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Abstract
This paper describes the process of building unit selec-
tion voices for the Festival multisyn engine using four
ARCTIC datasets, as part of the Blizzard evaluation chal-
lenge. The build procedure is almost entirely automatic,
with very little need for human intervention. We discuss
the difference in the evaluation results for each voice and
evaluate the suitability of the ARCTIC datasets for build-
ing this type of voice.

1. Introduction

This paper describes the process of building and evaluat-
ing the four ARCTIC [1] voices for the Festival [2] multi-
syn [3] engine as part of the Blizzard challenge. The build
process was almost entirely automatic, and used our stan-
dard procedure without modification for this challenge.
The following sections describe in detail the build pro-
cess and comment on the results of the perceptual testing
and the usability of the dataset for this type of speech
synthesis.

2. Building the voices

The build procedure for each of the four voices was, for
the most part, identical. We mention specific voices by
name only to highlight differences between the proce-
dures for each.

The four datasets (bdl , rms , slt and clb ) were
downloaded and unpacked. We had previously built a
multisyn voice using the bdl data, but decided to rebuild
it from scratch, as changes had been made to the build
procedure since it was initially built. We had also pre-
viously built a voice from the awb data (not part of this
challenge), so we had a reasonable idea of what to expect
from these datasets. The speech waveform files, pitch
mark files and festvox-style utterance list were copied for
use in the voice building process; all other supplied data
was discarded.

2.1. Segmenting the data

Each dataset was automatically segmented by a forced
alignment procedure using the HTK hidden Markov
model toolkit [4].
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An initial phone sequence was generated by Festi-
val for each utterance in the database, using the same
configuration for the language processing component of
Festival that was to be used for the finished voice. We
chose to use our own American English lexicon, unilex
(based upon our Unisyn accent-independent keyword lex-
icon [5]), for each voice. For comparison, we addition-
ally built a second voice from the rms dataset using the
CMU lexicon. We will call the CMU version RMS and
the unilex version we will call RMS2.

The supplied data contained around 50 words, mostly
proper names, which were not in our unilex lexicon. Pro-
nunciations for these words were added manually to the
lexicon before the initial transcription for alignment was
generated.

In addition to the phones for the utterance produced
from Festival’s front end, this initial transcription also
contains initial and final silences, extra labels to repre-
sent the closure portion of stops and affricates and short
pause labels after each word.

The alignment was carried out using standard left-to-
right monophone HMMs with three emitting states and
observation densities with eight Gaussian mixture com-
ponents. The short pause model is a “tee” model: it has
a skip transition, so can have a duration of 0 frames. The
speech was parameterised using HCopy from HTK as 12
Mel-scale cepstral coefficients, energy, deltas and delta
deltas. A relatively short window size of 10ms was used
with a short 2ms shift in order to produce more precise
times for the label boundaries. These settings have been
found in previous experiments.

1. models trained from a flat start using the initial
transcription and 5 iterations of embedded training

2. an intermediate forced alignment is carried out, in
which vowel reduction is allowed

3. models further trained using this intermediate tran-
scription

4. a second forced alignment is carried out with re-
spect to the initial transcription, again allowing
vowel reduction

5. models further trained using the second interme-
diate transcription; observation densities gradually
increased to a mixture of eight Gaussian compo-
nents using HTK’s standard “mixing up” procedure

6. a final forced alignment, again with respect to the
initial transcription,and allowing vowel reductions,

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Edinburgh Research Archive

https://core.ac.uk/display/429724394?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


then produces the labels and boundary times used
to build the voice.

2.2. Using the segmentation

The segmentation times from the alignment process were
taken and added to the linguistic structure for each utter-
ance. The process involved automatically inserting and
deleting silences as dictated by the alignment process, ac-
commodating the labels for closure portions of stops an
fricatives (the end of the closure was used to mark the
join point for diphones resulting from these segments)
and marking reduced vowels where appropriate. Phones
without pitch marks were also identified at this stage, as
these were not used in the final inventory.

2.3. Finishing the voice

A pitch tracker (CSTR’s own pda from the Edinburgh
speech tools) was used to get F0 and this was incorpo-
rated with the MFCCs and normalised to be used by the
join cost. LPC coefficients were also generated to be used
as the final voice representation.

3. The synthesiser specification

The multisyn [3] implementation in Festival uses a con-
ventional unit selection algorithm. A target utterance
structure is predicted for the input text, and suitable di-
phone candidates from the inventory are proposed for
each target diphone. The best candidate sequence is
found that minimises target and join costs.

If no examples of a particular diphone can be found
in the database a list of suggested alternatives is provided
as a backing off solution. These typically look for schwa
as an alternative to full vowels, and use silence as a last
resort.

The target cost is formulated as a weighted sum of
a number of normalised components, which each score
how well a candidate matches the given target. These fea-
tures include (most highly weighted first): lexical stress,
position of diphone in the phrase, part of speech (content
or function word), position of the diphone in its syllable,
position of the diphone in its word, left phonetic context
and right phonetic context.

The default join cost employs three equally weighted
subcomponents for pitch, energy and spectral mis-
matches. Spectral discontinuity is estimated by calculat-
ing the Mahalanobis distance between two vectors of 12
MFCCs from either side of a potential join point, the Ma-
halanobis distance between two additional coefficients
for F0 and energy are likewise used to estimate the pitch
and energy mismatch across the join.

4. Tuning the voices

Tuning the voices consisted of nothing more than inspect-
ing a few F0 tracks to set cut-off pitch range parameters
for the pitch tracker. Previous experience has shown that

conv guten mrt news sus
unilex lexicon 1 1 0 24 9
cmu lexicon 0 0 2 18 16

Table 1: Numbers of words from sections of the test set
that were missing from our pronunciation lexica.

the majority of quality problems with multisyn voices re-
sult either from bad labelling or bad pitch tracking. If a
speaker has a large number of phone segments which do
not contain a pitch mark, then this is a sign that either the
pitch marking has not worked very well, or the speaker
is speaking very fast and reducing or deleting phones.
If the pitch marking is bad, the pitch-synchronous join-
ing algorithm is unable to select appropriate units; if the
speaker is speaking fast, the accuracy of the labelling de-
creases because the predicted label sequence is less likely
to match the actual speech. Either way, the quality of the
resulting voice is reduced. There were a few potential
problems with some of the Blizzard voices and a small
number of diphones were being removed from the final
inventories because of this.

5. Generating the test sentences

The test sentences were automatically synthesised from
the supplied festvox description files. Our first impres-
sion on listening to the test set for each voice was that
these voices did not sound very good. There were clearly
bad joins in many of the examples, which is probably due
to the dataset not being big enough to provide a suitable
distribution of units in different contexts – this affects the
intelligibility of the voices. There were also noticeable
problems with the intonation of many of the sentences.
This is not too surprising because the type of voice built
has no intonation model or pitch modification. Instead,
the multisyn engine assumes that, by choosing units from
a suitable context, a natural intonation contour will also
be generated. For small datasets, like the Blizzard voices,
many contexts will be missing; units selected from the
wrong context will result in bad intonation. We noticed
a particular problems with the rms voices. The original
rms data has a low speech rate. Here, bad intonation
is particularly noticeable, and even sounds exaggerated.
However, the evaluation result, suggest that listeners did
not have a problem with this.

This finding agreed with our previous experience that
the ARCTIC datasets are not ideal for building multisyn
voices, see section 6 for more on this.

It was also noted that there were a reasonable number
of out-of-lexicon words in the test set. Because the test
sentences were “unseen”, we decided not to add the miss-
ing words to the lexicon. Table 1 shows the distribution of
words missing from the lexica used. Most of the missing
words from the news section are names while most of the
missing words from the semantically unpredictable sen-
tences are very low frequency words or compound nouns.
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Figure 1: Comparison of word error rates (WER) for the AR-
TIC voices built for multisyn, as judged by the “real” people
group. Two voices built from the rms dataset were submitted:
RMS, built using the CMU lexicon, and RMS2, built using the
Unilex lexicon.

6. Discussion

6.1. Pronunciation lexica

The two voices built from the rms dataset were both sub-
mitted for testing. We know that our unilex lexicon is
more consistent and complete than the CMU lexicon, and
previous experience has shown it generally performs bet-
ter. However, we presume that the CMU lexicon was used
in the ARCTIC text selection process to estimate the re-
quired diphone coverage. We generally expect our unilex
lexicon to produce better results, although the differences
between it and the CMU lexicon would be smallest for the
standard US English accents of the Blizzard data, com-
pared to other accents.

The evaluation results from the two voices where
quite similar, with one marked difference: the word er-
ror rate for subjects that were not speech experts or un-
dergraduate students was substantially lower for the rms
voice built with the unilex lexicon (RMS2) than for other
voices, including RMS. The results are shown in Figure
1. However, this difference did not show up elsewhere in
the results.

To further judge the quality of the ARCTIC based
voices, we took a closer look at the difference between
the two rms voices and compared the ARCTIC voices
to a voice built from a larger dataset. To do this we ran
two tests. The first was to compare the two versions of
the rms voice using the Blizzard test sentences. The sec-
ond was to compare the number of missing diphones in
RMS2 to those missing in one of our own voices, by syn-
thesising a large test set.

6.2. Comparison of the two rms voices

In this test, we synthesised versions of the supplied test
sentences for each voice. Any diphones that were re-
quired, but that were not available in a voice, were noted.

We found that the RMS voice (built with the CMU

lexicon) only had 4 such missing diphones, suggesting
that the ARCTIC dataset contains at least one of each
diphone that is likely to occur in sentences using words
and pronunciations from the CMU lexicon.

However, when we looked at the RMS2 voice (built
with our own lexicon), we found that there were 56 occur-
rences (46 unique types) of such missing diphones (ap-
proximately 1 missing diphone for every 5 utterances).
25 of these were in the news portion of the test set and
14 were in the semantically unpredictable sentences (21
and 13 unique types respectively). This result confirms
our hypothesis that using the same lexicon for text selec-
tion and at runtime makes a major difference to diphone
coverage.

Rms2 diphone distributions
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Figure 2: Distribution of context dependent diphones for
the RMS2 ARCTIC voice.

Nina diphone distributions
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Figure 3: Distribution of context dependent diphones for
our own nina voice.

Missing diphones can occur for two main reasons in
the multisyn build process. Firstly, the diphones could be
missing from the recorded speech data due to bad plan-
ning or if the speaker deviated from the prompt text or
used an unexpected pronunciation. Secondly, the diphone
could be present in the speech data yet have been explic-
itly excluded due to bad labelling or bad pitch marking.

The difference between RMS and RMS2 cannot be
explained by differences in pitch marking, since this was
identical for the two voices. Our unilex has a larger
phone set (55) than the CMU lexicon (47). So it is to
be expected that coverage determined by the CMU lexi-
con may not be sufficient when using the unilex lexicon.
To investigate this issue further the unilex version of rms
(RMS2) was compared to a dataset (nina) designed to be
used with the unilex lexicon.



The nina voice used in this comparison is a British
English voice built from a larger dataset than the ARC-
TIC datasets (approximately 175 000 phones compared
to approximately 36 000 phones). With this in mind, we
first compared the number of distinct diphone types be-
tween the voices.We would expect the distributions to be
similar as both voices are designed to provide diphone
coverage. We then compared the distribution of diphones
in different specific contexts, as it is only when there are
instances of a diphone available in each different context,
that the multisyn engine will be able to produce natural
prosody without signal processing.

The number of distinct phone types, diphone types
and context-dependent diphone types in each voice are
shown in table 2 Context-dependent diphones are de-
scribed by their lexical stress and position with respect to
the syllabic structure. This is a simplified version of the
context actually used by our text selection process [6].

phone types diphone types CD-diphone types
RMS2 56 1559 2922
nina 51 1851 3880

Table 2: Number of phone types, diphone types and con-
text dependent diphone types in nina and RMS2.

The first point to note is that the nina voice has fewer
phone types than the RMS2 voice (because of the dif-
ferent dialect of English). The nina voice contains more
diphone types than the RMS2 voice, suggesting that the
RMS2 voice may be lacking in basic diphone coverage.

As expected, the nina voice also has more context-
dependent diphone types than the RMS2 voice, and a
slightly higher ratio of context-dependent diphones to di-
phones (meaning that each diphone appears in more dif-
ferent contexts). Here, the larger dataset of nina clearly
provides a better selection of diphones in different con-
texts than the rms dataset.

Figures 2 and 3 show a plot of frequencies of the con-
text dependent diphone types, sorted with the most fre-
quent first. Plotted on a log scale, the latter part of the
nina plot shows how the text selection process success-
fully raises the number of instances of the less frequent
diphones in each of the contexts – in other words, trying
to avoid a long tail of zero or low frequency diphones.

To further assess the extent of missing diphones from
each of these voices, approximately eight hours of speech
from newspaper sentences was synthesised using each
voice, and a count made of the number of missing di-
phones requested. With respect to this dataset, the nina
voice was found to have 114 unique missing diphones,
whereas the RMS2 voice was found to have 255. These
figures are for diphone types; the figures for context de-
pendent diphone types are likely to be even more striking.

7. Conclusions

Our first conclusion is that participating in the Blizzard
evaluation has been a useful experience and that we have

learnt more about our own synthesis technique through
taking part.

Even though we feel that the ARCTIC datasets are
not ideal for building multisyn voices, the resulting voices
are reasonably intelligible, although there is a wide vari-
ation across the different voices (e.g. the WER results in
figure 1). We believe the size and diphone distributions
of the ARCTIC datasets are insufficient to make a good
multisyn voice. It is possible that signal processing tech-
niques could be used to make up for the lack of diphones
in sufficiently different contexts, although we think that a
larger (maybe only slightly larger) dataset is a better so-
lution (e.g. our own nina voice). With this in mind, we
would like to see future challenges including:

• larger databases
• building voices from datasets of varying sizes – to

evaluate how voice quality scales with dataset size
• building voices from a subset of a specified size

(e.g. 20k, 50k, 100k, 200k diphones) from a very
large dataset – to evaluate text-selection algorithms

• other accents of English
• other languages
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