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Abstract 

We present here two calculations based on the phase-space of interactions treat-

ment of neural network models. 

As a way of introduction we begin by discussing the type of neural network models 

we wish to study, and the analytical techniques available to us from the branch of 

disordered systems in statistical mechanics. We then detail a neural network which 

models a content addressable memory, and sketch the mathematical methods we 

shall use. The model is a mathematical realisation of a neural network with 

its synaptic efficacies optimised in its phase space of interactions through some 

training function. 

The first model looks at how the basin of attraction of such a content addressable 

memory can be enlarged by the use of noisy external fields. These fields are used 

separately during the training and retrieval phases, and their influences compared. 

Expressed in terms of the number of memory patterns which the network's dy-

namics can retrieve with a microscopic initial overlap, we shall show that content 

addressability can be substantially improved. 

The second calculation concerns the use of dual distribution functions for two 

networks with different constraints on their synapses, but required to store the 

same set of memory patterns. This technique allows us to see how the two networks 

accommodate the demands imposed on them, and whether they arrive at radically 

different solutions. The problem we choose is aimed at, and eventually succeeds 

in, resolving a paradox in the sign-constrained model. 
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Chapter 1 

Neural Network Models and the Phase Space of 

Interactions 

In principle, neural network models are nothing less than an attempt to capture 

the salient properties of biological neural tissues. Whether this programme is any-

where near to accommodating the enormous body of neurological information is a 

debate we shall not enter. But what we can certainly say is that the introduction 

of neural networks has spawned a variety of field' across the disparate disciplines 

of computer science, electronic engineering, theoretical physics, cognitive science, 

and perhaps even in neurobiology itself. However, it is the theoretical physics 

viewpoint which will be the main concern of this work, and in particular a demon-

stration of the power of the mathematical tools developed in the field of statistical 

mechanics. 

The object of this introductory chapter is to bring together the relevant features 

of neural network models and statistical mechanics. We shall avoid a lengthy trea-

tise on either fields by focusing our attention on a neural network based model 

of a content addressable memory, and its analysis by the use of quenched disor-

der statistical mechanics. The characteristics of this model and the calculation 

techniques to be described will both be of relevance in the two chapters which 

follow. 
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1.1 NEURAL NETWORK MODELS AND STATISTICAL 

MECHANICS 

Much has been written in the literature across the entire spectrum of interests 

which falls under the heading of 'Neural Networks', and it is not simply a matter of 

expedience here to request the reader to refer to, for example, references [Ami89] 

and [HKP91] for suitably broad treatments. Instead, in this section we shall 

discuss what we mean by a neural network, with a deliberate bias to the areas we 

shall require for the subsequent chapters. 

The model of the neuron we shall use is that introduced by McCulloch and Pitts in 

1943. This device models the two possible states of neural activity with a simple 

update rule dependent on the state of the interacting neighbours and the synaptic 

efficacy between them. The values of these synapses are determined during the 

training phase, by presenting the network with some set of training data based 

on the problem we wish the network to solve. In the case of a memory model, it 

will be the binary images of patterns we wish the network to store. 

Neural networks are categorised by the architecture which seems best suited to 

the tasks we require to solve. The one we shall study consists of a single layer 

of many inter-connected neurons, with each site acting as a bit of information 

for a content addressable memory. Such an architecture is believed to exist in 

the hippocampus region of the brain [TR90]. Fortunately, this model has strong 

analogies with magnetic spin systems, and in certain cases is amenable to analysis 

by the methods of statistical mechanics. Indeed, so much of the analytical work 

done on neural networks has been based on statistical mechanics that we have 

freely borrowed many of its imageries and terms. It is therefore necessary to 

devote the next subsection to discussing the machinery of the techniques we shall 

encounter. 
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1.1.1 QUENCHED DISORDER SYSTEMS 

Statistical mechanics is the study of systems with many components all behaving 

in a simple way. The quantities it calculates reflect the nature of such systems by 

demanding that they be statistically relevant to be of any importance. That is, 

the typical value of an observable is equal to its average with a vanishing degree of 

uncertainty. This is another way of saying any relevant quantity we calculate must 

be invariant from sample to sample, and is hence independent of microscopically 

fine details. 

To calculate the observables of a statistical mechanical system the usual starting 

point is to write it in terms of a configurational sum, suitably weighted by a 

Boltzmann term. This is of course, the celebrated central axiom of statistical 

mechanics which equates the equilibrium values of a system with a configurational 

average over the important region of phase space. If we now denote the thermal 

average of an observable A by angled brackets we can see this configurational sum 

by schematically writing down the weighted sum over the configurations S as 

(A) 	E A(S) exp (—/7(S)), 	 (1.1) 

where the normalising constant Z is the partition function, 31  is the temperature 

of the system, and 7-i(S) is the Hamiltonian which contains the details of the 

model. Upon taking the low temperature limit of (j3 -* oo), the sum will be 

dominated by the configuration which yields the lowest value for the Hamiltonian. 

This procedure is analogous to slowly cooling down the system and hence is often 

referred to as annealed optimisation. 

There are a variety of ways to calculate the thermal averages of equation (1.1), 

depending on the class of model under scrutiny. A common first steps is to insert 

any physics we know into the problem by identifying the relevant overlap measures, 
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so called because they are a succinct statement of the system's configuration with 

a chosen state. Given a sensible set of overlap measures, we can replace the 

configurational sum with an integration over the overlap measures by use of the 

'extraction' technique of equation (A.7). The resulting integrals are not likely to 

be any easier to exactly calculate than the original configurational sum, but the 

problem is now amenable to approximation by the saddle-point method [Cop65, 

Arf851. This approximation becomes exact in the thermodynamic limit, that is, 

when the co-ordination number of all the sites is large. Following reference [Ste89], 

we shall elevate the overlap measure at the saddle-point by calling it an order 

parameter of the system. We do this because the order parameter is a physically 

relevant, thermal-averaged observable which characterises the system, and not just 

a quantity we introduce to ease the mathematics. In passing we should mention 

this nomenclature is not universal, and the literature has referred to our overlap 

measure as their order parameter. 

THE REPLICA TECHNIQUE 

The title of this subsection refers to the particular branch of statistical mechanics 

we shall be interested in. This is the study of models where there is some disorder 

frozen, i.e., quenched, into the system. The origins Of this concept lie in magnetic 

spin-glass systems, where it is believed the interactions between sites have been 

frozen into a random configuration [EA75, KS75]. References [Pa189, Ste891 pro-

vide good introductions to this subject, while the book [MPV87] gives the most 

authoritative treatment to date. 

In the spirit of statistical mechanics we want to take the average example of 

disorder in our system and feel justified in believing it is also a typical example. 

This requires us to do the averaging on the quenched disorder of the system, but 

since this disorder is supposed to be fixed throughout all time the averaging must 

be over a physically observable quantity. Another way of putting this is that 
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we wish to quenched average over an extensive object whose fluctuations from 

system to system will vanish in the thermodynamic limit. Unfortunately, this 

averaging is only simple for the partition function, but which has exponentially 

large fluctuations. To properly do the quenched averaging we need to use the 

replica technique first introduced in reference [EA75]. 

The archetypal quantity we shall quenched average over is the logarithm of the 

partition function. This extensive object is related to the physically observable 

free energy by a factor —3 which we shall neglect. The crucial first step is to write 

the logarithm in terms of a = 1. . . n replicas of the system via the identity 

((ln Z)) = lim in ~(
ri  ga))  

fl-40 fl a=1 

(1.2) 

with the double-angled brackets denoting the quenched average. Upon perform-

ing the quenched average we find it is necessary to introduce an overlap mea-

sure between the replicas. This overlap is written as qab  and it encodes how the 

phase-space of the model is being divided up by the disorder. The overlap qab S 

again evaluated at the saddle-point in the thermodynamic limit, whilst taking the 

replica-symmetric ansatz of qab = q Va b. We can identify this saddle-point of q 

with the Edwards-Anderson order parameter qEA,  a quantity originally proposed 

to indicate broken ergodicity in a system. The appendix chapter B discusses this 

object in more detail, albeit in another context. 

Given equation (1.2), which appears to display full symmetry under permuta-

tions of the replica index, we may naïvely expect the repli ca- symmetric ansatz to 

be the only sensible move to make. However in highly disordered models such as 

spin-glasses it was quickly realised that replica-symmetry gave incorrect solutions, 

with physically questionable results such as negative entropies and re-entrant be-

haviour in the phase-diagram. Hence for many quenched disorder calculations 

involving the replica technique a query often made by the cognoscenti is whether 

5 



the repli ca- symmetric ansatz is a valid assumption to make, or whether we should 

use something with a richer structure. There are at present three means of an-

swering this question and their merits and pitfalls are outlined here. 

Historically the first, the method introduced by de-Almeida and Thouless [dAT78] 

was in response to problems with the low temperature limit of the Sherrington-

Kirkpatrick spin-glass model [KS75, KS78]. It acknowledges the use of the method 

of steepest descent in performing the integrations over the replica indexed overlap 

measures and examines whether the replica-symmetric ansatz is actually a stable 

fixed-point. That is, whether the determinant of the Hessian at that point is 

positive definite. The replicas provide the Hessian with a non-trivial structure, 

from which we can reduce the question of stability to any arbitrary fluctuation to 

that of just three specific modes. The calculation of the elements of the Hessian 

matrix can be somewhat tedious, but this is the method used in calculations that 

follow. 

Unfortunately, having a stable replica-symmetric ansatz does not necessarily mean 

it will be the correct solution, for there may be another non replica-symmetric 

ansatz with a lower free energy' which is the true saddle-point solution. The 

obvious way to test for this eventuality is to insert an alternative ansatz and 

compare it against the repli ca- symmetric case. Finding an appropriate alternative 

is not as hopeless as we may expect, for there is in the Parisi repli ca- symmetry-

breaking scheme 2  a proven and possibly unique [Lau91, Fra9l] route to generating 

the ultrametric structure expected. Hence we can in principle begin by testing 

with the so-called one-step repli ca- symmetry breaking ansatz, and progress with 

further steps towards ever more elaborate schemes. 

Lastly we can in certain cases calculate the (replica-symmetric) entropy of the 

model. Finding the line of zero-entropy below which the replica-symmetric ansatz 

1 The word cenergy  can be used in a metaphorical sense to denote some cost-function. 

2 Reference [MPV87] contains a section devoted to the Parisi ansatz. 



should be rejected is the most straightforward of the methods discussed here, and 

can be extended to consider the validity of the replica-symmetry-broken ansätze 

as well. Unfortunately this seems only possible in models where the space of the 

annealing dynamics is discrete, such as in spin-glass models, 1 annot be extended 

to continuous models. 

1.1.2 NEURAL NETWORK MODELS AS QUENCHED DISORDER 

SYSTEMS 

We shall now pull the threads of the previous two subsections together and discuss 

how the statistical mechanics of quenched disorder systems have anything to say 

about neural network models. Once again the literature contains good coverage 

of the subject, in for example references [Ami89, She90]. 

The initial breakthrough came from the writing down of a Lyapunov function for 

the neural-dynamics by Hopfield [Hop82], whichmade the problem amenable to 

analysis by equilibrium statistical mechanics. This model was quickly elaborated 

upon and culminated in the full replica treatment by references [AGS85, AGS86]. 

This model maps the neural activity of the system onto spin-sites, with a Hamil-

tonian based on Hopfield's Lyapunov function. The interactions amongst the sites 

are given by a prescribed matrix which is motivated by the proposed mechanism 

of Hebbian learning in biological synapses[Heb49]. By being able to store and 

retrieve a given set of memory patterns, the network is indeed an example of a 

content addressable memory, 

The second approach was introduced by Gardner and is distinctively non-biological 

in motivation. Instead it asks what are the properties of a network optimised to a 

certain task, namely the task of storing a set of memory patterns. The choice of 

the word 'optimise' is deliberate, for the calculation is based upon an annealing 

process in the synaptic efficacy. That is, in lieu of the neurons' spin configuration 
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we have the values of the synaptic connections as the dynamical variable, which in 

the limit of a zero anneal temperature limit settles on the optimal solution. Hence 

instead of a sum over the spin model's configurations by its partition function, 

we have here an exploration over the volume of the phase-space of interactions. 

For the work which follows, we shall be interested in the properties of a network 

possessing such an anneal-optimised set of interactions. To actually uncover these 

optimal connections Gardner proposed a perceptron-like training algorithm first 

introduced by Rosenblatt. She then proceeded to prove that provided a set of 

optimal connections actually exists, the algorithm will converge in a finite number 

of steps [Gar88]. 

How the synaptic connections are optimised is dependent on the physical features 

of the network, and to elaborate on the Gardner ethos, it is now necessary to turn 

our attention to the physical definition of a neural network model. 

1.2 A NEURAL NETWORK MODEL OF ASSOCIATIVE 

MEMORY 

The aim here is to write down mathematically the physical realisation of the 

neural network model, and in particular an auto-associative memory trained to 

learn a set of memory patterns. Variations on this model will be studied further 

in following chapters. 

The network consists of N time-dependent binary perceptrons, the state of which 

are represented by the vector S(t) {S(t)}, i = 1 . . . N where each site can be 

either S(t) = +1. Each neuron interacts with C others via the connection matrix 

{ Ji} {Ji3},i = 1... N,j = 1... C (j i) and obeys the zero-temperature 



parallel update 

S(t + 1) = sign[h(t)] 
	

(1.3) 

dependent on the local field at the previous time-step. The added complexity of 

an external field will be discussed in full later, but for now we shall assume the 

local field is given simply by the scalar product 

h 1 (t) 
	C jij 	

(1.4) 
joi 

C 

	

where the normaliser is defined through IJ = > 	J,2 . The inclusion of this 

normaliser is a reflection of the redundancy in the weights' magnitude when using 

equation (1.3) for the update. If the {J1} diagonal elements are sufficiently large 

and positive, we can see that any given state will be stable to the update rule. 

This obviously distorts the storage capacity of the model with spurious states 

possessing attractor basins of zero sizes, so we shall choose to explicitly remove 

them from the model. 

The task given to the network is the storage of P uncorrelated patterns 

N, /i = 1 . . . P, and this is successfully done if they form fixed-

points of the above dynamics, that is if 

	

= sign[Jz . 	 V1i = 1 . . . P 	 (1.5) 

where we have taken the liberty of defining the scalar product as the sum over the 

input nodes j = 1 . . . C, (i 54 i) entering the jth  neuron. The above equation can 

be alternatively, expressed by defining an 'alignment field' 

A' 	4(Ji . VIVIii 
	

(1.6) 

MI 



for each pattern , and requiring A > 0 Vi for it to be memorised. 

In an associative memory it is obviously imperative to monitor the dynamics of 

the N neurons as they evolve in time. A natural measure to use for this is the 

overlap with a chosen pattern, say 

m1(t) N —E'S(t) 
i=1 

(1.7) 

at time-step t. We are typically interested in starting the network at a state close 

to one of the nominated patterns, and whether the dynamics will draw the neurons 

towards that pattern. In this case the convergence of the quantity (1.7) to unity 

will indicate the successful retrieval of that pattern. 

This completes the physical definition of an associative memory. For the calcu-

lations to proceed, we must specify the nature of the phase-space of connections 

and detail the importance of the alignment field. But first it is useful to build on 

the above and make a brief but necessary digression into the case of learning in a 

single perceptron. 

1.2.1 THE SINGLE PERCEPTRON 

Here we are considering just a single neuron 3  connected to C inputs by a synaptic 

vector J {Ji}.  The problem then is not so much memorising a set of patterns as 

learning a given rule as defined by a set of binary input-output mappings (, Ta), 

where it = 1 . . . P now enumerates over the so-called training examples. With a 

binary perceptron we can make use of the alignment field (1.6) and succinctly say 

3For a reference on the properties of single perceptrons from a mainly geometric perspective 

please refer to the standard text by Minsky and Papert [MP88]. 
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the perceptron is successfully trained when 

All 	T'(J . 	)/IJI > 0 	 (1.8) 

for all the P input-output relations. 

The computational ability of a single binary perceptron is not unlimited and we 

can very easily think of input-output rules which cannot be learnt, such as the 

celebrated 'Exclusive-Or problem' [MP88]. These 'unlearnable' problems occur 

whenever the inputs cannot be linearly separated into two regions corresponding 

to the outputs TlL = +1 and —1. However this is hardly a reasonable criterion 

in real world problems and the need for its circumvention has spawned networks 

with richer architectures, but with less analytically tractable behaviour. 

Returning to the case of an associative memory, we can consider each of the N 

sites as being trained with P input-output relations. For the storage of uncorre-

lated patterns these relations are simply examples of the random binary mapping 

problem. Hence for a pattern 	the required output T' is given by a specific 

bit 	and it is successfully memorised when this rule is observed across all the 

i = 1 ... N sites. 

For all but the most trivial case the random binary mapping problem will become 

more likely to be unlearnable as the number of memory patterns increases, and 

the point at which this occurs defines the storage-capacity of the network. This 

important parameter gives a readily accessible measure of the performance of a 

network and its analytic calculation is one of the more obvious successes of the 

statistical mechanics approach. 
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1.3 THE PHASE SPACE OF INTERACTIONS 

The task here is to formulate the process of learning in a network of perceptrons 

as an annealed search through the phase-space of connections. This process of 

annealing can be expressed by writing down a phase-space volume associated 

with each site S2 (t) with the appropriate Boltzmann weighting. This weighting is 

a reflection of the training task and is only dependent upon the alignment field, 

that is some 'training-function' g(A) which rewards correct learning [WS90a} for 

each of the p = 1. . . P patterns. Hence for a network performing as an associative 

memory the volume of phase-space for the interactions into the i' site looks like 

/ P 

V = JD(Ji)exp /39(A)) 	 (1.9) 

where 3 is the inverse annealing temperature, such that in the zero temperature 

(3 -+ oc) limit the optimal synaptic configuration will be found. The volume 

element D(J2 ) is over the connectivity-C dimensions with some prior distribution 

and constraint. The above equation (1.9) is the volume for a single site in the 

network; for the whole network the total volume is simply fIN V as the dimen-

sionality of the problem is increased. For the case of unéorrelated input-output 

mappings considered here, we can remove the superfluous site index i and along 

with it the distinction between an associative-memory network and a single per-

ceptron. As far as each neuron is concerned, memorising uncorrelated patterns is 

merely the consequence of attempting to learn a set of random binary-mapping 

problems. 

The patterns we require the network to memorise are random, uncorrelated binary 

images. In the spirit of statistical mechanics we take average patterns as being 

the typical patterns, with any observables having vanishing fluctuations between 

differing samples. These patterns are our source of disorder, remaining fixed 

over the time-scale of the annealing process. As outlined in §1.1.1 any averaging 
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over them must hence be over extensive quantities, and this means we do not 

average equation (1.9) but instead quantities such as the logarithm of the volume. 

Replicating the connections, which are here the annealed variables, this means we 

wish to perform a quenched average of the archetypal form 

((Va)) = ((, { D (J.) exp (g(A))})) 	 (1.10) 

with the alignment field for weight Ja  having also picked up a replica index. 

Upon doing the quenched average we introduce interactions amongst the replicas 

and this is dealt with by introducing the overlap measure between the replicas 

qab = (Ja  Jb), 	Va, b (a < b),  

The restriction in the indices give this quantity n(n - 1)/2 unique values, but 

having said that, the so-called replica-symmetric ansatz is normally chosen as 

soon as possible to facilitate any further analytical progress. This ansatz sets the 

above elements to the same value, i.e., qab = q, Va b. Finally, this is a mean-field 

calculation, and in the thermodynamic limit the integrations with respect to qab 

can be replaced by the saddle-point value through use of the method of steepest 

descent [Cop65, Arf85]. 

Thus far we have avoided the issue of the nature of the phase-space of interactions. 

But in order to perform the calculation in equation (1.10) we must specify the 

nature of the volume element D(Jt), and with it any prior distributions in the 

weights. In the work that follows, the synapses will take on continuous values with 

the phase-space restricted to lie on a unit hypersphere by enforcing the spherical 

constraint 

1J1 2  = C 
	

(1.12) 

It 
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over the connectivity, hence setting the diagonal elements of the correlation ma-

trix (1.11) to unity. 

In passing we should mention the existence of another phase-space in common 

use. This is the case where the weights are restricted to J' = +1 in lieu of 

constraint (1.12), giving an annealing landscape similar to that seen in the dy-

namics of spin-models [GD88] with the integration in equation (1.10) replaced by 

a configurational sum. Furthermore there have been extensions beyond the binary 

weights case, where the weights have multiple discrete states [BDvM91]. 

1.4 SUMMARY 

We have given in this chapter brief introductions to neural network models and 

statistical mechanics, with the aim of allowing us to use them in the calculations 

that follow. This then led to the formulation of learning in a neural network 

model as an annealed optimisation process. By considering annealed optimised 

synapses, learning can be treated as a statistical mechanical problem, with the 

partition function replaced by a volume of phase-space. For proper treatment 

the calculation requires a quenched average over the uncorrelated input-output 

relationships, which necessitates the use of the replica method. An important 

simplification can be made in the notation by recognising the memorising of 

patterns in an associative memory can be viewed from the perspective of a single 

perceptron. That is, an associative memory for uncorrelated patterns is merely 

the random binary mapping problem, a problem which'eventually unlearnable in 

the limit of a large number of patterns. 

The use of the phase-space of interactions, the alignment field, and the simplifi-

cation to a single perceptron will be key concepts in the following chapters. 
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Chapter 2 

Enlarging the Attractor Basin in Neural 

Network Models by External Fields 

This chapter is an elaboration of previously published results [YW91], with the 

majority of the additional material given to detailing the calculations involved. 

We shall build on sections made in the last chapter by presenting here an explicit 

example of an associative memory neural network model, allowing insights into 

the analytical methods albeit with an unavoidable loss of generality. As a way of 

introducing this work, we shall begin by giving an idea of what we wish to achieve, 

followed by a discussion on the quantities to be calculated. There will then be 

sections on the calculation itself, results, and a concluding discussion. 

2.1 MoTIvATIoNs FOR AN EXTERNAL FIELD 

A key attraction of statistical mechanical models of neural networks is their ability 

to function as associative memories. This is a two stage process with the network 

first trained to store a set of memory patterns, followed by a retrieval stage defined 

by the neurons' update dynamics. However, retrieval of a stored pattern can only 

occur if the system is initiated sufficiently close to it. That is, if the initial state of 
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the networks is inside the basin of attraction of the nominated memory pattern's 

attractor. Expressed in this way, we can see that content addressability is merely 

the consequence of a memory state having a non-zero basin of attraction. 

The principal motivation of this chapter is to examine how the basin of attraction 

can be enlarged by the use of external fields which are noisy representations of 

the memory patterns stored. Independent work has shown the beneficial effects 

of applying noisy external fields throughout retrieval [EBKS90, RSW91] but as 

stated above, a network is defined in two stages and their role during the training 

phase should also be explored. Moreover, both simulation [GSW89] and analytical 

[WS90b, WS90a] results have shown that training a network with ensembles of 

noisy representations also improves content addressability, so it may be advanta-

geous to include noise in our training formalism. 

For these two reasons this work calculates the properties of a network trained with 

ensembles of noisy external fields. The retrieval dynamics under a persistent, noisy 

external field is also examined, and the effects these two fields have on content 

addressability compared. To do this we shall look at the fixed-point behaviour 

of the dynamics which reveals the attractor structure, and from this we judge 

whether content addressability has been improved. Finally comparisons are made 

for the three cases when external fields are applied during training only, during 

retrieval only, and during both stages. 

2.2 THE EXTERNAL FIELD MODEL 

The associative memory model we have is a single layered network of N time-

dependent binary spin neurons, required to store P uncorrelated patterns, much as 

defined in 1.2. To considerably simplify calculation of the dynamics, the number 

C of connections into each site is set at C <<in N, or equivalently (ln N/in C - 
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cc) [KZ]. This high level of dilution in the synapses simplifies the dynamics at 

each time step by allowing self-averaging at all time steps to be assumed. The 

reasoning for this can be found in the literature [DGZ87, Ami89]. 

The space of interactions is continuous and bounded by the spherical constraint 

given in equation (1.12). The dynamics of the network is conducted by zero 

temperature parallel update, with each site acting deterministically on the sign of 

its local field 

h(t) = 	+ TRjtJ 

C jij 	

(2.1) 

which differs from the original equation (1.4) by a persistent external field applied 

throughout the retrieval phase. This added field of strength T can be thought of 

as a corrupted version of the nominated pattern we wish to retrieve. The 

noise comes from the (i  term which follows the discrete probability distribution 

= (1 - fR)8[C - 11 + fS[C + 1] 
	

(2.2) 

where f is the mean fraction of erroneous sites in the applied field. The resulting 

dynamical progress in retrieving the designated pattern is again measured by the 

network's overlap with the nominated pattern, as defined in equation (1.7). 

The stated aim of this work was to consider the performance of networks already 

trained with ensembles of noisy external fields. In deference to Gardner, the 

network we consider has its connections annealed-optimised, with the noise and 

stored patterns the two sources of quenched disorder [Gar88]. These connections 

are optimised to maximise a performance function, in much the same way as a 

magnetic spin system optimises by seeking out its lowest energy configuration. 

Moreover, Gardner gave a convergent iterative algorithm to train the network 

to these optimal connections, one which reflects the performance function used. 
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Hence the performance function will be intuitively better referred to as the training 

function, a name which stresses its role in determining the network's properties. 

The training function chosen in the original Gardner model required the state of 

the network to be invariant to the updating process once the sites match a stored 

memory pattern. This is more concretely expressed by requiring the alignment 

field defined in equation (1.6) to be positive definite for all the patterns to be 

memorised. We can also make this demand more stringent by requiring the align-

ment field to be larger than some positive parameter ic, which will set the minimal 

stability of the network. Increasing this stability constant allows the basin of at-

traction to be enlarged, but its usefulness is limited by a corresponding decrease 

in the storage capacity [Gar88, For88]. 

Further enlarging the basin of attraction by an improved training function is the 

goal of this work, and the idea is to train the network with ensembles of noisy 

external fields, in anticipation of later retrieval with a statistically similar field. 

This can be achieved by having 

1 Q 
g(A) = > 9[A + TT(' 

- 
(2.3) 

for the training function in § 1.3, where TT is the external training field strength and 

{ L8} = ± 1 the noise factor. The noise terms are enumerated over the s = 1 . . . Q 

ensembles for each pattern, and follow the same probability distribution as in 

equation (2.2) above, but with the external field strength and mean fraction of 

incorrect bits given by the parameters TT and fT  respectively. 



2.3 QUANTITIES TO CALCULATE 

Since we are interested in improving the content-addressability of a neural-network 

model, it will be very helpful if we have a quantitative inkling as to the size of the 

network's basin of attraction. The way this is done here is by finding an equation 

which describes the dynamics of the model, and then look for all the fixed-points 

with respect to the time-step [KA88, Gar891. We can then define the attractor 

boundaries and centres by the unstable and stable fixed-points of the dynamics, 

respectively. 

Upon calculating the dynamical equation we find that the network is strongly 

dependent on the probability distribution of the alignment field. This distribution 

is entirely determined by how the network is trained, and in the optimally trained 

case is calculated by the Gardner phase-space treatment [WS90a]. Furthermore it 

is strongly dependent on two parameters: the storage capacity which is simply the 

number of memory patterns divided by the connectivity of the network (P -. C), 

and the storage error which is the fraction of erroneous bits with which each 

pattern is stored. As we shall see, these quantities are useful in providing ways of 

controlling the behaviour of the network, allowing its performance to be assessed. 

Finally the validity of the assumptions in the replica calculation for the alignment 

field distribution will be tested by finding the stability of the solution to small 

perturbations. The method is based on the approach used for the Sherrington-

Kirkpatrick spin-glass model [dAT78], with elements of a (in the author's opinion) 

clearer treatment by Lautrup [Lau88]. 
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2.4 THE ITERATIVE DYNAMICS 

We require an expression for describing the retrieval dynamics of the network 

as measured by the system's overlap with a nominated pattern, as defined in 

equation (1.7). We shall settle on a simple iterative description, that is one where 

the overlap at time step (t +. 1) is some function of the overlap at time t. The 

derivation is essentially the same as originally done by Abbott and Kepler [KA88] 

with minor modifications for the external field, so only an outline will be presented. 

Since only one memory pattern —the one nominated to be retrieved— is ever 

considered in this section, the pattern index is superfluous and will be removed 

from the notation. The conditional probability that a binary perceptron network 

with an initial overlap m 0  will be taken to an overlap m 1  after one update is 

P(mi  I mo) 
1 N Sj ] 6 	1 NfNjii 

{ Imo - 	 [mi - 	sign 	 + racit)] 
} {S4} 	L 

N 

. 
	18 [mo - 	>jSiI 	(2.4) 
{S} 1. j 	J 

where the spherical constraint (1.12) and external field have been explicitly in-

serted into the local field (2.1). This expression is better handled by first intro-

ducing a set of fields {w} at each site and rewriting it as 

P(m 1  I mo) = f H [dw p(Wj I rn0 )] ö [mi  - 	sin[wi]] 	(2.5) 

leaving the conditional probabilities 
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Njij 

p(W j  I mo) = E 
 

	

lb 
[mo _ 	iSi] [w*_ 

/ 	

} {S1 } 

~ E 
{s

1mo_ii]} 	 (2.6) 
{Si)

NY: 

 L 

to deal with. This is done by first writing the delta-functions in their integral 

forms and performing the configurational sums over the spins {S}, giving 

p(Wj I m o) = 

/ dxdy 
exp (ixNmo  + iy(Wi - T() + in cos 4 + 

.i 2ir 	 V/C1) 

	

J 	 ( 	
N 

dx exP ± 	 ixNmo+Eincos[xi]). 
j 

Taking the connectivity to the thermodynamic limit and making use of the align-

ment field Ai defined in equation (1.6) (again without the superfluous pattern 

index), the cosine term is then expanded to give 

j 

	

 
P(wilm 	

dxdy
o)=J 27r 

exp (ixNm o  + iy(Wj -  7-R(i) + NIn cos x - y2(1 + tan2x) - yAj tan 

± J dx exp (ixNmo  + > in cos [xc]) 

which allows the x-integrations to be done by the method of steepest descent. The 

denominator subsequently divides out leaving a straightforward Gaussian integral 

in y to do. Inserting the result of this into expression (2.5), and writing another 

integral-representation for the remaining delta-function, we get 
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dz 
P(Mi I mo) = I - exp(izmi) 

J 2ir 

	

1— m 	I 	i - m 	
sign(wj) 

 

1 	1 	( 1  wj_ moA,_raCs  l 2  jZ 

	

xJ 
N 

ll 
dw 	

exp  

which can be rewritten using the error-function defined in equation (A.3). In the 

large system size N limit the integral over z reduces to a delta-function to give 

the overlap at the first time-step 

1 N 	ImoAI+TRCl m = >erf[
_m)] 

with probability one. Finally, in the limit of a large system size N we can use self-

averaging to rewrite this as an average over the alignment field and external-field 

noise, 

ImoACl 
1 	I mi 

= ((I dA p(A) en R2(1 -I-
- Tmg)] 

(2.7) 

where p(A) is the probability distribution of the alignment field and the double-

angled brackets denote an average over the noise in the external field. The task 

of finding the probability distribution for the alignment field is the subject of the 

next subsection. 

The above expression (2.7) is exact for the first time step, and also in the case of 

low connectivity as mentioned earlier in §2.2. The validity of this simplification 

has been confirmed by direct numerical simulations [Hen9l] of dilute networks. 

Furthermore, earlier work simulating fully connected networks [KA88] has stressed 

the importance of the first time step dynamics by showing it to be highly indica-

tive of the network's ultimate fate, a result which broadens the generality of the 

iterative map calculation. 
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2.5 THE ALIGNMENT FIELD DISTRIBUTION 

The previous section's derivation of equation (2.7) describing the model's iterative 

dynamics ended with the introduction of the alignment field distribution. This 

distribution should be thought of as the encapsulation of an optimally trained 

network, and be independent of the retrieval dynamics we care to choose. 

AVERAGING OVER THE EXTERNAL FIELD NOISE 

We shall first make use of the simplification to a single perceptron as justified 

in §1.2.1, and write the distribution function of the alignment field as 

p(A) 
= ((I fl dJS[A - A 1]8[(J)2  - exp ( 

± J fJdJS[(J) 2  - C]exp (0g(A)))) 	 (2.8) 

where one delta function picks out the alignment field for a typical pattern 

and the other explicitly enforces the spherical constraint. This function is an 

extensive quantity, so it is a suitable object for which to perform the quenched 

average over, as denoted by the double angled brackets introduced in § 1.1.1. Repli-

cating over the annealed variables, equation (2.8) can be written as 

n,C 

p(A) = lim (K!   fl dJ[A - A] 
n—O 	a,j 

(  
fJ

1 6[E(Ja
i 	

P 

)2 

- C]exp 	g(A)) 
 })) 	

(2.9) 
a 	j 
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which now picks out the alignment field for a typical replica a = 1 as well as a 

typical pattern u = 1. We can now perform the quenched average over the fixed 

disordered quantities, beginning with the noise term in the external training field 

{("} which appears in the form 

/ P 	 ,ij 	fan,P,Q 

(all exp (i3 	 = (exp ( 	O[A + TT' - ic] 
a 	 \' 	 ) )) 1CO") 

where these angledbrackets are specifically over the noise. Performing this average 

via the probability distribution given in equation (2.2) we arrive at 

P,Q / / 	/ a n 	

P I Q (Q)H (exp 	> O[A + TTC M'- 	 = II  	(1 - fT)rfT _r 
A 	=O r 

x exp ( >J {rO[A + TT - IC] + (Q - r)O[A - TT - IC]}) }. (2.10) 

In the limit of large number of ensembles Q, the binomial sum in equation (2.10) 

can be considerably simplified by substituting the (Q + 1) terms with the single 

mean term f = Q(1 - IT) to give 

((fiexp (fif9(A)))) 	= fiexp (o(A)). 

where we have defined a mean training function g(A) 

(1—IT) O[A+rT — lc]+fT 9[A—TT—!c]. 	 (2.11) 
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AVERAGING OVER THE MEMORY PATTERNS 

The remaining disordered quantity to quenched average are the memory patterns. 

This quantity only occurs in the alignment field and can be extracted from the 

training function via equation (A.7) to give 

n,P n,C 

p(A) = urn I TI dAdx J [J dJaj  
n—OJ 	2ir a,j 

n C 	 P 	n 
6[A - )4] II [E(J) 2  - C] H exp E [ixX + /3()] 

a 	j 	 IA 	 a 

x ((II exp (-i >i: xA) ))W (2.12) 

The term in equation (2.12) dependent on the patterns can be treated in isolation, 

by first writing in the input and output patterns 

P,Cii 	/ 	n 
/!fiexp (_ixA\\ 	= II ((exp (_i x TtLq))) 

\\ 	 a 	)//{} 	,,j \\ 	\ 	a 
	Ja 

where T/h  can be viewed as the ith  bit of pattern . Upon performing the average 

over all the input patterns {} and (uncorrelated) output targets {T'} we can, 

in the thermodynamic limit of the connectivity C going to infinity, expand and 

exponentiate the resulting cosine function to get 

1lllexp(—i>xA) 	= llcosxj 
II P 	/ 	n 	 )) 	 P,C 	n 	J. 

\\ 	v 	a 	/ 

(-

,n,c n

14 
flexp 	XJJX). (2.13) 

a,b,j 
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This term (2.13) contains an interaction between the various replicas, which in the 

spirit of the replica-method is dealt with by introducing the inter-replica correla-

tion parameter qab  as defined by equation (1.11) in §1.3. Inserting this inter-replica 

correlation parameter and writing in integral form the delta function which en-

forces the spherical constraint by equation (A.6), we find 

n,C 

p(A) = lim 1 ft 4  J fl 
dFadqa f j dAdx 

f H dJ 
n—OJ 	4ir 

C—oo 	a 	a<b 27r/C 	27r 

n,C 

S[A - ) J H exp H Ea[(jaj)2 

a,j 
C 

xHexp ( 
iFab[Cqab - 

a<b 	 j 
n,P 	 P 	/ 

x II exp (ixA + (At)) fJexp ( - i E(x)2 - 	xqbx
JA  

a,p 	 A 	 a 	a<b 

This expression can be collected into a form explicitly amenable for integration 

by the method of steepest descent, 

p(A) = lim 1 ft 4 
J 

dFabdqab  
n-#o J 

C—c'o 	a 	a(b 2ir/C 

exp C {Gj({E a , Fab}) + aGA({q ab}) + G0({Ea , Fab, qab})} 

xJ
dXadx' 

H a 	2ir 

x exp { _ 	(x) 2  - 	xqabx + 	[ixA + /g()] }. 
	

( 2.14) 

	

a 	a<b 	 a 

The functions in the exponential have taken advantage of any symmetries in the 

site and pattern indices and are defined as 

GJ({Ea,Fab}) 	ln JHdJa exP(_EEaJo+iJaFabJb) 
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ndAdx 	fin 
GA({q ab}) 	in I H 2ir exp 

	: X - 	Xaqabxb 
'a 	 a 	a<b 

n 
+E[iXa.\a +13  

a 

Go({E a,Fab,qab}) 	1 Ea—iFabqab. 	 (2.15) 
2 a 	a<b 

In equation (2.14) the parameter a is the storage capacity of the network and is 

defined in §2.3 as aP±C. 

THE SADDLE POINT EQUATIONS 

In the thermodynamic limit the integrations over the {Ea , Fa&, qab} variables in 

equation (2.14) can be performed by the method of steepest descent. By differen-

tiating equations (2.15) with respect to these three sets of variables, the stationary 

point can be found by solving the equations 

o = 	 Va, 

o = 1{JaJb}j - iqab, 	Va, b (a < b), 	 (2.16) 

o = —a{xaxb}GA - Fab, Va, b (a < b), 

where we have introduced braces operators in the interactions and alignment field. 

Taking the following replica symmetric ansatz for the three steepest-descent inte-

gration variables 

Ea  = E, Va, 

Fab = F, Va,b(a<b), 	 (2.17) 

qab = q, Va,b (a < b), 

these two operators can be written down as 
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fldJa 	exp (_(E+F)J+ 	
[.] 2) 

a 

±jlldJaexp 	

[1:  Ja] 2)
,  

a 
2 

= 
 Jfj

dadxa  
a 	2ir 	(...) exp 	

1
_(i - q) 	- [ 

	

za] 

n 
+  E [Xaa  + f3(Aa )]) 

a 

n d,\adxa(1 

	 r 	2 

a 	2ir 	
— q)>x — 

[] 

~ Jll 

+E [Xa \a  + fia)]). 	 (2.18) 

The integrations over {Ja } and {X a } are done by first performing Hubbard-Stra-

tonovjch transformations (A.2) on the numerators and denominators in order to 

linearise the summed-squared terms in the exponentials. It can then be seen 

that the denominators will involve some finite expression raised to the number of 

replicas-n, hence going to unity in the (n —+ 0) limit. This same limit allows the 

two simpler operators 

• .)) 	J dJ (...) exp (_(E + F)J2  + uJ) 

J dJexp (_(E + F)J2  + uJv'i), 

• 

	

	I
d\dx 

2ir 
( ... ) exp  (—(i - q)x 2  + ix(A - zJ) + 

'dAdx 	
(—(i — )x 2  exp 	q 	+ ix(A — zJ) + i3(A)) (2.19) ±1  

.i 	2ir 

to be defined, where the quantities u and z originated from the said linearising 

transformations. The saddle-point equations (2.16) can hence be written as 
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1 = 

= 

 

j DU {(j2)}, 

q = {JaJb}G j  

= 

 

f DU {(J)}2, 

iF = —c {XaXb}G 

= _aJvz {(x)A} 2  (2.20) 

Expressions of the form (J')J  for an arbitrary moment k are straightforward 

Gaussian integrals. The two cases we require to solve equations (2.20) are 

u 

= yiE+iF
Vj:F: 

+F' 

= iE + iF + UE + F)• 	
(2.21) 

Some authors have removed the imaginary nature of E and F by transforming 

their integrations in equation (2.14) to lie along the imaginary line, but this is 

at the expense of some confusion when evaluating the stability of the saddle-

points, which we shall prefer to avoid. The corresponding expression (x')A  for an 

arbitrary moment of x is a somewhat more complicated. The integrations over 

the x variable is a Gaussian and upon completing squares can be expressed as 

(xk)A=JJVx(1_q)_(1)[x+i 	
)1 k 

 
xexP((X)+ix I 	i) 

' dA 	 _________ t 
zJ)2\ 

~ J 	(1 - q) exp ((A) 
- 2(1 - q)). 	

(2.22) 
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We can see from equation (2.22) that in the limit of a zero annealed temperature 

(9 -* oo), the previously difficult integrations over A are now amenable to solving 

by the method of steepest descent. In return this requires us to find a A(z) which 

maximises the function 

- -(A - z/) 2 ,  

20(1 - q), 	 (2.23) 

where we have surreptitiously avoided the problem of the 11/3  factor by introducing 

a parameter 'y. From equation (1.11), we can interpret the saddle-point solution 

of q as the order-parameter of the overlaps between the differing solutions under 

identical training conditions. Thus when we take the (q -+ 1) limit we are forcing 

all the solutions to converge together, a scenario Gardner called the optimal limit 

because, as we shall see in 2.7, it corresponds to the case of having the maximum 

number of memory patterns learnt. Introducing the parameter 'y now allows us to 

take the limits ofa zero annealed temperature (3 -+ oo) and an optimal perceptron 

(q -+ 1) together, as this corresponds to keeping 'y finite. 

Returning to equations (2.20), we find the required moment of equation (2.22) is 

i 	

(5(Z)_z\ v1 	i'1_q)' 	
(2.24) 

after having taken the zero temperature and optimal-solution limits. Collecting 

the pieces from equations (2.20)—(2.24), we arrive at the saddle-point equations 

now equal to 

1 = iE+iF(1+E+F), 



1F 
q = iE+iF (T-+—F)' 

iF = (1 _ q)2 JVZ[A(Z)ZI (2.25) 

Finally, taking the zero replica limit for the alignment field distribution of equa-

tion (2.14) gives 

p(A) = JVz( 5[A_Afl)A 

= Jvz S[A - A(z)] 
	

(2.26) 

which has been written in terms of the function 5(z) which maximises equa-

tion (2.23). Finding this function A(z) is in principle straightforward, but in 

practice has been quite involved, as will be seen in the following section. 

2.6 MAxIMIsING THE FUNCTION (A) 

The stated aim of this section is to find the values of A = 5 which maximise the 

function (A) defined in equation (2.23), corresponding to the stationary points 

in a steepest descent evaluation. Hence by definition (2.11) we are trying to find 

the A's which maximises the function 

(A) = (1—fT) O[A+rT-1]+fT O[A_r T _,c]_!(A_ z ) 2 . 	(2.27) 

in the optimal perceptron limit of (q -+ 1). Unfortunately, we can quickly see that 

the interplay between the above quantities 'y,  the (Gaussian in origin) variable z, 

and the field parameters fT  (fraction of erroneous bits) and TT (field strength) 

considerably complicates the task of finding A. Firstly the stationary point is 
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strongly dependent on z, with discontinuous jumps encountered as it moves along 

the real number line, in a manner analogous to first-order phase transitions be-

tween the lowest energy states. This point is also dependent on the remaining 

three parameters, but thankfully they can be grouped into distinct regimes of pa-

rameter space. The task then is to identify these regimes, and what the so-called 

maximising function A(z) will look like in them as z is varied. 

We shall first find what are the possible values A(z) can take. Equation (2.27) 

has discontinuities at A = ( i - 'rT) and A = (ic + 7 T), hence if we define the 

Heaviside step function to return unity with a zero argument, we find )(z) can 

be A(z) = ( - TT) or A(z) = (' + TT). In addition, when the quadratic term is 

dominant, equation (2.27) will be maximised by A(z) = z. These then are the 

three possible values the maximising function A(z) can take. 

The next step is to determine which values of z will cause a transition between 

these three values of the maximising function. This is done by substituting each of 

the possible values of A(z) into equation (2.27) and solving for z. That is, by solv-

ing the three equations c(A(z) = .' ± TT) = G(A(z) = z) and g(A(z) = ic + TT) = 

g(5(z) = r, - TT) for z. These solutions of z give the possible transitions as oc-

curring at six points, which are given in equation (C.1) in the appendix. 

The order in which these six transition points occur along the z number line now 

needs to be determined by comparing fifteen inequalities. Appendix C.1 gives 

the results of this, and concludes that the 'y  and external field parameters group 

themselves into six possible regimes, as given by expression (C.3) which presents 

them in terms of ranges in the external field strength TT. 

For each of these six ranges in the field strength, we now need to determine A(z). 

This is done by equating z with each of the six possible transition points and 

determining which one of the three 5(z) = {(ic - TT), (' + Tp), z} possible choices 

gives the largest value to the function (2.27) we wish to maximise. Further details 
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of this procedure are given in appendix §C.2. The pieces are combined in §C.3 

and we find the ranges (C.3) can actually be reduced to just three regimes, inside 

each of which 5t(z) will look like 

Regimel 	—oo<2TT  <.y[1_v'l_fT ] 

'C + r.,. - y]) = z, 

A(z6[IC + TT - '1 IC + TT]) = (IC + TT), 

A(zE[Ic + TT, oo]) = z. 

Regime 2 	-y [i - 	- IT] <2TT <-iv']; 

A(zf[—oo, IC - TT - 'y/1 - fT]) = 

- TT - 	 - fT, IC - 'y 2fT/(47-T)]) = ( ic - TT), 

- y 2 fT/( 47-T), 'C  + ri]) = ( ic + TT), 

A(ze[FC+TT, 00]) = z. 

Regime 3 	 <2r.,. <oo 

IC - - 	
- fT]) = 

A(zE['C—rT —'is/i — fT,IC — TT]) = (IC — TT), 

= z, 

A(Z6[IC+TT—'ysJT,'C+rT]) = (IC+TT), 

A(z[ic + TT, oo]) = z. 	 (2.28) 

The second and third regimes differ from the original Gardner-Derrida result 1  

[GD88] but, as we can verify, they do reduce to the referenced result in the limit of 

a zero external field strength. Having obtained A(z) for the three differing regimes, 

we are now in a position to give concrete results for the quantities discussed in §2.3. 

'Which looks like the first regime but with (ic + rT ) replaced by ic. 
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2.7 THE OPTIMAL STORAGE CAPACITY 

Returning to the saddle-point equations (2.25), we can see that by eliminating the 

quantities E and F we can obtain an expression for the storage capacity. As we 

approach the optimal perceptron limit of (q —+ 1), the storage capacity increases 

up to the optimal storage capacity ac, defined as 

cic =  V Vz 
(~ (Z)

— z)2]_1. 	 (2.29) 

The maximising function A(z) for the three identified regimes can then be inserted 

from equations (2.28) to give the optimal storage capacity as: 

Regime 1 	—oo <2TT< -y[i - -/1—fT] 

Ic+TT 

[crc]' =  I Vz(z - (#c + TT)) 2 , 

Regime 2 	-y [i - /1 — fT] 
<2TT  <yV7 

—1 [cxc] 
= 	J Vz(z — (' - TT)) + I Vz(z - (ic + TT)) 2 , 

ic-TT _-/r7 

Regime 3 	-yVTT <2TT <00 

TT 	 ?C+TT 

lad = 	J Vz(z — (ic - TT)) 2  +  I *Dz(z 
- 

(c + TT)) 2 . 	 (2.30) 
Ic—TT 
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2.8 THE FRACTIONAL STORAGE ERROR 

We may understandably feel uncomfortable at giving the parameter -y  defined 

in equation (2.23) any significance other than as a mathematical artefact. Ap-

pendix B attempts to assuage this apprehension by making an analogy with spin-

glass models, but we can also alleviate it by expressing -y in terms of some physi-

cally more obvious parameter, namely the fractional storage error, 

fJ dJ' O[—A} 6[E(Ji)2  - C] exp (o 

± JHdJ2 5[E(J2 ) 2  - C]exp (fi9(A)))) 	 (2.31) 

which is the average fraction of bits per pattern and (since we are explicitly using 

the single-perceptron simplification in our notation) per site that is erroneously 

stored by the network. This defining equation is treated on similar lines to that in 

the calculation of the alignment field, and we find we can write expression (2.31) 

for a typical replica-i and a typical pattern-i as 

= Jvz (O[—AU)A 

= Jvz O[—A(z)] 

= 
fdAJ Dz 5[A - A(z)] O[—A] 

= I dA p(A), 	 (2.32) 
-00 

using the alignment field distribution in equation (2.26). It can be shown [GD88] 

that the fractional error ,T is only equal to zero in the limit of the parameter -y 

tending to infinity. 
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We may interpret equation (2.32) literally and regard the fractional storage error 

as a consequence of the negative and destabilising part of the alignment field 

distribution. Another way of viewing the storage error is as a way of controlling 

the strictness of the network's training, such that the further above zero it is —and 

the further -y moves away from infinity— the less strictly enforced is the training 

function. 

The consequences of having a non-zero storage error will be discussed in the results 

for the alignment field distribution. Before that we shall examine the validity of 

the replica-symmetric ansatz by a stability analysis around the saddle-point. 

2.9 STABILITY OF REPLICA SYMMETRY 

The question of whether the replica-symmetric ansatz is a valid one to use is 

addressed here. The analysis follows closely that by de-Almeida and Thouless 

[dAT78], and in essence examines whether the saddle-point solution of the repli-

cated quantities is stable to small, local, replica-symmetry breaking fluctuations. 

In the original paper the saddle-integrations were over real variables, so the cri-

terion for stability was re-cast by asking whether the stationary point was a 

maximum2; that is, whether the eigenvalues of the stability matrix were all nega-

tive definite{Wid6l]. In this problem the stationary point is located in a complex-

space and the stability condition determined by sign changes in the determinant 

of the stability matrix. 

de-Almeida and Thouless found that the elements of the Hessian matrix had cer-

tain symmetry properties which not only simplified its treatment considerably 

but allowed the actual eigenvalues to be found. Appendix D.1 illustrates how 

this is done from an alternative perspective [Lau88], from which the relevant re- 

21n which case we were actually integrating by 'The method of Laplace'. 
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suits will just be quoted here. The fluctuations arising from these symmetries 

are characterised by three types: symmetric, weakly-asymmetric and asymmetric 

fluctuations. However, D.1.1 and §D.1.2 show the first two of these give identi-

cal determinants in the zero replica limit so we shall only examine the cases of 

symmetric and asymmetric fluctuations. 

2.9.1 SYMMETRIC FLUCTUATIONS 

Appendix §D.1 gives the simplified Hessian for symmetric fluctuations as ma- 

trix (D.10), with the product of eigenvalues to these fluctuations given by the 

determinant 

1rA 	rB 
- "dEE 

flS - 	j)A 	riB 
- '¼"'dEF - "dEF 

0 

frAriB 
- ' 45EF 

(r)A 	4rB i rC 
¼"'dFF 	"''dFF 	"''dFF 

—1 

El 

—i 	I 

(Q 
qq A —4Q+3Qqq  ¼ qq) 

(2.33) 

where the matrix elements reflect the possible permutation symmetries in the 

replica indices, namely 

QAEE 	- 
I 'Du  {(j4)} + 1 Jvu {(j2)} I Vu {(J2)}, 

QBEE 	- f Vu {(j2) 2 } + J Vu {( j2)} f DU  {(j2)} ,  

QAEF 	
JDU   {( j3)(j)} - JVu {(J2)} J Vu {(J),}, 

QBEF 	J Vu { (j2) (j)2} - J Vu {(J2)} J Vu { (j) 2 1 ,  
QF 	_JVu{(J2)}+JVu{(J)j}JVu{(J),}, 

QF 	- JVu {(j2)(j)} + f Vu {(J)1} J Vu {(J) 1}, 
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QF 	_JVu{(J) j } +Jvu{(J) }1,DU f (j) 2 1,  j   j  

QA 	Jvz{(x2)fl _fvz{(x) }J vz{(x)}, qq 

QB = cxJDz{(x 2 ) A (x)} _Jvz{(x)}Jvz{(x)}, qq 

QC 	aJvz {(x)1} -  f vz {(x)} fvz I (X) 2 1. 	 (2.34) qq 

The braces and angled brackets operators follow the definitions in equations (2.18) 

and (2.19). The first (J) and second moments (J2 ) J  are given in equations (2.21), 

but we also need the moments 

( J3)J 3  
- 	 1 

 I3tV
~_F 	F 

(iE+iF)r 	+F+U (E+F)
32 ] 

' 
1 	3+6u2_F 

(iE + iF)2 	E + F 	(E + F)l 	
(2.35) I  

Similarly we take the first moment (x)A  from equation (2.24) and use the second 

moment 

1 
(x2)A 

= 	1 	- 

 (A(Z) 
- 	

2  

	 1 	
(2.36) 1 — q 

L  

where the last term contains a double differentiation of equation (2.27) with re-

spect to the variable A evaluated at the saddle-point. This term is a necessary 

second-order correction to the integration method by Laplace [Cop65]. 

Placing these moments into equations (2.34) we get the stability matrix elements 

of matrix (2.33) for fluctuations in E and F to be 

(QE-QE) 
= _Jvu{(J4)_(J2)} 



1 	 4F 1 

= 4(iE + iF)2  ['+E+Fi' 

(QAEF  - QBEF) = 	I'Du 
  1 (j3)(j) 	(j2)(j)2} 

1rFl 

= (iE+iF)2  [+Fi' 

(QF - 4QF + 3QF) = - 
J Vz { [(j)2 - (j2)] [3(J)2 - (j2)] } 

1 	
1E+F

2F

(iE+iF)2 	
- 	 (2.37) 

while the element for fluctuations in q is 

(QA -  4QB + 3Q) = a I Vu { [(x) - (x 2 ) A ] [3(x) - (x2)A] } qq 	qq 

a 
2 JDzfl1 + 	1 

- (1 - q)  

1  
1+ 	

+2 (z)_z\21 1 
L 	(1—q)g"((z)) 	() ]}' 

which can be re-written as 

= (1 
—q)2 Jvz{[i 

 

1 	

+2(

) 	
21) - z) 	

(2.38) 
L 	1 - 72g!I()(Z))/2 	- 

in terms of the -y  parameter of equation (2.23) and the mean training function 

in equation (2.11). Clearly the integrand is zero when "()¼(z)) = 0, which for 

the training  function in question will only not occur at A(z) = r. - TT and ic + TT, 

whereupon we are left with 

2' 
(QA - 4QB + 3QC\ = a 

	I .,  V [i + 2(L) ]. 
	

(2.39) " qq 	qq 	qql 	(1 - )2 
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We can now see the effect of symmetric fluctuations on replica-symmetry by writ-

ing down the product of the eigenvalues as given by the determinant (2.33) 

1Q 81 = (Q4q - 4Q q  + 3Q) {(QE - QL)(QF - 4QF + 3QF) 

A 	,- B' +2(QF - QF)2 } + (QEE - "dEE) 

which by piecing together equations (2.37) and (2.39) as well as using the saddle-

point equations (2.25) solves to 

' 

.X(z)—z'\
2 
 I 

Q 81 = (1 - q)2 J Vz [1+ 
2L,T::) j 

—(1 - q) 2  12+ 1 
1 - q 

(1_(1_q)2)] , 	 (2.40) 

but this is of order (1 - q) so vanishes in the optimal perceptron limit of (q -+ 1). 

However, we can say is that for q just under the optimal limit, the terms of 

order (q - 1) is a constant for all storage capacities, hence symmetric and weakly-

asymmetric fluctuations do not affect the stability of the replica-symmetric ansatz. 

2.9.2 ASYMMETRIC FLUCTUATIONS 

For the stability matrix in the case of asymmetric fluctuations we find orthogonal-

ity conditions mean that the contribution from fluctuations of the quantity {E 0 } 

vanishes, resulting in the simpler matrix (D.15). Excluding unimportant constant 

terms, the determinant of this matrix is 

lQa = (QF - 2QF + QF) 	—1 	
(2.41) 

—' 	(Q-2Q+Q) 

40 



where the quantities are as defined in equations (2.34). Assuming a line of rea- 

soling very similar to that of the previous section, we can immediately write 

down 

irA-,ç- B 	rC 
FF - 	 kdFF - 

(Q-2Q+Q) = 

_Jvu [(J) - 

1 

- (iE + iF) 2  

cxJvz [(x) - (x 2 ) A ] 2  

2 

Jvz[i_ 	1 

- (1— q)
2 	

[ 	1— 

(1 	q) 
2 J Dz. 	 (2.42) 

-  

The complex nature of the elements in the determinant (2.41) indicate we are sited 

on a saddle-point[Cop65, Arf85]. The condition for whether the replica-symmetric 

solution is to be stable is deemed when the determinant of the Hessian is positive 

definite. This is easily verified by the positivity of the determinant (IQal = 1) at 

the zero storage capacity limit of ac = 0, if we are prepared to accept the veracity 

of the replica symmetric ansatz with zero quenched disorder in the model. 

Hence we can write the condition for a positive determinant as 

ac f Dz < 1 
	

(2.43) 

where the necessary ranges for A(z) = x ± TT is read off table (2.28) in the optimal 

perceptron limits of (q -* 1) and hence (a - cxc), for each of the three parameter 

regimes identified. Unlike with symmetric and weakly-asymmetric fluctuations, 

the determinant for asymmetric fluctuations does not vanish in the optimal per-

ceptron limit. Hence we must beware of the network wandering into a region where 
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the replica symmetric solution is unstable, and hence obviously incorrect. This 

was done for all the results to be presented, and we can pre-empt them slightly 

by stating that they all lie within the replica-symmetrically stable regime. 

2.10RESULTS FOR THE ALIGNMENT FIELD DIsTRI-

BUTION 

Equations (2.7) for the iterative dynamics and (2.32) for the storage error are 

both dependent on the alignment field distribution. This distribution gives an 

indication of the training function's effect as the following external field parameters 

are varied: the training field noise level fT and field strength TT, the stability 

constant #c, and the storage error F. 

Armed with equation (2.28), the somewhat terse expression (2.26) for the align-

ment field distribution function can be expanded for the three regimes into 

Regimel 	—oo<2rT <-y[1_\/1_fP] 

1 	
10[(tc  

+8[A—(lc+7-T)]{TJ[Ic+TT] —i[/+TT 7]}, 

Regime 2 	'y [i - 	- fT] <2rT  <y/7 

	

p(A) 
= 1 

IO[(ic - TT - 	
- fT) - A] + 9[A - (ic + TT)]} exp HA2) 

+8[A - ( K - TT)]  
1-ff 

1 K 	2fT1- 	 - fT]} 

	

 L 	4rTj 

+6[A - ( K + TT)] {i[K + Tp] —II IK - Y2fT 
 4r 

Regime 3 	y/j <2rT  <°° 

p(A) = { O[(K - TT - q1- fT) - A] + O[A - (K - TT)] 
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—O[A 
- (, + T 

- 	
+ O[A - (tc +TT)]} exp HA

2) 

+b[A — (r. — 7-T ) ] f 1T [ r%, — TT I — H [ r. — TT — -Y ~ _1__fT  
+6[A - (ic + TT)]  f  -ff [K + TT] - :ti Ir. + TT - -i v'::I }, 	(2.44) 

where the error function IJ[ .. . ] is as defined by equation (A.4) in the mathematics 

appendix. These three distributions reflect how well the two terms in the training 

function (2.11) are satisfied, a'correct' term (1—fT)O[A+7-T—ic]  and an 'incorrect' 

term fT O[A - TT - it]. Wecan see the training noise level fT  weights between the 

two terms, while the actual difference in thresholds between the two step-functions 

is given by the noise strength 2TT. The choice of regime is also affected by the 

fractional storage error, because demanding it to be low is achieved by setting 

the parameter y to be large, which translates to demanding a strict adherence 

to the training function. The three plots 2.1-2.3 of the alignment distribution 

show regimes 1,2 and 3 respectively, for three increasing field strength at a fixed 

noise level. The same regimes can be qualitatively reproduced by keeping the 

field strength fixed and decreasing the noise level, with the main difference in the 

locations of the delta-peaks at (, - TT) and/or (ic + TT). 

	

Figure 2.1 shows the first regime is essentially the original Gardner 	: 	 train 

ing function distribution with a non-zero fractional storage error [AEHW90], bar 

a trivial rescaling in the stability requirement constant (ic —+ ic + 'TT). This occurs 

when the erroneous fT O[  .. . ] term in the training function of equation (2.11) dom- 

inates over the 'correct' (1 fT)O[ ..] part. This can happen at low storage errors 

as strictly requiring the erroneous part to be trained automatically ensures 

adherence of the easier correct part. Indeed, for the strictest zero storage error 

case, the distribution is the same as the original Gardner regardless of the other 

parameters and no new behaviour is observed. With the storage error greater than 

zero, this first regime can still be visited by a low enough external field strength 

TT and/or a high field noise level fT•  The former because there is then a negligi- 

ble difference between the two step-functions, and the latter because the training 
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Figure 2.1: Alignment field distribution for a fixed storage error F =1% and 

minimum stability constant ic = 1.0. This is for the first regime in parameter 

space with a low training field strength TT = 0.10, and the noise level at fT = 0.24. 

The delta peak lies at (ic + TT). This same regime is qualitatively reproduced with 

a high noise level fT = 0.50 with a field strength r = 0.50. 

function becomes heavily weighted in favour of the erroneous part. 

Novel behaviour appears in the second regime illustrated by figure 2.2. This is 

made by fixing the storage error to a non-zero value while raising the external 

field strength and/or lowering the noise level from the values in the first regime. 

This new regime has an additional delta peak at (, - TT) and is the manifestation 

of alignment fields that satisfy the correct term in the training function, but not 

the tougher erroneous one, suitably aided by the weighting towards the former. 

Further raising and/or lowering the external field parameters produces the final 
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Figure 2.2: Alignment field distribution for the same storage error and stability 

constant as in the previous figure. This illustrates the second regime in parameter 

space with a medium training field strength TT = 0.50, and the noise level at 

fT = 0.24. There is now an additional delta peak at (, - 'rT) in addition to the 

one at (i + TT). The same regime is reproduced by a noise level fT = 0.30 at a 

field strength TT = 0.50. 

third regime shown in figure 2.3. Here the correct term in the training function 

continues to grow in importance over the erroneous part, expanding its influence 

on the distribution at the expense of the delta peak at (, + TT). As the external 

field strength further increases, this diminishing delta peak eventually disappears 

and the distribution returns to the Gardner case but with the remaining delta 

peak relocated to (ic —* r, — TT). 
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Figure 2.3: Alignment field distribution, again with the same storage error and 

stability constant as before. This shows the third regime with a high training 

field strength Tp = 0.90, and the noise level at fT = 0.24. The same regime is 

reproduced by a low noise level fT = 0.10 at a field strength TT = 0.50. 

2.11 RESULTS FOR THE BASINS OF ATTRACTION 

We shall now examine the network's dynamical behaviour by the iterative ex-

pression (2.7). The use of diluted connections allows this to be generalised to a 

time-iterative map of the overlap measure, so that the retrieval of an arbitrary 

pattern is given by 

I1 	I mtA— r 11 
mt+i = fdA p(A) {(i - fR)erf mjA+TR 

L21 -2]  + fRerf 21 - mj 1 (2.45) 

9141  



in terms of the alignment field distribution function.. The additional parameters 

(f Ta) are to do with the application of a persistent external field during retrieval, 

with f the mean fraction of erroneous bits, and ri, the field strength. Taking the 

field strengths TT and TR, and the fractional storage error .T all to zero restores the 

retrieval dynamics for the original Gardner model [KA88]. From this dynamical 

equation we can discover the network's attractor structure of retrieval. The results 

and analysis of this constitute the remainder of this chapter, beginning first with 

a discussion on what quantities we intend to measure. 

2.11.1 TRANSITIONAL POINTS OF THE DYNAMICS 

The aim here is to discover how the attractor structure of the retrieval dynamics 

changes as the various network parameters are varied. For a given set of these 

parameters we start by numerically [PFTV88] finding the fixed-points of the iter-

ative map equation (2.45) for the overlap measure m, where the stable solutions 

indicate attractor centres and unstable ones define the attractor boundaries. From 

these two values of the overlap the fidelity of the memory attractor to its training 

pattern and the size of its basin of attraction are revealed. . The network's iterative 

dynamics is described by equation (2.45), for an optimal storage capacity ac given 

by equation (2.30) and a fractional storage error F by equation (2.32). The effect 

of the training and retrieval external fields will be discussed in detail later, but 

for now we shall focus on the effects of varying the storage capacity and storage 

error. 

The storage capacity ac is a particularly interesting quantity to examine since it 

gives a readily accessible indication of a network's performance. We shall refer to 

figure 2.4 which shows the basin of attraction for an increasing optimal storage 

capacity in the Gardner case of no external fields and zero error in the storage. 

The solid lines are attractor boundaries, and the attractors themselves are drawn 

with dashed lines. In figure 2.4 we can make out two phases in the storage-overlap 
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Figure 2.4: Fixed-point map showing the basin of attraction for the Gardner case 

of no external field and zero storage errors, for increasing optimal storage capacity. 

The attractor boundaries are drawn in solid lines ( ), and the attractor centres 

by dashed lines (- - -). The circled points are two transitional points and mark 

out the two retrieval regions. From a storage capacity of a = 0 to a = we have 

the region of wide retrieval, and beyond that from a = &o to a = we have the 

region of narrow retrieval. Beyond ac > &1  no dynamical retrieval of a pattern is 

possible. 

(ac , m) space. At low storage capacities the basin boundary has an overlap of 

essentially zero, implying retrieval of the pattern is guaranteed for any positive, 

infinitesimal initial overlap. As the number of patterns stored by the network 

is increased, a level of storage is reached whereby the attractors for the memory 

patterns can no longer avoid each other, and have to shrink their basin boundaries 

in response. This storage capacity signals the upper-bound for the region of wide-

ret rieval, beyond which a macroscopic initial overlap is necessary for retrieval. 



A further increase in the storage capacity squeezes the basin of attraction until it 

and the attractor vanish altogether, making the dynamical retrieval of a pattern 

impossible. From the end of the region of wide-retrieval to this saturation point 

of the network is the area we call the region of narrow-retrieval. 

For the cases to be examined, we wish to emphasize how these regions of wide 

and narrow-retrieval are affected by the external fields. Operationally, these are 

marked out by. points in the storage-overlap space where stable and unstable fixed-

points meet. Henceforth they will be referred to as transitional points3  and are 

denoted by hats: (, rh). Figure 2.4 illustrates where two such points exist for 

the original Gardner case. The transition from the wide-retrieval to the narrow-

retrieval region is given by an optimal storage capacity ac = &o with an overlap 

m = th0 , and the transition from narrow retrieval to zero retrieval is given by the 

point (&, r5ij ). For the zero storage error Gardner case, the wide and narrow-

retrieval regions are bounded by (& o  = 0.42, = 0.0) and (&I  = 2.0,7h1  = 1.0) 

respectively [Gar89]. From zero storage to the end of the narrow-retrieval region 

there is a stable fixed-point at m = 1 for the memory attractor, but for the storage 

a> &, there is another spurious attractor with overlap m = 0. 

We can treat the fraction of erroneous bits per pattern stored (fl as a parameter 

by solving equation (2.32). The effect of increasing this value is to decrease the 

quality of the memory attractor, and a corresponding narrowing of the narrow-

retrieval region [AEHW90] by a decrease of the & 1  transitional point. This simple 

(and somewhat unproductive) response to further increases of the storage error has 

been verified in this model at the values of 0.1, 1, 5, and 10% of the bits per pattern, 

where no qualitative changes. in the behaviour took place. Nonetheless, §2.10 has 

shown the necessity of keeping the storage error above zero for novel behaviour so 

in the results that follow this parameter has been fixed at the somewhat arbitrary 

value of .7 = 0.01. 

3Reference [YW91] called these 'critical-points', a name we now regard as too vague. 
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Finally this leaves the external field parameters to examine. The cases presented 

in the following subsections look at the effect on the transitional points with a 

training field (fT, TT) only, with a retrieval field (f, T) only, and with statistically 

equal training & retrieval fields (fT = fR, TT = Ta ). The chosen means of showing 

their effect is by looking at the resulting regions of wide and narrow retrieval, as 

given by plotting the transitional points' overlap (- - -) and storage ( ). 

2.11.2 TRANSITIONAL POINTS WITH TRAINING FIELD ONLY 

Figures 2.5 and 2.6 show the transitional points as the training noise strength is 

increased, for two levels of training noise at fT = 0.20 and fT = 0.24 respectively. 

The straightforward behaviour shown in figure 2.5 is typical for low noise levels 

(below fT 0.05 the network is essentially insensitive to the training field). Given 

a sufficient noise level the improved content addressability of the system becomes 

readily apparent as the region of wide-retrieval region bounded by the transitional 

point (&O, iho ) increases, peaking at & o  = 0.52 for a field strength TT = 0.52. As 

the number of patterns that can be retrieved with a microscopic initial overlap 

has increased, the basin of attraction can therefore be said to have widened. Un-

fortunately this improvement is seemingly at the expense of the narrow-retrieval 

region, whose decrease reduces the number of patterns that can be stored without 

saturating the network. 

Increasing the training noise above fT—  0.21 complicates the transitional point 

plots considerably, as the typical example at fT = 0.24 in figure 2.6 shows. 

For low field strengths up to TT- 0.36 the wide and narrow-retrieval regions in-

crease and decrease respectively, as with the example discussed above. Additional 

structures indicating new transitional points appear as the field strength is further 

increased, and are best understood by referring to their fixed-point diagrams. The 
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Figure 2.5: Plot of the transitional points with only the training field applied, the 

storage error is at 1% and the external field noise level is fT = 0.20. The plot is 

against an increasing field strength r 1  with the transitional points' overlaps (---) 

and storage ( ) sharing the same ordinate. Here two transitional points are 

being tracked: the (&, ih0) line with zero overlap throughout and a storage ca-

pacity starting at cc = 0.42 which marks the upper-bound of wide-retrieval, and 

the (&, rh i ) line starting with an overlap m 0.98 and storage ac 0.90 which 

marks the end of narrow-retrieval. The increase in the wide-retrieval region as 

indicated by &O shows that content addressability is improved, but the decrease 

in 6z1 shows a corresponding decrease of the network's saturation limit, and with 

it the narrow retrieval region. 
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Figure 2.6: Plot of the transitional points with only the training field applied, the 

storage error is again at 1% and the noise level has increased from the previous 

plot to fT = 0.24. The meaning of the broken and solid lines remain as before, but 

this example appears to be far richer. However, this additional structure has a 

straightforward origin and is due entirely to the creation and later disappearance 

of an additional stable fixed-point, one of a lower quality than the memory attrac-

tor. The evolution of this can be more clearly seen by examining the fixed-point 

maps from which the transitional points are extracted, which explicitly show this 

additional attractor. 
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Figure 2.7: The first of three 'snapshots' of the the fixed-point retrieval maps 

from which the previous transitional points plot is made. We are showing here the 

fixed-point map's evolution by plotting the fixed-point of overlap against storage 

capacity for five increasing field strengths, with the largest field strength plot 

drawn in broken lines. Here the training noise level is fT = 0.24 and the field 

strengths are TT =0.20, 0.28, 0.36, 0.44 and (in broken lines) 0.52. At low field 

strengths TT =0.20, 0.28 & 0.36 the wide and narrow retrieval regions increase and 

decrease respectively. As the field strength is increased to TT =0.44 and 0.52, a 

new attractor is created and with it two new transitional points with overlaps m 

0.90-0.98, one of which has now assumed the role of marking out the upper-limit 

of narrow retrieval. 

important 'snapshots' for this example are given in figures 2.7-2.9, which plot the 

fixed-points against increasing storage levels, for increasing field strengths. 

Figure 2.7 shows that as the field strength is increased the (&, th1 ) transitional 
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Figure 2.8: The second of the three 'snapshots' of the fixed-point retrieval maps 

giving the transitional points plot at noise level fT = 0.24. The field strength 

has now increased to TT =0.52, 0.56, 0.60, 0.64 & (in broken lines) 0.68. Here we 

see the original (&, rh1 ) transitional point merging into the (&O, ñzo) point at the 

abscissa at TT =0.60-0.64. Its role marking out the rgion of narrow retrieval has 

already been assumed by one of the transitional points associated with the new 

attractor seen created in the previous figure. 

point marking the narrow-retrieval region starts to merge into the wide-retrieval 

point (&, 75io ). Meanwhile two new transitional points appear with an overlap 

m 1, indicating the formation of a stable attractor in addition to the memory 

pattern's, but of lower fidelity. In figure 2.8 the old (a, izi) transitional point 

vanishes but its rOle marking out the region of wide-retrieval is quickly taken 

over by one of the two new transitional points. Finally, in figure 2.9 the other 

new transitional point coalesces into the wide-retrieval point, taking with it the 

extraneous attractor. 
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Figure 2.9: The last of the three fixed-point retrieval map snapshots, for the 

training noise level fT = 0.24 case. The training field strength here is further 

increased by TT =0.68, 0.84, 1.00, 1.16 & (in broken lines) 1.32. We can see 

here the extraneous attractor's stable fixed-point disappearing, merging the final 

extraneous transitional point into the (&, ii0) point. In the limit of very large 

training field strengths we are left with the same fixed-point map as for the zero 

field case. 
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The extra structure brought along by the appearance of the extra attractor seems 

to have little practical consequence. Indeed, if anything it appears to degrade the 

region of wide-retrieval over some range of external field strengths, and hence may 

be indicative of the maximum training noise level to choose. 

This structure is not, however, a result of instability in the replica-symmetric 

solution and cannot be dismissed on these grounds. The indications from equa-

tion (2.43) are that stability of the replica-symmetric solution is only violated 

beyond the network's limit of storage. 

2.11.3 TRANSITIONAL POINTS WITH RETRIEVAL FIELD ONLY 

As mentioned in 2.1 motivating this model, the effect of an external persistent 

field on the retrieval dynamics has recently been studied for the zero storage error 

[EBKS90], but it is still useful to consider the 1% error case for the sake of direct 

comparisons. 

At a low retrieval noise level (figure 2.10) below f 	0.20 the structure is straight- 

forward with no new attractors appearing. The transitional points do differ from 

the training-field only case because the introduction of the retrieval field breaks 

the invariance of the dynamical equation (2.45) to (m - —m) overlap flips, raising 

the wide retrieval transitional point's overlap inio above zero. Consequently the 

stable zero-overlap attractor at a > &0  is now replaced with a macroscopic one 

induced by the external field. Meantime the wide-retrieval region &o increases, 

then eventually coalesces with the falling narrow-retrieval point &i. Beyond this 

the retrieval map has no transitional points, and instead there is just one attractor 

of steadily decreasing quality with increasing storage, signalling the dominance of 

the external field in the network's dynamics. 

Retrieving with the slightly noisier field shown by figure 2.11 retains the transi 
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Figure 2.10: Plot of the transitional points using an external field only during 

retrieval. This one again has the storage error at 1% and the field noise level at 

fR = 0.20. As with the two plots where only a training field is used, we are plotting 

on the same axis the transitional points' overlaps (- - -) and storage ( ). 

However, unlike those plots the transitional points of wide and narrow-retrieval 

eventually come together at TR = 0.38 beyond which the network has only a single 

attractor whose quality decreases with increasing storage. When this happens the 

lack of any transitional points prevent us from making a demarcation between the 

wide and narrow retrieval regions. However, examination of the fixed-point maps 

has shown only a worsening in the basin of attraction with increasing retrieval 

field strengths. This is corroborated by the following plot for a higher retrieval 

noise level where the transitional points do survive and we can explicitly see the 

wide and narrow retrieval regions decreasing. 
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Figure 2.11: The second transitional points plot using an external field only during 

retrieval. Again the storage error is fixed at 1% but the field noise level is now 

increased to fR = 0.30. The transitional points begin much like its lower noise 

level sibling, but do not come together at a given field strength. Instead the 

region of wide retrieval reaches a maximum at TR = 0.38 before it follows the 

narrow retrieval region on a seemingly steady decline. This detrimental behaviour 

simply reflects the network's dynamics being dominated by polarisation by the 

high retrieval field. 

tional points throughout the covered field strength range, and consequently it is 

possible to see how the regions of wide and narrow-retrieval decrease for large field 

strengths. In comparison to the example of figure 2.10 this is able to show the 

eventual polarisation of the spin-sites to the external retrieval field. 

Lastly, both plots here are within the regime where replica-symmetry is stable. 



2.11.4 TRANSITIONAL POINTS FOR EQUAL TRAINING AND RE-

TRIEVAL FIELDS 

Since the motivation for this work is the training of the network with ensembles of 

external noisy patterns, it seems reasonable to expect the best performance with 

statistically identical training and retrieval fields. The plots of such an assumption 

are presented in figures 2.12 and 2.13, for two levels of external field noise. The 

most immediately apparent observation is their qualitative similarity to the pure 

retrieval field cases. The quantitative differences are summarised in table 2.1 which 

shows the maximum wide-retrieval storages max{& o } and the corresponding 'best' 

field strength, amongst the three cases discussed above for three field noise levels. 

Nonetheless the improvements are such it may be implied that the retrieval field 

has a disproportionate effect on the dynamics, and hence an 'optimal' training and 

retrieval fields combination may involve weakening the latter. This hypothesis is 

supported by the disparate best external field strengths to use. 

Once again the results presented are replica-symmetrically stable. 

2.12 CONCLUDING REMARKS 

We have seen in this chapter a detailed example of a Gardner phase-space of inter-

actions calculation. This model was an extension motivated by the observations 

that including external fields and noise with the training procedure can improve 

content addressability. 

The first equation calculated was an expression giving an iterative map which 

describes the dynamics of the neurons' zero-temperature (i.e., non-stochastic and 

deterministic) update. This map is exact for the first time step from a random 

start, but can be elevated to all time steps for a network with a highly diluted 
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Figure 2.12: This plot shows the transitional points when a statistically equivalent 

external field is used during training and retrieval. The storage error is at 1%, 

and the noise levels at fT/R i.e., (fT = fR) = 0.20. Qualitatively the behaviour is 

identical to having only a retrieval field at a low field noise level, with the same 

merging of the two transitional points. 

connectivity C much, less than the magnitude of the number of sites N. 

We then invoked self-averaging for the large system size and wrote the iterative 

map in terms of a distribution function of the alignment defined in §1.2. This 

distribution function was then calculated by doing an annealed-optimised search 

over the phase-space of connections, picking out the solution which satisfied the 

training function we had. The disorder from the memory patterns we wish to 

store and the noisiness of the external fields were quenched averaged by use of the 

replica method, closely followed by taking the replica symmetric ansatz. 
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Figure 2.13: The second plot of the transitional points when a statistically equiv-

alent external field is used during training and retrieval. The storage error is at 

1%, and the noise levels here are at fT/a = 0.30. The behavior is as in the previous 

figure. 

We then found the parameters which control the external field used during the 

training phase gave three regimes of behaviour, two of which are novel and differ 

from the familiar Gardner result. These gave three sets of equations for the 

storage capacity (2.30) ac,  the fraction of storage error (2.32) ,T, and —via the 

distribution function (2.44)— the dynamical equation (2.45). The validity of these 

equations to small local replica-symmetry breaking fluctuations was ensured when 

condition (2.43) was satisfied. 

For the results, we first examined the effects of the three regimes on the alignment 

field distribution function. We then introduced the idea of a transitional point 

which allowed us to qualitatively measure the basins of attraction as the various 
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Mean External Field Noise Level 

0.20 0.24 0.30 

max{&o } 	best{i-} max{âo } 	best{r} max{âo } 	best{r} 

Training field 0.52 	0.52 0.52 	0.60 0.50 	0.50 

Retrieval field 0.72 	0.38 0.66 	0.38 0.60 	0.38 

Training = 
Retrieval field 0.76 	0.30 0.71 	0.32 0.63 	0.36 

Table 2.1: Comparison of the three cases examined at three levels of external field 

noise. The external field has been applied during training only, during retrieval 

only, and during both training and retrieval phases. The entries refer to the 

largest wide-retrieval region obtained, together with the associated field strengths 

to obtain it. The former is measured by the maximum storage capacity where 

retrieval of a memory pattern with a microscopic initial overlap is possible, &o. By 

comparison, the region of wide-retrieval in the original Gardner model is bounded 

by a maximum storage capacity of & o  = 0.42. 

external field parameters were varied. These points showed that the maximum 

storage capacity in which a pattern can still be retrieved with a microscopic initial 

overlap, the region of wide retrieval, was increased by the use of external fields. 

Specifically, improvements in the basins of attraction were looked for in three cases: 

training field only, retrieval field only, and statistically equal training and retrieval 

fields. In all three cases the region of wide-retrieval were improved above the 

original Gardner model's &o = 0.42, with the equal field case marginally highest; 

e.g., max{âo } = 0.76 for training and retrieval fields at strength fT/R = 0.30 and 

noise level fT/R = 0.20. However, this slight improvement over the corresponding 

retrieval-field only case (max{â o } = 0.72), and the differing value for the best 

field strength (r = 0.38), perhaps suggests the retrieval field was dominating the 

dynamics and that a simple equality was not the optimal relationship between the 

training and retrieval field parameters. 
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The stability of the replica-symmetric ansatz to small symmetry breaking fluc-

tuations was calculated and it appears to have been respected in all the results 

presented. 

Before we close this chapter we ought to mention that reference [RSW91] has 

made a survey of retrieval behaviour, comparing the effects of discrete and Gaus-

sian noises in the retrieval field. The authors have pointed out that discrete noise 

probabilities of the form described by equation (2.2) can be responsible for fea-

tures in the.fixed-point retrieval maps which disappear when using the continuous 

Gaussian noise. This does not invalidate the results presented here, but it should 

temper one's enthusiasm for their potential universality. The obvious remedy is 

to repeat the calculations and numerical analyses in this chapter using Gaussian 

noise for the retrieval field, and this may be pursued in the future. 
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Chapter 3 

Storage Properties of Sign-Constrained Neural 

Network Models 

3.1 DUAL DISTRIBUTION FUNCTIONS 

The phase-space of interactions is a tremendously powerful technique for elucidat-

ing the properties of neural network models with optimal connections. Chapter 2 

illustrated this with the specific problem of calculating the attractors in the re-

trieval dynamics of such a network. We saw that the dynamics is principally 

determined by the distribution function of the alignment field. From the point of 

view of understanding the network this distribution is an interesting quantity to 

calculate in its own right, and we could have similarly calculated the distribution 

over the synaptic efficacy. Both these distributions allow us insights into the na-

ture of the optimal network without actually having to know the exact value of 

each individual connection. 

In this chapter we shall further develop the phase-space technique and calculate 

the dual distribution functions as introduced by Wong [W600]. These objects will 

be used to compare the properties of two different optimal networks given the same 

sets of patterns to train, with a view of seeing how they cope as the differences 
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between them are varied. These differences can be in the training function as in 

reference [WRS91]), or they may be in their physical architecture. The example 

considered here belongs to the latter category, namely in the way the networks' 

connection weights are constrained to a given sign. This idea of constraining the 

weights to be a specified sign is our attempt to model the biological observation 

known as Dale 's rule, but its consequences here appear to lead to an embarrassing 

paradox. We shall now spend some time detailing the model and how it leads to 

this problem. 

3.1.1 DALE'S RULE AND THE SIGN-CONSTRAINT 

Dale's rule is an empirical statement which claims that the synapses into a bi-

ological neuron are either all excitatory or all inhibitory [Ecc64]. The way this 

observation is modelled in a neural network model is by restricting the synap-

tic efficacies into a neuron to be all positive for excitatory connections, or be 

all negative for inhibitory connections. Previous works have examined the re-

trieval dynamics [CW90], calculated the storage capacity by geometric arguments 

[CR91], and given a convergent perceptron-like learning algorithm for generating 

such optimal synapses [AWC89b]. 

However it is reference [AWC89a] which motivates this chapter's work. This con-

siders how a sign-constrained network is able to optimally store random, uncorre-

lated patterns. In particular it hints at a possible paradox whereby the network 

is seemingly able to store patterns which ought to contradict its constraints. 

We shall now detail the model we wish to study, using much of the notations given 

in § 1.2. We require P patterns , p 1 . . . P to be stored, which is realised when 

C jij 

joi 
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that is, the alignment field is larger than some positive constant ic for all i = 

1 . . . P patterns and for all sites i = 1... N. Using the justifications given in §1.2.1, 

we can simplify the notation by considering a single perceptron and re-writing the 

patterns as —p  )• This perceptron has C continuous weights J3,j = 1 . . . C 

whose phase space is constrained by equation (1.12) to lie on a unit C-dimensional 

semi-hypersphere. Together these three items simplify the stability condition to 

C jj 
AL 	 > Ic 

joi v C 
(3.1) 

where we have taken the liberty of denoting the alignment field by A. The 

final constraint to consider is for enforcing the signs of the interactions. This is 

realised by introducing a C-dimensional sign vector {g'} with the possible binary 

components g3 = ±1 such that we require 

gJ > 0 
	

(3.2) 

for all the j = 1.. . C weights into the perceptron to be satisfied. This sign vector 

{gi} allow us to specify whether each weight should be excitatory or inhibitory, 

with Dale's rule occupying the two extremes of g' = 1 or g3 = —1 for all j. 

The paradox mentioned above concerns what happens when we flip each com-

ponent of the sign vector {g'}. Upon doing this, constraint (3.2) will demand a 

corresponding change in the sign of the weights (Ji _Ji), but this will then 

violate the stability condition of equation (3.1). Hence it seems two networks with 

opposing signs in weights are not able to store the same set of memory patterns. 

Of course, the stability condition can be respected again if we also flip the pat-

terns ({} —* {-}), but this is just telling us a network with opposite weights 

{JJ} can only store the flipped set of patterns. 

We arrive at the paradox when we perform the quenched average on the uncor- 

related and unbiased memory patterns, i. c., completely random patterns. We 



can quickly see this calculation is independent of whether we average the set 

of patterns {} or its opposite {-} [AWC89a], which suggests the opposite 

network can meet the stability requirement without explicitly requiring the pat-

terns to be flipped. We can turn this argument around and say that in effect a 

sign-constrained network is seemingly able to store a set of patterns {} and its 

opposite {-}, despite the prima facae conclusions from the constraints (3.1) 

and (3.2). 

The rest of this chapter is devoted to the task of resolving this paradox. To 

facilitate this we shall calculate the dual distributions in weight and alignment 

field distributions, for two networks under the same quenched memory patterns. 

The two networks have different sign constraints and in effect we are trying to 

ascertain how the two networks are coping in storing the same patterns. The 

following section will mathematically write out the calculation, and in the process 

introduce the notations to be used. Before the presentation of the results there will 

be a discussion on the stability of the repli ca- symmetric ansatz, a task necessary 

to lend justification to the mathematical validity of the calculations. 

3.2 CALCULATING THE DUAL DISTRIBUTIONS 

We shall be investigating the storage properties of two networks with differing 

sign-constraints, by examining the dual distributions of their alignment fields 

and synaptic efficacy. That is, we shall be calculating the functions p(A, A) and 

p(w, tb), where we have differentiated between the networks by the tilde symbols. 

The two networks are required to obey the stability condition (3.1) as well as the 

sign-constraint (3.2). The latter allows us to vary the difference between the two 

networks by defining an overlap measure between the two sets of constraints {gi } 
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and {'}, 

'C 

m3 _gigJ 
j=1 

(3.3) 

and hence for C connections into the neuron, a fraction (1 + m 3 )/2 have the same 

signs, whilst (1 - m 3 )/2 of them have opposing signs. m 3  is now a parameter 

we can vary, such that m 3  = 1 gives the two networks identical constraints, and 

conversely in3  = — 1 forces them to be antisymmetric to each other. The latter 

extreme corresponds to the paradox discussed in §3.1.1 above. We shall now detail 

the calculation for the dual-distribution function of the alignment field. 

3.3 THE ALIGNMENT FIELD DUAL DISTRIBUTION 

We shall take a quenched average over the memory patterns of the dual distribu-

tion function, as given by 

p(A, A) = 
((

J fi 	 8[A - A']S[A - A 1 ] 

- C]6[(J)2  - C] exp 	[g(A) + 

x [in [:dJdf] 6[(J)2  - C]6[(f)2  - C] 

/ P 

x exp (i3 	[g(A) + (A)1) 	
)) 	

(3.4) 
Ii 

where the first two delta functions sample the alignment field for an arbitrary 

pattern The double-angled brackets denote the two networks are quenched 

averaged with the same IL = 1 . . . P set of patterns. Apart from the differing sign-

constraints the networks are identical, although this formalism has the potential 



to allow other differences to be considered, in for example the spherical constraint 

and the training function g(A) 

AVERAGING OVER THE MEMORY PATTERNS 

By writing equation (3.4) in terms of a = 1.. . n replicas over the connections we 

can raise the denominator and do the quenched average over the patterns. i.e., 

1ddx d5 ag d i~g 

 I j 
p(A,A) = lim fl

n-*O a,J
[ 

2ir 	2ir J a  

A C 

	 C 
8[A - 	- )] 	S[(J)2  - C]5[(f) 2  - C] 

a 	j 	 j 

x 11 exp (ixA + i 	+ g() + 

x ((fiexp (_ 	{xA+A}))). 	 (3.5) 

Using the definition of the alignment field given by equation (3.1), the last term 

in (3.5) with the dependence on the memory patterns can be averaged. In the 

large connectivity limit this can be written as an exponential function via 

I/P / 

l(llexp (_ 	[xA+A]))) 
\\ 	a 

 

= exp 	
[ 

(xJ + J)] 
2)  

P 	/ 	1n,C 	
2 	 2 

= 	 +( f ) 
] 

-  1 	 3;;;g  E > 	+ jaj  
j a<b 

-ai X a'jaj 	+ iJxL1) 
a,b 

[1 



which is dealt with by introducing the correlation measures between the replicas 

1 c 
qab =- 	

73 V 
qab 

Tab 

Va,b (a < b), 

V 's 

(3.6) 

The quantities qab  and  qab  measure the overlap between different replicas within 

the same network, whilst Tab examines the correlation between the two networks' 

synapses. By inserting the definitions (3.6) and writing the spherical constraints 

in integral form, we obtain for the dual distribution of alignment fields 

1dE dEa l 	fdFabdqab dFabdabI 

b 

 {dKabdTabl 
p(A,A) 	urn Ifl

n~ lo H [ 27r/C 	27r/C 	a, I 27r/C  j 

	

a L 	 Ja<b 

exp C{GJ({E a ,Ea,Fab ,fi ab,Kab }) + cGA ({q ab , ab,rab }) 

+G0({Ea, Ea, Fab, Fab, qab, qab, Kab,  Tab})} 

< f ft ~ dA'dx'
dd] 5[A - 	

- 

a 	27r 	27r 

x exp 
{- 	

[(x + ()2 1  - 	 [xqx + xqabx 

	

2 	
] 

a 	 a(b 

	

- XTab + E [ix 	+ i 	+ g(A) + g()J 
} 

(3.7) 

which has been explicitly written in a form to be amenable to integration by the 

method of steepest descent. The functions inside the exponential are 

Gj ({E a , Ea, Fab, Fab, Kab}) 

+ ins ) In IJH djadfa  exp 
(- 	

[EaJ + EaJ] 
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+j I [JaFa ,Ji, + JaPabfb] + i E JaKa&Jii 
a<b 	 a,b 

ooO 

—m)ln I I ft dJadfa exp (_ 	[EaJ+ a 
—00 	

a 

[JaFa J + JaFabJb] + i JaKabfb)] 

GA({q ab, qab, rab}) 

d\ada 
in[ 	 exp (_ 

	
[x + 	- 	[ aqa X + X aqabXb] 

	

27r 	27r 	 a 	 a(b 

	

- 	+ 	[ixaa  + 	+ fig(A a) + 

Go ({Ea ,Ea,Fab) frab ,qab , ab,Kab,rab }) 

[Ea  + Ea] - 	[Fabqab + Eabqab] - 	Ka Tai. 	 (3.8) 

The quantities {Fa&, Fab, Kab} are the conjugate variables to {qab, qab, rab} respec-

tively, and integrations with respect to them will also be evaluated by the method 

of steepest descent. 

EVALUATION AT THE SADDLE POINT 

In the large connectivity limit the integrations in the first line of equation (3.7) 

can be performed by the method of steepest descent. This means we need to find 

the saddle-point which maximises the function G G + &GA + G0  by solving 

the set of equations 

Fab = Y{XaXb}GA, 1Fab = 	{ab}GA, 

I 	
ri-21 

= 1..aIGj 

qab = {JaJb}Gj , 

I 	r i = jJ 2 JGj'  

qab = {Ja fb}G j , 

Va, 

Va,b (a < b), 

Va,b (a < b) 

(3.9) 
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and 

rab = { Ja Jb}G j , iKab = —a{x a b}G j , 	Va, b. 	 (3.10) 

Equations (3.9) are analogous to those already encountered in §2.5, but with 

different curly-braces operators complicated by having two networks to contend 

with. Before we evaluate the braces in equations (3.9) and (3.10), we shall first 

take the replica-symmetric ansatz given in equations (2.17) for the quantities 

{ Ea , Fab, qab} and their dual {E a , Fab, qab}. We shall also employ rab = r, Kab 

K, Va, b for the two remaining replica-dependent quantities. We can then write 

the two braces operators as 

00 00 

{(. . . )}Gj = 	(1 + m) I 111 [dJadfa] 
(S") 

00 	a 
Ja  

/ 	r 	2 	 n 	1 

	

+(FIJal 	+2KIJaIIJa 
\ 	La 	J 	La 	iLa 

n 	

]+F[ 
2\ 

Ja1 	i} 
a 

00 00 

ff [J [dJadfa ] exP{_(E+F)>J - 

00 	
a 

/ 

+ 	(F 1 	Jal 
La 	] 

2  

+2K F 	Ja1 
La 	]La 

Ja ]+ Jaj 
a 

,2\ 

) 
} \ j 

ooO 

+ 	m s)fffl[dJadfa}(...) 
0 -00 	

a 
Ja  

/ 	2 

	

1:+(FIJa1 	+2KIJalIJa 
\ 	La 	] 	La 	Jt.a 

In 	
]+F[ 

,2\ 

>JaI 
a 

OOO, I I fi [dJadfa ] exP{_(E+F)J - 

0 -00 	
a 
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+ (F[Ja]2+2K[Ja] [f
a] +[a])} 

and 

fl  1d.AadXadada1 
111 
aL 2ir 	2ir 

exP{_( 1  —q)x 
- 

(1 

i11 	i2 	r 	'in 	n 	2\ 

— 
 

( q Ixa I +2rIxaI I 	aI+1a1 I 
\ La 	J 	La 	iLa 	i 	L.a 	i) 

+ E [ixa A a  + 	+ g() + fig(a)] 
} 

~J ft1x exp{ 
1 	 1 

a L 27r 	27r a 	 a 

1 	r 	, 	r 	lr  
[ 

n 
 a + (q [ 	a ]

2 

±2r [xaj 	j 	[a
1 2 ) 

 

+ E [ixaa  + 	+ (a) + g(a)] 
}. 	

(3.12) 

The next step is to linearise and decouple the terms inside the exponentials of 

equations (3.11) and (3.12). For the first operator this is done by first re-writing 

in terms of the quantities 

1  
A2 	

K
—  2 1+ and B 2 	{i 

- K I ____ 

(3.13) 

such that we can write 

exp i (F 
[

Ja] 
2 
 + 2K 

[ 

Ja] 

 [ 

Ia] + E [E Ia] 
2)  
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-i2 
IA2 	 2) 

= 
exp (-- 

I_F_ ' 	\/i>Ja] + j32 
{'iJa 

= J VuDv fj exp ([Au + By] Ja4 + [Au - By] 	 (3.14) 

by performing two Hubbard-Stratonovich transformations (A.2) which add Gaus-

sian integrals in the variables u and v. 

We can treat the second curly braces operators (3.12) in the same manner by 

introducing 

a2 	[i +and b21 -  

and perform the linearising transformations by y and z, giving 

exp _([xa] 2 +2r[Exa ]+ ] [a[Ea] 2) 

(

2 [V/q 	n 	 n 	12 b2r
exp 

 

_a- 	
a+ I] - -- 	

- 

= f VyVz fi exp (-i [ay + bz] x - i [ay - bz] 	 (3.16) 

Upon replacing the above transforms (3.14) and (3.16) back into the operator 

definitions (3.11) and (3.12) respectively, we find the denominators go to unity in 

the zero replica limit. This means we can simplify saddle-point equations (3.9) 

and (3.10) and write them in terms of the following operators 

00 

f dJ( ... ) exp (_(E+F)J2 +(Au +Bv)J) 
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00 

.JdJexp (_(E + F)J2  + (Au + Bv)J IiF  

00 

Jdi( ... ) exp (_(E+F)J2 +(Au _B v)J) 

00 

- fdi(. 
. .) exp  (_ j(t  + )f2  + (Au - Bv)J), 

I df( ... ) exp((_(E+)J2 +(Au _Bv)J) 
- 00 

~ J dfexp( (_(E + E)J2  + (Au - Bv)f), 	(3.17) 

and 

d)dx 
(H))A 	J 2 

/ 	x2  

~ 
 I

d.Xdx / 
2 

x 2  

• 	))A 	i 	2 	
' (...)exp 

/2 
—(1 

- ) + i 	- (ay - bz) 	+ flgod 
) 

± 
 I

d\d / 
2 exp 

2 
—(1 

- ) + i - (ay - bz) 	+ 	g()] 
). 	

(3.18) 

We shall now use the above definitions and simplify each of the saddle-point 

equations (3.9) and (3.10) in turn. We begin with the one obtained by taking the 

derivative with respect to {Ea } 

1 	 1 i 
I = la

2  
IGj 

= Jvuvv {(i + m 3 )(J2 )(1) +  + (1 - m )(J2)(1)} 

= Jvuvv{(J2)}, 	 (3.19) 
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and similarly for the derivative with respect to {E a } 

1 = { f}G 

= Jvuvv {(i  + m s )(1) j (12 )j+  + 	- m s )(i) j (J2 ) j } 

= JvuDv {(i + rn8 )(f 2 )3+  + 	- ms)(12)j}. 	 (3.20) 

Likewise, the derivatives with respect to {Fab} and {Pab} are 

q = {JaJb}Gj 

= Jvuvv{(J)}, 

= {fa fb}G j  

= J DuVv {(i + rn3 )(J) +  + (1 - rn3)(f) }, 
	

(3.21) 

respectively. Differentiating with respect to {qab}  and {ab}  gives simply 

iF = 	{ XaXb}G A  

= _Jvyvz{(x)}, 

ip, = — a{ab}G A  

= _cJvyvz {(} 	 (3.22) 

again respectively. We can see straightaway that the solutions to equations (3.19)- 

(3.22) can be placed into two groups, each concerned with its own network. Hence 

we have two sets of -intra-network quantities {E a , Fab, qa&} and {E a , Fab, qab}, in 
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addition to the inter-network quantities {rab, Kab}. It is in the saddle-point equa-

tions of the inter-network quantities that the inter-network overlap in8  of defini-

tion (3.3) arises. Equating the derivative with respect to {K a&} equal to zero, we 

have 

r = {Ja Jb}Gj  

= 1 'DuDv {(i  + m3 )(J)(J) +  + 	- m s )(J)j (J)i }. 	( 3.23) 

Finally, the differentiation with respect to {rab}  gives us 

iK = 

= _aJDYVz{(x) A ()A}. 	 (3.24) 

We have now expressed the saddle-point equations as Gaussian weighted integra-

tions of moments with respect to the operators (3.17) and (3.18). Appendix E 

shows how the moments of the former are calculated, but here we shall simply 

quote the ones we need. For the evaluation of equations (3.19)—(3.21) and (3.23), 

these are 

Au+Bv I F 
/iE+iFVE+F° ' 

Au - By I 
F O[Au - By] 

= iE+iEE+F 

Au - By
F O[—(Au - By)], 

= iE+ifr E+P 

= iE iF (i + [Au + By]2 
E + F) O[Au + 

By], 
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1 
iE + iF (i + [Au - By]2 

E 	
O[Au - By], (J2 ) 	= 

(J2 ) 	= 1 - iE + iF (i + [Au - By12 
F 	

O[—(Au - By)]. 	(3.25) 

For the remaining three saddle-point equations (3.22) and (3.24) we need the 

moments with respect to the operator (3.18), which we can write as 

I dA  (\ - (ay +bz)/)]k 
(xk)A = 
	

JDX  (1 - q)_(1+k) 	+ i 

x exp (/39(A)+  ix 	
- (ay + bz)]) 

dA 
± 	(1 - q) exp/3 ((A) - ( - (a + bz)) 2 ) 

2/3(1—q) 

d\  (k) 
= 	I V(1_Y(1+k)[ 	

(_(aY_bz))]k 

xexp (/3g()  +i 	
- (ay - bz) Vqfl 

1rd  

± J 	 2 (1 — /3 ( 	
- ( - (ay _bz)) 2 ) 

/3(1 - ) 	
. (3.26) 

A 	
exp 	g() 

The integrations with respect to the x and i variables are standard moments of a 

Gaussian distribution. However, the integrations with respect to ) and ) require 

us to take the low annealed-temperature limit of (/3 - oo), which then allows us 

to use the method of steepest descent. Consequently, this requires us to find the 

functions )(y, z) and A(y, z) which respectively maximise 

1 
g) - - [A - (ay + 

1 
2  2 [_(a_bz)], (3.27) 



where the parameters -y and 5' are defined as 

20(1 - q) 	and 	5' 20(1 - 	 (3.28) 

in an identical manner to equation (2.23). Taking the optimal perceptron limits 

of (q -p 1) and ( -+ 1) for both the networks, the moments we seek are 

(x) 	
i 	( A(y,z) - ( ay +bz)\ 

A = 	 ), 
i 	

((y,z)_(ay_bz) 
(3.29) 

Upon substituting the moments (3.25) and (3.29) into the saddle-point equa-

tions (3.19)—(3.22), we can reduce the double Gaussian integrals into single ones. 

Hence we obtain the following saddle-point equations 

1 
1 	E+2F\ 	 1 	(E+2P\ 

1 = 
	

= 
2(iE + iF) 

I 
 E + F)' 	 2(iE + iP) E + 

1 (—E+F\ 
	 1 

q = 2(iE + iF) 	F)' 	= 2(iE + fr) 	+ 

iF = (1_q)2J(_Z) 	
F = (l_)2 fDz((z)_z) 

(3.30) 

the first four of which we can solve in terms of the inter-replica order parameters 

q and 4 in the optimal perceptron limits to give 

iE+iF = 
	

= 
2(1—q)' 

iE+iE  

iF = 2(1_q)2' 	ip = 
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2(1 - q) 
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Upon substituting equations (3.31) back into the last two expressions of equa-

tions (3.30), we obtain the optimal storage capacity crc.  We find this quantity is 

simply half that of the unconstrained network which is given in equation (2.29). 

The remaining two saddle-point equations concern the correlation between the 

networks. We shall deal with them in turn beginning with equation (3.23). In-

serting equations (3.25) and (3.31), it becomes 

= + m3) J VuVv + 	- m3) J VuVv (A 2 u2  - B2 v2 ) 

Au+Bv>o 	 A+B>o 
A-B>o 	 A-B<o 

which is solved by transforming into plane-polar co-ordinates to give 

1r- 	1 

= [(i +m3) J dO+ (1 —m3) J dO (A 2 cos 2 O— B 2 sin2 0) 
- 	

] 

7ds 	(__2 

1 2
Jx —s exp 	 s

2ir  
0 

=(1 - m 3 )irR + m3Rsin' + 	- R2 	 (3.32) 
2Ir 

where we have defined 

tan 1 (A/B), 

K 

= A2 —B 2 . 
	 (3.33) 

To solve the final saddle-point equation (3.24) we shall now specify the form of the 

training function g(A). Namely we shall use the original Gardner theta function 

[Gar88] for both the networks 
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g(A) = O[A - it], 	 and 	 = 	- ,], 	(3.34) 

which simply states that we want the alignment field to be larger than some 

positive minimum stability constant K for all the memory patterns. We shall 

further simplify matters by going to the limit of zero error in the storage by 

taking the parameter 'y towards infinity —a procedure already discussed in 2.8. 

The functions (y, z) and )(y, z) which maximise equations (3.27) and (3.34) are 

and 

I K. 

(ay + bz) 

1 K 
)t(y,z) = 

(ay — bz) 

for (ay + bz) = — 00... K, 
(3.35) 

otherwise, 

for (ay - bz) = — 00... ic, 
(3.36) 

otherwise. 

Substituting the above equations (3.35) and (3.36) into the moments (3.29) we 

get from the saddle-point equations (3.30) the optimal storage capacity 

ac = i Vz (K - z)2] -1 

	

(3.37) 

and for the final saddle-point equation (3.24) 

iK(1 - q)(1 - ) = 	I DyVz[A(y, z) - (ay + bz)][(y, z) - (ay - bz)] 

R = 2cc I VyVz[K - ( ay + bz)][K - (ay - bz)]. (3.38) 

ay+bz<, 
ay -bz<,c 
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using definition (3.33) for the quantity R. We shall make use of equation (3.37) to 

transform the minimum stability constant K in preference for the more physically 

intuitive optimal storage capacity. 

The remaining saddle-point equation (3.38) is dealt with by first shifting (y 

= y - K/a), and then moving over to plane-polar co-ordinates to give 

IT+(,O 	00 

ac 	 S 	KS 
R = 	J dO Ids  s exp ( / --- - acos - 

	
[a2 cos 2  9 - b2  sin2  9] 

lr—co 	0 

/  cEc 	 2\ - - 	 exp 	
K 

 

x [2wr + 2ab + 2ab /3 b
2 \ 	K 2  (3 b2 ) 1  

+2  a2 ( 84) a2 

FLa2 
	2- x I+ J Dx {K2 - x 

K
x 2  + 

3]  	

(3.39) 

where tan 1 (a/b). Equations (3.32) and (3.39) are coupled with each other, 

with the solution (r, R) found numerically. There are efficient algorithms for 

solving these equations [PFTV88] and in practice this is but a minor hindrance 

to obtaining the results which follow. 

EVALUATION OF THE ALIGNMENT FIELD DUAL DISTRIBUTION 

Using the angled-brackets notation of equations (3.18), we can evaluate the dual 

distribution of the alignment field (3.7) as 

p(A,A) = Jvyvz ([A - 	- 

= J VyDz 6[A - A(y, z)]6{A - (y, z)}. 

EM 



Using the form of )(y, z) and (y, z) given by equations (3.35) and (3.36), this 

splits the double Gaussian integral into four regions 

p(A, A) = I VyVz 8[A - 	- 
ay+bz<c 
ay-bZ<k 

+ I VyVz 8[A - 	- (ay - bz)] 

ay+bz<ic 
ay-bz>ic 

+ I DyDz 6[A - (ay + bz)]6[A - rj 

ay+bz>ac 
ay-bz<r.  

+ I DyVz 6[A - (ay + bz)]8[A - (ay - bz)] 

ay+bz>c 
ay-bz> 

which evaluates to 

1 ic—rx 1  
p(A,A) = S[A_/c ] S[A_ic]J Vxi L' _r2] 

- rA 1 
- ic ] O[A - ](2r)T Lv" - r2j exp H-A 2) 

I _ - rA 1 
- 	- tc](2i) 	L' - r2j exp H A2) 

O[A—icJO[A—ic] 	( A 	1 IA_ rAl 2\ 

+ 2irv'1 - r2 	
exp 	- L 	- r21 ) 	

(3.40) 

Equation (3.40) can be integrated with respect to the alignment field A to give the 

single distribution function p(A). As a useful consistency check we find this is the 

same as the Gardner optimal network, as has been reported in reference [AWC89a]. 

Furthermore, we can then introduce the conditional probability function p(A 

For A > ,, this probability is 



p(A 	
= p(A,A) IA) 
- p(A) 

O[A — iJ 	( 1 A_rA 

	

I l2\ 	
[ K 

—TA 

2(1_r2 ) 	2 [1_ 	
+5[A_12 

	

r2  J ) 	
] exp -- 	 _____ 

(3.41) 

which has an obvious dependency upon the parameter r. The significance and 

plot of this parameter will be given in the results section, but we shall now turn 

our attention to the dual distribution function for the synaptic efficacy. 

3.4 THE SYNAPTIC FIELD DUAL DISTRIBUTION 

The second dual-distribution function we wish to calculate is for the networks' 

weights. These weights are a direct result of the annealed optimising procedure 

and the distribution ought to tell us how the networks have coped with their 

own set of sign constraints. We shall begin by calculating the dual-distribution 

function p(w,z1), but as in the case of the alignment field in §3.3, this is an 

essential intermediate step towards finding the more useful conditional probability 

distribution function p(w I 

In replica form, we may write the dual-distribution function by sampling in both 

networks a typical weight index j = 1 and replica a = 1, giving 

[dEa  dEa] 	[dF.bdqab dFabdabl 	[dl'(.bdr.b l
p(w,t) = lim 1fl 	 2ir/C 	2ir/C ] 	2ir/C n—oJ 	4ir 4 

C—+oo 	a 

exp C {G({E a , Ea , Fab, Fab, Kab}) + aGA({q ab, qab,  T ab}) 

+G0({Ea , Ea, Fab, Fab, Kab )  qab, qab, rab})} 
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n 

f ri [o[g1J]dJo[ghf]dfJ 6 [w 
- 'i'] 6 [ - 

i] 
a 

exp 
(- :: 

[Ea 
(1)2 

+ Ea (1)2]  

+j 	[Ja Fa J + JaFabJb] + j JaKaJb 	(3.42) 
a<b 	 a,b 	J 

where the functions in the exponentials are as given in equations (3.8). Hence 

the determination of the saddle-point equations also carries over here and we 

-  may proceed straightaway with the distribution function itself. By introducing 

two linearising Hubbard-Stratonovich transformations, we can borrow the angled-

brackets notation of equations (3.17) and write the above equation (3.42) free of 

the superfluous replica and weight indices as 

p(w,t) = f mvv {(8[w - J]) ± (8[t - iJ)1± } 	 (3.43) 

where the operators 
((  . .. )) 	

and  (( ... 	 are constructed to handle the weight 

signs g and g , such that 

(6[w - J]) ±  = 
f
OOdJ 8[w - gJ] exp (_(E + F)J2  + g(Au + Bv)J) 

00 

~ fdJ exp (_(E + F)J2  + g(Au + Bv)J) (3.44) 

and for the conjugate network 

- 	 = fdf 8[ 
- 

exp (_(E + )f2 + (Au - Bv)J) 

00 

±fdfexp (_(E + P)32  + (Au - Bv)J). (3.45) 



Equations (3.44) and (3.45) are sufficiently similar that we shall detail the treat-

ment of only the former. Firstly, the denominator can be written as the function 

Tif .J defined in equation (A.4). Next, the delta function allows the integral in 

the numerator to be easily evaluated, giving for gw > 0 

(S[w - J]) ± 	exp (_(E + F)w2  + g(Au + Bv)w) 

~iE 
2ir 	(Au+Bv)2F\ 	g(Au+Bv)Vi

.FeXP 2(E+F) 
) 

with the denominator essentially serving to normalise this function in w. However, 

we know that in the optimal perceptron limit the saddle-point solutions grow 

according to equations (3.31). This permits us to expand the function Ti[ .. . ] in 

the denominator via equation (A.5) for the appropriate range in the argument. 

It also means the exponential function in the numerator will have the quantity w 

dominated by either its critical point or by zero. That is, we first acknowledge 

the restriction gw > 0 placed by the sign-constraint, so in the optimal perceptron 

case w will be dominated either by g(Au+Bv)/P/'E + F or by zero, depending 

whether g(Au + By) is positive or negative respectively. In either case, since the 

denominator serves as a normaliser, so the equations are reduced to Dirac delta-

functions and we can succinctly write down for equations (3.44) and (3.45) 

(8[w - J]) ±  = S [ - 
g(Au+Bv)v"l 

j O[g(Au + By)] 
iE+iF  

+S[w] O[—g(Au + By)], 

- 
J]) ±  = S 	

(Au  -  Bv)Vfl 

iE+iP 
O[(Au - By)] 

] 

+6[t1'] O[—(Au - By)]. 	 (3.46) 

Substituting equations (3.46) back into expression (3.43) for the dual distribution 



function, we find the integration region for the double Gaussian weighted integrals 

are split by the theta functions into four regions and hence 

p(w,) = 5[w][tii] I V u TuiI uR  1 
/1_R2 ] gu>o 

1w _ R12 	\ (41(1 
- R2) exp 

(- 

1 	

- R2] 
- 

2 

0 [gw] 0 [giv  

/ 	2\ 	 I 	gtlR 
+6[w] (4 	exp 	0 []ll 

L21 - R2 )] 

	

/ Z7V  2\ 	 I wR 
+S[] (4) exp 	0 [gw] 

Ly21 - R2)]' 	
(3.47) 

which upon integrating with respect to the synaptic field w, gives the single prob-

ability distribution in the weights ui 

= Jdwp(w,u) 

= 	+ (47r) exp 
(- ) 

0 [gt]. 	 (3.48) 

Hence the conditional probability for a synaptic field w given a field i' in the 

conjugate network is 

p(w I t) = 

	

_[ 2~ ( 1

gtZ'R 1 
+ 	

O[gw] 	
exp ( 1 w - Rt 

2  
- 8[w] H 	

_R2] 	4(1_R2 ) 	4 {y1_R2 ]) 

(3.49) 

fori'> 0. 
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Now that we have the conditional probabilities (3.41) and (3.49), we are in a 

position to tackle the paradox in §3.1.1. But first we need to find the conditions 

under which the calculations are valid, namely whether the replica-symmetric 

ansatz used is stable to small, local, replica-symmetry breaking fluctuations. 

3.5 STABILITY OF REPLICA SYMMETRY 

The procedure for determining the stability of the replica-symmetric ansatz is the 

same as that used for the external field model in chapter 2. Once again we are 

probing the saddle-point solution with symmetric, weakly-asymmetric, and asym-

metric fluctuations, and examining the determinants of the simplified stability 

matrices. We can avoid a lengthy argument over whether the signs of these deter-

minants should be positive or negative definite by checking against any changes 

in sign, as these indicate a transition to or from replica-symmetric stability de-

pending on our initial condition. The next two sections will give the results for 

symmetric and asymmetric fluctuations, since appendix §D.2 shows the symmetric 

and weakly-asymmetric fluctuations yield the same result. 

3.5.1 SYMMETRIC FLUCTUATIONS 

The matrix (D.26) in §D.2.1 shows how the stability matrix simplifies into two 

non-zero diagonal blocks in the zero replica limit. Each of these blocks correspond 

to a particular network, hence if symmetric fluctuations are irrelevant in both 

networks we can say they are also unimportant for the calculation as a whole. 

The 'sub-determinants' for these two blocks are given by determinant (D.10) and 

for brevity we shall concentrate on one of these. From the moments (E.2) we can 

see the elements of this network's sub-determinant have the same quantities as 

in equations (2.37), bar an additional factor of one-half from the sign-constraint. 



Moreover, since the training functions for the sign-constraint network and external 

field model are the same apart from the external field parameters, the matrix 

element in equation (2.39) also stands if we set the external field strength TT to 

zero. 

We can write the analogous equation to expression (2.40) for the sub-determinant 

as 

JQsJ = 2ac(1 - q)2 ID , [1 + 2(z)] - (1 - q)2 [2+1 
q] 

(3.50) 

and similarly for the conjugate network. This will not be written out because 

we can quickly see that in the optimal perceptron limit of (q and 4 -p 1) equa-

tion (3.50) goes to zero. However, as in §2.9.1, when the networks are just be-

neath the optimal limit this determinant evaluates to a constant regardless of the 

storage capacity. Hence we may conclude the replica-symmetric solution to the 

sign-constrained network is similarly stable to symmetric and weakly-asymmetric 

fluctuations. 

3.5.2 ASYMMETRIC FLUCTUATIONS 

The null result from §3.5.1 hints that each of the two networks are stable to replica-

symmetry breaking fluctuations as in the original Gardner model [Gar88]. We can 

then expect that nothing new in the way of repli ca- symmetry breaking is going to 

occur unless the inter-replica parameters r and K are included in the discussion, 

which is indeed the case for asymmetric fluctuations. Moreover, as seen by the 

resulting matrix (D.31) and its elements (D.32), we find the stability matrix is 

considerably simplified in the limit of zero replicas into a block diagonal form. 

Two of these blocks concern themselves with the stability of the intra-network 



parameters to asymmetric fluctuations, while the central block is concerned solely 

with the inter-network parameters. 

STABILITY OF THE INTRA-NETWORK PARAMETERS 

Restricting our attention to the intra-network parameters to one of the networks, 

we can modify the result from the external field model as in 3.5.1, and write the 

diagonal elements as 

ç- A()/-B i cC 
FFFF1 'FF = 

Q-2Q+Q = 

_Jvuvv {(J) - ( j2)] 2  

1 

- 2(iE + iF)2 ' 

f vz [(x) - (x 2 ) A ] 2 ,  

(1—q)2 
Ivz. 

A(z)=c 

(3.51) 

In the optimal perceptron limit we can use the saddle-point solutions (3.31) and 

write the condition for the intra-network parameters to be stable to asymmetric 

fluctuations as 

cc J Dz < 1  , 	and 	ac J Vz < 	 (3.52) 
A(z)=ic 	 A(z)=c 

which since the integrals are bounded above by one-half, are only violated when 

the maximum storage capacity exceeds its maximum value of ac = 1 [AWC89a, 

CW90]. We hence conclude the intra-network parameters are stable to small, 

local repli ca- symmetry breaking fluctuations when within the maximum storage 

capacity. 



STABILITY OF THE INTER-NETWORK PARAMETERS 

The relevant sub-determinant for the inter-network parameters Ka& and rab is the 

central block marked out in matrix (D.31) with the elements given by 

= QK - (QK + QKK) + QK, 

ö2 	 ' rr/ r = QA - (QB + 	± QC 
' rr 	 rr (3.53) 

These quantities arise from the permutation symmetries of the elements of the 

stability matrix and are defined as 

QK 
- 	 ô2 G 
= 	8Kb' 

QA - 

rr 	= 02 G 
ab 

QB 
KK 

- 	 ô2 G 
= dKadKac 

QB = 
- 

ö2 G 
cIrabäKac' 

KK 
- 

= 	dKabOKcb 
B= 

- 

82 G 
OrabOKcb' 

QKE,ÔG 
OKabOKcd 

,QC 
- ärabäKcd' 

Va, b, 

Va,b,c (b 	c), 

Va, b, c (a 	c), 

Va,b,c,d (a 54 c,b 	d), 

where the function G( ... ) being differentiated is as defined in equation (D.16). Us-

ing the above (3.54) and the angled-brackets notation defined in equations (3.17) 

and (3.18), we can write the elements (3.53) as 

OK = (i)2 J DuVv {(i + m3) [(J2)(12) - (j2)(j) 2 

_(j)(j2)1 + (J)(J) + ] 

- m) [(J2)(12) - (j2)(j) 2  

(J)2/7 
\J 2\/ - + (J)(J)]} 

= (i)2fVuDv [(J2) - (J)} {(i  + m3) [(j2)  - (J)+] 

- m) {(j2) 
 

82r = afvyvz [(x2)A - (x)] [(2)A - (x)A]. (3.55) 
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The appropriate first and second moments for J and J may be found in equa-

tions (E.2) in the appendices, and give 

	

= 	(i)2 1(1 + m3) I VuVv + (1 - m3) j VuDv1 iE+iF 2 

I 	A+B>o 	 A+B>o 	
iE+iP 

 
A-B>o 	 A-B<o 

	

= 	 (i) 2  

2(iE + iF)(iE + 	
+ (1 - m3)], 	 (3.56) 

by using the same plane-polar co-ordinates as in the calculation of equations (3.32), 

the saddle-point solution for the inter-network order parameter r. For the other 

diagonal element ô2 r we require the quantities given by first moments (3.29) and 

the following second moments 

	

1 	[ 

	

(A(y,
(x2)A 	

z)_( ay+bz)) 

- 	1 	1 
= 	Ii - 

	

(1 - q) L 	 1-7 2gh1 (A(y, z))/2j' 

	

1 	i 	

((y,z)_(ay_bz)) 

- 	1 	1 
, 

	

Ii — 	 I 
2"(A(y, z))/2] 

(3.57) 

where the training functions g(A) and (A) are as defined in equations (3.34), 

and the parameters -y and in equations (3.28). Substituting the above ex-

pressions (3.57) into the equation (3.55) for ô 2r, we find the integrand is only 

non-zero over a certain integration range, giving in the zero error storage limit of 

( -y -+ oo, -4 oo) 

	

52r= 	
a  

q)(q q) J VyDz. 	 (3.58) 
(1—— 

ay+bz<, 
ay-bz<#c 
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Taking the evaluated equations (3.56) and simplifying equation (3.58) by moving 

over to plane-polar co-ordinates, we find in the limit of the optimal perceptrons 

the condition for stability of the Kab = K, rab = r repli ca- symmetric ansatz is 

1>12m3+(1_m3)ir} 127r 2q exp 
( 	

2\ 
- 

2ir t. 

(3.59) 

that is, equation (3.59) must be satisfied for the central sub-determinant of ma-

trix (D.31) to be positive definite. This condition can be readily shown to be the 

correct one for zero storage at crc = 0 where there is no source of disorder in the 

problem and, presumably, repli ca- symmetry yields the correct result. 

We can easily numerically evaluate equation (3.59) to monitor the validity of our 

results. This was done for the results to be presented, and it transpires that so 

long as one is within the upper storage capacity of crc 1, then stability of the 

replica-symmetric ansatz is respected. 

3.6 THE INTER-NETWORK ORDER PARAMETERS 

In §3.3 and §3.4 we have calculated the conditional probability distributions for 

the alignment and synaptic fields. A cursory glance at these two distributions 

indicates the inter-network correlation parameter r defined in equations (3.6) and 

its conjugate R have an importance elevated above being mathematical artefacts. 

The definition of r is as a measure of the correlation in connections between the two 

networks we wish to compare, so its saddle-point solution given in equation (3.32) 

is its thermal 1  and quenched averaged observable. Hence, we are justified in 

1 1n the sense of a Boltzmann weighted annealed average over the phase-space of interactions. 
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calling the saddle-point solution of r an actual physical order parameter on the 

same footing as (for example) the Edwards-Anderson order parameter discussed in 

appendix B. Another interpretation of the parameter r is given by the conditional 

probability for the alignment fields in equation (3.41). If we gloss over the roles 

of the delta and theta functions, we can say r is the most probable ratio of the 

two alignment field values A/A given the field A. So in this sense r relates the 

alignment field distributions between the two networks. It is also responsible for 

the width of the Gaussian contribution, with the Dirac delta function limit reached 

when r = + 1. We shall have more to say on this when we return to the paradox. 

The origins of the other saddle-point parameter R is in equation (3.33), where 

we find it is simply a rescaling of K, a quantity conjugate to r arising from its 

introduction in the calculations. However, as with r, the conditional probabil-

ity function of equation (3.49) allows us an attempt at an interpretation. This 

conditional probability tells us that given a conjugate field equal to ti, the most 

probable value for the weight w peaks at Rii —again upon being somewhat cava-

her with the delta and theta functions. This quantity R also determines the width 

of the Gaussian part of the distribution, which reduces to a delta function in the 

limit of R = ±1. 

THE PARADOX 

We shall now limit ourselves to the case discussed in 3.1.1, namely where the 

correlation (3.3) between the weight signs is in 3  = — 1. The naïve view is that this 

results in a complete anti-correlation between the networks, that the inter-network 

order parameter takes on the value r = — 1. If this is true, the conditional proba-

bility distribution for the alignment field (3.41) will have its Gaussian compressed 

into a delta function at A = - A. Hence it is impossible for both networks to have 

their stability fields larger than zero, that is for both networks to be anything 

but marginally stable to the same patterns. That then is the case if the two net- 
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works are simply related by J3 = —J for all j, and with the inter-network order 

parameter r = —1. 

Figure 3.1 is a plot of the saddle-point solution of the order parameter r, which 

measures the correlation between the two networks. The plots are against in-

creasing optimal storage capacities, for nine values of the overlap between the 

networks' sign constraints. The particular case discussed in the above paradox is 

highlighted by a broken line, and we can see straight away that the naïve expec-

tation of complete anti-correlation between the networks never occurs. Instead 

it starts with a negligible correlation at zero storage capacity and decreases to 

r = —0.22 at maximum storage; which by equation (3.37) corresponds to one 

starting with an infinite minimal stability constant which then decreases to zero. 

Increasing the weight sign overlap above rn.9  = — 1 brings the networks closer to 

the limit of identical constraints at m 3  = 1. At m 3  = 1 the two networks are iden-

tical and, as expected, are fully correlated with each other by the inter-network 

order parameter r = 1. 

The result that the inter-network order parameter never reaches r = —1 even in 

the m 3  = — 1 limit also affects the conditional probability of the alignment fields. 

From equation (3.41) we see this provides a finite width to the Gaussian part of 

the distribution, and hence there is a finite probability the alignment field in one 

network satisfies the minimum stability requirement A > tc, for any corresponding 

field A > r, in the conjugate network. Balanced against this, we find the first 

network is not able to ' achieve the same stability, for the conditional probability 

does not peak at A = A, but instead tails off after A> i. 

Figure 3.2 gives the corresponding plot for the order parameter conjugate to the 

inter-network order parameter. Once again we are plotting for increasing optimal 

storage capacities crc, for different weight sign overlaps m 3 . Unlike its counterpart 

it is not immediately obvious whether this conjugate order parameter R is also an 

overlap measure of some quantity between the networks. What we can say is that 
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Figure 3.1: Saddle-point solution of the inter-network order parameter r. This 

order parameter measures the correlation between the two networks, and is plotted 

here against increasing optimal storage capacity ac. This is done for different 

overlaps between the sign-constraints beginning with m 3  = - 1.0 in dashed lines, 

up to rn8  = — 0.75,-0.5,0.0,0.25,0.5,0.75 and 1.00. 

since the saddle-point equations never solves to R = —1 the Gaussian part to the 

conditional probability distribution (3.49) for a sign overlap in3  < 1.0 will have 

a finite contribution at gw > 0, given tl > 0 and cc > 0. Hence for non-zero 

storage and the paradox's scenario of complete antisymmetry m 3  = — 1 between 

the networks' sign constraints, the most probable value of weight w given t1' is 

not single valued by a delta function at w = -. This bears out the results in 

figure 3.1 where we have already found the two networks are not related by a 

simple sign change. 

For completeness figures 3.3 and 3.4 plot the inter-network order parameter r and 



1.0 

a) 0.5 
a) 

Cd 
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Figure 3.2: Saddle-point solution of the inter-network order parameter R. This or-

der parameter's most obvious physical significance is in determining the most prob-

able weight value w given z1, as given by the conditional probability distribution for 

the weights. The plots are for overlaps between the two networks' sign-constraints 

m 3  = - 1.0 (in dashed lines) up torn 3  = —0.75,-0.5,0.0,0.25,0.5,0.75 and 1.00. 

These plots are drawn against increasing optimal storage capacity crc, or equiva-

lently a decreasing minimum stability constant i. 
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Figure 3.3: Saddle-point solution of the inter-network order parameter r, for over-

laps between the sign-constraints m 3  = —1 ... 1. The plots are for increasing 

minimum stability constant ic = and a corresponding decrease in the optimal 

storage capacity cC:  starting in dashed lines with (c = 0.0; aC = 1.0), up to 

(0.5; 0.48), (1.01; 0.26), (1.51; 0.15) and (5.0; 0.02). 

its conjugate R against the sign overlap rn 3 , at different values of the minimum 

stability constant. The main point of note is that they form a steady convergence 

to r and R = 1 as the two network constraints become identical at m 8  = 1. 

The differences between the plots are increased by a low minimum stability, or 

equivalently, by a high storage capacity. 

We can elegantly illustrate the changes in the network's weights as the overlap 

m 3  in the sign-constraints is varied by means of a projection onto a sphere. The 

idea is to say something about how 'typical' a trained network with a weight 

vector J is in the phase-space of connections. The inter-network order parameter 
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4-,  
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cdOO 

ci) 
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Figure 3.4: Saddle-point solution of the inter-network order parameter R. 

The plots are against overlaps between the two networks' sign-constraints 

m 3  = — 1.0... 1, for (, = 0.0; cc = 1.0) in dashed lines, up to (0.5; 0.48), 

(1.01; 0.26), (1.51; 0.15) and (5.0; 0.02). 

r measures the overlap between two networks whose sign constraints differ by 

their sign overlap rn, so from figure 3.3 we see that at m 3  = 1 the two networks 

have identical weights J = J, whilst differing the most at m 3  = — 1. We can 

explicitly reveal the dependence of the inter-network order parameter on the sign 

constraint overlap, by writing r(m 3 ). We shall also fix the conjugate network's 

weights and centre our attention on the response of the other network as m is 

varied, explicitly done by writing J(rn3 ). Hence this network's trained weights are 

bounded to lie in the phase-space of interactions between the vectors J(m 3  = 1) 

and J(m 3  = — 1). 

We can now elaborate on what we meant earlier by 'typical'. The network is 



deemed typical if its weight J(m 3 ) lies along the planar region bounded by the 

vectors J(m 3  = 1) and J(m 3  = — 1). The quantities r(m3 ) and r(—m 3 ) are 

the overlap of J(m 3 ) with J(m 3  = 1) and J(m 3  = — 1) respectively, so J(m 3 ) 

will be displaced outside this plane if the angle [cos 1  r(m3 ) + cos 1  r(—m 3 )] is 

not equal to the planar angle cos' r(m 3  = — 1) between the bounded region. 

We can plot how far J(m) is displaced outside the plane by mapping it onto a 

'world map' with longitude and latitude co-ordinates, as shown in figure 3.5. The 

points show the trajectories of r(m3 ) and r(—m 3 ) as the sign constraint overlap 

is varied, for five values of minimum stabilities and storages. We can see that 

the weight vectors indeed occupy regions of phase-space outside the plane defined 

by the m 3  = ± 1 limits. Moreover these points are uniformly distributed along 

the longitudinal axis, so we can say the network connections which satisfy the 

constraints of equations (1.12), (3.1) and (3.2) are evenly placed in the phase-

space of interactions. 

3.7 DiscussioN 

This chapter motivates the use of the dual distribution functions introduced by 

Wong [W600], by investigating a possible paradox in networks where the inter-

action weights are constrained to a prescribed sign. For this, we consider two net-

works with differing sign-constraints and calculate the dual distribution functions 

for their alignment field and synaptic efficacy. This is a replica calculation with 

quenched disorder in the memory patterns, with the neural connections annealed-

optimised in the phase-space of interactions. The stability of these calculations to 

small, local replica-symmetry breaking fluctuations around the mean field saddle-

point is considered. We find that as with the single network case of chapter 2, 

only the asymmetric fluctuations mode is of any importance. This mode intro-

duces a criterion concerned with the inter-network quantities to be satisfied, in 

addition to the intra-network criteria already known. Fortunately none of these 
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Figure 3.5: Projection of the weight vector J onto a 3-dimensional sphere, as 

represented by longitude and latitude co-ordinates. The diamonds mark the solu-

tions as the sign overlap rn3  is linearly varied from rn,9  = 1 at the graph's western 

origin to rn3  = — 1 towards the eastern end. The four plots are for the minimum 

stability constants and optimal storage capacities pairs of: 
(, 

= 0.0; &c = 1.0) (in 

dashed-lines), (1.0;0.26) (2.0;0.10), (3.0;0.05), and (4.0;0.03). 

criteria are violated for the results resolving the said paradox. In this we find that 

contrary to the naïve expectations of the paradox, two networks with opposing 

sign-constraints in their weights but storing the same set of patterns do not have 

their annealed-optimised synapses simply anti-correlated with each other. 

In conclusion, we have given an example of the use of dual distribution functions 

in elucidating the behaviour of networks optimised in the phase-space of interac-

tions. This is necessary if we cannot analytically tell what the network's synaptic 

values are, but where a comparison with a 'known' network can still prove useful. 
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The example here is for two networks with differing sign-constraints. Work has 

also been done where the networks differ in the noisiness of the training function 

[WRS91], recovering in the low noise limit the optimal Gardner [Gar88] network, 

and in the high noise limit the Hopfield-Hebb [Hop82, AGS85] model. One can 

conceivably extend this programme for networks with other forms of weight con-

straints such as a Gaussian distribution, or perhaps with different errors in the 

storage [GD88, AEHW90]. The introduction by Gardner of the phase-space tech-

nique has been quickly followed by a proliferation of variations on her model, and 

the use of dual distribution functions promises a further understanding of their 

similarities and differences. 
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Appendix A 

Mathematical Notations and Identities 

A.1 GAUSSIAN MEASURE 

This is a common notational device to simplify writing down integral measures 

with a Gaussian weighting term. For an integration with respect to a variable x 

we define 

Dx = dx exp 
/: 	

Hx2). 	 (A.1) 

A.2 HUBBARD-STRATONOVICH IDENTITY 

This identity is often used to 'linearise' the argument of an exponential function. 

Using the Gaussian measure notation just introduced it is 

exp (a2) =J Dxexp(±ax). 	 (A.2) 
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A.3 ERROR FUNCTIONS 

The conventional definitions of the error function and its complement are 

x 

erf(x) =--- J dt exp(—i 2 ), 	 erfc(x) 1 - erf(x) 	 (A.3) 

but the functions more commonly encountered here are its Gaussian equivalents 

defined by 

co  11(x) j Dt, 	T(x) 	1 —11(x) 

= 11(—x). 	 (A.4) 

In the large argument limit these functions can be expanded via 

11(x) 	
1 exp(_ x 2)[1_.++...], 	forx —+oo. (A.5) 

A.4 INTEGRAL FORM OF THE DELTA—FUNCTION 

We can write the Dirac delta functions by its Fourier transform, integrating along 

either the real number line or equivalently along the imaginary line 

' 

8[a—b]= 	—exp(±ix[a—b]), J 
00 

dx  

-00  

ioo 
' dx 

= j -  exp(±x[a - b]). (A.6) 
—ioo 

An example where this integral representation is used is in 'extracting' out a 

known quantity from a function which we wish to keep general, for example
00  

1(A) = I S[A - A]f7) 
-00 

= I I dAdx exp (ix(A - A)) f(). 	 (A.7) 
-00-00 
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Appendix B 

The Physical Interpretation of the Parameter 

This is a discussion on how the parameter defined in equation (2.23) may be 

given a physical interpretation, as mentioned in reference [WRS91]. The quantity 

in question was first introduced by Gardner and Derrida [GD88] to allow the 

simultaneous limits of the inverse annealed temperature fi and the inter-replica 

order parameter q to be sensibly taken. That is we define 

urn 2/3(1 - q) 
	

(B.1) 

such that 'y  is always finite. 

The order parameter q is the replica-symmetric saddle-point of the quantity 

qab 

defined in equation (1.11), which measures the correlations between the replicated 

weights. This quantity q can be seen to be an incarnation of the Edwards-Anderson 

spin-glass order parameter qEA,  and it is with this that the conceptual link of 
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the interpretation depends upon. In the notation of an Ising spin system with 

j = 1 . . . N sites Si = ±1, the. Edwards-Anderson order parameter is defined as 

qEA 	> 

where the double angled brackets denote an average over the quenched disorder, 

and the single angled brackets a thermal average over the spin configurations. 

The local susceptibility for a magnetic spin model can be written in correlation 

form [Moo84] as 

Xs 
= (( 	

{(Ss) - (Si) (si)])) 

which for binary spin sites and zero correlations between the sites becomes 

Xs 
= 

 (~ A E [(s) - (S)2])), 
	qEA), 

via self-averaging. 

Hence by analogy with equation (13.1), we can write for the phase-space of inter- 

actions problem 

= lim {2j} 
I3—oo 

(B.2) 

where we shall define 

XJ = 	 [(a) - (J)2])) 	
(B.3) 
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and loosely call it the local susceptibility. This can actually be verified by using 

the notations defined in (2.18) and (2.19) to show that equation (B.3) evaluates 

to 

= /3 [{Ja2}G - {J4}Gj] 

= fiJVu [(j2) - (J)2 ] 

= iE+iFJ 
DU 

= /3(1—q) 

where the first and second moments of J are given by equations (2.21), and (iE + 
iF) 1  = ( 1 - q) at the saddle-point. 

To conclude, we have seen how the parameter -y can be expressed in terms of the 

phase-space of interactions' analogue of the local susceptibility of magnetic spin 

systems. The conceptual bridge comes through both models having an Edwards-

Anderson order parameter, which we can use in the correlation form of the local 

susceptibility. The somewhat implicit line of reasoning involved leaves open the 

question of whether we are justified in calling XJ  the local susceptibility in the tra-

ditional spin-system sense. Whatever our reservations, equation (B.3) does give 

an insight into the correlations amongst the connections which satisfy all the con-

straints. That is, XJ  is the variance of the region of interaction phase-space which 

satisfies the training function, weighted by the inverse annealed temperature. 

In the zero storage error case of J = 0, 'y diverges, which means the variance of 

the weight-space is shrinking at a slower rate than the annealed temperature going 

to zero. Reference [WRS91] builds on this to interpret the solution of interactions 

as having a finite —indeed wide— variance slightly above the ground state. With 

a storage error 1 > 0 we find -y  is finite [CD88], so the width of solutions in 

weight-space now tends to zero proportionally with the temperature. 
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Appendix C 

Maximising the Function (A) for the External 

Field Model 

This appendix provides more detailed treatments to some of the calculations de-

scribed in §2.6 on maximising the training function. We shall make use of the 

quantities of the external field model defined throughout chapter 2. 

C.1 ORDERING THE TRANSITION POINTS 

By solving the function (\) defined in equation (2.27) at the three possible values 

of \(z) = {(Ic—r T ), (K+TT),  z}, we find there are six possible points along z where 

may change value, namely at 

Z = 	 _TT_7\/1 _fT, IC+TT, 

I+TT — "f, c+TT-7\/, and,_1L (C.1) 
4rT   

To determine in what order these transition points occur at as z is varied requires 

(5 + 4 + 3 + 2 + 1) = 15 comparisons to be made, which give 
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Order of Transition Points 	 Condition 

K + TT > K - TT 

K + TT > K + TT 7 

K+TT>K+TT - 7iJ7 

K+TT > K-T.r-7Vl-fT 

K + TT > K - 
4TT 

K - TT > K + TT 7 

K - TT > K + TT - 

K - TT>K - TT - 7\/1 - fT 

K - TT > K - 

K + TT —7> K + TT - 

K+TT - 7> K - TT - 7\/1 - fT 

K + TT - 7> K - 

K+TT - 7/J> K - TT - 7/1 - fT 

4TT 

K - TT - 	- fT > K - 4T'p 

always, 

always, 

always, 

always, 

always, 

2TT <7, 

2TT <7/J;, 

never, 

2TT <7v'f, 

never, 

2rT  > [i - 	- fT], 

2rT  <7 [i - v'i - IT] 

andfor2rT >7[1+V1—fT], 

2rT  > 7 [v7 - V'1 - fT], 

always, 

2rT  <-y [i - v/l - fT]. 

(C.2) 

The conditions in table (C.2) clearly show the transition points are uniquely or-

dered as the training field strength 2TT lies in one of the six ranges 

—0 <7[ -1— fT] <7{1_1_fT ] 

<7<7<7[1+1_fT ] < 00. 	 (C.3) 

That is, as the field strength is varied through the ranges (C.3), 5(z) may take on 

one of six forms for us to investigate. 
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C.2 VALUE OF (A) AT THE TRANSITION POINTS 

The function 5t(z) maximises the function 	defined in equation (2.27), and may 

take on one of three values: \(z) = {( i - TT), (c + TT) or z}. We now consider 

which of these three is the maximum at the six transition points of z given in 

equation (C.1). This is answered by comparing the value of the function (A) at 

the three values of 5t(z), for each of the transition points. Once again we find a 

dependence on the parameters which can be concisely expressed around the field 

strength TT. For z at the following transition points, the correct values of \(z) are 

Transition 

- Ic - r.. & z when 2TT > 7v'J, 
r. + 'r when 2TT <7\/7. 

IC — TT --- 7\/1 — fT Ic — TT&zwhen2rT>'y[l—s/l_fT], 

/c+rT when2rT  <'y[1_/1 	JTr}. 
Ic+TT #c+r&zalways. 

Ic+TT - 7 ,c+TT & z when 2r 

lc —  rT when-y [i — yi—fT ] <2TT <1, 

z when 2TT > 

Ic + TT - ic + TT when 2TT <YV'f 
ic + TT & z when 2TT > 7/f. 

4TT zwhen2rT <y[1—l/J], 

Ic — rT& ,c+rT when-y[1_/J] <2rT<y/j, 

z when 27-T > 'y/If. 

(C.4) 
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A(z) 

z 

z 

IC + TT 

K + TT 

IC + TT 

IC + TT 

(C.5) 

z 

C.3 REDUCTION TO THREE REGIMES 

The final task is to combine all the above results. That is, for each of the six 

parameter ranges given in equation (C.3) we wish to write down the function 

A(z) itself. This function changes at the six possible transition points given by 

expression (C.1), with its ordering along the z line given by table (C.2). Hence, 

with table (C.4) which lists A(z) at the transition points, we can finally map out 

the maximising function A(z) throughout the entire z range, for the six identified 

ranges of the external field strength. 

2r <-y Lv'J - 	- fT 

z range 

-00 

4TT 

K + TT - 'V 

K + TT - 

K - TT - 7V'l - fT 

K - TT 

K + TT 

4TT 

K + TT - 'V 

K + TT - 

K - TT - YV'l - fT 

K - TT 

K + TT 

00 

['i-"-iT] < 2rT<[1—/1—fT1 

z range (z) 

-00 K_1J 
4TT z 

IC+TT - 7 Z 

K+TT - 'V K - TT - 'V./1 - fT IC+TT 

K - TT - ' VVl - fT K+TT - 'VV7 IC+TT 

K+TT - 'Vff K - TT K+TT 

K - TT K+TT IC+TT 

K+TT 00 Z 

(C.6) 
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7[1—/1—fT ] <2r<'y/J 

z range 

—00 /CTT 7\flfT  Z 

1C - 7-T - 7\/l-fT IC±TT7 ITT 

lc+TT — 'y 4TT - T.1 

4TT C+TT - 7v'f ?C+TT 

TT 

K — TT lc+Tp 

lc+TT 00 Z 

(C.7) 

<2rT  <'1 

z range A(z) 

—00 K- TT  - 'y/l-f T  Z 

Ic — TT 

K+TT - 7 lCTT 

4TT 

1.fL r + TT— -yVTT z 
4TT 

00 Z 

(C.8) 

7<2TT_<7[1-i-/1—fT J 
z range A(z) 

—00 ICTT'7\/lfT Z 

ICTT ITT 

ITT !c+TT - 7 z 

ç 2I2 
4TT z  

r. + TT-yVTT z 
4TT 

C +TT'7 /j 1s+TTIc+TT Ic+TT 

00 Z 

(C.9) 
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2TT > -y [1 + v' 1  - fT 

z range .A(z) 

—00 I — TT ---- 7%/1 — fT z 

K - TT-7/1-fT Ic — TT !c — TT 

Ic — TT z 

lC+TT - 7 z 

tC+TT - 7 K + TT — -f VTT z 

00 z 

and 

(C.1O) 

From tables (C.5)—(C.10) we can see that some of them give the same A(z) func-

tions. In fact there are only three unique regimes of parameter space we need to 

be concerned with, and these are the ones given in expression (2.28). 
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Appendix D 

Stability Analysis for the Replica Symmetric 

Ansatz 

This appendix derives the expressions with which we judge whether the replica-

symmetric ansätze employed in the preceding chapters are valid. In particular 

we are interested in checking against the effects of small, local replica-symmetry 

breaking fluctuations. These fluctuations are categorised by the permutation prop-

erties of the replica indices into three types: symmetric, weakly-asymmetric, and 

asymmetric fluctuations. 

There follows two main sections, one concerned • with the external field model of 

chapter 2, and the other a more involved treatment of the dual sign-constrained 

network of chapter 3. The starting point in both cases is a Taylor expansion of 

the saddle-point equation around the stationary point up to the second order. 

The resulting Hessian matrix of the second order derivatives tells us whether 

the stationary point indeed maximises the saddle-point equation. The daunting 

task of evaluating the Hessian is made tractable by examining the effects of the 

three types of fluctuations in turn, each of which gives a vastly simplified matrix. 

This appendix will finish by showing how in the zero replica limit the weakly-

asymmetric and symmetric fluctuations produce the same Hessian, and we need 

only concern ourselves with stability to symmetric and asymmetric fluctuations. 
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The relevant chapters will ascertain replica-symmetry stability by examining the 

signs of the determinants of these Hessian matrices. Namely, whether the signs 

change as a parameter is varied, indicating a transition to or from instability 

depending on the model's initial stability. Hence any unimportant constant factors 

can be divided out from the determinants of the Hessians. 

D.1 STABILITY OF REPLICA SYMMETRY FOR THE 

EXTERNAL FIELD MODEL 

We are interested in ascertaining the stability of the stationary point of equa-

tions (2.20), which is supposed to maximise the equation 

G({Ea , Fa&, qab}) Gj({Ea , Fab}) + aGA({qa }) + Go({Ea, Fab, qab}) (D.1) 

where the functions Gj( ... ), GA( ... ) and G0 (...) are given in equations (2.15). 

We shall probe the stationary point with replica-symmetry breaking fluctuations 

of the form 

Ea  = E+SEa, Va, 

Fab = F+c5Fab, Va,b(a<b), 

qab = q + 6qab, Va, b (a < b), 

which give the second order term of the Taylor expansion of the function (D.1) as 

52G = :i [E_
32G 	 Ô2G 

SEa  SEb + 	 SFabSFcd 
a,b ôEaOEb 	(a<b)(c<d) ôFabö Fd 
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02 G 	 92G + E 
Oqa 	

'5qab8qcd + 2 .E a(b<c) OEOÔFbCSEaSFbC bôqcd 

+2 52G 8Ea6q6c+2 	
02G 

	

a(b<c) ôEaOqbc 	(a<<d) ôFabôqCd sF
abs cd] 	(D.2) 

where the restricted summations enforce enumerations over only the defined repli-

cated quantities. A superficial glance at equations (D.1) and (2.15) allows us to 

immediately simplify the above equation (D.2), by observing 

a2 G 
0, 

DEa t9qbc  = 
FJ2 G 

ôFab8qcd 
= 	16a ,cSb,d, for all (a < b) and (c < d). 

For the other terms we shall make use of any symmetry properties in the replica 

indices. This is done by calculating the double derivatives of equation (D.1) and 

identifying all the unique terms. The following four subsections will examine the 

permutation symmetries of these derivatives. 

FLUCTUATIONS IN SEa SE& 

The permutation symmetries of the double derivatives mean not all of them are 

unique. We shall make use of this by first dealing with the term containing 

fluctuations in SEa SEb. We can re-write the summations in equation (D.2) to 

reflect the two possibilities given by the replica indices by defining 

- 92G 	Va, 'EE = 	
(D.3) 

B 	Ô2 G 
QEE 	aEaEb' Va,b (a 

and hence the term in question can be written as 
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02 G 
6E-6Eb = QE>. 8E + QL>8Ea8Eb 

a,b a 	 ai4b 

	

= (QE - QL) 8E  + QE 6EaSE6. 	(D.4) 
a 	 a,b 

FLUCTUATIONS IN 6EaSFbc  

We can do a similar analysis for the term with the fluctuations 6EaFbc , and par-

tition the summation into the three groups 

a(b<c) DEaOFbc 

= QF 	SEaSFab + QEF > SEa S Fba + QL 	SEaSFbc  

	

a(a<b) 	 a(b<a) 	 a(b<c) 
a$b,c 

= QF > SEaS Fab + 	SEaSFba  

	

la(a<b) 	 a(b<a) 

QB 
> 5E5F - ( 	8EaSFa  + 

1(b<c) 	 \a(a<b) 	 a(b<a) 	) I 
which because the restricted sums over the indices a(a < b) and a(b < a) are the 

same as that over (a < b), simplifies into 

D2 G 
a(b<c) ôEa8Fbc55' 

= 2(QF - QF) > SEaS Fab + QL 	SEaSFa&. 
(a<b) 	 a(b<c) 

(D.5) 

117 



FLUCTUATIONS IN 6F,,b8Frd  

The term with the fluctuations in 8Fab6Ft ,j is a little bit more complicated. We 

start by writing 

32 G 
i5Fab8Fcd 

(a<b)(c(d) 

= QF 	8Fa2 , + QF 	SFa&öFac  + E 6F8F 
(a(b) 	 (a<b)(a(c) 	(b(a)(a<c) 

bi4c 

+ 	SF,a8F a  + 	SFa &Fca  + QF 	6FabSFcd. 
(b<a)(c<a) 	(a<b)(c(a) 	 (a<b)(c<d) 

bi6c 	 ai4c,bi4d 

The summations with the restrictions I (a< 
bc  
b)(a<c)} and {(b < a)(a < c)} give the 1.  

same indices as {<c< 
bi4c 

} and {(a < b)(c < a)} respectively, so we can write 

aFDF SFaböFcd 
(a<b)(c<d) 	ab 	cd 

= QF > 5Fa  + 2QF 	> 8Fa8F + > 8F,a8Fac 
(a<b) 	 (a<b)(a<c) 	(b<a)(a<c) 

b0c 

+Q 	I 6Fa 8Fc j - 2 	öFabSFac  + 	SFSF 
(a<b)(c(d) 	 (a.(b)(aczc) 	(b<a)(a<c) 

bq6c 

Fab 
(a<b) 

= (QF - QF) 	61
1a2b  + QF 	SFabSFcd 

(a<b) 	(a<b)(c<d) 

+2(Qp' QF) 	SFaL,SFac  + : SFbaö Faa 
(a<b)(a<c) 	(b<a)(a<c) 

bj4c 

It:3 



This can be further simplified by realising the summations 

> 6Fa 6Fac  + 	6F,a8Fac  = 	SFai,SFac  + > 8F,aSFac - 	8Fa 
(a<b)(a(c) 	(b<a)(a<c) 	(a(b)(a<c) 	(b<a)(a<c) 	(a<b) 

biAc 

= 2 	i5FabSFac - > 8Fa 
(a<b)(a<c) 	(a<b) 

hence allowing us to write 

02 G 
ôF 	

SFab5Fcd 
a  (a<b)(c<d) 	ôFcc  

- irAc,çB i çC ' 	2 
- 	- 4FF 1  'tFF) L ° 1 ab 

(a<b) 

+4(QF - QF) 	SFabt5Fac 
(a<b)(a<c) 

+QF 	l5Fabf5Fcd. 
(a<b)(c<d) 

 

FLUCTUATIONS IN 6qab8qcd 

Finally, summations over fluctuations in 5qab6qcd  follow an identical treatment to 

give 

82 G 
(a<b)(c<d) aqabaqed 5qabc5qcd  

= (QA_2QB 
I 
 QC\6q 

qq 	qq 	qq) ab 
(a<b) 

+4(Q -Q1) 	6qabbqac  
(a<b)(a<c) 

+Q 	5qab8qcd. 
(a<b)(c(d) 

 

Collecting equations (D.4)—(D.7) into equation (D.2), we can remove all the sum-

mation restrictions by setting the diagonal terms SFaa  = 8qaa = 0 to give 
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282 G = (QE - QL SE) 	+ QL [> SE0] 

+2(QF - QF) E SEaS F0b + QF bEa E SFb 
a,b 	 a 	b,c 

-'2 

- 2QF + Q°FF) E SFb + (QF - QFF) I (5Fabj 

+ QF [ SFa] 

2 
- 2QB + Q) 8q0 ± (QB - Q) 	Sq0bI qq 

	

qq 	 I \ 

a,b 	 a  

QC 
+_! 	Sq0bI [a,b  

—i 	5F0 ,Sq0 ,. 

a,b 
101 

Equation (D.8) allows us to explicitly see which fluctuations mode to choose, 

avoiding the problem of directly diagonalising the Hessian. The following sub-

sections examine how this is done by choosing three types of fluctuations, whose 

mutual orthogonality and spanning of the [n + 2n(n - 1)/2] = n2  space must be 

ensured if they are to be a complete description. 

D.1.1 SYMMETRIC FLUCTUATIONS 

We shall begin by inserting fluctuations which are symmetric in the replica indices, 

that is 

E0  = E+SE, Va, 

Fab = F+SF, Va,b(ab), 	 (D.9) 

qab = q+Sq, 	Va,b(ab), 

with the diagonal fluctuations Faa  and q00  set to zero for all a. This vector spans 

a subspace of 3-dimensions and reduces the Hessian matrix to 
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82E 	ÔEOF 	0 

ÔEUF 	02F 	— 1 (n - 1) 

0 	—(n-1) 	82q 

where the elements are given by 

82E = (QE + (n - 

— 1)(2QF + (n - 2)QF), 

ö2 F = 	- 1) [QF  + 2(n - 2)QF + 	- 2)(n - 3)QF] 

82q =  
n 	[QA 	 ) QB — 
2 	

qq 	 qq 	2 	
qq] 

Since we shall be primarily interested in sign changes in the eigenvalues of this 

matrix, we can simplify the above by considering their product. Upon dividing 

out common factors and taking the (n -+ 0) zero replica limit the determinant is: 

icAcB \ 	I rA 	rB 
EE - '5EE) 	 EF 

'fnA 	rB \ mA 	,i,-iB iQCC 
- "dEF) '4FF - FF Y FF 

0 

[Ii 	 —1 
	

(Q-4Q+3Q) 

D.1.2 WEAKLY-ASYMMETRIC FLUCTUATIONS 

We next consider weakly-asymmetric fluctuations as defined by 

(D.10) 

E. 	E+6Ea , 	Va, 

Fab = F+öFa +SFb, Va,b (a 54 b), 	 (D.11) 

qab = q+5qa +öFb , Va,b (a 

121 



which when required to be orthogonal to the symmetric fluctuations (D.9) results 

in the constraints 

8Ea SFa >Jqa  = 0. 	 (D.12) 

Hence weakly-symmetric fluctuations span 3 x (n —1) dimensions and reduces the 

Hessian to 

82E OEOF 	0 

8EDF 	52F 	—i(n —2) 

0 	—i(n - 2) 	ô2q 

where the matrix elements are now given by 

- irA 	B \ u Li - Y'dEE - 

9EöF = (ii - 2)(QF - 

82F = (n - 2) [QF - 2QF + QFF + (n - 2)(QF - QFF)], 

a2q = 

In the zero replica limit the determinant for this matrix is the same as that for 

the symmetrical fluctuations matrix (D.10). 

D.1.3 ASYMMETRIC FLUCTUATIONS 

Finally, we shall look at asymmetric fluctuations as defined by 

Ea  = E+5Ea , Va, 

Fab = F + 6Fab, Va, b (a 54 b), 	 (D.13) 

qab = q + 6qab, Va, b (a 
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which has the constraints 

SEa  = EbF.b = Ebq.b = 0 	 (D.14) 
b 	b 

in order to be orthogonal to the weakly-asymmetric fluctuations (D.11). These 

constraints reduce the dimensions spanned by SFab and 8qab  from [2 x n(n - 1)/2] 

to [2 x n(n - 3)/2]. This give the total dimensions spanned by all three types of 

fluctuations as [3 + 3(n - 1) + n(n - 3)] = n2 , which is as stipulated at the end 

of § D.1. 

The Hessian for these fluctuations is just 

/ !trAcB 	r- C 
2FF - '-"FF "6FF 

2 

2 

k 	
- 	j ()C 

2"6qq 	"óqq T
qq ) 

(D.15) 

and since we shall be interested in the sign of the product of eigenvalues, we can 

again divide the determinant of matrix (D.15) by any constant factors. 

D.2 STABILITY OF REPLICA SYMMETRY FOR THE 

DUAL NETWORK DISTRIBUTIONS 

We now turn our attention to the dual distribution calculations of chapter 3. We 

shall attempt to follow the same procedure as for the external field model in §D.1, 

and produce a set of determinants whose signs will determine the stability of the 

analytical results to small replica-symmetry breaking fluctuations. By having to 

consider two networks each with their own sets of fluctuations, the dimensionality 

of the stability matrix is drastically increased and with it an explosion in the 

number of terms to the second order Taylor expansion around the stationary point. 
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Fortunately this turns out to be but an irritating inconvenience, and the real source 

of novel behaviour actually arises from the inter-network order parameter r and 

its conjugate K. 

The equation whose saddle-point we wish to examine is 

G({E 0 , Ea, Fab, Fab, q06, qb, K0,  rab})  Gj({E a , Ea , Fab, Fab, Kab}) 

+aGA ({q ab, ab ,rab}) + Go({Ea ,Ea,Fab,frab,qab, ab,Kab,rab}) 	(D.16) 

with the functions on the right hand side defined in equations (3.8). The fluctua-

tions we wish to probe are of the form 

Ea  = E+SEa , 

Fab = F+SFab, 

qab = q + 5qab, 

Kab = K + SKab, 

Ea = E+SEa , Va, 

Fab = F+SFab, Va,b(a<b), 

qab 	= 	q+öqab , Va,b(a<b), 

rab 	= 	r + ST ab, Va, b 

(D.17) 

which presents a total space of (2[n + 2 x n(n - 1)] + 2n2 ) = 4n2  dimensions for 

the fluctuations to cover. Rather than write the analogous second order Taylor 

expansion term of equation (D.2) we can better show the mixing between the 

eight sets of quantities with a representation of the second order derivatives of 
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equation (D.16) in matrix form 

52E 8EÔF 0 aKaE 0 ÔEÔE OEÔF 0 

OEÔF Ô2F OFOq OFÔK 0 ÔEÔF OFOF 0 

o öFDq D2 q 0 aqar 0 0 

9K0E OFOK 0 Ô2K OKOr 9KôE ÔFOK 0 

o 0 Oq3r OKôr ô2r 0 0 ôOr 

ÔEöE 3EOF 0 OKUE 0 02E aEafr 0 

DE8F 5FÔF 0 I9FDK 0 aEaF aE ofro 
0 0 9q,94 .  0 8Dr 0 0FÔ4 O2  

(D.18) 

where we have immediately written down any zero elements. Before we can sub-

stitute in the three modes of replica-symmetry breaking fluctuations we must 

elucidate the permutation symmetries in the replica indices of the elements in 

matrix (D.18). This is, of course, done by studying the double derivatives to 

equation (D.16) but as we shall see, commonality in symmetries mean we need 

not treat each of the 24 elements on an individual basis. 

THE INTRA-NETWORK MATRIX ELEMENTS 

We can see the two 3 x 3 diagonal blocks of matrix (D.18) are just realisations of 

networks which have already been dealt with previously in §D.1. We can hence 

borrow equation (D.8) for the symmetry properties of these two blocks; bar a 

simple re-labelling in the tilde notation for the second network. 

THE ELEMENTS WITH SIMPLE SYMMETRIES 

The other unique 3 x 3 block in the top-righthand corner has elements which are 

essentially independent of their replica indices. This gives the six elements 
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D2 G 	- 
ôEa9E SEaSEb 

a,b 	b 

Ô2 G 
SEaS Fb 

a(b<c) 3EaOFbc 

Ô2 G 
SEaS Fb 

a(b(c) ôEaôFbc 

SFa SE 
(a<b)(c<d) UFabôFcd 

82 G 
'5qab5qcd 

(a(b)(c<d) 8qab8qcd  

QE E SEaSEb, 
a,b 

= 
QEE SEaSPbc, 

 2 a,b,c 

= 
QEF > 	SEaS Fb, 

 2 a,b,c 

= 	
QF' > 	SFabSEcd, 

4 a,b,c,d 

=!1 > 	5qab4cd, 4 	a,b,c,d 
(D.19) 

where we have set the diagonal fluctuations SFaa  = 5aa = Sqaa = 5, Va to zero 

in order to write the summations in an unrestricted form. 

Another element with a simple symmetry is the off-diagonal elements in the central 

block. From equation (3.8) we can see straightaway that 

82 G 
SK abST cd = — i > 

a,b,c,d I<abôrcd 	 a,b 
(D.20) 

The preceding two subsections have reduced our task to studying the symmetries 

of just eight elements. These will be appropriately grouped in the next four 

subsections. 

THE ELEMENTS 3KabôEc  AND oKabaEc  

The symmetries for these terms are straightforward with the indices allowing only 

two possibilities. We can express this for the ôKabOEc  term as 

a2 G 

c oKabaEc 	= QE E SK abSEa  + QE 	l5KabSEc 

ac 
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and similarly for the OKabaEc  term. In unrestricted forms these terms are 

02 G 
f5K ab SE 

Ô2 G 

c aKabaEc SK
ab 8E 

a  

= (QE QE) SKabSEa  + QE SKabSEc , 
a,b 	 a,b,c 

= (QE - QE) t5KabSEb + QE 8Kab6Ec. 
a,b 	 a,b,c 

(D.21) 

THE ELEMENTS OFabDKcd AND ôFabDKcd 

The next term we shall consider arises from taking the derivatives with respect to 

8Fabö1fcd, whose permutation symmetry can be grouped into two parts 

a2 G 
SFabSK cd 

 
abgKcd  

(a<b)c,d 

= QK 	SFabSKac  + QK > SFabSKb c  + QK E SFab8Kccj 
(a<b)c 	 (a<b)c 	 (a<b)c,d 

a,boc 

	

= (QK - QK) E 51'ab5Kac  + E SFatSK c  + QK 	SFabSK cd, 
(a<b)c 	(a<b)c 	I 	(a<b)c,d 

and for the t9FabôKcd term 

82 G 	- 

	

(a<b)c,d abô'cd SFabSKcd = (QK - Q1) 	SEabSKca  + 	SFabSKcb1 
(a<b)c 	J 

+QK E SFabSKcd. 
(a<b)c,d 

These can be written in a simplified form as 
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(a<b)c,d DFabôKcd 6FabSKcd = (QK - QK) > [ 5Fab] I SKac] 
a 	b 	C 

+ Q'K 
> 8F0b6Kd, 

a,b,c,d 

02 G  

(a<b)c,d 9"abôiTcd SFab5Kcd 
= (QK - QK) > { SFab] [ W. 

a 	b 	c 

	

> F8Kc j. 	(D.22) 
a,b,c,d 

THE ELEMENTS ôqab9rcd AND O1abörcd 

These two terms possess exactly the symmetries as for ôFabôKcd and ôFabôKcd in 

the previous subsection. Hence we can simply write 

92 

(a<b)c,d ôqabOrcd 5qabSrcd = (
Q

i•  
A 	

Q) 	I>sqab] [ 
	

srac] q - 
a 	b 	C 

QB 

	

+— 	5qbörd, 
a,b,c,d 

a2 G 

(a<b)c,d ôqabörcd qabcd = (
QA 	

Q) 	I 	8ab] 
 [ 	

srca] qr — 
a 	b 	C 

QB +_.!: E 84ab8rcd. 
a,b,c,d 

(D.23) 

THE ELEMENTS ôKabôKcd AND ôrabt9rcd 

Finally we shall consider the two diagonal terms of the central block in the stability 

matrix (D.18). For the derivative with respect to ôKabôKcd we find there are four 

possible symmetries 
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82 G 
a,b,c,d oKabaKcd 6KabSKcd = QK 8'ab + QK E 6KabSKac 

a,b 	 a,b,c 
bi4c 

+QKK E SK0b8K6 + Q•K 
a,b,c 	 a,b,c,d 
a0c 	 aiAc,bi4d 

which can be rewritten in a form without restrictions on the summations. Since 

the derivatives with respect to Orabôrcd follow the same symmetries, we shall write 

these two terms together as 

02 G 
a,b,c,d OKabOKcd SKab5Kcd = (QK - [QK + QKKI  + QK) Wa 

a,b 

+ (QK - QK) > [ I 51t'ab] 
I 
 SKac] 

	

+ (K - QK) 	
[ 

fSKba] [> SKca] + QK 
a 	b 	c 	 a,b,c,d 

D2 G 
a,c,d OrabOrcd 6rabSrcd 

(QA IQB + 	+ Q) rr 	I 	i•i 

o,b 	
ab 

• (QB - QC 
'i rr 	rrj 

[ 	
8ra] 1> Sracl 

	

a 	b 	Ic 	j 

	

• (B - QC'% 	

[ 
6rba] [ 6rca] + Q 	ör,J45Cd. (D.24) rr 	rr) 

	

a 	b 	c 	 a,b,c,d 

This completes the symmetry analysis for the terms in the stability matrix (D.18). 

We can now substitute in the three possible replica-symmetry breaking fiuctua-

tions and examine their effects on the matrix determinant. 
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D.2.1 SYMMETRIC FLUCTUATIONS 

The fluctuations symmetric in the replica indices are defined as 

Ea  = E+6E, 	Ea = E-i-5E, Va, 

Fab = F+SF, 	Fab = P+oP, Va,b(ab), 
 

qab 	= 	q+öq, 	qab 	= Va,b(ab), 

K a b = K+SK, 	rab = r -FSr, Va,b, 

with the diagonal contributions Faa, Faa , q 07  and qaa  set to zero for all a = 1 . . . n. 

Inserting these into the stability matrix (D.18) we find the two intra-network 

diagonal blocks are the same as in matrix (D.10), with the elements of order n 

and n(n - 1). In contrast, the elements in the rest of the stability matrix are of 

order n :~ 2. Hence in the zero replica (n - 0) limit only the two intra-network 

blocks survive and the stability matrix reduces to 

'82E OEOF 0 0 0 0' 

ÔEOF 82F —i 0 0 0 

o —i 02 q 0 0 0 
 

0 0 0 Ô2E aEoP 0 

o 0 0 ÔE9F 02fr —i 

\ 	0 0 0 0 —i Ô24 

with the elements in each block of the same form as those in matrix (D.10). Hence 

we can say that if each network is uninfluenced by symmetric fluctuations, then 

the dual distribution calculation as a whole is also unaffected. 
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D.2.2 WEAKLY-ASYMMETRIC FLUCTUATIONS 

The weakly-asymmetric fluctuations are given by 

Ea = E + 8E0 , 	E0  = E + 8E0 , 	Va, 

F0b = F + SF0  + 8F6, Fob = F + SF  + 6F6, Va, b (a b), 
(D 27) 

qab =q + Sq0  + Sq, 	40 = i + b4a 	+ Sq, Va, b (a b), 

K05  = K+5K0 +SK5, Tab = r+Sr0 +Srs, Va,b, 

with the orthogonality constraints 

E SEa  = E SF0 	bqa = 0, 

>SEa = ESfra 
	 0, 

Si a  = E Ra =E SKa 	= 0, 	 (D.28) 

which results in the space spanned by the fluctuations (D.27) to 10(n - 1) dimen-

sions . Substituting in these fluctuations, we find the two intra-network diagonal 

blocks are of order (n - 2), whilst the other terms are of order n ~: 1 . So as with 

symmetric fluctuations, in the zero replica limit the stability matrix is reduced to 

two diagonal blocks with zero elements elsewhere. Furthermore, this matrix will 

have the same determinant as in the symmetric case, as in the case for the single 

network (external field) model of §D.1. 

131 



D.2.3 ASYMMETRIC FLUCTUATIONS 

Finally we shall now examine fluctuations of the type 

Ea  = E+6Ea , 

Fab = F+SFab, 

qab = q + 8qab, 

'tab = K + SKab, 

Ea = E+5E0 , Va, 

Fab = F+SFab, Va,b(ab), 

qab 	= 	q+Sqab, Va,b(a4b), 

rab 	= 	r + Srab, Va, b. 

(D.29) 

Demanding orthogonality with the weakly-asymmetric fluctuations leads to the 

constraints 

öEa  = >Jf5Fab =>JSqab = 0, 
b 	b 

SEa  = >JSFab —>Sqab = 0, 
b 	b 

Sr 1 j, =E brab = 	= >SKab = 0, 	 (D.30) 
b 

which restricts the space spanned by these fluctuations to 2[n(n - 3) + (
n - 1) 2 ] 

dimensions. Hence the total number of dimensions covered by the three fluctuation 

modes is [8 + 10(n - 1) + 2n(n - 3) + 2(n - 1)2] = 4n2 , as demanded in §D.2. 

Substituting in the asymmetric fluctuations, we find the stability matrix is also 

greatly simplified in the zero replica limit. Unlike the previous two types of fluc-

tuations however, we do obtain a non-trivial result in that we now have three 
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decoupled blocks making up the matrix, that is 

52F - 0 0 0 0 

- 82 q 0 0 0 0 

o o 82 K —i 0 0 

o o —i ô2r 0 0 

o o 0 0 821' 

0 0 0 0 - 02 

(D.31) 

The elements for matrix (D.31) are given by 

82F 

	

02 1' 	= 

	

92 q 	= 

024 = 

(QF - 2QF + QF), 

(Qh - 2Qp + 

82K = 
82r 	= Q 	- (Q 	+ 	) + Q. (D.32) 
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Appendix E 

Mathematics for the Sign-Constrained Network 

In this appendix we shall deal with the angled-bracket operators defined in equa-

tions (3.11), and in particular arbitrary k th  moments of them. We can spare 

ourselves the chore of looking at all three operators separately by recognising that 

they may be dealt with in essentially the same manner. Using the function defined 

in the mathematics appendix (A.4), we can write down 

00 

(Jk)J 
	IdJ(gJ)k exp (_fr J2  + agxJ) 

00 

jdJexp (__2 
'/32J2 + agxJ) 

0 
00 	 k 	 k 	

crgxl 
= 	{] [ + 	

± II 	 (E.1) 

p 

as representing some generalised form of equations (3.11) for either of the two 

networks, and for positive or negative weight constraints. Depending which of the 

two networks is being considered, 02 is hence either i(E + F) or i(E + E), a is 

either /P or './P, and x is either (Au + By) or (Au - By). Similarly, the flag g 

is set depending whether we have positive (g = 1) or negative (g = —1) weights. 

134 



The key assumption in calculating the moments (JIC)J  of equations (E.1) is that the 

variables a and 02  are of order (1-q)' (likewiseof order (1_)_1  for the conjugate 

network), and hence in the optimal perceptron limit of (q and 4 -+ 1), the quantity 

a//3 becomes large. The a-priori justification for this comes from considering 

non sign-constrained networks where this is indeed the case, as can be seen by 

solving equations (2.25) which is a non sign-constrained model. Alternatively, and 

somewhat more rigorously, we can show that the assumption of a/fl being large is 

consistent with the solutions (3.31) of equations (3.19)-(3.21). The consequence 

of this is that we can expand the appropriate functions T[ ... ] for large arguments 

via equation (A.5). Hence up to the fourth moment we find 

(J) 	= 
a 2 X  2) 	ff  [agx]  

__  
ax 1  

— 
[agxP ]

— j3
' 

(J2 ) -2 lax 
= /3 	I— 

g 	/ 	a2 x2  
exp 	~ i 

[~gx] 

 /3 	 2/32) 
a2 x21  

+ 1 + 
L /32] 

= 	fl2 [1+ 	
2] 0  [ agX ]  

= /3_3 g 	
ex 	

/ 	a2x2  K2+2) 	
p 
 (- 

2/32) 

 
[ agx

] + 0 

= /3_3 3axa3x31 
0 

[agx] 

Lfi 	33 

(J4) = j3_4 a3 x3 	 a2 x 2  5ax + 
	

g 	/ 

) 	

exp 
( K 

/33 	 2/3 2 ) ~ 	

[2gX

] 

a4 x4  
+ 	+6x2+3] /34 

= /3_4 4a 
+ 

6a2x2 
 + 3] 0 

 [agxl  IX /32 

a3x3  
+ /33 

(E.2) 

The first two moments are needed for solving the saddle-point equations (3.19)-

(3.21), and the latter two will appear when calculating the stability matrix of the 

replica-symmetric ansatz. 
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