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Abstract 

Flame height is defined by the experimentalists as the average position of the luminous 

flame and, consequently is not directly linked with a quantitative value of a physical 

parameter. To determine flame heights from both numerical and theoretical results, a more 

quantifiable criterion is needed to define flame heights and must be in agreement with the 

experiments to allow comparisons. For wall flames, steady wall flame experiments 

revealed that flame height may be defined by a threshold value on the wall heat flux. From 

steady wall flame measurements, three definitions of flame height from wall heat flux are 

retained: the first is based on the continuous flame while the two others are based on 

threshold values of 4kW/m2 and 10kW/m2. These definitions are applied to determine 

flame heights from a two-dimensional time-dependent CFD model used to describe flame 

spread along a slab of PMMA. Results show that the predicted flame heights are consistent 

with the available data of the literature. Defining flame height by threshold values on the 

wall heat flux of 4kW/m2 and 10kW/m2 allows to correlate the wall heat flux in term of (x-
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xp)/(xfl-xp), which is the dimensionless characteristic length scale for upward flame spread. 

It is also found that the continuous flame is not a characteristic length for the heat transfer 

to the unburnt fuel and is not really appropriate to define flame height in upward flame 

spread. 

 

Keywords: Upward Flame Spread; Steady wall flame; Flame Height Definition; Numerical 

Model 

 

Nomenclature  

A  pre-exponential factor in the Arrhenius law [1/s] 

PC  specific heat [J/kg/K] 

sootf  soot volume fraction 

g  gravitational acceleration [m/s2] 

G  average incident radiation [W/m2] 

h  enthalpy [J/kg] 

convh  convection coefficient [W/m2/K] 

I  radiative intensity [W/m2] 

k  turbulent kinetic energy [m2/s2] 

vL  heat of vaporization [J/kg] 

"
pm  pyrolysate mass flux [kg/m2/s] 

sootn  soot number density [1/m3] 

p  pressure [Pa] 
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'Q&  heat release rate per unit wall width [W/m] 

R  ideal gas constant [J/mol/K] 

t  time [s] 

T  temperature [K] 

u  velocity [m/s] 

x coordinate along the slab surface [m] 

X  mole fraction 

flx  flame length [cm] 

Px  pyrolysis length [mm or cm] 

y coordinate normal to the sample surface [m] 

Y  mass fraction  

W  molecular weight  [mol/kg] 

Greek letters 

ε  rate of dissipation of k [m2/s3], emissivity 

κ  radiant absorption coefficient [1/m] 

λ  thermal conductivity [W/m/K] 

ρ  density [Kg/m3] 

ω  production rate [kg/m3/s] 

Subscripts 

α  species 

0  ambient 

p  pyrolysis 

Pr  combustion products 

rad  radiant 
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s  solid 

 

1. Introduction 

   The spread of a flame over the surface of a solid combustible is a subject of interest in 

fire safety science because it influences the initial fire development and rate of heat 

release. In upward flame spread, the flame covers the solid element during the heating and 

pyrolysis processes and pyrolysed fuel is rapidly ignited by the flame after leaving the 

surface. The driving mechanism for upward spread has long been identified as heat transfer 

within the region that is being pre-heated suggesting that the characteristic length scale of 

the problem is the flame length minus the pyrolysis length (xfl-xp) [1-3]. On the basis of 

this assumption many analytical models for upward flame spread have been developed 

[4,5]. 

   In most cases, closure of these models is obtained by using a relationship to correlate 

flame height as function of pyrolysis length. Several correlations on the form  

(where “a” and “n” are constants) obtained from both experimental [4-7] and numerical 

data [8] have been reported. Most of these data are relative to experiments with PMMA 

which has been intensively used in upward flame spread due to its well-known thermo-

physical properties. Saito et al. [5] suggest n=2/3 whereas Delichatsios [8] predicts n=0.8. 

Orloff et al. [4] report n=0.78. Hasemi et al. [7] propose n=1 and a=2. 

n
pfl axx =

   The use or validation of these models requires the knowledge of the pyrolysis and flame 

lengths. While the former can be obtained accurately with surface thermocouples, the 

definition and the measurements of flame height remain more ambiguous. Experimentalists 
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usually define the flame height as the average position of the luminous flame. 

Nevertheless, the definition of the average position is one that varies with the experiment. 

For upward flame spread, most flame height measurements have been performed by using 

an eye-averaging of the flame tip location which clearly does not represent a systematic 

and reproducible technique [4-7]. Digital images have allowed to develop methods that 

systematically address this issue [8,9], nevertheless they all depend on the establishment of 

luminous intensity thresholds. The determination of a convenient threshold requires 

defining a reproducible and systematic procedure. Some examples of such a procedure can 

be found in [9-11].  

   An added task is the comparison between experimental data and numerical and 

theoretical model results where luminous intensity is a concept difficult to quantify. 

Conceptually, the flame height may be determined as the position along the wall where the 

average fuel concentration [8] or the Damkholer number [12] tends toward a critical value. 

If such a flame height definition seems convenient for both theoretical and numerical 

purposes, it is not easily applicable for flame height measurements.  

   Insight towards an alternate path has been obtained via steady wall flame experiments 

using liquid or gas burners and solid materials [10,13-15]. From dimensional analysis it 

has been shown that the flame length satisfies a relationship of the form  

where 

p
n

fl xQax )( '∗= &

ppp xgxTc
QQ

0

'
'

ρ

&
& =∗ is the Froude number [14]. These experiments have also 

revealed that wall heat fluxes are correlated in terms of x/xfl using flame height as 

characteristic length scale. Given that upward flame spread is controlled by the transfer of 

heat from the flame to the material and that heat fluxes seem to correlate with the flame 

length, then it could be postulated that the flame length could be defined as a function of 
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the heat flux. This approach is convenient for analytical, numerical and experimental 

studies, thus may be a way to conciliate experimental data with both theoretical and 

numerical results. 

   The aim of this paper is to explore the suitability of latter assertion using both 

experimental data from the literature and a complete time-dependent CFD (Computational 

Fluid Dynamics) model [11]. Model results concerning the time evolution of both 

pyrolysis and flame lengths have compared successfully with experiments [11]. 

Experimental data used will be flame heights and wall heat flux measurements in steady 

wall flames while the numerical tool will model upward flame spread. Data correspond to 

a number of fuels but the model focuses only on PMMA. 

2. Numerical Model 

   The reactive flow is computed by solving the Favre density-weighted Navier-Stokes 

equations in connection with the RNG k-ε turbulence model [16]. Near a solid surface, the 

velocity components parallel to the wall, the turbulent kinetic energy, and its rate of 

dissipation are treated through a local equilibrium wall log-law. The complete set of 

equations along with thermodynamic properties and equations of state can be found in 

[17]. The general form of the elliptic differential equations is given by 
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The variable Φ, the source terms, SΦ, and the effective exchange coefficients, ΓΦ, are listed 

in Table 1. The gas is assumed to be a mixture of perfect gases and, including the chemical 

energy in the mixture static enthalpy, the equations of state will take the form 
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2.1 Combustion Model 

   In the present study, the Methyl-MethAcrylate (MMA)/air reactive system is modeled as 

a simplified one-step chemical reaction 

22222285 57.224557.226 NOHCONOOHC ++→++      (4) 

The consumption rate of fuel is calculated as the minimum of the Eddy Break-Up (EBU) 

expression [18] (mixing-controlled regime)  
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and an Arrhenius expression (kinetically-controlled regime) for MMA. 

( TTYYA actOOHCkin /exp 
2285

2 −= ρω )         (6) 

with A=5.928×109m3/(Kg s) and Tact=1.07×104K [19].  

This extended form of the EBU which accounts for finite rate chemistry allows taking into 

account gas phase extinction at the trailing edge. 

2.2 Radiation Model 



   In the radiation model, the grey assumption is used which implies that the absorption 

coefficient is independent of the wavelength of radiation. The model requires the solution 

of the radiative transfer equation (RTE) 

( )[ ] ( ) ( )TIrIrI baa κκ =Ω+ΩΩ∇
rr r rrr

; ;.         (7) 

where κa is the absorption coefficient that is found from the contributions from soot [20] 

and from the combustion products [18]

PrPr 1.01862 XTfsootsoot +=+= κκκ         (8) 

The effects of radiation transport appear in the energy equation as the divergence of the 

radiative heat flux 
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where the average incident radiation, G, is defined by  

( )∫ ΩΩ=
π4

 ; drIG r r
         (10) 

2.3 Soot Formation Model 

   Concerning the soot formation model, the solution of two additional conservation 

equations for the soot mass fraction and number density is required. The model proposed 

by Moss et al. [21], in which the processes of nucleation, heterogeneous surface growth, 

and coagulation are included, is considered. To describe the mechanism of soot oxidation, 

the model of Naggle and Strickand-Constable [22] is added. Thus 
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where ρsoot=1800kg/m3. For MMA, Moss et al. [21] propose the following constants: 

Cα =3.68×105m3/(kgK1/2s), Cβ =2×109m3/(K1/2s), Cγ =8.5×10-13m3/(K1/2s), Cδ =144, 

Tα=46000K, Tγ=12600K. WNSC is the oxidation rate of soot due to O2. 

2.4 Pyrolysis model 

   The volatilisation of PMMA is modelled as a phase change at a constant surface 

temperature of 630K.  

In the solid, the one-dimensional heat transfer equation 
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   is solved and surface regression is neglected.  

At the solid surface exposed to the flame the boundary conditions are as follows 

- Before pyrolysis 
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- After pyrolysis: 
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   At the rear surface of the slab, the boundary condition is: 
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   The incident radiative flux, , that appears in Eqs. (14)- (16), is computed from the 

radiation model. 

"
radq

2.5  Numerical Procedure 

   The conservation equations are discretized on a staggered, non-uniform Cartesian grid by 

a finite-volume procedure with a second-order backward Euler scheme for time 

integration. Diffusion terms are approximated from a second-order central difference 

scheme. For the convective terms, the ULTRASHARP approach [23] is used. The 

pressure-velocity linked equations are solved using the Iterative PISO algorithm [24]. The 

RTE is solved using the FVM with a 2×16 angular mesh [25]. The heat and mass transfer 

conjugated problem at the gas solid interface is treated through a blocked-off region 

procedure [17]. 

2.6 Computational Details 

   The physical problem involves a 10cm×120cm domain. A 2.5cm×60cm PMMA slab is 

located at 7.5cm from the west boundary. A non-uniform mesh with 60×460 cells is used 

and the time step is 0.02s. The origin of the coordinate axis is the bottom exposed corner of 



the PMMA slab (Fig.1). Ignition is produced by means of a radiative heat flux exposure. 

The ignition flux is eliminated immediately after the onset of the combustion reaction. 

Time zero is defined as the instant when the fuel surface attains the pyrolysis temperature. 

The values of the thermal properties of the PMMA adopted in this study are 

ρs=1200kg/m3, λs =0.1874W/m2/K, Cps=1400J/kg/K Tp=630K, εs=0.95, Lv=1.625×106J/kg. 

These thermal properties are consistent with literature data (see [26] for example).  

3. Results and Discussion 

   Figure 2 shows the wall heat flux as function of x/xfl obtained from steady wall 

experiments using liquid [15], gaseous [10,14] and solid fuels [13]. These experiments 

represent a very wide range of conditions. Ahmad and Faeth [15] used a 660mm wide 

burner with side walls and varied the length of the burner from 51mm to 152mm. The fuels 

tested were propanol, ethanol, and methanol to minimize soot radiation. Coutin [10] used 

propane burners of width 40cm. Measurements of wall heat flux and flame heights have 

been performed using two burner heights of 0.5m and 1m respectively. For each burner 

height, different rates of heat release were considered. Hasemi [14] used 37.5 mm wide by 

82 mm methane burners placed against a wall in an enclosure of 2.8 m x 2.8 m x 2.18 m. 

Quintiere et al. [13] used 28cm×28cm samples of solid materials and for each material 

several tests were performed applying different external heat fluxes on the sample in order 

to modify the burning rate. Figure 2 also shows that wall heat fluxes are correlated in terms 

of x/xfl. Nevertheless the plot has been divided into two since the data from reference [10] 

do not match all other tests. Data presented in Fig. 2(a) were compiled by Quintiere et al. 

[13] and the discrepancies of those of Coutin [10] (Fig. 2(b)) can be directly attributable to 

a difference in the definition of flame height. While Ahmad and Faeth [15] avoid making a 
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definition of flame height and only use the burner length as characteristic length scale, 

Hasemi [14] and Quintiere et al. [13] define flame height by several methods, detecting the 

onset of temperature rise (10oC) or as the uppermost position of the luminous flame by 

either direct visual estimates, single film images or short-time averaging of individual 

video frames.  In contrast, Coutin [10] defines the flame tip by the average position of the 

luminous flame using an extension of a technique that is well documented in [9]. From 

comparing Fig. 2(a) and 2(b) it can be clearly seen that differences of the wall heat flux of 

the order of 50% can be generated by inconsistent definition of the flame height. 

   It is nevertheless clear from Fig. 2 that independent of the scaling value used, heat fluxes 

correlate well with the flame tip height and an alternate approach can be used to define this 

characteristic value. Since heat flux to the fuel surface control flame spread it will be 

natural to define the flame height as a function of a quantifiable heat flux threshold. This 

will suit well experimental, analytical and numerical studies. Given the definitions used by 

the different authors Fig. 2(a) shows that the flame height corresponds to the location 

where the wall heat flux is reduced to approximately 4kW/m2 whereas Fig. 2(b) suggests 

defining flame height by a threshold value on the wall heat flux of about 10kW/m2. 

   An alternate approach, that will be independent of the scaling used, may consist in 

defining flame height as the uppermost position of the continuous flame, i.e. the region 

experiencing an almost constant heat flux. This latter definition seems to be easier to 

interpret. To assess the validity of this approach the wall heat flux has been modelled and 

results are presented in Fig. 3 where the convective, incident radiative and total fluxes 

determined from the numerical model are plotted as a function of x/xp. It appears that the 

region of rapid decrease in the average radiative flux corresponds globally to the 

uppermost position of the continuous flame. 



   The different definitions of flame height have been tested using the numerical model and 

the results are presented in Fig. 4 together with the experimental data for PMMA [4, 6, 7, 

11]. The correlation proposed by Delichatsios [8] is also included in Fig. 4. Flame heights 

have been determined from the numerical results by using the three definitions: threshold 

values on the wall heat flux of 4kW/m2 and 10kW/m2, and the uppermost position of the 

continuous flame. Since a wall heat flux of 4kW/m2 and the uppermost position of the 

continuous flame are connected to the highest and lowest positions of the intermittent 

flame, respectively, most of the experimental data falls between them. Flame height data 

reported by Orloff et al. [4] are in relative good agreement with the model when the 

definition of the flame height is a threshold value on the wall heat flux of 4kW/m2. On the 

contrary the data reported in [6] and [11] seems to follow globally the same trend as the 

continuous flame. The flame tip heights measured by Hasemi et al. [7] are close to the 

predicted continuous flame heights for pyrolysis heights less than 30cm. For pyrolysis 

lengths greater than 40cm, they become closer to the correlation of Delichatsios [8], to the 

data of Orloff et al [4] and to the model when the definition of the flame height is a 

threshold value on the wall heat flux of 4kW/m2. Clearly, the discrepancies between 

experimental data and the different models may be attributed to the fact that the 

measurements have been performed using different techniques. Nevertheless, Fig. 4 serves 

to show the potential advantages of defining the flame length by means of a wall heat flux. 

   As previously mentioned, the process of flame spread is controlled by heat transfer 

downstream of the pyrolysis region. Thus the characteristic length of interest is not the 

flame length but (xfl-xp). It is therefore important to understand how the heat flux 

distribution behaves when scaled by this characteristic length. Figures 5, 6, and 7 provide 

the wall heat flux in terms of (x-xp)/(xfl-xp). Fig. 5 defines the flame length as the 
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continuous flame length, xfl,c, Fig. 6 uses a 4kW/m2 threshold, xfl,4, and Fig. 7 the 10 

kW/m2 threshold, xfl,10. Experimental data for steady flames were extracted from [10] and 

[13]. Although the continuous flame definition correlates well the numerical solutions (Fig. 

5(b)), it is clear that the experimental data diverges quite significantly (Fig.5(a)). Better 

correlations can be obtained using both wall heat flux thresholds with the highest threshold 

correlating best the empirical data (Fig. 7(a)). Materials such as particle board, carpet or 

aircraft panels will tend to char and provide an unclear definition of the continuous flame. 

For these latter materials, the continuous flame height is very close to the pyrolysis front 

and in some cases (not represented in Fig. 5(a)), continuous flaming can occur under the 

sample’s pyrolysis region. These results suggest that the continuous flame is not a relevant 

length scale for heat transfer during upward flame spread and cannot be used to define 

flame height. For the data presented, the experimental definition of the flame height is best 

represented by the 10 kW/m2 wall heat flux threshold. It is important to mention that by re-

defining the flame length and using (xfl-xp) as characteristic length scale the data of Figs. 

2(a) and 2(b) converge. 

   Fig. 8 shows the wall heat flux distributions obtained by the model for different pyrolysis 

length as function of (x-xp)/(xfl-xp). In these cases xfl is defined using the relationships from 

the literature of the form . The constants “a” and “n” for the different 

correlations are listed in Table 2. Results show that the only the relationship that correlates 

well the wall heat flux in terms of (x-x

n
pfl axx =

p)/(xfl-xp) is that given by Tewarson and Ogden [6] 

(Fig. 8(d)). None of the other flame length definitions (Figs. 8 (a), (b) and (c)) allow 

correlating the numerical results. Detailed attention to the article of Tewarson and Ogden 

[6] shows that they observed that that their measured flame tip height corresponded to a 

wall heat flux of about 12kW/m2. These observations confirm that a threshold heat flux 



seems to be the best way to define the flame height. The results of Figs. 5-8 show best 

convergence for higher thresholds and thus seem to indicate that any threshold close to the 

onset of the decay region will lead to the best results.  

   Most of the results used correspond to steady burning, thus it must be underlined that 

upward flame spread induced a supplementary difficulty on flame height measurements 

compared to steady wall flame, due to the evolution of the burning rate during averaging 

procedures. This is illustrated in Fig. 9 where '
t

'
t

'
tt

'
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'
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Q
QQ

Q
Q
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&&

&

& −
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Δ Δ+  is plotted as function of 

the pyrolysis length.  is the rate of heat release per unit width. The 

value of  is the time period through which images are averaged to obtain the flame 

length. The averaging time for flame height measurement is assumed to be 10s in 

agreement with previous upward flame spread experiments [11]. Fig. 9 shows that the 

variation of the burning rate during the averaging period for flame height measurements is 

greater than 10% for x

dxmHQ px

pccht ∫Δ=
0

"' χ&

tΔ

p less than 3cm. For pyrolysis lengths from 3cm to about 20cm, it 

decreases to reach about 4% before increasing slightly due to the acceleration in rate of 

spread. However, despite the high value near the leading edge, the variation of burning rate 

during flame height measurement does generally not exceed 7%. Thus, steady 

measurements and propagating flame measurements could be treated in a similar manner 

so long the averaging interval, , remains small. tΔ

4. Concluding remarks 

   The viability of defining the flame height from a threshold wall heat flux has been 

explored. 

The following conclusions can be drawn: 



1) Such a definition provides a quantitative way to determine flame height from both 

experimental data, numerical and theoretical models.  

2) Three definitions of flame height, namely the continuous flame and threshold values on 

the wall heat flux of 4kW/m2 and 10kW/m2, have been deduced from steady wall flame 

measurements. These definitions have been applied to determine flame heights from a 

CFD model used to describe upward flame spread. Predicted results are consistent with 

previous experimental data.  

3) The definition of the flame height by a threshold value on the wall heat flux of 4kW/m2 

and 10kW/m2 allows to correlate the wall heat flux in term of (x-xp)/(xfl-xp). The best 

correlation is obtained for 10 kW/m2 but functions established via correlations showed that 

higher thresholds provide equally good results (12kW/m2). 

4) The continuous flame is not an appropriate definition for the flame length since 

continuous flaming can occur very close to the pyrolysis front, especially for charring 

materials. 
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Table1. Summary of the key equations expressed in generic form. In this table, Φ is the 

generic fluid property, ΓΦ and SΦ the exchange coefficient and source terms. 
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Table2. Correlation of the form xfl=a(xp)n with both xfl and xp in centimetre units 
 

Correlations a n 
Delichatsios [8] 4.42 0.802 
Hasemi et al. [7] 2 1 
Orloff et al. [4] 5.346 0.781 

Tewarson and Ogden [6] 4.22 0.7 
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Figure 1: A schematic of the physical problem. 
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Figure2: Wall heat flux as function of x/xfl: (a) Experimental data from Ref. [13]- [15], (b) 

Experimental data from Ref. [10]. 
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Figure 3: Total, incident radiative, and convective heat fluxes as function of x/xp. 
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Figure 4: Flame height as function of the pyrolysis length. 

J.L. Consalvi, Y. Pizzo, B. Porterie and J.L. Torero, On the Flame Height Definition for Upward Flame Spread, Fire Safety Journal 42 (5) pp. 384-392, 2007
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Figure 5: Wall heat flux as function of (x-xp)/(xfl-xp) using the continuous flame to define 

flame height: (a) experimental data, (b) numerical results for different pyrolysis lengths. 
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Figure 6: Wall heat flux as function of (x-xp)/(xfl-xp) using a threshold of 4kW/m2 to define 

flame height: (a) experimental data, (b) numerical results for different pyrolysis lengths. 
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Figure 7: Wall heat flux as function of (x-xp)/(xfl-xp) using a threshold of 10kW/m2 to 

define flame height: (a) experimental data, (b) numerical results for different pyrolysis 

lengths. 
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Figure 8: Wall heat flux as function of (x-xp)/(xfl-xp) using the correlations of: (a) 

Delichatsios [8], (b) Hasemi et al. [7], (c) Orloff et al. [4] and d) Tewarson and Ogden [6] 

to define flame height. 
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