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Abstract

This thesis explores and models the relationships between offers of credit products,

credit scores, consumers' acceptance decisions and expected profits generated using

data that records actual choices made by customers and their monthly account status

after being accepted. Based on Keeney and Oliver's theoretical work, this thesis esti¬

mates the expected profits for the lender at the time of application, draws the iso-profit

curves and iso-preference curves, derives optimal policy decisions subject to various

constraints and compares the economic benefits after the segmentation analysis.

This thesis also addresses other research issues that have emerged during the explo¬

ration into profitability and acceptance. We use a Bivariate Sample Selection model to

test the existence of sample selection bias and found that acceptance inference may not

be necessary for our data. We compared the predictive performance of Support Vector

Machines (SVMs) vs. Logistic Regression (LR) on default data as well as on accep¬

tance data, without finding that SVMs outperform LR. We applied different Survival

Analysis models on two events of interest, default and paying back early. Our results

favoured semi-parametric PH-Cox models separately estimated for each hazard.
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Chapter 1

Introduction

1.1 Aim of thesis

Over the last two decades the growth in consumer debt has been rapid. In the US the

total consumer credit outstanding has tripled from 0.8 to 2.5 trillions of dollars from

1990 to 2008'. The UK total consumer credit outstanding quadrupled from £52 to

£229 billions from 1993 to 20082. One of the forces facilitating such a fast pace of

growth is the wide application of Credit Scoring techniques, which automatically as¬

sesses the risk and profit involved in lending to an individual applicant and therefore

make millions of lending decisions economically possible.

When a customer fills in the application for a credit product (a fixed term loan, for

example), the lender will firstly evaluate his/her credit worthiness by assessing the risk

of default. If the credit score is higher than the cut-off threshold set by the lender, an

offer (involving an interest rate) will be made to the customer. Subject to the attrac-
1 http://www.federalreserve.gov/releases/g 19/Current/
2Bank ofEngland statistics, code LPMVZRD

1



Chapter 1. Introduction 2

tiveness perceived by the customer, the offer might be accepted or rejected. Having

accepted the offer and received the loan amount (in the case of a fixed loan amount),

the customer will be obliged to make monthly payments until the end of the term when

the balance is cleared. During this payment period, some will choose to close the ac¬

count by paying back the remaining balance before the end of the term. Some will stop

making payments and default. The rest of the customers will keep making payments

until the end of the term.

In a competitive retail lending market, given the business objectives of either maxi¬

mization profit or market share, lenders need to develop models taking into considera¬

tion profit and market share. This thesis explores and models the relationships between

offers of credit products, credit scores, consumers' acceptance decisions and expected

profit generated using data that records the actual choices made by customers and their

monthly account status after being accepted. Specifically, this thesis attempts to ad¬

dress the following issues:

1. How can we model the profitability of making a loan, unconditional on the ac¬

ceptance by the applicants, and how can iso-profit and iso-acceptance contours

be empirically estimated and presented?

2. Is acceptance inference needed?

3. How do novel approaches like support vector machines (SVMs) perform (com¬

pared to logistic regression) in predicting default and acceptance ?

4. How to model the chance of default and paying back early and how to incorpo¬

rate them into a profit estimation?
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1.2 Importance of the research

Profit Scoring has been a promising research direction in the Credit Scoring litera¬

ture (see Hopper and Lewis (1992), Oliver (1993), Marshall and Oliver (1995), Hand

and Kelly (2001) Li and Hand (2002), Somers and Whittaker (2007), Trench et al.

(2003), Andreeva et al. (2007), Keeney and Oliver (2004), Keeney and Oliver (2005)

for example). Most of the research in Profit Scoring models the profitability either of

each customer or of a whole portfolio (except Keeney and Oliver (2005)). Those anal¬

yses are based on data collected from existing customers. Unfortunately, customers

who have rejected offers made to them by lenders and therefore who are not existing

customers in the previous analysis have been neglected in the profit predictions. The

analysis of the profitability without considering the acceptance of offers, we argue, is

not complete in a competitive market where no lender can guarantee all of its offers

are accepted.

In previous acceptancemodelling research Jung et al. (2003), Seow and Thomas (2005)

and Thomas et al. (2006) modelled acceptance behaviour using data relating to a hypo¬

thetical student bank account where participants (first year students at the University

of Southampton) chose offers of different features. The hypothetical nature of the data

collected together with the small sample size limits the applicability of their results. A

large data set of actual responses of applicants to real offers made to them is exactly

what is needed for acceptance modelling.

Another question that remains unanswered in previous acceptance modelling research

is the possible need for "acceptance inference". Similar to the scenario of the need for

Reject Inference, customers who rejected offers might do so because they have bet-
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ter scores (low default probabilities) which enable them to shop around to find good

deals. On the other hand, customers who accept offers may do so just because of

low scores (high risk of default) and have limited choices. If such sample selection

leads to biased parameter estimates of the probability of default, models built on the

applicants who have accepted the offers will be different from models built on all the

applicants (which include those who have accepted and rejected the offers put to them).

Apart from acceptance modelling, two other important factors affecting profitability

are the likelihood of default and of paying back early. In the literature on default mod¬

elling, many studies have proposed and compared different approaches to separating

the defaulters from the non-defaulters by assuming that the probability of default is

dependent on a set ofpredictive variables. Recently more and more lenders have come

to use Risk Based Pricing instead of charging a flat interest rate for all customers. Risk

Based Pricing generally involves charging riskier customers higher interest rates. The

probabilities of default perceived by the lenders' credit scoring systems are therefore

reflected in the interest rates charged. If future predictions are to be made based on

the models built on such data, the existence of a reverse influence of the probability of

Default on the Interest Rate cannot simply be ruled out.

As another crucial factor contributing to profitability estimation, the probability of

paying back early has not received as much attention as the probability of default in

the literature. In fact, the average probability of paying back early is observed to be

more than 10 times larger than the average probability of default in our data. This

contrast indicates the high level of competition between lenders during the period in

which this set of data was collected. Without modelling the probability of paying back
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early it will not be possible to accurately calculate expected profits .

The scarcity of studies that model the probability of paying back early leads to the

lack of investigations estimating the probabilities of default and paying back early un¬

der a competing risk framework in the credit scoring literature. These two events of

interest can be assumed to be independent and estimated separately. But once this as¬

sumption of independence is questioned, it will be interesting to see how the competing

risk approach can be applied and whether improvements can be made to our model as

a result of using this approach.

1.3 Contributions to knowledge

This thesis makes a number of contributions to the literature. First, it is the first em¬

pirical academic study to estimate expected profits at the time ofapplication. Previous

literature predicts the profits of customers who have already accepted an offer (for

example, see Somers and Whittaker (2007), Trench et al. (2003) and Andreeva et al.

(2007)). We estimate expected profits by combining the results from acceptance mod¬

elling, survival analyses of default and of paying back early.

Second, the research is based on a unique data set reflecting the actual acceptance

choices made by customers of a real financial product, and which records their default

performance and early repayment behaviour. Previous research used a data set record¬

ing undergraduate students' acceptance choices towards offers of a hypothetical bank

account (see Jung et al. (2003) and Seow and Thomas (2005)). The findings from our

model will be closer to what will be observed in the practical retail lending industry
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than those in the literature.

Third, this thesis provides iso-preference curves and iso-profit curves as an empir¬

ical implementation of Keeney and Oliver's theoretical model. However, our iso-

preference curves, which were drawn based on estimates from the data, indicate that

the customers prefer lower loan amounts, rather than larger amounts which may be

contrary to the assumptions of a preference for higher credit lines in the K-0 model.

Fourthly, using iso-preference curves and iso-profit contours, this thesis illustrates

how to maximize unconditional profit under different objectives which the lender may

choose. Previous literature such as Keeney and Oliver (2005) discusses optimal strate¬

gies using assumed numerical cost and profit figures as example cases while this thesis

uses results estimated from industry sourced data.

Fifthly, this thesis also provides a segmentation analysis by separately estimating the

profits on Internet and Non-Internet groups. The optimal interest rates are then cho¬

sen separately for each segment for each given loan amount requested. Our results

demonstrate that when offerings in the fixed term loan market are segmented in this

way, markedly different policy decisions would be made, compared with those drawn

from non-segmented data.

Sixthly, we explore the possible existence of sample selection bias due to estimating a

default model using a sample that omits those who rejected a loan offer made to them

after application. Previous literature has suggested why a limited improvement can be

achieved through reject inference unless very high cut-off values are used (see Crook
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and Banasik (2004), Banasik and Crook (2005)). The finding in this thesis suggests

it is highly unlikely that our default models suffer from sample selection bias when

only the customers having accepted the offer have performance data recorded and are

included in the default models. Utilising the acceptance data, a bivariate probit sample

selection model does not give higher predictive performance compared with a simple

probit model based on the default data only for borrowers who accepted a loan offer.

We also find a significant correlation between the residuals of the default and accep¬

tance models only when a lean model is used. This suggests that acceptance inference

might not be necessary.

A further contribution is a comparison between classification methods: SVM (support

vector machines) vs logistic regression, which has been carried out to model default

and acceptance probabilities. The SVM, albeit found to record good performance in

the literature (Baesens (2003), Baesens et al. (2003)) , does not predict as well as the

logistic regression on our Default data in terms of the Area under ROC curves. But

SVMs have never been applied in the acceptance modelling literature before and we

find that in this context, SVM gives equally good results as the logistic regression

model. The varied performance on different data by the SVM can be explained by the

class distribution in the data where the Default data is much more unbalanced than the

Acceptance data. This makes Default Modelling a more challenging task for the SVM

as it is more sensitive to the class distribution.

Although frequently used in statistical medical research for modelling multiple fail¬

ure events, competing risk survival models have rarely been used in the Credit Scoring

literature (Banasik et al. (1999)). This thesis presents a comparative study of the pre-
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dictive performances of competing risk survival models. We find little improvement in

the predictions over previous survival models estimated separately for each hazardous

event. This suggests that little benefit can be achieved by using the competing risk

survival models on this type of data.

1.4 Thesis structure

The structure of the rest of the dissertation is as follows. Chapter 2 reviews the recent

literature. The details of the theoretical model on which much of this project is based,

the K-O model, will be introduced and discussed. This chapter continues to review the

previous research in the areas of acceptance modelling and Profit Scoring. Both are

essential to the implementation of the K-0 model.

Chapter 3 presents the modelling of default. Two different approaches to default mod¬

elling, logistic regression and support vector machines, are compared. SVM, with

its more complex model structure, does not seem to be as competitive as logistic re¬

gression in the prediction of default. Relaxing the assumption that there is one way

dependence between the probability of default and the interest rate, a simultaneous

equations model was used to investigate the mutual influence between the rate and the

default. However, the predictive performance of this model was not as good as was

achieved by a logistic regression model.

Chapter 4 shows the results of modelling consumer acceptance behaviour. The pre¬

dictive performances of logistic regression models and SVMs are compared. The re¬

sults show that SVMs, although giving a better predictive performance than they do



Chapter 1. Introduction 9

in the prediction of default, do not outperform logistic regression when modelling ac¬

ceptance. Chapter 4 also looks into the need for acceptance inference. An attempt has

been made to improve the default estimation by applying bivariate probit with sam¬

ple selection models, assuming that the residuals of the two equations are normally

distributed. The insignificant improvement leads to the conclusion that our default

models do not seem to suffer from the sample selection bias 3. Finally, indifference

curves have been drawn in APR vs. Loan Amount space. A difference between the

shape of the indifference curves and that assumed in Keeney-Oliver model is observed

and commented on.

Chapter 5 is dedicated to applying survival analysis to model two types of hazardous

events that affect the profitability of customers who accepted a loan offer, default and

paying back early. In this chapter non-parametric Kaplan-Meier estimates are used

to compare and illustrate the differences observed between the hazard and survivor

functions for the two types of hazardous events on the whole data and on different data

segments. Afterwards, different parametric models and semi-parametric PH-Cox mod¬

els have been fitted and assessed before their predictive performances are compared.

Finally, competing risk models have been applied to estimate the probabilities of de¬

fault and paying back early jointly. Their predictive performances are also compared.

Chapter 6 calculates the expected profits for the lender at the time of application using

estimates from the acceptance modelling and survival models of default and paying

back early. The equation to calculate the expected conditional profits together with

the assumptions made are explained in detail. Plugging into the profit equation the
3Although this is conditional on the validity of the normality assumption.
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estimates from the acceptance and PH-Cox models, the expected unconditional profits

at the time of application (and so before an offer is made) are calculated and plotted

in three dimensional space of profit, interest rate and loan amount. Dependent on dif¬

ferent constraints on the optimization objectives, optimal decision policies have been

discussed. This chapter also analyses the difference between models built on each of

the Internet and Non-Intemet segments, comparing the economic benefit of this seg¬

mentation under two different modelling assumptions.

Chapter 7 will conclude this dissertation by summarising the findings, noting some

limitations of the work and then discussing possible extensions of the work in the fu¬

ture.



Chapter 2

Literature Review

2.1 Introduction

Today's consumer credit markets are growing very fast. The total consumer credit

outstanding (combining revolving and non-revolving) totalled over 2.5 trillion dollars

in the US according to the Federal Reserve Statistical Release at Q4 2007 1. Widely

applied credit scoring techniques have helped financial institutions to design new prod¬

ucts for customers and to accept them at much lower costs than before their use.

Lenders have traditionally focused on modelling the risk of default to make a deci¬

sion of accepting or rejecting a new applicant. Using data on previous applicants and

assuming the relationship between the probability of default and the predictive in¬

dependent variables remains constant over time, lenders build models to predict the

probability of default. Default could be defined as the chance that an applicant misses

3 or more consecutive payments in the next 12 months although other definitions are

possible (see Kelly and Hand (1999)).

'http://www.federalreserve.gov/releases/G19/Current/

11
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However, lenders have recognized business objectives other than the risk of default.

Some research (Hopper and Lewis (1992)) has discussed the idea that profit as a mea¬

sure of performance is an alternative to the probability of default. They discussed

strategies that included consideration of individual account profitability instead ofport¬

folio profitability. Keeney and Oliver (2004) and Keeney and Oliver (2005) pointed out

that both profit and market share are fundamental objectives to achieve. They built a

theoretical model to identify the set of win-win situations to integrate both the con¬

sumers' preferences for price and credit line and the lenders' preferences for profit

and market share for a revolving credit product. The implementation of their model

depends on the availability of information on

• the consumer's preferences;

• the probabilities of the consumers to accept offers from lenders;

• estimates of the consequence to the lender conditioned on the offer being ac¬

cepted by the consumer;

• the lender's preference for portfolio performance.

The next four sections in this chapter will discuss in detail Keeney and Oliver's analysis

of consumers' preferences, how the consumers' iso-preference can be presented using

the probability of offer acceptance, the consequence to the lender under such situations

and how the win-win situation set can be identified considering both the lender's and

the consumer's preferences and how the lender shall express his/her preference when

selecting optimal offers for the consumer. After that, implementation issues regarding

how the acceptance probabilities and how the customer preferences can be estimated

will be discussed.
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2.1.1 Consumer's preference

Keeney and Oliver (2004)& Keeney and Oliver (2005) assumed that in a two dimen¬

sional space of Credit Line and APR Rate, a consumer wishes to get as much Credit

Line as possible and to be charged as low an APR Rate as possible. Therefore, in

CreditLine-APR space, it is reasonable to assume that the combinations ofCredit Line

and APR in the top left of Fig 2.1 are preferred by a consumer than points in the bot¬

tom right. Some points shall share a similar preference to the consumer. Connecting

those points which yield the same preference by the consumer we gain iso-preference

curves. The consumer who receives any offer on an iso-preference curve shall have the

same probability of accepting this offer.

APR

Figure 2.1: Consumers' iso-preference curves. The lines represent contours around a

utility hill where the third dimension is utility. Figure based on Keeney and Oliver (2005)

Different consumers will have different iso-preference maps. The shape of the iso-

preference curves represents the preferences of an individual consumer for the offer

characteristics, and so the trade off between those characteristics. A consumer with

extremely high price sensitivity will show nearly vertical iso-preference curves on the

D

C
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2 dimensional space of Credit Line and APR Rate and a consumer with almost no sen¬

sitivity to APR will have almost horizontal iso-preference curves.

The iso-preference curves Keeney and Oliver illustrated reside in a two dimensional

feature space. In a real world case, the iso-preference curves could reside in a larger

dimensional space. Other features like insurance take up, length of loan, gifts such as

free travel money may also be included in a consumer's utility function as empirically

shown by Jung et al. (2003).

2.1.2 Consequence to the lender

A consumer is indifferent between all points on the same iso-preference curve. How¬

ever, for the lender offering them, the story is different when the lender's objectives

are towards the profit generated from the consumer accepting the offer.

APR

Figure 2.2: Lender's profits are different along the consumer iso preference curve. Fig¬

ure based on Keeney and Oliver (2005)

r
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In Fig 2.2, although the probability of a consumer accepting the offer is equal along

the iso-preference curve, the revenue generated by the customer will increase when

moving along the line from bottom left to top right. This is because the lender receives

payments from a higher interest rate and it is applied to a larger loan amount. At the

same time, the expected losses are also increasing because the probability of default

is growing together with the amount ofmoney that would be lost if default occurred.

In summary, Keeney and Oliver argued that "a contribution to the expected profit is

initially small, increases to a single high point and then decreases monotonically along

any individual iso-preference curve".

So along each iso-preference curve of the consumer, there should be a point indicating

the maximum expected profit generated by the consumer for the lender if the consumer

takes the offer. As shown in the Fig 2.3 below, the points A and B are both the points

that yield maximum expected profit while A' and B' are the points giving less profit to

the lender than point A and B.

APR

Figure 2.3: Offers yielding maximum expected profit for the lender. Figure based on

Keeney and Oliver (2005)
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Keeney and Oliver also argue that if we compare the maximum expected profit con¬

ditional on acceptance of the loan by the applicants of different APRs, the expected

profit is low, rises, and reaches a maximum and then declines. The reason is that at

low APRs little interest is received, at higher APRs more interest is earned with the

probability of default rising. At still higher APRs the probability of default is so high

that expected profit falls. Thus:

Expected Profit {given take A } < Expected Profit {given take B}

and

Expected Profit {given take C} < Expected Profit {given take B}

Maximum E [Profit I Take]

Figure 2.4: Maximum expected profit at each probability of take. Figure based on

Keeney and Oliver (2005)

Since all points on each iso-preference curve indicate the same probability of taking

the offer for the consumer, Fig 2.3 could be mapped into the Fig 2.4, which shows the
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maximum expected profit at each probability of take. Note that:

Prob{take A} = Prob{take A'} > Prob{take B} = Prob{take B1}

The y-axis shows the expected profit conditional on taking the offer

Expected Profit {given take A} > Expected Profit {given take A'}

Expected Profit {given take B} > Expected Profit {given take B'}

By multiplying the probability of take by the conditional maximum expected profit

given the probability of take, unconditional expected profit can be derived, as shown

in the Fig 2.5. Keeney and Oliver have assumed the profit is zero when the offer is

not taken and are not explicitly taking the costs of acquisition into account, fn Fig 2.5,

the curve where offer R,S and T reside is the unconditional expected profit, while the

other curve is for the conditional expected profit given that the offer has been taken.

Any points under the unconditional expected profit curve are contributing less profit to

the lender and therefore not desirable to the lender in terms of profitability.

Figure 2.5: Unconditional expected profit. Figure based on Keeney and Oliver (2005)

The lender's utility is assumed to depend partially on market share and revenue. The

dominant set of offers is shown in Fig 2.5 and consists of those on the thicker part

E [ Profit I Take ]
Set of dominant offers are

thicker part of the curve

Pr{Take}
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of the curve. For each point not in the dominant set, we can always find an offer in

the dominant set to beat it with higher probability of take and getting similar expected

profit for the lender. Thus point T is preferred by the lender to point R.

Combining the utility function of the consumer with the profit function for the lender

in a CreditLine-APR space, Figure 2.6 shows the iso-profit contours for the lender as

well as the iso-perference curves for the customer. Note the expected profits for the

lender at point Q,R,S,T,U,V are KQ,nR,ns,nT,Ku,Ky. The offer S will bring the lender
the highest expected profit ns while the offer V, as it is located further away from the

zero-profit-contour (where offer U and Q reside), will bring the lender negative ex¬

pected profit. Offer T and R, residing on the same iso-profit contour, will bring the

same amount of expected profit for the lender. The size of those expected profits is

compared below
/ / / / / /

Ks ]> Kj — KR > K(j = KQ = 0 > Ttj/

Also note that the acceptance probabilities for the customer at point Q, R, S, T, U are

Pq,Pr,Ps,Pt,Pu- Since it has been assumed that the customer will prefer a lower rate
and a higher credit line, the acceptance probabilities are increasing from Q to U

Pq < PR < Ps < PT < Pu

The set of points that start from S linking T U and V is the set of dominant offers

for the lender. Those are called dominant offers because for whatever offer that is not

residing on this line of dominant offers, an equally profitable offer can be found on the

line of dominant offers by moving the offer along the iso-profit contour towards the

point which is tangent to the iso-preference curve that has the highest probability of

acceptance.
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Pl

APR

Figure 2.6: Iso-profit contours for the lender in the consumer iso-preference map. Fig¬

ure based on Keeney and Oliver (2005)

For example, to the lender the offer R is equally profitable as the offer T since they

are both on the same iso-profit contour. However, T is at the tangency point between

this given iso-profit contour and the iso-preference curve with highest probability of

acceptance (Pt > Pr)■ Provided the lender gains utility from both greater market share

and more profit (assuming the lender is not extremely risk averse), the lender will

always favour the offer T than offer R because the latter one means lower market share

and equal profits.

2.1.3 Set of win-win offers

As discussed previously, any offers, like point M in Figure 2.7 below sitting on the

iso-preference curves below where point S resides, are less desirable to the consumer

than point S.
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0
c

□

2
o

APR rate

Figure 2.7: Set of win win offers. Figure based on Keeney and Oliver (2005)

The case for offer N, is different. From the lender's perspective, N is not profit max¬

imizing. The shadowed area between A, B and N is the place where the lender and

the consumer can negotiate an offer price of credit line and rate that is more preferable

to both parties. Moving along the lender's iso-profit curve from N to A, the lender

keeps the same amount of profit and the consumer receives an offer more acceptable.

Following a different path along the consumer's iso-preference line from N to B, the

consumer is indifferent to the changes but the lender will see an increasing profit until

the arrival of offer B.

The lender wishes to be at the points which are on the tangency between lender's

iso-profit contors and consumer's iso-preference curves. For any given profit, such

combinations maximise probability of take. In the Fig 2.7 above, these tangencies

form the line S-T-U-V. On the other side, the consumer wishes to be at the points that

are as top-left as possible in the iso-preference space.

. Iso-profit
V**curve for the

lender

The shadowed
'area is where
the set of
win-win offers
negotiable
between lender
and consumer
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Since the lender is in the position of making the offers, the offers made to the con¬

sumer from a profit maximizing lender are the points along line S-T-U. The consumer

wishes to move top-left towards point V while the lender prefers the other direction

towards point S. An agreed deal is likely to lie somewhere on that line. The offers

that are on the line from U to V are not likely to be considered by a profit-maximizing

lender as they are making a loss. The offers on the line between U and S have the

lender's expected market volume maximized (maximized probability of take by a typ¬

ical applicant), conditional on not making a loss or making a given amount of profits.

In general the expected profit earned by the lender can be expressed as

ExpectedProfit = p(accept\offer) {L(offer)p(G\offer)-D(offer)p(B\offer)}

where L(offer) is the profit for the lender when the consumer that takes the offer is a

good customer in the sense of not defaulting 2 and D(offer) is the loss for the lender

should the consumer take the offer and then default. p{G\offer) and p(B\offer) are

the corresponding conditional probabilities of these good and bad cases.

2.1.4 Lender's preferences

The lender makes his decision by valuing trade-offs between profits and market share,

selecting an optimal offer from the set ofwin-win offers outlined in the sections above.

Keeney and Oliver described this situation using utility functions and letting a lender's

objective be to maximize the expected utility of the business u(n,s), n for profits and s

for market share. Keeping u constant and letting tc and 5 vary, the iso-preference curves

for the lender can be plotted, as in the below figure.

2A customer not defaulting may also pay back the loan early and therefore not a good one in terms

of profitability for the lender
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ISO-Preference Curves

tr lender's
OP1 current

operating point

30 per additional

Market Share

Figure 2.8: Lender's iso-preference curves. Figure based on Keeney and Oliver (2005)

The OP1 point in the figure above shows the lender's current operating point, indicated

by its current market share and expected profits. The lender's current trade off value of

market share and profit can be found by calculating the slope of the tangent line to the

lender's iso-preference curve at point OP1. OP2, compared to OP1, on another lender

iso-preference curve, implies higher expected profit and a much higher trade off value

(in terms of expected profit) for each additional customer.

Figure 2.9: Trade off value per acquisition. Figure based on Keeney and Oliver (2005)

Tradeoff: 30 per
additional acquisition

Tradeoff: 100 per
additional acquisition

U
^ PrfTake}
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For a specific consumer, the optimal offer for the lender to make depends on its current

operating point and current preference. If profit is the only target, the value trade off

between profit and customer number is 0 dollars for each additional customer. Then

the offer S in Figure 2.9 is the optimal choice. If the lender is operating at OP2 and

working on increasing its market share then the offer at U or between U and V in Fig¬

ure 2.9 is the optimal offer it can make.

A weakness of the model of Keeney and Oliver is that it does not take the compe¬

tition between lenders into consideration. Blochlinger and Leippold (2006) simulated

the competition between lenders but many assumptions they made results in oversim¬

plification. A lender's best strategy depends on other lenders' market position and

business objectives. The lenders may seek a Nash equilibrium in a mature market. If a

lender wishes to maximize the profit only without considering itself and other lenders'

market position, it will see itself squeezed out of the market due to relatively high

price. If a lender is eager to enlarge market share without considering itself and other

lenders' profitability, even at a risk of accepting zero or negative profit loan requests

since profitable customers are hard to attract, it will see itself accumulating too much

risk, placing itself in an adverse position in a downward economic cycle. Finally this

model assumes lenders are risk neutral.

2.2 Previous research in acceptance modelling

Casual observations shows that current competition between lenders is intense. Efforts

have to be made to attract new customers and retain them afterwards. Lenders are

building various models to predict customers' acceptance behaviours such as whether
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to respond to marketing mail, whether to accept an offer of a credit product or whether

to switch to other lenders.

Jung et al. (2003) modelled the likelihood of consumers accepting student bank ac¬

counts when being given different offers. Those offers had six features, including 5

choices of overdraft limit, 4 choices of credit card options, fee for foreign currency,

discounts on insurance, interest paid on account surplus and 10 choices of free gifts.

Their data set, named the Fantasy Student Current Account(FSCA), was gathered from

a dedicated website, which was (and is) widely publicized to first year students at the

University of Southampton with prize winning draws as enticement.

Using those hypothetical six offers and 18 applicant characteristics of 331 web partic¬

ipants, they estimated the probability of acceptance for each offer characteristic using

three different modelling approaches, logistic regression, linear programming and an

accelerated life model approach. Because of the particular nature of the samples of

undergraduate students and the possibility of the 'testing effect'3 of the data collected,
the results may not be generalizable. In addition, the consumer's iso-preferences are

not explicitly estimated.

Seow and Thomas (2005) modelled the probabilities of an applicant taking different

offers using decision trees. Their analysis was based on the same data set used by Jung

et al. (2003). A two layered decision tree structure was used whereby the enforced

upper layer used applicant characteristics only and the lower layer used only offer

characteristics. This structure offers the convenience for the lender to build an adap-
3The students were making choices towards hypothetical products rather than real ones.
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tive application process by asking a customer about the applicant's characteristics first

and afterwards providing the offer that is the mostly likely to be taken by this customer.

Different tree settings were examined with and analysed in their paper. These were

an applicants characteristics only tree, an offer characteristics only tree, both types of

characteristics and even with more flexibility allowed in the tree structure (so called

alternate best tree) to generate a better fit to the data. They also explored the situation

when imposing a limited number of questions asked as a restriction on the tree building

process.

2.3 Previous research in profit scoring

Many issues arise when implementing profit scoring systems. The first one is how

to build a fully integrated information system to identify and capture profit related

information such as transactions, the merchant service charge for each account and

how to aggregate them together. Other decisions are

• Should profit be measured for each product individually or calculated in total

for all the products put together? Counting all products' profit considers the

cross selling marketing opportunities that could be neglected when measuring

individual product profit.

• Economic conditions. Crook et al. (1992) explored the differences observed in

the cut-off scores and functions estimated when using data for different years.

Their results showed the importance of economic condition changes over a busi¬

ness cycle and called for careful attention from the credit grantors. Bellotti and

Crook (2007b) demonstrated that including macroeconomic variables in survival
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analysis models as time-varying covariates significantly boosted the predictive

performance of the default compared with logistic regression.

• How to maximize profit using default based score? Subsection 2.3.1 will discuss

that in detail.

• How much to charge to maximize profit without losing the customer by charging

too much? Subsection 2.3.3 will discuss that in detail.

• The implication of the timing of the profits. To calculate the exact amount of

expected profit, not only the propensity for each customer to default will be

needed, but the timing of the defaults will also be important. Apart from defaults,

the timing and likelihood of early repayment behaviour is also crucial in the

profitability calculation. Subsection 2.3.4.2 will discuss the survival analysis in

detail.

2.3.1 Maximize profit using default based score

Following the approach ofMarshall and Oliver (1995) and Oliver (1993), Thomas et al.

(2002) described how to make accept and reject decisions to maximize profit based on

a traditional default credit scoring system and how to maximize the expected profit for

a portfolio. They assumed that the profit from a consumer R is 0 when he is rejected. If

the account is accepted and becomes good, a fixed amount of profit L is gained for the

lender. A fixed amount of loss D is incurred for the lender when the customer defaults

after being accepted. The expected profit E(R\s) for a customer with score s is then:

E(R\s) = Lp{G\s) - Dp(B\s) - Cost = (L+D)p{G\s) -D-Cost (2.1)

where Cost is fixed cost per customer. /?(G|s) is the conditional probability that a

customer with credit score s will be good. /?(5|s) is the conditional probability that
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customer with score s will be bad. Therefore p{B\s) = 1 - />(G|s) The profit maxi¬

mization decision to accept this customer can be derived through from equation 2.1 by

setting E(R\s) >= 0, implying a customer is/?(G|j) >= D2+o'

The total profit expected for the whole customer population that was accepted is

F*(R) = ^(ePgp(s\G) -DpBp{s\B)) (2.2)
s>c

where pc and pg are the probabilities of good and bad respectively. Here the fixed cost

is ignored. Assume p{G\s) is monotonically increasing with s. The cut off value c is

the score where for all the scores s >— c, p(G|j) >=

2.3.2 Relationship between Profit, Volume and Loss in a portfolio

Oliver and Wells (2001) have discussed the effect of different cut off policies on the

expected profit and volume as well as on loss. If all applicants with a score above sc

are accepted we can write:

poo

Expected fractional Volume E[V(sc)} = / f(s)ds=\—F(sc)
Jsc
poo

Expected Loss E[L(sc)\ = / Dp(B\s)f(s)ds — Dps(l — Eb(sc))Jsc
poo

ExpectedProfit E[P(sc)\ = / {Lp{G\s) Dp(B\s))f{s)ds
— LPG(\—FG(SC))—Dpb{\—FB{SC))

where f(s) is the density function of score and F(sc) is the proportion of scores below
the cut off score sc■ With no other constraints, the expected profit can be maximized

poo

MaxscE[P(sc)\ = Maxsc / {Lp(G\s)-Dp[B\s))f(s)ds
Jsc

= Maxsc [ Lp(B\s)(w(s)-y)f(s)ds (2.3)Jsc L



Chapter 2. Literature Review 28

where w(s) is the odds for score s. p(B\s) is monotonically increasing with 5. L and

f(s) are both positive. The unconstrained optimal cut off score sG is found when

wfac) = j

When the lender wants to minimize expected losses with a certain amount of expected

profit as the lower bound, the problem can be written as:

Mins E[L\ = Mins DpB( 1 -FB(s))

Subject to

X:LpG(l-FG(s))-DpB(\-FB(s))>P0

where X is positive and called the shadow price. Using non-linear programming (Kuhn-

Tucker conditions) to solve the optimality equations, the shadow price X is

where w* is the optimal cutoff odds for a constrained problem and w is the optimal

cutoff odds for an unconstrained profit maximizing problem. This can be illustrated

in Figure 2.10, where the efficient frontier is the set of points forming the solid line.

Moving along this efficient frontier in an anti-clockwise direction both expected profit

and expected losses go up until reaching the intersection point with the dotted line.

This intersection point is where the cutoff score equals After that point, the lowered

cutoff scores bring more bads which means more loss. The expected profit decreases

while the expected losses continue to increase. Therefore, the operating points on the

solid line make up the efficient frontier which is optimal.
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Figure 2.10: Efficient Frontier when the objective is to minimize expected loss subject

to given expected profit, Figure based on Oliver and Wells (2001)

Similarly, Oliver and Wells show that non-linear programming can be used to solve

the optimality equations when the lender has an optimizing target to maximize the

expected profit subject to a lower bound on the expected volume.

Maxs £[/%?)] = MaxsLpG( 1 -FG(s))-DpB( 1 ~FB(s))

Subject to:

p: (1 -F(s))>V0

This can be illustrated in Figure 2.11, where the efficient frontier is the set of points

forming the solid line. Moving along this efficient frontier in clockwise direction ex¬

pected profit decreases while expected volume increase. The operating points on this

efficient frontier are always satisfying the minimum volume constraint set above when

maximising the expected profit.
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Figure 2.11: Efficient Frontier when the objective is to maximize expected profit subject

to given expected volume, Figure based on Oliver and Wells (2001)

Using non-linear programming techniques, other business objectives can be incorpo¬

rated in as extra constraints. For example, if the lender wants to add another constraint

of minimum market volume Vq when minimizing expected loss subject to minimum

expected profit Pq.

Mins E[L\ = Mins DpB( 1 -FB(s))

Subject to

A: LpG( 1 -FG(s))-DpB( 1 -Fb(s)) > P0

p: (1 —F(s)) > Vq

Similar Kuhn Tucker conditions are

-DpBfB{s) - A.(-Lpofais) +DpBfB(s)) - p(-f(s)) = 0

X{LPc( 1 -Fg(s))-DPb( 1 -Fb(s))-P0) = 0
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ju(\ — F(s) — Vo)=0

X>0

ju> 0

If ju = 0 and X = 0, Dpb/b{s) has to be 0, which cannot be true. If p = 0 and X > 0,
= LPGfX)-DPBfB(s) If Z7 > 0 a"d X = Q, p — If// > 0 and A. > 0, the condi¬

tions will be invalid unless both equations lpc{ \ — Fg(s)) — dps(1 — Fb(s)) — po = 0

and (1 - F(s) — Vq) — 0 are satisfied. Under such conditions, the cut off that yields

minimal expected profit Po will also bring minimal market volume Vo-

Beling et al. (2005a) continued the discussion of the optimal scoring cut off policies

based on the trade-off between the lender's multiple business objectives, with whom

the relationship to the receiver operating characteristic (ROC) curves have been il¬

lustrated. After presenting the policies to adopt for a single scorecard or dominant

scorecards, they showed policies for those with two scorecards, none ofwhich is dom¬

inating. In the presentation given by Beling et al. (2005b), the risk-neutral assumption

had been replaced with various risk-averse assumptions in the study of optimal portfo¬

lio selection policies.

All the derivations depend on the assumption that we have exact information on the

profit L for a good account and the loss D when the account is bad. Also they are not

assumed to change with the score s, which is more likely to happen when risk based

pricing is applied. Generally in risk based pricing, higher scores will be given lower

interest rate charges and lower scores (more risky customers) will be charged with

higher interest rates. The implication under such situations will be discussed in later

subsection 2.3.3.
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2.3.3 Risk based pricing

Often a lender charges customers the same fixed interest rate and rejects customers

with poor credit scores that are below a cut off value to control the risk. This is com¬

monly used for credit cards. Recently lenders have been separating customers into

different groups using credit scoring techniques. The customers having the highest

credit score are thought by the lender to be the lowest risk and are offered the lowest

interest rates. Those customers without good scores are accepted anyway if the scores

are higher than the cut off value. But they are not given such a low interest rate.

Thomas et al. (2002) used the example below to show how to set risk based inter¬

est rates according to the credit score. Assume in a scoring system the application

characteristics x will be given a score s. pc and p& are the proportion of goods and

bads in the whole population. p(s) is the proportion of the population that has score s.

p(s|G),/?(s|i?) are the conditional probabilities. Now

p(s) =p(s\G)pG+p(s\B)pB

and the probability of being good at score 5

ms) = rmm
by Bayes Theorem. Likewise,

ms)=emm
P{s)

Also assume that the interest rate i charged is a function of the credit score s, noted as

i(s). Assume the cost will be a constantD when the customer defaulted no matter what

the interest rate charged. The profit from a good customer, L(i), depends monotoni-

cally on the interest rate i charged. The lender just needs to decide whether to accept
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customers at each score 5 and what interest rate i to charge.

Denote the probability that customers with credit score 5 takes the offer with inter¬

est rate i as as(i). as(i) is decreasing in i. For a score s, highest expected profit can be

obtained by solving the equation below

max{(Z,(z)/?(G|s, /) — Dp(B\s, /))aJ(/), 0} (2.4)
i

The optimal interest rate i for a score s yielding the maximum expected profit can be

found by differentiating equation 2.4 with respect to i and setting the derivative to 0.

-L {i)p{G\s,i)as(i) - (L(i)p (G\s,i) -Dp (B\s,i))as(i) = (L(i)p(G\s,i) -Dp(B\s,i))a's{i)
(2.5)

As a special case with many simplified assumptions, assume interest rate i is the only

factor that influences a customer's acceptance behaviour and as(i) = The

customer with score s will be exponentially less likely to accept an offer of interest

rate i when it is larger than i*. Also assume L(i) = yjrf-yr — The payment is
R during time T charged interest rate i, at the cost of funds interest rate i*. Further

assume /?(G|s) = p(G\s,i). Interest rate i has no effect on the odds of goods given the

score. Then equation 2.5 becomes

(a(s)+rb)= (2-6)
Solving equation 2.6 will give the optimal interest rate i to charge for customers with

credit score s.

To get to this result, Thomas et al. (2002) implicitly made a lot of assumptions, which,

may not necessarily hold. The first assumption is that the loss D, which is assumed
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constant across all considerations. Banasik et al. (1999) have estimated expected time

to default as well as the expected time to pay off early using survival analysis tech¬

niques. The earlier a customer of a fixed term loan product defaults, the less payments

will be received by the lender, therefore the greater the losses incurred for the lender.

Their estimation of pay off early time also invalidates the assumed form of profit term

L{i), which not only increases with the interest rate charged but also varies with the

time for the customer to pay off early. The earlier the customer pays off or switches to

other lender, the less profit for the lender. Considering the high attrition rates due to

the current extremely competitive market, the inclusion of time to pay off early in the

function of profit L(i) cannot be omitted.

A practical argument against the implementation of risk based prices according strictly

to the score is that ill-intentioned fraudsters may be able to work out the mappings be¬

tween interest rates and credit scores. The latter are and should be kept secret during

operations.

In a simulation study Blochlinger and Leippold (2006) compared three different lend¬

ing strategies. The first one was a policy which selects a threshold cut off point on the

ROC curve and striking a zero profit. The second was a risk based pricing strategy

where the risk premium was linked with the credit score rather than a constant. The

third one was called the mixture regime but in fact was largely a risk based pricing

policy with the risk premium rounded towards the next quarter of a percentage point.

They simulated the competition in the loan market where 3 lenders fight for profit and

market shares when employing different lending strategies. The difference between

them is the predictive ability (quantified using AuROC) of the credit rating methods
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the lenders are using. The results were not surprising. The better the scoring model the

more economic benefit and market share for the lender. The significance of the ben¬

efit was more evidenced when risk based pricing oriented strategies were used across

lenders rather than a cut off strategy.

2.3.4 Other profit scoring approaches

Four different approaches to profit scoring have been considered in the literature. The

first one is to build indirect score cards separately for each profit related variable such

as default, acceptance, attrition and usage. Then combine the intermediate information

together to determine a final decision (see Li and Hand (2002)). But this approach is

open to the criticism that indirect scoring may propagate errors from the estimation

of the intermediate stage model to the final decision. Compared with such indirect

approaches, a reversed approach is to directly regress the profit on explanatory appli¬

cation variables.

The second one is to directly regress the profit on a linear function of the predictor

variables. One recent example is Somers and Whittaker (2007), which used linear and

kernel smoothed quantile regressions to model the revenue on a credit card portfolio

and loss given default on a mortgage portfolio.

The third approach, the Markov chain approach will be discussed in section 2.3.4.1.

The fourth approach, survival analysis will be discussed later in section 2.3.4.2 .
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2.3.4.1 Markov Chain approaches

Cyert et al. (1962) developed a Markov chain process model to describe the behaviour

ofcurrent accounts to estimate profit related variables like loss expectancy rates and al¬

lowances for doubtful accounts. Liebman (1972) formulated the credit control problem

using an infinite horizon Markov decision model to model the transition probability be¬

tween customer states. The customer state model is optimized in terms of minimizing

total credit costs using linear programming techniques after the definition of the cost

matrix is formulated.

Frydman (1984) argues that a mover-stayer model, a special mixture of two indepen¬

dent Markov chains, one for the 'stayer' in which the transition probability matrix

is equal to the identity matrix and the other for the 'mover', in which the transition

probability matrix is a nonnal one, describes the dynamics in payment states. She pre¬

sented a maximum likelihood procedure to estimate the parameters of the mover-stayer

model. Then, Frydman et al. (1985) compared stationary and non-stationary Markov

chain models with the mover-stayer model. They applied those models to data of retail

revolving credit accounts and found that the mover-stayer model provided a better de¬

scription of the data when dealing with a heterogeneous population of credit accounts.

Till and Hand (2001) modelled repayment behaviours of credit card customers using

two kinds of Markov chains, stationary model and mover-stayer model. They found

most accounts stay in the state of being up to date from period t to t + 1. For those

who do not stay, the chance that they miss a further payment in t + 1 goes up and not

levels off until state 5. They also showed that although mover-stayer model describes

data better than the stationary model, first order MCs may not be appropriate.
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Trench et al. (2003) designed and implemented a system using Markov decision pro¬

cesses to make decisions on whether to grant offers to reduce APR or to increase credit

lines. Their model utilized account level historical information on credit card cus¬

tomers and estimated probabilities of the customer transferring from his/her current

state to other states using a transition matrix. After the estimation of the transition

matrix, a set of actions that will maximize the expected future profits in the future 36

months are selected using a recursive calculation method.

Ho et al. (2004) applied Markov chain models on a large sample of current account

data. They found that a first-order Markov chain is not appropriate to fit the data and

describe the customer behaviour. Instead, they applied higher order Markov chains on

the individual segments to address the non-homogeneity in the data yielding scorecards

that perform better than normal application based scorecards.

2.3.4.2 Survival analysis

Survival analysis is one of the statistical techniques widely used in medical research

and also in analysing system reliability. Survival analysis answers the question ofwhen

certain events occur rather than just how likely they are to happen, which has tradition¬

ally been the aim of credit scoring.

For each individual case we will record its time to the event happening(a 'failure'

or 'default' for example) or no such events because of censoring. When the observa¬

tion is censored, the only information we can infer is that the time to such an event

is greater than our observation time period. Denote T as the time of the event, the
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survival function S(t) can be expressed as

S(t)=p(t<T)

A hazard function h(t) is defined as the event rate at time / conditional on that the event

has not happened until time t or later.

(A p(t<T<t +dt\t<T) f(t) S'(t){> dt S{t) S{t)

where /(/) is the density function f(t) = S> (t) — P(t-T<t+dt) xhe three functions, den¬

sity function, hazard function and survival function are interchangeable in describing

the time distribution in survival analysis.

The survival function S(t) can be modelled parametrically using an Exponential dis¬

tribution S(t) — d or Weibull distribution S(t) = e~^k. Log-normal or log-logistic

models have also been tried. Kaplan and Meier (1958) suggested a non-parametric

approach (K-M estimator) to estimate the survival function.

Cox (1972) proposed regression models to analyse the relationship between survival

time and explanatory variables x = (x\,X2, ■■■xp). The hazard function is

h(t)=f(x)h0(t) (2.7)

where f(x) = ewx and w is a corresponding vector of parameters to be estimated.

ho(t) is called the baseline function and takes the form a certain time distribution. In

Accelerated Life models, the hazard function is in the form of

MO = f(x)ho(f(x)*t) (2.8)

where f(x) = ew'x . The difference between the two models is that in accelerated life

models explanatory coefficients w and variables x together are interacting with the time
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variable t in the baseline function ho so that explanatory variables x can accelerate or

decelerate the ageing of the subject studied. For the Proportional Hazard model, the

ratio of hazard for i and hazard for j is independent of ho

hi(t) ewx'
hj(t) ~

Narain (1992) applied the Accelerated Life Exponential Model to loan data and showed

that estimated survival time could be be used to support a better credit granting deci¬

sion. Banasik et al. (1999) applied three types of Proportional Hazards models and

an Accelerated Life model to data for a personal loan and compared their results with

logistic regression approaches. The results suggest PH models are competitive against

logistic regression in predicting default probabilities. They also showed how compet¬

ing risks (propensity to pay off early and propensity to default) can be accommodated

in credit scoring systems.

Bellotti and Crook (2007a) introduced macroeconomic variables in survival analysis

as time-varying covariates. Their results confirmed the influence of macroeconomic

factors on the probability of default and showed that their inclusion did improve the

predictive performance of default.

Andreeva et al. (2005) applied a Proportional Hazard Cox model to data for a revolving

store card product. When the customers made further purchases, this additional infor¬

mation was taken into account to enhance the models. They also reported the different

behaviour patterns observed between the Good and the Bad segments and within the

Bad segments as well.

On the data of the revolving credit card across three European countries, Andreeva
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(2006) compared survival analysis models (parametric and Proportional Hazard Cox

models) with the widely used Logistic Regression. She observed a similar predictive

performance across countries from those models.

Andreeva et al. (2007) combined a survival probability of default and the survival

probability of a second purchase using data relating to the store card in Germany to

form a survival combination model using OLS regression in a second stage to fit the

net revenue. This profitability oriented approach was shown to accrue more profit than

a logistic regression score optimized to minimize default risk only. However, it also

came at a price of accepting more defaults.

Stepanova and Thomas (1999) made improvements in the application ofCox's Propor¬

tional Hazards model to build credit-scoring models. They used a coarse-classifying

approach for characteristics, explained how residual tools can be used to check model

fitness, expanded the Cox PH model by including time-by-covariate interaction. Stepanova

and Thomas (2001) furthered the modelling with their application of survival analysis

in behaviour scoring. Their results showed the scores from their model are competitive

compared with logistic regression and yet provided more information crucial to calcu¬

late expected profit.

Stepanova and Thomas (2001) gave example equations for calculating expected profit

at the application time and month K, assuming the products sold were personal loans

and the survival probability estimated to month i are Sj.

T+2

Profit (Application Time) = ^ ^(l-f y-2 ~ ^
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where a is the monthly repayment amount or instalment, L is the amount of the loan

and T is the term of the loan and r is the monthly interest rate for interbank lending.

Similarly the expected profit at month K is calculated as

T+2-K T

Profit(Month K) = g
- (BK-(T-K)a)

where r is the monthly interest paid by the consumer and Bk is the actual balance

at month K. This is quite a step forward towards profit scoring, although more com¬

plicated formulae should be considered to account for the estimation of both time to

default and time to pay off early. The two events is quite different, in a competitive

personal loan market, early repayments can be 10 to 20 times more likely to happen

than defaults. On the other hand, the potential loss from default for the lender is much

bigger in amounts than the potential loss of revenue due to early repayments.

When considering models of the more than one type of event of interest, the approach

ofmodelling them in a competing risks context has been tried. Lambrecht et al. (2003)

studied a special UK mortgage data set and built a bivariate competing hazards dura¬

tion model to analyse the time to voluntary possessions or forced processions during

a number of years when economic conditions were changing. Although claiming the

model to be a competing risk model, their main assumption was that the two random

time events are independent and therefore wrote the joint density as the product of

marginal densities in their parametric formulation. By investigating the results, they

identified the variables that are most important to the lenders and borrowers when mak¬

ing their own foreclosure decisions accordingly.

Statistical methods are not the only approaches that can be used to estimate the tim-
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ing of the events, Baesens et al. (2005) have investigated neural network models as

alternatives for survival analysis. Based on their analysis comparing the predictive

performance (on defaults as well as on early repayments) of a neural network and that

of other predictors including a Cox proportional hazards model and a logistic regres¬

sion model, they concluded that the improvement achieved through the neural network

model is marginal.

2.3.5 Profit affected by Basel II

Since 1988, the Basel Committee on Banking Supervision at the Bank for International

Settlements introduced a capital measurement system (Basel I) that required banks to

hold a fixed percentage of capital for their loans against possible loss. The limitations

ofBasel I led to the drafting ofBasel II. The Basel II Accord mandates that the minimal

capital required for a loan is a function of the LGD (loss give default), PD (probability

of default) and EAD (exposure of default). Oliver and Thomas (2005) discussed what

implications the introduction of regulatory requirements in Basel I and II will bring

and compared the optimal profit-maximizing cut-off scores under the requirements of

Basel I, II and before the Accords. Their model assumed the lender borrowed all the

funds and all equity is the shareholder capital. Cg stands for per unit borrowing cost

and Cq is for the equity capital cost. The expected profit for a single account can be
written as

E[P]=E[R] —E[L\ -E[Cb]-E[Cq] -Cf

where R is for revenue, L for the loss when default. CF is fixed costs.

The expected profit for the portfolio of accounts with scores larger than the cut-off
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score Sc is

E[PP\Sc} = rLpGFc{Sc\G) -fDpBFc(Sc\B)-rBFc(Sc) -rQfD [~K(p(s))dF(S)-CFJsc

where ri and rq are the interest rate charged for lending and capital correspondingly.

Pq and ps are the probability of good and bad. The optimal cut-off is obtained when

_ Pof{s*\G) = (fD + rB)PrQfDK(s*)°c Pb/{s*c\B) (rL -rB) -rQfDK(s*)

Using a numerical example they showed that under Basel I a higher cut-off score is

needed compared with Basel 0. The optimal cut-off score under Basel II may be higher

than under Basel I when the lender is taking high risk applicants by charging very high

rates, otherwise Basel 1 is more restrictive than Basel II.

2.4 Conclusion

This chapter has reviewed previous research relevant to profit scoring. Following

Keeney and Oliver (2005), we presented the preferences of the consumers in a two

dimensional space, the consequence to the lender in terms of expected profit and

how to locate the set of win-win offers. Next we described recent practical and the¬

oretical work modelling acceptance probabilities, maximizing expected profit using

default-risk-based scores and how risk based pricing may be implemented using de¬

fault based scores. Afterwards brief introductions were given to different profit scoring

approaches.
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Default Risk Modelling

3.1 Introduction

This chapter is dedicated to the modelling of the default risk. Section 3.2 reviews pre¬

vious research work in default modelling methods and compares their performance.

In section 3.3 and 3.4 modelling details of logistic regression and support vector ma¬

chines (SVMs) are described. Section 3.5 explains why the area under ROC curves

is used as our performance measure instead of the accuracy ratio. Section 3.6, which

describes how the data is prepared is followed by section 3.7, reporting and comparing

performance of logistic regression and SVMs on the default data. Section 3.8 investi¬

gates the bidirectional relationship between the probability of default and the interest

rate. Finally, section 3.9 summarizes the findings in this chapter.

3.2 Previous research in default risk modelling

To facilitate faster and safer lending practice, lenders build credit scoring models to

assess the risk of default (non-repayments). These models are designed and trained to

44
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discriminate between future applicants based on the observed performance of existing

customers together with their application characteristics and the bureau data shared

between lenders. Predicting a default or no default outcome is a typical binary classi¬

fication problem.

Many statistical and non-statistical classification methods have been proposed and

applied in the credit scoring literature. Those methods include discriminant analy¬

sis, logistic regression, mathematical programming, decision trees, neural networks,

genetic algorithms, genetic programming, support vector machines and nearest neigh¬

bour methods. Combinations of different classifiers have also been tried. Comparative

studies of those classification methods have been carried out in various papers (see

Srinivasan and Kim (1987), Yobas et al. (2000), Baesens (2003), Ong et al. (2005) and

Lia et al. (2006)), with the classification accuracy rate used as the performance indi¬

cator. Table 3.1 compares the performance of different classification methods using

accuracy rate.

Newer and more complex methods, however, bring diminishing improvements, as

Hand (2006) observed. Hand suggested some reasons why little improvement happens

using much more complex models. The first is the flat maximum effect (Winterfeldt

and Edwards (1982) Hand (1997)), where by adding additional variables little can be

gained after equal weights of a linear predictor are carefully optimized. The second

reason is population drift (Kelly et al. (1999)). One of the fundamental assumptions of

credit scoring models is that the customer population distribution with respect to the

risk of default is supposed to be stationary over time. That is without doubt unrealistic

in practice. Customer behaviour will change because of constant changes in the exter-



Table3.1:Comparetheperformanceofdifferentclassifiersusingaccuracy,enlargedbasedonCrooketal.(2007) Authors

Linear Regression

Logistic Regression
Classification Trees

LP

Neural Nets

GA/GP

SVM

Rough Set

SrinivasanandKim(1987)
87.5

89.3

93.2

86.1

Boyle(1992)

77.5

75

74.7

Henley(1995)

43.4

43.3

43.8

Yobasetal.(2000)
68.4

62.3

62.0

64.5

Desai(1997)

66.5

67.3

66.4

Baesens(2003)

79.2

79.9

Ongetal.(2005)

80.795

78.2

81.72

82.805

79.145

Liaetal.(2006)

73.17

84.83
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nal economic environment. Customers acquired in this advertising campaign will also

be different to those attracted in a next one due to dynamic competition in the market

between the lenders.

Hand also pointed out some common questionable practices during the modelling pro¬

cess by the researchers. One of the problems is the mismatch between the optimization

criteria and the performance assessment methods. A common example is the using of

likelihood to select a model, followed by using the accuracy or misclassification rate to

evaluate the model performance, and finally reporting cost weighted misclassification

rate in practice.

Using the accuracy percentage alone is not a good indication ofpredictive performance

as it fails to reflect the difference in the predictive ability towards different classes.

Area under ROC curve (AuROC) is a more appropriate choice. Detailed discussion

will be given in subsection 3.5.2. For a comparison of the credit scoring models whose

performance is measured in AuROC, please see Baesens et al. (2003) and Bellotti and

Crook (2007c). Besides, the datasets used in the some of the comparative studies may

not reflect the real consumer credit data distribution faced by today's major lenders in

the UK. Take the German Credit Data used in Ong et al. (2005) and Baesens (2003)

for example, thirty percent of them are defined as 'bad' and others are 'good', which

contrasts with typical UK consumer credit data with default rates at around or less than

5 percent.

In this chapter we will compare the performance of logistic regression and support

vector machines in predicting default. Logistic regression is the classifier that is most
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commonly used by lenders and it has yielded consistently good predictive performance

compared with other classifiers (see Table 3.1). Support vector machines are one of

the most promising newer methods. The following two sections will introduce the

modelling detail of logistic regression and support vector machines.

3.3 Logistic regression1

When the dependent variable to predict is binary or dichotomous , logistic regression

may be a more appropriate model than linear regression models. Linear regression

relates the explanatory (or predictor) variables to the dependent(or outcome) variable

by the formula

y — Po + PiM + • • • + P/A«

The dependent variable y could range from —°° to +°° if the values of xn varies from

—oo to +oo. This cannot accommodate the data when the dependent variable is taking

values between 0 and 1 only, although for application scoring this may not matter

since only a ranking is required. However for the calculation of PDs (Probability of

Default) for regulatory capital purposes, predictions outside the [0,1] interval would

be problematic. The logistic transformation solves that problem so that the dependent

variable, p, ranges from 0 to 1 and so can be interpreted as the estimated probability.

k(x)g(x) = In

And the probability p is

1 — 7t(x)

p = %{x) =

— po + Pl-H + • • • + Pnxn

es(x)
1 + es(x)

Maximum Likelihood Estimation methods are normally used to find the estimates of

the parameters that will maximize the likelihood, the probability of observed data. The
'The introduction of logistic regression models follows Hosmer and Lemeshow (2000)
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likelihood function for one observed data point (*,-,>>,•), is

n(x)yi [1 -7t(x)]1_-v''

Since the observed data are assumed to be independently collected, their joint proba¬

bility can be written as

L = Yln(xYi[\-n(x)}]-yi
The parameters to be found to maximize L are also going to maximize ln{L) as the log

of L is monotonically related to L. In practice, it is much easier to find the maximum

of ln{L) or the minimum of—ln(L).

Unlike linear discriminant analysis, logistic regression does not require that the co-

variates are normally distributed or that the covariates have an identical covariance

matrix. When dealing with real data in which normality conditions are sometimes not

met, logistic regression can cope well without the restriction of these assumptions.

3.3.1 Variable selection using step-wise selection

Hand (2006) shows that in a linear model, introducing additional variables may result

in diminishing improvement in explanatory power. Adding very large numbers of vari¬

ables may also result in over-fitting of the model. So we have run step-wise variable

selection routines.

There are two directions to select variables, Backward selection and Forward selection.

Backward selection starts from a complete set of variables and then tries to remove
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those insignificant ones step by step. Forward selection is working in the opposite

direction by adding the most significant variables step by step. At each step of a Back¬

ward stepwise selection, an attempt is made to remove any insignificant (when their p

value is smaller than a pre-set threshold pou,) variables from the model before adding

a significant variable (when their p value is larger than a pre-set threshold p,n) to the

model.

3.3.2 Existence of MLE(maximum likelihood estimation)

Albert and Anderson (1984) discussed 3 different situations under which the existence

of a MLE solution of the logistic regression model depends. These 3 different data

configurations are listed below.

• Complete Separation

The data can be completely separated. There exists a vector b that can classify

all cases into the observed classes correctly.

bxj >0 Yj = 1

bxj <0 Yj = 2
In this situation, non-unique infinite estimates are given by the SAS logistic pro¬

cedure.

• Quasicomplete Separation

The data are not completely separable but there is a vector b such that

bxj >0 Yj = 1
<

bxj <0 Yj — 2
In this situation, non-unique infinite estimates are also given by the SAS logistic
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procedure.

• Overlapped

Overlapped data configuration means there is no complete or quasi-complete

separation existing in the sample points. In this situation, unique maximum

likelihood estimates exist.

The problems of quasi-complete or complete separation of data points are typically

encountered when the sample size of data is small. This is later evidenced in the

logistic regression results for a subsample of our data.

3.4 Support vector machines

Support vector machines (SVMs) are becoming one of the most promising learning

methods used for classification and regression. Numerous applications have been sug¬

gested, such as hand written digit recognition, object recognition, text categorization

etc. In many problems SVMs have been found to perform extremely well compared to

other classifiers.

Not surprisingly, SVMs have been tried on credit scoring problems with encourag¬

ing results reported. Baesens (2003) compared the classification performance of Least

Squares SVM against other commonly used techniques including decision trees, lo¬

gistic regression, naive Bayes, linear and quadratic discriminant analysis and k-nearest

neighbours. He concluded that SVMs achieved very good test set classification perfor¬

mances in terms of accuracy rate. However, his analysis was carried out on publicly

available UCI benchmark datasets (Statlog Australian Credit, Bupa Liver Disorders,

The statlog German Credit, The Statlog heart disease, The Johns Hopkins Univer-



Chapter 3. Default Risk Modelling 52

sity Ionosphere, The Pima Indians Diabetes, the Sona, The Tic-Tac-Toe Endgame,

the Wisconsin Breast Cancer and The Adult), none of which resembles a typical low

default-rate dataset a major UK bank now faces. Therefore some questions still remain

unanswered on how SVMs will perform on an extremely imbalanced dataset, which

presents a difficult learning task.

Schebesch and Stecking (2005a) also applied SVMs to classification using loan data

from a bank. However they conducted their analysis and reported findings based on

re-sampled data so that the good-bad ratio was equalized rather than the original 6.7

percent. They have reported the performance of the classifiers using leave-one-out-

error rate, which is around 25%, which is slightly better(but not significant) than logis¬

tic regression. In the results of Schebesch and Stecking (2005b), they have observed

that SVM outperformed logistic regression with unequal sizes of good and bad in the

sample as well as asymmetric costs ofmisclassification.

3.4.1 Formulation2

In a typical classification scenario, we have a set of training data to split into two

classes. The data are in the form of pairs (x/,y,) where i is case i. In a normal binary

classification problem, y,- is a class label of the data vector x, taking value of either —1

or +1. For a linear machine on separable data all the training data should satisfy the

constraints below:

w-Xi + b > +1 if y,- = +1
<

w-Xj + b < — 1 if yi — — 1

2The introduction of SVM formulation follows Burges (1998).
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Where w and b are the weights and constant accordingly. The two inequalities can be

combined to be written as

yi(w-Xj+ b) — 1 > 0 Vz (3.1)

The best classifier is selected when the pair of parallel hyper-planes H\ : w ■ x,- + b —

— 1 and H2 : w • x,- + b = +1 is found to have the largest orthogonal distance, or the

maximum margin (7777), as illustrated in Figure 3.1 where none of the data points fallIMI

in the region between the hyper-planes. Mathematically, finding the maximum margin
2is equivalent to minimising 11 w\ \ subject to the constraint in equation 3.1.

H2 •

Figure 3.1: SVM on two-class linearly separable data

In most cases the data are not linearly separable. We can relax the inequalities by

introducing positive slack variables (Vapnik (1995)) in the inequalities to allow for

training errors .

w-Xj + b >+l-£;- if y, = +l

< w-Xj + b < -1+ if yt = -1

^ > 0 V/
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The objective function to minimize is now

l^+c(iyZ i

where C is a cost parameter controlling how much we can tolerate training errors. A

larger C means a higher penalty assigned to the objective function during optimization.

The Lagrangian L in primal form is:

L _ML+c(£^) - ^<3i(y/(wri + b) - 1 +£,-) -£A& (3-2)
/ / /

where o, and 2,, are the Lagrange multipliers introduced. Using Karush-Kuhn-Tucker

conditions,

V n— =w-X^ = 0

^ V n

3» = -2>I = O
~ r - n - \ -n

-,e — L ®
OS;

fl/ > 0

A,->0

^/(w-Xf + A) - 1 +^; > 0

$/>0

a,(yi(w -xi +b)- 1 + £,■) = 0

A& = 0

Note that ifwe choose i so that A.,• = C — at > 0, then we can have £,• = 0 because A,-^,- =

0. Also if a,- 7^ 0,y;(w-x,-t-&) — 1 +4/ = 0 because a,(y/(w-x, + Z>) — 1 +^;) = 0. Those

points (xj,yj) that are called support vectors form the decision boundaries that are the

two hyper-planes that separate the two classes. Substituting the equations above back
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into Equation 3.2, the problem ofminimizing L becomes the problem of maximizing

LduqI in dual form:

5 j s s
maxLDuai = X a> ~ 9 X X ai"jyiyj(xi ■xj) (3.3)

i=\ 1 ;=1 i—j

subject to

{0 < a/ < CSf=i = o
where S is the number of support vectors.

When the decision function is better described using a non-linear function, better per¬

formance can be achieved using a non-linear support vector machine, which projects

input data to higher or even infinite dimensional feature space where a linear classifier

can separate mapped data much more easily. Such a method is called the 'kernel trick'.

Note the mapping $ from lower / dimensional space to higher h dimensional space

$ : R1 Rh

Therefore in higher feature space, similar to maximising the margin, we need to solve

an equation similar to equation 3.3

5 j s s
maxLDuai = X ai ~ TX X aiajyiyj($(x') ■ <\>(xj)) (3.4)

,=1 Z ;= I ;=j

subject to similar constraints. Note that components of <|)(jc/) • §(xj) always appear to¬

gether, and is replaced with the kernel function K(xj,Xj) = <|>(x;-) • ^(xj) when Mercer's
Condition is met. The cunning bit here is that <J)(jc) does not need to be computed ex¬

plicitly because only the values of K(x,y) — (|)(x/) • ((>(*/) are needed to be evaluated.

By choosing an appropriate functional form ofK(x,y), computational complexity does

not increase exponentially with the mapping from lower dimensional space to higher
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dimensional space.

A classification result for a test point T can be computed based on the sign of function

/0) = X aiyiK(T^i) + b
;= l

where Sj is the zth point in the set of support vectors and S is the number of support

vectors. Only those support vectors forming the decision hyper-planes are needed to

give predictions. After the training of the SVM is finished, only these support vectors

instead of the whole set of data points need to be retained in the model. That saves a

lot of runtime memory and increases the speed of generating predictions.

3.4.2 Practical concerns

3.4.2.1 Kernel Choices

One of the most important factors that affects the performance of SVMs is the choice

of kernels. Three very commonly used kernels will be used.

• linear kernel: K(x,y) —x-y

• polynomial kernel: K(x,y) = (y -x-y+ r)d

• RBF kernel: K(x,y) = e~^x~y^2/2°2

• Sigmoid kernel: K(x,y) = tanh(y-x-y+ r)

The kernel parameters like d r and c have to be determined using some model chosen

methods. Cross-validation is a common choice to select the best model in predicting

unseen holdout data.
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3.4.2.2 Different Weights on Different Classes to Handle Imbalanced Data

The original formulation in the SVMs aims to maximize the margin (jj^jjr) subject to
constraints. This implicitly assumes that the importance of classes are equal when try¬

ing to separate them. However, this maximizing objective is questionable when dealing

with imbalanced data in which the minority class happens to be more important. SVMs

trained with equalized weight on both classes will be rewarded (quite rightly according

to the formulation) to allocate all cases into the majority class.

To handle an imbalanced data set, instead of minimising the equation treating good

and bad cases at the same cost C which gives

Z i

Osuna et al. (1997) suggested the extension of introducing separate cost parameters

C+ and C_ to form a new objective equation to minimize.

min^- + C+( £ y+C_( £ £,)
tyt=+1 i-yi=-1

subject to

yi(w-Xj+ b) >+l-^,-

$« > o v;

Here C+ stands for the cost of misclassifying the positive class (minority and more

important) and C_ is for misclassifying the majority negative class. Similar to previous

treatment, Lagrangian multipliers can be introduced in the L as below,

minL = M-+C+( Y, £/)+£-( X 4»)-Za''CV/(w■*,■ +&)-i+Si)-
i\yi=+\ tyi=-1 i '

using KKT conditions, dual form Loual can be written as:

S J s s
LDuai = X "t ~ 9 ZXwjyiyAxi ■ xJ) (3-5)

i'=l i'=l i=j
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subject to
0 <cij<C+ ifyi = +1

< 0 < o, < C_ ifyi = — 1

XL «/>"/ = o
After solving this optimization problem, the prediction can be made in a similar fashion

as before, 5gn{Xf=i aiyiK(T,Si) + b}. Our estimations have been carried out on Libsvm
Chang and Lin (2001) with the setting of ^ = 25. During the optimization,
two model parameters are being searched, a common cost C and weighted odds W —

Et
w •

3.5 Performance measures

This section will define Receiver Operating Characteristics (ROC) curves and the area

under the ROC curve and compares the advantages and disadvantages of alternative

measures ofpredictive performance.

3.5.1 Definition of the ROC and area under ROC curve

The ROC curve was introduced to measure the ability to detect signals from noises. It

is widely used in medical research to describe the detection ability of classifiers. For

a dichotomous outcome problem, each instance case belongs to a positive or negative

class label. The objective of the classifier is to label the cases into positive or negative

classes. Given the classifier and existing known class labels, there are four possible

outcomes of the prediction.

1. True Positive: Positive instances correctly labelled as positive

2. False Positive: Negative instances incorrectly labelled as positive
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3. False Negative: Positive instances incorrectly labelled as negative

4. True Negative: Negative instances correctly labelled as negative

A 2x2 confusion matrix can describe this

Actually Observed Classes

Positive Negative

Predicted Classes
Positive True Positives False Positives

Negative False Negative True Negatives

Table 3.2: Confusion Matrix

The True Positive Rate, also called sensitivity or recall, can be expressed as

TruePositives
True Positive Rate = — — —

TotalActualPositives

And the False Positive Rate,

FalsePositives
False Positive Rate =

TotalActualNegatives

Specificity is defined as:

False Positive Rate = 1 — Specificity

A discrete two-class classifier outputting some probabilistic results predicts class la¬

bels given a cut-off or threshold value. The instances where the attached probabilities

are higher than the cut-off value are then classified as positive and the rest as negative.

For each cut-off value we can calculate the corresponding True Positive Rate and False

Positive Rate. Then in a two dimensional True Positive vs. False Positive space, con¬

necting all those (TP Rate, FP Rate) points will give us a ROC curve as in Figure 3.2,
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in which sensitivity equals to the true positive rate while false positive rate equals to 1

- specificity.

Area under ROC curve = 0.7873

Figure 3.2: Sample ROC curve

One important value to read from a ROC curve is the area under the ROC curve

(AuROC or AUC) value. Because both the X axis (FP rate or 1-specificity) and Y axis

(TP rate or sensitivity) range from 0 to 1, the Area under a ROC curve is between 0

and 1. Its value is widely used to measure the ability of the model to correctly dis¬

criminate 'good'(positive) cases from 'bad'(negative) cases . The bigger and nearer to

1 the AuROC is, the better the model is considered to be in its classification perfor¬

mance. The AuROC is also related to the Gini Coefficient, which can be calculated as

2 *AuROC — 1.

A random classifier doing nothing but wild guessing should get a straight ROC curve

directly connecting points (0,0) and (1,1). Therefore its AuROC is 0.5. Any correctly

discriminating classifier should do better than that. If not, reversing all the predictions

from negatives to positives and positives to negatives should increase the AuROC.
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Calculation of the AuROC can be done by counting the true positives and false pos¬

itives under each cut-off setting and then summarizing them. A much more efficient

way of calculating the AuROC value is to firstly sort the prediction results together

with the actual class labels by the predicted probabilities(or scores). Recognizing that

previously counted true positives and false positives can be re-used to calculate true

positives and false positives under lower cut-offs. The computational complexity is

therefore reduced to just one linear scan.

3.5.2 Area under ROC curve compared with Accuracy Ratio as a

performance measure

The Accuracy Rate is widely used to measure the predictive performance ofclassifiers.

The Accuracy rate is calculated as

Correctly Predicted Instances
Accuracy rate = Total Instances

The problem with Accuracy Rate is that per se it cannot correctly reflect the differences

in the prediction ability on difference classes.

Many binary classification problems involve very skewed class distributions where

as low as 1 in 1000 cases are positives that need to be detected. Contrary to the relative

size in the distribution, those minority class members are more likely to receive spe¬

cial attention in the investigation. This is normally because when those minority class

members are misclassified the costs incurred will be much higher than those from

the majority class. A classifier making all of its mistakes on one important class can

achieve the same Accuracy Rate as another classifier making mistakes on both classes
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or on the class that is less important.

If the cost ofmis-classification can be determined by the researchers before modelling,

a 2 by 2 cost matrix can be created (assuming the problem is a binary classification ) as

shown in Table 3.3. Each cell of the costmatrix represents the cost ofmis-classification

for that corresponding cell in the confusion matrix. For example, based on the cost ma¬

trix, a cost sensitive classifier can be calculated either re-weighting the training data

according to the cost matrix or predict the class by minimizing expected misclassifica-

tion cost instead ofAccuracy Rate.

1 20

2 1

Table 3.3: Example of a Cost Matrix

The AuROC does not account for different costs of misclassification. The benefit of

AuROC is that it gives an indication of predictive performance over all cut-off values.

Its weakness is that for practical purposes we may be interested in only a narrow range

of cut-offs, to be precise, the slope of the tangent line to the ROC curve at the cut-off

point. Such optimal cut-offs can be found using ROC curve when loss and gain have

been quantified, as shown in the chapter 7.6 of Thomas et al. (2002). Blochlinger and

Leippold (2006) continued this discussion of optimal pricing strategies using the ROC

curves and related those to the profitabilities. They simulated the competition between

(an assumed) 3 lenders' loan market where the lenders took different rating models

(with predictive abilities quantified by the AuROC) and various pricing strategies. The

results are not surprising, the better the scoring model the more economic benefit.
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3.6 Data preparation
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3.6.1 Definition of default

Given the performance data we have access to, and depending on the type and length

of time period we are researching ( the whole life of an account, the first 12 months

or the most recent 12 months ), we can classify the status of an account into one of 3

categories

1. Good. The observation never missed more than one or two payments during the

time period we set.

2. Paying back early. The customer paid back early and settled the loan before the

end of the observation period of the data .

3. Default. The customer missed 2 or more than 2 payments during the observation

time period.

When modelling the default probability using binary logistic regression, the depen¬

dent variable takes only 2 possible values, 0 for no default or 1 for default. Therefore

the paying back early cases are assumed to be good and marked as 0. The default

is marked as 1 on those who have missed 2 or more than 2 payments in the first 12

months of their account histories.

3.6.2 Bands separation

The data we are working on were collected by a financial institution selling fixed term

loan products. Based on the credit scores, a customer is allocated to one of 7 different

bands numbered from 0, 10 20, ... 60. The number of cases in each band varies. The
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Interest Rates Mean Std. Err. [95% Conf. Interval] N

BANDO 17.60092 0.430556 16.75702 18.44481 251

BAND 10 21.35344 0.086132 21.18462 21.52226 2240

BAND20 17.54549 0.055612 17.43649 17.65449 2915

BAND30 12.94531 0.033621 12.87942 13.01121 5078

BAND40 10.06131 0.031029 10.00049 10.12213 4604

BAND50 7.396764 0.021013 7.355579 7.437948 6915

BAND60 7.215612 0.010638 7.194761 7.236463 31347

Total 9.236919 0.0190147 9.19965 9.274188 53350

Table 3.4: Average interest rates across bands

smallest band 0, has only 253 cases while the most frequently populated band 60, con¬

tains 21840 cases.

Customers in each band were offered different interest rates to test their acceptance

propensities. Across the bands, the average interest rate applied to each band reflects

the level of risk the bank attached to the cases in that band. The lower the band, the

higher the average interest rate will be charged. Within each band, the exact interest

rate each applicant was charged was the average band rate plus or minus a random

adjustment.

Table 3.4 reports the mean interest rate with standard deviations across different bands.

Generally, the higher the band number, the lower the average interest rates that was

charged with a smaller standard deviation observed. BANDO is a very small band

within which the institution has offered a relatively wide range of interest rates. This is
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evidenced by a much higher standard error of 0.43 within the band compared to those

of other bands (0.01 to 0.08).

This analysis estimated a logistic regression model using all the data in aggregate and

logistic regressions for each band separately.

3.6.3 Data transformation

Continuous variables were categorized into 7 equal sized bins by choosing 6 splitting

points so that the number of cases falling between every two splitting points are the

same (or as similar as possible). By doing so each bin has a similar and large enough

number of cases. The traditional method of "coarse classifying", grouping cases based

on the similarity of odds, is not adopted. This is because we have to predict at least

two binary dependent variables, default and acceptance, both of which can provide

conflicting odds (please see next chapter for acceptance modelling).

For categorical variables, some very rare levels cannot be divided evenly into separate

training and holdout sample sets. Ifby chance all such cases fall into the holdout sam¬

ple set, the model trained on the training set will have difficulties in predicting cases

with such 'novel' values. As a remedy, their values are assigned to the nearest levels.

These rare cases should have little impact on the predictive ability of the trained model.

Two methods are available for the coding of categorical variables. The first one is

the so called Weights of Evidence. These can be calculated based on the log odds

information so that categorical variables with a lot of levels can be easily transformed

into just 1 dimensional numerical values, saving a lot of extra dimensionalities that
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would otherwise be required. This method is efficient and much faster for parameter

estimation when we have only one targeting dependent variable to model.

However, since we have to model the probability of acceptance and default and also

time to default in the next stage we chose dummy variables encoding in the later analy¬

sis (the only exception is the interest rate, retaining its original numerical values rang¬

ing from 5% to 32%). For a categorical variable with k multiple levels, k — 1 dummy

variables are created to replace the original variable. Each dummy variable takes a

binary value of 1 or 0, corresponding to the presence of each level in the original

categorical variable. The level left not coded is represented when all other dummy

variables take the value 0.

3.6.4 Training and holdout sample separation

A model trained and tested with the same set of data cannot be used convincingly.

This is because the model may be over fitted with the training data and so performs ex¬

tremely well in classifying every case in the training data correctly but performs much

less well in an independent holdout data set, which is representative of the population

of all applicants (Thomas et al. (2002)).

By comparing the difference in classification performance between training set and

randomly selected holdout set we can examine whether the current model is over-

fitting. Our data are separated into a randomly selected 70% training set and 30%

holdout set.
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3.7 Results
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3.7.1 Logistic regression results

Logistic regression models were parameterised for each individual band to predict the

default probabilities within that band. The BANDO data are so small that the SAS

logistic procedure reports finding quasicomplete data separation. The MLE estimates

reported for BANDO are therefore questionable. To get convergence in the maximum

likelihood estimation, the sample size must be increased. We combined BANDO and

BAND 20 to form a larger set and ran logistic regression on it as well. The reason for

choosing BANDO and BAND20 is because the two bands have similar average interest

rates, as shown in Table 3.4.

Table 3.5 reports the performance of the classifier across bands using the AuROC.

From BANDO to BAND60, the size of holdout samples is increasing. BandO is so

small that the likelihood estimation routine cannot converge. The AuROC of the model

based on all bands data put together is much higher than those reported from other in¬

dividual bands. This can be explained by the fact that the average interest rates offered

to different bands are varied and combining bands together increases the variance of

interest rates, one of the most predictive independent variables. In some bands, some

holdout samples are omitted because they have some dummy variables not appearing

in the training set due to the random training-holdout-split procedure.

On the training data with all bands combined together, stepwise routines were used to

select the variables for the logistic regression. For the meaning of the names of the
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BAND Converged? AuROC Holdout Sample Size

0 N 0.8571 26

10 Y 0.7623 85

20 Y 0.6803 163

30 Y 0.6934 445

40 Y 0.6129 591

50 Y 0.6514 1430

60 Y 0.7063 6649

0&20 Y 0.6199 193

ALL Y 0.7907 9397

Table 3.5: The predictive performance measured in AuROC across bands.

variables selected, please see Table 3.6. Appendix A: Tables A.l and A.2 list the max¬

imum likelihood estimates of all parameters. The coefficient of the interest rate APR

is 12.2737, which means a percent unit increase in APR will lead the odds of default

increasing by a factor of exp( 12.2737/100) = 1.1306 when other variables are fixed

at the same value. For example, the coefficient of Tnsurance=N' is —0.5967, which

means if the customer does not take the insurance, the odds that he/she is to default

will decrease by a factor of 1 — exp(—0.5967) = 0.4493.

The MLE parameter estimates for each of individual band from 10 to 60 can be found

in Appendix A: Tables A.3 A.4 A.5 A.6 A.l A.8 A.10. Bands 0, 10 and 20 have few

observations so the validity of the model estimated is questionable. In the models es¬

timated for those bands, the Rate variable was even excluded after stepwise selection.

One possible explanation could be that those bands are previously screened as high



Table3.6:Variablenameexplanation
VariableName
Explanation

Insurance
Insuranceindicator

LOANAPR1
aprrate

LOAN.AMT
requestedloanamount

TERM

requestedloanterm
internet
internetindicator

newbus

newbussinessindicator
ALCIFDET
anysurnamedetectedbyCIFASfraudpreventionservice

CCJGT500
NumberofunsatisfiedCountyCourtJudgementswhichhaveavaluegreaterthan500,recordedagainsttheapplicantsname

LOANBAL1-4
Loanorcardbalance1to4

NETINCM

netmonthlyincome
SEARCHES
Totalsearches

SM089

numberofCAISaccountsinstatuscategory8or9,mailorder,sameperson
SNW12TV
worststatusinthelast12monthes,tvrental,sameperson

SOCNOACT
numberofowncompanyaccounts

SOCSETT
numberofsettledCAISaccountwithstatus0s,owncompany,sameperson

SPL6M4

Worstaccountstatusinthelast6monthsofactiveCAISaccountsopenedinthelast4-12monthsmatchedtotheapplicant(s)asSamePersonassociated.
SPL6MACT
Worstaccountstatusinthelast6monthsofallactiveCAISaccountsmatchedtotheapplicant(s)asSamePerson.

SPSETLD

ThenumberofsettledNonMailorderCAISwithcurrentstatus0matchedtotheapplicant(s)asSamePerson.
SPVALDEL
Totalvalueofdelinquentaccounts-sameperson

SSRC4T06
numberofsearcheslast4-6monthes,sameperson

SVALCAIS
ThetotalofdefaultbalancesofCAISaccountswithcurrentstatus8or9matchedtotheapplicant(s)asSamePerson.Thisisgroupedinbandsof10.

SWRSTCUR
WorstcurrentstatusofallactiveCAISaccountsmatchedtotheapplicant(s)asSamePerson.

TOSETTL6
ifthecreditcommitmentisbeingsettledwiththeloanfundsappliedfor.

WORST12

Worststatusinlast3monthsforanyactiveCAISaccountsopenedinthelast12monthsmatchedtotheapplicant(s)asSamePerson.
WRST46AL
Worststatusintheperiod4to6monthsagoforanyactiveCAISaccountsmatchedtotheapplicant(s)asSamePerson.

AGE

ageoftheapplicant(s)
INC.SURP
incomesurplus

MOR_RENT
Monthlymortgageorrent

O
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3
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O

CD
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risk bands and allocated higher interest rate so their default probabilities are relatively

unaffected by the rate imposed on them.

3.7.2 Unweighted SVM results

This section reports the performance of SVMs on holdout data using different kernels

and kernel parameters. The cost parameter C on both positive and negative classes is

kept the same(un-weighted).

3.7.2.1 Data Sampling, Scaling and Variable Selection

Due to the limitation of computation resources required for massive model space

searches for SVMs, 5000 cases were randomly drawn from the data and model searches

were conducted on this subset of the data. This sample size is large enough to draw

generalizable conclusions without being too slow to run on SVMs.

Some trial analysis showed that scaling numerical variables into values ranging from

0 to 1 improved the classifier's performance. The only variable not coded as dummy

variable in the data, the interest rates, ranging from 5% to 32%. After scaling the

values into ranges [0,1], the best AuROC value reached a maximum value of 0.7234,

compared to the previous AuROC value of 0.70 from unsealed data. This can be ex¬

plained by the fact that SVM is more sensitive to numerical values. Too large a value

will unfortunately dominate the classifier and lead to sub optimal performance.

Although large dimensionality is not a problem for SVMs to handle, too many un-

predictive independent variables may not be desirable and result in over fitting. Logis¬

tic regression procedures address this issue by variable selection mechanisms such as
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step-wise selection. For comparison of the performance based on the same set of data

and variables, the same set of variables selected by step-wise selection in the logistic

regression are used in the SVM classification.

Most of our variables are categorical and coded as dummy variables. That means

for a three level variable, (0,0,1), (0,1,0) and (1,0,0) are used to represent each level

within the variable. This is necessary as SVMs are good at handling numerical data

problems. Many fields in which SVMs claimed the crown for the best predictor are

those dealing with lots of numerically measured data, such as hand written characters

or image recognition (see Chapelle et al. (1999)).

3.7.2.2 Linear kernel results

The Linear kernel /f(x,y) =x-y perfonned rather poorly. The Fig 3.3 reports a ROC

curve for a SVM using a Linear kernel with cost parameter c = 1. The Area under the

ROC curve is only around 0.6.

ROC curve of trainingsubset.scale-t0-cl-v3 <RUC = 0.6185)

r
s

5 B.4

/

/
/

f
0.1 0.2 0.3 8.4 8.5 0.6 0.7

False Positive Rate

Figure 3.3: AuROC of SVM using Linear kernel
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3.7.2.3 Polynomial kernel results

The results reported below are based on the Polynomial kernel K(x,y) = (y-x-y+ r)3.

(r has been assumed to be a constant 0.) The Area under the ROC curve reaches 0.69,

better than a Linear kernel but worse than a RBF kernel. The cost parameter ranges

from 0.1 to 5. The gamma parameter ranges from 0.01 to 1. It seems the Polynomial

kernel SVM built on this data is more sensitive to the choice of gamma parameter,

where the best AuROC value 0.69 is achieved around y = 0.01.

The Classification Performance over Polynomial-kernel parameter-space when d =3

0.7

0.69

O 0.68
0
cc

1 0.67

1 0.66

0.65

0.64

Gamma parameter g Cost parameter C

Figure 3.4: SVM using Polynomial kernel.

3.7.2.4 RBF kernel results

The RBF kernel: K(x,y) = performs much better than the Linear kernel.

A grid-fashioned search results in model parameter space of cost vs. gamma is shown

in Figure 3.5. The cost parameter ranges from 0.1 to 5. The gamma parameter ranges

from 0.01 to 1. It seems the RBF kernel SVM bult on this data is more sensitive to the

choice of gamma parameter, where the best AuROC is achieved around y= 0.16.
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The Classification Performance over RBF-kernel parameter-space

Gamma parameter Cost parameter C

Figure 3.5: SVM using RBF kernel.

The best area under the ROC curve value of 0.7234 can be found when the cost is

0.05 and gamma is 0.16, as shown in Fig 3.6. Similar performance can be found with

other cost parameters when the gamma parameter is around 0.16. This indicates the

importance of the gamma parameter to the RBF kernel SVM classifier.

ROC curve of trainingsubset.scalfr-t2-cB.e5-ge.16 <RUC * 0.7234)

0.4 B.6

False Positive Rate

Figure 3.6: AuROC of SVM using RBF kernel
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3.7.2.5 Sigmoid kernel results

The results for the Sigmoid kernel K(x,y) = tanh(y-x-y+ r) (where r has been set as

a constant 0) are shown below. The Sigmoid kernel achieved performance in terms of

Area under the ROC curve (0.7172) similar to that of RBF kernel. The cost parameter

ranges from 0.1 to 1.1. The gamma parameter ranges from 0.01 to 0.7. It seems

the Sigmoid kernel SVM bult on this data is also sensitive to the choice of gamma

parameter, where the best AuROC 0.7172 is achieved around y = 0.01.

The Classification Performance over Sigmoid-kemel parameter-space

Gamma parameter g Cost parameter C

Figure 3.7: SVM using Sigmoid kernel.

3.7.3 Weighted SVM results

In our previous analysis, the SVMs based on un-weighted costs were not performing

as competitively as reported in previous research papers. To see if the weighted SVM

methods as described in section 3.4.2.2 can improve the predictive performance, we

conducted the analysis as followed. We ranked cases by the probabilities predicted by

LR and removed those between the 20th and 80th deciles, that is the middle 60% of
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the cases. Later analysis on the weighted SVMs are carried out on this set of data.

The weighted SVM was estimated on this subsample after a logistic regression. Un¬

weighted SVM can achieve Area under ROC value of 0.7677 using an RBF kernel.

The best AuROC value of 0.8037 can be found at when the cost parameter is 0.1 and

the gamma parameter is 0.01 .

1

0.9

0.8

0.7

0.6

0.3

0.4

0.3

0.2

0.1

0

Figure 3.8: Area under the ROC of Weighted SVM using RBF kernel.

3.7.4 Summary

The LR model for the whole sample gives an AuROC of 0.7907 whereas the highest

AuROC for unweighted SVM model, can only reach 0.7234, clearly being outper¬

formed. The superiority of a weighted SVM using RBF kernel over an unweighted

SVM using RBF kernel is also demonstrated by the improvement of AuROC from

0.7677 to 0.8037 on a set of subsample.
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3.8 Simultaneous Equations Model

The financial institution providing the data carried out their analysis by first credit

scoring the customers and separating them into different bands according to their risk

of default. Each customer was then offered an interest rate based on the assigned risk

band and some other random adjustments. Apparently the interest rate of the loan can

be explained using the risk of default together with other exogenous demographic and

bureau data variables. On the other hand, it is also possible that the probability of de¬

fault is also affected by the interest rate of the loan simultaneously.

This section studies this simultaneous relationship hypothesis. Firstly we used a Bayesian

Network classifier to search for the most predictive Bayesian networks hoping the

structure of the network might reveal some conditional dependences. Next we fit¬

ted the data using a Simultaneous Equations Model and we examined the parameters

estimated. We used a simultaneous equations model because we required unbiased

estimates of the parameters of the default equation.

3.8.1 Investigation of the relationships between default, rate and

score using Bayesian network structure search

Firstly, a logistic regression model was fitted where the dependent variable was the

probability of default while the interest rate variable was excluded as a covariate. Sec¬

ondly, using the predicted probabilities of Default as the score, together with the inter¬

est rate variable and the observed default indicator, a Bayesian network was searched

and its parameters estimated.
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Figure 3.9: The relationships between 3 variables in a graph found after a global search

Figure 3.10: The relationships between 3 variables in a graph found after a local search

Figures 3.9 and 3.10 present the results of the search. The two different graphs are

found using the same search mechanism TAN (Tree augmented network) but Figure

3.9 was searched globally while Figure 3.10 searched locally. TAN (Tree augmented

network) was proposed in Friedman et al. (1997). A TAN is similar to a Naive Bayes

network in which the class variable C is the root of the network and has no parent.

Unlike a Naive Bayes network, the attributes of a TAN not only have the class variable

as their parent, but also allow augmenting edges between the attributes.
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A TAN is built by firstly constructing a complete undirected graph in which the ver¬

tices are the attributes and the weight of the edge is calculated from the conditional

mutual information. Then use the procedures proposed by Chow and Liu (1968) to

find a maximum weighted spanning tree. The resulting undirected tree can then be

transformed to a directed one by choosing a root variable and setting the direction of

all edges to be outward from it. The final step is to add the class variable C to the tree

by adding an edge from C to each attribute.

Due to the nature of the Bayesian Network structure search algorithm, it always as¬

sumes the node of the default indicator is the root and parent of other explanatory

variables (because it is the default probability to be finally predicted). Both structures

achieved an Area under the ROC curve of 0.803. However, the two networks as shown

in Figure 3.9 and Figure 3.10 differ in the way the dependence relationship between

rate and score as presented. In Figure 3.9 there is a link pointing from LOANAPR to

Score while in Figure 3.10 the direction of the dependency link is just the opposite.

Both networks provide a good fit to the data and both conditional dependent rela¬

tionships cannot be ruled out. For this reason we estimated a Simultaneous Equation

Model based on the assumption that both Probability ofDefault (ScoreProb) and APR

(RAW_LoanAPRl) are simultaneously affecting each other.

3.8.2 Simultaneous equations model

The CDSIMEQ package written in Stata by Keshk (2003) was applied to fit our data

using a Simultaneous Equations Model. This package is well suited in the situation

where one continuous (the rate) variable and one dichotomous (the default behaviour)
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variable are believed to simultaneously determine each other. The structure of the

model is:

y\ is treated as an observed continuous endogenous variable and y>2 is a dichotomous

endogenous variable and observed as

wherey\ is a latent continuous variable. X\ and Xi are matrices ofexogenous variables
in equation (3.6) and equation (3.7) accordingly. The exogenous variables selected

into X\ are chosen using forward stepwise linear regression and the exogenous vari¬

ables selected into Xj are chosen using forward stepwise probit regression. Both sets

of variables contain at least one variable that resides in only one equation but not the

other. Therefore the rank condition for identification is satisfied.

Because endogenous variables appear in the right hand side of the equation , the

standard ordinary least square (OLS) estimates are inconsistent and biased. To ad¬

dress this problem, one of two methods are normally used. The first is to use indirect

least squares (ILS) by solving the structural equations through reduced-form equa¬

tions. The estimates of reduced-form equations by OLS are consistent and lead to

consistent structural parameter estimates. The second method, the method we use, is

using two-stage least squares procedures.

y l — Y1T2 + Pi^i + £i

yi — Y2T1 + $2X2 + £2

(3.6)

(3.7)

y2 = l if y*2>0

yi = 0 if >>2 <= 0
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3.8.3 Two-stage least squares method

The two-stage Least Squares method works through two stages. The first stage is to

create instrumental variables for the endogenous variables. The second stage replaces

the endogenous variables in the structural equations with those instrumental variables.

In the first stage, the endogenous variables are regressed with all of the exogenous

variables in the structural equations (3.6) and (3.7), noted as X, the matrix of all ex¬

ogenous variables.

y\=Y\xX+ u\ (3.8)

y*2* = n2X+ u*2 (3.9)

where y\ and y*2* are instrumental variables. X are exogenous variables and not corre¬
lated with error terms u\ and u\, both ofwhich are assumed to be normally distributed.
So consistent estimates can be obtained using OLS for equation (3.8) and probit for

equation (3.9). Those estimated parameters are used to predict the instrumental vari¬

ables as below

yi = llxX (3.10)

y2** = n2X (3.11)

In the second stage, the original endogenous variables with their predicted values from

equations (3.10) and (3.11) are substituted as:

y\ = Y1T2** + 01*1 +£, (3.12)

T2*=Y2T1+02*2+62 (3.13)

The final step is to correct standard errors generated in the second stage estimation,

which are based onyV* and/i not on the original variables. Maddala (1983), page
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244-245, has given the corrected covariance matrix for the sets of estimates (yi,pi)

and (72, P2) and they were used here.

3.8.4 Estimates of the simultaneous equations model and predic¬

tion results

3.8.4.1 Parameter estimates

The final estimates are

where the Pi and P2 are the vector of coefficients of those exogenous variables X\ and

X2. For detail please see Appendix A: Tables A.l 1 and A. 12.

Table A.l 1 reports the parameter estimates for the first equation above. The instru¬

mental variable for Default is denoted as LDefault. The coefficient of I_Default is a

positive 0.1013, which indicates that higher probability of Default may contribute to

higher interest rates. Its numerical value is small compared with some other coeffi¬

cients attached to variables such as 'APR Adjustment'(1.0362). That is plausible as

the APR adjustment variable is the random rate adjustment within the band. The APR

adjustment plus band average rate will give the exact APR.

Table A. 12 reports the parameter estimates for the second equation above. The in¬

strumental variable is denoted as I^\PR. The coefficient of I^APR is also a positive

number 0.0272. That may be interpreted as when everything else being equal, charg¬

ing interest with 1 unit higher rate will lead to 0.0272 standard deviation increase in

APR = 0.1013 *Default + Pi *X\

Default — 0.0272 * APR + P2 *Xi

(3.14)

(3.15)
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the predicted probability of Default.

It is worth noting that the coefficient on APR is 0.0272 with p value of 0.151. The

coefficient on Default also has a big p value of 0.132. Both are not significant. The nu¬

merical values of the equation coefficients may be interpreted as showing the propen¬

sity to default is affecting the interest rate much more than the way the default is

influenced by the interest rate.

Another way to interpret this could be that other assumed exogenous variables are

explaining most of the variance and therefore dwarfed the coefficients of the endoge¬

nous variable in the RHS of the equation. APR adjustment might be such a factor.

After removing this variable from equations, the estimates turn out to be

This set of estimates can be interpreted as everything else held equal, 1 unit increase

in APR will lead to nearly 0.11 increase in the predicted probability of Default. 1

percentage higher probability of Default means 2.07 unit increase in the APR if every¬

thing else is the same. The details can be found in Appendix A: Tables A. 13 and table

A. 14. This set of estimates now has a coefficient value with p values near 0, although

the Area under ROC is decreased to 0.7622.

3.8.4.2 Modifications of the CDSIMEQ package

The Stata package CDSIMEQ written by Keshk (2003) handled estimation and covari-

ance correction well. However its post estimation routine has difficulties in dealing

APR = 2.0669 *Default + j3, *X\ (3.16)

Default = 0.1097 *APR + $2*X2 (3.17)
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with out-of-sample estimation. This is because when we are to use the estimated Pro-

bit model to predict default for future samples, we need the values of the instrumental

variable y\ in equation (3.13). CDS1MEQ overlooks this situation and only works

when doing post-estimation on the data set on which the model was fitted.

To discover an unbiased estimate of the predictive ability of models we carried out

10 fold cross-validation. The original package of CDSIMEQ is not capable of that.

For this reason, our own version of 2SLS estimation was written. In our own pack¬

age, the data values that are used for the prediction of instrumental variable values are

predicted based on the estimated parameters in the first stage, as below.

y\ = U\X

The predicted instrumental variable y\ is then plugged into the formula below to gen¬

erate the prediction for y2

yi = Yzyi + P2T2

3.8.4.3 Prediction results

The ROC curve based on the predictions on the training set is shown in Figure 3.11.

The area under the ROC value is 0.7873. Using our modified 2SLS routine to run 10

fold cross validation, the area under the ROC achieved is slightly decreased to 0.7837

(when predicted using Instrumental variable values predicted in the first stage). The

AuROC is increased a little bit to 0.7862 when using observed interest rate instead

of using predicted instrumental variable values. As a comparsion, a 10 fold cross

validated Probit achieves a similar Area under the ROC value of 0.7854 and a 10 fold

cross validated Logistic regression model achieves an Area under the ROC value of

0.7819.
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Area under ROC curve = 0.7873

Figure 3.11: Area under ROC given by CDSIMEQ

3.9 Conclusion

This section presented predictive performance results using logistic regression, SVM

and Simultaneous Equations Probit Model. Building models based on the data, the

logistic regression predictor (achieving an AuROC of 0.79) is the most competitive

compared with SVMs (using various kernels achieving the best AuROC of 0.72) and

Simultaneous Equations Probit Models (achieving AuROC around 0.78).

It has to be noted that the difference between model performance results can be ac¬

counted for by the difference in my relative familiarity or expertise with those models.

Different preprocessing methods used in different models might also lead to biased

comparison results. Potentially either of this happening could endanger the validity

of the model comparison conclusion, as observed by Hand (2006). Despite this, best

efforts have been made to remove bias as much as possible during the model building.
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The conclusion presented here is the best I can draw given my existing knowledge.

Therefore it is not useless unless future investigations prove the other way.

Considering simplicity and computational resources requirement, logistic regression is

no doubt the best choice for predicting defaults. However, when the inter-relationships

between Rate and Default is ofmore interest to the lenders that are offering rate-varied

products, the simultaneous equations can provide more insights of the dynamics be¬

tween those factors.

The poor performance of SVMs can be accounted for with two reasons. First, the

data is converted into 0-1 dummy variables, while SVMs normally excel when dealing

with continuous variables. The second, extremely skewed class distribution makes it

difficult for the SVMs, which are originally formulated to minimize the classification

rate.



Chapter 4

Acceptance Modelling

4.1 Introduction

This chapter is dedicated to the modelling of consumer acceptance behaviour. Section

4.2 describes previous research on modelling consumer acceptance behaviour. The

next sections will describe the model design, the data and present the data preparation

procedures. Section 4.5 reports the results of fitting logistic regression Models. Sec¬

tion 4.7 will report our investigations into the modelling of acceptance elasticity with

respect to interest rates. In section 4.8 the possibility of improving the default prob¬

ability estimation by applying bivariate Probit Sample Selection Models is examined.

Section 4.9 plots the indifference curves following Keeney and Oliver (2005). In the

final appendix section the tables of estimated MLE results given by the models are

listed.

86



Chapter 4. Acceptance Modelling 87

4.2 Previous research in acceptance modelling

Thomas et al. (2006) and Jung et al. (2003) have suggested that significant changes are

happening in the evermore competitive consumer lending market. The first one is the

need for tailoring varied-features financial products to improve the likelihood of a con¬

sumer accepting an offer of the product made to him. The second is the requirement for

building interactive application processes in the newer communication and marketing

channels like the Internet or telephone so that during the application process the lender

can adjust their offers to make acceptance more likely.

Both changes necessitate the ability of the lender to infer the probability of a particular

consumer accepting a specific offer during the interactive application process. Some

recently published papers have presented how this issue may be addressed. Rossi et al.

(1996) investigated various forms of purchase history data of Chicago households.

They employed multinomial Probit models to predict the price sensitivities and house¬

hold preferences in terms of 'target couponing'. They used their model to explain the

heterogeneity across households using a hierarchical Bayesian model. The inference

was conducted in a Bayesian way and posteriors were acquired using Gibbs Samplers

through Markov chain simulation. By offering a customized coupon strategy to attract

different customers, they estimated that a seller could have a potentially substantial

gain in revenue than if a! blanket coupon strategy in which all coupons have the same

value is offered.

Montgomery (2001) discussed many applications of quantitative marketing techniques

on the Internet when consumers are 'addressable' thanks to advances in information

technology. In one of the examples given, a multinomial logit model was fitted to the
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data featuring factors that affect consumers' purchase choices. Those factors included

item price, shipping price, tax, delivery charges as well as the brand names of sellers.

The parameter estimates of the coefficients on those factors implied the feature impor¬

tance. The price sensitivities were then quantified.

Jung et al. (2003) investigated and compared three different methods (logistic regres¬

sion (LR), linear programming (LP) and an accelerated life (AL) model) to model the

likelihood of consumers accepting student bank accounts when being given different

offers. Those offers have six features, including 5 choices of overdraft limit, 4 choices

of credit card options, fee for foreign currency, discounts on insurance, interest paid on

account surplus and 10 choices of free gifts. Their data set, named the Fantasy Student

Current Account (FSCA), was gathered from a dedicated website, which was widely

publicized to first year students at the University of Southampton with prize winning

draws as enticement.

Seow and Thomas (2005) not only investigated the effects of specific features on ac¬

ceptance behaviour, but also tested the influence the number ofquestions could have on

the consumer acceptance behaviour. They modelled the probabilities of an applicant

taking different offers using decision trees and based their analysis on the same data set

as used by Jung et al. (2003). A two layered decision tree structure is used whereby the

enforced upper layer uses applicant characteristics only and the lower layer uses only

offer characteristics. This structure offers the convenience for the lender to build an

adaptive application process by asking customers about applicant characteristics first

and afterwords providing the offer that is the mostly likely to be taken by this customer.
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Different tree settings were tested and analysed in their paper. Those trees included

an applicant characteristics only tree, offer characteristics only tree, trees with both

types of characteristics and even with more flexibility allowed in the tree structure (so

called alternate best tree) to generate a better fit to the data. They also explored the

situation when imposing limits on the number of questions asked as a restriction on

the tree building process. Pruning this tree can reduce the number of questions asked

and hence potentially increase the probability of acceptance by the customers.

Because of the particular nature of the sample and the possibility of the 'testing ef¬

fect' of data collected, the results obtained in Jung et al. (2003) and Seow and Thomas

(2005) may not be generalizable. Thomas et al. (2006) mentioned that once the like¬

lihood of acceptance is estimated for a customer, the lender can make the offer based

on the optimality of profitability. However, they did not give comments as to how the

optimality of profitability can be achieved. Besides, there is no research looking into

how the consumer behaviour of accepting the offer may affect their risk of default or

vice versa.

The contribution of this chapter is to model the probability of acceptance using data

relating to the actual acceptance or rejection of the offers made to the applicants for

a fixed term loan product. Since the data recorded the acceptance decisions of those

applicants, the results are not subject to a "testing effect".
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4.3 Model design

As shown in Figure 4.1, the whole potential customer population can be partitioned

into those people who did not apply (NA) for the credit product, those who did apply

but got rejected (AR), those who applied, received an offer but refused to take it (CRO),

those who applied, received and took offers and being good customers (G) or bad

customers (B). The whole population can be expressed as

Whole = G (J B (J CRO \JAR\JNA

while the intersections between sets G,B,CROy4RJVA are all empty sets.

Gp\B = Bf]CRO = CROf)AR =ARf)NA=NA[)G = (l)

We now consider customers who applied, passed their credit check, and received an

offer. That is the set G\JB\JCRO. We observe performance information for those who

have applied, passed the credit check and then took the offer: Accept = GIJ^-

We assume a case makes a choice between defaulting and not defaulting, and between

accepting a credit offer and rejecting it. In each case we assume the consumer makes

the choice which maximises his utility. In each case we model the utility of default

(acceptance) as an unobserved continuous variable D* (A*) such that

D*= {Default)* =piAj+ei (4.1)

A* = {Accept)* = P2A2 + £2 (4.2)

We do not observe the utilities underlying the chosen action: default or none default,

acceptance or rejection. But we do observe the binary situation ofdefault {P{Default =

1)) or non-default {P{Default) = 0) , acceptance (P{Accept) = l)or non-acceptance

{P{Accept) = 0). The observational regime is therefore:
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Apply and
Offered

Accepts

Good (G)

Figure 4.1: Our data samples sets

P(Default) = 1 if (Default)* > 0

P(Default) = 0 if (Default)* <= 0

P(Accept) — 1 if (Accept)* > 0

P(Accept) = 0 if (Accept)* <= 0

Notice that we can observe P(Default) only ifP(Acceptance) — 1. 1

Our research strategy is firstly to model the probability of acceptance directly using

logistic regression, assuming any correlation between 8j and £] in equation 4.1 and 4.2

is zero. Second, in section 4.8 we will drop this assumption and estimate the bivariate
1A further expansion of the model could be utilizing the data in set AR and using a doubled selection

model to fit the whole data.
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Probit sample selection models, allowing for the possibility that the errors in the two

equations are correlated.

4.4 Data preparation

Before presenting the results, it is necessary to report how the acceptance behaviour

is defined, why there is band separation, the transformation of the encoding of data

variables and why the data have to split into training and holdout sets.

After the customer completed an application form, requested an amount of the loan,

chose whether or not to request insurance with the loan, and passed credit check, he/she

may be given an offer with a specific interest rate to accept or reject. This offer will

consist of a loan of a given loan amount, usually the amount requested, sometimes

adjusted by the lender (this does not happen often, however). The lender will allocate

the customer into a certain band reflecting the risk ofdefault. Most of the interest rates

offered within a given band are the same but small variations exist within the band in

some cases because of the lender's adjustments.

The customers who accepted the offer and took the loan are marked with 1 in a bi¬

nary 'paid' indicator. Only the customer who accepted the loan will have performance

data recorded and subsequently can be classified as 'good' or 'bad' customers depend¬

ing on the definition of default. Each applicant who received an offer was given an

interest rate from one of the seven bands as described in section 3.6.2.
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We chose to use Dummy Variables 2 instead of Weights of Evidence 3 for consistency
with the data used for modelling Default as well as Acceptance.

The dataset has over 53,000 cases of applicants applying for a fixed term loan product.

The length of the term ranges from 24 months up to 84 months. To test the predic¬

tive performance of our models, we trained the model using the training set consisting

of 70% randomly selected cases from all the samples and tested it on a holdout set

consisting of the remaining 30% of the total sample.

4.5 Logistic regression results

We fitted the logistic regression model on all the data put together

each individual band. The performances of the models' predictive

pared using area under ROC values on the holdout sample data set.

4.5.1 Performance across bands

From Table 4.1 , we can see the performance measured by area under ROC values is

increasing with the size of holdout samples across different bands. The area under

ROC of the model based on all bands put together is much higher than that of other in¬

dividual bands. This may be accounted for by the doubled sample size. Or this can be

explained because the average interest rates offered to different bands are varied, coin-
2For a categorical variable with k multiple levels, k— 1 dummy variables are created to replace the

original variable. Each dummy variable takes a binary value 1 or 0, corresponding to the presence of

each level in the original categorical variable. The level left not coded is represented when all other

dummy variables take the value 0.
3Please refer to the explanations in previous chapter

as well as data in

abilities are com-
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bining bands together increase the variance of interest rates, one of the most predictive

independent variables.

BAND Converged? AuROC Holdout Sample Size

0 N 0.9167 67

10 Y 0.6956 683

20 Y 0.6730 894

30 Y 0.6797 1585

40 Y 0.6680 1447

50 Y 0.6854 2146

60 Y 0.7187 9362

0&20 Y 0.7168 965

ALL Y 0.7832 16193

Table 4.1: Comparison of the predictive performance for different risk bands

The sample size for BAND 0 is so small that SAS logistic procedure reports finding

quasi complete data separation. The MLE estimates reported for BAND 0 are therefore

questionable. To get convergence in the maximum likelihood estimation, the sample

size must be increased. We combined BAND 0 and BAND 20 to form a larger set

(because the two sets have similar acceptance percentages) and reported results.

4.5.2 Features selected from stepwise selection

Compared with the 12 features selected using stepwise selection in modelling Default,

more (37 in total) features were selected in modelling Acceptance. Similar to the fea¬

tures selected when modelling Default, the first 2 features selected are the Interest Rate
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variable (Rl) and Insurance-take-up indicator (CP1). The features of new customer in¬

dicator (newbus), loan amount requested, as well as the length of the loan (TERM)

entered the model at an early stage and stayed there. That is sensible as those variables

are very likely to influence customers acceptance behaviour.

4.5.3 ROC curve and MLE results

Figure 4.2 shows the ROC curve on the holdout sample using the logistic regression

model fitted on the data with all bands combined together. The area under ROC value

is 0.7832. The table of estimated MLE results given by logistic regression can be

found in Table B.l in the appendix section. Please note that many dummy variables do

not appear to be significant in the MLE results, even those variables were previously

selected from a stepwise selection routine. This happens because of the way the SAS

package conducts the stepwise selection on categorical variables by adding or remov¬

ing each categorical variable as a whole. Therefore even some dummy variables that

were created out of a categorical variable are not significant in the model, they still en¬

ter the final model because some other levels within the categorical variable are highly

significant that they cannot be removed. (The stepwise routine from Stata package,

on the other hand, can evaluate the dummy variables individually for each level of the

category, and therefore yields slightly different models. )

4.6 SVMs results

In previous chapter we have modelled SVMs on default and found their predictive per¬

formances not as good as logistic regression. The acceptance data is different from the

default data. A big difference is the class distribution. In the acceptance data over sixty
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ROC with holdout data of combined
AUROC = 0.7832192791 on totol 16193 holdout somples

Figure 4.2: The ROC curve for the Acceptance model all bands combined

percent are the positive outcome (offer accepted) while in the default data only around

four percent of cases are observed to default.

One of the most important factors that affects the performance of SVMs is the choice

of kernels. Two very commonly used kernels listed below will be used and shown to

be very competitive compared to the logistic regression: the polynomial kernel and

the RBF kernel. Their kernel parameters have to be detennined using some model

selection methods. Cross-validation is a common choice to select the best model in

predicting unseen holdout data. As our data is very large, the SVMs can be very slow

to train. A two-fold cross validation has been used in the grid searches of the models

that will yield the highest AuROC values.

To make the model comparison between logistic regression on the same ground with¬

out being affected by the choices of the feature selection routines, the SVM used for
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Acceptance modelling will be using the same set of variables selected from the step¬

wise selection routine in the logistic regression.

4.6.1 RBF kernel

The RBF kernel uses the kernel function like K(x,y) = e~V*lb-.fll2 \ grid-fashioned
search results in model parameter space of cost C vs. gamma y is shown in Figure 4.3.

The cost parameter ranges from 0.1 to 5. The gamma parameter ranges from 0.01 to

1. The third axis is the area under ROC achieved through a two fold cross validation

on the holdout set. It seems the RBF kernel SVM built on this data is more sensitive

to the choice of gamma parameter, where the best AuROC so far is 0.7905, achieved

at around gamma y = 0.04 and cost C = 1.1.

The Classification Performance over RBF-kemel

0.8 —i

0.78- \

0.76-

O

Figure 4.3: Grid search of the best predictive model parameters for SVM RBF kernel
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4.6.2 Polynomial kernel

The polynomial kernel uses the kernel function K(x,y) = (y-x-y)d. When the dimen¬

sion parameter d is assumed to be one, the SVM is generally a linear kernel SVM. A

reasonable large enough dimension parameter d = 3 4 was chosen and analysed with

results shown in Figure 4.4. The best AuROC value is 0.7937, where cost C = 0.3 and

gamma y = 0.0100. Compared with the Figure 4.3, where a lot more parameter com¬

binations have been searched, the range of the grid search for this polynomial kernel is

much smaller. This is because the polynomial kernel with a higher dimension param¬

eter is very slow to run on a larger data set. Restriction of the computation resources

limited the range of the parameters search.

The Classification Performance over Polynomial-Kernel

0.8

0.795-v

0.79v, ' ' ' •' ••

O 0785 - r ' ' '• : ! :"H.
O

| 0.78 -v
c

| 0.775^ :

0.77 v.

0.765^

0

Cost parameter C Gamma parameter y

Figure 4.4: Grid search of the best predictive model parameters for SVM Polynomial

kernel with dimension parameter d = 3

4Other dimension parameters can also be tested but the limitations of the computation resources

prevented us from doing so.
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4.7 Modelling acceptance elasticity of interest rate

Elasticity could be defined as the proportional change in one variable divided by the

proportional change in another variable.

A general formula for the elasticity (the "x-elasticity of y") is:

percent change in y
Ex,y —

dlny dy x

dlnx dx ypercent change in x

Previous logistic regression results 5 on the acceptance modelling have shown that

the variable having the most influence over customers' decisions to take or reject the

offer is the interest rate charged. To analyse the price elasticity of the propensity of

customers to take loan product offers, we calculate ^y
The functional form of acceptance probability is assumed to be logit as below, x is a

vector for the independent variables and (3 is the vector of parameters.

logU(p(Accept)) = = * = P*

p(Accept) = l+ew

The partial derivative on one of the independent variable xj (with pj as the correspond¬

ing parameterjis

dP(Accept) ew dw ew
dxj ~~ (1 +ew)2'dxj ~ (1 +ew)2

So the price(interest rate as xj) elasticity of the Acceptance Probability is

_dP(Accept) i _ p,*/'
i,P{Accepl) - * precept) = T+e»

5Please see previous section 4.5.3 and the estimated coefficients in Table B.l
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4.7.1 Elasticities for bands

As previously given, the elasticity can be written as a function of price when other in¬

dependent variables are assumed to be constant values. Mean values of those variables

are used as the constant values when calculating the elasticities. Following previous

data transformation, all those variables except the interest rate charged were converted

to dummy variables. For each dummy variable, the relative frequency of each dummy

variable is used as the mean value.

As the interest rates offered range from 4.99% to 32.99%, the price elasticities of

probability of acceptance are calculated by fitting the interest rate value into the previ¬

ous elasticity equation. The table below lists the average elasticities within each band

and all bands combined together. The charts of price elasticities of acceptance in each

individual band can be found in Table 4.2 and in Figures 4.5, 4.6 , 4.7 , 4.8 , 4.9 ,4.10

and 4.11. The price elasticities of acceptance for others variables can be found in Table

4.3.

Notice from Table 4.2:

• The first column indicates on which data set the elasticities are calculated. The

results for band 0 are questionable because of its very small sized sample leading

to quasi complete separation in the data during maximum likelihood estimation.

Band 0 and Band 20 are combined to get reliable estimates.

• The second column presents the average values of acceptance elasticities of in¬

terest rate.

• The third column and fourth column shows at which the point the elasticity is

the biggest.
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average interest rate maximum

Data elasticity with max abs(elasticity) abs(elasticity)

*bandO -1.054006 -9% -3.140571

band10 -0.546448 - 13% -0.714744

band20 -0.541663 - 12% - 0.74064

band30 - 0.59789 - 13% - 0.804827

band40 -0.65196 - 14% - 0.834453

band50 -1.000923 - 17% - 1.231596

band60 -1.547289 - 29% -2.15465

bandO And 20 -0.683178 - 12% 1.005482

combined -1.369484 - 14% 1.997809

Table 4.2: The price elasticities across different bands

Elasticity at the Mean Values Mean Values of Variable

APR -1.34056 9.23288

Insurance -6.57422 0.371393

Loan Amount -3.63484 9612.67

Term 9.382553 52.249

Internet -23.9071 0.407225

New Business -6.6639 0.848887

Table 4.3: The elasticities of other variables on all bands combined
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• We observed that average elasticity grows steadily from band 20 up to band

60, that makes sense by realizing the fact that higher band generally has been

regarded as lower risk and been charged lower price. They shall find them¬

selves having more financial alternatives and therefore more likely to be put off

at higher rates.

• Interestingly, the points where maximum absolute elasticity is observed are also

shifting from lower band to higher band, as shown in Figures 4.5 to 4.10. This

may happen because of the logistic function form we have chosen. Recall that

the elasticity function takes the form of

£/=i!±L

Differentiate El with respect to interest rate i

BE I p,- „ .

TT = TT-TJ - P' *l:di ~ l+ew K (1 +ew)2

The maximum or minimum point resides where

BE I
n

"3T = 0
So solving the equation below we can get the point.

ePw(i*P,--l) = l

Notice that i and p, are always appearing together in equation and both e$x and i*
P, — 1 are monotonically changing with i * p,, so a unique answer to the equation

above shall exist. Assume we have found the i * p, satisfying the equation. A

smaller P, means the interest rate i has to be larger. Looking at the coefficient in

our logistic regression estimates corresponding to the interest rate confirms that.
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Elasticity of P(Acceptance) Vs. Interest Rate for bandIO dataset

Bote

Figure 4.5: Band 10 has shown the most elasticity at interest rate of 13%

Elastiaty of P(Acceptance) Vs. Interest Rate for band20 dataset
0.8

0.7

0.5

0.2

Figure 4.6: Band 20 has shown the most elasticity at interest rate of 12%
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Elasticity of P(Acceptance) Vs. Interest Rate for band30 dataset

Rate

Figure 4.7: Band 30 has shown the most elasticity at interest rate of 13%

Elasticity of P(Acceptance) Vs. Interest Ftate for band40 dataset

Figure 4.8: Band 40 has shown the most elasticity at interest rate of 14%
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Elasticity of P(Acceptance) Vs. Interest Rate for band50 dataset
1.3

1.2

1.1

ID

D 9

D .B

0.7

0. B

0.5

Figure 4.9: Band 50 has shown the most elasticity at interest rate of 17%

Elasticity of P(Acceptance) Vs. Interest Rate for band60 dataset

Figure 4.10: Band 60 has shown the most elasticity at interest rate of 29%
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Elasticity of P(Acceptance) Vs. Interest Rate for combined dataset

Rote

Figure 4.11: Combining all bands together has seen the most elasticity at interest rate

around 14%

4.8 Bivariate Probit sample selection model

In this section the possibility of improving default probability estimation by apply¬

ing bivariate Probit sample selection models is examined. We estimated with various

model settings and found that only when using a lean model with less variables would

the estimated correlations between the error terms in the bivariate Probit sample selec¬

tion model become significant. However, the predictive ability is still slightly worse

than the usual Probit model applied using area under ROC curve values as the perfor¬

mance indicator.

4.8.1 Background and previous research

When doing Credit Scoring, the data collected for analysis are normally pre-screened

subject to previous scoring practices that have eliminated a substantial portion of ap-
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plicants who were regarded as most likely to default or not profitable enough to keep

as customers. In the sets of data collected for analysis, only the performance informa¬

tion of those who have been accepted is available, leaving the performance of those

rejected unobservable (and those refusing to take the offer are also missing in the

records). Based on these non-randomly selected sample data only, a traditional pre¬

dictor trying to predict probability to default p(D\x) (where D denotes default and x

is the vector of a set of explanatory variables) is in fact modelling p(D\A,x) (where A

denotes accepts), and is assuming that p{D\A,x) equals to p(D\x) .

When the assumption above is under question, using only the observed-accepts to rep¬

resent the whole set (including accepts and rejects), results given by the maximum

likelihood estimation will lead to bias, known as 'sample selection bias'. Heckman

(1979) studied this selection bias in the model structured as below:

Y\ = Pi*i+£i

Yi = P2X2 + £2

where Y\ and 72 are continuous random variables. x\ and xi are vectors of independent

variables. £1 and £2 are the errors. Y\ is only observed when 72 >= 0

The dependent variables in Heckman's model are continuous. When outcomes are

observed as binary results, a bivariate Probit model is more appropriate. Meng and

Schmidt (1985) discussed the bivariate Probit models under various levels of observ¬

ability of the dependent variables. Their model can be written as

7j* = p,x, + £1

Y* = p2X2+£2



Chapter 4. Acceptance Modelling 108

where Yf and are continuous random variables that are not observable directly. The

binary outcomes that are observable are Y\ and Y2

Y\ = 1 if Y* > 0

Yx = 0 if Y* <= 0

Yi = 1 if y* > 0

Y2 = 0 if y*
I2 <= 0

The errors 81 and 82 are assumed to be normally distributed 7V(0,0,51,52^), where

51 and S2 are the variances of 8j and 82 respectively. Meng and Schmidt discussed

different cases where the observability differs. In their case three (the 'censored Probit

or partial partial observability'), Y\ is observed if and only if >2 = 1 (Y2 is observed for

all cases). This case is similar to our credit scoring problem and therefore of special

interest to us.

Greene (1992) and Boyes et al. (1989) both used a bivariate Probit model with sample

selection to predict the probability of default and estimated card expenditure so that a

profit oriented scoring approach is possible based on these estimates. Greene (1998)

presented three statistical models to predict the default, expenditure and the number of

derogatory reports in credit history and showed that results were quite different when

sample selection factors were included in the models. However, their results did not

provide indications of the models' predictive performance on the cross-validation sets.

Banasik et al. (2003) compared the prediction results in terms ofthe classification accu¬

racy and area under ROC values from the bivariate Probit model with sample selection

and those from original models based on accepted applicants only. They observed that

small improvements with bivariate Probit model can sometimes be achieved, depend-
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ing on the choice of risk bands and cut-off values selected.

Hand and Henley (1993) reviewed the methods of reject inference and claimed that

reliable reject inference based on rejected applicants is not possible without additional

assumptions being made. Banasik and Crook (2005) conducted analysis on a rare data

set where almost all applicants were granted credit. They found that both the scope and

effectiveness of reject inference is unaffected by the model leanness while still some

benefits are possible with high rejecting rate.

4.8.2 Estimation results

The data used here is encoded as continuous variables using weights of evidence based

on odds of acceptance. The weights of evidence is used because it yields far fewer

dimensions than dummy variables and is quite helpful for a faster and easier conver¬

gence in the maximum likelihood estimation in the Heckprob routine in Stata.

Stepwise Probit models are fitted using two different selection criteria, one is p=0.002

and the other is p=0.05. When p value is 0.002, less variables were selected and there¬

fore we gained a leaner model. Probit models were estimated on the training data then

the predictive performance was evaluated using area under ROC based on the holdout

data .

Our results shown in Table 4.4 and 4.5 6 showed that the correlation parameter (be¬

tween £] and £2) in the bivariate Probit model is only significant when using a lean

model. The significance value of the correlation coefficient is 0.015, when p < 0.002
6The dictionary of variables can be found in Table 3.6.
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is the selection criteria. The result of the likelihood-ratio test (if the two equations in

the model are independent) in the lean model is %2 = 6.94 Prob > %2 = 0.0084. We

can reject the null hypothesis that the two equations are independent. This indicates

that ignoring the selection process will give biased estimates in a lean model. The

larger model (variables selected using p < 0.05) did not show a similar pattern. The

result of the likelihood-ratio test (if the two equations in the model are independent) in

the larger model is %2 = 0.00 Prob > %2 = 0.9608. The null hypothesis that the two

equations are independent cannot be rejected.

Predictive performance on an independent holdout data set shows that the bivariate

Probit model and Probit models are almost equally predictive in terms of area under

ROC values. Nevertheless, the more complex model (variables selected with p < 0.05)

is significantly more predictive (AuROC=0.7979) than the lean model (p < 0.002) (Au-

ROC=0.7925).

Table 4.4: Bivariate Probit model with variables stepwise selected with significance

value of 0.002

Coef. Std. Err. z P>\z\ [95% Conf. Interval]

default

loanaprl 0.2191171 0.0414665 5.28 0.000 0.137844 0.300390

cpi 0.5184754 0.0474135 10.94 0.000 0.425547 0.611404

wrst46al 0.5377122 0.0792789 6.78 0.000 0.382328 0.693096

timebank 0.3059594 0.0504106 6.07 0.000 0.207157 0.404762

ssrc4to6 0.3118096 0.0688254 4.53 0.000 0.176914 0.446705

socworst 0.2098031 0.0657783 3.19 0.001 0.080880 0.338726

loanbal2 -0.7548026 0.1653233 -4.57 0.000 -1.078830 -0.430775
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loanbal6 -1.5859630 0.3956968 -4.01 0.000 -2.361515 -0.810412

spsetld 0.3207764 0.0877495 3.66 0.000 0.148791 0.492762

term 0.8631102 0.2440975 3.54 0.000 0.384688 1.341533

netincm -1.1657040 0.3475501 -3.35 0.001 -1.846890 -0.484519

_cons -1.8472910 0.0527410 -35.03 0.000 -1.950661 -1.743920

paid

cpi -0.6039442 0.0175323 -34.45 0.000 -0.638307 -0.569582

loanaprl -0.5469236 0.0099439 -55.00 0.000 -0.566413 -0.527434

newbus -0.0607446 0.0576190 -1.05 0.292 -0.173676 0.052187

loan_amt -1.4419610 0.0661858 -21.79 0.000 -1.571683 -1.312239

tosettll -0.4955130 0.0513494 -9.65 0.000 -0.596156 -0.394870

snball6m -0.4451250 0.0372410 -11.95 0.000 -0.518116 -0.372134

loanbaB -0.5439364 0.1099655 -4.95 0.000 -0.759465 -0.328408

timaddl -0.2130155 0.0275202 -7.74 0.000 -0.266954 -0.159077

gdscde2 -0.5306470 0.0522068 -10.16 0.000 -0.632971 -0.428324

internet -1.3356410 0.1164642 -11.47 0.000 -1.563907 -1.107375

socsett -0.5165921 0.0605816 -8.53 0.000 -0.635330 -0.397854

swrstcur -0.2122401 0.0422736 -5.02 0.000 -0.295095 -0.129385

brand -0.7150864 0.1072868 -6.67 0.000 -0.925365 -0.504808

age -0.1093330 0.0247086 -4.42 0.000 -0.157761 -0.060905

loanbal2 -0.6094566 0.0918317 -6.64 0.000 .0.789444 -0.429470

mortbal -1.6385940 0.2980171 -5.50 0.000 -2.222696 -1.054491

tosettl4 -0.7459363 0.2545549 -2.93 0.003 -1.244855 -0.247018

socworst -0.2300384 0.0486660 -4.73 0.000 -0.325422 -0.134655

noopen6 -0.1552179 0.0379108 -4.09 0.000 -0.229522 -0.080914
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gdscde3 -0.4151366 0.0817705 -5.08 0.000 -0.575404 -0.254869

timebank -0.1029272 0.0240946 -4.27 0.000 -0.150152 -0.055703

no_store -0.9392338 0.2438892 -3.85 0.000 -1.417248 -0.461220

ccjgt500 -0.8238198 0.2257602 -3.65 0.000 -1.266302 -0.381338

wrst46al 0.2929748 0.0590219 4.96 0.000 0.177294 0.408656

spl6mact -0.3240852 0.0480901 -6.74 0.000 -0.418340 -0.229830

loanbal4 -0.5339032 0.1310558 -4.07 0.000 -0.790768 -0.277039

spl6ml2 0.2024613 0.0564088 3.59 0.000 0.091902 0.313021

alcifdet -0.3752600 0.0978557 -3.83 0.000 -0.567054 -0.183466

tosettl3 -0.6354947 0.1807832 -3.52 0.000 -0.989823 -0.281166

mor_rent -0.7817131 0.2424378 -3.22 0.001 -1.256883 -0.306544

_cons 0.2124088 0.0071413 29.74 0.000 0.198412 0.226406

/athrho 0.2961050 0.1222285 2.42 0.015 0.056542 0.535668

rho 0.2877441 0.1121084 0.056481 0.489702

Table 4.5: Bivariate Probit model with variables stepwise selected with significance

value of 0.05

Coef. Std. Err. z P>\z\ [95% Conf. Interval]

default

loanaprl 0.2983323 0.04767 6.26 0.000 0.204900 0.391764

cpi 0.6101280 0.050713 12.03 0.000 0.510733 0.709523

wrst46al 0.3580448 0.10866 3.30 0.001 0.145075 0.571014

timebank 0.2676062 0.055129 4.85 0.000 0.159555 0.375657

ssrc4to6 0.3148383 0.071293 4.42 0.000 0.175108 0.454569

socworst 0.2548701 0.070986 3.59 0.000 0.115740 0.394000
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loanbal2 -0.7924271 0.196375 -4.04 0.000 -1.177314 -0.407540

loanbal6 -1.4821650 0.417788 -3.55 0.000 -2.301015 -0.663314

spsetld 0.3099023 0.090616 3.42 0.001 0.132298 0.487506

term 0.8055490 0.257671 3.13 0.002 0.300523 1.310575

netincm -1.3158470 0.358635 -3.67 0.000 -2.018758 -0.612936

alcifdet 0.6051299 0.197823 3.06 0.002 0.217405 0.992855

age 0.1704406 0.054249 3.14 0.002 0.064115 0.276767

worst12 0.3693976 0.122369 3.02 0.003 0.129559 0.609237

spl6ml2 0.2764318 0.105255 2.63 0.009 0.070137 0.482727

loan_amt 0.4010860 0.168954 2.37 0.018 0.069943 0.732229

tosettl2 0.7046708 0.321418 2.19 0.028 0.074704 1.334638

socsett 0.2552237 0.124509 2.05 0.040 0.011190 0.499258

ccjgt500 -1.1017680 0.5135 -2.15 0.032 -2.108209 -0.095328

_cons -1.6901550 0.0872138 -19.38 0.000 -1.861091 -1.519219

paid

cpi -0.6089806 0.017601 -34.60 0.000 -0.643477 -0.574484

loanaprl -0.5539081 0.010092 -54.89 0.000 -0.573688 -0.534129

newbus -0.0784717 0.0581947 -1.35 0.178 -0.192531 0.035588

loan_amt -1.4586650 0.067862 -21.49 0.000 -1.591672 -1.325657

tosettl 1 -0.5169559 0.051777 -9.98 0.000 -0.618437 -0.415475

snball6m -0.4497474 0.0373964 -12.03 0.000 -0.523043 -0.376452

loanbal3 -0.5403831 0.110517 -4.89 0.000 -0.756992 -0.323775

timaddl -0.2093114 0.027634 -7.57 0.000 -0.263474 -0.155149

gdscde2 -0.5245726 0.05241 -10.01 0.000 -0.627294 -0.421852

internet -1.3568380 0.117011 -11.60 0.000 -1.586175 -1.127501
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socsett -0.5419442 0.062302 -8.70 0.000 -0.664053 -0.419835

swrstcur -0.2136315 0.042534 -5.02 0.000 -0.296996 -0.130267

brand -0.7075670 0.107861 -6.56 0.000 -0.918970 -0.496164

age -0.1156389 0.024993 -4.63 0.000 -0.164623 -0.066655

loanbal2 -0.6052619 0.092307 -6.56 0.000 -0.786181 -0.424343

mortbal -1.6143770 0.299528 -5.39 0.000 -2.201441 -1.027312

tosettl4 -0.8178460 0.259038 -3.16 0.002 -1.325551 -0.310141

socworst -0.2082265 0.049441 -4.21 0.000 -0.305129 -0.111324

noopen6 -0.1491900 0.038207 -3.90 0.000 -0.224074 -0.074306

gdscde3 -0.4184251 0.081961 -5.11 0.000 -0.579066 -0.257784

timebank -0.1015448 0.024147 -4.21 0.000 -0.148871 -0.054219

no_store -0.9209791 0.243301 -3.79 0.000 -1.397840 -0.444118

ccjgt500 -0.8412360 0.226 -3.72 0.000 -1.284187 -0.398285

wrst46al 0.2761811 0.0593490 4.65 0.000 0.159859 0.392503

spl6mact -0.3143237 0.048462 -6.49 0.000 -0.409307 -0.219341

loanbal4 -0.4291300 0.13753 -3.12 0.002 -0.698683 -0.159577

spl6ml2 0.2067295 0.056553 3.66 0.000 0.095887 0.317572

alcifdet -0.3083031 0.099652 -3.09 0.002 -0.503617 -0.112989

tosettl3 -0.7089536 0.183059 -3.87 0.000 -1.067743 -0.350164

mor_rent -0.7998439 0.243753 -3.28 0.001 -1.277591 -0.322097

loanbal6 -0.7482971 0.256081 -2.92 0.003 -1.250206 -0.246388

no_visa -1.3502590 0.511138 -2.64 0.008 -2.352071 -0.348446

snwl2tv -0.5664918 0.220665 -2.57 0.010 -0.998988 -0.133996

no.deps 0.4072923 0.17275 2.36 0.018 0.068709 0.745876

term 0.2367741 0.108833 2.18 0.030 0.023465 0.450083
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spsetld 0.0907106 0.042396 2.14 0.032 0.007616 0.173805

smo89 -0.3150311 0.150135 -2.10 0.036 -0.609291 -0.020772

_cons 0.2125689 0.007145 29.75 0.000 0.198565 0.226573

/athrho 0.0061964 0.126291 0.05 0.961 -0.241330 0.253723

rho 0.0061964 0.126287 -0.236752 0.248415

4.8.2.1 Comparisons of the predictive performance across different models

The results of the models are compared in Table 4.6. Probit002 was predicted using

a Probit model with variables selected with p < 0.002. Heckprobit002 was predicted

using a bivariate Probit model with variables selected with p < 0.002. Probit05 was

predicted using Probit model with variables selected with p < 0.05. Heckprob05 was

predicted using a bivariate Probit model with variables selected with p < 0.05

We conclude from Table 4.6 7 that model Probit05 is slightly more predictive than

model Probit002 when the performance is measured by area under ROC curves. (Ho:

area(Probit002) = area(Probit05), %2(1) = 4.39, Prob> = 0.0362) Comparing the re¬

sults from bivariate Probit models and Probit models put together, we cannot reject the

hypothesis that they are equally predictive. (Ho: area(Probit002) = area(Heckprob002)

= area(Probit05) = area(Heckprob05), %2(3) = 5.66, Prob > %2 = 0.1296). From the

Figure 4.12, plotting both ROC curves, we can hardly tell which model, the Probit002

model or Heckprob002 model, is more dominant.

7The standard errors for the area under ROC curves are calculated based on the nonparametric

approach by DeLong et al. (1988). The asymptotic confidence intervals are calculated by assuming the

distribution for the area under the ROC curve is normal.
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Models Obs ROC Area Std. Err.

-Asymptotic Normal-

[95% Conf. Interval]

Probit002 9471 0.7925 0.0115 0.77004 0.81502

Heckprob002 9471 0.7915 0.0114 0.76922 0.81386

Probit05 9471 0.7979 0.0114 0.77561 0.82026

Heckprob05 9471 0.7979 0.0114 0.77561 0.82025

Table 4.6: The predictive performance of lean model and a complex model

* probitxb ROC area: 0.7925 —-* heckxb ROC area: 0.7915
Reference

Figure 4.12: Compare ROC curves of Probit and Heckprob models

In conclusion, we do not find the default models to suffer from sample selection bias

due the cases being included only if they accepted a loan offer. Therefore the accep¬

tance inference may not be necessary for our data. On a reasonably large model, the

sample selection bias is not significant. Comparisons of the predictive performance

did not find significant improvement achieved through the Bivariate Sample Selection

model than a normal Probit model. Note however that this test is subject to the weak-
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ness that we assumed £1 and £2 are normally distributed.

4.9 Indifference curves

As our data were collected from real customers, we can plot the mean indifference

curves similar to those described by Keeney and Oliver (2005), in which indifference

curves for individuals are described whereas our indifference curves are for the popula¬

tion 8 This section describes how the indifference curves are plotted on a 2 dimensional

space(Rate vs Loan Amount). Also notice that in our dataset the customer chose the

loan amount (albeit with some minor adjustment at some occasions by the lender)

whereas in Keeney and Oliver (2005) the lender chose the credit line (limit). This

however would not affect the validity of the construction of the indifference curves.

4.9.1 Indifference curves based on Logit model

The indifference curves for the customer can be plotted directly from the estimation

results of a Logit model. Assuming the probability of acceptance p can be fitted using

the functional form as:

log = (30 + p/, * log(L) + $apr * log (APR) + pz * Z (4.3)

where Z is the vector ofpredictive variables other than the Loan Amount variable L and

the Interest Rate variable APR. The set of variables in Z was selected using a stepwise
8Please note that the indifference curves drawn from each individual can be totally different from

the curves drawn based on the population. Making inference based on population means and ignoring

individual differences can lead to so called 'ecological fallacy' when the assumption of within group

homogeneity does not hold. However, due to the nature of the way the data was collected, we cannot

test each individual repeatedly to construct indifference curves for each individual. Mean indifference

curves were used.
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selection routine on the training set. For the values of the estimated coefficients J3o Pz,

Pzpp Pz please see Appendix B: Table B.4. For each given probability of acceptance

p, the indifference curve in the two dimensional L and APR space can be written as

1 = lPL*API&APR*C

where C = <?P° * e$z*z * The Z is a vector in which the mean values of the variables

Z have been used.

Indifference Curve

APR

Figure 4.13: Indifference curves

All the points found on the same indifference curve in Figure 4.13 represent the equal¬

ity in the attractiveness of the offers to the applicant. That means, given all other

variables at their mean values, the average customer will accept the offer at the same

probability if the combinations of loan amount and interest are on the same indiffer¬

ence curve. Different indifference curves indicate a different probability of acceptance.

The curve which is closer to the origin point (0,0) has a higher probability of accep¬

tance (The indifference curve with p = 0.6 shown in Figure 4.13, for example, has
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the highest probability of acceptance in the four indifference curves displayed). This

shows that both lower loan amounts and lower interest rates increase the likelihood of

the offer acceptance.

One of Keeney and Oliver's assumptions is that the interest rate has a negative im¬

pact on the probability of acceptance, which is consistent with our finding. For a given

loan amount, the applicant will prefer being charged a lower interest rate. However,

another assumption in the Keeney and Oliver model is that for any given interest rate

the probability of acceptance will be lower for a lower credit line than a higher one.

We have observed the opposite: that an acceptance of an offer is more likely if the

applicant requested lower loan amount.

This result is interesting and merits some further discussion. To argue that on aver¬

age applicants prefer to borrow less than more and are willing to pay a higher interest

rate to be "able" to borrow less is inappropriate because each has the choice as to how

much he wishes to borrow and can choose to borrow less if he wishes to. An appropri¬

ate explanation is perhaps more subtle. An individual may wish to buy a product now

and has a choice as to how much to borrow. The more he borrows the lower his assets

and the greater the chance he will be unable to finance emergency calls on his wealth.

Borrowers must compare the marginal disbenefit from borrowing with the marginal

benefit from consuming the good. In economic theory the more an individual borrows

today the less he expects to consume tomorrow because of the repayments he must

make tomorrow. Given a set of preferences between consumption today and consump¬

tion tomorrow there will be an optimum amount of borrowing which he desires (see

Attanasio (1999)).
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If an applicant increases the amount he wishes to borrow, a lower interest rate may

be necessary to maintain the same probability of acceptance because the larger loan

would, if the rate were constant, imply larger payments whereas these payments may

be correspondingly lower if the rate is lower. In short, it would seem that applicants

are making the choice to accept based on the cash outlays required to service the loan

rather than the amount per se. In addition a larger loan may reduce utility by the

borrower due to increased risk they will be unable to repay. To reduce this risk and

maintain the same probability of acceptance a lower rate may be necessary.

4.9.2 Indifference curves using a different approach

As a check on the robustness onto our calculations concerning the shape of the indif¬

ference curve, we tested with a different functional form of the indifference curves.

We assumed the form of the equation that describes the probability of acceptance as

below

P = a*APR(-*) *Z(~z)

where P is the probability of acceptance, L is the loan amount, APR is the interest rate

charged and Z is a vector of principal components of other covariates retained. Taking

log of both sides:

ln{P) = ln(a) + (-(3)ln(L) + (~i)ln{APR) + (-*) * ln(Z)

To estimate the parameters a (3 y %, different options are available to treat variable

P properly. The first is to assume P as another constant, which is very likely to be

a wrong way. The second is importing the predicted values from a previous Probit

model and use the predicted values as P, as will be implemented here. A third way
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is using Maximum Likelihood Estimation to estimate the parameters of the equation

above. This has not been implemented.

Principal Component Analysis (PCA) is used to reduced the number of dimensions

and to gain covariates that are orthogonal to each other. In this case we wished or¬

thogonal covariates to reduce the chance of collinearity with APR and loan amount.

The PCA is done by retaining the eigenvectors with the highest eigenvalues. All the

eigenvalues are sorted and shown in Figure 4.14. In total 18 eigenvectors associated

with eigenvalues higher than 1 were retained.

Scree plot of eigenvalues after pea

0 20 40 BO
Number

Figure 4.14: Eigenvalues after PCA

A Probit model was firstly called to generate the predicted probability values to be

plugged into the variable P in equation below

ln(P) = bo + biln(L) + bAPRln(APR) + bzln{Z)

Then APR can be expressed as

bt. bZ bn-ln(P)
APR =L ~bAPR * Z ~bAPR * e ~bAPR
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where P is the probability of acceptance (predicted by Probit model), L is the loan

amount and Z is the vector of principal components, bp, bAPR,bz are the parameters

estimated from OLS regression, as shown in Appendix B: Table B.5. The indifference

Indifference Curves
P=0.6

0.4

P=0.3

P=0.2

Figure 4.15: Indifference curves using a different approach

curves on a Loan Amount vs APR space are plotted in Figure 4.15 using the estimates

of ln(APR) and ln{AMT) with Z and P variables treated as constant. The mean values

of Z have been used in all indifference curves while each indifference curve is gener¬

ated from a different P value. Similar to the indifference curves presented in previous

subsection, the indifference curves in Figure 4.15 are in similar shapes. Same conclu¬

sion can be drawn that both lower interest rates and lower loan amounts increase the

attractiveness of the offers.

4.10 Conclusion

This chapter reported the results of the modelling of consumer acceptance behaviour.

Logistic regression was used to model the probability of acceptance on each band as
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well as for all bands combined together. Based on the estimates of the logistic re¬

gression, the acceptance elasticities with respect to interest rate were calculated. Af¬

ter modelling the P(Accept) directly, efforts were made to improve the prediction of

default behaviour with the help of acceptance data using a bivariate Probit sample

selection model. However, the predictive performance on the holdout sample is not

improved using the bivariate Probit sample selection model. Finally, the indifference

curves are plotted on the APR vs. Loan Amount space.
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Survival Analysis

5.1 Introduction

This chapter presents the results from survival analyses of default and paying back

early. Section 5.2 describes the background of survival analysis followed by the struc¬

ture of different survival models. Section 5.3 gives the details of the data used in the

survival analysis. The following two sections are each devoted to the individual mod¬

elling of one of the two different types of customer behaviour, default and paying back

early. Section 5.6 shows the results of modelling these two types of behaviour in a

competing risks framework instead of separately. Finally, conclusions are drawn in

section 5.7.

5.2 Introduction to survival analysis

Survival analysis deals with the modelling of time to event data. The event could be

death in a biological study or a breakdown in an engineering problem. In an analysis

of Credit Scoring, an event of interest could be the action of a customer to stop pay-

124
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ing the monthly payment at a given month for some reason, either because of default

or just switching to other lenders. One important advantage of survival analysis over

static binary dependent variable models is that in survival analysis timing information

has been utilized and modelled. This timing information can be very useful when the

estimation ofprofit is needed, which we shall see in the next chapter.

When an event under study has occurred, we can call it a 'failure'. The probability

that the failure occurs at a time T that is later than some arbitrary time t is called the

survival function S(t).

S(t)=Pr(t<T)

where t is the continuous duration time variable starting from t = 0. From the survival

function S{t) we can define the failure function F(t) = 1 — S(t). The density function

/(/) of this failure function F{t) can be expressed as

dF(t)
_ dS(t)

J{> dt dt

The conditional failure rate, or hazard function, defined as the event rate at time t

conditional on that the subject having survived at least until time t, can be written as

(5.i>
8t->0 51 S(t) dt S(t)

The survival function S(t) can also be derived from the hazard function as

S(t) = e[-S'ohWd"}

5.2.1 Nonparametric model

Without making assumptions about the shapes of the hazard functions with respect to

time, nonparametric models can be estimated to explore survival patterns. A Kaplan
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and Meier (1958) estimate of a survival function can be expressed as

m = n (—)
j\'j« J

where /]... tj are rank ordered survival times such that /] <t2< ■■ < tj. nj is the number
at risk of the events of interest before time tj. dj is the number of observed events of
interest at time tj.

5.2.2 Parametric regression survival models

By assuming the form of parametric distributions of the hazard function, parameters

can be estimated by maximum likelihood. Different distributions for the hazard func¬

tion can be assumed, such as exponential, Weibull, gompertz, lognormal, loglogistic

or gamma. For example, a Weibull proportional hazard model can have the hazard

function as

h{t,X) = hQ{t)f(x)

where f(x) = exp$*x and the baseline hazard function is ho(t) — p * tp~\ p and (1 are

the parameters to be estimated. When p = 1, ho(t) = 1, the hazard rate is constant

and the Weibull model becomes an exponential model where h(t,X) = exp$*x. Figure
5.1 shows the baseline hazard function ho(t) = p * tp~\ (the Weibull function) with

varying shape parameter p.
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-U-

Weibull

10
t

15 20

p=0.5 p=1
— p=1.5

Figure 5.1: Example of hazard functions for Weibull models

5.2.3 Cox proportional hazards model

Forcing the hazard function to take a particular shape may be a disadvantage if it does

not accurately represent the data. Placing no restrictions on the shape of the baseline

hazard function ho(t), Cox (1972) argued that h(t,x) = /?o(0 */(x) and suggested that

/(x) ought to be modelled as e$x. The hazard function can be written as

h(t,X) =h0(t)*e^*x

whereX = (x\,X2 ,---Xk) is the time independent vector ofK explanatory variables and

the |3 is the vector of shape parameters to be estimated. Here the ho(t) is called the

baseline hazard. The hazard ratio between x, and xj is irrelevant to the baseline hazard

ho(t) as it can be cancelled as shown below

Kcxj)
= ho(t)*e?>Xi = e^xi~Xj)

h(t,Xl) ho(t) * e^-'
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Assuming j is the index of the ordered D distinct observed failure times from t\ to

to (for every i, tj < tl+ \, and there are no ties) and Rj is defined as the risk set at

time tj, which equals the collection of the observations that are at risk of failure at

time tj, the likelihood can be written as the product of the conditional probabilities Pj,
L = Y[% , Pj. The Pj is the conditional probability that for a particular failure at time
tj the failure is observed

xi

Pj=lieRj^x'
where x, is a vector of data with K variables for case i observed within risk set R,.

The estimate of (3 can be found by maximizing the natural logarithm of the partial

likelihood function

, ri "

When there are tied failures to handle, Efron (1977) provided a closer approximation

to the exact marginal likelihood which is computationally intensive. Breslow (1974)

proposed a much faster approximation as below.

D efoj

7=1

where dj is the number of observations in the risk set Rj. Efron's approximation is
a closer approximation than Breslow's method but at the price of higher computation

demands.

In the data used for credit scoring the status of each account is usually recorded in

a monthly fashion. A natural treatment would be to treat the time T as discrete and

estimate the hazard function in a discrete logistic model (Cox (1972)).

Kt)
= 3x MO

1-^(0 l-/7o (0
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Stepanova and Thomas (2002) found that compared to the PH-Cox model with con¬

tinuous time assumed, this discrete logistic model has a better fit to the data (in terms

of log-likelihood) but "almost no difference in the parameter estimates and no differ¬

ence in the number of correctly classified accounts between the methods". In most of

their estimations, they assumed continuous time and used the Breslow approximation

to handle the ties since this is computationally the fastest method. In the analysis we

carried out we also assumed continuous time and used Breslow's approximation.

5.2.3.1 Extensions of Cox models

Departing from the assumption of homogeneity with respect to the baseline functions ,

we can assume that the same proportional hazard assumption holds for each individual

strata with the individual baseline hazard function hog for strata g. The hazard function
then becomes

hg(t,X) = hog(t)e^x

where g — 1,2, ....G stands for the strata. This model is called the Stratified Cox model.

Although the baseline hazard functions are individually estimated for each strata, the

parameter vector p, is still constrained to be the same across the groups. This main¬

tains the compactness of the model.

Another way of extending the Cox Models is called the Time Dependent Cox model.

In the previous proportional hazard models all the covariates have been assumed to be

unchanged from time zero to the end. Under situations where some covariates change

over time, the time independent assumption can be relaxed. The hazard function can

be written as

h{t,X(t)) = h0(t)e^x+bx{l)
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where X(t) represents the vectorX at time /. As this extension introduces more com¬

plexity into the model, the potential gain from this approach might be overshadowed

by the risk of possible overfitting. This can be seen in the later estimation results.

5.3 Data description

We are going to model time to default and time to paying back early. The time period

in which a borrower is said to have defaulted is the first month in which he/she became

two payments overdue. A binary indicator is used to mark the presence of a default

event observed at a given time. This variable equals 1 when default occurs and 0 when

the payments are made on schedule or is closed early. For paying back early we model

the month in which the balance was paid off.

In the dataset prepared for the survival analysis, for each customer with recorded pay¬

ment performance there are two new variables to be constructed.

1. The length of the duration time of observing the account state of keeping pay¬

ments up to date with consequent exposure to default or payback early possibil¬

ities.

2. Censoring status, whereby an account is censored if the outcome of interest is

not observed, such as borrower making scheduled payments throughout the ob¬

servation period, paying back early when default is the outcome of interest or

having defaulted when paying back early is the outcome of interest. An account

is not censored otherwise.

Other variables used in the data set include those variables used in the estimation of

the probabilities of default and of acceptance.
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In the data investigated, although the fixed terms of the loans range from 24 to 84

months, the longest observation period is 26 months. Therefore most of cases are cen¬

sored as their terms are longer than 26 months. Figure 5.2 illustrates this censoring

situation.

# The longest observed period is 26 months

24 36 48 60

Length of the Loan in Months
72 84

Figure 5.2: Observed loan terms

5.3.1 Description of the data using the Kaplan-Meier model

Since the Kaplan-Meier model makes no parametric assumptions, in the data explo¬

ration stage it can help us to investigate the overall hazard and survival functions with¬

out assuming distributional shapes in advance. The K-M survivor functions for default

and paying back early are compared in Figure 5.3. Figure 5.4 compares the hazard

functions of default and paying back early.
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Survival Functions
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| Default Pay Back Early |

Figure 5.3: Kaplan-Meier survival functions, default and paying back early

Both figures indicate much higher hazard rates for paying back early than for default.

While the shape of the default hazard function looks flat in Figure 5.4 because its rel¬

atively much smaller magnitude, in Figure 5.5 we can find the default hazard function

at first quickly rises from 0.002 to 0.003 then at a slower pace increases and decrease

until month 16, starting from when a sharp increase and decrease happens. The hazard

function for the paying back early quickly increases from 0.003 to over 0.020 after 8

months. After 19 months, the paying back early hazard drops quickly from around

0.028 to 0.020 in three months before going up again. In the following sub sections we

will compare the hazard functions ofdefault and paying back early for different groups

to explore the differences in more detail.
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Hazard Functions

0 5 10 15 20 25
analysis time

| Default Pay Back Early I

Figure 5.4: Kaplan-Meier hazard functions, default and paying back early

Hazard Function for Default

Figure 5.5: Kaplan-Meier hazard function for default

5.3.2 Differences between customers from two different brands

In the data investigated, there was still quite a big difference between the customers

from two different brands. Brand! has 8,823 customers while Brand2 has 22,549 cus-
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tomers. Their hazard functions shown in Figures 5.6, 5.7, 5.8 and 5.9 1 reveal a large

difference between the customers' behaviour of these two brands especially in terms

of paying back early. Two possible explanations are available. The first is the length

of the existing observation periods. For Brand 1 customers, the maximum length of

the observed period is 18 months while the maximum length of the observed period

is 26 months for Brand2 customers. The second is the proportion of newly opened

accounts. Of Brandl accounts, 99.24% were new business while of Brand2 accounts,

74.22% were newly opened. One might expect that newly attracted customers would

have a higher tendency to switch, but the paying back early hazard for Brandl is actu¬

ally lower than that for Brand2. Please note that the sudden rise of paying back early

hazard for Brandl customers after month 15 is due to the very few observations after

that month.

Hazard on Brandl customers

10
analysis time

15 20

Default Pay Back Early

Figure 5.6: The KM hazard functions of the Brandl customers for paying back early

and default

'Figures 5.7 and 5.9 are supplemented because the much smaller magnitude of the default hazard

functions render them look flat in comparison when plotted together with paying back early hazard

functions.
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Default Hazard on Brand 1 customers

analysis time

Figure 5.7: The KM hazard functions of the Brandl customers for default

Hazard on Brand2 customers

v. /

\ /

10 15
analysis time

20 25

Default Pay Back Early

Figure 5.8: The KM hazard functions of the Brand2 customers for paying back early

and default
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Default Hazard on Brand2 customers

analysis time

Figure 5.9: The KM hazard functions of the Brand2 customers for default

5.3.3 Difference between hazard functions with different loan terms

There are 6 categories of loan terms in the data set as shown in Table 5.1. Term 24

means the length of the loan is 24 months.

Loan Term Frequency

24 2,149

36 8,038

48 5,864

60 11,109

72 867

84 3,345

Table 5.1: Size of different loan term groups

The hazard functions for different terms have different shapes. As shown in Figure
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5.10, for customers taking the loan with the same term, the hazard functions for paying

back early and default are not exactly same. Because of the much smaller magnitude

of default hazard functions compared to that of paying back early hazard functions the

default hazard functions look flat over the time but they are not so. They have been

plotted separately in Figure 5.11.

Hazard on 24 Month Loan

r~
x

\

/ V

i
/
^'

0 5 10 15 20 25

analysis time

Default

Pay Back Early

Hazard on 36 Month Loan Hazard on 48 Month Loan

v I

y
S

/

/
/
/

—

t 1 1 r

5 10 15 20 25
analysis time

Default

- — Pay Back Early

5 10 15 20 25
analysis time

Default

Pay Back Early

Hazard on 60 Month Loan

\
z'

/
\/\

0 5 10 15 20 25~
analysis time

Default

Pay Back Early

Hazard on 72 Month Loan

0 5 10 15 20 25

analysis time

Default

Pay Back Early

Hazard on 84 Month Loan

/ ~

-J 1 1 1 1 1—
0 5 10 15 20 25

analysis time

Default

Pay Back Early

Figure 5.10: Compare the Hazard functions for loans with different terms.
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Figure 5.11: Compare the default hazard functions for loans with different terms.

5.4 Results of default modelling

This section explores the modelling of the time to default using parametric and semi-

parametric models. To avoid dimensionality problems, the data is encoded using

weights of evidence instead of dummy variables. Seventy percent of the data were

randomly selected as a training set, on which the tests and estimations in the following

sub sections were carried out. In total we have 21968 cases in the training set, 1,162

default, 6,063 paying back early and 14,743 Good cases. The cases for paying back

early and Good were both treated together as Non-default.
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5.4.1 Selection of explanatory variables

By testing the equality of the survival functions across the levels with the discrete ex¬

planatory variables, the log rank test or the Wilcoxon test can be carried out. If it is

significant, then the null hypothesis that the survival functions are the same across the

groups, can be rejected and this variable can be included into the model. However,

when our variables have been recoded as continuous using weights of evidence, these

tests were not carried out. Besides, the Stata manual for the survival analysis (release 9,

page 300) suggests that "although it should be preferable to use log rank test, perform¬

ing the log rank test or Cox (likelihood ratio) test makes little substantive difference

with most datasets."

Forward stepwise selection was carried out by starting from fitting an empty model

and one by one adding the most significant excluded term and then re-estimating the

function. The test of significance is a Wald Test. The Wald Test is based on the esti¬

mated variance matrix of the estimators. The likelihood ratio test can also be used to

test the significance of parameters and is preferred by many over the Wald test because

fewer assumptions are made and the interpretation is easier. Our results showed that

identical sets of variables have been selected by the Wald Test and the Likelihood ratio

test. In the following sections we estimated hazard functions for default using alterna¬

tive assumed distributions for the hazard functions: the Weibull and the Exponential.

We then estimated PH Cox models.

5.4.2 Parametric regression using the Weibull distribution

Parametric regression estimation using the Weibull distribution was carried out and the

results are reported in Table 5.2 and the variable dictionary can be found in Table 3.6.
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The hazard and estimated survivor functions can be
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found in Figures 5.12 and 5.13.

Hazard on Default data, Weibull, at sample means

analysis time

Figure 5.12: Hazard function, Weibull distribution, default data

Survival on Default data, Weibull, at sample means

Figure 5.13: Survivor function, Weibull distribution, default data
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Table 5.2: Weibull model estimates for default

_t Coef. Std. Err. z P> |z| [95% Conf. Interval]

loanaprl -0.5348692 0.0353265 -15.14 0.000 -0.6041078 -0.4656306

cpi -0.7395155 0.0388443 -19.04 0.000 -0.8156489 -0.6633822

term -0.9456799 0.1094957 -8.64 0.000 -1.1602880 -0.7310723

timebank -0.4994509 0.0839768 -5.95 0.000 -0.6640425 -0.3348594

spl6ml2 -0.4935099 0.0654505 -7.54 0.000 -0.6217905 -0.3652294

ssrc4to6 -0.4304889 0.0701085 -6.14 0.000 -0.5678990 -0.2930789

loanbal4 -0.5236339 0.1091294 -4.80 0.000 -0.7375237 -0.3097442

spsetld -0.5336005 0.0878954 -6.07 0.000 -0.7058724 -0.3613286

spl6m4 -0.4979006 0.1167386 -4.27 0.000 -0.7267040 -0.2690973

age -0.4233402 0.1063859 -3.98 0.000 -0.6318528 -0.2148276

loanball -0.6680406 0.1384581 -4.82 0.000 -0.9394134 -0.3966678

timaddl -0.6679946 0.1801264 -3.71 0.000 -1.0210360 -0.3149533

inc_surp -0.3277320 0.0970146 -3.38 0.001 -0.5178772 -0.1375867

searches -0.4812325 0.2127586 -2.26 0.024 -0.8982318 -0.0642332

spvaldel -0.4153225 0.1198893 -3.46 0.001 -0.6503012 -0.1803438

newbus 17.6266100 6.1234020 2.88 0.004 5.6249660 29.6282600

loanbal2 -0.4131220 0.1667517 -2.48 0.013 -0.7399493 -0.0862946

ccjgt500 -0.5696079 0.2531701 -2.25 0.024 -1.0658120 -0.0734037

brand 0.9648506 0.4020723 2.40 0.016 0.1768033 1.7528980

no_amex -0.8484294 0.3949714 -2.15 0.032 -1.6225590 -0.0742997

mortbal -0.5967126 0.2742134 -2.18 0.030 -1.1341610 -0.0592643

loanbal6 -0.2857244 0.1337473 -2.14 0.033 -0.5478644 -0.0235844

snbal!6m -0.6260833 0.3564790 -1.76 0.079 -1.3247690 0.0726026

_cons -6.4694950 0.1017219 -63.60 0.000 -6.6688660 -6.2701240

/ln_p 0.2541715 0.0264933 9.59 0.000 0.2022455 0.3060975

P 1.2893930 0.0341603 1.2241490 1.3581150

1/p 0.7755588 0.0205471 0.7363148 0.8168943
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1 - Specificity
Area under ROC curve = 0.8082

Figure 5.14: Area under ROC, Weibull distribution, default data

5.4.3 Parametric regression using the Exponential distribution

Parametric regression estimation using the Exponential distribution was carried out.

The survival and hazard functions can be found in Figures 5.15 and 5.16.

Survival on Default data, Exponential, at sample means

analysis time

Figure 5.15: Survivor function, Exponential distribution, default data
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The estimates are reported in Table 5.3. The area under the ROC curve is plotted

in Figure 5.17. Although using a simpler model structure than a Weibull model, the

AuROC on the holdout set is 0.8345, better than that of the Weibull model's 0.8082.

5; Hazard on Default data, Exponential, at sample means

10 15
analysis time

20 25

Figure 5.16: Hazard function, Exponential distribution, default data

Figure 5.17: Area under ROC, Exponential distribution, default data
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Table 5.3: Parametric regression results using Exponential Distribution on default

_t Coef. Std. Err. z P> \z\ [95% Conf. Interval]

loanaprl -0.5178199 0.0356924 -14.51 0.000 -0.5877758 .0.4478641

cpi -0.7250035 0.0388431 -18.66 0.000 -0.8011347 -0.6488724

term -0.9472073 0.1093950 -8.66 0.000 -1.1616170 -0.7327971

timebank -0.4792742 0.0841515 -5.70 0.000 -0.6442081 -0.3143403

spl6ml2 -0.4961234 0.0656931 -7.55 0.000 -0.6248795 -0.3673673

ssrc4to6 -0.4310955 0.0706320 -6.10 0.000 -0.5695317 -0.2926592

loanbaW -0.5270958 0.1091070 -4.83 0.000 -0.7409415 -0.3132501

spsetld -0.5602218 0.0891598 -6.28 0.000 -0.7349719 -0.3854718

spl6m4 -0.5125098 0.1219666 -4.20 0.000 -0.7515599 -0.2734597

age -0.4046630 0.1064918 -3.80 0.000 -0.6133830 -0.1959430

loanball -0.6682834 0.1382475 -4.83 0.000 -0.9392435 -0.3973233

timadd 1 -0.6401188 0.1809254 -3.54 0.000 -0.9947260 -0.2855116

ine_surp -0.3193763 0.0969892 -3.29 0.001 -0.5094716 -0.1292810

searches -0.4943235 0.2128714 -2.32 0.020 -0.9115437 -0.0771032

spvaldel -0.5027495 0.1294584 -3.88 0.000 -0.7564833 -0.2490157

newbus 19.1777700 5.9255270 3.24 0.001 7.5639540 30.7915900

loanbal2 -0.4180606 0.1668939 -2.50 0.012 -0.7451666 -0.0909547

ccjgt500 -0.5249048 0.2533820 -2.07 0.038 -1.0215240 -0.0282853

no_amex -0.7933713 0.3964881 -2.00 0.045 -1.5704740 -0.0162689

loanbal6 -0.2929449 0.1337332 -2.19 0.028 -0.5550571 -0.0308326

mortbal -0.5509227 0.2726835 -2.02 0.043 -1.0853730 -0.0164728

snball6m -0.6134397 0.3571774 -1.72 0.086 -1.3134940 0.0866152

smo89 1.1302930 0.5553435 2.04 0.042 0.0418393 2.2187460

alcifdet -0.5125166 0.2514563 -2.04 0.042 -1.0053620 -0.0196714

_cons -5.6685750 0.0349650 -162.12 0.000 -5.7371050 -5.6000450
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5.4.4 Cox proportional hazard model

The Cox proportional hazard model estimates are reported in Table 5.4. Figure 5.18

shows the baseline survivor function, where So(t(j)) = IT;=o (^ ~hj)- hj is the baseline
hazard contribution. Figure 5.19 plots the ROC curve on the holdout set.

Baseline S(t),Cox model

Figure 5.18: Baseline function S(t), Cox model, default data

1 - Specificity

Figure 5.19: Area under ROC, Cox PH model, default data
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Table 5.4: PH Cox model estimates on default

_t Coef. Std. Err. z P> |z| [95% Conf. Interval]

loanaprl -0.535006 0.035208 -15.20 0.000 -0.604013 -0.466000

cpi -0.728857 0.038837 -18.77 0.000 -0.804975 -0.652739

term -0.942529 0.109279 -8.62 0.000 -1.156712 -0.728346

timebank -0.483651 0.084039 -5.76 0.000 -0.648365 -0.318936

spl6ml2 -0.487245 0.065402 -7.45 0.000 -0.615430 -0.359060

ssrc4to6 -0.419171 0.070046 -5.98 0.000 -0.556458 -0.281883

loanba!4 -0.519626 0.109106 -4.76 0.000 -0.733471 -0.305782

spsetld -0.540380 0.087629 -6.17 0.000 -0.712129 -0.368631

spl6m4 -0.466104 0.116628 -4.00 0.000 -0.694689 -0.237518

age -0.400648 0.106515 -3.76 0.000 -0.609413 -0.191882

loanball -0.662516 0.138324 -4.79 0.000 -0.933626 -0.391406

timaddl -0.653350 0.180490 -3.62 0.000 -1.007103 -0.299596

inc_surp -0.317062 0.096913 -3.27 0.001 -0.507008 -0.127116

searches -0.481334 0.212881 -2.26 0.024 -0.898573 -0.064095

spvaldel -0.423302 0.119776 -3.53 0.000 -0.658058 -0.188546

newbus 19.333330 5.928404 3.26 0.001 7.713872 30.952790

loanbal2 -0.417280 0.166892 -2.50 0.012 -0.744382 -0.090178

ccjgt500 -0.555103 0.253246 -2.19 0.028 -1.051456 -0.058749

loanbal6 -0.289933 0.133673 -2.17 0.030 -0.551926 -0.027940

no_amex -0.806257 0.396196 -2.03 0.042 -1.582786 -0.029727

mortbal -0.551189 0.272541 -2.02 0.043 -1.085359 -0.017018

snba!16m -0.628288 0.357366 -1.76 0.079 -1.328713 0.072136
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5.4.4.1 Predictive performance using area under ROC

The cumulative hazard probability in the first 12 months or 24 months can be used to

represent the default behaviour. This cumulative hazard probability equals 1 minus the

probability of survival until 12 months or 24 months. This survival function S(t,x),

the probability of survival until time t for a subject with explanatory variable vector x

under the proportional hazards assumption, can be expressed as

S[t,x) = = e-eV**tih0(u)du =So^

where ho(t) is the baseline hazard function that is only related to the duration time

variable t. Now,

Prob{default within time t) = 1 — S(t,x) = 1 — e~e^c*Sof,o{«)du

For a fixed given value of time /, the probability of default within time 0 to t is mono-

tonically changing with the exponentiated linear prediction e&x, so called the relative

hazard. When measuring the predictive performance using Area under ROC curves on

the binary outcome classifiers, it is only the relative size of the predicted numerical

values that matters. This relative hazard (or the hazard ratio) value can then be used

instead of the actual probability of default in calculating the Area under the ROC val¬

ues on the training and holdout data.

The area under the ROC curve on the holdout sample is 0.8345. For comparison,

using the Logistic Regression model, the area under the ROC curve on the holdout set

is 0.8339. The previous Exponential model achieved an AuROC of0.8345 on the hold¬

out set. Considering the randomness, the difference in the predictive power between

those models, in terms of the area under ROC curve, is mostly negligible. The Weibull

model, however, is the poorest performing model with AuROC of only 0.8082.
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5.4.5 Test of proportional hazard assumption

The proportional hazard assumption is extremely important for the Cox models and

other parametric regression models that are consistent with the proportional hazard

assumption, for example, the Exponential model estimated earlier.

5.4.5.1 Graphical assessment of PH assumption

Hosmer and Lemeshow (1998) (chapter 6.3) describes methods to test the proportional

hazard assumptions. One of the methods that can be used to test the violations of the

proportional hazard assumption on discrete variables in simpler models is the graphical

assessment method. For each level of of the nominal variable, a curve can be plotted.

This can be log-log plots ( —ln(—ln(survival probability)) vs ln(analysis time). Par¬

allel curves indicate the non-violations of the proportional hazard assumption.

Or as pointed out by Garrett (1997), two curves can be plotted by displaying pre¬

dicted survival probability from the Cox model along with the observed probability

from Kaplan-Meier models. The closer the observed values are to the predicted, the

less likely the assumption is to be violated. One problem with the graphical assessment

method is that eyeballing is difficult and subjective. Another limitation is its applica¬

bility only to simpler models with nominal covariates. Besides, too many levels within

those nominal covariates gives one graph with many curves that are difficult to tell

apart.

5.4.5.2 Testing the PH Assumption using scaled Schoenfeld residuals

Grambsch and Themeau (1994) proposed that the test of a zero slope in a generalized

linear regression of a scaled Schoenfeld residuals of time is equivalent to a test of the
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existence of the constant log hazard ratio over time. The results for the global scaled

Schoenfeld residuals test, as displayed in Table 5.5, show that the null hypothesis that

there is a zero slope, has to be rejected (Prob>chi2 = 0.0000).

Table 5.5: Test of proportional hazards assumption

rho chi2 df Prob > chi2

loanaprl 0.04959 3.02 1 0.0821

cpi -0.01456 0.26 1 0.6114

term -0.08801 9.45 1 0.0021

timebank -0.04636 2.57 1 0.1088

spl6ml2 0.01102 0.14 1 0.7040

ssrc4to6 -0.04981 3.07 1 0.0797

loanbal4 -0.05680 3.58 1 0.0585

spsetld 0.07621 6.65 1 0.0099

spl6m4 -0.04137 2.21 1 0.1371

age -0.00056 0.00 1 0.9844

loanball 0.00492 0.03 1 0.8653

timaddl -0.04016 1.83 1 0.1758

inc_surp -0.09487 10.64 1 0.0011

searches 0.03680 1.55 1 0.2127

spvaldel 0.01139 0.16 1 0.6905

newbus -0.05848 3.85 1 0.0499

loanbal2 -0.04155 1.91 1 0.1674

ccjgt500 -0.02504 0.74 1 0.3883

loanbal6 0.00140 0.00 1 0.9623

no_amex -0.03270 0.97 1 0.3235

mortbal 0.02903 0.99 1 0.3209

snball6m -0.02022 0.39 1 0.5320

global test 74.15 22 0.0000
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That means there are violations in the assumption of proportional hazards. When

assessed individually, the covariates that clearly violate the proportional hazards as¬

sumption are term, spsetld, inc_surp, newbus (the p value threshold is set as 0.05 ) .

However, graphically it is still not easy to check the violation. Comparison of Figures

5.20 and 5.21 shows that it is not easy to graphically judge whether the slope is zero

or not.

Running mean smoother
O .

5 10 15 20 25
Time

bandwidth = .8

Figure 5.20: Scaled Schoenfeld Residuals for spsetld, violating PH Assumption, default

data

Running mean smoother
O

5 10 15 20 25
Time

bandwidth = .8

Figure 5.21: Scaled Schoenfeld Residuals for AGE, non violating PH Assumption, de¬

fault data
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5.4.5.3 Using time dependent covariates to test the PH assumption

Another method of testing the proportional hazard assumption was described by Hos-

mer and Lemeshow (1998) following Schoenfeld (1982) and Grambsch and Therneau

(1994) by creating time dependent covariates which are the interactions between those

covariates to be tested and the log of survival time. If those newly generated time

dependent covariates enter the Cox model with significant parameters then the PH as¬

sumption is violated. Because of the limits of the software package used (Stata Stcox),

which refuses to run when too many time dependent covariates are entered into the

model, those newly created time dependent covariates were split into three groups,

each group enters a Cox model with other time-independent covariates. The results in

Appendix C: Tables C.l, C.2, and C.3 show the estimates for those three models.

Similar to findings using scaled Schoenfeld residuals, four variables (term, spsetld,

inc_surp and newbus) were found to be significant. Another four covariates (loanbal4,

spl6m4, loanbal2 and no_amex ) were also found to be violating the PH assumption

according to this test.

5.4.5.4 Performance of the Cox model with time dependent covariates

Previous tests on the proportional hazards assumptions indicated violations of the as¬

sumption and pointed out four covariates that may be time dependent. The four vari¬

ables are term, spsetld, inc_surp and newbus. A Cox model with time dependent co¬

variates is therefore constructed on the training data. The time dependent covariates

were constructed as X*t, where t is the duration time and X is the set of four time

dependent covariates that have been shown to be violating the PH assumption in both

of previous tests.
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The expectation is that the Cox model with time dependent covariates should improve

the predictive performance on the holdout data. Surprisingly, this is not what was ob¬

served. The area under the ROC curve on the holdout set is 0.8289, lower than the area

under the ROC curve from the original Cox model of 0.8345. Figure 5.22 plots the

ROC curves on the holdout set and the estimates are listed in Appendix C: Table C.4.

Therefore we retain these variables in the hazard function.

1 - Specificity
Area under ROC curve = 0.8289

Figure 5.22: Area under ROC, Cox model with time dependent covariates, default data

5.4.6 Conclusion

In the previous analysis we have estimated the parameters for different survival analy¬

sis models of default. The predictive performance comparisons in terms of area under

the ROC curve on the holdout set show that the Exponential model and the PH Cox

model are as competitive as a Logistic Regression model in predicting default. More

complex models such as the Cox model with time dependent covariates added, do not
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predict as well as expected. They might be suffering from the problem of over fitting.

5.5 Results of paying back early modelling

Previous results in section 5.3.1 have shown that the hazard functions for behaviours

of default and paying back early are totally different. Stepanova and Thomas (2002)

compared the modelling approaches of the paying back early behaviour using PH Cox

models and Logistic Regression. They used two alternative definitions of paying back

early in the modelling comparison. The first type is for the loan to be paid off early

within the first 12 months. The second is for the loan to be paid off between month 12

and month 24 should the loan not have been paid off in the first 12 months. They found

a stronger effect of the term arrangement (especially the remaining time-to-maturity of

the loan) on the probability of paying back early than on the probability of default.

In our analysis, we will not predict the probability of paying back early from month

12 to month 24 since we are more interested in estimating profitability at the time of

application. This profitability estimation requires the paying back early probabilities

estimation at the time of application.

For the same reason, the behaviour of paying back early is defined as the observa¬

tion that the loan has paid back within the whole duration of the loan. Because we

have a limited observation period (only the first 26 months), our definition of paying

back early is the observation of the outcome of the customer to pay back early within

the first 26 months. Most of the variables used (except the two continuous variables,

the loan amount L and loan APR ) in the models are coded using the weights of evi-
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dence, which are calculated using the odds ofpaying back early.

Both parametric and semi parametric survival models will be fitted to the data. Two

proportional hazards parametric survival models, Weibull and exponential models, will

be used. Two accelerated failure time models, the Lognormal and Loglogistic models,

will be tried as well. These two models are introduced because of the difference ob¬

served in the shape of the hazard functions compared to the hazard functions of the

default models.

5.5.1 Parametric proportional hazards modelling results

The hazard functions for the Weibull and exponential models can be found in Figures

5.23 and 5.24. Because of the way the hazard functions are parameterized, their hazard

functions structures are constrained. For the exponential model, the hazard function

has to be held constant, which apparently differs from the real functional form of the

hazard function as we have observed in the Kaplan-Meier model. It is therefore not

surprising to find that the Lognormal and Loglogistic models (to be shown in the next

sub section) have better fits for the hazard functions than Weibul and exponential mod¬

els. The estimates for the two models can be found in Appendix C: Tables C.5 and

C.6.
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Figure 5.23: Hazard function, Weibull model, paying back early data

18 Exponential regression
CO -

o
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analysis time

Figure 5.24: Hazard function, Exponential model, paying back early data
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5.5.2 PH Cox model results

The hazard function for the PH Cox Models is shown in Figure 5.25. Because the

model structure of PH Cox model is semi-parametric, the estimated hazard function

is the closest to the observed hazard functions estimated by the Kaplan-Meier model.

The hazard goes up initially and the speed of increase decreases until reaching around

19 months. After then the hazard of paying back early drops quickly. The estimates

for the PH Cox model can be found in the Table C.7 within the appendix section.

Cox proportional hazards regression

Figure 5.25: Hazard function, PH Cox model, paying back early data

5.5.3 Parametric accelerated failure time models

The hazard functions estimated from Lognormal and Loglogistic models (shown in

Figures 5.26 and 5.27 respectively) more closely capture the shape of the observed

real hazard functions than the Weibull and exponential models do. The hazard function

rises at first then the speed of increase decreases slowly. However, both models have

not captured the decrease in the hazard function after around 20 months as the semi-
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parametric PH Cox model does.
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Lognormal regression

analysis time

Figure 5.26: Hazard function, Lognormal model, paying back early data

Loglogistic regression

analysis time

Figure 5.27: Hazard function, Loglogistic model, paying back early data
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5.5.4 Model comparison

One way of comparing the goodness of fit of the survival models is by using Cox-Snell

Residuals Cox and Snell (1968). For each observation j, the Cox-Snell residual rj is

rj = Ho(tj)exp(fixj)

where (3 are the estimates of the survival model. Hoitj) is the cumulative baseline haz¬
ard function up to tj. This set of Cox-Snell residuals can be treated as observations
from an exponential distribution with parameter X equal to one if the p and Ho(t) are

the true estimates of the model parameters.

The fit of the model may be examined by comparing these Cox-Snell residuals to the

empirical estimates of the cumulative hazard function. The Kaplan-Meier estimates of

the survival function S, can be transformed into the empirical estimates of a cumulative

hazard function where Ho = —ln(S). If the model has a good fit, the plot of Kaplan-

Meier estimates against Cox-Snell residuals should be very close to a straight line with

a slope of one.

The Figures 5.28, 5.29, 5.30 , 5.31 and 5.32 suggest that Weibull and exponential

models have a poorer fit to the data compared to the Lognormal, Loglogistic and PH

Cox model. The better model fit for the Lognormal and Loglogistic models can be

explained by their suitable shapes of the hazard function forms, which see the hazard

rates increase and then go down as observed in the paying back early behaviour. PH

Cox model can also achieve a reasonable fit thanks to its semi-parametric estimation

of the baseline hazard functions.
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Weibull

Figure 5.28: Using Cox-Snell residuals to check the fit ofWeibull model

Exponential

_l 1 1 r

0 12 3
Cox-Snell Residual

Figure 5.29: Using Cox-Snell residuals to check the fit of Exponential model
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Lognormal

Figure 5.30: Using Cox-Snell residuals to check the fit of Lognormal model

Loglogistic

Figure 5.31 Using Cox-Snell residuals to check the fit of Loglogistic model
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Figure 5.32: Using Cox-Snell residuals to check the fit of PH Cox model

Better fit of the model to the training data does not necessarily translate to a better pre¬

dictor on the out-of-sample data. The predictive performances of those parametric and

semi-parametric survival analysis models, measured by their abilities to differentiate

the binary outcome ofpaying back early or not for the holdout set, are compared in Ta¬

ble 5.6 along with the performance of a Logistic Regression model as the benchmark.

Model AuROC

Weibull 0.6600

Exponential 0.6700

Lognormal 0.6597

Loglogistic 0.6606

PH Cox 0.6641

Logistic Regression 0.6736

Table 5.6: Comparison of the model predictive performance on holdout set
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As shown in Table 5.6, using AuROC as the performance measure, overall the predic¬

tive abilities of those models are very similar in terms of the ability of differentiating

the non-paying back early from the paying back early customers within the 26 months

observation period. The lowest AuROC value, 0.6597, was reported by a Lognormal

model and the highest AuROC value, 0.6736, was reported by a Logistic Regression.

The exponential model, despite its poor model fit indicated by the Cox-Snell residuals,

achieves the second best AuROC.

5.5.5 Conclusion

Compared to the predictive performance of the default models, the paying back early

models achieve much lower AuROC values. This is because of the lack of predic¬

tive variables explaining the paying back early behaviours. The dynamic competitive

ranking data of the lenders' typical rates for each month and the rates charged by com¬

peting lenders , for example, might improve the predictions if they were available to

be included in the models.

Due to the different shapes of the hazard functions observed, the parametric propor¬

tional hazard survival models like Weibull and exponential models are not found to

fit the hazard functions well, despite still doing reasonable well in the binary outcome

predictions. The parametric Accelerated Failure Time models like the Lognormal and

Loglogisitic models, are found to fit the data better in terms of the Cox-Snell residuals.

The proportional hazards Cox model, is also found to have good model fit (thanks to

the semi-parametric model structure) and comparable predictive performance.
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5.6 Results of competing risks modelling

163

In our data three different outcomes may happen, paying back early, continue to pay

on time during the observation period (right censored) or default. The risks of paying

back early and default are non-repeated failures by definition. Once the customer has

paid back early or defaulted, for the analysis the account was considered closed and

study time finished 2. Each subject was either right censored or encountered one of

the two events. As seen in Figure 5.3 and 5.4, the Kaplan-Meier survival and hazard

functions for payback early and default are totally different.

Lunn and McNeil (1995) discussed different methods available for the estimation of

parameters in modelling competing risks, either estimating the parameters for those

events individually or jointly. The latter was preferred rather than the "separate estima¬

tion" approach, the drawback ofwhich, they argued, is "it does not treat different types

of failures jointly, complicating the comparison of parameter estimates corresponding

to different failure types". They described two methods that model competing risks

with parameters estimated jointly. One practical advantage of their models is that the

two models do not require dedicated software packages. Instead, the models work

by augmenting the data through duplication. For a model with two competing risks,

the data will be doubled by duplicating rows. One row for one risk. One new binary

covariate is introduced to indicate the risk type. The interactions with this new "risk

type" covariate and other covariates x,■ are also created to enter into the model.

The first of the two methods (called "Method A") proposed by Lunn and McNeil

2Many borrowers who defaulted on our definition (2 payments overdue), were actually allowed by

the lender who supplied the data, to continue making payments.
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assumed that the baseline hazard functions for each hazard function hoj(t) for each

possible risk event differ by a constant ratio, eb°. When the assumption of a constant

ratio between baseline hazard functions does not hold, Lunn and McNeil suggested an

alternative method (called "Method B") that fits a stratified Cox PH model in which

the data for each failure type forms a strata, assuming different baseline hazard func¬

tions and sharing the same set of parameters. Cleves (1999) suggested a simpler model

(called "Method StataFAQ") for the analysis ofmultiple survival data. It is simpler be¬

cause interaction covariates are dropped. The model is similar to Lunn and McNeil's

"Method B" model in using the strata to model different baseline hazard functions for

each type of risk. The tables of estimates are listed in Tables C.8, C.10 and C.9, which

can be found in Appendix C.

The predictive performances for each event measured on the holdout set, in terms of

area under ROC curves are reported in Table 5.7. All three models are trained using

dummy variables since weights of evidence are outcome specific. The predictive vari¬

ables are firstly stepwise selected from a PH Cox default model and a paying back early

model, separately. The two sets of selected variables are then merged into the set of

predictive variables used across the current three competing risk models. The weighted

AuROC values are calculated as the sum of half of the AuROC values of defaults and

half of those for payback early. Generally the paying back early was not predicted well

compared to default in terms of AuROC values, as has been previously noted. The

method StataFAQ is the worst performing model, with both default and paying back

early having the lowest AuROC of the three models. Method A and Method B, on the

other hand, are barely distinguishable.
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AuROC default paying back early weighted

Method A 0.8273 0.6691 0.7482

Method B 0.8287 0.6679 0.7483

Method StataFAQ 0.7543 0.6530 0.7037

Table 5.7: Comparison of the model performance

In conclusion, in the three competing risks models we have tested, the two models pro¬

posed by Lunn and McNeil provide reasonable predictive performance. Compared to

the individually estimated approaches, PH Cox for example, the competing risks mod¬

els are competitive in predicting paying back early. On the other hand, in the prediction

of defaults, their predictive performance are lagging behind. Overall the benefits from

using these competing risks models over individually estimated approaches are not

significant.

5.7 Conclusion

In this chapter, different modelling approaches of default and paying back early have

been tested. Overall, the semi-parametric proportional hazard Cox model is found

to perform well in predicting both types of behaviours. In the parametric survival

models, the exponential model is found to perform competitively in the prediction of

both default and paying back early. However, the two types of proportional hazard

parametric models, exponential and Weibull models, are found to fit the data less well

than other models for the paying back early data, which has a bump shape in the hazard

function. Finally, both types of the failure events have been modelled in a Competing

Risk framework, which did not seem to bring much benefit in terms of the predictive
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performance compared with the approaches that model the events individually.



Chapter 6

Profitability Modelling

6.1 Introduction

This chapter calculates the unconditional expected profit for the lender at the time an

application for credit is received and before making an offer to the customer. This

chapter has the following structure.

• Section 6.2 gives the estimating equations for the profits of a fixed term loan

product. Detailed results are discussed along with graphical presentations.

• Section 6.3 demonstrates the optimal decision policies the lender can employ to

maximize profit or market share subject to the marketing strategies.

• Section 6.4 provides sensitivity tests on different segments. Specifically, we will

analyse the difference between Internet and None Internet segments and compare

the economic benefit of this segmentation.

The existing literature lacks an empirical methodology which a lender may use to

choose the interest rate on a fixed term loan when its objective is to maximise uncon-

167
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ditional expected profits at the time ofapplication subject to a minimum market share.

This chapter provides such a methodology and applies it to a dataset of actual choices

made by applicants and a lender so that optimal decision policies can be applied sub¬

ject to the constraints.

The results show the extent of the trade-off between market share and unconditional

expected profits. Our results also demonstrate the possibility of segmenting the mar¬

ket and choosing the optimal interest rate for each loan amount requested can lead to

markedly different policy decisions than by simply adapting a particular rate for all ap¬

plicants. We also discuss how the specification of the models can affect the functions

estimated and decision policies involved.

6.2 Estimating equations

The unconditional expected profit at the time of application (t = c) of a fixed term

loan, but conditional on a vector of an applicant's characteristics, x, can be written as

Et=c(n\x) = Et=c(Ti\a\x)Et=c(p(o)\x) +Et=c(n\d\x){\ - E,=c(p(a)\x)) (6.1)

where a(a) = the potential borrower accepts (rejects) the offer and n = the present

value of the profits at t = c. The second term is assumed to be zero. If the customer

rejects the offer, the lender makes a profit of zero. The first term is the product of the

expected profit conditional on acceptance (see section 6.2.1 below) and the acceptance

probability (see section 6.2.2). We also assume that Et=c(ji\a\x) and Et=c{p(a) I*) are

independent. Although £)=c(7t|a) is correlated with p(a) since both are functions that

share a same set of predictive variables, it does not necessarily imply that they are cor¬

related with each other when conditional on this same set of applicant characteristics
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x. It should also be noted that in later subsections, for the ease ofnotation, we use p{a)

in place for Et-C{p{a)\x).

6.2.1 Conditional expected profit

In the previous chapter on survival analysis we compared two different approaches

to estimate survival probabilities of default and paying back early, independently, and

simultaneously in competing risks models. The benefit gained from using compet¬

ing risks models instead of independent estimation models was not significant when

measuring the predictive performance ofmodels by AuROC values on the holdout set.

Therefore the basic assumption we have made in the beginning of this chapter is that

the probability of default Pf and the probability of paying back early Pf are indepen¬

dent.

The conditional expected profit is the sum of four sources of expected revenue, each

discounted at the opportunity cost of the funds, less the value of the loan. One ratio¬

nale behind the discounting is that eventually we want to calculate the unconditional

expected profit at the very time of the application before the offer is made by the lender

to the applicant. The other reason is that, from the data supplied we cannot infer the

exact figure for the cost of the lender supplying the loan. Using this discounting we

assume the cost to the lender to supply the loan by borrowing the funds is a fixed in¬

terbank rate. 1

The four sources of expected revenue are presented in detail as follows.

'This assumption of a fixed interbank rate can be wrong in a volatile market when the liquidity is

under pressure.
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1. The expected scheduled monthly payments when the borrower is still making

these because he/she has not defaulted and not repaid early:

y sb5? Mh ^(1+0'
where

Sb = probability that the borrower has not chosen to pay back early all of the loan

on or before period t\

Sf = probability that the borrower has not defaulted on or before period t\

i = the interbank monthly interest rate, assumed to be 5% compound over 1 year;

The opportunity cost of the fund cannot be omitted as we assume that, to service

the loan, the lender need to borrow all or most of all (subject to regularities

restrictions such as Basel I or II) the fund at an interbank rate.)

M= scheduled (fixed amount) monthly payment;

T = terminal period of the loan;

2. The expected balance to be repaid early provided the borrower has not defaulted

before the early repayment date:

Y +2*7')2A (Vi-A) (1 + f),

where

Bt = the expected balance to repay when the borrower wishes to settle early at

the end ofmonth t.

The fee for early repayment is assumed to be two months interest, at monthly

interest rate j, on the rest of the balance.

3. The expected recovery amount if the borrower defaults in month t but has not
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paid back early before t:

7 «,-!X(l-LGD)S*(Sf_,-Sf)-
t= 1

where LGD = Loss Given Default.

4. The expected receipts from insurance premia:

I*p(I) */>(£/)

where

/ = insurance income if the insurance is taken and no claim is made;

p(I) = probability that the insurance is taken;

p{U) = probability that no insurance claim is made.

The balance to pay when the customer wishes to settle early at the end ofmonth t,

Bu is calculated according to the Consumer Credit Early Settlement Regulations 2004

as:

b,=W +J)'-Mn±jd
where

L = the loan amount requested

j = the monthly rate. Annual Percentage Rate (APR) is equal to 100((1 + y')12 — 1).

So j _ e{log{\+APR/m))/\2 _ j
The monthly payment, M, is

M Lti, (1+-/71 (l+i)T-I

where T is the term in the number ofmonths.

The conditional insurance income, I, is calculated as an added margin as a percentage
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of the sum of expected monthly payments

Tit'"
where IM = insurance margin.

We have assumed or estimated the following parameters listed below. When decid¬

ing what exact values to be chosen for parameters roughly assumed, we choose the

values in a conservative way in their effects upon the expected profits.

• LGD = 0.75 This is an averaged Loss Given Default estimates assumed to be

constant.

• IM = 0.1 The insurance margin indicates what percentage extra the lender will

add to the monthly payments. The exact percentage the lender will charge is

different, within range from 10% to 20%, depending on the decision policies

constraints involved. A lower end value of 10% is chosen as it is conservative

towards profit estimation.

• p(U) = 0.8 This is a conservative estimate by assuming only 20% of customers

will claim. In fact, according to the 2006 report from The Office of Fair Trading

about the UK Payment Protection Insurance (PPI) market titled 'The PPI Claim

Ratio, percentage ofpremiums paid by consumers', the claim ratio was estimated

to be as low as 15-20%. 2

• p(I) = 0.3 The insurance take-up rate is the average value across all the sample

instead ofmodelled.

2The web address for the market study report of the UK market of payment protection insurance

(PPI) at 2006 can be found at http://www.oft.gov.uk/news/press/2006/148-06
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• i = 0.004074 This monthly interest rate is equivalent to an annual rate of 5%.

The averaged interbank rates on the market during the time period in which this

fixed term loan product resides is below 5%. As the interbank rate constitutes

the most important part of costs for the lender to fund the loan, an slightly con¬

servative value of 5% is chosen to compensate possible increase of the rate and

the administrative overheads in the fixed costs.

• T = 24 The time span of24 months is chosen because the equations involved will

be the simplest functional form to calculate in the Matlab Symbolic Toolbox.

Although 24 months is the choice of the loan tenn that we want to calculate the ex¬

pected profits for, the samples on which the estimation routines were carried out in¬

clude the samples with loan terms from 24 months up to 60 months. Using this larger

pool of samples (totally 27160 cases including both training and holdout sets) avoids

the possible bias introduced because of the very small sample size for the 24 months

loan (totally 2149 cases including both training and holdout sets).

The survival probabilities for the Default and PayEarly were calculated using estimates

from the Cox Proportional Hazard models 3.

S^(t,L,APR) = $APR*APR+$L*L+&dog(L)*,og(APR)+$b0)
S?(t,L,APR) — ^(j)^p(KpR*APR+$l*L+$\*los{P)*l°g{APR)+K)

where So(t) are the baseline survival functions which do not change with the predictive

variables such as APR and Loan Amount L.

3This formulation includes an interaction between the loan amount L and APR. The tables of es¬

timates for the Default and PayEarly hazard functions can be found in the appendix in Table D.13 and

D.16
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[3q and Pq are estimated constants within the survival probability functions for

paying back early and default, plus the added sum of the other variables' mean values

multiplied by their corresponding coefficients estimated from Cox models. That is, if

we calculate for the applicant with the mean values of the covariates:

Po = Pm) +X $bxX

P? = p7o +XP2^

For convenience we will refer to such an applicant as the 'mean' applicant or 'typical'

applicant. The results for the remainder of this section and section 6.4 relate to the

'mean' applicant.

6.2.1.1 Results of conditional expected profit

The expected profits conditional on an offer having been accepted by customers, Et=c(ii\a

have been calculated by summing up the four sources of revenues detailed in the pre¬

vious subsection. Figure 6.1 and Figure 6.2 plot the results in a profit-loan amount-

interest rate 3D space .
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Expected Profit Conditional on Acceptance
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Figure 6.1: Expected profit conditional on the acceptance

In Figure 6.1, the AT axis is Loan Amount, the Y axis is the interest rate APR charged

and the Z axis is the expected profits conditional on the loan having been accepted by a

customer. Figure 6.2 is the projection of Figure 6.1 into a 2 dimensional Loan Amount

vs. Rate space. This is done by connecting points of different offers (Loan Amount

and Rate) but with the same expected profits to give iso-expected-profit contours. The

colours of the contours indicate the height of the conditional expected profits. Hot

colours (red or yellow) stand for relatively higher profits while the cold colour (blue)

stands for lower conditional expected profits.

Loan Amount (£10000)



Chapter 6. Profitability Modelling 176

Contour of Expected Profit Conditional on Acceptance

Figure 6.2: The contour of conditional expected profit shown in Figure 6.1 . a

"The colour of the contour indicates the height of the conditional expected profit. Hot colours (red

or yellow) stand for relatively higher profit while cold colour (blue) stands for lower expected profit.

The figures show that up until an interest rate of approximately 14% the conditional

expected profits increase along with the loan amount given an interest rate. The larger

the loan amount, the larger the conditional expected profits. They also show that given

a loan amount, a higher interest rate increases conditional expected profit up until a

threshold point of the interest rate. Interest rates above that threshold actually reduce

the conditional expected profit.

For different given loan amounts, this threshold interest rate above which the con¬

ditional expected profit is reduced rather than increased, is slightly different. As can

be seen more clearly in Figure 6.2, the threshold interest rate is lower for larger loan

amounts than for smaller loan amounts. For a £25000 Loan, the threshold interest rate

will be around 14% while that rate will be slightly higher at around 19% for a loan of
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£6000.

6.2.2 Acceptance probability

Logistic Regression was used to estimate the probability of acceptance on the sam¬

ples with loan terms ranging from 24 months up to 60 months 4. The equation that

was estimated had the form of log-— $X. Therefore the estimated probability of

acceptance p(a) can be expressed as:

P(a) = gT (6-2)1 + e"x

Table D.l in the appendix shows the estimated parameters. In the table, rawJoanaprl

and L are the Loan APR and Loan Amount in their original continuous values together

with logLXAPR, the interaction term between the two variables APR and L that we

found to significantly improve the acceptance model when it was included. This vari¬

able is coded as the product of their natural logarithms, log(L)*log(APR). All the other

variables are coded using dummy variables.

Similar to the treatments we have used previously in the PH Cox models , Po is the

constant plus the added sum of other variables' mean values multiplied by their corre¬

spondingly estimated coefficients: Po + P2f.

exp($o + Papr *APR + pL *L + * log(L) * log(APR))
p{a) = ^ — — -

(1 + exp(po + Papr *APR + pL *L + Pi * log(L) * log(APR))

For an applicant with the mean values of the covariates, the 'mean' applicant: po =

4.0175. The estimates for Papr , Pz, and Pi are -0.1098 , 0.1076 and -0.9015 respec¬

tively. Both negative signs on papr and Pi indicate that the applicant will be much
4The reason for this is that there are a limited number of 24 month cases in the data, too small to

provide unbiased estimates. This choice of samples was discussed in section 6.2.1
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less likely to accept an offer if the interest rate APR is high. The positive sign on P/_

combined with the negative sign on Pi indicates that a more complex relationship ex¬

ists between the loan amount and the acceptance probability. For a given interest rate

APR, the acceptance probability is dependent on the relative sizes of two terms Pl*L

and pi * log(L) * log(APR). Plug in the estimates of p/, and Pi

p{a) - 0.1098 * L - 0.9015 * Iog(L) * log{APR)

This means, when the Loan Amount is large, p(a) will be dominated by the first term

since the numerical values of log(L) *log(APR) will be relatively much smaller. This

leads to the conclusion that the acceptance probability will be higher when the loan

amount is larger (though the maximum loan amount is £25K, meaning the largest

L — 25). On the other hand, when the Loan Amount is small, the second term will

be dominant and the combination of the two terms will bear negative sign. Under

such circumstances, the applicant will be more likely to accept an offer when the loan

amount is smaller.
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Acceptance Probability

Loan Amount (£10000)
Rate (%)

Figure 6.3: Estimated acceptance probability"

"The colour indicates the height of the numerical values of the estimated probability of acceptance.

Hot colours (red or yellow) stand for relatively higher probability while cold colour (blue) stands for

lower probability.

Figure 6.3 plots the results. Notice that the origin is in the far corner, lower interest

rates and loan amounts occur further along the X and Y axis respectively. From the

graph we can see that customers prefer a lower rate given a chosen loan amount and

a lower loan amount given the interest rate, in accordance to the negative signs on the

coefficients $apr and P/,. For example for a given loan amount of £25000, when the

interest rate is increased from 5% to 10%, the probability of acceptance is decreased

from 0.8 to around 0.3. While at an interest rate of 15%, when the loan amount is

increased from £1000 to £5000, the probability of acceptance is decreased from around

0.9 to 0.3. The surface of the plot takes a S shape where the steepest part is located at

smaller loan amounts and high interest rates. This is because the functional form of the

probability of acceptance is a Logit function and the interaction term log(L)*log(APR)
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is included.

6.2.3 Unconditional expected profit

The unconditional expected profit at the time of application (/ = c) of a fixed term

loan was given in equation 6.1 and for convenience is reproduced here as Et=c(tt|x) =

El=c(n\a\x)Et=c(p(a)\x). That is the product of the expected profit conditional on ac¬

ceptance and the probability of acceptance. The expected profit conditional on accep¬

tance Et=c(7t|a|x) has been discussed in section 6.2.1. The probability of acceptance

p(a) has been discussed in section 6.2.2. Combining these two leads to the equation

below

Et=c{n\x) = E,=c(n\a\x)E,=c(p(a)\x)

t d t \4

+ £(1 - LGD)sf(Sf_ I -Sf)+£ S*Sf *p(U)\

exp((3o + (3apr *APR + (3^ *L + pi * log(L) * log(APR))
* s: „ —

1 +exp{$o + $APR*APR + $L*L + $\ *log(L)*log(APR))

The final Matlab Symbolic representation of the function of the unconditional expected

profit, with all the estimated values, can be found in the appendix.

Figure 6.4 plots the results in 3D space, showing that a higher rate and loan amount do

not necessarily bring higher expected profits from all applicants considering the very

low acceptance rate at those points. In fact, a ridge ofmost profitable offers is shown,

especially for those with higher loan amounts. At each given loan amount, the interest

rate that maximizes the profit actually goes down when the amount is increasing.
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Unconditional Expected Profit at the time of application

200 s "

Rate (%) Loan Amount (£10000)

Figure 6.4: The unconditional expected profit of a loan at the time of application. a
Contours of Unconditional Expected Profit at the time of application

Figure 6.5: Contour of unconditional expected profit.

"The colour indicates the height of the expected profit. Hot colours (red or yellow) stand for rela¬

tively higher profit while cold colour (blue) stands for lower expected profit.
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Figure 6.5 can be seen as the projection of Figure 6.4 into a 2 dimensional space of

Loan Amount and Rate, with lines connecting loan amount - rate offers with the same

expected profits to form contours. The same conclusion to that drawn from Figure 6.4

can also be drawn from this figure that a lower or mid-ranged interest rate is the most

profitable for the lender. We can also see that for higher loan amounts the maximum

expected profits are much less sensitive to the loan amounts than to the interest rates.

6.2.4 Iso-profit curves plotted together with iso-preference curves

We can further plot the iso-preference curves derived from the acceptance probabilities

shown in Figure 6.3 and the iso-unconditional expected profit contours from Figure 6.5

on the same Figure, as shown in Figure 6.6. The iso-preference curves are stretching

from top left comer to bottom right comer, marked with the acceptance probabilities

(from 0.1 to 0.9). The iso-preference curves corresponding to a lower rate given a loan

amount are those with higher acceptance probabilities.

If the lender wants to maintain market share by keeping the acceptance rates fixed

while maximising profits, in other words, the lender wants to improve the profit with¬

out decreasing the probability of acceptance, from 0.6 as an example, then better offers

can be made by moving along the iso-preference curve where p(a) = 0.6 from left to

right to the region where the expected unconditional profit is higher. This assumes the

lender can choose both rate the loan amount. The point of unconstrained maximum

expected profit from an applicant can be found at the intersection at the point of the

global maxima ofprofit (the top of the hill). In the next section we discuss the optimal

decision policies under different constraints.
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ISO Profit Contours and ISO Preference Contours with Labels

Loan Amount (£10000)

Figure 6.6: The iso-profit curves plotted together with the iso-preference curves.

6.3 Optimal decision policies

After a customer has applied for a loan and passed the credit check to be accepted by

the lender, it is up to the lender to decide what as the characteristics of any offer it

wishes to make. As shown in the flow chart below, Figure 6.7, the decision policies

are dependent on its marketing strategies. A lender may want to maximize profit only,

or increase market share only, or maximize profit subject to a certain minimum market

share or possibly other combinations.
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The Decision Diagram

Figure 6.7: Decision diagram

Furthermore, the optimal decision policies to be employed by the lender are also de¬

pendent on certain constraints on aspects of the loan the lender can control. If the loan

amount and APR are both variables adjustable by the lender, the optimal offers are no

doubt to be found on the line of optimal offers suggested in Keeney and Oliver (2005).

When the expected profit is the only maximizing criteria (no market share concerns),

the point at the top of the hill of the profits is the ideal choice. For example in Figure

6.8, the point marked with 'Peak' where Loan Amount is £25000 and Rate is 8.08%

is such a maximum, assuming that £25000 is the largest loan amount that this loan

product allows.
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Contours of Unconditional Expected Profit at the time of application

Loan Amount (£10000)

Figure 6.8: Contour of unconditional expected profit with peak point marked

When the lender wants to optimise the offers (by choices of interest rate) to maximise

profit subject to a given market share (p{a) > k), the optimizing rate can be found as

shown in section 6.3.1.

Table 6.1 lists the combinations of objectives to maximise given certain constraints.

In reality, the amount of the loan is requested by the customer and rarely changed, ex¬

cept in order to allow the customer to pass affordability checks, or to offer a suggestion

to the customer that they may want a bigger loan to cover an additional debt disclosed

during a conversation. Since the loan amount is usually fixed by the applicant, the

optimal policy is a choice of interest rate and is dependent on whether the market share

is set as the constraint. The details are in subsection 6.3.2.
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p(a) unconstrained
— L fixed by borrower

fixed by borrower ~
Yes No

Yes
maxi£,=c(7t)

st. r = r*

No
maxr£j=c(jt)

st. L = L*
maXL,rEi=c(n)

p(a) > k

—L fixed by borrower

fixed by borrower ~
Yes No

Yes
maxLE,=c(iz)

St. p(a) >k,r = r*

No
maxrE,=c(n)

st. p(a) >k,L~L*

maxL^E,=c(n)
st. p(a) > k

Table 6.1: Matrix of optimal decision policies by lender

6.3.1 Optimal policies if choice is of APR rate s.t. p(a)5

Suppose the lender's objective is to maximize unconditional expected profit from an

applicant by choice of interest rate, subject to a given minimum probability of accep¬

tance p{a) > k — 0.6 and the loan amount chosen by the borrower will be adjusted

accordingly. The optimal interest rate can be found by walking along the acceptance

line p(a) = k = 0.6 until L = 25000 and APR = 6.79% with maximum of profit ex¬

pected at 173.4, as seen in Figures 6.9 and 6.10.

5Please note that the discussion here is based on the results from the model that includes the inter¬

action term between the loan amount L and APR in the predictive variables
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Figure 6.9 shows the iso-profit contours with an iso-preference line with the proba¬

bility of acceptance p(a) = 0.6. Figure 6.10 plots the unconditional expected profit

against the loan amount when moving along the iso-preference line p(a) = 0.6 (The

dotted curve in Figure 6.9 runs from from the top left corner to the right bottom corner

with p(a) = 0.6 tag on). The unconditional expected profit increases then decreases

and then increases again until reaching the point ofmaximum profit, which is found at

the highest loan amount.

Rate vs. Loan Amount when Prob(Acceptance)=0.6 against ISO profit curves

Figure 6.9: The acceptance line p(a) = 0.6 on the iso-profit contours.
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Expected Profit vs. Loan Amount given Prob(Acceptance)=0.6

Figure 6.10: The loan amount that maximise the expected profit when p(a) > 0.6

The general solution to this optimisation problem can be set up as follows:

max E,=c(n) = f(L,APR)
r

s.t. p(a) > k

where k is the minimum market share constraint. The Kuhn-Tucker condition shall

be met and maxima can be found if f and p(a) — k are concave. By observing the

diagrams, it seems that / is not concave unless the decision region is split into two

regions as there are two hills. If sufficient conditions are met, the optimisation problem

can be written as follows:

max E,=c(n) = f(L,APR)
r

s.t. k — p(a) —g{L,APR)< 0
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Letting the Lagrangian functionF — f{L.APR) — X*g{L,APR) by introducing a mul¬

tiplier X and solving the Karush-Kuhn-Tucker conditions below shall yield the optimal

solution.

af

dL
dF ALL y ds - n

i a nn a nn v-'
0APR dAPR dAPR

g <0

=0

X >0

Although all the functions here are differentiable, the functional form of the Et=c{ri) =

f{L.APR) is so complex (see Appendix ) that differentiation procedures in the Matlab

Symbolic Toolbox cannot be completed. This maybe due to memory overflow. There¬

fore, diagrams and small-stepped enumeration have been used to find the interest rate

that maximizes the profit from an applicant.

6.3.2 Optimal policies if choice is of APR given loan amount

In the following cases the loan amount is chosen by the applicant and is fixed for the

lender and is known by the lender before the lender chooses the interest rate.

6.3.2.1 If the market share p(a) is not considered6

If the market share is ofno concern to the lender, we can just move across the iso-profit

contours along a vertical line corresponding to the fixed loan amount and calculate the

optimal rate. These rates are shown in Figure 6.11 for three different loan amounts.

6Please note that the discussion here is based on the results from the model includes the interaction

term between loan amount L and APR in the predictive variables



Chapter 6. Profitability Modelling 190

Each of these lines represents a cross section through the iso-profit contours with dif¬

ferent given loan amounts. Figure 6.11 shows that generally, for a given larger loan

amount the interest rate that will maximize the profit is in fact lower.

Unconditional Expected Profit vs. APR at given Loan Amount L

Figure 6.11: The optimal rate APR given Loan Amount L if p(a) is not considered.

6.3.2.2 If the market share p(a) is the constraint7

This situation is much more complex and needs discussion. Notice that if the loan

amount is fixed by the borrower, the lender can choose whether to gain market share

or profit subject to this constraint, but generally not both. Consider Figure 6.12 as an

example, also assume the Loan Amount given is £10000:

1. If the minimum market share is p(a) = 0.6 then point A gives the optimal rate.

Point A is at the intersection between the dotted iso-preference curve p(a) = 0.6

7please note that the discussion here is based on the results from the model includes the interaction

term between loan amount L and APR in the predictive variables
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and the vertical line of fixed loan amount L = 10000.

2. Ifmaximising profit is regarded by the lender as more important than the market

share then point B, where the highest profit given the loan amount is found, is

the optimal choice. Point B is also at the intersection between the dotted iso-

preference curve p(a) = 0.38 and the vertical line of fixed loan amount L = 10K.

Notice that point A gives lower profit than B while gaining a highermarket share.

3. Only if the minimum market share target implies a p(a) that is lower than the

p(a) at the point B that will maximise the profit at the given loan amount, then

the optimal choice is the point B, where both constraints on the market share and

profit maximising target can be satisfied.

Optimised Rate for Given Loan Amount = 10000

Figure 6.12: The optimal rate APR given Loan Amount L if p(a) is the constraint.
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6.4 Segmentation

192

The results so far assume that one model for acceptance probability and one for each

of the survival probabilities applies to all the applicants. To explore the sensitivity of

this assumption, we separated the sample of applicants into different segments and ob¬

served the differences across the segments.

We wish to discover whether, if we choose an individual profit maximizing interest

rate for the mean applicant from each segment separately, the unconditional expected

profits are larger than the profits expected from the previous model without segmenta¬

tion. Similarly, will the expected market share be larger after the segmentation?

6.4.1 Sensitivity test of the segmentation based on application chan¬

nel

The equation used to calculate the unconditional expected profit from an applicant has

to assume that the length of the loan term is 24 months. This is due to the limit imposed

by the ability of the Matlab Symbolic Toolbox to handle large symbolic calculations.

However, only a relatively few cases have been observed in our data with 24 month

loan term. To achieve robust results with segmentation, it was decided to include more

sample data with loan terms up to 60 months. In all the calculations and estimations

hereafter, the variable of loan term was entered into the models. The coefficients ac¬

cordingly have been used in the calculations to get the estimated probabilities given

loan term equal to 24 months. The unconditional expected profits calculated are also

based on a 24 month loan.
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Based on this set of sample data with loan terms up to 60 months, applicants have

been segmented into two sub samples depending on whether they applied through the

Internet or they applied in some other way. Around 40 percent of customers applied

through the Internet (18883 cases) and the rest did not (27199 cases).

Different methods are available to select the variables for the estimation of the ac¬

ceptance model, the default model and the paying back early model when we consider

segmented samples. Another factor to consider is the inclusion of interaction term be¬

tween Loan Amount and Rate. Four methods have been considered and are discussed

below.

Method 1 chose the sets of variables to enter the three probability functions after run¬

ning stepwise procedures on the combined data set. Using the variables selected (with

the Loan Amount variable forced in if necessary), the parameters for those three prob¬

abilities were then estimated separately for each segment as well as for the combined

data. We call the resulting model, Model 1. In Model 1 the interaction term between

Loan Amount and Rate was found to be statistically significant in predicting the prob¬

ability of acceptance and survival probability of default but not so in predicting the

survival function of early repayment.

Method 2 chose the sets of variables for each probability function individually us¬

ing a separate stepwise procedure for each segment (with the Loan Amount variable

forced in if necessary). The parameters were estimated using these sets of variables

separately. The interaction term was excluded from the variable selection. We call the

result Model 2.
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Method 3 chose the sets of variables for each probability function individually us¬

ing a separate stepwise procedure for each segment (with the Loan Amount variable

forced in if necessary). The parameters were estimated using these sets of variables

separately. The interaction term was included from the variable selection. We call the

result Model 3.

Method 4 chose the sets of variables to enter the three probability functions after run¬

ning stepwise procedures on the combined data set. Using the variables selected (with

the Loan Amount variable forced in if necessary), the parameters for those three prob¬

abilities were then estimated separately for each segment as well as for the combined

data. The interaction term was excluded from the variable selection. We call the re¬

sulting model, Model 4.

The estimation results for all three functions for both and each segments in Model

1, 2, 3 and 4 can be found in the appendix section. Panel a in Table 6.2 summarizes

the difference between these 4 models concerning the inclusion of the interaction term

and the choice of whether or not to conduct stepwise selection for each segment sep¬

arately. Panel b in Table 6.2 compares the predictive performance between Model 1,

2, 3 and 4 across the Acceptance, Survival of Default and the Early Repayment mod¬

els. The predictive performance is measured by the area under the ROC curve on the

independently selected holdout data.
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Panel a:

Interaction term included Yes No

Stepwise for each Yes Model 3 Model 2

segment separately No Model 1 Model 4

Panel b:

Yes No

Model 3 Model 2

NonSegment Acceptance 0.7874 NonSegment Acceptance 0.7707

Internet Acceptance 0.8001 Internet Acceptance 0.7848

Nonlntemet Acceptance 0.7799 Nonlntemet Acceptance 0.7687

NonSegment Default 0.8331 NonSegment Default 0.8295

Yes Internet Default 0.8194 Internet Default 0.8154

Nonlntemet Default 0.8294 Nonlntemet Default 0.8334

NonSegment Payback early 0.6666 NonSegment Payback early 0.6666

Internet Payback early 0.6379 Internet Payback early 0.6373

Nonlntemet Payback early 0.6584 Nonlntemet Payback early 0.6586

Model 1 Model 4

NonSegment Acceptance 0.7874 NonSegment Acceptance 0.7707

Internet Acceptance 0.8018 Internet Acceptance 0.7886

Nonlntemet Acceptance 0.7802 Nonlntemet Acceptance 0.7694

NonSegment Default 0.8331 NonSegment Default 0.8295

No Internet Default 0.8136 Internet Default 0.8073

Nonlntemet Default 0.8332 Nonlntemet Default 0.8294

NonSegment Payback early 0.6666 NonSegment Payback early 0.6666

Internet Payback early 0.6546 Internet Payback early 0.6543

Nonlntemet Payback early 0.6613 Nonlntemet Payback early 0.6614

Table 6.2: Compare the AuROC values on the holdout set on different models
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Model 1 and 3 include the interaction term between Loan Amount and Rate (which is

significant in both the acceptance and default modelling) and Model 2 and 4 do not.

This is the major reason why Model 1 and 3 are consistently more predictive on accep¬

tance and default modelling than Model 2 and 4 across each individual segment and

segments combined. For example, the AuROC of acceptance modelling in Model 3 is

0.7874 while that AuROC value in Model 2 is 0.7707.

On the other hand, the benefit of individual stepwise selection on each segment is

not so evident by comparing the results from Model 1 against Model 3 and the results

from Model 4 against Model 2. It was expected that Model 3 should achieve higher

AuROC values on the segmented data than Model 1 since individual stepwise selec¬

tion procedures have been used. However, this was not observed. The AuROC values

from individually stepwise selected models are not larger or even lower than the Au¬

ROC values from models that use variables selected from the combined set. Take the

acceptance modelling results for example, The AuROC is 0.8001 in Model 3 while

the AuROC is 0.8018 in Model 1 for the Internet segment. The AuROC is 0.7799 in

Model 3 while the AuROC is 0.7803 in Model 1 for the Nonlnternet segment.

Recognizing the high significance of the interaction term and overall higher AuROC

values, the details of the Model 1 results will be presented and discussed in section

6.4.1.1. The implications for the economic benefits in terms ofunconditional expected

profits and market shares will be given later in section 6.4.2 where both models (Model

1 and Model 3) will be compared.
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6.4.1.1 Comparison of the iso-preference and iso-profits contours for Model 1

Figures 6.13 and 6.14 show the acceptance probabilities accordingly for the Internet

and Non-Internet segments for Model 1 respectively 8. Figures 6.15 and 6.16 show the

unconditional expected profit for the Internet and Non-Internet segments for Model 1

respectively. Figures 6.17 and 6.18 show the iso-profits and iso-preference contours for

the Internet and Non-Internet segments for Model 1 respectively. The iso-perference

curves in Figure 6.17 are mapped from Figure 6.13 and the iso-perference curves on

Figure 6.18 are mapped from Figure 6.14. Those iso-preference curves are marked

with the probabilities of acceptance in the map, ranging from 0.1 to 0.9. Comparison

between these two sets of iso-preference curves shows that for any given loan amount,

a higher interest rate can be charged to the Non-Internet segment than to the Internet

segment to achieve the same probability of acceptance. In other words, the Internet

applicants are harder to please and attract.

The slopes ofeach contour, indicating the trade-offofhigher interest rate for lower loan

amount to maintain the probability of acceptance, are not noticeably different between

the segments for any given loan amount. The iso-profits contours, however, differ sub¬

stantially between the two segments. These contours are mapped from Figure 6.15 and

6.16 respectively for the Internet and Non-Internet segments. Comparison between the

iso-profit contours shows that generally for a given requested loan amount, the highest

unconditional expected profit that can be earned per customer is much higher for the

Internet segment than that can be earned from the Non-Internet segment. For example

for a requested loan amount of £20K, with the profit maximizing interest rate charged,

8Please note that all the results here are relating to a 'mean' applicant with covariates (except Loan

Amount, Rate) assigned to their mean values.
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the unconditional expected profits per applicant are around £110 for a Non-Internet

applicant and around £220 if the applicant applied from Internet.

If the lender has a strategy of minimum level of profitability given a loan amount,

we can compare the two segments from a different perspective . We can say that for

a requested loan amount and given unconditional expected profit, the probability of

acceptance (market share for the lender) will be higher for the Internet segment that

for the Non-Internet segments. For example for a loan amount of £5K and uncondi¬

tional expected profit per applicant of £90 the probability of acceptance is 0.67 for the

Internet applicants (see point A in Figure 6.17) and around 0.51 for the Non-Internet

group (see point B in Figure 6.18 ).

To achieve the highest market share ( probability of acceptance ) for a given uncon¬

ditional expected profit level one has to find the tangency points between the corre¬

sponding iso-profit curve and the geometrically lowest iso-preference curve. Both Fig¬

ure 6.17 and 6.18 show the situation for loans up to £25K, above which the frequency

of observation in the data becomes very low. Unfortunately the tangency points for

many levels of profits occur around this maximum loan amount due to the convexity

of both curves 9. Nevertheless differences appear from the figures. For example, to

maximize the probability of acceptance subject to gaining an unconditional expected

profit of £100 would require a requested loan amount of around £1K and interest rate

at 20.69% for the Internet applicants (see point C in Figure 6.17), but a loan amount

around £25K and rate at 7.06% for the Non-Internet applicants (see point D in Fig-

9The convexity of the iso-preference curve is due to the inclusion of the interaction term which was

highly significant in the regression.
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ure 6.18). Of course since the loan amount is requested by the applicant and rarely

changed by the lender, it is not possible for a lender to freely choose which of the

tangency points it wishes to locate at.

Acceptance Probability

Loan Amount (£10000)
Rate (%)

Figure 6.13: Acceptance probabilities for customers applying through Internet

Acceptance Probability

Loan Amount (£10000)
Rate (%)

Figure 6.14: Acceptance probabilities for customers applying through Non-Internet
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Unconditional Expected Profit at the time of application

o- 200

Rate (%)
Loan Amount (£10000)

Figure 6.15: Unconditional expected profits for customers applying through Internet

Figure 6.16: Unconditional expected profits for customers applying through Non-
Internet
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ISO Profit Contours and ISO Preference Contours with Labels

Figure 6.17: Iso-profit and iso-acceptance curves (marked with p(a) from 0.1 to 0.9)for

customers applying through Internet

Figure 6.18: Iso-profit and iso-acceptance curves (marked with p(a) from 0.1 to 0.9) for

customers applying through Non-Internet
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6.4.2 Economic benefit of the segmentation

Tables 6.3 and 6.4 compare the economic benefit of the segmentation for each of the

five different loan amounts, using results from Model 1 and Model 3 accordingly. The

economic benefit is mainly measured by the total unconditional expected profits, al¬

though the expected total number of accepted customers is also included in the com¬

parison since a lender may have objectives that relate to both.

The expected total unconditional profit for each given loan amount for each segment

(or all segments combined) is calculated as the product of the expected unconditional

profit per applicant within that specific segment (or all segments combined) and the

number of customers, which is the number of applicants observed to apply for that

specific given loan amount. Notice that we have assumed all applicant will receive an

offer regardless of the probability of default. Of course we could modify this to esti¬

mate the unconditional expected profits from a subset of applicants who meet certain

criteria such as positive profits or a probability of default.

The expected total number of customers who accept the offer is the total number of

customers that apply for the offer that are expected to accept it. This is calculated as

the probability of acceptance at each given loan amount times the number of appli¬

cants. Please note that the number of applicants at each given loan amount is observed

rather than predicted. The assumption is that the distribution of applicants between

segments at each given loan amount remains as observed.

With one exception, all of the relevant predictive variables (except Loan Amount and

Interest Rate) in the calculation of the conditional expected profit per customer and
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Table 6.3: Benefits of Segmentation Model 1

203

L=3000 Unconditional Optimal P(A) Number of Total Expected number

Profit Expected Interest applicants Profit of applicants who

per applicant Rate Expected accept offer

Internet 106.26 12.93 0.56 302 32090.31 169.54

Nonlnternet 96.10 15.16 0.53 1148 110318.78 609.93

2 Segments Combined 0.54 142409.09 779.48

NonScgmcntation 99.61 14.27 0.54 1450 144435.08 786.92

Gains from Segmentation -2025.99 -7.44

L=7000 Unconditional Optimal P(A) Number of Total Expected number

Profit Expected Interest applicants Profit of applicants who

per applicant Rate Expected accept offer

Internet 109.23 9.09 0.46 1096 119718.27 501.31

Nonlnternet 91.27 11.09 0.38 1455 132793.78 556.39

2 Segments Combined 0.41 252512.05 1057.70

NonSegmentation 95.17 10.06 0.40 2551 242786.83 1032.39

Gains from Segmentation 9725.21 25.31

L=10000 Unconditional Optimal P(A) Number of Total Expected number

Profit Expected Interest applicants Profit of applicants who

per applicant Rate Expected accept offer

Internet 122.51 8.27 0.44 2260 276871.02 996.21

Nonlntcrnet 91.96 10.07 0.34 2879 264757.45 990.66

2 Segments Combined 0.39 541628.46 1986.87

NonSegmentation 100.64 9.13 0.38 5139 517165.83 1934.32

Gains from Segmentation 24462.63 52.55

L=17000 Unconditional Optimal P(A) Number of Total Expected number

Profit Expected Interest applicants Profit of applicants who

per applicant Rate Expected accept offer

Internet 183.83 7.60 0.47 125 22979.35 58.51

Nonlntcrnet 102.93 9.08 0.32 96 9881.03 30.86

2 Segments Combined 0.40 32860.38 89.38

NonSegmentation 136.15 8.26 0.38 221 30089.06 84.42

Gains from Segmentation 2771.32 4.95

L=25000 Unconditional Optimal P(A) Number of Total Expected number

Profit Expected Interest applicants Profit of applicants who

per applicant Rate Expected accept offer

Internet 315.10 7.52 0.54 472 148729.09 254.64

Nonlnternet 125.54 8.64 0.34 338 42431.40 116.27

2 Segments Combined 0.46 191160.49 370.92

NonSegmentation 208.76 8.01 0.44 810 169098.68 356.64

Gains from Segmentation 22061.81 14.27
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Table 6.4: Benefits of Segmentation Model 3

204

L=3000 Unconditional Optimal P(A) Number of Total Expected number

Profit Expected Interest applicants Profit of applicants who

per applicant Rate Expected accept offer

Internet 102.42 13.02 0.56 302 30930.39 170.24

Nonlnternet 95.43 15.05 0.54 1148 109554.44 616.13

2 Segments Combined 0.54 140484.83 786.37

NonSegmentation 99.61 14.27 0.54 1450 144435.08 786.92

Cains from Segmentation -3950.25 -0.55

L=7000 Unconditional Optimal P(A) Number of Total Expected number

Profit Expected Interest applicants Profit of applicants who

per applicant Rate Expected accept offer

Internet 94.40 9.11 0.46 1096 103467.66 502.19

Nonlnternet 90.82 11.04 0.38 1455 132140.04 558.43

2 Segments Combined 0.42 235607.71 1060.62

NonSegmentation 95.17 10.06 0.40 2551 242786.83 1032.39

Gains from Segmentation -7179.13 28.23

L=10000 Unconditional Optimal P(A) Number of Total Expected number

Profit Expected Interest applicants Profit of applicants who

per applicant Rate Expected accept offer

Internet 98.46 8.30 0.44 2260 222517.57 993.72

Nonlnternet 91.91 10.03 0.35 2879 264597.66 993.26

2 Segments Combined 0.39 487115.23 1986.98

NonSegmentation 100.64 9.13 0.38 5139 517165.83 1934.32

Gains from Segmentation

30050.61

52.66

L=17000 Unconditional Optimal P(A) Number of Total Expected number

Profit Expected Interest applicants Profit of applicants who

per applicant Rate Expected accept offer

Internet 130.05 7.60 0.47 125 16256.64 58.76

Nonlnternet 104.76 9.05 0.32 96 10056.67 30.98

2 Segments Combined 0.41 26313.31 89.74

NonSegmentation 136.15 8.26 0.38 221 30089.06 84.42

Gains from Segmentation -3775.75 5.32

L=25000 Unconditional Optimal P(A) Number of Total Expected number

Profit Expected Interest applicants Profit of applicants who

per applicant Rate Expected accept offer

Internet 207.97 7.42 0.56 472 98161.56 262.48

Nonlnternet 131.89 8.60 0.35 338 44579.33 117.56

2 Segments Combined 0.47 142740.88 380.04

NonSegmentation 208.76 8.01 0.44 810 169098.68 356.64

Gains from Segmentation

26357.79

23.39
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probability of acceptance have been assumed to take their mean values. The only

exception is the values used for the Internet variable. To account for the interaction

between the Internet variable and the Loan Amount variable, the mean values of the

Internet variable used for calculating the Po, Pq and Pq in Model 1 and Model 3 on the

non-segment data at each given loan amount have been adjusted to use the mean values

of Internet variable observed at each given loan amount.

Overall the expected unconditional profit per applicant is increasing with loan amount

in Model 1 and Model 3 when the loan amount is larger than £3000, as seen in Table

6.3 and 6.4. Both models show that the unconditional expected profit per applicant for

the Internet segment is higher than that for the Non-Internet segment. The difference in

the unconditional expected profit between the two segments is also generally increas¬

ing with the loan amount in the two models. When the loan amount becomes larger,

the Internet applicants are expected to be more profitable that their Non-Internet peers.

This shift ofprofitability between Internet and Non-Internet segments, becomes greater

and greater when the loan amount increases, and can be observed in both models with

one exception in Model 3. In Table 6.3 for Model 1, at loan amounts of £3K, the

difference is 106.26 — 96.10 = 10.16. For loan amounts of £7K, £10K, £17K, £25K,

the difference are 17.96, 30.55, 80.91, 189.57, indicating the increasing profitability of

the Internet applicants for the lender when the loan amount is larger. In Table 6.4 for

Model 3, for loan amount of £3K, £7K, £10K, £17K, £25K, the difference are 6.99,

3.59, 6.55, 25.30, 76.08. Here one exception is observed when the loan amount in¬

creases from £3K to £7K the difference shrinks from 6.99 to 3.59.
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What is not changing when loan amount gets larger is that the optimal interest rates

that maximize the unconditional expected profits from Internet applicants is always

lower than that for the Non-Internet segment, as can be shown in Tables 6.3. The

difference between those optimal interest rates, though, is getting smaller and smaller

when the loan size gets bigger. For loan amount of £3K, £7K, £10K, £17K, £25K, the

differences between the Internet and Non-Internet optimal rate are -2.23, -2.00, -1.80,

-1.48 and -1.12. This could be possibly explained away by the observation that in non-

segment data, the optimal interest rates are getting smaller for larger loan amounts,

therefore the difference between Internet and Non-Internet rates shall get smaller to

keep the percentage of the difference at roughly a constant level.

The benefit of segmentation can be illustrated using gains in the total expected un¬

conditional profits. For Model 1, as shown in Table 6.3, the gains measured as a per¬

centage of the total profit before segmentation, are -1.40%, 4.01%, 4.73%, 9.21% and

13.05% at loan amounts of £3K, £7K, £10K, £17K and £25K respectively. For Model

3, as shown in Table 6.4, the gains measured as a percentage of the total profit before

segmentation, are -2.74%, -2.96%, -5.81%, -12.55% and -15.59% at loan amounts of

£3K, £7K, £10K, £17K and £25K respectively.

The benefit of segmentation can also be illustrated using the generally increased ex¬

pected number of customers accepting the offer. For Model 1, as shown in Table

6.3, the total number of accepts, for loans of £3K, £7K, £10K, £17K and £25K, are

changed by a percentage 10 of -0.95%, 2.45%, 2.72%, 5.87% and 4.00% accordingly.

For Model 3, as shown in Table 6.4, the total number of accepts, for loans of £3K,

l0Percentage of the number of accepts before the segmentation
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£7K, £10K, £17K and £25K, are changed by a percentage of -0.07%, 2.73%, 2.72%,

6.30% and 6.56% accordingly.

The different results in Tables 6.3 and 6.4 demonstrate the importance of the speci¬

fication of the models that are used to model the hazard functions and the probability

of acceptance functions. Our initial expectation was that if all of these functions are

individually estimated using stepwise selection routines and if interest rates are chosen

to maximize unconditional expected profits at each loan amount separately for each

segment, these segmentation would yield higher profits. In Model 1 we find it does.

But it is possible that it may not do so for several reasons. One reason is that the

estimated functions may fit the data less well at some loan amounts than at others. An¬

other is that when the functions are estimated for each segment separately the smaller

number of observations within the segment compared with larger sample size of the

segments combined may cause the functions to fit less well in the former case than in

the latter case.

6.5 Conclusion

This chapter provides an empirical methodology which a lender can employ to esti¬

mate the unconditional expected profits and expected acceptance probabilities at the

time ofapplication for an individual applicant by combining the estimates from accep¬

tance modelling, Survival probabilities of the defaults and early repayment behaviours.

This chapter also discussed potential optimal decision policies for a lender subject to

different constraints. The results have also shown that it is possible, using proper

model specification and careful interpretation, to segment the market by choosing the
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optimal interest rate for each segment to meet the lender's marketing objectives, being

either to maximize the expected total profits overall all applicants or the market share

(acceptance probability).



Chapter 7

Conclusion

Based on the theoretical model proposed by Keeney and Oliver, this thesis explores and

models the relationships between offers of credit products, credit scores, consumers'

acceptance decisions and expected profit using data that records the actual choices

made by customers and their monthly account status after being accepted. This con¬

cluding chapter is divided into three sections. The first section will summarize the

research findings by answering the questions raised earlier in the Introduction chapter.

The second section will reiterate the contribution to the knowledge. The third section

will discuss the limitations within our modelling approaches and outline some possible

research directions in the future.

7.1 Summary of findings

In Chapter 1, the following research questions were asked:

• Why do we need to model the profitability ofmaking a loan, unconditional on the

acceptance by the applicants, and how can iso-profit and iso-acceptance contours

be empirically estimated and presented?

209
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• Is acceptance inference needed?

• How do novel approaches like support vector machines (SVMs) perform (com¬

pared to logistic regression) in predicting default and acceptance ?

• How to model the chance of default and paying back early and how to incorpo¬

rate them into a profit estimation?

The first question involving the acceptance and profitability modelling is the key one

in this thesis. The other questions naturally emerge during the course of the investiga¬

tion into the modelling of acceptance and profitability. The following subsections will

summarise our findings as answers to these questions.

7.1.1 How can we model the profitability of making a loan, uncon¬

ditional on the acceptance by the applicants, and how can

iso-profit and iso-acceptance contours be empirically esti¬

mated and presented?

Keeney and Oliver's theoretical work provided a foundation for ourmodel. Keeney and

Oliver's work empathized two objectives for lenders: profitability and market share

(the probability of the acceptance of offers). Their concept of profitability uncondi¬

tional on the acceptance of offers differs from previous research where the profitabil¬

ity analysis focused on customers who have already accepted offers. Earlier research

omitted the probability that an applicant will accept an offer in the analysis ofpotential

profit to a lender and so such could not estimate expected profit at the time of applica¬

tion.
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To model this profitability, unconditional on the acceptance of offers, both behaviours,

acceptance and profitability, need to be modelled. In Chapter 2, we reviewed the pre¬

vious literature on acceptance modelling and profitability modelling.

We estimate the expected profits unconditional on acceptance in Chapter 6 by com¬

bining previous results in the acceptance and survival analyses of default and paying

back early. The results for a single applicant are presented in a three dimensional space

of Profit vs Rate vs Loan Amount. The iso-profit contours are drawn by connecting

all the points representing the same amount of expected profit in a two dimensional

space of Loan Amount vs Rate. Similarly, the iso-preference contours are drawn by

connecting all the offers with the same level of acceptance probabilities in the same

two dimensional space of Loan Amount vs Rate. By examining those iso-profit and

iso-acceptance contours, different profit optimising decision policies can be derived

under various constraints.

A further segmentation analysis has also been conducted by separating the samples

into two different groups, Internet and Non-internet applicants, with parameters esti¬

mated individually. On each segment, different profit-maximizing interest rates were

found and we found some economic benefit when aggregated over all applicants can

be achieved through this segmentation exercise.

7.1.2 Is acceptance inference needed?

The need of acceptance inference has been explored in Chapter 4 via fitting models of

bivariate Probit sample selection. The results indicate that our model does not suffer
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from the sample selection bias 1 unless using a lean model in which a significant sample

selection bias has been observed. The conclusion is that acceptance inference may not

be needed for our data.

7.1.3 How do novel approaches like support vector machines (SVMs)

perform (compared to logistic regression) in predicting de¬

fault and acceptance ?

In the newly introduced credit scoring methodologies, SVMs have received a lot of

interest and been reported to be quite competitive in the literature ( such as Baesens

(2003) and Baesens et al. (2003)). SVMs with various kernels have been used to pre¬

dict the default in Chapter 3 and the acceptance of offers in Chapter 4. In the default

prediction, we found SVMs are not competitive compared to the logistic regression

(the performance measure used is the area under the ROC curve on the holdout set).

In acceptance prediction, the performance of SVMs were observed to be as predictive

as logistic regression (using the area under the ROC curve on the holdout set as per¬

formance measure). One of the reasons behind this may be the difference in the class

distributions ofdefault and acceptance. Another explanation for the better performance

of logistic regression may be its appropriate size ofmodel complexity compared to that

of SVMs to avoid the danger of over fitting. As a conclusion, we have not found that

SVMs out-perform logistic regression based on our data.

'Assuming that the residuals of the two equations are normally distributed.
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7.1.4 How to model the chance of default and paying back early

and how to incorporate them into a profit estimation?

Accurate profit estimation requires estimating whether the applicant will default, but

also when the default is expected to happen. An earlier defaulter causes more loss than

a later one as the latter has made more payments and therefore left a smaller balance

as loss to the lender. Binary outcome predictors like static logistic regression models,

lack the capability to predict the timing of an event whereas this is the aim of survival

analysis models. The latter have been shown to be equally predictive in tasks of binary

outcome predictions over specific outcome windows as logistic regression.

Paying back early was observed to be much more frequent in our data than the events

of default and paying back early events are also very important to lenders in terms

of profitability, in spite of being rarely modelled in the literature. A customer with

a higher probability to pay back early brings less profit for the lender and therefore

impacts adversely on the profitability of the whole portfolio.

Chapter 5 presents survival analysis results ofmodelling the default and paying back

early events. Different semi-parametric and parametric models have been compared

and Cox PH models were the best performing models. Chapter 5 also models the

survival probabilities of default and paying back early under the competing risk frame¬

work. Three different competing risk models have been compared. However, no im¬

provement has been observed in the predictive performance.

Together with the coefficients estimated from Acceptance models, the coefficients from

the Cox PH models for default and paying back early events estimated separately, are
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then plugged into the equation to calculate unconditional expected profits for a fixed

term loan. The details have been given in Chapter 6.

7.2 Contributions to knowledge reiterated

This section will reiterate the eight major contributions this thesis has made to knowl¬

edge. First, this thesis is the first empirical academic study to estimate expected profits

at the time of application. Unlike previous studies, which predict the profits of a cus¬

tomer who has already accepted an offer, this thesis estimated the expected profits at

the time of application by combining the results from acceptance modelling, survival

analysis of default and paying back early.

Second, the customers' acceptance behaviours are estimated based on a data set that

contains the actual acceptance choices made by customers ofa realfinancial product.

Instead of using hypothetical data as in previous research, findings based on our data

shall be closer to what will be observed in the practical retail lending industry.

Third, this thesis found that the iso-preference curves drawn from empirically esti¬

mated results indicate a preference towards lower loan amounts rather than higher

amounts. This appears contrary to those assumed in Keeney and Oliver's theoretical

model, where larger credit lines are presumed to be preferred over lower credit lines.

Fourth, this thesis discussed different profit maximizing strategies the lender may

choose under different marketing objectives. What has made this thesis different from

previous researches is that this thesis has used estimates from industry sourced data for
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the profit calculation rather than assumed numerical cost and profit figures.

Fifth, this thesis provided a segmentation analysis based on separately estimating prof¬

its on Internet and Non-Internet groups. This segmentation practice was demonstrated

to lead to markedly different policy decisions compared with the decisions drawn be¬

fore the segmentation.

Sixth, the possible existence of sample selection bias introduced in the process of ac¬

ceptance has been explored using bivariate Probit sample selection models. Previous

literature focused on the study of reject inference and paid less attention to the cor¬

responding scenario of acceptance inference. Our results suggested that acceptance

inference might not be necessary.

Seventh, this thesis revisited the topic of comparing the classification methods, SVMs

vs. logistic regression. Varied predictive performances of SVMs on different predic¬

tion tasks (default and acceptance) have been observed. SVMs were found to perform

poorly against logistic regression in predicting default, in contrast to the good perfor¬

mance reported in the literature (Baesens (2003) and Baesens et al. (2003)). Another

novelty in this thesis is the application of SVMs to predict acceptance. We found that

SVMs produced similar predictive performance as logistic regression did. One possi¬

ble explanation for this varied performance on different data by SVMs is the difference

in the class distributions. The default data is much more unbalanced than the accep¬

tance data, hence more challenging to SVMs, which are more sensitive to the class

distribution.
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Eighth, this thesis compared competing risk survival models against those separately

estimated survival models in the prediction of default and paying back early and ob¬

served little improvement in the predictive performance from competing risk models.

7.3 Limitations and future research

There are still some limitations that exist in our work. First, the cost for the lender to

service the loan in our profitability model has been assumed to consist of only the run¬

ning cost for the lender to borrow at the inter-bank rate. This simplification is adopted

because detailed data relating to fixed costs are unfortunately not available.

Second, this profitability model has not considered impacts on the profits of the eco¬

nomic cycle. Adding macro economic variables into the set of predictors, such as

what the models in Bellotti and Crook (2007a) do, might offer a more robust model

at different stages in the economic cycles. However, in our data the longest duration

of observed performance is 26 months, which is too short to cover a whole economic

cycle.

A number of possible extensions can be suggested for future research. For example,

only one type of segmentation analysis is done, the Internet Non-Internet segmenta¬

tion. It would be interesting to calculate the expected profits for other segments and to

see how much the economic benefits can be increased through segmenting onto other

groups and how different optimal decision strategies can be derived.

Profitability analysis can also be applied to other products. The profitability analy-
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sis in this thesis is based only on a fixed term loan product. Extending profitability

analysis to other types of credit products such as mortgage or credit cards could be

very interesting.

Our model has not considered the capital adequacy requirement the lender is bound

to abide by. Under Basel II, the latest capital requirement, the lender has to cover the

unexpected loss by setting aside a minimum amount of capital which is a function of

PD and LGD and other parameters and the type of product. More capital required

means less return on economic capital for the lender. Different optimal decision poli¬

cies might be needed under such capital requirements.

Finally, the confidence intervals of AuROC estimates have not been calculated. Pro¬

viding such estimates could provide facility to check if the difference in predictive

performance is significant. One way to generate such estimates is to sample the data

using sampling method like bootstrapping and report the AuROC results distribution,

from which confidence intervals can be drawn.
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Variable Dummy Variable MLE estimates Pr > ChiSq
Intercept -3.6218 < .0001
Rate 12.2737 < .0001

Insurance N -0.5967 < .0001
LOAN^AMT (1.2e+04,1.5e+04] -0.0860 0.3907
LOAN_AMT (1.5e+04,2.3e+04] -0.0840 0.4805

LOAN^AMT (le+04,1.2e+04] -0.1434 0.2623
LOAN_AMT (2.3e+04,2.5e+04] 0.3544 0.0111
LOAN^AMT (5e+03,6.5e+03] 0.0710 0.5207
LOAN^AMT (6.5e+03,8e+03] 0.1578 0.0953
LOAN_AMT (8e+03,le+04] -0.0369 0.6621

TERM 24 -0.4330 0.0012
TERM 36 -0.2416 0.0059
TERM 48 -0.0373 0.6625
TERM 60 0.1981 0.0035
TERM 72 0.0384 0.8303
newbus 0 -0.1485 0.0024

ALCIFDET EMP 0.2847 0.0157

CCJGT500 (22,27] -0.0422 0.6516
CCJGT500 (27,32] 0.2038 0.0140
CCJGT500 (32,37] -0.1849 0.0579

CCJGT500 (37,43] 0.2147 0.0142
CCJGT500 (43,58] -0.0569 0.5286

CCJGT500 EMPTY -0.1334 0.0583
LOANBAL1 (1.29e+04,6.49e+04] -0.1379 0.1690
LOANBALI (1.37e+06,8.72e+06] 0.4300 0.0005
LOANBALI (1.53e+05,3e+05] -0.0875 0.3610
LOANBALI (3e+05,4.89e+05] -0.00468 0.9606

LOANBAL1 (4.89e+05,7.4e+05] -0.00170 0.9852
LOANBAL1 (6.49e+04,1.53e+05] -0.2884 0.0062
LOANBALl (7.4e+05,1.37e+06] 0.1479 0.0925
NETINCM (1.05e+03,1.2e+03] -0.1730 0.0556
NETINCM (1.2e+03,1.38e+03] -0.2400 0.0288
NETINCM (1.38e+03,1.55e+03] -0.0469 0.6287
NETINCM (1.55e+03,1.8e+03] -0.0197 0.8418
NETINCM (1.8e+03,2.2e+03] 0.0591 0.5511
NETINCM (2.2e+03,3.5e+03] 0.2635 0.0082
NETINCM (3.5e+03,9.37e+05] 0.6437 < .0001
NETINCM (900,1.05e+03] -0.1742 0.0823
TOSETTL6 EMPTY -0.1518 0.1438
TOSETTL6 N 0.2665 0.0230

Table A.1: Maximum likelihood estimates of parameters by Logistic Regression across
all bands. To be continued in table A.2
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Variable Dummy Variable MLE estimates Pr > ChiSq
AGE (27,31] 0.1423 0.1526

AGE (31,34] 0.0211 0.8409
AGE (34,37] -0.1060 0.3194
AGE (37,41] 0.0292 0.7453

AGE (41,45] -0.1155 0.2420
AGE (45,50] -0.0892 0.3777
AGE (50,57] -0.3926 0.0007
AGE (57,64] 0.0658 0.7216

TIMEBANK (l.le+03,1.41e+03] 0.1652 0.1055
TIMEBANK (1.41e+03,1.61e+03] -0.0107 0.9187
TIMEBANK (1.61e+03,2e+03] 0.0749 0.3966
TIMEBANK (2.4e+03,3e+03] 0.0407 0.7191
TIMEBANK (2e+03,2.4e+03] -0.2843 0.0803
TIMEBANK (3e+03,8.2e+03] -0.8381 0.0014
TIMEBANK (500,900] 0.2211 0.0217

TIMEBANK (900,l.le+03] 0.1914 0.0496
SPSETLD 0 0.5221 < .0001
SPSETLD 1 0.2555 0.0052
SPSETLD 2 0.1540 0.0961
SPSETLD 3 0.0917 0.3592

SPSETLD 4 -0.1486 0.1703
SPSETLD 5 0.0308 0.7831

SPSETLD 6 -0.0905 0.4891
SPSETLD 7 -0.1121 0.4337
SPSETLD 8 -0.3901 0.0354
SPVALDEL -1 1.0130 0.0066
SPVALDEL 0 0.3766 0.2589
SPVALDEL 1 0.8392 0.0191
SSRC4T06 0 -0.4315 < .0001
SSRC4T06 1 -0.2540 0.0024
SSRC4T06 2 0.0499 0.6391
SSRC4T06 3 0.0393 0.8070
SWRSTCUR 0 -0.0126 0.8837
SWRSTCUR EMP 0.4754 0.0002
SWRSTCUR N -0.2818 0.1883
WRST46AL 0 0.1486 0.4468

WRST46AL 1 -0.3887 < .0001
WRST46AL 2 -0.3354 0.0237
WRST46AL 3 0.0669 0.5270

Table A.2: Following table A.1. Maximum likelihood estimates of parameters by Logistic
Regression across all bands.
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Variable Dummy Variable MLE estimates Pr > ChiSq
Intercept 0.7011 0.2529
Insurance N -1.0505 < .0001

SOCNOACT EMPTY 1.9042 0.0019
INC_SURP (1.12e+03,1.38e+03] 0.5048 0.3566
INCLSURP (1.38e+03,1.79e+03] -1.1836 0.0600
INC_SURP (1.79e+03,2.96e+03] 1.4598 0.0115
INC.SURP (2.96e+03,9.37e+04] -0.1744 0.8771
INCLSURP (395,565] -0.0345 0.9338
INCLSURP (565,726] -0.3132 0.4683
INCLSURP (726,910] -0.0784 0.8536
INCLSURP (910,1.12e+03] -1.2085 0.0848

Table A.3: Maximum likelihood estimates of parameters by Logistic Regression after
stepwised selection based on 223 cases in band 10. 1

Variable Dummy Variable MLE estimates Pr > ChiSq
Intercept 1.9976 0.9924

Insurance N -0.5738 0.0001
TOSETTL4 EMPTY 0.7048 0.0068
TOSETTL4 N -0.0884 0.7590

AGE (27,31] -0.0309 0.9343
AGE (31,34] -0.6688 0.1647
AGE (34,37] -0.4486 0.4459
AGE (37,41] 1.1564 0.0010
AGE (41,45] 1.4336 0.0002
AGE (45,50] -0.5223 0.3746
AGE (50,57] -0.6051 0.3138
AGE (57,64] -0.3528 0.7346

SPVALDEL -1 -3.1530 0.9881
SPVALDEL 0 -4.1920 0.9841
SPVALDEL 1 -2.8148 0.9893

Table A.4: Maximum likelihood estimates of parameters by Logistic Regression after
stepwised selection based on 389 cases in band 20.
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Variable Dummy Variable MLE estimates Pr > ChiSq
Intercept -2.7428 < .0001
Rate 8.5002 0.0075

Insurance N -0.5847 < .0001
TERM 24 -0.4375 0.2826
TERM 36 -0.0925 0.7016
TERM 48 0.2013 0.3970
TERM 60 0.2751 0.1645
TERM 72 -0.6943 0.2739

SEARCHES (15,32] -0.1104 0.6524
SEARCHES (32,49] -0.0686 0.7727

SEARCHES (49,65] -0.2743 0.2277
SEARCHES (65,80] 0.1117 0.6139
SEARCHES (80,95] 0.2383 0.2786
SEARCHES (95,100] 0.6558 0.0351
TOSETTL1 EMPTY 0.4997 0.0029
TOSETTL1 N 0.00893 0.9421

Table A.5: Maximum likelihood estimates of parameters by Logistic Regression after
stepwised selection based on 997 cases in band 30.
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Variable Dummy Variable MLE estimates Pr > ChiSq
Intercept -2.9717 < .0001
Rate 11.4369 0.0140

Insurance N -0.5551 < .0001
LOAN_AMT (1.2e+04,1.5e+04] 0.3109 0.2365
LOAN^AMT (1.5e+04,2.3e+04] 0.1445 0.6185
LOAN_AMT (le+04,1.2e+04] 0.1555 0.6335
LOAN-AMT (2.3e+04,2.5e+04] 0.0584 0.8996
LOAN_AMT (5e+03,6.5e+03] -1.0087 0.0315

LOANVLMT (6.5e+03,8e+03] 0.8449 0.0002
LOAN_AMT (8e+03,le+04] 0.0517 0.8336
INC2SURP (1.12e+03,1.38e+03] -1.0187 0.0165
INC_SURP (1.38e+03,1.79e+03] -0.9583 0.0259
INC_SURP (1,79e+03,2.96e+03] 0.3283 0.2462
INC_SURP (2.96e+03,9.37e+04] 0.5199 0.2135
INC_SURP (395,565] 0.4628 0.0382
INC_SURP (565,726] 0.2670 0.2775

INC-SURP (726,910] -0.5160 0.1377
INCYSURP (910,1.12e+03] 0.4539 0.0896
SPL6M4 0 -0.5685 0.0641

SPL6M4 1 -0.3942 0.3923

SPL6M4 EMPTY 1.4446 0.1416

SPL6M4 N 0.0932 0.7582
SSRC4T06 0 -0.4648 0.0265

SSRC4T06 1 -0.3155 0.1442
SSRC4TO6 2 0.2700 0.3124
SSRC4T06 3 -0.5614 0.2102

Table A.6: Maximum likelihood estimates of parameters by Logistic Regression after
stepwised selection based on 1327 cases in band 40.
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Variable Dummy Variable MLE estimates Pr > ChiSq
Intercept -3.9773 < .0001
Rate 14.1654 0.0008

Insurance N -0.4936 < .0001
TERM 24 -0.3190 0.3719
TERM 36 -0.6210 0.0109
TERM 48 0.1662 0.4223
TERM 60 0.3625 0.0226

TERM 72 0.2218 0.5527
LOANBAL4 (2.2e+04,3.55e+05] -0.2979 0.1034
LOANBAL4 (3.55e+05,3.83e+06] 0.6149 0.0020
MOR_RENT (156,227] -0.4059 0.1360
MOR_RENT (227,300] 0.0418 0.8442

MOR_RENT (300,360] 0.3197 0.2146
MOR_RENT (360,450] 0.1904 0.4020
MOR_RENT (450,577] -0.4461 0.1547
MOR_RENT (577,900] -0.6067 0.0535
MOR_RENT (900,1.3e+0] 0.7644 0.0137

AGE (27,31] -0.3390 0.2257
AGE (31,34] 0.1946 0.4228
AGE (34,37] 0.0374 0.8876
AGE (37,41] 0.1343 0.5592
AGE (41,45] -0.1658 0.5477

AGE (45,50] -0.0228 0.9327

AGE (50,57] -0.9720 0.0138
AGE (57,64] 0.5020 0.3725
SM089 0 -0.9325 0.1277

SNW12TV 0 -1.0634 0.0365
SWRSTCUR 0 -0.0175 0.9131
SWRSTCUR EMP 0.6050 0.0202
SWRSTCUR N 0.1785 0.5623

Table A.7: Maximum likelihood estimates of parameters by Logistic Regression after
stepwised selection based on 3209 cases in band 50.
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Variable Dummy Variable MLE estimates Pr > ChiSq
Intercept -3.5447 < .0001
Rate 10.7774 0.0004

Insurance N -0.6322 < .0001
LOAN_AMT (1.2e+04,1.5e+04] -0.2795 0.0852

LOANMlMT (1.5e+04,2.3e+04] 0.2446 0.1512

LOAN_AMT (le+04,1.2e+04] -0.5738 0.0122

LOAN^AMT (2.3e+04,2.5e+04] 0.6144 0.0027

LOANMiMT (5e+03,6.5e+03] 0.0469 0.7776
LOAN^AMT (6.5e+03,8e+03] 0.0765 0.6018
LOAN_AMT (8e+03,le+04] 0.0304 0.8090

TERM 24 -0.4929 0.0230
TERM 36 -0.0160 0.8973
TERM 48 -0.1645 0.2216
TERM 60 0.0559 0.6099
TERM 72 0.0376 0.8964
newbus 0 -0.1682 0.0224

ALCIFDET EMP 0.3896 0.0275
CCJGT500 (22,27] 0.0719 0.5944

CCJGT500 (27,32] 0.3022 0.0125

CCJGT500 (32,37] -0.2112 0.1516

CCJGT500 (37,43] 0.1845 0.1587
CCJGT500 (43,58] -0.1693 0.2334
CCJGT500 EMPTY -0.2633 0.0187

NETINCM (1.05e+03,1.2e+03] -0.2688 0.0597
NETINCM (1.2e+03,1.38e+03] -0.1341 0.3941

NETINCM (1.38e+03,1.55e+03] -0.0128 0.9278

NETINCM (1.55e+03,1.8e+03] -0.1377 0.3445

NETINCM (1.8e+03,2.2e+03] -0.1196 0.4385
NETINCM (2.2e+03,3.5e+03] 0.3746 0.0066

NETINCM (3.5e+03,9.37e+05] 0.8909 < .0001
NETINCM (900,1.05e+03] -0.2922 0.0725
SOCSETT EMPTY -0.4652 0.0166

AGE (27,31] 0.3381 0.0227
AGE (31,34] 0.0145 0.9281
AGE (34,37] 0.0199 0.8943
AGE (37,41] 0.00469 0.9703
AGE (41,45] -0.3292 0.0261

AGE (45,50] -0.1417 0.2925
AGE (50,57] -0.4148 0.0036
AGE (57,64] 0.2017 0.3273

Table A.8: Maximum likelihood estimates of parameters by Logistic Regression after
stepwised selection based on 15766 cases in band 60. To be continued.
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Variable Dummy Variable MLE estimates Pr > ChiSq
SPL6MACT 0 -0.1774 0.2479
SPL6MACT 1 0.3217 0.0517

SPL6MACT EMPTY 0.9194 0.0117

SPL6MACT N -0.8553 0.0148
SSRC4TO6 0 -0.5930 < .0001
SSRC4T06 1 -0.3222 0.0511
SSRC4T06 2 -0.0914 0.6666
SSRC4T06 3 0.1686 0.6243
SWRSTCUR 0 -0.1876 0.1089

SWRSTCUR EMP 0.5766 0.0030
SWRSTCUR N 0

Table A.9: Following table A.8. Maximum likelihood estimates of parameters by Logistic
Regression after stepwised selection based on 15766 cases in band 60.

Variable Dummy Variable MLE estimates Pr > ChiSq
Intercept -0.7224 0.0583
Insurance N -0.4457 0.0008
brand dlfs 0.2855 0.0370
internet 0 0.3357 0.0193
AGE (27,31] -0.1139 0.7402

AGE (31,34] -0.3634 0.3786

AGE (34,37] -0.3644 0.4792

AGE (37,41] 0.9108 0.0036
AGE (41,45] 0.8991 0.0101

AGE (45,50] 0.0297 0.9446

AGE (50,57] -0.5848 0.2725
AGE (57,64] -0.6786 0.5134

SVALCAIS 0 -0.7585 0.0267
WORST 12 0 -0.5096 0.0286
WORST 12 1 -0.1522 0.3961

Table A.10: Maximum likelihood estimates of parameters by Logistic Regression after
stepwised selection based on data of band 0 and 20
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APR Coef. Std. Err. t P>\t\ [95% Conf. Interval]
LDefault 0.101254 0.067156 1.51 0.132 -0.03037 0.232883

raw_apradj 1.036216 0.007658 135.31 0.000 1.021206 1.051226

loan_amt6 03 -0.36626 0.033634 -10.89 0.000 -0.43218 -0.30033
internet 1 -0.51071 0.019706 -25.92 0.000 -0.54934 -0.47209

cpiy 0.349419 0.044769 7.8 0.000 0.261669 0.437168

brandlomb 0.266039 0.020584 12.92 0.000 0.225694 0.306384
term -0.01412 0.000703 -20.09 0.000 -0.0155 -0.01274

loan_amt8 04 -0.29979 0.031185 -9.61 0.000 -0.36092 -0.23867

inc_surp0395 0.342868 0.02919 11.75 0.000 0.285654 0.400081
loan_amt2 04 0.306278 0.053768 5.7 0.000 0.200891 0.411665
netincmlO 03 -0.02061 0.025631 -0.8 0.421 -0.07084 0.02963

newbus 1 -0.24536 0.028024 -8.76 0.000 -0.30029 -0.19043
loan_amt8 03 1.191471 0.032696 36.44 0.000 1.127385 1.255556

socsett02 -0.34227 0.05138 -6.66 0.000 -0.44298 -0.24157

spl6ml2n 0.142824 0.035236 4.05 0.000 0.073759 0.211888
tosettllem y -0.0362 0.02726 -1.33 0.184 -0.08963 0.01723
wrst46al20 -0.19312 0.041188 -4.69 0.000 -0.27385 -0.11239

timaddl 1100 0.11173 0.02811 3.97 0.000 0.056634 0.166827

spl6mact00 -0.01198 0.020982 -0.57 0.568 -0.0531 0.029149

tosettl2y -0.07268 0.02774 -2.62 0.009 -0.12705 -0.01831

inc_surpl7 3 -0.12677 0.027802 -4.56 0.000 -0.18126 -0.07228
inc_s 726910 -0.02879 0.027662 -1.04 0.298 -0.08301 0.025428

spl6ml2u -0.10446 0.033068 -3.16 0.002 -0.16928 -0.03965
timeb 500900 0.065156 0.029057 2.24 0.025 0.008204 0.122108

timebank2e 3 0.017199 0.038602 0.45 0.656 -0.05846 0.092861
ssrc4to610 -0.11954 0.060767 -1.97 0.049 -0.23864 -0.00043

loan_amt5 03 -0.40821 0.036762 -11.1 0.000 -0.48026 -0.33615
loanball4 05 -0.02214 0.026868 -0.82 0.410 -0.0748 0.030523
loan_amtl2 4 -0.11312 0.034235 -3.3 0.001 -0.18022 -0.04601
ssrc4to600 -0.14718 0.060213 -2.44 0.015 -0.2652 -0.02916
ssrc4to620 -0.1125 0.065111 -1.73 0.084 -0.24012 0.015121

mor_rent0156 -0.02571 0.022109 -1.16 0.245 -0.06905 0.017621
swrstcurem y 0.053772 0.055867 0.96 0.336 -0.05573 0.163272

sncais3mem y -0.03702 0.058797 -0.63 0.529 -0.15226 0.078224

noopen601 -0.00557 0.02096 -0.27 0.790 -0.04666 0.035508

_cons 8.405523 0.179857 46.73 0.000 8.052997 8.758048

Table A. 11: Equation for APR in Simultaneous Equations with apr adjustment variable
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Default Coef. Std. Err. z P> \z\ [95% Conf. Interval]
I^APR 0.027213 0.018953 1.440 0.151 -0.00993 0.06436

raw_apradj 0.063977 0.020553 3.110 0.002 0.023694 0.104261

cpiy 0.560055 0.031586 17.730 0.000 0.498147 0.621962
wrst46al30 0.194317 0.04471 4.350 0.000 0.106687 0.281947
socworstOO -0.21736 0.039904 -5.450 0.000 -0.29557 -0.13915

loan_amt2 04 0.265667 0.06295 4.220 0.000 0.142288 0.389045

spvaldelOO -0.33224 0.06417 -5.180 0.000 -0.45801 -0.20647

age3741 0.00492 0.038709 0.130 0.899 -0.07095 0.080788
wrst46al20 -0.10458 0.070333 -1.490 0.137 -0.24243 0.033272

loanball7 06 0.043432 0.040286 1.080 0.281 -0.03553 0.122391

spsetld -0.0323 0.005034 -6.420 0.000 -0.04217 -0.02244

tosettl6n 0.23468 0.05033 4.660 0.000 0.136034 0.333326

inc_surpl3 3 -0.17994 0.048165 -3.740 0.000 -0.27434 -0.08554
timeb 500900 0.10139 0.039015 2.600 0.009 0.024922 0.177858
ssrc4to6em y 0.375853 0.0948 3.960 0.000 0.190048 0.561658
swrstcurem y 0.236494 0.059098 4.000 0.000 0.120665 0.352324

term 0.004485 0.001008 4.450 0.000 0.00251 0.00646

mor_r 156227 -0.1126 0.042278 -2.660 0.008 -0.19547 -0.02974
_cons -2.06113 0.178601 -11.540 0.000 -2.41118 -1.71108

Table A. 12: Equation for Default in Simultaneous Equations with apr adjustment vari¬
able
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APR Coef. Std. Err. t P>\t\ [95% Conf. Interval]
IJTefault 2.066874 0.169633 12.18 0.000 1.734386 2.399362

loan_amt6 03 -0.39192 0.117188 -3.34 0.001 -0.62162 -0.16223
internet 1 -0.11097 0.068446 -1.62 0.105 -0.24512 0.023189

cpiy -0.33139 0.129165 -2.57 0.010 -0.58456 -0.07822
brandlomb 0.272648 0.070521 3.87 0.000 0.134424 0.410872

term -0.01247 0.002393 -5.21 0.000 -0.01716 -0.00778
loan_amt8 04 -0.19384 0.108511 -1.79 0.074 -0.40652 0.01885

inc_surp0395 0.289899 0.09066 3.2 0.001 0.112201 0.467596

loan_amt2 04 -0.13056 0.16374 -0.8 0.425 -0.4515 0.190379
netincmlO 03 0.10031 0.086499 1.16 0.246 -0.06923 0.269852

newbus 1 -0.79597 0.090501 OOooi 0.000 -0.97335 -0.61858
loan_amt8 03 1.534303 0.112716 13.61 0.000 1.313375 1.75523

socsett02 -0.53127 0.186071 -2.86 0.004 -0.89598 -0.16657

spl6ml2n 0.410265 0.109917 3.73 0.000 0.194823 0.625706
tosettllem y -0.23293 0.091214 -2.55 0.011 -0.41171 -0.05414

wrst46al20 -0.0249 0.153433 -0.16 0.871 -0.32563 0.275838

timaddl 1100 0.456138 0.092864 4.91 0.000 0.274121 0.638155

spl6mact00 -0.20657 0.071755 -2.88 0.004 -0.34721 -0.06593

tosettl2y 0.21492 0.090498 2.37 0.018 0.03754 0.3923

inc_surpl7 3 -0.31014 0.098731 -3.14 0.002 -0.50366 -0.11662
inc_s 726910 0.014688 0.09666 0.15 0.879 -0.17477 0.204145

spl6ml2u -0.02656 0.125598 -0.21 0.833 -0.27274 0.219619

timeb 500900 0.428248 0.092688 4.62 0.000 0.246576 0.609921

timebank2e 3 0.231935 0.15089 1.54 0.124 -0.06382 0.527686

ssrc4to610 -0.9958 0.175959 -5.66 0.000 -1.34068 -0.65091

loan_amt5 03 -0.24802 0.130183 -1.91 0.057 -0.50318 0.007142

loanbal 14 05 0.072639 0.091784 0.79 0.429 -0.10726 0.252539

loan_amtl2 4 0.009586 0.119498 0.08 0.936 -0.22463 0.243806

ssrc4to600 -1.18404 0.177833 -6.66 0.000 -1.5326 -0.83548

ssrc4to620 -0.8841 0.182831 -4.84 0.000 -1.24246 -0.52575

mor_rent0156 -0.08755 0.071996 -1.22 0.224 -0.22867 0.053562

swrstcurem y 0.802323 0.160225 5.01 0.000 0.488276 1.116369
sncais3mem y 0.56678 0.179544 3.16 0.002 0.214865 0.918694

noopen601 0.025002 0.070821 0.35 0.724 -0.11381 0.163813
_cons 14.19966 0.464848 30.55 0.000 13.28854 15.11078

Table A. 13: Equation for APR in Simultaneous Equations without apr adjustment vari¬
able
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Default Coef. Std. Err. z P> |z| [95% Conf. Interval]
I^\PR 0.109739 0.012056 9.1 0.000 0.08611 0.133368

cpiy 0.493173 0.031372 15.72 0.000 0.431685 0.554661
wrst46al30 0.194647 0.044112 4.41 0.000 0.108189 0.281105
socworstOO -0.2434 0.038644 -6.3 0.000 -0.31914 -0.16766

loan_amt2 04 0.23279 0.061501 3.79 0.000 0.112249 0.35333

spvaldelOO -0.30918 0.062943 -4.91 0.000 -0.43255 -0.18581

age3741 0.003102 0.037798 0.08 0.935 -0.07098 0.077186
wrst46al20 -0.07969 0.069019 -1.15 0.248 -0.21497 0.055586

loanball7 06 0.050535 0.039337 1.28 0.199 -0.02656 0.127634

spsetld -0.03747 0.005069 -7.39 0.000 -0.04741 -0.02754
tosettl6n 0.245969 0.049513 4.97 0.000 0.148925 0.343012

inc_surpl3 3 -0.15898 0.047131 -3.37 ■ 0.001 -0.25136 -0.06661
timeb 500900 0.101738 0.038764 2.62 0.009 0.025763 0.177714
ssrc4to6em y 0.324367 0.097269 3.33 0.001 0.133725 0.51501
swrstcurem y 0.205048 0.060343 3.4 0.001 0.086778 0.323317

term 0.006744 0.000864 7.8 0.000 0.00505 0.008438
mor_r 156227 -0.12054 0.041102 -2.93 0.003 -0.2011 -0.03998

_cons -2.73474 0.139228 -19.64 0.000 -3.00762 -2.46186

Table A.14: Equation for Default in Simultaneous Equations without apr adjustment
variable
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Table B.1: Maximum Likelihood Estimates(continued)

Variable Dummy Variable DF Estimate Error Chi-Square Pr > ChiSq
GDSCDE2 (222,999] 1 0.1634 0.03 29.5759 < .0001
GDSCDE3 0 1 -0.1238 0.0632 3.8295 0.0504
GDSCDE3 111 1 -0.0881 0.1123 0.6146 0.4331

GDSCDE3 200 1 0.1767 0.1454 1.477 0.2242
GDSCDE3 222 1 -0.3798 0.1444 6.9211 0.0085

LOANBAL1 (1,29e+04,6.49e+04] 1 -0.0575 0.0373 2.3734 0.1234

LOANBAL1 (1.37e+06,8.72e+06] 1 0.1974 0.058 11.5776 0.0007
LOANBAL1 (1.53e+05,3e+05] 1 0.037 0.0365 1.0265 0.311

LOANBAL1 (3e+05,4.89e+05] 1 -0.0412 0.0362 1.2949 0.2552
LOANBAL1 (4.89e+05,7.4e+05] 1 0.0187 0.0354 0.2788 0.5975
LOANBAL1 (6.49e+04,1.53e+05] 1 -0.0339 0.0362 0.8753 0.3495

LOANBAL1 (7.4e+05,1.37e+06] 1 0.0613 0.0366 2.8057 0.0939

LOANBAL2 (1,05e+04,6.27e+04] 1 -0.0622 0.0367 2.8648 0.0905

LOANBAL2 (1.05e+06,6.34e+06] 1 0.341 0.0572 35.5606 < .0001
LOANBAL2 (1.69e+05,3.68e+05] 1 -0.0435 0.0363 1.4383 0.2304
LOANBAL2 (3.68e+05,1.05e+06] 1 0.0566 0.038 2.2158 0.1366

LOANBAL2 (6.27e+04,1.69e+05] 1 -0.1402 0.0361 15.1271 0.0001

LOANBAL3 (1,59e+05,6.17e+05] 1 -0.0228 0.0376 0.3679 0.5442
LOANBAL3 (2.57e+04,1.59e+05] 1 0.0131 0.0365 0.1286 0.7199

LOANBAL3 (6J7e+05,7.29e+06] 1 0.2809 0.0574 23.9684 < .0001
LOANBAL4 (2.2e+04,3.55e+05] 1 -0.043 0.0387 1.2335 0.2667
LOANBAL4 (3.55e+05,3.83e+06] 1 0.3096 0.0569 29.5751 < .0001
LOANBAL5 (1,98e+05,8.5e+06] 1 0.1078 0.0436 6.1054 0.0135

LOANBAL6 (8.91 e+04,2. 5e+06] 1 0.1002 0.0415 5.8325 0.0157
MORTBAL (1.05e+05,le+07] 1 0.0774 0.0465 2.7647 0.0964
MORTBAL (4.8e+04,1,05e+05] 1 -0.152 0.0332 20.9423 < .0001
MORJIENT (156,227] 1 -0.0253 0.036 0.4956 0.4814
MOR_RENT (227,300] 1 0.0166 0.0316 0.2743 0.6005
MORJIENT (300,360] 1 -0.0363 0.0379 0.9149 0.3388
MORJIENT (360,450] 1 -0.0396 0.0332 1.4219 0.2331
MORJIENT (450,577] 1 0.0551 0.0361 2.3296 0.1269
MORJIENT (577,900] 1 0.0553 0.0351 2.4755 0.1156
MORJLENT (900,1.3e+0 1 0.1081 0.062 3.0414 0.0812

NETINCM (1.05e+03,1.2e+03] 1 0.0356 0.033 1.1637 0.2807
NETINCM (1.2e+03,1.38e+03] 1 -0.00227 0.0371 0.0037 0.9513
NETINCM (1.38e+03,1.55e+03] 1 -0.0122 0.0339 0.1302 0.7182
NETINCM (1.55e+03,1.8e+03] 1 -0.0465 0.0328 2.0016 0.1571
NETINCM (1.8e+03,2.2e+03] 1 -0.00261 0.0343 0.0058 0.9393
NETINCM (2.2e+03,3.5e+03] 1 -0.0668 0.0366 3.3215 0.0684
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Table B.1: Maximum Likelihood Estimates(continued)

Variable Dummy Variable DF Estimate Error Chi-Square Pr > ChiSq
NET1NCM (3.5e+03,9.37e+05] 1 -0.0401 0.0664 0.3647 0.5459
NETINCM (900,1.05e+03] 1 -0.00159 0.0376 0.0018 0.9663
NOOPEN6 (0,1] 1 0.0597 0.0261 5.2263 0.0222

NOOPEN6 (1,2] 1 -0.0816 0.0348 5.4948 0.0191
NOOPEN6 (2,9] 1 -0.1013 0.0537 3.5597 0.0592
SNBALALL (1,3] 1 -0.1565 0.0554 7.9719 0.0048
SNBALALL (104,245] 1 0.0885 0.0403 4.8287 0.028
SNBALALL (13,30] 1 -0.00009 0.04 0 0.9983
SNBALALL (3,13] 1 -0.0454 0.0403 1.2689 0.26
SNBALALL (30,57] 1 0.0321 0.0381 0.7121 0.3987
SNBALALL (57,104] 1 0.0922 0.0376 6.0171 0.0142
SNBALALL EMPTY 1 0.019 0.0757 0.0627 0.8023
SNBALL6M (1,3] 1 0.3842 0.0751 26.1688 < .0001
SNBALL6M (10,24] 1 0.0639 0.0705 0.821 0.3649

SNBALL6M (133,738] 1 -0.4445 0.1165 14.5697 0.0001
SNBALL6M (24,44] 1 -0.2622 0.0704 13.8736 0.0002
SNBALL6M (3,10] 1 0.3925 0.0723 29.4695 < .0001
SNBALL6M (44,72] 1 -0.0867 0.0695 1.5569 0.2121

SNBALL6M (72,133] 1 -0.3528 0.0712 24.5532 < .0001
SOCBAL EMPTY 1 -0.1128 0.0422 7.1575 0.0075
SOCSETT EMPTY 1 0.5024 0.0528 90.408 < .0001
TIMADD1 (1.2e+03,1.71e+03] 1 -0.00408 0.0354 0.0133 0.9083
TIMADD1 (1.71e+03,2.61e+03] 1 0.1317 0.0369 12.7426 0.0004
TIMADD1 (100,200] 1 -0.1731 0.0361 22.9409 < .0001
TIMADD1 (2.61e+03,5.9e+03] 1 0.275 0.0596 21.2978 < .0001
TIMADD1 (200,306] 1 -0.0741 0.0346 4.5809 0.0323
TIMADD1 (306,506] 1 -0.1068 0.0333 10.3107 0.0013
TIMADD1 (506,800] 1 0.0212 0.0337 0.3933 0.5306

TIMADD1 (800,1.2e+03] 1 0.0316 0.0343 0.8508 0.3563
TOSETTL1 EMPTY 1 -0.1002 0.0436 5.2795 0.0216
TOSETTL1 N 1 -0.0758 0.0243 9.7162 0.0018
TOSETTL2 EMPTY 1 -0.0158 0.0404 0.154 0.6948
TOSETTL2 N 1 -0.0889 0.0252 12.4507 0.0004
TOSETTL3 EMPTY 1 0.0209 0.0384 0.2962 0.5863
TOSETTL3 N 1 -0.098 0.0281 12.1829 0.0005
TOSETTL4 EMPTY 1 0.1475 0.0456 10.4613 0.0012

TOSETTL4 N 1 -0.1257 0.0339 13.7455 0.0002
AGE (27,31] 1 -0.0703 0.036 3.8093 0.051

AGE (31,34] 1 -0.0597 0.0368 2.6343 0.1046



Appendix B. Appendix for Chapter 4 241

Table B.1: Maximum Likelihood Estimates(continued)

Variable Dummy Variable DF Estimate Error Chi-Square Pr > ChiSq
AGE (34,37] 1 -0.00425 0.0363 0.0137 0.9067

AGE (37,41] 1 0.082 0.0331 6.1289 0.0133
AGE (41,45] 1 0.0689 0.035 3.8729 0.0491
AGE (45,50] 1 0.0861 0.0363 5.6392 0.0176
AGE (50,57] 1 0.0437 0.0376 1.3512 0.2451
AGE (57,64] 1 0.0692 0.069 1.005 0.3161

T1MEBANK (l.le+03,1.41e+03] 1 0.0583 0.0363 2.5787 0.1083

TIMEBANK (1.41e+03,1.61e+03] 1 0.0182 0.0343 0.2803 0.5965
TIMEBANK (1.61e+03,2e+03] 1 -0.00793 0.0292 0.0739 0.7857

TIMEBANK (2.4e+03,3e+03] 1 0.013 0.0367 0.1257 0.7229

TIMEBANK (2e+03,2.4e+03] 1 0.0439 0.0492 0.7988 0.3714
TIMEBANK (3e+03,8.2e+03] 1 0.1358 0.0612 4.9196 0.0266
TIMEBANK (500,900] 1 -0.0471 0.0345 1.8585 0.1728
TIMEBANK (900,l.le+03] 1 -0.0821 0.0342 5.7612 0.0164
NCLSTORE 0 1 -0.3339 0.1944 2.952 0.0858

NO_STORE 1 1 -0.1436 0.1986 0.5233 0.4694
NCLSTORE 2 1 -0.1791 0.2242 0.6381 0.4244
NO-STORE 3 1 -0.0123 0.2997 0.0017 0.9673
SNRECACT 1 1 1.3558 0.4147 10.6873 0.0011

SPL6M12 0 1 -0.1768 0.0677 6.8184 0.009
SPL6M12 1 1 0.0199 0.0891 0.0497 0.8236
SPL6M12 EMPTY 1 0.3056 0.2471 1.5294 0.2162
SPL6M12 N 1 0.1596 0.0797 4.012 0.0452

SPL6MACT 0 1 -0.2741 0.1783 2.3647 0.1241
SPL6MACT 1 1 -0.6286 0.1854 11.4968 0.0007
SPL6MACT EMPTY 1 -0.5415 0.2816 3.6988 0.0545
SPL6MACT N 1 1.8661 0.6691 7.7769 0.0053
SPSETLD 0 1 0.1615 0.0379 18.1829 < .0001
SPSETLD 1 1 0.122 0.0341 12.7568 0.0004
SPSETLD 2 1 0.0875 0.0333 6.8885 0.0087
SPSETLD 3 1 -0.0178 0.0341 0.272 0.602
SPSETLD 4 1 0.0227 0.0354 0.4105 0.5217
SPSETLD 5 1 0.0144 0.0388 0.1384 0.7098

SPSETLD 6 1 -0.0573 0.0424 1.8267 0.1765
SPSETLD 7 1 -0.0171 0.0484 0.1249 0.7238
SPSETLD 8 1 -0.126 0.053 5.6409 0.0175

SPVALDEL -1 1 0.0367 0.2379 0.0238 0.8773

SPVALDEL 0 1 -0.2175 0.2381 0.8343 0.361

SPVALDEL 1 1 0.0872 0.2462 0.1255 0.7231
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Default Coef. Std. Err. z P> |z| [95% Conf. Interval]
loanaprl 0.3117450 0.0213706 14.59 0.000 0.2698593 0.3536306

cpi 0.5949605 0.0365988 16.26 0.000 0.5232281 0.6666930
wrst46al 0.5469332 0.0802858 6.81 0.000 0.3895758 0.7042906
timebank 0.3395312 0.0491891 6.90 0.000 0.2431223 0.4359402
ssrc4to6 0.3364142 0.0692591 4.86 0.000 0.2006688 0.4721596

socworst 0.3045035 0.0567139 5.37 0.000 0.1933464 0.4156607
loanbal2 -0.6521232 0.1653033 -3.95 0.000 -0.9761117 -0.3281347
loanbal6 -1.5275050 0.4034007 -3.79 0.000 -2.3181550 -0.7368537

spsetld 0.3421178 0.0889288 3.85 0.000 0.1678205 0.5164151
term 0.9258050 0.2473159 3.74 0.000 0.4410748 1.4105350

netincm -1.2971430 0.3497322 -3.71 0.000 -1.9826060 -0.6116808
_cons -1.6875550 0.0169933 -99.31 0.000 -1.7208610 -1.6542490

Table B.2: Probit Default Model with variables stepwise-selected with significance value
of 0.002

Default Coef. Std. Err. z P>\z\ [95% Conf. Interval]
loanaprl 0.3004062 0.0220364 13.63 0.000 0.2572157 0.3435967

cpi 0.6118196 0.0371333 16.48 0.000 0.5390396 0.6845996
wrst46al 0.3580667 0.1086589 3.30 0.001 0.1450991 0.5710342

timebank 0.2679799 0.0545948 4.91 0.000 0.1609760 0.3749838
ssrc4to6 0.3153274 0.0705834 4.47 0.000 0.1769864 0.4536683

socworst 0.2569090 0.0575867 4.46 0.000 0.1440411 0.3697769

loanbal2 -0.7899687 0.1899592 -4.16 0.000 -1.1622820 -0.4176556

loanbal6 -1.4782630 0.4102631 -3.60 0.000 -2.2823640 -0.6741616

spsetld 0.3097557 0.0905687 3.42 0.001 0.1322443 0.4872671

term 0.8046459 0.2570356 3.13 0.002 0.3008653 1.3084260

netincm -1.3180350 0.3558251 -3.70 0.000 -2.0154390 -0.6206306

alcifdet 0.6065010 0.1958156 3.10 0.002 0.2227094 0.9902925

age 0.1709128 0.0533851 3.20 0.001 0.0662799 0.2755457

worst 12 0.3700065 0.1217338 3.04 0.002 0.1314125 0.6086004

spl6ml2 0.2763015 0.1052215 2.63 0.009 0.0700711 0.4825319
loan_amt 0.4047468 0.1516572 2.67 0.008 0.1075041 0.7019895

tosettl2 0.7079504 0.3143855 2.25 0.024 0.0917661 1.3241350
socsett 0.2572794 0.1172814 2.19 0.028 0.0274120 0.4871468

ccjgt500 -1.0989980 0.5104424 -2.15 0.031 -2.0994470 -0.0985491

_cons -1.6859410 0.0171999 -98.02 0.000 -1.7196530 -1.6522300

Table B.3: Probit Default Model with variables stepwise-selected with significance value
of 0.05
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Table B.4: Indifference Curve Logit

Acceptance Coef. Std. Err. z P > \z\ [95% Conf. Interval]
log(APR)

insured-in r
_Inewbus_l

log(L)
raw_term

Jtosettl 1 _3

Jloanbal3_4

Jgdscde2_2
Jsnball6m_2
Jsocsett_2

_Iloanbal4_2
Jtosettl2_3

Jspl6ml2_5
Jbrand_2

_Iinternet_l
_Imortbal_2

Jspsetld_9
_Iloanbal3_3

Jspvaldel_4
Jloanbal2_2

Jgdscde2_3
Jtimaddl_4
Jloanball_8
Jloanbal4_3

JspvaldeL3
Jgdscde 444
Jnoopen6_2
_Iloanbal2_4
Jsnball6m_6

Jage_9
Jtosettl3_3
Jloanbal6_2
Jloanbal 1 _2

Jspl6ml2_4
_Isnrecact22

Jspl6m4_4
Jno_store_l

Jspl6ml2_3
Jtimadd 1 _3

-2.700994
-1.039617
-0.457301
-1.040575
0.012003
0.301926
-0.189716
0.213876
-0.235106

-0.940652
0.349499
0.216715
-0.221187
0.187637
-0.217237

-0.231636

-0.322049
0.385128

-1.347730
0.455738
-0.250827
0.262248
-0.123057
-0.197330

0.417247
0.620898
-0.167125
0.189021
-0.452902
-0.116865
0.221846
-0.312895
0.307311

0.386019
-0.534180
0.086398
0.180021
0.417612
-0.175633

0.0425410
0.0280186
0.0477642
0.0289465
0.0009291
0.0367722
0.0442803
0.0561095
0.0746118
0.1027899
0.0816101

0.0465052
0.0375577
0.0281253
0.0295029
0.0411156

0.0395030
0.0765311

0.5342820
0.0697915
0.0441004

0.0677303
0.0339084
0.0558741

0.0915153
0.1342691
0.0428147
0.0448244
0.0766276
0.0394048
0.0596110
0.0752194
0.0661903
0.0573525
0.0828098
0.0287109
0.0633093
0.1235109
0.0427672

-63.49
-37.10
-9.57

-35.95
12.92

8.21
-4.28
3.81
-3.15
-9.15

4.28
4.66
-5.89
6.67
-7.36
-5.63
-8.15
5.03
-2.52
6.53
-5.69
3.87
-3.63
-3.53
4.56

4.62
-3.90
4.22

-5.91
-2.97
3.72

-4.16
4.64
6.73
-6.45
3.01
2.84

3.38
-4.11

0.0000

0.0000
0.0000
0.0000

0.0000
0.0000

0.0000

0.0000
0.0020
0.0000
0.0000
0.0000

0.0000
0.0000
0.0000
0.0000
0.0000

0.0000
0.0120
0.0000
0.0000
0.0000

0.0000
0.0000
0.0000
0.0000
0.0000

0.0000
0.0000
0.0030
0.0000
0.0000
0.0000
0.0000
0.0000
0.0030
0.0040
0.0010
0.0000

-2.784373
-1.094533
-0.550917
-1.097309
0.010182
0.229854

-0.276504
0.103903
-0.381343
-1.142116
0.189546
0.125566
-0.294799

0.132513
-0.275062
-0.312221
-0.399474
0.235130
-2.394904
0.318949
-0.337263
0.129499
-0.189516
-0.306841
0.237880
0.357735
-0.251040
0.101167
-0.603089
-0.194097
0.105010
-0.460322
0.177580
0.273610
-0.696484
0.030126
0.055937
0.175536
-0.259455

-2.617615
-0.984702
-0.363685
-0.983841
0.013824
0.373998
-0.102928
0.323849
-0.088870
-0.739187
0.509452
0.307863
-0.147576
0.242762
-0.159413
-0.151051

-0.244625
0.535126

-0.300557
0.592527
-0.164392
0.394997
-0.056598
-0.087818
0.596613
0.884060
-0.083210
0.276875
-0.302715
-0.039633

0.338681
-0.165468
0.437042
0.498428
-0.371876
0.142671
0.304105
0.659689
-0.091810
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Variable
Coefficient

ln(APR)
-1.50774

ln(AMT)
-0.20073

ln(pcl)
0.026245

ln(pc2)
0.023633

ln(pc3)
0.032882

ln(pc4)
-0.02864

Variable
Coefficient

ln(pc5)
-0.02315

ln(pc6)
0.00086

ln(pc7)
0.006294

ln(pc8)
0.001636

ln(pc9)
-0.00894

Variable
Coefficient

ln(pclO)
-0.01506

ln(pcl1)
0.027577

ln(pcl2)
0.008749

ln(pcl3)
0.025294

ln(pcl4)
0.017665

Variable
Coefficient

ln(pcl5)
0.016929

ln(pcl6)
0.013523

ln(pcl7)
0.01228

ln(pcl8)
-0.01172

_cons

-3.9224

Table B.5: Parameters estimated from OLS regression

_Itimaddl_9 -0.168349 0.0398130 -4.23 0.0000 -0.246381 -0.090317

Jgdscde 200 0.524374 0.1676055 3.13 0.0020 0.195873 0.852875

Jspsetld_8 -0.250975 0.0614355 -4.09 0.0000 -0.371386 -0.130564
Jsnbalall_2 0.216802 0.0467015 4.64 0.0000 0.125268 0.308335

Jsnball6m_7 -0.659762 0.0784589 -8.41 0.0000 -0.813538 -0.505985
Jsnball6m_3 -0.725873 0.1294780 -5.61 0.0000 -0.979645 -0.472101
Jsnball6m_4 -0.550400 0.0772546 -7.12 0.0000 -0.701816 -0.398984

Jspsetld_7 -0.208056 0.0543322 -3.83 0.0000 -0.314545 -0.101567

Jspsetld_3 -0.134976 0.0389790 -3.46 0.0010 -0.211373 -0.058579
Jtimadd 1 _5 -0.123718 0.0405609 -3.05 0.0020 -0.203216 -0.044220
Jtimaddl_6 -0.112501 0.0395957 -2.84 0.0040 -0.190107 -0.034895
Jsnbalall_6 0.148504 0.0434600 3.42 0.0010 0.063324 0.233684
Jloanbal 1 _7 0.121340 0.0408825 2.97 0.0030 0.041212 0.201469
Jinc_surp_7 -0.102884 0.0376997 -2.73 0.0060 -0.176774 -0.028994

Jno_deps_4 0.100590 0.0291208 3.45 0.0010 0.043514 0.157666
Jsocworst_2 -0.680604 0.2735984 -2.49 0.0130 -1.216847 -0.144361

Jspsetld_6 -0.133687 0.0488140 -2.74 0.0060 -0.229361 -0.038013
Jsnwl2tv_2 0.147099 0.0584538 2.52 0.0120 0.032532 0.261667
Jsnbalall_5 0.091368 0.0421038 2.17 0.0300 0.008845 0.173890
_lalcifdet_2 0.230821 0.1016956 2.27 0.0230 0.031501 0.430141

Jage_4 0.118337 0.0381368 3.10 0.0020 0.043590 0.193084

Jage_5 0.118641 0.0408234 2.91 0.0040 0.038629 0.198654

Jage_6 0.116703 0.0413757 2.82 0.0050 0.035608 0.197798

Jccjgt500_6 -0.063494 0.0275959 -2.30 0.0210 -0.117581 -0.009407
Jsocworst_4 -0.234336 0.1065833 -2.20 0.0280 -0.443235 -0.025436
_Itosettl4_2 -0.231257 0.0472866 -4.89 0.0000 -0.323937 -0.138577

Jmor_rent_8 -0.079177 0.0323495 -2.45 0.0140 -0.142580 -0.015773
Jmor_rent_4 -0.090851 0.0376629 -2.41 0.0160 -0.164669 -0.017034

_cons -2.661112 0.2150567 -12.37 0.0000 -3.082615 -2.239609
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Appendix C

Appendix for Chapter 5

Table C.1: Use time dependent covariates to test the PH assumption, group 1

_t Coef. Std. Err. z P> |z|
rh

loanaprl -0.625875 0.099315 -6.30 0.000

cpi -0.623123 0.113440 -5.49 0.000

term -0.023298 0.314821 -0.07 0.941
timebank -0.159357 0.228213 -0.70 0.485

spl6ml2 -0.599066 0.185356 -3.23 0.001

ssrc4to6 -0.084699 0.205879 -0.41 0.681
loanbal4 0.336511 0.302102 1.11 0.265

spsetld -1.171431 0.235313 -4.98 0.000

spl6m4 -0.468656 0.117236 -4.00 0.000

age -0.406709 0.106335 -3.82 0.000
loanball -0.654438 0.138320 -4.73 0.000
timaddl -0.662313 0.180766 -3.66 0.000

inc_surp -0.315840 0.097031 -3.26 0.001
searches -0.483789 0.212854 -2.27 0.023

spvaldel -0.437298 0.120251 -3.64 0.000

newbus 19.954610 5.943964 3.36 0.001

loanbal2 -0.427326 0.167069 -2.56 0.011

ccjgt500 -0.571135 0.253296 -2.25 0.024

loanbal6 -0.284608 0.133869 -2.13 0.034

no_amex -0.834241 0.395129 -2.11 0.035
mortbal -0.546873 0.272527 -2.01 0.045
snball6m -0.629072 0.357020 -1.76 0.078

t

loanaprl 0.048288 0.047978 1.01 0.314

cpi -0.052760 0.053240 -0.99 0.322
term -0.459681 0.148602 -3.09 0.002

timebank -0.163812 0.106824 -1.53 0.125

spl6ml2 0.054944 0.088407 0.62 0.534
ssrc4to6 -0.168402 0.096270 -1.75 0.080
loanbal4 -0.413371 0.135136 -3.06 0.002

spsetld 0.331755 0.115104 2.88 0.004
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Table C.2: Use time dependent covariates to test the PH assumption, group 2

_t Coef. Std. Err. z P> \z\
rh

loanaprl -0.534217 0.035139 -15.20 0.000

cpi -0.727654 0.038817 -18.75 0.000
term -0.933334 0.109403 -8.53 0.000

timebank -0.482008 0.084016 -5.74 0.000

spl6ml2 -0.487189 0.065384 -7.45 0.000
ssrc4to6 -0.421630 0.070008 -6.02 0.000
loanbal4 -0.511494 0.109147 -4.69 0.000

spsetld -0.543634 0.087728 -6.20 0.000

spl6m4 0.181920 0.347013 0.52 0.600

age -0.662490 0.272898 -2.43 0.015
loanbal 1 0.011567 0.393104 0.03 0.977
timaddl -0.181053 0.518125 -0.35 0.727

inc_surp 0.464560 0.278560 1.67 0.095
searches -0.919852 0.569728 -1.61 0.106

spvaldel -0.595604 0.316545 -1.88 0.060
newbus 62.724010 18.726890 3.35 0.001

loanbal2 -0.414160 0.166981 -2.48 0.013

ccjgt500 -0.552871 0.253251 -2.18 0.029
loanbal6 -0.297256 0.133713 -2.22 0.026
no_amex -0.774748 0.398277 -1.95 0.052
mortbal -0.569620 0.272538 -2.09 0.037
snball6m -0.630163 0.356810 -1.77 0.077

t

spl6m4 -0.337476 0.164042 -2.06 0.040

age 0.133352 0.130695 1.02 0.308
loanbal 1 -0.343889 0.181671 -1.89 0.058
timadd 1 -0.235255 0.244650 -0.96 0.336

inc_surp -0.396712 0.131744 -3.01 0.003
searches 0.224944 0.266081 0.85 0.398

spvaldel 0.085177 0.157460 0.54 0.589

newbus -20.898330 8.402471 -2.49 0.013
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Table C.3: Use time dependent covariates to test the PH assumption, group 3

_t Coef. Std. Err. z P> \z\
rh

loanaprl -0.535118 0.035267 -15.17 0.000

cpi -0.727636 0.038858 -18.73 0.000

term -0.933955 0.109345 -8.54 0.000
timebank -0.478003 0.084029 -5.69 0.000

spl6ml2 -0.485434 0.065423 -7.42 0.000
ssrc4to6 -0.420806 0.070154 -6.00 0.000
loanbal4 -0.519484 0.109189 -4.76 0.000

spsetld -0.540068 0.087665 -6.16 0.000

spl6m4 -0.455924 0.117520 -3.88 0.000

age -0.399045 0.106442 -3.75 0.000
loanbal 1 -0.661577 0.138228 -4.79 0.000
timaddl -0.647672 0.180554 -3.59 0.000

inc_surp -0.314581 0.096943 -3.25 0.001
searches -0.492646 0.212988 -2.31 0.021

spvaldel -0.418671 0.119961 -3.49 0.000

newbus 19.862720 5.939985 3.34 0.001
loanbal2 1.287643 0.462279 2.79 0.005

ccjgt500 -0.377414 0.671179 -0.56 0.574
loanbal6 0.279227 0.422757 0.66 0.509
no_amex 5.281398 2.714625 1.95 0.052
mortbal -1.645832 0.823706 -2.00 0.046
snball6m 0.266812 1.050864 0.25 0.800

t

loanbal2 -0.846953 0.209700 -4.04 0.000

ccjgt500 -0.091807 0.312159 -0.29 0.769
loanbal6 -0.270978 0.187536 -1.44 0.148
no_amex -2.624412 1.096511 -2.39 0.017

mortbal 0.544655 0.383709 1.42 0.156
snba!16m -0.445859 0.496056 -0.90 0.369
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Table C.4: Cox with time dependent covariates

249

_t Coef. Std. Err. z P>\z\
rh

loanaprl -0.533234 0.035223 -15.14 0.000

cpi -0.730704 0.038830 -18.82 0.000
term -0.461500 0.209891 -2.20 0.028

timebank -0.482071 0.084065 -5.73 0.000

spl6ml2 -0.480955 0.065497 -7.34 0.000

ssrc4to6 -0.412186 0.070195 -5.87 0.000
loanbal4 -0.512284 0.109195 -4.69 0.000

spsetld -1.076827 0.157580 -6.83 0.000

spl6m4 -0.450722 0.117026 -3.85 0.000

age -0.411820 0.106354 -3.87 0.000
loanball -0.663202 0.138259 -4.80 0.000
timaddl -0.648787 0.180652 -3.59 0.000

inc_surp 0.146136 0.185226 0.79 0.430

searches -0.475920 0.212791 -2.24 0.025

spvaldel -0.402630 0.119798 -3.36 0.001
newbus 37.129000 11.699730 3.17 0.002
loanbal2 -0.413006 0.167004 -2.47 0.013

ccjgt500 -0.569515 0.253463 -2.25 0.025

loanbal6 -0.293090 0.133676 -2.19 0.028
no_amex -0.824011 0.401275 -2.05 0.040
mortbal -0.560212 0.272526 -2.06 0.040
snball6m -0.616047 0.357272 -1.72 0.085

t

term -0.052153 0.019884 -2.62 0.009

spsetld 0.063649 0.015800 4.03 0.000

inc_surp -0.051735 0.017526 -2.95 0.003

newbus -1.761389 1.009336 -1.75 0.081
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Table C.5: Estimates from Weibull Model on paying back early
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_t Haz. Ratio Std. Err. z P > \z\ [95% Conf. Interval]
cpi 0.4783145 0.0303514 -11.62 0.00 0.4223773 0.5416596

age 0.5232625 0.0416314 -8.14 0.00 0.4477102 0.6115644

spsetld 0.3415869 0.0267512 -13.72 0.00 0.2929812 0.3982563

rawJoanaprl 1.0314310 0.0043383 7.36 0.00 1.0229630 1.0399690

netincm 0.7619679 0.0579986 -3.57 0.00 0.6563658 0.8845603

timaddl 0.5139337 0.0411061 -8.32 0.00 0.4393648 0.6011585

gdscde2 0.6077858 0.0362376 -8.35 0.00 0.5407542 0.6831265

spl6m4 0.5101184 0.0441318 -7.78 0.00 0.4305575 0.6043811

snbalall 0.6730424 0.0667519 -3.99 0.00 0.5541417 0.8174553
internet 0.6933863 0.0721658 -3.52 0.00 0.5654374 0.8502879
tosettl4 0.2312880 0.0711647 -4.76 0.00 0.1265459 0.4227253

inc_surp 0.6518582 0.0582058 -4.79 0.00 0.5472018 0.7765307
ssrc4to6 0.5848742 0.0602835 -5.20 0.00 0.4778905 0.7158080

L 0.9872349 0.0029864 -4.25 0.00 0.9813991 0.9931054
loanbal 1 0.5213038 0.0721717 -4.71 0.00 0.3974172 0.6838096
socsett 0.7251686 0.0535427 -4.35 0.00 0.6274666 0.8380835
timebank 0.6892486 0.0629588 -4.07 0.00 0.5762668 0.8243814
mortbal 0.5907617 0.0928403 -3.35 0.00 0.4341531 0.8038624
tosettl6 0.5324472 0.1087102 -3.09 0.00 0.3568503 0.7944509
term 0.5396387 0.0983520 -3.38 0.00 0.3775436 0.7713280

sncais3m 0.4666930 0.1205424 -2.95 0.00 0.2813027 0.7742633
loanbal2 1.9358770 0.5224799 2.45 0.01 1.1406290 3.2855740
alcifdet 0.4239867 0.1454299 -2.50 0.01 0.2164637 0.8304613
wrstnrev 1.8849790 0.4676688 2.56 0.01 1.1591000 3.0654350
loanbal5 0.6761110 0.1118250 -2.37 0.02 0.4889158 0.9349793
mor_rent 0.7562349 0.0895109 -2.36 0.02 0.5996601 0.9536922

spl6ml2 0.7174979 0.1205176 -1.98 0.05 0.5162320 0.9972324
no_amex 0.0080638 0.0199067 -1.95 0.05 0.0000639 1.0182390
tosettB 0.5974401 0.1691200 -1.82 0.07 0.3430370 1.0405140
searches 0.5731514 0.1830554 -1.74 0.08 0.3064849 1.0718390

ccjgt500 0.7543656 0.1227745 -1.73 0.08 0.5483365 1.0378070

/ln_p 0.6049988 0.0112799 53.64 0.00 0.5828907 0.6271069

P 1.8312500 0.0206562 1.7912090 1.8721860

1/p 0.5460751 0.0061596 0.5341349 0.5582822
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Table C.6: Estimates from Exponential Model on paying back early
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_t Haz. Ratio Std. Err. z P>\z\ [95% Conf. Interval]
rawJoanaprl 1.0317790 0.0042606 7.58 0.00 1.0234620 1.0401640

spsetld 0.3745639 0.0292505 -12.57 0.00 0.3214059 0.4365139

age 0.5604360 0.0444372 -7.30 0.00 0.4797708 0.6546636

cpi 0.5295871 0.0336188 -10.01 0.00 0.4676298 0.5997533

gdscde2 0.5946140 0.0353844 -8.74 0.00 0.5291534 0.6681725
netincm 0.7441330 0.0565428 -3.89 0.00 0.6411685 0.8636325
timaddl 0.5359900 0.0429057 -7.79 0.00 0.4581614 0.6270396

spl6m4 0.5524892 0.0477138 -6.87 0.00 0.4664583 0.6543872
snbalall 0.6802004 0.0675157 -3.88 0.00 0.5599482 0.8262775
brand 0.7202345 0.0408486 -5.79 0.00 0.6444621 0.8049158
tosettl4 0.2549042 0.0772423 -4.51 0.00 0.1407479 0.4616493
mortbal 0.5928098 0.0940554 -3.30 0.00 0.4343736 0.8090351

L 0.9882287 0.0029605 -3.95 0.00 0.9824433 0.9940481
ssrc4to6 0.6266343 0.0643042 -4.55 0.00 0.5124661 0.7662370
socsett 0.7445302 0.0553493 -3.97 0.00 0.6435806 0.8613143

loanball 0.5361562 0.0742230 -4.50 0.00 0.4087472 0.7032792

inc_surp 0.7056412 0.0627786 -3.92 0.00 0.5927279 0.8400643
tosettl6 0.5463024 0.1111075 -2.97 0.00 0.3667034 0.8138631
timebank 0.7141295 0.0651024 -3.69 0.00 0.5972810 0.8538377
tenn 0.5528161 0.1002790 -3.27 0.00 0.3874142 0.7888343

internet 0.7541911 0.0782761 -2.72 0.01 0.6153707 0.9243278
alcifdet 0.4113670 0.1411012 -2.59 0.01 0.2100209 0.8057428

spl6ml2 0.6635417 0.1117109 -2.44 0.02 0.4770499 0.9229383
sncais3m 0.5308436 0.1371757 -2.45 0.01 0.3198947 0.8808992
loanbal2 1.7458990 0.4702486 2.07 0.04 1.0297990 2.9599590
mor_rent 0.7579097 0.0896050 -2.34 0.02 0.6011501 0.9555469
loanbal5 0.6995682 0.1158180 -2.16 0.03 0.5057177 0.9677250
wrstnrev 1.6424840 0.4078645 2.00 0.05 1.0095530 2.6722250
searches 0.5529432 0.1763539 -1.86 0.06 0.2959383 1.0331420
no_amex 0.0138717 0.0335481 -1.77 0.08 0.0001212 1.5875410

ccjgt500 0.7530695 0.1224021 -1.74 0.08 0.5476244 1.0355890
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Table C.7: Estimates from PH Cox on paying back early
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_t Coef. Std. Err. z P> |z| [95% Conf. Interval]
rawJoanaprl 0.0331895 0.0041906 7.92 0.00 0.0249760 0.0414030

cpi -0.7125868 0.0635259 -11.22 0.00 -0.8370953 -0.5880782

spsetld -1.0471870 0.0782786 -13.38 0.00 -1.2006110 -0.8937642

age -0.6291370 0.0794940 -7.91 0.00 -0.7849423 -0.4733317
netincm -0.2752288 0.0761703 -3.61 0.00 -0.4245198 -0.1259377
timaddl -0.6567771 0.0800183 -8.21 0.00 -0.8136102 -0.4999440

gdscde2 -0.5072920 0.0596893 -8.50 0.00 -0.6242808 -0.3903032

spl6m4 -0.6528448 0.0864778 -7.55 0.00 -0.8223382 -0.4833515

snbalall -0.3993167 0.0991956 -4.03 0.00 -0.5937365 -0.2048969
tosettW -1.4370430 0.3076224 -4.67 0.00 -2.0399720 -0.8341147
internet -0.3286043 0.1041256 -3.16 0.00 -0.5326867 -0.1245219

L -0.0128302 0.0030263 -4.24 0.00 -0.0187616 -0.0068989
ssrc4to6 -0.5173966 0.1029967 -5.02 0.00 -0.7192663 -0.3155269
loanbal 1 -0.6439720 0.1384485 -4.65 0.00 -0.9153261 -0.3726180
socsett -0.3146527 0.0744291 -4.23 0.00 -0.4605310 -0.1687743

inc_surp -0.4015945 0.0893214 -4.50 0.00 -0.5766613 -0.2265277

timebank -0.3589438 0.0913087 -3.93 0.00 -0.5379055 -0.1799821
tosettl6 -0.6443927 0.2039511 -3.16 0.00 -1.0441300 -0.2446558
mortbal -0.5263394 0.1589056 -3.31 0.00 -0.8377887 -0.2148902
term -0.6171462 0.1820455 -3.39 0.00 -0.9739488 -0.2603435

sncais3m -0.7243424 0.2584550 -2.80 0.01 -1.2309050 -0.2177799
alcifdet -0.8783158 0.3430178 -2.56 0.01 -1.5506180 -0.2060133
loanbal2 0.6323793 0.2698190 2.34 0.02 0.1035438 1.1612150
morjrent -0.2811207 0.1184289 -2.37 0.02 -0.5132372 -0.0490043
wrstnrev 0.5944406 0.2483537 2.39 0.02 0.1076763 1.0812050
loanbal5 -0.3743662 0.1654424 -2.26 0.02 -0.6986274 -0.0501050

spl6ml2 -0.3573855 0.1681669 -2.13 0.03 -0.6869865 -0.0277845

brand -0.1197260 0.0582199 -2.06 0.04 -0.2338348 -0.0056171
no_amex -4.6559620 2.4409750 -1.91 0.06 -9.4401850 0.1282598
searches -0.5701334 0.3192294 -1.79 0.07 -1.1958110 0.0555447

ccjgt500 -0.2835569 0.1627574 -1.74 0.08 -0.6025556 0.0354417
tosett!3 -0.4766975 0.2832915 -1.68 0.09 -1.0319390 0.0785437

Table C.8: Lunn and McNeil Method A

_t Coef. Robust Std. Err. z P> |z|
type 1.7342980 0.5030923 3.45 0.001

rawJoanaprl 0.1056094 0.0083677 12.62 0.000

Jcpi_2 1.3667740 0.0715040 19.11 0.000
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logLXAPR 0.1939021 0.0461542 4.20 0.000

Jspl6ml2_4 0.5227119 0.0991498 5.27 0.000
Jloanbal4_3 -0.4544236 0.1158050 -3.92 0.000
_Inewbus_l 0.0233963 0.2779477 0.08 0.933

Jspvaldel_2 -0.5375315 0.1419502 -3.79 0.000

_Iinc_surp_6 0.4307904 0.1221332 3.53 0.000

Jspl6m4_3 1.3169650 0.4578020 2.88 0.004

Jinc_surp_4 0.3579988 0.1166776 3.07 0.002
Jssrc4to6_5 0.7878295 0.1760189 4.48 0.000
Jwrst46al_4 0.3899139 0.1012480 3.85 0.000
raw.term 0.0116839 0.0024762 4.72 0.000

Jage_7 -0.8047942 0.2078096 -3.87 0.000
Jtimebank_4 -0.4823400 0.1266012 -3.81 0.000
Jtimebank_5 -0.9284479 0.2371845 -3.91 0.000

Jgdscde 999 -0.4156502 0.1392311 -2.99 0.003
Jsnball6m_8 0.3435823 0.1121660 3.06 0.002
Jssrc4to6_4 0.5870922 0.1741699 3.37 0.001
Jsearches_7 -0.1983133 0.0690195 -2.87 0.004
Jloanbal6_2 -0.2901753 0.1562017 -1.86 0.063

Jgdscde2_ 1 -0.1791319 0.1022374 -1.75 0.080

Jssrc4to6_3 0.2682160 0.1207071 2.22 0.026

Jspl6ml2_5 -0.2523361 0.1345237 -1.88 0.061
Jtimaddl_6 0.3422099 0.1095988 3.12 0.002

Jtimebank_2 -0.3048706 0.1086342 -2.81 0.005
Jtimebank_3 -0.3874635 0.1353873 -2.86 0.004

Jwrstnrev_3 0.5020158 0.2801753 1.79 0.073

Jinc_surp_2 -0.1834805 0.1116006 -1.64 0.100
Jinternet_l -0.2412311 0.0791869 -3.05 0.002
Jmortbal_3 -0.1948998 0.1088114 -1.79 0.073
Jtimebank_7 -0.2025196 0.1128873 -1.79 0.073

Jloanball_7 -0.2349395 0.1132119 -2.08 0.038
Jtimaddl_7 -0.0889093 0.1253448 -0.71 0.478
Jssrc4to6_2 0.0976311 0.0852790 1.14 0.252

Jspl6m4_4 -0.0685550 0.0748325 -0.92 0.360

Jspsetld_9 -0.2775613 0.1153120 -2.41 0.016
Jmortbal_2 -0.1187518 0.1152082 -1.03 0.303

Jinc_surp_3 -0.2062980 0.1721408 -1.20 0.231

Jage_6 -0.4211983 0.1573720 -2.68 0.007
Jsocsett_3 -0.0456692 0.1302752 -0.35 0.726

Jage_5 -0.4991570 0.1533945 -3.25 0.001

Jage_4 -0.3713094 0.1357683 -2.73 0.006
Jloanbal5_2 -0.0115215 0.1655331 -0.07 0.945
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_Itosettll_3 -0.0359408 0.0838600 -0.43 0.668
L -0.0094526 0.0123491 -0.77 0.444

Jspsetld_7 0.0632302 0.1381898 0.46 0.647

Jspsetld_8 -0.4357232 0.1868123 -2.33 0.020

Jgdscde2_ 4 0.1183438 0.1193816 0.99 0.322

Jspsetld_5 -0.2331780 0.1327580 -1.76 0.079

Jage_3 -0.3544368 0.1409809 -2.51 0.012

Jmor_rent_8 0.0845732 0.0815182 1.04 0.300
Jtosettl4_3 -0.1738918 0.1559771 -1.11 0.265

Jgdscde 333 0.0955900 0.2348779 0.41 0.684
Jloanball_3 -0.0289744 0.1036110 -0.28 0.780

Jage_2 -0.2965488 0.1314902 -2.26 0.024

_Itimaddl_2 0.0706656 0.1140131 0.62 0.535

Jspsetld_6 -0.2163748 0.1426030 -1.52 0.129

Jmor_rent_5 -0.0912649 0.1234983 -0.74 0.460

Jspsetld_4 -0.1386132 0.1101876 -1.26 0.208
Jloanbal3_4 -0.0206867 0.1079674 -0.19 0.848
Jtimebank_6 -0.0836683 0.1112596 -0.75 0.452
Jsocworst_4 0.0958675 0.2386477 0.40 0.688
Jtimaddl_4 0.2498613 0.1605841 1.56 0.120
Jsnbalall_4 0.1268567 0.1028627 1.23 0.217
Jloanbal 1 _2 -0.0647956 0.1077581 -0.60 0.548
Jsocworst_3 0.8537084 0.3504307 2.44 0.015
Jnetincm_6 0.4217224 0.1386253 3.04 0.002
Jnetincm_5 0.4093916 0.1114535 3.67 0.000
Jmor_rent_6 -0.0231949 0.1174985 -0.20 0.844
Jno_store_l -0.2885813 0.1492380 -1.93 0.053

Jnoopen6_4 -0.0973047 0.0814409 -1.19 0.232

Jtosettl3_3 0.1378312 0.1226310 1.12 0.261
_Ibrand_2 -0.2237849 0.0781054 -2.87 0.004

Jspsetld_3 -0.0850318 0.1059072 -0.80 0.422

Jalcifdet_2 -0.2552834 0.2326306 -1.10 0.272

_Iinc_surp_5 0.1233364 0.1048009 1.18 0.239

Jtimaddl_5 0.1842909 0.1161794 1.59 0.113

_Itimaddl_3 0.2003204 0.1195149 1.68 0.094
Jtimadd 1 _9 0.1767211 0.1153878 1.53 0.126

Jccjgt500_3 -0.0339577 0.0805344 -0.42 0.673

JsocbaL3 -0.7390479 0.2819599 -2.62 0.009
Jtosettl5_3 0.1163873 0.1742490 0.67 0.504

_Isnbalall_7 -0.0528594 0.1559737 -0.34 0.735
Jno_store_3 0.2855969 0.5128436 0.56 0.578
Jsnball6m_3 0.0272360 0.2279906 0.12 0.905
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_Imor_rent_7 -0J266391 0.2101062 -0.60 0.547
Jnetincm_7 0.8471922 0.2167660 3.91 0.000
_Inetincm_4 0.2593257 0.1107841 2.34 0.019
covt_raw_l 1 -0.0692539 0.0091211 -7.59 0.000

covtJcpi_2 -1.0237510 0.0774410 -13.22 0.000
covtJogLX R -0.1686547 0.0503393 -3.35 0.001
covtJs 2_4 -0.4759050 0.1085605 -4.38 0.000

covtJ1 4_3 0.5989644 0.1262211 4.75 0.000
covtJnew 1 -0.1366773 0.2896905 -0.47 0.637

covtJspv 2 0.5681898 0.1621687 3.50 0.000
covtJinc 6 -0.3396654 0.1317687 -2.58 0.010
covtJspl3 -0.9917178 0.5660166 -1.75 0.080

covtJinc 4 -0.2104749 0.1253308 -1.68 0.093

covtJssr 5 -1.0647140 0.2352022 -4.53 0.000
covtJwrs 4 -0.4125193 0.1130420 -3.65 0.000
covt_raw_t m -0.0129296 0.0026912 -4.80 0.000

covtJage_7 0.2440877 0.2241867 1.09 0.276
covtJt k_4 0.4268462 0.1373095 3.11 0.002
covtJt k_5 0.7928951 0.2517033 3.15 0.002

covtJg 999 0.6940515 0.1488359 4.66 0.000

covtJsnb 8 -0.3465969 0.1198784 -2.89 0.004
covtJssr 4 -0.3702454 0.1947617 -1.90 0.057
covtJsea 7 0.2053970 0.0738522 2.78 0.005

covtJ1 6_2 0.4807359 0.1884277 2.55 0.011

covtJg 111 0.4297384 0.1095148 3.92 0.000

covtJssr 3 -0.0702706 0.1294920 -0.54 0.587
covtJspl 5 0.1664340 0.1412285 1.18 0.239
covtJt 1_6 -0.1750487 0.1187132 -1.47 0.140

covtJt k_2 0.3344094 0.1183803 2.82 0.005
covtJt k_3 0.2809307 0.1467279 1.91 0.056
covtJwrs 3 -0.5894659 0.3390824 -1.74 0.082

covtJinc 2 0.2208191 0.1187255 1.86 0.063
covtJint 1 0.1145312 0.0854070 1.34 0.180

covtJmor 3 0.1580248 0.1168032 1.35 0.176

covtJt k_7 0.1809508 0.1232679 1.47 0.142

covtJloa 7 0.2170166 0.1203995 1.80 0.071

covtJt1_7 0.1487013 0.1326820 1.12 0.262
covtJssr 2 -0.0859334 0.0919403 -0.93 0.350
covtJs 4_4 -0.1307550 0.0803077 -1.63 0.103
covtJsps 9 0.8394370 0.1237026 6.79 0.000
covtJmor 2 0.2314466 0.1227568 1.89 0.059
covtJinc 3 -0.0020990 0.1884621 -0.01 0.991
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covt_Iage_6 -0J127577
covtJ tt_3 -0J192708

covtJage_5 0.0132193

covtJage_4 -0.0299595
covtJl 5_2 0.1679286
covt_ tl 1 _3 0.1175862
covtJ. -0.0111954

covtJsps 7 0.3581577

covtJsps 8 0.8449341
covtJg 444 0.1051353

covtJsps 5 0.5250299

covtJage_3 0.0415660
covtJmor 8 -0.1698609
covtJt4_3 0.4655888

covtJg 333 0.2856564
covtJ11_3 -0.1269867

covtJage_2 0.0769281
covtJt 1_2 -0.1472258

covtJsps 6 0.4725071
covtJmor 5 0.2693393

covtJsps 4 0.3289960
covtJloa 4 0.1621553
covtJt k_6 0.1809682
covtJsoc 4 0.1410744
covtJt 1_4 -0.4043452

covtJsnb 4 0.0222974

covtJl1_2 -0.0811965
covtJ st_3 -0.5084404
covtJnet 6 -0.6371011
covtJnet 5 -0.5771261

covtJmor 6 0.1935330
covtJno_ 1 0.1163348
covtJnoo 4 0.0097863

covtJt 3_3 0.0074453
covtJbra 2 0.3225824

covtJsps 3 0.1989782
covtJalc 2 0.6233770
covtJinc 5 -0.0166874
covtJt 1_5 0.0104013
covtJ dl_3 -0.0199015
covtJtim 9 -0.0070632
covtJccj 3 0.1168845

0.1722607 -0.65 0.513
0.1381075 -0.86 0.388

0.1667120 0.08 0.937
0.1484573 -0.20 0.840
0.1953128 0.86 0.390

0.0907403 1.30 0.195
0.0134883 -0.83 0.407
0.1491349 2.40 0.016
0.1976400 4.28 0.000

0.1280935 0.82 0.412
0.1409971 3.72 0.000
0.1534832 0.27 0.787
0.0885236 -1.92 0.055

0.1734935 2.68 0.007

0.2530528 1.13 0.259
0.1123709 -1.13 0.258

0.1435471 0.54 0.592
0.1242221 -1.19 0.236
0.1513875 3.12 0.002
0.1300914 2.07 0.038
0.1195445 2.75 0.006

0.1150019 1.41 0.159
0.1218586 1.49 0.138

0.2487152 0.57 0.571
0.1783746 -2.27 0.023
0.1089614 0.20 0.838
0.1142729 -0.71 0.477
0.3676866 -1.38 0.167

0.1485811 -4.29 0.000

0.1196705 -4.82 0.000
0.1256494 1.54 0.123
0.1608436 0.72 0.470
0.0877381 0.11 0.911
0.1348584 0.06 0.956

0.0846638 3.81 0.000
0.1150580 1.73 0.084
0.2589525 2.41 0.016

0.1118376 -0.15 0.881
0.1241804 0.08 0.933

0.1283966 -0.16 0.877
0.1237381 -0.06 0.954
0.0863685 1.35 0.176
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covtJs 1_3 0.5655174 0.2950834 1.92 0.055

covtJt 5_3 -0.3508563 0.2085312 -1.68 0.092

covtJsnb 7 -0.1480735 0.1833198 -0.81 0.419

covt_Ino_ 3 -1.4763410 0.7444203 -1.98 0.047

covtJsnb 3 -0.1979520 0.2433709 -0.81 0.416

covtJmor 7 0.3564586 0.2266045 1.57 0.116

covtJnet 7 -1.1392930 0.2439850 -4.67 0.000

covtJnet 4 -0.3456502 0.1187396 -2.91 0.004

Table C.9: Lunn and McNeil Method B

_t Coef. Robust Std. Err. z P>\z\
rawJoanaprl 0.1018492 0.0077413 13.16 0.000

Jcpi_2 1.3401810 0.0699161 19.17 0.000

logLXAPR 0.1954782 0.0433310 4.51 0.000

Jspl6ml2_4 0.4978965 0.0943650 5.28 0.000

Jloanbal4_3 -0.4581498 0.1113537 -4.11 0.000

JnewbusJ 0.0036577 0.2699393 0.01 0.989

Jspvaldel_2 -0.5210826 0.1364245 -3.82 0.000

Jinc_surp_6 0.4246947 0.1187191 3.58 0.000

Jspl6m4_3 1.1855470 0.4446374 2.67 0.008

Jinc_surp_4 0.3515542 0.1134981 3.10 0.002

Jssrc4to6_5 0.7470454 0.1659709 4.50 0.000

Jwrst46al_4 0.3696304 0.0968179 3.82 0.000

raw_term 0.0112665 0.0023777 4.74 0.000

Jage_7 -0.7487323 0.2015493 -3.71 0.000

Jtimebank_4 -0.4690129 0.1228060 -3.82 0.000

Jtimebank_5 -0.9040819 0.2332254 -3.88 0.000

Jgdscde 999 -0.4125727 0.1365413 -3.02 0.003

Jsnball6m_8 0.3363813 0.1075902 3.13 0.002

Jssrc4to6_4 0.5602602 0.1654777 3.39 0.001

Jsearches_7 -0.1910413 0.0665926 -2.87 0.004

Jloanbal6_2 -0.2767611 0.1494603 -1.85 0.064

Jgdscde2_ 1 -0.1837640 0.0988876 -1.86 0.063

Jssrc4to6_3 0.2452768 0.1154466 2.12 0.034

Jspl6ml2_5 -0.2574459 0.1313369 -1.96 0.050

Jtimaddl_6 0.3142171 0.1063882 2.95 0.003

Jtimebank_2 -0.2875642 0.1043480 -2.76 0.006

Jtimebank_3 -0.3754827 0.1311226 -2.86 0.004

Jwrstnrev_3 0.4528597 0.2651960 1.71 0.088

Jinc_surp_2 -0.1793502 0.1083827 -1.65 0.098

JinternetJ -0.2320473 0.0764745 -3.03 0.002
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Jmortbal_3 -0.1815954 0.1057444 -1.72 0.086
Jtimebank_7 -0.1772049 0.1079026 -1.64 0.101

_Iloanball_7 -0.2300851 0.1101203 -2.09 0.037
Jtimaddl_7 -0.0945495 0.1204075 -0.79 0.432
Jssrc4to6_2 0.0978606 0.0824605 1.19 0.235

Jspl6m4_4 -0.0585307 0.0726850 -0.81 0.421

Jspsetld_9 -0.3136348 0.1119874 -2.80 0.005
_Imortbal_2 -0.1221811 0.1120054 -1.09 0.275

_Iinc_surp_3 -0.2057809 0.1653342 -1.24 0.213

Jage_6 -0.3879375 0.1507492 -2.57 0.010
Jsocsett_3 -0.0564283 0.1252100 -0.45 0.652

Jage_5 -0.4606872 0.1466367 -3.14 0.002

Jage_4 -0.3325041 0.1290072 -2.58 0.010
Jloanbal5_2 -0.0278742 0.1580253 -0.18 0.860
Jtosettl 1 _3 -0.0447790 0.0808796 -0.55 0.580

L -0.0091777 0.0118207 -0.78 0.438

Jspsetld_7 0.0271836 0.1338319 0.20 0.839

Jspsetld_8 -0.4610055 0.1828833 -2.52 0.012

Jgdscde2_ 4 0.1088255 0.1136678 0.96 0.338

Jspsetld_5 -0.2565591 0.1293131 -1.98 0.047

Jage_3 -0.3244223 0.1343130 -2.42 0.016

Jmor_rent_8 0.0899324 0.0785240 1.15 0.252
Jtosettl4_3 -0.1887153 0.1506497 -1.25 0.210

Jgdscde 333 0.1036904 0.2246205 0.46 0.644

Jloanball_3 -0.0226262 0.1006130 -0.22 0.822

_Iage_2 -0.2723326 0.1246967 -2.18 0.029
Jtimaddl_2 0.0696557 0.1103795 0.63 0.528

Jspsetld_6 -0.2210197 0.1381357 -1.60 0.110

_Imor_rent_5 -0.0851579 0.1194901 -0.71 0.476

Jspsetld_4 -0.1616897 0.1069019 -1.51 0.130
Jloanbal3_4 -0.0344096 0.1040911 -0.33 0.741
_Itimebank_6 -0.0868331 0.1062525 -0.82 0.414

Jsocworst_4 0.0462197 0.2221337 0.21 0.835

Jtimaddl_4 0.2528039 0.1561137 1.62 0.105

Jsnbalall_4 0.1204128 0.0984050 1.22 0.221

Jloanbal 1 _2 -0.0453255 0.1033973 -0.44 0.661

Jsocworst_3 0.8298785 0.3444363 2.41 0.016

_Inetincm_6 0.4237077 0.1328997 3.19 0.001

_Inetincm_5 0.3993098 0.1084849 3.68 0.000

Jmor_rent_6 -0.0289022 0.1140158 -0.25 0.800

_Ino_store_l -0.2561560 0.1425755 -1.80 0.072

Jnoopen6_4 -0.0885848 0.0783869 -1.13 0.258
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Jtosettl3_3 OJ197973 0.1172648 1.02 0.307

Jbrand_2 -0J107500 0.0762834 -1.45 0.147

Jspsetld_3 -0J 048208 0.1019879 -1.03 0.304
Jalcifdet_2 -0.2701756 0.2184082 -1.24 0.216

Jinc_surp_5 0.1263974 0.1020875 1.24 0.216

Jtimaddl_5 0.1614716 0.1125719 1.43 0.151

Jtimaddl_3 0.1732643 0.1149247 1.51 0.132

Jtimaddl_9 0.1665754 0.1109827 1.50 0.133

_Iccjgt500_3 -0.0325307 0.0774216 -0.42 0.674

Jsocbal_3 -0.7122386 0.2753442 -2.59 0.010

Jtosettl5_3 0.0955689 0.1699444 0.56 0.574
Jsnbalall_7 -0.0592609 0.1518928 -0.39 0.696

Jno_store_3 0.2730169 0.4865510 0.56 0.575
Jsnball6m_3 0.0664205 0.2167781 0.31 0.759

Jmor_rent_7 -0.1236541 0.2012783 -0.61 0.539
JnetincmJ7 0.8548974 0.2067028 4.14 0.000

Jnetincm_4 0.2371250 0.1076762 2.20 0.028

covt_raw_l 1 -0.0652286 0.0087551 -7.45 0.000

covt_Icpi_2 -0.9920369 0.0765399 -12.96 0.000

covt_logLX R -0.1739539 0.0488316 -3.56 0.000

covtJs 2_4 -0.4481058 0.1054952 -4.25 0.000

covtJ1 4_3 0.6034755 0.1232908 4.89 0.000

covtJnew 1 -0.1184577 0.2836286 -0.42 0.676

covtJspv 2 0.5502057 0.1594124 3.45 0.001
covtJinc 6 -0.3302421 0.1296032 -2.55 0.011

covtJspl 3 -0.8502487 0.5589157 -1.52 0.128
covtJinc 4 -0.2004211 0.1232646 -1.63 0.104

covtJssr 5 -1.0216380 0.2343810 -4.36 0.000

covtJwrs 4 -0.3881525 0.1103690 -3.52 0.000
covt_raw_t m -0.0124616 0.0026199 -4.76 0.000

covtJage_7 0.1782236 0.2199116 0.81 0.418

covtJt k_4 0.4116224 0.1348302 3.05 0.002
covtJt k_5 0.7668584 0.2491529 3.08 0.002

covtJg 999 0.6895132 0.1473491 4.68 0.000
covtJsnb 8 -0.3404504 0.1165280 -2.92 0.003

covtJssr 4 -0.3379901 0.1897342 -1.78 0.075

covtJsea 7 0.1975062 0.0721231 2.74 0.006

covtJ1 6_2 0.4672871 0.1845153 2.53 0.011
covtJg 111 0.4352901 0.1071350 4.06 0.000

covtJssr 3 -0.0440702 0.1259814 -0.35 0.726

covtJspl 5 0.1738089 0.1387490 1.25 0.210
covtJt 1_6 -0.1451626 0.1166595 -1.24 0.213
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covtJt k_2 0.3157187 0.1155460 2.73 0.006
covtJt k_3 0.2660523 0.1439847 1.85 0.065
covtJwrs 3 -0.5314546 0.3316357 -1.60 0.109

covtJinc 2 0.2171301 0.1163558 1.87 0.062
covtJint 1 0.1017433 0.0835493 1.22 0.223

covtJmor 3 0.1421782 0.1148753 1.24 0.216
covtJt k_7 0.1525187 0.1199076 1.27 0.203
covtJloa 7 0.2112519 0.1182785 1.79 0.074
covtJt1_7 0.1554766 0.1290215 1.21 0.228
covtJssr 2 -0.0860001 0.0900370 -0.96 0.339
covtJs 4_4 -0.1425349 0.0788932 -1.81 0.071
covtJsps9 0.8810693 0.1214800 7.25 0.000
covtJmor 2 0.2341004 0.1205643 1.94 0.052
covtJinc 3 -0.0034272 0.1833872 -0.02 0.985

covtJage_6 -0.1532715 0.1680093 -0.91 0.362
covtJ tt_3 -0.1097381 0.1343637 -0.82 0.414

covtJage_5 -0.0326667 0.1622122 -0.20 0.840

covtJage_4 -0.0759479 0.1440631 -0.53 0.598
covtJl5_2 0.1857377 0.1909685 0.97 0.331
covt_ tl 1 _3 0.1277234 0.0886999 1.44 0.150
COVtX -0.0108403 0.0131924 -0.82 0.411

covtJsps 7 0.3979992 0.1461356 2.72 0.006
covtJsps 8 0.8737096 0.1949153 4.48 0.000

covtJg 444 0.1153000 0.1241542 0.93 0.353

covtJsps 5 0.5495661 0.1385855 3.97 0.000

covtJage_3 0.0064088 0.1490909 0.04 0.966
covtJmor 8 -0.1758178 0.0865784 -2.03 0.042
covtJt 4_3 0.4840174 0.1707273 2.84 0.005

covtJg 333 0.2781709 0.2463569 1.13 0.259

covtJl1_3 -0.1348555 0.1103917 -1.22 0.222

covtJage_2 0.0482975 0.1392874 0.35 0.729
covtJt 1_2 -0.1470848 0.1218657 -1.21 0.227
covtJsps 6 0.4786609 0.1483113 3.23 0.001
covtJmor 5 0.2647781 0.1269798 2.09 0.037

covtJsps 4 0.3524015 0.1173359 3.00 0.003
covtJloa 4 0.1783364 0.1121783 1.59 0.112
covtJt k_6 0.1852914 0.1186932 1.56 0.119
covtJsoc 4 0.1968687 0.2361874 0.83 0.405

covtJt1_4 -0.4084757 0.1756138 -2.33 0.020
covtJsnb 4 0.0295850 0.1055809 0.28 0.779
covtJl 1_2 -0.1022837 0.1110202 -0.92 0.357

covtJ st_3 -0.4772427 0.3637950 -1.31 0.190
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covtJnet 6 -0.6383882 0.1440872 -4.43 0.000
covtJnet 5 -0.5673734 0.1176981 -4.82 0.000

covtJmor 6 0.2017022 0.1231247 1.64 0.101

covtJno-1 0.0809213 0.1562615 0.52 0.605
covtJnoo 4 -0.0009676 0.0856405 -0.01 0.991

covtJt 3_3 0.0287035 0.1312643 0.22 0.827
covtJbra 2 0.1874752 0.0841314 2.23 0.026
covtJsps 3 0.2191031 0.1123145 1.95 0.051
covtJalc 2 0.6373848 0.2498938 2.55 0.011
covtJinc 5 -0.0174252 0.1099802 -0.16 0.874
covtJt1_5 0.0351622 0.1217490 0.29 0.773
covt_I d 1 _3 0.0102438 0.1250541 0.08 0.935

covtJtim 9 0.0037435 0.1206338 0.03 0.975

covtJccj 3 0.1159192 0.0841685 1.38 0.168
covtJs L3 0.5342964 0.2900761 1.84 0.065

covtJt 5_3 -0.3301246 0.2070366 -1.59 0.111
covtJsnb 7 -0.1432147 0.1813719 -0.79 0.430
covtJno_ 3 -1.4642190 0.7294338 -2.01 0.045
covtJsnb 3 -0.2378516 0.2346706 -1.01 0.311
covtJmor 7 0.3554686 0.2198754 1.62 0.106

covtJnet 7 -1.1486580 0.2370546 -4.85 0.000
covtJnet 4 -0.3220521 0.1164902 -2.76 0.006

Table C.10: Stata FAQ Model

J Coef. Robust Std. Err. z P>\z\
rawJoanaprl 0.055683 0.004230 13.16 0.000

Jcpi_2 0.505078 0.027132 18.62 0.000

logLXAPR 0.089326 0.023508 3.80 0.000

Jspl6ml2_4 0.144212 0.044131 3.27 0.001
Jloanbal4_3 0.048746 0.047381 1.03 0.304

JnewbusJ -0.078673 0.088183 -0.89 0.372

Jspvaldel_2 -0.099098 0.069613 -1.42 0.155

Jinc_surp_6 0.137913 0.046416 2.97 0.003

Jspl6m4_3 0.663937 0.240600 2.76 0.006

Jinc_surp_4 0.170344 0.043592 3.91 0.000
Jssrc4to6_5 0.129881 0.119412 1.09 0.277
Jwrst46aL4 0.053697 0.046053 1.17 0.244
rawJerm 0.000645 0.000968 0.67 0.505

Jagc_7 -0.592572 0.081371 7.28 0.000

Jtimebank_4 -0.129845 0.050243 -2.58 0.010
Jtimebank_5 -0.258509 0.081006 -3.19 0.001
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Jgdscde 999 0J64859 0.048864 3.37 0.001
Jsnball6m_8 0.054399 0.041554 1.31 0.190

Jssrc4to6_4 0.289023 0.079518 3.63 0.000
Jsearches,7 -0.019680 0.025580 -0.77 0.442

Jloanbal6_2 0.052374 0.079495 0.66 0.510

Jgdscde2_ 1 0.180802 0.036669 4.93 0.000
Jssrc4to6_3 0.199101 0.049965 3.98 0.000

Jspl6ml2_5 -0.092973 0.040843 -2.28 0.023
Jtimaddl_6 0.195756 0.042638 4.59 0.000
Jtimebank_2 -0.030673 0.045132 -0.68 0.497
Jtimebank_3 -0.161976 0.054421 -2.98 0.003
Jwrstnrev_3 0.133941 0.143957 0.93 0.352

Jinc_surp_2 0.012753 0.039194 0.33 0.745
Jinternet_l -0.143801 0.030911 -4.65 0.000
Jmortbal_3 -0.072925 0.040656 -1.79 0.073
Jtimebank_7 -0.060121 0.047929 -1.25 0.210
Jloanbal 1 _7 -0.045913 0.038839 -1.18 0.237
Jtimaddl_7 0.043833 0.045247 0.97 0.333

Jssrc4to6_2 0.030462 0.032015 0.95 0.341

Jspl6m4_4 -0.178735 0.028433 -6.29 0.000

Jspsetld_9 0.436150 0.041159 10.60 0.000
Jmortbal_2 0.075838 0.040148 1.89 0.059

Jinc_surp_3 -0.211094 0.071219 -2.96 0.003

Jage_6 -0.501902 0.068013 -7.38 0.000

Jsocsett_3 -0.150272 0.043455 -3.46 0.001

Jage_5 -0.465264 0.065312 -7.12 0.000

Jage_4 -0.382663 0.059924 -6.39 0.000
Jloanbal5_2 0.090305 0.083877 1.08 0.282

Jtosettll_3 0.058035 0.032562 1.78 0.075
L -0.024798 0.005679 -4.37 0.000

Jspsetld_7 0.367219 0.052163 7.04 0.000

Jspsetld_8 0.291699 0.057486 5.07 0.000

Jgdscde2_ 4 0.200880 0.050949 3.94 0.000

Jspsetld_5 0.216137 0.045760 4.72 0.000

Jage_3 -0.303268 0.060306 -5.03 0.000

Jmor_ren1_8 -0.053732 0.033540 -1.60 0.109
Jtosettl4_3 0.212166 0.071832 2.95 0.003

Jgdscde 333 0.311906 0.089070 3.50 0.000
Jloanbal 1 _3 -0.134120 0.040211 -3.34 0.001

Jage_2 -0.226981 0.059117 -3.84 0.000

Jtimaddl_2 -0.048786 0.046722 -1.04 0.296

Jspsetld-6 0.184888 0.051168 3.61 0.000
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Jmor_rent_5 0.144775 0.039818 3.64 0.000

Jspsetld_4 0.136617 0.042304 3.23 0.001

Jloanbal3_4 0.122958 0.038491 3.19 0.001
Jtimebank_6 0.056446 0.048971 1.15 0.249
Jsocworst_4 0.189112 0.088832 2.13 0.033
Jtimaddl_4 -0.074600 0.073023 -1.02 0.307
JsnbalalL4 0.147958 0.036221 4.08 0.000
Jloanball_2 -0.128585 0.039635 -3.24 0.001

Jsocworst_3 0.383961 0.106376 3.61 0.000

Jnetincm_6 -0.123720 0.051548 -2.40 0.016
Jnetincm_5 -0.074704 0.042307 -1.77 0.077

Jmor_rent_6 0.137815 0.042063 3.28 0.001
Jno_store_l -0.194089 0.059541 -3.26 0.001

Jnoopen6_4 -0.091062 0.031776 -2.87 0.004
Jtosettl3_3 0.141220 0.052126 2.71 0.007
Jbrand_2 0.036917 0.032006 1.15 0.249

Jspsetld_3 0.076397 0.042349 1.80 0.071
_Ialcifdet_2 0.167155 0.115947 1.44 0.149

Jinc_surp_5 0.109138 0.037634 2.90 0.004
Jtimaddl_5 0.194161 0.043143 4.50 0.000

Jtimaddl_3 0.182268 0.044109 4.13 0.000

Jtimaddl_9 0.166857 0.043923 3.80 0.000

Jccjgt500_3 0.065131 0.030326 2.15 0.032

Jsocbal_3 -0.227640 0.082942 -2.74 0.006

Jtosettl5_3 -0.147957 0.091470 -1.62 0.106

Jsnbalall_7 -0.116830 0.079121 -1.48 0.140

Jno_store_3 -0.494758 0.362736 -1.36 0.173
Jsnball6m_3 -0.145395 0.086918 -1.67 0.094

Jmor_rent_7 0.166009 0.079148 2.10 0.036

Jnetincm_7 -0.042096 0.097994 -0.43 0.668

Jnetincm_4 -0.036089 0.039464 -0.91 0.360
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Appendix for Chapter 6

Table D.1: Model 1 acceptance Non-segmentation

paid Coef. Std. Err. z P> \z\ [95% Conf. Interval]
rawJoanaprl -0.109821 0.004722 -23.26 0.00 -0.119075 -0.100567

logLXAPR -0.901505 0.026754 -33.70 0.00 -0.953942 -0.849069

_Icpi_2 -1.086233 0.030306 -35.84 0.00 -1.145630 -1.026835
JnewbusJ -0.538680 0.055403 -9.72 0.00 -0.647268 -0.430092

L 0.107568 0.006538 16.45 0.00 0.094754 0.120383
Jtosettl 1 _3 0.316319 0.041300 7.66 0.00 0.235373 0.397266
Jloanbal3_4 -0.213842 0.057720 -3.70 0.00 -0.326970 -0.100714

Jgdscde2_3 -0.308869 0.049835 -6.20 0.00 -0.406544 -0.211194

raw_term 0.010300 0.001195 8.62 0.00 0.007957 0.012642
Jsnball6m_8 0.006934 0.085466 0.08 0.94 -0.160576 0.174444

_Itosettl2_3 0.266951 0.053825 4.96 0.00 0.161456 0.372446
_Ibrand_2 0.208700 0.030334 6.88 0.00 0.149246 0.268153

Jloanbal4_2 0.359453 0.098042 3.67 0.00 0.167295 0.551612

Jspl6ml2_5 -0.208903 0.040323 -5.18 0.00 -0.287934 -0.129872
Jsocsett_2 -0.991852 0.120655 -8.22 0.00 -1.228331 -0.755374

Jspsetld_9 -0.359439 0.043466 -8.27 0.00 -0.444632 -0.274247

Jtimadd 1 _4 0.238913 0.071136 3.36 0.00 0.099489 0.378337

JspvaldeL4 0.213947 0.888467 0.24 0.81 -1.527416 1.955310

Jtosettl4_3 0.013415 0.112321 0.12 0.91 -0.206731 0.233560

Jgdscde 444 0.699600 0.159527 4.39 0.00 0.386934 1.012266

Jloanbal2_2 0.425217 0.083841 5.07 0.00 0.260892 0.589541
_Imortbal_2 -0.227225 0.043435 -5.23 0.00 -0.312356 -0.142093

Jinternet_l -0.158126 0.031639 -5.00 0.00 -0.220138 -0.096115

Jspvaldel_2 -0.384439 0.084311 -4.56 0.00 -0.549687 -0.219192

Jloanbal6_2 -0.328136 0.087967 -3.73 0.00 -0.500548 -0.155724

Jloanbal 1 _8 -0.102668 0.035766 -2.87 0.00 -0.172768 -0.032568
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Jgdscde 200 0.887350 0.216241 4.10 0.00 0.463526 1.311174
Jsnball6m_5 0.012270 0.114352 0.11 0.92 -0.211856 0.236395

Jnoopen6_2 -0.142901 0.047722 -2.99 0.00 -0.236435 -0.049368
Jloanbal3_3 0.357621 0.093247 3.84 0.00 0.174861 0.540382

Jspl6ml2_3 0.589850 0.137728 4.28 0.00 0.319907 0.859792

Jgdscde2_2 0.174039 0.063780 2.73 0.01 0.049033 0.299046
Jno_storeJ 0.224606 0.069598 3.23 0.00 0.088196 0.361016

Jage_9 -0.144874 0.040451 -3.58 0.00 -0.224157 -0.065591
_Itosettl3_2 -0.054681 0.051128 -1.07 0.29 -0.154889 0.045527

Jloanbal2_4 0.165822 0.050754 3.27 0.00 0.066346 0.265298
Jsocworst_2 -0.368389 0.352973 -1.04 0.30 -1.060204 0.323426
Jsnball6m_7 -0.645688 0.119019 -5.43 0.00 -0.878960 -0.412415

Jsnbalall_2 0.233814 0.053345 4.38 0.00 0.129259 0.338369
Jsnbalall_6 0.187906 0.047879 3.92 0.00 0.094066 0.281747

Jspl6ml2_4 0.324437 0.060326 5.38 0.00 0.206201 0.442673

Jsnrecact_2 -3.472373 0.872165 -3.98 0.00 -5.181784 -1.762961

Jspl6mact_4 3.025700 0.876523 3.45 0.00 1.307746 4.743653
Jtimadd 1 _9 -0.184539 0.041895 -4.40 0.00 -0.266652 -0.102427
Jsnwl2tv_2 0.171833 0.063417 2.71 0.01 0.047538 0.296127

Jtimadd 1 _3 -0.161754 0.045558 -3.55 0.00 -0.251045 -0.072462

Jspsetld_8 -0.239048 0.067212 -3.56 0.00 -0.370780 -0.107315

Jgdscde 111 0.438051 0.168992 2.59 0.01 0.106834 0.769269

Jspl6m4_5 -0.083613 0.032643 -2.56 0.01 -0.147591 -0.019635

Jtimadd 1 _6 -0.128004 0.041991 -3.05 0.00 -0.210304 -0.045704
Jtimadd 1_5 -0.107161 0.042895 -2.50 0.01 -0.191235 -0.023088

Jsnball6m_4 -0.505948 0.115709 -4.37 0.00 -0.732733 -0.279163

Jsnball6m_3 -0.641071 0.169271 -3.79 0.00 -0.972835 -0.309307

Jno_deps_4 0.076175 0.030561 2.49 0.01 0.016278 0.136073

Jmor_rent_5 0.129076 0.044054 2.93 0.00 0.042732 0.215420

Jssrc4to6_5 0.323415 0.128197 2.52 0.01 0.072154 0.574676

Jspsetld_7 -0.178632 0.059096 -3.02 0.00 -0.294457 -0.062807

Jspsetld_6 -0.158857 0.052476 -3.03 0.00 -0.261708 -0.056005

Jspsetld_3 -0.123689 0.041576 -2.98 0.00 -0.205176 -0.042203

Jno_otherJ 0.360534 0.160025 2.25 0.02 0.046892 0.674177

Jmor_rent_2 0.087906 0.037534 2.34 0.02 0.014341 0.161471

Jsnbalall_5 0.113028 0.045306 2.49 0.01 0.024230 0.201827

Jsnball6m_6 -0.349162 0.116654 -2.99 0.00 -0.577800 -0.120524

Jccjgt500_6 -0.064776 0.029624 -2.19 0.03 -0.122838 -0.006714

Jnetincm_9 0.082680 0.040325 2.05 0.04 0.003644 0.161716

Jno_amex_l 0.300576 0.144681 2.08 0.04 0.017007 0.584145

Jloanbal 1 _2 0.223906 0.082826 2.70 0.01 0.061571 0.386241
Jloanbal 1 _7 0.137829 0.048719 2.83 0.01 0.042341 0.233317
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Jsocbal_2 0.241939 0.098483 2.46 0.01 0.048916 0.434962
Jtosettl4_2 -0.237381 0.064534 -3.68 0.00 -0.363866 -0.110897
Jloanbal4_3 -0.238809 0.072886 -3.28 0.00 -0.381663 -0.095956
_Itosettl3_3 0.187901 0.087359 2.15 0.03 0.016681 0.359122
Jsnball6m_2 -0.232633 0.113193 -2.06 0.04 -0.454487 -0.010778

_cons 6.419856 0.253751 25.30 0.00 5.922513 6.917200

Table D.2: Model 1 acceptance on Internet segment

paid Coef. Std. Err. z P> |z| [95% Conf. Interval]
rawJoanaprl -0.133445 0.009172 -14.55 0.00 -0.151423 -0.115468

logLXAPR -0.980643 0.046289 -21.19 0.00 -1.071368 -0.889918
L 0.126448 0.010074 12.55 0.00 0.106705 0.146192

_Icpi_2 -0.618278 0.055028 -11.24 0.00 -0.726130 -0.510425

Jgdscde2_3 -0.408150 0.063024 -6.48 0.00 -0.531675 -0.284626

Jloanbal4_3 -0.202304 0.081425 -2.48 0.01 -0.361894 -0.042714

Jtosettl 1 _3 0.246044 0.068622 3.59 0.00 0.111546 0.380541
raw.term 0.009433 0.001877 5.03 0.00 0.005754 0.013112

Jsnball6m_8 0.148997 0.067384 2.21 0.03 0.016928 0.281066
JnewbusJ -0.340683 0.103804 -3.28 0.00 -0.544136 -0.137230

Jloanbal3_3 0.481369 0.137941 3.49 0.00 0.211010 0.751729

Jtimaddl_8 0.208307 0.066722 3.12 0.00 0.077535 0.339079
Jtimebank_4 0.191424 0.074992 2.55 0.01 0.044444 0.338405

Jspsetld-9 -0.218998 0.063103 -3.47 0.00 -0.342678 -0.095318

Jage_4 0.212976 0.063138 3.37 0.00 0.089228 0.336725
Jno_visa_3 0.287657 0.129558 2.22 0.03 0.033728 0.541585

Jgdscde 200 0.868778 0.284551 3.05 0.00 0.311068 1.426489
Jtimebank_7 -0.193754 0.059924 -3.23 0.00 -0.311204 -0.076305
Jtimebank_9 -0.196182 0.066680 -2.94 0.00 -0.326873 -0.065492
Jsnball6m_7 -0.371057 0.124067 -2.99 0.00 -0.614225 -0.127890
Jsnball6m_4 -0.354434 0.131047 -2.70 0.01 -0.611282 -0.097586
Jworstl2_3 -0.348842 0.130584 -2.67 0.01 -0.604781 -0.092902
Jtosettl2_3 0.166396 0.085755 1.94 0.05 -0.001681 0.334473

Jspl6ml2_5 -0.142044 0.060607 -2.34 0.02 -0.260831 -0.023256
Jmor_rent_2 0.150257 0.062403 2.41 0.02 0.027950 0.272564

Jspl6mact_4 -0.459703 0.142294 -3.23 0.00 -0.738595 -0.180812
_Ibrand_2 -0.126908 0.049863 -2.55 0.01 -0.224638 -0.029179

Jno_amex_l 0.628345 0.282256 2.23 0.03 0.075134 1.181555
Jtimaddl_4 0.273923 0.124562 2.20 0.03 0.029785 0.518060

Jage_6 0.163256 0.072163 2.26 0.02 0.021820 0.304691
Jsocsett22 -0.725949 0.255001 -2.85 0.00 -1.225741 -0.226157

Jsocworst_2 -2.222121 0.684282 -3.25 0.00 -3.563290 -0.880952
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_Inoopen6_2 -0.153640 0.073767 -2.08 0.04 -0.298222 -0.009059

Jspl6mact_3 0.432669 0.206197 2.10 0.04 0.028531 0.836807

Jspl6ml2_4 0.223090 0.100295 2.22 0.03 0.026515 0.419665
Jloanbal3_4 -0.144386 0.065598 -2.20 0.03 -0.272956 -0.015816

Jspsetld_8 -0.212566 0.102629 -2.07 0.04 -0.413715 -0.011417

Jspvaldel_2 -0.257955 0.129977 -1.98 0.05 -0.512705 -0.003204

_cons 6.117873 0.346584 17.65 0.00 5.438581 6.797165

Table D.3: Model 1 acceptance on Non-Internet segment

paid Coef. Std. Err. z P> |z| [95% Conf. Interval]
Jcpi_2 -1.312067 0.036837 -35.62 0.00 -1.384266 -1.239868

rawJoanaprl -0.093883 0.005602 -16.76 0.00 -0.104862 -0.082903

Jnewbus.l -0.480023 0.065438 -7.34 0.00 -0.608280 -0.351767

logLXAPR -0.763473 0.034492 -22.13 0.00 -0.831076 -0.695869
Jtosettl2_3 0.302263 0.069450 4.35 0.00 0.166144 0.438383

Jgdscde2_3 -0.298025 0.062438 -4.77 0.00 -0.420401 -0.175649
Jloanbal3_4 -0.306247 0.086849 -3.53 0.00 -0.476468 -0.136025
_Ibrand_2 0.381302 0.039405 9.68 0.00 0.304070 0.458534

L 0.074213 0.009311 7.97 0.00 0.055964 0.092462
Jtosettll_3 0.357294 0.051957 6.88 0.00 0.255461 0.459128
raw_term 0.010530 0.001565 6.73 0.00 0.007462 0.013598

Jspl6mact_5 -0.081579 0.045686 -1.79 0.07 -0.171123 0.007964
Jsocsett_2 -0.996011 0.133288 -7.47 0.00 -1.257251 -0.734771

Jmortbal_2 -0.204936 0.044154 -4.64 0.00 -0.291476 -0.118395
Jloanbal4_2 0.426054 0.131156 3.25 0.00 0.168992 0.683115

Jspsetld_9 -0.324407 0.055824 -5.81 0.00 -0.433819 -0.214995

Jsnball6m_8 0.294851 0.059973 4.92 0.00 0.177306 0.412396
Jloanbal2_2 0.690494 0.115789 5.96 0.00 0.463551 0.917437

Jspvaldel_4 -2.815235 0.787105 -3.58 0.00 -4.357932 -1.272537

Jtosettl4_3 0.105045 0.140587 0.75 0.46 -0.170501 0.380591

_Iloanbal2_4 0.328215 0.070846 4.63 0.00 0.189360 0.467069

Jgdscde 444 0.824142 0.186634 4.42 0.00 0.458346 1.189937
Jtimadd 1 _4 0.314060 0.085555 3.67 0.00 0.146375 0.481744

Jloanbal 1 _8 -0.126945 0.045853 -2.77 0.01 -0.216816 -0.037074

Jspvaldel_3 0.496752 0.131822 3.77 0.00 0.238386 0.755119

Jspl6ml2_5 -0.229952 0.062574 -3.67 0.00 -0.352596 -0.107309

Jloanbal6_2 -0.429358 0.118047 -3.64 0.00 -0.660726 -0.197990

Jno_deps_4 0.120105 0.039606 3.03 0.00 0.042478 0.197732

Jtosettl3_3 0.250815 0.096383 2.60 0.01 0.061909 0/139722

Jno_store_l 0.252688 0.073291 3.45 0.00 0.109040 0.396336

Jspl6ml2_4 0.400589 0.075642 5.30 0.00 0.252334 0.548845
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Jspl6mact_4 -0.463244 0.106327 -4.36 0.00 -0.671640 -0.254847

Jloanbal2_3 0.160235 0.064855 2.47 0.01 0.033121 0.287348

_Ispsetld_l 0.197055 0.052663 3.74 0.00 0.093837 0.300273
Jsearches_7 -0.091071 0.036218 -2.51 0.01 -0.162058 -0.020084

Jalcifdet_2 0.349434 0.142317 2.46 0.01 0.070499 0.628370

Jgdscde 200 1.006511 0.355948 2.83 0.01 0.308865 1.704157

Jloanbal3_2 -0.133162 0.082787 -1.61 0.11 -0.295421 0.029097

Jspsetld_2 0.160399 0.052598 3.05 0.00 0.057310 0.263489

Jnoopen6_2 -0.170372 0.062789 -2.71 0.01 -0.293436 -0.047308

Jgdscde2_2 0.181057 0.077835 2.33 0.02 0.028503 0.333612

Jspl6ml2_3 0.504421 0.173686 2.90 0.00 0.164004 0.844839

Jsnball6m_5 0.240316 0.111398 2.16 0.03 0.021979 0.458653

Jsocworst_2 -0.909867 0.325712 -2.79 0.01 -1.548250 -0.271484

_Ino_other_l 0.487456 0.196279 2.48 0.01 0.102756 0.872157
Jtimaddl_9 -0.144725 0.052529 -2.76 0.01 -0.247679 -0.041771

Jtimadd 1 _3 -0.146237 0.058476 -2.50 0.01 -0.260847 -0.031626

Jloanball_2 0.374997 0.113202 3.31 0.00 0.153124 0.596869

Jgdscde 111 0.469818 0.220995 2.13 0.03 0.036676 0.902960

Jtosettl4_2 -0.278986 0.081377 -3.43 0.00 -0.438482 -0.119491

Jloanbal4_3 -0.194389 0.097530 -1.99 0.05 -0.385544 -0.003235

Jnetincm_6 -0.150235 0.064226 -2.34 0.02 -0.276116 -0.024354

Jspl6m4_2 0.201220 0.100117 2.01 0.04 0.004993 0.397447
Jssrc4to6_5 0.362567 0.162964 2.22 0.03 0.043164 0.681971

Jsnball6m_3 -0.656838 0.243934 -2.69 0.01 -1.134939 -0.178736

Jsocworst_4 -0.238795 0.132806 -1.80 0.07 -0.499089 0.021499

Jsnball6m_7 -0.372230 0.136276 -2.73 0.01 -0.639327 -0.105134

Jsnbalall_2 0.242895 0.075466 3.22 0.00 0.094984 0.390806

JsnbalalL6 0.184583 0.063112 2.92 0.00 0.060887 0.308280

Jloanbal3_3 0.270665 0.127982 2.11 0.03 0.019824 0.521506

Jloanball_7 0.178155 0.066555 2.68 0.01 0.047709 0.308600

Jsocbal_2 0.249041 0.113525 2.19 0.03 0.026536 0.471546

_cons 5.056947 0.299245 16.90 0.00 4.470438 5.643456

Table D.4: Model 1 default Non-Segmentation

_t Coef. Std. Err. z P>\z\ [95% Conf. Interval]
L -0.002947 0.013425 -0.22 0.83 -0.029258 0.023365

rawJoanaprl 0.111734 0.007427 15.05 0.00 0.097178 0.126290

Jcpi_2 1.379818 0.076488 18.04 0.00 1.229904 1.529733

logLXAPR 0.205549 0.045748 4.49 0.00 0.115884 0.295214

Jspl6ml2_4 0.714983 0.095007 7.53 0.00 0.528772 0.901194

Jloanbal4_3 -0.526297 0.092395 -5.70 0.00 -0.707387 -0.345207
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Jspvaldel_2 -0.460430 0.136247 -3.38 0.00 -0.727468 -0.193391

Jspl6m4_3 1.561862 0.378576 4.13 0.00 0.819866 2.303858

Jsocworst_3 1.009246 0.282471 3.57 0.00 0.455613 1.562879

Jinc_surp_6 0.246995 0.093423 2.64 0.01 0.063890 0.430100
Jwrst46al_4 0.392416 0.099135 3.96 0.00 0.198116 0.586717
Jtimebank_4 -0.528957 0.113617 -4.66 0.00 -0.751642 -0.306272

Jtimebank_5 -0.955438 0.251306 -3.80 0.00 -1.447988 -0.462887
Jsocbal_3 -0.894538 0.291042 -3.07 0.00 -1.464971 -0.324106

Jgdscde 999 -0.514257 0.157840 -3.26 0.00 -0.823618 -0.204896
raw_term 0.010933 0.003219 3.40 0.00 0.004623 0.017242

Jinc_surp_2 -0.224989 0.098300 -2.29 0.02 -0.417654 -0.032325
Jssrc4to6_4 0.493364 0.162702 3.03 0.00 0.174474 0.812254
Jsnball6m_8 0.280184 0.100503 2.79 0.01 0.083202 0.477166
Jssrc4to6_5 0.571990 0.179724 3.18 0.00 0.219739 0.924242
Jsearches_7 -0.182298 0.071432 -2.55 0.01 -0.322303 -0.042294
Jtimaddl_6 0.201436 0.094994 2.12 0.03 0.015251 0.387621
Jtimebank_2 -0.289882 0.084325 -3.44 0.00 -0.455155 -0.124609
_Itimebank_3 -0.390592 0.122258 -3.19 0.00 -0.630212 -0.150971
Jmor_rent_7 0.427748 0.174159 2.46 0.01 0.086403 0.769093

Jspl6ml2_3 0.443712 0.190808 2.33 0.02 0.069735 0.817688
_Iinternet_l -0.188297 0.078667 -2.39 0.02 -0.342481 -0.034112

Jgdscde2_ 1 -0.266788 0.112795 -2.37 0.02 -0.487863 -0.045714

Jspsetld_8 -0.504540 0.212706 -2.37 0.02 -0.921435 -0.087644
Jsnwl2tv_2 -0.355917 0.158162 -2.25 0.02 -0.665910 -0.045925

Jinc_surp_4 0.197508 0.093938 2.10 0.04 0.013393 0.381623
Jloanbal4_2 0.347772 0.146529 2.37 0.02 0.060580 0.634965

Jage_7 -0.392830 0.184179 -2.13 0.03 -0.753814 -0.031847
Jtimaddl_7 -0.250545 0.115221 -2.17 0.03 -0.476375 -0.024715

Jloanbal2_3 0.200047 0.095267 2.10 0.04 0.013328 0.386766

Table D.5: Model 1 default on Internet segment

_t Coef. Std. Err. z P> |z| [95% Conf. Interval]
L -0.017683 0.024936 -0.71 0.48 -0.066557 0.031190

rawJoanaprl 0.103387 0.016790 6.16 0.00 0.070480 0.136294

Jcpi_2 1.463070 0.135094 10.83 0.00 1.198292 1.727849

logLXAPR 0.270360 0.096584 2.80 0.01 0.081059 0.459662

Jspl6ml2_4 0.550518 0.197135 2.79 0.01 0.164140 0.936895
_Iloanbal4_3 -0.338257 0.180530 -1.87 0.06 -0.692089 0.015576

Jspvaldel_2 -0.700212 0.248600 -2.82 0.01 -1.187459 -0.212965

Jspl6m4_3 0.141860 1.141846 0.12 0.90 -2.096116 2.379836

Jsocworst_3 0.623484 0.526380 1.18 0.24 -0.408203 1.655170
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Jinc-surp_6 0.397846 0.184960 2.15 0.03 0.035330 0.760361

Jwrst46al_4 0.497919 0.194110 2.57 0.01 0.117471 0.878367
_Itimebank_4 -0.612971 0.217710 -2.82 0.01 -1.039674 -0.186268
Jtimebank_5 -0.849079 0.468607 -1.81 0.07 -1.767531 0.069373
JsocbaL3 -0.686154 0.588508 -1.17 0.24 -1.839609 0.467301

Jgdscde 999 -1.134135 0.463348 -2.45 0.01 -2.042282 -0.225989
raw_term 0.012880 0.006383 2.02 0.04 0.000370 0.025390

_Iinc_surpJ2 -0.372294 0.178941 -2.08 0.04 -0.723012 -0.021575

Jssrc4to6_4 0.835570 0.322602 2.59 0.01 0.203282 1.467858

Jsnball6m_8 0.327405 0.188383 1.74 0.08 -0.041820 0.696629
Jssrc4to6_5 0.627965 0.321488 1.95 0.05 -0.002140 1.258069
Jsearches_7 -0.005990 0.131743 -0.05 0.96 -0.264202 0.252222
Jtimaddl_6 0.369117 0.169671 2.18 0.03 0.036569 0.701665

_Itimebank_2 -0.276456 0.156095 -1.77 0.08 -0.582395 0.029484
Jtimebank_3 -0.434553 0.276785 -1.57 0.12 -0.977041 0.107935
Jmor_rent_7 0.328145 0.276418 1.19 0.24 -0.213624 0.869914

Jspl6ml2_3 0.262085 0.385126 0.68 0.50 -0.492748 1.016917

Jgdscde2_ 1 -0.240032 0.237658 -1.01 0.31 -0.705833 0.225769

Jspsetld_8 -0.700896 0.420451 -1.67 0.10 -1.524964 0.123172
Jsnwl2tv_2 -0.549218 0.274623 -2.00 0.05 -1.087470 -0.010967

Jinc_surp_4 -0.154026 0.203021 -0.76 0.45 -0.551940 0.243889
Jloanbal4_2 0.490375 0.277231 1.77 0.08 -0.052987 1.033737

Jage_7 -0.072276 0.352488 -0.21 0.84 -0.763139 0.618588
_Itimaddl_7 -0.149420 0.227560 -0.66 0.51 -0.595430 0.296590
Jloanbal2_3 0.305914 0.173949 1.76 0.08 -0.035020 0.646847

Table D.6: Model 1 default on Non-Internet segment

_t Coef. Std. Err. z P> |z| [95% Conf. Interval]
L 0.002549 0.016507 0.15 0.88 -0.029803 0.034901

rawJoanaprl 0.114501 0.008506 13.46 0.00 0.097830 0.131171

Jcpi_2 1.345353 0.093405 14.40 0.00 1.162282 1.528424

logLXAPR 0.185011 0.053818 3.44 0.00 0.079530 0.290493

Jspl6ml2_4 0.786350 0.109424 7.19 0.00 0.571883 1.000816

Jloanbal4_3 -0.613384 0.108442 -5.66 0.00 -0.825927 -0.400841

Jspvaldel_2 -0.343246 0.165265 -2.08 0.04 -0.667158 -0.019333

Jspl6m4_3 1.893873 0.396858 4.77 0.00 1.116046 2.671701

Jsocworst_3 1.221027 0.340138 3.59 0.00 0.554369 1.887686

_Iinc_surp_6 0.227496 0.109085 2.09 0.04 0.013693 0.441300

Jwrst46al_4 0.374790 0.116376 3.22 0.00 0.146697 0.602884

_Itimebank_4 -0.514158 0.133755 -3.84 0.00 -0.776312 -0.252004

_Itimebank_5 -1.005323 0.298981 -3.36 0.00 -1.591315 -0.419330
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JsocbaL3 -1.085209 0.347168 -3.13 0.00 -1.765646 -0.404772

Jgdscde 999 -0.402630 0.172063 -2.34 0.02 -0.739868 -0.065392
rawJerm 0.010143 0.003768 2.69 0.01 0.002758 0.017528

Jinc_surp_2 -0.146555 0.118584 -1.24 0.22 -0.378975 0.085865
Jssrc4to6_4 0.406334 0.190456 2.13 0.03 0.033047 0.779622
Jsnball6m_8 0.313416 0.121229 2.59 0.01 0.075812 0.551021
Jssrc4to6_5 0.587793 0.219503 2.68 0.01 0.157576 1.018010
Jsearches_7 -0.266020 0.086324 -3.08 0.00 -0.435212 -0.096827
Jtimadd 1 _6 0.146279 0.116046 1.26 0.21 -0.081168 0.373725

Jtimebank_2 -0.305476 0.100639 -3.04 0.00 -0.502724 -0.108228
_Itimebank_3 -0.398373 0.136972 -2.91 0.00 -0.666834 -0.129912
Jmor_rent_7 0.520420 0.227093 2.29 0.02 0.075327 0.965513

Jspl6ml2_3 0.493322 0.221029 2.23 0.03 0.060113 0.926531

Jgdscde2_ 1 -0.247913 0.129109 -1.92 0.06 -0.500962 0.005136

Jspsetld_8 -0.413158 0.248055 -1.67 0.10 -0.899336 0.073020
Jsnwl2tv_2 -0.282342 0.195769 -1.44 0.15 -0.666043 0.101358

Jinc_surp_4 0.320907 0.107834 2.98 0.00 0.109558 0.532257
Jloanbal4_2 0.247772 0.175740 1.41 0.16 -0.096673 0.592216

Jage_7 -0.502447 0.217669 -2.31 0.02 -0.929070 -0.075823
Jtimadd 1_7 -0.281407 0.134393 -2.09 0.04 -0.544814 -0.018001
Jloanbal2_3 0.164989 0.114829 1.44 0.15 -0.060072 0.390050

Table D.7: Model 1 paying back early Non-Segmentation

_t Coef. Std. Err. z P> |z| [95% Conf. Interval]
logLXAPR -0.000024 0.027349 0.00 1.00 -0.053627 0.053578

rawJoanaprl 0.040366 0.004645 8.69 0.00 0.031262 0.049470

Jcpi_2 0.366036 0.032138 11.39 0.00 0.303047 0.429026

Jspsetld_9 0.582632 0.048080 12.12 0.00 0.488397 0.676868

Jspl6m4_4 -0.193319 0.033077 -5.84 0.00 -0.258149 -0.128488
Jtosettl4_2 0.018049 0.062166 0.29 0.77 -0.103795 0.139893

Jinc_surp_3 -0.265471 0.082465 -3.22 0.00 -0.427100 -0.103843

Jage_6 -0.614028 0.075599 -8.12 0.00 -0.762200 -0.465857

Jage_7 -0.697223 0.091989 -7.58 0.00 -0.877519 -0.516928
Jsocsett_3 -0.119095 0.063585 -1.87 0.06 -0.243720 0.005530

Jage_5 -0.527521 0.072971 -7.23 0.00 -0.670542 -0.384500

Jage_4 -0.447398 0.067182 -6.66 0.00 -0.579073 -0.315724
Jmortbal_2 0.121908 0.045837 2.66 0.01 0.032070 0.211746
Jtosettl 1 _3 0.111819 0.038929 2.87 0.00 0.035519 0.188119
Jloanbal5_2 0.261557 0.115284 2.27 0.02 0.035604 0.487510

Jspsetld_7 0.422466 0.061306 6.89 0.00 0.302308 0.542624

Jspsetld_8 0.430874 0.066529 6.48 0.00 0.300479 0.561269
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L -0.017017 0.007308 -2.33 0.02 -0.031341 -0.002694
Jssrc4to6_3 0.177868 0.055021 3.23 0.00 0.070029 0.285708
_Imor_rent_5 0.254899 0.046212 5.52 0.00 0.164325 0.345473

Jgdscde 999 0.309159 0.057878 5.34 0.00 0.195720 0.422599

Jgdscde2_ 1 0.245662 0.043882 5.60 0.00 0.159656 0.331669

Jgdscde2_ 4 0.233134 0.057811 4.03 0.00 0.119826 0.346442
JsnbalalL4 0.145024 0.040462 3.58 0.00 0.065721 0.224328

Jage_3 -0.303641 0.068180 -4.45 0.00 -0.437271 -0.170011

Jnoopen6_4 -0.095923 0.032242 -2.98 0.00 -0.159117 -0.032729
Jmor_rent_6 0.253668 0.049173 5.16 0.00 0.157291 0.350046
_Inetincm_5 -0.209360 0.049091 -4.26 0.00 -0.305577 -0.113143
Jnetincm_6 -0.220895 0.058299 -3.79 0.00 -0.335159 -0.106630

Jgdscde 333 0.352904 0.104600 3.37 0.00 0.147891 0.557917
Jloanball_3 -0.139578 0.045578 -3.06 0.00 -0.228910 -0.050247
Jloanbal 1 _2 -0.139254 0.044157 -3.15 0.00 -0.225800 -0.052708

Jspsetld_5 0.254810 0.053780 4.74 0.00 0.149403 0.360217

Jspsetld_6 0.272157 0.058415 4.66 0.00 0.157665 0.386648

Jspsetld_4 0.200906 0.049757 4.04 0.00 0.103385 0.298427

Jtimaddl_4 -0.296150 0.084623 -3.50 0.00 -0.462007 -0.130292
Jtimaddl22 -0.166998 0.050186 -3.33 0.00 -0.265361 -0.068636

Jage_2 -0.200534 0.067267 -2.98 0.00 -0.332374 -0.068694
Jloanbal6_2 0.230300 0.110892 2.08 0.04 0.012956 0.447643
Jtimebank_6 0.138349 0.044199 3.13 0.00 0.051721 0.224977

JinternetJ -0.106486 0.034607 -3.08 0.00 -0.174316 -0.038657
Jtimebank_2 0.084104 0.032901 2.56 0.01 0.019619 0.148588
Jtosettl3_2 -0.090896 0.039121 -2.32 0.02 -0.167572 -0.014220

Jssrc4to6_5 -0.422647 0.170375 -2.48 0.01 -0.756576 -0.088718
Jsocworst_4 0.266780 0.093047 2.87 0.00 0.084411 0.449149

Jsocworst_3 0.307496 0.085530 3.60 0.00 0.139861 0.475131
Jbrand_2 0.095833 0.038458 2.49 0.01 0.020457 0.171209

Jinc_surp-4 0.115157 0.041086 2.80 0.01 0.034630 0.195683

Jinc_surp_5 0.085930 0.033125 2.59 0.01 0.021007 0.150854
Jmor_rent_7 0.325197 0.092857 3.50 0.00 0.143200 0.507194
Jalcifdet_2 0.374900 0.150137 2.50 0.01 0.080637 0.669164
JsocbaL3 -0.234455 0.088774 -2.64 0.01 -0.408448 -0.060461
Jmor_rent_4 0.107339 0.044623 2.41 0.02 0.019879 0.194798
Jnetincm_7 -0.322168 0.122298 -2.63 0.01 -0.561869 -0.082468
Jnetincm_4 -0.107155 0.045540 -2.35 0.02 -0.196412 -0.017897
Jno_store_l -0.167949 0.069014 -2.43 0.02 -0.303213 -0.032685

Jspsetld_3 0.112417 0.049119 2.29 0.02 0.016145 0.208689
Jtosettl4_3 0.422810 0.096828 4.37 0.00 0.233030 0.612590

Jloanbal4_3 0.224973 0.068570 3.28 0.00 0.090579 0.359367
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Jtimaddl_8 -0.097285 0.045660 -2.13 0.03 -0.186776 -0.007793

_Iccjgt500_3 0.075616 0.035110 2.15 0.03 0.006802 0.144430
Jssrc4to6_4 0.205185 0.096120 2.13 0.03 0.016793 0.393577
Jtosettl5_3 -0.275430 0.131459 -2.10 0.04 -0.533085 -0.017775

_Ispl6ml2_5 -0.096507 0.046489 -2.08 0.04 -0.187622 -0.005391
_Isocnoact_2 0.258502 0.119641 2.16 0.03 0.024010 0.492994

Jgdscde3_ 2 -0.413088 0.207918 -1.99 0.05 -0.820600 -0.005577

Jspl6ml2_3 -0.313816 0.156468 -2.01 0.05 -0.620487 -0.007145
Jsocsett_2 0.170080 0.086439 1.97 0.05 0.000663 0.339496
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Table D.8: Model 1 paying back early Internet segment

_t Coef. Std. Err. z P> |z| [95% Conf. Interval]
logLXAPR 0.023693 0.047634 0.50 0.62 -0.069667 0.117054

rawJoanaprl 0.054035 0.008816 6.13 0.00 0.036756 0.071313

Jcpi_2 0.332499 0.066272 5.02 0.00 0.202608 0.462389

Jspsetld_9 0.617580 0.079404 7.78 0.00 0.461952 0.773208

Jspl6m4_4 -0.286388 0.056862 -5.04 0.00 -0.397835 -0.174941

Jtosettl4_2 0.005251 0.105341 0.05 0.96 -0.201213 0.211716

Jinc_surp_3 -0.257968 0.112914 -2.28 0.02 -0.479276 -0.036660

Jage_6 -0.841356 0.132373 -6.36 0.00 -1.100802 -0.581909

Jage_7 -0.773945 0.165683 -4.67 0.00 -1.098678 -0.449212

Jsocsett_3 -0.276923 0.149297 -1.85 0.06 -0.569539 0.015694

Jage_5 -0.617040 0.120445 -5.12 0.00 -0.853107 -0.380972

_IageA -0.568565 0.106124 -5.36 0.00 -0.776565 -0.360565

Jmortbal_2 0.283546 0.263619 1.08 0.28 -0.233138 0.800230

Jtosettl 1 _3 0.154911 0.069969 2.21 0.03 0.017774 0.292048

Jloanbal5_2 0.509999 0.205572 2.48 0.01 0.107086 0.912913

Jspsetld_7 0.439562 0.101029 4.35 0.00 0.241550 0.637574

Jspsetld_8 0.445578 0.114013 3.91 0.00 0.222116 0.669039
L -0.017997 0.011427 -1.58 0.12 -0.040393 0.004399

Jssrc4to6_3 0.144949 0.094669 1.53 0.13 -0.040600 0.330497
_lmor_rent_5 0.313544 0.072608 4.32 0.00 0.171236 0.455853

Jgdscde 999 0.148624 0.119724 1.24 0.21 -0.086032 0.383279

Jgdscde2_ 1 0.256887 0.081003 3.17 0.00 0.098124 0.415650

Jgdscde2_ 4 0.359118 0.121031 2.97 0.00 0.121902 0.596334
Jsnbalall_4 0.150493 0.067770 2.22 0.03 0.017666 0.283319

Jage_3 -0.464874 0.106652 -4.36 0.00 -0.673907 -0.255841

Jnoopen6_4 -0.118744 0.054657 -2.17 0.03 -0.225870 -0.011618

Jmor_rent_6 0.304849 0.077166 3.95 0.00 0.153607 0.456091

Jnetincm_5 -0.225261 0.077621 -2.90 0.00 -0.377395 -0.073128
_Inetincm_6 -0.150346 0.086082 -1.75 0.08 -0.319064 0.018372

Jgdscde 333 0.271526 0.165990 1.64 0.10 -0.053808 0.596860

Jloanbal 1 _3 -0.209886 0.075763 -2.77 0.01 -0.358379 -0.061393
Jloanbal 1 _2 -0.171325 0.076166 -2.25 0.02 -0.320607 -0.022043

Jspsetld_5 0.337497 0.091641 3.68 0.00 0.157884 0.517111

Jspsetld_6 0.225623 0.102987 2.19 0.03 0.023772 0.427474

Jspsetld_4 0.135554 0.084688 1.60 0.11 -0.030431 0.301539
Jtimaddl_4 -0.226954 0.166822 -1.36 0.17 -0.553918 0.100010
Jtimadd 1 _2 -0.191470 0.090720 -2.11 0.04 -0.369278 -0.013663

Jage_2 -0.329367 0.104061 -3.17 0.00 -0.533323 -0.125410
Jloanbal6_2 0.163633 0.183741 0.89 0.37 -0.196493 0.523760
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Jtimebank_6 0.028617 0.072765 0.39 0.69 -0.114000 0.171235
Jtimebank_2 0.088835 0.054840 1.62 0.11 -0.018649 0.196320

_Itosettl322 -0.024790 0.065053 -0.38 0.70 -0.152292 0.102711

Jssrc4to6_5 -0.506939 0.294751 -1.72 0.09 -1.084641 0.070763

Jsocworst_4 0.039629 0.263158 0.15 0.88 -0.476152 0.555410

Jsocworst_3 0.474396 0.244466 1.94 0.05 -0.004749 0.953541

Jbrand_2 0.119087 0.064939 1.83 0.07 -0.008191 0.246364

Jinc_surp_4 0.173210 0.074252 2.33 0.02 0.027679 0.318740

_Iinc_surp_5 0.120514 0.058102 2.07 0.04 0.006635 0.234392
_Imor_rent_7 0.315154 0.132749 2.37 0.02 0.054972 0.575336

Jalcifdet_2 0.302875 0.238555 1.27 0.20 -0.164685 0.770434
Jsocbal_3 -0.500347 0.264208 -1.89 0.06 -1.018184 0.017491

Jmor_rent_4 0.068922 0.076446 0.90 0.37 -0.080909 0.218754

Jnetincm_7 -0.330149 0.172484 -1.91 0.06 -0.668211 0.007913
Jnetincm_4 -0.040886 0.073860 -0.55 0.58 -0.185648 0.103876
_Ino_store_l -0.109241 0.227030 -0.48 0.63 -0.554212 0.335730

Jspsetld_3 0.086128 0.083837 1.03 0.30 -0.078189 0.250445

Jtosettl4_3 0.639678 0.182985 3.50 0.00 0.281035 0.998321
_Iloanbal4_3 0.247648 0.117180 2.11 0.04 0.017979 0.477317

Jtimaddl_8 -0.140317 0.082266 -1.71 0.09 -0.301556 0.020922

Jccjgt500_3 0.081505 0.061901 1.32 0.19 -0.039818 0.202828
Jssrc4to6_4 0.160136 0.172282 0.93 0.35 -0.177531 0.497803

_Itosettl5_3 -0.549697 0.306408 -1.79 0.07 -1.150245 0.050852

Jspl6ml2_5 -0.106917 0.072305 -1.48 0.14 -0.248631 0.034798
JsocnoactJ2 0.574077 0.428333 1.34 0.18 -0.265440 1.413594

Jgdscde3_ 2 -0.600977 0.385613 -1.56 0.12 -1.356763 0.154810

Jspl6ml2_3 -0.347583 0.307906 -1.13 0.26 -0.951068 0.255902

Jsocsett_2 0.221144 0.224640 0.98 0.33 -0.219142 0.661430

Table D.9: Model 1 paying back early Non-Internet segment

_t Coef. Std. Err. z P> |z| [95% Conf. Interval]
logLXAPR -0.013317 0.035131 -0.38 0.71 -0.082173 0.055540

rawJoanaprl 0.032299 0.005625 5.74 0.00 0.021274 0.043324

_Icpi_2 0.376484 0.037072 10.16 0.00 0.303824 0.449145

Jspsetld_9 0.556231 0.060624 9.18 0.00 0.437411 0.675051

Jspl6m4_4 -0.150434 0.040840 -3.68 0.00 -0.230480 -0.070389
Jtosettl4_2 0.017340 0.077662 0.22 0.82 -0.134874 0.169554

Jinc_surp_3 -0.266633 0.122080 -2.18 0.03 -0.505906 -0.027360

Jage_6 -0.495145 0.095292 -5.20 0.00 -0.681914 -0.308376

Jage_7 -0.624804 0.113514 -5.50 0.00 -0.847288 -0.402320
Jsocsett_3 -0.084992 0.070776 -1.20 0.23 -0.223710 0.053727
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Jage_5 -0.456859 0.093490 -4.89 0.00 -0.640097 -0.273622

Jage_4 -0.365401 0.087828 -4.16 0.00 -0.537541 -0.193262
Jmortbal_2 0.127119 0.048433 2.62 0.01 0.032192 0.222046

Jtosettll_3 0.084515 0.047207 1.79 0.07 -0.008009 0.177039

Jloanbal522 0.128378 0.140808 0.91 0.36 -0.147601 0.404357

Jspsetld_7 0.416424 0.077443 5.38 0.00 0.264638 0.568210

Jspsetld_8 0.420344 0.082238 5.11 0.00 0.259161 0.581526
L -0.017575 0.009977 -1.76 0.08 -0.037129 0.001979

Jssrc4to6_3 0.202225 0.067979 2.97 0.00 0.068989 0.335461

Jmor_rent_5 0.213661 0.060531 3.53 0.00 0.095023 0.332300

Jgdscde 999 0.360825 0.068056 5.30 0.00 0.227438 0.494211

Jgdscde2_ 1 0.241490 0.052800 4.57 0.00 0.138003 0.344977

Jgdscde2_ 4 0.210886 0.066221 3.18 0.00 0.081096 0.340677

Jsnbalall_4 0.147556 0.050701 2.91 0.00 0.048185 0.246928

Jage_3 -0.199216 0.089520 -2.23 0.03 -0.374673 -0.023760

Jnoopen6_4 -0.079717 0.040150 -1.99 0.05 -0.158409 -0.001025
Jmor_rent_6 0.218267 0.064481 3.39 0.00 0.091888 0.344647
Jnetincm_5 -0.198993 0.063944 -3.11 0.00 -0.324320 -0.073665
Jnetincm_6 -0.290316 0.081712 -3.55 0.00 -0.450468 -0.130164

Jgdscde 333 0.434455 0.135384 3.21 0.00 0.169108 0.699801

Jloanbal 1 _3 -0.097932 0.057349 -1.71 0.09 -0.210335 0.014470
Jloanbal 1 _2 -0.131879 0.054437 -2.42 0.02 -0.238575 -0.025184

Jspsetld_5 0.215265 0.066764 3.22 0.00 0.084409 0.346120

Jspsetld_6 0.299342 0.071264 4.20 0.00 0.159668 0.439016

Jspsetld_4 0.240434 0.061726 3.90 0.00 0.119453 0.361415

Jtimaddl_4 -0.322452 0.098646 -3.27 0.00 -0.515795 -0.129109
Jtimaddl_2 -0.157077 0.060504 -2.60 0.01 -0.275663 -0.038491

Jage_2 -0.115869 0.089020 -1.30 0.19 -0.290345 0.058606

Jloanbal6_2 0.279944 0.139792 2.00 0.05 0.005956 0.553932
Jtimebank_6 0.206602 0.056082 3.68 0.00 0.096684 0.316521

Jtimebank_2 0.084814 0.041327 2.05 0.04 0.003815 0.165813
Jtosettl3_2 -0.124774 0.049320 -2.53 0.01 -0.221440 -0.028108
Jssrc4to6_5 -0.379489 0.209718 -1.81 0.07 -0.790529 0.031552
Jsocworst_4 0.322821 0.100728 3.20 0.00 0.125397 0.520244
Jsocworst_3 0.294586 0.093262 3.16 0.00 0.111797 0.477376

Jbrand_2 0.095639 0.048413 1.98 0.05 0.000752 0.190526

Jinc_surp_4 0.086388 0.049543 1.74 0.08 -0.010713 0.183490

Jinc_surp_5 0.068937 0.040514 1.70 0.09 -0.010469 0.148342
Jmor_rent_7 0.335205 0.131765 2.54 0.01 0.076950 0.593459
lalcifdet 2 0.405830 0.193923 2.09 0.04 0.025748 0.785912
JsocbaL3 -0.233263 0.095517 -2.44 0.02 -0.420473 -0.046054
Jmor_rent_4 0.132816 0.055347 2.40 0.02 0.024338 0.241295
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_Inetincm_7 -0.305949 0.175952 -1.74 0.08 -0.650807 0.038910
_Inetincm_4 -0.144659 0.058305 -2.48 0.01 -0.258936 -0.030383
_Ino_store_l -0.163857 0.072828 -2.25 0.02 -0.306598 -0.021117

Jspsetld_3 0.121432 0.060836 2.00 0.05 0.002196 0.240668
Jtosettl4_3 0.328819 0.115510 2.85 0.00 0.102423 0.555214
Jloanbal4_3 0.214643 0.085232 2.52 0.01 0.047591 0.381695
Jtimadd 1 _8 -0.074040 0.055095 -1.34 0.18 -0.182025 0.033945

Jccjgt500_3 0.068557 0.042818 1.60 0.11 -0.015365 0.152479
Jssrc4to6_4 0.230956 0.116585 1.98 0.05 0.002454 0.459458
Jtosettl5_3 -0.185113 0.146685 -1.26 0.21 -0.472610 0.102385

Jspl6ml2_5 -0.086341 0.061080 -1.41 0.16 -0.206056 0.033375

Jsocnoact_2 0.228274 0.125666 1.82 0.07 -0.018027 0.474575

Jgdscde3_ 2 -0.353070 0.248203 -1.42 0.16 -0.839540 0.133399

Jspl6ml2_3 -0.309199 0.182254 -1.70 0.09 -0.666411 0.048013
Jsocsett_2 0.189098 0.094391 2.00 0.05 0.004096 0.374100

Table D.10: Model 2 acceptance Non-Segmentation

paid Coef. Std. Err. z P> \z\ [95% Conf. Interval]
rawJoanaprl -0.186747 0.004125 -45.27 0.00 -0.194833 -0.178662

Jcpi_2 -1.028874 0.029599 -34.76 0.00 -1.086888 -0.970860
Jnewbus_l -0.465375 0.053941 -8.63 0.00 -0.571097 -0.359652

L -0.082166 0.003141 -26.16 0.00 -0.088322 -0.076011

Jgdscde2_3 -0.257687 0.047973 -5.37 0.00 -0.351712 -0.163661
Jloanbal3_4 -0.174507 0.046875 -3.72 0.00 -0.266382 -0.082633

Jsnball6m_8 0.000685 0.083729 0.01 0.99 -0.163421 0.164791
Jtosettl 1 _3 0.240704 0.039894 6.03 0.00 0.162514 0.318895
Jsocsett_2 -0.993333 0.117533 -8.45 0.00 -1.223693 -0.762972
Jtosettl2_3 0.219455 0.051789 4.24 0.00 0.117951 0.320959
Jloanbal4_2 0.352175 0.092720 3.80 0.00 0.170448 0.533902

Jage_9 -0.136106 0.043770 -3.11 0.00 -0.221893 -0.050318

Jspsetld_9 -0.247431 0.040667 -6.08 0.00 -0.327136 -0.167725
Jnetincm_9 0.165102 0.040752 4.05 0.00 0.085230 0.244974
_Ibrand_2 0.153272 0.029752 5.15 0.00 0.094959 0.211584
JinternetJ -0.202607 0.031190 -6.50 0.00 -0.263739 -0.141476
Jmortbal_2 -0.223320 0.043562 -5.13 0.00 -0.308699 -0.137941
Jloanbal2_2 0.443349 0.080535 5.51 0.00 0.285504 0.601195
Jsnrecact_2 -2.125331 0.510226 -4.17 0.00 -3.125356 -1.125307

Jspl6ml2_4 0.319347 0.059428 5.37 0.00 0.202870 0.435824

Jspl6macl_5 -0.090989 0.035659 -2.55 0.01 -0.160878 -0.021099
Jtimadd 1_9 -0.239596 0.042125 -5.69 0.00 -0.322160 -0.157033

Jspl6mact_4 1.533386 0.517730 2.96 0.00 0.518654 2.548117
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Jsnball6m_5 -0.015443 0.111702 -0.14 0.89 -0.234374 0.203488
Jtimadd 1 _3 -0.216363 0.045605 -4.74 0.00 -0.305747 -0.126979

Jspl6mact-2 -0.344037 0.056091 -6.13 0.00 -0.453973 -0.234100

JspvaldeU -0.359988 0.081412 -4.42 0.00 -0.519552 -0.200423
Jtosettl3_3 0.202780 0.067947 2.98 0.00 0.069607 0.335954
Jtimadd 1_4 0.261120 0.071754 3.64 0.00 0.120486 0.401755
Jloanbal6_2 -0.265935 0.083727 -3.18 0.00 -0.430036 -0.101834

Jgdscde 444 0.570504 0.151782 3.76 0.00 0.273018 0.867990

Jgdscde 200 0.791283 0.206501 3.83 0.00 0.386548 1.196017
Jloanbal 1 _8 -0.097923 0.034725 -2.82 0.01 -0.165982 -0.029865
Jloanbal3_3 0.344621 0.088707 3.88 0.00 0.170759 0.518482

Jnoopen6_2 -0.208043 0.047553 -4.37 0.00 -0.301245 -0.114840

Jno-Store. 1 0.226586 0.068345 3.32 0.00 0.092633 0.360539

Jspl6ml2_5 -0.160724 0.045385 -3.54 0.00 -0.249677 -0.071771

Jnoopen6_3 -0.253670 0.076606 -3.31 0.00 -0.403815 -0.103524

Jgdscde2_2 0.181232 0.061517 2.95 0.00 0.060662 0.301802
Jloanbal 1_2 0.339243 0.080208 4.23 0.00 0.182037 0.496449
Jloanbal2_4 0.153267 0.048929 3.13 0.00 0.057368 0.249166
Jtimadd 1 _5 -0.134123 0.043002 -3.12 0.00 -0.218404 -0.049841

Jtimadd 1 _6 -0.131883 0.042032 -3.14 0.00 -0.214263 -0.049502

Jmor_rent_8 -0.132444 0.034174 -3.88 0.00 -0.199424 -0.065464
Jsnball6m_7 -0.702971 0.115334 -6.10 0.00 -0.929021 -0.476922
Jsnball6m_4 -0.577425 0.110956 -5.20 0.00 -0.794895 -0.359956
Jtosettl4_2 -0.252892 0.051773 -4.88 0.00 -0.354365 -0.151420
Jloanbal4_3 -0.221737 0.061383 -3.61 0.00 -0.342045 -0.101428
Jtimebank_9 -0.155843 0.041775 -3.73 0.00 -0.237720 -0.073966
Jtimebank_7 -0.132608 0.041519 -3.19 0.00 -0.213985 -0.051232

Jsnball6m_3 -0.709800 0.162020 -4.38 0.00 -1.027354 -0.392247

Jgdscde 111 0.428192 0.161639 2.65 0.01 0.111385 0.744999
Jwrst46al_4 0.232124 0.068555 3.39 0.00 0.097758 0.366490
Jsocbal_2 0.312375 0.093994 3.32 0.00 0.128150 0.496600
Jloanbal 1_7 0.131736 0.047146 2.79 0.01 0.039331 0.224141
Jsnbalall_2 0.154777 0.050156 3.09 0.00 0.056473 0.253081
Jsnball6m_6 -0.427998 0.112505 -3.80 0.00 -0.648503 -0.207493
Jsnball6m_2 -0.274680 0.110548 -2.48 0.01 -0.491350 -0.058009

Jinc_surp_7 -0.084863 0.040444 -2.10 0.04 -0.164131 -0.005594
JsnbalalL6 0.105910 0.044817 2.36 0.02 0.018071 0.193749
Jtimebank_8 -0.083388 0.041634 -2.00 0.05 -0.164988 -0.001787
Jsnwl2tv_2 0.152156 0.062146 2.45 0.01 0.030352 0.273961

Jccjgt500_6 -0.068556 0.029032 -2.36 0.02 -0.125458 -0.011654
Jno_amex_l 0.330360 0.139008 2.38 0.02 0.057909 0.602811
Jno_other_l 0.352490 0.156159 2.26 0.02 0.046425 0.658555
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Jssrc4to6_2 -0.072103 0.031691 -2.28 0.02 -0.134217 -0.009989

Jwrst46al_5 0.298393 0.103709 2.88 0.00 0.095127 0.501658

Jspl6m4_3 -0.812068 0.297248 -2.73 0.01 -1.394664 -0.229472
_Imor_rent_4 -0.085613 0.039731 -2.15 0.03 -0.163484 -0.007743

Jno_deps_4 0.072504 0.031247 2.32 0.02 0.011262 0.133747

Jspsetld_8 -0.138877 0.065050 -2.13 0.03 -0.266373 -0.011380

Jage_5 0.151833 0.044982 3.38 0.00 0.063671 0.239996

Jage_4 0.128983 0.041708 3.09 0.00 0.047236 0.210730

Jage_6 0.142541 0.046053 3.10 0.00 0.052278 0.232804

Jinc_surp_9 0.089274 0.042237 2.11 0.04 0.006490 0.172058

Jage_7 0.096151 0.046576 2.06 0.04 0.004864 0.187438
_cons 5.356435 0.235670 22.73 0.00 4.894530 5.818341

Table D.11: Model 2 acceptance on Internet segment

paid Coef. Std. Err. z P>\z\ [95% Conf. Interval]
rawJoanaprl -0.252919 0.007259 -34.84 0.00 -0.267145 -0.238692

L -0.061755 0.004303 -14.35 0.00 -0.070190 -0.053321

Jcpi_2 -0.583965 0.054170 -10.78 0.00 -0.690135 -0.477794

Jgdscde2_3 -0.357327 0.060686 -5.89 0.00 -0.476269 -0.238385
Jsnball6m_8 0.318231 0.071952 4.42 0.00 0.177207 0.459255
Jloanbal3_4 -0.191535 0.054500 -3.51 0.00 -0.298353 -0.084717

Jage_9 -0.163269 0.062353 -2.62 0.01 -0.285480 -0.041059
Jtosettl 1 _3 0.207082 0.063611 3.26 0.00 0.082406 0.331757

Jloanbal3_3 0.432219 0.136846 3.16 0.00 0.164006 0.700433
Jtimebank_9 -0.307694 0.065036 -4.73 0.00 -0.435163 -0.180225
Jtimebank_7 -0.238275 0.060206 -3.96 0.00 -0.356276 -0.120274
Jbrand_2 -0.229492 0.048462 -4.74 0.00 -0.324475 -0.134509
Jtimadd 1 _9 -0.153331 0.060824 -2.52 0.01 -0.272544 -0.034118

Jspl6mact_2 -0.459336 0.087444 -5.25 0.00 -0.630723 -0.287950
Jtimadd 1_8 0.240554 0.067437 3.57 0.00 0.108380 0.372727

Jspl6mact_4 -0.674999 0.141005 -4.79 0.00 -0.951363 -0.398635

Jspl6mact_5 -0.158189 0.048082 -3.29 0.00 -0.252427 -0.063951
Jsnball6m_5 0.288931 0.145599 1.98 0.05 0.003563 0.574299
Jtimebank_4 0.167045 0.075494 2.21 0.03 0.019079 0.315011

Jage_4 0.271567 0.064493 4.21 0.00 0.145163 0.397970
Jnetincm_9 0.217295 0.076138 2.85 0.00 0.068067 0.366524

Jgdscde 200 0.828426 0.276131 3.00 0.00 0.287219 1.369633
Jsocsett_2 -0.769603 0.243284 -3.16 0.00 -1.246431 -0.292776

Jspl6m4 3 -1.651193 0.464851 -3.55 0.00 -2.562283 -0.740103

Jspsetld_9 -0.145787 0.061976 -2.35 0.02 -0.267258 -0.024315
Jloanbal4_2 0.333513 0.132538 2.52 0.01 0.073743 0.593283
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Jno_amex_l 0.699701 0.265324 2.64 0.01 0.179675 1.219727
Jsnball6m_7 -0.384338 0.123164 -3.12 0.00 -0.625734 -0.142941
Jsnball6m_4 -0.376168 0.129523 -2.90 0.00 -0.630027 -0.122308

Jnoopen6_2 -0.171729 0.072663 -2.36 0.02 -0.314146 -0.029313

Jspl6ml2_4 0.237750 0.099069 2.40 0.02 0.043578 0.431922

Jsocworst_3 -0.233986 0.099013 -2.36 0.02 -0.428049 -0.039924
Jmor_rent_2 0.162981 0.061934 2.63 0.01 0.041593 0.284369
Jtimadd 1 _2 0.173683 0.071149 2.44 0.02 0.034234 0.313133

Jinc_surp_7 -0.149591 0.065082 -2.30 0.02 -0.277150 -0.022033
Jno_visa_3 0.272387 0.121621 2.24 0.03 0.034014 0.510760

Jspsetld_5 0.167931 0.076328 2.20 0.03 0.018332 0.317531
Jwrst46al_4 0.224770 0.107318 2.09 0.04 0.014430 0.435110

Jtimadd 1 _4 0.288863 0.124708 2.32 0.02 0.044441 0.533286

Jmor_rent_5 0.134038 0.064104 2.09 0.04 0.008396 0.259680

Jage_6 0.179094 0.073652 2.43 0.02 0.034738 0.323450

Jage_5 0.159727 0.070122 2.28 0.02 0.022290 0.297163

_cons 4.600866 0.292018 15.76 0.00 4.028521 5.173211

Table D.12: Model 2 acceptance on Non-Internet segment

paid Coef. Std. Err. z P> |z| [95% Conf. Interval]
Jcpi_2 -1.296857 0.036304 -35.72 0.00 -1.368012 -1.225702

rawJoanaprl -0.148856 0.004981 -29.89 0.00 -0.158617 -0.139094
JnewbusJ -0.419175 0.060831 -6.89 0.00 -0.538401 -0.299948

L -0.101040 0.004471 -22.60 0.00 -0.109803 -0.092278
Jtosettl2_3 0.284297 0.065974 4.31 0.00 0.154990 0.413604

Jloanbal3_4 -0.416144 0.081290 -5.12 0.00 -0.575469 -0.256819

Jgdscde2_3 -0.275953 0.060799 -4.54 0.00 -0.395117 -0.156788
Jbrand_2 0.329204 0.038931 8.46 0.00 0.252900 0.405508

Jsnball6m_8 0.005983 0.103523 0.06 0.95 -0.196918 0.208883
Jtosettll_3 0.284460 0.050695 5.61 0.00 0.185100 0.383820

Jsocsett_2 -0.999528 0.130091 -7.68 0.00 -1.254502 -0.744553
Jloanbal422 0.401786 0.131427 3.06 0.00 0.144194 0.659378
Jmortbal_2 -0.207635 0.045252 -4.59 0.00 -0.296326 -0.118943

Jspsetld_9 -0.276418 0.055164 -5.01 0.00 -0.384537 -0.168299
Jloanbal2_2 0.730403 0.113760 6.42 0.00 0.507437 0.953369
Jsocworst_2 -1.060231 0.308972 -3.43 0.00 -1.665805 -0.454657

Jspl6ml2_5 -0.254204 0.054245 -4.69 0.00 -0.360522 -0.147887
Jtimadd 1_4 0.326463 0.086703 3.77 0.00 0.156529 0.496397
Jtosettl4_3 0.108212 0.130256 0.83 0.41 -0.147085 0.363509
Jloanbal2_4 0.328251 0.069291 4.74 0.00 0.192443 0.464060

Jgdscde 444 0.747054 0.181041 4.13 0.00 0.392219 1.101888
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Jsncais3m_3 -0.334102 0.105146 -3.18 0.00 -0.540184 -0.128020

_Iloanball_8 -0.168157 0.045586 -3.69 0.00 -0.257504 -0.078810

_IspvaldeL3 0.488763 0.128436 3.81 0.00 0.237034 0.740492

_Iloanbal6_2 -0.463886 0.138156 -3.36 0.00 -0.734668 -0.193105

Jnetincm_9 0.160887 0.047361 3.40 0.00 0.068062 0.253713

JloanballJ2 0.426398 0.105931 4.03 0.00 0.218777 0.634019

Jspl6m4_5 -0.106425 0.042884 -2.48 0.01 -0.190476 -0.022375

Jsearches_7 -0.105385 0.035807 -2.94 0.00 -0.175565 -0.035205

_Iloanbal3_2 -0.141454 0.080578 -1.76 0.08 -0.299384 0.016476

Jgdscde 200 0.963059 0.341995 2.82 0.01 0.292762 1.633356

Jalcifdet_2 0.300993 0.140151 2.15 0.03 0.026302 0.575684

Jno_deps_4 0.136974 0.039829 3.44 0.00 0.058910 0.215038

Jage_9 -0.158092 0.054300 -2.91 0.00 -0.264518 -0.051666
Jno_store_l 0.232273 0.072796 3.19 0.00 0.089597 0.374950

Jtosettl3_2 -0.122339 0.056910 -2.15 0.03 -0.233880 -0.010798

Jloanbal2_3 0.171810 0.064044 2.68 0.01 0.046286 0.297333
Jsnball6m_5 -0.075644 0.138492 -0.55 0.59 -0.347083 0.195795

Jgdscde 111 0.523840 0.214349 2.44 0.02 0.103725 0.943956

Jtimaddl_3 -0.214798 0.058782 -3.65 0.00 -0.330009 -0.099588

Jtimaddl_9 -0.212015 0.053243 -3.98 0.00 -0.316370 -0.107661

Jspl6mact_4 -0.522538 0.104464 -5.00 0.00 -0.727283 -0.317792

Jspl6ml2_4 0.385739 0.074645 5.17 0.00 0.239437 0.532041

Jsocworst_4 -0.354192 0.127356 -2.78 0.01 -0.603805 -0.104579

Jspsetld_l 0.171913 0.052111 3.30 0.00 0.069777 0.274049

Jspsetld_2 0.161104 0.051946 3.10 0.00 0.059292 0.262916

Jspvaldel_4 -2.098463 0.765812 -2.74 0.01 -3.599427 -0.597499
Jno_other_l 0.469742 0.193015 2.43 0.02 0.091440 0.848044

Jgdscde2_2 0.172161 0.075629 2.28 0.02 0.023932 0.320391

Jspl6ml2_3 0.367650 0.168334 2.18 0.03 0.037721 0.697579
Jmor_rent_8 -0.113617 0.043297 -2.62 0.01 -0.198479 -0.028756

Jnetincm_6 -0.149335 0.063590 -2.35 0.02 -0.273969 -0.024701

Jtosettl6_2 -0.272999 0.111713 -2.44 0.02 -0.491951 -0.054046
Jsnball6m_3 -0.956257 0.250601 -3.82 0.00 -1.447426 -0.465087

Jsnball6m_7 -0.700510 0.159388 -4.39 0.00 -1.012905 -0.388115

Jsnball6m_4 -0.524130 0.144576 -3.63 0.00 -0.807494 -0.240766

Jnoopen6_2 -0.127085 0.063155 -2.01 0.04 -0.250867 -0.003303
Jtimaddl_5 -0.116877 0.056797 -2.06 0.04 -0.228198 -0.005556

Jloanbal3_3 0.258979 0.124216 2.08 0.04 0.015521 0.502438

Jsnbalall_2 0.199339 0.073677 2.71 0.01 0.054934 0.343744

JsnbalalL6 0.171298 0.062652 2.73 0.01 0.048503 0.294093

Jsnball6m_6 -0.499885 0.150542 -3.32 0.00 -0.794942 -0.204827

Jsnball6m_2 -0.327515 0.141546 -2.31 0.02 -0.604940 -0.050091
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_Itosettl4_2 -0.256427 0.084455 -3.04 0.00 -0.421956 -0.090897
_Iloanbal4_3 -0.222456 0.096919 -2.30 0.02 -0.412413 -0.032499

_Iloanbal5_2 -0.298005 0.135494 -2.20 0.03 -0.563569 -0.032442
_cons 5.537923 0.314941 17.58 0.00 4.920650 6.155196

Table D.13: Model 2 default Non-Segmentation

_t Coef. Std. Err. z P > \z\ [95% Conf. Interval]
rawJoanaprl 0.123655 0.006579 18.80 0.00 0.110761 0.136548

_Icpi_2 1.372879 0.077416 17.73 0.00 1.221147 1.524610

L 0.039693 0.007385 5.37 0.00 0.025219 0.054168

Jspl6ml2_4 0.715035 0.095187 7.51 0.00 0.528472 0.901599

Jloanbal4_3 -0.536693 0.092167 -5.82 0.00 -0.717336 -0.356049

raw_term 0.016223 0.003020 5.37 0.00 0.010305 0.022142

Jspvaldel_2 -0.495112 0.135739 -3.65 0.00 -0.761155 -0.229069

Jspl6m4_3 1.658914 0.380107 4.36 0.00 0.913919 2.403909

Jsocworst_3 1.050004 0.282522 3.72 0.00 0.496271 1.603737

Jtimebank_4 -0.571067 0.113130 -5.05 0.00 -0.792797 -0.349336

Jwrst46al_4 0.394551 0.099653 3.96 0.00 0.199234 0.589868
Jtimebank_5 -1.015976 0.251137 -4.05 0.00 -1.508195 -0.523757

JsocbaL3 -0.926586 0.290915 -3.19 0.00 -1.496768 -0.356404

Jinc_surp_2 -0.285370 0.093495 -3.05 0.00 -0.468617 -0.102124

Jgdscde 999 -0.520624 0.161119 -3.23 0.00 -0.836412 -0.204837

_Issrc4to6_4 0.465124 0.164418 2.83 0.01 0.142871 0.787378

_Itimebank_2 -0.310455 0.084056 -3.69 0.00 -0.475201 -0.145708

Jtimebank_3 -0.433393 0.121776 -3.56 0.00 -0.672069 -0.194718

Jspl6ml2_3 0.531265 0.190994 2.78 0.01 0.156925 0.905606

Jsearches_7 -0.187989 0.071392 -2.63 0.01 -0.327915 -0.048063

Jtimaddl_6 0.223362 0.095004 2.35 0.02 0.037158 0.409565

Jssrc4to6_5 0.601267 0.181064 3.32 0.00 0.246388 0.956147

Jsnball6m_8 0.348931 0.108924 3.20 0.00 0.135443 0.562418

Jloanbal5_2 -0.348930 0.141964 -2.46 0.01 -0.627174 -0.070686

Jspsetld_8 -0.512172 0.213014 -2.40 0.02 -0.929671 -0.094673

_Itimaddl_7 -0.269574 0.115593 -2.33 0.02 -0.496132 -0.043015

Jage_7 -0.397718 0.183814 -2.16 0.03 -0.757987 -0.037448

_Iinternet_l -0.250119 0.084364 -2.96 0.00 -0.415469 -0.084769

Jgdscde2_ 1 -0.270488 0.113525 -2.38 0.02 -0.492993 -0.047982

Jloanbal2_3 0.213506 0.095165 2.24 0.03 0.026986 0.400027

Jspsetld_l 0.207529 0.091410 2.27 0.02 0.028368 0.386689
Jsnwl2tvJZ -0.341937 0.158222 -2.16 0.03 -0.652046 -0.031827

Jnoopen6_4 -0.160652 0.076655 -2.10 0.04 -0.310894 -0.010410

JmortbaL4 0.189382 0.083779 2.26 0.02 0.025178 0.353587
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_Imor_rent_7 0.349061 0.174336 2.00 0.05 0.007368 0.690754

Jgdscde3_ 4 0.482910 0.243127 1.99 0.05 0.006391 0.959429

Table D.14 Model 2 default on Internet segment

_t Coef. Std. Err. z P > \z\ [95% Conf. Interval]
rawJoanaprl 0.139803 0.012730 10.98 0.00 0.114853 0.164754

Jcpi_2 1.489309 0.135541 10.99 0.00 1.223655 1.754963
raw_term 0.016919 0.006021 2.81 0.01 0.005117 0.028720
JsnbalalL7 0.436572 0.228427 1.91 0.06 -0.011137 0.884281

Jspvaldel_2 -0.873972 0.234021 -3.73 0.00 -1.332645 -0.415298
_Ibrand_2 -0.449351 0.140855 -3.19 0.00 -0.725423 -0.173280

_Isncais3m_3 0.622983 0.258648 2.41 0.02 0.116042 1.129924
Jtimebank_4 -0.495144 0.204565 -2.42 0.02 -0.896084 -0.094204
Jwrst46al_4 0.444881 0.191883 2.32 0.02 0.068796 0.820965

L 0.040553 0.013223 3.07 0.00 0.014637 0.066469

Jinc_surp_6 0.375270 0.174395 2.15 0.03 0.033462 0.717079
Jssrc4to6_4 0.649260 0.315400 2.06 0.04 0.031087 1.267433

Jspl6ml2_4 0.610427 0.210700 2.90 0.00 0.197462 1.023392
Jtimaddl_6 0.410436 0.166195 2.47 0.01 0.084700 0.736172
Jwrstnrev_2 0.375824 0.192607 1.95 0.05 -0.001678 0.753327

Jgdscde3_ 4 1.455844 0.527746 2.76 0.01 0.421481 2.490207
Jno_visa_3 -1.412567 0.483670 -2.92 0.00 -2.360543 -0.464591
Jloanbal3_4 -0.594260 0.201468 -2.95 0.00 -0.989129 -0.199390

-Igdscde 999 -0.947874 0.453800 -2.09 0.04 -1.837304 -0.058443

Jtosettl3_2 -0.389409 0.192987 -2.02 0.04 -0.767655 -0.011162

Jinc_surp_2 -0.353737 0.173586 -2.04 0.04 -0.693959 -0.013515

Jspl6ml2_5 -0.522644 0.263391 -1.98 0.05 -1.038880 -0.006408

Table D.15: Model 2 default on Non-Internet segment

_t Coef. Std. Err. z P > \z\ [95% Conf. Interval]
raw_loanaprl 0.124267 0.007729 16.08 0.00 0.109120 0.139415

Jcpi_2 1.332967 0.093873 14.20 0.00 1.148981 1.516954

L 0.042188 0.009095 4.64 0.00 0.024362 0.060015

Jspl6ml2_4 0.775229 0.110522 7.01 0.00 0.558610 0.991849

Jloanbal4_3 -0.606028 0.109081 -5.56 0.00 -0.819823 -0.392233

Jspl6m4_3 2.034859 0.395641 5.14 0.00 1.259417 2.810300

Jsocworst_3 1.264048 0.338940 3.73 0.00 0.599737 1.928359

raw_term 0.013788 0.003525 3.91 0.00 0.006880 0.020696

Jage_7 -0.664115 0.219215 -3.03 0.00 -1.093768 -0.234462
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Jspvaldel_2 -0.373276 0.164735 -2.27 0.02 -0.696150 -0.050401
Jsocbal_3 -1.063016 0.346464 -3.07 0.00 -1.742074 -0.383959
Jsearches_7 -0.266996 0.086105 -3.10 0.00 -0.435758 -0.098234

Jage_6 -0.368638 0.134010 -2.75 0.01 -0.631294 -0.105983

Jspl6ml2_2 0.333582 0.106074 3.14 0.00 0.125682 0.541483
Jtimebank_6 0.270381 0.106079 2.55 0.01 0.062470 0.478292

JspsetldJj -0.462065 0.178273 -2.59 0.01 -0.811474 -0.112656

Jspl6m4_2 0.360381 0.155725 2.31 0.02 0.055166 0.665596
Jssrc4to6_5 0.621142 0.220375 2.82 0.01 0.189216 1.053069
Jssrc4to6_4 0.470180 0.191656 2.45 0.01 0.094542 0.845818
Jsnball6m_8 0.284289 0.119964 2.37 0.02 0.049164 0.519414

Jinc_surp_4 0.235631 0.098352 2.40 0.02 0.042866 0.428397
Jmor_rent_7 0.515629 0.228994 2.25 0.02 0.066809 0.964450

Jage_5 -0.193118 0.117064 -1.65 0.10 -0.422559 0.036323

Jspsetld_2 -0.301928 0.125942 -2.40 0.02 -0.548769 -0.055087

Jmortbal_4 0.198182 0.085844 2.31 0.02 0.029931 0.366433
Jwrst46aL3 -0.568206 0.263792 -2.15 0.03 -1.085228 -0.051184

Jgdscde 888 1.093775 0.505921 2.16 0.03 0.102188 2.085361
_Itimebank_5 -0.736537 0.300775 -2.45 0.01 -1.326045 -0.147029

Jtimebank_4 -0.299999 0.129528 -2.32 0.02 -0.553870 -0.046128

Jgdscde 999 -0.376723 0.169581 -2.22 0.03 -0.709095 -0.044351

Jspl6ml2_3 0.452383 0.225101 2.01 0.04 0.011193 0.893572
Jtimaddl_7 -0.271861 0.133302 -2.04 0.04 -0.533128 -0.010594

Jloanbal5_2 -0.332372 0.168280 -1.98 0.05 -0.662194 -0.002549

Table D.16: Model 2 paying back early Non-Segmentation

_t Coef. Std. Err. z P>\z\ [95% Conf. Interval]
rawJoanaprl 0.040364 0.004504 8.96 0.00 0.031537 0.049192

Jcpi_2 0.366037 0.032130 11.39 0.00 0.303063 0.429011

Jspsetld_9 0.582635 0.047979 12.14 0.00 0.488598 0.676672

Jspl6m4_4 -0.193319 0.033077 -5.84 0.00 -0.258149 -0.128488
Jtosettl4_2 0.018048 0.062141 0.29 0.77 -0.103747 0.139842

Jinc_surp_3 -0.265470 0.082459 -3.22 0.00 -0.427086 -0.103854

Jage_6 -0.614025 0.075495 -8.13 0.00 -0.761991 -0.466058

Jage_7 -0.697220 0.091905 -7.59 0.00 -0.877350 -0.517090

Jsocsett_3 -0.119095 0.063583 -1.87 0.06 -0.243715 0.005525

Jage_5 -0.527518 0.072900 -7.24 0.00 -0.670400 -0.384636

Jage_4 -0.447396 0.067143 -6.66 0.00 -0.578993 -0.315799
[morthal 2 0.121907 0.045832 2.66 0.01 0.032079 0.211736
Jtosettll_3 0.111816 0.038787 2.88 0.00 0.035794 0.187837
Jloanbal5_2 0.261558 0.115282 2.27 0.02 0.035608 0.487507
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Jspsetld_7 0.422468

Jspsetld_8 0.430878
L -0.017023

_Issrc4to6_3 0.177867
_Imor_rent_5 0.254899

Jgdscde 999 0.309158

Jgdscde2_ 1 0.245661

Jgdscde2_ 4 0.233133
Jsnbalall_4 0.145024

Jage_3 -0.303639

Jnoopen6_4 -0.095922
Jmor_rent_6 0.253668
Jnetincm_5 -0.209360
Jnetincm_6 -0.220894

Jgdscde 333 0.352900
Jloanball_3 -0.139578
Jloanball_2 -0.139254

Jspsetld_5 0.254812

Jspsetld_6 0.272160

Jspsetld_4 0.200907
Jtimadd 1 _4 -0.296149

Jtimadd 1 _2 -0.166997

Jage_2 -0.200532
Jloanbal6_2 0.230300
Jtimebank_6 0.138348
Jinternet_l -0.106486
Jtimebank_2 0.084104

Jtosettl3_2 -0.090896
Jssrc4to6_5 -0.422647
Jsocworst_4 0.266782
Jsocworst_3 0.307491
Jbrand_2 0.095831

Jinc_surp_4 0.115156

Jinc_surp_5 0.085930
Jmor_rent_7 0.325200
Jalcifdet_2 0.374901
Jsocbal_3 -0.234449
Jmor_rent_4 0.107340
Jnetincm_7 -0.322164
Jnetincm_4 -0.107154
Jno_store_ 1 -0.167950

_Ispsetld_3 0.112418

0.061260 6.90 0.00

0.066417 6.49 0.00
0.003807 -4.47 0.00
0.054987 3.23 0.00

0.046212 5.52 0.00
0.057844 5.34 0.00
0.043866 5.60 0.00
0.057805 4.03 0.00
0.040461 3.58 0.00

0.068145 -4.46 0.00

0.032179 -2.98 0.00
0.049172 5.16 0.00

0.049091 -4.26 0.00
0.058297 -3.79 0.00

0.104540 3.38 0.00

0.045577 -3.06 0.00
0.044155 -3.15 0.00
0.053722 4.74 0.00
0.058307 4.67 0.00

0.049740 4.04 0.00

0.084618 -3.50 0.00
0.050174 -3.33 0.00
0.067235 -2.98 0.00
0.110892 2.08 0.04
0.044191 3.13 0.00
0.034607 -3.08 0.00
0.032901 2.56 0.01

0.039121 -2.32 0.02

0.170374 -2.48 0.01

0.093020 2.87 0.00
0.085371 3.60 0.00
0.038387 2.50 0.01
0.041076 2.80 0.01

0.033121 2.59 0.01

0.092805 3.50 0.00
0.150134 2.50 0.01
0.088531 -2.65 0.01
0.044615 2.41 0.02
0.122215 -2.64 0.01
0.045538 -2.35 0.02
0.069008 -2.43 0.02
0.049099 2.29 0.02

0.302401 0.542535
0.300702 0.561053
-0.024484 -0.009562
0.070095 0.285639
0.164325 0.345472

0.195785 0.422530
0.159685 0.331637
0.119838 0.346429
0.065721 0.224327
-0.437201 -0.170077
-0.158990 -0.032853
0.157294 0.350043
-0.305576 -0.113144
-0.335154 -0.106634
0.148007 0.557794
-0.228908 -0.050248
-0.225796 -0.052712
0.149520 0.360104
0.157879 0.386440
0.103419 0.298394
-0.461996 -0.130302

-0.265336 -0.068659

-0.332310 -0.068755
0.012956 0.447643
0.051737 0.224960
-0.174315 -0.038657
0.019620 0.148588
-0.167572 -0.014220
-0.756575 -0.088720
0.084467 0.449097
0.140168 0.474815
0.020594 0.171067
0.034648 0.195663
0.021014 0.150846
0.143306 0.507094
0.080644 0.669158
-0.407966 -0.060932
0.019896 0.194783
-0.561701 -0.082628
-0.196407 -0.017902
-0.303204 -0.032696
0.016185 0.208651
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Jtosettl4_3 0.422811 0.096824 4.37 0.00 0.233040 0.612582
Jloanbal4_3 0.224974 0.068563 3.28 0.00 0.090592 0.359355
Jtimaddl_8 -0.097284 0.045640 -2.13 0.03 -0.186735 -0.007832

Jccjgt500_3 0.075616 0.035108 2.15 0.03 0.006805 0.144426

_Issrc4to6_4 0.205182 0.096074 2.14 0.03 0.016880 0.393485

Jtosettl5_3 -0.275432 0.131437 -2.10 0.04 -0.533044 -0.017819

Jspl6ml2_5 -0.096506 0.046484 -2.08 0.04 -0.187614 -0.005398
Jsocnoact_2 0.258502 0.119640 2.16 0.03 0.024011 0.492992

Jgdscde3_ 2 -0.413087 0.207911 -1.99 0.05 -0.820585 -0.005589

_Ispl6ml2_3 -0.313824 0.156231 -2.01 0.05 -0.620031 -0.007616
Jsocsett_2 0.170080 0.086439 1.97 0.05 0.000663 0.339496

Table D.17: Model 2 paying back early on Internet segment

_t Coef. Std. Err. z P>\z\ [95% Conf. Interval]
rawJoanaprl 0.050680 0.007842 6.46 0.00 0.035310 0.066050

Jspl6m4_4 -0.306019 0.056283 -5.44 0.00 -0.416332 -0.195706

_Ispsetld_9 0.552519 0.068427 8.07 0.00 0.418405 0.686634

Jinc_surp_3 -0.323689 0.102306 -3.16 0.00 -0.524206 -0.123173

Jloanbal5_2 0.675272 0.188290 3.59 0.00 0.306231 1.044313

Jcpi_2 0.325011 0.065698 4.95 0.00 0.196246 0.453775

Jage_6 -0.754534 0.130744 -5.77 0.00 -1.010789 -0.498280

Jtimaddl_9 0.277242 0.072478 3.83 0.00 0.135187 0.419297
Jtimadd 1 _5 0.313188 0.074870 4.18 0.00 0.166446 0.459930

Jsocsett_3 -0.396365 0.114792 -3.45 0.00 -0.621354 -0.171376

Jspsetld_7 0.374640 0.094385 3.97 0.00 0.189649 0.559630
Jtimadd 1 _3 0.216929 0.076805 2.82 0.01 0.066394 0.367464

Jtimadd 1 _6 0.238031 0.075427 3.16 0.00 0.090196 0.385866

Jtosettll_3 0.160507 0.065183 2.46 0.01 0.032751 0.288264

Jinc_surp_4 0.260030 0.075550 3.44 0.00 0.111956 0.408105

Jgdscde3_ 1 0.652203 0.193959 3.36 0.00 0.272051 1.032355

Jgdscde2_ 4 0.317455 0.119956 2.65 0.01 0.082345 0.552565

Jspsetld_8 0.366509 0.107257 3.42 0.00 0.156290 0.576729

Jloanbal3_4 0.126134 0.071907 1.75 0.08 -0.014802 0.267070

Jtosettl4_3 0.487484 0.151694 3.21 0.00 0.190169 0.784799

Jgdscde2_ 1 0.255295 0.079930 3.19 0.00 0.098635 0.411954

Jspsetld_5 0.266116 0.084429 3.15 0.00 0.100637 0.431594
L -0.012332 0.005648 -2.18 0.03 -0.023402 -0.001262

Jmor_rent_5 0.244225 0.068622 3.56 0.00 0.109729 0.378720

Jsnbalall_4 0.197882 0.067792 2.92 0.00 0.065012 0.330751

Jinc_surp_6 0.196659 0.085282 2.31 0.02 0.029509 0.363808

Jinc_surp_5 0.171190 0.059690 2.87 0.00 0.054199 0.288180
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_Inoopen6_4 -0J57311 0.052964 -2.97 0.00 -0.261119 -0.053504

_Isnball6m_3 -0.376221 0.162825 -2.31 0.02 -0.695352 -0.057090

Jage_7 -0.720826 0.163839 -4.40 0.00 -1.041943 -0.399708
Jloanbal 1 _3 -0.204607 0.075258 -2.72 0.01 -0.352109 -0.057104

Jloanball_2 -0.160795 0.076062 -2.11 0.04 -0.309874 -0.011717

Jloanbal4_3 0.176276 0.098146 1.80 0.07 -0.016086 0.368638
Jmor_rent_6 0.189496 0.071170 2.66 0.01 0.050006 0.328986

Jnetincm_5 -0.138751 0.071708 -1.93 0.05 -0.279297 0.001794

Jage_4 -0.493420 0.103218 -4.78 0.00 -0.695723 -0.291117

Jage_5 -0.540051 0.118462 -4.56 0.00 -0.772233 -0.307869

Jage_3 -0.405970 0.104037 -3.90 0.00 -0.609878 -0.202061

JageJ2 -0.303761 0.103262 -2.94 0.00 -0.506151 -0.101371

Jgdscde2_ 0 -0.727619 0.355528 -2.05 0.04 -1.424442 -0.030797

Jsearches_3 -0.151376 0.075608 -2.00 0.05 -0.299565 -0.003186

Table D.18: Model 2 paying back early on Non-Internet segment

_t Coef. Std. Err. z P> |z| [95% Conf. Interval]
_Icpi_2 0.382095 0.036945 10.34 0.00 0.309685 0.454505

raw_loanaprl 0.026656 0.005424 4.91 0.00 0.016025 0.037287

Jspsetld_9 0.565946 0.059444 9.52 0.00 0.449437 0.682455

Jspl6m4_4 -0.159976 0.041370 -3.87 0.00 -0.241059 -0.078892

Jtosettl4_2 -0.138628 0.059942 -2.31 0.02 -0.256113 -0.021143

Jage_2 -0.120700 0.088718 -1.36 0.17 -0.294585 0.053185

Jage_3 -0.210818 0.089318 -2.36 0.02 -0.385879 -0.035757

Jsocsett_2 0.274819 0.074237 3.70 0.00 0.129318 0.420320

_Imortbal_2 0.124466 0.048430 2.57 0.01 0.029546 0.219387

Jinc_surp_3 -0.402240 0.111049 -3.62 0.00 -0.619892 -0.184588

Jloanbal6_2 0.424850 0.119903 3.54 0.00 0.189846 0.659855

Jgdscde 999 0.298989 0.062927 4.75 0.00 0.175656 0.422323
Jtimebank_6 0.212495 0.055938 3.80 0.00 0.102858 0.322132

Jtimaddl_4 -0.307114 0.098253 -3.13 0.00 -0.499687 -0.114540

Jsocworst_4 0.333176 0.096801 3.44 0.00 0.143449 0.522902
Jtimaddl_2 -0.146388 0.060099 -2.44 0.02 -0.264180 -0.028596

L -0.020839 0.004952 -4.21 0.00 -0.030546 -0.011133
_Itosettl2_3 0.155605 0.052357 2.97 0.00 0.052986 0.258223

Jgdscde2_ 1 0.228163 0.050581 4.51 0.00 0.129026 0.327299

Jspsetld_7 0.422333 0.076852 5.50 0.00 0.271706 0.572960

Jspsetld_8 0.418580 0.081737 5.12 0.00 0.258379 0.578781

_Igdscde2_ 4 0.214787 0.065202 3.29 0.00 0.086994 0.342580
Jssrc4to6_3 0.203021 0.067625 3.00 0.00 0.070479 0.335564

Jgdscde 333 0.427274 0.135151 3.16 0.00 0.162384 0.692165
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Jage_7 -0.642436 0.113175 -5.68 0.00 -0.864254 -0.420618

Jage_6 -0.515010 0.094825 -5.43 0.00 -0.700864 -0.329157

Jspsetld_6 0.305977 0.070670 4.33 0.00 0.167466 0.444489
Jnetincm_6 -0.290031 0.078289 -3.70 0.00 -0.443475 -0.136588

Jspsetld_4 0.237757 0.061715 3.85 0.00 0.116797 0.358716

Jage_5 -0.469589 0.093130 -5.04 0.00 -0.652120 -0.287057

Jage_4 -0.377751 0.087484 -4.32 0.00 -0.549216 -0.206285

Jspsetld_5 0.218588 0.066689 3.28 0.00 0.087880 0.349295
Jtosettl3_2 -0.133351 0.048649 -2.74 0.01 -0.228700 -0.038001
Jsnbalall_4 0.133125 0.050073 2.66 0.01 0.034985 0.231266
_Iloanball_5 0.147953 0.053223 2.78 0.01 0.043637 0.252269
Jssrc4to6_4 0.260601 0.116231 2.24 0.03 0.032793 0.488409
_Itimebank_2 0.093708 0.041231 2.27 0.02 0.012897 0.174520
_Itimaddl_3 0.120416 0.054665 2.20 0.03 0.013275 0.227557
Jnetincm_5 -0.206017 0.062879 -3.28 0.00 -0.329257 -0.082777
Jmor_rent_5 0.207245 0.060226 3.44 0.00 0.089205 0.325285
Jsocnoact_2 0.299761 0.124990 2.40 0.02 0.054786 0.544736
Jwrstnrev_2 -0.152886 0.056140 -2.72 0.01 -0.262917 -0.042855

Jspsetld_3 0.123062 0.060740 2.03 0.04 0.004014 0.242109
Jno_store_l -0.162763 0.072470 -2.25 0.03 -0.304803 -0.020724
Jmor_rent_6 0.193629 0.063595 3.04 0.00 0.068985 0.318274
Jnetincm_4 -0.136085 0.057742 -2.36 0.02 -0.249258 -0.022912
Jmor_rent_4 0.135223 0.055100 2.45 0.01 0.027228 0.243217
Jloanbal 1 _4 0.112162 0.051015 2.20 0.03 0.012175 0.212149

Jnoopen6_4 -0.090290 0.040111 -2.25 0.02 -0.168907 -0.011674
Jsnball6m_2 -0.668508 0.319297 -2.09 0.04 -1.294319 -0.042697
Jmor_rent_7 0.264458 0.125344 2.11 0.04 0.018788 0.510129

Jbrand_2 0.094824 0.046555 2.04 0.04 0.003578 0.186071
Jalcifdet_2 0.391284 0.193796 2.02 0.04 0.011451 0.771118

Table D.19: Model 3 Acceptance on Internet segment

_t Coef. Std. Err. z P> |z| [95% Conf. Interval]
rawJoanaprl -0.133517 0.009173 -14.56 0.00 -0.151496 -0.115538

logLXAPR -0.981518 0.046292 -21.20 0.00 -1.072249 -0.890787
L 0.126633 0.010074 12.57 0.00 0.106889 0.146377

_Icpi_2 -0.617480 0.055009 -11.23 0.00 -0.725296 -0.509664

Jgdscde2_3 -0.408587 0.063017 -6.48 0.00 -0.532097 -0.285076
Jloanbal4_3 -0.205962 0.081389 -2.53 0.01 -0.365482 .0.046443
Jtosettll_3 0.245406 0.068616 3.58 0.00 0.110920 0.379892
raw_term 0.009455 0.001877 5.04 0.00 0.005777 0.013134

Jsnball6m_8 0.148790 0.067382 2.21 0.03 0.016724 0.280856
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JnewbusJ -0.340044 0.103813 -3.28 0.00 -0.543513 -0.136575
_Iloanbal3_3 0.478583 0.137937 3.47 0.00 0.208232 0.748934

Jtimadd 1 _8 0.207503 0.066722 3.11 0.00 0.076730 0.338277
Jtimebank_4 0.191083 0.074994 2.55 0.01 0.044098 0.338069

Jspsetld_9 -0.220432 0.063097 -3.49 0.00 -0.344099 -0.096764

Jage_4 0.214345 0.063122 3.40 0.00 0.090629 0.338061

Jno_visa_3 0.285653 0.129553 2.20 0.03 0.031734 0.539573

Jgdscde 200 0.868026 0.284561 3.05 0.00 0.310297 1.425756

Jtimebank_7 -0.193162 0.059919 -3.22 0.00 -0.310601 -0.075724

Jtimebank_9 -0.195015 0.066662 -2.93 0.00 -0.325670 -0.064360

Jsnball6m_7 -0.372247 0.124069 -3.00 0.00 -0.615418 -0.129076

Jsnball6m_4 -0.355494 0.131052 -2.71 0.01 -0.612351 -0.098636

Jworstl2_3 -0.349450 0.130593 -2.68 0.01 -0.605408 -0.093492

Jtosettl2_3 0.168083 0.085714 1.96 0.05 0.000086 0.336080

Jspl6ml2_5 -0.141325 0.060593 -2.33 0.02 -0.260085 -0.022565

_Imor_rent_2 0.149741 0.062406 2.40 0.02 0.027429 0.272054

Jspl6mact_4 -0.459521 0.142304 -3.23 0.00 -0.738431 -0.180611

Jbrand_2 -0.126119 0.049864 -2.53 0.01 -0.223851 -0.028388

Jno_amex_l 0.626536 0.282282 2.22 0.03 0.073274 1.179797

Jtimadd 1 _4 0.273189 0.124560 2.19 0.03 0.029056 0.517322

Jage_6 0.162680 0.072164 2.25 0.02 0.021242 0.304119

Jsocsett_2 -0.726378 0.255020 -2.85 0.00 -1.226207 -0.226548

Jsocworst_2 -2.225803 0.684320 -3.25 0.00 -3.567045 -0.884561

Jnoopen6_2 -0.152731 0.073755 -2.07 0.04 -0.297288 -0.008174

Jspl6mact_3 0.432539 0.206229 2.10 0.04 0.028337 0.836740

Jspl6ml2_4 0.223060 0.100301 2.22 0.03 0.026474 0.419647

Jloanbal3_4 -0.144898 0.065605 -2.21 0.03 -0.273481 -0.016315

Jspsetld_8 -0.213785 0.102629 -2.08 0.04 -0.414933 -0.012636

Jspvaldel_2 -0.261749 0.129832 -2.02 0.04 -0.516214 -0.007283

_cons 6.126946 0.346538 17.68 0.00 5.447745 6.806147

Table D.20: Model 3 Acceptance on Non-Internet segment

_t Coef. Std. Err. z P>\z\ [95% Conf. Interval]
Jcpi_2 -1.312067 0.036837 -35.62 0.00 -1.384266 -1.239868

rawJoanaprl -0.093883 0.005602 -16.76 0.00 -0.104862 -0.082903
JnewbusJ -0.480023 0.065438 -7.34 0.00 -0.608280 -0.351767

logLXAPR -0.763473 0.034492 -22.13 0.00 -0.831076 -0.695869

Jtosettl2_3 0.302263 0.069450 4.35 0.00 0.166144 0.438383

Jgdscde2 3 -0.298025 0.062438 -4.77 0.00 -0.420401 -0.175649

Jloanbal3_4 -0.306247 0.086849 -3.53 0.00 -0.476468 -0.136025

Jbrand_2 0.381302 0.039405 9.68 0.00 0.304070 0.458534
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L 0.074213
Jtosettl 1 _3 0.357294
raw_term 0.010530

Jspl6mact_5 -0.081579
Jsocsett_2 -0.996011
JmortbaL2 -0.204936
Jloanbal4_2 0.426054

_Ispsetld_9 -0.324407
Jsnball6m_8 0.294851
Jloanbal2_2 0.690494

_Ispvaldel_4 -2.815235
_Itosettl4_3 0.105045
Jloanbal2_4 0.328215

Jgdscde 444 0.824142
Jtimaddl_4 0.314060
Jloanball_8 -0.126945

Jspvaldel_3 0.496752

Jspl6ml2_5 -0.229952
Jloanbal6_2 -0.429358

Jno_deps_4 0.120105
_Itosettl3_3 0.250815

Jno_storeJ 0.252688

Jspl6ml2_4 0.400589

_Ispl6mact_4 -0.463244
Jloanbal2_3 0.160235

Jspsetld_l 0.197055
Jsearches_7 -0.091071

Jalcifdet_2 0.349434

Jgdscde 200 1.006511
Jloanbal3_2 -0.133162

Jspsetld_2 0.160399

Jnoopen622 -0.170372

Jgdscde2_2 0.181057

Jspl6ml2_3 0.504421
Jsnball6m_5 0.240316

Jsocworst_2 -0.909867
Jno_otherJ 0.487456
Jtimaddl_9 -0.144725

Jtimaddl_3 -0.146237

Jloanbal 1 _2 0.374997

Jgdscde ill 0.469818

Jtosettl4_2 -0.278986

0.009311 7.97 0.00
0.051957 6.88 0.00
0.001565 6.73 0.00
0.045686 -1.79 0.07

0.133288 -7.47 0.00

0.044154 -4.64 0.00
0.131156 3.25 0.00
0.055824 -5.81 0.00
0.059973 4.92 0.00
0.115789 5.96 0.00
0.787105 -3.58 0.00

0.140587 0.75 0.46

0.070846 4.63 0.00

0.186634 4.42 0.00
0.085555 3.67 0.00
0.045853 -2.77 0.01
0.131822 3.77 0.00
0.062574 -3.67 0.00

0.118047 -3.64 0.00
0.039606 3.03 0.00
0.096383 2.60 0.01
0.073291 3.45 0.00
0.075642 5.30 0.00

0.106327 -4.36 0.00

0.064855 2.47 0.01
0.052663 3.74 0.00
0.036218 -2.51 0.01
0.142317 2.46 0.01

0.355948 2.83 0.01

0.082787 -1.61 0.11

0.052598 3.05 0.00
0.062789 -2.71 0.01
0.077835 2.33 0.02
0.173686 2.90 0.00
0.111398 2.16 0.03
0.325712 -2.79 0.01
0.196279 2.48 0.01
0.052529 -2.76 0.01
0.058476 -2.50 0.01

0.113202 3.31 0.00
0.220995 2.13 0.03
0.081377 -3.43 0.00

0.055964 0.092462
0.255461 0.459128
0.007462 0.013598
-0.171123 0.007964
-1.257251 -0.734771
-0.291476 -0.118395
0.168992 0.683115
-0.433819 -0.214995
0.177306 0.412396
0.463551 0.917437
-4.357932 -1.272537
-0.170501 0.380591
0.189360 0.467069
0.458346 1.189937
0.146375 0.481744
-0.216816 -0.037074
0.238386 0.755119
-0.352596 -0.107309
-0.660726 -0.197990

0.042478 0.197732
0.061909 0.439722

0.109040 0.396336
0.252334 0.548845
-0.671640 -0.254847

0.033121 0.287348
0.093837 0.300273
-0.162058 -0.020084
0.070499 0.628370
0.308865 1.704157
-0.295421 0.029097
0.057310 0.263489
-0.293436 -0.047308
0.028503 0.333612
0.164004 0.844839
0.021979 0.458653
-1.548250 -0.271484
0.102756 0.872157
-0.247679 -0.041771
-0.260847 -0.031626
0.153124 0.596869
0.036676 0.902960
-0.438482 -0.119491
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Jloanbal4_3 -0J94389 0.097530 -1.99 0.05 -0.385544 -0.003235
Jnetincm_6 -0J50235 0.064226 -2.34 0.02 -0.276116 -0.024354

Jspl6m4_2 0.201220 0.100117 2.01 0.04 0.004993 0.397447
Jssrc4to6_5 0.362567 0.162964 2.22 0.03 0.043164 0.681971

Jsnball6m_3 -0.656838 0.243934 -2.69 0.01 -1.134939 -0.178736

Jsocworst_4 -0.238795 0.132806 -1.80 0.07 -0.499089 0.021499
Jsnball6m_7 -0.372230 0.136276 -2.73 0.01 -0.639327 -0.105134

Jsnbalall_2 0.242895 0.075466 3.22 0.00 0.094984 0.390806
Jsnbalall_6 0.184583 0.063112 2.92 0.00 0.060887 0.308280

Jloanbal3_3 0.270665 0.127982 2.11 0.03 0.019824 0.521506

Jloanball_7 0.178155 0.066555 2.68 0.01 0.047709 0.308600
Jsocbal_2 0.249041 0.113525 2.19 0.03 0.026536 0.471546

_cons 5.056947 0.299245 16.90 0.00 4.470438 5.643456

Table D.21: Model 3 default on Internet segment

_t Coef. Std. Err. z P> \z\ [95% Conf. Interval]
L -0.021079 0.024094 -0.87 0.38 -0.068302 0.026144

rawJoanaprl 0.106788 0.016148 6.61 0.00 0.075139 0.138436

_Icpi_2 1.496162 0.134666 11.11 0.00 1.232221 1.760103

logLXAPR 0.361478 0.089314 4.05 0.00 0.186426 0.536530
Jbrand_2 -0.518876 0.141040 -3.68 0.00 -0.795310 -0.242441

Jspvaldel_2 -0.840232 0.236445 -3.55 0.00 -1.303656 -0.376808

_Iinc_surp_6 0.587514 0.169818 3.46 0.00 0.254677 0.920350
Jno_visa_4 0.743148 0.370407 2.01 0.05 0.017163 1.469133
Jwrst46al_4 0.469294 0.189254 2.48 0.01 0.098363 0.840224

Jgdscde3_ 4 1.533292 0.524284 2.92 0.00 0.505715 2.560869
Jtimaddl _6 0.399572 0.165500 2.41 0.02 0.075198 0.723946
Jno_visa_3 -1.263757 0.471880 -2.68 0.01 -2.188624 -0.338890
Jloanbal3_4 -0.430360 0.143537 -3.00 0.00 -0.711686 -0.149033

Jspl6ml2_4 0.591284 0.194393 3.04 0.00 0.210281 0.972286
Jtimebank_4 -0.449019 0.204577 -2.19 0.03 -0.849983 -0.048055

Jgdscde 999 -1.005572 0.453667 -2.22 0.03 -1.894743 -0.116400
_Issrc4to6_4 0.599881 0.315654 1.90 0.06 -0.018790 1.218552

Table D.22: Model 3 default on Non-Internet segment

A Coef. Std. Err. z P>\z\ [95% Conf. Interval]
L 0.001599 0.016398 0.10 0.92 -0.030541 0.033739

rawJoanaprl 0.120355 0.008324 14.46 0.00 0.104041 0.136670

Jcpi_2 1.354850 0.093655 14.47 0.00 1.171290 1.538410
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logLXAPR 0J79764 0.052347 3.43 0.00 0.077165 0.282363

Jspl6ml2_4 0.688068 0.108847 6.32 0.00 0.474731 0.901404
Jloanbal4_3 -0.691368 0.100326 -6.89 0.00 -0.888003 -0.494733

Jspl6m4_3 1.933147 0.398092 4.86 0.00 1.152902 2.713393
Jsocworst_3 1.261844 0.339156 3.72 0.00 0.597111 1.926577

Jage_7 -0.584655 0.218170 -2.68 0.01 -1.012260 -0.157049

Jspvaldel_2 -0.425868 0.163649 -2.60 0.01 -0.746614 -0.105122
Jsocbal_3 -1.043541 0.346644 -3.01 0.00 -1.722950 -0.364132
Jsearches_7 -0.272728 0.086237 -3.16 0.00 -0.441748 -0.103707
Jwrst46al_4 0.352244 0.116681 3.02 0.00 0.123552 0.580935

Jage_6 -0.295713 0.130775 -2.26 0.02 -0.552028 -0.039398
raw_term 0.010251 0.003680 2.79 0.01 0.003037 0.017464

Jwrstnrev_3 0.587874 0.253431 2.32 0.02 0.091159 1.084588

_Itimebank_6 0.254988 0.106067 2.40 0.02 0.047100 0.462875
_Imor_rent_7 0.579757 0.227447 2.55 0.01 0.133969 1.025546

Jspsetld_5 -0.486962 0.178532 -2.73 0.01 -0.836878 -0.137047

Jinc_surp_2 -0.242150 0.112453 -2.15 0.03 -0.462554 -0.021746
Jtimebank_5 -0.748668 0.299020 -2.50 0.01 -1.334737 -0.162599
_Isnball6m_8 0.288124 0.120229 2.40 0.02 0.052480 0.523769
Jssrc4to6_5 0.540856 0.219979 2.46 0.01 0.109706 0.972006
Jtimebank_4 -0.293287 0.128645 -2.28 0.02 -0.545427 -0.041148

Jgdscde 888 1.130709 0.505529 2.24 0.03 0.139890 2.121528
Jwrst46al_3 -0.557558 0.263418 -2.12 0.03 -1.073848 -0.041269

Jspsetld_2 -0.282796 0.125557 -2.25 0.02 -0.528884 -0.036709

Jgdscde 999 -0.362563 0.169278 -2.14 0.03 -0.694342 -0.030783
Jssrc4to6_4 0.442982 0.190737 2.32 0.02 0.069144 0.816820

Jmor_rent_8 0.175816 0.085080 2.07 0.04 0.009062 0.342570
Jno_mastr_l -0.248112 0.125559 -1.98 0.05 -0.494204 -0.002021

Table D.23: Model 3 paying back early on Internet segment

_t Coef. Std. Err. z P> \z\ [95% Conf. Interval]
logLXAPR 0.024548 0.046884 0.52 0.60 -0.067342 0.116438

rawJoanaprl 0.048841 0.008653 5.64 0.00 0.031882 0.065800

Jspl6m4_4 -0.306129 0.056285 -5.44 0.00 -0.416446 -0.195811

Jspsetld_9 0.553844 0.068476 8.09 0.00 0.419633 0.688055

Jinc_surp_3 -0.320325 0.102485 -3.13 0.00 -0.521192 -0.119458
Jloanbal5_2 0.677806 0.188347 3.60 0.00 0.308652 1.046960

Jcpi_2 0.324146 0.065700 4.93 0.00 0.195376 0.452916

Jage_6 -0.752116 0.130774 -5.75 0.00 -1.008429 -0.495803
Jtimadd 1 _9 0.275035 0.072600 3.79 0.00 0.132741 0.417329
Jtimaddl_5 0.312150 0.074888 4.17 0.00 0.165371 0.458928
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Jsocsett_3 -0.400003 0.114977 -3.48 0.00 -0.625354 -0.174652

Jspsetld_7 0.376461 0.094449 3.99 0.00 0.191345 0.561578
_Itimaddl_3 0.215000 0.076889 2.80 0.01 0.064301 0.365699

Jtimaddl_6 0.237168 0.075441 3.14 0.00 0.089306 0.385031
Jtosettl 1 _3 0.158217 0.065316 2.42 0.02 0.030200 0.286234

_Iinc_surp_4 0.259728 0.075547 3.44 0.00 0.111659 0.407797

Jgdscde3_ 1 0.650810 0.193988 3.35 0.00 0.270600 1.031020

Jgdscde2_ 4 0.314638 0.120091 2.62 0.01 0.079265 0.550012

Jspsetld_8 0.368990 0.107346 3.44 0.00 0.158596 0.579384
Jloanbal3_4 0.126488 0.071895 1.76 0.08 -0.014423 0.267399
Jtosettl4_3 0.487501 0.151693 3.21 0.00 0.190188 0.784814

Jgdscde2_ 1 0.254127 0.079958 3.18 0.00 0.097413 0.410841

Jspsetld_5 0.267672 0.084476 3.17 0.00 0.102103 0.433242
L -0.017337 0.011125 -1.56 0.12 -0.039141 0.004468

_Imor_rent_5 0.243877 0.068623 3.55 0.00 0.109378 0.378376
Jsnbalall_4 0.198686 0.067800 2.93 0.00 0.065799 0.331572

Jinc_surp_6 0.199383 0.085397 2.33 0.02 0.032009 0.366758

Jinc_surp_5 0.171051 0.059692 2.87 0.00 0.054057 0.288044

Jnoopen6_4 -0.155911 0.053037 -2.94 0.00 -0.259862 -0.051960

Jsnball6m_3 -0.379491 0.162964 -2.33 0.02 -0.698894 -0.060088

Jage_7 -0.717821 0.163914 -4.38 0.00 -1.039087 -0.396555

Jloanbal 1 _3 -0.204037 0.075264 -2.71 0.01 -0.351552 -0.056522

Jloanball_2 -0.161329 0.076064 -2.12 0.03 -0.310412 -0.012245

_Iloanbal4_3 0.178239 0.098204 1.81 0.07 -0.014238 0.370716
Jmor_rent_6 0.190717 0.071206 2.68 0.01 0.051155 0.330278
Jnetincm_5 -0.139522 0.071722 -1.95 0.05 -0.280094 0.001050

Jage_4 -0.491473 0.103213 -4.76 0.00 -0.693767 -0.289179

Jage_5 -0.537734 0.118487 -4.54 0.00 -0.769963 -0.305504

Jage_3 -0.404384 0.104016 -3.89 0.00 -0.608252 -0.200516

Jage_2 -0.303818 0.103201 -2.94 0.00 -0.506088 -0.101548

Jgdscde2_ 0 -0.726914 0.355530 -2.04 0.04 -1.423739 -0.030088
Jsearches_3 -0.152417 0.075633 -2.02 0.04 -0.300656 -0.004178

Table D.24: Model 3 paying back early on Non-Internet segment

_t Coef. Std. Err. z P>\z\ [95% Conf. Interval]
logLXAPR -0.016163 0.034528 -0.47 0.64 -0.083836 0.051511

_Icpi_2 0.381626 0.036965 10.32 0.00 0.309177 0.454076

raw_loanaprl 0.027194 0.005535 4.91 0.00 0.016346 0.038041

Jspsetld_9 0.564048 0.059584 9.47 0.00 0.447266 0.680831

Jspl6m4_4 -0.160041 0.041371 -3.87 0.00 -0.241126 -0.078955

Jtosettl4_2 -0.137298 0.060010 -2.29 0.02 -0.254915 -0.019682
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Jage_2 -0J22558 0.088811 -1.38 0.17 -0.296624 0.051508

Jage_3 -0.212179 0.089370 -2.37 0.02 -0.387341 -0.037017
Jsocsett_2 0.275157 0.074237 3.71 0.00 0.129655 0.420659
Jmortbal_2 0.124587 0.048430 2.57 0.01 0.029666 0.219507

Jinc_surp_3 -0.403503 0.111105 -3.63 0.00 -0.621264 -0.185742

Jloanbal6_2 0.424934 0.119909 3.54 0.00 0.189918 0.659951

Jgdscde 999 0.300115 0.062982 4.77 0.00 0.176674 0.423557
Jtimebank_6 0.213128 0.055958 3.81 0.00 0.103451 0.322804
Jtimaddl_4 -0.307426 0.098253 -3.13 0.00 -0.499998 -0.114854

Jsocworst_4 0.332521 0.096818 3.43 0.00 0.142761 0.522281
Jtimaddl_2 -0.146731 0.060105 -2.44 0.02 -0.264534 -0.028928

L -0.016848 0.009845 -1.71 0.09 -0.036144 0.002448
Jtosettl2_3 0.156676 0.052415 2.99 0.00 0.053944 0.259407

Jgdscde2_ 1 0.228971 0.050613 4.52 0.00 0.129772 0.328171

Jspsetld_7 0.421281 0.076885 5.48 0.00 0.270590 0.571972

Jspsetld_8 0.416492 0.081863 5.09 0.00 0.256043 0.576940

Jgdscde2_ 4 0.215440 0.065216 3.30 0.00 0.087619 0.343262
_Issrc4to6_3 0.203889 0.067646 3.01 0.00 0.071305 0.336473

Jgdscde 333 0.429579 0.135234 3.18 0.00 0.164526 0.694632

Jage_7 -0.644983 0.113305 -5.69 0.00 -0.867057 -0.422909

Jage_6 -0.517459 0.094972 -5.45 0.00 -0.703602 -0.331317

Jspsetld_6 0.304223 0.070767 4.30 0.00 0.165522 0.442924

Jnetincm_6 -0.289539 0.078298 -3.70 0.00 -0.443000 -0.136078

Jspsetld_4 0.236906 0.061743 3.84 0.00 0.115893 0.357919

Jage_5 -0.471449 0.093219 -5.06 0.00 -0.654154 -0.288743

Jage_4 -0.379059 0.087534 -4.33 0.00 -0.550622 -0.207496

Jspsetld_5 0.217520 0.066729 3.26 0.00 0.086733 0.348307

Jtosettl3_2 -0.133808 0.048662 -2.75 0.01 -0.229184 -0.038431
JsnbalalL4 0.133196 0.050077 2.66 0.01 0.035047 0.231345
Jloanbal 1 _5 0.149586 0.053333 2.80 0.01 0.045055 0.254116
Jssrc4to6_4 0.263036 0.116344 2.26 0.02 0.035007 0.491066
Jtimebank_2 0.093939 0.041235 2.28 0.02 0.013121 0.174757
Jtimaddl_3 0.121093 0.054685 2.21 0.03 0.013911 0.228274

Jnetincm_5 -0.206326 0.062886 -3.28 0.00 -0.329580 -0.083072
Jmorjrent_5 0.206930 0.060225 3.44 0.00 0.088892 0.324968
Jsocnoact_2 0.299289 0.124999 2.39 0.02 0.054296 0.544283
Jwrstnrev_2 -0.153658 0.056164 -2.74 0.01 -0.263738 -0.043579

Jspsetld_3 0.122249 0.060764 2.01 0.04 0.003155 0.241344

Jno_store_l -0.162026 0.072486 -2.24 0.03 -0.304096 -0.019956
Jmor_rent_6 0.193063 0.063603 3.04 0.00 0.068403 0.317723
Jnetincm_4 -0.136683 0.057758 -2.37 0.02 -0.249886 -0.023479

Jmor_rent_4 0.134657 0.055113 2.44 0.02 0.026638 0.242676
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Jloanbal 1 _4 0J13544 0.051102 2.22 0.03 0.013387 0.213701

Jnoopen6_4 -0.091364 0.040175 -2.27 0.02 -0.170104 -0.012623

Jsnball6m_2 -0.668339 0.319299 -2.09 0.04 -1.294153 -0.042524
Jmor_rent_7 0.261830 0.125485 2.09 0.04 0.015884 0.507776
Jbrand_2 0.096208 0.046653 2.06 0.04 0.004770 0.187647
Jalcifdet_2 0.390993 0.193796 2.02 0.04 0.011160 0.770826

Table D.25: Model 4 Acceptance on Internet segment

_t Coef. Std. Err. z P>\z\ [95% Conf. Interval]
rawJoanaprl -0.254640 0.007491 -33.99 0.00 -0.269323 -0.239958

_Icpi_2 -0.614224 0.054554 -11.26 0.00 -0.721149 -0.507299
JnewbusJ -0.347534 0.114356 -3.04 0.00 -0.571668 -0.123400

L -0.064418 0.004474 -14.40 0.00 -0.073187 -0.055649

Jgdscde2_3 -0.289881 0.081567 -3.55 0.00 -0.449748 -0.130014
Jloanbal3_4 -0.140200 0.072949 -1.92 0.06 -0.283176 0.002777
Jsnball6m_8 0.055378 0.145931 0.38 0.70 -0.230641 0.341398
Jtosettl 1 _3 0.154207 0.067971 2.27 0.02 0.020986 0.287428
Jsocsett_2 -0.850096 0.256579 -3.31 0.00 -1.352981 -0.347211
Jtosettl2_3 0.094379 0.087647 1.08 0.28 -0.077406 0.266164

Jloanbal4_2 0.249436 0.144140 1.73 0.08 -0.033075 0.531946

Jage_9 -0.132706 0.065461 -2.03 0.04 -0.261007 -0.004404

Jspsetld_9 -0.192510 0.062879 -3.06 0.00 -0.315751 -0.069269
Jnetincm_9 0.218626 0.079954 2.73 0.01 0.061919 0.375334

Jbrand_2 -0.222160 0.049213 -4.51 0.00 -0.318615 -0.125705
JmortbaU 0.395094 0.265098 1.49 0.14 -0.124489 0.914676
Jloanbal2_2 0.173438 0.123219 1.41 0.16 -0.068068 0.414944

Jsnrecact_2 -0.077173 0.940674 -0.08 0.94 -1.920861 1.766514

Jspl6ml2_4 0.217551 0.100397 2.17 0.03 0.020775 0.414326

Jspl6mact_5 -0.085811 0.056529 -1.52 0.13 -0.196605 0.024983
Jtimadd 1 _9 -0.312264 0.067045 -4.66 0.00 -0.443670 -0.180859

Jspl6mact_4 -0.527298 0.952074 -0.55 0.58 -2.393329 1.338733
Jsnball6m_5 0.057622 0.193846 0.30 0.77 -0.322308 0.437553

Jtimadd 1_3 -0.216025 0.071493 -3.02 0.00 -0.356149 -0.075901

Jspl6mact_2 -0.503977 0.091246 -5.52 0.00 -0.682815 -0.325138

Jspvaldel_2 -0.232262 0.126706 -1.83 0.07 -0.480602 0.016078

Jtosettl3_3 0.099824 0.113449 0.88 0.38 -0.122531 0.322179

Jtimadd 1_4 0.164018 0.127762 1.28 0.20 -0.086390 0.414427

Jloanbal6_2 -0.188372 0.130240 -1.45 0.15 -0.443638 0.066895

Jgdscde 444 0.078296 0.324611 0.24 0.81 -0.557930 0.714522

Jgdscde 200 0.823129 0.275108 2.99 0.00 0.283927 1.362331

Jloanbal 1_8 -0.063103 0.055147 -1.14 0.25 -0.171190 0.044984
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Jloanbal3_3 0.376816 0.139961 2.69 0.01 0.102499

_Inoopen6_2 -0.202081 0.075071 -2.69 0.01 -0.349217
Jno_store_l 0.184065 0.222781 0.83 0.41 -0.252579

Jspl6ml2_5 -0.102859 0.069481 -1.48 0.14 -0.239039

Jnoopen6_3 -0.148003 0.119331 -1.24 0.22 -0.381887

Jgdscde2_2 0.116029 0.109091 1.06 0.29 -0.097785

Jloanbal 1 _2 0.223123 0.121324 1.84 0.07 -0.014668
_Iloanbal2_4 -0.035290 0.076279 -0.46 0.64 -0.184794
_Itimaddl_5 -0.174481 0.065441 -2.67 0.01 -0.302744
Jtimadd 1 _6 -0.227128 0.065651 -3.46 0.00 -0.355802
Jmor_rent_8 -0.172536 0.055984 -3.08 0.00 -0.282263
Jsnball6m_7 -0.660607 0.182616 -3.62 0.00 -1.018527

Jsnball6m_4 -0.616171 0.182276 -3.38 0.00 -0.973426

Jtosettl4_2 -0.155133 0.080532 -1.93 0.05 -0.312974

Jloanbal4_3 -0.156092 0.096828 -1.61 0.11 -0.345872

Jtimebank_9 -0.330771 0.066331 -4.99 0.00 -0.460776
Jtimebank_7 -0.268634 0.061909 -4.34 0.00 -0.389972
Jsnball6m_3 -0.424392 0.232953 -1.82 0.07 -0.880972

Jgdscde 111 0.353347 0.252943 1.40 0.16 -0.142412
Jwrst46al_4 0.276228 0.111266 2.48 0.01 0.058152
Jsocbal_2 0.522910 0.212510 2.46 0.01 0.106398
Jloanbal 1_7 0.119134 0.070702 1.69 0.09 -0.019439
Jsnbalall_2 0.090119 0.072733 1.24 0.22 -0.052434

Jsnball6m_6 -0.354342 0.181823 -1.95 0.05 -0.710708
Jsnball6m_2 -0.186447 0.185474 -1.01 0.32 -0.549969

Jinc_surp_7 -0.150983 0.065668 -2.30 0.02 -0.279690
Jsnbalall_6 0.018393 0.067400 0.27 0.79 -0.113709
Jtimebank-8 -0.091846 0.066500 -1.38 0.17 -0.222183
Jsnwl2tv_2 0.117013 0.097687 1.20 0.23 -0.074450

Jccjgt500_6 -0.064982 0.045087 -1.44 0.15 -0.153351
Jno_amexJ 0.629394 0.268342 2.35 0.02 0.103454

Jno_other_ 1 0.251210 0.271379 0.93 0.36 -0.280684
Jssrc4to6_2 -0.065877 0.049865 -1.32 0.19 -0.163611
Jwrst46al_5 0.278939 0.168512 1.66 0.10 -0.051339

Jspl6m4_3 -1.648736 0.633871 -2.60 0.01 -2.891100
Jmor_rent_4 -0.105389 0.061184 -1.72 0.09 -0.225307

Jno_deps_4 0.021881 0.049189 0.44 0.66 -0.074526

Jspsetld_8 -0.186939 0.101497 -1.84 0.07 -0.385870

Jage_5 0.167457 0.072601 2.31 0.02 0.025161

Jage_4 0.265553 0.067460 3.94 0.00 0.133334

Jage_6 0.195262 0.075662 2.58 0.01 0.046967

Jinc_surp_9 0.036645 0.078835 0.46 0.64 -0.117868

296

0.651134
-0.054944
0.620708
0.033321
0.085881

0.329843

0.460913
0.114214
-0.046219
-0.098454
-0.062808
-0.302687
-0.258916
0.002708
0.033688
-0.200765
-0.147295
0.032187

0.849106
0.494304
0.939422
0.257706
0.232672

0.002024

0.177075
-0.022276
0.150496
0.038491

0.308475
0.023387

1.155334
0.783104
0.031857
0.609216
-0.406372
0.014530
0.118289
0.011992
0.309753

0.397772

0.343556
0.191159
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Jage_7 0.069690 0.080455 0.87 0.39 -0.088000 0.227379
_cons 5.203634 0.428880 12.13 0.00 4.363045 6.044223

Table D.26: Model 4 Acceptance on Non-Internet segment

_t Coef. Std. Err. z P> |z| [95% Conf. Interval]
rawJoanaprl -0.148112 0.005116 -28.95 0.00 -0.158139 -0.138085

Jcpi_2 -1.288077 0.036348 -35.44 0.00 -1.359318 -1.216836
Jnewbus-l -0.415036 0.063486 -6.54 0.00 -0.539466 -0.290605

L -0.100407 0.004575 -21.95 0.00 -0.109373 -0.091441

_Igdscde2_3 -0.278908 0.060800 -4.59 0.00 -0.398074 -0.159741
Jloanbal3_4 -0.238483 0.062761 -3.80 0.00 -0.361492 -0.115473

Jsnball6m_8 -0.015294 0.103901 -0.15 0.88 -0.218936 0.188349
Jtosettll_3 0.281968 0.050739 5.56 0.00 0.182521 0.381415
Jsocsett_2 -1.015261 0.132755 -7.65 0.00 -1.275457 -0.755066

Jtosettl2_3 0.303854 0.066034 4.60 0.00 0.174430 0.433278
Jloanbal4_2 0.440524 0.126177 3.49 0.00 0.193222 0.687826

Jage_9 -0.112384 0.060845 -1.85 0.07 -0.231637 0.006869

Jspsetld_9 -0.332013 0.054846 -6.05 0.00 -0.439509 -0.224517

Jnetincm_9 0.146572 0.047920 3.06 0.00 0.052649 0.240494

Jbrand_2 0.323813 0.038982 8.31 0.00 0.247409 0.400217
Jmortbal_2 -0.186045 0.046123 -4.03 0.00 -0.276444 -0.095645

Jloanbal2_2 0.669819 0.111545 6.00 0.00 0.451195 0.888444

Jsnrecact_2 -3.176604 0.669603 -4.74 0.00 -4.489001 -1.864206

Jspl6ml2_4 0.378220 0.074749 5.06 0.00 0.231715 0.524724

Jspl6mact_5 -0.088585 0.046958 -1.89 0.06 -0.180621 0.003452

Jtimaddl_9 -0.203636 0.055572 -3.66 0.00 -0.312554 -0.094718

Jspl6mact_4 2.622550 0.678540 3.86 0.00 1.292635 3.952465

Jsnball6m_5 -0.075287 0.138534 -0.54 0.59 -0.346809 0.196235

Jtimaddl_3 -0.217859 0.060918 -3.58 0.00 -0.337256 -0.098462

Jspl6mact22 -0.222808 0.073239 -3.04 0.00 -0.366353 -0.079263

Jspvaldel_2 -0.436648 0.107962 -4.04 0.00 -0.648249 -0.225048

_Itosettl3_3 0.246957 0.088253 2.80 0.01 0.073984 0.419929

_Itimaddl_4 0.333111 0.087721 3.80 0.00 0.161181 0.505041

_Iloanbal6_2 -0.378285 0.113831 -3.32 0.00 -0.601390 -0.155180

Jgdscde 444 0.772789 0.180967 4.27 0.00 0.418101 1.127477

Jgdscde 200 0.971510 0.339643 2.86 0.00 0.305823 1.637198
Jloanball_8 -0.144240 0.045779 -3.15 0.00 -0.233966 -0.054515

Jloanbal3_3 0.342946 0.118169 2.90 0.00 0.111340 0.574553

Jnoopen6_2 -0.216416 0.062961 -3.44 0.00 -0.339818 -0.093014
Jno_store_l 0.206363 0.072327 2.85 0.00 0.064604 0.348121

Jspl6ml2_5 -0.219866 0.061645 -3.57 0.00 -0.340689 -0.099044
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Jnoopen6_3 -0.305604 0.103320 -2.96 0.00 -0.508107 -0.103101

Jgdscde2_2 0.168698 0.075716 2.23 0.03 0.020297 0.317100
Jloanbal 1 _2 0.490642 0.110930 4.42 0.00 0.273223 0.708061
Jloanbal2_4 0.279077 0.065561 4.26 0.00 0.150580 0.407573
Jtimadd 1 _5 -0.110920 0.058890 -1.88 0.06 -0.226342 0.004502
Jtimadd 1 _6 -0.064137 0.056053 -1.14 0.25 -0.173997 0.045724

Jmor_rent_8 -0.111362 0.044013 -2.53 0.01 -0.197625 -0.025099
Jsnball6m_7 -0.660460 0.159221 -4.15 0.00 -0.972527 -0.348393
Jsnball6m_4 -0.500300 0.144591 -3.46 0.00 -0.783693 -0.216906
Jtosettl4_2 -0.311039 0.069672 -4.46 0.00 -0.447594 -0.174483
_Iloanbal4_3 -0.231015 0.081564 -2.83 0.01 -0.390877 -0.071153
Jtimebank_9 -0.028959 0.055224 -0.52 0.60 -0.137195 0.079278
_Itimebank_7 0.002228 0.057827 0.04 0.97 -0.111111 0.115566
Jsnball6m_3 -0.931458 0.250414 -3.72 0.00 -1.422260 -0.440657

Jgdscde 111 0.489132 0.213728 2.29 0.02 0.070233 0.908031

Jwrst46aL4 0.216627 0.089740 2.41 0.02 0.040741 0.392514

Jsocbal_2 0.256581 0.109653 2.34 0.02 0.041664 0.471497

Jloanbal 1 _7 0.168870 0.065241 2.59 0.01 0.040999 0.296740

Jsnbalall_2 0.243426 0.072406 3.36 0.00 0.101513 0.385339

Jsnball6m_6 -0.433124 0.149801 -2.89 0.00 -0.726729 -0.139520

Jsnball6m_2 -0.326548 0.141425 -2.31 0.02 -0.603735 -0.049361

Jinc_surp_7 -0.025391 0.052595 -0.48 0.63 -0.128476 0.077694

JsnbalalL6 0.192122 0.061877 3.10 0.00 0.070845 0.313399

Jtimebank_8 -0.065583 0.054564 -1.20 0.23 -0.172526 0.041360
Jsnwl2tv_2 0.154682 0.082738 1.87 0.06 -0.007481 0.316846

Jccjgt500_6 -0.082615 0.038917 -2.12 0.03 -0.158891 -0.006340

Jno_amex_l 0.215555 0.166320 1.30 0.20 -0.110427 0.541537

Jno_otherJ 0.435893 0.192808 2.26 0.02 0.057997 0.813789

Jssrc4to6_2 -0.079337 0.042021 -1.89 0.06 -0.161698 0.003023

Jwrst46al_5 0.297321 0.134490 2.21 0.03 0.033725 0.560917

Jspl6m4_3 -0.553984 0.357421 -1.55 0.12 -1.254515 0.146548

Jmor_rent_4 -0.086901 0.053500 -1.62 0.10 -0.191759 0.017957

Jno_deps_4 0.127808 0.041544 3.08 0.00 0.046383 0.209232

Jspsetld_8 -0.129429 0.086600 -1.49 0.14 -0.299162 0.040304

Jage_5 0.092388 0.058482 1.58 0.11 -0.022236 0.207011

Jage_4 0.032058 0.054338 0.59 0.56 -0.074443 0.138559

Jage_6 0.090479 0.059344 1.52 0.13 -0.025833 0.206790

Jinc_surp_9 0.068322 0.050795 1.35 0.18 -0.031235 0.167878

Jage_7 0.065728 0.058356 1.13 0.26 -0.048649 0.180104

_cons 5.360419 0.297923 17.99 0.00 4.776501 5.944337
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Table D.27: Model 4 default on Internet segment

299

_t Coef. Std. Err. z P>\z\ [95% Conf. Interval]
rawJoanaprl 0J23936 0.013656 9.08 0.00 0.097172 0.150700

Jcpi_2 1.488281 0.135566 10.98 0.00 1.222576 1.753986
L 0.035435 0.013006 2.72 0.01 0.009943 0.060928

Jspl6ml2_4 0.567339 0.197965 2.87 0.00 0.179335 0.955342
Jloanbal4_3 -0.352716 0.175408 -2.01 0.04 -0.696510 -0.008923
raw_term 0.019082 0.006007 3.18 0.00 0.007309 0.030855

Jspvaldel_2 -0.712389 0.251289 -2.83 0.01 -1.204907 -0.219872

Jspl6m4_3 -0.026417 1.143924 -0.02 0.98 -2.268467 2.215633
Jsocworst_3 0.478129 0.521272 0.92 0.36 -0.543546 1.499804
_Itimebank_4 -0.673665 0.216474 -3.11 0.00 -1.097945 -0.249384
Jwrst46al_4 0.479822 0.196891 2.44 0.02 0.093923 0.865722
Jtimebank_5 -0.896321 0.467179 -1.92 0.06 -1.811975 0.019332
Jsocbal_3 -0.554029 0.586005 -0.95 0.34 -1.702578 0.594520

_Iinc_surp_2 -0.397275 0.171420 -2.32 0.02 -0.733252 -0.061298

Jgdscde 999 -1.035133 0.462025 -2.24 0.03 -1.940687 -0.129580
Jssrc4to6_4 0.753783 0.322470 2.34 0.02 0.121754 1.385811
Jtimebank_2 -0.311506 0.154381 -2.02 0.04 -0.614087 -0.008925
Jtimebank_3 -0.586266 0.285501 -2.05 0.04 -1.145838 -0.026694

Jspl6ml2_3 0.760222 0.379992 2.00 0.05 0.015452 1.504993
Jsearches_7 -0.018869 0.131530 -0.14 0.89 -0.276664 0.238926
Jtimadd 1 _6 0.389828 0.169895 2.29 0.02 0.056839 0.722817

Jssrc4to6_5 0.871025 0.318303 2.74 0.01 0.247163 1.494887
Jsnball6m_8 0.396031 0.203959 1.94 0.05 -0.003721 0.795783
Jloanbal5_2 -0.312743 0.271993 -1.15 0.25 -0.845840 0.220355

Jspsetld_8 -0.771282 0.423840 -1.82 0.07 -1.601993 0.059428
Jtimadd 1_7 -0.145889 0.228202 -0.64 0.52 -0.593157 0.301378

Jage_7 -0.107800 0.351576 -0.31 0.76 -0.796876 0.581276

Jgdscde2_ 1 -0.251489 0.238721 -1.05 0.29 -0.719373 0.216395
Jloanbal2_3 0.291530 0.173928 1.68 0.09 -0.049362 0.632423

JspsetldJ 0.206549 0.173234 1.19 0.23 -0.132984 0.546082
Jsnwl2tv_2 -0.517527 0.273841 -1.89 0.06 -1.054245 0.019192

Jnoopen6_4 -0.264340 0.145888 -1.81 0.07 -0.550274 0.021594
Jmortbal_4 1.095349 0.758045 1.44 0.15 -0.390391 2.581090
Jmor_rent_7 0.273244 0.273993 1.00 0.32 -0.263773 0.810261

Jgdscde3_ 4 1.297023 0.548753 2.36 0.02 0.221487 2.372560

Table D.28: Model 4 default on Non-Internet segment

_t Coef. Std. Err. z P> |z| [95% Conf. Interval]
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rawJoanaprl 0J23843 0.007698 16.09 0.00 0.108755 0.138931

_Icpi_2 1.320721 0.094054 14.04 0.00 1.136379 1.505064
L 0.041120 0.009097 4.52 0.00 0.023291 0.058949

Jspl6ml2_4 0.777575 0.109567 7.10 0.00 0.562827 0.992322
_Iloanbal4_3 -0.609707 0.109348 -5.58 0.00 -0.824024 -0.395389
raw_term 0.015040 0.003543 4.25 0.00 0.008096 0.021983

Jspvaldel_2 -0.407116 0.164356 -2.48 0.01 -0.729247 -0.084984

Jspl6m4_3 2.002906 0.395268 5.07 0.00 1.228194 2.777617
Jsocworst_3 1.264901 0.339899 3.72 0.00 0.598711 1.931090
Jtimebank_4 -0.542912 0.133410 -4.07 0.00 -0.804391 -0.281433
Jwrst46al_4 0.366698 0.117154 3.13 0.00 0.137081 0.596316
Jtimebank_5 -1.061217 0.298802 -3.55 0.00 -1.646857 -0.475576
JsocbaL3 -1.123392 0.346895 -3.24 0.00 -1.803293 -0.443491

_Iinc_surp_2 -0.233512 0.112098 -2.08 0.04 -0.453220 -0.013803

Jgdscde 999 -0.414522 0.175683 -2.36 0.02 -0.758854 -0.070189
Jssrc4to6_4 0.385773 0.193086 2.00 0.05 0.007331 0.764215
Jtimebank_2 -0.308917 0.100642 -3.07 0.00 -0.506171 -0.111663
Jtimebank_3 -0.430660 0.136402 -3.16 0.00 -0.698003 -0.163318

Jspl6ml2_3 0.502831 0.221400 2.27 0.02 0.068895 0.936767
Jsearches_7 -0.266937 0.086375 -3.09 0.00 -0.436228 -0.097646
_Itimaddl_6 0.165209 0.116058 1.42 0.16 -0.062260 0.392678
Jssrc4to6_5 0.569614 0.221471 2.57 0.01 0.135539 1.003690

Jsnball6m_8 0.354738 0.130857 2.71 0.01 0.098263 0.611214
Jloanbal5_2 -0.334261 0.168282 -1.99 0.05 -0.664088 -0.004434

Jspsetld_8 -0.413513 0.248406 -1.66 0.10 -0.900379 0.073353
Jtimadd 1 _7 -0.297089 0.134978 -2.20 0.03 -0.561641 -0.032536

Jage_7 -0.512910 0.216928 -2.36 0.02 -0.938082 -0.087738

Jgdscde2_ 1 -0.239360 0.129709 -1.85 0.07 -0.493586 0.014866
Jloanbal2_3 0.193613 0.114756 1.69 0.09 -0.031305 0.418530

_Ispsetld_l 0.208221 0.108363 1.92 0.06 -0.004165 0.420608
Jsnwl2tv_2 -0.258445 0.195902 -1.32 0.19 -0.642407 0.125516

Jnoopen6_4 -0.114703 0.090614 -1.27 0.21 -0.292303 0.062898
JmortbaL4 0.179472 0.085848 2.09 0.04 0.011213 0.347731
Jmor_rent_7 0.442967 0.228957 1.93 0.05 -0.005781 0.891714

Jgdscde3_ 4 0.306764 0.275048 1.12 0.27 -0.232319 0.845847

Table D.29: Model 4 paying back early on Internet segment

_t Coef. Std. Err. z P>\z\ [95% Conf. Interval]
rawJoanaprl 0.055628 0.008158 6.82 0.00 0.039639 0.071616

Jcpi22 0.333386 0.066264 5.03 0.00 0.203510 0.463261
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Jspsetld_9 0.615343 0.079271 7.76 0.00 0.459976 0.770711

Jspl6m4_4 -0.286531 0.056860 -5.04 0.00 -0.397975 -0.175088
Jtosettl4_2 0.006099 0.105333 0.06 0.95 -0.200351 0.212548

_Iinc_surp_3 -0.258632 0.112927 -2.29 0.02 -0.479964 -0.037300

_Iage_6 -0.843473 0.132363 -6.37 0.00 -1.102900 -0.584046

Jage_7 -0.776320 0.165643 -4.69 0.00 -1.100974 -0.451665
Jsocsett_3 -0.276914 0.149313 -1.85 0.06 -0.569563 0.015735

Jage_5 -0.618593 0.120472 -5.13 0.00 -0.854713 -0.382472

Jage_4 -0.569434 0.106189 -5.36 0.00 -0.777560 -0.361308
Jmortbal_2 0.284348 0.263612 1.08 0.28 -0.232322 0.801017
Jtosettl 1 _3 0.157040 0.069843 2.25 0.03 0.020151 0.293930
_Iloanbal5_2 0.506712 0.205380 2.47 0.01 0.104175 0.909248

Jspsetld_7 0.436983 0.100889 4.33 0.00 0.239244 0.634722

Jspsetld_8 0.442091 0.113811 3.88 0.00 0.219026 0.665155
L -0.013104 0.005771 -2.27 0.02 -0.024414 -0.001793

Jssrc4to6_3 0.147553 0.094520 1.56 0.12 -0.037703 0.332808

_Imor_rent_5 0.314449 0.072591 4.33 0.00 0.172174 0.456725

Jgdscde 999 0.150868 0.119622 1.26 0.21 -0.083587 0.385324

Jgdscde2_ 1 0.258441 0.080944 3.19 0.00 0.099794 0.417087

Jgdscde2_ 4 0.361686 0.120909 2.99 0.00 0.124709 0.598662
JsnbalalL4 0.149796 0.067774 2.21 0.03 0.016961 0.282630

Jage_3 -0.465274 0.106725 -4.36 0.00 -0.674451 -0.256096

Jnoopen6_4 -0.120112 0.054586 -2.20 0.03 -0.227098 -0.013125

Jmor_rent_6 0.304391 0.077166 3.94 0.00 0.153148 0.455633

Jnetincm_5 -0.225180 0.077626 -2.90 0.00 -0.377325 -0.073035

Jnetincm_6 -0.151910 0.086035 -1.77 0.08 -0.320535 0.016715

Jgdscde 333 0.273546 0.165935 1.65 0.10 -0.051681 0.598773

Jloanbal 1 _3 -0.210312 0.075762 -2.78 0.01 -0.358802 -0.061822

Jloanbal 1 _2 -0.170823 0.076164 -2.24 0.03 -0.320102 -0.021545

Jspsetld_5 0.335652 0.091573 3.67 0.00 0.156174 0.515131

Jspsetld_6 0.221784 0.102694 2.16 0.03 0.020507 0.423062

Jspsetld_4 0.134714 0.084666 1.59 0.11 -0.031228 0.300656

Jtimaddl_4 -0.228007 0.166804 -1.37 0.17 -0.554937 0.098923

Jtimaddl22 -0.192363 0.090699 -2.12 0.03 -0.370130 -0.014597

Jage_2 -0.328309 0.104115 -3.15 0.00 -0.532371 -0.124247

Jloanbal6_2 0.165756 0.183640 0.90 0.37 -0.194172 0.525685

Jtimebank_6 0.028010 0.072789 0.38 0.70 -0.114654 0.170675

Jtimebank_2 0.087259 0.054747 1.59 0.11 -0.020043 0.194561

Jtosettl3_2 -0.024020 0.065056 -0.37 0.71 -0.151527 0.103488

Jssrc4to6_5 -0.498108 0.294184 -1.69 0.09 -1.074698 0.078483

Jsocworst_4 0.042037 0.263097 0.16 0.87 -0.473624 0.557698

Jsocworst_3 0.471756 0.244356 1.93 0.05 -0.007174 0.950685
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Jbrand22 0.122322 0.064609 1.89 0.06 -0.004308 0.248953

Jinc_surp_4 0.174286 0.074212 2.35 0.02 0.028833 0.319738

_Iinc_surp_5 0.121224 0.058079 2.09 0.04 0.007390 0.235057

_Imor_rent_7 0.313040 0.132692 2.36 0.02 0.052968 0.573111
Jalcifdet_2 0.303238 0.238565 1.27 0.20 -0.164341 0.770817
Jsocbal_3 -0.497193 0.264105 -1.88 0.06 -1.014829 0.020444
Jmor_rent_4 0.068703 0.076450 0.90 0.37 -0.081136 0.218542
_Inetincm_7 -0.335513 0.172204 -1.95 0.05 -0.673026 0.002000

Jnetincm_4 -0.041142 0.073861 -0.56 0.58 -0.185907 0.103623

Jno_store_l -0.111476 0.227058 -0.49 0.62 -0.556502 0.333550

Jspsetld_3 0.086048 0.083835 1.03 0.31 -0.078265 0.250361

Jtosettl4_3 0.639930 0.182950 3.50 0.00 0.281355 0.998505
Jloanbal4_3 0.245851 0.117124 2.10 0.04 0.016292 0.475411
Jtimadd 1 _8 -0.142080 0.082196 -1.73 0.08 -0.303181 0.019020

_Iccjgt500_3 0.080876 0.061888 1.31 0.19 -0.040423 0.202174
Jssrc4to6_4 0.159480 0.172311 0.93 0.36 -0.178244 0.497203

_Itosettl5_3 -0.550424 0.306429 -1.80 0.07 -1.151015 0.050167

Jspl6ml2_5 -0.106735 0.072303 -1.48 0.14 -0.248446 0.034977

Jsocnoact_2 0.589262 0.427374 1.38 0.17 -0.248376 1.426899

Jgdscde3_ 2 -0.601198 0.385620 -1.56 0.12 -1.356999 0.154602

Jspl6ml2_3 -0.333338 0.306520 -1.09 0.28 -0.934105 0.267430
_Isocsett_2 0.212194 0.224009 0.95 0.34 -0.226856 0.651243

Table D.30: Model 4 paying back early on Non-Internet segment

_t Coef. Std. Err. z P>\z\ [95% Conf. Interval]
rawJoanaprl 0.031840 0.005501 5.79 0.00 0.021059 0.042621

Jcpi_2 0.376970 0.037046 10.18 0.00 0.304361 0.449578

Jspsetld_9 0.557654 0.060507 9.22 0.00 0.439062 0.676246

Jspl6m4_4 -0.150461 0.040841 -3.68 0.00 -0.230508 -0.070415
Jtosettl4_2 0.016420 0.077619 0.21 0.83 -0.135712 0.168551

Jinc_surp_3 -0.266164 0.122057 -2.18 0.03 -0.505391 -0.026937

Jage_6 -0.493233 0.095156 -5.18 0.00 -0.679735 -0.306731

Jage_7 -0.622869 0.113400 -5.49 0.00 -0.845129 -0.400608
Jsocsett_3 -0.085353 0.070771 -1.21 0.23 -0.224063 0.053356

Jage_5 -0.455380 0.093406 -4.88 0.00 -0.638453 -0.272308

Jage_4 -0.364367 0.087781 -4.15 0.00 -0.536413 -0.192320
Jmortbal22 0.126971 0.048432 2.62 0.01 0.032046 0.221896
Jtosettl 1 _3 0.082902 0.047011 1.76 0.08 -0.009239 0.175042
Jloanbal5_2 0.127925 0.140797 0.91 0.36 -0.148031 0.403881

Jspsetld_7 0.417191 0.077418 5.39 0.00 0.265455 0.568927

Jspsetld_8 0.422096 0.082103 5.14 0.00 0.261178 0.583015
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L -0.020827 0.005116 -4.07 0.00 -0.030854 -0.010800
Jssrc4to6_3 0.201625 0.067963 2.97 0.00 0.068419 0.334831
Jmor_rent_5 0.213825 0.060533 3.53 0.00 0.095182 0.332467

Jgdscde 999 0.360476 0.068045 5.30 0.00 0.227110 0.493843

Jgdscde2_ 1 0.241203 0.052791 4.57 0.00 0.137736 0.344671

Jgdscde2_ 4 0.210699 0.066219 3.18 0.00 0.080912 0.340486
Jsnbalall_4 0.147495 0.050697 2.91 0.00 0.048132 0.246858

Jage_3 -0.198157 0.089474 -2.21 0.03 -0.373522 -0.022792

Jnoopen6_4 -0.078698 0.040063 -1.96 0.05 -0.157219 -0.000177

Jmor_rent_6 0.218466 0.064480 3.39 0.00 0.092087 0.344845
Jnetincm_5 -0.198733 0.063937 -3.11 0.00 -0.324047 -0.073420
Jnetincm_6 -0.290827 0.081691 -3.56 0.00 -0.450938 -0.130715

Jgdscde 333 0.432409 0.135280 3.20 0.00 0.167264 0.697553
Jloanball_3 -0.097750 0.057352 -1.70 0.09 -0.210157 0.014657

Jloanbal 122 -0.132176 0.054430 -2.43 0.02 -0.238856 -0.025496

Jspsetld_5 0.216261 0.066712 3.24 0.00 0.085509 0.347014

Jspsetld_6 0.300590 0.071185 4.22 0.00 0.161069 0.440111

Jspsetld_4 0.241130 0.061698 3.91 0.00 0.120204 0.362055
Jtimaddl_4 -0.322037 0.098642 -3.26 0.00 -0.515372 -0.128702
Jtimaddl22 -0.156688 0.060495 -2.59 0.01 -0.275255 -0.038120

Jage_2 -0.114436 0.088936 -1.29 0.20 -0.288747 0.059875
Jloanbal6_2 0.280068 0.139796 2.00 0.05 0.006074 0.554062

Jtimebank_6 0.206089 0.056063 3.68 0.00 0.096207 0.315970
Jtimebank_2 0.084634 0.041324 2.05 0.04 0.003640 0.165627
Jtosettl3_2 -0.124450 0.049308 -2.52 0.01 -0.221092 -0.027809
Jssrc4to6_5 -0.377999 0.209567 -1.80 0.07 -0.788743 0.032745
Jsocworst_4 0.323424 0.100705 3.21 0.00 0.126046 0.520801

Jsocworst_3 0.292311 0.093063 3.14 0.00 0.109912 0.474710
Jbrand_2 0.094813 0.048359 1.96 0.05 0.000031 0.189595

Jinc_surp_4 0.086053 0.049535 1.74 0.08 -0.011034 0.183140

Jinc_surp_5 0.068835 0.040512 1.70 0.09 -0.010567 0.148237
Jmor_rent_7 0.336915 0.131665 2.56 0.01 0.078857 0.594974

Jalcifdet_2 0.406191 0.193923 2.09 0.04 0.026109 0.786272
Jsocbal_3 -0.230412 0.095224 -2.42 0.02 -0.417048 -0.043776
Jmor_rent_4 0.133249 0.055336 2.41 0.02 0.024793 0.241704

Jnetincm_7 -0.304668 0.175873 -1.73 0.08 -0.649374 0.040037
Jnetincm_4 -0.144123 0.058285 -2.47 0.01 -0.258359 -0.029886
Jno_store_l -0.164431 0.072813 -2.26 0.02 -0.307141 -0.021721

Jspsetld_3 0.122144 0.060808 2.01 0.05 0.002963 0.241325
Jtosettl4_3 0.329474 0.115464 2.85 0.00 0.103170 0.555779
Jloanbal4_3 0.214878 0.085226 2.52 0.01 0.047838 0.381917

Jtimaddl_8 -0.073447 0.055073 -1.33 0.18 -0.181387 0.034494
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_Iccjgt500_3 0.068213 0.042809 1.59 0.11 -0.015691 0.152117

Jssrc4to6_4 0.229106 0.116486 1.97 0.05 0.000797 0.457415

_Itosettl5_3 -0.186668 0.146613 -1.27 0.20 -0.474024 0.100689

Jspl6ml2_5 -0.085915 0.061071 -1.41 0.16 -0.205610 0.033781
Jsocnoact_2 0.228590 0.125667 1.82 0.07 -0.017712 0.474892

Jgdscde3_ 2 -0.352478 0.248197 -1.42 0.16 -0.838935 0.133980

Jspl6ml2_3 -0.312152 0.182088 -1.71 0.09 -0.669037 0.044733
Jsocsett_2 0.188781 0.094387 2.00 0.05 0.003786 0.373776

The actual symbolic function used to calculated the expected profit in Matlab is
printed below. L is for the loan amount and x is for the interest rate charged.
(-l.*L+.987876912783530165543538*(2250134495133037/2251799813685248) "exp(1014624516889591/9007199254740992*x+
7827322445356437/590295810358705651712*L-1297761051646769/18014398509481984) *((4500844009866497/4503599627370496)
"exp(5595364410765473/144115188075855872*x-5176894256845849/295147905179352825856*L+5425581046685411/4503599627370496)
-1.*(8991702818783173/9007199254740992) "exp(5595364410765473/144115188075855872*x-
5176894256845849/295147905179352825856*L+5425581046685411/4503599627370496)) *(.316227766016837933199889*L*(100.+x)
"(1/4)-.999999999999999999999994e-4*L*(100.+x) "2/(.999999999999999999999994e-4*(100.+x)"2-1.)*(.316227766016837933199889
*(100.+x)"(1/4)-1.)) *(-1.+1.36258413811592257099598*(100.+x) "(1/12))+.937019130943114585524307*(8937376977342113/
9007199254740992) "exp(1014624516889591/9007199254740992*x+7827322445356437/590295810358705651712*L-1297761051646769/
18014398509481984) *((8481104869158237/9007199254740992) "exp(5595364410765473/144115188075855872*x-5176894256845849/
295147905179352825856*L+5425581046685411/4503599627370496) -1.*(4212378365670251/4503599627370496) "exp(5595364410765473
/144115188075855872*x-5176894256845849/295147905179352825856*L+5425581046685411/4503599627370496))
*(.215443469003188372175929e-2*L*(100.+x)"(4/3)-.999999999999999999999994e-4*L*(100.+x) "2/
(.999999999999999999999994e-4*(100.+x)"2-1.)*(.215443469003188372175929e-2*(100.+x)"(4/3)-1.))
*(-1.+1.36258413811592257099598*(100.+x)"(1/12))+.910727411167139278986156*(8907375347704459/9007199254740992)
"exp(1014624516889591/9007199254740992*x+7827322445356437/590295810358705651712*L-1297761051646769/18014398509481984)
*((8085879414211337/9007199254740992) "exp(5595364410765473/l44115188075855872*x-5176894256845849/295147905179352825856
*L+5425581046685411/4503599627370496) -1.*(4017172091621691/4503599627370496) "exp(5595364410765473/144115188075855872*x
-5176894256845849/295147905179352825856*L+5425581046685411/4503599627370496)) *(.146779926762206954092052e-3*L*(100.+x)
"(23/12)-.999999999999999999999994e-4*L*(100.+x) "2/(.999999999999999999999994e-4*(lOO.+x)"2-1.)
*(.146779926762206954092052e-3*(100.+x)"(23/12)-1.)) *(-1.+1.36258413811592257099598*(100.+x)"(1/12))
+.979876614648777332789308*(8992420872707761/9007199254740992) "exp(1014624516889591/9007199254740992*x
+7827322445356437/590295810358705651712*L-1297761051646769/18014398509481984) *((8971003374175853/9007199254740992)
"exp(5595364410765473/144115188075855872*x-5176894256845849/295147905179352825856*L+5425581046685411/4503599627370496)
-1.*(8945078853280857/9007199254740992) "exp(5595364410765473/144115188075855872*x
-5176894256845849/295147905179352825856*L+5425581046685411/4503599627370496))
*(.146779926762206954092052*L*(lOO.+x)"(5/12)-.999999999999999999999994e-4*L*(100,+x)
"2/(.999999999999999999999994e-4*(100.+X)"2-1.)*(.146779926762206954092052*(100,+x)"(5/12)-1.))
*(-1.+1.36258413811592257099598*(100.+x)"(1/12))+.245967157994214112999966*(8971003374175853/9007199254740992)
"exp(5595364410765473/144115188075855872*x-5176894256845849/295147905179352825856*L+5425581046685411/4503599627370496)
*((2250134495133037/2251799813685248) "exp(1014624516889591/9007199254740992*x
+7827322445356437/590295810358705651712*L-1297761051646769/18014398509481984) -1.*(4498200802209197/4503599627370496)
"exp(1014624516889591/9007199254740992*x+7827322445356437/590295810358705651712*L-1297761051646769/18014398509481984))
*(.316227766016837933199889*L*(lOO.+x)"(1/4)-.999999999999999999999994e-4*L*(lOO.+x)
"2/(.999999999999999999999994e-4*(100.+x)"2-1.)*(.316227766016837933199889*(100.+x)"(1/4)-1.))
+.983868631976856451999864*(4498200802209197/4503599627370496) "exp(1014624516889591/9007199254740992*x
+7827322445356437/590295810358705651712*L-1297761051646769/18014398509481984) *((8991702818783173/9007199254740992)
"exp(5595364410765473/144115188075855872*x-5176894256845849/295147905179352825856*L+5425581046685411/4503599627370496)
-1.*(8971003374175853/9007199254740992) "exp(5595364410765473/144115188075855872*x
-5176894256845849/295147905179352825856*L+5425581046685411/4503599627370496))
*(.215443469003188372175929*L*(lOO.+x)"(1/3)-.999999999999999999999994e-4*L*(lOO.+x)
"2/(.999999999999999999999994e-4*(lOO.+x)"2-1.)*(.215443469003188372175929*(lOO.+x)"(1/3)-1.))
*(-1.+1.36258413811592257099598*(100.ix)"(1/12))».920430703360277045381547
*(8932128122048405/9007199254740992) "exp(1014624516889591/9007199254740992*x+7827322445356437
/590295810358705651712*L-1297761051646769/18014398509481984) *((8364791122158079/9007199254740992)
"exp(5595364410765473/144115188075855872*x-5176894256845849/295147905179352825856*L+5425581046685411

/4503599627370496) -1.* (4149995179171859/4503599627370496) "exp(5595364410765473/l44115188075855872*x
-5176894256845849/295147905179352825856*L+5425581046685411/4503599627370496))
*(.100000000000000000000000e-2*L*(lOO.+x)"(3/2)-.999999999999999999999994e-4*L*(lOO.+x)
"2/(.999999999999999999999994e-4*(lOO.+x)"2-1.)*(.100000000000000000000000e-2*(100.+x)"(3/2)-1.))
*(-1.+1.36258413811592257099598*(100.+x)"(1/12))+.991901523326210267797649*(2251126683166943/2251799813685248)
"exp(1014624516889591/9007199254740992*x+7827322445356437/590295810358705651712*L-1297761051646769/18014398509481984)
*((9005957161963763/9007199254740992) "exp(5595364410765473/144115188075855872*x
-5176894256845849/295147905179352825856*L+5425581046685411/4503599627370496) -1.*(4500844009866497/4503599627370496)
"exp(5595364410765473/144115188075855872*x-5176894256845849/295147905179352825856*L+5425581046685411/4503599627370496))
*(.464158883361277889241008*L*(lOO.+x)"(1/6)-.999999999999999999999994e-4*L*(100.+x)
"2/(.999999999999999999999994e-4*(lOO.+x)"2-1.)*(.464158883361277889241008*(100.+x)"(1/6)-1.))
*(-1.+1.36258413811592257099598*(lOO.+x)"(1/12))+.948518098578582877867671*(559183992747409/562949953421312)
"exp(1014624516889591/9007199254740992*x+7827322445356437/590295810358705651712*L-1297761051646769/18014398509481984)
*((8653328193444415/9007199254740992) "exp(5595364410765473/144115188075855872*x
-5176894256845849/295147905179352825856*L+5425581046685411/4503599627370496) -1.*(4300974033223813/4503599627370496)
"exp(5595364410765473/144115188075855872*x-5176894256845849/295147905179352825856*L+5425581046685411/4503599627370496))
*(.681292069057961285497988e-2*L*(100.+x)"(13/12)-.999999999999999999999994e-4*L*(100.+x)
"2/(.999999999999999999999994e-4*(lOO.+x)"2-1.)*(.681292069057961285497988e-2*(lOO.+x)"(13/12)-1.))
*(-1.+1.36258413811592257099598*(lOO.+x)*(1/12))+.238095590328048006214365*(8653328193444415/9007199254740992)
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"exp(5595364410765473/144115188075855872*x-5176894256845849/295147905179352825856*L+5425581046685411/4503599627370496)
*((8953690005984367/9007199254740992) "exp(1014624516889591/9007199254740992*x+7827322445356437/

590295810358705651712*L-1297761051646769/18014398509481984) -1.*(559399050888615/562949953421312)
"exp(1014624516889591/9007199254740992*x+7827322445356437/590295810358705651712*L-1297761051646769
/18014398509481984)) *(.146779926762206954092052e-l*L*(100.+x)"(11/12) 999999999999999999999994e-4*L*(100.+x)
"2/ (.999999999999999999999994e-4*(100.+x)"2-1.)*(.146779926762206954092052e-l*(100.+x)"(11/12)-1.))
+.235209136720644208671726*(8481104869158237/9007199254740992) "exp(5595364410765473/144115188075855872
*x-5176894256845849/295147905179352825856*L+5425581046685411/4503599627370496) *((8943931065879825/9007199254740992)
"exp(1014624516889591/9007199254740992*x+7827322445356437/590295810358705651712*L-1297761051646769/18014398509481984)
-1.*(1117463989200615/1125899906842624) "exp(1014624516889591/9007199254740992*x+7827322445356437

/590295810358705651712*L-1297761051646769/18014398509481984)) *(.464158883361277889241008e-2*L*(100.+x)"(7/6)
-.999999999999999999999994e-4*L*(100.+x) "2/(.999999999999999999999994e-4*(100.+x)"2-1.)*(.464158883361277889241008e
-2*(100.+x)"(7/6)-1.)) +.241017466090151473354673*(2197633039383027/2251799813685248)
"exp(5595364410765473/144115188075855872*x-5176894256845849/295147905179352825856*L+5425581046685411

/4503599627370496) *((2244442328010009/2251799813685248) "exp(1014624516889591/9007199254740992*x
+7827322445356437/590295810358705651712*L-1297761051646769/18014398509481984) -1.*(4484484909400055/4503599627370496)
"exp(1014624516889591/9007199254740992*x+7827322445356437/590295810358705651712*L-1297761051646769/18014398509481984))
* (.464158883361277889241008e-l*L*(lOO.+x)"(2/3)-.999999999999999999999994e-4*L*(100.+x)
"2/(.999999999999999999999994e-4*(100.+x)"2-1.)*(.464158883361277889241008e-l*(100.+x)"(2/3)-1.))
+.247975380831552566949412*(4500844009866497/4503599627370496) "exp(5595364410765473/144115188075855872*x
-5176894256845849/295147905179352825856*L+5425581046685411/4503599627370496) *((4503497800982921/4503599627370496)
"exp(1014624516889591/9007199254740992*x+7827322445356437/590295810358705651712*L-1297761051646769/18014398509481984)
-1.*(2251126683166943/2251799813685248) "exp(1014624516889591/9007199254740992*x+7827322445356437/

590295810358705651712*L-1297761051646769/18014398509481984)) *(.681292069057961285497988*L*(lOO.+x)
"(1/12)-.999999999999999999999994e-4*L*(lOO.+x) "2/(.999999999999999999999994e-4*(100.+x)"2-1.)
* (.681292069057961285497988*(lOO.+x)"(1/12)-1.)) +.244969153662194333197327*(8945078853280857/9007199254740992
"exp(5595364410765473/144115188075855872*x-5176894256845849/295147905179352825856*L+5425581046685411/4503599627370496)
*((4498200802209197/4503599627370496) "exp(1014624516889591/9007199254740992*x+7827322445356437/
590295810358705651712*L-1297761051646769/18014398509481984) -1.*(8992420872707761/9007199254740992)
"exp(1014624516889591/9007199254740992*x+7827322445356437/590295810358705651712*L-1297761051646769/18014398509481984))
* (.215443469003188372175929*L*(lOO.+x)"(1/3)-.999999999999999999999994e-4*L*(100.+x)
"2/(.999999999999999999999994e-4*(lOO.+x)"2-1.)*(.215443469003188372175929*(lOO.+x)"(1/3)-1.))
+.239065591763044473878373*(8701426817608717/9007199254740992)
"exp(5595364410765473/144115188075855872*x-5176894256845849/295147905179352825856*L+5425581046685411/4503599627370496)
*((8961090140748077/9007199254740992) "exp(1014624516889591/9007199254740992*x

+7827322445356437/590295810358705651712*L-1297761051646769/18014398509481984)
-1.*(8953690005984367/9007199254740992) "exp(1014624516889591/9007199254740992*x+7827322445356437/

590295810358705651712*L-1297761051646769/18014398509481984)) *(.215443469003188372175929e-l*L*(100.+x)"(5/6)
-.999999999999999999999994e-4*L*(100.+x) "2/(.999999999999999999999994e-4*(100.+x)"2-1.)
*(.215443469003188372175929e-l*(lOO.+x)"(5/6)-1.)) +.231414891573797609798808*(8239055304305507/9007199254740992)
"exp(5595364410765473/144115188075855872*x-5176894256845849/295147905179352825856*L+5425581046685411/4503599627370496)
*( (8932128122048405/9007199254740992) "exp(1014624516889591/9007199254740992*x+7827322445356437/

590295810358705651712*L-1297761051646769/18014398509481984) -1.*(2231562280773709/2251799813685248)
"exp(1014624516889591/9007199254740992*x+7827322445356437/590295810358705651712*L-1297761051646769/18014398509481984))
* (.100000000000000000000000e-2*L*(lOO.+x)"(3/2)-.999999999999999999999994e-4*L*(lOO.+x)
"2 / (.999999999999999999999994e-4*(lOO.+x)"2-1.)*(.100000000000000000000000e-2*(100.+x)"(3/2)-1.))
+.940836546882576834686902*(1117463989200615/1125899906842624) "exp(1014624516889591/9007199254740992*x
+7827322445356437/590295810358705651712*L-1297761051646769/18014398509481984) *((8540854395630539/9007199254740992)
"exp(5595364410765473/144115188075855872*x-5176894256845849/295147905179352825856*L+5425581046685411/4503599627370496)
-1.* (8481104869158237/9007199254740992) "exp(5595364410765473/144115188075855872*x
-5176894256845849/295147905179352825856*L+5425581046685411/4503599627370496)) *(.316227766016837933199889e-2*L*(lOO.+x)
"(5/4>-.999999999999999999999994e-4*L*(100.+x) "2/(.999999999999999999999994e-4*(100.+x)"2-1.)
* (.316227766016837933199889e-2*(lOO.+x)"(5/4)-1.)) *(-1.+1.36258413811592257099598*(lOO.+x)"(1/12))
+.925659566295190439195233*(2231562280773709/2251799813685248) "exp(1014624516889591/9007199254740992*x
+7827322445356437/590295810358705651712*L-1297761051646769/18014398509481984) *((4149995179171859/4503599627370496)
"exp(5595364410765473/144115188075855872*x-5176894256845849/295147905179352825856*L+5425581046685411/4503599627370496)
-1.* (8239055304305507/9007199254740992) "exp(5595364410765473/144115188075855872*x-5176894256845849/

295147905179352825856*L+5425581046685411/4503599627370496)) *(.681292069057961285497988e-3*L*(lOO.+x)"(19/12)
-.999999999999999999999994e-4*L*(lOO.+x) "2/(.999999999999999999999994e-4*(100.+x)"2-1.)
*(.681292069057961285497988e-3*(lOO.+x)"(19/12)-1.)) *(-1.+1.36258413811592257099598*(lOO.+x)"(1/12))
+.921903730497145069845019*(1115049012713431/1125899906842624) "exp(1014624516889591/9007199254740992*x
+7827322445356437/590295810358705651712*L-1297761051646769/18014398509481984) *((8239055304305507/9007199254740992)
"exp(5595364410765473/144115188075855872*x-5176894256845849/295147905179352825856*L+5425581046685411/4503599627370496)
-1.*(8190338516056353/9007199254740992) "exp(5595364410765473/144115188075855872*x
-5176894256845849/295147905179352825856*L+5425581046685411/4503599627370496)) *(.464158883361277889241008e
-3*L*(100.+x)"(5/3)-.999999999999999999999994e-4*L*(lOO.+x) "2/(.999999999999999999999994e-4*(100.+x)"2-1.)
*(.464158883361277889241008e-3*(lOO.+x)"(5/3)-1.)) *(-1.+1.36258413811592257099598*(lOO.+x)"(1/12))
+.995942530132241248789808*(4503497800982921/4503599627370496) "exp(1014624516889591/9007199254740992*x
+7827322445356437/590295810358705651712*L-1297761051646769/18014398509481984)
*(1-1.*(9005957161963763/9007199254740992) "exp(5595364410765473/144115188075855872*x
-5176894256845849/295147905179352825856*L+5425581046685411/4503599627370496))
* (.681292069057961285497988*L*(100.+x)"(1/12)-.999999999999999999999994e-4*L*(lOO.+x)
"2/(.999999999999999999999994e-4*(100.+x)"2-1.)*(.681292069057961285497988*(lOO.+x)"(1/12)-1.))
*(-1.+1.36258413811592257099598*(lOO.+x)"(1/12)>+.944669514974576453053975*(8943931065879825/9007199254740992)
"exp(1014624516889591/9007199254740992*x+7827322445356437/590295810358705651712*L-1297761051646769/18014398509481984)
* ((4300974033223813/4503599627370496) "exp(5595364410765473/144115188075855872*x
-5176894256845849/295147905179352825856*L+5425581046685411/4503599627370496) -1.*(8540854395630539/9007199254740992)
"exp(5595364410765473/144115188075855872*x-5176894256845849/295147905179352825856*L

+5425581046685411/4503599627370496)) *(.464158883361277889241008e-2*L*(lOO.+x)"(7/6)-.999999999999999999999994e-4
*L*(lOO.+x) "2/(.999999999999999999999994e-4*(lOO.+x)"2-1.)*(.464158883361277889241008e-2*(lOO.+x)"(7/6)-1.))
*(-1.+1.36258413811592257099598*(lOO.+x)"(1/12))+.907032162138586676535699*(2223127196297631/2251799813685248)
"exp(1014624516889591/9007199254740992*x+7827322445356437/590295810358705651712*L-1297761051646769/18014398509481984)
* ((4017172091621691/4503599627370496) "exp(5595364410765473/144115188075855872*x
-5176894256845849/295147905179352825856*L+5425581046685411/4503599627370496) -1.*(3996675083817621/4503599627370496)
"exp(5595364410765473/144115188075855872*x-5176894256845849/295147905179352825856*L+5425581046685411/4503599627370496))
*(.100000000000000000000000e-3*L*(100.+x)*2-.999999999999999999999994e-4*L*(100.+x) "2/(.999999999999999999999994e-4*
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(100.+x)"2-1.)* 1.100000000000000000000000e-3*(100.+x)"2-1.)) *(-1.+1.36258413811592257099598*(100.+x)"(1/12))
+.964069864360605893418690*(4484484909400055/4503599627370496) "exp(1014624516889591/9007199254740992*x
+7827322445356437/590295810358705651712*L-1297761051646769/18014398509481984) *((8837970463919045/9007199254740992)
"exp (5595364410765473/144115188075855872*x-5176894256845849/295147905179352825856*L+5425581046685411/4503599627370496)
-1.* (2197633039383027/2251799813685248) "exp(5595364410765473/144115188075855872*x-5176894256845849
/295147905179352825856*L+5425581046685411/4503599627370496)) *(.316227766016837933199889e-l*L*(lOO.+x)"(3/4)
-.999999999999999999999994e-4*L*(100.+x) "2/(.999999999999999999999994e-4*(100.+x)"2-1.)
* (.316227766016837933199889e-l*(100.+x)"(3/4)-1.)) *(-1.+1.36258413811592257099598*(100.+x)"(1/12))
+.236167378743644113263494*(8540854395630539/9007199254740992) "exp(5595364410765473/144115188075855872*x
-5176894256845849/295147905179352825856*L+5425581046685411/4503599627370496) *((559183992747409/562949953421312)
"exp(1014624516889591/9007199254740992*x+7827322445356437/590295810358705651712*L-1297761051646769/18014398509481984)
-1.*(8943931065879825/9007199254740992) "exp(1014624516889591/9007199254740992*x+7827322445356437/590295810358705651712*L
-1297761051646769/18014398509481984)) *(.681292069057961285497988e-2*L*(lOO.+x)"(13/12)-.999999999999999999999994e
-4*L*(lOO.+x) "2/(.999999999999999999999994e-4*(100.+x)"2-1.)*(.681292069057961285497988e-2*(100.+x)"(13/12)-1.))
+.914437714640234204740341*(4457727132502003/4503599627370496) "exp(1014624516889591/9007199254740992*x+
7827322445356437/590295810358705651712*L-1297761051646769/18014398509481984) *((2033127443706281/2251799813685248)
"exp(5595364410765473/144115188075855872*x-5176894256845849/295147905179352825856*L+5425581046685411/4503599627370496)
-1.*(8085879414211337/9007199254740992) "exp(5595364410765473/144115188075855872*x
-5176894256845849/295147905179352825856*L+5425581046685411/4503599627370496)) *(.215443469003188372175929e-3*
L*(lOO.+x)"(11/6)-.999999999999999999999994e-4*L*(lOO.+x) "2/(.999999999999999999999994e-4*(100.+x)"2-1.)*
(.215443469003188372175929e-3*(100.+x)"(ll/6)-l.)) *(-1.+1.36258413811592257099598*(100.+x)"(1/12)
)+.230475932624286267461255*(8190338516056353/9007199254740992) "exp(5595364410765473/144115188075855872*x
-5176894256845849/295147905179352825856*L+5425581046685411/4503599627370496) *((2231562280773709/2251799813685248)
"exp(1014624516889591/9007199254740992*x+7827322445356437/590295810358705651712*L-1297761051646769/18014398509481984)
-1.*(1115049012713431/1125899906842624) "exp(1014624516889591/9007199254740992*x+7827322445356437/

590295810358705651712*L-1297761051646769/18014398509481984)) *(.681292069057961285497988e-3*L*(100.+x)"(19/12)
-.999999999999999999999994e-4*L*(lOO.+x) "2/(.999999999999999999999994e-4*(lOO.+x)"2-1.)*(.68129206905796l285497988e-3
*(lOO.+x)"(19/12)-1.)) +.229540783472419629805850*(2033127443706281/2251799813685248)
"exp(5595364410765473/144115188075855872*x-5176894256845849/295147905179352825856*L+5425581046685411
/4503599627370496) *((1115049012713431/1125899906842624) "exp(1014624516889591/9007199254740992*x+
7827322445356437/590295810358705651712*L-1297761051646769/18014398509481984) -1.*(1114792330052669/
1125899906842624) "exp(1014624516889591/9007199254740992*x+
7827322445356437/590295810358705651712*L-1297761051646769/18014398509481984)) *(.464158883361277889241008e-3
*L*(lOO.+x)"(5/3)-.999999999999999999999994e-4*L*(lOO.+x) "2/(.999999999999999999999994e-4*(100.+x)"2-1.)
*(.464158883361277889241008e-3*(lOO.+x)"(5/3)-1.)) +.226758040534646669133925*(3996675083817621/4503599627370496)
"exp(5595364410765473/144115188075855872*x-5176894256845849/295147905179352825856*L+5425581046685411/4503599627370496)
*((8907375347704459/9007199254740992) "exp(1014624516889591/9007199254740992*x+7827322445356437/
590295810358705651712*L-1297761051646769/18014398509481984) -1.*(2223127196297631/2251799813685248)
"exp(1014624516889591/9007199254740992*x+7827322445356437/590295810358705651712*L-1297761051646769/18014398509481984))
*(.146779926762206954092052e-3*L*(100.+x)"(23/12)-.999999999999999999999994e-4*L*(100.+x)
"2/(.999999999999999999999994e-4*(lOO.+x)"2-1.)*(.146779926762206954092052e-3*(100.+x)"(23/12)-1.))
+.237129524644645719466918*(4300974033223813/4503599627370496) "exp(5595364410765473/144115188075855872*x-
5176894256845849/295147905179352825856*L+5425581046685411/4503599627370496) *((559399050888615/562949953421312)
"exp(1014624516889591/9007199254740992*x+7827322445356437/590295810358705651712*L-1297761051646769/18014398509481984)
-1.*(559183992747409/562949953421312) "exp(1014624516889591/9007199254740992*x+7827322445356437/
590295810358705651712*L-1297761051646769/18014398509481984)) *(L*(1.+.100000000000000000000000e-l*x)
-.999999999999999999999994e-6*L*(lOO.+x)"2/(.999999999999999999999994e-4*(100.+x) "2-1.)*x)+
.234254782735778646381077*(4212378365670251/4503599627370496) "exp(5595364410765473/144115188075855872*x
-5176894256845849/295147905179352825856*L+5425581046685411/4503599627370496) *((1117463989200615/1125899906842624)
"exp(1014624516889591/9007199254740992*x+7827322445356437/590295810358705651712*L-1297761051646769/18014398509481984)
-1.*(8937376977342113/9007199254740992) "exp(1014624516889591/9007199254740992*x+7827322445356437
/590295810358705651712*L-1297761051646769/18014398509481984)) *(.316227766016837933199889e-2*L*(100.+x)
"

(5/4)-.999999999999999999999994e-4*L*(lOO.+x) "2/(.999999999999999999999994e-4*(lOO.+x)"2-1.)
*(.316227766016837933199889e-2*(lOO.+x)"(5/4)-1.)) +.246969228195882541385885*(8991702818783173/9007199254740992)
"exp(5595364410765473/144115188075855872*x-5176894256845849/295147905179352825856*L+5425581046685411/4503599627370496)
*((2251126683166943/2251799813685248) "exp(1014624516889591/9007199254740992*x+7827322445356437
/590295810358705651712*L-1297761051646769/18014398509481984) -1.*(2250134495133037/2251799813685248)
"exp(1014624516889591/9007199254740992*x+7827322445356437/590295810358705651712*L-1297761051646769/18014398509481984))
*(.464158883361277889241008*L*(lOO.+x)"(1/6)-.999999999999999999999994e-4*L*(100.+x)
"2/(.999999999999999999999994e-4*(100.+x)"2-1.)*(.464158883361277889241008*(lOO.+x)"(1/6)-1.))
+.227681852791784819746539*(4017172091621691/4503599627370496) "exp(5595364410765473/144115188075855872*x-
5176894256845849/295147905179352825856*L+5425581046685411/4503599627370496) *((4457727132502003/4503599627370496)
"exp(1014624516889591/9007199254740992*x+7827322445356437/590295810358705651712*L-1297761051646769/18014398509481984)
-1.*(8907375347704459/9007199254740992) "exp(1014624516889591/9007199254740992*x+7827322445356437/
590295810358705651712*L-1297761051646769/18014398509481984)) *(.215443469003188372175929e-3*L*(lOO.+x)
"(11/6)-.999999999999999999999994e-4*L*(lOO.+x) "2/(.999999999999999999999994e-4*(100.+x)"2-1.)
*(.215443469003188372175929e-3*(100.+x)"(11/6)-1.)) +.240039544983887117151997*(4371919373261769/4503599627370496)
"exp(5595364410765473/144115188075855872*x-5176894256845849/295147905179352825856*L+5425581046685411/4503599627370496)
*( (4484484909400055/4503599627370496) "exp(1014624516889591/9007199254740992*x+7827322445356437/

590295810358705651712*L-1297761051646769/18014398509481984) -1.*(8961090140748077/9007199254740992)
"exp(1014624516889591/9007199254740992*x+7827322445356437/590295810358705651712*L-1297761051646769/18014398509481984))
*(.316227766016837933199889e-l*L*(lOO.+x)"(3/4)-.999999999999999999999994e-4*L*(lOO.+x)
"2/(.999999999999999999999994e-4*(lOO.+x)"2-1.)*(.316227766016837933199889e-l*(lOO.+x)"(3/4)-1.))
+.241999371247002750544874*(8837970463919045/9007199254740992) "exp(5595364410765473/l44115188075855872*x
-5176894256845849/295147905179352825856*L+5425581046685411/4503599627370496) *((8983141115603571/9007199254740992)
"exp(1014624516889591/9007199254740992*x+7827322445356437/590295810358705651712*L-1297761051646769/18014398509481984)
-1.* (2244442328010009/2251799813685248) "exp(1014624516889591/9007199254740992*x+7827322445356437/
590295810358705651712*L-1297761051646769/18014398509481984)) *(.681292069057961285497988e-l*L*(100.+x)
"(7/12)-.999999999999999999999994e-4*L*(100.+x) "2/(.999999999999999999999994e-4*(100.+x)"2-1.)
*(.681292069057961285497988e-l*(lOO.+x)"(7/12)-1.)) +.233304301013449851600709*(8364791122158079/9007199254740992)
"exp(5595364410765473/144115188075855872*x-5176894256845849/295147905179352825856*L+5425581046685411/4503599627370496)
*( (8937376977342113/9007199254740992) "exp(1014624516889591/9007199254740992*x+7827322445356437/
5902958103587056517124L-1297761051646769/18014398509481984) -1.*(2233726327948655/2251799813685248)
"exp(1014624516889591/9007199254740992*x+7827322445356437/590295810358705651712*L-1297761051646769/18014398509481984))
*(.215443469003188372175929e-2*L*(100.+x)"(4/3)-.999999999999999999999994e-4*L*(lOO.+x)
"2/(.999999999999999999999994e-4*(lOO.+x)"2-1.)*(.215443469003188372175929e-2*(100.+x)"(4/3)-1.))
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+.232357675842069261345387*(4149995179171859/4503599627370496) "exp(5595364410765473/144115188075855872*
x-5176894256845849/295147905179352825856*L+5425581046685411/4503599627370496) *((2233726327948655/2251799813685248)
"exp(1014624516889591/9007199254740992*x+7827322445356437/590295810358705651712*L-1297761051646769/18014398509481984)
-1.* (8932128122048405/9007199254740992) "exp(1014624516889591/9007199254740992*x+7827322445356437

/590295810358705651712*L-1297761051646769/18014398509481984)) *(.146779926762206954092052e-2*L*(100.+x)"
(17/12)-.999999999999999999999994e-4*L*(100.+x) "2/(.999999999999999999999994e-4*(lOO.+x)"2-1.)
*(.146779926762206954092052e-2*(lOO.+x)"(17/12)-1.)) +.956262367052177895513491*(8953690005984367/9007199254740992)
"exp(1014624516889591/9007199254740992*x+7827322445356437/590295810358705651712*L-1297761051646769/18014398509481984)
*((4371919373261769/4503599627370496) "exp(5595364410765473/144115188075855872*x-5176894256845849/

295147905179352825856*L+5425581046685411/4503599627370496) -1.*(8701426817608717/9007199254740992)
"exp(5595364410765473/144115188075855872*x-5176894256845849/295147905179352825856*L+5425581046685411/
4503599627370496)) *(.146779926762206954092052e-l*L*(100.+x)"(11/12)-.999999999999999999999994e-4*L*(100.+x)
"2/(.999999999999999999999994e-4*(lOO.+x)"2-1.)*(.146779926762206954092052e-l*(100.+x)"(11/12)-1.))
*(-1.+1.36258413811592257099598*(lOO.+x)"(1/12))+.243975198702679616351480*(4457337796314217/4503599627370496)
"exp(5595364410765473/144115188075855872*x-5176894256845849/295147905179352825856*L+5425581046685411/4503599627370496)
*((8992420872707761/9007199254740992) "exp(1014624516889591/9007199254740992*x+7827322445356437/590295810358705651712*L
-1297761051646769/18014398509481984) -1.* (8988458785899585/9007199254740992) "exp(101462451688959l/9007199254740992*x+
7827322445356437/590295810358705651712*L-1297761051646769/18014398509481984)) *(.146779926762206954092052*L*(100.+x)
"(5/12)-,999999999999999999999994e-4*L*(lOO.+x) "2/(.999999999999999999999994e-4*(100.+x)"2-1.)*
(.146779926762206954092052*(100.+X)"(5/12)-1.)) +.960158179935548468607988*(8961090140748077/9007199254740992)
"exp(1014624516889591/9007199254740992*x+7827322445356437/590295810358705651712*L-1297761051646769/18014398509481984)
*( (2197633039383027/2251799813685248) "exp(5595364410765473/144115188075855872*x-5176894256845849/295147905179352825856*L
+5425581046685411/4503599627370496) -1.*(4371919373261769/4503599627370496) "exp(5595364410765473/144115188075855872*x
-5176894256845849/295147905179352825856*L+5425581046685411/4503599627370496)) *(.215443469003188372175929e-l*L*(lOO.+x)
"(5/6)-.999999999999999999999994e-4*L*(100.+x) "2/(.999999999999999999999994e-4*(100.+x)"2-1.)*
(.215443469003188372175929e-l*(lOO.+x)"(5/6)-1.))
*(-1.+1.36258413811592257099598*(lOO.+x)"(1/12)>+.228609428660058551185085*(8085879414211337/9007199254740992)
"exp(5595364410765473/144115188075855872*x-5176894256845849/295147905179352825856*L+5425581046685411/4503599627370496)
*((1114792330052669/1125899906842624) "exp(1014624516889591/9007199254740992*x+7827322445356437/
590295810358705651712*L-1297761051646769/18014398509481984) -1.*(4457727132502003/4503599627370496)
"exp(1014624516889591/9007199254740992*x+7827322445356437/590295810358705651712*L-1297761051646769/18014398509481984))
*(.316227766016837933199889e-3*L*(lOO.+x)"(7/4)-.999999999999999999999994e-4*L*(lOO.+x)
"2/(.999999999999999999999994e-4*(100.+x)"2-1.)*(.316227766016837933199889e-3*(lOO.+x)"(7/4)-1.))
+.248985632533060312197452*(9005957161963763/9007199254740992) "exp(5595364410765473/144115188075855872
*x-5176894256845849/295147905179352825856*L+5425581046685411/4503599627370496) * (1-1.*(4503497800982921
/4503599627370496) "exp(1014624516889591/9007199254740992*x+7827322445356437/590295810358705651712*L
-1297761051646769/18014398509481984)) *L+.936384219791599825654103e-4*(8085879414211337/9007199254740992)
"exp(5595364410765473/144115188075855872*x-5176894256845849/295147905179352825856*L+5425581046685411/4503599627370496)
*(4457727132502003/4503599627370496) "exp(101462451688959l/9007199254740992*x+7827322445356437/590295810358705651712*L
-1297761051646769/18014398509481984) *L*(.681292069057961285497988*(lOO.+x)"(1/12)-1.)*(lOO.+x)"2/
(.999999999999999999999994e-4*(lOO.+x)"2-1.) +.979212663861430165005809e-4*(8701426817608717/9007199254740992)
"exp(5595364410765473/I44115188075855872*x-5176894256845849/295147905179352825856*L+5425581046685411/4503599627370496)
*(8953690005984367/9007199254740992) "exp(1014624516889591/9007199254740992*x+7827322445356437/590295810358705651712
*L-1297761051646769/18014398509481984) *L*(.681292069057961285497988*(100.+x)"(1/12)-1.)*(100.+x)"2/
(.999999999999999999999994e-4*(lOO.+x)"2-1.) +.967341583333966287927264e-4*(8540854395630539/9007199254740992)
"exp(5595364410765473/144115188075855872*x-5176894256845849/295147905179352825856*L+5425581046685411/4503599627370496)
*(8943931065879825/9007199254740992) "exp(1014624516889591/9007199254740992*x+7827322445356437/590295810358705651712*L
-1297761051646769/18014398509481984) *L*(.681292069057961285497988*(lOO.+x)"(1/12)-1.)*(100.+x)"2/
(.999999999999999999999994e-4*(lOO.+x)"2-1.) +.932584869035150621681818e-4*(4017172091621691/4503599627370496)
"exp(5595364410765473/144115188075855872*x-5176894256845849/295147905179352825856*L+5425581046685411/4503599627370496)
*(8907375347704459/9007199254740992) "exp(1014624516889591/9007199254740992*x+7827322445356437/590295810358705651712*L
-1297761051646769/18014398509481984) *L*(.681292069057961285497988*(lOO.+x)"(1/12)-1.)*(lOO.+x)"2/
(.999999999999999999999994e-4*(lOO.+x)"2-1.) +.100748147914430100684785e-3*(8971003374175853/9007199254740992)
"exp(5595364410765473/144115188075855872*x-5176894256845849/295147905179352825856*L+5425581046685411/4503599627370496)
*(4498200802209197/4503599627370496) "exp(1014624516889591/9007199254740992*x+7827322445356437/590295810358705651712*L
-1297761051646769/18014398509481984) *L*(.681292069057961285497988*(100.+x)"(1/12)-1.)*(lOO.+x)"2
/(.999999999999999999999994e-4*(lOO.+x)"2-1.) +.951737040249115694470698e-4*(4149995179171859/4503599627370496)
"exp(5595364410765473/144115188075855872*X-5176894256845849/295147905179352825856*L+5425581046685411/4503599627370496)

*(8932128122048405/9007199254740992) "exp(1014624516889591/9007199254740992*x+7827322445356437/590295810358705651712*L
-1297761051646769/18014398509481984) *L*(.681292069057961285497988*(100.+x)"(1/12)-1.)*(100.+x)"2/
(.999999999999999999999994e-4*(lOO.+x)"2-1.) +.952382361312192024857459*(559399050888615/562949953421312)
"exp(1014624516889591/9007199254740992*x+7827322445356437/590295810358705651712*L-1297761051646769/18014398509481984)
*((8701426817608717/9007199254740992) "exp(5595364410765473/144115188075855872*x-
5176894256845849/295147905179352825856*L+5425581046685411/4503599627370496)
-1.*(8653328193444415/9007199254740992) "exp(5595364410765473/144115188075855872*x-
5176894256845849/295147905179352825856*L+5425581046685411/4503599627370496)) *(L*(1.+.100000000000000000000000e-l*x)
-.999999999999999999999994e-6*L*(lOO.+x)"2/(.999999999999999999999994e-4*(lOO.+x)
"2-l.)*x)*(-l.+1.36258413811592257099598*(lOO.+x)"(1/12)) +.963416624007758678719382e-
4*(8481104869158237/9007199254740992) "exp(5595364410765473/144115188075855872*x-
5176894256845849/295147905179352825856*L+5425581046685411/4503599627370496) *
(1117463989200615/1125899906842624) "exp(1014624516889591/9007199254740992*x+7827322445356437/
590295810358705651712*L-1297761051646769/18014398509481984) *L*(.681292069057961285497988*(lOO.+x)"
(1/12)-1.)*(lOO.+x)"2/(.999999999999999999999994e-4*(lOO.+x)"2-1.) +.999322413886175708575654e-
4* (4457337796314217/4503599627370496) "exp(5595364410765473/144115188075855872*x-5176894256845849
/295147905179352825856*L+5425581046685411/4503599627370496) * (8988458785899585/9007199254740992)
"exp(1014624516889591/9007199254740992*x+7827322445356437/590295810358705651712*L-1297761051646769/18014398509481984)
*L*(.681292069057961285497988*(100.+x)"(1/12)-1.)*(lOO.+x)"2/(.999999999999999999999994e-4*(100.+x)"2-1.)
+.101570715988603931422478e-3*(4500844009866497/4503599627370496) "exp(5595364410765473/144115188075855872*x-
5176894256845849/295147905179352825856*L+5425581046685411/4503599627370496) *(2251126683166943/2251799813685248)
"exp(1014624516889591/9007199254740992*x+7827322445356437/590295810358705651712*L-1297761051646769/18014398509481984)
*L*(.681292069057961285497988*(lOO.+x)"(1/12)-1.)*(lOO.+x)"2/(.999999999999999999999994e-4*(100.+x)"2-1.
) +.967997484988011002179496*(2244442328010009/2251799813685248) "exp(1014624516889591/9007199254740992*x+
7827322445356437/590295810358705651712*L-1297761051646769/18014398509481984) *((8878938178505361/9007199254740992)
"exp(5595364410765473/144115188075855872*x-5176894256845849/295147905179352825856*L+5425581046685411/4503599627370496)
-1.*(8837970463919045/9007199254740992) "exp(5595364410765473/144115188075855872*x-
5176894256845849/295147905179352825856*L+5425581046685411/4503599627370496))
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* (.464158883361277889241008e-l*L*(lOO.+x)"(2/3)-.999999999999999999999994e-4*L*(100.+x)
"2/(.999999999999999999999994e-4*(lOO.+x)"2-1.)*(.464158883361277889241008e-l*(lOO.+x)"(2/3)-1.))
*(-1.+1.36258413811592257099598*(100.+x)"(1/12))+.101158595869033488951657e-3*(8991702818783173/9007199254740992)
"exp(5595364410765473/144115188075855872*x-5176894256845849/295147905179352825856*L+5425581046685411/4503599627370496)
*(2250134495133037/2251799813685248) "exp(1014624516889591/9007199254740992*x+7827322445356437/590295810358705651712*L
-1297761051646769/18014398509481984) *L*(.681292069057961285497988*(lOO.+x)"(1/12)-1.)*(100.+x)"2/
(,999999999999999999999994e-4*(lOO.+x)"2-1.) +.928800934029912756772550e-4*(3996675083817621/4503599627370496)
"exp(5595364410765473/144115188075855872*x-5176894256845849/295147905179352825856*L+5425581046685411/4503599627370496)
*(2223127196297631/2251799813685248) "exp(1014624516889591/9007199254740992*x+7827322445356437/590295810358705651712*L
-1297761051646769/18014398509481984) *L*(.681292069057961285497988*(100.+x)"(1/12)-1.)*(lOO.+x)"2/
(,999999999999999999999994e-4*(lOO.+x)"2-1.) +.933217204053799406402837* (2233726327948655/2251799813685248)
"exp(1014624516889591/9007199254740992*x+7827322445356437/590295810358705651712*L-1297761051646769/18014398509481984)
* ((4212378365670251/4503599627370496) "exp(5595364410765473/144115188075855872*x-
5176894256845849/295147905179352825856*L+5425581046685411/4503599627370496)
-1.* (8364791122158079/9007199254740992) "exp(5595364410765473/144115188075855872*x-
5176894256845849/295147905179352825856*L+5425581046685411/4503599627370496))
*(.146779926762206954092052e-2*L*(lOO.+x)"(17/12)-.999999999999999999999994e-4*L*(lOO.+x)
"2/(.999999999999999999999994e-4*(100.+x)"2-1.)*(.146779926762206954092052e-2*(lOO.+x)"(17/12)-1.))
* (-1.+1.36258413811592257099598*(100.+x)"(1/12)) + .975900794810718465405918*(89884 58785899585/9007199254740992)
"exp(1014624516889591/9007199254740992*x+7827322445356437/590295810358705651712*L-1297761051646769/18014398509481984)
*( (8945078853280857/9007199254740992) "exp(5595364410765473/144115188075855872*x-
5176894256845849/295147905179352825856*L+5425581046685411/4503599627370496)
-1.*(4457337796314217/4503599627370496) "exp(5595364410765473/144115188075855872*x-
5176894256845849/295147905179352825856*L+5425581046685411/4503599627370496))
*(.100000000000000000000000*L*(lOO.+x)"(1/2)-.999999999999999999999994e-4*L*(lOO.+x)
"2/(.999999999999999999999994e-4*(lOO.+x)"2-1.)*(.100000000000000000000000*(lOO.+x)"(1/2)-1.))
* (-1.+1.36258413811592257099598*(lOO.+x)"(1/12)) + .918163133889678519223400*(1114792330052669/1125899906842624)
"exp(1014624516889591/9007199254740992*x+7827322445356437/590295810358705651712*L-1297761051646769/18014398509481984)
*((8190338516056353/9007199254740992) "exp(5595364410765473/144115188075855872*x-5176894256845849/
295147905179352825856*L+5425581046685411/4503599627370496) -1.*(2033127443706281/2251799813685248)
"exp(5595364410765473/144115188075855872*x-5176894256845849/295147905179352825856*L+5425581046685411/
4503599627370496)) *(.316227766016837933199889e-3*L*(lOO.+x)"(7/4)-.999999999999999999999994e-4*L*(lOO.+x)
"2/(.999999999999999999999994e-4*(100.+x)"2-1.)*(.316227766016837933199889e-3*(lOO.+x)"(7/4)-1.))
*(-1.+1.36258413811592257099598*(lOO.+x)"(1/12)>+.242985276685463039838706*(8878938178505361/9007199254740992)
"exp(5595364410765473/144115188075855872*x-5176894256845849/295147905179352825856*L+5425581046685411/4503599627370496)
*((8988458785899585/9007199254740992) "exp(1014624516889591/9007199254740992*x+7827322445356437/
590295810358705651712*L-1297761051646769/18014398509481984) -1.*(8983141115603571/9007199254740992)
"exp(1014624516889591/9007199254740992*X+7827322445356437/590295810358705651712*L-1297761051646769/18014398509481984))
* (.100000000000000000000000*L*(lOO.+x)"(1/2)-.999999999999999999999994e-4*L*(lOO.+x)
"2/(.999999999999999999999994e-4*(100.+x)"2-l.)*(.100000000000000000000000*(100.+x)"(1/2)-1.))
+.955614416951090592156499e-4*(8364791122158079/9007199254740992) "exp(5595364410765473/144115188075855872*x-
5176894256845849/295147905179352825856*L+5425581046685411/4503599627370496) *(2233726327948655/2251799813685248)
"exp(1014624516889591/9007199254740992*x+7827322445356437/590295810358705651712*L-1297761051646769/18014398509481984)
*L*(-681292069057961285497988*(lOO.+x)"(1/12)-1.)*(lOO.+x)"2/(.999999999999999999999994e-4*(lOO.+x)"2-1.)
+.995267693303656611179333e-4*(8878938178505361/9007199254740992) "exp(5595364410765473/144115188075855872*x-
5176894256845849/295147905179352825856*L+5425581046685411/4503599627370496) *(8983141115603571/9007199254740992)
"exp(1014624516889591/9007199254740992*x+7827322445356437/590295810358705651712*L-1297761051646769/18014398509481984)
*L*(.681292069057961285497988*(100.+x)"(1/12)-1.)*(100.+x)"2/(.999999999999999999999994e-4*(lOO.+x)"2-1.)
+.940199049103030803684756e-4*(2033127443706281/2251799813685248) "exp(5595364410765473/144115188075855872*x-
5176894256845849/295147905179352825856*L+5425581046685411/4503599627370496) *(1114792330052669/1125899906842624)
"exp(1014624516889591/9007199254740992*x+7827322445356437/590295810358705651712*L-1297761051646769/18014398509481984)
*L*(.681292069057961285497988*(100.+x)"(1/12)-1.)*(lOO.+x)"2/(.999999999999999999999994e-4*(lOO.+x)"2-1.)
+.971282532944468866936489e-4*(4300974033223813/4503599627370496) "exp(5595364410765473/144115188075855872*x-
5176894256845849/295147905179352825856*L+5425581046685411/4503599627370496) *(559183992747409/562949953421312)
"exp(1014624516889591/9007199254740992*x+7827322445356437/590295810358705651712*L-1297761051646769/18014398509481984)
*L*(.681292069057961285497988*(100.+x)"(1/12)-1.)*(lOO.+x)"2/(.999999999999999999999994e-4*(lOO.+x)"2-1.)
+.947875395886275009735913e-4*(8239055304305507/9007199254740992) "exp(5595364410765473/144115188075855872*x-
5176894256845849/295147905179352825856*L+5425581046685411/4503599627370496) *(2231562280773709/2251799813685248)
"exp(1014624516889591/9007199254740992*x+7827322445356437/590295810358705651712*L-1297761051646769/18014398509481984)
*L*(.681292069057961285497988*(lOO.+x)"(1/12)-1.)*(lOO.+x)"2/(.999999999999999999999994e-4*(100.+x)"2-1.)
+.101984515085541503876075e-3*(9005957161963763/9007199254740992) "exp(5595364410765473/144115188075855872*x-
5176894256845849/295147905179352825856*L+5425581046685411/4503599627370496) *(4503497800982921/4503599627370496)
"exp(1014624516889591/9007199254740992*x+7827322445356437/590295810358705651712*L-1297761051646769/18014398509481984)
*L*(.681292069057961285497988*(100.+x)"(1/12)-1.)*(lOO.+x)"2/(.999999999999999999999994e-4*(lOO.+x)"2-1.)
+.975239537983684633454032e-4*(8653328193444415/9007199254740992) "exp(5595364410765473/144115188075855872*x-
5176894256845849/295147905179352825856*L+5425581046685411/4503599627370496) *(559399050888615/562949953421312)
"exp(1014624516889591/9007199254740992*x+7827322445356437/590295810358705651712*L-1297761051646769/18014398509481984)
*L*(.681292069057961285497988*(lOO.+x)"(1/12)-1.)*(100.+x)"2/(.999999999999999999999994e-4*(100.+x)"2-1.)
+.987207541105260434860733e-4*(2197633039383027/2251799813685248) "exp(5595364410765473/144115188075855872*x-
5176894256845849/295147905179352825856*L+5425581046685411/4503599627370496) *(4484484909400055/4503599627370496)
"exp(1014624516889591/9007199254740992*x+7827322445356437/590295810358705651712*L-1297761051646769/18014398509481984)
*L*(.681292069057961285497988*(100.+x)"(1/12)-1.)*(lOO.+x)"2/(.999999999999999999999994e-4*(lOO.+x)"2-1.)
+.959507590085749335576884e-4*(4212378365670251/4503599627370496) "exp(5595364410765473/144115188075855872*x-
5176894256845849/295147905179352825856*L+5425581046685411/4503599627370496) *(8937376977342113/9007199254740992)
"exp(1014624516889591/9007199254740992*x+7827322445356437/590295810358705651712*L-1297761051646769/18014398509481984)
*L*(.681292069057961285497988*(lOO.+x)"(1/12)-l.)*(lOO.+x)"2/(.999999999999999999999994e-4*(lOO.+x)"2-1.)
+.983201976254001631854574e-4*(4371919373261769/4503599627370496) "exp(5595364410765473/144115188075855872*x-
5176894256845849/295147905179352825856*L+5425581046685411/4503599627370496) *(8961090140748077/9007199254740992)
"exp(1014624516889591/9007199254740992*x+7827322445356437/590295810358705651712*L-1297761051646769/18014398509481984)
*L*(.681292069057961285497988*(100.+x)"(1/12)-1.)*(lOO.+x)"2/(.999999999999999999999994e-4*(lOO.+x)"2-1.)
+.100339365340034798877624e-3*(8945078853280857/9007199254740992) "exp(5595364410765473/l44115188075855872*x-
5176894256845849/295147905179352825856*L+5425581046685411/4503599627370496) *(8992420872707761/9007199254740992)
"cxp(1014C2451C009591/9007199254740992 *x+7827322445356437/590295810358705651712*L-1297761051646769/18014398509481984)
*L*(.681292069057961285497988*(lOO.+x)"(1/12)-1.)*(lOO.+x)"2/(.999999999999999999999994e-4*(lOO.+x)"2-1.)
+.944029420029076551521293e-4*(8190338516056353/9007199254740992) "exp(5595364410765473/144115188075855872*x-
5176894256845849/295147905179352825856*L+5425581046685411/4503599627370496) *(1115049012713431/1125899906842624)
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"exp (1014624516889591/9007199254740992*x+7827322445356437/590295810358705651712*L-1297761051646769/18014398509481984)
*L*(.681292069057961285497988*(100.+x)"(1/12)-1.)*(100.+x)"2/(.999999999999999999999994e-4*(100.+x)"2-1.)
+.971941106741852159354823*(8983141115603571/9007199254740992) "exp(1014624516889591/9007199254740992*x+
7827322445356437/590295810358705651712*L-1297761051646769/18014398509481984) *((4457337796314217/4503599627370496)
"exp (5595364410765473/144115188075855872*x-5176894256845849/295147905179352825856*L+5425581046685411/4503599627370496)
-1.* (8878938178505361/9007199254740992) "exp(5595364410765473/144115188075855872*x-5176894256845849/
295147905179352825856*L+5425581046685411/4503599627370496)) *(.681292069057961285497988e-l*L*(100.+x)
"(7/12)-.999999999999999999999994e-4*L*(100.+x) "2/(.999999999999999999999994e-4*(100.+x)"2-1.)
*(.681292069057961285497988e-l*(100.+x)"(7/12)-1.)) *(-1.+1.36258413811592257099598*(100.+x)"(1/12))
+.991229424627723266231798e-4*(8837970463919045/9007199254740992) "exp(5595364410765473/144115188075855872*x-
5176894256845849/295147905179352825856*L+5425581046685411/4503599627370496) *(2244442328010009/2251799813685248)
"exp(1014624516889591/9007199254740992*x+7827322445356437/590295810358705651712*L-1297761051646769/18014398509481984)
*L*(.681292069057961285497988*(100.+x)"(1/12)-1.)*(100.+x)"2/(.999999999999999999999994e-4*(100.+x)"2-1.))
*exp(2.71908869999999991406980-.177276789999999989655421*x-.817499999999999948712900e-4*L) /
(1.+exp(2.71908869999999991406980-.17727678999999998965542l*x-.817499999999999948712900e-4*L))


