the velocity

correlation function using the above formula for the average total kinetic energy, noting

first the average of (3.46),

〈
E(t)

〉
=

1

2

∫

x∈V

dx
〈
u(x, t) · u(x, t)

〉
. (3.48)

As incompressible fluids generally consider a constant mass, the above quantities in the
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above equation assume the roles of kinetic energy density and velocity density. Using
〈
u · u

〉
= 3

〈
u2

〉
, one can write the total kinetic energy as

〈
E(t)

〉
=

〈
uα(x, t)uα(x, t)

〉

= Cαα(0; t, t) (3.49)

The separation vector r = 0 since the velocities are correlated for a single point in

space. Taking the Fourier transform gives

〈
E(t)

〉
=

∫
dk

〈
uα(k, t)uα(−k, t)

〉
e−k·0

=

∫
dkCαα(k; t, t), (3.50)

and as this is isotropic turbulence, the correlation tensor can be separated into a scalar

function and the isotropic projection tensor

〈
E(t)

〉
=

∫
dkPαα(k)C(k; t, t)

= 2

∫
dkC(k; t, t). (3.51)

The last line has used the trace of the projection tensor. As the integral is over

3-dimensional wave-vector space, a simplification can be made by projecting the

system unto a spherical-polar coordinate system where the isotropy ensures angular

independence and the only spatial argument is the wavenumber,

〈
E(t)

〉
= 2

∞∫

0

dk 2πk2C(k; t, t). (3.52)

Using the kinetic energy as the integral over spectral space of the energy spectrum, the

energy spectrum can be defined according to the correlation function

E(k, t) ≡ 4πk2C(k; t, t). (3.53)

Multiplying 4πk2 to the evolution equation for the single-time correlation function,

(3.3), results in the spectral energy balance equation,
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∂t 4πk2C(k; t, t′)︸ ︷︷ ︸
E(k, t)

= − 8πνk4C(k; t, t)︸ ︷︷ ︸
D(k, t)

+ 8πk2P (k; t, t)︸ ︷︷ ︸
T (k, t)

. (3.54)

3.C Constant Dissipation Rate in Forced Turbulence

Consider the turbulent energy evolution equation

∂tE(k, t) = T (k, t) − D(k, t) + 4πk2 tr
{
〈fα(−k, t)uβ(k, t)〉

}
(3.55)

where

fα(−k, t) = ∆Ef
uα(−|k| = kf , t)

2Ef(t)
. (3.56)

The wave-vector argument in the velocity specifies that the forcing is implemented if

and only if |k| = kf . Taking the trace and replacing the two-velocity correlation with a

correlator gives

∂tE(k, t) = T (k, t) − D(k, t) + 4πk2∆Ef
2C(kf , t, t)

2Ef(t)
. (3.57)

The condition that sets |k| = kf implies that k2 = k2
f , hence

∂tE(k, t) = T (k, t) − D(k, t) + ∆Ef
E(kf , t)

Ef(t)
. (3.58)

Integrating over the entire wavenumber range results in

∂tE(t) = −ε(t) + ∆Ef (3.59)

since by definition

∞∫

0

dkE(kf , t) = ∆Ef(t). (3.60)

Upon reaching a steady-state, the above equation becomes time-independent leaving

the result that the dissipation rate is set by the rate of energy injection ∆Ef

ε(t) = ∆Ef . (3.61)
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Chapter 4

Further Investigation of Decaying

and Forced Turbulence Using the

LET

Building on the results of the LET2008 in its comparisons to earlier versions and DNS,

it can be pushed further towards higher Reynolds numbers. Extensions to higher

Reynolds numbers for both freely-decaying and forced turbulence are presented in

this chapter, acquiring Taylor-Reynolds numbers of Rλ(0) ∼ 330 (Rλ(te) ∼ 60) for

decaying turbulence and Rλ(te) ∼ 340 for forced turbulence. The energy spectra for

all computations were checked for their compatibility with the Kolmogorov inertial

range and give mixed results. The free-decay LET shows an inertial range without

Kolmogorov behaviour, however the forced computations show a definite Kolmogorov

inertial range.

4.1 Decaying Turbulence

The goal of closure-based computations is to reproduce the observed, and in some cases

the predicted, statistical behaviour of turbulence without the cost of solving the NSE

explicitly. One such behaviour to reproduce is the Kolmogorov inertial range. Doing so

typically requires a sufficiently small viscosity, and because of this a larger wavenumber

range is needed. A common criterion for the wavenumber range is to ensure that the

dissipation wavenumber, kD(t) ≡ (ε(t)/ν3)1/4, is contained within the wavenumber

range, hence the largest wavenumber set in the computation, ktop must be such that

ktop

kD(t)
> 1 ∀ t. (4.1)
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The reason for this criterion is that the transfer of energy from low- to high-

wavenumbers will move energy to as many wavenumbers as is possible where at the

upper-limit of this range, they will be quickly dissipated. A wavenumber range that is

truncated does not allow this to occur and energy will begin to grow in this upper end

of the wavenumber range; this is more unphysical than the isotropic turbulence being

modelled.

The time dependence in (4.1) has been made explicit as this value will change with

time, and in some cases depending on the shape of the initial spectrum, the dissipation

rate can become much larger than its initial value. As only the initial values are known

a priori, this can make adequate spectral ranges difficult to predict and over-estimating

the range can see computations becoming quickly intractable.

The need for larger spectral ranges can be somewhat accommodated in the current

LET2008-code. However, it exceeds the ability of the current DNS used in this research

as the grids are only of size 1283. The results shown here require proper testing against

a larger DNS grid to ensure reliability of the code for large Reynolds numbers. For the

purposes of this research, the results made for high Reynolds numbers using the LET

model will be given here and a follow-up study can test against them.

In the following pages, results for Spectra V and VI are given, each with ν = .001

and ν = .0005. The integral parameters are also given in the same manner as in

previous figures.

4.1.1 Spectral Quantities

In this section the spectral quantities associated with both Spectra V and VI are given.

The energy spectra are presented, in both the normalised and “compensated” forms.

The results show evidence of an inertial range. Following the energy spectra, the

dissipation and transfer spectra are presented. These give a direct view of the dynamics

of the system.

The spectral quantities in freely-decaying turbulence are evolving in time and are

presented to reflect this. Plots of these curves are given with times, normalised by

the initial eddy-turnover time, L(0)/U(0). The plots of the energy spectra are meant

to demonstrate the existence of an inertial range, and the times chosen to show this

correspond to the final eddy-turnovers. The figures of the dissipation and transfer

spectra are presented differently showing evolution through the whole computation.

Energy Spectra

The energy spectra are plotted against wavenumbers normalised with respect to kD,

and presented in log-log scaling; this is particularly useful in presenting a Kolmogorov
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4.1. Decaying Turbulence

inertial range where E(k) ∼ k−5/3 since log-log scaling shows power-law functions to

be linear. Plots of this sort are seen in figs. 4.1 and 4.2.

Included in these plots are the energy spectra for ν = .002. Quinn [101] produced

similar results which compared well against DNS using the same parameters for

spectrum V. Using these results offers consistency checks for the current computations.

Additionally, they can help to identify a growing inertial range as the Reynolds number

increases. There is a region of near constant slope that occurs in all three plots, growing

wider as the viscosity is decreased; it is suspected to be the inertial range as given by

the LET. The line y ∝ −(5/3)x is also included for comparison of the inertial range.

One can argue that these plots do not display Kolmogorov behaviour. These results

were also checked for the Kraichnan inertial range of E(k) ∼ k−3/2, associated with his

Eulerian-DIA [49, 52] but it was found (results not included here) that the results were

not consistent with this either.

A more revealing presentation is to use the so-called compensated energy spectrum,

where the energy is specifically normalised in such a way to give a flat region for the

inertial range,

E(k, t) → E(k, t)ε(t)−2/3k5/3. (4.2)

This is employed in figs. 4.3 and 4.4. It can be seen that the inertial range is a function

of the wavenumber and shows a positive slope where a Kolmogorov inertial range would

be constant. This misplaced inertial range seems to indicate an incompatibility of the

LET with Kolmogorov’s inertial range.

103



Chapter 4. Further Investigation of Decaying and Forced Turbulence Using the LET

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

10
1

10
2

10
3

10
-3

10
-2

10
-1

10
0

E
(k

,t
)ε

(t
)-1

/4
ν-5

/4

k/k
D

                          y ∝  x -5/3

T ≈ 2.2

T ≈ 2.6

T ≈ 3.0

T ≈ 3.4

T ≈ 3.8

Figure 4.1: A log-log comparison of the normalised spectral energy curves for Spectrum
V using viscosities ν = 0.0005, 0.001, 0.002 (blue, red, green). The maximum
wavenumbers for these computations are ktop = 220, 180, 150, respectively.
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Figure 4.2: A log-log comparison of the normalised spectral energy curves for Spectrum
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Dissipation Spectra

Looking at the dissipation spectra provides some insight into the dynamic mechanisms

affecting the energy spectrum. In figs. 4.5-4.8, the dissipation spectra are given. The

figures display some common behaviours of the dissipation spectrum as it evolves

through the turbulent processes. In each figure, one can see that a relatively narrow

initial band of wavenumbers contains all of the energy. As time progresses, the peak

of this band decreases and moves to larger wavenumbers while the band itself expands

in width covering a larger region of wavenumber space. As the inertial mechanisms

are instantiated, energy is transferred from low- to high-k in the energy cascade; thus,

more energy reaches the dissipation scales and the dissipation spectrum grows.

As the the energy spreads, the more and more is placed into wavenumbers where the

viscous forces are relatively strong and remove energy from the system. The dissipation

rate reaches a peak where the rate of inertial transfer moves the most energy it is able

to; then the spectrum reaches a what can be referred to as a decay-state where it follows

a self-preserving decay as given in the early arguments of von Kármán [120]. The figures

show that the LET demonstrates this quite well and regions of self-preserving decay

can be identified in each plot.

Transfer Spectra

The transfer spectra likewise gives a measure of the dynamics in a turbulent system.

The transfer spectra, as noted earlier, also provide a useful link for numerical

comparisons in that it is directly related to one of the two principal quantities computed

in the LET2008. Figures 4.9-4.12 show the transfer spectra associated with spectra V

and VI.
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Figure 4.5: Plots of the dissipation spectrum for Spectrum V, ν = .001, given in
increments of the initial eddy-turnover time, T . The inset shows the normalised energy
spectrum.
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Figure 4.6: Plots of the dissipation spectrum for Spectrum V, ν = .0005, given in
increments of the initial eddy-turnover time, T . The inset shows the normalised energy
spectrum.
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Figure 4.7: Plots of the dissipation spectrum for Spectrum VI, ν = .001, given in
increments of the initial eddy-turnover time, T . The inset shows the normalised energy
spectrum.
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Figure 4.12: Plots of the transfer spectrum for Spectrum VI, ν = .0005, given in
increments of the initial eddy-turnover time, T .
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4.1.2 Integral Parameters

The integral parameters for the decaying computations of spectra V and VI are

given here. In the absence of comparable earlier LET computations or similar DNS

computations, the following parameters are presented against computations of lower

Reynolds numbers. Showing self-consistency of these parameters with respect to

their lower-Re and tested counterparts, gives a qualitative measure of how the high-R

computations are performing. This by no means validates these results, though it does

give some reassurance that there are no drastic changes in the these parameter-curves

as viscosity is decreased.

111



Chapter 4. Further Investigation of Decaying and Forced Turbulence Using the LET

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0  0.5  1  1.5  2  2.5  3  3.5  4

E
(t

)/
E

0

t U
0
/L

0

 0

 0.5

 1

 1.5

 0  0.5  1  1.5  2  2.5  3  3.5  4

L
(t

)/
L

0
, 
λ(

t)
/λ

0
t U

0
/L

0

L(t)
λ(t)

 0

 2

 4

 6

 8

 10

 12

 14

 0  0.5  1  1.5  2  2.5  3  3.5  4

ε(
t)

/ε
0

t U
0
/L

0

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0  0.5  1  1.5  2  2.5  3  3.5  4

S
(t

)

t U
0
/L

0

 0

 100

 200

 300

 400

 500

 600

 700

 0  0.5  1  1.5  2  2.5  3  3.5  4

R
e L

(t
)

t U
0
/L

0

 0

 100

 200

 300

 400

 500

 600

 0  0.5  1  1.5  2  2.5  3  3.5  4

R
e λ(

t)

t U
0
/L

0

Figure 4.13: The integral parameters for Spectrum V against normalised time. Note
the line-colour darkens as the viscosity decreases: ν = .01, .005, .001, .0005.
The maximum wavenumbers for these computations are ktop = 50, 50, 180, 220,
respectively.
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Figure 4.14: The integral parameters for Spectrum VI against normalised time. Note
the line-colour darkens as the viscosity decreases: ν = .01, .005, .001, .0005.
The maximum wavenumbers for these computations are ktop = 50, 60, 200, 360,
respectively.
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4.2 Forced Turbulence

Without previously tested results to compare against, extending the the low-R results

of LET2000 to higher Reynolds numbers requires some measure by which to check

against to ensure the calculations remain useful. There are some qualitative checks

which can be made, though none can be considered with the same weight of a DNS.

The first of which is to ensure that the dissipation rate remains constant when

compared to previous or smaller-Rλ. This check is built into the computation and

while it does not offer a physical measure it is reassuring that an initial condition will

evolve to maintain this constraint.

The energy spectrum can be expected to roughly retain its shape, particularly in

the low- and high-k regions, and the inertial range, if present, should be wider in

those computations with larger Reynolds numbers. This can be best seen when using

the compensated energy spectrum E(k, t)ε−2/3k5/3. As seen in the previous section,

the compensated energy spectrum will reach a plateau in the inertial range and have

a maximum value of the Kolmogorov constant, which has a short range of 1.5-2.5

[121, 122]. The plateau also shows a broadening of the energy in the inertial range,

which is expected according to the Kolmogorov theory [24].

A final and related check, is to examine the flux. When normalised by this

dissipation rate, will be nearly unity [24, 35]. It will also show a slight plateau at

this maximum, broadening in wavenumber space when viscosity is decreased.

Examining these properties of the current computation does not ensure correct

behaviour of the numerical model nor the theory it represents, and it must be stressed

that these results require further analysis against a more reliable measure provided by

DNS or even experiment. It does give a qualitative assessment of the theory and allows

further investigation to be more refined.

The following figures show plots of the energy and flux spectra for forced-turbulence

computations according to the LET. The initial spectrum for both is Spectrum I. The

viscosities used in the following results are ν = .002, .001; these give evolved Taylor-

Reynolds numbers of Rλ ∼ 235, 336, respectively.

4.2.1 Spectral Quantities

The time dependence of forced turbulence results does not share the same importance

as the case of free-decay, and so only the spectral quantities found in the steady-state

are needed. In this section, the energy and flux spectra are presented for viscosities

ν = .002, .001. The quantities have been chosen to these forced computations as they

contain more information about the system (see above) than can be obtained from the

dissipation and transfer spectra, which were used for decaying turbulence.
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4.2. Forced Turbulence

Energy Spectra

As will be seen in the figure below, the energy spectra for these computations display a

very definite inertial range that is compatible with the Kolmogorov theory. To illustrate

this, the plots of the energy spectra are presented in the compensated energy spectrum

format. As the energy spectrum is believed to follow the form E(k) = αKε2/3k−5/3

in this region, plotting with the compensated normalisation gives a value for the

Kolmogorov constant αK; it can be seen that αK ≈ 2.3 for ν = .002 and αK ≈ 2.

for ν = .001. These values are consistent with the range of values determined given

above.
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Figure 4.15: A comparison of compensated energy spectra for forced computations
using viscosity ν = .002 (red) and ν = .001 (blue) under LET2008. The maximum
wavenumbers for these computations are ktop = 200, 300, respectively.

Flux Spectra

The flux spectra for these computations are shown in fig. 4.16. The flux, Π(k), is

normalised by the dissipation rate, ε. Both computations show a plateau at unity,

and the region of the plateau broadens when the viscosity is decreased from ν = .002

to ν = .001. One can see by inspection that the wavenumber region of this plateau

corresponds to the same region given in the figure of the energy spectra in fig. 4.15.

The behaviour of the flux in the inertial range seems to satisfy the expected

phenomenology associated with forced turbulence. It is difficult to detect from the

figures, but there is a small part of the inertial range of the ν = .001 result that is

greater than unity. More than numerical errors, it is suspected that this is due to
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Figure 4.16: A comparison of flux spectra for forced computations using viscosity
ν = .002 (red) and ν = .001 (blue) under LET2008. Normalising by the dissipation
rate, ε, the flux should equal unity in the inertial range.

an insufficiently large wavenumber range. Noting the maximum wavenumber for this

computation ktop = 150, and using the fact that the dissipation rate is unity when

evolved, the Kolmogorov criterion is not met,

ktop

kD
= 150ν3/4 ≈ .84 (4.3)

At the time of writing, calculations with an increased maximum wavenumber are too

large in terms of their memory requirements for the computers being used.

4.2.2 Integral Parameters

As with the computations for free-decay, the integral parameters are an important

measure by which to examine the characteristic properties of a turbulent system. These

are given in the figure below and show the computations’ behaviour is consistent, and

not behaving erratically. Note that the normalised dissipation rate ε/ε0 ∼ 6 for ν = .002

and ε/ε0 ∼ 12 for ν = .001. Using the fact that the initial energy spectrum is the same

for both computations and the viscosities are different by a factor of 2, it can be shown

that the final dissipation rates are equal.

Let quantities for ν = .002 be associated with a subscript A, and those for ν = .001

use B. From the figure, the normalised dissipation rates are different by a factor of 2
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4.2. Forced Turbulence

and since ε(t) = 1 is set by the forcing,

2

(∫
2νAk2EA(k, 0)dk

)−1

=

(∫
2νBk2EB(k, 0)dk

)−1

. (4.4)

Since EA(k, 0) = EB(k, 0) and E(k, 0) = 0 for high values of k, the integrals can be

factored away after some slight rearrangements leaving

2νB = νA. (4.5)

This demonstrates that the dissipation rates of both computations are fixed to the

same value (ε = 1) by the forcing, as they should be. This explains the different values

of the dissipation rates in the figure and shows that the computation is consistent in

maintaining the forcing.
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4.3 Discussion

As the comparisons against previous codes have been successful, the original computa-

tions were extended for produce the higher Reynolds number results present here. This

was done for both cases of free-decay and forced turbulence.

4.3.1 Conclusions

The results of the LET2008 computations for decaying turbulence show consistent

behaviour of the code when extensions are made to higher Reynolds numbers. The

initial Taylor-Reynolds numbers achieved for these computations are Rλ ∼ 260, 520

for Spectrum V and Rλ ∼ 330, 660 for Spectrum VI, using the viscosity values of

.001, .0005, respectively; using the time of the maximum dissipation rate as an evolved

time, these computations have Taylor-Reynolds numbers of Rλ ∼ 90, 110 for Spectrum

V and Rλ ∼ 100, 150 for Spectrum VI. These results represent the highest values

achieved for the LET using decaying turbulence. Previous studies show higher values

of Rλ ∼ 1000 but these computations were not run long enough (0.3 eddy turnover

times) [35, 98, 100].

The results from the forced computations also achieved higher Taylor-Reynolds

numbers for the LET,with the highest being Rλ ∼ 340 for ν = .0005. Note that the

results for ν = .001 produce a similar Taylor-Reynolds number to that found in Quinn,

Rλ ∼ 230; however, the results found there do not demonstrate a stationary final state

as clearly as that presented here.

With regard to ability to show an inertial range, the current results present an

ambiguous picture. On the one hand, the results for the decaying turbulence show an

inertial range whose slope is greater than the Kolmogorov -5/3; yet the results for the

forced computations show a pronounced inertial range giving a value for the Kolmogorov

constant as ∼ 2. This value is consistent with results found in the literature.

4.3.2 Future Work

Such equivocal results require further testing to determine whether the LET is an

accurate portrayal of the current understanding of turbulence phenomenology. Having

an analytic theory that can summarise the complexities of turbulent motion and

give reasonable, reliable quantitative predictions would prove a great benefit to the

understanding of turbulence by providing a useful shortcut that can correctly reproduce

statistical turbulent behaviour. Comparisons against DNS data would allow such an

assessment to be made.
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Chapter 5

Evolved Time in Freely-Decaying

Turbulence

The study of freely-decaying turbulence allows an insight into the nonlinear interaction

that is unbiased by a mechanism of external forcing. However, when obtaining single

values for time-dependent parameters that are meant to characterise the system there

is some ambiguity as to when such parameters can be measured and give reliable data

indicative of decaying turbulence. This chapter explores criteria for an appropriate time

to measure time-dependent quantities for decaying turbulence, and determines a time

based on the physical features of the system. This would allow meaningful comparisons

to be made among measurements of freely-decaying turbulent systems.

5.1 Introduction

The following chapter investigates the normalised dissipation rate of forced and

decaying homogeneous isotropic turbulence using the LET computational model. This

requires a single measurement from several computations of different viscosities. Each

measurement needs an evolved time at which the measurement can be made that

indicates a fully turbulent system. In forced turbulence, it is not difficult to determine

an evolved time as it naturally occurs when all quantities have reached a steady-state.

For freely decaying turbulence however, it is a problem to determine such a time. To

elucidate the need for an evolved time for decaying homogeneous isotropic turbulence,

the following example is given.
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Chapter 5. Evolved Time in Freely-Decaying Turbulence

5.1.1 Example: Measurement Time

In the study of dissipation, the subject of the next chapter, there are two quantities of

interest,

Cε ≡
εL

U3
, CΠ ≡

ΠmaxL

U3
,

the normalised dissipation rate and maximum flux, respectively. Further explanation

about these quantities can be found in the following chapter as the issue here is to

determine when these values can be measured in freely-decaying turbulence. The figure

below, fig. 5.1, shows plots of these quantities against the Taylor-Reynolds number, Rλ.
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Figure 5.1: The normalised dissipation rate against Taylor-Reynolds number for
decaying homogeneous turbulence. Evolved times are chosen using integer number
of initial eddy turnover times, τ0 = L(0)/U(0).

In the figure, Cε and CΠ are given for various evolved times based on the

characteristic time of the initial energy, τ0 = L(0)/U(0). For decreasing Rλ . 5, the

values of Cε and CΠ tend to converge. With the exception of the earliest measurement

at time t = τ0, the curves for CΠ are fairly well converged irrespective of the Reynolds

number. However, as Rλ increases, and presumably Cε asymptotes, the curves take

different values within a range 0.2-1. Estimates for the dissipation rate give Cε ∼ 0.5 for

forced turbulence [123–125], while for decaying turbulence this is found to be somewhat

higher [125–127], Cε ∼ .6 − 1. No value for CΠ is given as this quantity has not been

previously measured in this context. However, as will be seen in the next chapter, this

value should asymptote like Cε in the case for forced turbulence, CΠ ∼ 0.5. The wide
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spread given here for Cε demonstrates the effect of the measurement time on the values

obtained for Cε in decaying turbulence.

For the measurement taken at t = τ0, the asymptotic value of the dissipation rate

is rather low. This value is not entirely correct in that the turbulence is not developed

so early in the computation. The computation must run for a certain amount of time

before the system takes on a solution of the LET equations. Another problem is that

the curves for the dissipation and flux intersect at this measurement time; it will be

shown in the next chapter that this cannot happen in developed decaying turbulence.

If the measurement is too late, then the system is no longer in a turbulent state since

all such motion would be damped out by the viscosity.

Without looking at other parameters, there is no way of knowing how these chosen

measurement times reflect the turbulence of the system. It would be better to have

evolved times that are based on the intrinsic properties of a turbulent system.

5.1.2 Evolved Turbulence in Decaying Turbulence

A noteworthy paper looking into the normalised dissipation rate is given by Sreenivasan

[126] who collected many results from contemporaries in the period 1942 to 1980. The

results he presented were obtained from various wind-tunnel experiments looking into

grid turbulence. The standard for evolved turbulence in the free-decay was the so-called

“initial decay”. There is little indication as to where this originated but a reasonable

source to consult is Batchelor [25], who defines the initial period of decay rather loosely.

The result presented therein is given in terms of the spatial coordinates used to measure

the turbulent flow which can be reformulated for the time variable,

E ∝ (x − x0)
−1 −−−→

x=Ut
E ∝ t−1, (5.1)

where x is the downstream coordinate in the direction of the mean velocity U . To

contrast, the final period of decay is that which occurs at an adequately low Reynolds

number so that the nonlinear term can be neglected, giving an energy spectrum whose

decay is exponential,

E(k, t) = E(k, t0)e
−2νk2(t−t0). (5.2)

Batchelor showed that this can be transformed back to real-space to give E ∝ t−5/2,

though it should be noted that this depends on the shape of the energy spectrum

at t0; for example, using the initial spectra of Chapter 4 where E(k, t0 = 0) ∝

kn exp(−c3k
c4=2) would give a power-law decay of E(t) ∼ t−

1
2
(n+1).

A more recent exposition of the stages of turbulent evolution involving freely-
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Chapter 5. Evolved Time in Freely-Decaying Turbulence

decaying turbulence is given by Davidson [24]. By his account, there are four stages

of evolution given for the case of decaying grid turbulence. The first stage identifies a

fluid passing from the grid and transitioning to a turbulent state; this can be compared

to Batchelor’s description involving all points x < x0 where x0 designates the start of

developed turbulence. Stage (ii) is developed turbulence, defined by a state where all

lengthscales from the integral, L, to the Kolmogorov lengthscale η contain energy. This

is the state to which Davidson describes as “the decay of freely evolving turbulence” (his

italicisation) and claims is also referred to as the “asymptotic state”. Davidson defines

a third stage (iii) in which all the small scale motion has been depleted, and finally, the

last stage (iv) corresponds to the final period of decay that Batchelor defines.

The decay of freely evolving turbulence that Davidson describes as stage (ii) is

important to the current work. It is this stage, corresponding to the initial period of

decay, that most early work had been done in revealing the so-called decay laws of

turbulence. A well-known decay law has been derived by Kolmogorov [40] who found

that the energy should decay as t−10/7. This was an important result and found to

be consistent with the decay of turbulence in the wind-tunnel experiments of his days.

However, it later emerged that the reasoning that allowed this prediction was not always

correct [42, 47, 128] and different values for the decay exponent were found [129, 130].

Subsequently, further studies were made using experiments, theoretical analysis, and

simulations with the exponent lying somewhere in the range 1-1.7 [131].

In the few contemporary studies of the normalised dissipation rate for decaying

turbulence involving numerical computation, there is one which gives the criteria used

to determine the evolved time needed for measurement. Wang et al [127] determined

an evolved decaying state has been reached when the total energy and dissipation rate

decrease according to a power-law, which in their study was t−1.47 for the energy. A

more recent numerical study [125] which focused more on the normalised dissipation

rate also used this as their criterion [132].

Two comments about the criterion described are that a decay exponent must first be

determined and secondly that the total energy function must fit the power-law within

a given tolerance to determine the time when the power-law decay starts. The first

comment can be regarded as not so significant with the many data-fitting algorithms

currently available, and the second can be addressed by noting that the tolerance can

be fixed when further adjustments do not change the determined time. While neither

of these issues present any major difficulty in determining an evolved time, it has been

the purpose of this study to find a time that reflects the system’s dynamics. The

following section details the considerations made as to which parameters can be used

to determine an evolved time and how they are used to do so.
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5.2 Candidate Parameters

In order to determine an appropriate time at which to take a measurement, it is

necessary to look at time evolution of the behaviour of the integral parameters. The

main criteria needed with the candidate parameters are that they offer a time that is

within the period of decay, which is taken to be stage (ii) in Davidson’s nomenclature,

and that these parameter values exist for both small and large Reynolds numbers.

Secondary criteria would involve parameters that can be easily computed and those

that can be directly measured in an experiment.

5.2.1 The Dissipation Rate and Spectrum

Turbulence is highly dissipative [133]. And the dissipation rate gives a measure of this,

indicating a fully developed turbulent state with a pronounced peak. The maximum

of ε then corresponds to the maximum turbulent intensity, signifying that the energy

has reached well into the dissipation region of the wavenumber spectrum. As this

time can easily be determined from the position of the peak, it is logical to use this

in determining an evolved time. However, as an indicator of turbulent intensity, and

in effect signalling the onset of stage (ii), it is too early for an evolved state that is

indicative of decaying turbulence. Although the total energy is always decreasing, it is

only after this point that it can show the characteristics of turbulent decay.

The time of peak dissipation, tε, can still be considered as it gives a reference

time; one can use it to make measurements after a given time has elapsed. Noting

that an estimate for the time it takes an eddy of low-wavenumber to breakdown is

τ ≡ L/U , gives the time for the transfer of the energy contained in the eddy to reach

the higher wavenumbers of dissipation. An evolved time can be obtained by adding

this characteristic time to the time of the maximum dissipation,

te = tε + L(tε)/U(tε)

= tε + τε. (5.3)

This would provide a time that is later than the peak, carrying the measurement to a

region where turbulent decay is occurring.

It must be noted that the peak does not exist for low Reynolds numbers. The fig. 5.2

shows various dissipation rates for computations performed using different viscosities.

As can be seen in the figure of the dissipation rate, the shape of the plot changes with

viscosity, most notably the emergence of the peak when viscosity is adequately low,

ν < 0.015. This is consistent with the turbulent phenomenology as the peak signifies

the turbulent dissipation, where the energy is transferred by the nonlinearity from
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the low- to high-wavenumbers, thus amplifying the dissipation by placing more energy

into those wavenumbers where viscosity has a stronger effect. The lack of continuity
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Figure 5.2: The normalised dissipation rate as a function of time, normalised by the
initial timescale. Various dissipation rates, corresponding to different viscosities, show
the emergence of a peak for sufficiently small viscosity.

with respect to viscosity of the dissipation rate is problematic. Note that for larger

viscosities, the transfer mechanism will not be significant relative to the viscous forces,

and in this case the observed peak will be slight or absent.

However, the dissipation rate also offers a power-law decay when the total energy

follows a power-law since dtE = −ε and hence

E ∼ tn ⇒ ε ∼ nt−n−1. (5.4)

This implies the need to know the value of the exponent n and then to fit the dissipation

rate to this power law. One can rather ask what the reason is for this behaviour and

look for some other means to determine the answer. Recalling that the definition for

the dissipation rate in HIT is

ε(t) ≡

∞∫

0

dk2νk2E(k, t), (5.5)

it is useful to look into the dissipation spectrum for more insight via turbulent
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phenomenology as it could provide a more continuous measure of an evolved time.

Considering the notion of self-similarity in decaying turbulence [27], one can look

for the time where

D(k, te) > D(k, t > te) ∀ k. (5.6)

This is by no means a rigorous definition or requirement of self-similar decay with but

it does given an indication of when the inertial mechanism is unable to transfer energy

beyond a particular wavenumber, thereby signalling the onset of a decay period when

wavenumbers in the decay spectrum can only decrease with time. Looking at the energy

in the maximum wavenumber of a system can be indicative of the spread of energy and

hence the onset of decay. For experiments, this maximum wavenumber corresponds

to the smallest of scales measurable and is dependent on the measurement capabilities

of the apparatus; likewise, in simulations, the maximum wavenumber is somewhat

arbitrary and is chosen for the convenience of the computation. Using a standard

quantity, such as the Kolmogorov dissipation wavenumber, that is independent of these

considerations would be useful.

Considering the above arguments, the proposal is to use the time when E(kD, t)

reaches a maximum value, which can then be associated with the maximum spread of

energy into the dissipation region, and therefore the start of the turbulent decay period.

As kD is time-dependent, a condition of taking the maximum value of this wavnumber

which occurs when the dissipation rate peaks,

kD(tε) =
(
ε(tε)/ν

3
)1/4

. (5.7)

An example of this can be seen in fig. 5.3 where the dissipation spectrum from an

LET-computation is shown for various times. In the plot of the dissipation spectrum,

the dark dashed-lines give the initial and final spectra (the peak of the initial has

been cut-off for greater detail), and the light grey lines show the dissipation rate in 20

timestep increments. The inset shows the behaviour of the integral parameters E(t)

(yellow), ε(t) (red), and E(kD, t) (blue).

Initially D(k, t) is peaked at k ∼ 3, but then spreads out and becomes peaked at k ∼

10. As it evolves, the inertial forces redistribute the energy among the wavenumbers,

hence moving the peak and spreading the spectrum. This process continues through a

peak in the dissipation rate, denoted by the green line in the spectrum and a similar

green circle on the dissipation rate (inset).

Beyond the maximum in ε, the peak of the dissipation spectrum no longer grows but

does continue to spread itself out until it reaches a point, denoted with the colour blue

in the plots, where the transfer cannot move energy into higher wavenumbers faster

than they can be destroyed by viscosity. The blue curve in the spectrum as well as
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Figure 5.3: The normalised dissipation spectrum against normalised wavenumber with
total energy (orange) and dissipation rate (red) against timesteps (inset). For this
computation, ν = .001. See text for more details.

the blue circle on the dissipation rate (inset) corresponds to this time. Furthermore,

the inset shows the blue circle corresponding to the peak in E(kD, t). Note that curves

under the blue curve show a self-similar decay for the dissipation spectrum.

The inset shows the evolution of the energy (yellow) as well as the dissipation rate

(red). Both of these curves have been fit to a power-law, ∝ tn, in their later stages.

The exponent value for each has been determined to be -1.42 for E(t) and -2.43 for

ε(t). When the fitted-curves are within 1% of their respective parent curves, a coloured

circle has been placed. It can be seen in the inset plot, that point corresponding to

the onset of the power-laws are later than those points given for the maximum of the

dissipation rate and the onset of self-similarity in the dissipation spectrum. To make a

comparison with Wang et al [127], their method would conclude that the latest point,

red circle on the dissipation rate, is a sufficient time for a measurement.

While it has not been investigated here, the evolved time, tD defined such that

E(kD, tD) is a maximum may always be present and continuous throughout all R. It

is thought that when the nonlinearity is activated, however small, a spreading of the

energy and dissipation spectra occurs and E(kD, tD) has a maximum. It is possible

to use an initial spectra where the E(kD, 0) is also a (global) maximum, but this can

be accounted for by noting that it should decay early, presumably before the second

maximum E(kD, tD). A final comment is that while the generality of this method,
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in terms of the phenomenology of homogeneous isotropic turbulence, is left to further

investigation, it has been applied to the LET2008 results with Spectra V and VI, both

of which have only a single maximum for E(kD, tD) that occurs throughout all Reynolds

numbers considered.

5.2.2 The Maximum Energy Flux

Another parameter that has been useful in this research is the maximum of the energy

flux, which was introduced earlier in §1.2.6,

Πmax(t) ≡ −

k0(t)∫

0

dj T (j, t) =

∞∫

k0(t)

dj T (j, t). (5.8)

This definition is slightly different from that given previously in that for time-dependent

turbulence the value of k0(t) will also change with time; this dependence has been made

explicit here. Similarly, Πmax can be defined,

Πmax(t) ≡ Π
(
k0(t), t

)
. (5.9)

This quantity has some features that make it attractive as a candidate for an evolved

time. Most notable is that it has a peak value which occurs early, giving an indication

that the system has assumed an LET solution. As this quantity is a measure of the

inertial transfer, it is expected to exist when the transfer is even weakly active, and

therefore should exist for low- and large-Rλ computations. Figure 5.4 shows example

plots of Πmax(t) against the timesteps for different viscosities.

The figure shows that for each curve and associated viscosity, there is a peak value

for Πmax and the time of this peak, tΠ, increases with the decreasing viscosity. The

‘rate’, with respect to viscosity, at which the time of the peak increases is not as fast

as that for the peak of the dissipation rate, see fig. 5.2. Furthermore, the height of the

peak and the time when it occurs seem to become constant as the viscosity continues

to decrease, for example when ν < .001 in fig. 5.4; this is due to the same initial energy

used in these computations.

A further comment that is fair to note about fig. 5.4 is that for curves where

ν < .001, some peculiar behaviour begins just prior to t = L(0)/U(0). It is unknown

at this time why this occurs and is pending further investigation. The focus here is the

use of the early peak in this parameter to use as reference for measurements, and this

is unaffected by the post-peak behaviour of Πmax.

Because it is continuously present throughout a range of large and small viscosities,

Πmax has a better status than that of the peak in the dissipation rate. Rather, the
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Figure 5.4: The normalised maximum flux as a function of time, normalised by the
initial timescale. The various fluxes, corresponding to different viscosities, show a peak
for all viscosities but also the convergence of the peak as viscosity is decreased.

behaviour of the peak when ν is sufficiently small is a cause for concern. As the peak

of Πmax does not change appreciably when the viscosity is decreased beyond a given

threshold, there is a greater chance that it will not capture the physical information

that indicates fully-developed, freely-decaying turbulence.

Hybrid Time of tΠ and tε

Neither tΠ nor tε are suitable by themselves to give a reference time which can be

used to measure turbulent parameters in a decaying turbulent system. The established

criteria for a continuous evolved time amongst both small- and large-Reynolds numbers

excludes tε, and the early onset of Πmax with uncertainties as to the number of τΠ’s

needed eliminating these candidates for measurement times. While these parameters

fail individually, together they might have something to offer.

The peak in the dissipation rate fails to appear when the viscosity prevents any

noticeable transfer effects. The peak of Πmax occurs for (presumably) any viscosity,

but is not suited to the desired purpose when ν is ‘too’ small. One might consider then

that perhaps these two quantities could overlap in giving a evolved time. That is to

say, tΠ reasonably coincides with tε for a critical viscosity when the peak in ε begins

to appear. Figure 5.5 shows that this may be the case.

The range of overlapping viscosities is quite narrow and one would hope for more

overlap between these two times. However, their separation is not so large and is within
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5 computational timesteps, measuring 0.1 seconds in real-time which, for viscosity

ν = .015, is on the order of the viscous decay time criterion, δt ∼ 1/(νk2
D).

It is prudent to look at both ε and Πmax, or rather Cε and CΠ, as functions of

the Reynolds number, specifically focusing on this range of viscosities. Going slightly

further would be to see how the incremented evolved times, te + τe, differ in this range.

If the difference is respectably small, then this hybrid time can be considered valid for

obtaining measurements for decaying turbulence. Plots of Cε and CΠ are shown in

fig. 5.6.

The figure 5.6 shows the narrow range of viscosities where this change-over from tΠ

to tε occurs for both Cε and CΠ, which are plotted using tΠ|ε, tΠ|ε+τΠ|ε, and tΠ|ε+2τΠ|ε.

Note that tΠ|ε means that if a peak exists in the dissipation rate, the time associated

with it, tε, will be used; otherwise, the time corresponding to the peak in the maximum

energy flux, tΠ, will be used. This implies that small-Rλ uses tΠ and large-Rλ uses tε.

In all plots of Cε, the change-over seems indistinguishable from the rest of the curve;

the plot for CΠ(tΠ|ε) shows a noticeable discontinuity near Rλ = 16. This seems to

improve on the measurements incremented by τΠ|ε and 2τΠ|ε.

One might guess that continuity should be maintained by re-considering the results

shown in fig. 5.1 where all points for Cε aside from the initial value nicely converge

for Rλ < 15 suggesting that the variability caused by the cross-over is ‘tolerated’ in
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Figure 5.6: Plots of Cε and CΠ against Taylor-Reynolds number. Each plot shows Cε

or CΠ measured at a given measurement time. The viscosities from largest to smallest
are ν = .03, .025, .02 − .001(∆ν = .002), .009, .008.

the data. Similarly, all curves of CΠ excepting the initial again converge for all Rλ in

fig. 5.1 so the same would be expected for CΠ as in Cε. However, it should be noted

that the scale for CΠ in this figure is much larger than for fig. 5.6 and, as a result, the

discontinuity can be easily hidden. The disappearance of tΠ|ε at large viscosities has

made a quantitative measure of the overlap regions difficult, and so all evaluations were

made by inspection. For the purposes of studying these quantities in the next chapter,

the cross-over is acceptable.
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5.2. Candidate Parameters

5.2.3 Extension to Later Times

There are now two possible evolved times for use in measuring the dissipation rate

and the maximum flux as functions of the Reynolds number for decaying turbulence.

However, as has been argued in previous sections, to get into an developed decaying

turbulent regime, one must move further in time beyond that given by either tD or

tΠ|ε. The proposal is to use tD and tΠ|ε as reference points such that the time of

measurement is incremented by 1 and 2 eddy-turnover times, where the large-scale

eddy-turnover times are defined at their respective evolved times,

τe ≡
L(te)

U(te)
. (5.10)

The incremented evolved times to be tested are

tΠ|ε, tΠ|ε + τΠ|ε, tΠ|ε + 2τΠ|ε,

and

tD, tD + τD, tD + 2τD,

This has been used above for fig. 5.6.

The reason for choosing a characteristic time-scale based on the integral lengthscale

is for practical reasons. The common interpretation of this estimate is that an eddy

of size L will take roughly an amount of time τ = L/U to traverse the energy

cascade, breaking down in the process, and finally reaching dissipative scales. In the

spectral vocabulary, the energy contained in the small wavenumbers k ∼ π/L will take

roughly τ to reach the dissipation wavenumbers k ∼ kD. This represents one of the

longer timescales attributed to turbulent systems; the expectation is that one or more

increments should bring the measurement time sufficiently beyond the evolved times

determined thus far. The evolved and incremental measurement times are indicated in

figs. 5.7 and 5.8 by points on the time-dependent dissipation rate curve.

The first figure, 5.7, shows three different curves for three viscosities, ν =

.05, .005, .0005. The curve for ν = .0005 is also accompanied with a line fitted to

y = mxn, which shows where the power-law decay behaviour begins for ε as this

was the indication for developed turbulence as determined by Wang et al (see above).

The second figure shows the same behaviour from Spectrum VI using slightly different

viscosities (the smallest viscosity attainable with long time-domains of Spectrum VI is

ν = .0006). It can be seen from both figures that the measurement times te + τe both

fall before the onset of the power-law decay, but tD + 2τD is behind this point while

tΠ|ε + 2τΠ|ε arguably coincides with it.

There is now a set of six times which represent different stages of freely-evolving
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turbulence. It was argued earlier that times indicating turbulent decay must occur

later than some of the times found in the current set and it has been found that the
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latest times would agree with this. The following section will see the results of all six

times put into practise and compared.

5.3 Cε and CΠ Measurements Using the Newly Established

Evolved-Times

It has been argued and demonstrated that the shape of parameter plots for Cε and CΠ

used to investigate the dissipation phenomenology are dependent upon the times used

to measure these parameters. As the previous sections have detailed some methods

determining evolved and measurement times, this section will see these methods put

to use for LET computations.

The quantities Cε and CΠ are shown with evolved and measurement times in figs. 5.9

and 5.10 for Spectra V and VI, respectively. It can be seen in both figures that the

larger-RL values for the normalised flux converge to the asymptotic value for all times

considered. The main effect of the time appears to be at the Reynolds number where

the curve converges to the asymptotic value. Note that measurement times te & τΠ|ε

show little difference in CΠ(te) in both figures, but the curves for Cε have a stronger

dependence on the time used.

The earliest values are also the lowest in terms of their asymptotic values, ∼ 0.5,

which is similar to that found in forced turbulence [123, 124]. The later values do show

some convergence, similar to that of CΠ, though with more dispersion. The later times

show an asymptotic value to be ∼ 0.8 which compares better to the experimental values

of ∼ 1.1 in Sreenivasan [126] and the computational values of ∼ 1.0 found in Bos et al.

[125].

Figure 5.11 shows the same results presented differently to better compare the

evolved and measurement times for tD and tΠ|ε. It shows mostly the same information

as the two previous figures, namely the convergence when using later times. The

curves of Spectra V and VI are very similar though Cε and CΠ are consistently larger

for Spectrum VI. The differences in these quantities due to the small wavenumber

exponent given in the initial energy spectra have not been explored in this study and

little can be said for the comparison of Spectra V and VI in this figure.

An additional observation to make is rather than looking at Cε, it may be useful

to consider the behaviour of ε alone against the Reynolds number using the evolved

times. Plots of this can be seen in figs. 5.12-5.15. The most apparent feature in the

figures showing the dissipation rate is that at low Reynolds numbers, ε is either very

large or very small depending on the time used for measurement. Curves using tΠ|ε

or tD show that the low-R behaviour of ε to diverge whereas all later times show ε to
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Figure 5.9: The normalised dissipation rate Cε (red) and maximum energy flux CΠ

(blue) against Reynolds number for decaying turbulence using the LET2008 and
Spectrum V.
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Figure 5.10: The normalised dissipation rate Cε (red) and maximum energy flux
CΠ (blue) against Reynolds number for decaying turbulence using the LET2008 and
Spectrum VI.

shrink to zero as R → 0.

Similar plots are seen for Πmax, though the difference in these curves does not result
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Figure 5.11: The normalised dissipation rate Cε (red) and maximum energy flux CΠ

(blue) against Reynolds number for decaying turbulence using the LET2008. Evolved
(top two plots) and measurement times (bottom four plots) are shown.

in a divergence at low Reynolds numbers. What is remarkable about these curves is the

existence of a peak for the early times tΠ|ε and tD that vanishes as the time increases.

A similar peak is found in the low-R region of CΠ, however, it appears for all times

used.

It is also of interest that while Cε and CΠ show tolerance for differences in

measurement times, the unnormalised quantities ε and Πmax are more sensitive in

this respect. This suggests that there is some compensation in the combined terms

of ε, L and U in Cε that counters such differences. However some cases, for example
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lengthscale, against the Taylor Reynolds number for decaying turbulence using the
LET2008 and Spectrum V.

0.00

0.20

0.40

0.60

0.80

1.00

 0 20 40 60 80 100 120

Π
m

ax
(t

)L
0
/U

3 0

Rλ(t)

tΠ|ε

tΠ|ε + τΠ|ε

tΠ|ε + 2τΠ|ε

t
D

t
D

 + τ
D

t
D

 + 2τ
D

Figure 5.13: The maximum flux ΠmaxL0/U
3
0 , normalised by the initial velocity and

integral lengthscale, against the Taylor Reynolds number for decaying turbulence using
the LET2008 and Spectrum V.

the later measurement times of Πmax, show nearly the same shape of curve, possibly

multiplied by a constant factor throughout. It is possible that this behaviour leads to
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Figure 5.14: The dissipation rate εL0/U
3
0 , normalised by the initial velocity and integral

lengthscale, against the Taylor Reynolds number for decaying turbulence using the
LET2008 and Spectrum VI.
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Figure 5.15: The maximum flux ΠmaxL0/U
3
0 , normalised by the initial velocity and

integral lengthscale, against the Taylor Reynolds number for decaying turbulence using
the LET2008 and Spectrum VI.

the relatively early convergence of CΠ as time increases.

The reason for the divergent behaviour of ε for low-R is of some concern. It is clear

139



Chapter 5. Evolved Time in Freely-Decaying Turbulence

in the sense that computations when the viscosity is large will have a large dissipation

rate early in the computation that decreases thereafter. This is also the case for when

the dissipation rate as a function of time only has a peak value at tε, where ε measured

after will be smaller. It is not known how this serves in the criterion for finding suitable

measurement times as it is perhaps a subtle point as to whether the dissipation rate

should diverge when R → 0. To investigate this, one can consider the spectral energy

balance equation (see (5.2)) with an assumption of negligibly weak inertial forces

∂tE(k, t) ≈ −2νk2E(k, t). (5.11)

This reasonably describes a fluid at very low Reynolds numbers. A solution to this

equation is

E(k, t) = E(k, 0)e−2νk2t. (5.12)

For small Reynolds numbers, specifically large viscosities, the wavenumber of this

system can be safely truncated and in extreme cases the shape of the energy spectrum

can be approximated by its k → 0 behaviour, E(k, 0) ≈ c1k
n where for present purposes

n = 2, 4. Using this and (5.12), one can evaluate ε analytically to find its viscosity and

time dependence,

ε(t) =

∞∫

0

dk 2νk2+nc1e
−2νk2t

∼ ν−(n+1)/2 t−(n+3)/2. (5.13)

Since viscosity is considered to be large in the present argument, sufficiently early times

(t ≈ 0) will cause ε(t) to diverge. However, in picking a reference time te 6= 0, viscosity

can be increased to show that the dissipation rate ε(te) will vanish as R → 0. It

is arguable then that the early curves for ε in figs. 5.12 and 5.14 are not sufficiently

resolved for very small Reynolds numbers to show ε → 0.

5.4 Discussion

A method has been presented for determining when measurements can be made on

a freely-decaying turbulent system. The times determined here, tΠ|ε and tD, serve as

indicators of a developed decaying turbulent system. These times approximate when

turbulent activity is near its peak, measured by the peak value in the dissipation rate

and by the maximum spread of energy in the dissipation spectrum. It has been noted

that these times may be too early to designate a decaying turbulent system, and hence

it would be better to use these times as a basis from which later times, such as the
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eddy-turnover times τΠ|ε and τD, can be determined.

The earlier time, tΠ|ε, is determined directly from the average dissipation rate or

the time-derivative of the average total kinetic energy and can be easily measured in

experiment and computation. As this time is based on the peak of the dissipation rate,

it has been noted that this peak will not occur for sufficiently low Reynolds numbers

and to supplement it, the peak in the maximum flux is used. The peak value of the flux

also has problems in that it is too early in most cases except when the Reynolds number

is low. The discontinuity of both the peak dissipation and peak flux has allowed for a

hybrid time that shows potential for its use as an evolved time.

The other reference time, tD, follows from the point at which the dissipation

spectrum extendend to its maximum wavenumber. This was found to be equivalent

to the time at which the energy spectrum at the dissipation wavenumber, E(kD, tD),

obtains a maximum value. It is a requirement to measure to the energy spectrum

which may not be as directly accessible in an experimental situation. An advantage of

this time over the earlier reference time is that it is present throughout all Reynolds

numbers though it is based on the assumption that the Kolmogorov wavenumber, kD,

or its inverse, the lengthscale η, is relevant for all fluid systems irrespective of Reynolds

number.

These reference times can be used to determine an appropriate time to measure

quantities meant to characterise the decaying system. It was found that the

measurement times, tΠ|ε + 2τΠ|ε and tD + 2τD, coincide better with the criterion of

the dissipation rate behaving as a power-law with time as used by Wang et al [127].

5.4.1 Conclusions

Using the measurement times, tΠ|ε + 2τΠ|ε and tD + 2τD, values for Cε were found

that were close to the values taken from other studies of decaying turbulence such as

wind-tunnel experiments and numerical simulations. Though the values of Cε at these

times are slightly lower than those of the literature, there is some indication that these

times and the criteria for determining them are appropriate.

It was also noted for computations using the latest measurement times, the

individual quantities Cε and CΠ do not differ appreciably. Because of its continuity

throughout (presumably) all Reynolds numbers, the reference time of tD will be used

for measurements of Cε and CΠ in the following chapter, specifically using tD + 2τD.

The findings here indicate that this time is reasonable to make such measurements that

depict a freely-decaying turbulent system.

141



Chapter 5. Evolved Time in Freely-Decaying Turbulence

5.4.2 Future Work

The issue of choosing an evolved time has been examined in some detail here, but much

more remains to be done. The reference times are chosen based on the dynamics of the

system, but the measurement times are not necessarily so. Adding multiples of eddy-

turnover times was done somewhat arbitrarily and was justified through comparison

with one other study. As the method developed here works by finding an onset time

when decaying turbulent dynamics are expected, a resolution to this issue would be

to come from the other direction and determine when this motion has finished. One

estimate for this would be when the ratio of the maximum flux to the dissipation rate

vanishes, Πmax(te)/ε(te) → 0. This would signify the inertial terms becoming negligible.

This time might be too late, but noting that the value of CΠ did not change appreciably

for t > tΠ|ε + τΠ|ε, a departure from this may mark the end when such measurements

can be made.

It must also be considered that these times may not exist for all types of

homogeneous isotropic turbulence and hence it would be informative to know where

these criteria can be applied. The assumption that has been used here is that there

is sufficient energy in the small wavenumbers to elicit a transfer of energy into the

dissipation wavenumbers; this applies to both times. One can imagine that initial

spectra with significant energy in the dissipation region give erroneous behaviour of

these times. For example, it is possible to construct an initial spectrum at large

Reynolds numbers such that ε(0) or E(kD, 0) is already a maximum value and as

the system evolves no such maximum will occur again. More specific investigations

might focus on how the evolved-time criteria proposed here are influenced by the shape

of the initial energy spectrum.

A possible application of the evolved time is that it can be used to find a time where

the turbulent quantities associated with decaying turbulence are qualitatively similar to

those of steady turbulence, thereby allowing the use of freely-decaying turbulence to be

meaningfully compared to forced turbulence. It was noted that value of the asymptote

of Cε is similar to that for forced computations; it will be shown in the following

chapter that the the asymptotes of Cε and CΠ coincide for forced turbulence. If such

an evolved time were known where a decaying turbulent system effectively emulates

a forced system, there is the possibility to study the effects of initial conditions in

generating a developed turbulent state.

142



Chapter 6

Phenomenology of Turbulent

Dissipation

It is well known that turbulence is a highly dissipative phenomenon. It is perhaps just

as well known that this dissipation exists even when the viscosity is extremely small,

and, in theory, taken to zero. This chapter discusses this anomalous dissipation and

offers some interpretation of it based on the flux of energy from large to small scales.

An equation for the normalised dissipation rate based on the spectral energy balance

equation is derived here. This relationship can make some quantitative predictions

distinguishing the behaviour of the dissipation rate in forced and decaying turbulence.

It is demonstrated that this equation can be computed using the LET2008 developed in

this thesis, the results of which are comparable to those given in the current literature.

6.1 Introduction to Turbulent Dissipation

A key feature of turbulence is that it is extremely dissipative [133]. Creating turbulence

within a flow takes energy away from the transport of mass and momentum, which

reduces the amount of fluid that can be moved through a confined space, producing

what is call ‘turbulent drag’ [13]. There is a focus in this area that seeks to prevent or

reduce this phenomenon by understanding how turbulence develops [134, 135] and how

the working fluid interacts with an additive that effectively absorbs the fluid’s ability

to transition into a turbulent state [12, 136]. A better understanding of this behaviour

could have practical benefits as well as improve the general understanding of turbulence

itself.

To introduce this concept, an example is considered where the dissipation rate has

been obtained for a variety of viscosities using the LET model in computing the free-

decay of homogeneous isotropic turbulence. Plots of the dissipation rate against time
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Chapter 6. Phenomenology of Turbulent Dissipation

for several computations are shown in fig. 6.1 below. It can be noted that at the largest

viscosities used, the dissipation rate follows a monotonic power-law decay. However, as

the viscosity is decreased, the curve begins to deform, first acquiring an inflection point

and then showing a slight peak. The peak becomes more pronounced as the viscosity

decreases. It should be noted that the dissipation rate is normalised by its respective

initial value, ε(0), which in all cases uses the same initial spectrum thereby giving

ε(0) = ν




∞∫

0

dk 2k2E(k, 0)



 → ν × constant. (6.1)

This accounts for the seemingly large growth of the peak, but not immediately for its

existence as it is this occurrence which is most interesting.
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Figure 6.1: A plot of normalised dissipation rate curves, ε(t)/ε(0), with various
viscosities plotted against time.

The mechanism(s) believed to be driving such a phenomenon is not entirely

clear. The figure shows that this maximum dissipation peak increases as the viscosity

decreases in both its value and the time at which it occurs. These increases may

be explained in the following way. Firstly it should be recalled that this dissipation

rate can be obtained from the dissipation spectrum, which shows the energy spectrum

weighted by the viscosity and a simple quadratic function of the wavenumber
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ε ≡

∫
dkD(k) =

∫
dk 2νk2E(k). (6.2)

The dissipation spectrum grows stronger as the wavenumber is increased, and above

a particular wavenumber, k′, the energy spectrum becomes negligible, E(k′) ≈ 0. As

viscosity is decreased, the wavenumber k′ is increased, thereby suggesting that more

of the wavenumber spectrum is accessible to the system. What this means in terms of

the figure is that as the viscosity decreases and the wavenumber range grows, and the

time it takes for the energy to move through the system from small wavenumbers to

those where it is dissipated also increases.

It is helpful to consider another illustration. Figure 6.2 shows a plot of an energy

spectrum E(k) that has a peak in the low wavenumbers. This could be either the initial

energy spectrum or the constant energy spectrum of a forced system. The energy

spectrum is plotted against curves y(k) ∝ νk2 with various viscosities, ν. This has

been done since the dissipation spectrum is similarly related to the energy spectrum

via D(k) = 2νk2E(k). Note that the dissipation term in the spectral Navier-Stokes

equation is similarly νk2u(k).
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Figure 6.2: A plot of a normalised energy spectrum E(k) superimposed onto curves
y(k) ∝ νk2 against normalised wavenumber k.

The figure illustrates what may be called a region of dissipative influence for a
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Chapter 6. Phenomenology of Turbulent Dissipation

particular viscosity; the region begins at the boundary y(k) = 2(L/U)νk2 and continues

for higher wavenumbers. The largest viscosities show the spectrum to be completely

contained within the region of influence. As viscosity is decreased, the slope of the

region’s boundary decreases and less of the peak of the energy spectrum is contained

within the region. Indeed, as the viscosity is reduced further, the majority of the energy

spectrum is outside of the region. As viscosity is let to vanish, ν → 0, then it can be

seen that a large amount of energy remains outside the region of influence, which must

be transferred giving rise to non-zero turbulent dissipation rate. Dissipation is still

occurring but the viscosity is negligible and it may be considered to be completely

absent. This is known as anomalous dissipation [137–141].

The information in fig. 6.2 is speculative and serves only to illuminate the current

discussion. The part of the spectrum that lies to the left of the boundary represents the

energy that can be transferred by the inertial-transfer mechanism. As the boundary

is pushed to higher wavenumbers by decreasing the viscosity, there is a greater chance

for the inertial mechanisms to activate, which will transfer energy throughout all

wavenumbers. If there is more energy to be transferred rather than dissipated (which

occurs in the low-k range), the flux of energy will increase. As the flux increases, it

brings more energy to the dissipation range of wavenumbers, increasing the dissipation

rate. So then, as viscosity is decreased, the amount of energy to be transferred is

increased, increasing the flux and the dissipation rate. This was seen in fig. 6.1.

The purpose of this lengthy introduction is to present the reader with the notion of

turbulent dissipation and the phenomenon of anomalous dissipation. These issues will

be discussed in more precise language in the following sections.

6.2 The Dissipation Anomaly

Finite dissipation in the vanishing viscosity-limit has and still plays a fundamental role

in the study of turbulence. It has been asserted as an empirical law [44] and has even

come to be referred to as the ‘Zeroth Law of Turbulence’ [142, 143].

6.2.1 The Taylor Dissipation Rate

The quantity that is of greatest concern here is the normalised dissipation rate,

Cε ≡
εL

U3
. (6.3)
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6.2. The Dissipation Anomaly

This was first considered by Taylor [111] who defined it in terms of characteristic-time

ratios:
time scale of dissipative eddies

time scale of energy-containing eddies
=

ε

U2

/
U

L
. (6.4)

Taylor determined that this quantity should become independent of Reynolds number

when R is large and Cε becomes a constant.

Evidence was found supporting this, some of which was later compiled and published

in Batchelor [25]. The impact of this result has proved fundamental to the study of

turbulence. Heisenberg and Weisäcker, Onsager, and Kolmogorov are said to have

independently developed what eventually became the well-known “five-thirds” law of

Kolmogorov based on this phenomenology of turbulent dissipation [24, 25].

A major work in the normalised dissipation rate came from Sreenivasan [126] who

collected and analysed relevant data from wind tunnel experiments, giving proof to the

asymptotic behaviour of the dissipation rate. Sreenivasan also gave a simple formula

showing the small-R behaviour to go as R−1:

Cε =

(
15νU2

λ2

)
L

U3
=

15

R

(
L

λ

)2

(6.5)

which was confirmed with the results given in his paper. Since then, there have been

numerous additions to the documented evidence of this phenomenon, for example,

[123–125, 138, 144–148].

6.2.2 Analytic Relations for the Dissipation Parameter

Given its importance in the study of turbulence, there is a body of work that is

emerging which has sought to develop an analytic relationship tying the dissipation

rate to its observed behaviour. Some notable approaches are presented below. This list

considers only those results that have something directly in common with the work to

be presented here.

Lohse, 1994

The work by Lohse [149] used an expression for the dissipation rate derived from

mean-field closure that was developed and applied to the Navier-Stokes equation by

Effinger and Grossmann [150]. Lohse was able to make some predictions and numerical

calculations that showed the low-R behaviour of the dissipation rate to be Cε ∼ R−1,

as

Cε = Cε,∞

{(
3b3

8

)1/2

R−1
L +

(
1 +

3b3

8
R−2

L

)1/2 }
. (6.6)
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Chapter 6. Phenomenology of Turbulent Dissipation

The constant b is the Kolmogorov constant. The predictions of this equation, though

derived for steady turbulence, were compared to the data of Sreenivasan [126] and

showed a sensible fit to the data. It is noteworthy that the lower bound of his prediction,

obtained using a range of values for b, shows a reasonable fit to the current value of

Cε ∼ 0.5.

Doering and Foias, 2002

Doering and Foais [151] rigorously determined upper- and lower-bounds on the

dissipation rate and Cε for stationary turbulence. The detailed introduction of their

paper gives a short history of similar work. Only the upper bound is of concern here:

Cε ≤
A

RL
+ B. (6.7)

The constants, A and B, are determined by the low-wavenumber forcing used to

maintain stationarity. Furthermore, they only depend on the shape of the forcing

function, but not on its magnitude or the lengthscales associated with it. This work

is quite general in its treatment of the Navier-Stokes equation as it does not specify

homogeneity or isotropy.

This work was extended to plane-shear flows [152], body-forced turbulence [92, 153],

and fractal-generated turbulence [154] by Doering and associates.

Bos et al, 2007

The work of Bos et al [125], investigated the dissipation rate using various methods

of DNS, Large-eddy simulation (LES), and an EDQNM closure for both stationary

and decaying turbulence. Their findings indicate that the asymptotic behaviour of the

normalised dissipation rate is distinct for forced and decaying systems, most notably

that the asymptotes for the decay computations are larger than those of the forced.

They provided arguments explaining that the separation observed was based on

the time needed for the energy in the low-wavenumber regions to traverse the energy

cascade into the dissipation region. An equation is constructed to demonstrate the

phenomenology behind these results:

Cε(t) = CF
ε

(
1 +

Tc

t
)

)n+1

, (6.8)

where the cascade time, Tc, the time it takes energy at L to reach η (given here as kD),

is

Tc ≡
L

U

(
1 +

( π

kDL

)−2/3
)n+1

. (6.9)
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The exponent n + 1 found in both equations comes from the power-law exponent

decaying energy, E(t) ∼ t−n. The quantity CF
ε is described as the normalised

dissipation rate of stationary turbulence. This result explains the increase of the Cε

found for decaying turbulence. This result does not explicitly show any dependence

on Reynolds number, though they derive model equations where CF
ε has a R−1

L -

dependence.

6.3 New Analysis of the Dissipative Anomaly

In this section, new results based on recent work of McComb [155] and further developed

in McComb et al [156] are presented. The work derives an exact relation for the

normalised dissipation rate from the spectral energy balance equation that can be

associated with the equation derived by McComb. Furthermore, the relation shows

that there will be a distinct difference between the normalised dissipation rate found

in decaying turbulence as opposed to that found for stationary forced turbulence.

6.3.1 The Taylor Surrogate and Related Quantities

It will be useful to define a quantity that will be encountered frequently in this chapter.

The ‘Taylor surrogate’ will be formally defined as

ξ(t) ≡
U(t)3

L(t)
. (6.10)

It was originally used by Taylor when investigating the dissipation rate. Its intended

function was, in effect, to normalise the dissipation rate, leading to the normalised

dissipation rate:,

Cε ≡
ε(t)

ξ(t)
. (6.11)

It is worth giving a few remarks about the Taylor surrogate. It is called a surrogate as

it serves a place for the rate of energy transfer, or energy flux. But such a name might

belie a more fundamental role.

As a rough estimate for the energy flux, the energy of an eddy of size compara-

graphble to L would be proportional to U2. The so-called ‘eddy turnover time’, or the

time it takes an eddy of size L to transfer down the energy cascade can be estimated

by L/U . As this line of reasoning is focused on the large scales, the energy flux from

the large scales may be estimated by the surrogate:

energy flux ≡
energy

time
∼

(
U2

)
/

(
L

U

)
(6.12)
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(these arguments follow from Davidson [24]). It will be found later that the maximum

flux, which is obtained from the spectral flux,

Πmax(t) ≡ max
{

Π(k, t)
}

, (6.13)

is related to the surrogate. The spectral flux is directly computed from the energy

transfer spectrum

Π(k, t) ≡ −

k∫

0

dj T (j, t) =

∞∫

k

dj T (j, t). (6.14)

It describes the rate of net energy flowing through a particular wavenumber. The first

equality relates the flow through the wavenumber to the transfer of energy from all

lower wavenumbers, while the second equality describes the flow from k to all higher

wavenumbers. As the flux is the flow of spectral energy through a wavenumber, the

transfer spectrum may be written in terms of the flux,

T (k, t) =
∂Π(k, t)

∂k
. (6.15)

Given in this way and considering the shape of the transfer spectrum, one will find that

the flux is always positive. An illustration of the flux is given in the fig. 6.3. It shows a

typical example of the transfer spectrum with an established inertial range, implying a

large Reynolds number. As the inertial range is shown as the nearly flat region where

T (κ, t) ≈ 0, this corresponds to the maximum of the flux.

kk0

Π(k)

T (k)

Figure 6.3: A schematic of energy flux, Π(k), red, and a typical transfer spectrum,
T (k), blue.

A quantity similar to that of the normalised dissipation rate may be defined then

for the maximum flux, the normalised ‘flux’:

CΠ ≡
Πmax(t)

ξ(t)
. (6.16)
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It will be shown that this parameter is equivalent or proportional (depending on whether

forced or decaying turbulence is being considered) to the asymptotic value for the

dissipation rate, Cε,∞ such that

lim
R→∞

Cε = Cε,∞. (6.17)

6.3.2 The Spectral Analysis of the Dissipation Rate

This section derives a result for the normalised dissipation rate that is central to this

chapter.

Stationary Turbulence

The approach presented here follows McComb[155]. It can be explicitly shown that the

injection and dissipation rates are equal to the rate of energy transfer when the Reynolds

number is large. The spectral analysis for stationary turbulence is conceptually simple,

and will serve as a starting point.

The starting point here is with the spectral energy balance equation:

∂

∂t
E(k, t) = T (k, t) + W (k, t) − D(k, t). (6.18)

This equation has been given previously in the first chapter of this thesis; the following

points will summarise.

• The spectral energy density, E(k, t), is proportional to the two-point correlation

function

• the transfer spectral density function, T (k, t), is effectively the triple correlation

of the velocity fields

• W (k, t) represents input energy due to coupling the external forcing with the

velocity field

• D(k, t) is the dissipation spectral density, which includes the viscosity in its

definition.

The following definitions are given for the energy input rate and the dissipation rate,
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respectively:

∞∫

0

dk W (k) = w (6.19)

∞∫

0

dk D(k) = ε. (6.20)

Under stationary turbulence, ∂tE(k) = 0, and integrating (6.18) over k, the

conservation of energy ensures that the transfer function will vanish, leaving

w = ε. (6.21)

The energy within the system is constant with its input balanced by its dissipation.

Energy production in turbulence occurs mainly at large scales and hence small

wavenumbers [25]. Conversely, dissipative effects dominate at small scales and as seen

above, at large wavenumbers. When the Reynolds number is large, the production and

dissipation regions become separated and an inertial range emerges [155]. To specify the

wavenumbers of the inertial range, they will be labelled by κ and the boundaries of the

inertial range will be given as κbot ≤ κ ≤ κtop. Under these conditions, the energy input

rate and the dissipation rate are effectively confined to the low- and high-wavenumber

regions respectively; hence, the following approximations can be made:

w ≈

κbot∫

0

dk W (k), (6.22)

ε ≈

∞∫

κtop

dk D(k). (6.23)

Now considering the energy transfer rate, or flux:

Π(k) =

∞∫

k

dj T (j) = −

k∫

0

dj T (j). (6.24)

The energy in a wavenumber k equals the rate of energy flowing from it to all

wavenumbers above it. Likewise, it is also equal to the negative rate of energy flowing

into it from all wavenumbers below. Noting the shape of the transfer spectra and

that when integrated over it will vanish, the flux is at its largest when it accounts for

either ‘half’ of the transfer spectra. This entails that the flow of energy from the low
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wavenumbers is as much as it can possibly be, or that the flow of energy into the large-

wavenumbers is analogously as large as it can be. Wavenumbers that meet this criteria

are considered to be members of the inertial range where scale invariance exists.

The flux is largest when the input range is balanced by the dissipation range since

this is the maximum amount of energy that can flow into a wavenumber. When there is

an inertial range present, the input range is always balanced by the dissipation within

the inertial range by definition; hence the flux is maximal and constant in the inertial

range:

Π(κ) = Πmax,

where κ is again used to denote a wavenumber in the inertial range. The recent high-

resolution, large-Reynolds number work of Kaneda et al has very clear data to confirm

this [145].

Taking the stationary case of (6.18) where the Reynolds number is large, and

integrating along selected wavenumber ranges gives

κbot∫

0

dk T (k)

︸ ︷︷ ︸
−Π(κbot) = −Πmax

+

κbot∫

0

dk W (k)

︸ ︷︷ ︸
≈ w

=

κbot∫

0

dk D(k)

︸ ︷︷ ︸
≈ 0

(6.25)

and
∞∫

κtop

dk T (k)

︸ ︷︷ ︸
Π(κtop) = Πmax

+

∞∫

κtop

dk W (k)

︸ ︷︷ ︸
≈ 0

=

∞∫

κtop

dk D(k)

︸ ︷︷ ︸
≈ ε

(6.26)

Hence, for large R, the dissipation rate is balanced by the rate of energy flux into

the dissipation range, which is in turn balanced by the energy flux out of the energy-

production range:

w = Πmax = ε.

Considering the ratio of the dissipation rate and the maximum flux, this quantity

diverges for low-R when the transfer spectral density, and thus the flux, are small.

Furthermore, in the limit of infinite Reynold’s number this value asymptotes to unity:

lim
R→∞

ε

Πmax
= 1. (6.27)

This relationship holds for large-to-infinite Reynolds numbers, which implies that it

will do so for vanishing viscosity. Under these considerations the behaviour of the

dissipation rate is not anomalous but is consistent with what should be expected for a
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turbulent system containing a well-developed inertial range.

Decaying Turbulence

The original work by McComb [155] does not consider the case of freely-decaying

turbulence in spectral space. However it can be shown with very simple arguments

that the spectral analysis above can be generalised to the case of time-dependent

turbulence. The inclusion of the nonzero time-derivative does have a distinct effect

on the asymptotic dissipation rate as will be seen.

When the the system is not in a stationary state, ∂tE(k, t) 6= 0, whether under

the influence of forcing or not, the behaviour of the maximum flux and dissipation are

slightly altered. Focusing on the case of freely-decaying turbulence, the injection term

is ignored and (6.18) becomes

∂

∂t
E(k, t) = T (k, t) − D(k, t). (6.28)

It is important to note that while this equation is correct for all times, t, there are some

equations to follow that are only valid for specific regions of time where turbulence can

be reasonably assured to exist. Considering that the energy of the system is always

decreasing, there will come a time when the system is no longer turbulent. This was

the subject of the previous chapter, and the work of this chapter will implement it.

Hence, when it becomes necessary to specify a dependence on the evolved time, the

arguments of time-dependent quantities will use te to denote this.

Integrating over part of the wave-number spectrum, from k0 to ∞ gives

∞∫

k0

∂tE(k, te) dk = Πmax(te) −

∞∫

k0

D(k, te) dk. (6.29)

This is an exact result, valid for all Reynolds numbers and therefore does not need to

employ any limits. As before, one obtains an expression for Πmax. However, the partial

integration of the dissipation spectrum can be rewritten to include the dissipation rate

without an approximation using

∞∫

k0

D(k, te) dk = ε(te) −

k0∫

0

D(k, te) dk; (6.30)
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and hence the energy balance equation can be written

∞∫

k0

∂tE(k, te) dk = Πmax(te) − ε(te) +

k0∫

0

D(k, te) dk. (6.31)

With some re-arrangement the result becomes

ε(te) = Ė+(te) + Πmax(te) + ε−(te), (6.32)

where

Ė+(te) ≡ −

∞∫

k0

∂tE(k, te) dk (6.33)

and

ε−(te) ≡

k0∫

0

D(k, te) dk, (6.34)

have been introduced for convenience as these quantities no longer depend on spectral

variables.

A key piece of information that distinguishes freely-decaying turbulence from the

situation of forced turbulence is that the time-derivatives of the partial integrals over

the energy spectrum in Ė+(te) are negative for decaying turbulence, as the total energy

is decreasing with time. This means that Ė+(te) is strictly positive for an appropriately

evolved time. The major implication is that now the ratio of the dissipation rate to

the maximum flux is no longer unity in the infinite Reynolds number limit,

lim
R→∞

ε(te)

Πmax(te)
> 1. (6.35)

This is a strict inequality as Ė+(te) cannot be zero for decaying turbulence. Multiplying

this inequality by ξ(te)/ξ(te) leads to a similar expression for the dissipation and flux

parameters,

lim
R→∞

Cε(te)

CΠ(te)
> 1. (6.36)

In general,
ε(te)

Πmax(te)
=

Ė+(te) + Πmax(te) + ε−(te)

Πmax(te)
, (6.37)

which for the forced case is

Πmax(te) + ε−(te)

Πmax(te)
= 1 +

ε−(te)

Πmax(te)
. (6.38)
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Hence, ε > Πmax and only when the second term on the RHS vanishes, which it

does for forced turbulence in the limit of infinite R, will this equation be unity.

This demonstrates that equation (6.32) formally contains the result (6.27). It can

be multiplied by 1/ξ(te) to obtain an equation for the normalised dissipation rate,

Cε(te) =
Ė+(te)

ξ(te)
+ CΠ(te) +

ε−(te)

ξ(te)
, (6.39)

As was seen in both forced and decaying turbulence, the dissipation rate is

intrinsically tied to the transfer of energy from the low-k region of the spectral energy.

The next section re-examines these ideas in real-space with the Karman-Howarth

equation.

6.3.3 The Dissipation Rate in Real Space

The previous treatment in spectral space provided a general result and some quan-

titative predictions about the change of the asymptotic behaviour of the dissipation

and flux parameters from forced to decaying turbulence. However, it does not provide

any relationship to the Reynolds number dependency that has been observed for the

dissipation rate.

The arguments given above that describe the relationship between ε and Πmax

may also be derived from the Karman-Howarth equation for both the decaying and

stationary cases with the inclusion of a dependence on the Reynolds number. The

following uses the same reasoning as can be found in [156], which is slightly different

than McComb’s earlier work [155]. However, the exposition of the material here is

altered in that it focuses on the time-dependent case.

Decaying and Forced Turbulence

The Karman-Howarth equation can be used to derive an equation for the dissipation

rate in homogeneous, isotropic turbulence (see chapter appendix),

ε(t) +
3

4

∂

∂t
S2(r, t) = −

1

4r4

∂

∂r

(
r4S3(r, t)

)
+

3ν

2r4

∂

∂r

(
r4 ∂

∂r
S2(r, t)

)
., (6.40)

where Sn ≡
〈(

ux(x + r) − ux(x)
)n〉

are the nth-order longitudinal velocity structure

functions.

The original approach devised in [155] rescales the structure functions noting that

the dimensionality is (velocity)n,

Sn(r, te) = Un(te)fn(x, τ). (6.41)
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The functions fn(x, te) are dimensionless functions of the dimensionless variables x ≡

r/L(te) and τ ≡ tU(te)/L(te). Using this scaling of the structure functions is similar

to the definitions of the non-dimensional longitudinal structure functions commonly

found in homogeneous isotropic turbulence (see chapter appendix B). Furthermore, the

time argument is specified as the evolved time and that the evolved scaled-time is τe ≡

teU(te)/L(te). It is relevant to point out here that the evolved time in forced turbulence

is the time when quantities become stationary; in this case, all time arguments may be

dropped and the scaling function fn(x) becomes dependent only on spatial variables.

Rewriting (6.40) using this rescaling produces

ε(te) = −
3

4

U(te)
3

L(te)

∂

∂τ
f2(x, τ)

∣∣∣∣
τ=τe

−
1

4x4

U(te)
3

L(te)

∂

∂x

(
x4f3(x, τe)

)

+
3ν

2x4

U(te)
2

L(te)

∂

∂x

(
x4 ∂

∂x
f2(x, τe)

)
. (6.42)

Using the following definitions,

B2(te) ≡
3

4

∂

∂τ
f2(x, τ)

∣∣∣∣
τ≡τe

(6.43)

A3(te) ≡ −
1

4x4

∂

∂x

(
x4f3(x, τe)

)
(6.44)

A2(te) ≡
3

2x4

∂

∂x

(
x4 ∂

∂x
f2(x, τe)

)
, (6.45)

and using the definitions of the surrogate, ξ, and the integral Reynolds number, RL,

(6.42) can be written

ε(te)

ξ(te)
=

(
A3(te) − B2(te)

)
+

A2(te)

RL(te)
. (6.46)

Thus, there is now an exact equation for the dissipation rate that takes into account

the Reynolds number dependence,

Cε(te) =
(
A3(te) − B2(te)

)
+

A2(te)

RL(te)
. (6.47)

This is closely related to (6.39). It is also of interest to note that this takes exactly the

same form as the upperbound of the dissipation rate as determined by Doering and

Foias for the stationary case when B2(te) = 0.

As in the spectral analysis, RL is taken to be large which permits the negligence of
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the last term, leaving the asymptotic value

lim
RL→∞

Cε(te) = A3(te) − B2(te). (6.48)

It was also pointed out that the terms involving the time-derivative will have a positive

contribution to the asymptote. Noting the definition of B2, its relationship to the

second-order structure function is

B2(te) =
3

4

∂

∂t
S2(r, t)

∣∣∣∣
t=te

. (6.49)

The significance of this is that the second-order structure function decreases with time

in decaying turbulence, leaving this quantity to be negative; therefore, whatever the

value determined for A3, it will be larger by an amount determined from B2. This can

be compared to the asymptotic value of Cε for forced turbulence which will be A3 alone

as in this case B2 vanishes. This would reduce (6.47) to

Cε = A3 +
A2

RL
. (6.50)

Taking the large-Reynolds number limit leads to the asymptotic value, Cε,∞, which is

in fact A3,

lim
R→∞

Cε = Cε,∞

= A3. (6.51)

Earlier arguments showed that the asymptote is actually the normalised flux; this allows

the following identification:

Cε,∞ = CΠ = A3. (6.52)

The real-space analysis gives the same result as that derived for the spectral case,

namely that the finite dissipation rate is controlled by the inertial mechanisms.

It should be noted that (6.50) and (6.47) are still energy-balance equations. To see

this, one can follow Tennekes and Lumley [26] and find an estimate for these results.

One can write the characteristic times for the transfer, L/U and viscous dissipation,

L2/ν, of energy in the large scales, U2; then the total rate at which energy is taken

from the large scales is the sum of the rates of these two effects,

d

dt
U2 =

(
∼ U2

/
L

U2

)
+

(
∼ U2

/
L2

ν

)
. (6.53)

Assuming that the bulk of the energy is contained in the large-scale structures and
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using the identities U2 ∼ E and dtE = −ε, this result can be applied to the energy

entering (as it is the negative of the energy leaving the large scales) into the viscous

scales

ε =

(
∼

U3

L

)
+

(
∼

( ν

UL

)U3

L

)
. (6.54)

This qualitative estimate is similar to the result derived above. Additionally, one can

note in passing that the form of (6.53) can be seen as the total differential operator

acting on U2 and being the sum of partial differentials of the different time-scales that

U2 is a function of,
d

dt
U2 =

∂

∂tT
U2 +

∂

∂tD
U2. (6.55)

The variables tT and tD are the transfer and dissipation times respectively. This is only

an observation and would require deeper analysis to demonstrate the validity of such

a statement.

The Structure Functions and Reynolds Number Dependence

The formula for the structure function given by (6.41) can be generalised for any

lengthscale and velocity. Using V and l to designate arbitrary velocity and lengscales,

the structure functions may be written as

Sn(r, te) = V n(te)fn(x, τ), (6.56)

where the dimensionless variables are now x ≡ r/l(te) and τ ≡ tV (te)/l(te). There are

no assumptions to be made in writing this formula in these arbitrary variables, but

once a choice is made, there are implications for the parameters A2, B2 and A3.

To see how quantities can be affected by choice of lengthscale, one may consider

using the Kolmogorov lengthscale. This can be done as there is freedom to choose any

lengthscale and this lengthscale in particular is viscosity dependent, η ∼ ν3/4. Note

that this viscosity dependence is physically based and not due to an imposed definition.

It is believed that eddies of size η are the smallest to exist before being destroyed by

viscous forces.

Considering Cε for forced turbulence and including the Kolmogorov lengthscale in

the definition of Sn,

Cε = A3(η)

(
L

η

)
+ A2(η)

ν

UL

(
L

η

)2

(6.57)

is divergent for ν → 0 (RL → ∞). To accept this infinity and accurately portray the

physical system, the parameters A2 and A3 must have some ν-dependence that counters

that from η. It can then be argued that A2 and A3 are themselves dependent on the
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Reynolds number.

It cannot be demonstrated unequivocally that there is no other Reynolds depen-

dency in Cε aside from R−1, however, given the formula derived here a choice must be

made. The most natural choice is then V = U and l = L. Similar decisions are needed

in other equations given for Cε. Doering and Foias [151] determined l to be the largest

lengthscale delivered to the system via the forcing; judging from this it would seem

that L is appropriate.

Quantitative Analysis of the Coefficients

In the spectral equation, expanded here as

Cε(te) = CΠ(te) −
L(te)

U(te)3

∞∫

k0

∂tE(k, te) dk +
L(te)

U(te)3

k0∫

0

D(k, te) dk (6.58)

= A3(te) − B2(te) + A2(te)/RL, (6.59)

one can identify those quantities which are analogous (if not equivalent) to the

coefficient terms of (6.47). Since both derivations are based on energy balance

equations, it is believed that these relationships hold. Note that in the real-space

analysis, the identification of A3 with the normalised flux CΠ required the limiting case

of infinite Reynolds number, but the spectral analysis shows this to be an exact result.

If this association is correct, then the connection between A3 and CΠ in the real-space

analysis is expected to hold.

One can find that the last term on the RHS of (6.58) can have a R−1
L -dependence

as written in (6.59) but requires some re-adjustment to obtain this.

L

U3

k0∫

0

D(k, te) dk =
L

U3

k0∫

0

2νk2E(k, te) dk (6.60)

=
1

RL

(
L2

U2

k0∫

0

2k2E(k, te) dk

)
(6.61)

This implies that

A2 ≡

(
L2

U2

k0∫

0

2k2E(k, t) dk

)
. (6.62)

The coefficients of the real-space equation of the normalised dissipation rate, (6.47),

can be computed from a DNS computation where the structure functions can be
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measured over the entire domain. The identification between the real- and spectral-

space analyses allows these quantities to be computed in a much simpler manner.

Such results can in fact be computed using the LET. Computations like this would

allow both analyses to say something quantitative about the expected behaviour of

normalised dissipation rate. The Reynolds number dependence of the coefficients can

also be investigated using this analysis. The following section will see this put to use

and display results of the coefficients.

6.4 Investigating Turbulent Dissipation Using the LET

The LET and an LET-based computational model were presented in earlier chapters

and showed some success in depicting turbulent behaviour. While the higher Reynolds

number computations of the decaying-LET were problematic in that they did not

demonstrate a Kolmogorov inertial range, the lower-to-moderate Reynolds number

computations found some support from similar DNS studies. The forced-LET also

showed some evidence that it gives proper turbulent statistics, including a Kolmogorov

inertial range. There is then some reason to believe that the LET-based model can be

used to study the aspects of turbulent dissipation that have been outlined above.

The main quantities being investigated here are Cε and CΠ, as well as their

constituent parameters ε, Πmax, and ξ. Given the preceding exposition on dissipation,

there are some expectations regarding these parameters. The attributes of Cε that

are anticipated for both decaying and forced turbulence are the low-R divergence

(Cε ∼ R−1) and the large-R asymptote. The small Reynolds number behaviour of

both Πmax and CΠ is expected that they will vanish as R → 0. For larger values of R,

the spectral arguments of §6.3.2 suggest that they will asymptote with Cε. For freely

decaying turbulence, the asymptotic values of Cε and CΠ should be separated by a

finite amount whereas in forced turbulence they should be equivalent. The same belief

is held for ε and Πmax. The behaviour of ξ is also unknown, though like Πmax, it might

be expected to vanish at small values of R since U → 0.

6.4.1 Decaying Turbulence

Chapter 5 noted that the time-dependence of the investigated parameters required a

time in which measurements accurately represent a decaying turbulent system. It was

decided that the evolved time being used to illustrate the LET results for decaying

turbulence will be tD + 2τD. This choice places the measurement when both E(t)

and ε(t) are in a power-law decay. This is consistent with contemporary results [125,

127] and possibly those of previous wind-tunnel experiments such as those noted in
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Sreenivasan [126].

In the desire to check the results against a more accurate portrayal of a turbulent

system, a subset of the results presented here have also been supported using DNS

computations. It is only a subset in that the current capabilities of the DNS do not

include the measurement times tD + 2τD nor are they able to compute high-Reynolds

number computations. The first of these is mitigated by using one of the evolved

times, tΠ|ε, and shows agreement to the LET data to moderate Reynolds numbers,

RL ∼ 80. The LET is able to reach higher Reynolds numbers and these results are

shown separately.

Normalised Values: Cε and CΠ
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Figure 6.4: Comparison plots of Cε and CΠ for decaying turbulence from Spectrum
V using LET- and DNS-computed data, with the evolved time tΠ|ε against integral
lengthscale Reynolds numbers.

Figures 6.4 and 6.5 show the quantities Cε and CΠ with both LET and DNS results.

As noted, these plots have been taken at the evolved time tΠ|ε and show very good

agreement between the computations in the plot of Cε for Spectrum V in fig. 6.4. The

accompanying plot of CΠ in the same figure agrees reasonably well among LET and

DNS, and within the error-bars of the DNS. While it is not clear that the asymptotic

value has been reached in any of the computations, the value of Cε corresponding to

the highest RL appears to be 0.7 in both cases; this seems appropriate to the values

given in the literature, 0.8-1.1 (see above).

The asymptotic values produced by the LET for later measurement times and larger
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Figure 6.5: Comparison plots of Cε and CΠ for decaying turbulence from Spectrum
VI using LET- and DNS-computed data, with the evolved time tΠ|ε against integral
lengthscale Reynolds numbers.

Reynolds numbers, figs. 6.6 and 6.7, present a slightly different picture. In both figures,

the asymptotic state is not clearly established at these Reynolds numbers, and therefore

it cannot be said with certainty what the asymptotes are. The best that can be said

for the earlier time, tΠ|ε, is that the values are approaching 0.6 and 0.7 for Spectrum

V and VI, respectively. The later measurements using tD + 2τD show these values to

be elevated to ∼0.8 in both cases. These are closer to those given in the literature as

might be expected given that the times used for these measurements are compatible

with those in the literature.

The plots of CΠ can also be seen in these figures, but it shows more tolerance to

the variability in the measurement times with a reasonable collapse of points onto the

same curve for both spectra. In the plot of CΠ of Spectrum V, the curve tends to slowly

decrease as RL increases. Figure 6.7 shows a different scenario of CΠ looking arguably

flat which is more apparent in the later time measurement. In both cases the value of

the curve in the large-RL regions appears to be in the range of 0.4-0.45;. This value is

not significantly different from that of Cε for forced turbulence (compare to fig. 6.17 of

the next section).

Some further insight can be obtained by plotting these results on log-log coordinates,

as in figs. 6.8 and 6.9. In both figures, the line y ∝ 1/x is given, and in both figures the

low-RL curves conform to this slope. This appears to demonstrate the R−1
L -behaviour of

Cε as shown by Sreenivasan [126]. Using log-log coordinates here shows that there is not
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Figure 6.6: Plots of Cε and CΠ for decaying turbulence from Spectrum V using the
LET; two evolved times are compared, t1 = tΠ|ε and t2 = tD + 2τD.

a significant part of these curves that suggests a unequivocal asymptote. Rather, the

values of Cε corresponding to the highest-RL obtained in these computations indicate

that Cε is still transitioning from the R−1
L -behaviour.

The plots of CΠ in log-log coordinates show some features that require further

explanation. Most notable is the slope of the curve in the low-RL region. For those

plots corresponding to tΠ|ε, this slope appears to have a linear dependence on RL, but

this becomes ambiguous for the later time measurements. The later measurements

also appear to be discontinuous in this region. The origin of these discontinuities is

unknown at this time. One possibility to consider is that they may be related to the

discrete wavenumbers used in these computations. The value of k0 which is used to

compute Πmax is confined to the lattice-spacing of the grid, and therefore introduces

some discretisation errors when computed. The belief here is that the error is more

significant at higher viscosities. A resolution to this would be to compute these values

using a smaller lattice spacing. The lattice spacing used here is meant to be consistent

throughout all computations and is thus fixed to unity as suggested in a previous

chapter (see §3.4.2).

Unnormalised Values: ε(RL), Πmax(RL), and ξ(RL)

There is some understanding to be gained from the individual behaviours of the

constituent quantities of the normalised quantities. As with Cε and CΠ, the low-

RL plots of ε, Πmax, and ξ obtained using LET2008 can be supported with DNS.
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Figure 6.7: Plots of Cε and CΠ for decaying turbulence from Spectrum VI using the
LET; two evolved times are compared, t1 = tΠ|ε and t2 = tD + 2τD.

These are shown in figs. 6.10 and 6.11. Again, in those plots of spectrum V, there

is good agreement among the LET and DNS computations. The most noticeable

discrepancies occur primarily with the Πmax(RL), which suggests this as the reason

for similar discrepancies seen earlier in fig. 6.4. As in the normalised case, the plots for

quantities associated with Spectrum VI show very good agreement between LET and

DNS.

It can be seen in these figures that the shape of ε(RL) resembles that of Cε, as one

might expect. The extent in Reynolds number is limited, so little can be said about

the asymptotic behaviour of ε(RL) except that ε is always larger than Πmax. This

relationship is due to the spectral dynamics of a decaying turbulent system. Division

by ξ will preserve this relationship, as seen in the figures for Cε and CΠ.

When larger values of Reynolds number are used, as is the case in figs. 6.12 and 6.13,

some slight changes occur. These plots also compare these parameters at the evolved

and measurement times. In all cases, the asymptotic behaviour of all parameters is

more apparent and there appears to be a trend in that all parameters increase with

increasing RL.

It was discussed in the previous chapter that the low-R behaviour of ε is drastically

affected by when the measurement is made. It should be noted that in figs. 6.6 and 6.7

the value of Cε in the low-R region for both times is quite large. The explanation for

this is that ξ approaches zero faster than the dissipation rate does. This is consistent

with the concept that viscous dissipation will be the dominant agent for low Reynolds
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Figure 6.8: Log-log plots of Cε and CΠ for decaying turbulence from Spectrum V using
the LET; two evolved times are compared, t1 = tΠ|ε and t2 = tD + 2τD.
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Figure 6.9: Log-log plots of Cε and CΠ for decaying turbulence from Spectrum VI using
the LET; two evolved times are compared, t1 = tΠ|ε and t2 = tD + 2τD.

number systems. In a similar vein, but contrary in its approach to zero relative to the

surrogate, the maximum flux approaches zero fast as the Reynolds number is decreased.

Again, as viscous forces dominate, there is less likely to be any significant transfer of

energy. Just beyond this range, the curves of Πmax and the dissipation rate are very

similar in shape, looking to only be different by an additive constant. Such a result
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Figure 6.10: DNS/LET comparison plots of the time-dependent unscaled quantities
ε(RL), Πmax(RL), and ξ(RL) using Spectrum V, with evolved time tΠ|ε against integral
lengthscale Reynolds numbers.
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Figure 6.11: DNS/LET comparison plots of the time-dependent unscaled quantities
ε(RL), Πmax(RL), and ξ(RL) using Spectrum VI, with evolved time tΠ|ε against integral
lengthscale Reynolds numbers.

supports the claim that the dissipation rate is in effect controlled by the flux.

One final note concerning these results is that the log-log plots did not give any

information that would be useful to the current understanding of these parameters. This

167



Chapter 6. Phenomenology of Turbulent Dissipation

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0  50  100  150  200  250  300  350

ε,
 Π

, 
U

3
/L

 (
m

2
/s

3
)

RL

ε
Π

U
3
/L

ε
Π

U
3
/L

Figure 6.12: Plots of the time-dependent unscaled quantities ε(RL), Πmax(RL), and
ξ(RL) using the LET to compute Spectrum V, t1 = tΠ|ε and t2 = tD + 2τD.
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Figure 6.13: Plots of the time-dependent unscaled quantities ε(RL), Πmax(RL), and
ξ(RL) using the LET to compute Spectrum VI, t1 = tΠ|ε and t2 = tD + 2τD.

is not to suggest that there is no use to plotting these parameters with this method.

At this stage however, such results are pending further consideration and have been

omitted from this thesis.
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The Components A2, A3, and B2

The coefficients given by (6.43)-(6.45) can be computed in both the LET and DNS

computations. Looking at these can offer some clues as to which mechanisms play an

important role in the Reynolds number dependence of Cε. It was assumed that these
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Figure 6.14: DNS/LET comparison plots of the time-dependent coefficients A2, A3,
and B2 using Spectrum V (left) and Spectrum VI (right), with evolved time tΠ|ε.

coefficients would have some dependence on the Reynolds numbers. This appears to

be consistent with the results presented in figs. 6.14-6.16. The strongest dependencies
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are found in the low-R behaviour of all plots and the large-R behaviour found in A2.

The plots in fig. 6.14 give some indication of how these components behave for a

small range of Reynolds numbers, comparing the results between the two computations

(LET and DNS). As previously seen, the matching is quite decent for both spectra.

The components A3 and B2 perform as expected; both have a transient part for low- to

moderate Reynolds number but become a constant (or slowly varying) function of RL.

The behaviour of A3 is exactly the same as CΠ by definition. The other quantity, A2,

displays no certain trends at such small values of RL; the Reynolds number must be

increased to obtain more detail. Figure 6.15 shows the components A2, A3, and B2 in

the extended range of Reynolds numbers seen in the earlier figures. While again A3 and

B2 exhibit no significant departures from their suspected behaviours, the dependence

of A2 on the Reynolds number has a pronounced effect. The curves, again using two

different times, show a strong dependence on RL. The shape of the curve for A2 suggests

a Reynolds number dependent function of the form

A2 = h1R
−1
L + h2 + h3RL. (6.63)

Since this component contributes to Cε as A2R
−1
L , this would leave the linear part of

(6.63) to occur as a constant, h3, and hence

Cε = A2/RL + |B2| + A3 −−−−−→
RL→∞

h3 + |B2| + A3. (6.64)

It is surprising that there should be some additional increase in the asymptote of Cε

by a term

ε− =

k0∫

0

2k2E(k, t) dk −−−−−→
RL→∞

0. (6.65)

To see this, consider that as turbulent activity is increased, the bulk of the energy

in the dissipation spectrum is in the higher-wavenumbers, k > k0, hence ε− should

become vanishingly small in this limit. This issue has not been thoroughly explored

as these are the most recent developments, however one can gain some information

by using a different perspective. Plotting the components in log-log coordinates can

help to probe this supposed linear-dependence. This is given in fig. 6.16. The dashed

line in the plots of A2 correspond to y ∝ x, which in this case is a linear function of

RL. Immediately one can see that, according to these results, that the large-Reynolds

number dependence of A2 is not linear but a function of a lower order in RL. This
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Figure 6.15: LET-plots of the time-dependent coefficients A2, A3, and B2 using
Spectrum V (left) and Spectrum VI (right); two evolved times are compared, t1 = tΠ|ε

and t2 = tD + 2τD.

would be compatible with the accepted phenomenology as described earlier since

Cε = A2/RL + |B2| + A3

=

(
h1R

−1
L + h2 + h3R

q
L

)

RL
+ |B2| + A3 −−−−−→

RL→∞
|B2| + A3. (6.66)
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Figure 6.16: Log-log plots of the time-dependent coefficients A2, A3, and B2 using the
LET to compute Spectrum V (left) and Spectrum VI (right); two evolved times are
compared, t1 = tΠ|ε and t2 = tD + 2τD.

The quantity q is some positive (rational) exponent less than unity and will therefore

allow for A2/RL to be a decreasing function of RL that will vanish in the limit of infinite

Reynolds number. While this subject is due more investigation it can be said that the

behaviour of A2 is connected with the decay of energy and will be much different when

compared with stationary turbulence in the next section.
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A final note about the RL-dependence of B2. In the figure, here plotting −B2,

there appears to be a case for arguing a 1/RL dependence. It cannot be said with

certainty that this is true for all Reynolds numbers as on closer inspection, there is a

slight up-turn in the extreme end of the Reynolds number range.

6.4.2 The Dissipative Anomaly in Stationary Turbulence

Much of the current research looking into the normalised dissipation rate focuses on

forced turbulence, and in order to make proper comparisons, the ideas expressed here

should also be applied to it. It has been observed earlier that the present DNS does

not yet incorporate stationary turbulence into its abilities, so the results obtained thus

far and presented here are only those of the LET2008 computational model.

Normalised Quantities: Cε and CΠ

The results for the normalised dissipation rate and maximal flux are seen in figs. 6.17

and 6.18 with the latter expressing these quantities in log-log coordinates. Some of

the general features of Cε and CΠ from the case of freely decaying turbulence are

seen here. The value of Cε is quite large for small Reynolds numbers and decays to a

constant, expressing the “dissipation anomaly” result as Reynolds number increases.

Noting the peak of CΠ in the small-RL range, this is consistent with what has been

seen in the case of computations of freely-decaying turbulence. The main feature that

distinguishes the normalised dissipation rate of forced turbulence from that of decaying

is the convergence of Cε and CΠ for large Reynolds numbers. This is in particular

a new result in showing the connection between the flux and the dissipation rate as

both quantities are not considered together in the available literature. Again, this is

anticipated from the phenomenology as the viscosity dissipates only what can be fed

into it, and the rate of energy going into the dissipation range is directly controlled by

the energy flux from the lower energy-containing wavenumbers. Thus the dissipation

rate is limited by the rate of energy transfer. In contrast with the ‘decaying’ results, the

dissipation rate is also limited by the time-derivative of the energy spectrum, increasing

the asymptote of Cε.

The coincidence of these curves is apparent but the possibility exists that it

might not continue for larger Reynolds numbers. These results do not continue for

large enough Reynolds numbers, which in the literature extends into three orders

of magnitude. Furthermore, the asymptote is not clearly established by these

computations though the amount of decrease seems to be slowing. The best that

can be offered for an asymptotic value of Cε is that it is near 0.4 (other research puts

the value at 0.5). This is also similar to the value obtained for CΠ in the computations
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Figure 6.17: Plot of Cε and CΠ for stationary, forced turbulence using the LET.

of the free decay, suggesting that it, and hence Πmax, is not significantly affected by

the decay of energy in the system. Current understanding supports this result of the

inertial mechanism in that it is responsible for the exchange of energy throughout the

fluid and in doing so conserves the total energy.
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Figure 6.18: Log-log plot of Cε and CΠ for stationary, forced turbulence using the LET.

The log-log plot of these quantities shows again that the Reynolds numbers are too

low to detect an appreciable asymptote. It can also be see that these results demonstrate
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Figure 6.19: Plots of the time-dependent coefficients ε(RL), Πmax(RL), and ξ(RL) using
the LET.

slightly different picture from that of the expected and documented phenomenology.

The low-RL exponent of Cε does not assume the predicted value of -1, but deviates

from it with a fitted value of -.88 (not shown). It is not expected that this data suggest

a new result but rather that this is an artifact of the LET2008 code. A similar flaw

can be found in the plot of ε(RL) in fig. 6.20 where it is expected, by construction,

that the dissipation rate is fixed to unity for all Reynolds numbers. This demonstrates

the inability of the current LET model to accurately depict the physics of HIT at low-

Reynolds numbers. Further tests were carried out with finer wavenumber and time

resolutions but did not correct this artifact.

Unnormalised Quantities: ε, Πmax and ξ

The unnormalised quantities are also plotted for these computations and are given in

fig. 6.19. As noted above, the small-RL behaviour of ε is problematic but does assume

a proper form, unity, as the Reynolds number is increased. Noting the shape of Cε

in fig. 6.17 and the constant dissipation rate, the picture offered in the current figure

is that the low-R behaviour is determined by the surrogate, ξ(RL), which disappears

at the origin. There is however no indication that the surrogate will stop growing,

though further exploration of this is needed for assurance. One can argue that there is

no justification that the present results show an asymptote of Πmax which could then

be used to measure the behaviour of ξ against. The value of Πmax will only reach ε

at RL → ∞, but to consider the asymptotic state of Πmax these quantities would be
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expected to coincide more than what is seen here.

The Components A2, A3, and B2

The components of Cε as given by (6.42) show some differences when Cε is obtained

from forced turbulent computations. There is no term B2 as this is identically zero for

stationary turbulence. The shape of A3 = CΠ should also be unaffected, as discussed

above. It is then A2 which displays the most notable changes when a steady energy

input is maintained.
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Figure 6.20: Plots of the coefficients A2, A3, and the quantities Cε and A2/RL using
the LET for stationary forced turbulence.

Figure 6.20 shows all the components of Cε. The plot of A2 here is very different

from its time-dependent version in its dependence on the Reynolds number for forced

turbulence. Rather than having a dependence on RL with a positive non-unity

exponent, the shape immediately shows that this exponent is negative and therefore

A2 decreases with increasing Reynolds number. Plotting A2/RL confirms that this

influence on Cε falls off quite rapidly.

To understand why this is so different from the results of freely decaying turbulence,

it is worthwhile to discuss this in more detail. For stationary turbulence, the dissipation

rate is fixed by the constant rate of energy being input into the lower wavenumbers.

This means that ε+ + ε− is also fixed. Arguing that ε+ → ε in the limit of large

Reynolds numbers implies that ε− must vanish under the constraint of the constant

dissipation rate.

For freely-decaying turbulence, there is no evidence to suggest that ε is fixed for
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all Reynolds numbers. Evidence has been found in the current work suggesting that

the unnormalised dissipation rate also increases, though this becomes noticeable only

when the Reynolds numbers are quite large. Further investigation is needed to confirm

this for the current results, specifically in the case of the LET.

The increasing dissipation rate can also be found in the so-called ‘enstrophy

catastrophe’, where the enstrophy, 1
2

〈(
∇ × u(x, t)

)2〉
, diverges for infinite Reynolds

number (and possibly finite time) [27]. The enstrophy is connected to the dissipation

rate via ε = 1
2ν

〈
(∇× u)2

〉
and this further implies that

1

2

〈
(∇× u)2

〉
=

∞∫

0

2k2E(k, t) dk, (6.67)

is independent of viscosity. Hence the RHS must also diverge for RL → ∞, and

therefore, in the finite-RL case, the peak value of ε(t) would grow (presumably) without

bound as the Reynolds number grows.

Returning to the subject of A2(RL), the implication is then that ε+ + ε− must

also increase with increasing Reynolds number when the turbulence is allowed to decay

freely. The partial dissipation rate ε+ might be expected to approach ε similar to the

case of stationary turbulence but it is uncertain at this point how.

It is believed here that the primary factor responsible for this difference is the zero-

crossing wavenumber, k0(RL). For systems with a fixed rate of energy injection, which

is fixed in time but also for all Reynolds number considered, k0(RL) will also be fixed

as the extent in wavenumber space of the input of energy is also fixed. To see this, one

can consider the energy balance equation for stationary turbulence,

T (k) + W (k) = D(k). (6.68)

The antisymmetric shape of T (k) includes a negative part, k < k0, that must be

completely accounted for by the energy input, or work, spectrum W (k) to maintain the

positivity of the dissipation spectrum D(k) for all wavenumbers. This can be seen in

fig. 6.21 below.

Hence, for k ≤ k0 ∣∣T (k)
∣∣ < W (k). (6.69)

As W (k) is fixed in stationary turbulence for all RL, k0 must also be fixed, if not for

all Reynolds numbers, at least beyond a particular value RL > R(c)

L . This is idealised

in computations where W (k) has an exact cut-off but this will not compromise the

generality of the argument. It remains to be seen how these arguments can be extended

to include decaying turbulence, and if so, how it can tie in the behaviour of A2 as a
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Figure 6.21: Schematic of the work and transfer spectra, W (k) (red) and T (k) (blue),
respectively. For such an extreme case as this D(k ≤ k0) = 0.

function of RL.

6.5 Discussion

An equation was obtained based on the spectral energy balance equation, giving the

normalised dissipation rate Cε as a function of the Reynolds number and the time in

the case of decaying turbulence,

Cε(RL, t) = CΠ(RL, t) +
Ė+(RL, t)

ξ(RL, t)
+

ε−(RL, t)

ξ(RL, t)
(6.70)

= A3(RL, t) − B3(RL, t) +
A2(RL, t)

RL
. (6.71)

This result is quite general and although its derivation and application used homoge-

neous, isotropic turbulence, these constraints are not necessary provided the pressure

term in the Navier-Stokes equation can be effectively dealt with.

The spectral formulation developed here can be associated with that of McComb

[155] (reproduced above in (6.69)). Provided this association is valid, then this

formulation allows an equivalent computation to determine the coefficients derived in

the McComb relation. As seen using the LET computational model, these coefficients

can be directly computed.

6.5.1 Conclusions

It has been found that the values obtained for the normalised dissipation rate for

decaying and forced turbulence are in agreement with those found in the available

literature. For freely decaying turbulence, the asymptotic value of Cε using the LET

has been found to be 0.75 and 0.85 for initial Spectra V and VI, respectively. These

values were obtained using the latest measure of evolved time established in the previous
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chapter. Present data give a range for this value to be 0.8-1.1 (see above for references).

The value of Cε found for forced turbulence is ∼ 0.4, which is also compatible with

established results. Similarly, the value of the normalised energy flux was obtained for

decaying turbulence and found to be 0.4 and 0.45 for Spectra V and VI, respectively.

One of the main results established here is the role of the energy transfer in the non-

vanishing dissipation rate. This chapter illustrates that the energy transfer in the form

of the flux is the driving influence to the asymptote of Cε.

The real-space result, (6.70), shows an explicit Reynolds number dependence and

it is only by association that the spectral result, (6.71), has a similar form. The results

here demonstrate that the coefficents given in (6.70) are dependent on the Reynolds

number; this dependence is even more pronounced in freely-decaying turbulence where

the coefficient A2 shows a power-law dependence for large Reynolds numbers.

6.5.2 Future Work

While (6.70) has been associated with the McComb’s equation, (6.47), this association

has not been demonstrated formally through an analytic proof. The spectral energy

balance is claimed to be the Fourier transform of the Karman-Howarth equation [24],

and while not demonstrated here it is believed that a more rigorous proof can be made

to show that McComb’s coefficients are exactly those terms found in the above equation,

(6.70).

Using a computation that simulates the complete velocity field such as DNS,

one can compute the structure functions S2(r, t) and S3(r, t). This would allow a

direct quantitative measure on the Karman-Howarth result of McComb. The value of

coefficients found in this manner can also be compared against those obtained using

the methods developed here.

It must addressed that the LET2008 computations are not entirely sound for larger

Reynolds numbers in the case of decaying turbulence; this can have implications

when determining the proper behaviour of all coefficients. Therefore, more testing

would be required to establish these results on more general grounds in terms of

computational results. Earlier chapters also found the LET to give an inertial range

incompatible with Kolmogorov’s result for freely-decaying turbulence. Nonetheless,

the data presented here agree with established results from the literature. Indeed the

mechanism responsible for dissipation itself can be said to depend on the existence of

an inertial range. One can suggest using such results to determine the effect of an

‘incorrect’ inertial range on the values obtained for the coefficients associated with Cε.
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As the main result of this chapter, the equation for the dissipation rate, (6.70),

and the quantities associated with it, namely the coefficients A2, B2, and A3, can be

computed for presumably any given system. Future work would see these quantities

related to the characteristic features of the system such as the initial energy or energy

spectrum. It was claimed in Sreenivasan [123] that the asymptote was determined by

the initial conditions and/or the forcing mechanism used. The results of Doering and

Foias [151] are presented with the statement that the forcing is the primary influence

on the Reynolds number-dependent shape of Cε. The arguments and equation given

here would allow such investigations to be carried out.

In tying the results to the arguments of the introduction, one can quantitatively

examine the relationship between the energy in the low-k region, or large scales, of

the energy spectrum. The shape of the initial or forced spectrum, or perhaps more

importantly the distribution of energy among these wavenumbers, might be directly

linked to the mechanisms found to be controlling the dissipation rate here. One could

follow such arguments with those of Loitsianskii’s [157] and Saffmann’s [158] respective

invariants to see how these quantities contribute to the behaviour of the dissipation

rate.

As it has been developed here, the result above does not explicitly carry any

information from the forcing, seemingly challenging the view expressed by Doering

and Foias. However, the transfer spectrum would be heavily influenced by the forcing,

and as demonstrated here this influence would then be felt in all the coefficients via

their dependence on k0. This would support the assertions made by Doering and Foias.

It is believed that a direct connection can be established with the main result here

and the upperbound on ε established in their paper. Further extensions could then be

to use the results here to establish an equally rigorous bound for the time-dependent

dissipation rate.

In the plots of CΠ in both decaying and stationary turbulence, one can find that

there is a peak in the low-R region. This does not always exist in the unnormalised plots

of Πmax, and this appearance seems to be associated with the measurement time for the

time-dependent computations. These findings are demonstrated in both the LET and

DNS results. The belief is that this peak is associated with the initial energy spectrum

similar to the peak of Πmax(t) (see fig. 5.4 in §5.2.2 of the previous chapter). This

relationship between the initial energy spectrum and the occurrence of the peak in CΠ

has not been established. Because it happens in the low-R regime, one may speculate

that it indicates more accurately the emergence of the inertial interactions, suggesting

a transition to turbulence. While the concept of turbulent transition seems vague in

terms of HIT, this quantity can be sought in more conventional transition settings, such
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as pipe flows, and may offer some insight into the mechanisms of turbulent transition.

6.A The Karman-Howarth Equation

First derived by von Kármán and Howarth in 1938[120], the Karman-Howarth

equation has since become a fundamental equation in the study of homogeneous,

isotropic turbulence. Any classic[25],[21] and contemporary[28],[24] texts which cover

homogeneous, isotropic turbulence offer a derivation or summary derivation.

The starting point is to consider the Navier-Stokes equation for two spatial

coordinates, x and x′:

∂tuα(x, t) +
∂

∂xγ

(
uα(x, t)uγ(x, t)

)
= −

1

ρ

∂

∂xα
p(x, t) + ν

∂2

∂x2
uα(x, t) (6.72)

∂tuβ(x′, t) +
∂

∂x′γ

(
uβ(x′, t)uγ(x′, t)

)
= −

1

ρ

∂

∂x′β
p(x′, t) + ν

∂2

∂x′2
uβ(x′, t). (6.73)

Both equations can be united into a single equation by summing and then averaging

them, as in
〈
(6.72)×uβ(x′, t) + (6.73)×uα(x, t)

〉
.

Since the space being considered is homogeneous, all quantities are functions of the

distance between them. Writing x′ = x + r, changes the derivatives with respect to x

and x′. Replacing velocity-correlation functions with correlators leaves

∂tCαβ(r; t) −
∂

∂rγ

(
Cαγβ(r; t) − Cβγα(−r; t)

)

= −
1

ρ

∂

∂rγ

(〈
uβ(x′, t)p(x, t)

〉
δγβ −

〈
uα(x, t)p(x′, t)

〉
δγα

)
+ 2ν

∂2

∂r2
Cαβ(r; t)

(6.74)

It can be shown that under isotropy the pressure-velocity correlations will vanish

[159]. Likewise, the triple-correlation is anti-symmetric under partiy, Cβγα(−r; t) =

−Cβγα(r; t). This leaves a much simpler equation to deal with,

∂tCαβ(r; t) =
∂

∂rγ

(
Cαγβ(r; t) + Cβγα(r; t)

)
+ 2ν

∂2

∂r2γ
Cαβ(r; t). (6.75)

By choosing a reference frame such that u(x + r) · r = ux(x + r)r with r = (r, 0, 0),

one can make the following simplifications to the correlation functions without any loss

of generality:

Cαβ(r, t) = U3

(
f(r, t)δαβ +

r

2
f ′(r, t)δαβ −

f ′(r, t)

2r
rαrβ

)
(6.76)
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Cαγβ(r, t) = U3

(
k(r, t) − rk′(r, t)

2r3
rαrβrγ

+
2k(r, t) + rk′(r, t)

4r

(
rαδβγ + rγδαβ

)
−

k(r, t)

2r
rβδαγ

)
. (6.77)

The functions f(r, t) and k(r, t) are the logitudinal double- and triple-correlation

functions

f(r, t) =
1

U(t)2

〈(
ux(x + r, t)ux(x, t)

)〉
, (6.78)

k(r, t) =
1

U(t)3

〈(
ux(x + r, t)ux(x, t)2

)〉
. (6.79)

These nondimensional correlation functions are dependent only on the distance r

between the points of measurement in a homogenous isotropic fluid.

Substituting these equations for the correlation functions into (6.75), and taking

the trace over tensor indices, α = β returns

∂t

(
U2

r2
∂

∂r

(
r3f

))
=

U3

r2
∂

∂r

(
1

r

∂

∂r

(
r4k

))
+ 2ν

U2

r2
∂

∂r

(
r2

∂

∂r

(
3f + rf ′

))
. (6.80)

Obtaining this result involves some nontrivial algebra which can be simplified by noting

Cαα(r, t) =
U2

r2
∂

∂r

(
r3f

)
, (6.81)

∂

∂rγ
Cαγα(r, t) =

U3

r2
∂

∂r

(
1

r

∂

∂r

(
r4k

))
, (6.82)

and using the spherical Laplacian

∂2

∂r2γ
=

1

r2
∂

∂r
r2

∂

∂r
. (6.83)

Factoring out an r−2 term and integrating (6.85) over r gives

∂t

(
U2r3f

)
=

U3

r

∂

∂r

(
r4k

)
+ 2νU2

(
r2

∂

∂r

(
3f + rf ′

))
. (6.84)

With a few further modifications, this becomes the celebrated Karman-Howarth

equation,

∂t

(
U2r4f(r, t)

)
= U3 ∂

∂r

(
r4k(r, t)

)
+ 2νU2 ∂

∂r

(
r4f ′(r, t)

)
. (6.85)

The correlation functions can be related to the second- and third-order structure

functions
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S2(r, t) =
〈(

ux(x + r, t) − ux(x, t)
)2〉

=
〈
ux(x + r, t)2 + ux(x, t)2

〉
− 2

〈
ux(x + r, t)ux(x, t)

〉

= 2U(t)2
(
1 − f(r, t)

)
(6.86)

S3(r, t) =
〈(

ux(x + r, t) − ux(x, t)
)3〉

=
〈
ux(x + r, t)3 − ux(x, t)3

〉
+ 3

〈
ux(x + r, t)ux(x, t)2 − ux(x + r, t)2ux(x, t)

〉

= 3
〈
ux(x + r, t)ux(x, t)2 + ux(x + r, t)ux(x, t)2

〉

= 6U(t)3k(r, t). (6.87)

Substituting these into the Karman-Howarth equation gives

∂t

(
U2(t) −

1

2
S2(r, t)

)
=

1

6r4
∂

∂r

(
r4S3(r, t)

)
−

ν

r4
∂

∂r

(
r4

∂

∂r
S2(r, t)

)
. (6.88)

The mean velocity is related to the total (mean) kinetic energy, the time-derivative of

which is directly proportional to the dissipation rate, hence the following relations can

be made:

∂tU
2 =

2

3
∂tE = −

2

3
ε. (6.89)

Inserting this into the (6.88) and some simple algebra reveals the result,

ε(t) +
3

4
∂tS2(r, t) = −

1

4r4
∂

∂r

[
r4S3(r, t)

]
+

3ν

2r4
∂

∂r

[
r4

∂

∂r
S2(r, t)

]
. (6.90)
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Chapter 7

Conclusions

The work detailed in this thesis covers various areas in turbulence research, beginning

and ending on two largely different subjects: statistical closure formalisms and

turbulent dissipation.

The first chapter introduces the main aspects of turbulence research that this work

has been concerned with.

The second chapter details the need to deal with the Navier-Stokes equations in

a statistical formalism that treats the closure problem found in nonlinear statistical

equations. The formalisms presented there can define a foundation from which to

construct or refine other renormalised perturbation theories.

One such theory, the Local energy transfer (LET) theory, is given in chapter 3.

The numerical solution of the LET, resulting in the creation of the LET2008 code, is

demonstrated there. Using such a computational model, the LET theory can be solved

to obtain predictions for systems of freely-decaying and forced turbulence.

Chapter 4 extends the previous abilities of the LET by considering larger Reynolds

numbers. These extensions provide a larger range of turbulent behaviours to observe,

such as turbulent dissipation.

When investigating the quantities that demonstrate these behaviours, it was shown

in chapter 5 that one needs to consider when to take measurements that appropriately

characterise the turbulent dynamics of decaying systems.

The results of chapter 5 are then employed in chapter 6, where the LET2008 is used

to investigate the phenomenon of turbulent dissipation.

Establishing such connections in seemingly disparate topics provides a theme of how

important multiple perspectives are in turbulent research as well as establishing a few

of the many attempts to approach this challenging subject.
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More detailed summaries of the new work that has been developed in this thesis

are given below.

7.1 Field-Theoretic Statistical Closures

Chapter 2 addresses the closure problem of a statistical treatment of homogeneous

isotropic turbulence (HIT) and in doing so presents two formalisms. These formalisms

which are based on techniques primarily developed for quantum field theory, have be

applied to turbulence.

7.1.1 Wyld and MSR

The formalisms of Wyld and Martin, Siggia, and Rose (MSR) have been separated by

the notion that Wyld’s formalism is incorrect. However, it is stated in this chapter

that Wyld’s formalism has been misunderstood, and it is demonstrated that the result

is equivalent to that obtained using the MSR formalism.

The work detailed in chapter 2 applies Wyld’s formalism to the fully 3-D Navier-

Stokes equations for incompressible HIT. It shows that using a different but equivalent

version of the correlation equation aids in creating a consistent renormalisation

procedure that explicitly obtains the exact (or renomalised) propagator equation

introduced by Lee as well as reproducing the DIA equations.

The formalism of MSR is also presented along with its diagrammatic treatment of

the Navier-Stokes equation. It is shown through a detailed analysis that the narrative of

their paper is not clear when dealing with the NSE but their formalism does reproduce

the diagrams of the primitive (or bare) correlator expansion.

The main conclusion to be drawn from this chapter is that the two formalisms

produce the same set of results for the Navier-Stokes equations. This rectifies a long-

standing debate which has discredited Wyld and possibly discouraged a relatively

simpler but equivalent technique to be used.

While these claims are made, it must be observed that they have only been justified

to fourth-order in the bare vertex expansion; future work should verify these claims to

higher and even all orders if possible.

7.2 The Local Energy Transfer Theory

The LET is a closure theory for HIT which uses a fluctuation-dissipation relation to

connect single- and two-time correlation functions. Chapters 3 and 4 give the re-

development, testing, and implementation of a numerical solution of the LET in what
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is called LET2008. This updated version of the LET code has been tested against

previous LET results and DNS data for decaying turbulence up to moderate Reynolds

numbers. The code can also be used for stationary turbulence, though the testing of

this is made with comparisons to the previous version of the LET code.

Higher Reynolds numbers were attained with LET2008, the details are given in

chapter 4. These are the largest Reynolds number achieved for the LET where the

computation has been run for a sufficient amount of time enabling the development of

an inertial range. The results for freely-decaying computations show an inertial range

however the slope of this range, ∂E(k, t)/∂k, is incompatible with the Kolmogorov

prediction. In contrast, for similarly high Reynolds numbers, the results from forced-

turbulence computations show that the LET does produce a Kolmogorov inertial range.

The contradictory results of the LET2008’s inertial range require additional work

to confirm these findings. A full assessment of the LET through similar calculations

can be made to understand why such discrepancies exist. This could then be used to

refine and improve the theory.

7.3 Turbulent Dissipation

The subject of turbulent dissipation is found in the chapters 5 and 6 of this thesis. An

investigation has been undertaken that uses the LET to study turbulent dissipation

in decaying and forced turbulence. Chapter 5 notes that in order to study this

phenomenon appropriately, one must take measurements that accurately describe a

freely-decaying turbulent system. The following chapter uses the methods of chapter 5

to compute the dissipation rate according to the LET.

7.3.1 Evolved Turbulence from Free-Decay

It is noted in chapter 5 that quantities of a time-dependent system, such as the

dissipation rate ε(t), can only be taken at a single time to have meaning when finding

relationships between them and the Reynolds number, as is the case with the normalised

dissipation rate, Cε(R).

The arguments presented in chapter 5 use what are considered common behaviours

of freely-decaying turbulent fields to establish a time when the system is said to be

sufficiently evolved into a turbulent state. These times can be used to measure the

system or as references times from which to construct later times when measurements

can be made.

The method developed here produces a measurement time that is based on the

movement of energy through the wavenumber spectrum of a turbulent fluid. It fulfils a
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criterion used for other studies of decaying turbulence that seeks to make a measurement

when the total kinetic energy and dissipation rates show a power-law decay. This

method has been briefly tested in noting that the values it gives for the normalised

dissipation rate using the LET are acceptable with those obtained for experimental

and numerical studies.

Future studies suggested for this would see this method applied to both experimental

and numerical investigations where more realistic comparisons can be made.

7.3.2 Redefining the Dissipative Anomaly

In studying turbulent dissipation in chapter 6, the notion of anomalous dissipation was

encountered. This phenomenon shows a non-vanishing dissipation rate exists when the

viscosity is taken to be negligible.

An equation for the normalised dissipation rate is introduced in this chapter. This

equation is based on the spectral energy balance equation and is an extension of the

earlier work of McComb. It is applicable to both decaying and forced turbulence, and

predicts a difference in behaviour of Cε for decaying and forced systems.

The equation for the normalised dissipation rate can be computed using the LET,

and provides a means to access the mechanisms behind the turbulent dissipation rate.

The results of the chapter show the behaviour of these quantities as functions of

Reynolds numbers. The explanations proposed suggest that the asymptotic behaviour

of Cε is a consequence of the rate of maximum energy flux and are augmented by the

time derivative of spectral energy in decaying turbulence.

The conclusions of this chapter support the view of McComb that labelling such a

phenomenon an anomaly is misleading as there is seemingly nothing anomalous about

it. A clarification must therefore be made when using this phrase to refer to finite

dissipation in the vanishing viscosity limit.

As the chapter primarily uses the LET to support its claims, additional work is

required to confirm these results as the current use of DNS does not reach the Reynolds

numbers and the performance of the LET at these Reynolds numbers is questionable.

It was seen that the behaviour of the quantity A2 has very different behaviour for forced

and decaying turbulence, and this behaviour is significant at larger Reynolds numbers.
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