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Abstract 

A partially connected version of the Hopfield neural network model is studied 

under the restriction that the number of connections per site becomes infinite 

as the size of the system, N becomes infinite with the connection structure at 

each site being the same. The connection architecture of the network is specified 

by a logical matrix D of dimensions N x N, with D 3  = 1,0 corresponding to 

sites being connected or disconnected. The replica-symmetric mean field theory 

equations for the order parameters are derived in terms of D and the external 

parameters of the system. The zero temperature forms of these equations are 

then solved exactly for a few different "local" connectivity architectures showing 

phase transitions at different critical storage ratios a. At a the states we are 

trying to store in the network become discontinuously unstable. We show that 

the information capacity per connection improves the more partial and random 

the connectivity of network becomes. We derive the full phase diagram for the 

particular case of the randomly connected model with of order connections 

per site. The similarity between this model and the infinite range SK spin glass 

model is also discussed. The eigenvalue which controls the stability of the replica-

symmetric solutions is also derived and then used to calculate the replica broken 

parts of the phase diagram for different connection architectures. Numerical 

simulations of finite size systems are also presented for a fully connected and 

one dimensionally connected network. 
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Chapter 1 

An Introduction to Neural Networks and Spin 

Glasses 

1.1 Introduction 

The human brain is capable of massive processing tasks such as speech recog-

nition, vision etc. which even the most advanced computers, as yet, cannot 

match. The brain achieves these tasks despite the fact that the processing and 

communication times between neurons are typically of the order of milliseconds 

compared to processing times on chips as low as 50 nanoseconds. Neural net-

works are thought to model some of the features of the brain that give it these 

remarkable powers, although a close comparison is difficult to make. This is 

partly because the biological working of the brain, while being quite well un-

derstood for an individual neuron, is little understood on the higher level of the 

network of interacting neurons. Whatever the similarity of neural network mod-

els to the brain they still stand or fall on their own merits as models of artificial 

intelligence. 

Neural network models all share the common features of nodes (neurons) which 

can take different values representing the different levels of activity of a real 

neuron. They are connected together by synapses of different strengths repre-

senting the different synaptic resistances in the brain. The process of learning is 

associated with the modification of these synaptic strengths. The nodes update 
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themselves by performing some kind of non-linear thresholding on the sum of 

their inputs which they receive from the other nodes through the synapses. In 

this way the process is very parallel with information being passed along many 

synapses simultaneously and possibly many neurons updating simultaneously, 

although the exact process depends on the model under study. It is this dy-

namical process of updating the neurons that is used to process information. 

The initial state of some of the neurons is chosen to match a specific pattern 

(the input). The network then evolves by the dynamical update scheme until 

a pattern is read from another set of neurons (the output). We could think of 

the network processing an image with each pixel of the image initially set up 

as a value on the input nodes. After processing the image the output from the 

network could be a specific firing pattern on a smaller output set of neurons cor-

responding to recognition of a certain object in the image. A learning procedure 

would have been carried out prior to this to choose the synaptic strengths. This, 

for example, could have involved presenting a sample set of noisy images to the 

network having known objects present and then choosing the synaptic strengths 

so that these objects were identified correctly. 

The basic ideas behind most neural network models can be traced as far back as 

the 1940's to the seminal work of McCulloch and Pitts [1] and Hebb [2] but it is 

only in the last few years that there has been a great surge of interest from many 

different disciplines. One of the major motivations for interest in the physics 

community was the simple model proposed by Hopfield [3]. His model contained 

all the basic features of neural models and bore a strong similarity to models of 

disordered magnetic materials studied in physics. The analytical techniques used 

to study these magnetic systems have been applied to the Hopfield model and 

many variations of it by Amit, Gutfreund and Sompolinsky [4,5,6,7,8] (for review 

articles see [9,10]). It is the techniques developed in these papers that we will use 

in this thesis to study partially connected versions of the Hopfield model. We 

will therefore start this chapter by defining the Hopfield model in detail before 

going on to make a closer study of its similarity to the brain followed by a brief 

review of disordered magnetic systems. The similarity between certain models 

of magnets and the Hopfield model will then become clear. Chapters 2 and 3 

will be devoted to the application of statistical physics techniques, reviewed in 

this chapter, to study a partially connected version of the Hopfield model. In 
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Chapter 4 we will present the results of some numerical simulations on finite 

sized versions of the Hopfleld model. 

1.2 The Hopfield Model 

The basic Hopfleld model consists of N neurons or nodes that are all connected 

to each other by synapses of different strengths. Each node receives inputs 

from all the other nodes along these synapses and determines its own state by 

snmrning all these inputs and thresholding them. The N neurons can only take 

two values 1 or —1 corresponding to the neuron firing or not firing. The state of 

the whole network can then be described by a vector of N values, {S, i = 1, N}. 

The input to neuron i at time i is then given by, 

= >2T1S5(t) T 1  = Tji (1.1) 

where T 5  is the synapse strength. We set T11  = 0 and use a simple step like 

threshold function to define the new state of the neuron at time i + 1 by, 

S,(t + 1) = sgn( 1 (t) - U) 	 (1.2) 

where Uj  is the threshold which is chosen to have different values depending 

on the model under study. In the Hopfield model it is generally set to zero 

as it will be in all the calculations which follow. The question of the value of 

S(t +1) when j(t) = Uj is not important in large systems as there is a very low 

probability of it occurring. For the simulations in chapter 4 the state of the node 

was chosen to be unchanged when 1(t) = U,. The different types of updates 

which can be carried out are numerous, ranging from single random site update 

to synchronous update of all the neurons. Synchronous updating can lead to 

limit cycles whereas single spin update schemes will always lead to the system 

reaching a stable state. Simulations of a single random site update compared to 

synchronous updating of half of the neurons chosen at random by Bruce et al [12] 

showed little change in the properties of the system. Therefore for large systems 

we do not expect different update schemes to affect the results significantly 

providing they are not too synchronous. In general, repeated applications of the 

update scheme will lead to the net reaching a stable state. We can think of the 
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initial state of the net as the input and the final stable state as the output with 

all the neurons being used for both input and output. This type of network can, 

for example, process N bit pixel images. 

Under a serial or random single spin, dynamical update scheme defined by equa-

tions 1.1 and 1.2 the system will continually change its state until a stable state 

is reached. This corresponds to descending an energy landscape until a minimum 

is reached where the energy of a given state {S} is given by the Hamiltonian, 

H{S} = — STS1 
	

(1.3) 

In order to make this model useful we must control the stable states of the 

system and the energy surface. ,  This is done by specifying the T 1 's by some 

kind of algorithm usually called a learning algorithm. In the Hopfield model the 

simple Hebb rule [2] is used to store random binary patterns as stable states of 

the dynamics. If we wish to store p random patterns {, = 1,. 
. . 

,p} in the 

network the Hebb rule specifies the connection strengths to be, 

T,, = I
i j 

, ~ ~~A~~ l 

N 1A= 1  

to 	i=j 
(1.4) 

This gives, providing the number of patterns is not too large, an energy space 

with basins of attraction associated with each of the states we are trying to 

store. This kind of storage is called distributed storage since the information 

in one state is stored throughout the whole system in the connection strengths 

rather than at a local site the way information is normally stored on a chip. 

For this reason the system is robust to synaptic death and can still accurately 

recall stored states when quite a high percentage of synapses have been cut. 

The system is considered to have content addressable memory since starting the 

network in a state close enough to the stable stored state to be in its basin of 

attraction will yield the stored state as output after performing the dynamical 

update scheme. An important parameter for studying the ability of the network 

to store patterns is, 

(1.5) 

which is usually called the storage ratio of the system. As a is increased it turns 

out flit we reach some value where the ability of the network to store patterns 

begins to break down. The maximum value of a which can be obtained before 



storage totally breaks down is called the critical storage ratio and is denoted a. 

For a state to be stable the sign of , the input to site i from all the other sites, 

must be the same as the state at site i for every site. This means that for a state 

f 71, which we wish to store, we must have, 

Vi 	 (1.6) 
I 

for the state to be stored exactly. Putting in the expression for T, equation 1.4, 
this gives, 

- N - 1 1 
- N ' N  

The first term is a signal term which tends to make the state we wish to store 

stable while the second term is a noise term due to all the other states. If the 

noise term is too large it will destroy the storage. Another important parameter 

of the system which measures accuracy of storage is the overlap, 

(1.8) 
$ 

This measures the fractional overlap of the state of the system with the state 

we wish to store. It is equal to one when the state is perfectly stored and zero 

when the state of the system is randomly related to the state we wish to store. 

If we consider a large system and assume the noise term in equation 1.7 is an 

independent Gaussian variable at each site we find m is only non-zero when 
a < (= 0.637). This is fax higher than the actual result a < 0.14, [6] the 

difference being due to the correlations between the noise terms at each site. To 

cope with these correlations we have to use a more advanced technique known as 

replica symmetric mean field theory. In the next few sections we will develop the 

ideas behind this technique before applying it to partially connected networks 

in chapters 2 and 3. 

1.3 Neural Network Models and the Brain 

Neural network models fall into two main categories; feed back networks and feed 

forward networks. The Hopfield model is an example of the first type while multi-

layer perceptron models like those of Hinton are of the second type (for reviews 

7 



of this type of network see [14]). In both models all the information is stored in 

the connections between the neurons and sometimes also in the threshold values, 

depending on the model. One of the major problems in neural network research, 

particularly in feed forward systems, is determining the connection strengths for 

a specific problem. Hopfield avoided this problem by having a simple one step 

learning algorithm. The main feature of the Hopfield model is its ability to 

operate as a content addressable storage system like human memory. The main 

property of feed forward networks is that they can process an input to give a 

totally different output. They can therefore be associated with human functions 

such as reflex of a finger to a very hot object. The first layer of neurons would 

receive the initial input from the finger's senses and then the intermediate layers 

process this information till the final layer sends the reflex message to the muscles 

in the finger. 

The brain contains approximately 1010  neurons with about 1014  synaptic connec-

tions. It appears to have both feed back and feed forward networks depending 

on the region of the brain under study. In particular the cerebral cortex, which 

is associated with memory, has some feed back structure (see [15] and references 

therein). Another basic feature of the brain which appears to parallel neural 

network models is its robustness to synaptic and neuron death. It is when we 

consider the way in which neural networks learn and store information that we 

run into problems of direct comparison with the brain. The operation of an 

individual neuron in the brain is quite well understood and seems to broadly 

parallel the neural units in theoretical models. On the other hand the operation 

of a whole network of neurons and the role the synaptic resistance plays is not 

well understood at all. This gap in our knowledge about the brain is partly due 

to the problems of trying to monitor many neurons simultaneously and inter-

pret their output. Neurons are extremely small and the brain very delicate so 

it is almost impossible to connect more than about twenty electrodes into the 

brain simultaneously without disrupting it greatly. A common analogy is that 

of trying to understand the operational details of a supercomputer using a small 

number of large electrodes and having almost no previous knowledge of com-

puters. For these reasons the role of synaptic resistance in the brain is not well 

understood even though it is crucial for storage in all neural network models. 



Another area where very little is known about the brain is that of learning. In 

neural network models learning is associated with altering the synaptic connec-

tion strengths. In the case of the Hopfield model we can reformulate the Hebb 

rule in terms of a more natural gradual learning process carried out on each 

pattern as it is presented to the observer, 

crr.. - t1tIA 
(i.L1; 

 
(1.9) 

This means that synaptic connections between neurons that are stimulated in-

crease in resistance and those between neurons which are not stimulated also 

increase in resistance. Inhibitory synapses are also present in this model be-

tween neurons that are stimulated and ones that are not. There is as yet almost 

no evidence to suggest that this is the type of learning process that occurs in 

the brain. 

All learning processes developed for neural networks fall into two main cate-

gories; supervised and unsupervised learning. A supervised learning process 

requires an external controller to monitor the progress of learning and change 

the learning process depending on what stage has been reached. The learning 

algorithm in equation 1.9 is an unsupervised one since the same process is contin-

ued for every presentation of an image. To gain the maximum storage capacity 

from Hopfield type networks it is necessary to continually re-present images that 

are not stored accurately and apply the learning rule 1.9 [17,19]. This therefore 

requires a supervisor to monitor which images are not stored correctly and then 

continually represent them until they are. Most learning algorithms for feed 

forward networks require supervised learning. 

Biologically speaking supervised learning seems slightly less plausible than un-

supervised since most people are capable of learning things without supervision. 

However the true situation probably lies somewhere between the two with other 

humans playing the role of supervisors. 

The basic Hopfield model outlined in the previous section clearly has many fea-

tures which do not parallel the brain. The brain does not have full connectivity 

and at any one time only a small percentage of the neurons are firing. The 

relaxation of full connectivity is studied in this work and is not found to affect 



the basic features of the model. Amit et al [7] and Gardner [17] studied the 

properties of networks with low levels of activity and again found, with a slight 

alteration to the learning algorithm, that the basic features of the model were 

not affected. The condition of symmetric connections also seems unphysical and 

this has been studied by Derrida et al [46]. Relaxation of the connection symme-

try means that a Hamiltonian no longer exists and the stable minima of the free 

energy can be replaced by wandering paths. This in turn leads to the possibility 

of cycles of patterns which is more physiologically plausible than terminating in 

stable states. The brain dearly operates in cycles in some way otherwise when 

a face was recognized the brain would drop into the basin of attraction of the 

state associated with the face and never leave it. 

In summary the research carried out so far in neural networks has led to a lot 

of interesting models of artificial intelligence while their similarity to the brain 

is still very unclear. Many of the crucial ideas that these models are based on 

have not been substantiated by biological evidence. 

1.4 Ising Spin Models of Ferromagnets and Spin 

Glasses 

The Ising model [20] is a simple model which describes a highly idealized fer-

romagnet. Consider a periodic lattice in d dimensions with N magnetic ions 

situated at each site of the lattice. It is assumed that their magnetic moments 

(or spins) can only point in two directions; Si  = +1 for up and Si  = —1 for down. 

There is a quantum mechanical exchange interaction between the spins which 

at low temperatures makes it energetically favourable for them to be aligned. 

An external field h can also be introduced into the model with which the spins 

will tend to align. Thus the microstate of the system is specified by the set of 

spins {S, i = 1,. . . , N} just like a neural network. There are 2' possible states 

of the system and each of these states can be thought of as a point in an N 

dimensional space called the phase space of the system. The energy of a specific 
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state is given by the Hamiltonian, 

H{S 2 } = 	SS, - h>2S 	 (1.10) 
<ii> 	i 

where J is the exchange interaction which is positive for a ferromagnet. The 

symbol <ij > denotes the sum over spins and is usually restricted to nearest 

neighbours. In the case where the sum is taken over all sites and we let N -+ oo 

the model is called infinite range and is exactly solvable [23]. It should be noted 

that the concepts of interaction range and lattice dimension are interchangeable 

since, for example, a nearest neighbour interaction model of infinite dimension 

is the same as a one dimensional model with infinite range interactions. In this 

case J has to be scaled with the system size in order to prevent the energy per 

site becoming infinite in the thermodynamic limit of an infinite size system. 

Interactions in the Ising model play the same role as synapses in the Hopfield 

model. The only difference between the fully connected Hopfleld model and 

the infinite range Ising model is that the interactions between sites in the Hop-

field model do not all take the same value and actually take negative (anti-

ferromagnetic) as well as positive (ferromagnetic) values. 

Ising spin glasses are the same as the Ising model except they have random inter-

actions rather than ferromagnetic interactions. Spin glasses are substances like 

AuFe which are formed by dissolving magnetic ions (Fe), in low concentrations 

in a non-magnetic host material (Au), at high temperatures . The substance is 

then cooled rapidly and the magnetic ions are frozen into position at random 

sites. This process is normally termed quenching, corresponding to freezing in 

disorder as opposed to annealing where a system is cooled slowly and order is 

allowed to build up. The conduction electrons in the spin glass become polarized 

by the magnetic spins which leads to an indirect exchange interaction between 

the spins described by the Ruderman-Kittel-Kasuya-Yosida (RKKY) interac-

tion [27]. This is a long range interaction which oscillates in sign with a period 

equal to the lattice spacing. Thus since the magnetic ions are at random sites 

the exchange interactions can be both positive or negative. We can therefore 

map the real lattice onto a new lattice with magnetic moments at each site but 

with random exchange interactions. The model which is thought to describe the 

essential features of this system is due to Edwards and Anderson [26] and its 
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Hamiltonian, with no external field, is given by, 

H{S1} = - 	:SiJijSj 	 (1.11) 
<ii> 

where the interactions are defined by a Gaussian distribution, 

	

1 	(tJjj - J0 ) 2  
P(Jij) = 	exp 

2J2 	
(1.12) 

Again the infinite range model (SK model), studied by Kirkpatrick and Sher-

rington [28] is closest to the Hopfield network having both positive and negative 

interactions. For the SK model the interactions have to be rescaled with the size 

of the system, 

Jo 
Jo 

-4 

J
2 

J -4 - 	 ( 1.13) 
N 

which gives, 

_Jo 
jF 

[ji2 	
J2 

	

- 	= 	 (1.14) av 

where [ ] denotes averaging over all the different interactions between sites. 

In the thermodynamic limit the interactions for the Hopfield neural network 

(see equation 1.4), also become Gaussian variables and we have for the synaptic 

strengths, 

[Tsj]av  = 0 
[T2 	 0' ij].. - [T ,j]2 	

= 	 (1.15) 

So at first sight the Hopfield model appears to be a spin glass with zero mean 

interaction. It is only when we look at the correlations between interactions at 

different sites that we see the essential difference between the Hopfield model 

and the SK spin glass. Consider for example the triple site correlation term, 

[IjrkT,] av 	 (1.16) 

which contains terms of the form, 

's j 	= 1 	 (1.17) 
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as well as random terms with mean zero. Thus the expression in equation 1.16 

is non-zero as are all the higher order bond correlations. In the case of the 

spin glass with J0  = 0 all these interaction loops have zero mean. It is these 

correlation loops which distinguish a neural network from a spin glass and give 

it its characteristic storage properties. If we allow a -* oo and rescale the 

interactions accordingly the loop averages tend to zero and the neural network 

behaves exactly like a spin glass. If the synapses are diluted giving a partially 

connected system some of these loops will be destroyed and we therefore expect 

the behaviour of the system to change. We may also expect the system to behave 

more like a spin glass. This is in fact exactly what happens and the full details 

of this change in behaviour are given in Chapters 2 and 3. Even with more 

complicated learning algorithms that keep T, Gaussian [17,19] we still expect 

these loops to play an important role in the behaviour of the system. We will 

now outline the mathematical formalism for studying Ising spin systems. 

If we allow the system under study to equilibriate with a heat bath at temper-

ature T then the probability of the system being in a particular state {S} is 

given by the Boltzman distribution, 

P{S2} 
-- 

exp(—H{S}3) 

	

 z 	
(1.18) 

where /3 is the inverse temperature and Z is called the partition function and is 

given by, 

Z = 	exp(—H{S}fl) 	 (1.19) 
{Si) 

where the sum is over possible realizations of the state of the system and is 

quite often written as Tr. In general all the equilibrium thermodynamics of the 
Si 

system can be derived from the partition function or from the free energy which 

is closely related to it and given by, 

	

F=—T1nZ 
	

(1.20) 

where we have absorbed the Boltzman constant into the temperature. Thus, for 

example, the entropy of the system is given by, 

OF 
OT 

(1.21) 
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If we wish to know the value of some parameter of the system A, then we must 

calculate its thermodynamic average denoted <A>. This is given by, 

<A >= TrA{S 1 }P{5 1 } 	 (1.22) 
Si 

Equations 1.18 to 1.22 can be used to determine the thermodynamic properties 

of Ising type models at equilibrium. 

An important class of parameters which are used to describe spin systems are 

order parameters. These characterize the ordering of the system at low temper-

ature and have zero values at high temperatures. The regimes in which they are 

finite characterize different phases of the system. The system moves through 

these different phases when external parameters of the system such as temper-

ature and magnetic field, are varied. The plot of these phases drawn in the 

space of all the important external parameters of the system is known as the 

phase diagram of the system. The single important order parameter for the Ising 

ferromagnetic model is the magnetization m, which is given by, 

m=>2<Sj> 	 (1.23) 

Below a certain critical temperature T this parameter takes on a non-zero value 

even in zero external field. This spontaneous magnetization corresponds to fer-

romagnetism in real magnets. The transition between two phases is termed first 

order if the derivative of the free energy changes discontinuously across the phase 

boundary and of order 12. if the lowest order of the derivative of the free energy 

which changes discontinuously across the phase boundary is n. In general for 

first order phase transitions the order parameters change discontinuously across 

the phase boundary and for second and higher order transitions the order pa-

rameters change continuously across the phase boundary. The phase diagram 

for the Ising model in greater than one dimension is given in fig 1.1. Spin glasses 

and neural networks require more than one order parameter to describe their 

low temperature behaviour and we shall discuss these parameters later when we 

have developed some more of the theoretical concepts for disordered systems. 

Even though we have laid out a mathematical formalism in equations 1.18 to 1.22 

for calculating the phase diagram of an Ising spin system it is often very difficult 

to calculate the spin sums in the partition function Z. The one dimensional 
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Positive Magnetization 

h 
T 0 	 T 

Negative Magnetization 

Figure 1.1: Phase diagram for the Ising model in greater than one dimension, where h 

is the external magnetic field. At temperatures below Tc  on the h = 0 axis the model 

enters a ferromagnetic phase (m finite, h = 0), while above T it enters a paramagnetic 

phase (m = 0, h = 0). At all finite values of h the model has a magnetic moment 

(m finite), in the same direction as h. 

model is easily solved but does not exhibit a phase transition [20] while the two 

dimensional model has been solved by Onsager [21] but only for zero external 

field. The three dimensional model remains unsolved but many other techniques 

such as renormalization have described certain aspects of its phase transition 

(for a review see [22]). The two and three dimensional spin glass models remain 

unsolved and the infinite range model, normally found to very simple to solve, 

required a high degree of effort and mathematical complexity, to solve (for a 

review see [28]). Many new techniques and theoretical concepts were developed 

in the study of spin glasses and it is these techniques that we shall apply to 

neural networks. 

1.5 Saddle Point Mean Field Theory 

Mean field theory is an approximate technique where the discrete interactions 

that one spin feels due to its neighbours are approximated by a continuous val- 

ued mean field which the spin sits in. A mean field calculation usually takes the 
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form of replacing the discrete spins in the partition function by their thermo-

dynamic averages and possibly a first order fluctuation part which is assumed 

to be small. The partition function can then be calculated by integrating over 

the thermodynamic averages which in the case of the Ising model is just the 

magnetization order parameter. This technique succeeds in predicting a phase 

transition for the Ising model but does not give the correct form of m across 

the phase boundary for systems of dimension three and lower. For dimensions 

higher than three the mean field theory model describes the behaviour of the 

magnetization across the phase boundary correctly. The threshold value of d, 

the dimension of the model above which the mean field approximation becomes 

qualitatively correct, is known as the upper critical dimension UCD. The UCD 

for the Ising model is therefore 4. The highest value of d for which the system 

does not exhibit a phase transition is known as the lower critical dimension and 

is one for the Ising model. These two values are not as yet known for the spin 

glass although there has been much speculation about their values [29]. 

In the case of infinite range models like neural networks mean field theory is 

exact. In these models each spin interacts with infinitely many other spins so 

the value of the total interaction each spin experiences becomes continuous and 

can be thought of as a field in which the spin sits. In this case we can evaluate the 

partition function exactly by means of what is termed the saddle point technique 

and hence the thermodynamic properties of the system can be deduced. This 

type of calculation usually takes the form of using a transformation to replace 

the sum over the discrete spins with an integration over the order parameters 

of the system. The infinite range Ising model represents a simple example of 

this type of model which can be generelised to more complicated systems such 

as spin glasses and neural networks. 

Consider the partition function for the infinite range Ising model, 

Z = E exp(—f3H{S}) 	 (1.24) 
Si 

We will now split the spin sum into two sums; one which contains all the possible 

realizations of {S} such that 	Si= m and another sum over all the possible 
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values of m. We therefore have for the partition function, 

Z = E E exp(—/3H{S}) 	 (1.25) 
m (Si). 

Now consider a free energy defined only on the given set of states which satisfy 

Si = m denoted F(m). Then since from equation 1.20 we have Z = 

exp(-3F) we can rewrite the second sum as exp(—/3F(m)). In the limit of an 

infinite size system m can take continuous values so the first sum in the above 

equation becomes an integral, giving, 

Z = f exp(—,8F(m))dm 	 ( 1.26) 

Thus we have replaced the sum over discrete spins by an integration over an 

order parameter. For infinite range models in the thermodynamic limit the N 

dependance of the free energy can be extracted from F to give, 

Z = f exp(—#Nf (m))dm 	 (1.27) 

where f denotes the free energy per site which does not depend on N. As we take 

the thermodynamic limit the points corresponding to minima of f will dominate 

the integral. Therefore the values of m corresponding to the minima of f will 

be the only possible values of the order parameter for the system and they will 

vary with the external parameters of the system such as temperature and field. 

If there is more than one possible value of m then the value for the system will 

depend on its initial conditions (see section 1.9 for further discussion of this 

point). The values of m which dominate the integral are determined from, 

Of (M) 
= 0 

Om 

and the partition function is given by, 

(1.28) 

Z = exp(—/3Nf(m)) 	 (1.29) 

with the free energy per site of the system given by f(m), the value of m being 

given by the solution of equation 1.28. This technique is called the saddle point 

method since it is the saddle point value of f which dominates the partition 

function. Calculations of this type are usually performed by evaluating Z and 

then determining the transformation which makes it of the form of equation 1.27. 

- The free energy of the system then falls out from the exponent in the integral 
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and the thermodynamic properties of the system can be determined from it. 

With other systems such as spin glasses or neural networks f is a function of 

more than one order parameter but the approach followed is very similar except 

that we end up with more order parameter equations. We will briefly illustrate 

the technique with the infinite range Ising model as in the mean field theory for 

neural networks many extra details associated with disordered systems mask the 

basic calculation. We will therefore formulate the model in the same way as our 

mean field calculations in Chapters 2 and 3 and it will be constantly referred to 

in these Chapters. The infinite range Ising model also illustrates the method by 

which second and higher order phase transitions can be determined analytically 

from transcendental order parameter equations. This technique will also be used 

in Chapter 3. 

The Hamiltonian for the infinite range Ising model with no external field can be 

written as, 

H{s 1 } = 	= 	(( s) _N) 	(1.30) 2N 
i0i 	

2N 	i 

and the Gaussian transformation, 

1 	r 
exp(a2) 	

+o 
= 	I 	exp (_!y2+v1ay)dy 	(1.31) 

can be used to decouple the spins and introduce a new variable m, giving for 

the partition function, after some rescaling, 

exp  (—E) Trfexp/3NJ
/12 	dm (1.32) 

	

\27r 	2 	s 

The spins are now decoupled and can be summed giving, 

fNflJ\ 	 (_'jM2+1Z=( 	) exp ( flJ"
2 	

fexp$N  

1 	

ln(2 coshflJm)) dm (1.33) 

This is of the same form as equation 1.27 except for the constants in front of 

the integral. It is only constants of the form exp(Nc) which contribute to the 

free energy per site in the thermodynamic limit since the free energy per site is 

given by rin(-3Z). They do however contribute to the total free energy of the 

system but this diverges in the thermodynamic limit. Therefore the exponent 



in the integral gives the free energy per site and the saddle point equation for f 
gives a transcendental equation in m, 

m = tanh/3mJ 
	

(1.34) 

So far in this calculation we have introduced m as a variable by means of a 

mathematical transformation. To find the physical meaning of m we must apply 

the saddle point method again to equation 1.32 which shows that m is the 

magnetization of the system, < Se >. 

Above a critical temperature T the only solution to equation 1.34 is m = 0 

corresponding to the paramagnetic phase (see figure 1.1). Below T the equation 

has two solutions one positive and one negative which corresponds to the spins 

being aligned up or down in the ferromagnetic phase. Below T, m = 0 is also 

a solution but is a maximum rather than a minimum of the free energy and 

so does not give a stable state of the system. The order parameter m changes 

continuously across the phase boundary which turns out to be of second order. 

These results correspond to the h = 0 axis of figure 1.1. 

Since the magnetization changes continuously across the phase boundary we 

can expand equation 1.34 about m = 0 which will correspond to being in close 

proximity to the phase boundary on the ferromagnetic side. This gives, 

(mSJ) 3  
m=m/3J— 	

3 	
+... 	 (1.35) 

If we now consider the limit m -* 0 then we are approaching the phase boundary 

from the ferromagnetic side. In this limit only low order terms in the sequence 

contribute and the first order terms give us the equation for the phase boundary, 

m=m/J (1.36) 

which gives T = J. Solving the equation to second order tells us the value of m 

close to the phase boundary, 

M ±\/(J)3 (/3J —1) 	 (1.37) 

If the first order equation for the phe boundary yields more than one solution 

then this second order equation can determine which is the valid one since, for a 
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phase transition to be valid it must give a finite real solution at low temperatures 

and only a zero solution at high temperatures. The phase boundary must also be 

continuous for all real positive values of T. We have thus analytically determined 

the phase point on the h = 0 axis of the phase diagram for the infinite range 

Ising model (see figure 1.1). 

In general for a spin glass or neural network many more transformations are 

required to decouple the spins and allow them to be summed. This in turn leads 

to many more order parameters in the expression for the free energy and hence 

the saddle point condition gives more than one order parameter equation. In 

general these equations will be of a transcendental form. The condition that all 

the eigenvaiues of the matrix of second derivatives are positive is also required to 

guarantee that the saddle point is a minimum of the free energy. Expanding all 

the order parameter equations and then solving them to first order for a given 

order parameter equation yields potential candidates for a second or higher order 

phase change. Solving the equations to the next highest order gives the value 

of the order parameter close to the phase boundary and also determines which 

is the true phase change. In general if the phase boundary is first order or 

between two ordered phases numerical techniques have to be used to determine 

the phase boundary. This is because in these cases the order parameters are not 

all infintesimally small across the phase boundary and so we cannot expand the 

transcendental order parameter equations about zero. In some cases of second 

or higher order transitions between two ordered phases, the value of the order 

parameter which remains finite across the phase boundary is known and the 

phase boundary can then be calculated analytically. This does however depend 

on the form of the order parameter equations. We will in fact meet just such a 

case in Chapter 3 section 2. 

The order parameters play a crucial role in the calculation of the free energy from 

the partition function in saddle point mean field theory. The introduction of the 

order parameters to the partition function by mathematical transformations al-

lows the spin sums to be replaced with integrations over continuous variables. 

The correct choice of the order parameters, and the mathematical transforma-

tions required to introduce them, requires some intuitive skill and a knowledge 

of the distinctive features we expect the system to have at low temperatures. In 
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Figure 1.2: Plaquettes of spins in a neural network or spin glass. The bonds denoted 

by the double bar are not satisfied. 

the next section we will discuss some of the common features of spin glasses and 

neural networks and the order parameters associated with these features. We 

have already seen in section 1.2 that the overlap m is an important parameter for 

the Hopfield model as it characterizes the correlation of the state of the system 

with the patterns nominated for storage. This will therefore be used as an order 

parameter in our mean field calculations in Chapter 2. 

1.6 Frustration and Gauge Invariance 

In the Ising model the interactions all have the same value J so at low tempera-

tures the spins can align and satisfy the bonds. The free energy surface therefore 

has two minima corresponding to the spins being aligned upwards or downwards. 

In the case of neural networks or spin glasses the interactions can take both pos-

itive and negative values so the situation becomes more complex. Consider for 

example a plaquette with four spins sitting at each corner. For simplicity we 

will only consider interactions taking the values ±J. Figure 1.2 shows typical 

plaquettes of random interactions and as can be seen in both arrangements of 

the spins one bond denoted by a double bar always remains unsatisfied. This 

inability to satisfy all the bonds is termed frustration and leads to a degeneracy 

of ground states with randomly orientated spins. If we now consider a system 
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Figure 1.3: Left: Free energy surface of a ferromagnet below T as predicted by mean 

field theory, m is the magnetization order parameter. 

Right: A section through the free energy surface of an equivalent spin glass or neural 

network system at low temperature plotted in the space of the order parameters. 

In the thermodynamic limit the free energy barriers between the minima in both models 

become infinite. 

of two plaquettes then, because there are two shared spins, some of the ground 

states of one plaquette may exclude the other plaquette from its ground state. 

We can thus have, not just degeneracy of the ground state of the two plaquette 

system but, also a degeneracy of higher energy metastable states. If we now con-

sider a large system of many spins with a Gaussian bond distribution we would 

expect a large degeneracy of random metastable states at all different energy 

levels. This would cause the free energy surface to have a many valleyed struc-

ture at low temperatures. It is this many valleyed structure of the free energy 

surface that distinguishes a spin glass from the simple two valleyed structure of 

the ferromagnet (see figure 1.3). Neural networks also have this many vaileyed 

structure with some of the valleys being associated with the states we are trying 

to store in the system and others being random spin glass states. Because of the 

randomness of the spin glass states we have, at low temperature, the possibility 

of the spins freezing into random positions. An order parameter (the EA order 

parameter), first proposed by Edwards and Anderson [26], which measures this 

random freezing is, 
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Figure 1.4: Left is a ferromagnetic plaquette while the right plaquette has ±J interac-

tions but no frustrated bonds. 

(1.38) 

This order parameter will tend to one as the temperature is lowered only reaching 

one in the zero temperature limit. 

It is important to realize that it is not just the presence of ±J interactions which 

lead to frustration. Figure 1.4 shows how a plaquette can have ±J bonds but 

still have no frustration like the ferromagnetic case. It was Toulouse [30] who 

first introduced the parameter 4 which measures the frustration in a plaquette. 

Numbering the sites in a plaquette one to four we obtain, 

41 = sgn(J12J23J34141 ) 	 ( 1.39) 

If this expression is positive then all the bonds in the plaquette can be satisfied. 

In figure 1.2 we can see that 41 = —1 but in figure 1.4 4o = 1 for both plaquettes. 

There is a gauge symmetry present in the Hopfield model and spin glasses since 

the local transformation, 

S/i  = iS1  t=±1 

TI ii = tT 5t5 	 (1.40) 

leaves the partition function and hence the properties of the system unchanged. 

If we now consider a neural network where we are only trying to store one state 
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{j} then, 

T 5  = 	 (1.41) 

This is known as the Mattis model [31] and for any loop of sites 4) is always 

positive so there is no frustration in the system. Under the transformation 

given by equation 1.40 its disorder can be gauged away. Its Hamiltonian and 

partition function are therefore the same as the infinite range Ising model with 

two minima in the free energy at low temperature corresponding to the state {} 

and its image {-,} (see figure 1.3). Therefore we have stored the nominated 

state in the network along with its image and there are no other minima in the 

free energy surface since there is no frustration in the system. It is only when we 

try and store more than one state in the system that we get frustration leading 

to extra unwanted minima in the free energy surface associated with spin glass 

states. 

1.7 Quenched and Self-averaging 

Consider a system of size N where we have chosen the set of interactions {J1} 

from a Gaussian distribution. Now consider an order parameter A and let A{J,} 

denote the value of that order parameter for a given choice of the interactions 

and let < >> denote averaging over all possible choices of the set {J,}. This 

type of averaging is called quenched averaging since we are averaging over the 

variables J1 which are quenched; having no thermodynamic fluctuations. The 

parameter A is then said to self-average if, 

A{ J 13 }— <<A{J1}>>— 0 as N - oo 	 (1.42) 

We will now consider the Hopfield neural network model in more detail to decide 

which models self-average and which don't. 

Consider one site i of a neural network of size N with all the interactions at that 

site defined by, 

T5=> 	 (1.43) 

If p is finite and small the different T 5 's at site i can only take a few different 

values and if N >> p these few values will be realized many times by the N 
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interactions at this site. In the limit N - oo and p finite all the possible 

values of T, at site i will be realized infinitely many times. This means that 

the interaction at site i will not depend on the particular choice of {T,} and so 

the system will self-average. We are in effect sampling a discrete distribution 

infinitely many times which gives an exact representation of that distribution. 

The finite p version of the Hopfield model was solved by Arnit et al [5] as a 

precursor to the much more complicated infinite p model. 

If we now consider p to be of the same order as N then a particular choice of 

the connection strengths T15  does not properly sample the distribution. The 

interactions at site i will therefore depend on the particular choice of the set 

{T 3 }. This is also true in the thermodynamic limit where the distribution of T13 's 

becomes continuous. The system will not necessarily self-average and we may 

expect some of the properties of the system to change with the particular choice 

of the set {T,}. The lack of self-averaging of the interactions is only a sufficient 

condition for lack of self-averaging of individual parameters of the system. In the 

case of spin glasses an order parameter closely related to the EA order parameter 

q does not self-average (see [51]) while other parameters of the system do. The 

problem now arises as to how to introduce the quenched averaging into our 

calculation of the partition function. If the values of parameters vary with the 

specific choice of the interactions it is obviously the average of these values and 

possibly their standard deviation which we wish to calculate. 

One might at first think that the easiest way to overcome this problem would 

be to perform the quenched averaging on the partition function and then carry 

on using standard techniques such as mean field theory to calculate the ther-

modynamic properties of the system. This turns out to be wrong which is well 

illustrated by this short example for finite size systems [29, page 838]. Consider 

an extensive observable of the system; we will use the free energy for simplicity 

since it is closely related to the partition function. In finite systems the lack of 

self-averaging of the interactions and their Gaussian nature produces a corre-

sponding Gaussian distribution for the free energy [33]. We therefore have for 

the distribution of the free energy per site f, 

N(f f 
'2\ 

- at,) P(f) exp ( 
	2(.6f)2) 
	

(1.44) 
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where the relationship between the free energy and the partition function is 

given by, 
In  

Nf 
/3 

(1.45) 

If we now evaluate — 13 in << Z >> we do not get f, but instead get fav + 
i3(Ef) 2  which is clearly wrong. It is therefore necessary to perform the quenched 

averaging on real observables of the system rather than the partition function. 

The obvious observable to average is the free energy since most of the important 

parameters of the system can be derived from this. Unfortunately averaging the 

free energy turns out to be very difficult and a new technique know as the replica 

method [24,26] was developed to perform the quenched averaging. It is expected 

that the free energy self-averages in the thermodynamic limit for infinite range 

models although this has never been analytically proved. The self-averaging of 

the free energy for short range models has been proved by Khanin et al [50]. 

The numerical studies of the SK model by Kirkpatrick, Sherrington, [28] Palmer 

and Pond [34] suggest that the free energy self-averages in infinite range models, 

although a systematic study has never been carried out. 

There is an important relationship between quenched averaging and configura-

tional averaging for parameters that self-average. Consider the average magne-

tization, 

m= <S>>> 	 (1.46) 

The combination of quenched averaging and configurational averaging means 

that the spin-averages are translationaly invariant. We can therefore express 

the magnetization as, 

m=<<<S>>> 	 (1.47) 

where we have dropped the site index i so S can be the spin at any site. Now if 

m self-averages then from equation 1.42 we have, 

(1.48) 

Therefore, for parameters that self-average, the configurational average of a 

summation over all sites can be replaced with a quenched and configurational 

average at only one site. We will use this result in section 2.2 to derive the order 

parameter equations for a partially connected network. 
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1.8 The Replica Method 

We wish to evaluate the free energy in order to determine the equilibrium ther-

modynamics of the Hopfield model. Even though we expect the free energy to 

self-average it is still necessary to make use of the quenched averaging to intro-

duce some symmetry into the infinite sum of random interaction values which 

would otherwise be intractable. We therefore have to evaluate, 

F = - 	lnZ{J13}>> 
	

(1.49) 

The first step would be to evaluate in Z{J,} but this is not possible since it 

depends on the infinite set {J1} which, as we have mentioned, has no symmetry 

properties. Performing the quenched averaging on each term and then trying to 

sum them is not possible either since the log of a complicated function can gen-

erally not be integrated explicitly, especially if it involves some form of Gaussian 

averaging. So the log form of this expression prevents us from taking advantage 

of the quenched averaging to simplify the problem. The replica method [24,26] 

involves expressing f in such a way that the log is removed and the quenched 

averaging can be performed in such a way as to reduce the expression for the 

free energy to a tractable form. It is based on the expansion, 

x"=exp(nlnx)=l+nlnx+... 	 (1.50) 

Taking the limit n - 0 and rearranging this gives, 

—1 
lnx=lim  

n--+O 	j 

which putting z = Z and performing the quenched averaging gives, 

4:: Zn>> —i 
<<lnZ>>=lim 	 (1.52) 

Stricly speaking the thermodynamic limit N - 0 should be taken after the 

limit n - 0 but it is necessary to interchange the limits to make the calculation 

tractable. The interchange of these limits has been studied in detail [35,36] and 

it is now generally accepted that it does not lead to any problems. We thus have 

the following expression for the free energy, 

F = lim lim - 	 (1.53) 
On 
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Therefore we have reduced the calculation of F to the calculation of the quenched 

average of the partition of n replicas of the system. In practice the replica calcu-

lation is carried out by performing saddle point mean field theory on n replicas 

of the system. The free energy of n replicas then falls out from the exponent 

of < Zn >> with all the corresponding expressions for the order parameters of 

the n replica system. The limit m -p 0 can then be taken on the free energy 

and order parameter equations to obtain the properties of a single system. The 

equations obtained in this way are called the replica symmetric equations of the 

system 

The n systems in the calculation are non-interacting but are coupled to the same 

heat bath. Zn  thus contains n sets of spins {S, a = 1,.. . , n} and is invariant 

under permutations of indices a when n is an integer. It is not clear though, what 

happens when n is allowed to become continuous so that the limit ii - 0 can be 

taken. The problem associated with the invalidity of this limit is called replica 

symmetry breaking and leads to invalid solutions in certain regions of the phase 

diagram. This problem will be discussed in much more detail in Chapters 2 and 

3 once we have derived the replica and replica symmetric equations for partially 

connected Hopfield networks. It is interesting to note that the replica technique 

was originally introduced as a mathematical trick to allow the free energy to be 

evaluated. It eventually turned out that the n replicas of the system involved in 

the trick were essential to a complete description of the many valleyed structure 

of the phase space associated with spin glasses. 

1.9 Ergodicity 

A system is said to be ergodic if, during the period it is under study, it explores all 

regions of its phase space with equilibrium probabilities given by the Boltzman 

distribution (see equation 1.18). If we consider the Ising model with no external 

field then the probability of a given state remains unchanged under the flipping 

of all the spins. Therefore, the probability of the system being in a state with 

magnetization m is the same as that of being in a state with magnetization 

—m and so the average magnetization is always zero if the system is ergodic. 
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If we look at the free energy surface of the Ising model at low temperature 

(see figure 1.3) then we can see that there is a free energy barrier separating 

the up spin states from the down spin states. If this energy barrier is large 

(which happens as the dimensionality of the system is increased) there will be 

a low probability of the system being able to move from one side to the other 

and the symmetry of the system will be broken. The typical time it takes 

before there is a big enough statistical fluctuation to push the system over the 

barrier is called the relaxation time of the model. On time scales less than the 

relaxation time the system is therefore non-ergodic and does not move through 

the whole phase space. To describe the system on time scales smaller than the 

relaxation time we therefore have to restrict the partition function to one side of 

the free energy phase diagram which correspondingly gives us a non-zero value 

of m. The property of ferromagnetism- is therefore associated with extremely 

long relaxation times. 

In the case of mean field calculations we are dealing with infinite size, infinite 

range models and the free energy barriers are of infinite height. These systems 

are therefore truly non-ergodic on all time scales and the system will stay in the 

free energy basin it is started in. This idea is shown in the mean field theory 

of the Ising model (see section 1.5 and figure 1.3) where the free energy surface 

has two minima, at low temperatures, situated at m and —m. In the case of 

spin glasses and neural networks the free energy surfaces have many minima, 

separated by barriers of infinite height, associated with different values of the 

many order parameters. Strictly speaking, in our mean field calculations we 

should always include a small symmetry breaking field h to pick out one of the 

minima and then take the limit h -+ 0. In practice for all the calculations in this 

thesis all the results of mean field theory can be interpreted correctly without the 

need of this symmetry breaking field so we wi11 not include it in the calculations. 
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Chapter 2 

Replica and Replica-symmetric Mean Field 

Equations for a Partially Connected Hopfield 

Network 

2.1 Introduction 

In this chapter we will follow the techniques used by Kirkpatrick and Sherrington 

[28] to study the infinite range spin glass model and extended by Amit et al [6,4] 

to cover neural networks. The basic approach will be to use the replica method 

which defines the free energy F in terms of the partition function of n replicas 

of the system as, 

F=limhm — 	 (2.1) fin 
As discussed in section 1.5 on mean field theory we will start by evaluating 

Z n >> . Order parameters will then be introduced which will simplify the 

traces over the spins and in the case of the replica symmetry theory remove 

them all together. The free energy for n replicas of the system will fall out 

from the exponent of the integral over the order parameters in the expression 

for < Z' >>. The saddle point equations for the free energy will then give us the 

order parameter equations for the system. These along with the free energy will 

constitute what we shall refer to as the replica equations for the system which will 

be exact in the thermodynamic limit. We will then take the replica-symmetric 

limit n -* 0 on these equations to derive the replica-symmetric equations for the 
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system. In the last section of this chapter we will look at the stability of the 

solutions of the replica-symmetric equations by considering replica fluctuations 

about them for different connection architectures. The actual replica-symmetric 

equations are rather complex to solve and we will leave it to Chapter 3 to present 

some solutions of them. 

2.2 The Replica Equations. 

We define the connection strengths T,1 for a partially connected neural network 

as, 

Tij = 	 i j, T,, = 0 	 (2.2) 

D is a matrix with all elements equal to 1 or 0 corresponding to connections 

being present or not. In this way we can define any connection architecture 

we wish. In order for mean theory to be exact in the thermodynamic limit 

each site must interact with an infinite number of other sites. We will therefore 

only consider choices of D which satisfy this. We define the connectivity of the 

network to by, 

•1f 
total number of connections = 

N 2  

The Hamiltonian for a partially connected network is given by, 

(2.3) 

H = 	6j SjDjj6j Sj 	 (2.4) 
2N ij,iOjjA 

We will first briefly consider the simple case when p, the number of states nomi-

nated for storage is finite. As we have already mentioned we are only considering 

cases where each site has an infinite number of connections to it so the system 

will self-average as discussed in section 1.4. We therefore expect that, providing 

the temperature is rescaled with w, the properties of all finite p, infinite-range 

partially connected networks to be the same as for a fully connected network. 

This means that all the states will be stored exactly by the network, and states 

which are a mixture of the stored states will also be stable. There is an infinite 

number of interactions at each site to store a finite amount of information so 

it is stored exactly. The details of the fully connected network for finite p are 
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presented in reference [5]. We will now consider the case where p is of order N 

and the system does not self-average. 

We define the storage ratio of the network as, 

p 
N 

(2.5) 

and we have for the partition function of n replicas (labelled by p = 1,2,.. . , n), 

Z Z" >>=Z Tr exp 	>SflD1(S,°) - /9n] >> 	(2.6) 
5, 	 ijp1I 

The 1,3pn term comes from the i = j term and we therefore set Dii  = 1. We will 

now use the general form of the Gaussian transformation to decouple the spins 

and introduce an order parameter. The calculation at this stage follows the 

same procedure as the mean field calculation for the infinite-range Ising model 

(see section 1.5). The Gaussian transformation for many variables is given by: 

exp(stQs) =,/(
2ir1e I Q f dk y  exp(_ytQ_1y + y.$) 	(2.7) 

where Q, s and y are a matrix and two vectors of dimension k respectively. We 

set, 

D = Q3N, f3'S' = S k 	 (2.8) 

and introduce a new variable, 

m=yk 
PS  

(2.9) 

which, as we shall see later, is an order parameter measuring the overlap of a 

nominated state with the state of the system at site i. We will look for solutions 

where only a finite number of patterns can condense out at low temperature 

though it is possible in the thermodynamic limit to have an infinite number 

condensing out. In the latter case standard mean field theory breaks down as 

we have an infinite number of order parameters and the free energy per site 

diverges as N -* oo. These ideas are discussed in more detail in [37]. Eventually 

in deriving the mean field equations we will restrict ourselves to solutions with 

only one condensed pattern as we expect these to be the most important for 

storage. 

To allow for a finite number of patterns condensing out at low temperature we 

will split the sum over the p patterns into two separate sums. One sum will 
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correspond to a finite number s of patterns (E1) which may condense out 

and the other sum will be over the remaining infinite number of p - s patterns 

(E=3+1) Thus using the Gaussian transformation from equation 2.7 gives us, 

- 

() 

= exp 
8pm 	

TrL 	
ID!] 

f
lldm 2 	51' 	N3 	 in 

 
S 	 2011,00 

• exp 3N
(- > 

mD 'm 1  + 	m'S 1 ' 

ijpl, 	
: 	) 

exp /3N 	mD 1 m + E 
 m Sill )>> (2.10) 

on  Sj 	P7 	N 	Ps 
\ 	s3 

where fl1 dm is defined for all p. = 1,2,... ) p. 

When D is singular the expression for Z is undefined with the simplest example 

of this being when the network is fully connected (Di, = 1 Vi, j). The solution 

to this problem was suggested some time ago by Berlin and Kac [25] in their 

study of magnetic systems using order parameters. In our calculations so fax 

we have chosen D1  = 1 (see equation 2.6), but it can be chosen arbitrarily so 

that Dii  = a, (a real) removing the singularity of D. In the thermodynamic 

limit, which corresponds to D being of infinite dimension, we expect the value 

of a required to remove the singularity to be finite or at least of negligible size 

compared to N. In the case of the fully connected model with D 1  = 1 the 

smallest eigenvalue of the matrix is zero therefore adding a small finite value to 

D12  will remove the singularity. In all our subsequent calculations we will take 

Dii  = 1 for simplicity since, choosing D 1  = a with a finite will not effect the 

form of the order parameter equations we shall derive. 

The parameter m in equation 2.10 measures the condensation of a pattern so In 

in the first sum over ii, m can be of order one but in the second, m j  is a 

random Gaussian variable with a standard deviation of order . It is therefore 

possible to carry out the quenched averaging over the p - s high e's since m 
PS 

is uncorrelated with . We have for the last line of the previous equation after 

carrying out the quenched averaging: 

(— 2 jp1.' 

	 ln coshi3mi  Sip ) 
	

(2.11) 
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We rescale m to obtain a well defined limit as N — oo in the integral, 

mPs '• —+ .!!! 	 (2.12) 

and expanding in N we get as N — oo, 

exp$ (_ 
	

mD 1 m 5  + 	mm iSST) 	(2.13)
PS 1.7 P  2N 

i0pa 

Pt 

ijp/8 

We are now in a position to integrate out the m's by using the general form of 

the Gaussian integral, 

( ,,_.) m fexp(—Ix tAx)dx= (j A j) 2 	 (2.14) 

where m is the dimensionality of the matrix A. Therefore defining, 

K jjp, = D;1 5p, — y 8sSpt. - 	 (2.15) 

where we have set, 

q
p — ipio. 

	

(2.16) 

we can now integrate over the m j 's which will give, ignoring constants and 
O 

expressing the determinant of a matrix as the exponent of the trace of the log 

of the matrix, 	- 

/ II dqexp(-1TrNaln$K)  fl 6(q—S'S) 	(2.17) 
2 

where we have introduced q via a delta function. We can introduce another 

parameter rr  by means of the complex expression for the delta function, 

f . "+oo dj
8(a) = 	—exp(a.t) 	 (2.18) 

—oo 

which brings the expression for the partition function back to the desired expo-

nential form. The exponential form of the partition function is necessary for the 

application of the saddle point method. We therefore have for the delta function 

in equation 2.18. 

32  6(q — SffS) = 
•;;- L drr exp H:q32rrqr  + 1y/32 Sip  Scrr)  (2.19) 

where the integral is along a contour running in the direction of the imaginary 

axis. We can shift this contour so that rr can have a real as well as imaginary 
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part. The introduction of the constants a32  will, as we shall see later, make the 

final expressions for the order parameters much simpler. We now wish to put 

all this back into equation 2.10. First though we can simplify the expression by 

taking the constant term involving I D  J from equation 2.10 inside the exponent 
giving, 

Ii 	 (D\J exp 	Nan Tr in 	 (2.20) 

We can then add this to the in /9K factor and ignoring constants which occur in 

both terms we get, 

(D\ 
Tr lnj9K +nTrin 	 (2.21) 

ijper 	 ii 

= Tr in D1N/9 (r& - 	- 	+ Tr in ( 
D 1  \ 

which setting qr = 1 gives, 

Tr in (öpgij 
- 13Th, pr\ 

ijpo 	 N q ) 	
(2.22) 

Putting all this back in the expression for the partition function equation 2.10, 
gives us, 

/3N naN 	 n(n-1)N
<<Zn>> 

= (-i;-) 
	( ,,,2,, ) 

	/ II  dm-  dqf-dr 

	

i 	i,v,p>o- 

	

xexpN 	- 
2 	2 

Tr in 
(spo

" f3D, q \ 	
rq 	(2.23) 2 	 N ) 2 

	

+/92 	Sip  Siff r + 
ipo 	 il/p 

Even though rr may be complex we will only be interested in real physically 

meaningful solutions although, when we are studying the stability of the order 

parameter equations it will be important to remember that rr must be stable to 

fluctuations along only the complex axis. It will also be necessary, when studying 

the stability of the solutions, to shift the fluctuation along the complex axis so 

that it passes through the saddle points of the other real order parameters. The 

stability conditions are studied in detail in the last section of this chapter. 
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Equation 2.24 is of the correct form for the saddle point method to be applied 

(see section 1.5), which gives, for the physical meaning of the parameters we 

have introduced, 

m = 

q = 
1cxN 

a 
	mm>> 	 (2.24) 

At this point we cannot proceed any further unless we make some assumptions 

about the architecture of the system. The equations we have derived so far de-

scribe a system with an infinite number of order parameters, so we would end 

up with an infinite number of order parameter equations to be solved simultane-

ously. The standard mean field theory saddle point technique cannot cope with 

an infinite number of order parameters and this is reflected in the fact that the 

free energy per site becomes unbounded in the thermodynamic limit because 

of the N'th power in the constant terms in front of the integral (see equation 

2.32). We must reduce the number of order parameters to a finite number in 

order to solve this problem. This can be done by restricting our choice of D to 

only translationaily invariant matrices. 

If we consider neurons to be sitting at sites on a hypercubic lattice then in the 

limit N - oo we can think of the lattice as being continuous with every point 

representing a neuron. The lattice can then also be of finite size. For any neuron, 

the neurons connected to it will form a shape or shapes on this lattice. We will 

henceforth refer to this as the connection space of that neuron and only look 

at systems where the connection space is the same at every site. This concept 

of connection space is discussed in more detail in section 3.1 where we use it 

in setting up a numerical method of solving the order parameter equations. 

Choosing the connection space to be translationally invariant means that the 

matrix D will be translationaily invariant. Therefore we can now define w, the 
connectivity ratio, as, 

Vi 
	

(2.25) 

If we consider the values of <Z , < Si >>> at each site they will form some 

kind of distribution curve. Then for a translationally invariant architecture the 
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network contains a large number of macroscopic subsystems which are identical 

and have identical environments. We can think of these subsystems as building 

blocks from which the whole system can be constructed by performing transla-

tions on these blocks. Each of these macroscopic subsystems will have the same 

distribution curve for << . < Si >>> and hence the same average value. The 

parameter m is an average over such a macroscopic subsystem and therefore 

its value will not depend on its index i. Therefore from equation 2.24 we can 

see that rr will also be independent of i, but we must be more careful with q 

since its value depends on a single site rather than a macroscopic sum. If we 

now look at the log term containing q'  in the partition function and expand in 

DIN we get, 

Tr in (8,., 8ij - _
D_1  
	D,,q + 	q, 	,q3  1 

	(2.26) 
ijpo 	

N  
'p 	 up 

Therefore qr  only occurs as a macroscopic sum in this term as it does in the 

other term containing it in the partiton function since rr is independent of i 

(see equation 2.24). We can now define a finite set of site independent order 

parameters, 

MV M 

= 
qPff =Dijqr 	 (2.27) 

We now expect to be able to use mean field theory techniques and the saddle 

point method to derive solutions for the order parameters though the replicas 

complicate things considerably. It may be possible to solve a neural network 

model which is not translationafly invariant but the connection matrix D would 

have to contain enough symmetry so that the number of order parameters re-

quired was finite. We can imagine a network where one set of sites has more 

connections to it than another set of sites and therefore the overlaps mr,,, asso-

ciated with the second set, would be lower than the first. 

At this point to make the form of the order parameter equations simpler and 

closer to the fully connected model we shall rescale some of the important pa-

rameters of the system, 

M - wm 
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qPa 

rpe —4 

T-4wT 

a - wa 	 (2.28) 

This will give us order parameter equations of a similar form to the fully con-

nected model and the physical interpretations of the order parameters will lose 

their explicit w dependence. It is important to realize now that a is measure of 

the storage per connection and is given by, 

We now have for the partition function, 

P 
wN 

(2.29) 

= (1Nw) 	 n(n-1) 

<< Zn  >> 	
(/32aNw\ }

. j 	<<Tr f [J dmdq'dr 27r 	2irz j 	Si' •, 	> 

	

1 	 / 
xexpNn/3w—a+ wa _Trin(I,N- 

	

2 	 \ 	
__

/3 
qxD ))

wN 

	

(m + 	rq 	 (2.30) 
pOo.  

11 	2 1 
r 

;;,_6a/3 
	SS 	+ 

i,pOo- 	 ivi, 

where to simplify the notation we have introduced x which is the Kronecker 

product of two different dimensional matrices. The Kronecker product of two 

matrices is defined in Appendix A along with some important results for the 

product which will be used throughout this work. It has only been possible to 

introduce the Kronecker product at this stage because q is independent of i. 

Therefore q is the matrix of q°'s with q' = 1 and 'N  is the mN dimensional 

identity matrix. The constant terms in front of the integral do not contribute 

to the fee energy per site which is now bounded in the thermodynamic limit. 

The physical meanings of these new order parameters are then obtained from 

equation 2.31 by applying the saddle point method again giving, 

MO = 

qPa = 
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1 
Pff= 

- a E N 

= I 	 (2.31) 
a ii=a+1 

which are the same order parameters Atnit et al [6] used to describe a fully 

connected network. So mv is a measure of the overlap of the state of the system 

with the finite set of patterns nominated for condensation. The parameter q 

is a measure of the alignment of spins at each site in different replicas at low 

temperature. r'° is a measure of the overlap of the state of the system with 

the infinite set of p - s patterns not nominated for condensation. Our aim in 

introducing these order parameters was to allow the spin sums to be removed 

from the expression for the partition function so that it could be formulated 

only in terms of order parameters. We will now see how the spin sums can only 

be simplified in replica theory giving us order parameter equations which can 

be solved but are extremely complicated. It is only in replica-symmetric theory 

that the spin sums can be removed from the partition function completely giving 

us analytical equations for the order parameters. Looking at the expression for 

the partition function (see equation 2.31), the last term involves a sum over the 

finite set s of states nominated for condensation. As discussed in section 1.7, 

terms with quenched averaging over a finite number of states will self-average 

as will the whole expression for the free energy. Rather than drop the quenched 

averaging at this point it is more convenient to remember that, for parameters 

that self-average, we can replace the configurational averaging over all sites with 

a quenched average of the configurational average at only one site (see section 

1.7). We can therefore drop the site indices on the spins but keep in the quenched 

averaging. The trace over the spins can now be taken inside the exponent (see 

equation 2.31), so that Z can be written in the form given in equation 1.27 (see 

section 1.5), 

2 	

)

.n(n-1) 

Z>
4 > (3Nw)  

I fl2ir 	2    

(2.32) 

where the free energy per site f is given by, 
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f 	1 	
w2- 
	 j3 

W 	 ( 	ioN 	) 
- = —a

2 
 +Trin 'nN 	qxD 

1 
(m +—rq 

2n 

'1 

	

in Tr exp (a132 	SSr +/3 > m'S" >> (2.33) 
sp P96o. 	 VP 	 J 

the saddle point equations are then given by, 

Of 	Of 	Of 
Om — 0qP = OrPU = 0 	 (2.34) 

As we would expect, the free energy scales with the connectivity ratio w (see 

equation 2.33), since this is a measure of the number of interactions at each 

site. It is worth noting at this point that, since f scales with w, in taking 

the thermodynamic limit to derive the saddle point equations we have assumed 

ioN —+ 00. This compares to the simpler case of the infinite-range Ising model 

(fully connected), where N —+ oo, gives us the saddle point equations. Nw is 

in fact the number of connections per site so we are explicitly seeing here the 

condition that, for mean field theory to be exact, each site must interact with 

an infinite number of other sites. This means, for example, that each site could 

interact with /7%7 other sites and the order parameter equations derived from 

mean field theory would still be exact. This would give, 

as 	 (2.35) 

with L remaining finite and so the analytical continuation of w to zero will be 

valid in our order parameter equations. We could have also chosen the number 

of connections per site to be in N and the limit w — 0 would also be valid. We 
will refer to the limit w — 0 for simplicity as the w = 0 model and in Chapter 

3 we will derive the phase diagram of the randomly connected version of this 

model. 

The saddle point equations for the free energy in equation 2.2 give us the fol-

lowing solutions for the order parameters of the replica system, 

M V = << V<SP>>> 
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qpLT = 

= .Tr I' DQ 
3 ii IN - ;çq x D) 	

(2.36) 

is the determinant of the matrix with respect to the p and o indices only 

and is therefore a matrix itself of dimension N (see Appendix A). 
QP0 is the cofactor of 'nN - 	 x q with respect to the indices p and c and is wN 

therefore also a matrix of dimension N (see Appendix A). 

These represent the order parameter equations for a system of n replicas and 

they are exact in the thermodynamic limit. At first sight it seems as if we have 

failed in our objective to remove spin sums from the calculation. The above 

equations could be used as a starting point to find solutions of the so-called 

replica symmetry broken phases of the model which has been done for the spin 

glass by Parisi and others (see [29] for a review of different replica symmetry 

breaking schemes). The replica symmetry broken phases are the areas on the 

phase diagram where the replica-symmetric solutions are unstable. In this work 

only the replica-symmetric equations will be solved and the replica equations 

will be used to study their stability and so determine the areas of broken replica 

symmetry on the phase diagram (see next section). While the spin glass phase 

is very important in the study of spin glasses, it is the storage part of the phase 

diagram (m finite ) that we are interested in for neural networks. Spin glass 

phases in neural networks and spin glasses are always replica symmetry broken 

phases but the storage part of the phase diagram only has a certain area that 

has broken symmetry. In the case of a fully connected network [6] this area 

is very small but, as we shall show later, this area does increase in size as 

the network becomes more partially connected. Therefore for spin glasses it is 

very important to study the replica equations to determine the nature of the 

spin glass phase but for neural networks the main features of storage capacity 

can be determined within replica-symmetric theory. In the paramagnetic part 

of the phase diagram all the order parameters are zero and the full replica 

stability conditions can be studied. This will be done in section 3.6 to show the 

consistency of replica symmetric theory and replica theory in determining the 

spin glass phase boundary for the randomly connected, w = 0 model. 
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2.3 The Replica-symmetric Equations 

We will now derive the replica-symmetric form of the free energy and order 

parameter equations. This is done by making the assumption that all the order 

parameters are independent of their replica indices and then taking the n - 0 

limit on the free energy per site and the order parameter equations. Therefore 

we first set, 

M = rn" 

qPq pc 

= r po 	 (2.37) 

and then take the limit, 

	

frepzica symmetric = limfrepzica 	 (2.38) 
n--p 0 

on the free energy per site. These two steps correspond to firstly assuming 

that the minima in f(m, q'°, rPo) lie along the replica-symmetric direction and 

secondly, reducing the problem to only one system from n systems. We will 

look at the free energy per site first (see equation 2.2), and discuss the effect of 

the replica symmetry assumption on it, term by term. The first term remains 

unchanged but the second term is, 

Wa 
- Tr ln 1nN - — q X D 	 (2.39) 
2/3n1 	\ 	wN 	j 

where q is now a matrix with l's on the diagonal and q for all the off diagonal 

terms. This can be written as, ignoring the constant term in front,. 

	

1  T in (IN fl  - -ç(l  - q)I, x D - %i,. x D) 	 2.40) 

Tr in
( 

IN - _çD(l - q)) + - Tr in (IN fl  - - in  x D [IN - -% D(l - q)] ') 
ij 

1,,, is an n dimensional matrix with all components set to 1. 

We can now expand the second term in the above equation in i, since we wish 

to take the limit n - 0. This gives, 

1  00 

Tr in (IN - _D(l -  q ) '\ - > Tr 	Tr(P2_D rIN - ---D(l -

q)I—I)k 

 2.41) 
ij 	 wN 	) n 	. k! , wN [ 	wN 
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In the limit n —i 0 only the first term in the sum contributes since, 

rJ(1)k = 	 (2.42) 
Pa 

Therefore we get, for the second term in the free energy equation 2.2, in the 

replica-symmetric limit, 

Tr in ('N - 	
-1 

- 	- Tr (AiD 	-- q)](2.43) 
jj 	wN 	) 3wN 

[IN 
 wN 

The remaining terms are the same as for a fully connected network [6] and we 

therefore have, for the third and fourth terms, 

I 2(m L ) 2  + I E rq = (MI)2 + (n - 1)rq 	 (2.44) 

which taking the limit n - 0 gives, 

- rq 
	

(2.45) 

The last term gives, setting r °  = 

I <1nTrexp -- 
fafi2 

 r (;:5P)2 
- 12EZ 	> 	(2.46) 

The term ina,82r comes from the term p = o which is excluded from the replica 

sum and therefore must be subtracted from the replica-symmetric sum. We can 

now decouple the spins using the single variable form of the Gaussian transfor-

mation in a similar way to its use in the mean field theory of the infinite-range 

Ising model (see section 1.5). We therefore get, using equation 1.31, 

—<<ln/Trexp 	z 
1 	dz ' 	 2  + 3 {iz + m.e] 	s) >> _ia/32r (2.47) 

v'2-7r JSP 	(2 

where m and 6 are the vectors {m'} and {"}. 
The last term containing r is factored by the same constants as the previous 

term containing r calculated in equation 2.45, which is of the form —qr so this 

gives us, adding the two terms and ignoring constants, a term of form r(1 - q). 

The spins S" are now decoupled in the main term in equation 2.47 so the trace 

can be evaluated giving, 

1 In 	exp 
dz 	H z2 + nm [2 cosh/3(/z + m.e)])>> 	(2.48) nf '/

-   
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Since we are going to take the limit n - 0 we can expand the exponential in n 

and only keep the leading term giving, 

1d 	/ z 2 \ f z 
exp 

(_--) 
(1 + nm [2 cosh/3(,/&z + m.d)])>> 	(2.49) 

n 	V2_ -7r 

The first of the two terms in the above integral is just the Gaussian integral and 

is therefore equal to one. This means that the main log is of the form ln(i+ ny) 

and so we can expand it in n and only the leading term will contribute when we 

take the limit n -+ 0. This leading term is, 

4ZI expin 
dz 	(_Z2) 

, 

 

-- 	[2coshfl(v'z+m.e)] >> 	(2.50) 

Putting all these terms together, we get for the replica-symmetric free energy 

per site, 

f 	1 	1 	2 	/3T - = 	+ 	(m") + ---(1 - q) + 

Wa 
2,3 ij 

{rrr in (IN -.çD(1 - q)) - 	[D (IN - _çD(1 q))] }wN 

—
d 	Z2 

	
()

< in [2cosh(z + m.d)]>> 	 (2.51) 

So now we have the free energy in a form which does not contain spin sums 

and we can also derive order parameter equations which do not depend on spin 

sums. The order parameter equations are, derived from the finite set of saddle 

point equations, 
OfOf Of 

p252 
Om" Oq Or 

Which gives, 

dz 

	

rn" 	z I 	exp 
(- 

I ' tanh /9 (iz + m.d)>> 2j 

q  = 	I
z d 

exp (-) tanh2  /3 (,iz + m.d)>> 2j 
-2 

= Tr 	(IN - —- D(1 - q))
()

21 

	
(2.53) 

wN 

These equations can also be derived from the order parameter equations 2.36 

with the replica-symmetric assumptions. This is done in the case of order pa- 

rameter r in Appendix B. The equations for m" and q are exactly of the same 
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form as for a fully connected network [6], while only r explicitly contains the 

matrix D which specifies the connection architecture. The external parameters 

of the system a and T are defined slightly differently from the fully connected 

system as they are factored by I (see equation 2.28). Simultaneous solutions of 

these three equations will yield the phase diagram for the network. The phys-

ical meaning of these order parameters is then given by applying the replica 

assumption to equations 2.31 which gives, 

M' = 

i  IV 

q = 

r 	 < (m) 2 >> 	 (2.54) 
a 

Therefore rn" is the overlap of the state of the system with the nominated pat-

terns. It was the same parameter we studied in section 1.2 using a simple 

statistical analysis technique. q is the Edwards Anderson [26] order parameter 

which is a measure of the freezing of the system at low temperature (see section 

1.6). The other parameter r is a measure of the overlap with the infinite set of 

p —s patterns, which are not nominated for condensation. Since we will only be 

looking at macroscopic overlaps with one pattern r corresponds to the sum of 

the squared overlaps with all the other patterns divided by a. 

At this stage it is convenient to express r in a different form. We first define, 

C=f3(1—q) (2.55) 

In numerical and theoretical calculations C was always found to be less than 

one. We can therefore expand r in C which gives, 

r_ITr1CD (CD)2 
) 	

1 +2+ 3 	+...) 	(2.56) 
;;—N 	toN 

This can be more conveniently written as, 

r = q>Ck(k + 1)ak(w) 	 (2.57) 

where, 
2 D 1 	

\ 
ak(w) = wTr (-) 
	

(2.58) 
ii wN 
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The physical significance of ak(w)  in terms of the connection space of a network 

will be discussed in section 3.1 where we will also evaluate it numerically for 

different architectures, by a bounded random walk. At this point it is worth 

noting that D' has dropped out of our calculations with only traces of D 

being left in. In section 2.2 we found that in some cases it was necessary to 

choose D1. = a, (a real and finite) rather than D21  = 1, to remove the singularity 

of D. At this stage in our calculations we can also see that a choice of D1, = a 

will not effect the results of the traces. In the case of the fully connected network 

the traces of D enter in the form, 

Tr fD\ — = N(a+...)+N 
N 

(2.59) 

so the terms involving a are negligible for a finite in the thermodynamic limit. 

In this thesis we shall only be looking at states which have a macroscopic overlap 

with one of the nominated states. This means that in the preceding equations 

= 1 and the finite sum E.1 corresponds to only one term. States which have 

a macroscopic overlap with more than one nominated state will exist at low. 

temperature. The details of the mixture states in the fully connected network 

are given in [6] where they only exist at low values of a and therefore do not 

play an important role in defining the maximum storage capacity of the network. 

Only solutions which have an overlap with an odd number of nominated states 

are stable and all the possible permutations of the bits of the nominated states 

give stable states. It is therefore difficult to justify these states as contributing 

to the storage capacity of the network. It is only the storage states with a 

single overlap that exist at high a and therefore determine the storage capacity 

of the network. We expect that the relationship between mixture states in a 

fully connected network and those in a partially connected network will be very 

similar to the relationship between single overlap states in the two models. 

We have for retrieval states with a single macroscopic overlap, 

M = mE 	 (2.60) 

This gives for the order parameter equation for m, 

M <<j 
dz  

exp (-
2

)= tanhflv'&z + me)>> 	(2.61) 
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where we have dropped the index on since only one component of {'} now 

appears on the left hand side of equation 2.53. The quenched averaging can now 

be easily performed since only takes two values, 1 or —1 so we only have two 

terms to average over. We get for the two terms, 

1 f dz 
	

(_ Z 2) 

 -- 
[tanh/3('z+m)—tanh/3(v'&z_m)] (2.62) 

The transformation z - —z on the second term makes it positive and of the 

same value as the first term. A similar process can be carried out for q and we 

finally get the set of replica symmetric order parameter equations for a state 

with a single macroscopic overlap with one of the nominated states, 

M 
jdz 

exp (_ç)tanhz+m 

q 	J dz  vr2 -7r 	 H ) 	
(Cfr Z  exp 

00 

r = q >J C IC (k+1)a(v, )  

k=O 

ak(w) = wTr 
(D\2 

ii \wN) 

and the free energy per site is, 

(2.63) 

1 	1 	12  Car 
W 	2 	2  2 

\ 11 
WafT i(I 	

IwN

u13( 	
)+2/31 	 wN ) j, wNiJ 

if 
dz  

- 	v,_ 	(f) in [2 cosh$(/z + m)] 	 (2.64) exp 

which, expanding in C, can also be written in terms of ak(w)  as, 

'm  2 
Car a °° 	'a(w) (1 + q(1 + lc) - 	 \ 

W 	2 	 k 	
k+2 ) k=O 

if 
dz 

exp ( 
/_ z2 

/3 	
2 )1n[2cosh/(iz+m)] 	(2.65) - 	_ 

It should be noted at this point that since we have never explicitly chosen with 

which state the system will have a macroscopic overlap, it can be any of the 

p states and there will be a basin of attraction at low temperature associated 

with each of these states. In all these calculations we are still allowing for the 

possibility that the macroscopic overlap m is zero. We thus have the possibility 
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of spin glass states (m = 0, q finite) and paramagnetic states (m = 0, q = 0) 

being solutions of these equations. 

Although we have now reduced the problem to the simultaneous solution of three 

equations we have not looked at the stability of the solutions and the validity of 

the replica-symmetric assumptions. This will be the subject of the next section 

in this chapter. 

2.4 Stability of Replica-symmetric Solution 

The equation for the free energy of the n replica system equation 2.2, is exact 

in the thermodynamic limit. It is only when we perform the replica-symmetric 

continuation of n -i 0 that the expression we gain for the free energy may be 

invalid. The values of the order parameters which are then calculated by the 

saddle point method may then be invalid as well. We also have to check that the 

solutions we obtain are minima of the free energy rather than just saddle points. 

Both these stability conditions can be checked by expanding the replica order 

parameters about their replica-symmetric values and looking at the eigenvalues 

of the matrix of second derivatives of the free energy. This will tell us the regions 

of the phase diagram where our replica-symmetric solutions are stable. In certain 

areas of the phase diagram we can already see that replica theory gives strange 

results. At very low temperatures replica theory gives negative values for the 

entropy which is not possible for a system of discrete Ising spins. Another strange 

result is that the free energy is always a maximum rather than a minimum of 

q in the spin glass phase. This arises from the factor n(n - 1)/2 which is the 

number of distinct q's in replica theory occurring in the free energy. When we 

take the limit n -+ 0 we get the strange result that this term becomes negative. 

This means that under the replica assumptions we end up with, in some sense, a 

negative number of order parameters. These strange and inconsistent results can 

only be understood by studying the stability of the replica-symmetric solutions 

in terms of the replica theory. We will therefore start by expanding the replica 

solutions about the replica-symmetric values, 

M&$ = m&+Sm 

I3 



qPO = q+8q 

= r + Sr° 	 (2.66) 

and then look at the second, derivatives of the free energy. In the analysis that 

follows we will use a similar approach to Lautrup [37] to classify the different 

eigenvalues. 

We will try as much as possible to write the second derivatives of the free energy 

in terms of order parameters and closely related quantities. This will make 

it much easier to take the replica-symmetric limit, on the second derivatives 

since we already know the replica-symmetric forms of the order parameters. We 

therefore start by defining r° as the matrix from which the trace over the site 

indices gives r'°. We therefore have from equation 2.36, 

r"'=.!j' 	
DQ 

/ IJInN— __x D) 
Vp,o 	 (2.67) 

wN Pff 

where, 

= Tr r' 	 (2.68) 
ij 

We have defined rP 7  for all values of p and c including p = a which is valid since 

we have previously defined q '1'  = 1, so QPP  is defined. Q'° is the cofactor, with 

respect to the replica indices, of the matrix whose determinant occurs in r'°. 

With this definition of r" we obtain for the second derivatives of the replica 

free energy, equation 2.2, with the common factors to and taken out 

!. 92f = 
W am-amff  

n 02f 
= 0 (-y<A) 

to OmOq 

n a2f = 	2<<(S5A><SP><55A>)>>  
w OmOr 

n 02f 	/3a = 	 (p<c,r,7<)) 
w 8qP0Oq 	w jj 
n 192f 

=< (p < a,-y 	)) w OqPOrYA 

n 02 f 
wOr8rv' 	

—83a2 (< 5S r s  s" > — < SpSa >< ss" >) >>(2.69) 

(p<cT, -y<) 
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We now wish to calculate all these derivatives under the replica-symmetric as-

sumptions. We will only be looking at the states which have a macroscopic over-

lap with one of the nominated patterns. We therefore already know what the 

double and single spin averages which occur in these derivatives are in replica-

symmetric theory since they are just equal to the order parameters m and q 

equation 2.54, 

f dz
exp  (_ç)   tanh/3(= 	 /z + m) 

f dz
= 	exp 

	

(_ç)tanh 2 3Vz+m 	2.7O) 

The other spin averages can be calculated from the partition function con-

structed from the free energy in equation 2.2, with the replica assumptions. We 

will now introduce a more compact notation for defining these spin averages. 

We define, 

M = tanhfl(v'z + m) 	 (2.71) 

and, 

I dz ( z2\  
= 	exp ir 	 (2.72) 

This gives us for all the spin averages required to evaluate the second derivatives 

of the free energy, 

= 
= 

r < S"SS">>> = <M3 > .7 +64 <M(1 - M2 ) >z fr <7) 

	

< SPSS7SA>>> = <M4  > +S8 	<M2 (1 - M 2) > (2.73) 

+y6oA <(1 - M2)2 
>" 

(p <0,7 < A) 

Following Lautrup's [37] approach, instead of diagonalising the matrix of second 

derivatives to find the stability eigenvalues, we will evaluate the full second order 

fluctuation 92f  and characterise the eigenvalues into three specific groups. With 

the replica assumption that all the order parameters are independent of their 

replica indices r"°, equation 2.66 will only take two forms depending on whether 

it is a diagonal or off-diagonal term. In the second stage of the replica-symmetric 

assumption n -p 0 we will get two distinct matrices: the off-diagonal matrix r, 

whose trace gives us r and the diagonal term matrix which we will denote as rd. 
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Both these matrices are calculated in Appendix B. We therefore have for the 

second order fluctuation in the free energy f, 

72f 	M 2  >) (6m)2 
W 

P 

—3(< M 2  > - < M > ( m)2 

_2(< M 3  > - <M >< M 2  >)E Sm 
10 	 Off 

—2a/32  <M(1 - M 2 ) > 
Off 

—Tr Ir2 ( 6q 	+ 2r(r - rd) 	5q 2 + (r -rd)2 (qP)2
2w5 	\p 	I 	 p\ 	 / 	 p 	j 

+afl 
p 

M 4  > - <M2 >) 

()2  

2 
—a2 /33 < M 2 (1 - M 2 ) > 	

(  
- a2/93  

2 < (1 - M 2 ) 2  > 	(Sr)2 
Pff 

(2.74) 

The fluctuations 5q1)' andSr,',* are defined as being zero since these terms do 

not correspond to replica order parameters, so the sums over p and o are unre-

stricted. In the previous equations we have only set diagonal order parameters 

like qIP  equal to certain values to make our expressions more compact. 

We will now consider three classes of fluctuations which span the complete space 

of fluctuations which has dimension m 2 . The most important one is what we will 

call strongly asymmetric fluctuations which are defined to satisfy, 

Sm, = 	= 	= 
	

(2.75) 

and span a subspace of n(n-3) dimensions. Putting these expressions back into 

the equation for the fluctuation in the free energy equation 2.73 we obtain the 

strongly asymmetric fluctuation in the free energy, 

2f = 	(_Tr(r - rd ) 2 (89) 2  + a/36q5r 
- a2/33 

<(1 - M 2 ) 2  > (6r)2) 
W 	

pc7\ 2w2 

(2.76) 

f .  
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This is a quadratic in the fluctuations in q"° and r which seems to be negative-

definite, implying that the replica solutions are always unstable but we must 

remember that the fluctuations in r1'° occur along a contour running in the 

direction of the imaginary axis. We can shift this contour in order to make it 

run through the saddle points. If we rewrite the above expression in the form, 

Th52f 	

: [1,((ç 	
' 

- 83c,2 (5r 
- 

6q  PO \ 

W 	 2 	 82aA) j 
	

(2.77) 

where, 

A ?  = <(1—M2 ) 2  > 

1 	a94  
As 	- - —Tr(r - rd ) 2 	 (2.78) 

A, 	w ij 

we have isolated the shift necessary in 6rP0  which is, 

Spo. = 	q 	
• jf5$PO 	 (2.79) 

where s"° is real. The two eigenvalues A s  and A, which characterize these fluc-

•tuations do not depend on n, the number of replicas so there is no problem with 

the limit n - 0. Since A, is clearly always positive, asymmetric fluctuations in 
£rP0 are always damped in the imaginary direction and instabilities are entirely 

controlled by A,. This eigenvalue can take both positive and negative values 

and characterizes the replica and replica-broken phases. The other fluctuations 

can be split into two more classes which we will call weakly asymmetric and 

symmetric fluctuations. The weakly asymmetric fluctuations are defined to be 

of the form, 

Sq"° = .5q+Sq° po 

= Sri' + Sr' p 54 a 	 (2.80) 

where, 

(2.81) 

and the symmetric fluctuations are defined as, 

Sm,, = Sm 

= Sq pr 

= Sr p a 	 (2.82) 
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These two types of fluctuation only introduce two more eigenvalues which are 

similar to the fully connected model [37] and are always larger than As in the 

ordered phases so we will not consider them any further. The condition for 

stability of the replica-symmetric solution is therefore given by, 

As ~! 0 
	

(2.83) 

with equality giving the lines on the phase diagram separating the symmetric 

phases from the symmetry broken phases. The condition for stability can be 

written as, from equation 2.77, 

(__2  
2\

Tr(r_rd)2 	
dz 

 _exp 	 ) sech4/3(V&z+m) <1 	(2.84) 
Wi' 

In Appendix B we find that this trace gives, 

Tr(r—r42
— 

 wr 
- 	 (2.85) 

i  

therefore the stability condition becomes, 

I /3 2ar 	dz 
exp (_) sech4/3(/&z + m) 	 (2.86) 

Therefore to determine the areas of broken replica symmetry we must solve 

the order parameter equations 2.62 and plug the values obtained for the order 

parameters into the above equation. These calculations will be performed for 

different connection architectures in Chapter 3 but we will discuss some of the 

basic results in this section. 

The eigenvalue As is always negative at temperatures close to zero, because of the 
32 term (see equation 2.85), which explains why the replica-symmetric solution 

gives an invalid result of negative entropy at these temperatures. The spin glass 

phase (m = 0, q finite), always has replica symmetry broken while the memory 

phase (m finite, q finite), is split into two areas: one at low temperature with 

replica symmetry broken and the other at higher temperatures being replica-

symmetric. The line which separates these two areas of the memory phase is 

called the Almeida-Thouless line [38] after the two physicists who first calculated 

it for the ferromagnetic phase of the Sherrington-Kirkpatrick infinite-range spin 

glass [28]. Its precise position varies with the connection architecture of the 

network. As we shall see later the memory phase actually co-exists with part 
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of the spin glass phase. The paramagnetic phase (m = q = r = 0 ) is replica 

symmetric as it corresponds to the phase (m = r"° = 0 ) in the replica 

model which is trivially symmetric in the replica indices. The symmetry broken 

spin glass phase has been studied in great detail for the SK spin glass with many 

schemes being proposed to break the symmetry [39,40,41] but it is now generally 

accepted that Parisi's results [42,43,44,45] are the most satisfactory. We expect 

the spin glass phase in partially connected neural networks to be very similar in 

character to that of the SK spin glass. Amit et al [6] have shown this to be the 

case for the fully connected Hopfield network. The broken replica memory phase 

will also have similar properties to the spin glass phase so it is worth discussing 

some of the features of the spin glass phase in more detail. 

To begin to understand what is happening in the spin glass phase we must go 

back to our consideration of frustration in section 1.6. In that section we saw how 

frustration in spin glasses and the Hopfield model leads to a very complicated 

energy surface with a high degeneracy of minima at different energy values. 

In the thermodynamic limit all these minima will have infinite energy barriers 

between them so they are truly stable states and the system remains in the 

basin of attraction of the state it starts in. This is the type of system we are 

studying with mean field theory and it is only in finite systems that we will have 

metastable states. At low temperatures all these minima will probably have 

similar values of the Edwards-Anderson order parameter q, but for the replica 
system q will have to take a range of values to cope with all the overlaps 

between all the different spin glass states. The order parameter q does not 

bring out all the detail of the many stable states and it seems essential to the 

understanding of the spin glass phase that we work with replicas of the system. 

The replica-symmetric theory is only correct if there is one spin glass state with 

a specific q value. In this case all the replicas will sit in this same state and they 

will then be symmetric. This is clearly not the case and it seems that replica 

mean field theory cannot cope with a system having this type of degeneracy 

of states. The limit n -* 0 does not produce a unique solution if the different 

replicas can sit in different spin glass states. This is why the eigenvalue which 

controls replica fluctuations is always negative in the spin glass phase. In fact 

a continuous range of q values is required to describe the spin glass state 

[42,43,44,45]. In the case of the memory states there is a basket of minima 
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associated with each of the nominated states all with the same m value but 

with the errors at different sites [16]. At temperatures close to zero this gives a 

basket of minima in the free energy, so replica symmetry is broken. At moderate 

temperatures, unlike the spin glass states, these minima merge together giving 

a single minimum in the free energy and so the system is replica-symmetric. 

Hence the memory phase is broken up into two regions by the Almeida-Thouless 

line, the higher temperature phase being stable to replica symmetry breaking. 

Replica calculations for spin glasses and neural networks have shown that in the 

replica broken phases near the symmetry breaking line, replica theory still gives 

good results [6,44,45]. There is therefore a kind of continuous divergence from 

the replica solutions as we move into the replica symmetry broken phases. This 

means that in the case of q as we move into the spin glass phase from the 

replica-symmetric paramagnetic phase it takes a very small range of values close 

to the value predicted by replica theory. This is also the case as we move across 

the replica symmetry breaking line in the memory phase. The maximum value 

of the storage capacity, denoted by a, happens at zero temperature which is in 

the replica symmetry broken phase. Numerical simulations by Amit et al [6] for 

the fully connected model gave a = 0.145 ± 0.01 (see also Chapter 4 section 4.3 

of this thesis). Calculations by Crisanti et al [11] with replica symmetry broken 

once gave a = 0.144. These results are both very close to the theoretical result 

ac  = 0.138, [6] predicted from replica-symmetric mean field theory. Therefore 

the replica-symmetric theory seems to give a result which is very close to the 

actual result. This is to be expected since the replica symmetry broken area in 

the memory phase is very small, and so the point (a c  = 0.138, T = 0) is very 

close to the Almeida-Thouless line. The results [6,11] also show that the replica-

symmetric result always underestimates the maximum storage capacity as well as 

the accuracy of storage m. As we shall see in the next chapter, replica symmetry 

breaking plays an increasingly more important role the lower the connectivity 

of the network is. We shall also see in section 3.6 the equivalence of the spin 

glass phase boundary predicted by replica and replica-symmetric theory. It is 

interesting to note that the basic Hopfield model described in section 1.2 is a zero 

temperature model and can only be truly described by a very complex replica 

symmetry broken solution. This has never as yet been calculated. 
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Chapter 3 

Solutions of the Replica-symmetric Order 

Parameter Equations 

3.1 Calculation of ak(w) 

In this chapter we will solve the order parameter equations for a single condensed 

pattern, 

m f 
 dz 

(...ç) exp 	tanh$(z.+ =  

q = f 
dz xp 

(_z2) 
 tan h2  $(/z + e 

00  r = 

Ic=O 

ak(w) = wTr (D 
) 

+2 

\wN 
(3.1) 

for different connection architectures in order to derive the phase diagrams and 

maximum storage capacity for each architecture. The first thing we require be-

fore we can solve these equations is a method of evaluating ak(w) for different 

values of k and different connection architectures. The number of ak(w)'s  which 
have to be evaluated to calculate r accurately will depend on the value of C as 

well as the value of cik(w) itself. As we have already discussed in section 2.2, 

the network can be thought of as a hypercubic lattice of sites with each neuron 

connected to an infinite number of neurons in its neighbourhood. This neigh- 
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bourhood defines what we have called the connection space of that neuron which 

is the same for every neuron. In this chapter we will only consider connection 

architectures that have hypercubic connection spaces in dimensions d = 1, 2,3,4 

and 8. The results for a fully connected network, w = 1, will also be presented 

for comparison. Randomly connected models will also be considered and these 

will be referred to as d = oo models since a hypercubic connection space of 

infinite dimensions is equivalent to random connectivity. Even though the order 

parameter equations we have derived are for the same connection space at each 

site, in the case of the randomly connected model we expect the results to be 

the same as those obtained by site independent random dilution of a fully con-

nected network. This is because in the thermodynamic limit the fluctuations 

from site to site in the connection architecture of the randomly diluted model 

will average out. Sompolinsky [8] studied the randomly diluted model at zero 

temperature and obtained the same order parameter equations as we obtain (see 

next section). He also showed the equivalence of a randomly diluted network 

and a fully connected network with Gaussian synaptic noise. 

We will now look at the form of ak(w)  in more detail which from equation 3.1 

is, 

	

N N 	N 
ak(w) = N_2)w_(I1) E E ... 	 . . . D 21 	(3.2) 

	

iil 121 	ik+21 

S 	5 
The sum S contains N 2  terms each of which can take the value one or zero. A 

term has value one if a neuron i, is connected back to itself through neurons i2  to 

44-2. The sum S contains all possible ways of choosing this loop therefore, — 8  NTTT 
is the probability that k + 2 neurons chosen at random are connected together 

in a single loop. As we shall see in the next section, the less likely a loop is 

complete the lower the value of ak(w) and the correspondingly lower the value 

of a, the maximum storage capacity. We are thus explicitly seeing the loops of 

correlations which distinguish a neural network from a spin glass, entering into 

our calculations (see section 1.4). 

The first term in the sequence, ao(w) is easy to calculate since the connections 

are symmetric. For any connection architecture we have, 

	

TrD 2  = wN2 VW 	 (3.3) 
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Figure 3.1: Square connection spaces of two neurons in a network with a two dimen-

sional connectivity architecture. 

which gives ao(w) = 1. The next term al (w) can also be calculated analytically 

for hypercubic connection architectures giving, 

{ () 

3 n 	 - n 

	

ai(w) = 	
(1+1(3  	2 	 n 	 (3.4) 

--))

2 	
w>() 

where n is the dimensionality of the hypercube. The details of this calculation 

of al (w) is given  in Appendix C. Beyond k = 1 it is extremely difficult to 

calculate ak(w) analytically and so we have to resort to a numerical method. This 

numerical method works for any type of connection space including hypercubic 

but for simplicity we will illustrate it for a two dimensional square connection 

space. 

We can use a square lattice of finite size with cyclic boundary conditions to 

represent the network. Each point on this surface will represent a neuron and 

so in the limit of a continuous surface the system will be infinite. Consider 

therefore, a square of side with cyclic boundary conditions as representing 

the network. The connection space of each neuron will then be a square of side 

one centred on each neuron (see figure 3.1 ). The first step in calculating ak(w) 
is to choose a point i1 , which can be any point on the square since all points 



are equivalent due to the cyclic boundary conditions. The next step is then to 

randomly choose another point i2  in the connection space of the first point. We 

then continue this process for k + 1 steps until we reach the point k+2 ak(w) 

is then the probability that the final point is in the connection space of the first 

point. At each step since we only choose a random point in the connection space 

of the previous point we are introducing a factor I into the probability that sites 

are connected compared to just choosing points at random. This accounts for the 

factor w_(1)  in equation 3.2 since we take k+1 steps in total to evaluate ak(w). 

The calculation of ak(w)  is therefore reduced to the probability that a bounded 

random walk of k + 1 steps ends in the connection space of the starting point. 

This method is much more efficient than simply choosing points at random and 

seeing if they are connected in a loop. At each step we are using knowledge of 

the connection space to avoid choosing points outside each other's connection 

space which are trivially unconnected. If we are carrying out this random walk 

on a computer the precision of the computer will limit the size of lattice we are 

working with. The lattice will therefore be finite with each neuron always being 

separated from its neighbour by an amount of the order of the precision of the 

computer whatever the shape of the connection space. Since the lattice size is 

units then if to is of order one, the size of the lattice will be of the order of, 

the inverse of the precision of the computer used. If to is smaller the lattice 

size and hence the size of the system will be larger since the neurons are always 

separated by a fixed amount. 

The calculations of the ak(w)'s  was carried out on the ICL distributed array 

processor (DAP). This is a single instruction multiple data stream machine with 

4096 bit processors forming a square lattice'. The DAP is very well suited to 

carrying out random walk calculations as 4096 different random walks can be 

carried out simultaneously. The DAP along with its programming languages 

are discussed in more detail in Appendix D. Single precision on the DAP gives 

about eight figure accuracy so the size of lattices we are working with are of the 

order 108.  On the DAP about 1  of a million random steps plus the calculation of 

ak(w) could be carried out per second. There are two possible sources of error in 

calculating ak(w)  but both of them were found to be very small. The standard 

'Some of the calculations were also carried out on the new DAP 510 which has 1024 processors 

but a clock cycle twice as fast as the 4096 DAP. 
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deviation of ak(w)  due to random fluctuations was reduced to a negligible level 

by averaging over about two million random walks for each calculation of ak(w). 

The results we want for ak(w)  should actually be for an infinite system but since 

the system we are working with is so large, of order 108  sites, we expect finite 

size effects to be negligible. For most choices of connection architecture the 

value of ak(w) is probably independent of the system size anyway. Comparison 

of the numerical results for al (w) with the theoretical results (see equation 3.2) 

showed no significant difference. 

An important aspect of the behaviour of ak(w)  is that ak(w) —* w as ic becomes 

large. This is because as the number of random steps increases the final posi-

tion becomes less and less correlated with the initial position and in the limit of 

an infinite number of steps it is totally uncorrelated with the starting position. 

Since the connection space of the starting point occupies a w'th of the volume 

of the lattice, a random point has a probability of to of being in the connection 

space of a given point. Figure 3.2 shows some typical curves of ak(w)  for dif-

ferent connection architectures and connectiveties. As the dimensionality of the 

connectivity increases and to increases ak(w) — w more quickly as k increases. 

In calculating r we always have to truncate the series in ak(w)  at some point 

which is the main source of error in solving the order parameter equations. The 

fact that ak(w) — to as lc increases can help us to reduce this truncation error. 

To calculate r we must calculate the sum of the series, 

00 

>Ck (k + 1)ak(v.,) 	 . 	( 3.5) 

If we calculate a finite number of terms numerically, say n terms, then the 

truncation error is given by, 

Truncation error = 	Ck(k + 1)ak(w) 
	

(3.6) 
kn+1 

If we had calculated enough terms so that ak(w) c to for k > ii then the 

truncation error would be given by, 

00  Truncation error 	to 	(k + l)Cc 	 (3.7) 
k=n+1 
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Figure 3.2: ak(w)  values for hypercubic connection architectures of dimensions 

d= 1, 2,3,4 and 8 with, k = 1, 20. Top figure w = 0.4, bottom figure w = 0.05. 
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Series of this type can be evaluated by noting that, 

1 - 
(1+2z+3x 2 +. "+nz)(1—x) = 1+z+x2 +• .. +z — nx ' 	 _nx n+1  

1—x 
(3.8) 

therefore, 
1_Cn+ 1  nC's  

(Ic + l)Ce 	 (3.9) (1_C)2 - 1—C 

and the infinite sum is given by, 

CO 	 1 
(k + 1)Cc = 	 (3.10) 

k=O 	 (1 - C) 2  

The truncation error is obtained by subtracting these two sums giving, 

wC 1 (1 + n(1 - C)) 
Truncation error ( (1_C)2 	 3.11)  

for large n. This expression for the truncation error is very useful in evaluating r 

in situations where C is large and ak(w)  tends rapidly to w as k increases. As can 

be seen from figure 3.2 and figure 3.5 in the next section, it turns out that these 

two situations tend to coincide since high dimensional connection architectures 

with low w give larger values of C. When w is close to one C tends to be smaller 

and only a few terms in the sequence are required for accurate evaluation of r. In 

the case of the fully connected network where the sum can be done analytically 

so the exact result is known, only six terms in the sequence are required to 

evaluate the maximum storage capacity cr = 0.138 to three significant figures. 

For all the connection architectures studied, using the truncation term, it was 

never found necessary to evaluate more than twenty terms numerically to obtain 

r very accurately. It was also found that the solutions to the order parameter 

equations are well behaved with small fluctuations in any of the order parameters 

causing only small fluctuations in the other order parameters. Therefore any 

small errors in r do not cause significantly larger errors in the other parameters 

of the system. 

It is worth noting at this point that because of the monotonic decreasing nature 

of the sequence ak (w )CIc(/c  + 1) it is the shorter correlation loops that count 

most in determining the thermodynamic properties of the network. This means 

for example, that low dimensional connectivity even with low values of w will 

have properties very similar to a fully connected network. This is because it is 
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only the longer correlation loops that are lost in systems with low dimensional 

connectivity. Conversely, randomly connected systems with moderate values of 

w have many fewer short correlation loops so their properties will be significantly 

different from a fully connected network These properties of partially 'connected 

systems will be borne out by the numerical and theoretical results in the next 

few sections of this chapter. 

It is worth studying the case of random connectivity in more detail since r can 

be calculated analytically in this case. For the randomly connected network we 

have ao(w) = 1 due to the symmetry of the connections and ak(w) = w for 
Ic > 1. This is because the connection space is a random set of points, so there 

is always the same probability w of being in the connection space of the starting 

point after any number of random steps greater than one. The expression for 

the sum of an infinite number of terms all with ak(w) = w can therefore be used 
to evaluate r, remembering that the first term in the sequence is 1 not w (see 
equation 3.10). This gives, 

1 
r=q[1+w ((1_C)2 _i)] (3.12) 

for a randomly connected network. In section 3 of this chapter we will look at 

the phase diagrams for randomly connected networks but in the next section 

we will only solve the zero temperature order parameter equations for different 

hypercubic connection architectures including the randomly connected model. 

3.2 Zero Temperature Solutions of the Replica-

symmetric Order Parameter Equations 

In the limit fi - oo, 	 'arz +m) can only take the values 1 or —1 and it 

will change between these two values at m = — Viz. We therefore obtain for 

m (see equation 3.1), 

m= 
 dz f

OO 

 

t' dz 	

( 	

2\ 
I 	exp - (3.13) 
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Adding these two terms gives the zero temperature order parameter equation 

for m, 

m = 2erf 	 (3d4) 

where, 
1 	 t2 

erf(x) = 	
exp (.-) 

di 	 (3.15)
N/27r fO__ 

At zero temperature q becomes one since all the spins freeze into position. C can 

be calculated in a similar way to m, and r remains unchanged since it does not 

explicitly contain /3. Therefore the zero temperature order parameter equations 

are, 

m=2erf 
m 

q=1 

00  r = 1+Ck(k+1)ak (w ) 

= 	 exp (_m2)  

ar 	2ar 	
(3.16) 

ir  

We now wish to solve these equations to determine the extent of the memory 

phase (m, q, r all finite). The critical point at which m becomes zero as a is 

increased will give us the maximum storage capacity of the network a. The 

easiest way to solve the order parameter equations is to parameterize them by 

introducing, 
M 	

(3.17) 

This gives for the order parameters, 

m 	2erf(i) 

C 	
iexp(4) 

v/2- erf (i) 
CO 

= 1 +E Clc(lc + 1)ak(w) 	 (3.18) 

An obvious, trivial solution to these equations is m = I = 0 with q = 1. This 

solution exists for all values of a and for all connection architectures and it 

corresponds to the spin glass phase. There also exists a non-trivial solution with 

m 54 0 at low values of a which corresponds to the memory phase. Therefore 

the memory phase co-exists with the spin glass phase at low values of a. In 
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the memory phase the two important parameters are a and m which determine 

how much information is stored and how accurately it is stored. We can write 

a in parametric form as well where r is given as a function of t through the 

parametric equation for C in equation 3.18, 

4(erf(t)) 2  
(3.19) 

- 	 i2r(i) 

The maximum value of a(t) will give us the maximum storage ratio a above 

which m = 0 is the only solution. A plot of a(i) against m will show how the 

accuracy of storage changes with the number of states stored. Plots of this type 

are shown in figure 3.3 for some different hypercubic connection architectures. 

The sections of the curves for m < mc  are not shown as they are unstable 

solutions corresponding to maxima, rather than minima of the free energy with 

respect to fluctuations in the parameter m (see section 1.5). The end points of 

the curves (a t , me), represent the phase transition point where we move from 

the co-existence phase having storage properties, to the pure spin glass phase 

with no storage. A very important result from these curves is that the higher 

the dimensionality of connectivity d, and the lower w is the better the maximum 

storage capacity per connection is. Also for a given error tolerance (1 —m) of the 

states we are storing, the more partially connected the network is the more states 

per connection it will store. Therefore a partially connected system will always 

out-perform a fully connected system with the same number of connections. The 

values of mc  and a c  are plotted in figure 3.4 for different connection architectures 

and all values of w. 

The a and m family of curves is enveloped by the two curves w = 1, fully 

connected and d = oo, randomly connected. The a c  and m curves for any 

connection architecture will lie between these two extremes. This result comes 

from the close correlation between the values of a , m and ak(w).  In the case of 

a, the smaller the values of ak(w)  the larger are the values of a. As mentioned 

in the previous section random connectivity gives the lowest values of ak(w) and 

hence the highest values of a. In the case of the fully connected network ak(w) = 

1 for all k which is the highest possible value of ak(w)  and correspondingly the 

lowest possible value of a. In the case of m, the smaller the values of ak(w) 

the correspondingly smaller are the values of m. Another important result from 

these graphs is that the phase transition at zero temperature between the spin 
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Figure 3.3: a against m for different hypercubic connection architectures in the memory 

phase. 
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Figure 3.4: Critical values of the order parameters a and m are plotted against w. On 

the left and bottom axis are plotted a against w for different hypercubic connection 

architectures. The curves are, starting from the bottom, w = 1, d = 1, 2,3,4,8 to d = oo 

at the top. On the right and upper axis is plotted m against w with the top curve 

being w= 1 through tod= oo on the bottom. - - 
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glass phase and the co-existence phase are all first order except in the limit of 

random connectivity and w - 0 where the phase transition becomes second 

order. This limit of connectivity is discussed in more detail in section 3.4 of this 

chapter where the phase diagram for the randomly connected to = 0 model is 

calculated. The critical values of the other order parameter r and also C are 

shown in figures 3.5 and 3.6. As can be seen from the C curves the lower the 

connectivity and the higher the dimensionality of the connectivity, the closer to 

its maximum value of 1 C becomes. The r curves show oscillatory behaviour 

for intermediate values of d the dimensionality of the connectivity. This is due to 

the interplay of the terms C,11
+ 1  and ak(w)  in the series for r. As to is lowered C 

increases and ak(w)  decreases (see figure 3.2), and in some cases C,  can increase 

more rapidly than ak(w)  so pushing the value of r, up (see d = 3 curve). In 

other cases ak(w)  dominates and pushes the value of r down as to is decreased. 

For some curves these two types of behaviour interchange at different values of 

to giving rise to oscillatory curves (see d = 8). This oscillatory behaviour in r 

is not reflected in c because the other terms in a always keep it increasing as 

to is decreased (see equation 3.19). 

In the case of the randomly connected model we have an analytical expression 

for r and as to —* 0, m - 0 also. The only order parameter which is not in-

finitesimally small across the phase boundary is q but we know that its value 

is 1. We can therefore analytically solve the order parameter equations by ex-

panding them about m0  and w equal to zero. We have to be careful to what 

order we retain m,w and terms of the form mw in our expansion as we do not 

know apriori, the relationship between m and to. We will in fact expand about 

t = 0 and derive the relationships between m, a and to from this. Integrating 

the Taylor expansion for the exponential function we obtain the Taylor series 

for the error function, 

1 1 	t3 	3t5  
erf(t) = 	 (3.20) 

 3. 

This gives for the order parameter equations, 

i3  r~ 
m =  

;~ (t 	+ O(t5) 

r = 1+ w  ((1 + 0(t2))) 	 (3.21) 
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Figure 3.5: Critical values of r for different hypercubic connection architectures. 
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and, 
2( 	t 2 

a(t)= —  1 - I - 	 + 0(t4) +0 (j.)) 	(3.22) 

For self consistency of these expansions we are assuming that w is of order t 6  or 

higher. We now have to maximize a(t) in order to determine t in terms of w 

and hence crc , m and r. The first derivative of c(t) is given by, 

:8a(t) - 2t 36w 
2 5 - 3 + 	

+ 0(t) +0 G) 	(3.23) 

Only keeping the first two terms in the above series gives c at t where, 

W = 	 (3.24) 
54 C 

We can now see the sell consistency of our expansions since terms of the form 
 jr are in fact of order t 3 . Putting this expression back into equations 3.21 and 

3.22 gives us, 

J(7~3 )—  
m 23 	W6 

rc 	1+?J 	 (3.25) 

and, 

2,' 	3 	1 
c 	— (1--- -wi 

7r\ 	2 
1 - (2w) 13 	 (3.26) 

for networks where the connectivity is random and w is small. Thus the max-

imum possible value of ac  is and this occurs in the limit w - 0. The one 

sixth power in the expression for mc  explains why the value of m holds up as w 

becomes small before rapidly dropping to zero as w approaches zero (see figure 

3.4). Another interesting result here is that as w - 0, r -+ 1 which is the 

same value as q. It turns out that for the randomly connected model in this 

limit r -+ q at all temperatures for the memory phase but we will leave further 

discussion of this until section 3.7. 
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3.3 Maximum Information Capacity per Con-

nection in Partially Connected Networks at 

Zero Temperature 

We saw in the last section how for different connection architectures we obtained 

different values for the storage capacity per connection a and accuracy of stor-

age m. We now wish to find some way of directly comparing the information 

storage capacity of systems of different connection architectures which takes into 

account both the number of states stored as well as their accuracy of storage. 

The application of information theory techniques will allow us to calculate an 

expression which takes into account both these factors. We will then maximize 

this expression for different hypercubic connection architectures and hence be 

in a position to directly compare the performance of different connection archi-

tectures. We will thus be able to directly compare systems storing a number of 

states very accurately with those storing many more states but less accurately. 

As we have already seen though, the more partially connected networks will 

always perform best. In what follows we will use the same techniques as Amit 

et al [7). 

If we consider an N bit vector then the amount of information contained in that 

vector is defined to be the log of the total number of permutations possible with 

an N bit vector. This gives the information content of an N bit vector as ln 2N. 

We can understand the form of this quite easily from basic intuitive ideas about 

information. Firstly we expect the longer a vector is the more information it 

must contain hence the 2q  factor. Secondly we expect information to be additive 

.property. In terms of entropy the information of an N bit vector is just the 

entropy associated with the ensemble of all possible states of the vector. Now 

suppose we have an N bit vector which has a certain number of bits W which are 

wrong. What is the information content of this vector? We proceed in a similar 

way to the information content of the N bit vector and define the information 

lost by having W bits wrong as the log of the total number of possible ways of 
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choosing W bits from N bits. Therefore the information content of this vector 

is given by, 

informazon = N1n2 — in 	
N! 

(W!(N — w)!) 	(3.27) 

The number of bits wrong is related to the overlap m by, 

W = N( 1 2 m) 
	

(3.28) 

In the thermodynamic limit Stirling's approximation becomes exact and can be 

used to calculate the factorials in equation 3.27 and we get, for the information 

stored in a neural network per connection, 

1(a) = a [(1 + m)in(1 + m) -I- (1 — m)ln(1 — m)] 	(3.29) 
2 in 2 

The factor 	is a normalization factor so that the information 1(a) equals a 

if all the states are stored exactly (m = 1). The maximum values of 1(a) are 

obtained by relaxing a below a. In the case of the randomly connected model 

in the limit w — 0, m — 0 so there is no information stored in the network 

at a. In the case of the fully connected network the maximum value of 1(a) is 

obtained at a;1 0  = 0.134 below a = 0.138. 

Figure 3.7 shows the values of a 10  giving maximum storage capacity per con-

nection, for different connection architectures, and the corresponding values of 

minfo. We can see by comparing these curves with figure 3.4 how relaxing a 

below a always leads to an increase in m10  and maximizes 1(a). The higher 

the dimensionality and the lower to, the more a has to be relaxed below a to 

maximize the information storage capacity per connection. Figure 3.8 shows 

the maximum values of 1(a) for the different connection architectures. Again 

we see that the the curve for the randomly connected model and the curve for 

the fully connected model envelope all the other connection architecture curves. 

The maximum information capacity per connection is achieved with a randomly 

connected network in the limit to —* 0 which stores about 70% more information 

per connection than a fully connected network. 
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3.4 Phase Boundaries for Randomly Connected. 

Networks in Replica-symmetric Theory 

As we have seen with the zero temperatures studies of different networks, the 

randomly connected network and the fully connected network represent two 

limits between which the results for all other connection architectures lie. We are 

therefore going to look at the randomly connected model at finite temperature 

and in particular derive the phase diagram for the w = 0 model. After that we 

will qualitatively discuss the phase diagrams for other connection architectures, 

although it is possible to numerically calculate the phase diagram for any model 

by using the random walk technique to calculate r and then solving the order 

parameter equations numerically. 

When we have a second order phase transition from the paramagnetic phase 

(m = q = r = 0), to an ordered phase, some or all of the order parameters will 

change continuously across the phase boundary. The phase transition lines can 

then be determined analytically by expanding all the order parameter equations 

in small m, q and r and solving them to first order. This technique was illustrated 

in section 1.5 where we used it to calculate the ferromagnetic phase boundary 

for the infinite range Ising model. 

Firstly we will start by looking for a second order phase boundary between the 

paramagnetic phase and the spin glass phase. Since m = 0 across this phase 

boundary we only have two order parameter equations in q and r (see equations 

3.1 and 3.12) to expand and solve. Expanding the order parameter equations in 

q and r gives, 

= q I1+w 
(i 	)2 - 	- q 2 

(1 - )3 + 0(q3 ) 

1)J 	

2w/3 

q = r/3 2 a - 2r 2 '81a2+ Q(r) 	 . 	 (3.30) 

eliminating r from these two equations gives to second order in q, 

i)]2  (
2wa/3 3 	 _ 

= q 2 a [1+ w ( 
	

q 	+2 4a2 
 [i + ((1 fl)2 - 

1)1 2) 
(3.31) 
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q = 0 is always a solution of this equation but below a certain temperature T. 
there are also finite q solutions. Above T9 , q = 0 is a stable solution but below T. 

this solution becomes unstable. Solutions of this equation to first order will give 

us candidates for the spin glass phase boundary and the second order solution 

will give us the value of q close to the phase boundary. To first order we have, 

1 
f(8) = 1_/92a [1+w (1 

	
_i)] =o 	(3.32) 

Solutions of this equation will yield candidates for the spin glass phase boundary. 

For the fully connected model to = 1, we get two solutions T = 1 ± ./& with the 

highest curve T. = 1 + /& being the phase boundary. Providing T 1 we can 

rewrite the above equation as a quartic in T giving, 

T4  - 2T3  + (1 - a)T2  + 2a(1 - w)T + a(w - 1) = 0, T 54 1 	(3.33) 

Depending on the value of to this quartic is of irreducible form for a < a, where 

ai  < 1, and a2  -* 0 as to - 1 and a, -+ 1 as to - 0 (see reference [49] for 

more information on irreducible polynomials). a, depends only on the value 

of to. We can therefore not explicitly write down the roots of this quartic in 

terms of to and a for what turns out to be the most important area of the phase 

diagram. The sum of the four roots of the quartic is two and the product of the 

four roots is a(w - 1) which is always negative for to 1. The complex roots of 

polynomials with real coefficients only occur in conjugate pairs so for the quartic 

equation 3.33 there must always be at least two real roots to give a valid phase 

boundary. Therefore, since the product of a conjugate pair is always positive if 

there are only two real roots one of them must always be negative therefore not 

a possible candidate for a phase boundary. In this instance the real positive root 

will give the phase boundary. In the range 0 <a <a, the quartic always has 

three positive real roots and one negative real root. Two of these positive real 

roots always lie between zero and one and merge at a, becoming complex for 

a > aj. These roots correspond to a minima that always lies between the two 

asymptotes T = 0 and T = 1 of equation 3.32. At a < a, this minima always 

lies below the f(I) = 0 axis but as a increases this minima rises up passing 

through the f(8) = 0 axis when a = a,. Thus neither of these two roots give 

continuous values of T9  for all a and therefore cannot correspond to the spin 

glass phase boundary. The largest root, which is always greater than one, must 

always be the spin glass phase boundary T9 . This means that at temperatures 
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above the value of this root q = 0 must be the only solution and at temperatures 

below the root, positive real solutions for q must exist. We will now look at some 

solutions of equation 3.33 for different values of w.. 

In the case of w = I  with some intuitive skill the quartic can be broken up into 

two quadratic terms giving, 

a2+2a)\ 

(T2 	

a 	/(a 2 +2 a)\ 

	

(T2T_+ 
/( 	

) 	

-   
T 	

) 	

(3.34) 
2 	 2 	2  

The first quadratic term gives the two real roots between zero and one for 0 

a < I which become complex when a ~ . 	The second quadratic factor gives1 . 

two real roots for all a > 0, one of the roots always being negative and the 

other positive and larger than one. For w = 1  the original quartic is termed of 

irreducible form in the region a < a 1  where a 1  = and all the roots are real. 

The positive root of the second quadratic gives the spin glass phase boundary 

T. where,  

1+iJ[1+2(a+Va2 +2a)] 

	

T9 
= 	 2 	

(3.35) 

This root and the other two roots are plotted in figure 3.9 along with numerical 

solutions of the quartic equation for w = 0.001. The two solutions always lie 

below the fully connected solution T. = 1 + ..J& except in the limits a -+ 00 

and a - 0 where they give the same result. In fact if we take the limit a - 00 

in the quartic equation 3.33 we only get two solutions T = ±./& for all values 

of w with T. = +/& being the physically meaningful solution. Similarly if we 

take the limit a - 0 in equation 3.33 then T -+ 1 or 0 for all values of w with 

T = 1 being the physically meaningful phase boundary. So the spin glass phase 

boundary for all values of w must start at T = 1 and tend to for large a. 

We will now look at the case w - 0, where it turns out that T = 1 is a solution 

so we must work from the original expression equation 3.32. The T = 1 solution 

comes from the interplay of limits w - 0 and ,6 - 1 on the term (1-I3)  which 

keeps it finite. We will therefore look for solutions of the form T = 1 + z where 

x is small when w is small. Solving for x in terms of w the limit w -p 0 will then 

be well defined on T. Putting T = 1 + x into equation 3.32 and assuming w is 

of order x 2  gives, 

	

= x 2a + wa + 0(x 3 ) 	 (3.36) 
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Figure 3.9: Positive real roots of the quartic equation 3.33 for w = 0.5 (top) and 

w = 0.001 (bottom). The spin glass phase boundary T9  is given by the largest root. 

The spin glass phase boundary for the w = 1 model is also presented for comparison. 
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Ignoring terms of order z3  gives, 

/ 
X = ±4! v 1a—wcr 

(3.37) 

so our assumption that to was of order z2  was self-consistent. We therefore have 

two solutions of which the largest one gives the phase boundary 7' where, 

' aw 
T9 =1+/1 	a<1 	 (3.38) 

for small w. We can now take the limit to -* 0 where we find that the two 

solutions of equation 3.37 merge into one, giving, 

	

= 1, for to = 0, a<1 
	

(3.39) 

This only gives us part of the phase boundary corresponding to a < 1. For 

larger values of a we already know that T. - /&. Also since the solutions for 

to = 1 and to = 1  approach ..J& from above as a becomes large we will look for 

solutions of the form Tg  = ,/(1 + x) for to small where we expect x to be small 

and positive. Solving equation 3.32 to first order in x and to gives, 

T9 =(1+[ (/ 1)2 _1]) a1 	 (3.40) 

We can now take the limit w -* 0 and we get, 

Tg ='&, for w=0, a1 	 (3.41) 

The other solution obtained from this expansion is --4/& which is physically 

not meaningful. Therefore for the to = 0 model we only have one solution for 

a > 1 but we have two possible solutions /& or 1 for a < 1 which both give 

continuous phase boundaries.. The \/& is not physically meaningful for a < 1 

since it implies that as a -+ 0 then q -* 0 on the phase boundary. At T = 0 

this is not possible since q = 1 and therefore the phase boundary would have to 

be first order which is not self-consistent. We therefore have for the spin glass 

phase boundary for the w = 0 randomly connected model, 

a>1 
w=0, Tg 	

a<1 
(3.42) 

It is very interesting to note how the smaller positive roots play a secondary role 

in the build up of the discontinuity in the curvature of the phase boundary as 



W — 0 (see the w = 0.001 roots in figure 3.9). As w —' 0 the smaller of the two 

positive roots — /& and the other root — 1 from below. As a — 1 the /& 

root merges with the root just below one and these two roots become complex 

(see figure 3.9). The largest root, which for 0 < a < 1 has stayed close to one, 

then suddenly takes over the behaviour of the ../& root for a > 1. Therefore 

the curvature of the phase boundary is always continuous except in the limit 

W —* 0. Equation 3.40 actually corresponds to two different roots of the quartic 

depending on whether a> 1 or a <1 which explains the singularity at a = 1. 

The second order solution of equation 3.31 will give us the form of q close to the 

phase boundary. This gives for q, 

/32a[j 	(
1 W ____ — i)] - 1 

q 	 (3.43) — 2wc43 3 	 _____ 
(i-3) + 2/34a2  [i + w ( (1 1 )2  — 1)}2 

so when this term is negative, q = 0 is the only physically meaningful solution 

of the order parameter equations and when it is positive q becomes finite cor-

responding to the spin glass phase. We can check the validity of the spin glass 

phase boundary we obtained from the first order solutions of equation 3.31. At 

temperatures above T. equation 3.43 should only give negative unphysical values 

for q corresponding to q = 0, being the only physically meaningful solution of 

equation 3.31 and at temperatures below T9  it should give finite positive values of 

q. This means that the numerator in equation 3.43 should control the change in 

sign of q, negative above Tg  and positive below 1's , and the denominator should 

always be positive across the phase boundary. Since the phase boundary derived 

from the first order equation is always at 8 < 1 the denominator in equation 

3.43 is always positive across the phase boundary and the numerator changes 

sign in the correct direction. In the case of the w = 0 model the value of q, close 

to the phase boundary, is given by, 

( ;32a_1 a>1 
W = 0, q 	

204a2
(3.44) 

1- 0
i  a <1  

For any infinite range connection architecture, the spin glass phase boundary 

will be given by the root of the polynomial in /3, 

i32a(k + 1)/3k ak(w) — 1 = 0 	 (3.45) 



which is less than one and positive. The series is always monotonic decreasing 

for the required root and therefore the number of terms n, needed to evaluate the 

root accurately will depend on the values of the ak(w)'s.  In general more terms 

will be needed if the ak(w)'s  are small since in this case the required solution for 

a < 1 gives 8 closer to one. 

It should be noted that in the calculation of the spin glass phase boundary by 

expanding in the order parameters we have assumed that this is a second order 

phase boundary which is entered from the paramagnetic phase as the temper-

ature is lowered. This appears to be the case for all connection architectures 

although, as we shall see in the next section, for the randomly connected w = 0 

model the memory phase boundary coincides with the spin glass phase boundary 

for a < 1. 

As we have seen in the zero temperature studies the phase transition point for 

the memory phase becomes second order as w - 0 for the randomly connected 

model. We will therefore use the same method as we used for the spin glass 

phase boundary to look for a second order memory phase boundary at finite 

temperature. This method will only work if the memory phase boundary is 

coincident with the spin glass phase boundary, otherwise q will be finite across 

the phase boundary. The whole of the memory phase always overlaps the spin 

glass phase for all connection architectures. Expanding all the order parameter 

equations 3.1 and 3.12 to third order in m and noting that q and r are of order 

m2  we have, 

= Pm - /33crrm - 	+ 0(m 5 ) 

q = ,62ar +,82M2 + 0(m 4 ) 

q [i + 	 - i)} + 0(m4 ) 	 ( 3.46) 

Solving these equations for m gives, 

( /3 5 a {i + w ((1)z - i)] + ç) + 0(m) 	(3.47) m =MP —m 3  fl2a 1 _i)] 

The first order solutions of this equation will give us potential candidates for 

the memory phase boundary, while solving it to cubic order will tell us the value 

of m close to the phase boundary. We can see from the above equation that 
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the only candidate for a second order phase boundary is T = 1 for all values 

of w. This is below the spin glass phase boundary for all values of w except 

in the limit w -+ 0. Therefore it can only represent a valid second order phase 

boundary for the w = 0 model in the region a < 1. If we salve the equation to 

cubic order and then take the limit w - 0, we obtain an expression for m which 

is valid close to the phase boundary, 

m± 1)  a < 1 	 (3.48) 
- 	 133(1+2/3 2 a) 

The positive root corresponds to spins being aligned with the nominated memory 

state and the negative root corresponds to alignment with the nominated states 

image. This expression is only valid for a < 1 due to the (1 _,82a)  term, which 

since ,8 is close to one, will be negative if a > 1 giving m = 0 as the only solution. 

This is in agreement with its co-existence with the spin glass boundary in the 

region a < 1. The m = 0 solution of equation 3.47 exists at all temperatures but 

gives a maximum of the free energy at temperatures below Tm  corresponding to 

an unstable state. So fax for the w = 0 model we have only calculated a section 

of the memory phase boundary, 

w=07  Tm 1, a<1 	 (3.49) 

The other section of the phase boundary at finite temperature which separates 

the spin glass phase from the co-existence phase must be calculated numerically 

as the spin glass order parameter q remains finite across this boundary. At zero 

temperature we were able to analytically calculate the phase point (see section 

3.2) for the w = 0 randomly connected model and it is given by (Tm  = O,a = 
T Ir  his part of the phase boundary is also second order and the numerical results 

for it, along with the other phase boundaries are shown in figure 3.10 in the next 

section. For all the other connection architectures the memory phase boundary 

lies below the spin glass phase boundary at all values of a except zero therefore, q 

is finite across the phase boundary. Numerical techniques are therefore required 

to evaluate Tm . These numerical solutions will not actually be carried out but 

we will discuss what we expect the solutions to be at the end of the next section. 



3.5 Replica Symmetry Broken .Phases in Par-

tially Connected Networks 

All the calculations for the phase boundaries and information capacity we have 

done so far have been in replica-symmetric theory. In section 2.4 we. calculated 

an eigenvalue which determines in what areas of the phase diagram the replica-

symmetric solutions are unstable. These areas are usually referred to as replica 

broken phases and are determined by the inequality, 

'82 ar dz 	/ 	" f 	z2

q 	 (

exp
_ 	

sech4I(Vh#&z+m)<1 	(3.50) 

In spin glasses and the fully connected Hopfield model the spin glass phase is 

always unstable to replica symmetry breaking. For partially connected networks 

the spin glass phase is also unstable to replica symmetry breaking but in general 

this has to be proved numerically. This broken symmetry is to be expected since, 

as discussed in section 1.6, the very nature of the spin glass phase can only be 

described within a replica broken theory. We can however, explicitly examine 

the stability of the spin glass phase close to 1' by expanding the inequality 

equation 3.50 in the order parameters. Expanding sech 4  gives, 

	

sech4(/&z) = 1 - 2f32crz2 +7(,82 cer)  2  z  4  + .. 	( 3.51) 

Carrying out Gaussian integrals term by term gives for the stability condition, 

q > /32 crr - 2(/32ar)2 +7('32 ar)3   +... 	 (3.52) 

Expanding the order parameter equation in q (see equation 3.1) to order r gives, 

q = f3 2 cr - 2(/3 2 cxr) 2  +(/32ar)3 +... 	 (3.53) 

Therefore the stability condition becomes, 

0> 4(fl2ar)3 + ... 	 (3.54) 

Since the order parameter r is positive this inequality is violated by terms of 

order r3  and so the spin glass phase close to T. is unstable to replica symmetry 

breaking. The stability of the spin glass phase can also be studied close to T = 0 

by making the change of variable, 

X 
	

(3.55) 
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in the integral in equation 3.50. We can then expand in giving for the integral, 

1
( 	

2\ 	 1 

2ar 
 fo dxexp 2ar2) sech4 (x) =2+0(   b)] (3.56) 

The stability condition now becomes, 

	

[2 + 0 (b)] <1 	 (3.57) 

This is violated at low temperatures where the spin glass phase is replica broken. 

The instability of the spin glass phase in other regions of the phase diagram can 

only be shown numerically. 

Unlike the spin glass phase the memory phase is split into two regions by replica 

symmetry breaking. The region at higher temperatures is stable to replica sym-

metry breaking and the region at lower temperatures has replica symmetry 

broken. The energy surface associated with the Hamiltonian has a basket of 

minima associated with each stored state which, at higher temperatures, merge 

into a single minimum in the free energy ( see section 2.4). The line which 

separates these two phases can only be found by numerically solving the order 

parameter equations and plugging the values into the stability condition. The 

replica-symmetric phase diagram for the w = 0 randomly connected model with 

replica broken phases is shown in figure 3.10 along with the phase diagram for 

the w = 1 model [6] for comparison. These two phase diagrams represent the 

limits between which the phase diagrams of all other infinite range connection 

architectures lie. In the fully connected model only a very small section of the 

spin glass co-existence phase boundary lies in a replica broken area. In the 

w = 0 model the whole of the phase boundary between the spin glass phase and 

the co-existence phase is unstable to replica symmetry breaking since the whole 

boundary lies in a replica broken phase. This means that the position of the 

phase boundary predicted by replica-symmetric theory is incorrect, although the 

point (Tm  = 1, a = 1) on the phase boundary is correct since it is coincident 

with the replica symmetry breaking line. We expect the exact results to always 

diverge continuously from replica-symmetric results when we cross into a replica 

broken region. In the range < a < 1 the system has a memory phase at high 

Ir  temperatures but there is only a spin glass phase at low temperatures. This be- 

haviour is strange since we expect the more ordered memory state to be stable 
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Figure 3.10: Replica-symmetric phase diagrams for the w = 1 model (top) and the 

w = 0 randomly connected model (bottom). P =paramagnetic phase, SO = spin glass 

phase, CO = co-existence phase (which contains both memory and spin glass phes). 

TM and TG are the memory and spin glass phase boundaries and TR is the replica 

symmetry breaking line in the memory phase. 



at lower temperatures while at higher temperatures, where entropy plays a role, 

we expect the spin glass states to be stable. As we shall see in the next section, 

by analogy with the SK model, we expect the true phase boundary to be vertical 

from (T = 0,a = 1) to (T = 1,a = 1). Therefore, the true phase boundary does 

not have this re-entrant memory phase and a = 1 not . The replica symmetry 

breaking effect is therefore quite large for the v.' = 0 model, unlike the fully 

connected model where replica symmetry breaking only increases a from 0.138 

to 0.145 [11] (see also Chapter 4 section 3 of this thesis). 

For other connection architectures we expect the replica symmetry breaking 

line to lie between the two limits of the fully connected model and the w = 0 

randomly connected model. The lower the dimensionality and the higher the 

connectivity the smaller the effect of replica 'symmetry breaking will be. Replica 

symmetry breaking also increases the value of m for a given a in the replica 

broken phase. The results we obtained for the information storage capacity and 

the critical storage ratio a in sections 3.2 and 3.3 were therefore below the true 

values with the error being larger, the more partially connected and random the 

network is. 

Although we have not numerically calculated the phase boundaries for other 

than randomly connected networks, the zero temperature results for different 

hypercubic connection architectures suggest the kind of results we would expect. 

The importance of the shorter correlation loops in determining the properties 

of the system also give us a good guide to the behaviour of different hypercubic 

connection architectures (see section 3.1). The spin glass phase boundary T, is 

always fixed at both ends (a = 0, 2' = 1) and (a - oo,T9 - /&), but moves 

downwards in its central section as w decreases. The higher w and the lower 

the dimensionality of connectivity the more we expect the phase boundary to be 

similar to the fully connected model. Similarly the more random the connectivity 

and the lower w the more the phase boundary will be like the randomly connected 

W = 0 model. All possible infinite range connection architectures will produce a 

family of spin glass phase boundaries that lie between the two extremes of fully 

connected and the w = 0 randomly connected model (see figure 3.10). 

In the co-existence part of the phase diagram of the network, the memory states 
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give the system content addressable storage but the spin glass states contain no 

information. The number of spin glass states grows exponentially with the sys-

tem size but the number of memory states only grows linearly. As w decreases, 

the co-existence phase increases in size as does the storage capacity per connec-

tion. In the limit of random connectivity and w = 0 the storage area of the phase 

diagram increases to about ten times the size of the equivalent area in the fully 

connected model. This seemingly large increase in storage is offset by the fact 

that the accuracy of storage m decreases at the phase boundary as w - 0. The 

phase boundary Tm is first order for all connection architectures except for the 

randomly connected model in the limit w - 0 where it continuously approaches 

a second order phase boundary. The point (c = 0, Tm  = 1) is second order for 

all connection architectures and the spin glass phase boundary and the memory 

phase boundary always meet at this point. We also expect the curvature of the 

memory phase boundary to only become discontinuous in the limit w - 0 like 

the spin glass phase boundary. For other connection architectures the phase 

boundary will also be most similar to the randomly connected w = 0 model the 

higher the dimensionality of connectivity and the lower w is (see figure 3.10). 

In this section we have derived some phase boundaries for different connection 

architectures and the full replica-symmetric phase diagram for the w = 0 ran-

domly connected model. In deriving the spin glass phase boundary we have 

always assumed that even though the spin glass phase has broken replica sym-

metry, the phase boundary predicted by it is always in the corrected place. We 

have argued this only by analogy with spin glasses. In the case of the spin glass, 

Parisi [41,42,43,44] calculated a full replica solution for the spin glass phase 

which shows a continuous divergence from the replica symmetric theory as the 

replica broken spin glass phase is entered. This calculation therefore explicitly 

showed the equivalence of the spin glass phase boundaries predicted by the two 

theories. In the next section we will derive the spin glass phase boundary from 

replica theory to show the equivalence of the replica and replica-symmetric the-

ories at the phase boundary. This can be done by looking at the stability of the 

paramagnetic phase which becomes unstable at the spin glass phase boundary. 
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3.6 The Stability of the Paramagnetic Phase in 

Replica Theory 

To study the stability of replica solutions would normally be extremely compli-

cated but in the case of the paramagnetic phase all the replica order parameters 

are zero (m = = = 0). Therefore, all the off-diagonal spin averages 

in the second derivatives of the free energy are also zero and only the diag-

onal terms have to be evaluated. The expressions for all the non-zero second 

derivatives (see equation 2.70) where we are only considering states with a single 

macroscopic overlap, are therefore, 

nO2f 
—1 

wô(mP)2 - 	/3 

	

82 ; 	a3 - 	= 	 p < o,  
w8(qP) 2 	w ij 

	

, 521 	32 
w8(rP0)2 = —/3 	p<o• 

n 92f 

wOqP8rP" 
= a/3 	<c 	 (3.58) 

The evaluation of the trace in the second of these derivatives is similar to the 

replica theory case (see Appendix B), except that now, q = 0, p  0 o• instead 

of qP7  = q. So setting r = 0 and q = 0 in equation B.12 gives, 

Tr(r'r°°) 
= 	

2 	
- - D(l - q)) 

-2 	
(359) 

Now, assuming 3 < 1, we can expand this expression in 3 and we find that, 

evaluating the full second order fluctuation in the free energy, the line which 

signifies the instability of the paramagnetic phase at low temperatures is the 

same as that predicted by replica-symmetric theory. We also find that the 

eigenvalue which becomes negative first is the one that controls the fluctuations 

in qOff so the instability signifies the onset of a spin glass phase with qp,  finite. 

Since this phase boundary always occurs at fl < 1 the expansion in /3 is always 

valid. For simplicity we will show the equivalence of the two theories for the 

randomly connected network where the trace term in the derivatives can be 

evaluated explicitly giving, 

______ =
—:43 + w (i /3)2 	 (3.60) 



This gives for the second order fluctuations in the free energy for the paramag-

netic phase, 

fl  52f = (1 _ '8) 
>J(6m")2 - fl32 
	(5rPC)2 	 (3.61) 

P 	 p<c? 

a/3 I 	(1 - 1 + 
w 

( 	

1 	
(6q) 2  + 2c/3  /3)2 

The fluctuations in rPff run along a contour in the direction of the imaginary 

axis and we can shift this contour in order to make it run through the saddle 

point. The shift necessary is, 

Er"° = —. 2.(6q'° + iSs°) 	 (3.62) 

This gives for the second order fluctuations in the free energy, 

n 6 2 = (1 _,8)  15mE7)2 + ! E (6s1)0)2 
W P 	 18  P<OF 

+ ( - 
Co+ w 

((1 /3)2 - 1)1) 	"Ur 	(3.63) 
p<o. 

When any of the three eigenvalues which factor the fluctuations become negative 

this signifies instability of the paramagnetic phase and the system is entering a 

new ordered phase. The point at which the first eigenvalue becomes zero gives 

a phase boundary. For any finite value of w as T is decreased the eigenvalue 

in front of the qPff fluctuations term becomes negative first which signifies the 

onset of the spin glass phase. The spin glass phase boundary is therefore given 

by solutions of, 

- c/3 [i + w 
((1 /3)2 - i)J = o 	(3.64) 

This expression is exact and signifies the onset of the spin glass phase for the 

system of n replicas. Unlike the replica-symmetric equations we have made no 

assumptions about the form of the solutions within the phase. This expression 

is exactly the same as the one we derived for the spin glass phase boundary in 

replica-symmetric theory by solving the order parameter equations to first order 

in q (see equation 3.32). This calculation therefore shows the equivalence of 

the two theories in determining the spin glass phase boundary. From equation 

3.63 we can gain no information about what happens below the spin glass phase 

boundary as this depends on what other states become available to the system. 
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For example, as we have seen from the replica theory, at lower values of tem-

perature we enter a co-existence phase with memory states as well as spin glass 

states. We can also gain no information from equation 3.63 about the form of 

the order parameters across the phase boundary. In the limit w - 0 as we have 

seen in section 3.5 the solution of equation 3.64 gives T9  = 1. This means that 

the eigenvalue in front of the rn" fluctuations becomes negative at the same value 

of temperature as the q fluctuations' eigenvalue. We therefore, as we would 

expect, see replica theory predicting the coincident memory and spin glass phase 

boundary for the to = 0 randomly connected model in the region c < 1. 

3.7 A Comparison of the SK Spin Glass and 

the Randomly Connected w = 0 Model 

Now that we have derived and solved the order parameter equations for different 

neural network architectures we are in a position to see the similarities between 

neural networks, particularly the to = 0 model, and the SK spin glass [27]. The 

SK spin glass was described with references in section 1.4. The interactions .1,, 

for the SK model are chosen from a Gaussian distribution with first and second 

moments given by 4 and .. The replica-symmetric theory for the spin glass 

only has two order parameters: the magnitization m and the EA spin glass order 

parameter q. The two replica-symmetric order parameter equations for the SK 

model are given by, 

M 	f
dz 	(z 2 ) 

	

= 	exp 	tan --i- 	h3(Jqz+J0rn) 

dz (_2

z2 ) 

	

2 	}q = 
	
exp-tanh3(Jqz+ J0m) 	(3.65)J   

The expression in brackets (Jq}z + J0m), is called the local field term. The 

second part J0m, is called the ferromagnetic term since it is responsible for the 

ferromagnetic behaviour of the spin glass. With J = 0 the first order parameter 

equation reduces to the order parameter equation for the infinite range Ising 

ferromagnet (see equation 1.34). The term Jqz is responsible for the spin glass 

behaviour of the system as would be expected since J measures the standard 
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deviation of the interactions. It is the fluctuations in the values of the Jj's, as 

we have seen in section 1.6, that causes the spin glass behaviour. With J0  = 0 

the system exhibits no ferromagnetic behaviour. 

The overlap m in neural networks plays a very similar role to the magnitization 

in spin glasses. The main difference between neural networks and spin glasses is 

the existence of the extra order parameter r which plays the same role as q in the 

order parameter equations for m and q (see equation 3.1). Thus the local field 

for a neural network consists of two parts; a memory part m resulting from the 

single condensed overlap, and a spin glass part /&z, generated by the random 

overlaps with the rest of the patterns. The interactions for a neural network 

have, 

[T 1] = 	 (3.66) 

so ,/& is the normalized standard deviation for neural network interactions and 

plays the same role as J does for spin glasses. The SK model with J0  = 1 

is closest to neural network models and its phase diagram (see figure 3.11) is 

presented in a similar form to the neural network phase diagrams in figure 3.10. 

The reason why a neural network behaves similarly to a spin glass with J, = 1 

is quite easy to understand. We will work with the fully connected model for 

simplicity. If we nominate one state for condensation {} then the connection 

strengths T2, can be broken up into two terms giving, 

: 	 ij 	 (3.67) 

If we now consider a single site k, then all the connections into that site have the 

same first order term of size which can align the state of the system at that 

site with the nominated pattern. Unlike the spin glass, the sign of the aligning 

term is local to the site so for a given site k we have, 

[Tk] 6  = 
	

(3.68) 

where the average [ ] is only over sites i. If the average had been over all sites 

then the mean value would just have been zero. 
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Figure 3.11: Phase diagram for the SK spin glass. P,F and SG stand for paramagnetic, 

ferromagnetic and spin glass phase. TR is the replica symmetry breaking line and TFRB 
is the ferromagnetic phase boundary predicted by replica-symmetric theory. Tp is the 

true ferromagnetic phase boundary predicted by Parisi from replica broken calculations. 
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The phase diagram for the SK spin glass (see figure 3.11 ), is very similar to the 

phase diagram for the w = 0 randomly connected model. The only difference is 

that the co-existence phase in the neural network model is a pure ferromagnetic 

phase in the SK spin glass. This difference can be understood by studying the 

order parameter equations for the randomly connected neural network which 

are, 

f dz 
= 	expI—  —I 

	

M 	 tanh3( y4 z+m) 
2) 

	

q 	f dz 	
fz2

)  
\ 

= 	exp I -- I tanh2  3(/z + m) 
\2 

= q {1+ W  
((1 —C)2 - 
	 (3.69) 

In the case of the spin glass phase to the left of the co-existence phase boundary, 

the limit to - 0 is not well defined on the term (1)2  away from the spin glass 

phase boundary. In section 3.4 equation 3.38, we found that the limit to -+ 0 on 

the term gives, 

=!_. 	 (3.70) 
o(1—C)2 a 

at the spin glass phase boundary. Away from the phase boundary the limit must 

be derived numerically. In all cases though, the limit does produce a finite value 

which means r 34 q and the model does not behave the same as a spin glass. 

This also means that C = 1 in the co-existence part of the spin glass phase for 

the to = 0 randomly connected model. Therefore the value of q in replica theory 

is given by, 

q = 1 — T 	 (3.71) 

in the co-existence part of the phase diagram. This therefore accounts for the 

larger spin glass phase for a neural network which extends down to a = 0. 

In the case of the memory phase the limit w -i 0 is well defined on the term 

(1-C)2' and always gives zero. We have already seen this analytically at zero 

temperature in section 3.2 of this chapter where 1 - C is of the order 

on the phase boundary (see equation. 3.26) and so the limit to - 0 on the 

term (1 C)21 gives zero. This gives r = q and hence we only have two order 

parameter equations in m and q to solve which are identical to the SK spin glass 

order parameter equations (see equation 3.65). The replica-symmetric memory 
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phase of the w = 0 model is therefore the same shape as the replica-symmetric 

ferromagnetic phase of the SK model. On the co-existence phase boundary 

the memory solutions turn continuously into spin glass solutions therefore, the 

parameters of the two different types of solution must be the same at this line. 

This explains why C = 1 on this line for both types of solution in the limit 

W - 0, although they approach this limit in different ways. 

The replica-symmetric stability condition equation 3.50, can also be calculated 

in this limit and it reduces to the same form as the stability condition for the 

SK model [37], and so the replica symmetry breaking line is in the same place 

for both models. The replica symmetric free energy for the memory phase can 

also be calculated from equation 2.65 where only the first term in the series is 

non-zero. This gives the free energy per site for the state associated with a single 

condensed pattern as, 

f 	1 M2 cx/3(1—q)2 - = — 

W 	2 	4 
1 dz

(_ 2 
z\ 

0 
27r exp 	 - ln[2 cosh/3(/z + m)] 	(3.72) ) 

which is exactly the same expression as the replica-symmetric free energy per site 

for the SK spin glass [27]. Thus the behaviour of the memory phase for a single 

macroscopic overlap appears to be identical to the ferromagnetic phase of the SK 

model. We must remember though, that the neural network at low a also has 

memory phases having overlaps with more than one of the patterns nominated 

for storage. It is only the particular case of the single overlap memory phase 

where the model behaves the same as the ferromagnetic phase of the SK model. 

Since the replica symmetry breaking line for both models is in the same place we 

may expect the true behaviour of the neural network in the replica broken part 

of the memory phase to be the same as the SK spin glass. Parisi's [41,42,43,44] 

replica broken solution for the ferromagnetic phase boundary of the SK spin 

glass is believed to be correct and predicts a vertical line from (Tm  = 1, J = 1) 
to (Tm  = 0, J = 1) (see figure 3.11). We can therefore, by analogy, draw in the 

phase boundary for the w = 0 model in the same place giving the phase diagram 

shown in figure 3.12. 
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Figure 3.12: Expected true phase diagram for the randomly connected it' = 0 Hopfield 

model by analogy with the SK spin glass. P,SG and CO are the paramagnetic, spin glass 

and co-existence phases. TM and TG are the memory and spin glass phase boundaries. 
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Chapter 4 

Numerical Results 

4.1 Introduction 

The most important result from the previous chapter is the existence of a critical 

storage ratio a above which there are no stable memory states. The phase 

transition at cr is always of first order except in the limit of the randomly 

connected to = 0 model and the maximum value of a c  occurs at zero temperature 

where replica symmetry is broken. Therefore the theoretical results for the 

maximum value of a are expected to be in error with the size of the error 

increasing the further the critical point is from the replica symmetry breaking 

line. In this chapter we are going to study this phase transition for for a fully 

connected and one dimensionally connected system by numerical simulations 

on the DAP computer which is well suited to the study of boolean systems. 

The DAP's architecture, programming languages and some of the programming 

techniques used for the simulations in this chapter are discussed in Appendix D. 
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4.2. Finite Size Scaling of First Order Phase 

Transitions 

The theoretical concept of a first order phase transition requires the thermody -

namic limit N - 00 to be taken so, how do we expect the critical parameters 

to behave in a finite system ? If we consider some numerically measurable pa-

rameter X, of a finite system, its value will change continuously as we allow 

the external parameters of the system to move through their critical values. If 

we then simulate bigger and bigger systems then we may expect the value of X 

to change more rapidly as we move through the critical values of the external 

parameters eventually reaching a discontinuity only in the limit of an infinite 

system. Therefore by studying different system sizes we may hope to extrap-

olate to the case of an infinite system and so determine the critical values of 

the external parameters of the system. A typical function which captures the 

expected main features of a first order transition in a finite size system is, 

X = AexpB(a - a)N 	 (4.1) 

where c is the value of the external parameter and a is its critical value. N 
is the size of the system and A and B are constants whose values will depend 

on the type of system under study. The fitting of numerical data to functions 

of the type given in equation 4.1 to determine critical values of parameters is 

termed finite size scaling. 

4.3 Numerical Studies at a close to a 

The numerical studies in this section are of a very similar nature to those carried 

out by Amit et al [6] and Bruce et at [12]. The majority of the simulations of a 

fully connected system were carried out prior to the publication of Amit ci al's 

work on the same subject and our results are mainly in agreement with his. 

Numerical simulations were performed on systems of size 1024,2048,3072 and 

4096 for a fully connected and a one dimensionally connected network. The 
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simulations were carried out at values of a close to the zero temperature critical 

values a calculated from replica-symmetric theory (see section 3.2). For each 

set of values; N and a, 10 different sets of simulations were carried out for 

the 4096 network increasing to 20 for the smallest size network. In each set of 

simulations for the larger size systems 128 of the patterns nominated for storage 

were iterated to stability but for smaller systems, where the number of patterns 

was less than 128, all of them were iterated. From now on, for simplicity, we will 

refer to the patterns nominated for storage as the learnt patterns although this 

does not necessarily mean that they or patterns closely associated with them 

are stored in the network. We will refer the stable states, which are closely 

associated with the learnt patterns, as memory states. 

Starting from the learnt pattern the network was updated by serial single site 

update, using the update algorithm of equation 1.2, until a stable state was 

reached. The distribution of the m values for the overlaps between the initial 

learnt states and the final stable states was typically found to be of the form 

shown in figure 4.1. The results of other system sizes being very similar to 

Amit et al's results [6]. The distribution has two peaks: one dose to m = 1 

corresponding to patterns closely associated with the learnt patterns being stable 

and another peak at about m = 0.35. As a increases the weight of the first peak 

is transferred to the second peak. We will assume that the iterated learnt states 

which form the second peak at m = 0.35 mean that there are no stable states 

closely associated with these learnt states. Since the values of m for the memory 

states are close to one we think it is unlikely that a vector starting at a learnt 

state will not be trapped in the associated memory state's basin of attraction 

if one exists. A more detailed discussion of the possible discrepancies between 

the theoretical results and a simulation of this type are given in Bruce et al 

[12]. Gardner [16] showed that there are other stable states clustered around 

the memory states which, though higher in energy than the memory state, are 

still stable to single spin flip dynamics. There also exists an exponentially large 

number of spin glass states so there will always be spin glass states which have a 

finite overlap with any of the learnt patterns. We expect the peak at m = 0.35 to 

be caused by the iterative scheme terminating at either of these types of states. 

In figure 4.1 the values of - In F, where F is the weight under the high m peak 
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Figure 4.1: Histogram of the overlap of the retrieval state with the initial state for 

N = 4096,a = 0.1465. 

are plotted against N for different values of a. For an infinite size system replica 

theory predicts that P should change discontinuously at a so we hope to use 

this parameter for finite size scaling. In all our simulations the two peaks in the 

m distribution (see figure 4.1), were well separated so there was no ambiguity 

in selecting which iterated states belonged to which peaks. For a = 0.1367 the 

value of P increased as N increased, within the error bars, while for a = 0.1465 it 

decreased implying that 0.1367 < a c  <0.1465. The results for a larger than a 

showed a much sharper change in the value of P as N increased than the results 

for a lower than a. This is partly because, in the system sizes we studied, the 

change over from positive to negative gradient occurred at values of P close to 

one. Therefore possible increases in the value of P as N increased were restricted 

to a very small range of values. This also meant that even small errors in P 

could mask the scaling properties of the system for values of a below a. The 

scaling of P with the system size is therefore much more distinguishable in the 

two higher values of a (see figure 4.2). The two sets of points for these two a 

values were found to fit extremely well to the exponential form in equation 4.1. 
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Figure 4.2: The logarithm of the weight of the peak close to m = 1, for various 

values, plotted against N, for a fully connected network. The two upper sets of points 

are fitted to equation 4.1 using weighted linear regression. 
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Taking logs of equation 4.1 we obtain, 

—lnP=—lnA+B(a—cr)N 	 (4.2) 

Putting p = aN we obtain, 

 —lnP= —lnA+Bp--BaN 	 (4.3) 

which reduces the expression for P to linear form in p and N. We can now 

perform a weighted, multiple linear regression, which corresponds to fitting our 

data points at a = 0.1514 and 0.1465 to a plane. The values of A, B and a 

obtained from this fit were, 

ac  = 0.1450 ± 0.0003, A = 0.836 ± 0.009, B = 0.0181 ± 0.0007 	(4.4) 

where a,, is calculated from the coefficients of p and N. The errors in these 

coefficients are not independent and the relative error in a., was found to be 

much smaller than either of the relative errors in the two coefficients. 

Even within the error bars the value of a is not in agreement with the theoret-

ically predicted value of a = 0.138. A possible explanation of this discrepancy 

is the effect of replica symmetry breaking. Crisanti et al [11] determined a, 

from a one step replica symmetry breaking calculation and found it to be 0.145 

although how much breaking symmetry once approximates the true solution is 

very difficult to estimate. A full replica solution would require all the replica 

order parameters to take continuous values rather than just two possible val-

ues. This calculation does however suggest that the effect of replica symmetry 

breaking is to increase a,,,. Amit et al [6] obtained, by numerical simulations, 
ac  = 0.145 ± 0.01 in close agreement with our result. There calculations were 

performed on six systems of size 500 to 3000 although only five sets of 100 pat-

terns were iterated for each value of a compared to our simulations of typically 

15 sets of 128 patterns. 

The value of m at a = 0.138 was found to be, for N = 4096 ( averaged over 

256 patterns), m = 0.978 ± 0.008 and within the error bars remained unchanged 

for lower values of N. Again the value is higher than the theoretical value of 

rnc  = 0.968 suggesting that replica symmetry breaking also has the effect of 

increasing m. Crisanti et al [11] also found with their replica broken calculation 

that the value of m increased. 
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Figure 4.3: The logarithm of the weight of the peak close to m = 1, for various a 

values, plotted against N, for a one dimensionally connected network with w = 0.494. 

A similar set of simulations to those carried out for the fully connected model 

were performed on a system with a one dimensional connectivity architecture. 

The simulations were carried out with w = 0.494 at two values of a (0.1680,0.1758), 

both above the critical value a 
C

0.154 predicted by replica-symmetric theory 

(see section 2.2). The results of these simulations are shown in figure 4.3. The 

most significant result from these numerical studies is the increase in the storage 

capacity per connection over the fully connected system. For example, in the one 

dimensional system with a = 0.168, N = 4096, we find P = 0.771 while for the 

fully connected system at a = 0.1514,N = 4096, we find P = 0.526. This backs 

up our theoretical calculations in Chapter 3 which also showed an increase in 

the storage capacity per connection for partially connected systems. The results 

in figure 4.3 do not fit the scaling form of equation 4.1. We find a similar scaling 

to that found by Bruce et al [12] for the V model network where the values of P 

increase much more rapidly as N decreases than the scaling form of equation 4.1 

predicts. A possible explanation of this is a finite size effect that gives increased 

storage capacity in systems with fewer connections and becomes particularly sig-

nificant for systems with fewer than 1000 connections. Therefore small systems 
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and partially connected systems would have improved storage as N decreases. 

The simulations in the one dimensionally connected system have about half the 

number of connections as the fully connected model which could explain why 

the finite size effect is much more prevalent in these simulations. Simulations 

by Bruce et al were only carried out on one system size greater than 1024 which 

could also explain why their results did not fit well to the form of equation 4.1. 

To really understand the finite size size effects present in the system it would be 

necessary to perform detailed simulations on a large range of system sizes which 

would be very demanding on computer time. To obtain the numerical results in 

this chapter about 200 hours of computer time was used. The simulations on 

system sizes of 3072 and 4096 (see figure 4.3) show signs of fitting the form of 

equation 4.1. A least squares fit on these four points gave c = 0.165 ± 0.012 

which again is higher than the theoretical value of a = 0.1514. The value of 

m at a = 0.138 was found to be 0.988 ± 0.007 which is higher than the value 

obtained for the fully connected system. Again this gives some support to our 

theoretical predictions that a partially connected system. has a higher value of 

m for a given a than a fully connected system. 
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Conclusions and' Discussion 

The main result of the work in this thesis is that partially connected versions of 

Hopfleld networks can store more patterns per connection than a fully connected 

network. However, our calculations were restricted to models of infinite size, with 

an infinite number of connections and having the same connection architecture at 

each site. The increased storage is reflected in the increased size of the memory 

phase (which co-exists with the spin glass phase) and hence a as the network's 

connectivity is diluted. The increase in ac  is partly offset by the decrease in 

overlap m at the phase boundary but, for a given value of a, m is always higher 

for a partially, connected network. 

The specific position of the phase boundaries for both the co-existence phase and 

the spin glass phase are controlled by the probabilities associated with different 

sized sets of neurons being connected in closed loops. The shorter loops being 

the most important in determining the thermodynamic properties of the system. 

The two limiting cases of the probability values associated with the loops are 

the fully connected model, which has all the probabilities equal to one, and 

the randomly connected w = 0 model, which has all the probabilities equal 

to zero except the two site loop. The probability associated with this loop is 

always one due to the symmetric choice of the interactions. All other infinite 

range connection architectures were found to lie between these two cases. We 

therefore studied the randomly connected model in detail in section 3.4 where 

we found that the memory phase boundary becomes second order in the limit 

W - 0. In Chapter 3 we also outlined a numerical method using random walks 

by which the phase diagram for any infinite range connection architecture could 

be determined. 

All the phase diagram calculations in this work were carried out within the 

framework of replica-symmetric theory. However, in section 3.5 we determined 

in which areas of the phase diagram replica symmetry breaking is present cor-

responding to the breakdown of replica-symmetric theory. Replica symmetry 

breaking breaking was found to play an increasingly important role the higher 

the dimensionality of the connectivity and the lower the value of w. In the case 
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of the randomly connected w = 0 model the whole of the memory phase bound-

ary predicted by replica-symmetric theory lay in a replica broken area and was 

therefore incorrect. By analogy to the SK spin-glass we then supposed that the 

effect of replica symmetry breaking is to change the phase diagram to the form 

in figure 3.12. 

In Chapter 4 we performed some numerical simulations on finite systems that 

in general agreed with our theoretical predictions for infinite systems. These 

results also suggested that the true values of a and m in the one dimensionally 

connected and fully connected model were slightly above our replica-symmetric 

theoretical values. We expect these discrepancies to be due to replica symmetry 

breaking which our replica symmetry breaking studies in section 3.5 suggested, 

had a smaller effect on systems with a lower dimensionality of connectivity and 

higher w value. 

If we consider the resources requirements for Hopfield neural networks we can see 

that a partially connected system requires many more neural units, for the same 

number of connections, to have significantly more storage than a fully connected 

system. It is only when we consider restrictions of space and communication 

times that the major advantages of a partially connected system can be seen. 

In the "neural chips" which have been built so far at Bell laboratories [52] 

and also in the brain the neural units occupy negligible space compared to 

the connections. Therefore a partially connected network, particularly with 

some form of local connectivity, would be the most efficient use of space, reduce 

communication times and increase storage capacity per connection as well. 

There are many other possible areas of research in partially connected networks 

which have as yet not been studied. Firstly the differences in size of basins of 

attraction for different architectures could be studied by a similar method to 

that followed by Forrest [19] for a fully connected model. We may expect the 

basins of attraction for the stored states to be larger due to the less crowded 

nature of the phase space. Fewer states are stored in the same size of phase 

space for a partially connected system than a fully connected system with the 

same number of nodes. The extent to which these results extend to Hopfield 

type networks with other learning algorithms (see [17,47,19]) which improve 
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on the basic Hebb rule used in this paper could also be studied. Compared 

with complete connectivity random dilution Gardner [18] has found improved 

storage per connection for the perceptron learning algorithms of Gardner [17], 

Krauth [46] and Forrest [19]. The ability of partially connected networks to 

store information with short range correlations would also be worth investigating 

particularly if the connection range is chosen to be of a similar range to the 

correlations. Detailed studies of other types of neural network models could 

determine whether the results presented in this paper are valid beyond Hopfield 

networks. Do all partially connected systems have improved properties if more 

neural units are used with the same numbers of connections? 
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Appendix A 

The Kronecker Product of Two Matrices. 

Let A be a square matrix of dimension c and B be a square matrix of dimension 

k. The Kronecker product of theses matrices is a matrix of dimension ck and 

can be expressed in block form as, 

a 11 B a12 B a13B •.. a 1 B 

a21 B a22B 

	

AxB= a3jB 	 . 	 (A.1) 

	

aiB 	 • acc  

Some important properties of the Kronecker product which are used in Chapter 

2 are, 

Tr(AXB) = Tr(A)Tr(B) 
ab,mn 	 ab 	mn 

	

Tr(AxB) = ATr(B) 	 (A.2) 

where a and b are indices of matrix A and m and n are indices of matrix B. We 

can also define the determinant or cofactor, with respect to the first two indices, 

of a blocked matrix formed from Kronecker products of matrices of the same 

form as A and B. This will be a matrix of the same dimension as the second 

matrices in the products (see Appendix B). In the case of the Kronecker product 

of A and B we obtain, 

A x Blab = J AJB 	 (A.3) 

which is clearly a matrix of dimension k. 
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Appendix B 

Calculation of r, rd and (r - rd)2. 

We wish to calculate r in replica symmetric theory where we have from equa-

tion 2.67, 

1 ( 	DQ 
Vp,o 	 (B.1) 

/3 

The first step of the replica theory is to set q = q, this gives us for Q, remem-

bering that qPP = 1 still holds, 

Yxx ... x 

xY... 

wN 	 x 	•.•. 	 (B.2) 

X ... 	...Y 

where, 

wN 

(B.3) 
wN 

are matrices of dimension N. We have represented Q in a blocked structure of 

n x n matrices all of dimension N. We now wish to calculate the determinant 

of Q with respect to the replica indices p and o. This can be done by treating 

X and Y like elements in an n dimensional matrix. The first step in factorising 

the determinant of Q is to add each row to the top row so that every element in 
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the top row is Y + (n — l)X. If we now subtract column one from every other 

column and take out the factor Y + (n — 1)X from the top row we get, 

IN ON 

XY—X ON 

	

IQLa = (Y + (n — 1)X) X 	ON Y — X •.. 	 (B.4) 

	

X 	•.. 	 ... Y—x 
pa 

where ON  is the N dimensional zero matrix. We can now easily expand the 

determinant of Q about row one giving, 

IQI 	(Y + (n - l)X)(Y — X)' 1 	 (B.5) 

If we now carry out the second stage of the replica assumption n —* 0 the 

determinant becomes, 

1Q1 = (Y — X)(Y — X) 1  = IN 	 (B.6) 

So the required determinant is simply the identity matrix. To calculate r and rd 

we also need to evaluate the cofactors of Q with respect to the replica indices. 

The first stage of the replica assumption q = q reduces the number of distinct 

cofactors to two depending on whether it is a diagonal or off-diagonal cofactor. 

The diagonal cofactor will be required to evaluate rd and the off-diagonal will 

give us r. We will look at the off-diagonal cofactor first and for simplicity we 

will consider Q'2  where, 

ql2  = — 

xxx ... x 

X  ..... 

xxY... (B.7) 

	

Ix... 	...YI .  pa 

If we now subtract column one from all the other columns and then expand in 

row one this gives, 

	

Q = —X(Y — 	 (B.8) 

So in the limit n —* 0 this gives for r,( see equation B.1) using the result of 

equation B.6, 

r = —DX(Y — X) 2  = (IN  — 	— q))

-2 

 () 	
(B.9) 

wN 
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The cofactor of the diagonal terms is the determinant of a matrix which has 

exactly the same form as Q but of blocked dimension n - 1 rather than n. The 

cofactor is therefore, from equation B.5, 

WP = (Y - (n - 2)X)(Y - X)' 2 	 (B.10) 

Taking the limit n - 0 this gives, 

—2 
rd= -N 

D 	
IN - -_ D(1 - 2)) IN - ._çD(1 - q)) 	(B.11) 

for the diagonal term. In order to look at the stability conditions for replica 

theory it is necessary to evaluate the difference of the two terms squared. This 

is found to be, 

—2 
(B.12) 

/ D 
'2(IN i_ D(1 _. q )) (r —4( r 2= 	
) 	w  

This is very closely related to r (equation B.9), giving, 

	

(r—rd)2 = wr j 	 (B.13) 
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Appendix C 

Analytical Calculation of a 1  (w) for Hypercubic 

Connectivity Architectures 

From equation 3.2 al(w) is given by, 

al(w) 
= N2w2 	

(C.1)
ik 

where we are choosing site i to be fixed. Since the connection architecture is 

the same at every site there is no loss of generality in making this choice. al (w) 

only has contributions from sites j and Ic which are connected to site i, and to 

each other. The probability that site j is in the connection space of site i is w 

therefore, the probability that site j and site k are in the connection space of i 
is w 2 . This means that al (w) is the probability that site j is connected to site 

k given that both sites are connected to site i. For simplicity we will first of all 

look at the one dimensional case. Fig C.1 is a symbolic representation of a one 

dimensional connectivity architecture. 

Given that j and k are within the connection space of i there are two distinct 

situations possible for the positions of j and Ic each with probabilty 1 . 

Both sites are on the same side of i. 

In this case j is always connected to k and therefore every term contributes to 

al(w) giving a 1  contribution in total. 

Each site is on opposite sides of i. 
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w 

Figure C.1: Representation of a one dimensionally connected network with connectivity 

ratio w by a loop of length one unit. This diagram shows the relative positions of sites 

i,j and k. Points A and B are the limits of connectivity of site i. 

In this case j is not necessarily connected to Ic. 

Let t be the fractional distance of j from the left end of the connection space of 

i (see figure C.2), then, 

(C.2) 
Bi 

There are now two different possible ways in which j and Ic could be connected. 

The two sites are connected through i. 

If the two sites are connected in this way then k must he a fractional distance 

c < t to the right of site i, since the connection space to one side of any site is 

of length f. 

The two sites are connected through A and B. 

If the two sites are connected in this way then Ic must lie within a fractional 

distance d from B where, 

i- +(1 w) 	
' 

- 	 (0.3) 
22 

therefore, 

	

d:5(3—_)—t 	 (0.4) 

Since d and t are both positive this requires w > 1  for there to be any possibility 

of the two sites being connected in this way. To obtain the contributions to a 1 (w) 

from situations (a) and (b) we must integrate over all the possible positions of 

site Ic relative to site j. Thus integrating over the allowed values of c and d 

gives for the contributions from (a) and (b) to a 1 (w), remembering that the 

probability of situation 2 is 2 1  

1 1 	1 3_I 
- fo tdt+— 	(3__-i)(w_di 	 (0.5) 

J v 

2 	2 o 
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where B is the Heaviside function. After integration the above expression be-

comes, 
1 	2 2 	2 	1 	2 1+(3_;) Ow _ ()+O(_w) 	 (C.6) 

Adding the contributions from situations 1 and 2 together gives, for the value 

of al (w) in the case of one dimensional connectivity, 

(3 

3 	 (C.7) 1(3_i\ 2  
t 	 ) w> 

For higher dimensional hypercubic connectivity architectures the required cal-

culation is equivalent to carrying out this calculation for each of the dimensions 

with a connection space length of /ii. The required probability is then given 

by the product of the probabilities associated with each of the dimensions. In 

general this gives, 

	

a(w)= (a(/ii))' 	 (C.8) 

where a(w) is the value of ak(w)  for an n dimensional connection space. We 

therefore have from equation C.7, for a network with an n dimensional hyper-

cubic connection architecture, 

I ()fl  
2 	

2t 
al(w)= t (+(3_-) ) 

	

(C.9) 
41 	

W 
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Appendix D 

The DAP computer 

The DAP computer is a single instruction multiple data stream computer (SIMD) 

machine having an array of 64 x 64 single bit processors. Each processing el-

ement has associated with it a memory area of 4096 bits which it has direct 

access to . The processors have nearest neighbour connections and, in addition, 

a slower data bus system connects processors by rows and columns. Using these 

channels the processors can pass data to each other. 

The DAP has two programming languages at present; Fortran-plus which is 

a parallel language based on Fortran, and APAL which is a parallel assembly 

code language. Fortran-plus incorporates array and vector constructs so that if 

A, B and C are matrices then A = B * C will produce A, = B15  * Cij  on all 

the processing elements in parallel. These operations can be performed under 

a logical masking matrix so that we only obtain results on the required proces-

sors. The array of processing elements have a Q,C and A plane associated with 

them. The A plane is an activity control plane which is used for the masking 

operations while the Q and C planes correspond to an accumulator and carry 

plane. APAL instructions involve bit manipulation using these planes and are 

typically constructs of the form CQPCQS Ml. This instruction, reading from 

left to right, adds the S,Q and C plane together putting the carry in C and the 

least significant bit in Q. The S plane can be any of the 4096 store planes and 

'The DAP is now manufactured by AMT Reading and has 32 x 32 processors with 32k bits 

of memory each. Some of the simulations in this work were carried out on this new machine. 

AMT also plans in the future to build more 64 x 64 machines. 
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Figure D.1: Schematic representation of the DAP. 

its exact address is specified by the number stored in the master control unit 

register Ml. All Fortran-plus commands call macros of APAL code. 

Since the DAP is constructed from bit processors it can cope with integers and 

real numbers of different bit lengths. Therefore Fortran-plus supports code for 

integer bit lengths from 8 bit to 64 bit in 8 bit intervals and real bit lengths 

from 32 to 64 bits. In general code for shorter length numbers, which the DAP 

is very well suited to, will run faster than longer length numbers. The DAP is 

fastest at bit manipulation where it out performs most other super-computers 

with a typical APAL instruction taking 200ns (lOOns on the new 32 x 32 DAP). 

In our simulations of neural networks in Chapter 4 we, in the case of the 4096 

network, mapped each neuron onto each processor to exploit the parallelism of 

the DAP. For smaller system sizes we interleaved more than one simulation (eg. 

4 simulations for the 1024 size system) and processed them simultaneously. We, 

where possible, always worked with logical variables representing the states of 

the nodes and short integers for the connection strengths. Where short integer 

operations were not well supported in Fortran-plus sections of code were writ-

ten in APAL. This was particularly true in the case of the SUM instruction 

which sums the values of an array and typically takes much longer than other 

Fortran-plus matrix instructions. This instruction was used to sum the inputs 

to each neuron so that its new state could be determined. The part of the code 

which contained this sum was always in the innermost loop of the program and 
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therefore represented the bottle neck of the program. A new version of the SUM 

function was written in APAL that summed integer lengths of 11 bits. In all our 

simulations we never stored more than about 630 states so 11 bit numbers were 

sufficient for the connection strengths. In some cases the new section of code 

produced a speed up factor of as much as 2.5 on the original Fortran-plus code 

enabling about 8000 nodes to be updated per second in the case of the 4096 

system 2  

2Since this work a faster version of the standard 16 bit SUM function has been implemented 

on the 32 x 32 DAP which is about 1.7 times faster than the old version. 
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