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Abstract
Automatic emotion recognition has long been a focus of Affective Computing. It has

become increasingly apparent that awareness of human emotions in Human-Computer

Interaction (HCI) is crucial for advancing related technologies, such as dialogue

systems. However, performance of current automatic emotion recognition is

disappointing compared to human performance. Current research on emotion

recognition in spoken dialogue focuses on identifying better feature representations

and recognition models from a data-driven point of view. The goal of this thesis

is to explore how incorporating prior knowledge of human emotion recognition

in the automatic model can improve state-of-the-art performance of automatic

emotion recognition in spoken dialogue. Specifically, we study this by proposing

knowledge-inspired features representing occurrences of disfluency and non-verbal

vocalisation in speech, and by building a multimodal recognition model that combines

acoustic and lexical features in a knowledge-inspired hierarchical structure. In our

study, emotions are represented with the Arousal, Expectancy, Power, and Valence

emotion dimensions. We build unimodal and multimodal emotion recognition

models to study the proposed features and modelling approach, and perform emotion

recognition on both spontaneous and acted dialogue.

Psycholinguistic studies have suggested that DISfluency and Non-verbal

Vocalisation (DIS-NV) in dialogue is related to emotions. However, these affective

cues in spoken dialogue are overlooked by current automatic emotion recognition

research. Thus, we propose features for recognizing emotions in spoken dialogue

which describe five types of DIS-NV in utterances, namely filled pause, filler, stutter,

laughter, and audible breath. Our experiments show that this small set of features

is predictive of emotions. Our DIS-NV features achieve better performance than

benchmark acoustic and lexical features for recognizing all emotion dimensions in

spontaneous dialogue. Consistent with Psycholinguistic studies, the DIS-NV features

are especially predictive of the Expectancy dimension of emotion, which relates to

speaker uncertainty. Our study illustrates the relationship between DIS-NVs and

emotions in dialogue, which contributes to Psycholinguistic understanding of them

as well. Note that our DIS-NV features are based on manual annotations, yet our

long-term goal is to apply our emotion recognition model to HCI systems. Thus, we

conduct preliminary experiments on automatic detection of DIS-NVs, and on using

automatically detected DIS-NV features for emotion recognition. Our results show

that DIS-NVs can be automatically detected from speech with stable accuracy, and
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auto-detected DIS-NV features remain predictive of emotions in spontaneous dialogue.

This suggests that our emotion recognition model can be applied to a fully automatic

system in the future, and holds the potential to improve the quality of emotional

interaction in current HCI systems.

To study the robustness of the DIS-NV features, we conduct cross-corpora

experiments on both spontaneous and acted dialogue. We identify how dialogue

type influences the performance of DIS-NV features and emotion recognition models.

DIS-NVs contain additional information beyond acoustic characteristics or lexical

contents. Thus, we study the gain of modality fusion for emotion recognition with the

DIS-NV features. Previous work combines different feature sets by fusing modalities

at the same level using two types of fusion strategies: Feature-Level (FL) fusion,

which concatenates feature sets before recognition; and Decision-Level (DL) fusion,

which makes the final decision based on outputs of all unimodal models. However,

features from different modalities may describe data at different time scales or levels

of abstraction. Moreover, Cognitive Science research indicates that when perceiving

emotions, humans make use of information from different modalities at different

cognitive levels and time steps. Therefore, we propose a HierarchicaL (HL) fusion

strategy for multimodal emotion recognition, which incorporates features that describe

data at a longer time interval or which are more abstract at higher levels of its

knowledge-inspired hierarchy. Compared to FL and DL fusion, HL fusion incorporates

both inter- and intra-modality differences. Our experiments show that HL fusion

consistently outperforms FL and DL fusion on multimodal emotion recognition in both

spontaneous and acted dialogue. The HL model combining our DIS-NV features with

benchmark acoustic and lexical features improves current performance of multimodal

emotion recognition in spoken dialogue.

To study how other emotion-related tasks of spoken dialogue can benefit from the

proposed approaches, we apply the DIS-NV features and the HL fusion strategy to

recognize movie-induced emotions. Our experiments show that although designed

for recognizing emotions in spoken dialogue, DIS-NV features and HL fusion

remain effective for recognizing movie-induced emotions. This suggests that other

emotion-related tasks can also benefit from the proposed features and model structure.
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Chapter 1

Introduction

Speech, originally, was the device whereby Man learned, imperfectly, to
transmit the thoughts and emotions of his mind.

— Isaac Asimov, Second Foundation (1953)

In this chapter, we provide an overview of our work on automatic emotion

recognition in spoken dialogue with acoustic and lexical features. We discuss our

motivation for why we are particularly interested in emotion recognition and what are

the limitations of state-of-the-art studies in this filed. We then state our hypotheses

addressing the identified issues in current emotion recognition research. We also lay

out the roadmap of this thesis.

1.1 Motivation

Research in Cognitive Science has shown that emotions are vital in human cognition

and communication processes (Picard, 2000). This has led to the establishment of the

field of Affective Computing. The term Affective here refers to aspects of cognition

relating to, resulting from, or influenced by human emotions, and Affective Computing

is the study of developing emotion-aware technologies. There are three main topics

in Affective Computing: how to recognize human emotions, how to model emotional

interactions, and how to synthesize expressive reactions. It has become increasingly

apparent that awareness of emotions is crucial for advancing technologies related to

Human-Computer Interaction (HCI). For example, a virtual agent that is able to copy

and adapt its laughter and expressive behaviour to the user’s behaviour pattern has

been shown to increase users’ humour experience (Pecune et al., 2015). Similarly, in

affective game design, Non-Player Characters that are aware of the emotional states

1
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of the player and can generate emotional reactions have been shown to keep players

engaged and improve the gaming experience (Popescu et al., 2014). In a teaching

scenario, a robot lecturer expressing a positive mood while giving lectures to university

classes was rated as having higher lecturing quality (Xu et al., 2014).

Automatic emotion recognition has long been a focus in Affective Computing

because it is the first step towards emotion-aware technologies. In HCI systems,

the user’s emotions can either be described as categories such as joy or sorrow, or

as values on emotional dimensions such as Arousal (excited/bored). The ability to

accurately recognize emotions in spoken dialogue is crucial to building more natural

and engaging dialogue systems. In earlier studies of automatic emotion recognition,

experiments are often conducted on data produced by human participants portraying

the emotions under artificial settings, such as reading the same short sentence with

different emotions (Petrushin, 2000). This resulted in emotion recognition models

that attain good performance on the specific database, sometimes even outperforming

humans. However, these models are overfitting the data and are fragile to changes,

such as different experiment participants, and are thus difficult to apply to HCI systems

(Schuller et al., 2010a). Recent studies attempt to build more robust automatic emotion

recognition models by training on natural data such as recordings of spontaneous

dialogue. However, performance of these models is disappointing compared to human

performance (Sauter et al., 2010b), and there is considerable room for improvement

(Poria et al., 2017). For example, the correlation coefficient between the automatic

predictions given by the best performing multimodal model and the human annotations

on the AVEC2012 database is only 0.280 (Savran et al., 2012). Similarly, Zadeh et al.

(2017) conducted experiments to predict binary Valence (positive/negative) values of

videos, and their best accuracy achieved by the automatic model using multimodal

information is 77.1%, while human performance is 85.7%. Therefore, the goal of

this thesis is to develop an effective and robust emotion recognition model that can

improve the performance of state-of-the-art automatic emotion recognition in spoken

dialogue, with the long-term goal to apply the proposed model to current HCI systems

and improve the quality of emotional interaction.

1.1.1 Limitations of Current Emotion Recognition Approaches

State-of-the-art approaches for emotion recognition have focused on identifying better

feature representations and recognition models. However, how to identify effective
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features and models remains an open question.

Features used in emotion recognition can be extracted from various modalities

(e.g., audio, visual, lexical, and physiological). Typically better performance can

be achieved when incorporating information from all available modalities, such as

our previous work combining the audio, visual, and lexical modalities for emotion

recognition (Moore et al., 2014). However, this thesis focuses on the acoustic and

lexical modalities. This is because our task is to recognize emotions from spoken

dialogue and the acoustic and lexical modalities are the major types of information

most commonly available.

For the acoustic modality, previous studies extracted features describing the

statistical characteristics of the speech signals for emotion recognition. By statistical
we refer to features that are data-driven and do not require emotion-specific

knowledge during the feature extraction. These features have been widely used in

state-of-the-art emotion recognition models and have achieved robust performance

(e.g., Song et al. (2016a)). However, recent studies indicate that acoustic features

motivated by Psycholinguistic studies on relations between acoustic characteristics

and speaker emotions (the knowledge-inspired features) may have comparable or

better performance than a large set of statistical acoustic features. For example,

three hand-selected features describing the pitch, energy, and quality of speech at the

utterance level can achieve better performance than thousands of statistical acoustic

features on predicting the Arousal (excited/bored) emotion dimension (Bone et al.,

2014). For the lexical modality, state-of-the-art emotion recognition models have

focused on features describing the lexical content, i.e., the words that are spoken.

Both the lexical and acoustic features used in state-of-the-art research on

recognizing emotions in spoken dialogue have focused on speech in isolation, while

specific characteristics of spoken dialogue compared to other forms of speech (e.g.,

monologue) are overlooked. Psycholinguistic studies have suggested that dialogue

phenomena, especially DISfluencies and Non-verbal Vocalisations (DIS-NVs), may

be related to human emotions (Shriberg, 2005; Vuilleumier, 2005; Lickley, 2015).

However, such affective cues in spoken dialogue have been largely overlooked in

feature extraction of state-of-the-art emotion recognition models. In addition, previous

work has suggested that there are various data aspects that can greatly influence

performance of emotion recognition models, such as dialogue type or database size

(Zeng et al., 2009). In terms of DIS-NVs in spoken dialogue, Trouvain (2014)

suggested that DIS-NVs are more common in spontaneous and unscripted dialogue
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than in acted dialogue. Thus, a cross-corpora study using data from different types

of dialogue is required to further study the robustness of using DIS-NVs for emotion

recognition in spoken dialogue.

Beyond features, emotion recognition performance also depends on how those

features are used to model emotions. To build emotion recognition models, widely

used classification or regression models have been applied. There are two main types

of machine learning models: shallow learning which has a flat model structure and

uses the input features directly, and deep learning which has a multilayer network

structure and learns an abstracted representation from the input features before

performing recognition. Various shallow learning models have been applied to emotion

recognition since the establishment of the field. For example, Support Vector Machines

used by Lubis et al. (2016), Hidden Markov Models used by Ozkan et al. (2012),

and Conditional Random Fields used by Baltrusaitis et al. (2013). There exist many

different machine learning models and it is important to choose the appropriate one

for a specific task. However, Forbes-Riley and Litman (2011) compared various

shallow learning algorithms and their results show that performance differences are

not significant when accounting for feature sets and other parameter settings.

In recent years, however, significant performance improvements have been

obtained using deep learning models instead of shallow machine learning models in

emotion recognition. Here the term deep learning models refers to neural networks

with more than one hidden layer. The network structure of deep learning models allows

flexible control when fusing multiple modalities and modelling temporal context. This

enables the models to extract more effective features automatically. For example,

deep and hierarchical neural networks have obtained top performance in detecting the

Valence emotion dimension (positive/negative) and the level of conflict (Brueckner

and Schuller, 2015), and the use of Autoencoders has improved unsupervised domain

adaptation in affective speech analysis (Deng et al., 2014). Among different deep

learning models, the Long Short-Term Memory Recurrent Neural Network (LSTM)

model is especially powerful for emotion recognition because of its ability to model

long-range temporal context. However, the small size of emotion databases compared

to databases used for speech or image recognition tasks may limit optimization of the

complex model structure of a deep learning model. The ability to generalize over

different databases is also an issue for current deep learning models.

In addition to extracting more effective features with deep learning models,

combining information from multiple modalities and building multimodal emotion
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recognition models typically improves performance compared to unimodal emotion

recognition approaches. However, the improvement is often limited (D’Mello and

Kory, 2012). One reason may be that most multimodal models combine different

modalities at the same level. Information from different modalities is either combined

at the Feature Level by concatenating the feature sets (FL fusion), or at the Decision

Level by fusing the predictions given by each unimodal model (DL fusion). However,

different modalities may describe data at different time scales. For example, many

statistical acoustic features describe data at the frame level, while knowledge-inspired

prosodic features often describe data at the utterance level. Different features may

also have different levels of abstraction. For example, the statistical acoustic features

describe a wide range of acoustic characteristics, while knowledge-inspired prosodic

features describe a small set of emotion-specific cues. Therefore, the statistical

acoustic features may capture vocalisations unrelated to emotion and are thus less

abstract than the knowledge-inspired prosodic features with respect to this task. Due

to such differences, combining these features at different levels may improve the

benefits gained by modality fusion. Cognitive Science studies also indicate that

when perceiving emotions, humans make use of different types of information from

different modalities at different cognitive levels and time steps (Grandjean et al., 2008).

However, in state-of-the-art multimodal emotion recognition models, it is extremely

rare to combine information at different stages in a knowledge-inspired hierarchy, and

existing fusion strategies do not model both the inter- and intra-modality differences.

1.1.2 Hypotheses

This thesis attempts to address the issues we identified in current studies and improve

on state-of-the-art of emotion recognition in spoken dialogue. Here we propose the

two main hypotheses of this thesis.

H1: DIS-NV Features are Predictive of Emotions in Spoken Dialogue

In terms of feature representation, we propose to use dialogue phenomena beyond the

traditional features representing acoustic characteristics and lexical content of speech.

In particular, we propose novel features describing the occurrences of DISfluency and

Non-verbal Vocalisation (DIS-NV) in utterances for recognizing emotions in dialogue.

As discussed earlier, DIS-NVs are emotion related phenomena in speech which were

overlooked by current emotion recognition models. Thus, we have good reason to
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believe that the DIS-NV features will be predictive of emotions in dialogue, both

when used on their own and when used in combination with other acoustic and lexical

features. However, note that as a dialogue phenomenon, efficacy of the DIS-NV

features may be influenced by the differences existing between spontaneous and acted

dialogue.

H2: the HL Fusion Strategy will Outperform the FL and DL Fusion Strategies for

Multimodal Emotion Recognition

In terms of recognition model, we propose a HierarchicaL (HL) fusion strategy which

incorporates features that are more abstract or describe data at a longer time scale at

higher layers of its knowledge-inspired hierarchical structure. Compared to existing

fusion strategies, HL fusion can model both inter- and intra-modality differences.

Thus, we expect the HL fusion to outperform the traditional FL and DL fusion

strategies for multimodal emotion recognition.

1.2 Roadmap of This Thesis

Remainder of this thesis is arranged as follows: In Chapter 2, we review the theoretical

background of human emotions and the Psycholinguistic studies that motivate our

DIS-NV features and HL fusion strategy. In Chapter 3, we review state-of-the-art

of automatic emotion recognition and provide the detailed methodology of our

experiments, including the emotion databases of spoken dialogue we experiment on,

the benchmark features and model approaches we compare our emotion recognition

approaches with, and the evaluation metrics. In Chapter 4, we introduce our

DIS-NV features and perform experiments investigating our first hypothesis on

the effectiveness of the DIS-NV features for emotion recognition in spontaneous

dialogue. To understand our findings in Chapter 4 on spontaneous dialogue in a wider

context, in Chapter 5, we conduct cross-corpora studies on emotion recognition in

spontaneous and acted dialogue. We first compare characteristics of spontaneous and

acted dialogue by comparing distributions of emotions, DIS-NVs, and utterance-level

prosodic measurements. We then continue to investigate the influence of dialogue type

on emotion recognition approaches. In addition, we study the effectiveness of the

deep LSTM model for emotion recognition compared to the shallow Support Vector

Machines (SVMs). Note that Chapters 4 and 5 have mainly focused on unimodal
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emotion recognition. In Chapter 6, we move on to multimodal emotion recognition

with acoustic and lexical modalities and investigate our second hypothesis on the

effectiveness of HL fusion compared to FL and DL fusion. Beyond recognizing

speaker’s emotions from spoken dialogue, we are curious to study whether or not

other emotion-related tasks of spoken dialogue can also benefit from the DIS-NV

features and HL fusion strategy. Thus, in Chapter 7, we apply our DIS-NV features

and HL fusion strategy to predicting audience’s emotions induced by movies. Finally,

in Chapter 8, we summarize contributions and limitations of this thesis and discuss

possible future directions. In particular, how to integrate our emotion recognition

model into a HCI system and investigate its influence on the quality of emotional

interaction.





Chapter 2

Human Emotion Theories

The history of science is full of revolutionary advances that required small
insights that anyone might have had, but that, in fact, only one person did.

— Isaac Asimov, The Three Numbers (1974)

In this chapter, we review the theoretical background of human emotions. In

particular, we discuss different theoretical frameworks for defining emotions and

review Psycholinguistic findings on human emotion perception and induction in

spoken dialogue. Note that the focus of this thesis is the computational aspect of

emotion recognition in spoken dialogue. Therefore, here we do not attempt to answer

fundamental questions in Psychology and Cognitive Science on human emotions, such

as what are emotions or why do humans have emotions.

2.1 Emotion Theories

The question of how to define, study, and explain human emotions has been the

subject of an on-going debate in current Psychology and Cognitive Science studies.

Among different emotion definition theories, there are four major approaches that

have influenced computational studies of emotions (Cornelius, 2000). The first theory

is the Darwinian emotion perspective (e.g., Ekman et al. (1987)). The Darwinian

perspective argues that emotions are products of evolution. Thus, it aims to identify

a set of primitive and universal emotion categories. For example, the Darwinian

perspective suggests that fear is a primitive and universal emotion because it was

developed as an alarm system to increase chance of survival. The second theory is

the Jamesian emotion perspective (e.g., Levenson (1992)). The Jamesian perspective

argues that emotions are caused by physiological and bodily changes, and research

9
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in this framework works towards identifying the physiological aspects of emotions,

such as heart rate and neurological signals. The third theory is the cognitive emotion

perspective (e.g., Ortony et al. (1990)). The cognitive perspective argues that changes

in emotional states are induced by events and our perceptions on how these events

influence us, such as fulfilment of personal goals. Thus, research in this framework

focuses on identifying primitive emotional dimensions to represent complex and

compound emotions, and on building emotional reaction models to describe the

relations between events (appraisals) and emotions. The fourth theory is the social

constructivist emotion perspective (e.g., Spelman (1989)). The social constructivist

perspective studies the cultural, gender, and other social or individual differences

of emotion perception and expression. These four emotion theories study different

aspects of emotions and are equally important for understanding human emotions.

Considering the application of emotion theory in automatic emotion recognition,

a large number of current studies have followed the Darwinian emotion theory, which

defines emotions in terms of several primary and universal categories. The most widely

used emotion categorisation is Ekman’s Big-6 set of emotions, which identifies anger,

disgust, fear, happiness, sadness, and surprise as the primitive and universal human

emotion categories based on studies of facial expressions, as shown in Figure 2.1

(Ekman et al., 1987). However, this categorisation has been criticized as being biased

towards negative emotions. Furthermore, the categories were based on a participant

group lacking cultural diversity and, thus, their universality has been questioned

(Ortony and Turner, 1990). What the basic emotion categories are remains an open

question, and it is difficult to describe compound emotions or the intensity of different

emotions with a limited set of emotion categories.

Instead of the Darwinian emotion theory, a number of automatic emotion

recognition studies have been focused on the cognitive emotion theory. Such work

associates emotions with specific appraisals (stimuli that evoke changes in emotional

states) and describes emotions as vectors in a space defined by a set of primitive

emotion dimensions (Ortony et al., 1990). For example, the Arousal (active/inactive)

and Valence (positive/negative) dimensions (Fontaine et al., 2007). Compared to

the emotion categorisations, emotion dimensions are able to describe emotions in a

more flexible manner and capture subtle changes in complex emotions, as shown in

Figure 2.2. The association between emotions and appraisals also leads to emotional

interaction models which connects interaction events, recognized emotions, and

expressed emotions (e.g., Marsella and Gratch (2009)).
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Figure 2.1: The Big-6 Emotion Categorisation (Ekman et al., 1987)

Figure 2.2: An Example of the Dimensional Emotion Definition

Note that the goal of this thesis is to build emotion recognition models which

can potentially be applied to the emotional interaction module of Human-Computer

Interaction (HCI) systems. The emotional interaction models of most current HCI
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systems are developed with appraisal-based emotion models (e.g., Marsella et al.

(2010)). Therefore, we adopt the cognitive emotion theory in this work and describe

emotions as vectors in a multi-dimensional emotion space (see Section 3.2). The

dimensional emotion definition also allows us to model more subtle and complex

emotions in spoken dialogue.

2.2 Human Emotion Perception and Induction in

Spoken Dialogue

Emotions play an important role in human cognition and communication. However,

they are complex phenomena yet to be fully understood. Emotions have been

traditionally studied from the biological and neuroscience perspectives, which view

emotions as genetically determined and universally similar responses (Panksepp,

2004). In this thesis, we are more interested in emotions in social communications.

From this perspective, emotions are socially constituted functions which vary among

sociocultural systems, and are subjective experiences influenced by various biological,

personal, and situational factors (Averill, 1980). Gordon (1990) identified five social

dimensions of emotions: origin (primary or universal elements), time (short-term

reactions or long-lasting emotions), structure (private or social experiences of

emotions), change (micro-level self-regulations or macro-level historical changes),

social situation (social relationship), and emotional culture (vocabulary, norms, or

beliefs). It is important to study how emotions vary on each of these social dimensions.

However, in this thesis we controlled the conditions of the emotional communication

by selecting emotion databases of English dyadic dialogue collected under similar

social dimensions, with the main difference being the type of spoken dialogue

(spontaneous vs. acted) between the databases.

During a conversation, we perceive the emotions of our conversational partner

(perceived emotions) which may evoke emotional experiences of our own (induced

emotions). We can express such induced emotions during the interaction which our

conversational partner can then perceive (Niedenthal and Brauer, 2012). In Chapter 7,

we will discuss the perception and induction of emotions in more detail. However, in

the majority of this thesis we will focus on human recognition of emotions expressed

in spoken dialogue, i.e., the perceived emotions.

Humans convey and perceive emotions through all communicative modalities
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during a social interaction, such as the audio, visual, or gestural modalities (Jaimes

and Sebe, 2007). When recognizing emotions, humans are shown to have better

performance when given information from multiple modalities (De Silva et al., 1997).

However, spoken dialogue applications may only have access to the speech data.

Because we are interested in emotions in spoken dialogue, in this thesis we focus

on emotions communicated through the acoustic and lexical modalities. Among the

different types of information conveyed through the acoustic and lexical modalities,

Psycholinguistic studies have identified the prosodic and lexical content of the speech

as being closely related to human emotions expressed in spoken dialogue (Zeng et al.,

2009).

For the acoustic modality, identifying the optimal set of voice cues for human

emotion recognition remains an open question. Previous studies indicate that human

listeners can recognize emotions accurately with prosodic cues such as pitch, energy

and speech rate (Juslin and Scherer, 2005). Spectral cues such as Mel-Frequency

Cepstral Coefficients (MFCCs) also received great attention in previous research

because of their ability to represent the short-term power spectrum of speech audio by

modelling the human auditory system’s response. Among different types of acoustic

characteristics, empirical experiments studying correlations between emotions and

different acoustic cues indicate that pitch and energy are the most relevant to emotions

compared to other acoustic cues (Cowie et al., 2001; Kwon et al., 2003).

For the lexical modality, the affective state of the speaker is related to the words that

have been spoken. Continuing efforts have been made by Psycholinguistic researchers

to establish dictionaries of words with affective annotations, such as the WordNet

Affect (Strapparava and Valitutti, 2004) and the Linguistic Inquiry and Word Count

(LIWC) (Pennebaker et al., 2007). In addition to individual words, information about

semantic context is also important for understanding emotions expressed in the whole

utterance or the whole dialogue. The emotional state of a person during a conversation

tends not to change rapidly and thus depends on the temporal context (Zeng et al.,

2009). Although lexical content remains an important clue of emotions in dialogue,

individual preferences and cultural differences can influence the correlation between

lexical content and emotions greatly. Previous studies have suggested that in some

cases, linguistic information can be unreliable for analysing human emotions, and the

association between lexical content and emotions is hard to generalize over different

types of dialogue, different languages, and different speaker personality types, etc

(Ambady and Rosenthal, 1992; Furnas et al., 1987).
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Besides the acoustic characteristics and lexical content, aspects of spoken dialogue

such as DISfluencies and Non-verbal Vocalisations (DIS-NV) are also common and

interesting phenomena in speech. However, the relationship between disfluencies

and emotions has been largely overlooked in previous Psycholinguistic research.

Emotions can influence the neural mechanisms in the brain, and thus influence sensory

processing and attention (Vuilleumier, 2005). This in turn influences speech processing

and production, which may result in disfluencies (Lickley, 2015). Current studies

on human-human dialogues suggest that disfluency conveys information such as

speaker uncertainty (Lickley, 2015), level of conflict (Vidrascu and Devillers, 2005),

or points of interest in meetings (Shriberg, 2005). Unlike disfluencies, non-verbal

vocalisations, especially laughter, have been identified as universal and basic cues

of human emotions (McGettigan et al., 2015). For example, Affective Bursts (short

emotional non-speech expressions) have been shown to convey identifiable emotions

when presented without context to participants (Schröder, 2003). Cognitive studies

have suggested that listeners can perceive affective states such as distress, anxiety,

and boredom from non-verbal vocalisations including laughter, cries, sighs and yawns

(Russell et al., 2003; Petridis and Pantic, 2008). These indicate that DIS-NV may be

predictive of emotions in spoken dialogue in addition to the prosodic cues and lexical

content.

2.3 Discussion

In this chapter, we reviewed theoretical studies of human emotions. Our review

indicates that speech prosody and lexical content are important cues of human

emotions in spoken dialogue. However, factors such as individual differences

and nature of the dialogue may influence the relationship between emotions and

specific acoustic or lexical cues greatly. Beyond the acoustic characteristics and

lexical contents, non-verbal vocalisations are strong indicators of speaker’s emotions,

and disfluencies are suggested to be related to emotions in dialogue by previous

Psycholinguistic studies. In addition to different cues related to emotions in spoken

dialogue, previous studies also suggest that emotions are dependent on temporal

context. Humans make use of dialogue history and current information from all

available modalities to better recognize the emotions of their conversational partner.

In Chapter 3, we will review computational studies on recognizing human

emotions in spoken dialogue. We will then identify the misalignment between
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the Psycholinguistic knowledge on human emotions in spoken dialogue and

state-of-the-art automatic emotion recognition approaches, which motivate the main

hypotheses of this thesis.





Chapter 3

Experimental Framework for

Automatic Emotion Recognition

I believe in evidence. I believe in observation, measurement, and
reasoning, confirmed by independent observers.

— Isaac Asimov, The Roving Mind (1983)

In the first part of this chapter, we review current approaches for automatically

recognizing emotions in spoken dialogue using acoustic and lexical cues. We identify

limitations in state-of-the-art approaches motivated by our review of Psycholinguistic

studies of human emotions in Chapter 2. To address the limitation in feature extraction

of missing affective cues in spoken dialogue, we propose novel DISfluency and

Non-verbal Vocalisation (DIS-NV) features. To address the limitation of combining

multimodal information at the same level, we propose the HierarchicaL (HL) fusion

method for multimodal emotion recognition. The framework of our proposed emotion

recognition model is shown in Figure 3.1.

"Quid Pro Quo, Doctor."

Acoustic Features

Lexical Features

Disfluency and

Non-verbal Vocalisation DIS-NV Features

InputA1

InputA2

InputA3

InputB1

InputB2

InputB3

Output

Hidden
layer 1

Input
layer

Hidden
layer 2

Output
layer

LSTM recognition model with

HierarchicaL (HL) Fusion

Emotion

Predictions

Training data

Figure 3.1: Framework of Our Emotion Recognition Model

To study the efficacy of the proposed features and modelling approach, we conduct

experiments comparing our DIS-NV features and HL fusion with benchmark features

17
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and emotion recognition models in this thesis. In the second part of this chapter we

describe the methodology for our experiments. First, we provide definitions of the

four dimensions we use to describe emotions. Second, we describe the two emotion

databases of spoken dialogue we conduct our experiments on. Third, we describe five

types of benchmark acoustic and lexical features which we use to compare our DIS-NV

features with. Finally, we describe two widely used recognition models which we

apply to build our emotion recognizers and the evaluation metrics we use.

3.1 Automatic Emotion Recognition in Spoken

Dialogue

This section reviews different aspects of automatic emotion recognition in spoken

dialogue. These include emotion database collection, acoustic and lexical features

for representing the data, and Machine Learning models for recognizing emotions.

We then discuss the limitations of state-of-the-art automatic emotion recognition

approaches, and attempt to address such limitations motivated by our review of the

Psycholinguistic studies of human emotions in Chapter 2.

3.1.1 Emotion Recognition as a Machine Learning Problem

The task of this thesis is to recognize dimensional emotions in spoken dialogue

with acoustic and lexical features. We are especially interested in recognizing

emotions in spontaneous dialogue because this leads to more robust automatic emotion

recognition models that can be applied to more natural scenarios (Schuller et al.,

2010a). Current performance of emotion recognition in spontaneous dialogue is

disappointing compared to human performance, and there is room for improvement

(Sauter et al., 2010b). For example, Zadeh et al. (2017) explored the efficacy of deep

neural networks for predicting Valence (positive/negative) of videos. However, even

the best performing automatic model using multimodal information is still far from

human-like performance. For binary Valence classification, the best accuracy achieved

by the automatic model is 77.1%, while human performance is 85.7%. To improve on

current performance, the key research challenge is identifying more effective features

and recognition models depending on the characteristics of the data set.

There are three main aspects for building an emotion recognition model, namely the

data, the features, and the recognition model. Here we summarize major approaches
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for each aspect in current work:

• Data:

– Spontaneous: data collection by recording spontaneous dialogue.

– Induced: data collection by using stimuli to evoke target emotions in the

participants.

– Acted: data collection by acting.

• Feature:

– Knowledge-inspired: features describing affective cues identified by

Psychological studies on human emotions.

– Statistical: features describing statistical properties of the data.

• Model:

– From a temporal point of view:

∗ Non-contextual: models using information only from the current time

step.

∗ Contextual: models including temporal context either in the features

or in the model structure.

– From a structural point of view:

∗ Shallow: models with a flat structure that uses the input feature

representation directly.

∗ Deep: models with a hierarchical structure that learns abstraction of

the input features before performing recognition.

– From a modality point of view:

∗ Unimodal: models using information from a single modality.

∗ Multimodal: models combining information from multiple modalities.

In the remainder of this section, we review state-of-the-art research on these

different emotion recognition aspects. In addition, we discuss what are the suitable

evaluation metrics for comparing different emotion recognition approaches.
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3.1.2 Databases

A non-exhaustive list of recent emotion databases widely used for automatic

emotion recognition is given in Appendix A. In general, in recent years there has

been increasing interest in collecting multimodal emotion databases of spontaneous

dialogue with both categorical and dimensional emotion annotations. This trend has

been observed in various emotion database literature reviews, such as D’mello and

Kory (2015). There have also been growing efforts in collecting benchmark emotion

databases for hosting emotion recognition challenges where researchers can compare

their models under the same experimental settings.

A large portion of existing emotion databases were collected in an acted or

induced manner, especially unimodal databases. For example, the Acted Facial

Expressions in the Wild (AFEW) database (Dhall et al., 2012) of movie clips, which

has been used in the annual Emotion recognition in the Wild (EmotiW) challenge

since 2013 (Dhall et al., 2017). Recently, more effort has been placed on collecting

spontaneous dialogue in a more natural and realistic environment. For example, the

Sentiment Analysis in the Wild (SEWA) database1 contains dyadic conversations

between acquainted people discussing a commercial they just viewed, which has

been used in the AVEC2017 challenge (Ringeval et al., 2017). However, databases

collected by recording spontaneous dialogue often contain unbalanced distributions of

emotion labels: a large number of instances have neutral or mild emotion labels and

a relatively small number of instances capture intense emotions. Emotion databases,

especially those collected by recording spontaneous dialogue, are often small in size

with a limited number of participants. For example, the SEMAINE database contains

approximately 10 hours of audiovisual recording from 24 participants talking to virtual

agents (McKeown et al., 2010).

The audio and visual modalities are the two most frequent modalities captured in

emotion data collection. In more recent databases, other modalities, such as gestures

and physiological signals, have also been recorded due to the development of wearable

sensors. For example, the LIRIS-ACCEDE database records the physiological and

behavioural measurements of movie audiences during movie screening (Baveye et al.,

2015b).

For emotion annotation, the Big-6 emotion categorisation of Ekman et al. (1987)

remains dominant in the field, while in recent databases dimensional emotions of

1https://sewaproject.eu/
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Ortony et al. (1990) are often annotated in addition to the categorical emotions.

Among different emotion dimensions, the Arousal (excited/bored) and Valence

(positive/negative) emotion dimensions are the mostly widely annotated. For

dimensional emotion annotation schemes, the emotion values are either annotated as

continuous real values, as discrete classes (e.g., high/low), or Likert scales (e.g., 1 to 5

integer scores). In order to address the individual variation in emotion perception,

recent work has employed ordinal rankings instead of absolute values to annotate

emotions (Yannakakis et al., 2017).

Recall that our interest is recognizing dimensional emotions from spoken dialogue

with acoustic and lexical features. Thus, we require emotion databases with audio

recordings and transcriptions that are annotated with dimensional emotions. To study

the influence of data aspects on different emotion recognition approaches, we need

to experiment on multiple databases with different data collection strategies. To

compare our study with state-of-the-art, we require databases widely used in current

studies. Therefore, in this work, we choose the Audio/Visual Emotion Challenge

2012 (AVEC2012) database of spontaneous dialogue (Schuller et al., 2012) and

the Interactive Emotional dyadic MOtion CAPture (IEMOCAP) database of acted

dialogue (Busso et al., 2008). The AVEC2012 database contains recordings of

participants having social conversations with virtual agents designed with different

personality types. The IEMOCAP database contains recordings of pairs of participants

acting scripted and improvised scenarios. Details of these databases are provided in

Section 3.3.

3.1.3 Features

Features for emotion recognition can be extracted from multiple modalities, such as

audio, visual, and physiological. For example, Chen et al. (2016) used peripheral

signals and Electro-Encephalo-Gram outputs to recognize Arousal and Valence.

However, in this work we focus on the acoustic and lexical modalities, because our

task is to recognize emotions from spoken dialogue and these two modalities are the

most commonly available in emotion databases of spoken dialogue.

3.1.3.1 Acoustic Features

For the acoustic modality, the majority of state-of-the-art studies have focused on

statistical features describing spectral and prosodic characteristics of the speech signal
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(Poria et al., 2017). For example, Wang et al. (2015) used frame-level statistical

features for predicting Arousal and Valence in music. The most widely used statistical

acoustic features are the Low-Level Descriptor (LLD) features (see Section 3.4.1.1),

such as the mean of loudness over a 25ms segment of the speech. Various sets of

LLD features have been used in previous work. For example, Eyben et al. (2015a)

tested the GeMAPS LLD set (Eyben et al., 2015b), the InterSpeech 2009 LLD set

(Schuller et al., 2009), and the Interspeech ComParE LLD set (Schuller et al., 2013),

and achieved robust performance for predicting Arousal and Valence from speech in

real time. Song et al. (2016a) extracted the InterSpeech 2010 LLD feature set (Schuller

et al., 2010b) which achieved an average recognition rate of 52% for cross-domain

categorical emotion recognition in their cross-corpora study. These results indicate

that the LLD features are robust benchmark features for emotion recognition tasks and

can be used as a baseline for studying performance of novel features.

Besides using the LLD features directly, previous studies also experimented on

deriving more abstract feature representations from the LLD features. For example,

log-Gabor filters were extracted from a self-defined subset of LLD features to improve

the performance of categorical emotion recognition by Gu et al. (2015). Pokorny

et al. (2015) transformed the InterSpeech 2009 LLD set (Schuller et al., 2009) to a

bag-of-audio-words representation and their experiments show that these features can

outperform the LLD features on predicting binary Valence.

Although the statistical LLD features have achieved good performance in

state-of-the-art emotion recognition studies, the high dimensionality of the LLD

feature set constrains the computational effectiveness of the emotion recognition

model. These speech signal based features may also include variations unrelated

to emotion. For example, the frame-level F0 envelope included in LLD features is

largely influenced by different pronunciations of the speech content instead of the

emotions expressed in speech. Thus, Eyben et al. (2015b) proposed a smaller set of

Paralinguistic knowledge-inspired LLD features (the expanded Geneva Minimalistic

Acoustic Parameter Set (eGeMAPS)). Their cross-corpora experiments show that the

eGeMAPS features have comparable or better performance than various statistical

LLD feature sets containing thousands of features for predicting binary Arousal and

Valence. Similarly, Bone et al. (2014) proposed three utterance-level speech prosody

features (the Global Prosody features) which were shown to be more predictive than

the statistical InterSpeech 2011 LLD feature set (Schuller et al., 2011) on predicting

continuous Arousal values in multiple databases. Lefter et al. (2015) compared the
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InterSpeech 2009 LLD set (Schuller et al., 2009) with 31 hand-crafted utterance-level

acoustic features (e.g., duration, pitch, intensity, harmonics to noise ratio) on

recognizing negative incidents in dialogue. Their cross-corpora experiments showed

that the knowledge-inspired features achieved comparable or better performance. This

indicates that knowledge-inspired acoustic features may achieve better performance

than statistical acoustic features for emotion recognition.

To study the efficacy of our proposed emotion recognition approaches, we select

the InterSpeech 2010 LLD feature set (Schuller et al., 2010b), the eGeMAPS features

(Eyben et al., 2015b), and the Global Prosody features of Bone et al. (2014) as

benchmark acoustic features to compare our approaches with. In Section 3.4.1, we

describe the computation of the LLD features (Section 3.4.1.1), the eGeMAPS features

(Section 3.4.1.2), and the Global Prosody features (Section 3.4.1.3) in detail.

3.1.3.2 Lexical Features

Sentiment analysis is a large subfield of Natural Language Processing. Various lexical

features have been extracted to analyze opinions and affects in text. For example,

word-level features representing the presence of key words such as negations or

topic-specific words, or sentence-level syntax-based features to represent dependencies

in the text (Yadollahi et al., 2017). However, lexical features are not as widely used

as the acoustic features for emotion recognition in spoken dialogue. The majority of

previous work has focused on frequency-based lexical features which describe the text

as a vector of the frequency of dictionary items being repeated in the text, i.e., the

sparse bag-of-words style features describing the lexical content of the speech. For

example, Nazari et al. (2015) used features based on the Linguistic Inquiry and Word

Count (LIWC) emotion lexicon (Pennebaker et al., 2007) to predict High vs. Low

Machiavellian personalities of the speaker in a negotiation situation. Gievska et al.

(2015) used lexical features based on the WordNetAffect dictionary (Strapparava and

Valitutti, 2004) to detect categorical emotions in dialogue.

Although lexical features are less frequently used than acoustic features, previous

work on emotion recognition in spontaneous dialogue has shown that bag-of-words

style lexical features based on the correlations between words and binary emotion

dimensions (the Point-wise Mutual Information (PMI) features) are more predictive

of emotions than the LLD acoustic features. These lexical features achieved good

emotion recognition performance both when used on their own and in combination

with acoustic features (Savran et al., 2012). These indicate that lexical features are
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predictive of emotions in spoken dialogue, and incorporating them with acoustic

features may bring improvements to emotion recognition.

One issue with current lexical features used for emotion recognition is that they

focus only on the lexical content. Both the lexical and acoustic features used in

state-of-the-art research on recognizing emotions in spoken dialogue have focused

on speech in isolation, while specific characteristics of spoken dialogue compared to

other forms of speech (e.g., monologue) are overlooked. As discussed in Section 2.2,

dialogue phenomena, especially disfluencies and non-verbal vocalisations, are cues

of emotions in spoken dialogue. Therefore, features describing disfluencies and

non-verbal vocalisations in speech may be predictive of emotions, and may bring

additional benefits when incorporated with other acoustic and lexical features.

To study the efficacy of our proposed emotion recognition approaches, we examine

PMI features (see Section 3.4.2.1) and Crowd-Sourced Annotation (CSA) features

based on the emotion lexicon dictionary of Warriner et al. (2013) (see Section 3.4.2.2)

as benchmark lexical features to compare our approaches with. In Section 3.4.2, we

describe the computation of these benchmark lexical features.

Besides identifying predictive features, feature engineering is also important

for developing accurate emotion recognition models. For example, multi-scale

Gaussian kernels with a Fisher discriminant embedding graph were used to reduce

dimensionality of the InterSpeech 2010 LLD feature set (Schuller et al., 2010b) in

the work of Xu et al. (2015). Canonical Correlation Analysis (Kaya et al., 2014)

and Correlation-based Feature-subset Selection (Hall, 1998) are also widely used

feature dimension reduction methods in previous work. In these studies, significantly

better performance has been achieved after feature engineering compared to using the

original feature set.

3.1.4 Recognition Models

Beyond features, emotion recognition performance also depends on how those features

are modelled. Here we review the main Machine Learning models that have been

applied to emotion recognition.

3.1.4.1 Shallow Machine Learning Models

To build emotion recognition models, most widely used classification or regression

models have been applied. For example, Pokorny et al. (2015) built a Naive Bayes
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model for predicting binary Valence in dialogue; Huang and Epps (2016) built a

Gaussian Mixture Model to track emotion changes in dialogue. Among previous

studies, Support Vector Machines (SVMs) have been the most widely used shallow

learning model for emotion recognition (e.g., Yang et al. (2017); Huang et al. (2015a);

Lotfian and Busso (2015); Stolar et al. (2015)). Although many different algorithms

exist and it is important to choose the appropriate one for a specific task, Forbes-Riley

and Litman (2011) compared various shallow learning algorithms and suggested that

performance differences were not significant when accounting for feature sets and

other parameter settings. They reported an average recall of 57.8% using a linear

logistic regression model for binary classification of student certainty/uncertainty in

an Intelligent Tutoring System.

Most shallow emotion recognition models in previous work do not include

temporal context information. However, Psycholinguistic studies suggest that the

emotional state of a person during conversations tends not to change rapidly and thus

depends on the temporal context. Similarly, models that included temporal context, in

either the features extracted (Moore et al., 2014) or the recognition model used (e.g.,

Hidden Markov Model in Ozkan et al. (2012) or Particle Filtering in Savran et al.

(2012)), have shown significantly better performance than non-contextual models in

emotion recognition.

3.1.4.2 Deep Neural Network Models

In recent years, significant performance improvements have been obtained using neural

network models with multiple hidden layers (i.e., deep learning models) in emotion

recognition. The network structure of deep learning models allows flexible control

when fusing multiple modalities and including temporal context. This enables the

models to abstract more effective features automatically. For example, using features

abstracted by Deep Belief Networks as inputs to a SVM model yields improved

performance on predicting Arousal and Valence compared to using the features directly

(Xia and Liu, 2015). Studies comparing Convolutional Neural Networks (CNNs) with

SVMs showed that the CNN achieved significantly better performance on recognizing

both dimensional and categorical emotions (Baveye et al., 2015a; Zheng et al.,

2015). The CNN model also has the ability to automatically extract features from

raw speech signals (Pini et al., 2017; Trigeorgis et al., 2016; Bertero et al., 2016),

although the performance of such auto-learned features is still limited: Trigeorgis

et al. (2016) achieved a Concordance Correlation Coefficient of 0.686 on Arousal
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regression, 0.261 on Valence regression, for multimodal emotion recognition on the

RECOLA database (Ringeval et al., 2013), which contains French dyadic spoken

dialogue of web-based collaborative problem solving; Fung et al. (2016) achieved an

average accuracy of 65.7% on recognizing categorical emotions of over 200 hours

of TED talks. Banda et al. (2015) compared Recurrent Neural network (RNN) with

Support Vector Regression models and showed that the RNN model performed better

in predicting Arousal and Valence on the AVEC2012 database. Deep and hierarchical

neural networks are also commonly used for emotion recognition in previous work

(Cardinal et al., 2015) and Brueckner and Schuller (2015) have obtained the best

reported results in detecting the Valence emotion dimension and level of conflict in

a database of broadcasted Swiss political debates in French (average recall of 80.2%).

Among different deep learning models, the Long Short-Term Memory Recurrent

Neural Network (LSTM) model is especially powerful for emotion recognition because

of its ability to model long-range temporal context (Eyben et al., 2015a). Wei et al.

(2014) applied the LSTM model to learn more effective features, and then applied

Support Vector Regression over the outputs of the LSTM model for recognizing

dimensional emotions in spontaneous dialogue. The LSTM model was also used

directly for classification in previous work and obtained better performance than

Hidden Markov Models for recognizing dimensional emotions in acted dialogue

(Wöllmer et al., 2010, 2012). The Bidirectional-LSTM (BLSTM), a modification

of LSTM that includes temporal context from both the past and the future, is also

widely used in state-of-the-art emotion recognition studies (Han et al., 2017; He et al.,

2015b). However, Chen and Jin (2015) argued that using BLSTM does not improve

performance significantly compared to using standard LSTM in emotion recognition:

With respect to emotion recognition on the RECOLA database of French dyadic

spoken dialogue (Ringeval et al., 2013), for Arousal regression, BLSTM achieved

correlation coefficient of 0.816 while LSTM achieved correlation coefficient of 0.810;

For Valence regression, BLSTM achieved correlation coefficient of 0.573 while LSTM

achieved correlation coefficient of 0.564. To improve performance, previous work has

focused on identifying more predictive feature representations to input to the LSTM

model (Chao et al., 2015) and stacking other Machine Learning models on top of the

LSTM model (Lee and Tashev, 2015).

One issue with using deep learning models for emotion recognition is that the small

size of emotion databases compared to databases used for speech or image recognition

tasks may limit optimization of the complex model structure of a deep learning
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model (Baveye et al., 2015a). The ability to generalize over different databases is

also an issue for current deep learning models. To address the issue of insufficient

training data in emotion recognition, previous work studied semi-supervised and

unsupervised methods for emotion recognition. For example, Abdelwahab and Busso

(2015) used domain adaptation method to adjust an emotion recognition model trained

on non-scripted acted dialogue to fit spontaneous dialogue; Pini et al. (2017) used

SoundNet CNN (Aytar et al., 2016) pre-trained with the eNTERFACE database (Martin

et al., 2006) of acted emotional scenarios to extract audio features directly from the

raw signal for predicting perceived emotions of movie clips; In the semi-supervised

emotion recognition study of Zhang et al. (2016b), the model trained with manually

labelled data at the supervised learning phase is used to re-evaluate the auto-labelled

data provided by the unsupervised learning phase to correct possibly mislabelled

data and enhance the overall confidence of the system’s predictions. Compared

to supervised emotion recognition, there are fewer studies on semi-supervised and

unsupervised emotion recognition. In this thesis, we will focus on supervised emotion

recognition approaches. This is because most previous studies on the two emotion

databases we conduct our experiments on applied supervised methods for emotion

recognition.

3.1.5 Modality Fusion

Consistent with human studies, multimodal models combining information from

different modalities have consistently provided better performance than unimodal

models in previous work of emotion recognition (e.g., Savran et al. (2012); Wei et al.

(2014); Poria et al. (2017)). Modality fusion has received increasing attention in

various recognition tasks. For example, speech recognition (Sun et al., 2016), video

classification (Liu et al., 2016a), and image summarization (Camargo and González,

2016). There are mainly two types of fusion strategy for building multimodal

models in state-of-the-art research, namely Feature-Level (FL) fusion (also known as

“early fusion”) which combines features from different modalities before performing

recognition, and Decision-Level (DL) fusion (also known as “late fusion”) which

combines the predictions and their probabilities given by each unimodal model for

the multimodal model to make the final decision (D’Mello and Kory, 2012).

FL and DL fusion are also the most widely used fusion strategies in multimodal

emotion recognition. For example, Vielzeuf et al. (2017) combined the InterSpeech
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2010 LLD acoustic feature set (Schuller et al., 2010b), VGG facial features (Parkhi

et al., 2015), and temporal visual features at the decision level to predict the big-6

emotion categories of movie clips; Banda et al. (2015) combined acoustic and visual

features at the feature level to detect Arousal and Valence in dialogue; Gao et al.

(2016) combined prosodic and spectral features at the feature level to detect categorical

emotion; Pei et al. (2015) combined acoustic and visual features at the decision level

to predict Arousal, Power and Valence in monologue. Pre and post processing are

sometimes applied to the FL or DL models to improve their performance (Kächele

et al., 2015). For example, Gievska et al. (2015) combined acoustic and lexical features

at the feature level after feature engineering to detect categorical emotions in dialogue.

Previous studies comparing the FL and DL fusion have shown that DL fusion typically

outperforms FL fusion, although when the features are highly effective on their own,

DL fusion can result in worse performance than FL fusion. This is due to loss of feature

level information at the final decision step of DL fusion and overlooking interactions

between features from different modalities (Huang et al., 2015b; Jin et al., 2015; He

et al., 2015a).

Both FL and DL fusion incorporate modalities at the same level. However, as

discussed in Section 3.1.3, different features may describe data at different time scales

or levels of abstraction. When perceiving emotions, humans make use of information

from different modalities at different cognitive levels and time steps (Grandjean et al.,

2008). This may be the reason that the improvements given by modality fusion are

often limited in emotion recognition (D’Mello and Kory, 2012; Poria et al., 2017).

Combining modalities at different levels is extremely rare in previous work. To the

best of our knowledge, there are only three previous studies that performed multimodal

emotion recognition in a hierarchical manner: Chen and Jin (2015) used features from

the audio, visual and physiological modalities in different layers of a LSTM model for

recognizing frame level continuous Arousal and Valence values from French dialogue.

Performance of their hierarchical model is better than FL fusion, but worse than DL

fusion; Wu et al. (2015) combined LLD features extracted at different time scales at the

decision level to detect categorical emotions in dialogue; Kim et al. (2015) developed

a logistic regression model incorporating features derived from prosody, spectral

envelope, and glottal information in a tree structure, and this model outperformed a

logistic regression model using all acoustic features at the input level. These indicate

that a fusion strategy that has a hierarchical structure which can model both inter- and

intra-modality differences may increase the gain of modality fusion.
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3.1.6 Evaluation Metrics

For categorical emotions and dimensional emotions described with discrete scores,

emotion recognition is essentially a classification task. For categorical emotions with

intensity levels and dimensional emotions described with continuous values, emotion

recognition is essentially a regression task. To evaluate performance of different

emotion recognition approaches, metrics widely used in other machine learning tasks

are applied to emotion recognition as well.

Common evaluation metrics for classification tasks are also applied to emotion

classification, i.e., accuracy, recall, and F1-measure. The majority of previous work

report accuracy for emotion classification (e.g., Pokorny et al. (2015); Xu et al. (2015);

Xia and Liu (2015)), while some also use recall for the evaluation metric (e.g., Eyben

et al. (2015b)). F1-measure is only reported in rare cases (e.g., Monkaresi et al. (2012);

Koelstra et al. (2012)). However, in emotion databases, particularly for spontaneous

dialogue, emotion annotation often suffers from the unbalanced class issue: intense

emotions (e.g., fear or Arousal scoring 1 in a 1 to 5 integer score annotation scheme)

are rare compared to the neutral state or mild emotions. When using only accuracy

or recall for the evaluation metric, a model may be shown to have good performance

when it only successfully predicts the majority classes, but fails on the smaller yet

still important emotion classes. Therefore, F1-measure which combines accuracy and

recall may be a better evaluation metric for emotion classification with unbalanced

data.

For emotion regression, most previous work used correlation-based evaluation

metrics. For example, the 2012 AudioVisual Emotion Challenge (Schuller et al., 2012)

used Correlation Coefficient Score (CCS) to evaluate the results, which is calculated

as the average of Pearson’s Correlation Coefficient on each session of the test data

partition. The 2016 AudioVisual Emotion Challenge (Valstar et al., 2016) used

Concordance Correlation Coefficient (Lawrence and Lin, 1989), which is a common

evaluation metric in Physiological and Neuroscience studies of emotions that combines

correlation with value shifting errors (e.g., Ringeval et al. (2015)). Other regression

evaluation metrics, such as the Mean Square Error, have also been reported in addition

to the correlation-based metrics in previous studies (e.g., Chen and Jin (2015)).

To evaluate the performance difference between different approaches, the majority

of previous studies compared results of different approaches directly without

significance testing (e.g., Monkaresi et al. (2012)). For those who performed
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significance tests, in emotion classification, the paired t-test (Snedecor and Cochran,

1989) is the most commonly reported (e.g., Soleymani et al. (2012b)), while some

report the mean and standard deviation of results on each fold of cross-validation

experiments (e.g., Metallinou et al. (2012)); In emotion regression, the z-test (Snedecor

and Cochran, 1989) is the most commonly reported significance test (e.g., Wöllmer

et al. (2013)).

3.1.7 Summary

Our review of state-of-the-art automatic emotion recognition shows that for the feature

aspect, current studies have focused on using statistical acoustic features derived

directly from the speech signal and sparse lexical features describing the speech

content. However, knowledge-inspired features describing affective cues in dialogue

suggested by Psycholinguistics studies are equally or more predictive than statistical

features for recognizing categorical and dimensional emotions. For the model aspect,

consistent with human studies, automatic emotion models that include temporal

contexts and combine multiple modalities typically yield better performance than

non-contextual and unimodal emotion recognition models. However, unlike humans,

multimodal emotion recognition models incorporate information at the same level,

which may have limited their performance. Because strong emotions are relatively rare

in emotion databases, we find that the F1-measure is more suitable to use in evaluating

classification experiments, as it takes both accuracy and recall into account. For

regression experiments, both the correlation and the value shifts between predictions

and annotations need to be considered. In the remainder of this chapter, we provide

methodology of our experiments based on our review of current emotion recognition

studies.

3.2 Emotion Dimensions

As discussed in Section 2.1, in this work, we define emotions as vectors in a

multidimensional space following the cognitive emotion theory. We use four common

emotional dimensions which have been identified as being able to describe most

everyday human emotions (Fontaine et al., 2007), namely Arousal, Expectancy, Power,

and Valence:

• The Arousal dimension describes whether the speaker feels excited or bored
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• The Expectancy dimension describes whether the speaker feels certain or

uncertain towards the discussion

• The Power dimension describes whether the speaker feels that (s)he dominates

the conversation or (s)he is being dominated

• The Valence dimension describes whether the speaker has positive feelings or

negative feelings towards the discussion

Note that values on each dimension can either be continuous real numbers or

discrete scores or categories.

3.3 Emotion Databases

In this section, we describe the Audio/Visual Emotion Challenge 2012 (AVEC2012)

database of spontaneous dialogue (Schuller et al., 2012) and the Interactive Emotional

dyadic MOtion CAPture (IEMOCAP) database of acted dialogue (Busso et al., 2008),

which we use for our experiments. As discussed in Section 3.1.2, we choose

these databases because they are the most widely used emotion databases of English

spoken dialogue with dimensional emotion annotations. Their different data collection

strategies allow us to study how different aspects of the data, especially dialogue type,

influence performance of emotion recognition models.

Note that the AVEC2012 and IEMOCAP databases have different data collection

and emotion annotation schemes. The AVEC2012 database contains spontaneous

dialogue, while the IEMOCAP database contains acted dialogue. The AVEC2012

database originally annotated Arousal, Expectancy, Power and Valence at the

word-level as real values. The IEMOCAP database originally annotated Arousal,

Power and Valence at the utterance-level as integer scores ranging from 1 to 5.

Thus, performance of emotion recognition models on these two databases should be

discussed separately.

3.3.1 The Audio/Visual Emotion Challenge 2012 (AVEC2012)

Database

The AVEC2012 database (Schuller et al., 2012) contains the Solid-SAL (Sensitive

Artificial Listener) part of the SEMAINE (Sustained Emotionally coloured
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Machine-human Interaction using Nonverbal Expression) corpus (McKeown et al.,

2010). It includes approximately 8 hours of audiovisual recordings of 24 participants

conversing with 4 on-screen characters with specific personalities role-played by

human operators. These virtual agents include Poppy who is always cheerful, Spike

who is always aggressive, Obadiah who is always pessimistic, and Prudence who

is always calm. Each dialogue session is approximately 5 minutes long and the

participants are free to discuss any topic. Manual transcriptions are provided with

word timings in the AVEC2012 database.

Emotions in the AVEC2012 database were annotated as real-value vectors in

the Arousal-Expectancy-Power-Valence emotional space with value range of [-1,+1].

Annotations were provided at both the word-level and the frame-level. In this thesis,

we use the word-level emotion annotations. There are 49,874 data instances in total in

the word-level AVEC2012 database.

The inter-annotator agreement of emotion annotations has been an important

issue in many spontaneous emotion databases including the AVEC2012 database.

Perception of emotions can vary greatly due to individual differences. Current

studies work on collecting reliable emotion annotations by having multiple annotators.

One widely used measurement of inter-annotator agreement is the Chronbach’s

Alpha. It is based on the average inter-correlations of the item-pairs within

the compared annotations. A higher Chronbach’s Alpha represents a stronger

inter-annotator agreement. A Chronbach’s Alpha of a < 0.5 is often interpreted

as unacceptable inter-annotator agreement, while a > 0.7 is often interpreted

as acceptable inter-annotator agreement, with a > 0.8 being a desired good

inter-annotator agreement. The inter-annotator agreement of the AVEC2012 database

measured by the Chronbach’s Alpha is shown in Table 3.1 (Nenkova, 2013). As

we can see, emotion annotation is a challenging task, especially for dimensional

emotions. The data annotated by 6 or 8 annotators is more reliable than the data

annotated by only 2 annotators. This is consistent with the work of Vlasenko and

Wendemuth (2015) which suggests that it is better to have multiple annotators when

annotating an emotion database. To obtain emotion annotations from more annotators

and increase the annotator agreement, crowd-sourced annotation has been employed in

recent studies, such as the work of Burmania et al. (2016). In addition to averaging over

annotations provided by multiple annotators, deriving ranking labels from absolute

emotional labels can be used to increase reliability of emotion annotations (Lotfian

and Busso, 2016). Using discrete scores as values on the emotion dimensions has
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also shown to increase the inter-annotator agreement and is commonly used in current

studies (e.g., Busso et al. (2008)).

Table 3.1: Inter-Annotator Agreement on the AVEC2012 Database (Nenkova, 2013)

Chronbach’s Alpha Arousal(%) Expectancy(%) Power(%) Valence(%)

2 Annotators

a<0.5 28.6 64.3 28.6 35.7

a>0.7 28.6 7.1 35.7 35.7

a>0.8 0.0 0.0 14.3 28.6

6 Annotators

a<0.5 25.8 29.0 6.5 9.7

a>0.7 51.6 32.3 87.1 77.4

a>0.8 22.5 9.7 38.7 45.2

8 Annotators

a<0.5 8.3 8.3 0.0 0.0

a>0.7 75.0 41.7 66.7 83.3

a>0.8 41.7 33.3 58.3 66.7

3.3.2 The Interactive Emotional dyadic MOtion CAPture

(IEMOCAP) Database

The IEMOCAP database (Busso et al., 2008) contains approximately 12 hours of

audiovisual recordings from 5 mixed gender pairs of actors and actresses. Each

conversation is approximately 5 minutes long. There are two types of dialogue

collected in the IEMOCAP database, namely non-scripted dialogue and scripted

dialogue. When collecting the non-scripted dialogue, the participants were instructed

to improvise hypothetical scenarios without any scripts, such as someone telling his/her

best friend that (s)he is getting married. These scenarios are designed to induce

different target emotion categories, including neutral, anger, frustration, happiness, and

sadness (See Table 1 of Busso et al. (2008) for a detailed description of each scenario).

In contrast, when collecting the scripted dialogue, the participants follow pre-written

lines. The target emotions of the scripts are the same with those for the non-scripted

scenarios. Manual transcriptions are provided with utterance and word timings in the

IEMOCAP database.
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Both categorical and dimensional emotions were annotated in the IEMOCAP

database. In this thesis, we only use the dimensional emotion annotations, which were

annotated at the utterance-level with a 1 to 5 integer score on the Arousal, Power, and

Valence dimensions. Note that the Expectancy dimension was not annotated in the

IEMOCAP database. Emotion annotation was conducted by at least 6 annotators to

achieve reliable annotator agreement. The inter-annotator agreement on the IEMOCAP

database is shown in Table 3.2 (Busso et al., 2008). For Arousal, annotators agreed or

were one point apart in their ratings of 85% of the utterances labelled. For Valence,

annotators agreed or were one point apart in their ratings of 94% of the utterances

labelled (Wöllmer et al., 2010). The average score over all the annotators was used as

the gold-standard emotion annotation. There are 10,037 data instances in total in the

IEMOCAP database.

Table 3.2: Inter-Annotator Agreement of IEMOCAP Database (Busso et al., 2008)

Chronbach’s Alpha Arousal Power Valence

Entire database 0.607 0.608 0.809

Scripted acting 0.602 0.663 0.783

Non-scripted acting 0.612 0.526 0.820

3.4 Features

Based on our review of features used in state-of-the-art emotion recognition in

Section 3.1.3, we select three types of acoustic features and two types of lexical

features as benchmark feature sets to compare with the proposed DIS-NV features.

In this section, we describe how these benchmark features are computed on the

AVEC2012 and the IEMOCAP databases.

3.4.1 Acoustic Features

The benchmark acoustic feature sets we use in this work include the

statistical, frame-level Low-Level Descriptor (LLD) features, the knowledge-inspired,

frame-level Expanded Geneva Minimalistic Acoustic Parameter Set (eGeMAPS)

features, and the knowledge-inspired, utterance-level Global Prosodic (GP) features.

The LLD feature set contains over a thousand features describing detailed acoustic

characteristics of the speech audio at the frame level. As discussed in Section 3.1.3,
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the LLD feature set is widely used for emotion recognition with robust performance.

However, part of the detailed information provided by the LLD features may be

unrelated to emotions. For example, the frame-level F0 envelope is largely influenced

by different pronunciations of the speech content instead of the emotions expressed

in speech. Thus, the eGeMAPS feature set was proposed as a hand-tailored LLD

set selected by correlation experiments and findings in studies of Paralinguistic

phenomena, such as continuous voiced regions per second. The eGeMAPS feature set

contains less than a hundred features. Both the LLD and the eGeMAPS features are

based on frame level measurements. However, as discussed in Section 2.2, emotions

are stable over a time interval longer than a single frame. Thus, Bone et al. (2014)

proposed three utterance level Global Prosodic (GP) features (see Section 3.4.1.3), as

the features which are the most related to emotions according to Paralinguistic studies.

In terms of feature abstraction level, the GP and the eGeMAPS features are

knowledge-inspired and contain information specific to emotions. Thus, they have

higher level of abstraction. The LLD features are statistical and data-driven, and

include information unrelated to emotions. Thus, they have lower level of abstraction.

In terms of the time scale at which the features are extracted, the GP features describe

data at the utterance level and, thus, are calculated over a longer time scale. The LLD

and the eGeMAPS features describe data mainly at frame level and have smaller time

scale.

In the remainder of Section 3.4.1 we describe the computation of the LLD,

eGeMAPS, and GP acoustic features.

3.4.1.1 Low-Level Descriptor (LLD) Features

LLD features are statistical features extracted using a frame-level (e.g., length of

25ms) sliding window over the speech audio. Feature values are calculated as

functionals (e.g., mean) applied to LLDs (e.g., energy and spectral descriptors) and

their corresponding delta coefficients. We use the OpenSMILE toolbox (Eyben et al.,

2010b) to extract LLD features from audio recordings automatically.

For a reference set on emotion regression experiments with the AVEC2012

database in Chapter 4, we use the AVEC2012 challenge baseline LLD set containing

1842 features (Schuller et al., 2012). The AVEC2012 baseline LLD set is computed

over word segments with the 25ms sliding window. These features include 42

functionals applied to 25 energy/spectral LLDs (e.g., loudness), 19 functionals applied

to 25 delta coefficients of the energy/spectral LLDs, 32 functionals applied to 6
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voicing related LLDs (e.g., jitter), 19 functionals applied to 6 delta coefficients of the

voicing related LLDs, and 10 voiced/unvoiced durational features. Lists of LLDs and

functionals can be found in Table B.1 and Table B.2 of Appendix B.

For a reference set on the IEMOCAP database, we use the InterSpeech2010

Paralinguistic Challenge (IS10) feature set (Schuller et al., 2010b), because this is a

widely used benchmark set for emotion recognition in spoken dialogue. The IS10

LLD set is computed over segments of utterances with the 25ms sliding window.

This feature set contains 1582 LLD features: 21 functionals applied to 34 LLDs (e.g.,

logarithmic power of Mel-frequency bands) with their corresponding delta coefficients,

19 functionals applied to 4 pitch-based LLDs (e.g., envelope of the smoothed F0

contour) and their corresponding delta coefficients, the number of pitch onsets (pseudo

syllables) and the total duration of the input. Lists of LLDs and functionals can be

found in Table B.3 and Table B.4 of Appendix B.

The reason we use the AVEC2012 challenge baseline LLD set containing 1842

features (Schuller et al., 2012) for emotion regression experiments in Chapter 4 is to

compare our results with the AVEC2012 challenge results. For emotion classification

experiments in Chapters 5 and 6, we use the InterSpeech 2010 LLD feature set

(Schuller et al., 2010b) (IS10) for both the AVEC2012 and the IEMOCAP databases

in order to make fair comparisons. Our Experiments 5 and 6 in Chapter 5 show that for

classification experiments on the AVEC2012 database, performance of the IS10 LLD

set is either better or has no significant difference compared to the AVEC2012 baseline

LLD set.

3.4.1.2 Expanded Geneva Minimalistic Acoustic Parameter Set (eGeMAPS)

Features

The eGeMAPS features are frame-level, knowledge-inspired features. The eGeMAPS

feature set contains LLD features that have been suggested as the most related to

emotions by Paralinguistic studies (Eyben et al., 2015b). For example, only the

1-4 Mel-frequency cepstral coefficients (MFCCs) are used in the eGeMAPS feature

set, while the AVEC2012 baseline LLD feature set contains MFCCs 1-10 and the

IS10 LLD feature set contains MFCCs 0-14. Cross-corpora studies indicated that the

eGeMAPS features have comparable or better performance than the large LLD feature

sets while reducing the feature dimensionality greatly (Eyben et al., 2015b). The 88

eGeMAPS features include the arithmetic mean and coefficient of variation of 25 LLD,

the arithmetic mean and coefficient of variation of the spectral flux and MFCC 1-4 in
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voiced segments only, 8 functionals applied to pitch and loudness, 5 functionals applied

to unvoiced segments, the equivalent sound level, and 6 temporal features (numbers of

loudness peaks and continuous voiced regions per second, mean length and standard

deviation of continuous voiced and unvoiced region). Lists of LLDs and functionals

can be found in Table B.5 and Table B.6 of Appendix B. We use the OpenSMILE

toolbox (Eyben et al., 2010b) to extract eGeMAPS features automatically from audio

recordings.

3.4.1.3 Global Prosodic (GP) Features

The Global Prosodic (GP) features are utterance-level, knowledge-inspired prosodic

features based on the work of Bone et al. (2014). These include three features: median

of log pitch, intensity, and voice quality (HF500) over the utterance. The acoustic

measurements are taken using a 25ms sliding window with 15ms overlapping between

neighbouring windows. HF500 is a spectral-slope measurement. It is computed as

the ratio between the total energy E above 500Hz and the lower-frequency energy

(between 80Hz and 500Hz) in an utterance:

HF500 =
t

∑
Et>500

Et

/
t

∑
80≤Et≤500

Et (3.1)

These features were highly predictive of Arousal in previous work on the

IEMOCAP database (Bone et al., 2014). Compared to the frame-level LLD and

eGeMAPS features, the GP features represent a small set of knowledge-inspired

acoustic affective cues at utterance level.

3.4.2 Lexical Features

The reference lexical feature sets we use in this work include the Point-wise Mutual

Information (PMI) based features (Savran et al., 2012) and the Crowd-Sourced

Annotation (CSA) features (Warriner et al., 2013). Both are utterance-level,

knowledge-inspired features. In the remainder of Section 3.4.2 we describe the

computation of the PMI and CSA lexical features.

3.4.2.1 Point-wise Mutual Information (PMI) Features

PMI is a widely used measurement for the relationship of words and emotions in

semantic analysis. It is based on the frequency of a word w being labelled as an emotion
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class c:

PMI(c,w) = log2

(
P(c|w)
P(c)

)
(3.2)

In previous work, 1000 bag-of-words style lexical features based on PMI values

were the most predictive features in the AVEC2012 Challenge (Savran et al., 2012).

Savran et al. (2012) computed the PMI features by first binarizing the emotion

dimensions, followed by computing the PMI value of each word for each binarized

emotion dimension. The 500 words with the highest PMI values for the positive and

negative classes of each emotion dimension respectively are concatenated into a list

of 1000 words for this emotion dimension. Each utterance is then represented as

bag-of-words vector using this list of 1000 words.

The PMI features of Savran et al. (2012) is a highly sparse feature representation.

To reduce the sparseness and high feature dimensionality, in this work, we propose

to use non-sparse PMI features, which are calculated as the total PMI values of

all the words in an utterance for each binarized emotion dimension. There are

eight non-sparse PMI features for the AVEC2012 database, but only six non-sparse

PMI features for the IEMOCAP database because only three emotion dimensions

were annotated in the IEMOCAP database. Both the sparse PMI features proposed

by Savran et al. (2012) and our non-sparse PMI features are utterance-level,

knowledge-inspired features.

The PMI features were the most effective type of features in the AVEC2012

Challenge (Savran et al., 2012). However, the PMI features were calculated from the

emotion annotations of the database being experimented on, which results in overfitting

of the features and difficulty in predicting unseen data. Thus, we propose to use the

CSA features, which are calculated from crowd-sourced emotion annotations of a large

vocabulary. Compared to the PMI features, the CSA features are more robust because

they are extracted from a non-domain-specific emotion lexicon dictionary instead of

the specific database.

3.4.2.2 Crowd-Sourced Annotation (CSA) Features

Note that both sparse and non-sparse PMI features are calculated for specific databases

that the emotion recognition task is performed on. Thus, they may not generalize well

to unseen data. Therefore, we also compare the PMI features with 63 utterance-level,

knowledge-inspired features based on statistics of crowd-sourced annotations of
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Arousal, Power, Valence ratings of 13,915 English lemmas (Warriner et al., 2013). To

compute the CSA features, we first remove the stop words in each utterance, lemmatize

the remaining words, and then search for these lemmas in the entries of the dictionary

of Warriner et al. (2013). For each entry, there are 63 statistics calculated over the

crowd-sourced emotion ratings (21 for each emotion dimension). Sums of each of

the 63 statistics for all the lemmas in each utterance are returned as the CSA feature

values. For unseen words, the mean values of each of the statistics over the whole

dictionary are used. The reason that we use mean values instead of zero vector for

unseen words is to preserve the information of utterance length. Williams and Stevens

(1972) conducted an empirical study on the relationship between emotions and aspects

of speech, and found that the total duration of an utterance is an important indicator

of emotions. We also compared the emotion recognition performance of using zero

vector and using mean values for the unseen words when extracting the CSA features.

We find that using the mean values instead of the zero vector gives better results.2

The reason we chose the dictionary of Warriner et al. (2013) is because compared

to the WordNetAffect (Strapparava and Valitutti, 2004) or the LIWC (Pennebaker

et al., 2007) emotion lexicon dictionaries used in previous work, the emotion lexicon

dictionary of Warriner et al. (2013) has an expanded collection of lexical entries. It is

also based on crowd-sourced emotion annotations rather than annotations from a few

experts, which we expect will lead to more robust and non-domain specific annotations.

3.4.3 Pre-Processing of Features

Before performing the emotion recognition experiments, we conduct pre-processing

of the extracted features, namely speaker normalization and feature synchronization.

These are standard processes in state-of-the-art emotion recognition studies.

3.4.3.1 Speaker Normalization

Previous work has found affective similarity in acoustic and lexical expression of

emotions across cultures (Chong et al., 2015; Palogiannidi et al., 2015; Sauter et al.,

2010b). However, individual variance is common in emotion expression (Sagha et al.,

2015). To account for such individual variance and improve emotion recognition

performance, it is standard to apply speaker normalization to the features extracted

2We compute overall F1-measures of using the LSTM model with the CSA features to predict
emotions on the IEMOCAP database. CSA features using mean values for unseen words result in
F1 = 47.545%, CSA features using zero vector for unseen words result in F1 = 45.912% (p << 0.0001).
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before performing emotion recognition. The most widely used normalization method

is the z-score speaker normalization, which we also apply to all the features extracted

in this thesis. Z-score speaker normalization is calculated as:

V
′
a =

Va−V̄a

Stda
(3.3)

In Equation 3.3, V
′
a is the normalized value of a feature attribute a; Va is the

original value of attribute a; V̄a is the mean value of attribute a over all the samples

extracted from a speaker; Stda is the standard deviation of attribute a over all the

samples extracted from a speaker. The original feature vectors are first grouped by

speakers, then the z-score speaker normalization is applied to each group to calculate

speaker-normalized feature vectors.

3.4.3.2 Feature Synchronization

Note that the features are extracted at different time scales. We synchronize all features

to the time scale of the emotion annotations before performing the emotion recognition

experiments, i.e., to word-level on the AVEC2012 database and to utterance-level on

the IEMOCAP database. For the frame-level LLD and eGeMAPS features, the LLDs

are measured at the frame-level, while the functionals are applied to word segments on

the AVEC2012 database, and to utterance segments on the IEMOCAP database. For

the utterance-level GP, PMI, and CSA features, if the utterance-level feature vector is
~FU for utterance U , all the words w1, ...,wn within the utterance U will each be given
~FU to have word-level feature values for experiments on the AVEC2012 database.

3.5 Recognition Models

In this section, we describe the SVM model and the LSTM model as representatives

of state-of-the-art emotion recognition models, and provide the parameter settings we

use in our experiments.

As discussed in Section 3.1.4.1, the SVM model is a widely used benchmark

recognition model which remains the most predictive in many current emotion

recognition studies (e.g., Baveye et al. (2015a)). However, as a flat and non-contextual

model, it is hard to incorporate history information or abstract more effective features

with the SVM model. However, recent studies have shown improved performance of
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SVM emotion recognition model by computing contextual features and performing

feature engineering (e.g., Xu et al. (2015); Moore et al. (2014)).

As discussed in Section 3.1.4.2, compared to the flat and non-contextual SVM

model, recently neural network models, especially the LSTM model, have achieved

leading performance in emotion recognition. The multilayer structure of LSTM

models enables automatic learning of more effective features, and the memory cell

component of the LSTM model allows modelling of long-range temporal context.

However, compared to the SVM model, the LSTM model has a more complex structure

with a large number of parameters that require a large number of training instances to

optimize. Considering the small size of current emotion databases (tens of thousands),

the advantages of the LSTM model may be limited compared to a SVM model that

incorporates temporal context.

3.5.1 Support Vector Machines (SVM)

The SVM model is a flat and non-sequential recognition model which is used in many

classification tasks. The algorithm aims to find a hyperplane that can divide instances

from different classes with the largest distance to the nearest instance of any class

(maximizing of the margin cost function) (Boser et al., 1992).

Take a data set with binary class labels as an example:

{xi,yi} i = 1, . . . , l,xi ∈ Rn,yi ∈ {−1,+1} (3.4)

An infinite number of potential hyperplanes separating data instances from the two

classes exist. A hyperplane can be defined as w ·x+b = 0, where w is the normal to the

hyperplane, and ‖w‖ is the Euclidean norm of w. The distance between the hyperplane

and the origin of the data space is then
|b|
‖w‖

.

The data instances closest to the hyperplane are called the support vectors and

the SVM algorithm works by finding the hyperplane with maximum distance to the

support vectors. If d+, d− are the distances from the support vectors of both classes to

the hyperplane, the margin m will be:

m = d++d− =
|1−b|
‖w‖

+
|−1−b|
‖w‖

=
2
‖w‖

(3.5)

Thus, the learning process of the SVM algorithm is maximizing 2
‖w‖ subject to:

xi ·w+b≥+1, if yi =+1

xi ·w+b≤−1, if yi =−1
(3.6)
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The dot products in Equation 3.6 can be replaced by non-linear kernel functions

for non-linear SVM classification, such as a Radial Basis Function (RBF) kernel.

In this work, we build SVM models using the LibSVM (Chang and Lin, 2011)

toolbox with the WEKA (Hall et al., 2009) platform. Following previous studies

(Savran et al., 2012), for regression experiments we implement the epsilon-SVR

model with a linear kernel, for classification experiments we implement the C-SVC

model with a RBF kernel. We normalized all features to [-1,+1] before regression

or classification and replaced missing values with the mean. Grid search is used to

identify the optimal parameter values, such as the cost parameter of the SVM model.

We also use the probability estimation function and the shrinking option of LibSVM

to improve the accuracy and efficiency of the SVM models.

3.5.2 Long Short-Term Memory Recurrent Neural Networks

(LSTM)

The LSTM model (Hochreiter and Schmidhuber, 1997) is a neural network with

multiple hidden layers and a special structure called “the memory cell” that can

model long-range temporal context. Compared to conventional Recurrent Neural

Networks, the LSTM model is able to learn from a longer history. A hidden layer

in a LSTM model is composed of recurrently connected memory blocks, each of

which contains one or more recurrently connected memory cells. Each memory cell

has three multiplicative “gate” units: the input, output, and forget gates. These gates

perform the operations of reading, writing, and resetting, respectively. They allow the

network to store and retrieve information over long periods of time. The structure of a

LSTM memory cell is shown in Figure 3.2 (Schaul et al., 2010). “CEC” in the figure

represents the “Constant Error Carousel”, which is the central neuron that recycles

status information from one time step to the next. The small blue circles with a cross

inside indicate multiplicative connections. The peephole connection gives direct access

to the central neuron.

The LSTM model stores information at each time step using a cell state vector c

and a hidden vector h. They control the updating of states and the outputs. At time

step t, in a LSTM memory cell, if input vector is xt , ct and ht are computed as bellow
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Figure 3.2: Structure of a LSTM Memory Cell (Schaul et al., 2010)

(Hochreiter and Schmidhuber, 1997):

ft = σg(Wf xt +U f ht−1 +b f )

it = σg(Wixt +Uiht−1 +bi)

ot = σg(Woxt +Uoht−1 +bo)

ct = ft� ct−1 + it�σc(Wcxt +bc)

ht = ot�σh(ct)

(3.7)

Where � is entry-wise product. W , U , and b are parameter matrices. ft is the forget

gate vector, it is the input gate vector, ot is the output gate vector.

We used the PyBrain (Schaul et al., 2010) toolbox to build the LSTM models for

the emotion recognition experiments on the AVEC2012 and the IEMOCAP database.3

There is one memory cell in each memory block of the LSTM model. We optimize

the model structure with cross-validation experiments. The number of neurons in the

input layer equals the total number of features used in the LSTM model. Following

previous studies (Wöllmer et al., 2012), we used the R-Propagation-Minus (RMSprop)

trainer with a learning rate of 10−5 during training. In the recurrent layers, the kernel

initializer is Glorot uniform, the recurrent initializer is orthogonal, and the bias is
3In our experiments in Chapter 7 on the LIRIS-ACCEDE database we use the Keras (Chollet, 2015)

toolbox instead.
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initialized to zero (Glorot and Bengio, 2010). All data instances are assigned the same

weight.

One important limitation of applying deep neural networks, such as LSTM, to

emotion recognition is the small amount of training data available, which can cause

over-fitting of the deep neural network. There have been several studies addressing

this issue. For example, regularisation of the deep neural network. One regularisation

technique that has been particularly successful for the LSTM model is the dropout

technique. This technique probabilistically excludes input and recurrent connections

to LSTM units from activation and weight updates during training (Zaremba et al.,

2014). However, the PyBrain toolbox does not provide regularisation of the LSTM

model. Thus, we used the early stopping strategy to prevent over-fitting instead.4

3.6 Evaluation Metrics

To evaluate performance of different emotion recognition models, for regression

experiments on the AVEC2012 database, we follow the AVEC2012 challenge setting

and use Correlation Coefficient Score (CCS) (see Section 3.1.6) as the evaluation

metric. This enables us to compare our results with other studies working on the same

database under the same experimental settings. For classification experiments on the

AVEC2012 and IEMOCAP databases, as discussed in Section 3.1.6, using precision

or recall alone may not be sufficient to evaluate performance of emotion recognition

models due to the class imbalance issue of emotion databases. Thus, we report the

F1-measures which combines both precision and recall:

Precision =
True Positives

True Positives+False Positives

Recall =
True Positives

True Positives+False Negatives

F1 =
2×Precision×Recall

Precision+Recall

(3.8)

We use the weighted average of F1-measures for each emotion class (weighted

F-measure) as the evaluation metric for our classification experiments.

In our cross-corpora experiments using both the AVEC2012 and the IEMOCAP

database, in order to unite different annotation schemes of these two databases and
4In our experiments in Chapter 7 using the Keras toolbox, we applied dropout with the probability

of 0.5 to the bottom hidden layer of the LSTM models. This dropout setting has been commonly used
in current studies.
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to address the class imbalance issue, we transform the original annotations of both

databases to three discrete classes low,medium,high on each emotion dimension. For

the AVEC2012 database, the continuous annotations are first normalized to [-1,+1],

and the value range of each discrete class is: [-1,-0.333) as low, [-0.333,+0.333] as

medium, (+0.333,+1] as high. For the IEMOCAP database that has original annotations

with value range [1,5], the value range of each discrete class is: [1,2.333) as low,

[2.333,3.667] as medium, (3.667,5] as high.

Because of different settings in previous work, such as data pre-processing and

focusing on different emotion annotations, it is difficult to compare our emotion

recognition results to previous results directly. Thus, for experiments on each database,

we build emotion recognition models using our proposed features and modelling

approaches, and replicate state-of-the-art approaches under the same experimental

setting. We compare these models to study the efficacy of the proposed approaches

relative to the state-of-the-art approaches. The fact that emotions are annotated at

different time scales on the AVEC2012 and the IEMOCAP databases also leads to

the issue that results on these two databases have limited comparability. In order

to improves the fairness of comparisons between different approaches, we perform

10-fold cross-validation experiments to have more robust results for the classification

experiments on these databases. Averaging over cross-validation experiments also

helps to reduce effects other than feature or model effectiveness, such as initialization

of the LSTM models or outliers in the data.

To evaluate the level of significance in performance difference, in the regression

experiments, following Savran et al. (2012), we use two-tailed z-test after Fisher’s

r-to-z transformation (Raghunathan et al., 1996) to compare the CCS given by each

emotion recognition model. In the classification experiments, we use the paired

Permutation test (Menke and Martinez, 2004) with 100,000 randomisations to compare

predictions made by each emotion recognition model. Compared to the paired t-test

used in previous work, the Permutation test is non-parametric. It obtains the p-value

from a sample-specific permutation distribution (multiple times of randomization of

the original distribution) instead of from a parametric assumption of the distribution.

In all our significance tests, we use p < 0.05 to reject the null hypothesis, which is that

the two emotion recognition models have no difference in their performance.
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3.7 Discussion

In this chapter, we reviewed previous studies of automatic emotion recognition. Our

survey reveals two issues in current automatic emotion recognition studies: For the

feature aspect, non-lexical elements of dialogue such as disfluencies and non-verbal

vocalisations are often overlooked when extracting features, yet Psycholinguistic

studies suggest they are related to emotions. For the model aspect, when building

multimodal models, modalities are often combined at the same level. Existing

modality fusion strategies do not take into account the fact that different features

may describe data at different time scales or different levels of abstraction. Unlike

how humans perceive emotions hierarchically, current multimodal emotion recognition

models fail to incorporate both inter- and intra-modality differences. We are motivated

to address these issues in state-of-the-art of emotion recognition by using features

describing occurrences of disfluency and non-verbal vocalisation in utterances, and by

incorporating different information hierarchically in a knowledge-inspired structure.

Our hypothesis is that the proposed knowledge-inspired features and model will

improve state-of-the-art performance of automatic emotion recognition in spoken

dialogue.

To investigate the gain of the proposed approaches, we compare our models

with state-of-the-art models under the same experimental settings, as well as recreate

state-of-the-art emotion recognition approaches and compare them with the proposed

approaches under extended scenarios. We described the experimental setting of this

thesis in this chapter. This includes two emotion databases of spoken dialogue

(the AVEC2012 and the IEMOCAP databases), three types of benchmark acoustic

features (LLD, eGeMAPS, and GP), two types of benchmark lexical features (PMI and

CSA), and two state-of-the-art recognition models (SVM and LSTM). In the following

chapters, we will present our experiments and discuss our major findings.



Chapter 4

Emotion Recognition with

Disfluencies and Non-Verbal

Vocalisations

“Oh... I wouldn’t remember exactly. Besides I couldn’t repeat it. You know
how you get when you’re excited.” His embarrassed laugh was almost a
giggle, “I sort of have a tendency to strong language.”

— Isaac Asimov, I, Robot (1950)

Recall that most previous work on emotion recognition in spoken dialogue used

features that describe the acoustic characteristics of the speech signal and its lexical

content. However, these studies do not take into account that spoken dialogue contains

richer phenomena other than simply uttering a sentence, especially in spontaneous

dialogue. Psycholinguistic studies have suggested that speech disfluencies and

non-verbal vocalisations are cues of the speaker’s emotions in dialogue. Therefore,

in this chapter, we present our studies on using features describing occurrences of

DISfluency and Non-verbal Vocalisation (DIS-NV) in spoken utterances for emotion

recognition in spontaneous dialogue.

In this work, we use the term “turn” to refer to the continuous speech spoken by a

speaker without interruption from the other speaker. Note that each speaker turn may

contain one or more utterances, and consecutive utterances of a speaker may or may

not belong to the same speaker turn. Here our definition of speaker turn focuses on

the sentiment and speech production intergrity, which differs from the “turn” under the

context of a turn-taking system, which focues on the transitioning between different

speakers.

47
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4.1 DISfluencies and Non-verbal Vocalisations

(DIS-NVs)

Here we define DIS-NVs and review the Psycholinguistic studies on DIS-NVs and

emotions. We also explain our motivation of proposing the DIS-NV features for

emotion recognition in spoken dialogue.

4.1.1 Definition of DIS-NVs

Disfluencies are phenomena in speech that “interrupt the flow of speech and do not

add propositional content to an utterance” (Fox Tree, 1995). Previous Psycholinguistic

studies on disfluencies have focused on disfluencies caused by speech disorders.

However, recently disfluencies in normal speech have received increasing attention

because they are common and important phenomena in dialogue, and have functions

such as turn-holding (Lickley, 2015). Shriberg (2005) also argues that disfluencies

are common in spontaneous speech and reflect cognitive aspects of both language

production and interaction management. Psycholinguistic studies of spontaneous

dialogue have shown that on average, for every 100 words the speaker produces, there

are approximately 6 disfluencies (Finlayson, 2014). Speech production has three main

phases: conceptualisation, planning, and articulation. Disfluencies can be generated at

any of these three phases. For example, when the speaker is organizing responses to

a complex question (the conceptualisation step), when the speaker is searching for a

suitable word (the planning step), or when the speaker is having a problem pronouncing

a syllable (the articulation step).

Non-verbal vocalisations are sounds the speaker produces in utterances other

than the verbal content. Disfluencies are sometimes included as types of non-verbal

vocalisation (Trouvain and Truong, 2012). However, it is more common to differentiate

between disfluencies and non-verbal vocalisations (Finlayson, 2014). There are two

main types of non-verbal vocalisations: voice qualifiers (e.g., audible breath or cough)

and voice qualifications (e.g., laughter or cry) (Crystal, 1976). A cross corpora study

comparing six different corpora showed that among different types of non-verbal

vocalisations, laughter and audible breath are the most frequent in spontaneous

dialogue (Trouvain and Truong, 2012).
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4.1.2 DIS-NVs and Emotions

The relationship between disfluencies and emotions has been largely overlooked in

previous Psycholinguistic research. However, emotions can influence the neural

mechanisms in the brain, and thus influence sensory processing and attention

(Vuilleumier, 2005). This in turn influences speech processing and production,

especially the conceptualisation and planning steps of speech production, which may

result in disfluencies. Current studies on human-human dialogues also suggest that

disfluencies convey information such as level of conflict (Vidrascu and Devillers,

2005), uncertainty of the speaker (Lickley, 2015), or points of interest in meetings

(Shriberg, 2005). Thus, we expect more disfluencies in speech when the speaker is

uncertain or when there is a hot spot in the dialogue.

Considering non-verbal vocalisations and emotions, previous work has identified

laughter as a universal and basic cue in human emotion recognition (Sauter et al.,

2010a). There are various types of laughter produced by humans, which relate to

different emotional and social events (Szameitat et al., 2009b). For example, during

a conversation, there can both be joyful laughter signalling amusement, and bonding

laughter expressing affiliation and agreement (Scott, 2013). Note that laughter is a

complex phenomenon and it can occur with negative emotions as well. For example,

taunting laughter which often arises when the speaker is trying to humiliate his/her

conversational partner (Szameitat et al., 2009a). In this work, we use the laughter

annotations provided by the AVEC2012 and IEMOCAP databases directly, which

did not differentiate between different types of laughter and only provide binary

annotations of presence/absence of laughter. It would be interesting to study how

different types of laughter relate to emotions in dialogue differently in the future with

more detailed laughter annotations available.

There are relatively fewer studies on the relationship between emotions and voice

qualifiers (e.g., audible breath) than on the relationship between emotions and voice

qualifications (e.g., laughter). However, it has been suggested that audible breath is

used consciously by the speaker to convey emotional arousal, or used unconsciously as

involuntary reaction to such arousal (Roach et al., 1998). Besides laughter and audible

breath, there are other non-verbal vocalisations that have been suggested as emotional

indicators, e.g., sighs (Teigen, 2008). However, these non-verbal vocalisations are

extremely rare in the databases we used (e.g., there are only two utterances containing

sigh in the IEMOCAP database). Therefore, we only included laughter and audible
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breath in our DIS-NV feature set.

Although Psycholinguistic studies suggest a potential relationship between

DIS-NVs and emotions, previous work on automatic emotion recognition has rarely

used DIS-NVs as input features. To the best of our knowledge, the only previous work

using DIS-NVs for emotion detection is the work of Vidrascu and Devillers (2005),

which included the number of filled pauses per utterance (“euh” in French) in their

feature set for recognizing 20 emotion categories from recordings of a French Medical

emergency call center. They compared the individual predictiveness of features and

found that filled pause is the second most predictive feature (F0 range of the utterance

is the most predictive feature). However, they did not report to what extent the emotion

recognition model benefited from including the filled pause feature.

To address overlooking DIS-NVs in feature extraction of current emotion

recognition studies, we propose features representing occurrences of DIS-NVs in

spoken utterances for emotion recognition in spoken dialogue. In the following part

of this chapter, we describe how these features are computed and conduct experiments

studying their effectiveness for emotion recognition in spontaneous dialogue.

4.2 DIS-NV Features

In this section, we define the types of DIS-NV we annotated for extracting the DIS-NV

features, and how the feature values are calculated.

4.2.1 Types of DIS-NV

To extract our DIS-NV features, we manually annotated three types of disfluencies,

namely filled pauses, fillers, and stutters. We also used two types of non-verbal

vocalisations provided in the manual transcriptions of the databases, namely laughter

and audible breath. As discussed in Section 4.1, we focus on these specific types of

DIS-NVs because they are emotion-related and are the most frequently occurring in

spontaneous dialogue. We are aware that these five types of DIS-NV are only a subset

of all DIS-NVs in speech. In addition, we also study the influence of including other

common DIS-NVs, namely speech repairs, turn-taking times, and prolongations, in

Section 5.3.1. However, our experiments show that including additional DIS-NVs does

not improve the emotion recognition performance. Thus, in our emotion recognition

experiments, the DIS-NV feature set contains the five selected DIS-NVs if not specified
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otherwise.

• Filled pauses: non-lexical insertions in speech used by the speaker when (s)he

pauses to think while trying to hold the turn. For example, “Hmm” in the

utterance “Hmm... Maybe we should try another road”. The three most common

filled pauses we found in the AVEC2012 database of spontaneous dialogue are

“em”, “eh”, and “oh”.

• Fillers: lexical filled pauses. For example, “you know” in the utterance “I just

want to, you know, get a drink and forget all about it”. Some Psycholinguistic

studies do not differentiate between filled pauses and fillers (e.g., Finlayson

(2014)). In our work, we consider filled pauses and filler separately to have a

more detailed understanding of their relationship with emotions. The three most

common fillers we found in the AVEC2012 database of spontaneous dialogue

are “well”, “you know”, and “I mean”.

• Stutters: words or part of a word the speaker involuntarily repeats during

speaking. For example, “Sa” in the utterance “Sa... Saturday will be fine”, or the

first “I didn’t” in the utterance “I didn’t, I didn’t mean it”.

• Laughter: a physical reaction consisting typically of rhythmical, often audible

contractions of the diaphragm and other parts of the respiratory system. Laughter

annotations were included in the manual transcriptions provided with both

databases. Note that these are binary annotations of the presence/absence of

laughter without differentiating different types of laughter.

• Audible breath: the sounds generated by the movement of air through the

respiratory system. Audible breath annotations were included in the manual

transcriptions provided with both databases.

4.2.2 Feature Extraction

We use a moving window with a length of 15 words to compute the disfluency features

for word-level emotion recognition on the AVEC2012 database. We chose a window

length of 15 words because this is the average length of an utterance in the AVEC2012

database. In our later experiments on utterance-level emotion recognition for the

IEMOCAP database, we used the utterance duration instead of the moving window

for computing the DIS-NV features. We have also tested using the utterance duration
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instead of the moving window for word-level emotion recognition on the AVEC2012

database (Tian, 2013). However, the performance is worse than using the moving

window and is not included here.

As shown in Figure 4.1, the window includes the current word and the 14 history

words that precede it, and slides from the beginning of a dialogue session until its end.

The feature value of word w for DIS-NV type D (Dw) is calculated as the ratio between

the sum duration of DIS-NV type D appearing in the window of word w (TD) and the

total duration of the window of word w including silences between words (Tw). This

results in five DIS-NV features for each word:

Dw =
TD

Tw
(4.1)

W15 W16 W17 · · · Wn· · ·W3W2W1

· · · · · ·

Dialogue Session X

Window for W1,W2,W3, · · · ,W15

Window for W16

Window for W17

Figure 4.1: Window for Extracting DIS-NV Features from the AVEC2012 Database

4.2.3 Individual Effectiveness of the DIS-NV Features

We compare the individual effectiveness of the DIS-NV features on the AVEC2012

database using the Correlation-based Feature Selection (CFS) method (Hall, 1998).1

The CFS method ranks individual effectiveness of features based on the recognition

performance of each feature being used as a weak recognizer, as well as the degree

of redundancy between features. Results are shown in Table 4.1, with smaller

numbers representing ranking higher by the CFS method and thus higher individual

effectiveness. As we can see, filled pause and laughter are the most effective types of

DIS-NV for emotions in spontaneous dialogue. The fact that filler is not highly ranked

supports considering filled pause and filler separately for studying the relationship

between DIS-NVs and emotions.

1We only study the individual effectiveness of the DIS-NV features on the AVEC2012 database of
spontaneous dialogue because there are much fewer DIS-NVs in the IEMOCAP database.
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Table 4.1: Individual Effectiveness Rankings of DIS-NV Features

DIS-NV Arousal Expectancy Power Valence

Filled Pause 1 2 1 2

Filler 5 4 4 5

Stutter 4 5 5 3

Laughter 2 1 2 1
Audible Breath 3 3 3 4

4.3 Recognizing Emotions in Spontaneous Dialogue

with DIS-NV Features

This section contains our experiments on effectiveness of the proposed DIS-NV

features for recognizing emotions in spoken dialogue. These include four emotion

regression experiments on the AVEC2012 database of spontaneous dialogue. In

Experiment 1, we compare performance of the DIS-NV features with benchmark

acoustic and lexical features. In Experiment 2, we study the gain from incorporating

the DIS-NV features with acoustic and lexical features. In Experiment 3, we study the

influence of temporal context for emotion recognition. In Experiment 4, we investigate

automatic recognition of DIS-NVs and the effectiveness of the auto-detected DIS-NV

features for emotion recognition. Here we follow the AVEC2012 challenge protocol

and conduct our experiments on the AVEC2012 database of spontaneous dialogues.

4.3.1 Experiment 1: Emotion Regression in Spontaneous Dialogue

with DIS-NV Features

Our goal for Experiment 1 is to study the effectiveness of using the DIS-NV features

on their own for emotion recognition in spoken dialogue. To do so, we compare the

performance of the proposed DIS-NV features with benchmark acoustic and lexical

features and state-of-the-art emotion recognition studies.

4.3.1.1 Methodology

As described in Section 3.3.1, emotions were annotated at the word-level as real-value

vectors on the Arousal, Expectancy, Power, and Valence emotion dimensions in the

AVEC2012 database. Following the setting of the AVEC2012 challenge, we used
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the Cross Correlation Score (CCS) as the evaluation metric. In the challenge, the

AVEC2012 database is divided into three partitions, each containing 32 dialogue

sessions: the training partition, the development partition, and the test partition. CCS is

calculated as the average correlation-coefficients CC between the emotion predictions

and the emotion annotations over the 32 dialogue sessions of the test partition of the

AVEC2012 database:

CCS =
1

32

32

∑
i=1

CCi (4.2)

We evaluate significance of performance differences using the two-tailed z-test

after Fisher’s r-to-z transformation. Performance of the DIS-NV features are compared

with the AVEC2012 baseline LLD acoustic features and the PMI lexical features (see

Section 3.4). The LLD acoustic features were provided in the AVEC2012 challenge

as a benchmark feature set, while the PMI lexical features were shown to be the most

effective unimodal feature set in previous work on this task (Savran et al., 2012). We

also compare the performance of our DIS-NV features with multimodal recognition

results reported by other AVEC2012 challenge participants.

4.3.1.2 Results and Discussion

Results of Experiment 1 are reported in Table 4.2 (Moore et al., 2014). “Mean”

represents the unweighted average of the results on the four emotion dimensions.

Savran et al. (2012) represents the multimodal state-of-the-art results achieved by a

model using thousands of audiovisual and lexical features. “DIS-NV” represents the

model using the proposed 5 DIS-NV features. “S-PMI” represents the model using

1000 sparse PMI lexical features, which was the most effective feature set in previous

work on the AVEC2012 database (Savran et al., 2012). “PMI” represents the model

using the 8 non-sparse PMI lexical features we proposed (see Section 3.4.2.1). “LLD”

represents the model using 1842 AVEC2012 baseline LLD features, as described

in Section 3.4.1.1. We used the Support Vector Regression model described in

Section 3.5.1 for building all the emotion recognition models. We also include

a baseline model which predicts random numbers between [-1,1]. Because the

evaluation metric is correlation based, we cannot use a baseline model which always

predicts the mean.

As shown in Table 4.2, our five knowledge-inspired DIS-NV features achieved

substantially higher scores than benchmark acoustic and lexical features for predicting

every emotion dimension. The overall performance (average performance of all
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emotion dimensions) of the model using only our DIS-NV features is tied with the

best multimodal result reported on the AVEC2012 database (Savran et al., 2012).2

This indicates the effectiveness of the DIS-NV features for recognizing emotions

in spontaneous dialogue. The DIS-NV features also achieved the best reported

performance on the Expectancy emotion dimension. This is consistent with the

Psycholinguistic finding that disfluency is an indicator of speaker uncertainty (Lickley,

2015). Savran et al. (2012) outperformed the DIS-NV features the most on the

Valence dimension, which may be due to the fact that the Savran’s (2012) model

incorporated visual features describing facial expressions that are specifically effective

for disambiguating the Valence emotion dimension. The non-sparse PMI features we

propose have results close to the sparse PMI features of Savran et al. (2012)3 while

reducing the feature dimensionality from 1000 to 8. The LLD features have extremely

low performance here compared to the DIS-NV and PMI features. This may be due to

the high dimensionality and the frame-level nature of the LLD feature compared to the

utterance-level knowledge-inspired DIS-NV and PMI features. To study the influence

of feature dimensionality and temporal context in more detail, later in Experiment 3

we performed feature engineering to reduce the dimensionality of the LLD feature set

and included temporal context in the LLD features.

Table 4.2: Emotion Regression with DIS-NV Features on Spontaneous Dialogue

Models Arousal Expectancy Power Valence Mean

Savran et al. (2012) 0.302 0.194 0.293 0.331 0.280

DIS-NV 0.250 0.313 0.288 0.235 0.271

S-PMI 0.131 0.285 0.254 0.188 0.214

PMI 0.152 0.216 0.220 0.186 0.193

LLD 0.014 0.038 0.016 0.040 0.027

Baseline 0.001 0.007 0.004 0.008 0.005

To study the performance of the proposed DIS-NV features in more detail, in

Figure 4.2 we plot the predictions given by DIS-NV and LLD features compared to

the gold-standard emotion annotations on test dialogue session 4 of the AVEC2012

database. As we can see, the predictions given by LLD features are more noisy and

2 p = 0.4237, thus there is no significant difference between the overall performance of the DIS-NV
model and the best multimodal model by Savran et al. (2012)

3 p = 0.0735, thus there is no significant difference between the overall performance of the sparse
PMI features and the non-sparse PMI features
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have a flatter overall shape compared to those given by DIS-NV features. For the

predictions given by DIS-NV features, there are segments which are straight lines

due to absence of DIS-NV in the utterances. However, when DIS-NVs occur in the

dialogue, the overall shape of DIS-NV predictions better captures the shape of the

gold-standard emotion annotations with the predictions having smaller absolute values

than the gold-standard annotations. Distributions of different emotion dimensions

vary greatly, which indicates that performance of emotion recognition models on

different emotion dimensions should be evaluated separately and the mean CCS over

all emotion dimensions should be considered as an additional reference. Note that

the gold-standard emotion annotations have a more smooth shape than the automatic

predictions in Figure 4.2. Therefore, it may be beneficial to use a sliding window to

smooth the predictions of the automatic emotion recognition model in the future.
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Figure 4.2: Predictions vs. Annotations on the AVEC2012 Database

4.3.1.3 Summary

In Experiment 1, we compared the performance of our DIS-NV features with

benchmark LLD and PMI features for emotion recognition on spontaneous dialogue.

Our five knowledge-inspired DIS-NV features achieved substantially higher scores

than benchmark acoustic and lexical features for predicting every emotion dimension.

The DIS-NV features are especially predictive of the Expectancy dimension of

emotion. This is consistent with the Psycholinguistic research by Lickley (2015)

which indicated that disfluencies are related to the uncertainty of the speaker. The

overall performance of our unimodal model using only the DIS-NV features is tied
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with the best reported multimodal model for this task using thousands of audiovisual

and lexical features. Results of Experiment 1 suggest that the proposed DIS-NV

features are effective for emotion recognition in spontaneous dialogue, and they

may contribute to multimodal emotion recognition by disambiguating the Expectancy

emotion dimension better.

4.3.2 Experiment 2: Multimodal Emotion Regression on

Spontaneous Dialogue with DIS-NV Features

Compared to the acoustic characteristics and lexical content, DIS-NVs contain

additional information which may be related to emotions. Thus, in Experiment 2,

we study whether or not the emotion recognition model can benefit from incorporating

our DIS-NV features with benchmark acoustic and lexical features.

4.3.2.1 Methodology

To study the gain of including our DIS-NV features, we build multimodal emotion

recognition models by concatenating the feature sets (i.e., Feature-Level (FL) fusion).

As in Experiment 1, we build Support Vector Regression models for our unimodal and

multimodal models and report CCS. Results of our experiment are shown in Table 4.3

(Moore et al., 2014). “LLD+PMI” represents the model using the concatenated

feature set of the LLD and our non-sparse PMI features. In Table 4.3, Savran et al.

(2012), Ozkan et al. (2012), and van der Maaten (2012) are the three best performing

multimodal models on the AVEC2012 challenge, respectively, while Schuller et al.

(2012) is the AVEC2012 baseline multimodal model.

4.3.2.2 Results and Discussion

As shown in Table 4.3, the LLD+PMI+DIS-NV model achieved significantly improved

results compared to the LLD+PMI model on all emotion dimensions. Overall

performance of the LLD+PMI+DIS-NV model is between the best (Savran et al.

(2012)) and the second best (Ozkan et al. (2012)) performing multimodal model on

the AVEC2012 challenge. The LLD+PMI+DIS-NV model also achieved the best

result on predicting the Expectancy emotion dimension compared to reported challenge

results. This verifies our conjecture that DIS-NVs contain information additional to the

acoustic characteristics or lexical content of the speech that is predictive of emotions.
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Thus, including DIS-NV features in existing models yields improved performance.

However, the LLD+PMI+DIS-NV model has worse performance than the unimodal

DIS-NV model on the Expectancy and Power emotion dimensions. The reason may

be the imbalanced size of the feature sets. In simple feature concatenation (FL fusion),

equal weights are assigned to each feature set. Thus, the highly predictive DIS-NV

feature set with only 5 features may be overwhelmed by the noisy LLD feature set

with over a thousand features. This indicates that a better fusion strategy is required

to further improve the performance of the multimodal emotion recognition model. In

Chapter 6 we will explore this in more detail.

Table 4.3: Multimodal Emotion Regression with DIS-NV Features on Spontaneous

Dialogue

Models Arousal Expectancy Power Valence Mean

DIS-NV 0.250 0.313 0.288 0.235 0.271
LLD+PMI 0.252 0.216 0.146 0.213 0.207

LLD+PMI+DIS-NV 0.263 0.269 0.162 0.292 0.247

Savran et al. (2012) 0.302 0.194 0.293 0.331 0.280
Ozkan et al. (2012) 0.210 0.240 0.289 0.208 0.237

van der Maaten (2012) 0.267 0.241 0.223 0.138 0.192

Schuller et al. (2012) 0.021 0.028 0.009 0.004 0.015

4.3.2.3 Summary

Experiment 2 shows that DIS-NVs contain information predictive of emotions beyond

the acoustic characteristics and lexical content of spontaneous dialogue. However,

simple feature concatenation may limit the gain of incorporating DIS-NV features in

multimodal emotion recognition models.

4.3.3 Experiment 3: Influence of Contextual Information on

Emotion Regression

In Experiments 1 and 2, both the DIS-NV features and the PMI features are

utterance-level features that include temporal context, while the LLD features are

non-contextual frame-level features. Thus, in Experiment 3 we study whether models

based on the LLD features will benefit from including temporal context or not.
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4.3.3.1 Methodology

To extract contextual LLD features, we first selected a subset of the LLD features using

Correlation-based Feature-subset Selection (Hall, 1998), which results in 116 features

(the CFS-LLD feature set). We then use the sliding window shown in Figure 4.1 to

compute the min, max, mean, and standard deviations of the CFS-LLD feature values

within the window, resulting in 464 (116×4) contextual LLD features.

4.3.3.2 Results and Discussion

CCS of unimodal models using the original non-contextual LLD feature set, the

non-contextual CFS-LLD feature set, and the contextual LLD feature set are reported

in Table 4.4. As we can see, the contextual LLD features have significantly better

performance than the non-contextual LLD and CFS-LLD features on predicting all

emotion dimensions. This verifies that emotion recognition can benefit from including

temporal context, which is consistent with Psychological findings (Ortony et al., 1990).

The improvement achieved by the CFS feature engineering compared to using the LLD

features directly also indicates that learning a more abstract feature representation and

reducing the feature dimensionality is helpful for emotion recognition.

Table 4.4: Influence of Temporal Context for Emotion Regression on Spontaneous

Dialogue

Models Arousal Expectancy Power Valence Mean

LLD 0.014 0.038 0.016 0.040 0.027

CFS-LLD 0.118 0.091 0.075 0.094 0.094

Contextual LLD 0.252 0.216 0.146 0.213 0.207

4.3.3.3 Summary

In Experiment 3 we verified that temporal context is predictive of emotions. Thus,

building contextual models can improve performance of emotion recognition in spoken

dialogue. Our results also show that feature engineering can be beneficial for emotion

recognition models by reducing feature dimensionality.
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4.3.4 Experiment 4: Automatic Detection of DIS-NVs

In this thesis, we focus on DIS-NV features based on manual annotations of DIS-NVs

(gold-standard DIS-NV features) because we are interested in the effectiveness of

DIS-NVs for emotion recognition in spoken dialogue. However, beyond improving

the state-of-the-art of emotion recognition in spoken dialogue, our long-term goal

is to improve the quality of emotional interaction in HCI systems. In a fully

automatic emotion recognition model, the DIS-NV features will need to be extracted

automatically, which may introduce noise to the DIS-NV feature set. Therefore,

in Experiment 4, we conduct a preliminary study on the influence of using

auto-detected DIS-NV features for emotion recognition. Note that automatic detection

of disfluencies and non-verbal vocalisations in speech is an active research area itself.

Thus, with improved DIS-NV recognition models, we will be able to further reduce the

difference between the auto-detected and gold-standard DIS-NV features in the future.

4.3.4.1 Review on Automatic Detection of DIS-NVs

Automatic detection of DIS-NVs has attracted interest from both the speech

recognition and Psycholinguistic communities. DIS-NV detection models can

improve the performance of automatic speech recognition, as well as help researchers

understand the speech generation process (e.g., Barczewska and Igras (2013)).

For automatic detection of disfluencies, various acoustic features and machine

learning algorithms have been applied. Among different acoustic features, pitch

and duration have been identified as highly predictive of disfluencies. For example,

O’Shaughnessy and Gabrea (2000) classified filled pauses as vowels with durations

longer than 120ms and F0 lower than the average F0 of the speaker. Formant

stability is also used by Audhkhasi et al. (2009) and Barczewska and Igras (2013)

for detecting disfluencies. Besides pitch, cepstral features, such as Mel-frequency

cepstral coefficients (MFCCs), are also widely used in previous work (e.g., Stouten and

Martens (2003)). Previous studies on disfluency detection have shown that contextual

models are typically powerful for disfluency detection. For example, Yu et al. (2012)

combined a Hidden Markov Model with a deep neural network and achieved a

word error rate of 16.1% for disfluency detection. Similarly, Zayats et al. (2016)

built a Bidirectional LSTM model and achieved state-of-the-art disfluency detection

performance with a F1 measure of 85.9%.

For automatic detection of non-verbal vocalisations, the majority of previous
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research has focused on binary laughter detection. Previous work on automatic

detection of laughter has studied various types of acoustic features, such as prosodic

features (Truong and Van Leeuwen, 2007) and MFCCs (Krikke and Truong, 2013).

Similar to disfluency detection, among different types of acoustic features, pitch has

been shown to be highly predictive of laughter (Salamin et al., 2013). Paralinguistic

studies have found that F0 in laughter is higher than F0 in speech segments

(Rothgänger et al., 1998; Bachorowski et al., 2001). For audible breath detection,

previous work has focused on prosodic (e.g., Braunschweiler and Chen (2013))

and cepstral features (e.g., Ruinskiy and Lavner (2007)). Various machine learning

algorithms have been applied to non-verbal vocalisation detection, such as Gaussian

Mixture Models used by Krikke and Truong (2013), Multi-Layer Perceptrons used

by Knox and Mirghafori (2007), and Support Vector Machines used by Kennedy and

Ellis (2004). Dupont et al. (2016) achieved state-of-the-art performance for laughter

detection with an accuracy of 79% by combining audio and visual information.

4.3.4.2 Effectiveness of Auto-Detected DIS-NV Features for Emotion

Recognition

As discussed in Section 4.3.4, there is on-going research on automatic detection of

disfluencies (e.g., Liu et al. (2006)) and non-verbal vocalisations (e.g., Niewiadomski

et al. (2013)). In this thesis, we focus on the performance of gold-standard DIS-NV

features for emotion recognition. Here we perform a preliminary experiment on the

influence of auto detection of DIS-NVs. We use non-sparse PMI and the AVEC2012

baseline LLD features with a SVM model to predict the DIS-NV feature values. CCS

of emotion recognition models using the auto-detected DIS-NV features are reported

in Table 4.5.

Table 4.5: Using Auto-Detected DIS-NV Features for Emotion Regression on

Spontaneous Dialogue

Models Arousal Expectancy Power Valence Mean

Gold-standard DIS-NV 0.250 0.313 0.288 0.235 0.271
DIS-NV Predicted by PMI 0.133 0.191 0.192 0.161 0.169

DIS-NV Predicted by LLD 0.087 0.094 0.054 0.070 0.076

PMI 0.152 0.216 0.220 0.186 0.193

LLD 0.014 0.038 0.016 0.040 0.027
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As shown in Table 4.5, performance of the auto-detected DIS-NV features

has significant decreases on all emotion dimensions compared to the gold-standard

DIS-NV features. However, both of the auto-detected DIS-NV features still have

significantly better performance than the AVEC2012 baseline LLD features for

emotion recognition in spontaneous dialogue. Our results suggest that besides acoustic

features, lexical features are powerful predictors of DIS-NVs as well.

Note that we used a naive DIS-NV recognizer in this experiment. With an improved

DIS-NV detection model, the performance difference between the auto-detected

DIS-NV features and the gold-standard DIS-NV features can be further reduced.

For example, Shi (2016) studied the auto-detection of disfluencies in the AVEC2012

database, Wang (2016) studied the auto-detection of non-verbal vocalisations in the

AVEC2012 database.4 Shi (2016) used an Auto-Encoder over the eGeMAPS features

(see Section 3.4.1.2) and built a LSTM model with the encoded feature representation

for disfluency detection. The highest F1-measures achieved are: filled pause = 77.0%,

filler = 78.0%, stutter = 80.0%. Wang (2016) built a Deep Belief Network with

Binary-Bernoulli Restricted Boltzmann Machine layers and combined the eGeMAPS

feature set with 78 MFCC features for non-verbal vocalisation detection. The highest

F1-measures achieved are: laughter = 69.8%, audible breath = 78.6%. These results

indicate that automatic detection of DIS-NVs can be done with stable performance.

Thus, the auto-detected DIS-NV features will remain predictive of emotions in

spontaneous dialogue.

4.3.4.3 Summary

In Experiment 4, we showed that DIS-NVs in spontaneous dialogue can be

automatically detected with stable accuracy, and the auto-detected DIS-NV features

remain predictive of emotions in spontaneous dialogue. This indicates that our emotion

recognition model using DIS-NV features has the potential to be applied to a fully

automatic HCI system in the future.

4.4 Discussion

In this chapter, we proposed DIS-NV features for emotion recognition. We motivated

the use of DIS-NVs for emotion recognition, and described calculation of the DIS-NV

4MSc dissertations co-supervised by the author
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features. We performed experiments on the AVEC2012 database of spontaneous

dialogue to study the effectiveness of the proposed DIS-NV features compared to

benchmark acoustic and lexical features widely used in previous work on the same

database.

Our results show that our DIS-NV features yield better performance than LLD

or PMI features on predicting all emotion dimensions. The DIS-NV features are

particularly predictive of the Expectancy emotion dimension which relates to speaker

uncertainty, and achieved the best reported result. The emotion recognition model

using only the 5 DIS-NV features achieved an overall performance that is tied with

the best reported result achieved by a multimodal emotion recognition model using

thousands of audiovisual and lexical features. These findings verified that the proposed

DIS-NV features are predictive of emotions in spontaneous dialogue.

Our experiment on incorporating the DIS-NV features with other acoustic and

lexical features indicates that DIS-NVs contain additional information related to

emotions compared to the acoustic characteristics and the lexical content. However, a

better fusion strategy than simple feature concatenation is required to increase the gain

of modality fusion. We also verified that including temporal context is beneficial for

emotion recognition. In addition, we perform preliminary experiments which showed

that DIS-NVs can be automatically detected with robust accuracy, thus the DIS-NV

features may remain effective in a fully automatic emotion recognition model.

One thing to notice is that the correlation-coefficient based evaluation metric

reported by all our models and all previous work using the AVEC2012 continuous

emotion annotations is extremely low.5 This indicates that emotion recognition

is a challenging task. As discussed in Section 3.3.1, using continuous emotion

annotations also caused the issue of low inter-annotator agreement. Thus, in the

following experiments, we map the original continuous emotion annotation of the

AVEC2012 database into three discrete categories for each emotion dimension: low

(original values within the range [-1,-0.333)), medium (original values within the

range [-0.333,+0.333]), and high (original values within the range (+0.333,+1]).

5CCS < 0.4, meaning weak to mild correlation
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Spontaneous vs. Acted Dialogue

Inspect every piece of pseudoscience and you will find a security blanket,
a thumb to suck, a skirt to hold. What does the scientist have to offer in
exchange? Uncertainty! Insecurity!

— Isaac Asimov, Asimov’s Guide to Science (1972)

In Chapter 4, we proposed DIS-NV features for emotion recognition in spoken

dialogue, which describe occurrences of 5 types of disfluency and non-verbal

vocalisation in utterances. Our experiments showed that these DIS-NV features

are predictive of emotions in spontaneous dialogue. However, as described in

Section 3.1.2, besides emotion databases of spontaneous dialogue, a large portion of

existing emotion databases consist of acted dialogue. Cross-corpora studies suggest

that fundamental differences exist between different types of dialogue, which may

influence the effectiveness of features and models for recognizing emotions in different

types of dialogue. In this chapter, to study how aspects of a given database influence the

performance of different emotion recognition approaches, we conduct cross-corpora

experiments on the AVEC2012 database of spontaneous dialogue and the IEMOCAP

database of acted dialogue.

First, we study the differences in statistical distributions of emotions and the

DIS-NV and GP features in the AVEC2012 and the IEMOCAP databases to illustrate

the differences between spontaneous and acted dialogue. Note that the different

data collection and annotation schemes used by the AVEC2012 and the IEMOCAP

database may also result in differences in distributions of emotions and affective cues.

Therefore, in order to have a better understanding of the differences caused by dialogue

type, we compare the scripted and non-scripted acting subsets of the IEMOCAP

database in addition. Second, we conduct emotion recognition experiments on both

65
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databases using different features and models to study how differences in the data

influence performance of emotion recognition approaches.

5.1 Cross-Corpora Studies in Emotion Recognition

Most previous work on emotion recognition focuses on experiments using a single

database (e.g., Chen et al. (2016); Wang et al. (2015); Wöllmer et al. (2010)). Only

a few studies have performed cross-corpora experiments to test the robustness of the

features or models proposed (e.g., Bone et al. (2014); Eyben et al. (2015b)).

Previous cross-corpora studies on emotion recognition suggest that it is often hard

to generalize the efficacy of features and models across different databases, especially

when the dialogue type is different. For example, Eyben et al. (2015b) conducted

experiments on the 6 most widely used emotion databases, and their results showed

that the performance ranking of 7 standard acoustic feature sets varies greatly across

databases. Similarly, Schuller et al. (2010a) built a SVM model with LLD features for

detecting binary Arousal and Valence, and tested the emotion recognizer on multiple

databases including both spontaneous and acted dialogue. The results of Schuller

et al. (2010a) illustrate the large influence of dialogue type and the difficulty of

predicting emotions in spontaneous dialogue. The survey of Zeng et al. (2009) also

highlighted the fact that emotions in acted dialogue are more acoustically exaggerated

than emotions in spontaneous dialogue, leading to the issue that performance of

emotion recognizers trained on acted dialogue may decrease greatly when applied to

a more natural scenario. Thus, they suggested collecting more emotion databases of

spontaneous dialogue, which would result in emotion recognizers that can generalize

better to natural interaction scenarios.

5.2 Distribution of Emotion Annotations

To study the difference between spontaneous and acted dialogue, we compare the

distribution of emotion annotations on the spontaneous AVEC2012 database and

the acted IEMOCAP database. As described in Section 3.1.2, the AVEC2012 and

IEMOCAP databases annotated emotions with different schemes. As discussed in

Section 4.4, we mapped the original continuous emotion annotation of the AVEC2012

database into three discrete categories for each emotion dimension: low (original

values within the range [-1,-0.333)), medium (original values within the range
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[-0.333,+0.333]), and high (original values within the range (+0.333,+1]). To unite

the emotion annotations of both databases, we also group the original 1 to 5 scores

based emotion annotation of the IEMOCAP database to three discrete categories

on each emotion dimension. The value ranges of each discrete class here are:

[1,2.333) for low, [2.333,3.667] for medium, (3.667,5] for high. Merging the original

emotion annotations to discrete categories is also used in previous cross-corpora

studies on emotion recognition (e.g., Eyben et al. (2015b)). To preserve information

on mild vs. intensive emotions, we use three classes instead of binary classification.

Note that the AVEC2012 database annotated emotions at the word level, while

the IEMOCAP database annotated emotions at the utterance level. We keep the word

level emotion annotation of the AVEC2012 database when studying the distributions of

emotions and when conducting the emotion recognition experiments. However, when

studying the distributions of DIS-NVs and acoustic characteristics, we down-sampled

the word level AVEC2012 data to utterance level and plotted the descriptive statistics

at the utterance level for both databases.

5.2.1 Distribution of Emotions in Spontaneous Dialogues

Figure 5.1 illustrates the distributions of the original word-level continuous emotion

annotations on the AVEC2012 database. Figure 5.2 illustrates the distributions of the

transformed discrete word-level emotion annotations on the AVEC2012 database. For

each emotion dimension in Figure 5.2, the three bars from left to right represents the

low (dark blue), medium (red), and high (light blue) categories, respectively.

As we can see, for the Arousal, Power, and Valence emotion dimensions, the

medium category is significantly larger than the other two emotion categories. This

indicates that emotions in spontaneous dialogue are mild or neutral most of the time,

which is consistent with the previous finding that it is difficult to induce strong

emotions in spontaneous dialogue (Zeng et al., 2009). Another interesting observation

is that the majority of the data was annotated as having low or medium Expectancy,

which indicates that speakers often show signs of uncertainty during spontaneous

dialogue. This is consistent with the previous finding that DIS-NVs are common

in spontaneous and non-scripted conversations (Lickley, 2015). When collecting the

AVEC2012 database, four virtual agents with different personality designs were used

(see Section 3.3.1). The use of Prudence the calm and neutral virtual agent may

increase the number of neutral or non-emotional data instances in the AVEC2012
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database. The peak of the Power and Valence distribution located in the positive value

axis in Figure 5.1 also indicates that it is difficult to design a believable virtual agent

that induces negative emotions in the participants.

-1 0 1

(a) Arousal

-1 0 1

(b) Expectancy

-1 0 1

(c) Power

-0.79 0.02 0.83

(d) Valence

Figure 5.1: Word-Level Continuous Emotion Distribution on the Spontaneous

AVEC2012 Database
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Figure 5.2: Word-Level Discrete Emotion Distribution on the Spontaneous AVEC2012

Database
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5.2.2 Distribution of Emotions in Acted Dialogues

Figure 5.3 illustrates the distribution of the transformed discrete utterance-level

emotion annotations on the IEMOCAP database. Recall that when collecting the acted

IEMOCAP database, there were two types of acting: non-scripted and scripted acting

(see Section 3.3.2). In Figure 5.3, the bars in red represent utterances collected by

non-scripted acting, and the bars in blue represent utterances collected by scripted

acting. The three columns from left to right in each graph represents the low, medium,

and high categories of each emotion dimension, respectively. The y axis in the figure

is percentage of total data instances.

Compared to the emotion distributions on the spontaneous AVEC2012 database

(Figure 5.2), the emotion categories are more balanced on the acted IEMOCAP

database. This indicates the advantage of collecting emotion databases by acting,

which is that the data is more balanced (Zeng et al., 2009). An interesting observation

is that there are fewer utterances with low Arousal or low Power compared to

utterances with medium and high Arousal or Power. This reflects the fact that

during collection of the IEMOCAP database, the acting scenarios were biased towards

more active and dominant situations (e.g., an intense argument at customer service).

Distributions of emotion annotation for utterances collected by scripted or non-scripted

acting are approximately the same, which is possibly due to similar scenario design in

both cases. The difference between the distributions of emotion annotation on the

AVEC2012 database and the IEMOCAP database indicates spontaneous and acted

dialogues are different in terms of speaker’s emotional status.

(a) Arousal (b) Power (c) Valence

Figure 5.3: Utterance-Level Emotion Distribution on the Acted IEMOCAP Database
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5.3 Distribution of DIS-NVs

In Section 5.2 we studied the differences between spontaneous and acted dialogue in

terms of speaker’s emotional states. In this section, we study the differences between

spontaneous and acted dialogue in terms of DIS-NVs in speech. As suggested by

Trouvain (2014), DIS-NVs are more common in spontaneous and unscripted dialogue.

This is because actors are trained to be fluent, and DIS-NVs are often not included

in scripts for collecting scripted dialogue. Therefore, we expect fewer utterances with

DIS-NVs in the IEMOCAP database of acted dialogue than in the AVEC2012 database

of spontaneous dialogue.

To compare the occurrences of DIS-NV in spontaneous and acted dialogue, we

report the percentage of utterances containing each type of DIS-NV in both databases

in Table 5.1. “FP” represents filled pause, “FL” represents filler, “ST” represents

stutter, “LA” represents laughter, “AB” represents audible breath. As we can see,

utterances with filled pause, laughter, and audible breath are less frequent in the

acted IEMOCAP database than in the spontaneous AVEC2012 database. This is

consistent with previous findings. However, fillers and stutters are more frequent in

the non-scripted utterances of the IEMOCAP database. This indicates that compared

to scripted acting, non-scripted acting is more similar to spontaneous dialogue in terms

of the number of disfluencies in utterances.

To study the differences in DIS-NV distribution between spontaneous and acted

dialogue in detail, in addition to the overall frequency, we also analyze the distributions

of DIS-NV features for each emotion dimension of the spontaneous AVEC2012

database and the acted IEMOCAP database in Section 5.3.2.

Table 5.1: Percentages of Utterances with DIS-NV in Spontaneous and Acted Dialogue

Databases FP(%) FL(%) ST(%) LA(%) AB(%)

AVEC2012 32.0 14.7 9.4 11.9 2.7
IEMOCAP (non-scripted) 14.9 33.0 10.1 2.4 0.8

IEMOCAP (scripted) 7.8 15.9 2.9 0.9 0.4

5.3.1 Additional DIS-NVs

The DIS-NVs we annotated are only a subset of all the DIS-NVs occurring in speech.

Here we study the influence of including other types of common DIS-NV. More
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specifically, we annotated speech repairs (SR, when speaker corrects him/herself),

turn-taking times (TT, silent pause at the beginning of a turn), and prolongations (PL,

prolonged uttering of a syllable) as additional DIS-NVs in the IEMOCAP database.

Percentage of utterances containing these additional DIS-NVs are shown in Table 5.2.

As we can see, compared to FP, FL, and ST shown in Table 5.1, SR and PL are less

frequent in the IEMOCAP database.

We also conduct 10-fold cross validation experiments with an SVM model (C-SVC

with RBF kernel) to compare performance of our original DIS-NV set containing 5

DIS-NVs (FP, FL, ST, LA, AB) and the expanded DIS-NV set including the three

additional DIS-NVs (FP, FL, ST, LA, AB, SR, TT, PL) on the IEMOCAP database. We

report the results (F1-measures) in Table 5.3. As we can see, adding these additional

DIS-NVs does not improve emotion recognition performance. The original DIS-NV

set of 5 DIS-NVs consistently outperforms the expanded DIS-NV set of 8 DIS-NVs.1

Therefore, in later experiments, we continue to use the original DIS-NV set of 5

DIS-NVs.

Table 5.2: Percentages of Utterance with Additional DIS-NV in IEMOCAP Database

Databases SR(%) TT(%) PL(%)

IEMOCAP (non-scripted) 3.4 27.9 3.8
IEMOCAP (scripted) 1.0 35.1 1.3

Table 5.3: Using Additional DIS-NVs for Emotion Recognition on IEMOCAP Database

Models Arousal(%) Power(%) Valence(%) Mean(%)

Original DIS-NV set 36.3 40.7 32.8 36.6
Expanded DIS-NV set 35.6 38.0 29.9 34.5

5.3.2 Distribution of DIS-NVs in Spontaneous and Acted Dialogues

In this section, we examine the distributions of filled pause and laughter as example

DIS-NVs to study the differences between spontaneous and acted dialogue. As

described in Table 4.1 of Section 4.2.3, filled pause and laughter have the highest

individual effectiveness for emotion recognition in spontaneous dialogue. To study

1Arousal: p = 0.0013, Power: p = 0.0068, Valence: p = 0.0024
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the distribution differences in more detail, we plot DIS-NVs in the non-scripted

and scripted IEMOCAP database separately. Because annotation of the Expectancy

emotion dimension is missing for the IEMOCAP database, here we only plot filled

pause and laughter distributions on the Arousal, Power, and Valence dimensions.

To compare the distribution on different types of dialogue, we plot smoothed

density graphs with lines representing the AVEC2012 database, the non-scripted

subset of the IEMOCAP database, and the scripted subset of the IEMOCAP database,

respectively in Figures 5.4 and 5.5. In these figures, the x axis represents the percentage

of the total duration of an utterance being a DIS-NV, the y axis represents the

percentage of utterances having the value on the x axis. We limit the maximum value

of y axis to 0.8 to zoom in to the utterances containing DIS-NVs. Histograms of all the

DIS-NV distributions on both databases can be found in Section C.1 of Appendix C.

5.3.2.1 Distribution of Filled Pauses in Spontaneous and Acted Dialogues

As shown in Figure 5.4, the blue (scripted IEMOCAP) and green (non-scripted

IEMOCAP) lines stop before the x axis reaches 0.68, while the pink line (AVEC2012)

reaches 1.0 on the x axis. Recall that in these figures the x axis represents the

percentage of the total duration of an utterance being filled pauses. This shows that

there are no utterances that are more than 70% filled pause in the acted IEMOCAP

database, while in the spontaneous AVEC2012 database there are utterances that are

entirely a filled pause. This reflects the fact that during data collection, the IEMOCAP

database used professional actors, who are trained to have fewer disfluencies than the

general public participating in the AVEC2012 data collection.

Filled pauses on the non-scripted and scripted IEMOCAP dialogue have similar

distributions in Figure 5.4, except that there are fewer filled pauses in the scripted

acting dialogue than in the non-scripted acting dialogue or the spontaneous dialogue

(the blue line reaches 0 on y axis earlier than the green line in all graphs of

Figure 5.4). Although Busso et al. (2008) argue that non-scripted acting is similar

to spontaneous dialogue, as we can see, there remain fundamental differences in filled

pause distributions between spontaneous (the red lines) and non-scripted acting (the

green lines) dialogue.
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Figure 5.4: Filled Pause Distribution on Arousal, Power, Valence in Utterances

5.3.2.2 Distribution of Laughter in Spontaneous and Acted Dialogues

As shown in the Low Valence graph in Figure 5.5, the spontaneous AVEC2012

utterances annotated as having low Valence (negative emotion) can contain laughter,

while none of the acted IEMOCAP utterances annotated as having low Valence

contain laughter (the green and blue lines have x=0). When we investigated specific

utterances in the AVEC2012 database which contain laughter and are annotated with

low Valence, we identified various types of laughter other than the joyful laughter

of amusement, which is consistent with Cognitive Science findings that laughter is

a complex behaviour in spontaneous dialogue (Glenn, 2003; Szameitat et al., 2009b;

Wildgruber et al., 2013). For example, in training session No.2, where the speaker
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talked to Spike, the rude and offensive virtual agent, at turn No.42 she was annoyed

by the agent accusing her of violating the data collection rule and said “It wasn’t a

question. It was an indirect speech act. (LAUGH) Shut up! Why don’t you go... go

stuff your head in a box and give me Prudence instead.” (Prudence is the calm and

neutral virtual agent). The speaker showed taunting laughter (Szameitat et al., 2009a)

here which expresses a negative and aggressive emotional state in order to humiliate

her conversational partner. Another example is in training session No.18, where the

speaker talked to Obadiah, the pessimistic and depressive virtual agent. At turn No.101

the speaker realized how much he missed his family who lived somewhere else and said

“Oh God I’m not cheery. (LAUGH) Em... No can’t be cheery all the time. Actually

che... people that are cheery all the time kinda irritate me.” In this case laughter

signalled embarrassment and submissiveness (Adelswärd, 1989).

As shown in Figure 5.5, laughter on the non-scripted and scripted IEMOCAP

dialogues have similar distributions, except that there is less laughter in the scripted

acting dialogues than in the non-scripted acting or the spontaneous dialogues. In

contrast to the spontaneous AVEC2012 database, there is no laughter in utterances with

low Valence in the acted IEMOCAP database. This indicates that variations of laughter

types may be overlooked during the acting for collecting the IEMOCAP database.

Note that in this study we use the laughter annotation provided by the AVEC2012

and the IEMOCAP database, which does not differentiate types of laughter and only

has a binary annotation of laughter being present or absent. This simplification may

limit the effectiveness of the laughter features for emotion recognition. It will be

interesting to collect more detailed laughter annotations in the future and study their

relationship with emotions in spoken dialogue.
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Figure 5.5: Laughter Distribution on Arousal, Power, Valence in Utterances

5.4 Distribution of Acoustic Features

Besides the distribution of speaker’s emotions and DIS-NVs in speech, in this section,

we study the acoustic differences between the spontaneous and acted dialogue by

studying the distribution of the Global Prosodic features of Bone et al. (2014) on

both databases. Recall that the Global Prosodic features are the median of log pitch,

intensity, and voice quality (HF500) over the utterance (see Section 3.4.1.3). This small

set of utterance-level acoustic features describes the major emotion-related acoustic

characteristics of the speech signal and were shown to be predictive of emotions in

cross-corpora studies. We study the scripted and non-scripted IEMOCAP utterances

separately to have a more detailed understanding. Because the Expectancy dimension



76 Chapter 5. Spontaneous vs. Acted Dialogue

annotations are missing in the IEMOCAP database, we only compare the distributions

on the Arousal, Power, and Valence dimensions between the two databases in this

section. Distributions of GP features on the Expectancy dimension in the AVEC2012

database and smoothed density plots of all GP features on both databases can be found

in Section C.2 of Appendix C.

5.4.1 Distribution of Log Pitch

As shown in Table 5.4, the distribution of median log pitch is more skewed and has

smaller standard deviation in spontaneous dialogue than in non-scripted and scripted

dialogue. These observations indicate that the distribution of median log pitch values

has more variation in acted dialogue than in spontaneous dialogue.

Table 5.4: Distribution of Log Pitch on AVEC2012 and IEMOCAP Databases

Databases Mean Standard Deviation Skewness

AVEC2012 0.412 0.172 -0.360
IEMOCAP (non-scripted) 0.487 0.195 -0.190

IEMOCAP (scripted) 0.480 0.199 -0.191

5.4.2 Distribution of Intensity

As shown in Table 5.5, the distribution of median intensity is more skewed and has

smaller standard deviation in spontaneous dialogue than in non-scripted or scripted

acted dialogue. This indicates that the loudness of speech has wider range in acted

dialogue than in spontaneous dialogue.

Table 5.5: Distribution of Intensity on AVEC2012 and IEMOCAP Databases

Databases Mean Standard Deviation Skewness

AVEC2012 0.581 0.095 -0.647
IEMOCAP (non-scripted) 0.445 0.134 0.073

IEMOCAP (scripted) 0.455 0.134 0.232
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5.4.3 Distribution of Voice Quality

Recall that HF500 is calculated as the ratio between the total energy above 500Hz

and the lower-frequency energy in an utterance. As shown in Table 5.6, similar to

intensity, the distribution of HF500 is more skewed and has smaller standard deviation

in spontaneous dialogue than in non-scripted or scripted acted dialogue. This indicates

that there is more voice quality variation in acted dialogue than in spontaneous

dialogue.

Table 5.6: Distribution of Voice Quality on AVEC2012 and IEMOCAP Databases

Databases Mean Standard Deviation Skewness

AVEC2012 0.570 0.395 0.750
IEMOCAP (non-scripted) 0.542 0.506 0.325

IEMOCAP (scripted) 0.400 0.463 0.747

5.5 Experiment 5: Influence of Dialogue Type on

Effectiveness of DIS-NV Features

In previous sections, we illustrated differences of DIS-NV distribution and acoustic

variations in spontaneous and acted dialogue. Our statistical analyses show that

compared to spontaneous dialogue, in acted dialogue, there are fewer DIS-NVs and

more acoustic variation. In this section, we conduct emotion recognition experiments

on both the spontaneous AVEC2012 and the acted IEMOCAP databases to study how

these differences between spontaneous and acted dialogues influence the effectiveness

of features for emotion recognition in spoken dialogue.

5.5.1 Methodology

To study the influence of dialogue type on the effectiveness of DIS-NV features,

we perform emotion recognition on both the spontaneous AVEC2012 database and

the acted IEMOCAP database, and compare the experimental results (Tian et al.,

2015a). The Support Vector Machine model described in Section 3.5.1 is used

for building all the emotion recognizers. As discussed in Section 3.1.6, unlike the

regression experiments in Chapter 4, we perform 10-fold cross-validation experiments
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for classification experiments, and report the weighted F-measures to avoid the

imbalanced data issue. We evaluate significance of performance differences using the

paired Permutation test (Menke and Martinez, 2004) with 100,000 randomisations.

Five types of benchmark acoustic and lexical features are extracted on both

databases to compare with our DIS-NV features, namely LLD (see Section 3.4.1.1)

acoustic features, eGeMAPS acoustic features (see Section 3.4.1.2), GP acoustic

features (see Section 3.4.1.3), non-sparse PMI lexical features (see Section 3.4.2.1),

and CSA lexical features (see Section 3.4.2.2).

5.5.2 Results and Discussion

Results of the unimodal emotion recognition models on the AVEC2012 database are

shown in Table 5.7. Results of the unimodal emotion recognition models on the

IEMOCAP database are shown in Table 5.8. “Mean” represents the arithmetic mean

of the results on all emotion dimensions. Note that the IEMOCAP database did

not provide Expectancy annotations, thus the results on the Expectancy dimension is

missing for the IEMOCAP database. We include a baseline model which predicts the

majority class.

Consistent with our results in Experiment 1 in Section 4.3.1, DIS-NV features

have the best performance in predicting the Expectancy emotion dimension on

the spontaneous AVEC2012 database,2 and achieved the best overall performance

compared to other acoustic and lexical features.3 However, as we expected, the

DIS-NV features are less effective on the acted IEMOCAP database.

We also observe that acoustic features are more predictive of emotions than lexical

features on the acted IEMOCAP database, while lexical features are more predictive

than acoustic features on the spontaneous AVEC2012 database. This is consistent with

our finding in Section 5.4 that acted emotions are more acoustically exaggerated. Our

results indicate that effectiveness of features depends largely on the specific emotion

recognition task, especially the type of dialogue.

2DIS-NV vs. IS10LLD on Expectancy: p = 0.0089
3DIS-NV vs. CSA on Arousal: p = 0.0138, on Expectancy p = 0.0001, on Power p = 0.0140, on

Valence p = 0.0421 (not significant)
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Table 5.7: Unimodal Emotion Recognition with SVM on the Spontaneous AVEC2012

Database

Models Arousal(%) Expectancy(%) Power(%) Valence(%) Mean(%)

Baseline 51.6 55.6 66.4 58.8 58.1

AVEC-LLD 52.4 60.8 67.5 59.2 60.0

IS10-LLD 52.9 60.8 67.6 59.2 60.1

eGeMAPS 56.9 60.1 73.4 66.8 64.3

GP 56.3 60.0 72.4 66.8 63.9

DIS-NV 55.9 61.4 74.7 66.8 64.7
PMI 55.7 60.7 73.0 66.8 64.0

CSA 57.5 59.8 73.0 67.1 64.4

Table 5.8: Unimodal Emotion Recognition with SVM on the Acted IEMOCAP Database

Models Arousal(%) Expectancy(%) Power(%) Valence(%) Mean(%)

Baseline 31.7 # 28.7 27.0 29.1

LLD 65.2 # 53.8 53.5 57.5
eGeMAPS 60.9 # 52.2 49.4 54.1

GP 57.0 # 49.7 41.5 49.4

DIS-NV 36.3 # 40.7 32.8 36.6

PMI 47.8 # 48.1 32.9 42.9

CSA 47.0 # 47.2 29.5 41.2

5.5.3 Summary

In Experiment 5, we showed that the type of dialogue has significant influence

on effectiveness of features. Our DIS-NV features are predictive of emotions in

spontaneous dialogue, but are less predictive of emotions in acted dialogue due to

fewer occurrences of DIS-NVs in acted speech. Results also showed that acoustic

features have better performance than lexical features for emotion recognition in acted

dialogue due to exaggerated acting. Our findings indicate that it is import to study the

data, especially the type of dialogue, before performing emotion recognition on spoken

dialogue.
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5.6 Experiment 6: Using Deep Learning for Unimodal

Emotion Recognition

As discussed in Section 3.1.4, previous work has identified the Long Short-Term

Memory Recurrent Neural Network (LSTM) model as highly predictive of emotions

because of its ability to model long-range context. Our Experiment 3 also verifies

that emotion recognition can benefit from including temporal context. However,

our emotion recognition experiments so far all used the non-contextual SVM model.

Therefore, in Experiment 6, we study the gain of using the deep, contextual LSTM

model instead of the shallow, non-contextual SVM model. We build unimodal LSTM

emotion recognition models on both databases (Tian et al., 2015b).

5.6.1 Methodology

Performance of unimodal LSTM models on the AVEC2012 and IEMOCAP databases

is reported in Tables 5.9 and 5.10. “Mean” represents the arithmetic mean of the results

on the four emotion dimensions. LSTM models with a single hidden layer are used

when building these unimodal models and the number of memory cells was selected

based on cross-validation experiments.4 We include a baseline model which predicts

the majority class. Similar to Experiment 5, we conduct 10-fold cross-validation

experiments on both databases and report the weighted F-measures, and evaluate

significance of performance differences using the paired Permutation test (Menke and

Martinez, 2004) with 100,000 randomisations.

5.6.2 Results and Discussion

As shown in Table 5.9, consistent with our previous findings, DIS-NV features

are predictive of emotions in spontaneous dialogue, especially for predicting the

Expectancy emotion dimension,5 whether used with the SVM model or the LSTM

model. The CSA lexical features benefit more from using the contextual LSTM model

relative to the non-contextual SVM model, and achieve the best overall performance on

the AVEC2012 database.6 Compared to the performance of the SVM models shown in

Table 5.7, the LSTM models achieve improved performance on all emotion dimensions

4The number of memory cells for each model is: LLD = 32, CSA = 16, GP = DIS-NV = PMI = 8.
5DIS-NV vs. PMI on Expectancy: p << 0.0001
6CSA vs. DIS-NV on Arousal: p << 0.0001, on Expectancy: p = 0.00001, on Power: p = 0.0141,

on Valence: p << 0.0001
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using each feature set. This indicates the effectiveness of the deep, contextual LSTM

model for emotion recognition in spoken dialogue.

As discussed in Section 3.4.1.1, for a fair comparison, we also extract the

InterSpeech 2010 LLD set (IS10-LLD) in addition to the AVEC2012 baseline LLD set

(AVEC-LLD) on the AVEC2012 database. As shown in Tables 5.7 and 5.9, IS10-LLD

set yields similar or improved performance for the SVM model7 and the LSTM

model8 compared to the AVEC-LLD set. Therefore, in the AVEC2012 experiments

in the Chapter 6, we report the results using the IS10-LLD feature set instead of the

AVEC-LLD feature set.

As shown in Table 5.10, consistent with our previous findings, effectiveness of

features varies when the type of dialogue is different. Compared to the performance of

the SVM models shown in Table 5.8, the LSTM models achieve improved performance

on all emotion dimensions using the smaller GP, DIS-NV, PMI, and CSA feature sets

on the IEMOCAP database. However, performance of the LSTM model using the

LLD and the eGeMAPS feature set is worse than the SVM models. This may be

because the LLD and the eGeMAPS feature sets have higher dimensionality (1582

for LLD, 88 for eGeMAPS), which results in more complex LSTM models that have

more parameters to optimize during the training. There are fewer training instances

in the IEMOCAP database than in the AVEC2012 database (approximately 10,000 for

IEMOCAP, approximately 50,000 for AVEC2012), which may limit the optimization

of the LSTM models using the LLD and the eGeMAPS feature set. This issue of

insufficient training data is consistent with previous emotion recognition studies using

deep learning models which we discussed in Section 3.1.4.

Another reason for the LSTM model not bringing large performance gains may be

that the IEMOCAP database annotated data at the utterance level, while the AVEC2012

database annotated data at the word level. The long-range temporal context the

LSTM model attempts to incorporate may not be helpful or necessary when the

time scale of the data instances is as long as an utterance. We also observed that

the knowledge-inspired features perform better than the statistical LLD features on

both spontaneous and acted dialogue in most cases, which is consistent with previous

emotion recognition studies (Bone et al., 2014; Eyben et al., 2015b; Savran et al.,

2012).

7For SVM models AVEC-LLD vs. IS10-LLD on Arousal: p = 0.0169, on Expectancy p = 0.3608,
on Power p = 0.1261, on Valence p = 0.2079

8For LSTM models AVEC-LLD vs. IS10-LLD on Arousal: p = 0.0007, on Expectancy p = 0.0015,
on Power p = 0.0068, on Valence p = 0.0030
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Table 5.9: Unimodal Emotion Recognition with LSTM on the Spontaneous AVEC2012

Database

Models Arousal(%) Expectancy(%) Power(%) Valence(%) Mean(%)

Baseline 51.6 55.6 66.4 58.8 58.1

AVEC-LLD 56.5 61.6 72.1 66.4 64.2

IS10-LLD 57.1 61.4 72.7 67.1 64.6

eGeMAPS 56.2 60.3 72.6 66.8 64.0

GP 56.0 60.3 72.4 66.8 63.9

DIS-NV 56.2 65.9 72.8 67.3 65.5

PMI 56.0 62.7 72.3 66.7 64.4

CSA 58.1 61.7 75.2 70.2 66.3

Table 5.10: Unimodal Emotion Recognition with LSTM on the Acted IEMOCAP

Database

Models Arousal(%) Expectancy(%) Power(%) Valence(%) Mean(%)

Baseline 31.7 # 28.7 27.0 29.1

LLD 53.7 # 46.2 38.6 46.2

eGeMAPS 60.1 # 52.2 46.6 53.0
GP 58.0 # 50.6 41.8 50.1

DIS-NV 41.6 # 37.8 34.0 37.8

PMI 48.8 # 48.7 32.9 43.5

CSA 50.0 # 48.1 44.5 47.5

5.6.3 Summary

In Experiment 6, we verified that, compared to the flat and non-contextual SVM

model, the deep and contextual LSTM model typically yields better performance for

emotion recognition. However, the effectiveness of the complex LSTM model may

be limited by the amount of training data available. Considering the small size of

emotion databases, using knowledge-inspired features with a neural network model

will result in better recognition performance than having the neural network learn

more abstract feature representations from noisy statistical features. This leads to

our Experiment 8 in Section 6.2.2 where we combine knowledge-inspired features

in our LSTM model for multimodal emotion recognition. Our results show that the

feature representations automatically learned by deep learning models are still less
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effective than knowledge-inspired features, which indicates that there is room for

improvement for the ability of deep learning models to learn relevant features for

emotion recognition.

5.7 Discussion

In this chapter, we discussed the differences between spontaneous and acted dialogue.

We found that there are typically more DIS-NVs in spontaneous dialogue than in acted

dialogue. We also found complex variations in non-verbal vocalisations in spontaneous

dialogue which were overlooked when designing data collection by acting. According

to Global Prosodic feature distributions, loudness and voice quality distribution in

acted dialogue have wider value ranges than in spontaneous dialogue, and there is more

pitch variation in acted dialogue than in spontaneous dialogue. Dialogue collected

by non-scripted acting shares similarities with spontaneous dialogue, while there are

fundamental differences between scripted acted dialogue and spontaneous dialogue.

Our cross-corpora experiments showed that DIS-NV features are less predictive

of emotions in acted dialogue because there are fewer DIS-NVs in acted dialogue

compared to spontaneous dialogue. However, this chapter only considered unimodal

emotion recognition models. Recall that in Experiment 2 in Chapter 4, we found that

DIS-NVs contain emotion-related information beyond the acoustic characteristics and

lexical content in spontaneous dialogue. Thus, incorporating the DIS-NV features with

benchmark acoustic and lexical features may improve the performance of emotion

recognition in acted dialogue as well. Thus, we will study the performance of

multimodal emotion recognition models incorporating the DIS-NV features on both

spontaneous and acted dialogue in the Chapter 6.

We also investigated the gain of using deep, contextual LSTM models compared

to using shallow, non-contextual SVM model for emotion recognition. Our results

show that although the LSTM model achieves better performance than the SVM

model in most cases, optimization of the complex LSTM model may be limited by

the small amount of training data available. Therefore, it may be better to use the

knowledge-inspired features with the LSTM model which have lower dimensionality

and thus fewer parameters to optimize. In the future, to further study the benefit

of using LSTM models for emotion recognition, we would also like to compare the

performance of a LSTM model using embedding layers learned from the data-driven

low-level features with a LSTM model using knowledge-inspired directly features. In
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terms of the gain of including temporal contexts, we find that the IEMOCAP database

which annotated emotions at the utterance-level benefits less from using the LSTM

model than the AVEC2012 database which annotated emotions at the word-level. This

indicates that the LSTM’s ability to model long range temporal context may be more

useful to emotion recognition tasks at a small time scale (e.g., frame or word level)

instead of at a large time scale (e.g., utterance or conversation level).



Chapter 6

Multimodal Emotion Recognition with

Hierarchical Fusion

The Solarians have given up something mankind has had for a million
years; something worth more than (...) everything; because it’s something
that made everything possible (...) The tribe, sir. Cooperation between
individuals.

— Isaac Asimov, The Naked Sun (1956)

In previous chapters, most of our experiments investigated unimodal emotion

recognition. However, consistent with human studies on emotion recognition,

including information from multiple modalities when building emotion recognition

models typically yields better performance. Therefore, in this chapter, we study

the performance of multimodal emotion recognition using DIS-NV features and

benchmark acoustic and lexical features. In Experiment 2 of Chapter 4, we found that

simple feature concatenation may not be enough to boost the gains of modality fusion.

Thus, we are motivated to identify a better fusion strategy for multimodal emotion

recognition. More specifically, we propose a HierarchicaL (HL) fusion strategy, which

combines information in a knowledge-inspired hierarchical structure. In HL fusion,

features that describe data at lower levels of abstraction (e.g., statistical features)

or smaller time scales (e.g., frame-level features) are used at lower levels of the

hierarchy. In this chapter, we study the effectiveness of the proposed HL fusion for

multimodal emotion recognition using acoustic and lexical features compared with the

benchmark Feature-Level (FL) fusion and Decision-Level (DL) fusion. We are aware

that information beyond the acoustic and lexical modalities can contribute to emotion

recognition as well. In fact, later in Chapter 7, we will investigate multimodal emotion

recognition using other modalities in addition to the acoustic and lexical modality.

85
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However, in this chapter, by multimodal model we refer to emotion recognition models

using acoustic and lexical information.

6.1 Multimodal Emotion Recognition

As discussed in Section 3.1.5, humans convey and perceive emotions through all

communicative modalities. We have better emotion recognition performance when

given information from multiple modalities (Zeng et al., 2009). In addition, consistent

with the human studies, multimodal emotion recognition models typically outperform

unimodal emotion recognition models (D’Mello and Kory, 2012). There are two

types of fusion strategy used in current multimodal emotion recognition models:

Feature-Level (FL) fusion (or “early fusion”) and Decision-Level (DL) fusion (or “late

fusion”). In this section, we first describe the FL and DL fusion strategies and identify

their limitations. We then propose the HL fusion strategy and discuss how it may

improve multimodal emotion recognition performance compared to FL and DL fusion.

6.1.1 Feature-Level (FL) Fusion and Decision-Level (DL) Fusion

In FL fusion, feature sets from different modalities are concatenated before performing

recognition, as shown in Figure 6.1 (e.g., Nazari et al. (2015)). In some studies,

feature engineering is first applied to the concatenated feature set or to a unimodal

feature set (e.g., Gievska et al. (2015)). However, it is hard to apply knowledge on

intra-modality differences in FL multimodal models. In contrast, DL fusion applies a

rule-based decision model (e.g., Wu and Liang (2011)) or a machine learning model

(e.g., Pei et al. (2015)) over the predictions given by each unimodal model, as shown

in Figure 6.2. Previous studies comparing these two fusion strategies show that DL

fusion typically outperforms FL fusion (He et al., 2015a; Soleymani et al., 2012a).

However, detailed information about features within each modality (i.e., inter-modality

differences) is lost in the final decision model of DL fusion and interactions between

features from different modalities are not modelled. This results in DL fusion having

worse performance than FL fusion in cases where the features used are already highly

predictive of emotions on their own (Huang et al., 2015b; Jin et al., 2015; He et al.,

2015a).

Compared to unimodal models, the improvement given by multimodal models

using FL and DL fusion is often limited (D’Mello and Kory, 2012). The reason may
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be that both FL and DL fusion incorporate modalities at the same level. However,

as discussed in Section 3.1.3, different features may be extracted at different time

scales (e.g., frame-level vs. utterance-level) or have different levels of abstraction (e.g.,

statistical vs. knowledge-inspired).

The cognitive process during human dialogue is often defined as a four-level

structure (Benotti, 2009). For example, the communication model proposed by

Clark (1996) classifies communication into four steps: attention, identification,

understanding and consideration. At the attention step, the listener becomes aware

that his/her conversational partner is speaking. At the identification step, the listener

perceives the acoustic variations and recognizes the content of the speech (s)he

hears. After identifying the content, in the understanding step, the listener analyses

the meaning of the sentences (s)he just recognized. At the final consideration

step, the meaning conveyed in the perceived speech evokes specific reactions and

verbal/emotional responses of the listener based on his/her personal memories,

knowledge, or goals. Similarly, when perceiving emotions in dialogue, humans

make use of information received at different cognitive steps at different time steps

under influence of both long-term and short-term contexts (Grandjean et al., 2008).

As suggested by the Appraisal emotion theory (Ortony et al., 1990), emotions are

responses to the perceived relationship between the environment and a person’s

internal goals. Thus, in Clark’s (1996) model, the acoustic features are perceived

earlier at the identification step, the lexical features are perceived later at the

understanding step, and emotions are produced and updated at the consideration step.
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Figure 6.1: An Example of Feature-Level (FL) Fusion
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Figure 6.2: An Example of Decision-Level (DL) Fusion

6.1.2 HierarchicaL (HL) Fusion

To address the limitations of FL and DL fusion, we propose the HierarchicaL (HL)

fusion strategy, which incorporates features that are extracted at a larger time scale

(e.g., utterance-level) or are more abstract (e.g., knowledge-inspired) at higher levels

of its hierarchical structure, as shown in Figure 6.3. Compared to FL fusion, HL

fusion incorporates prior knowledge about different modalities by using features at

different layers based on the time scale at which the features are extracted or the

levels of abstraction of the features (intra-modality differences). Compared to DL

fusion, HL fusion preserves more detailed information of features in each unimodal

model (inter-modality differences) and the recognition model has access to individual

features through the network structure when making the final decision. Because

the knowledge-inspired hierarchy of HL fusion is able to model both inter- and

intra-modality differences, our hypothesis is that multimodal models using the HL

fusion strategy will have better performance than multimodal models using FL or DL

fusion strategies.

Combining information in a hierarchical manner has been shown to improve

the gain of information fusion in previous studies on using meta-data for model

adaptation (e.g., Kuznetsov et al. (2016)). However, to the best of our knowledge,

the only previous work using a similar hierarchical approach for multimodal emotion

recognition is by Chen and Jin (2015). In their work, features from the audio,

visual, and physiological modalities were used to recognize frame level continuous

Arousal and Valence values in French dialogue. However, their hierarchical model

differentiates between modalities, but does not take into account differences between
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features within a single modality. In the work of Kim et al. (2015) which performed

emotion recognition with frame level statistical acoustic features, a logistic regression

model incorporating features derived from prosody, spectral envelope, and glottal

information in a hierarchical structure outperformed a logistic regression model using

all acoustic features at the input level. This indicates that a hierarchy capturing

differences both between and within modalities is desirable for multimodal emotion

recognition. The motivation for the hierarchical fusion of Chen and Jin (2015) is

to address the fact that signals from different modalities change asynchronously.

Performance of the hierarchical fusion of Chen and Jin (2015) outperformed FL

fusion, but performed worse than DL fusion. The reason that the hierarchical fusion

of Chen and Jin (2015) has limited performance may be that different feature sets

have different levels of abstraction over the data. Compared to Chen and Jin (2015),

our HL model has a knowledge-inspired structure that incorporates both inter- and

intra-modality differences. The hierarchy of our HL model is motivated both by the

temporal characteristics (the time scale at which the features are extracted) and the

levels of abstraction of the features. In Experiment 6, we show that our HL fusion can

outperform both FL and DL fusion.
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Figure 6.3: An Example of Proposed HierarchicaL (HL) Fusion

6.2 Multimodal Emotion Recognition with DIS-NV

Features and HL Fusion

As discussed in Section 6.1.2, we propose HL fusion to overcome limitations of FL

and DL fusion in multimodal emotion recognition. In this section, we study the
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performance of multimodal emotion recognition using the proposed DIS-NV features

and HL fusion strategy. The DIS-NV features are combined with the five benchmark

acoustic and lexical feature sets used in Experiments 5 and 6 in Chapter 5. We compare

the performance of multimodal emotion recognition models using HL fusion with

those using FL and DL fusion on both the spontaneous AVEC2012 database and the

acted IEMOCAP database. Consistent with the experimental settings in Chapter 5,

we conduct 10-fold cross-validation experiments and report weighted F-measures. We

also include a baseline model which always predicts the majority class.

6.2.1 Experiment 7: Multimodal Emotion Recognition with HL

Fusion and All Features

To study the effectiveness of HL fusion, in Experiment 7, we build multimodal emotion

recognition models using FL, DL, and HL fusion strategies and combine the DIS-NV

features with all five benchmark feature sets (LLD, eGeMAPS, GP, PMI, and CSA) on

both the spontaneous AVEC2012 database and the acted IEMOCAP database.

6.2.1.1 Methodology

We build an LSTM model with three hidden layers for the FL and HL fusion models in

Experiment 7. The number of memory cells in each layer (hbottom = 32, hmiddle = 16,

htop = 8) is optimized by cross-validation experiments. The FL fusion model uses all

of the features as inputs to the bottom hidden layer.

For the HL fusion model, the LLD and eGeMAPS features are used as inputs to the

bottom hidden layer, the GP and DIS-NV features are added at the middle hidden layer,

and the PMI and CSA features are added at the top hidden layer, as shown in Figure 6.4.

The LLD and eGeMAPS features are input at the bottom level because in terms of the

time scale at which the features are extracted, they are frame-level features while the

other features are utterance-level features. The PMI and CSA features are used at the

top level because in terms of the abstraction level, they encode prior information about

emotional states based on lexical identity and thus have a higher level of abstraction.

Note that the number of neurons shown in this figure is only an indication and is not

the number of neurons used in the actual models. In the actual models, the number of

input neurons equals the number of features used, and the number of neurons in the

hidden layers are optimized by cross-validation experiments.

For DL fusion, predictions given by unimodal models are used as inputs to
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another LSTM model which has one hidden layer with 16 memory cells (optimized

by cross-validation experiments). We also tested using rule-based decision models

(e.g., selecting the class with highest probability). However, these models performed

worse than DL fusion using a LSTM model as the decision model, thus we focus on

the latter.
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GP1
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Hidden
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Figure 6.4: Structure of HL Model using All Features

6.2.1.2 Results and Discussion

Results of 10-fold cross-validation experiments of multimodal emotion recognition

using all feature sets on both databases are shown in Tables 6.1 and 6.2.1 As we can

see, HL fusion outperforms FL fusion on all emotion dimensions on both databases.

In addition, HL fusion outperforms DL fusion on most emotion dimensions on both

databases. The only exception is the Valence dimension of the IEMOCAP database.2

As shown in Table 6.2, the large LLD feature set is not highly predictive of Valence

for the IEMOCAP database. As the negative influence of the LLD feature set is
1In Table 6.1, LLD, FL, DL, HL results are slightly different from Tian et al. (2016). This is

because here we use the InterSpeech 2010 LLD feature set for the AVEC2012 experiments, instead
of the AVEC2012 baseline LLD feature set used in Tian et al. (2016).

2 p << 0.0001 in all cases, except for p = 0.0001 for HL vs. DL on Valence for IEMOCAP
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larger for the HL model than for the DL model, the HL model performs worse than

the DL model in this particular case. Moreover, there are fewer training instances

in the IEMOCAP database (approximately 10,000) than in the AVEC2012 database

(approximately 50,000). This limits the performance of the HL model, which has

more parameters to fit than the DL model.

Table 6.1: AVEC2012 Multimodal Emotion Recognition with All Features

Models Arousal(%) Expectancy(%) Power(%) Valence(%) Mean(%)

Unimodal LSTM Models

Baseline 51.6 55.6 66.4 58.8 58.1

LLD 57.1 61.4 72.7 67.1 64.6

eGeMAPS 56.2 60.3 72.6 66.8 64.0

GP 56.0 60.3 72.4 66.8 63.9

DIS-NV 56.2 65.9 72.8 67.3 65.5

PMI 56.0 62.7 72.3 66.7 64.4

CSA 58.1 61.7 75.2 70.2 66.3

Multimodal LSTM Models Using All Features

FL 56.6 63.7 72.5 68.2 65.3

DL 58.7 65.3 73.4 69.2 66.7

HL 59.4 67.9 73.7 70.9 68.0
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Table 6.2: IEMOCAP Multimodal Emotion Recognition with All Features

Models Arousal(%) Expectancy(%) Power(%) Valence(%) Mean(%)

Unimodal LSTM Models

Baseline 31.7 # 28.7 27.0 29.1

LLD 53.7 # 46.2 38.6 46.2

eGeMAPS 60.1 # 52.2 46.6 53.0
GP 58.0 # 50.6 41.8 50.1

DIS-NV 41.6 # 37.8 34.0 37.8

PMI 48.8 # 48.7 32.9 43.5

CSA 50.0 # 48.1 44.5 47.5

Multimodal LSTM Models Using All Features

FL 53.4 # 48.7 37.1 46.4

DL 52.4 # 50.3 47.4 50.0

HL 57.3 # 51.1 45.4 51.3

6.2.1.3 Summary

Experiment 7 on multimodal emotion recognition using all extracted features showed

that the HierarchicaL (HL) fusion strategy we proposed typically achieves better

performance than the FL and DL fusion strategies. This verified that modelling

both inter- and intra-modality differences can improve the performance of emotion

recognition in both spontaneous and acted dialogue. However, our results also show

that when the amount of training data is limited, including noisy statistical features

with high dimensionality may have a negative effect on the performance of multimodal

emotion recognition models.

6.2.2 Experiment 8: Multimodal Emotion Recognition with HL

Fusion and Knowledge-Inspired Features

In Experiment 7, we found that the performance of the multimodal emotion recognition

model may be limited by the issue of insufficient training data. In Experiment 8, we

study whether or not we can improve the performance by building multimodal models

using only knowledge-inspired feature sets. In addition, to better understand the

influence of incorporating prior knowledge when designing the recognition model, we

investigate building HL models with randomly grouped features instead of designing
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the hierarchy based on prior knowledge about the features.

6.2.2.1 Methodology

When building the multimodal models using a subset of all features, we remove the

PMI features for experiments on both databases. This is because both the PMI and

CSA features describe relations between lexical content and emotions. However,

the PMI features are likely to over-fit the database that the emotion recognition

experiment is performed on. Thus, they are less robust than the CSA features which

are non-domain-specific. For the AVEC2012 database, we remove both the LLD

and eGeMAPS features because they are relatively high in dimensionality yet low in

effectiveness. For the IEMOCAP database, because the eGeMAPS features are highly

effective in this specific case, we only remove the LLD features. We simplify the HL

and FL models by removing the input neurons connected to the removed features.

Structures of the HL models using only knowledge-inspired features are shown in

Figures 6.5 and 6.6. For DL fusion, predictions given by unimodal models are used

as inputs to another LSTM model which has one hidden layer with 8 memory cells

(optimized by cross-validation experiments).
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Figure 6.5: Structure of the HL Model for the AVEC2012 Database using GP, DIS-NV

and CSA Features
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Figure 6.6: Structure of the HL Model for the IEMOCAP Database using eGeMAPS,

GP, DIS-NV and CSA Features

6.2.2.2 Results and Discussion

Results of the multimodal models using only knowledge-inspired features are reported

in Tables 6.3 and 6.4. As we can see, performance of HL and FL models increases

when using only smaller, knowledge-inspired feature sets. Performance of DL models

decreases compared to using all features. This is because the decision making module

of the DL model only has access to final outputs of each unimodal model. The lack

of data issue has smaller influence on the DL decision making module which has a

simpler neural network structure than on the FL or HL model. Thus, after removing

feature sets, the decision making module of the DL model does not benefit from the

simplified model structure as much as the FL or HL model, while having less input

information. When using only knowledge-inspired features, HL fusion outperforms

both FL and DL fusion on predicting all emotion dimensions on both databases. The

HL model also achieves the best performance on all emotion dimensions on both

databases compared to all unimodal and multimodal emotion recognition models we

built so far.3 Compared to the hierarchical fusion model of Chen and Jin (2015),

our HL model incorporates prior knowledge on differences both between and within

modalities. Such knowledge-inspired structure of our HL model is able to model both

3 p << 0.0001 in all cases
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inter- and intra-modality differences. Our HL model achieves results better than both

FL and DL fusion, while the hierarchical fusion model of Chen and Jin (2015) only

outperformed the FL fusion. This verifies the efficacy of our HL model on multimodal

emotion recognition in spoken dialogue.

To better understand the benefits of incorporating features in a knowledge-inspired

structure, we investigate grouping features randomly instead of basing on prior

knowledge when used in the HL model. We use the same LSTM model for the

HL model with random feature grouping. As shown in Tables 6.3 and 6.4, the

random-grouping HL models (“HL(Random)” in the tables) have significantly worse

performance than the original HL models using a knowledge-inspired structure for

predicting emotion dimensions on both databases.4 The random-grouping HL model

has similar overall (mean) performance with the FL and DL model. This indicates that

compared to using features at the same level, incorporating features in a hierarchical

structure only brings improvement when prior knowledge on the features is considered

when designing the hierarchical structure.

Table 6.3: AVEC2012 Multimodal Emotion Recognition with GP, DIS-NV, and CSA

Features

Models Arousal(%) Expectancy(%) Power(%) Valence(%) Mean(%)

Unimodal LSTM Models

Baseline 51.6 55.6 66.4 58.8 58.1

LLD 57.1 61.4 72.7 67.1 64.6

eGeMAPS 56.2 60.3 72.6 66.8 64.0

GP 56.0 60.3 72.4 66.8 63.9

DIS-NV 56.2 65.9 72.8 67.3 65.5

PMI 56.0 62.7 72.3 66.7 64.4

CSA 58.1 61.7 75.2 70.2 66.3

GP + DIS-NV + CSA

FL 60.1 68.1 74.8 71.7 68.7

DL 56.6 63.3 73.5 68.0 65.3

HL 61.8 69.2 76.2 72.4 69.9
HL(Random) 60.8 68.2 75.0 71.5 68.9

4 p << 0.0001 in all cases
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Table 6.4: IEMOCAP Multimodal Emotion Recognition with eGeMAPS, GP, DIS-NV,

and CSA Features

Models Arousal(%) Expectancy(%) Power(%) Valence(%) Mean(%)

Unimodal LSTM Models

Baseline 31.7 # 28.7 27.0 29.1

LLD 53.7 # 46.2 38.6 46.2

eGeMAPS 60.1 # 52.2 46.6 53.0
GP 58.0 # 50.6 41.8 50.1

DIS-NV 41.6 # 37.8 34.0 37.8

PMI 48.8 # 48.7 32.9 43.5

CSA 50.0 # 48.1 44.5 47.5

eGeMAPS + GP + DIS-NV + CSA

FL 55.2 # 50.8 47.2 51.1

DL 51.6 # 49.7 46.8 49.3

HL 61.7 # 52.8 51.2 55.3
HL(Random) 57.9 # 51.5 43.9 51.1

6.2.2.3 Summary

In Experiment 8, we showed that with a limited amount of training data, using

smaller, knowledge-inspired feature sets improves performance of multimodal emotion

recognition. Consistent with Experiment 7, the proposed HL fusion outperforms

FL and DL fusion on predicting all emotion dimensions of both spontaneous and

acted data, which verifies the efficacy of the proposed HL fusion. Our results also

indicate that in order to achieve better performance, it is important to incorporate prior

knowledge of features when designing the structure of an emotion recognition model.

6.3 Discussion

In this chapter, we proposed the HierarchicaL (HL) fusion strategy for multimodal

emotion recognition. The HL model incorporates different feature sets in a

knowledge-inspired hierarchical structure. We compared HL fusion with the widely

used Feature-Level (FL) and Decision-Level (DL) fusion strategies. Experiments

on two emotion databases of different types of dialogue show that HL fusion

consistently outperforms FL and DL fusion. The HL model achieves state-of-the-art
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performance for recognizing emotions in spoken dialogue compared to other unimodal

and multimodal models using acoustic and lexical information. While developed for

emotion recognition in spoken dialogue, the proposed HL fusion could in principle, be

applied to other multimodal recognition tasks, as it allows us to incorporate specific

knowledge of feature abstraction and the time scale at which the features are extracted.

Note that lack of training data may limit the performance of the HL emotion

recognition model. We addressed this issue by using only knowledge-inspired features

in the multimodal model and achieved improved performance. However, as discussed

in Section 3.1.4, semi-supervised and unsupervised methods may also be helpful for

addressing the issue of lack of labelled data. Therefore, in the future, we plan to

study how we can improve performance of our emotion recognition models further by

applying such approaches. Moreover, in this study, due to time constraints we did not

discuss possible improvements given by modifications to the network architectures.

For example, using state-of-the-art techniques such as pre-training the LSTM models,

or decision-level combination of the unimodal models, the FL model, and the HL

model. It is possible that there is room for performance improvements by using

more sophisticated neural network architectures. However, this is not the focus of

our research here and will be left for future study.

In our research so far, we have found that it is beneficial to include prior knowledge

on human emotions for emotion recognition in spoken dialogue, whether in the features

extracted or in the recognition model structure. We are interested to study whether this

finding can be generalized to emotion-related tasks other than emotion recognition

in spoken dialogue. Thus, in the next chapter, we will apply the proposed DIS-NV

features and HL fusion to predict movie-induced emotions and study their efficacy for

this task.



Chapter 7

Generalizing the Proposed

Approaches to Other Emotion-Related

Tasks

All knowledge is one. When a light brightens and illuminates a corner of
a room, it adds to the general illumination of the entire room.

— Isaac Asimov, Atom: Journey Across the Subatomic Cosmos (1991)

In previous chapters, we proposed the DIS-NV features and the HL fusion strategy

for emotion recognition in spoken dialogue. Our experiments verified the efficacy

of the proposed approaches on emotion recognition in both spontaneous and acted

dialogue. In this chapter, we explore how other emotion-related tasks can benefit

from the DIS-NV features and HL fusion. In particular, we collaborated with Michal

Muszynski, Theodoros Kostoulas, Patrizia Lombardo, Thierry Pun, and Guillaume

Chanel from the University of Geneva, and applied the DIS-NV features and the HL

fusion to predict the emotional responses of movie audiences induced by affective

movie content. (Tian et al., 2017).

Recognizing movie-induced emotions is a challenging task in current Affective

Computing studies. Previous work has focused on using audiovisual movie content

to predict movie-induced emotions. However, it is unknown whether or not

information beyond the audiovisual content, such as dialogue cues and aesthetic

highlights1, will contribute to recognizing movie-induced emotions. Moreover,

the relationship between the audience’s perceptions of the affective movie content

1Aesthetic highlight refers to significant movie moment judging by its aesthetic importance and
artistic value

99
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(perceived emotions) and the emotions evoked in the audience (induced emotions)

remains unclear. Previous work hypothesized the perceived and induced emotions to

be consistent (Hanjalic and Xu, 2005). However, this may not always be the case. For

example, in a thriller where the audience is aware of an upcoming threat to the movie

characters, the audience may feel anxious (induced emotion) while watching a happy

scene (perceived emotion). We identify three perspectives of emotions in movies,

as shown in Figure 7.1: the audience’s perspective, the actor’s perspective, and the

director’s perspective. Movie audiences interpret the movie content and perceive the

emotions it conveys (the perceived emotions). This then induces emotional responses

which the audience feels (the induced emotions). Movie actors express emotions based

on their interpretation of the script and may experience emotions themselves during

acting (the expressed emotions). Movie directors create scripts with expectations

of what emotions they intend the movie to induce in the audiences (the intended

emotions). Here we focus on the audience perspective of movie emotions.

Spectator 1

Spectator 2

Spectator N

Spectator's

Perceived and Induced Emotions

Actor's/Actress's

Expressed and Felt Emotions

Moviemaker's

Expected Emotions

Movie

Figure 7.1: The Three Perspectives of Emotions in Movies

In this chapter, we study whether or not our DIS-NV features and HL fusion

model are effective for recognizing movie-induced emotions, as well as the relationship

between emotions perceived from and induced by movies. First, we transcribe the

movies of the LIRIS-ACCEDE database (Baveye et al., 2015b) and label DIS-NVs and

movie highlights. We then apply the HL fusion strategy to build multimodal models for

recognizing movie-induced emotions. Second, we annotate emotions perceived from

the movies in a crowd-sourced manner to study the relationship between perceived

and induced emotions of movie audience. Note that the induced emotion annotations

provided by the LIRIS-ACCEDE database are annotated on the Arousal and Valence
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dimensions, while the perceived emotion annotations we collected are annotated on

the Arousal, Power, and Valence dimensions.

7.1 Applying DIS-NV Features and HL Fusion to

Affective Content Analysis

Recently, increased attention has been paid to recognizing emotions in spectators

induced by affective content, motivated by potential applications, such as

emotion-based content delivery (Hanjalic, 2006) or video indexing and summarization

(Arifin and Cheung, 2008). However, recognizing the emotions induced by affective

content remains a challenging task, with only weak to moderate correlations achieved

between automatic predictions and human annotations of emotions (Dellandréa et al.,

2016). This limits the efficacy of affective content analysis in related applications.

State-of-the-art studies on recognizing induced emotions have focused on

extracting features from the audiovisual content of the stimuli. However, lexical

content, such as movie dialogue or lyrics of songs may also influence the emotional

response of the audience. For example, movie dialogue has been shown to be effective

for recognizing violence in movies (Gninkoun and Soleymani, 2011). Moreover,

because of the suggested positive correlation between perceived and induced emotions

(Hanjalic and Xu, 2005), cues of perceived emotions in movies may be used for the

recognition of induced emotions as well. Thus, we are motivated to study the efficacy

of our DIS-NV features for recognizing movie-induced emotions. Beyond feature

effectiveness, how the features are modelled also influences recognition performance.

Thus, we study the impact of temporal context (history) on the recognition model

and the application of our HL fusion strategies for combining multimodal information

beyond the acoustic and lexical modalities.

To conduct our experiments, we chose the recently collected LIRIS-ACCEDE

database (Baveye et al., 2015b) which contains continuous Arousal and Valence

annotations of movie-induced emotions. Note that unlike the AVEC2012 database, the

Power and Expectancy dimensions are not annotated in the LIRIS-ACCEDE database.

This database has been widely used in state-of-the-art studies on movie-induced

emotions, including benchmark challenges such as MediaEval2016 (Dellandréa et al.,

2016). To study the relationship between emotions perceived from and induced by

movies, we collect crowd-sourced annotations on perceived Arousal, Valence, and
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Power of the movie dialogue. We add manual transcripts of the LIRIS-ACCEDE

movies, as well as expert annotations of DIS-NV in dialogues and aesthetic highlights

(Kostoulas et al., 2015a).

7.1.1 Review of Affective Content Analysis

The field of affective content analysis studies the relationship between information

conveyed by the stimuli and emotional responses it evoked in the spectator. It remains

a challenging task where only limited performance has been achieved for predicting

induced emotions using movie-based features (Baveye et al., 2017). Here we briefly

review the state-of-the-art of affective content analysis. In particular, we investigate

previous work on induced emotion recognition on the LIRIS-ACCEDE database to

identify limitations that we can improve.

The LIRIS-ACCEDE database was collected and released to provide resources

for researchers to collaborate on affective content analysis (Baveye et al., 2015b).

Here we focus on the continuous subset of the LIRIS-ACCEDE database, which

contains 30 full movies, totalling 442 minutes (Baveye et al., 2015a). The 30 movies

included in the continuous LIRIS-ACCEDE database are short independent movies

(< 20 minutes) shared under the Creative Commons licenses with diverse content

and genres. During data collection, 10 participants watched each movie once and

annotated continuous Arousal and Valence scores (value range [-1,1]) of the emotions

they felt during watching (movie-induced emotions). The means of scores given by the

participants over each second of the movie were used as the gold-standard annotations.

A follow-up study screened these 30 movies to another 13 participants wearing sensors

and collected physiological and behavioural measurements of the audiences during the

movie (Li et al., 2015).

Table 7.1 provides an overview of the state-of-the-art for recognizing induced

Arousal (A) and Valence (V) of movie audiences using the LIRIS-ACCEDE database.

Note that annotations of the Power and Expectancy dimensions are missing in the

LIRIS-ACCEDE database. Regression models in previous work include Support

Vector Regression (SVR) (Boser et al., 1992), Long Short-Term Memory Recurrent

Neural Networks (LSTM) (Hochreiter and Schmidhuber, 1997), Partial Least Squares

(PLS) (Abdi, 2003), and Convolutional Neural Networks (CNN) (Cireşan et al., 2010).

As we can see, previous work on the LIRIS-ACCEDE database predicted

movie-induced emotions with various regression models. The Pearson Correlation
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Table 7.1: Mean Squared Error (MSE) and Pearson’s Correlation Coefficients (CC)

Reported in Previous Work

Model A-mse A-cc V-mse V-cc

Multimodal Models

AudioVisual SVR (Baveye et al., 2015b) 0.326 0.242 0.343 0.221
AudioVisual SVR (Anastasia and Leontios, 2016) # 0.265 # 0.110

AudioVisual SVR (Chen and Jin, 2016) 0.120 0.236 0.099 0.142

AudioVisual LSTM (Ma et al., 2016) 0.124 0.054 0.102 0.017

Unimodal Models

Audio PLS (Jan et al., 2016) 0.129 -0.072 0.141 -0.062

Visual CNN (Baveye et al., 2015a) 0.021 0.152 0.027 0.197

Visual SVR (Baveye et al., 2015a) 0.022 0.337 0.034 0.296
Visual SVR (Liu et al., 2016b) 0.126 0.056 0.106 0.019

Coefficient (CC) is the most commonly reported evaluation metric. Mean Squared

Error (MSE) is sometimes reported in addition (e.g., Baveye et al. (2015b)). Only weak

or moderate correlations have been achieved in state-of-the-art studies,2 which shows

that recognizing induced emotions of movie audiences is a challenging task. Note

that different studies have different experiment protocols, such as data pre-processing

and training-testing partitions. Thus, their results may not be directly comparable.

Previous work has focused on using features extracted from audiovisual movie content

(e.g., Anastasia and Leontios (2016); Chen and Jin (2016)). However, lexical

information from the movie dialogue is overlooked, even though it has proved to be

important in other emotion recognition studies (Poria et al., 2017). Moreover, the

usefulness of knowledge-inspired affective cues in movies, such as aesthetic highlights

(Li et al., 2015), has not been explored for predicting movie-induced emotions.

Another important limitation of current studies using movie content features to predict

movie-induced emotions is that they overlooked the audience reactions, while emotion

induction is heavily influenced by individual variances.

Many previous studies have examined unimodal models for induced emotion

recognition (e.g., Jan et al. (2016); Liu et al. (2016b)). In fact, Baveye et al. (2015a)

built a SVR model using only visual features and achieved best reported CC for this

task. However, combining multimodal information has improved performance for

2The best reported CC for Arousal is 0.337, for Valence is 0.296 (Baveye et al., 2015a)
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a number of other emotion recognition tasks (e.g., Tian et al. (2016)). Thus, we

are motivated to study modality fusion strategies that may benefit induced emotion

recognition. In addition, the LSTM model has low performance for predicting

movie-induced emotions (Ma et al., 2016),3 yet it has achieved leading performance

in various emotion recognition tasks due to its ability to model temporal context (e.g.,

Brady et al. (2016)). Ma et al. (2016) predict movie-induced emotions at an interval

of 10 seconds, which already contains temporal context. This may limit the gain when

using a LSTM model to include more history. However, the suitable amount of history

to include for predicting movie-induced emotions is unclear. In Section 7.2, we address

the above limitations in the state-of-the-art of movie-induced emotion recognition by

studying the effectiveness of features beyond audiovisual movie content, and by testing

the gain of including history and combining multimodal information.

7.1.2 Transcription and DIS-NV Annotations of LIRIS-ACCEDE

Here we provide protocols for collecting the extended annotations of the continuous

LIRIS-ACCEDE database. We choose the 8 English movies listed in Table 7.2

because they contain relatively more dialogue. Moreover, these movies are in the

double-reality art form, where the lead characters switch between two worlds. This

mirrors the activity of movie-watching where the reality and the movie world together

create double-reality experience for the movie audience. Thus, the audiences may

empathize more with the movie characters which is a particularly interesting scenario

for understanding perceived and induced emotions. In total, we annotated 118 minutes

of movies containing 870 utterances.

The movie transcription and affective cue annotation was conducted by two

expert annotators. To increase the annotation speed, audio recordings of the movie

were first passed through the IBM Watson Speech-to-Text service,4 which provides

automatic speech transcription with word timings. This auto-generated transcript was

then manually corrected and annotated by the annotators in parallel, each annotating

five movies. To evaluate the annotation agreement, First Bite and Spaceman were

annotated by both annotators and we computed the Normalized Damerau-Levenshtein

(NDL) distances (Bard, 2007) of their transcripts, as well as the Pearson Correlation

Coefficient (CC) of the word timings.

NDL distance is a widely used measurement of the distance between two strings.

3CC for Arousal is 0.054, for Valence is 0.017 (Ma et al., 2016)
4https://www.ibm.com/watson/developercloud/speech-to-text.html
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Table 7.2: Statistic of Selected LIRIS-ACCEDE Movies

Movie Genre Utterance Mean Utterance Total

Count Duration (s) Duration (s)

After the Rain Drama 77 3.000 231.000

First Bite Romance 54 2.056 111.024

Nuclear Family Comedy 147 2.694 396.018

Payload Adventure 121 2.488 301.048

Spaceman Adventure 133 2.489 331.037

Superhero Drama 161 2.832 455.952

Tears of Steel Adventure 79 2.165 171.035

The Secret Number Drama 98 2.724 266.952

It is computed as the minimum number of operations required to transform one string

to the other, divided by the length of the longer string of the pair. NDL distance of

0 indicates that the two strings are identical. Thus, values closer to 0 show stronger

annotation agreement. We find that 94.8% of the words transcribed are identical for the

two annotators, with average NDL distance of 0.049. Considering the average length

of words is 4 characters in the compared transcript, an average NDL distance of 0.049

means for every five words there is less than one character difference. CC for the word

and utterance timings of the transcript is reported in Table 7.3. As we can see, the

utterance and word timings annotated by the two annotators are strongly correlated.

This verifies that the two annotators strongly agreed on movie transcription. We also

report the concordance correlation coefficient (CCC) (Lawrence and Lin, 1989) which

takes into account both the correlation and the value shift. CCC between two example

variables x and y is calculated as below:

CCC =
2ρxyσxσy

σ2
x +σ2

y +(µx−µy)2 (7.1)

Where µx, µy are the means of the two variables, σ2
x , σ2

y are the corresponding

variances, ρxy is the CC between the two variables. CCC is a widely used measurement

for agreement on continuous values. As we can see, the utterance and word timings

annotated by the two annotators are strongly correlated. This verifies that the two

annotators strongly agreed on movie transcription.

The same annotators also annotated DIS-NVs in movie dialogue.5 To test the

5All remaining words other than the 5 DIS-NVs are labelled as “General lexicon”



106Chapter 7. Generalizing the Proposed Approaches to Other Emotion-Related Tasks

Table 7.3: Movie Transcription and DIS-NV Label Agreement

Labels StartTime (CC) EndTime (CC) StartTime (CCC) EndTime (CCC)

Utterance 0.998 0.998 0.997 0.998

Word 0.999 0.999 0.999 0.999

General lexicon 0.989 0.989 0.988 0.988

Filled pause 0.625 0.625 0.560 0.549

Filler 0.920 0.920 0.744 0.744

Stutter 0.916 0.916 0.835 0.836

Laughter 0.635 0.635 0.369 0.369

Audible breath 0.766 0.764 0.620 0.637

agreement, we divide the annotations into six subsets based on the DIS-NV labels

and compute both CC and CCC of the start and end timings of words in each subset.

As shown in Table 7.3, although the annotation agreement on DIS-NV labels is lower

compared to movie transcription, the annotations remain strongly correlated. Note

that some types of DIS-NV are rare in movie dialogue. Thus, a small variance in the

number of instances can result in large differences in the CC and CCC. For example,

laughter has the lowest agreement in Table 7.3. However, the only difference between

the two annotators is that one annotator labelled two giggles at the beginning of First

Bite while the other annotator did not label them, yet there are only seven laughs in

total in the compared movie dialogue.

7.2 Experiment 9: Recognizing Movie-Induced

Emotions with DIS-NV Features and HL Fusion

In Experiment 9, we discuss our unimodal and multimodal experiments on recognizing

emotions induced by movies. In our unimodal experiments, we first study the

influence of temporal context by building LSTM models with different time steps,

then compare the effectiveness of different features, including our DIS-NV features,

for movie-induced emotion recognition. In our multimodal experiments, we study the

gain from combining multimodal information with the HL fusion strategy compared

to FL and DL fusion.
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7.2.1 Methodology

The original Arousal and Valence annotations on the LIRIS-ACCEDE database are

provided for each second of the movie. To include a suitable amount of data for

feature extraction, we use a 5 second sliding window with a 4 second overlap between

neighbouring windows to compute all features. The average Arousal and Valence

scores over each window are used as the gold-standard induced emotion annotations.

We also remove the end credits of each movie because participants started to remove

the wearable sensors at this point, which introduced outliers in the signals. This results

in 7103 data instances in total.

7.2.1.1 Movie Based Features

Similar to previous work (e.g., Ma et al. (2016)), we extract features from the

audiovisual movie content with OpenSMILE (Eyben et al., 2010b). For each sliding

window, we extract 1582 InterSpeech 2010 Paralinguistic Challenge Low-Level

Descriptor audio features (Schuller et al., 2010b) and 1793 visual features. The latter

are histograms of Local Binary Pattern, HSV (hue, saturation, and value), and optical

flow of each image region (Eyben et al., 2016). These are standard benchmark features

used in various emotion recognition tasks (Poria et al., 2017). To reduce feature

dimensionality, we apply the ReliefF algorithm (Robnik-Šikonja and Kononenko,

2003) and rank the individual effectiveness of features by performing regression with

20 nearest neighbours. We select the top 100 audio features and the top 100 visual

features for Arousal and Valence respectively in order to maintain similar feature

set sizes between different feature sets. We conduct ReliefF feature ranking on the

remaining 22 movies of the continuous LIRIS-ACCEDE database outside the 8 movies

we perform recognition experiments on. This allows us to incorporate in-domain

knowledge and avoid including test data during feature selection.

Besides the data-driven audiovisual features, we additionally extract three

knowledge-inspired feature sets. These include DIS-NV features (see Section 7.1.2),

CSA lexical features computed from the movie transcript (see Section 3.4.2.2), and

aesthetic movie highlights over each window. Note that different from Section 7.1.2,

here we extract six DIS-NV features (including General lexicon), which are computed

as the total duration of each type of DIS-NV in each sliding window divided by the

window length of 5 seconds.

The aesthetic movie highlights correspond to critical movie moments defined
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by experts in terms of art form and content (Kostoulas et al., 2015a). They are

knowledge-inspired cues and are more abstract than the audiovisual movie content.

The motivation of using aesthetic highlights to predict movie induced emotions is

that moments with high aesthetic value can evoke emotions in the audience as a

result of simulation and empathy. Moreover, aesthetic movie highlights may contain

art techniques designed intentionally to arousal strong emotional responses in the

audience. We record occurrences of six aesthetic highlights in each window:

• Form highlights:

– Spectacular: e.g., technical choices, special effects.

– Subtle: e.g., use of the camera, lightening, music.

• Content highlights:

– Character: e.g., character’s emotions (the expressed emotions in

Figure 7.1), responses to increasingly dramatic events.

– Dialogue: e.g., clarifying the action’s motivation, showing tensions among

the characters.

– Theme: e.g., unusual close-up, development of the urban theme.

• Any type of highlight above has occurred.

The knowledge-inspired features are more sparse than the audiovisual features.

These dialogue cues and highlights are infrequent events in the movie. Thus, the

majority of the knowledge-inspired feature values are zero vectors.

7.2.1.2 Audience Reaction Based Features

To compare with movie based features, we include two audience reaction based feature

sets, namely physiological features and behavioural features. We use a third order

low-pass Butterworth filter with cut-off frequency at 0.3Hz to filter physiological and

behavioural signals of the movie audience before feature extraction. This is a widely

used filtering technique in Affective Neuroscience to reduce noise (Li et al., 2015). The

physiological features are 273 statistics over the sliding window based on the original

measurement of the electrodermal activity of the audience and its first and second

derivatives (Li et al., 2015). The behavioural features are 273 statistics over the sliding

window based on the original measurement of signals collected from acceleration
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sensors attached to the audience’s hands and its first and second derivatives (Kostoulas

et al., 2015b). Note that these physiological and behavioural measurements are

collected from a different group of participants than those whose induced emotions

were annotated as the gold-standard we are predicting in the unimodal and multimodal

experiments.

7.2.1.3 Recognition Models

Unlike Experiments 6, 7 and 8, in Experiment 9 we build LSTM models

for recognizing movie-induced emotions using the Keras library (Chollet, 2015).

Compared to PyBrain, Keras has more advanced functions for training a LSTM

regression model, such as drop-out. In Experiment 9, we train the LSTM models using

RMSprop with a learning rate of 0.0001 and the MSE evaluation metric.6 All LSTM

models have three hidden layers (number of neurons in each hidden layer: h1 = 64,

h2 = 32, h3 = 16). To prevent over-fitting, we use 0.5 drop-out rate in h1 and set the

maximum training iteration to 50 epochs with an early stopping tolerance of 10 epochs.

For multimodal experiments, we again compared our HL fusion with FL and DL

fusion. In our multimodal models, for FL fusion, all features are used at the input

layer of the LSTM model. For DL fusion, predictions of unimodal LSTM models are

input to another LSTM model. For HL fusion, input neurons of low-level features

are connected to h1, while input neurons of high-level features are connected to h2

directly. We build multimodal models combining all features, as well as multimodal

models using only movie based features. For the HL model using all features, the

physiological and behavioural features are used at the higher layer because they are

measurements of audience’s reactions (see Figure 7.2). For the HL model using movie

based features, the audiovisual features are used at the higher layer because we include

in-domain knowledge during feature selection (see Figure 7.3).

We perform leave-one-movie-out cross-validation for the unimodal and

multimodal recognition experiments and report unweighted average of MSE, absolute

CC, and absolute CCC. We evaluate the significance of performance differences using

two-sample Wilcoxon tests with p < 0.05 as being significant. We compare Arousal

and Valence predictions for pairs of models that have the closest performance in each

experiment (e.g., Visual vs. DIS-NV on Arousal in Table 7.5), and find that all of

them are significantly different with p << 0.0001, except for Lexical vs. Highlight on

6The initializers in the recurrent layer are the same as the LSTM model settings in Section 3.5.2
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Figure 7.2: Structure of HL Model using All Features

Valence in Table 7.5 which has p = 0.424.7 Note that because of different experiment

protocols, such as the use of the overlapping window, our results are not directly

comparable with previous work reported in Table 7.1.

7Lexical vs. Highlight on Arousal has p << 0.0001. The second closest pair on Valence
(Audio vs. DIS-NV) has p << 0.0001
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Figure 7.3: Structure of HL Model using Movie Based Features

7.2.2 Influence of Temporal Context on Induced Emotion

The original induced emotion annotation provided by the continuous LIRIS-ACCEDE

database is at every single second, where the average absolute difference between

adjacent emotion annotations of Arousal is 0.006 and of Valence is 0.005. This is

extremely small considering the annotation value range is [-1,1]. Previous work has

shown that human emotions are context dependent and typically do not change rapidly

over a small time interval (Poria et al., 2017). However, the amount of history needed

varies for different tasks. The suitable amount of temporal context for predicting

induced movie emotions remains unknown. Similarly, in Experiment 6 of Chapter 5,

we find that compared to the AVEC2012 database which annotated emotions at word

level, the IEMOCAP database which annotated emotions at utterance level benefits

less from using the LSTM model to incorporate temporal context.

We attempt to identify a suitable amount of history for recognizing induced

emotions by testing the LSTM model using physiological features with different time

steps. We use physiological features because they are direct representatives of the

audience’s induced responses (Kostoulas et al., 2015b). Results of our experiment on

influence of context length is shown in Table 7.4 and Figure 7.4. Note that for MSE

a smaller number means better performance while for CC and CCC a bigger number

means better performance. Numbers in bold are the best performance. As we can see,



112Chapter 7. Generalizing the Proposed Approaches to Other Emotion-Related Tasks

Table 7.4: Influence of Context on Movie-Induced Emotions

Time Step A-mse A-cc A-ccc V-mse V-cc V-ccc

1 0.053 0.225 0.058 0.066 0.401 0.075

2 0.055 0.201 0.050 0.070 0.411 0.076
3 0.047 0.190 0.044 0.066 0.432 0.072

4 0.056 0.205 0.051 0.070 0.389 0.065

5 0.051 0.190 0.048 0.074 0.379 0.061
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Figure 7.4: LSTM Model with Different Time Steps

overall a time step of 3 gives better recognition performance than shorter or longer time

steps.8 Recall that our feature vectors are extracted over a 5 second sliding window

with 4 seconds overlap. With 3 history feature vectors the model will have 9 seconds

of context (including the current window). A duration of 9 seconds is typically longer

than a word, while this may be shorter than some long utterances. This explains why

the word-level AVEC2012 database benefited more from using the LSTM model than

the utterance-level IEMOCAP database in Experiment 6 of Chapter 5. In later induced

emotion recognition experiments in this Chapter, all our LSTM models will use a time

step of 3. Note that in this experiment we have a limited collection of different movie

genres. Thus, our finding may not generalize to other movie genres, such as horror.

7.2.3 Recognizing Movie-Induced Emotions with Unimodal Models

In Table 7.5, we report results of our unimodal experiments on recognizing

movie-induced emotions. Numbers in bold indicate the best performance in the

experiment. As we can see, the physiological features achieved the best performance

8In Table 7.4, time step of 3 has three numbers in bold, time step of 1 has two numbers in bold, time
step of 2 has one number in bold.
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Table 7.5: Unimodal Movie-Induced Emotion Recognition

Model A-mse A-cc A-ccc V-mse V-cc V-ccc

LSTM

Audience Reaction Features

Physiological 0.047 0.190 0.044 0.066 0.432 0.072
Behavioural 0.049 0.183 0.082 0.064 0.129 0.054

Movie Based Features

Audio 0.054 0.218 0.055 0.069 0.134 0.033
Visual 0.060 0.126 0.018 0.090 0.152 0.025

Lexical 0.050 0.085 0.029 0.071 0.060 0.014

DIS-NV 0.049 0.124 0.010 0.069 0.115 0.011

Highlight 0.049 0.153 0.042 0.070 0.056 0.006

for predicting induced Valence. Note that the physiological features are based on

measurements of 13 participants that are different from the 10 participants whose

induced emotions are being predicted. This indicates that people share similarities in

how and what emotions are induced by the same movie. The behavioural features

are less predictive than the physiological features for Valence. This indicates that

hand movements of the audience may be caused by various factors besides induced

emotions, and contain more noise compared to the electrodermal measure.

The audio features achieved the best CC for predicting induced Arousal. This

suggests that including in-domain knowledge can benefit induced emotion recognition.

The DIS-NV features achieved better MSE than other movie-based features. This

indicates the effectiveness of our DIS-NV features for recognizing movie-induced

emotions when there is presence of dialogue. Knowledge-inspired features based on

affective cues (lexical, DIS-NV, and highlight features) achieved better MSE predicting

induced Arousal and Valence than data-driven features based on audiovisual movie

content (audio and visual features). This different behaviour of CC and MSE shows

that an evaluation metric combining correlation and error may be better for evaluating

induced emotion recognition performance. Thus, we also report the Concordance

Correlation Coefficient (CCC, see Section 7.1.2) (Lawrence and Lin, 1989).

To study the difference of feature predictiveness in more detail, we plot unimodal

predictions on Superhero which has the most dialogue (Figures 7.5 and 7.6) and on

First Bite which has the least dialogue (Figures 7.7 and 7.8) as shown in Table 7.2. As
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Figure 7.5: Arousal Predictions using Different Features on “Superhero”

we can see, when there is no dialogue (red dots of the gold-standard Arousal or Valence

lines in the figures), the lexical and DIS-NV features predict mean values. Thus they

work better for Superhero which has the most dialogue. The audiovisual predictions

are flatter than the physiological, behavioural, or knowledge-inspired features, which

may be due to noise in the audiovisual movie content. These findings are consistent

with our observations in Experiment 1 of Chapter 4.
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Figure 7.6: Valence Predictions using Different Features on “Superhero”
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Figure 7.7: Arousal Predictions using Different Features on “First Bite”
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Figure 7.8: Valence Predictions using Different Features on “First Bite”

7.2.4 Recognizing Movie-Induced Emotions with Multimodal

Models

In Table 7.6, we report results of our multimodal experiment on recognizing

movie-induced emotions. We build multimodal models using all features as well as

multimodal models using only movie based features.

For multimodal models using all features, the FL model has the best CC for

predicting Arousal, while the HL model has the best CC for predicting Valence. Recall

that the physiological and behavioural features are used at a higher layer than all other

features in HL fusion. In the unimodal experiment (Table 7.5), the audio features have

the best CC for predicting Arousal, while the physiological features have the best CC

for predicting Valence. The audio features have larger influence in FL fusion than in

HL or DL fusion, which results in better CC for predicting Arousal using FL fusion.

The DL model has the best MSE for predicting induced Arousal and Valence. This

may be related to the fact that DL fusion is not influenced by feature dimension, thus

the DL model can benefit more from the smaller DIS-NV and Highlight feature sets

which have strong MSE performance (Table 7.5). Compared to unimodal models,

the multimodal models achieved better performance on predicting Arousal, but not
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Valence. This may be because of the issue of insufficient training data.

Multimodal models using only movie based features have significantly worse

performance than multimodal models using all features. This indicates that emotion

recognition models can benefit from combining information from all possible

modalities. For multimodal models using movie based features, the DL model has

the best MSE performance and best CC of Valence, while the FL model has the best

CC of Arousal. This is because the audio features, which achieved best unimodal CC

for predicting induced Arousal (Table 7.5), have larger influence in FL fusion than in

DL fusion. HL fusion achieved the best CCC scores for both Arousal and Valence.

However, HL fusion does not give better CC or MSE scores than FL or DL fusion in

this particular case. The reason may be that we extract all features using overlapping

windows and we reduce noise in the data-driven audiovisual features by performing

feature selection. Thus, the difference between movie based feature sets in terms of

the time scale at which the features are extracted or the level of abstraction of the

features is not as large as in our experiments in Chapter 6. This limits the gain of

combining features at different levels using HL fusion. Similar to multimodal models

using all features, multimodal models using movie based features did not outperform

unimodal models in all cases, which may be because of insufficient training data again.

In Figures 7.5, 7.6, 7.7, and 7.8 we plot the predictions given by the HL model

using all features in addition to the unimodal predictions. As we can see, compared

to the models using knowledge-inspired features, the HL models avoided straight-line

predictions when there is no presence of movie dialogue. Compared to the models

using audiovisual features, the overall shape of the HL model predictions is less flat

and better captures the raises and falls of the gold-standard predictions. This illustrates

how the HL multimodal model typically yields better performance than the unimodal

models.

It is difficult to directly compare our unimodal and multimodal models with

state-of-the-art performance shown in Table 7.1 of Section 7.1.1 because of different

experimental settings, such as the time-interval that emotions are predicted on.

However, our experiments indicate that performance improvements can be achieved by

including history information, and by incorporating knowledge-inspired affective cues

in addition to the audiovisual movie content for recognizing movie-induced emotions.
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Table 7.6: Multimodal Movie-Induced Emotion Recognition

Model A-mse A-cc A-ccc V-mse V-cc V-ccc

LSTM

With All Features

FL 0.057 0.271 0.080 0.071 0.107 0.039

DL 0.044 0.189 0.021 0.070 0.163 0.038

HL 0.074 0.159 0.093 0.095 0.227 0.117

With Movie Features

FL 0.054 0.216 0.038 0.069 0.118 0.039

DL 0.044 0.182 0.012 0.057 0.178 0.032

HL 0.073 0.157 0.111 0.075 0.083 0.050

7.2.5 Summary

In Experiment 9, we studied the effectiveness of our DIS-NV features and HL fusion

for recognizing emotions induced by movies. Our experiments show that when there is

dialogue in the movie, DIS-NV features are predictive of the movie-induced emotions.

Our HL fusion gave better performance than the FL and DL fusion when evaluated

with CCC. However, because the features in this experiment are extracted at similar

time scales and have similar levels of abstraction, the gain of using HL fusion is not

as large as in Chapter 6. In the future, it may be beneficial to use the movie highlight

features as a prior to learn more flexible time windows for building the multimodal

model.

7.3 Perceived and Induced Emotions

To improve on state-of-the-art performance of emotion recognition, beyond identifying

effective features and modelling approaches, another important aspect is to collect

more natural emotion databases. However, as discussed in Section 5.2, the natural and

spontaneous emotion databases are often biased with majority of the data being neutral

or having mild emotions. To address this issue, current studies have investigated using

affective stimuli to induce certain emotions. For example, in the AVEC2012 database,

virtual agents with different personality types are used to induce target emotions in

the participants. When selecting stimuli to induce emotions, it is often assumed that

emotions perceived from the affective content (perceived emotions) are consistent
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with emotions induced by the stimuli in the spectators (induced emotions). However,

we found that this is not always the case in the AVEC2012 database. For example,

the virtual agent Poppy is designed to be cheerful and to induce positive emotions

with high Valence in the participants. However, some of the participants were actually

annoyed by Poppy and the conversation induced negative emotions with low Valence

instead. Tan (2013) also suggested that in movie making, the emotions induced in the

audiences are not always consistent with the emotions intended by the director.

Perceived and induced emotions are often not distinguished in affective research.

In fact, only a handful of previous studies have addressed the differences between

the perceived emotions of affective content and the induced emotions of the spectator,

mainly in music emotion research (Kallinen and Ravaja, 2006). However, the empirical

study of Gabrielsson (2001) has shown that emotions perceived from music are not

always consistent with the emotional responses induced by the music in the audience.

This suggests the necessity of distinguishing perceived and induced emotions. In this

chapter, we discuss the relationship between perceived and induced emotions under

the context of movie audience.

In comparison to music, movies convey complex information through multiple

modalities. Tan (1995) argued that emotions perceived from a movie can influence

the emotions induced in the audience by evoking empathy, which suggests a positive

correlation between perceived and induced emotions. However, Baveye et al. (2017)

argued that emotions intended by the directors may not always be consistent with

emotions induced in the audience, although they did not discuss perceived emotions.

To the best of our knowledge, there has been no previous work formally addressing the

relationship between perceived and induced emotions of movie audiences. Therefore,

we are motivated to bridge this gap by performing statistical analyses of the emotions

perceived from movie content and emotions induced in movie audiences. This

will provide a foundation for understanding how affective content induces emotions

in audiences, and how to use movie content information to predict movie-induced

emotions.

7.3.1 Perceived vs. Induced Emotions

When experiencing affective content, such as listening to music or watching a movie,

we perceive emotions conveyed by the affective content from characteristics of the

stimuli, such as tempi and pitch of music (Gabrielsson, 2001). On the contrary, induced
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emotions of a spectator evoked by the stimuli are related to personal experience and

individual preferences (Plantinga, 2012). For example, Gabrielsson (2001) reported

that a song perceived as happy induced stronger depression in a subject who is already

in a depressed mood. Moreover, the work of Matthews et al. (1990) indicates that

perceived emotions are more objective than induced emotions, and annotators typically

have stronger agreement over perceived emotions than induced emotions (Song et al.,

2016b). Previous work on affective content analysis does not always distinguish

between perceived and induced emotions. Although Knautz and Stock (2011) have

found consistencies between perceived and induced emotions, music emotion research

has identified fundamental differences between perceived and induced emotions (e.g.,

Gabrielsson (2001); Tarvainen et al. (2014)). Kallinen and Ravaja (2006) have also

suggested that induced emotions can have more intensive Arousal and less intensive

Valence ratings compared to perceived emotions of the same stimuli.

Compared to music emotions, there has only been limited work studying the

relationship between perceived and induced emotions of movie audiences. Hanjalic

and Xu (2005) hypothesized positive correlations between perceived and induced

emotions of movie audiences because perceived emotions can be used to estimate

a spectator’s affective reactions. However, current research on the cinematic art

form suggests that emotion induction is a complex and delicate mechanism which

is not always consistent with the expectations of the film maker and the perception

of the objective characteristics of the movie content (Tan, 2013). To the best of

our knowledge, there has been no previous work formally studying how perceived

and induced emotions of movie audiences are related. To bridge the gap between

perceived and induced emotions of movie, we extend the LIRIS-ACCEDE database by

annotating perceived emotions of the movie content in a crowd-sourced manner, and

analyse the relationship between perceived and induced movie emotions in Section 7.3.

7.3.2 Annotating Perceived Movie Emotions

Emotion annotation is more subjective compared to movie transcription in

Section 7.1.2. Previous work has suggested that to achieve reliable emotion

annotations, it is desirable to have more than 6 annotators (Busso et al., 2008).

To collect a large amount of annotations in a time and cost efficient manner, we

annotate perceived emotions of movie audiences using Amazon Mechanical Turk,9

9https://requester.mturk.com/



7.3. Perceived and Induced Emotions 121

a crowd-sourced annotation platform. We segment movies into utterance clips using

manual transcription of utterance timings (see Section 7.1.2) and collect at least 10

annotations from different annotators for each clip. The annotators were instructed

to rate the emotions expressed by movie characters on the Arousal (A), Power

(P), and Valence (V) dimensions with 1 to 9 integer scores. Note that unlike the

AVEC2012 database, the Expectancy dimension is not annotated here. We also provide

explanations of each emotion dimension and meaning of different scores. Each Human

Intelligence Task (HIT) contains clips of 5 continuous utterances from the same movie

in their original order to provide movie context to the annotators. Each utterance

appears at each of the five video windows in different HITs to reduce bias. The HITs

are in random order and we kept track of previous annotators of each movie to prevent

an utterance being annotated by the same annotator more than once. Annotators were

only allowed to annotate a clip after it finished playing, and could only submit after

annotating all clips. We published 1809 HITs and 129 annotators with various cultural

and educational backgrounds participated. An example of the annotation interface is

shown in Figure 7.9.

The 1 to 9 scores collected from the crowd-sourced annotation are normalized to

[-1,1]10 to be consistent with the induced emotion annotation. We compute means

of the annotations from multiple annotators collected on each utterance of the movie

dialogue as the perceived emotion annotation, resulting in utterance-level Arousal,

Power, and Valence annotations of perceived emotion of movie audiences.

7.3.3 Experiment 10: Perceived and Induced Emotions

In Experiment 10, we study the relationship between emotions perceived from and

induced by movies. Note that the induced emotions are annotated at each second,

while the perceived emotions are annotated at utterance-level which is generally longer

than one second. Thus, we align the annotations by computing mean values of

induced Arousal and Valence scores over each movie utterance as the utterance-level

induced emotion annotation. We then calculate the CC between perceived and induced

emotions for each movie independently. We computed the weighted average of CC

over all 8 movies and report the results in Table 7.7. In the first row, “Per” represents

perceived emotions, “Ind” represents induced emotions. To evaluate the practical

significance of CC, following the model of Cohen (1988), we interpret absolute CC

10“1” = -1, “2” = -0.75, “3” = -0.5, “4” = -0.25, “5” = 0, “6” = 0.25, “7” = 0.5, “8” = 0.75, “9” = 1
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Figure 7.9: Example of Amazon Mechanical Turk Annotation Interface

values at around 0.1, 0.3, and 0.5 as reflecting the effect size of small, medium, and

large magnitude respectively (coloured as yellow, blue, and red in Table 7.7).

As we can see, perceived Arousal, Power, and Valence are highly positively

correlated with each other, while induced Arousal and Valence are moderately

negatively correlated with each other. This may be related to perceived emotion

annotation being a more objective task. The negative correlation between induced

Arousal and Valence is consistent with the work of Warriner et al. (2013) which found

a CC of -0.185 between crowd-sourced annotations of induced Arousal and Valence

collected for nearly 14,000 English lemmas. This suggests that induced negative

emotions may have stronger Arousal than induced positive emotions. However, no

definitive conclusions can be made because of the small absolute CC value. Induced

Valence and perceived emotions have moderately positive correlations, while induced



7.3. Perceived and Induced Emotions 123

Table 7.7: CC Between Perceived and Induced Emotions

Emotion Per-A Per-V Per-P Ind-A

Per-V 0.538 # # #

Per-P 0.652 0.471 # #

Ind-A -0.095 -0.366 -0.170 #

Ind-V 0.243 0.345 0.307 -0.388

Arousal and perceived emotions are weakly or moderately negatively correlated.

In particular, perceived Arousal and induced Arousal are only weakly negatively

correlated. This inconsistency between perceived and induced emotions indicates

fundamental differences between emotions perceived from and induced by movies.

Emotion induction is a complex process. Various factors other than the emotions

the movie content conveys can influence what emotional response is induced in the

audiences. The assumption that perceived and induced emotions are consistent is not

accurate and researchers need to take extra caution when designing experiments for

affective content analysis research and when collecting emotion databases by inducing.

For example, pilot studies should be conducted to test whether or not a chosen stimuli

can induce the target emotion in a specific person.

In Table 7.8, we study the individual differences on induced and perceived emotion

annotations by calculating the average standard deviations of the annotations on each

movie. In the first row, “Per” represents perceived emotions, “Ind” represents induced

emotions. For induced emotions, we use the original annotations per second. For

perceived emotions, we use the annotations per utterance. At an emotion annotation

step t (a second or an utterance of a movie), we compute the standard deviation over

all N annotators as below:

Stdt =

√
1

N−1

N

∑
i=1

(Annotationtrateri
−Annotationt)2 (7.2)

We report the average of the standard deviations Stdt for all emotion annotation

steps of a movie. As we can see, the average standard deviation for perceived emotions

is larger than that for induced emotions for all movies. This may be due to the

use of crowd-sourced annotation for perceived emotion annotation. The perceived

emotion annotation was given by 129 untrained annotators from various cultural and

educational backgrounds, while the induced emotion annotation was given by 10

trained annotators who are undergraduate to recently graduated master students from
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Table 7.8: Standard Deviations of Induced and Perceived Emotion Annotations of

Multiple Annotators

Movie Per-A Per-V Per-P Ind-A Ind-V

After the Rain 0.433 0.389 0.374 0.340 0.230

First Bite 0.404 0.328 0.353 0.239 0.196

Nuclear Family 0.432 0.425 0.462 0.307 0.319

Payload 0.445 0.425 0.421 0.306 0.208

Spaceman 0.390 0.364 0.365 0.294 0.222

Superhero 0.387 0.456 0.444 0.307 0.253

Tears of Steel 0.462 0.398 0.430 0.302 0.278

The Secret Number 0.439 0.365 0.390 0.264 0.247

France. Therefore, these 10 trained annotators share more similarities in emotion

induction and agree more in their annotations.

7.3.4 Summary

In Experiment 10, we collected crowd-sourced annotations of emotions perceived from

movies and studied the relationship between emotions perceived from and induced by

movies. Our statistical analysis showed that perceived and induced emotions are not

always positively correlated. Thus, when collecting emotion databases by inducing,

instead of assuming that the emotions perceived from the stimuli will be consistent

with the emotions induced in the participants, pilot studies should be done first to

verify whether or not the stimuli can induce the target emotions.

7.4 Discussion

In this chapter, we applied our DIS-NV features and HL fusion to recognizing

movie-induced emotions. Our unimodal experiment indicates that the DIS-NV features

are effective for recognizing movie-induced emotions when there is dialogue, and

the amount of temporal context suitable for movie-induced emotion recognition is

9 seconds. Our multimodal experiment indicates that improved performance can be

achieved by combining knowledge-inspired affective cues with audiovisual movie

content. Our HL fusion is shown to be more predictive than FL and DL fusion

for recognizing movie-induced emotions when using an evaluation metric combining
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both correlation and value error. Our experiments indicate that although designed

specifically for emotion recognition in spoken dialogue, other emotion-related tasks

may benefit from our proposed DIS-NV features and HL fusion strategy as well. Note

that our induced emotion recognition experiments here are preliminary. Improved

performance may be achieved in the future by optimizing feature representations and

model structures.

Similar to our experiments in Chapters 5 and 6, the small amount of labelled data

available for affective content analysis limits performance of movie-induced emotion

recognition significantly. Inspired by audiovisual features benefitting from including

in-domain knowledge, it may be beneficial to apply transfer learning for predicting

movie-induced emotions. In addition to using semi-supervised and unsupervised

algorithms to address the issue of insufficient training data, it is also important

to collect more natural emotion databases. To collect emotion databases of target

emotions, affective contents, such as movie or music, are often used to induce

emotions in the participants. To understand the relationship between the emotions

perceived from affective content and the emotions induced in the spectator, we collect

crowd-sourced annotations of perceived emotions on the continuous LIRIS-ACCEDE

database. We find that emotions perceived from and induced by movies are not always

positively correlated. When selecting stimuli for emotion induction, there is much

more to be considered than simply assuming that the perceived emotions of the stimuli

will be consistent with the emotions induced in spectators.





Chapter 8

Towards an Emotional

Human-Computer Interaction System

The robopsychologist continued: “Here is what we’re going to do.”

— Isaac Asimov, I, Robot (1950)

In this chapter, we discuss the contributions and limitations of this thesis. We also

discuss possible future directions for applying the proposed emotion recognition model

to a Human-Computer Interaction (HCI) system to improve emotional interaction

quality.

8.1 Conclusion

In this thesis, we explored approaches to improve state-of-the-art performance of

emotion recognition in spoken dialogue using acoustic and lexical features. In this

section, we first summarize the contributions of our work. We then discuss the

limitations and possible future directions to address them.

8.1.1 Major Findings and Contributions

Emotion recognition has been a focus in Affective Computing since the establishment

of the field. We are especially interested in recognizing emotions in spoken

dialogue because of its potential to be applied to Human-Computer Interaction

systems and improve the interaction quality. Emotion recognition in spoken dialogue

is a challenging task and state-of-the-art performance leaves considerable room

for improvement. In this thesis, we proposed two approaches for improving
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the state-of-the-art of emotion recognition in spoken dialogue, namely the use of

DISfluency and Non-verbal Vocalisation (DIS-NV) features, and the HierarchicaL

(HL) fusion strategy. The knowledge-inspired DIS-NV features describe occurrences

of filled pause, filler, stutter, laughter, and audible breath in utterances. The HL fusion

strategy combines information from different modalities in a hierarchical structure

which incorporates features that are more abstract or are extracted from longer time

intervals at higher layers of the model. We conducted experiments on the AVEC2012

database of spontaneous dialogue and the IEMOCAP database of acted dialogue to

study the performance of the proposed approaches. Emotions are defined as vectors in

the Arousal-Expectancy-Power-Valence multi-dimensional space in this work.

Our results show that the DIS-NV features are predictive of emotions in

spontaneous dialogue when used alone. The DIS-NV features achieved the

best-reported result on the Expectancy emotion dimension, which describes levels

of uncertainty. This is consistent with Psycholinguistic studies that suggest that

disfluencies are indicators of speaker uncertainty. Among different types of DIS-NV

features, filled pauses and laughter are the most predictive of emotions in terms of

individual effectiveness. Incorporating the DIS-NV features with other benchmark

acoustic and lexical features yields improved performance for emotion recognition on

both spontaneous and acted dialogue. This verifies that DIS-NVs contain additional

information that is predictive of emotions beyond the acoustic characteristics or

the lexical content of speech. Conventional acoustic and lexical features used in

state-of-the-art research on recognizing emotions in spoken dialogue have focused

on speech in isolation, while specific characteristics of spoken dialogue compared to

other forms of speech (e.g., monologue) are often overlooked. The effectiveness of the

proposed DIS-NV features suggests that awareness of dialogue-specific cues in speech

can benefit emotion recognition in spoken dialogue.

Our cross-corpora experiments illustrate the fundamental differences between

spontaneous and acted dialogue, and how these differences influence the effectiveness

of features and models for emotion recognition. In general, there are fewer DIS-NVs

in acted dialogue, which limits the effectiveness of DIS-NV features for emotion

recognition in acted dialogue. Acted dialogue is also acoustically exaggerated

compared to the spontaneous dialogue, which results in acoustic features being

more effective than lexical features for emotion recognition in acted dialogue. Our

results also verified that models that are able to include contextual information

and automatically learn more abstract feature representations typically yield better
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performance than non-contextual models which use the extracted features directly.

However, the lack of annotated training data in emotion databases may limit the

performance of emotion recognition models.

To increase the gain from combining different modalities, we proposed a

HierarchicaL (HL) fusion strategy. Compared to the state-of-the-art Feature-Level

(FL) and Decision-Level (DL) fusion strategies which combine modalities at the same

level, our HL fusion is able to model both inter and intra modality differences. The

knowledge-inspired structure of HL fusion captures the differences between various

feature representations on two aspects: the level of abstraction over the data, and the

time scale at which the features are extracted. Our experiments on both spontaneous

and acted dialogue showed improved results of multimodal emotion recognition using

HL fusion compared to using FL or DL fusion.

To study how the efficacy of the proposed approaches can generalize to other

emotion related tasks, we applied our DIS-NV features and the HL fusion strategy

to the problem of recognizing movie-induced emotions of audiences. The experiments

indicated that our emotion recognition model is predictive of movie-induced emotions.

The HL fusion strategy outperformed FL and DL fusion, which suggests that other

multimodal recognition tasks can benefit from HL fusion as well.

Our work contributes to the Affective Computing community by improving the

state-of-the-art of emotion recognition in spoken dialogue. We identified effective

DIS-NV features, and studied the relationship between DIS-NVs and emotions in

dialogue. This contributes to the Psycholinguistic understanding of emotions in

dialogue as well. We also studied how different aspects of the data can influence

performance of emotion recognition approaches. Our experiments suggest that features

and models should be chosen carefully to fit the context of a specific emotion

recognition task. The HL fusion strategy we proposed was shown to be an effective

modality fusion strategy for multimodal recognition tasks beyond emotion recognition

in spoken dialogue.

8.1.2 Limitations

In the proposed emotion recognition model, for the lexical modality, we use basic

features derived from affective dictionaries. However, sentiment analysis from text

itself is a growing field. Thus, in the future we are interested in experimenting with an

advanced text sentiment analysis classifier for predicting emotions in spoken dialogue,
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e.g., the Stanford CoreNLP tool (Manning et al., 2014). We expect that our emotion

recognition model will benefit from using a more sophisticated sentiment analysis

method in the lexical modality, especially on the Valence dimension.

When building the emotion recognition model, we down-sampled frame-level

features to the longer time interval (e.g., taking the mean of frame-level LLD features

over a word as the LLD features for this word). This results in detailed information

from shorter time intervals being lost in the recognition model, which may reduce

the performance of emotion recognition. Thus, we plan on studying whether or not

performance improvement can be achieved by building a recognition model capable

of preserving frame-level information with asynchronous feature processing. For

example, using the Phased LSTM model (Neil et al., 2016) instead of the regular

LSTM model. We are also interested in identifying the optimum time interval for

annotating and recognizing each emotion dimension.

Our experiments in Chapter 7 indicate that different emotion dimensions may be

correlated. Thus, the emotion recognition model may benefit from using a multi-task

learning algorithm which predicts all emotion dimensions simultaneously. The issue

of insufficient training data encountered in this work and current emotion recognition

research highlights the need to collect more natural emotion databases and to develop

semi-supervised and unsupervised emotion recognition models. Current emotion

recognition studies have focused on building a robust model. However, for HCI

systems, an emotion recognition model being able to adapt to an individual user

is preferred. This stresses the need for semi-supervised and unsupervised emotion

recognition models that learn from and adapt to incremental data collected from an

individual user over the interaction.

Our work and most state-of-the-art emotion recognition studies rely on intrinsic

metrics. Although most current studies report results that are statistically significantly

different, the improvement is often limited, with small absolute values. This indicates

that emotion recognition is a challenging task. Because our long-term goal is to

improve the interaction quality of HCI systems, we are curious to learn if the

performance improvements shown in the intrinsic evaluation of different emotion

recognition approaches are noticeable to human users when applied to a HCI system.

Thus, in the future we would like to combine our emotion recognition models with

emotion interaction models and emotion synthesis models, and perform extrinsic

evaluation methods to study whether or not the efficacy of the proposed approaches

can improve the emotional interaction quality and benefit fully automatic HCI systems.
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Note that in a fully automatic HCI system it is important to provide real-time

responses to the user. However, we did not test the real-time factor of our emotion

recognition model discussed in this thesis. Thus, in the future we also plan to study

the trade-off between better emotion recognition performance and shorter response

delays when applying our emotion recognition model to a fully automatic HCI system.

Under the HCI setting, it is also possible to view emotions as a hidden variable of

the system response. Thus, we are interested in exploring learning an end-to-end

interaction strategy in the future instead of requiring emotion labels to train the emotion

recognition model.

8.2 Emotional Interaction in Human-Computer

Interaction Systems

Similar to most studies on automatic emotion recognition, our work relies on

intrinsic measures to evaluate different approaches (e.g., correlation coefficients or

classification accuracies). This leads to an open question in emotion recognition:

when the emotion recognition model is applied to a HCI system, will the performance

improvements shown in intrinsic tests translate to improvements in emotional

interaction quality (e.g., higher engagement and satisfaction of the user)? We plan

to work on this question in the future by integrating our emotion recognition model

with a working HCI system and performing extrinsic evaluation measures.

To apply our emotion recognition model to a HCI system and realize emotional

interaction, we will need an emotion interaction model, which can decide suitable

responses to the recognized emotions of the user, as well as an emotion synthesis

model, which can generate expressive feedback. In this section, we review

state-of-the-art approaches on emotion modelling and emotion synthesis.

8.2.1 Emotion Modelling

Emotional interaction is a complex process in human communication (Zhao et al.,

2014). Emotion modelling remains an open question in Affective Computing. Most

earlier emotion interaction models in HCI systems were rule-based. For example, rules

written by pedagogy experts were used in the tutoring system of Wiemer-Hastings

et al. (1998). Such rule-based models can generate suitable responses and work

fairly well in a more restricted scenario, but the lack of flexibility may bore the user
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quickly. The rules are brittle and it is impossible to cover all possible occasions. This

is in fact a common issue in rule-based Artificial Intelligence systems. In contrast,

more recent studies build machine learning models that learn from multiple dialogue

corpora to establish a pool of detailed and flexible response rules (e.g., Shawar and

Atwell (2005)). However, the model requires large amounts of transcribed dialogue

to learn sophisticated rules. Another common strategy is simple mimicking of the

user’s behaviour (e.g., McGettigan et al. (2015)). Psychological studies have shown

that humans mimic their conversational partner’s behaviour (e.g., facial expressions)

during interaction to strengthen the social bond (Chartrand and Bargh, 1999). Besides

lack of flexibility, rule-based emotion interaction models also have the issue of ignoring

long-term context. In other words, a rule-based model generates feedback based on

the current emotional states of the user, but does not consider long-term factors such as

dialogue history or the personality of the user. However, such contextual information

has been shown to be important for improving the interaction quality of HCI systems

(Zhang et al., 2016a).

Beyond rule-based emotion interaction models, there has been increasing interest

in developing more flexible and context-aware emotion interaction models in the

current Affective Computing community. Marsella et al. (2010) provided an overview

of current emotion modelling approaches. As shown in Figure 8.1, many of the

state-of-the-art emotion models are based on Ortony’s appraisal theory of emotion

(Ortony et al., 1990). An example of the appraisal-based emotion models is the

EMA (EMotion and Adaptation) model of Marsella and Gratch (2009). As shown

in Figure 8.2, the EMA model studies the appraisal dynamics generated by a person’s

causal interpretation of the environment. This single-level appraisal model is able

to describe naturalistic emotional situations at multiple temporal and cognitive levels.

There are also hybrid emotion models, such as the ALMA (A Layered Model of Affect)

emotion interaction framework by Gebhard (2005). In the ALMA model, emotional

interaction is described with a three layer model and emotions are defined as vectors

in the Arousal-Power-Valence emotional space. The ALMA model uses the current

emotional states of the user as the short-term factors, moods of the user as the mid-term

factors, and personality traits of the user as the long-term factors. The ALMA model is

widely used for developing virtual agents (e.g., Schroder et al. (2012); Jia et al. (2014);

Jain and Asawa (2016)), Non-Player Characters in games (e.g., Lim et al. (2012)), and

social robots (e.g., Magnenat-Thalmann and Zhang (2014)) in current HCI research.

Considering that our emotion recognition model is based on the appraisal emotion
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theory, it is natural to combine our emotion recognition model with an appraisal-based

emotion interaction model.

Figure 8.1: An Overview of Computational Models of Emotions (Marsella et al., 2010)

Figure 8.2: The EMA Emotion Model (Marsella and Gratch, 2009)

8.2.2 Emotion Synthesis

Humans are sensitive to expressions of emotions. Moreover, currently, how to

generate natural emotion expressions that are believable to humans remains an open

question. Current research on synthesizing emotional feedback is conducted mainly

on the audio modality (expressive speech synthesis) and the visual modality (facial

expression synthesis, gesture and movement synthesis). For the audio modality,
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most state-of-the-art expressive speech synthesis approaches have focused on prosody

modelling. Parameter mapping rules based on Paralinguistic studies were used in

earlier systems (e.g., Schröder and Trouvain (2003)). In recent studies, machine

learning algorithms that automatically learn the parameter mapping have gained

increasing attention. For example, Kobayashi (2015) used a Hidden Markov Model

to enhance prosodic variances and to transform the synthesized neutral speech to

expressive speech. Besides parameter mapping, unit selection methods that generate

speech by selecting and concatenating short segments of speech recordings are also

applied to expressive speech synthesis (e.g., Zhang et al. (2015)).

For the visual modality, to synthesize facial expressions in virtual agents, machine

learning algorithms are used either to learn facial landmark movement trajectories

(e.g., Cao et al. (2013)) or to model muscle movements (e.g., Yu et al. (2014)) from

human facial expression databases. To synthesize gestures and movements in virtual

agents or robots, contextual models such as Hidden Markov Models used by Bozkurt

et al. (2015) are applied to learn the relations between the intensity and energy of

movements and perceived emotions. There are empirical studies identifying relations

between specific movements and emotions as well (e.g., Dael et al. (2013); Novikova

et al. (2015)).

State-of-the-art HCI systems typically perform emotion synthesis on multiple

modalities to achieve more believable emotion expressions. In a dialogue system,

emotions are mostly conveyed through the audio modality. However, emotion masking

of the lexical contents of the synthesized speech is also important for a natural and

believable emotional response. In addition, the balance between naturalness and

expressiveness remains an open question in emotion synthesis.

8.3 Summary

The major finding of this thesis is that including prior knowledge on emotions, either

in the feature representation or in the model structure, is beneficial for automatic

emotion recognition. The context of the emotion recognition task is vital for building

an effective recognition model. In particular, for emotion recognition in spoken

dialogue, instead of analysing each utterance in isolation as a common speech emotion

recognition task, it is important to take dialogue-related knowledge into account.

Our work contributes to the Affective Computing community by identifying

effective approaches for emotion recognition in spoken dialogue. Moreover, our
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work contributes to the Psycholinguistic understanding of emotions by exploring the

relationship between dialogue characteristics and speaker’s emotions in different types

of spoken dialogue. In the future, our emotion recognition model has the potential to

be integrated into HCI systems and improve the interaction quality.





Appendix A

Review of Existing Emotion Databases

To support our discussion in Section 3.1.2 on current emotion databases, in the

following tables we review the most recent or widely used emotion databases. In

the “Modality” columns, “a” represents the database includes audio recordings, “v”

represents the database includes video recordings, “p” represents the database includes

physiological signal recordings. In the “Emotion” columns, “Big-6” represents the

Big-6 categorical emotions are used for emotion annotation (Ekman et al., 1987). In the

“Type” columns, “a” represents data collection by acting, “i” represents data collection

by inducing, “n” represents data collection by recording natural and spontaneous

behaviours.
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Appendix B

Lists of Low-Level Descriptors (LLDs)

and Functionals Used for Acoustic

Feature Extraction

In Section 3.4.1 we introduced the LLD acoustic features and the eGeMAPS acoustic

features, which are benchmark feature sets used in state-of-the-art emotion recognition

research. Here we provide the list of LLDs and functionals used for extracting these

features. The LLDs and functionals shared between the AVEC2012 baseline LLD set

and the IS10 LLD set are in bold in the tables.

B.1 AVEC2012 Baseline LLD Set and InterSpeech 2010

LLD Set

We extracted two LLD acoustic feature sets: the AVEC2012 baseline LLD set, and

the InterSpeech 2010 LLD set. Below are lists of LLDs and functionals used for

extracting these features. The items in bold are shared between these two feature

sets. In Table B.1 and Table B.3, “F2F” is short for “frame-to-frame”. F0 is

sub-harmonic summation followed by Viterbi smoothing. F2F jitter is pitch period

length deviations. F2F shimmer is amplitude deviations between pitch periods. In

Table B.2 and Table B.4, “STD” is short for standard deviation. “LA” is short for

linear approximation. In Table B.3, the loudness is normalized intensity raised to a

power of 0.3. In Table B.4, “IQR” is short for inter-quartile range.
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Table B.1: 31 LLDs used for the AVEC2012 LLD set (Schuller et al., 2012)

Energy & spectral (25)

loudness (auditory model based) skewness

energy in bands 250Hz-650Hz and 1kHz-4kHz harmonicity

25%, 50%, 75%, and 90% spectral roll-off points entropy

spectral flux MFCC 1-10

zero crossing rate kurtosis

variance psychoacousitc sharpness

Voicing related (6)

probability of voicing F0

logarithmic Harmonics-to-Noise Ratio F2F jitter
differential F2F jitter F2F shimmer

Table B.2: 42 functionals used for the AVEC2012 LLD set (Schuller et al., 2012)

Statistical functionals (38)

(positive) arithmetic mean arithmetic STD
outlier-robust min value (1% percentile) skewness

outlier-robust max value (99% percentile) kurtosis

outlier robust signal range (1%-99% percentile) quartiles

percentage of frames contour above 25%, 50%, 90% flatness

percentage of frames contour is rising inter-quartile ranges

max, min, mean, STD of segment length LPC 1-5

mean, STD of rising and falling slopes LP gain

mean, STD of inter maxima distances root quadratic mean

amplitude mean of maxima and minima amplitude range of maxima

Regression functionals (4)

quadratic regression coefficient a linear error of LA
linear regression slope quadratic error of LA
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Table B.3: 38 LLDs used for the InterSpeech 2010 LLD set (Eyben et al., 2010a)

Energy & spectral (32)

8 line spectral pair frequencies (from 8 LPC coefficients) loudness

logarithmic power of Mel-frequency bands 0-7 MFCC 0-14

Voicing related (6)

envelope of the smoothed F0 contour F2F jitter
voicing probability of the final F0 candidate F2F shimmer
differential F2F jitter smoothed F0 contour

Table B.4: 21 functionals used for the InterSpeech 2010 LLD set (Eyben et al., 2010a)

Statistical functionals (17)

absolute frame position of max arithmetic mean
absolute frame position of min arithmetic STD
first quartile (25%, 50%, and 75% percentile) skewness (3rd order moment)

percentage of time the signal is above 75% and 90% kurtosis (4th order moment)

outlier-robust min value (1% percentile) IQR quartile2-quartile1

outlier-robust max value (99% percentile) IQR quartile3-quartile2

outlier robust signal range (1%-99% percentile) IQR quartile3-quartile1

Regression functionals (4)

linear error of LA slope (m) of LA

quadratic error of LA offset (t) of LA
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B.2 Expanded Geneva Minimalistic Acoustic

Parameter Set (eGeMAPS)

Compared to the AVEC2012 baseline LLD features and the InterSpeech 2010 LLD

features, the eGeMAPS feature set contains a small number of LLDs motivated by

Psycholinguistic studies. The LLDs and functionals used for extracting the eGeMAPS

feature set are listed below. In Table B.5, loudness is estimation of perceived signal

intensity from an auditory spectrum, spectral flux is the difference of the spectra of

two consecutive frames, pitch is logarithmic F0 on a semitone frequency scale starting

at 27.5 Hz, “RoE” is short for ratio of energy, “LRS” is short for Linear Regression

Slope.

Table B.5: 25 LLDs used for the eGeMAPS feature set (Eyben et al., 2015b)

Energy & spectral (15)

LRS of the log power spectrum of 0-500Hz loudness

LRS of the log power spectrum of 500-1500Hz spectral flux

ratio of summed energy: 50Hz-1kHz, 1kHz-5kHz MFCC 1-4

ratio of strongest energy peak in 0-2kHz to 2kHz-5kHz RoE: F1 to F0

RoE: first F0 harmonic to second F0 harmonic RoE: F2 to F0

RoE: first F0 harmonic to the highest F3 harmonic RoE: F3 to F0

Voicing related (10)

deviations in individual consecutive F0 period lengths pitch

peak amplitude difference of consecutive F0 periods centre frequency: F1, F2, F3

RoE: harmonic components to noise-like components bandwidth: F1, F2, F3

Table B.6: 13 Functionals used for the eGeMAPS feature set (Eyben et al., 2015b)

Functionals applied to the voiced segments (8)

the range of 20th to 80th percentile 20th percentile

mean and standard deviation of rising slopes 50th percentile

mean and standard deviation of falling slopes 80th percentile

Functionals applied to the unvoiced segments (5)

Hammarberg Index mean of Alpha Ratio

spectral slopes from 0-500 Hz and 500-1500Hz mean of spectral flux



Appendix C

Descriptive Statistics of the DIS-NVs

and the Global Prosodic Features

To study the differences between spontaneous and acted dialogue, we examined

distributions of DIS-NVs and Global Prosodic (GP) features of Bone et al. (2014)

on each emotion dimension for each databases in Chapter 5. This appendix contains

additional distribution figures.

C.1 Distribution of DIS-NVs

In these histograms of DIS-NV distribution, dark blue, red, and light blue represent the

category low, medium, and high respectively for each emotion dimension. The x axis

represents the percentage of the total duration of a utterance being a DIS-NV, the y axis

represents the percentage of utterances with the same value on the x axis. We set the

maximum value of y axis to 10 (10% of total utterances) and only plot the utterances

that contains this type of DIS-NV in order to show the distribution more clearly.

As shown in the Expectancy graph of Figure C.2, there is no laughter in utterances

with high Expectancy in spontaneous dialogue. This is consistent with the empirical

knowledge that laughter is more likely to occur as an unexpected affective burst (Scott,

2013).

C.1.1 Spontaneous AVEC2012 Database

147



148Appendix C. Descriptive Statistics of the DIS-NVs and the Global Prosodic Features

Portion of Filled Pause in utterances
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Figure C.1: Filled Pause Distribution in AVEC2012 Utterances
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Portion of Laughter in utterances
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Figure C.2: Laughter Distribution in AVEC2012 Utterances
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Portion of Audible Breath in utterances
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Figure C.3: Filler Distribution in AVEC2012 Utterances
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Portion of Stutter in utterances
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Figure C.4: Stutter Distribution in AVEC2012 Utterances
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Portion of Filler in utterances

P
e
rc

e
n
t 
o
f 
T
o
ta

l

0

1

2

3

4

5

6

7

8

9

10

0.0 0.1 0.2 0.3

low

0.0 0.1 0.2 0.3

medium

0.0 0.1 0.2 0.3

high

(a) Arousal Portion of Filler in utterances

P
e
rc

e
n
t 
o
f 
T
o
ta

l

0

1

2

3

4

5

6

7

8

9

10

0.0 0.1 0.2 0.3

low

0.0 0.1 0.2 0.3

medium

0.0 0.1 0.2 0.3

high

(b) Expectancy

Portion of Filler in utterances

P
e
rc

e
n
t 
o
f 
T
o
ta

l

0

1

2

3

4

5

6

7

8

9

10

0.0 0.1 0.2 0.3

low

0.0 0.1 0.2 0.3

medium

0.0 0.1 0.2 0.3

high

(c) Power Portion of Filler in utterances

P
e
rc

e
n
t 
o
f 
T
o
ta

l

0

1

2

3

4

5

6

7

8

9

10

0.0 0.1 0.2 0.3

low

0.0 0.1 0.2 0.3

medium

0.0 0.1 0.2 0.3

high

(d) Valence

Figure C.5: Audible Breath Distribution in AVEC2012 Utterances
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C.1.2 Non-Scripted Subset of the IEMOCAP Database
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Figure C.6: Filled Pause Distribution in Non-Scripted IEMOCAP Utterances
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Figure C.7: Laughter Distribution in Non-Scripted IEMOCAP Utterances
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Figure C.8: Filler Distribution in Non-Scripted IEMOCAP Utterances
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Figure C.9: Stutter Distribution in Non-Scripted IEMOCAP Utterances
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Figure C.10: Audible Breath Distribution in Non-Scripted IEMOCAP Utterances

C.1.3 Scripted Subset of the IEMOCAP Database
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Figure C.11: Filled Pause Distribution in Scripted IEMOCAP Utterances
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Figure C.12: Laughter Distribution in Scripted IEMOCAP Utterances
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Figure C.13: Filler Distribution in Scripted IEMOCAP Utterances
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Figure C.14: Stutter Distribution in Scripted IEMOCAP Utterances
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Figure C.15: Audible Breath Distribution in Scripted IEMOCAP Utterances
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C.2 Distribution of Global Prosodic (GP) Features

Here we plot the smoothed density graphs of the Global Prosodic (GP) features of

Bone et al. (2014) over utterances of the spontaneous AVEC2012 database and the

acted IEMOCAP database. Dark blue, red, and light blue represent low, medium, and

high Expectancy, respectively.

C.2.1 Distribution of GP Features on the Arousal, Power, and

Valence Dimension

Note that the Expectancy dimension was not annotated on the IEMOCAP database.

Therefore, here we compared the distribution of GP features in both databases on the

Arousal, Power, and Valence dimensions.

C.2.1.1 Distribution of Log Pitch

In Figures C.16, C.17, and C.18, we plot the distributions of the median log pitch

over utterances of both databases. As we can see, the log pitch distribution on

the AVEC2012 database (left-most graphs in each figure) is more grouped than the

distribution on the IEMOCAP database (middle and right-most graphs in each figure),

which indicates the utterances in the AVEC2012 database have less variation in log

pitch values than utterances in the IEMOCAP database. For log pitch distribution

on non-scripted IEMOCAP utterances (middle graphs in each figure), such grouping

effect is less obvious, while in the scripted IEMOCAP utterances (right-most graphs

in each figure) this grouping is hardly visible.
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Figure C.16: Log Pitch Distribution on Arousal
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Figure C.17: Log Pitch Distribution on Power
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Figure C.18: Log Pitch Distribution on Valence

C.2.1.2 Distribution of Intensity

In Figures C.19, C.20, and C.21, we plot the distribution of the median intensity over

utterances of both databases.
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Figure C.19: Intensity Distribution on Arousal
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Figure C.20: Intensity Distribution on Power
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Figure C.21: Intensity Distribution on Valence

C.2.1.3 Distribution of Voice Quality

In Figures C.22, C.23, and C.24, we plot the distribution of the Voice Quality (HF500)

over utterances of both databases.
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Figure C.22: Voice Quality (HF500) Distribution on Arousal



160Appendix C. Descriptive Statistics of the DIS-NVs and the Global Prosodic Features

−2 0 2 4

0
.0

0
.5

1
.0

1
.5

Voice Quality (HF500) of utterances

D
e

n
s
it
y

low
medium
high

(a) AVEC2012

−1 0 1 2 3

0
.0

0
.2

0
.4

0
.6

0
.8

Voice Quality (HF500) of utterances

D
e

n
s
it
y

low
medium
high

(b) Non-Scripted IEMOCAP

−1 0 1 2 3

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

1
.2

Voice Quality (HF500) of utterances

D
e

n
s
it
y

low
medium
high

(c) Scripted IEMOCAP

Figure C.23: Voice Quality (HF500) Distribution on Power
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Figure C.24: Voice Quality (HF500) Distribution on Valence

C.2.2 Distribution of GP Features on the Expectancy Dimension

Figure C.25 contains smoothed density graphs of GP feature distributions on the

Expectancy dimension in the AVEC2012 database.
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Figure C.25: GP Distributions on Expectancy Dimension in AVEC2012 Utterances
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