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ABSTRACT

The p53 tumour-suppressor protein plays a critical role in the cellular response to

environmental and intracellular stresses that threaten DNA integrity. Inactivation of

p53 represents an important step during carcinogenesis and is associated with

genomic instability and tumour development. A key transcriptional target of p53 is
the cyclin-dependent kinase inhibitor, p21WAF1/CIP1 (hereafter referred to as p21),
which mediates p53-dependent G1 arrest. The role of p21 in tumour development
remains contentious. Early studies showed that p21 mutations are rare in human
cancers however there is a growing list of human carcinomas that have aberrant p21
expression. p21-null animals also have elevated tumour incidence, but the
mechanism underlying this is not yet defined.

Our data identifies p21 as a component of a positive feedback loop that
maintains the p53 transcriptional response. Three model systems were used to

characterise this novel mechanism of p53 regulation. In the human colon carcinoma
cell line HCT116 with targeted inactivation of p21, p53 stabilisation is uncoupled
from its activity as a transcription factor and shows defects in the p53 response to

DNA damage and double stranded RNA, indicating that a common mechanism

prevents p53 activation by distinct stresses in the absence of p21. The p53

transcriptional programme in response to cellular damage can be reactivated after

complementation of the p21 gene into the HCT116 p21-null cells. In B-cells from
mice lacking the p21 gene, a striking loss of the p53-dependent transcription

programme was identified using p53-specific microarray screens. Gene dosage
effects indicate a progressive loss of p53 function in B-cells heterozygous or

homozygous null for p21. Similarly, siRNA to p21 can attenuate the p53-dependent

transcription response in normal human fibroblasts. In all three model systems,

deletion of the p21 gene results in p53 nuclear export and eliminates the p53

transcriptional response. This data indicates that p53 has evolved a co-ordinated

transcription mechanism to control its own function: a positive feedback loop
maintained by p21 and a negative feedback loop maintained by MDM2, whose
balance controls the specific activity of p53.

xx



CHAPTER 1

INTRODUCTION

1.1 Cancer

Cancer is a genetic disease, resulting from mutations that activate proto-oncogenes

and restrain tumour-suppressor genes, leading to the unrelenting clonal expansion of

abnormal cells which invade, subvert and erode normal tissues (Evan & Vousden,

2001; Michor et al., 2004; Volgelstein & Kinzler, 2004). Cancer arises by

evolutionary processes. Genetic diversity generated by mutagenesis provides the

basis for natural selection. Similarly, multiple genetic changes which are followed by

clonal selection are required for the generation of tumours (Evan & Vousden, 2001;

Albertella, et al., 2005). Epidemiological studies of the kinetics of tumour

appearance in human populations indicated that four to six distinct somatic mutations

were required to accomplish the process of transformation (Hahn & Weinberg, 2002).

Interestingly, it has been proposed that an early event in tumourigenesis is the

mutation of a gene involved in the fidelity of DNA replication or efficiency of DNA

repair (Loeb et al., 1974). Such a mutation would increase the likelihood of

alterations in additional genes involved in genome maintenance, and thus initiate a

cascade of mutations throughout the genome that under selective pressure may result

in the development of malignant cancer cells.
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Ultimately the genetic instability driving tumourigenesis is fuelled by DNA

damage and errors made by the DNA repair machinery (Fei & El-Deiry, 2003).

Consequently, cells have evolved elaborate mechanisms, including cell cycle

checkpoints, to monitor genomic integrity and ensure high fidelity transmission of

genetic information (Bartek & Lukas, 2001). A crucial protein in preventing the

accumulation of cancer-causing mutations and maintaining genomic stability is the

tumour suppressor protein, p53 (Lane, 1992).

1.2 The p53 Tumour Suppressor

1.2.1 Discovery and classification of p53

The p53 protein was originally identified in mouse cells transformed with the small

DNA tumour virus, Simian Virus 40 (Lane & Crawford, 1979). The viral T-antigen

protein, essential for the initiation and maintenance of the transformed phenotype,

was shown to bind to a cellular protein of apparent molecular mass of 53 kDa. This

protein was subsequently called p53 (Lane & Crawford, 1979).

The p53 gene was initially characterised as an oncogene, as over-expression

of cloned p53 cDNA resulted in the oncogenic transformation of cells (Jenkins et al.,

1985). However, re-evaluation of the original molecular cloning of p53 cDNA

revealed that the cDNA was actually an oncogenic mutant form of p53 (Oren &

Levine, 1983). In direct contrast, wild-type p53 was subsequently characterised as a

tumour suppressor gene. The p53 protein is a stress-activated transcription factor,
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whose principal function is to maintain genome stability through regulation of the

cell cycle, apoptosis and DNA repair (Lane, 1992).

The importance of p53 in cancer biology is illustrated by the frequency with

which p53 function is lost during tumour development, and the scope of mechanisms

employed to inactivate p53. Indeed, DNA tumour viruses have evolved their own

mechanisms to inactivate p53, thereby facilitating their own replication and

maximising transformation potential by preventing cell cycle arrest and increasing

genome instability. Viral oncoproteins which sequester p53, include adenovirus E1B

(Sarnow et al., 1982), human papillomavirus E6 protein (Scheffner et al., 1990),

hepatitus B virus X protein (Wang et al., 1994), human cytomegalovirus IE84

protein ( Speir et al., 1994), and Epstein-Barr virus nuclear antigen (Szekely et al.,

1993). The significance of p53 as a tumour suppressor is supported by observations

that germline mutations of the p53 gene in humans gives rise to the Li-Fraumeni

syndrome, an inherited disorder with a high risk of developing a variety of cancers at

an early age (Malkin et al., 1990). Mouse models further support these observations,

as mice nullizygous for the p53 gene developed normally but showed a high

incidence of tumour development by six months (Donehower et al., 1992).

In human cancer progression functional inactivation of p53 is a common

mechanism (Hupp et al., 2000). Given that different cancers are relatively

biologically and pathologically distinct, it is striking that approximately half of all

human cancer types from a wide spectrum of tissues carry a p53 mutation (Levine et

al., 1991). The impact of p53 alterations on tumourigenesis is considerably more

than the statistics for p53 gene mutation indicate, as wild-type p53 may be

functionally inactivated by other mechanisms, including viral oncogenes and defects
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in the p53 activation pathway (Hainut & Hollstein, 2000), signifying that functional

p53 may be lost in all human cancers. These data firmly establishes p53 as a tumour

suppressor gene.

1.2.2 Structure of p53

The human p53 gene has been mapped to the terminal band of the short arm of

chromosome 17 (17pl3) and spans 20 kb. The gene consists of 11 exons, where the

first exon is non-coding and exons 2-11 encode the p53 protein (McBride et al.,

1986). The p53 gene has been conserved during evolution and homologues of p53

have been found in invertebrates such as Caenorhabditis elegans (Derry et al., 2001)

and Drosophila melanogaster (Sogame et al., 2003). Although p53 has not been

found in yeast, over-expression of human wild-type p53 inhibits cell division in

Saccharomyces cerevisiae (Nigro et al., 1992) and Schizosaccharomyces pombe

(Bischoff et al., 1992), compared to mutant p53 which does not induce a detectable

phenotype. These findings and conservation of the p53 gene further highlights its

cellular importance.

The human p53 protein consists of 393 amino acids and contains five

functional domains (Figure 1.1). At the N-terminus there is a transactivation domain

and a proline-rich domain. In the central part of p53 there is a sequence specific

DNA-binding domain. And at the C-terminus there is a tetramerisation domain and a

regulatory region (Levine, 1997; May & May 1999). The N- and C- terminal

regulatory domains also contain heterologous protein docking sites, and
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phosphorylation and acetylation sites which are implicated in the modulation of p53

protein-protein interactions (Chene, 2001; Hupp et al., 2000).

Furthermore, phylogenetic characterisation of the p53 protein has shown the

existence of five highly conserved sequences suggesting important functional regions

that are required for tumour suppression (Soussi et al., 1987; Soussi et al., 1990).

These regions are between amino acids 13-23 (BOX-I), 117-142 (BOX-II), 171-181

(BOX-III), 234-250 (BOX-IV) and 270-286 (BOX-V). BOX-I is located in the N-

terminus and BOX-II-V are located in the DNA-binding domain (Figure 1.1). BOX

II-V regions are frequently mutated in human cancer further indicating the

importance of these regions in maintaining p53 function (Soussi & May, 1996).

1.2.2.1 The N-terminal region

The N-terminal region of p53 contains an acidic transactivation domain (amino acids

1-61) (Fields & Jang, 1990), which is representative of a classical activation domain

found in transcription factors, such as VP 16 (Fields & Jang, 1990). The

transactivation domain allows recruitment of the basal transcription machinery,

including components of the transcription initiation complex, and is essential for

activation of transcription (Lu & Levine, 1995). This domain also interacts with a

number of regulatory proteins, such as the negative regulator MDM2, which

regulates cellular levels of p53 (Haupt et al., 1997), and the acetyltransferases p300

and CREB binding protein (CBP), which act as co-activators and regulate p53

function via acetylation of its C-terminus (Gu et al., 1997). The proline-rich domain

(amino acids 63-97) is composed of five PxxP motifs and displays similarity to Src
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homology domain 3 (SH-3) binding proteins which are proposed to play a role in

mediating protein-protein interactions in signal transduction pathways (Walker &

Levine, 1996). Similarly the proline-rich domain of p53 has been shown to directly

interact with p300 to promote DNA-dependent acetylation of p53 and therefore

mediate p53 transcriptional activity (Dornan et al., 2003). The N-terminal region is

natively unfolded, apart from small regions that exhibit nascent turn or helix

formation (Bell et al., 2002). The region with the nascent helix formation extends

into a full amphipathic a-helix (amino acids 15-29) upon binding to the hydrophobic

cleft ofMDM2 (Kussie et al., 1996).

1.2.2.2 The central region

The central region of p53 contains the sequence specific DNA-binding domain

(amino acids 102-292) which binds specifically to double-stranded DNA recognition

elements present in the either the promoter or intron of a target gene (El-Deiry et al.,

1992). The consensus recognition element is defined as two repeats of the

palindromic sequence 5'-PuPuPuCWWGPyPyPy -3' (Pu is a purine base, Py is

pyrimidine base, and W represents A or T), separated by up to 13 base pairs (El-

Deiry et al., 1992). The affinity with which p53 binds its response elements varies

depending on the sequence. Generally, p53 binds with higher affinity to the

recognition elements of genes involved in cell cycle arrest, whereas lower affinity

binding sites are found in genes involved in apoptosis (Weinberg et al., 2005).

The DNA-binding domain of p53 is organised into a central P-sandwich of

two anti-parallel P-sheets, which provides the basic scaffold for the DNA-binding
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surface. This surface is formed by two large loops (L2 comprising of amino acids

164-194 and L3 comprising of residues 237-250) that are stabilised by a tetrahedrally

coordinated zinc ion, and a loop-sheet-helix motif (Cho et al., 1994). Removal of the

zinc ion substantially destabilises the protein, resulting in local structural

perturbation and loss of sequence specific DNA binding (Butler & Loh, 2003).

Conserved residues from the loop-sheet-helix motif make specific contacts with the

major groove of bound target DNA, and L3 is anchored to the minor groove via

arginine-248 (Cho et al., 1994).

The importance of the DNA-binding domain in p53 function is highlighted by

the observations that this domain contains four of the five conserved regions, BOX

II-V, and that more than 90 % of missense mutations in p53 reside in this domain.

The two most frequently altered residues are arginine-248 and arginine-273 which

results in defective contacts with the DNA and loss of the ability of p53 to act as a

transcription factor. Similarly, additional amino acids are also recurrently mutated

including arginine-175, glycine-245, arginine-249 and arginine-282, which results in

altered conformation and disruption of the DNA-binding surface, which ultimately

impairs p53 function (Cho et al., 1994).

1.2.2.3 The C-terminal region

The C-terminal region of p53 contains the tetramerisation domain (amino acids 325-

356) and a negative regulatory region (amino acids 363-393). In undamaged cells

p53 is predicted to exist predominantly as monomers (Sakaguchi et al., 1997), and

upon binding to DNA containing the consensus recognition element, forms tetramers,
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the protein's basic functional unit (Friedman et al., 1993; Kitayner et al., 2006). The

tetramerisation domain has been shown to be essential for this function. The structure

of this domain contains a p-strand linked to an a-helix by a single residue. Two

monomers form a dimer via an anti-parallel P-sheet and an anti-parallel helix/helix

interface. The dimers associate across a hydrophobic interface to form a four helix-

bundle arranged orthogonally into tetramers (Jeffery et al., 1995). This domain is a

secondary site for p53 mutations which promote a conversion from tetrameric to

dimeric forms with reduced DNA binding activity, suggesting that p53 activity

depends on its conformation (Lomax et al., 1998).

Three nuclear localisation signals (NLS) have been identified in the C-

terminus, at amino acids 316-325 (NLS1), 369-375 (NLS2), and 379-384 (NLS3)

(Dang & Lee, 1989; Shaulsky et al., 1990a). Mutagenesis of NLS 1 fully excluded

p53 from the nucleus, whereas alteration of NLS2 and NLS3 leads to both

cytoplasmic and nuclear localisation of p53, signifying that NLS1 is the prominent

NLS (Shaulsky et al., 1990b). A nuclear export signal (NES) has also been identified

at amino acids 340-351 (Stommel et al., 1999). The NES signal would be revealed

when p53 is in a monomeric state, yet is buried beneath the surface when it is

tetrameric, indicating that the cellular localisation of p53 could be regulated by

changes in its quaternary structure (Chene, 2001).

The C-terminus also contains a negative regulatory domain (amino acids 363-

393), which maintains the p53 tetramer in an inactive state by allosteric regulation of

the DNA-binding domain (Hupp et al., 1992). This model predicts that p53 is

maintained in a latent state which precludes DNA binding, until activated by
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posttranslational modifications of the C-terminal regulatory domain (Hupp & Lane,

1994), and that this domain is an important regulator of p53 function.

The C-terminal region, similar to the N-terminal region, is largely

unstructured in its native state (Bell et al., 2002). Intrinsic disorder is common in

proteins at the centre of highly connected protein-protein interaction networks

(Dunker at al., 2005), as it facilitates binding and interaction with a large number of

diverse target proteins.

1.2.3 Functions of p53

The tumour suppressor p53 functions principally as a transcription factor and can

mediate its different downstream functions by regulating the expression of a large

number of target genes (Zhao et al., 2000; Laptenko & Prives, 2006). Several

signalling pathways are coordinated by p53 including cellular responses to DNA

damage, viral infection, oncogene activation, hypoxia, nucleotide depletion, and

nutrient deprivation. Activation of p53 initiates various cellular responses including

cell-cycle arrest, apoptosis, DNA repair, senescence, differentiation and inhibition of

angiogenesis (Rozen & El-Deiry, 2007) (Figure 1.2). In addition p53 has been

implicated in metabolism, development, and aging (Vousden & Lane, 2007).

Selected functions of p53 will be discussed in more detail.
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1.2.3.1 Cell-cycle arrest

The cell-cycle checkpoints are biochemical signalling pathways that sense various

types of structural defects in DNA, or in chromosome function, and induce a

multifaceted cellular response that activates DNA repair and delays cell cycle

progression. When DNA damage is irreparable, checkpoints eliminate such

potentially hazardous cells by permanent cell cycle arrest or cell death (Kastan &

Bartek, 2004).

The Gl/S checkpoint prevents initiation ofDNA replication in cells that have

damaged DNA. In response to DNA damage, such as DNA double strand breaks

induced by ionising radiation, p53 plays a prominent role in mediating the Gl/S

checkpoint (Kastan et al., 1991). The p53-dependent G1 arrest occurs largely

through the transactivation of the p2lWAF,/c,PI gene (hereafter referred to as p21) (El-

Deiry et al., 1993; Dulic et al., 1994). p21 is a potent inhibitor of cyclin dependent

kinases (CDK) including cyclin E/CDK2 and cyclin A/CDK2 (Harper et al., 1993).

In the G1 phase of the cycle the retinoblastoma protein is hypophosphorylated, and

in this state binds to and sequesters the E2F family of transcription factors which

promote S phase. Release of active E2F, which then leads to the transcription of

genes required for S phase progression, is mediated by sequential phosphorylation of

RB by cyclin D/CDK4 and cyclin E/CDK2 (Sherr, 1994; Muller et al., 2001). In

response to DNA damage up-regulation of p21 inhibits cyclin E/CDK2, maintaining

the RB-E2F complex, and consequently preventing S phase entry and replication of

damaged DNA (Harper et al., 1993; Harper et al., 1995). p21 is essential for efficient

G1 arrest, as mouse embryonic fibroblasts derived from p21-deficient mice (Deng et
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al., 1995), and human cells with deletion of p21 by homologous recombination

(Waldman et al., 1995), both show impaired DNA-damaged induced G1 arrest.

The G2/M checkpoint prevents the initiation of mitosis in cells that have

damaged DNA. G2/M progression is driven by the mitosis-promoting activity of

cyclin B/CDK1 kinase, and mitosis is triggered by translocation of cyclin B/CDK1

into the nucleus and activation by dephosphorylation via the CDC25 family of

phosphatases (Nurse, 1990). Initiation of the G2 arrest is mediated by

phosphorylation of CDC25 by ATM/ATR, CHK1/CHK2, and /or p38, which creates

a binding site for the 14-3-3 proteins and this association sequesters CDC25 in the

cytoplasm (Kastan & Bartek, 2004). p53 is involved in sustaining G2 arrest, by up-

regulation of cell-cycle inhibitors including 14-3-3a (Chan et al., 1999), and

GADD45 (growth arrest and DNA damage inducible 45 alpha) ( Zhan et al., 1999),

and down-regulation of CDK1 and cyclin B promoters (Passalaris et al., 1999).

1.2.3.2 Apoptosis

Each cell is under constant surveillance to maintain the integrity of its genome. If a

cell is irreparably damaged it is removed in an orderly manner through programmed

cell death or apoptosis (Hartwell & Kastan, 1994). There are two major apoptotic

pathways in cells that can be activated by p53. One pathway is mediated by

transmembrane death receptors of the CD95 (APO-1 or FAS)/TRAIL/tumour-

necrosis factor receptor 1 family, whose ligation triggers recruitment and assembly

of multi-protein complexes that initiate caspase activation (Walczak & Krammer,

2000). The other pathway is involves the mitochondrion, which acts as an integrating
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sensor of death insults by releasing cytochrome c into the cytosol where it triggers

caspase activation. Caspases implement cell death by cleaving a variety of

intracellular substrates that trigger cell dissolution (Hengartner, 2000).

To date a large number of p53 target genes with pro-apoptotic activity have

been identified. They fall into three groups based on their subcellular localisation

(Benchimol, 2001). The first group of genes encodes proteins which localise to the

cell membrane including FAS/APO-1, KILLER/DR5, and PERP. The second group

of genes encodes proteins which localise to the cytoplasm including PIDD and PIGs.

The third group of genes encodes proteins that localise to the mitochondria including

BAX, BID, NOXA, p53AIPl and PUMA. However deletion of many of these

apoptotic targets of p53 have little effect on the sensitivity of the cell to stress-

induced apoptosis (Moll et al., 2005), and indicated that p53 may induce apoptosis

by a transcription-independent mechanism. Subsequent studies have shown that p53-

dependent apoptosis is unimpeded by inhibition of transcription or translation

(Caelles et al., 1994), and that upon apoptotic stimuli a fraction of induced p53

rapidly translocates to the mitochondria (Marchenko et al., 2000), suggesting that

p53 has a transcription-independent role in the mitochondria-mediated apoptotic

pathway.

The mitochondrial apoptotic pathway is principally mediated by the family of

BCL2-related proteins, with some family members functioning as suppressors of

apoptosis and others as promoters of apoptosis. The ultimate vulnerability of cells to

diverse apoptotic stimuli is determined by the relative ratio of various pro-apoptotic

and anti-apoptotic members of the BCL2 family. For example, BAX and BAK

function to promote apoptosis by regulating mitochondrial membrane potential,
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whereas anti-apoptotic family members, BCL2 and BCLxL directly bind BAX and

BAK, negatively regulating their activity (Cory & Adams, 2002). BCL2 and BCLxL

are constitutively anchored at the outer mitochondrial membrane, stabilising the

membrane, and inhibiting cytochrome c release. Mitochondrial p53 physically

interacts with BCL-2 and BCLxL, liberating BAX and BAK and promoting

apoptosis (Mihara et al., 2003). Mitochondrial p53 can also directly bind to BAK,

and promote BAK oligomerisation and activation (Leu et al., 2004). Hence

mitochondrial p53 induces apoptosis by a dual mechanism of inhibiting anti-

apoptotic members and promoting pro-apoptotic members of the BCL2-family.

1.2.3.3 DNA repair

In addition to growth arrest and apoptosis, the ability of p53 to regulate DNA repair

after genotoxic stress represents another mechanism by which p53 contributes to

maintenance of genome integrity. In eukaryotes, the five main DNA-repair processes

are nucleotide excision repair (NER), base-excision repair (BER), mismatch repair

(MMR), non-homologous end-joining (NHEJ) and homologous recombination (HR)

(Hoeijmakers, 2001). p53 participates in all repair processes by both transcription-

dependent and -independent pathways.

NER operates on damaged bases and disrupted base pairings that are caused

by ultraviolet light (UV) or oxidative damage, which leads to changes in the structure

of the DNA duplex (Hoeijmakers, 2001). Disrupted base pairs are identified, and

additional proteins subsequently bind to the DNA to enable repair, including

replication protein A, the transcription factor TFIIH sub-complex of RNA



polymerase II, and proliferating cell nuclear antigen (PCNA). p53 can directly

interact with replication protein A (Miller et al., 1997; Janus et al., 1999) and TFIIH

(Wang et al., 1995) and modulate their activity. p53 also induces expression of

GADD45, which can directly bind PCNA (Smith et al., 1996), and xeroderma

pigmentosum p48 (Hwang et al., 1999), which recruits TFIIH to sites of DNA

damage. In addition p53 mediates chromatin relaxation to allow lesion detection by

recruiting p300, which has intrinsic histone acetyltransferase activity (Rubbi &

Milner, 2003).

BER repairs apurinic and apyrimidinic sites in DNA. This process is

mediated by a DNA glycosylase which removes the damaged base, an endonuclease

which processes the abasic site, a DNA polymerase which inserts the new nucleotide,

and a DNA ligase which rejoins the DNA strand (Hoeijmakers, 2001). Interestingly,

ARE1/REF1 endonuclease associates with p53 and enhances the transcription,

growth arrest and apoptotic functions of p53 in vivo (Gaiddon et al., 1999), however

the consequences of this association are not well defined. In response to reactive

oxygen species (Achanta & Huang, 2004) or ionising radiation (Zurer et al., 2004),

p53 enhanced the activity of 3-methyladenine DNA glycosylase, which enhanced the

removal of damaged bases.

MMR removes mismatched nucleotides and insertions or deletions, which are

a consequence of slippage of DNA polymerase during the synthesis of repetitive

sequences in replication or recombination (Hoeijmakers, 2001). The MMR process is

mediated by the combined action of conserved repair-specific proteins including

MLH1 and MSH2. The MMR proteins and p53 have reciprocal effects on each

other's function. Stabilisation of MLH1 enhances p53 activation during DNA
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damage (Luo et al., 2004), and similarly activation of p53 upregulates MSH2 gene

expression (Scherer et al., 2000). There is an association between p53 mutations and

abnormal expression of the MSH2 gene in a range of different cancers (Saito et al.,

2003a). However loss of p53 has little effect on MMR proficient cells, but confers

substantial hypersensitivity to the cytotoxic effects of cisplatin on MMR deficient

cells, indicating that p53 and MMR may cooperate in response to DNA damage (Lin

et al., 2001).

NHEJ is the principal DNA-repair process used throughout the cell cycle to

repair DNA double strand breaks in somatic cells. Proteins involved in NHEJ include

DNA-PK, XRCC4, and DNA ligase IV (Hoeijmakers, 2001). DNA-PK consists of a

catalytic subunit and a regulatory subunit, Ku (a heterodimer of Ku70 and Ku80).

DNAPK phosphorylates and activates p53 which leads to increased expression of

downstream target genes, including Ku70 (Brown et al., 2000), whose increased

expression may promote DSB repair. p53 also has a transcriptional-independent role

in NHEJ as wild-type p53 is capable of rejoining DNA with DSBs, in vitro and in

vivo (Tang et al., 1999), and it has also been proposed that p53 can facilitate precise

ligation (Lin et al., 2003).

HR uses a homologous double-stranded DNA molecule as a template for the

repair of broken DNA to maintain the integrity of the genome (Hoeijmakers, 2001).

p53 has been proposed to have a transcriptional-independent role in HR, where p53

specifically binds to the DNA, possibly in combination with other proteins, to check

the fidelity of the HR events by specific mismatch recognition in the heteroduplex

intermediates (Janz et al., 2002). Hence, p53 contributes to control and efficiency of

DNA repair.
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1.2.3.4 Senescence

Apoptosis is not the only anti-proliferative response coupled to oncogenic signalling,

as there is increasing evidence that senescence provides a barrier to malignant

progression (Bartkova et al., 2006). Senescence is characterised as an irreversible

growth arrest of cells that remain metabolically active (Campisi, 2001). Senescence

can be induced by the erosion of telomeres during cell division (replicative

senescence) or in response to oncogene activation, DNA damage or oxidative stress

(Lowe et al., 2004). All forms of senescence depend on the DNA damage checkpoint

kinase ataxia telangiectasia mutated (ATM) (Bartkova et al., 2006), which in

response to DNA DSBs is a potent activator of p53. Similarly, senescence is a p53-

dependent process (Rozan & El-Deiry, 2007). However the downstream targets of

p53 that induce senescence have not yet been fully clarified. To date, p21 is

surprisingly ineffective at maintaining senescence (Pantoja & Serrano, 1999).

However another p53 transcriptional target, PAI-1 (plasminogen activator inhibitor-

1) is sufficient to induce senescence, and siRNA mediated gene knockdown of PAI-1

enabled cells to bypass p53-induced senescence (Kortlever et al., 2006).

1.2.3.5 Metabolism

Recently, p53 has been implicated in determining the response of cells to nutrient

stress and in regulating pathways of glucose usage and energy metabolism.

Glycolysis is a metabolic pathway through which glucose is metabolised to provide

energy. Under conditions of low glucose, p53 is activated by AMP kinase and

- 16-



engages a reversible cell cycle checkpoint (Jones et al., 2005). p53 can also inhibit

glycolysis through its transcriptional target, TIGAR (Tp53-inducible glycolysis and

apoptosis regulator), which lowers the levels of fructose 2,6-bisphosphate, a key

glycolytic enzyme that promotes glycolysis (Bensaad et al., 2006). Expression of

TIGAR also lowered the amount of reactive oxygen species, and protected cells from

apoptosis (Bensaad et al., 2006). Therefore p53 appears to promote cell survival

during glucose deprivation.

Expression of p53 also enhances oxidative phosphorylation over glycolysis,

by inducing expression of the copper transporter, SC02 (synthesis of cytochrome c

oxidase 2). SC02 is an assembly factor for the cytochrome c oxidase complex and

links p53 to mitochondrial respiration (Matoba et al., 2006).

Cancer cells are characterised by an increase in aerobic glycolysis (Warburg,

1956). Loss of p53 may therefore contribute to the metabolic changes observed in

cancer cells, by enabling cells to continue to proliferate in nutrient-poor conditions.

1.2.3.6 Development

Previous studies have indicated that p53 function is not required for normal growth

or development (Donehower et al., 1992). However closer analysis of jt?5J-null mice

revealed that although many mice are normal at birth, some exhibit developmental

defects. These mice develop craniofacial abnormalities and show neural tube closure

defects, indicating that p53 has a role in neural development (Armstrong et al., 1995).

Apoptosis is a crucial event in the development of the nervous system, therefore lack
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of p53 may lead to a failure in progenitor cell apoptosis and subsequently, an

overproduction of neural tissue and death of the mouse (Miller et al., 2000).

In Xenopus laevis embryos, blocking p53 activity impairs further

differentiation and the embryos become large, disorganised cellular masses

(Wallingford, 1997). Co-operation of p53 and TGF-(3 in Xenopus laevis development

has been established, as p53 directly associates with mediators of TGF-P signalling

pathway, and regulates expression of meso-endodermal genes (Cordenonsi et al.,

2003). Also in zebrafish (Danio rerio) p53 has been demonstrated to provide a

protective function against a range of early developmental defects that are associated

with loss of function mutations in genes as diverse as those involved in DNA

synthesis (Plaster et al., 2006), gut development (Chen el al., 2005), and neuronal

development (Campbell et al., 2006). These findings imply that p53 may constantly

monitor the early developmental process, eliminating defective embryos.

In humans, the Li-Fraumeni syndrome is a heritable condition characterised

by p53 germline mutations. This condition is very rare, with less than four hundred

families reported world-wide, and no reports ofp53-null children born (Olivier et al.,

2003). This indicates that in humans /Oi-null mutants are embryonically lethal, and

suggests that p53 has a role in embryonic development.

1.2.4 Regulation of p53 transcriptional activity

p53 is a critical cellular protein, and multiple mechanisms have evolved to regulate

its activity including co-factors of p53-dependent gene expression, p53 protein

stability, post-translational modifications, and subcellular localisation. This plethora
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of regulatory mechanisms probably exists both to tightly and rapidly control the

activities of p53, and to provide alternative mechanisms for different cell-types and

different cellular stresses. The principal function of p53 is as a stress-activated

transcription factor, and regulation of p53 transcriptional activity will be discussed in

further detail.

1.2.4.1 Co-regulators of p53-dependent gene expression

In eukaryotic cells genomic DNA usually exists in a highly organised chromatin

structure, which is not accessible to the general transcription factors and RNA

polymerase (Grunstein, 1997). For transcription activation, p53 has been proposed to

bind to its consensus recognition element within the promoter of the target gene and

facilitate promoter opening. p53 interacts with and recruits histone modification

enzymes to the promoter including histone acetyltransferases and/or histone

methyltransferases, where they modify histones, forcing the promoter into an open

and accessible conformation (Laptenko & Prives, 2007).

p300 and its homologue CBP, are histone acetyltransferases and have been

characterised as co-activators of p53-dependent gene expression (Brownell et ah,

1996). Initially it was observed that the adenoviral protein ElA bound directly to

p300 and repressed p53-activated promoters (Steegenga et ah, 1996). Subsequent

experiments have shown that p53 transcriptional activity is enhanced by p300/CBP

over-expression (Scolnick et al., 1997), and that p300/CBP physically interacts with

p53 at the consensus recognition element in the target gene promoter (Lill et ah,

1997). Therefore p300/CBP acetylates histones in the vicinity of p53 target
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promoters and enhances p53 transcriptional activity. In addition to p300/CBP, three

other proteins that are part of a histone acetyltransferase complex, hADA3 (Wang et

ah, 2001), TRRAP (Ard et al., 2002), and TIP60 (Legube et ah, 2004), are involved

in regulating p53 transcriptional activity.

An in vitro study using the promoter of the GADD45 gene demonstrated that

p53 transcriptional activity is also enhanced by the histone methyltransferases,

PRMT1 and CARM1 (An et ah, 2004). Interestingly PRMT1 and p300 increase their

respective activities reciprocally, and are able to increase p53 transcriptional activity

synergistically. However, p300 enhanced histone methylation by CARM1 but

CARM1 had no effect on p300 activity (An et ah, 2004). Thus the extent of p53

transcriptional activity can be fine-tuned by histone modifications.

Although p53 is a well established activator of transcription, p53 can also

suppress transcription of a variety of genes including MYC, Cyclin B, VEGF, RAD51,

and BCL2 (Ho et ah, 2005; Rozan & El-Deiry, 2007). p53 has been shown to recruit

histone deacetylases to target promoters thus altering chromatin structure and

preventing transcriptional activators from binding to the promoter. p53 recruitment

of histone deacetylases is mediated through the presence of additional protein

mediators including mSin3a (Murphy et ah, 1999), SnoN (Wilkinson et ah, 2005),

and p52 (Rocha et ah, 2003). This represents a major mechanism of p53-dependent

transcriptional repression.

Different cellular stresses may also modulate p53 transcriptional activity by

promoting differential interactions with co-regulators. For example, DNA damage

induces the interaction of p53 with both the transcriptional co-activator p300 and the

transcriptional co-repressor mSin3a, whereas hypoxia predominantly induces the
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interaction with mSin3a, but not with p300 (Koumenis et al., 2001). Surprisingly,

endoplasmic reticulum stress caused by an accumulation of unfolded proteins, leads

to the specific degradation and inactivation of p53 transcriptional activity (Qu et al.,

2004).

The specificity of the transcriptional programmes mediated by p53 can be

skewed towards a particular cellular outcome by additional protein co-factors. For

example, BRCA1 promotes transcription of DNA repair genes and represses

expression of pro-apoptotic genes (MacLachlan et al., 2002). MUC1 favours p53-

dependent expression of the cell cycle arrest gene, p21 and inhibits expression of the

pro-apoptotic gene BAX (Wei et al., 2005). Similarly, HZF is a zinc finger protein

that directly interacts with p53 and induces preferential expression of p53-target

genes that block the cells cycle, including p21 and 14-3-3 genes, while

simultaneously attenuating expression of pro-apoptotic genes such as BAX, PERP,

NOXA and PUMA (Das et al., 2007). In contrast, ASPP1 and ASPP2 bind directly to

the DNA binding domain of p53 and encourage transcription of pro-apoptotic genes

including BAX and P1G-3, while inhibiting transcription of genes associated with cell

cycle arrest including p21 (Samuels-Lev et al., 2001).

1.2.4.2 Protein stability

p53 is a negative regulator of proliferation, and in unstressed normal cells wild-type

p53 protein is maintained at low levels to allow for normal cell growth and

development. In unstressed cells p53 is a short-lived protein with a half-life of

approximately 20 minutes, in most cell types studied (Maki & Howley, 1997;
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Maltzman & Czyzyk, 1984). Degradation of p53 is mediated by the proteasome in an

ubiquitin-dependent manner.

MDM2 (murine double minute 2) protein is an essential regulator of p53 and

is required to allow survival during normal development (Jones et al., 1995). MDM2

is an ubiquitin ligase, in which the RING domain is indispensable to promote

ubiquitination and degradation of target proteins, including p53 (Fang et al., 2000).

MDM2, through a hydrophobic pocket domain in its N-terminus, directly binds to

the p53 N-terminus, and mediates polyubiquitination and degradation of p53 (Moll &

Petrenko, 2003). However the current dogma is under revision. At low levels MDM2

was able to monoubiquitinate p53 leading to nuclear export, but not degradation (Li

et al., 2003). At higher levels MDM2 was able to polyubiquitinate p53 leading to its

degradation, and was facilitated by p300/CBP (Grossman et al., 2003). It was further

proposed that MDM2 can only promote monoubiquitination of p53, and that the

binding of p300 to MDM2 is necessary for efficient polyubiquitination, and therefore

degradation of p53 to occur (Grossman et al., 2003).

Recent studies have also highlighted several proteins which cooperate with

MDM2 in the regulation of p53. The YY1 (Yin Yang 1) transcription factor plays a

key role in development and has been shown increase the interaction between p53

and MDM2, and enhance p53 degradation (Gronroos et al., 2004). Similarly,

gankyrin promotes increased association of the MDM2-p53 complex to the

proteasome, and therefore promotes efficient degradation of p53 and MDM2

(Higashitsuji et al., 2005).

Proline isomerisation of p53 may also influence MDM2 mediated

degradation of p53. The proline-rich domain of p53 can be modified by the prolyl-
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isomerase (Zacchi et al., 2002), PIN1, changing p53 conformation which may inhibit

the p53-MDM2 interaction. The modification of p53 by PIN1 increases the stability

of p53 and is required for the transcription of p53 targets including BAX, p21 and

MDM2 (Zheng et al., 2002; Wulf et al., 2002). The importance of the proline-rich

domain was highlighted by a transgenic mouse expressing a mutant p53 lacking this

domain. The resulting p53 protein lacking the proline-rich domain was more

sensitive to MDM2 degradation, and the cells expressing this protein exhibited

impaired cell cycle arrest and apoptosis in response to DNA damage (Toledo et al.,

2006).

The regulation of p53 stability is further influenced by deubiquitinating

enzymes. HAUSP (Herpes virus associated ubiquitin-specific protease) was

identified as a novel p53-interacting protein and was shown to deubiquitinate p53,

leading to p53 stabilisation and p53-dependent growth suppression (Li et al., 2002).

However, HAUSP can also mediate deubiquitination and stabilisation of MDM2 (Li

et al., 2004). This modification was recently shown to be influenced by an additional

protein, DAXX (death domain-associated protein), which forms a complex with

MDM2 and HAUSP, preventing auto-ubiquitination of MDM2 and promoting p53

degradation (Tang et al., 2006b). This further illustrates the intricate and dynamic

interactions regulating p53 protein levels.

MDM2 is considered the major p53 E3 ligase. However, other E3 ligases

including Pirh2 (Leng et al., 2003), COP-1 (Dornan et al., 2004), CHIP (Esser et al.,

2005), and MULE/ARF-BP1 (Chen et al., 2005), can also promote the degradation

of p53 under varying conditions. The extent of p53 E3 ligase redundancy, confirms
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the importance of tightly regulating p53 stability and function, in regard to cell

fitness and survival.

1.2.4.3 Post-translational modifications

Active p53 is subject to a complex and diverse array of covalent post-translational

modifications including phosphorylation of serines and/or threonines and acetylation,

methylation, ubiquitination, neddylation, and sumoylation of lysines. A series of

modifications concurrent on the p53 protein may work in concert to orchestrate a

particular cellular response, which are themselves dependent on cell-type and the

nature of the cellular stress, further highlighting the complexity of regulating the p53

protein.

1.2.4.3.1 Phosphorylation

In unstressed normal human fibroblast cells, phosphorylation of p53 during cell-

cycle progression is transient. During G1 p53 is phosphorylated at serines -9, -15, -

20, and -372, whereas phosphorylation at serines -37 and -392 peaks during G2/M.

Serine-37 is the only site phosphorylated during S-phase (Bushmann et al., 2000).

This study illustrates that phosphorylation of p53 is dynamic and transient, which

may be predictable under controlled conditions.

In response to stress, phosphorylation of p53 occurs on numerous sites

including serines -6, -9, -15, -20, -33, -37, -46, and threonines -18 and -81 in the N-

terminal region, serines -315 and -392 in the C-terminal region, and threonines -150,
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-155, and serine -149 in the DNA-binding domain. These phosphorylation events are

mediated by many different protein kinases that respond to different stresses

including, ATM, ATR, CHK1, CHK2, JNK and p38. Significant redundancies are

observed in that the same p53 site is often phosphorylated by different protein

kinases (Appella & Anderson, 2001; Bode & Dong, 2004).

Generally, phosphorylation of p53 is associated with protein stabilisation and

transcriptional activation (Hupp & Lane, 1994; Craig et al., 1999). Due to the

magnitude of p53 post-translational modifications, it has been proposed that a

distinctive combination of phosphorylated residues may be required for additional

modifications, leading to maximal activation of p53 (Bode & Dong, 2004). For

example, phosphorylation of p53 at serine-15 occurs rapidly in response to DNA

damage and prepares the protein for subsequent modifications, including

phosphorylation at threonine-18 and serine-20 by additional kinases (Saito et al.,

2003b). Phosphorylations at serine-15, threonine-18 and serine-20 stimulate the

recruitment of transcriptional co-activators such as p300/CBP, and enhance p53

transcriptional activity (Saito et al., 2003b). Similarly, phosphorylation of p53 at

serine-33, threonine-81, and serine-315 promotes its interaction with the propyl

isomerase, PIN1. PIN1 mediates a conformational change in p53 and augments p53

activity (Zheng et al., 2002; Zacchi et al., 2002).

1.2.4.3.2 Lysine modification

The p53 protein is mainly degraded via the ubiquitination pathway in which MDM2

is the E3 ubiquitin ligase. Six residues at the C-terminus of p53 are implicated as
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sites for ubiquitination by MDM2 including lysines -370, -372, -373, -381, -382, and

-386 (Rodriguez et al., 2000). These lysines can also be modified by acetylation,

methylation, sumoylation and neddylation, effecting the p53-MDM2 interaction and

p53 protein stability.

p300/CBP serves as a co-activator for p53 by mediating histone acetylation.

Interestingly p300/CBP can also directly acetylate p53 at lysine -372, -373, -381, -

382, and contribute to p53 stabilisation by blocking MDM2-mediated ubiquitination

of p53 at these sites (Gu & Roeder, 1997). Acetylation of these residues also

activates and enhances the specific DNA-binding activity of p53 (Gu & Roeder,

1997). Subsequent studies have shown that p53 conformation is altered by the C-

terminal acetylation, and leads to increased DNA binding activity (Friedler et al.,

2005). Methylation of p53 at lysine-372 by the methyltransferase, SET9, also

stabilises p53 in the nucleus and enhances p53 transcriptional activity (Chuikov et al.,

2004).

The ubiquitin-like proteins, NEDD8 and SUMO-1 can also be conjugated to

p53 and modify its function. Interestingly, MDM2 can function as an E3 ligase for

NEDD8 and promote neddylation of p53 at lysines -370, -372, and -373 (Xirodimas

et al., 2004). The lysine residues modified by neddylation are also targeted by

ubiquitination. Neddylation of p53 corresponds to a decrease in the general

transcriptional activity of p53 (Xirodimas et al., 2004). However it has not yet been

determined whether neddylation competes with acetylation to enhance ubiquitination

and p53 degradation. In contrast, sumoylation of p53 at lysine-386 has been shown to

stimulate p53 activity, independent of p53 ubiquitination, by an undetermined

mechanism (Gostissa et al., 1999).
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1.2.4.3.3 Current controversy

The classical notion that a complex network of post-translational modifications of

p53 is important in generating a functional protein is currently under threat. Recent

studies indicate that post-translational modifications of p53 only play a minor role in

tumour development and are not required for p53 activation.

To address the importance of phosphorylation in stabilisation of p53 protein

levels, a series of known stress-induced phosphorylation sites on p53 were mutated,

and these mutant forms could still be stabilised (Blattner et al., 1999). Mutation of

the thirty C-terminal amino acids of p53, a region predicted to be required for

interaction with p300, also failed to prevent damage-induced stabilisation of p53

(Blattner et al., 1999). A mouse model was generated harbouring a mutation at

serine-18 (equivalent to serine-15 in humans) to alanine (S18A). Homozygous S18A

mice developed normally and were not tumour prone. Similarly, MEFs derived from

these mice did not have defective p53 protein stability, proliferation rate, G1 arrest

function after DNA-damage, and suppression of cell immortalisation, suggesting that

wild-type p53 function is independent of phosphorylation of serine-15 (Sluss et al.,

2004). Further evidence indicating that post-translational modification of p53 is not

required for p53 stabilisation and activation was illustrated by using small molecule

inhibitors of the p53-MDM2 interaction, called Nutlins. Treatment of cells with

Nutlin-1 showed p53 accumulation, followed by an increase in levels of both p21

and MDM2 consistent with activation of the p53 pathway (Vassilev et al., 2004).

However in contrast to DNA damage, Nutlin treatment did not induce

phosphorylation of p53, but the unphosphorylated form of p53 was equally efficient
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at sequence specific DNA-binding and the induction of apoptosis (Thompson et al.,

2004).

In addition the importance of C-terminal ubiquitination and acetylation of

p53, in regard to protein stabilisation and activation, has also been addressed using

mouse models (Krummel et al., 2005). Mice were generated containing mutations of

p53 at seven lysines in the C-terminal regulatory domain (lysines -367, -369, -370, -

378, -379, -383, and -384 of mouse p53). The mutant mice were viable, and

phenotypically normal compared to wild-type mice. Equivalent p53 protein levels of

the mutant were observed as compared to wild-type under normal and stressful

conditions. The mutant mice also had apoptotic rates comparable to wild-type mice

following exposure to ionising radiation or adriamycin (Krummel et al., 2005).

These results suggest that the lysine residues in the C-terminal region of p53 are not

essential for p53 function and question the importance of ubiquitination and

acetylation in the regulation of p53.

However regulation of p53 is likely to consist of a series of modifications that

work in concert to achieve a particular functional endpoint, and the effect of an

individual modification may be modest. Regulation of p53 is likely to be redundant,

for example neddylation or sumoylation of p53 may operate as redundant system for

ubiquitination-mediated degradation of p53. Similarly, phosphorylation of p53 at

serine-20 may compensate for loss of phosphorylation of p53 at serine-15. Further

investigation of p53 regulation will undoubtedly reveal the extent of involvement of

post-translational modifications. However it is unlikely and energetically

unfavourable that the cell would instigate dynamic post-translational modifications

of p53 without functional consequence.
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1.2.4.4 Subcellular localisation

The localisation of p53 to the nucleus is essential for its function as a transcription

factor (Ginsburg et al., 1991) and as such both the nuclear import and export of p53

are tightly regulated. MDM2 can promote nuclear export of p53 in an ubiquitin-

dependent manner (Lohrum et al., 2001). MDM2 does not directly shuttle p53 out of

the nucleus, rather monoubiquitination of p53 by MDM2 leads to an unmasking of

the nuclear export sequence within the C-terminus of p53 (Gu et al., 2001). Two

other ubiquitin ligases also promote cytoplasmic localisation of p53, Cullin 7

(Andrews et al., 2006) and WWP1 (Laine & Ronai, 2007). Neither target p53 for

degradation but both promote accumulation of transcriptionally inactive p53 in the

cytoplasm.

A novel cytoplasmic protein, PARC (p53-associated, Parkin-like cytoplasmic

protein) directly interacts with p53, and serves as a cytoplasmic anchor for p53 in

unstressed cells (Nikolaev et al., 2003). Inactivation of endogenous PARC induced

p53 nuclear accumulation, while ectopically expressed PARC promoted cytoplasmic

retention of p53. Significantly, examination of PARC levels in neuroblastoma cell

lines revealed high expression of PARC, consistent with aberrant cytoplasmic

localisation of p53 in these cell lines (Nikolaev et al., 2003).

The heat shock protein HSP70 family member, MOT2 is also implicated in

p53 cytoplasmic sequestration. MOT2 directly interacts with p53 and abrogates its

nuclear translocation (Wadhwa et al., 1999) by binding to the C-terminus of p53 and

masking the p53 nuclear localisation signal (Wadhwa et al., 2002). MOT2 has also

been identified in p53 aggregates in the cytoplasm of neuroblastoma, glioblastoma,
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and breast carcinoma cell lines that show high levels of cytoplasmic p53 (Wadhwa et

al., 2002). MOT2 protein has also been shown to mediate p53 mitochondrial

localisation (Marchenko et al., 2000).

Another regulator of p53 localisation is glycogen synthase kinase-3p (GSK-

3P), which binds to p53 in the nucleus and promotes cytoplasmic localisation of p53

in response to ER stress. This effect is induced by phosphorylation of p53 at serine-

315 and serine-376 by GSK-3(3 (Qu et al., 2004).

In addition to the shuttling of p53 between the nucleus and the cytoplasm,

p53 can be recruited to specific sub-nuclear structures. The PML (promyelocytic

leukaemia) gene is a tumour suppressor originally identified in acute promyelocytic

leukaemia patients. PML is an essential component of sub-nuclear structures termed

nuclear bodies, which serve as sites where nuclear proteins are post-translationally

modified (Pearson et al., 2000). Several p53 post-translational modifications, critical

for its function, occur in the PML-bodies, including acetylation of p53 by p300/CBP

via the formation of a trimeric p53-PML-p300/CBP complex (Pearson et al., 2000;

Boisvert et al., 2001), and phosphorylation of p53 by CHK2 (Louria-Hayon et al.,

2003) and HIPK2 (Hofmann et al., 2002). Furthermore, the PML protein is able to

sequester MDM2 in the nucleolus, leading to p53 accumulation and activation.

1.2.5 Autoregulatory feedback loops

The regulation of p53 involves multiple autoregulatory feedback loops, where p53-

inducible gene products feed back to control or modulate p53 activity. The most

prominent autoregulatory feedback loop is between p53 and its major negative
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regulator, MDM2. p53 induces expression of MDM2, which in turn inhibits p53

transcriptional activity and promotes p53 degradation. This feedback loop

contributes to the negative regulation of p53 activity during normal growth,

development, and at the end of a stress response (Lev Bar-Or et al., 2000). Similarly,

p53 induces expression of two additional E3 ubiquitin ligases, COP-1 (Dornan et al.,

2004) and PIRH-1 (Leng et al., 2003), which also target p53 for proteasome-

dependent degradation, resulting in lower p53 activity.

The importance ofMDM2 as regulator of p53 activity is further illustrated by

the observation that p53 induces the expression of proteins which either directly or

indirectly regulate MDM2 including pl4/19 ARF, SIAH-1, and PTEN. The p53 -

pi4/19 ARE feedback loop negatively regulates p53 activity, as p53 represses

expression of the pi4/19 ARF gene, therefore preventing pi4/19 ARE-dependent

inhibition of MDM2 and accumulation of p53 protein (Honda & Yasuda, 1999)

(Figure 1,3A). In addition, the pi4/19 ARF gene is positively regulated by (3-catenin

(Damalas et al., 2001). Activated p53 induces expression of the ubiquitin ligase

SIAH-1 (Fiucci et al., 2004), which in turn degrades (3-catenin, leading to a decrease

in pi4/19 ARF expression and consequently elevation of MDM2 activity and

degradation of p53 (Iwai et al., 2004) (Figure 1.3B).

In contrast, positive autoregulatory feedback loops which promote p53

activation by attenuating MDM2 activity also exist. For example, p53 induces the

expression of PTEN. The PTEN protein is a duel lipid and protein phosphatase and

its primary target is PIP-3. PIP-3 activates AKT kinase, which subsequently

phosphorylates and activates MDM2. Therefore p53-dependent upregulation of
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PTEN essentially inhibits MDM2 activation and degradation of p53 (Blanco-

Aparicio et al., 2007) (Figure 1.3C).

p53 autoregulatory feedback loops which do not impinge on MDM2 activity

are also emerging, for example p53-mediated regulation of p53 phosphorylation.

Phosphorylation of p53 at serines -33 and -46 is mediated by the p38 MAP kinase

(p38 MAPK). The p38 MAPK is itself activated by phosphorylation, which can be

reversed or inactivated by the WIP1 phosphatase. p53 induces expression of the

WIP1 gene, leading to inhibition of p38 MAPK and p53 phosphorylation, thereby

forming a negative feedback loop to repress p53 activation (Takekawa et al., 2000)

(Figure 1.3D). Another negative feedback loop involves another member of the p53

family of transcription factors. This family includes p53, p63 and p73 that are related

by structure and function and have evolved from a common precursor. p53 induces

expression of ANp73, an amino-terminally truncated version of p73 which lacks the

transactivation domain. The ANp73 protein can inhibit p53-dependent gene

expression by competing for promoter binding sites of p53 target genes, therefore

repressing p53 activity (Grob et al., 2001; Kartasheva et al., 2002) (Figure 1.3E).

The p53 response to multiple stress signals is tightly coordinated by an

assortment of regulatory mechanisms. Autoregulatory feedback loops intricately

manipulate p53 activity to accommodate the cell's needs. The majority of

autoregulatory loops identified act through the MDM2 protein to regulate p53,

however it is likely that additional p53 downstream effectors will feedback either

positively or negatively to fine-tune the p53 response to various cellular stresses. One

of the most well established transcriptional targets of p53 is the cyclin dependent
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kinase inhibitor, p21. This thesis will explore how p21 contributes to autoregulatory

control of the p53 pathway.

1.3 The p21 Cyclin Dependent Kinase Inhibitor

1.3.1 Discovery and characterisation of p21

The discovery of p21 was simultaneously described by six independent groups,

exploring distinct cell pathways. Three groups identified p21 by virtue of its

interaction with the cell cycle machinery including CDK2 and cyclin D, as a cyclin

dependent kinase inhibitor and designated it CIP1 (CDK interacting protein 1)

(Harper et al, 1993), CAP20 (CDK2-associated protein-20) (Gu et al., 1993), and

p21 (Xiong et al., 1993). p21 was identified in a screen to identify p53 target-genes,

and was designated WAF1 (wild-type p53 activated fragment 1) (el-Deiry et al.,

1993). p21 was also identified as a protein expressed in senescent fibroblasts and

termed SDI1 (senescent cell-derived inhibitor 1) (Noda et al., 1994), and was

similarly isolated from differentiating melanocytes and called MDA6 (melanoma

differentiation antigen 6) (Jiang et al., 1995).

The human p21 gene (also referred to as CDKN1A) was mapped to 6p21.2

and shown to encode a 21 kDa protein (el-Deiry et al., 1993) involved in cell cycle

arrest, apoptosis, and promotion of differentiation and cellular senescence. However,

the role of p21 is most well-defined in the p53 pathway, where p21 is a direct

transcriptional target of p53, and is strongly induced by DNA damage in cells

expressing wild-type p53 (el-Deiry et al., 1994).
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1.3.2 Structure of p21

p21 belongs to the Cip/Kip family of cyclin dependent kinase inhibitors comprising

of p21, p27KIP1, and p53KIP2. All family members are structurally related, share

significant homology in their N-terminal regions, and recognise a broad but not

identical range of cyclin/CDK targets. In solution p21 is an unstructured protein

possibly enabling it to adopt multiple induced conformations depending on the target

protein encountered (Kriwacki et al., 1996). Although the crystal structure of p21 has

not been solved, there is data available for the related cyclin dependent kinase

inhibitor, p27 (Russo et al., 1996). Upon binding to the cyclin/CDK, the N-terminus

of p27 adopts a highly ordered structure with distinct amino acid motifs interacting

with the cyclin via a hydrophobic patch on the surface of the cyclin and with the

CDK (Russo et al., 1996). There is high degree of similarity between p21 and p27

with regard to the N-terminal region, therefore it is not unreasonable to presume that

p21 can bind to and mediate inhibition of cyclin/CDK complexes in a similar manner.

Subsequently, biochemical studies have revealed that p21 (Figure 1.4) interacts

directly with cyclins through a conserved region near the N-terminus, at amino acids

A17CRRLFGP24 in p21 (Chen et al., 1996; Wohlschlegel et al., 2001). This cyclin-

binding motif is found in other cyclin/CDK interacting proteins including p27, p57,

E2F1 and CDC25A (Adams et al., 1996). p21 has a separate CDK binding site in the

N-terminus, at amino acids F53VTETP58 and in conjunction with the 310 helix, at

amino acids P74KLYLP79, contacts the CDK and blocks the ATP binding site,

preventing catalytic activity (Chen et al., 1996).
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In contrast with the N-terminus, the C-terminus is poorly conserved amongst

the CIP/KIP family of cyclin dependent kinase inhibitors, which may reflect distinct

roles in vivo. The unique C-terminus of p21 associates with the proliferating cell

nuclear antigen (PCNA), a subunit of DNA polymerase 8 and can inhibit DNA

replication (Warbrick et al., 1995). Embedded within the PCNA binding site at

amino acids 143-160, is a second cyclin-binding motif at amino acids 153-159,

which is not present in p27 or p57 (Chen et al., 1996). A nuclear localisation signal is

also located in the C-terminus of p21 (Rodriguez-Vilarrupla et al., 2002).

1.3.3 Functions of p21

p21 is a multifunctional protein and has roles in cell cycle regulation, DNA synthesis,

differentiation and regulation of transcription. p21 was principally identified and

characterised as a cyclin-dependent kinase inhibitor induced by the p53 tumour

suppressor protein, and shown to mediate p53-dependent cell cycle arrest at the Gl/S

checkpoint by inhibiting the activity of cyclin/CDK2 complexes (detailed in 1.2.3.1).

p21 can also be induced by multiple factors independent of p53 including growth

factors (Liu et al., 1996a), cytokines (Li et al., 1995), glucocorticoids (Corroyer et al.,

1997) and retinoids (Liu et al., 1996b).

Cell cycle progression can also be blocked in S phase by p21. p21 was

initially identified as a component of a quaternary complex containing CDK, cyclin

and PCNA (Zhang et al., 1993). PCNA plays an essential role in DNA replication

and different types of DNA repair including nucleotide excision repair, mismatch

repair and base excision repair. Subsequent studies showed that p21 can directly bind
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to PCNA via a C-terminal binding site and inhibit DNA synthesis by DNA

polymerase 8 (Waga et al., 1994; Warbrick et al., 1995). In vitro studies have shown

that p21 exerts its effect either by inhibiting the loading of the PCNA trimeric

complex onto the DNA or the loading of the polymerase 8 onto the pre-assembled

clamp (Podust et al., 1995). However the effect of p21 on DNA repair via PCNA

remains unresolved, as p21 has been demonstrated to reduce (Copper et al., 1999) or

to have no effect (Li et al., 1994b) on PCNA-dependent DNA repair.

In contrast to the anti-proliferative functions of p21, p21 also has pro-

proliferative and survival roles, as an assembly factor for cyclin D/CDK4 complexes

(Cheng et al., 1999). In the cytosol p21 facilitates the assembly of the cyclin

D/CDK4 complexes, their subsequent translocation to the nucleus and prevention of

their nuclear export (Alt et al., 2002). This results in elevated levels of cyclin

D/CDK4 to initiate retinoblastoma protein phosphorylation and promote cell cycle

progression.

p21 is also involved in regulation of differentiation, however its effect

appears to cell-type dependent. In epithelial cells expression of p21 is induced in

post-mitotic cells immediately adjacent to the proliferative compartment, but is

decreased in cells further along the differentiation pathway (el-Deiry et al., 1995;

Gartel et al., 1996; Ponten et al., 1995). Similarly in cultured epidermal cells at late

stages of differentiation, p21 protein levels are decreased by proteasome-dependent

degradation of p21 (Di Cunto et al., 1998). Direct over-expression of p21 in these

cell lines inhibits differentiation, and this is independent of the N-terminal region of

p21 containing the cyclin binding domain (Di Cunto et al., 1998). These data suggest

that p21 needs to be inactivated for later stages of differentiation, and is independent

-36-



of its function as a cell cycle regulator. In contrast to epithelial cells where p21 is a

negative regulator of differentiation (Di Cunto et al., 1998), p21 in retinoic acid

induced differentiation of acute promyelocytic leukaemia cells, appears to be a

positive regulator of differentiation, where elevated p21 protein levels are associated

with differentiation (Casini & Pelicci, 1999). However the mechanism of p21 -

dependent regulation of differentiation has yet to be resolved.

1.3.4 Regulation of p21

The role of p21 as a mediator of growth suppression and differentiation indicates that

p21 protein levels are likely to be delicately balanced. p21 expression has been

shown to be mainly regulated at the transcriptional level by both p53-dependent and -

independent mechanisms. The p21 promoter contains five p53-binding sites at

positions -4001 bp, -3764 bp, -2311 bp, and -1391 bp, and at least one of these sites

is required for p53-dependent induction after DNA damage (el-Deiry et al., 1995;

Ocker & Schneider-Stock, 2007). Multiple alternative human p21 transcripts have

also been identified and shown to be regulated by p53, although the biological

significance of these transcripts is yet to be determined (Radhakrishnan et al., 2006).

However p21 expression in development occurs independently of p53, as expression

of p21 in most tissues of mice nullizygous for p53 is normal (Macleod et al., 1995).

A variety of transcription factors including STATs, E2Fs, AP2, C/EBPa, C/EBPP,

BRCA1, c-MYC and MYOD, can regulate p21 transcription independently of p53

through specific cis-acting elements in the p21 promoter (Gartel & Tyner, 1999).
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p21 protein levels are modulated post-translationally by both ubiquitin-

dependent and -independent proteasome mediated degradation. p21 protein

degradation has been shown to be mediated by the E3 ubiquitin ligases SCF

(SKPl/Cullen/F-box protein related complex) (Bornstein et ah, 2003) and APC/C

(Anaphase promoting complex) (Amador et ah, 2007) in a proteasome dependent

manner. Although p21 is degraded by the proteasome, the requirement for

ubiquitination prior to degradation remains controversial, since mutation of all lysine

residues in p21 did not lead to p21 protein stabilisation (Chen et al., 2004). In

addition MDM2 can degrade p21 by facilitating an interaction between p21 and the

20S proteasome, independent of ubiquitination (Zhang et al., 2004).

1.3.5 p21 feedback loops

p21 is primarily upregulated at the transcriptional level by several transcription

factors including E2F and STAT3, and down-regulated by c-MYC. A role for p21 is

emerging as a regulator of gene expression. p21 contains a nuclear localisation signal

and can functionally cooperate with the transcriptional co-activator p300/CBP to

enhance NF-kB target gene expression (Perkins et al., 1997). p21 can also repress

transcription when fused to the Gal4 DNA binding domain (Delavaine & La

Thangue, 1999). Previous studies indicate that p21 can modulate the transcriptional

activity of E2F (Delavaine & La Thangue, 1999), c-MYC (Kitaura et al., 2000), and

STAT3 (Coqueret & Gascan, 2000) and reveal that p21 can operate within a

feedback network.
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The E2F family of transcription factors activate a number of genes

responsible for DNA replication and S phase progression. The principal pathway

through which p21 mediates G1 arrest is through indirect inhibition of E2F activity.

p21 gene expression is induced by E2F-1 and E2F-3 through sequences between -

119 bp and +16 bp of the p21 promoter, by a p53-independent mechanism (Gartel et

al., 1998; Radhakrishnan et al., 2004). Subsequently p21 can cause specific

repression of E2F transcriptional activity independent of RB and inhibition of

cyclin/CDK activity. The p21 protein can also regulate numerous protein-protein

interactions, and was similarly shown to directly associate with the E2F factor

(Delavaine & La Thangue, 1999). Although p21 expression levels were not assessed

in this study, it is interesting to speculate that p21 mediates its own expression via an

autoregulatory feedback loop involving the E2F transcription factor.

In contrast to E2F transcription factors, c-MYC represses p21 gene

expression in a p53-independent manner (Gartel et al., 2001). c-MYC is a proto-

oncogene which is rapidly induced in cells following mitogenic stimuli, and is

suggested to play an important role in the transition from quiescence to proliferation.

c-MYC is a transcription factor and when complexed with MAX recognises the E-

box sequence in the target genes to be transactivated. However, p21 transcription is

repressed by c-MYC. This involves recruitment of c-MYC directly to the p21

promoter by the DNA-binding protein MIZ-1 (Wu et al, 2003). c-MYC then actively

recruits the de novo methyTransferase DNMT3a co-repressor to the p21 promoter

(Brenner et al., 2005) preventing transcriptional activation of p21. At the protein

level p21 can directly bind to the N-terminus of c-MYC and abrogate the c-

MYC/MAX complex, subsequently suppressing c-MYC-dependent transcription
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(Kitaura et al., 2000). Although it remains to be determined if p21 association with c-

MYC is sufficient to alleviate c-MYC repression of p21 transcription, it would

provide an additional mechanism of fine-tuning p21 protein levels to the needs of the

cell.

The STAT family of transcription factors are cytoplasmic proteins that induce

activation of target genes in response to stimulation by cytokines including

interleukin 6, the leukaemia inhibitory factor and ciliary neurotrophic factor (Hirano,

1998). These cytokines bind to their respective receptors and activate JAK protein

tyrosine kinases, followed by tyrosine phosphorylation of the receptors. This leads to

activation and homo- or heterodimerisation of STAT 1/3 transcription factors,

translocation to the nucleus and transcriptional activation of target genes (Ihle, 1996).

The p21 gene is transcriptionally activated by STAT factors, which recognise a

conserved element in the promoter ofp2J and induce p21 expression (Bellido et al.,

1998; Matsumura et al., 1997). At the protein level p21 can directly bind to STAT3

and inhibit its transcriptional activity (Coqueret & Gascan, 2000). Therefore cytokine

stimulation leads to transcriptional activation of p21 and elevated p21 protein levels,

which subsequently repress STAT3 transcriptional activity and p21 expression

(Coqueret & Gascan, 2000). This illustrates the operation of a classic feedback

mechanism in the regulation of p21.
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1.4 Objectives

The activity of the p53 tumour suppressor protein is tightly regulated by multiple

mechanisms, to promote p53 function in response to cellular stress or to repress its

activity after stress activation to allow normal development and cell proliferation to

occur. Autoregulatory feedback loops represent an important mechanism in the

regulation of p53 by coordinating the p53 response to the condition of the cell. A

well-established downstream effector of the p53 pathway is the cyclin dependent

kinase inhibitor, p21. A novel role for p21 is emerging as a regulator of gene

expression by interacting with specific transcription factors. The overall aim of this

thesis was to investigate and characterise the inter-relationship between p53 and its

transcriptional target, p21.
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Figure 1.1 Functional domains of the human p53 tumour suppressor protein. The N-

terminus (red) contains the transactivation domain (TAD) and the proline-rich domain (PRD).

The central region (blue) contains the DNA-binding domain (DBD). The residues most

frequently mutated in human cancer are highlighted. The C-terminus (green) contains the
tetramerisation domain (TET) and the negative regulatory domain (REG). The corresponding
amino acid residues are shown below each domain. The lower panel represents the highly
conserved regions termed BOX-I, -II, -III, -IV, and -V with corresponding amino acids shown

below each region.
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Figure 1.2 The p53 response. Various stress signals (red) induce p53 stabilisation and
activation leading to an appropriate cellular response (green).
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Figure 1.3 Autoregulatory feedback loops modulate p53 activity. (A) p53-MDM2-

pl4/19ARF loop. (B) p53-SIAHl-|3catenin-pl4/19 ARF loop. (C) p53-PTEN-PIP3-AKT loop.

(D) p53-WIPl-p38 MAPK loop. (E) p53-ANp73 loop. Arrows represent activation. T-shaped
lines represent inhibition.
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MDM2 (87-164)

E2F1 (1-90) c-MYC (139-164)

N Cyl CDK 3,o PCNA Cy2
17 24 53 58 74 78

WISp39 (28-56)

143 153 159 160

GADD45 (139-164)

Pro-caspase 3 (1-33) Calmodulin (145-164)

CK2 (46-65) C/EBPa (84-164)

Figure 1.4 Human p21 protein and its direct protein-protein interactions. The major

interaction motifs are represented in boxes; Cyl (red) - cyclin binding site 1; CDK (purple) -

cyclin-dependent kinase interaction domain; 310 (green) - 310 helix involved in CDK binding;
PCNA (blue) - proliferative cell nuclear antigen binding site; Cy2 (red) - cyclin binding site 2.

The corresponding amino acid residues are shown below each domain. p2l interacts with a

variety of proteins, a selection are illustrated above and corresponding amino acids are shown in
brackets. MDM2, E2F1 and c-MYC interactions with p21 are further discussed in the text and
are shown above the map of human p21.
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CHAPTER 2

MATERIALS AND METHODS

2.1 General Reagents

All chemicals and reagents were supplied by Sigma unless otherwise stated. All

tissue culture reagents including foetal bovine serum (FBS), Dulbecco's modified

eagle's medium (D-MEM), McCoy's 5A medium, penicillin-streptomycin solution,

trypsin-EDTA solution and Lipofectamine™2000 were supplied by Invitrogen

unless otherwise stated.

2.2 Equipment

Irradiation treatment of cells was carried out in a Faxitron cabinet X-ray system,

43855D (Faxitron X-ray Corporation). A Fluroskan (Ascent FL), PowerwaveXS1M

microplate reader (Bio-Tek), and an Envision fluorescence detector (Perkin Elmer)

were used to read 96-well plates. RNA concentrations were measured using a

NanoDrop® spectrophotometer. SDS PAGE was carried out using Biorad Protean II

mini-gel system. Coomassie stained gels were dried using a gel drier (MGD-5040,

VWR International). X-ray films were developed using a Mediphot 937 developer.

Microarray hybridisations were carried out in a hybridisation oven (Hybridiser H8-

ID, Techne). Sorvall RC-5C plus and Eppendorf 5415R were used for all

centrifugations.
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2.3 Antibodies

2.3.1 Primary antibodies

All primary antibodies used are detailed in Table 2.1, including the final dilution

used for immunoblotting and the size of the protein bands detected.

2.3.2 Secondary antibodies

Goat Anti Mouse IgG (Pierce); Rabbit Anti Mouse IgG (DakoCytomation); Swine

Anti Rabbit IgG (DakoCytomation). All secondary antibodies are conjugated to

horse radish peroxidase.

2.4 Plasmids

Generally vectors used for transfection of mammalian cell lines were pcDNA3.1

(Invitrogen) including full length p21 used for transient transfection and p21

truncations (kindly provided by M. Scott). This vector contains a multiple cloning

site, an ampicillin resistance gene and a strong mammalian CMV promoter upstream

of the multiple cloning site. For stable transfection of p21, full length p21 was

previously cloned into pIRESpuro2 vector (Clontech) (kindly provided by A.

Ingram). This vector contains a puromycin resistance gene and a CMV promoter

upstream of the multiple cloning site.
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Target kl)a Clonality Supplier Dilution

ATM (5C2) 370 Mouse Monoclonal Abeam 1:500

Phosho-ATMser 1981 370 Mouse Monoclonal Upstate 1:500

P - actin 42 Mouse Monoclonal Abeam 1:2000

BAX (N-20) 23 Rabbit Polyclonal Santa Cruz 1:1000

CHK1 (G-4) 56 Mouse Monoclonal Santa Cruz 1:1000

CHK2 (A-12) 66 Mouse Monoclonal Santa Cruz 1:500

Phospho-CHK2thr68 66 Rabbit Polyclonal Santa Cruz 1:500

DAPK1 160 Mouse Monoclonal BD 1:1000

E2F-1 (C-20) 60 Rabbit Polyclonal Santa Cruz 1:1000

GADD34 90 Goat Polyclonal Abeam 1:500

IRF-1 48 Mouse Monoclonal BD 1:1000

MDM2 (2A9) 90 Mouse Monoclonal Moravian

Biotechnology
1:1000

MDM2 (2A10) 90 Mouse Monoclonal Moravian

Biotechnology
1:1000

MDM2 (4B2) 90 Mouse Monoclonal Moravian

Biotechnology
1:1000

p21 (Ab-1) 21 Mouse Monoclonal Oncogene 1:1000

p53 (DOl) 53 Mouse Monoclonal Moravian

Biotechnology
1:1000

p53 (D012) 53 Mouse Monoclonal Moravian

Biotechnology
1:1000

p53 (19.1) 53 Mouse Monoclonal Moravian

Biotechnology
1:1000

p53 (PAb 240) 53 Mouse Monoclonal Moravian

Biotechnology
see 2.15

p53 (PAb 1620) 53 Mouse Monoclonal Moravian

Biotechnology
see 2.15

p53 (CM-1) 53 Rabbit Polyclonal Moravian

Biotechnology
see 2.15

p53 (CM-5) 53 Rabbit Polyclonal Moravian

Biotechnology
1:1000

Phospho-p53serl5 53 Mouse Monoclonal Cell Signaling 1:1000

Phospho-p53serl5 53 Rabbit Polyclonal Cell Signaling 1:1000

Table 2.1 Details of primary antibodies.
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2.5 Sterilisation

Flame sterilisation was employed when sterile conditions were required for bacterial

work. Equipment and broth were sterilised using the autoclave. All tissue culture

work was carried out in a sterile laminar flow hood.

2.6 Molecular Biology Methods

2.6.1 Bacterial growth media and culture conditions

Bacterial cultures were grown in an appropriate volume of Luria Bertani (LB) media

(1 % (w/v) bacto - tryptone, 0.5% (w/v) bacto - yeast extract, 1 % (w/v) NaCl,

adjusted to pH 7.5) containing a selective antibiotic if required, at a final

concentration of 100 pg/ml. Inoculated cultures were incubated in sterile flasks four

times the culture volume to allow aeration, for ~8 hr at 37 °C with rotation at 225

rpm.

Agar plates were prepared using LB media containing 1.5 % (w/v) bacto-agar. LB

agar was liquefied by heating in a microwave oven. When the agar was hand-warm it

was poured into 90 mm diameter Petri dishes (Sterilin) and left to cool. If antibiotic

selection was required, the antibiotic was added to the agar immediately before

pouring. The culture dishes were stored at 4 °C for no longer than one month. Prior

to use the plates were dried at 37 °C for 1 hr.
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2.6.2 Storage of bacterial stocks

For short - term storage, bacterial colonies were stored at 4 °C, on inverted parafilm-

sealed agar plates of LB medium containing the appropriate antibiotics.

For long-term storage, glycerol stocks were made of bacterial cultures. 875 pi

bacterial overnight culture was added to 125 pi sterile glycerol (80 %) in a cryotube

(Nunc), vortexed to mix, snap frozen in liquid nitrogen and stored at -70 °C.

2.6.3 Preparation of competent cells

An aliquot of the required bacterial stock was thawed on ice, 5 pi was added to 5 ml

LB, and incubated overnight at 37 °C with rotation at 225 rpm. The overnight culture

was diluted 1:200 in 100 ml LB and incubated at 37 °C for approximately 2 hr until

an O.D6oonm of between 0.3 and 0.6 was reached. Cells were spun at 4000 g for 20

min at 4 °C, resuspended in 15 ml transformation buffer 1 (100 mM RbCl, 79 mM

MnCb, 30 mM Potassium Acetate pH 7.5, 13.5 mM CaCl, 15 % (v/v) Glycerol,

adjusted to pH 5.8) and incubated on ice for 1 hr. Cells were spun at 4000 g for 5

mins at 4 °C to produce a fluffy white pellet, which was resuspended in 4 ml

transformation buffer 2 (10 mM MOPS pH 6.8, 10 mM RbCl, 13.5 mM CaCh, 15%

(v/v) Glycerol, adjusted to pH 6.8). After incubation on ice for 15 min, the cells were

aliquoted (100 pi) into sterile microcentrifuge tubes, snap frozen in liquid nitrogen

and stored at -70 °C.
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2.6.4 Transformation ofE.coli competent ceils with plasmid DNA

The DH5a competent strain of E. coli was used to transform all recombinant plasmid

DNA. The competent cells were gently thawed and the plasmid DNA was added (up

to 40 ng). The tube was gently tapped and left on ice for 30 min. The cells were then

heat shocked at 42 °C for 90 sec, replaced on ice for 2 min, 500 pi LB medium was

then added, and shaken at 37 °C for 1 hr. The resulting suspension was spread to

dryness on selective agar plates and incubated at 37 °C for 16 hr.

2.6.5 Amplification of plasmid DNA

A single colony of transformed bacteria was picked and used to inoculate a starter

culture of 5 ml LB containing selective antibiotic at a final concentration of 100

pg/ml. The culture was incubated at 37 °C at 225 rpm for 4-8 hr in a 15 ml sterile

tube.

2.6.6 Purification of plasmid DNA

Plasmid DNA was isolated using Qiagen plasmid DNA Mini and Maxi Kits. For a

Mini prep (Qiagen) the starter culture was used directly. For a Maxi prep (Qiagen)

the starter culture was diluted 1:500 into selective LB media (250 ml, overnight). The

cells were harvested by centrifugation and plasmid DNA purified according to the

manufacturer's instructions. The Mini prep yields 5-10 pg of DNA depending on

plasmid copy number. The Maxi prep yields up to 500 pg of DNA depending on the
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plasmid copy number. Plasmid DNA was resuspended in nuclease-free dE^O and

stored at -20 °C.

2.6.7 Quantification of DNA Concentration

The concentration of plasmid DNA was determined by spectrophotometry at 260 nm

using the PowerwaveXS™ Microplate Spectrophotometer (Bio-Tek). Plasmid DNA

was diluted 1:100 and 100 pi volumes were added to wells of a 96-well UV-Star™

Plate (Greiner), using 100 pi dE^O as a blank control. DNA concentrations were

calculated based on the observation that 50 pg/ml DNA gives an OD260nm of 1.

2.6.8 Agarose gel electrophoresis

Plasmid DNA was resolved and analysed by agarose gel electrophoresis. Agarose

gels were prepared by adding agarose to TAE buffer (0.4 M Tris-HCl pH 8.0, 0.2 M

Sodium Acetate, 0.02 M EDTA pH 8.0) to a final concentration of 1 % and heating

until dissolved. The solution was cooled to 55 °C and ethidium bromide was added

to a final concentration of 0.5 pg/ml. The gel was then poured into a casting mould

and allowed to set at room temperature. Prior to loading onto the gel DNA samples

were diluted 1:4 into DNA sample loading buffer (40 % (v/v) Glycerol, 50 mM

EDTA, 0.1 % (w/v) Bromophenol Blue). The gel was then immersed in TAE buffer

and DNA samples were subjected to electrophoresis at 100V for 1 hr before

visualising plasmid DNA bands under a UV transilluminator.
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2.7 Cell Culture

2.7.1 Human cell lines

All human cell lines were maintained in a humidified incubator (Hera) at 37 °C.

Cell Line Source Medium % co2 p53 Status

A375 Melanoma D-MEM 5 Wild Type

HCT116 WT Colorectal carcinoma McCoy's 5A 10 Wild Type

HCT116 p21 -/- Colorectal carcinoma McCoy's 5A 10 Wild Type

HCT116 p53 -/- Colorectal carcinoma McCoy's 5A 10 Inactive

NHF Normal fibroblast HepesBSS 10 Wild Type

Table 2.2 Human cell lines and culture conditions

The isogenic cell panel HCT116 WT, p21 -/- and p53-/- was a kind gift from B.

Vogelstein (John Hopkins University).

2.7.1.1 Cell maintenance

2.7.1.1.1 Subculturing

Cells were maintained in sterile 10 cm diameter culture dishes. When cells were

confluent the medium was discarded, and cells washed with sterile PBS (10 ml /10
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cm culture dish), followed by the addition of trypsin-EDTA solution (1 ml/ 10 cm

culture dish). The cells were incubated at 37 °C for 5 - 10 min until the cells start to

detach from the culture dish. Trypisinised cells were then diluted 10-fold with fresh

medium and seeded into fresh plates with fresh medium at the desired cell density.

Cells were counted using a haemocytomer.

2.7.1.1.2 Cell storage and recovery

For long-term storage, cells were kept in liquid nitrogen. To prepare cells for storage,

80 % confluent cells were trypsinised and collected by centrifugation at 200 g for 5

min. The supernatant was discarded and the cell pellet from a 10 cm diameter culture

dish was gently resuspended in 3 ml freezing media (50% (v/v) Tissue culture media

(depending on cell line), 40 % (v/v) FBS, 10% (v/v) DMSO), and transferred to

cryotubes (Nunc) at 1 ml/ tube. The cells were frozen slowly in Nalgene1M Cryo 1 °C

freezing containers overnight at -70 °C and then transferred to liquid nitrogen.

To recover the cells from frozen stock, one tube was rapidly thawed at 37 °C,

resuspended in 10 ml fresh medium and cells were collected by centrifugation at 200

g for 5 min to remove DMSO. The cell pellet was resuspended in fresh medium and

transferred to a culture dish. The medium was changed the following day and the

cells were left to grow until confluent before subculturing.
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2.7.2 Harvesting adherent cells

All human cell lines used are adherent cells. To harvest, cells were washed on ice

with chilled PBS, scraped in 1 ml ice-cold PBS and sedimented by centrifugation at

1000 g for 3 min at 4 °C. Supernatant was discarded and cell pellets were snap frozen

in liquid nitrogen and stored at -70 °C.

2.7.3 Mouse cells

p21 homozygous (Cdknla -/-) heterozygous (Cdknla +/-) and wild type {Cdk.nla

+/+) mice were a kind gift from B. Wardlaw (Roslin Institute, Midlothian UK). The

homozygous mice mating system was purchased from The Jackson Laboratory,

JAX® Mice strain name: B6; \29S2-Cdknla'mlTyj/J.

2.7.3.1 Extraction of B-cells from mouse spleen

The isolation of B cells from mice spleens was achieved using the QuadroMACS™

separation system (Miltenyi Biotec). This involves magnetically labelling the

biological material of interest with MACS® Microbeads and passing the material

through a MACS® separation column which is placed in the strong permanent

magnet of the QuadroMACS™ separation unit. The magnetically labelled material is

maintained in the column and separated from the unlabelled material. Removal of the

column from the magnetic field allows the retained fraction to be eluted.
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Spleens were removed from mice and stored at 4 °C in IMDM media (Invitrogen)

supplemented with 5 % FCS and 50 pM 2-mercaptoethanol, until processed. Each

spleen was macerated with a fine syringe needle and cells were flushed out by

repeatedly injecting media into the spleen. Generally, ~lxl0 cells per spleen were

obtained. Cells were centrifuged at 300 g for 10 min at 4 °C. The cell pellet was

resuspended in 900 pi separation buffer (2 mM EDTA, 0.5 % BSA in PBS pH 7.2)

and 100 pi CD45R mouse MACS® Microbeads (Miltenyi Biotec), and incubated for

15 min at 4 °C. The CD45R antigen is expressed on B lymphocytes throughout their

development and is commonly used as a pan-specific B cell marker. Therefore the

microbeads should magnetically label only CD45R+ cells allowing magnetic cell

sorting. Cells were washed with 10 ml separation buffer and resuspended in 500 pi

separation buffer. A MACS® LS separation column (Miltenyi Biotec) was placed in

the QuadroMACS™ separation unit (Miltenyi Biotec) and washed with 3 ml

separation buffer. The cell suspension was applied to the column and the column was

washed three times with 3 ml separation buffer. The column was then removed from

the magnetic field and B-cells were flushed out with 5 ml separation buffer into a

clean falcon tube. Cells were collected by centrifugation at 200 g for 5 min at room

temperature, resuspended in culture media and seeded at a cell density of 0.5 x 106

cells/ml. Cells were treated (see 2.8) 24 hr after seeding.

2.7.3.2 Harvesting suspension cells

Mouse B-cells are suspension cells. To harvest, all cells were transferred to a 15 ml

falcon tube and spun at 1000 g for 5 min at 4 °C. The cell pellet was washed in 1 ml
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ice-cold PBS and transferred to a microcentrifuge tube. The cell pellet was collected

by centrifugation at 2,300 g for 5 min at 4 °C. Cell pellets were snap frozen in liquid

nitrogen and stored at -70 °C.

2.8 Manipulation of Mammalian Cells

2.8.1 Transient transfection

Cells were seeded into 6 cm diameter culture dishes at a density of 8 x 105 cells/ml

and grown for 24 hr. The liposome-mediate method of transfection was carried out

using Lipofectamine™2000 (Invitrogen) based on the manufacturer's

recommendations. The quantity of DNA transfected is indicated in each experiment

and the amount ofDNA normalised with empty vector DNA (pcDNA3.1, Invitrogen)

as required. Generally, 5 pi Lipofectamine™2000 was added to 200 pi serum-free

medium and incubated for 5 min at room temperature. Plasmid DNA was similarly

diluted in 200 pi serum-free medium. The diluted Lipofectamine™2000 was then

added to the diluted DNA and incubated for 20 min at room temperature to allow

DNA/ Lipofectamine™2000 complexes to form. The resulting mixture was then

added to each plate, and cells were incubated for a further 24 or 48 hr before

harvesting (2.7.2) and analysis.
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2.8.2 Stable transfection

Cells were seeded into 10 cm diameter culture dishes at a low cell density of 1 x 106

cells/ml and grown for 24 hr. Cells were transfected with lpg of DNA as described

in 2.8.1. In the construction of the p21 stable cell lines, HCT116 p21 -/- cells were

transfected with plRESpuro2 vector (Clontech) expressing full length p21 and

puromycin-N-acetyl-transferase. After 24 hr incubation at 37 °C, cells containing the

plasmid were selected for by the addition of puromycin (Calbiochem). Fresh medium

containing 5 pg/ml puromycin was added after a majority of cells died. Individual

colonies were grown up and picked using small squares of sterile blotting paper (2

mm x 2mm) soaked in trypsin to detach individual colonies, and each clone was

transferred to an individual well of a 24 well plate. Clones were expanded under

selection conditions. To confirm that the cells were expressing p21, immunoblotting

was carried out.

2.8.3 RNA interference mediated gene knockdown

Small interfering RNA (siRNA) mediated gene knock-down was achieved by

transfecting siRNAs (Dharmacon) into cells using Lipofectamine™2000 (Invitrogen)

in accordance with the manufacturer's recommendations (as previously detailed in

section 2.8.1). p21 siRNA, MDM2 siRNA and control siRNA (SMARTpool™

Dharmacon) were used at a final concentration of 33 nM. After transfection cells

were incubated at 37 °C in 5 % CO2 for 24 - 48 hr, harvested and analysed by

immunoblotting.
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2.8.4 Gene reporter assays

2.8.4.1 Cell transfection and lysis

Cells were seeded into 6-well plates, and incubated until ~70 % confluency was

obtained before being transfected with 1 pg pGL3p21-Luc and 1 pg pCMVp-Gal

DNA (as previously detailed in 2.8.1). Cells were incubated for 24 hr at 37 °C. Cells

were then treated and lysed at stated time points. To lyse, cells were washed twice in

ice-cold PBS and lysed in 70 pi 5x Reporter Lysis Buffer (Promega) on ice for 10

min. The cells were scraped and spun at 15,000 g for 2 min at 4 °C. The supernatant

was transferred to a fresh microcentrifuge tube and snap frozen in liquid nitrogen.

2.8.4.2 Luciferase assay

For the Luciferase assay, the lysates (20 pi) from 2.8.4.1 were aliquoted into a white

Microlite2™ 96-well ELISA plate (CoStar; Corning Inc.) on ice. 50 pi of Luciferase

Substrate™ from the Luciferase Assay Systems™ (Promega) kit was added to each

well of the Microlite2 plate, and allowed to reach room temperature. Luciferase

activity was quantified using a luminometer (Fluroskan Ascent FL).

2.8.4.3 p-Galactosidase assay

For the P-Galactosidase assay, the lysates (20 pi) from 2.8.4.1 were aliquoted into a

clear 96-well plate at room temperature, and 20 pi of P-Galactosidase 2x assay buffer
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(Promega) was added and incubated for 20 min at 37 °C. P-Galactosidase activity

was quantified using a PowerwaveXS™ Microplate Spectrophotometer (Bio-Tek) at

a wavelength of 405 nm. The results were normalised to account for variation in

transfection efficiency, by dividing the Luciferase readout by the P-galactosidase

readout to give relative light units.

2.8.5 Genotoxic or drug treatment of mammalian cells

Cells were grown to 70 % confluency before treating with indicated drug or stress. If

cells were incubated for longer than 24 hr, culture medium was replenished 24 hr

prior to treatment to ensure mitogen levels were consistently high. Following

treatments cells were cultured for the indicated time and harvested as described in

2.7.2.

2.8.5.1 IR treatment

• • • *1 • • (S) #

Cells were irradiated in culture medium using a Faxitron cabinet X-ray system,

43855D (Faxitron X-ray Corporation), at a central dose rate of 2 Gy/min. Cells were

irradiated at the stated doses and harvested at the stated time points.
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2.8.5.2 Treatment with inhibitors

Table 2.3 details the inhibitors used. The stated concentration of drug, or solvent

only (vehicle control), was added to cells in culture medium, and cells were

harvested at the stated time points.

Drug Target Solvent Stock Cone Final Cone

KU-55933 ATM DMSO 10 mM 10 pM

NU-7441 DNAPK DMSO 10 mM 1 pM

Wortmannin PIKK family DMSO 20 mM 10 pM

Nutlin-3 MDM2 DMSO 45 mM 10 pM

Table 2.3 Details of Inhibitors of Cellular Targets

2.8.5.3 Cyclohexamide treatment

Cycloxamide is an antibiotic produced by Streptomyces griseus, and in eukaryotic

cells it causes inhibition of protein synthesis leading to cell growth arrest and cell

death. Cyclohexamide was used to determine the half-life of short lived proteins.

Cyclohexamide was dissolved in DMSO at a stock concentration of 100 mg/ml and

added directly into the culture media at a final concentration of 30 pg/ml. Cells were

harvested at 0 hr, 0.5 hr, 1 hr, 2 hr, 4 hr after treatment.
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2.8.5.4 Poly(I)-poly(C) treatment

Polyinosinic polycytidylic acid (poly(I).poly(C)) (Sigma) was dissolved in 0.5 M

Hepes pH 7.5 at a stock concentration of 25 mg/ml. The stated concentration was

added to cells in culture medium, and cells were harvested at the stated time points.

2.9 Recovery and Detection of Protein

2.9.1 Urea lysis

All manipulations were performed on ice. Twice the pellet volume of chilled urea

lysis buffer (7 M urea, 0.1 M DTT, 0.05 % Triton X-100, 25 mM NaCl, 20 mM

Hepes pH 7.5) was added to the frozen cell pellet, and cells were agitated by

pipetting until no solid particles could be observed, then incubated on ice for 30 min.

Extracts were clarified by centrifugation at 10,000 g for 10 min at 4 °C. The

supernatant was snap frozen in liquid nitrogen and stored at -70 °C. Protein

concentration of the lysates was determined by Bradford Assay (2.9.3).

2.9.2 Protein precipitation

Trichloroacetic acid (TCA) was used to precipitant protein and concentrate protein

samples using the following method. 2 % deoxycholate (DOC) was added to the

samples to a final concentration of 0.02 % and incubated at room temperature for 15

min. 24 % TCA was added to a final concentration of 8 % and incubated on ice for 1
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hr. The precipitated proteins were pelleted by centrifugation at 13,000 g for 10 min at

4 °C. The supernatant was removed and the pellet washed with 200 pi ice cold

acetone to remove residual TCA. The protein pellet was air dried for 1 - 2 min

before resuspending in either urea lysis buffer or 4 x SDS sample buffer (4 % SDS,

250 mM Tris-HCl pH 6.8, 10 mM EDTA, 0.2 M DTT, 1% Bromophenol blue).

2.9.3 Bradford assay

Biorad protein assay dye reagent concentrate was diluted 1 in 5 in distilled water. 1

pi diluted protein sample was added to 200 pi of this solution in a clear 96-well plate

and mixed. The absorbance at 595 nm was measured and the protein concentration

was determined from a standard curve generated from known concentrations of BSA.

2.9.4 SDS polyacrylamide gel electrophoresis (SDS PAGE)

Proteins were resolved on the basis of their molecular weight by SDS PAGE.

Different percentage acrylamide gels were poured according to the size of the protein

of interest, for example 6% acrylamide gels were used for high molecular weight

proteins (ATM - 370 kDa) and 15% acrylamide gels were used for low molecular

weight proteins (p21 - 21 kDa). The polyacrylamide gels were prepared and

assembled using Biorad Protean II mini-gel system. The resolving gel (6-15 %

Acrylamide, 390 mM Tris-HCl pH 8.8, 0.1 % SDS, 0.1 % Ammonium

peroxidisulphate, polymerisation was initiated by adding 0.08 % TEMED) was

overlaid with 80 % isopropanol(aq) to remove air bubbles, and allowed to set at room
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temperature. The isopropanol was removed and the stacking gel (5 % Acrylamide,

123 mM Tris-HCl pH 6.8, 0.1 % SDS, 0.1 % Ammonium peroxidisulphate, 0.1 %

TEMED) was applied, 10- or 15- well loading combs were inserted and the gel was

allowed to set at room temperature. Gels were immersed in SDS-PAGE Running

Buffer (192 mM Glycine, 25 mM Tris, 0.1 % (w/v) SDS) prior to protein sample

loading.

Protein samples were prepared by adding an appropriate volume of 4 x SDS

sample buffer to cell lysates. Prior to loading all samples were heated to 95 °C for 3

min to denature the proteins. Protein samples were loaded into wells in the stacking

gel and subjected to electrophoresis at 180 V until the dyefront had run from bottom

of the resolving gel. A low or high molecular weight pre-stained marker (4 pi,

Biorad) was also added to gauge size of the protein bands. Resolved proteins were

visualised by immunoblotting (2.9.5) or coomassie staining (2.9.6).

2.9.5 Immunoblotting

Proteins resolved by SDS-PAGE were transferred onto Hybond-C nitrocellulose

membrane (Amersham Pharmacia Biotech) in transfer buffer (192 mM Glycine, 25

mM Tris, 20 % (v/v) Methanol) at either 300 mA for 1 hr or 30 mA overnight.

Nitrocellulose membranes were ink stained (0.4 % ink (Pelikan) /PBS) to ensure

equal loading. Non-specific antibody binding was blocked by incubating membranes

in 5 % milk/ 1 % [^-glycerophosphate/ PBST for 1 hr at room temperature. (3-

glycerophosphate is a serine/threonine phosphatase inhibitor and is critical for the

retention of p53 serine-15 phosphorylation. Membranes were probed with primary
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antibody (see Table 1.1 for working concentration) for 3 hr at room temperature or

overnight at 4 °C. Membranes were washed once in PBST. Specific antibody binding

was detected by incubating membranes for 1 hr at room temperature with a

secondary horseradish peroxidase (HRP) conjugated antibody diluted 1:1000 in 5 %

milk/ 1% P-glycerophosphate/ PBST. Following three 15 min washes in PBST,

membranes were treated with ECL chemiluminescent detection system (2 ml /blot,

1:1 ratio ECL I : ECL II) and protein bands were visualized by exposure to X-ray

film (Kodak).

2.9.6 Coomassie staining

Following SDS-PAGE, resolved proteins were coomassie stained. Protein staining of

polyacrylamide gels was achieved by a 30 min incubation with Coomassie blue

solution (45 % Methanol, 10 % Acetic acid, 0.1 % w/v Coomassie Blue R250). Gels

were detained by incubating with destain 1 (5 % (v/v) Methanol, 7 % (v/v) Acetic

acid) until bands became visible and background staining was removed. For rapid

destaining, destain 2 (50 % (v/v) Methanol, 10 % (v/v) Acetic acid) was used. Gels

were dried onto 3 mm chromatography paper (Whatman®, Schleicher & Schuell

Biosciences) using a gel drier (MGD-5040, VWR International).

2.10 Subcellular Proteome Extraction

The ProteoExtract® Subcellular Proteome Extraction Kit (Calbiochem®), here after

referred to as S-PEK, was used to extract proteins from mammalian cells according
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to their subcellular localisation. The kit was used in accordance with the

manufacturer's recommendations. All extraction buffers contain protease inhibitors

and all steps were carried out at 4 °C unless stated. All fractions were stored at -70 °C

and analysed by immunoblotting (see 2.9.5).

2.10.1 Adherent cells

For adherent tissue culture cells including HCT116 and NHF, cells were treated at

70 % confluency. Growth medium was carefully removed and cells were washed

twice with 2 ml ice cold Wash Buffer for 5 min. Next 1 ml Extraction Buffer 1 was

added to the cell monolayer and incubated for 10 min with gentle agitation.

Extraction Buffer 1 was removed from the cell monolayer and transferred to a

microcentrifuge tube and labelled fraction 1 (Fl). Similarly, 1 ml Extraction Buffer

2 was added to the cell monolayer and incubated for 30 min with gentle agitation.

This fraction was removed and transferred to a microcentrifuge tube and labelled

fraction 2 (F2). 500 pi Extraction Buffer 3 containing Benzonase® nuclease, was

added to the cell monolayer and incubated for 10 min with gentle agitation.

Extraction Buffer 3 was transferred to a microcentrifuge tube and labelled fraction 3

(F3). Finally, 500 pi Extraction Buffer 4 was added to the cell monolayer at room

temperature. All residual cell structures were solubilised. The resulting extract was

transferred to a microcentrifuge tube and labelled fraction 4 (F4).
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2.10.2 Suspension cells

For suspension cells including mice B-cells, cells were seeded at 4 x 106 cells in 10

cm plates. Cells were pelleted by centrifugation at 300 g for 10 min. The pellet was

then washed twice with 2 ml cold Wash Buffer for 5 min with gentle agitation

provided by a rotary shaker. 1 ml Extraction Buffer 1 was added to the cell pellet.

The pellet was resuspended by gently flicking the tube and then incubated for 10 min

with gentle agitation. Insoluble material was then pelleted by centrifugation at 1000 g

for 10 min. The resulting supernatant was transferred to a microcentrifuge tube and

labelled fraction 1 (Fl). Similarly, 1 ml Extraction Buffer 2 was added to the cell

pellet. The pellet was resuspended by gently flicking the tube and then incubated for

30 min with gentle agitation. Insoluble material was then pelleted by centrifugation

at 6000 g for 10 min. The soluble fraction was transferred to a microcentrifuge tube

and labelled fraction 2 (F2). Next, 500 pi Extraction Buffer 3 containing

Benzonase® nuclease and added to the cell pellet. The pellet was resuspended by

pipetting up and down, and then incubated for 10 min with gentle agitation. Insoluble

material was then pelleted by centrifugation at 6800 g for 10 min. The resulting

supernatant was transferred to a microcentrifuge tube and labelled fraction 3 (F3).

Finally, 500 pi Extraction Buffer 4 was added to the cell pellet at room temperature.

All residual particles were resuspended by pipetting up and down. The resulting

extract was transferred to a clean tube and labelled fraction 4 (F4).
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2.11 Cell Fractionation and Nuclease Digestion

Cells were also fractionated by the method of Gilbert & Allan (2001). 5 x 106 cells

were seeded in 15 cm diameter culture dishes and grown until 80 % confluent. Cells

were trypsinised and the cell pellet resuspended in 5 ml NBA (85 mM KC1, 5.5 %

(w/v) sucrose, 10 mM Tris-HCl pH 7.5, 0.2 mM EDTA, 0.5 mM spermidine, 250

pM PMSF). An equal amount of NBB (85 mM KC1, 5.5 % (w/v) sucrose, 10 mM

Tris-HCl pH 7.5, 0.2 mM EDTA, 0.5 mM spermidine, 250 pM PMSF, 0.1 % (v/v)

NP40) was added and the cells were incubated on ice for 3 min. A sample was taken

of total cellular extract, mixed with an equal volume of SDS sample buffer and

stored at -20 °C. The nuclei were pelleted by centrifugation at 360 g for 4 min at 4 °C.

Nuclei were resuspended in NBR (85 mM KC1, 5.5 % (w/v) sucrose, 10 mM Tris-

HCl pH 7.5, 1.5 mM CaCl2, 3 mM MgCl2, 250 pM PMSF) and digested with 8-14

units of micrococcal nuclease (Worthington) per 20 A26o units of nuclei for 10 min

on ice in the presence of 100 pg/ml RNaseA. The reaction was stopped by adding 10

mM EDTA. The nuclei were washed, resuspended in TEEP2o (10 mM Tris-HCl pH

8.0, 1 mM EDTA, 1 mM EGTA, 250 pM PMSF, 20 mM NaCl) and incubated at 4

°C overnight. Nuclear debris was removed leaving soluble chromatin in the

supernatant by centrifugation at 12,000 g for 5 min at 4 °C. A sample of both the

insoluble nuclear fraction and the soluble chromatin containing fraction was removed,

mixed with an equal amount of SDS sample buffer and stored at -20 °C. All fractions

were resolved by SDS PAGE (2.9.4) and analysed by immunoblotting (2.9.5).
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2.12 Proteasome Activity Assay

Active proteasomes were obtained from cells by the method of Araya et al. (2002).

Harvested cells were lysed with proteasome lysis buffer (20 mM Tris-HCl pH 7.2,

0.1 mM EDTA, 1 mM 2-mercaptoethanol, 5 mM ATP, 20 % glycerol, and 0.04 %

NP40) by repeated pipetting, followed by a 20 min incubation on ice. Cell lysates

were centrifuged at 16,000 g at 4 °C for 10 min.

Proteasome activity was analysed using a 20S Proteasome Assay Kit

(Calbiochem®) in accordance with the manufacturer's recommendations. The 20S

activity is measured by monitoring the release of free AMC (7-amino 4-

methylcoumarin) from the fluorogenic proteasome specific peptide Suc-Leu-Leu-

Val-Tyr-AMC. The rate of AMC release is measured by fluorescence spectroscopy.

Cell lysates (final concentration 0.02 mg/ml) were diluted in 190 pi SDS activated

Reaction Buffer, added to a white Microlite2™ 96-well ELISA plate (CoStar;

Corning Inc.) and equilibrated to 37 °C. The reaction was initiated by adding 10 pi of

the fluorogenic peptide solution to each well. The intensity of fluorescence of each

reaction was measured over time by fluorescence spectroscopy (excitation max:

-380 nm; emission max: -460 nm) using an Envision fluorescence detector (Perkin

Elmer).
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2.13 ATM Kinase Assay

2.13.1 Nuclear extraction

Nuclear extract from frozen cell pellets were prepared using the method of Gooarzi

& Lees-Miller (2004). Frozen cell pellets were lysed in twice the cell volume of low

salt buffer (10 mM Hepes pH 7.4, 25 mM KC1, 10 mM NaCl, 1 mM MgCl2, 0.1 mM

EDTA) and centrifuged at 10,000 g for 15 min at 4 °C. The resulting supernatant was

discarded. The pellet was gently extracted with one fifth the original cell pellet

volume of high salt buffer (50 mM Tris-HCl pH 8, 5 % Glycerol, 1 mM EDTA, 10

mM MgCl2, 400 mM KC1) and centrifuged at 10,000 g for 15 min at 4 °C. The

resulting nuclear extract was removed and stored on ice. The remaining pellet was

further extracted with one tenth the original cell pellet volume of high salt buffer and

centrifuged at 10,000 g for 15 min at 4 °C. The resulting supernatant was added to

the nuclear extract and stored on ice. The protein concentration of the nuclear extract

was determined by Bradford assay (see 2.9.3).

2.13.2 Immunoprecipitation of ATM

To immunoprecipitate ATM from nuclear extracts, 0.5 mg of nuclear extract was

mixed with 1 pi anti-ATM antiserum (mouse monoclonal (a-536), KuDOS) and an

equal volume of 250 mM IP buffer (250 mM KC1, 25 mM Hepes pH 7.4, 10 %

Glycerol, 2 mM MgCl2, 0.5 mM EDTA, 0.1 mM Na3V04, 0.1 % NP40) and

incubated for 2 hr at 4 °C with rotation. Prior to addition to the IP mix 20 pi protein
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A-sepharose beads (Sigma) were washed three times with 500 pi 250 mM IP buffer.

Beads were collected by centrifugation at 1000 g for 2 min at 4 °C, added to the IP

mix and incubated for a further 2 hr at 4 °C with rotation. The beads were washed

four times with 500 pi 250 mM IP buffer and twice with 500 pi ATM Kinase buffer

(50 mM Hepes pH 7.5, 150 mM NaCl, 4 mM MnC^, 6 mM MgCb, 10 % Glycerol, 1

mM DTT, 0.1 mM Na3VO,0 before being resuspended in 16 pi ATM kinase buffer.

2.13.3 Immunochemical detection of kinase activity

ATM kinase activity was monitored by immunochemical detection of a phospho-

substrate, GST-p53N66 fragment (N-terminal 66 amino acids of p53 fused to GST;

-34 kDa) and as a negative control GST-p53N66 (SI5A) mutant fragment. The

immunoprecipitated ATM was mixed with 2 pi substrate (concentration lpg/pl) and

4 pi ATM kinase buffer. The reaction was initiated by adding ATP to a final

concentration of 500 pM. The reaction was carried out in a 96-well plate and

incubated at 30 °C for 30 mins with vigorous shaking. The reaction was stopped by

adding 10 pi 4 x SDS sample buffer. The reactions were resolved on a 12 %

acrylamide gel (see 2.9.4), immunoblotted (see 2.9.5) and probed for p53 serine-15

phosphorylation using a rabbit polyclonal antibody (Cell Signalling) to avoid IgG

heavy and light chain contamination of the blot.
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2.13.4 Radioactive detection of kinase activity

ATM kinase activity was also detected by radiolabelling the substrate with [y32P]

ATP. GST-N66p53 fusion protein and the negative control GST-p53N66 (S15A)

mutant fragment were used as substrates. The immunoprecipitated ATM was mixed

with 2 pi substrate (concentration 1 pg/pl) and 4 pi ATM kinase buffer. The reaction

was initiated by adding 1 pi ATP (1:50 dilution of [y32P] ATP (3000 Ci/mmol) in 2

mM ATP). Reactions were incubated in 1.5 ml microcentrifuge tubes at 30 °C for 30

mins with vigorous shaking, and stopped by adding 10 pi 4 x SDS sample buffer.

Reaction products were resolved by SDS-PAGE (see 2.9.4). Gels were dried and

exposed to a storage phoshor screen (Amersham) overnight, and [y P] ATP

incorporation was detected via a phosphoimager (Storm 840, Amersham

Biosciences).

2.14 Co-immunoprecipitation assay

For the purpose of immunoprecipitation, cells were seeded at 5 x 106 in 15 cm dishes

and harvested at 80 % confluency. Frozen cell pellets were lysed in 2 x cell pellet

volume NP40 lysis buffer (1 % NP40, 25 mM Hepes pH 7.6, 400 mM KC1, 200 pM

Na3V04), incubated on ice for 30 min and centrifuged at 13,000 g for 10 min. The

lysate were stored at -70 °C.

To avoid IgG light chain and heavy chain masking of immunoblots, the

antibodies were cross-linked to Protein A-sepharose beads. 100 pi Protein A-

sepharose beads were washed in 10 ml PBS for 5 min. 2 pg of antibody was mixed
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with 10 ml PBS and used to resuspend the beads. The mix was incubated overnight

at 4 °C with rotation to allow the antibody to bind to the beads. The beads were

collected by centrifuging at 1000 g for 5 min at 4 °C. The beads were resuspended in

10 ml 0.2 M sodium borate pH 9.0 and 25 mM dimethyl pimelimidate hydrochloride

(Sigma) and incubated for 30 min at room temperature to crosslink the antibody to

the beads. The cross-linking reaction was quenched by washing twice (once for 30

min, once for 2 hr) with 10 ml 0.1 M ethanolamine. The beads were then washed

twice with 10 ml PBS and resuspended in 90 pi PBS to 50 % slurry. The cross-linked

beads were stored at 4 °C.

To immunoprecipitate the desired protein from cell lysate, 2 mg of cell lysate

was mixed with an equal volume of wash buffer (150 mM KC1, 25 mM Hepes pH

7.4, 1 mM EDTA, 200 pM NasVCE) and 30 pi of cross-linked Protein A-sepharose

beads, and incubated overnight at 4 °C with rotation. The beads were washed four

times with 500 pi wash buffer and bound proteins were eluted by resuspending the

beads in 30pl 4 x SDS sample buffer. The samples were resolved by SDS-PAGE

(2.9.4) and immunoblotted (2.9.5) for the desired protein and protein binding

partners which may have co-immunoprecipitated.

2.15 Antibody Capture ELISA

Different conformations of native p53 were detected using p53 conformation specific

antibodies in an ELISA format. Frozen cell pellets were lysed in NP40 lysis buffer 2

(50 mM Tris-HCl pH 7.4, 1 mM EDTA pH 7.4, 150 mM NaCl, 1 % NP40, 10 %

glycerol). A six-point dilution series of the lysates and BSA negative control were
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generated and stored at -70 °C. A white Microlite2™ 96-well ELISA plate (CoStar;

Corning Inc.) was coated with affinity purified monoclonal antibodies for p53, DOl

(200 ng/well), DO12 (2000 ng/well), PAM620 (200 ng/well) and PAb240 (1000

ng/well) in 50 pi 0.1 M sodium borate pH 9.0, overnight at 4 °C. The plate was

washed three times with 200 pl/well PBST (0.05 % v/v) to remove unbound

antibodies. Non-reactive sites were blocked with 200 pl/well 3 % (w/v) BSA/PBST

for 1 hr at 4 °C. The six-point dilution series of cell lysates and BSA negative control

were thawed and 50 pi of each concentration was added to an appropriate well, and

incubated for 1 hr at 4 °C. The plate was washed five times with 200 pl/well PBST

(0.05 % v/v) to remove unbound proteins. Captured p53 protein was detected by

incubating with 50 pl/well anti-p53 polyclonal antibody CM1 diluted 1:2000 in 3 %

(w/v) BSA/PBST for 1 hr at 4 °C. The plate was washed five times with 200 pl/well

PBST (0.05 % v/v). 50 pl/well HRP-coupled anti-rabbit antibody diluted 1:2000 in

3 % (w/v) BSA/PBST was added and incubated for 1 hr at 4 °C. The amount of CM1

captured on the ELISA plate was detected by ECL chemiluminescent detection

system (1:1 ratio ECL I : ECL II) and the chemiluminescence produced was detected

by a luminometer (Fluroskan, Ascent FL).

2.16 DNA Microarray

The OligoGEArray® System from SuperArray is a gene expression profiling system.

Here the Oligo GEArray® p53 Signalling Pathway Microarray for human and mouse

was used to profile the expression of 113 genes related to p53 mediated signal

transduction. The system was used according to the manufacturer's instructions.
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2.16.1 Total RNA isolation

Total RNA was isolated from cells using the RNeasy kit (Qiagen) according to the

manufacturer's instructions. ~1 x 107 cells were harvested and the cells were lysed

with denaturing RLT buffer (Qiagen). The sample was homogenised with

QIAshredder spin column (Qiagen) to shear genomic DNA and reduce viscosity of

lysate. An equal volume of ethanol was added to the lysate, this was directly applied

to the RNeasy spin column for absorption of RNA to the silica-gel based membrane.

Contaminants were removed by washing and centrifugation. RNA was eluted from

the column with 30 pi water. RNA concentration was determined using a

NanoDrop® spectrophotometer.

2.16.2 cRNA target labelling

TrueLabelling-AMP™ 2.0 (SuperArray) is designed to amplify and label antisense

RNA for hybridisation to Oligo GEArray® and was used according to the

manufacturer's instructions. cDNA was synthesised from total RNA, and used as the

template for cRNA synthesis in the presence of biotinylated-UTP, leading to the

incorporating biotin labelled uridine into the newly synthesised cRNA.

The cRNA was purified using the SuperArray ArrayGrade™ cRNA cleanup

kit, according to the manufacturer's instructions. A denaturing buffer was added to

the cRNA synthesis reaction mix, followed by an equal volume of ethanol and the

sample was loaded on to a spin column. Contaminants were removed by washing and
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centrifugation. cRNA was eluted from the column with 50 jj.1 10 mM Tris pH 8.0,

and concentration was determined using a NanoDrop® spectrophotometer.

2.16.3 Array hybridisation and detection

The cRNA was hybridised to the array following the Oligo GEArray® HybTube

Protocol (option 1). The array membranes were individually supplied in a 5 ml

plastic tube for easy use in a roller bottle hybridisation oven. The array membrane

was pre-wet with deionised water. GEAhyb Hybridisation Solution (SuperArray)

was warmed to 60 °C, added to the membrane and incubated for 2 hr at 60 °C in a

hybridisation oven with slow agitation. 3 pg biotin labelled cRNA target was mixed

with GEAhyb Hybridisation Solution, added to the membrane, and allowed to

hybridise overnight at 60 °C with slow rotation. The membrane was repeatedly

washed, then cooled to room temperature. To prevent non-specific binding, the

membrane was blocked with GEAblocking Solution Q (SuperArray) for 40 min with

continuous rotation at room temperature. The blocking solution was discarded and

membrane was incubated with alkaline phosphatase-conjugated streptavidin. The

membrane was repeatedly washed, before being incubated with CDP-Star

chemiluminescent substrate (SuperArray). Excess CDP-Star solution was removed

from the membrane and array image was acquired by exposure to X-ray film

(Kodak).
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2.16.4 Image and data analysis

The resulting images were scanned and saved as 16 bit TIFF files. The images were

uploaded into the GEArray Expression Analysis Suite programme

(http://geasuite.superarray.com) which was used to convert the fluorescent intensity

of the probe into values representing gene expression, and allow data analysis of the

microarray results.
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CHAPTER 3

REGULATION OF p53 PROTEIN LEVELS AND

TRANSCRIPTIONAL ACTIVITY IS p21-DEPENDENT

3.1 Introduction

The p53 tumour suppressor protein is a central component in the cellular response to

environmental and intracellular stresses that threaten DNA integrity, and loss of p53

is associated with genomic instability and tumour development (Ashcroft et al.,

1999; Vogelstein & Kinzler, 2004; Zhou & Elledge, 2000; Ziyaie et al., 2000). This

is supported by the observations that p53 is mutated in over 50% of all human

cancers (Levine, 1997; Ziyaie et al., 2000) and that p53-deficient mice are highly

susceptible to the spontaneous development of a wide range of tumours (Attardi &

Jacks, 1999).

Upon exposure to DNA damage, p53 is post-translationally modified in a

site-specific manner leading to rapid elevation of p53 protein levels, principally

through stabilisation, and accumulation of active p53 in the nucleus (Ashcroft et al.,

2000). The principal function of p53 in response to cellular stress is as a transcription

factor that binds with high affinity to specific sequences in the regulatory region of

p53-responsive genes, including effectors of cell cycle (p21, 14-3-3&, GADD45) (el-

Deiry et al., 1993; Hermeking et al., 1997), of apoptosis {BAX, KILLERJDR5, APO-
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1/FAS, AIP1, PUMA, NOXA, PIG3) (Vousden, 2000) and of DNA repair (p53R2)

(Seemann & Hainaut, 2005).

Several p53 target genes also play a role in the regulation of p53 through

autoregulatory feedback loops, fine-tuning p53 activity and linking p53 to other

signal transduction pathways in the cell (Harris & Levine, 2005). The best

characterised regulatory partner of p53 is the E3 ligase, MDM2, which mediates both

ubiquitination and proteasome-dependent degradation of p53 (Haupt et al., 1997).

The MDM2 gene is itself transcriptionally activated by p53 and the two proteins

function within an autoregulatory loop, whereby p53 positively regulates MDM2

expression while MDM2 negatively regulates p53 levels and activity (Harris &

Levine, 2005; Haupt et al., 1997; Meek, 2004).

The cyclin-dependent kinase inhibitor, p21WAF1/CIF>1 (referred to hereafter as

p21) has been well characterised as a critical downstream effector in DNA damage

induced p53-dependent growth arrest in mammalian cells (Abraham, 2001; el-Deiry

et al., 1994; el-Deiry et al., 1993). Several studies have reported additional roles for

p21, including a regulatory function in differentiation (Dotto, 2000), protecting cells

from p53-induced apoptosis (Javelaud & Besanqon, 2002), and control of stem cell

self-renewal in both the keratinocyte and hematopoietic systems (Dotto, 2000).

Importantly, p21 has been shown to function as a highly specific regulator of gene

expression (Perkins, 2002). However, as p21 lacks DNA binding motifs and

detectable affinity for DNA, it is likely that p21 functions as a transcriptional co-

factor. In particular, p21 directly binds to and inhibits the transcriptional activities of

E2F (Delavaine & La Thangue, 1999), c-Myc (Kitaura et al., 2000) and STAT-3

(Coqueret & Gascan, 2000). In contrast, p21 can also induce gene expression through
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stimulating the activity of the transcriptional co-activator proteins p300 and CBP

(Snowden et al., 2000), and by enhancing NF-kB- (Perkins et al., 1997) and ERa-

mediated transcription (Fritah et al., 2005).

The importance of p21 in tumourigenesis is highlighted by the susceptibility

of p21-null mice to develop spontaneous tumours at an average age of 16 months,

whereas wild-type mice remain tumour free beyond two years (Martin-Caballero et

al., 2001). Also a growing number of clinical studies show that under-expression of

p21 protein is indicative of low survival rates and is a negative prognostic marker in

different malignancies, including lung (Komiya et al., 1997), breast (Wakasugi et al.,

1997), bladder (Stein et al., 1998), ovarian (Anttila et al., 1999), and anal carcinomas

(Holm et al., 2001).

In this chapter, the role of p21 in tumour progression has been investigated

using isogenic derivatives of the HCT116 colorectal cancer cell line. Substantial

defects in the basal, and damage-induced p53 pathways were observed in the absence

of p21, suggesting that p21 regulates p53 via a novel feedback loop and that p21 is

an essential transcriptional co-factor of the p53 response.

3.2 Results

3.2.1 Basal p53 levels, half-life and transcriptional activity are affected by loss of

p21

HCT116 colon carcinoma cells containing wild-type p53 and wild-type p21

(HCT116 WT), and the isogenic derivative, HCT116 p21 -/-, which has targeted
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inactivation of the p21 gene (Bunz et al., 1998), were used to evaluate the

consequences of p21 deficiency on p53 regulation. In normal cells, p53 is present at

extremely low levels as the protein is rapidly degraded following synthesis (Ashcroft

& Vousden, 1999). Initial observations highlighted that in unstressed cells p53

protein was expressed at a higher level in HCT116 p21 -/- cells than in the HCT116

WT cells (Figure 3.1A). The level of p53 protein was determined by visual

assessment to be approximately 5-fold greater in p21 -/- cells than in the HCT116

parental cells (Figure 3.1 A). To confirm that accumulation of p53 in p21 -/- cells was

specific and that loss of p21 did not cause a global increase in protein expression,

whole cell lysates derived from WT and p21 -/- cells were resolved by SDS-PAGE

and cellular proteins were stained with Coomassie (Figure 3.IB). Both cell lines had

similar protein banding patterns and intensities, consistent with them being isogenic,

and containing no gross defect in protein expression.

Accumulation of p53 protein in p21 -/- cells could be caused by increased p53

gene expression, increased stabilisation of p53 protein, or decreased degradation of

p53. To determine whether the high level of p53 protein was caused by increased

stabilisation, the half-life of p53 was determined using an inhibitor of protein

synthesis, cyclohexamide. Cyclohexamide was added to WT and p21 -/- cells at a

final concentration of 30 pg/ml and cells were harvested over the indicated time

course. In WT cells p53 was rapidly degraded, whereby p53 protein levels decreased

by 50 % by approximately 30 minutes. There after the rate of p53 degradation

decreases leaving a low basal level of p53 protein detectable after 4 hours. Whereas

in p21 -/- cells p53 was very stable with a half-life extending beyond 4 hours (Figure

3.2A, carried out by M. Scott), indicating that the high basal level of p53 in p21 -/-
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cells may be due to a reduced turn-over of p53. To establish that p53 accumulation in

p21 -/- cells was not due to impaired proteasome activity, active proteasomes were

purified from WT and p21 -/- cells, and 20S proteasome activity was measured by

monitoring the release of AMC (7-amino-4-methylcoumarin) from a 20S specific

fluorogenic peptide. Proteasome activity in p21 -/- cells was similar to that of WT

cells (Figure 3.2B). These findings suggest that the high basal level of p53 observed

in p21 -/- cells is due to a specific increase in p53 protein stabilisation rather than

decreased proteasome activity and p53 degradation.

p53 activity is principally governed by controlling the stability of the p53

protein, and induction of the p53 response is closely associated with increased p53

stabilisation. Specific transcriptional activity of p53 was determined by a gene

reporter assay, whereby the p53-specific p21 promoter is fused to the luciferase gene.

p53 induction causes activation of the p21 promoter and increased luciferase

expression. p53 activity was measured by determining luciferase production

standardised to pGal production (Relative Light Units; R.L.U.). The level of p21

luciferase reporter activity was measured in lysates of WT, p21 -/- and as a negative

control, the isogenic derivative p53-/- cells. Figure 3.3 shows a graph of relative p53

transcriptional activity in WT, p21 -/- and p53-/- cells. Surprisingly, p53 activity in

p21 -/- cells was approximately 4-fold lower than that observed in WT lysates,

indicating that p53 is transcriptionally inactive in the p21 -/- cells. In support of this,

the level of reporter activity in p21 -/- cells was similar to that seen in the p53-/- cells.

This data demonstrates that the increase in p53 stabilisation observed in the p21 -/-

cells is not associated with the predicted increase in p53 activity, and signifies that in
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the absence of p21, p53 stability is uncoupled from the transcriptional activity of the

protein.

3.2.2 p53 stress responses are not induced in p21-/- cells

Basal transcriptional activity of p53 is decreased in p21 -/- cells (Figure 3.3). To

determine whether p53 transcriptional activity in p21 -/- cells could be induced by

cellular stresses, HCT116 WT and p21 -/- cells were exposed to double stranded

RNA (dsRNA) and ionising radiation (IR) to examine the p53 viral and DNA

damage response, respectively.

Polyinosinic polycytidylic acid (poly(I).poly(C)) is a synthetic viral-like

dsRNA that stimulates antiviral activities of the innate immune system and can be

used to mimic viral infections in vitro (Fortier et al., 2004). Poly(I).poly(C) is also a

potent inducer of interferon (IFN)-a and —p in vitro and in vivo (Trapman, 1979),

which have been shown to induce transcription of the p53 gene, contributing to

tumour suppression and antiviral defence (Takaoka et al., 2003). However, the p53

response to viral infection is relatively novel and undefined. To examine the p53

response to viral infection HCT116 WT and p21 -/- cells were treated with

poly(I).poly(C) and harvested over an 8 hour time course (Figure 3.4). Immunoblot

analysis ofWT cells showed p53 protein levels and phosphorylation of p53 at serine -

15, a marker of p53 activity, were maximal at approximately 2 hours post-treatment

(Figure 3.4A), whereas in p21 -/- cells there was a high basal level of p53 protein and

surprisingly a high basal level of p53 serine-15 phosphorylation, neither of which
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were induced further by poly(I).poly(C) treatment (Figure 3.4A). These data indicate

defects in p53 activation in the absence of p21.

The consequences of p53 activation are mostly mediated through enhanced

expression of specific target genes. It was previously shown that p21, IRF-1 and

GADD34 are induced in a p53-dependent manner, following poly(I).poly(C)

treatment (Mirijam Eckert, unpublished data). Therefore, induction of these p53

targets, were examined as markers of p53 transcriptional activity (Figure 3.4A). In

the WT cells, p21, IRF-1 and GADD34 proteins were progressively induced

following poly(I).poly(C) treatment. However in the absence of p21, both IRF-1 and

GADD34 failed to be up-regulated and could not be detected by immunoblotting

(Figure 3.4A), suggesting that stress-activated p53 transcriptional activity is

significantly attenuated in the absence of p21. This was confirmed by p21 luciferase

reporter assay of poly(I).poly(C) treated WT and p21 -/- cells (Figure 3.4B). In WT

cells p53 transcriptional activity peaked 2 hours after treatment. In contrast, p53

activity was not induced in response to poly(I).poly(C) in p21 -/- cells (Figure 3.4B).

In untreated cells basal p53 activity was 3-fold higher in WT cells than in p21 -/- cells.

Following poly(I).poly(C) treatment at 2 hours, p53 activity was 8-fold higher in WT

cells than in corresponding p21 -/- cells (Figure 3.4B). This data reiterates the

importance of p21 for p53-dependent transcription in response to dsRNA, and

signifies that p21 is required for the p53 viral response pathway.

The relatively novel and uncharacterised p53 viral response does not

completely overlap with the p53 response to DNA damage (Mirijam Eckert,

unpublished data). Therefore to further characterise the extent at which p21 is

required for the p53 response to different cellular stresses, the DNA damage response
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induced by ionising radiation was also analysed. HCT116 WT and p21 -/- cells were

irradiated with 7 Gy IR and harvested over an 8 hour time course. Similar results

were obtained to those of the poly(I).poly(C) treated cells. In the WT cells p53 levels

peaked at 2 hours post-irradiation and phosphorylation of p53 at serine-15 increased

gradually peaking at 6 hours post-irradiation. In contrast the p21 -/- cells showed high

basal levels of p53 and phosphorylation of p53 at serine-15, which were not further

induced by IR (Figure 3.5A), indicating defects in p53 activation.

In response to IR, p53-dependent induction of p21, MDM2 and pro-apoptotic

protein BAX (Miyashita & Reed, 1995), have been well characterised. In WT cells

MDM2 and p21 increased gradually after irradiation, and both peaked at 6 hours

(Figure 3.5A). However MDM2 induction was not observed in the p21 -/- cells

(Figure 3.5A), indicating that p21 is required for p53-dependent transcription in

response to IR induced DNA damage. Unlike the other p53 targets examined, WT

cells had a high basal level of BAX which was not further induced by IR. This

adaptation is likely to be HCT116-specific as other cell lines show induction ofBAX

in response to IR (Miyashita & Reed, 1995; Coates et ai, 2003). However,

interestingly in the p21 -/- cells BAX could not be detected even after IR treatment

(Figure 3.5A), indicating that basal BAX levels are p21-dependent.

The requirement of p21 for activation of p53 in response to IR was further

confirmed by a p21 luciferase reporter assay (Figure 3.5C). In WT cells p53 activity

peaked at 6 hours after IR treatment, where as in p21 -/- cells p53 activity was not

activated after irradiation. Highlighting that p53 is transcriptionally inactive in the

p21 -/- cells in response to IR (Figure 3.5C) and that p21 is necessary for the p53-

dependent response to both viral infection and DNA damage.
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In the absence of p21 there is a high basal level of phosphorylation of p53 at

serine-15 (Figure 3.5A). In response to genotoxic stress the serine-15 site is targeted

by members of the PIKK family of protein kinases, principally ATM and ATR

(Banin et al., 1998; Canman & Lim, 1998). Phosphorylation of the serine-15 site has

also been proposed to play a role in p53 stabilisation by reducing the interaction

between p53 and its E3 ligase MDM2 (Ashcroft et al. 1999). Another specific target

site of ATM is CHK2 threonine-68 (Matsuoka et al., 2000). Therefore levels of

CHK2 and phosphorylation of CHK2 at threonine-68 were also examined following

IR treatment (Figure 3.5B). In both WT and p21 -/- cells total CHK2 protein levels

remained unchanged in response to IR. However in WT cells, phosphorylation of

CHK2 at threonine-68 was induced by irradiation and peaked at 4 hours after

treatment. In contrast, there was a high basal level of CHK2 threonine-68

phosphorylation which was not altered by IR in the p21 -/- cells (Figure 3.5B), similar

to the high level of p53 serine-15 phosphorylation also observed in these cells

(Figure 3.5A). As ATM phosphorylates both p53 at serine-15 and CHK2 at

threonine-68 and both proteins are constitutively phosphorylated in p21 -/- cells, this

preliminary data suggests that p21 regulates a p53 serine-15 kinase and that the

prime candidate is ATM.

3.2.3 p21 regulates basal p53 levels and activity

HCT116 cells are mismatch repair deficient as a result of silencing hMLHl

expression, and are therefore prone to genetic alteration (Hayward et al. 2005).

HCT116 p21 -/- cells may have accumulated additional genetic modifications leading
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to inactivation of p53. To confirm that p21 is a genuine p53 regulator, the p21 -/-

phenotype was reconstituted in the WT cells using p21 siRNA mediated gene

knockdown to reduce endogenous p21 protein levels. WT cells were treated with p21

siRNA, and p21 protein levels in WT cells were reduced to a level comparable to

that of the p21 -/- cells 48 hours after treatment (Figure 3.6). Reduction of p21 was

accompanied by an increase in p53 levels and phosphorylation of p53 at serine-15

compared to the control siRNA at 48 hours after treatment (Figure 3.6), highlighting

that the p21 -/- phenotype can indeed be reconstituted in the WT cells by reduction of

p21 protein levels only. This data suggests that p21 protein levels do influence and

regulate p53 protein levels and phosphorylation of p53 at serine-15.

Conversely, the WT phenotype was aimed to be reconstituted in p21 -/- cells.

Initially p21 -/- cells were transiently transfected with increasing amounts of p21

DNA and harvested 24 hours after transfection (Figure 3.7A). p53 levels and

phosphorylation of p53 at serine-15 remained unchanged despite increasing p21

protein levels. However, basal p53 transcriptional activity was recovered in a p21

dependent manner (Figure 3.7B). Recovery of p53 transcriptional activity peaked at

50 ng p21 DNA, and showed a 5-fold increase over the empty vector control (Figure

3.7B). These findings signify that p21 can reinstate p53 transcriptional activity and

that p21 is a bona fide regulator of p53.

3.2.4 Reintroduction of p21 into p21 -/- cells rescues the p53 stress response

Transient transfection of p21 DNA into p21 -/- cells had no effect on p53 protein

levels (Figure 3.7A). These cells were harvested 24 hours after transfection,
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indicating that this time frame may not have been sufficient for reintroduction of p21

to be effective. Therefore p21 was stably reintroduced into p21 -/- cells. Pooled

colonies were tested for p21 expression. Clones 2 and 3 were stably expressing a low

level of p21 and showed a corresponding reduction in levels of p53 and

phosphorylation of p53 at serine-15, compared to clone 1 which did not express p21

and had a high level of p53 and p53 serine-15 phosphorylation (Figure 3.8).

Therefore stable reintroduction of p21 into p21 -/- cells was sufficient to reduce p53

protein levels and phosphorylation of p53 at serine-15 to levels comparable to those

observed in the WT cells (Figure 3.8), and further confirms that p21 is a novel p53

regulator.

As previously shown, the p53 stress response to dsRNA (Figure 3.4A) and IR

(Figure 3.5A) is abated in p21 -/- cells. To determine if stable reintroduction of p21 is

sufficient to restore the p53 stress response pathway in response to dsRNA and IR,

clone 2 cells stably expressing p21 were compared to p21 -/- cells under different

stress conditions. Initially, the p53 viral response was analysed by treating p21 -/-

cells and clone 2 cells with 50 pg/ml poly(I).poly(C), harvesting at the indicated time

points and immunoblotting for p53 induced proteins (Figure 3.9). As previously

observed, in p21 -/- cells there was a high basal level of p53 and p53 serine-15

phosphorylation which was not further induced by poly(I).poly(C) treatment (Figure

3.9). In striking contrast, clone 2 cells had a low basal level of p53 and p53 serine-15

phosphorylation which were progressively induced in response to poly(I).poly(C).

Therefore re-introduction of p21 can re-establish p53 induction by viral stress.

Markers of p53 transcriptional activity, IRF-1 and GADD34, were also analysed by

immunoblotting. In the p21 -/- cells, p53-dependent induction of IRF-1 and GADD34
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was not detected, but in clone 2 cells progressive induction of IRF-1 and GADD34

was restored (Figure 3.9). These findings show that stable reintroduction of p21 into

p21 -/- cells can restore p53 induction, accompanied by induction of p53

transcriptional targets in response to poly(I).poly(C), and signifies that p21 is a

regulator of p53 transcriptional activity.

The p53 viral response induced by dsRNA was again compared to the DNA

damage response induced by IR. HCT116 p21 -/- and clone 2 cells were irradiated at

7 Gy, harvested at the indicated time points and analysed by immunoblotting (Figure

3.10). In the p21 -/- cells there was a high basal level of p53 and phosphorylation of

p53 at serine-15 which was not altered by IR, whereas clone 2 cells had a low basal

level of p53 and phosphorylation of p53 at serine-15 which was progressively

induced by IR (Figure 3.10). MDM2 was not detectable in the p21 -/- cells, but in

clone 2 cells MDM2 induction after IR treatment was restored (Figure 3.10),

indicating that p53 transcriptional activity was also restored by stable expression of

p21. However, the best characterised transcriptional targets of p53 in response to IR

are p21 and BAX. Monitoring p21 levels as a marker of p53 transcriptional activity

was not feasible as p21 in the clone 2 cells is under the control of a CMV promoter

which is not induced by p53, and therefore not representative of p53 activity. As

previously shown (Figure 3.5A), there is a high basal level of BAX in the WT cells

which is not induced by IR, whereas BAX is not detectable in p21 -/- cells (Figure

3.5A). Here, stable reintroduction of p21 into p21 -/- cells restored the high basal

level of BAX (Figure 3.10) to levels comparable to those previously observed in the

WT cells (Figure 3.5A). In summary, reintroduction of p21 into p21 -/- cells can

restore basal WT levels of p53, phosphorylation of p53 at serine-15 and BAX, and in
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response to IR can restore p53 stabilisation, induction of MDM2, and

phosphorylation of p53 at serine-15.

Stable reintroduction of p21 back into the p21 -/- cells restored both the p53

viral and DNA damage response, signifying the importance of p21 in the p53

response pathway.

3.2.5 The C-terminus of p21 is not required for p53 reactivation

Reintroduction of full length p21 into p21 -/- cells was sufficient to reactivate p53

transcriptional activity. To determine the domain of p21 required for this p53

regulation, different p21 forms were stably transfected into p21 -/- cells. The forms

used were; p211-155 C-terminal truncation which lacks the second cyclin binding

domain; p211-133 C-terminal truncation which lacks the second cyclin binding domain,

the PCNA binding domain, and the nuclear localisation signal (Dotto, 2000); and

p21s'46A p0int mutation where serine-146 is mutated to alanine, to block

phosphorylation. Phosphorylation of the serine-146 site, alters the half-life of p21

(Scott et al., 2002; Li et al., 2002a), is sufficient to inhibit the interaction of p21 with

PCNA (Scott et al., 2000), and is targeted by protein kinase C C, (Scott et al., 2002).

Clones were selected in duplicate, termed A and B, and full-length p21 was used as a

positive control (Figure 3.11). p21 protein levels were detected by immunoblotting

with a N-terminal antibody which recognises the Ab-1 epitope at 58-77 aa. p21 was

detected in p21 -/- cells transfected with full-length p21 and p21S146A mutant, but not

the C-terminal truncations as they resolve at a lower molecular weight and could not

be detected by immunoblotting, therefore introducing a degree of uncertainty into the
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interpretation of the experiment. p53 levels and phosphorylation of p53 at serine-15

were marginally affected by the different forms of p21, although WT and p21 -/-

samples were run on different gels to clones A and B preventing conclusive

comparisons. However the increase in BAX levels appeared to be the more sensitive

assay for determining successful p21 expression. The A clones did not show an

increase in BAX levels, whereas the B clones all showed increased BAX levels

compared to p21 -/- cells (Figure 3.11), which may indicate that p53 activity has been

restored, and that the C-terminus of p21 including the serine-146 phospho-site, is not

required for p53 reactivation.

3.3 Discussion

Normal cells challenged with stresses such as genetic insults, trigger a variety of

intracellular programmes that lead to either, cell growth, senescence or apoptosis

(Abraham, 2001). One of the major mechanisms involved in these stress responses is

p53-dependent induction of the cyclin-dependent kinase inhibitor p21 (Bakkenist &

Kastan, 2004). To date, p21 has been characterised as a downstream effector of the

p53 response. The data presented here demonstrates a novel role for p21 as a

requisite co-factor of p53 transcriptional activity in HCT116 cells.

In the absence of p21 there is a high basal level of p53 which is

phosphorylated at serine-15 (Figure 3.3). ATM phosphorylates p53 at serine-15

(Banin et al., 1998) and CHK2 at threonine-68 (Matsuoka et al., 2000) in response to

damage. In p21 -/- cells both proteins are phosphorylated in the absence of damage

(Figure 3.5), suggesting that loss of p21 may cause constitutive activation of the
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ATM kinase. p53 serine-15 phosphorylation is associated with p53 stabilisation and

biochemical activation (Canman et al., 1998), by reducing the interaction between

p53 and the E3 ubiquitin ligase MDM2. ATM also directly phosphorylates MDM2 at

serine-395, and this blocks degradation of p53 and prevents MDM2-mediated

nuclear export of p53 (Khosravi et al., 1999). Constitutive activation of ATM could

therefore lead to a high basal level of p53 and p53 serine-15 phosphorylation,

markers of p53 transcriptional activity. However, the data presented here shows that

although basal levels of p53 are high in p21 -/- cells, p53 is inactive as a transcription

factor. p53 inactivation may occur in tumour cells lacking p21, as an adaptive

response to compensate for high basal levels of p53, which would essentially shut the

cell down by causing growth arrest or apoptosis. Stable reintroduction of p21 into

p21 -/- cells can however restore p53 transcriptional activity, indicating that the

relationship between p53 and p21 is more intricate.

The p53 protein plays an essential role in tumour suppression by modulating

cellular functions such as gene transcription, DNA synthesis, DNA repair, cell cycle

arrest, senescence and apoptosis (Larkin & Jackson, 1999). This is highlighted by the

observation that p53 is mutated in over 50% of all human cancers (Ziyaie et al.,

2000) and that mice lacking p53 are highly susceptible to spontaneous tumour

development (Donehower et al., 1992; Harvey et al., 1993; Purdie et al., 1994). In

normal cells p53 is maintained at a very low level within the cell, as over-expression

of p53 would lead to cell growth arrest and apoptosis of healthy cells eventually

impairing the entire organism. Correspondingly, p53 activity is tightly regulated by

several feedback loops. Central to the control of p53 activity is the p53-MDM2

feedback loop (Chen et al., 1994; Wu et al., 1993) where p53 activation stimulates
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up-regulation of the p53 target gene MDM2 and accumulation ofMDM2 protein then

leads to p53 degradation. In this chapter, an additional feedback loop has been

described, where a p53 target gene p21, is required for p53 activation. This model

compliments the p53-MDM2 feedback loop, in that MDM2 drives p53 degradation

and p21 drives p53 activation (Figure 3.12).

The role of p53 as a tumour suppressor is well established while the role of

p21 in carcinogenesis remains controversial. Mouse models lacking the p21 gene

were initially reported to remain tumour free until at least 7 months of age (Deng et

al., 1995). However, Martin-Caballero et al. (2001) went on to show that p21 -/- mice

do develop spontaneous tumours at an average age of 16 months whereas control

animals remain tumour free for over 2 years. In addition, loss of p21 accelerates

tumourigenesis in Rb-haploinsufficient (Brugarolas et al., 1998), pl8Ink4c-deficient

(Franklin et al., 2000), APC-haploinsufficient (Yang et al., 2001) and v-Ha-ras

(Adnane et al., 2000) transgenic backgrounds. The data presented here provides a

mechanism whereby p21 inactivation could accelerate tumourigenesis via the

inactivation of p53, indicating that p21 may function as a tumour suppressor protein.

In human cancer, early studies concluded that p21 mutations are exceedingly

rare, which is in striking contrast to p53 (Shiohara et al., 1994). However as p21

expression is one of the most prominent markers for the functional activity of p53,

many clinical studies have analysed p21 expression in different types of human

cancer. p21 expression was initially concluded to have no prognostic value (Shiohara

et al., 1994; Ito et al., 1996; Elledge & Allred, 1998; Lipponen et al., 1998), but a

growing list of studies now show that loss of p21 correlates with tumour progression

and negative prognosis in a range of different malignancies, including lung (Komiya
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et al., 1997), breast (Wakasugi et al., 1997), bladder (Stein et al., 1998), ovarian

(Anttila et al., 1999), cervical (Lu et al., 1998), head and neck (Kapranos et al.,

2001), and anal carcinomas (Holm et al., 2001). Previously these studies have

assumed that such correlations are strongest when the absence of p21 is seen along

with the expression of p53, as an indicator of loss of p53 function. However, in

human breast carcinoma there is an inverse relationship between p21 and p53

expression; where low p21 expression is associated with p53 over-expression, and

this is significantly related to low histology grade and lymph-node metastasis (Jiang

et al., 1997). Similarly, in epithelial ovarian cancer, patients with tumours expressing

no or low p21 protein but that were positive for p53 had a notably higher risk of

recurrent disease, and were more prone to treatment failures (Anttilia et al., 1999).

Also low p21 expression is confined to advanced stage of tumour development

(Anttilia et al., 1999). A similar observation was made in gastric cancer, where

patients with p21-negative tumours usually had a metastatic disease (Ogawa et al.,

1997). In the context of the data presented in this chapter, p21 negative tumours

maybe associated with poor prognosis because not only are these tumours p21-null

but they also lack functional p53 and are essentially p53-null.

Earlier clinical studies which concluded that low p21 expression is an artefact

of mutated p53 should be re-evaluated, as evidence presented here indicates that

down-regulation of p21 expression may be a mechanism employed by cancer cells to

functionally inactivate p53. For example, ovarian tumours frequently show loss of

heterozygosity in chromosomal segment 6p, where the p21 gene is located (Wan et

al., 1996), which could lead to inactivation of p53 and subsequent tumour

progression. Similarly, malignant melanomas represent only 3-5% of total skin
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cancers, but they are very aggressive and rapidly produce metastasis yet rarely

accumulate p53 mutations (Papp et al., 1996). A recent study reported that p21

protein is degraded after low but not high doses of UV irradiation (Bendjennat et al.,

2003). UV degradation of p21, by our model, would lead to functionally inactive p53,

and provide an alternative mechanism of p53 inactivation, and may explain why p53

mutations are rarely observed in melanomas caused by UV damage.

In this study an isogenic cell model was used, which has wild type p53 but

lacks p21. Our findings demonstrate that in the absence of p21, p53 is functionally

inactive as a transcription factor, but upon reintroduction of p21 into the p21 -/- cells

p53 transcriptional activity is recovered (Figure 3.8). Further to this, the C-terminus
• • • 1 no

of p21 is not required for p53 reactivation as the p21 " truncated form may also be

able to recover p53 activity. The C-terminus of p21 contains the PCNA binding

domain, the nuclear localisation domain and the threonine-145 and serine-146

phosphorylation sites. As the nuclear localisation site of p21 is not required for p53

activity, this suggests that p21 may have cytoplasmic functions which ensure correct

activation and function of p53.

p21 has been shown to be much more than a cyclin-dependent kinase

inhibitor, it has roles in differentiation (El-Deiry et al., 1995), apoptosis (Sohn et al.,

2006), and DNA synthesis (Chen et al., 1995). The data presented in this chapter,

further extends the role of p21 as a transcriptional co-activator. The p21 protein often

has different and conflicting roles depending on cell context. Here, a novel p53

autoregulatory feedback loop is described where p21 is required for p53

transcriptional activity. This data contributes to evidence that p21 is a tumour

suppressor protein. Although the effect of p21 on tumour-cell phenotype remains
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unclear, this evidence highlights the significance of p21 in p53 regulation and human

cancer.
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Figure 3.1 p53 protein levels are aberrant in the absence of p21. (A) p53 protein levels are

higher in HCT116 p21 -/- cells compared to WT cells. HCT116 WT and p21-/- cells were Iysed
in urea lysis buffer. Whole cell lysates were resolved by SDS-PAGE. p53 and p21 were detected

by immunoblotting with anti-p53 (DOl) and anti-p21 (ab-1) respectively, p-actin was used as a

loading control. 10 pg total protein was loaded per lane. (B) Loss of p21 does not cause a global
defect in protein levels. Urea cell lysates ofWT and p21 -/- cells were separated by SDS-PAGE
and proteins were detected by Coomassie staining, to show non-specific protein banding pattern.
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Figure 3.2 High basal level of p53 in the HCT116 p21-/- cells is due to increased

stabilisation (A) The half-life of endogenous p53 is extended in the absence of p21. Urea

lysates were prepared from HCT116 WT and p21 -/- cells at 0, 1, 2, 3 and 4 hr after
addition of 30 pg/ml cyclohexamide (CHX). p53 was detected by immunoblotting.

(Figure 3.2A was kindly provided by M. Scott). (B) Proteasome activity is unaffected in

p21 -/- cells. The 20s proteasome activity of HCT116 WT and p21 -/- cells was determined

by monitoring the release of a fluorophore AMC (7-amino-4-methylcoumarin) from a

proteasome specific peptide, using a 20s Proteasome Assay Kit (Calbiochem).
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Figure 3.3 p53 transcriptional activity is uncoupled from p53 protein stabilisation in

p21 -/- cells. Specific transcriptional activity of p53 is reduced in p21 -/- cells. The human p21

promoter fused to luciferase (1 pg) was introduced into HCT116 WT, p21 -/- and p53-/- cells

together with 1 pg pCMV-Pgal reporter. Cells were harvested 24 hr after transfection and

lysed with 5x Reporter Lysis Buffer (Promega). Luciferase activity was detected by a

luminometer. p53-dependent activity (relative light units) is expressed as a ratio of p21 -
Luciferase activity to the internal transfection control P-gal (Figure was kindly provided by

M.Scott).
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Figure 3.4 The p53 viral response is suppressed in p21 -/- cells. (A) HCT116 WT and p21 -/-
cells were treated with 50 pg/ml poly(l).poly(C) and harvested at the stated time points. Cells
were lysed with urea lysis buffer. Whole cell lysates were resolved by SDS-PAGE. p53, p53

serine-15 phosphorylation, p21, IRF-1 and GADD34 were detected by immunoblotting. p~
actin was used a loading control. 10 pg protein was loaded per lane. * 30 pg protein was

loaded per lane. (B) p53 transcriptional activity in response to poly(l).poly(C) was monitored

by a /?2/-Luciferase reporter assay. HCT116 WT and p21 -/- cells were transiently transfected
with 1 pg /?2/-Luciferase and 1 pg pCMV-Pgal reporter and treated with 50 pg/ml

poly(l).poly(C) 24 hr after transfection. Cells were harvested at the time points indicated and

lysed with 5x Reporter Lysis Buffer (Promega). Luciferase activity was detected by a

luminometer. p53-dependent activity (relative light units) is expressed as a ratio of p21-
Luciferase activity to the internal transfection control P-gal.
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Figure 3.5 The p53 DNA damage response is suppressed in p21-/- cells. (A) HCT116 WT
and p21 -/- cells were treated with 7 Gy of ionising radiation (IR) and harvested at the stated
time points. Cells were lysed with urea lysis buffer. Whole cell lysates were resolved by SDS-
PAGE. p53, p53 serine-15 phosphorylation, MDM2, p21 and BAX were detected by

immunoblotting. P-actin was used a loading control. 20 pg protein was loaded per lane. (B)
CHK2 and CHK2 threonine-68 phosphorylation was detected following exposure to IR by

immunoblotting. 30 pg of protein was loaded per lane. (C) p53 transcriptional activity in

response to IR was monitored by a /?27-Luciferase reporter assay. HCT116 WT and p21 -/-
cells were transiently transfected with 1 pg /?27-Luciferase and 1 pg pCMV-Pgal reporter and
treated with 7 Gy IR 24 hr post-transfection. Cells were harvested at the time points indicated
and lysed with 5x Reporter Lysis Buffer (Promega). Luciferase activity was detected by a

luminometer. p53-dependent activity (relative light units) is expressed as a ratio of p21 -
luciferase activity to the internal transfection control p-gal.
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Figure 3.6 Basal p53 protein levels are p21-dependent. HCT116 WT cells were transfected
with either p21 siRNA or control siRNA and were harvested at 24 and 48 hr post-transfection.
Cell pellets were lysed with urea lysis buffer. Whole cell lysates were resolved by SDS-PAGE.

p21, p53, and p53 serine-15 phosphorylation were detected by immunoblotting. p-actin was

included as a loading control. 10 pg protein was loaded per lane.
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Figure 3.7 Transient transfection of p21 can partially recover p53 activity yet has no effect

on p53 protein levels. (A) Over-expression of p21 in HCT116 p21 -/- cells did not suppress p53

protein levels. Increasing amounts of the plasmid containing full-length p21 was transiently
transfected into p21 -/- cells. Cells were harvested 24 hr after transfection, and lysed with urea

lysis buffer. Whole cell lysates were resolved by SDS-PAGE. p21, p53, and p53 serine-15

phosphorylation were detected by immunoblotting. p-actin was used as a loading control. 10 pg of

protein was loaded per lane. Lanes were loaded as follows: WT untransfected control, Opg; p21 -/-
untransfected control, 0 pg; p21 -/- vehicle control transfected with lpg empty pcDNA3.1 vector,

0(V) pg; p21 -/- 0.125 pg; p21 -/- 0.25 pg; p21 -/- 0.5 pg; and p21 -/- 1 pg. (B) p21-dependent

recovery of p53 activity. HCT116 p21 -/- cells were co-transfected with increasing amounts of the

p21 gene as indicated and fixed levels ofp2/-Luciferase (1 pg) and pCMV-Pgal (1 pg), and cells
were harvested 24 hr post-transfection and analysed for p53 activity. p53-dependent
transactivation activity is represented as relative light units (figure 3.7B was kindly provided by

M.Scott).
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Figure 3.8 Stable reintroduction of p21 into HCT116 p21 -/- cells restores basal levels of p53
and phosphorylation of p53 at serine-15. HCT116 p21 -/- cells were transfected with 1 pg

pIRESpuro2 vector expressing full length p21. 24 hours post-transfection, cells containing the

plasmid were selected for by the addition of puromycin. Pooled clones were expanded and

permanently maintained under selection conditions. To confirm that the clones were expressing

p21, immunoblotting was carried out. Cells were harvested at -70 % confluency and lysed in
urea lysis buffer. Whole cell lysates were resolved by SDS-PAGE. p21, p53 and p53 serine-15

phosphorylation was detected by immunoblotting. 10 pg of protein was loaded per lane Clone 2
cells were used for further experiments.

Clones

WT 1 2

- 108 -



poly(l).poly(C) (50 pg/ml)

p21 -/- clone 2

0 1 2 4 6 8 24 0 1 2 4 6 8 24 hr

p53

- • ■ ,.«|

p53 P-Ser15

IRF-1

GADD34

p21

(3-actin

Figure 3.9 Stable reintroduction of p21 into HCT116 p21-/- cells restores the p53 viral

response. Clone 2 cells which stably express full length p21 and HCT116 p21 -/- were treated
with 50 pg/ml poIy(I).poly(C) and harvested at the indicated time points. Cells were lysed with
urea lysis buffer. Whole cell lysates were resolved by SDS-PAGE. p53, p53 serinel5

phosphorylation, IRF-1, GADD34 and p21 were detected by immunoblotting. P-actin was used
as a loading control. 20 pg of protein was loaded per lane.
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Figure 3.10 Stable reintroduction of p21 into HCTJ16 p21 -/- cells restores the p53 DNA

damage response. Clone 2 cells which stably express full length p21 and HCT116 p21 -/-
were treated with 7 Gy of IR and harvested at the indicated time points. Cells were lysed with
urea lysis buffer. Whole cell lysates were resolved by SDS-PAGE. p53, p53 serine-15

phosphorylation, MDM2, p21, and BAX were detected by immunoblotting. p-actin was used
as a loading control. 20 pg of protein was loaded per lane.
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Figure 3.11 The C-terminus of p21 is not required for recovery of p53 activity. (A) HCT116

p21 -/- cells were co-transfected with 1 pg empty pIRESpuro2 vector and 1 pg of pcDNA3.1

containing either full-length p21, p21 serine 146 to alanine (S146A) mutant, p21 1-133 truncation
or p21 1-155 truncation. Successfully transfected cells were selected with puromycin. Clones
were selected in duplicate and termed A and B. Whole cell lysates were resolved by SDS-PAGE
and immunoblotting was used to detect p21, p53, p53 serine-15 phosphorylation and BAX. 20 pg

of protein was loaded per lane.
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Figure 3.12 A model of p53 regulation by autoregulatory feedback loops. p53 up-

regulates MDM2 expression, MDM2 then negatively feeds back to p53 and drives its

degradation. p53 up-regulates p21 expression, p21 then positively feeds back to p53 and

drives its activation. Inhibition represented by T-shaped lines. Activation represented by
arrows.
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CHAPTER 4

LOSS OF p21 CAUSES ABERRANT LOCALISATION OF p53 AND

REPRESSES EXPRESSION OF p53 TARGET GENES IN

THREE MODEL SYSTEMS

4.1 Introduction

DNA microarrays have become an established technique in monitoring the

expression of thousands of genes simultaneously (Manning et al., 2007). Within an

organism, every cell with a nucleus has the same genome but only a minority of

genes are expressed in quantities large enough to have an effect. Gene expression is a

highly complex and tightly regulated process that governs development, tumour

progression, and also allows the cell to respond to the environment inside and outside

the cell (Plomin & Schalkwyk, 2007; Rhodes & Chinnaiyan, 2005). Using

microarray technology changes in transcription rate of nearly all genes in a particular

tissue or cell type, can be measured in disease states, during development, and in

response to intentional experimental perturbation, such as gene disruption and drug

treatments (Rhodes & Chinnaiyan, 2005; Stoughton, 2005). The resulting gene

expression profiles can help illuminate mechanisms of disease, predict disease

progression, assign function to previously un-annotated genes, group genes into

functional pathways and predict activities of new compounds (Stoughton, 2005).

Although the principal use of microarray technology is gene-expression profiling, the
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technology is being applied to additional processes including: genome-wide

epigenetic analysis; protein-DNA interactions by on-chip chromatin

immunoprecipitation; and detailed analysis of genomic DNA with respect to

sequence, structure, copy number and SNP regions (Hoheisel, 2006; Stoughton,

2005). For the purpose of this chapter, discussion of microarray technology will

focus on gene expression profiling.

Microarrays detect DNA by taking advantage of the complementarity of the

DNA duplex, whereby short single-stranded segments ofDNA are hybridised to their

complements (Plomin & Schalkwyk, 2007; Manning et al., 2007). Microarrays are

miniature devices containing thousands of DNA sequences, which act as gene-

specific probes, immobilised on a solid support (nylon, glass, or silicon) in a highly

parallel format (Draghici et al., 2006; Manning et al., 2007) . Microarrays can be

categorised as cDNA arrays, using probes constructed with PCR products up to a few

thousand base pairs; or oligonucleotide arrays, using either short (25-30mer) or long

(60-70mer) oligonucleotide probes. Probes can either be contact-spotted, ink-jet

deposited, or directly synthesised onto the solid support (Draghici et al., 2006). A

microarray study is a multi-step process and the aim commonly is to look at

differences in the expression of specific genes across samples. RNA isolated from

tissues or cells comprises a complex mixture of different RNA transcripts. The

abundance of individual transcripts in the mixture is a reflection of the expression

levels of the corresponding genes. RNA is reverse transcribed into complementary

DNA (cDNA), labelled with a radioactive, fluorescent or chemiluminescent tag, and

hybridised to the microarray. The intensity of the signal produced by each bound

probe indicates the relative abundance of that transcript in the sample and is a
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measure of the expression level of the corresponding gene. The intensity readings

from the image of the microarray are background adjusted, processed and analysed

(Plomin & Schalkwyk, 2007; Stoughton, 2005; Manning et al., 2007).

Reliability issues in microarray analysis can arise from the affinity of the

probe to its target transcript under the hybridisation conditions, steric effects of labels,

insufficient measurement replication, detection of low-abundance transcripts, and

errors in background subtraction (Draghici et al., 2006). Modern microarrays are

increasingly commercially produced leading to optimisation and characterisation of

probes, and the steric effect of labels on transcripts. Much information is contained in

the behaviour of low-abundance transcripts whose brightness is not much above the

background level, therefore negative control spots containing the average sequence

properties of the other probes but avoiding homology to any expected sequences in

the sample, can be important in subtracting background offsets. Similarly it is

equally important to have a positive subset of transcripts which are not different

between two samples (Draghici et al., 2006; Stoughton, 2005).

A limitation of microarray technology is that although changes in mRNA

provide an insight into which genes are transcriptionally active, this does not

automatically translate into changes in protein levels which are arguably more

directly related to cell function than mRNA messages (Stoughton, 2005; Manning et

al., 2007). Generally gene expression is responsive to the cellular and extra-cellular

environment, and there is a tight connection between the function of a gene product

and its expression pattern. Hence, regulation of gene expression controls when and

where the protein is made and in what quantity, indicating that generally mRNA

levels are surrogates for corresponding protein levels (Brown & Botstein, 1999).
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The tumour suppressor function of p53 is due mainly to its activity as a

transcription factor (Levine, 1997). The transcriptional program regulated by p53 has

previously been analysed using oligonucleotide arrays (Zhao et al., 2000; Kannan et

al., 2001). Zhao et al. (2000) used a human colon cell line, EB-1, carrying a wild-

type p53 gene under the control of an inducible metallothionein promoter to screen

for p53-regulated genes. Of 6,000 genes examined for p53 regulatory responses, they

found 107 induced and 54 repressed genes. Similarly, Kannan et al. (2001) used a

temperature sensitive p53 (ts p53Vall35) expressed in the human lung cancer cell

line HI299, to analyse the p53 mediated transcriptional profile. The temperature

sensitive p53 protein changes from a mutant to wild-type conformation by a

temperature switch from 37 °C to 32 °C. Of 7,070 genes analysed, 259 genes were

up-regulated and 125 genes were down regulated. However, inhibition of protein

synthesis by cyclohexamide, resulted in a reduction of p53-regulated transcripts to 38

up-regulated and 24 down-regulated. This supports the argument that many of the

identified p53 regulated genes are indirect targets (Kannan et al. 2001). In both

studies, the probes of the microarrays were randomly selected from the human

genome, therefore indicating that p53 may regulate 2-4% of all human genes.

A recent study by Rahman-Roblick et al. (2007) was the first to investigate

p53-dependent expression at the protein level. They investigated the effect of p53

activation on the proteome using 2D gel electrophoresis and mass spectrometry

analysis of mitogen-C treated HCT116 wild-type cells. Approximately 5,800 protein

spots were separated, and 2% showed p53-dependent changes in expression

(Rahman-Roblick et al., 2007). This result is consistent with previous DNA

microarray data (Zhao et al., 2000; Kannan et al., 2001), and indicates that the
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number of proteins regulated by p53 are approximately equal to the number of p53-

regulated genes.

In this chapter, commercially available oligonucleotide microarrays designed

to profile the gene expression of 113 genes involved in p53 pathways (SuperArray),

were used investigate the effect of p21 on the transcriptional program regulated by

p53. Three model systems were used: HCT116 isogenic cell panel; normal human

fibroblast (NHF) cells with specific siRNA-targeted disruption of the p21 gene; and

B-cells from mice lacking the p21 gene. In all three model systems, deletion of the

p21 gene resulted in p53 nuclear exclusion and eliminated the p53 transcriptional

response.

4.2 Results

4.2.1 Loss of p21 influences the cellular localisation of endogenous p53

In the previous chapter, data was presented showing that loss of p21 in the HCT116

colon carcinoma cell line has an adverse affect on p53 transcriptional activity,

whereby p53 stabilisation is uncoupled from its activity as a transcription factor and

shows defects in the p53 response to DNA damage and double stranded RNA.

Subsequently, complementation of the p21 gene into the HCT116 p21 -/- cells was

sufficient to reactivate the p53 transcriptional programme in response to cellular

damage.

Localisation of p53 to the nucleus is essential for its function as a

transcription factor (Ginsburg et al., 1991). Therefore the subcellular localisation of
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p53 in the absence of p21 was examined. Proteins from HCT116 WT and p21 -/- cells

were differentially extracted according to their subcellular localisation, and analysed

by immunoblotting (Figure 4.1). In WT cells, a small amount of p53 was detected in

the nucleus and no phosphorylation of p53 at serine-15 could be detected (Figure

4.1A). In striking contrast, in p21 -/- cells a higher level of p53 protein was detected

and predominately localised to the cytoplasm and membranes/organelles (Figure

4.1A). A relatively small proportion of p53 was also localised to the nucleus (Figure

4.1 A). However, all phosphorylated p53 at serine-15 was localised to the cytoplasm

and membranes/organelles (Figure 4.1 A). These observations indicate that p21 may

enhance nuclear retention of p53 and subsequent transcriptional activity.

p53 serine-15 and CHK2 threonine-68 are specific target sites for the ATM

kinase, and high phosphorylation levels have been observed for both proteins in the

absence of p21 (Figure 3.4A and B). As p53 was mislocalised in p21 -/- cells, cellular

localisation of additional ATM targets that are involved in the p53 pathway were

examined (Figure 4.1 A). Loss of p21 had no effect on the subcellular localisation of

MDM2 and CHK1, whereas CHK2 and E2F1 were partially mislocalised (Figure

4.1A). In WT cells CHK2 was localised to the cytoplasm and membranes/organelles,

compared to the p21 -/- cells where CHK2 was cytoplasmic. E2F1 in WT cells was

predominately nuclear, where as in p21 -/- cells a small proportion of endogenous

E2F1 was cytoplasmic. Neither CHK2 nor E2F1 mislocalisation was as striking as

that of p53, but highlights that subcellular localisation of other proteins in addition to

p53 are altered by loss of p21.

DAPK-1 is a serine/threonine protein kinase that functions as a component of

an oncogene activated checkpoint that activates p53 activity, and promotes apoptosis
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(Raveh et al., 2001). In addition p21 has been characterised as a DAPK-1 substrate in

vitro (Fraser & Hupp, 2007). Surprisingly, DAPK-1 protein was not detected in p21 -

/- cells, whereas in WT cells DAPK-1 was localised mainly to membranes/organelles,

and to a lesser extent the nucleus (Figure 4.1 A).

To confirm that this subcellular fractionation method yields distinct fractions,

proteins from each fraction were resolved by SDS-PAGE and analysed by

Coomassie staining. The protein expression patterns from each fraction are clearly

distinct and confirm the validity of the technique (Figure 4.IB). Further validation

should be made by extracting proteins bands unique to each fraction and analysing

by mass spectrometry to identify proteins representative of each fraction.

To further confirm the status of p53 localisation in the HCT116 p21 -/- cells,

an alternative method (Gilbert & Allan, 2001) was used to fractionate cells involving

nuclear extraction and nuclease digestion. This technique separates the insoluble

nuclear debris from the soluble nuclear fraction containing chromatin.

Transcriptionally active p53 should be associated with chromatin. In WT cells there

is approximately 4-fold less total cellular p53 than the p21 -/- cells (Figure 4.1C, lane

E), and the majority of p53 in WT cells was associated with the soluble nuclear

fraction containing chromatin (Figure 4.1C, lane SN) and was not detected in the

insoluble nuclear fraction (Figure 4.1C, lane P). In contrast, in the p21 -/- cells, there

was a high level of p53 protein detected in the total cellular extract but barely

detectable amounts in either nuclear fraction (Figure 4.1C), consistent with p53 being

predominantly cytoplasmic (Figure 4.1 A). This data indicates that in WT cells p53 is

chromatin associated and may be active as a transcription factor due to its correct

cellular localisation, whereas in the absence of p21, p53 is not localised to the
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nucleus and may not be active as a transcription factor due its atypical cytoplasmic

location.

4.2.2 Reintroduction of p21 restores p53 nuclear localisation

As previously shown, stable reintroduction of p21 into HCT116 p21 -/- cells was

sufficient to restore p53 transcriptional activity in response to both dsRNA (Figure

3.9) and IR (Figure 3.10). To confirm that restoration of p53 activity was due to a

restoration of p53 nuclear localisation, proteins from HCT116 WT, p21 -/-, and clone

2 cells stably expressing p21 (Figure 3.7) were differentially extracted according to

their subcellular localisation, and analysed by immunoblotting (Figure 4.2A). In WT

cells p53 was confined to the nuclear fraction, whereas in p21 -/- cells p53 was

localised to the cytoplasm, membranes/organelles and the nuclear fraction. However,

stable reintroduction of p21 into the p21 -/- cells, as represented by clone 2 cells, was

sufficient to restore p53 nuclear localisation (Figure 4.2A). This data confirms that

p21 regulates p53 transcriptional activity (Figure 3.9) by controlling its subcellular

localisation (Figure 4.2A). Similarly, CHK2 localisation pattern was also restored

(Figure 4.2A). In WT cells CHK2 was localised to the cytoplasm and

membranes/organelles, whereas in p21 -/- cells CHK2 was confined to the cytoplasm.

In clone 2 cells CHK2 localisation was restored to that of WT cells. Therefore p21

may regulate additional targets to p53 by controlling their subcellular localisation.

The C-terminus of p21 has been shown not to be required for reactivation of

p53 transcriptional activity (Figure 3.11). Here full-length p21 and p211 133 clones
(HCT116 p21 -/- cells stably expressing full-length p21 and p211-133 C-terminal
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truncation, respectively) were compared to HCT116 p21 -/- and WT cells in respect

to p53 subcellular localisation. For simplicity's sake only cytoplasmic (Fl) and

nuclear fractions (F3) are shown (Figure 4.2B). In p21 -/- cells, p53 was detected in

both the cytoplasm and the nucleus, whereas in WT cells p53 was confined to the

nuclear fraction. Stable expression of full-length p21 and p211-133 C-terminal

truncation was sufficient to restore p53 nuclear localisation (Figure 4.2B), indicating

that the C-terminus of p21 is not required for the restoration of p53 nuclear

localisation. In WT cells E2F1 was localised to the nucleus but mislocalised in p21 -/-

cells to the cytoplasm. Stable expression of full-length p21 and p211-133 C-terminal

truncation was also sufficient to restore E2F1 nuclear localisation (Figure 4.2B).

These results indicate that p21 may regulate additional targets to p53 by controlling

their subcellular localisation, and that the C-terminus of p21 is not required for this

function.

Overall, stable reintroduction of p21 into p21 -/- cells is sufficient to restore

p53 activity and nuclear localisation, and the nuclear retention of p53 is independent

of the C-terminus of p21. These observations demonstrate that p21 is an essential

regulator of the p53 pathway by controlling its subcellular localisation.

4,2.3 Aberrant localisation of p53 is not associated with unfolding

p53 is a conformationally flexible protein, which has been shown to be partially

unstructured in its native conformation (Bell et al., 2002). An allosteric model has

been proposed where native p53 protein is partially unfolded, and the equilibrium

between partially-folded states can modulate p53 conformation and activity (Bell et
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al., 2002; Lane & Hupp, 2003). Furthermore, most cancer-derived p53 mutants are

thermodynamically unstable and in an unfolded conformation (Bullock & Firsht,

2001). The extent of folding and unfolding of wild-type or mutant p53 can be

quantified by the use of monoclonal antibodies specific for epitopes confined to each

respective conformation. Previously, Shimizu et al. (2006) showed that in HI299

cells transfected with wild-type p53, the ratio of folded to unfolded wild-type p53 is

approximately 9:1, indicating that 10 % of wild-type p53 is in the unfolded

conformation.

In HCT116 WT cells p53 was progressively ubiquitinated in response to

DNA damage induced by IR (Figure 4.3A). Higher molecular weight bands detected

by over-exposure of an anti-p53 (DOl) immunoblot, have previously been

characterised as ubiquitinated forms of p53 (Lohrum et al., 2001; Wallace et al.,

2006). In the p21 -/- cells, the p53 ubiquitination ladder was not detected. This may

be expected as polyubiquitination of p53 is proposed to take place in the nucleus

(Brooks & Gu, 2004), and in the absence of p21, the majority of p53 is confined to

the cytoplasm. However, strikingly in p21 -/- cells, and absent in WT cells, a ladder

of p53 lower molecular weight adducts was detected approximately 2 hours after

irradiation (Figure 4.3A). This suggests that p53 from p21 -/- cells, which is re-

localised to the cytoplasm, may be unfolded, and therefore more prone to proteolytic

degradation.

An antibody capture ELISA was used to quantify the levels of unfolded and

folded p53 in HCT116 WT, p21 -/-, and clone 2 cells. BSA was used as a negative

control. Cell lysates were incubated in ELISA wells coated with monoclonal

antibodies: DOl specific for total p53; PAbl620 specific for folded p53; DO 12
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specific for unfolded p53; or PAb240 specific for unfolded p53. Following capture of

the respective conformational variants of p53, all captured p53 was detected using a

polyclonal antibody, CM1. The capture profiles for each monoclonal p53 antibody

used in each cell line, demonstrates that there is no detectable difference between cell

lines, with the majority of p53 detected in the folded conformation, as detected by

PAM620 (Figure 4.3B). Direct comparison of p53 in the PAbl620 folded

conformation to the PAb240 unfolded conformation, shows that the ratio of folded to

unfolded p53 is approximately 50:1, for WT, p21 -/- and clone 2 cells (Figure 4.3C).

However, there is a detectable difference in all cell lines used between DOl and

PAbl620 captured p53 (Figure 4.3B). If we assume that p53 is either folded or

unfolded, and have shown by PAb240 and DO12 detection that the amount of

unfolded p53 is negligible (Figure 4.3B), then the amount of p53 captured by DOl

should be approximately equal the amount of p53 captured by PAbl620. However,

in all cell lines used, the ratio of total p53 detected by DOl to folded p53 detected by

PAM620 is approximately 1.5:1, which indicates that approximately 67 % of p53 is

in the folded conformation. We can speculate that the unaccounted for p53 is in a

partially folded conformation in which both the PAbl620 and PAb240 epitopes are

masked.

This data shows that in response to DNA damage induced by IR, p53 in the

p21 -/- cells is more prone to proteolytic degradation but this is probably due to

cytoplasmic re-localisation rather than protein unfolding. Here we show that in

undamaged cells, p53 conformation is unaffected by the absence of p21.
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4.2.4 p53 localisation is independent of DNA damage

DNA damage induced by IR has been shown to promote activation of p53-dependent

gene expression (Figure 3.5A). To determine the effect of DNA damage on p53

subcellular localisation, HCT116 WT and p21 -/- cells were treated with 7 Gy IR and

harvested after 4 hours (Figure 4.4). Proteins were extracted according to their

subcellular localisation from each sample and analysed by immunoblotting. In un¬

irradiated WT cells, p53 was weakly detected in the nuclear fraction. In response to

IR p53 protein levels increased by approximately 4-fold, yet remained confined to

the nucleus. In p21 -/- cells p53 was mainly localised to the cytoplasm and

membranes/organelles, with a small pool of p53 localised to the nucleus. In response

to IR, both p53 levels and subcellular localisation were unchanged in the p21 -/- cells

(Figure 4.4). This supports the observation that in p21 -/- cells the p53 response to IR

is inactive (Figure 3.5A).

4.2.5 Microarray analysis of the HCT116 isogenic cell panel

Loss of p21 in the FICT116 cell line results in repression of p53 transcriptional

activity basally (Figure 3.3) and in response to cellular stresses including dsRNA

(Figure 3.4) and IR (Figure 3.5). Luciferase reporter assays and detection of specific

p53 targets by immunoblotting were used to determine the status of p53

transcriptional activity. Flere oligonucleotide microarrays, designed to profile gene

expression of 113 genes involved in the p53 pathway (SuperArray), were used to

assess the global effect of loss of p21 in the FICT116 cell line in response to IR.
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HCT116 WT, p21 -/- and p53-/- cells were irradiated with 7 Gy IR and

incubated for 4 hours. p53-/- cells were included as a control to determine which

genes included on the microarray are regulated by p53, and which genes are

expressed independent of p53 in the HCT116 cell line. Cell line variations in gene

expression are very common, including p53 specific targets, with often conflicting

data in the literature. Total RNA was isolated from all cell lines, before and after

irradiation, reverse transcribed into cDNA, labelled with biotin and hybridised to the

oligonucleotide arrays (Oligo GEArray® DNA Microarray, Human p53 Signalling

Pathway, SuperArray). The raw image of each microarray (Figure 4.5) provides an

overview of the expression pattern in each cell line, and the effect of IR. Table 4.1

details which genes were expressed in each cell line and in response to IR, as

determined by visual observation. No speculation of fold changes has been inferred

here, and genes not expressed in all samples have been omitted. From a visual

assessment of the raw images of non-irradiated WT, p21 -/- and p53-/- cells (Figure

4.5), it appears that approximately a third more genes were expressed in WT cells

compared to p21 -/- and p53-/- cells. The expression patterns observed in p21 -/- and

p53-/- cells were very similar, with 21 and 20 genes expressed, respectively (Table

4.1). However, within this there are subtle differences such as, the pro-apoptotic

genes BAK1 and DAPK-1 were expressed in p21 -/- cells but not in p53-/- cells,

suggesting that p21 -/- cells may more readily undergo apoptosis than p53-/- cells,

PTEN was expressed in p21 -/- cells but not in p53-/- cells, and ATM and CDKN1A

were expressed in p53-/- cells but not in p21 -/- cells (Table 4.1). These findings

indicate that loss of p21 causes a global loss of p53 activity similar to having targeted

inactivation of the p53 gene.
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In response to IR, in WT cells there was an increase in gene expression of a

majority of genes (Figure 4.5). In p53-/- cells, there was very little observed

difference in the expression pattern of irradiated cells compared with non-irradiated

control (Figure 4.5), indicating that p53 is required for IR induced induction of p53

targets genes included on the microarray. The only genes expressed in response to IR

in p53-/- cells were BAK1 and PTEN (Table 4.1). These genes were also expressed in

non-irradiated p21 -/- cells, indicating that in the HCT116 cell line, expression of

BAK1 and PTEN is p53-independent. Irradiation of p21 -/- cells caused a decrease in

general gene expression, 21 genes were expressed in non-irradiated control cells

compared to 4 genes in irradiated samples. The 4 genes expressed in irradiated p21 -/-

cells were BAK1, BCL2, CDK7 and CDKN2A (Table 4.1). The overall decrease in

gene expression and over-expression of BAK1 may indicate that p21 -/- cells were

unable to cope with this degree of damage, and were undergoing apoptosis.

The microarray images (Figure 4.5) were analysed using the GEArray

Expression Analysis Suite software (SuperArray). Each image was fitted to a grid

(manually or automatically) to define areas of individual spots. Averages of signal

intensities and background noise of individually defined areas were calculated.

Accurate control of starting RNA samples can be difficult and lead to discrepancies

in chemiluminescent signal intensities between two probes. Therefore normalisation

of signals between samples was achieved using selected normalisation control spots

(Figure 4.5, indicated by red arrows), including house-keeping genes, which were

considered to be expressed consistently under most circumstances. The GEArray

Expression Analysis Suite software determines the normalised spot brightness of

each gene by dividing the raw spot brightness of each gene by the average brightness
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of the selected normalisation control spots. After normalisation and background

correction, chemiluminescent signal intensities representative ofmRNA levels, were

expressed as relative units. Table 4.2 details differences in gene expression between

samples as fold changes, calculated by determining the ratio of gene intensities

between indicated samples. There is no standard criterion for the selection of

differentially expressed genes, in regard to which values are significant. Therefore a

cut-off value has been applied, where 1.5-fold change in gene expression in the test

sample compared with the reference is defined as a significant induction or

repression.

Individual genes were analysed in more detail (Figure 4.5, highlighted by a

red box) by graphical representation of transcript levels (Figure 4.6). Generally,

expression of a majority of genes was disrupted in p21 -/- and p53-/- cells compared

to WT cells, and are not induced by IR. Expression profiles of CDK4, JUN and

STAT1 represent the general trend (Figure 4.6). CDK4 was expressed in non-

irradiated WT cells, and in response to IR expression was enhanced approximately 2-

fold (Figure 4.6, Table 4.2). In p21 -/- and p53-/- cells CDK4 was not expressed, even

after irradiation. A similar expression profile is shown for JUN. In p21 -/- and p53-/-

cells, STAT1 was expressed approximately 2-fold lower than in WT cells. In

response to IR, STAT1 expression remained unchanged in WT and p53-/- cells, yet in

p21 -/- cells STAT1 expression was diminished. MDM2 showed a similar expression

profile to that of STAT1, in that MDM2 is expressed in p21 -/- and p53-/- cells but at

levels approximately 1.5-fold lower than WT cells (Figure 4.6, Table 4.2).

Previously, high phosphorylation levels of specific ATM targets have been

observed in the absence of p21 (Figure 3.4A, B). Microarray analysis shows that
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ATM was expressed in WT cells, with minimal change in expression in response to

IR. In p53-/- cells there was a 2-fold reduction ofATM expression compared to WT

cells, which was also unaffected by IR. Unexpectedly, ATM expression was not

detected in p21 -/- cells, although mRNA levels may not directly reflect protein levels

(Figure 4.6).

Particularly interesting in the microarray analysis were the genes that did not

fit the general trend. In the non-irradiated cells, the only gene expressed at a higher

level in p21 -/- cells than WT cells, was DAPK-1, by approximately 4-fold (Figure

4.6, Table 4.2). In response to IR, DAPK-1 expression was increased in WT cells but

decreased in p21 -/- cells. DAPK-1 expression was not detected in p53-/- cells.

Although DAPK-1 mRNA expression was elevated in p21 -/- cells, this may not

translate to protein levels, as DAPK-1 protein could not be detected by

immunoblotting (Figure 4.1 A). In irradiated samples, the only gene up-regulated in

p21 -/- cells compared to WT cells was BAK1, which was elevated by approximately

2-fold. BAK1 expression was unchanged in the p53-/- cells. BAK1 has a role in

promoting apoptosis (Moll et al., 2006), indicating that in response to damage, p21 -/-

cells may undergo apoptosis more readily than WT or p53-/- cells.

To provide an overall impression of the effect of loss of p21 on gene

expression of proposed p53 target genes, cluster analysis of the microarray data was

performed using the clustergram data analysis tool included in the GEArray

Expression Analysis Suite software (SuperArray). The program clusters genes with

similar expression profiles together, where genes that are more similar are joined to

the right, and genes less similar are joined further to the left (Figure 4.7).

Clustergram analysis of gene expression is presented for basal gene expression in the
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HCT116 isogenic cell panel (Figure 4.7A) and in response to IR (Figure 4.7B). In

Figure 4.7A colour coding of gene expression was according to each gene in all the

samples, therefore expression levels of the same gene across all the samples can be

compared, however expression levels of different genes in the same sample are not

relative to one another. This analysis provides a clear picture of which individual

genes are expressed in which sample but does not provide information regarding

extent of expression in context with other genes. Flere, basal expression of p53 target

genes was clearly diminished in p21 -/- cells compared to WT cells. In Figure 4.7B

clustergram analysis of gene expression levels is presented for all cell lines in

response to IR. In contrast to Figure 4.7A, the extent of gene expression was colour

coded according to all the values in all the samples, therefore enabling expression

levels of all genes to be compared across all samples. This provides an overview of

gene expression in cellular context, however this method is less sensitive and genes

expressed at lower levels in a sample can be under represented. The clustergram

analysis confirms that in response to IR in WT cells there was an increase in general

gene expression, irradiation of p21 -/- cells further decreased p53-dependent gene

expression, and irradiation of p53-/- cells had generally no effect on gene expression

(Figure 4.7B). Microarray analysis has shown that in the HCT116 cell line, loss of

p21 causes inhibition of p53 transcriptional activity towards its targets

indiscriminately, and is akin to inactivation of both copies of the p53 gene.
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4.2.6 The p21-null phenotype characterised in a cancer cell model applies to

normal human cells

The work presented so far has used an isogenic cancer cell line panel, with targeted

inactivation of the p21 gene. The data has shown that in the HCT116 cancer cell line,

p53 transcriptional activity and subcellular localisation are dependent on p21. To

determine if p21-dependent regulation of p53 is a common mechanism or cell-type

specific, levels of p21 were reduced in a normal cell model. Normal human fibroblast

(here after referred to as NHF) cells derived from human skin (PromoCell), have

previously been used to characterise regulation of p53 serine-15 phosphorylation

(Tibbetts et al., 1999). Here, p21 levels in NHF cells were reduced using p21 siRNA-

mediated gene knockdown. NHF cells were treated with either p21 or control siRNA,

and harvested 48 hours after transfection. Protein levels were assessed by

immunoblotting (Figure 4.8). p21 siRNA successfully reduced p21 protein levels

compared to control. Although minimum change in p53 protein levels and

phosphorylation of p53 at serine-15 could be detected, there was a detectable change

in BAX protein levels. BAX levels decreased in the absence of p21, compared to

control siRNA treated cells (Figure 4.8). Previously BAX levels were found to be

associated with p21 levels in HCT116 cells (Figure 3.5A; Figure 3.10; Figure 3.11),

and may be a more sensitive marker of p21-deficiency than p53 levels.

The subcellular localisation of p53 was subsequently examined in NHF cells

with reduced levels of p21. NFIF cells were transfected with p21 or control siRNA

and incubated for 48 hours, all proteins were differentially extracted according to

their subcellular localisation, and analysed by immunoblotting (Figure 4.9). In p21
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siRNA treated NHF cells p53 subcellular localisation was deviant compared to

control siRNA NHF cells. In control cells, p53 was localised to the nucleus, whereas

in p21 siRNA treated NHF cells p53 was localised to both the cytoplasm and the

nucleus (Figure 4.9). This data indicates that p21-dependent regulation of p53

subcellular localisation is a general mechanism, not specific to the HCT116 cell line.

In NHF cells, the difference in p53 levels and localisation are not as striking as the

HCT116 cell model (Figure 4.1A), but it must be taken into account that the NHF

cells were transiently transfected with p21 siRNA, as opposed to HCT116 p21 -/-

cells which stably support inactivation of the p21 gene and have adapted accordingly.

MDM2 and CHK1 subcellular localisation were unaffected in NHF cells

treated with p21 siRNA compared to control siRNA treated NHF cells (Figure 4.9).

However, E2F1 localisation was marginally affected. In control siRNA treated cells

E2F1 was nuclear, whereas in p21 siRNA treated cells, E2F1 was partially

mislocalised to the cytoplasm (Figure 4.9). These observations are consistent with

findings in the HCT116 cell model (Figure 4.1).

4.2.7 Microarray analysis of normal human fibroblast cells shows that loss of

p21 suppresses p53-dependent gene expression

NHF cells treated with p21 siRNA show defects in p53 subcellular localisation,

where approximately a quarter of total p53 is mislocalised from the nucleus to the

cytoplasm compared to control siRNA treated NHF cells (Figure 4.9). In the

HCT116 model mislocalisation of p53 is associated with loss of p53 transcriptional

activity (Figure 4.7). Therefore to determine the effect of loss of p21 on p53



transcriptional activity in NHF cells, oligonucleotide microarrays, designed to profile

gene expression of 113 genes involved in the p53 pathway (Oligo GEArray® DNA

Microarry, Human p53 Signalling Pathway, SuperArray), were used. The DNA

damage response induced by IR was also examined.

NHF cells were treated with p21 siRNA or control siRNA, incubated for 48

hours, irradiated with 5 Gy IR and harvested after further 4 hour incubation.

Oligonucleotide microarrays were prepared as previously detailed (Materials &

Methods 2.17). The raw image of each microarray provides an overview of the

expression pattern of each siRNA treatment, and the effect of IR (Figure 4.10). Table

4.3 details which genes are expressed in each treatment and in response to IR, as

determined by visual observation. No speculation of fold changes has been inferred

here, and genes not expressed in all samples have been omitted. From a visual

assessment of the raw images of non-irradiated NHF cells treated with p21 siRNA or

control siRNA (Figure 4.10), loss of p21 caused a dramatic loss of p53-dependent

gene expression. In control siRNA treated cells, 52 genes are expressed, compared to

p21 siRNA treated cells, where only 7 genes are weakly detected (Table 4.3). This

could highlight the importance of p21 in p53-dependent gene expression, but may

also indicate that loss of p21 in NHF cells is causing a crisis resulting in a global

reduction of gene expression, as housekeeping genes including (3-actin, were also

affected. This was not observed in HCT116 cells, where the level of gene expression

of housekeeping genes were unaffected by loss of p21 (Figure 4.6). In response to

irradiation, gene expression in p21 siRNA treated NHF cells showed some degree of

recovery (Figure 4.10) with 56 genes expressed compared to only 7 genes detected in

non-irradiated p21 siRNA treated NHF cells (Table 4.3). p21 siRNA treatment does
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not cause complete loss of p21, and p53 redistribution to the cytoplasm is not as

pronounced as in the HCT116 model. Therefore partial recovery of p53 activity was

not surprising. In control siRNA treated cells, 60 genes were expressed in the

irradiated sample, compared to 52 genes in non-irradiated sample. Although only 8

genes were additionally expressed in response to IR (Table 4.3), there was an

increase in expression of genes previously detected at a low level in non-irradiated

samples (Figure 4.10).

Microarrays were analysed as previously described in 4.2.5, where each

signal was normalised to control spots (Figure 4.10, indicated by red arrows) and

background corrected. Table 4.4 details differences in gene expression between

samples as fold changes, calculated by determining the ratio of gene intensities

between indicated samples. A cut-off value has been applied as before, where 1.5-

fold change in gene expression in the test sample compared with the reference is

defined as a significant induction or repression.

The expression profiles of selected individual genes were analysed in more

detail (Figure 4.10, highlighted by a red box), by graphical representation of

transcript levels (Figure 4.11). The general trend is illustrated by the expression

profile of ATM, BAX, CDK4, JUN and MDM2 (Figure 4.11), where each gene was

expressed in control siRNA treated cells, and following DNA damage gene

expression was enhanced by approximately 2-3-fold induction. In p21 siRNA treated

NHF cells ATM, BAX, CDK4, JUN and MDM2 were not expressed basally, but

following DNA damage gene expression was induced. Gene expression was

significantly lower in irradiated p21 siRNA treated cells compared to irradiated

control siRNA treated cells, for example, ATM, BAX, CDK4, JUN and MDM2
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expression levels were 9-fold, 4-fold, 3-fold, 4-fold, and 2-fold lower respectively,

compared to irradiated control cells (Table 4.4). This data confirms that loss of p21

in NHF cells has an adverse effect on p53-dependent gene expression.

Graphical representation of 20 representative genes further illustrates the

general trend where the expression of a majority of genes was disrupted in p21

siRNA treated NHF cells compared to control cells (Figure 4.12A). Irradiation

stimulated a partial recovery of gene expression in p21 siRNA treated cells (Figure

4.12B), but expression levels were still significantly lower than that of control

irradiated cells (Figure 4.12C). This data highlights the significance of p21 in p53-

dependent gene expression.

Similar to the HCT116 model system, the two genes which diverge from the

general trend in NHF cells treated with p21 siRNA were BAK1 and DAPK-1. In non-

irradiated p21 siRNA treated NHF cells a majority of genes were not expressed,

except for BAK1, which was expressed approximately 2-fold more than in control

siRNA treated cells. In response to IR, BAK1 expression levels decreased to a level

comparable to non-irradiated control cells. In contrast, DAPK-1 was expressed at

approximately 10-fold lower in non-irradiated p21 siRNA treated NHF cells than

non-irradiated control cells. DAPK-1 expression was induced in both p21 siRNA and

control siRNA treated cells following irradiation, showing approximately 12-fold

and 2-fold induction respectively. There was no significant difference in DAPK-1

expression levels between the irradiated samples (Figure 4.11, Table 4.4). This

indicates that cells lacking p21 may readily undergo apoptosis, due to increased

expression of pro-apoptotic genes.
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Interestingly HSP90 was included as a control gene on the microarray, but in

p21 siRNA treated NHF cells, expression of HSP90 was elevated 2-fold compared to

control cells. Irradiation of p21 siRNA treated NHF cells returned HSP90 expression

levels to those comparable to control cells. This was not observed in HCT116 cell

model, where HSP90 expression levels were consistent across cell lines.

As before, cluster analysis was performed (Figure 4.13). The extent of gene

expression was colour coded according to all values in all the samples, allowing all

four expression profiles to be clearly compared. As previously observed, a majority

of genes were expressed in NHF cells treated with control siRNA, and a sub-set of

genes were further expressed in response to irradiation. In contrast, in NHF cells

treated with p21 siRNA, there was an overall suppression of gene expression except

for expression of BAK1. Irradiation of these cells induced gene expression in a

majority of genes, but to a much lower extent of that seen in control cells. Therefore

in a normal cell model, loss of p21 can cause loss of p53-dependent gene expression.

4.2.8 p21-dependent regulation of p53 subcellular localisation is evolutionarily

conserved

To determine if p21-dependent regulation of p53 subcellular localisation and

transcriptional activity is evolutionarily conserved, a transgenic mouse model was

employed. B-cells were selected as the model of choice, because mice homozygous

for p53 mutated at serine-23 (equivalent of human serine-20), show defects in p53

stability and activity, and predominantly die from B-cell lineage tumours

(MacPherson et al. 2004). Therefore B-cells may be more sensitive to alterations in
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p53 status than other cell lines. B-cells give rise to antibody producing cells after

infection, and are easily extractable using the B-cell specific marker, CD45 (Hardy et

al. 2007). B-cells were extracted from p21 nullizygous (p21 -/-) and wild type

(p21+/+, referred to hereafter as WT) mice spleens. Proteins were differentially

extracted according to their subcellular localisation, and analysed by immunoblotting

(Figure 4.14). p53 subcellular localisation was atypical in the absence of p21 in the

mouse model. In the p21 -/- B-cells, p53 was localised mainly to the cytoplasm with a

small proportion localised to the nucleus, whereas in WT B-cells, all detectable p53

was localised to the nucleus (Figure 4.14). Thus, p21-dependent regulation of p53

localisation is conserved in mice, and may indicate a common mechanism of p53

regulation.

4.2.9 The mouse model illustrates that p53 activity is p21 gene dose dependent

In both HCT116 and NFIF cells, loss of p21 caused suppression of p53-dependent

gene expression as determined by p53 specific microarray analysis. In the NHF cells

knock-down of p21 was not complete, and partial recovery of p53 activity was

observed after stress, indicating that p53 activity may depend on p21 dose. In the

mouse model system, this can be tested using B-cells extracted from p21 nullizygous

(p21 -/-), heterozygous (p21+/-) and wild-type (p21+/+) mice. Mouse oligonucleotide

microarrays (Oligo GEArray® DNA Microarry, Mouse p53 Signaling Pathway,

SuperArray) detailing the expression of genes involved in the p53 pathway, were

prepared as previously detailed (Materials & Methods 2.17). The raw image of each

microarray provides an overview of the expression pattern of each genotype (Figure
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4.15). Table 4.5 details which genes are expressed in each genotype, as determined

by visual observation. No speculation of fold changes has been inferred here, and

genes not expressed in all samples have been omitted. From a visual assessment of

the raw microarray images (Figure 4.15), the decrease in p53-dependent gene

expression caused by loss of p21, was p21 gene dosage-dependent. Loss of one p21

allele caused a 21% decrease in the number of p53-dependent genes expressed

compared to WT B-cells. Loss of both p21 alleles caused a 68% decrease in the

number of genes expressed compared to WT B-cells (Table 4.5), indicating that in

the mouse model system p53 activity depends on p21 dose.

Microarrays were analysed as previously described in 4.2.5, where each

signal was normalised to control spots (Figure 4.15, indicated by red arrows) and

background corrected. Differences in gene expression between samples are

represented as fold changes (Table 4.6), calculated by determining the ratio of gene

intensities between indicated samples. A cut-off value of 1.5-fold change has been

applied as before.

The expression profiles of selected individual genes were analysed in more

detail (Figure 4.15, highlighted by a red box) by graphical representation of

transcript levels (Figure 4.16). The general trend is illustrated by the expression

profile of Bax, Caspase-2, Jun, Mdm2 and Perp (Figure 4.16), whereby gene

expression was highest in WT B-cells, reduced in p21+/- B-cells, and further reduced

in p21 -/- cells. The extent of inhibition of gene expression depends on the gene. In

the expression profile of Bax, Bax transcript levels were highest in WT B-cells, were

reduced in p21+/- B-cells, and were significantly reduced by approximately 17-fold

in p21 -/- B-cells (Figure 4.16, Table 4.6). For Caspase-2, gene expression was
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reduced in p21 +/- and p21 -/- B-cells compared to WT B-cells by approximately 2-

fold and 9-fold respectively (Figure 4.16, Table 4.6). For Mdm2, the change in

expression was more pronounced whereby expression in p21+/- B-cells was

repressed by 9-fold compared to WT B-cells, and in p21 -/- B-cells Mdm2 expression

could not be detected (Figure 4.16, Table 4.6). The general trend was observed for all

expressed genes, as detected by the microarray, except for Birc5, Ciaol, Gadd45a,

and Pycard. These genes were expressed in all genotypes and expression was not

significantly changed by loss of p21. Expression profiles for Birc5 and Pycard are

shown (Figure 4.16). Previous data from the HCT116 model system showed that

GADD45 and PYCARD were expressed in p53-/- cells and may be expressed

independently of p53 (Figure 4.7A). Expression of housekeeping genes, as illustrated

by the expression profile of HSP90 (Figure 4.16) were also unaffected across

genotypes.

The general trend of gene expression and correlation to genotype can be

clearly observed by graphical representation of randomly selected genes. The data is

presented as a bar graph (Figure 4.17A) to allow analysis of individual genes of

interest not previously mentioned, including ATM and Bakl, whose expression

profiles fit the general trend. DAPK-1 was not expressed in any genotype and is

therefore omitted. The data is also presented as a line graph, which clearly shows the

gradual decrease in p53-dependent gene expression caused by loss of each p21 allele

(Figure 4.IB).

To further classify gene expression profiles, cluster analysis was performed

as before (Figure 4.18). The extent of gene expression was colour coded according to

all the values in all the samples, enabling expression levels of all genes to be
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compared across all samples. This further showed that all detected genes were

expressed in WT B-cells, loss of one allele ofp21 caused an overall decrease in gene

expression, and loss of both p21 alleles caused a further decrease in gene expression,

with many genes no longer detected. The microarray analysis clearly illustrates that

p53-dependent gene expression is regulated by p21 in a gene dose dependent manner.

4.3 Discussion

Previously, p21 was identified and characterised as a novel co-factor of p53

transcriptional activity in the HCT116 cell line (Chapter 3). This chapter focuses on

the mechanism of p21-dependent regulation of p53 and the effect of loss of p21 on

p53-dependent gene expression profiles, as measured by p53 pathway specific DNA

microarrays. To confirm that p21-dependent regulation of p53 extends beyond the

HCT116 cancer cell model, NHF cells treated transiently with p21 siRNA, and a

transgenic mouse model with targeted inactivation of the p21 gene, were used. In all

three model systems, we show that loss of p21 causes aberrant subcellular

localisation of p53 and global loss of p53-dependent gene expression.

4.3.1 p21-dependent regulation of p53 subcellular localisation

Nuclear localisation of p53 is essential for its growth suppressing activity (Shaulsky

et al. 1991; Moll et al. 1996), and re-localisation of p53 to cytoplasm represents a

mutation independent mechanism utilised by malignancies to inactivate wild-type

p53 (Moll et al. 1995). Primary human tumours which exhibit aberrant cytoplasmic

- 140-



sequestration of p53 and lack of response to DNA damage include inflammatory

breast cancer (Moll et al. 1992), undifferentiated neuroblastoma (Moll et al. 1995),

retinoblastoma (Schlamp et al. 1997) and colorectal carcinoma (Bosari et al. 1995).

Constitutive cytoplasmic localisation of p53 in these tumour types is associated with

poor response to chemotherapy, tumour metastasis and poor long-term patient

survival (Bosari et al. 1995; Moll et al. 1995; Schlamp et al. 1997). The specific

mechanisms governing abnormal cytoplasmic localisation of p53 are not well

defined. However, Ostermeyer et al. (1996) showed that the C-terminal domain of

cytoplasmic p53 from undifferentiated neuroblastoma cells is masked. The C-

terminus (amino acids 300-393) of p53 harbours one major and two minor nuclear

localisation signals (NLS) (Dang & Lee, 1989; Shaulsky et al., 1990a), which

mediates p53 import into the nucleus in response to DNA damage (el-Deiry et al.

1992; Jimenez et al. 1999). Furthermore, in undifferentiated neuroblastoma cells,

stable expression of a p53 C-terminal peptide encompassing all three NLSs was

sufficient to restore p53 nuclear localisation (Ostermeyer et al. 1996). To date, the

source of p53 C-terminal masking and the genetic alterations responsible for this

phenotype in undifferentiated neuroblastoma cells has yet to be resolved. Here, we

show in three model systems including normal human cells, that loss of p21 can

cause a similar phenotype to that observed in the indicated primary tumours (Zaika et

al. 1999), where high levels of wild type p53 protein accumulates in the cytoplasm in

the absence of stress. Although the mechanism of how p21 governs p53 subcellular

localisation remains elusive, p53 in HCT116 p21 -/- cells is correctly folded (Figure

4.2) therefore C-terminal masking is unlikely.
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Interestingly, Crook et al. (1998) characterised a Burkitt lymphoma derived

cell line DG75. These cells express a constitutively high level of p53, an extremely

low level of p21, and no detectable BAX. Furthermore, in DG75 cells transcription

of p53 target genes was not induced by cisplatin treatment, and p53 was exclusively

localised to the cytoplasm. Crook et al. (1998) found that DG75 cells contain one

wild-type p53 allele and a mis-sense mutation in the second allele, causing

substitution of an arginine residue at amino acid position 283 to histidine (referred to

hereafter as Arg283His), and proposed that Arg283His is responsible for p53

mislocalisation in this cell line. From in vitro studies, Crook et al. (1998) propose

that Arg283His binds DNA and transactivates p53 target genes, and is essentially

wild type. Transformation of Arg283His into rat embryonic fibroblast cells and the

p53-null human cell line SAOS-2 shows a gradual shift of p53 from the nucleus to

the cytoplasm over a 60 hour time course, and shows a corresponding decline in p53

activity. Crook et al. (1998) speculate that Arg283His heterodimerises with wild-

type p53, and acts as chaperone to export p53 out of the nucleus. However, Crook et

al. (1998) fail to show that removal of Arg283His mutation by, for example siRNA

mediated gene knockdown, restored nuclear localisation of p53 and therefore

definitive proof that Arg283His causes p53 cytoplasmic accumulation. In light of the

research presented in this chapter, where loss of p21 causes aberrant localisation of

p53 and subsequent restoration of p21 can restore p53 nuclear localisation, the study

by Crook et al. (1998) can be re-evaluated. Crook et al. (1998) show that in vitro

Arg283His did demonstrate reduced DNA binding capabilities compared to wild-

type p53. This is not surprising considering that the mutation is within the H2 a-helix

which makes contact with the phosphate backbone in the major groove of the
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consensus DNA sequence (Cho et al. 1994). Therefore the findings in rat embryonic

fibroblast cells and SAOS-2 cells where initial transformation with Arg283His shows

nuclear localisation, then subsequent accumulation in the cytoplasm by 60 hr, may

indicate that basal expression of the p21 gene is being reduced leading to a gradual

increase in cytoplasmic localisation of p53, and inactivation of p53 transcriptional

activity. Hence, we propose that expression of Arg283His induces a decrease in

steady state p53-dependent gene expression, leading to a loss of p21, which in turn

causes mislocalisation and inactivation of p53. Therefore, Burkitt lymphoma derived

DG75 cells have evolved a novel mechanism of inactivating both copies of p53 to

enhance tumour progression.

However, the mechanism governing p21-dependent regulation of p53

subcellular localisation remains to be determined. We have shown that p211-133

truncation, which lacks the NLS, can restore p53 subcellular localisation therefore

p21 may have a cytoplasmic function in the regulation of p53. Indeed in the HCT116

WT cells p21 has been shown to localise to the cytoplasm (Figure 4.1 A). In

speculation, cytoplasmic p21 could block p53 interaction with a nuclear export

protein or cytoplasmic anchor leading to p53 nuclear localisation. This would

correspond with evidence from the mouse B-cell model, showing that p53

transcriptional activity is p21 dose dependent, whereby p21 could displace p53 in a

dose dependent manner form potential cytoplasmic binding partners, allowing p53

nuclear accumulation and activation.

The loss of p21 also affected the subcellular localisation of additional targets

to p53, including CHK2 and E2F1 (Figure 4.1A), indicating that p21 may impinge

on a general localisation mechanism. The microtubule cytoskeleton and associated
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molecular motor proteins, such as dynein, contribute to the subcellular localisation of

a range of cargo proteins (Vale & Milligan, 2000; Roth et al., 2007). Interestingly,

p53 is associated with cellular microtubules and the microtubule based motor protein

dynein, and has been proposed to utilise this system to translocate from the

cytoplasm to the nucleus (Giannakakou et al., 2000). Disruption of the microtubule

network or impaired function of a microtubule associated protein, by loss of p21 may

disrupt the subcellular localisation of a subset of proteins.

In normal cells under non-stressed conditions, p53 shuttles between the

nucleus and the cytoplasm. Nuclear p53 is only detected in cells at the Gl/S

transition, and cytoplasmic p53 is associated with S-phase cells (Shaulsky et al.,

1990b). Strikingly, expression levels of p21 are highest at the Gl/S transition when

p53 is nuclear and lowest at the S-phase of cell cycle when p53 is cytoplasmic (Li et

al., 1994a). In response to stress, the shuttle is biased towards p53 nuclear

accumulation. The work presented here was carried out in asynchronous populations

of cells, where nuclear p53 was predominately located in control cells, and

cytoplasmic p53 is detected in cells lacking p21. However, future studies involving

synchronised cell populations and cell cycle analysis may show that in normal cells

p21 plays an important role in coordinating the cell cycle and p53 transcriptional

activity via its subcellular localisation.

4.3.2 Loss of p21 causes a global decrease in p53-dependent gene expression

p53-dependent gene expression was assessed using p53 specific DNA microarrays,

profiling the expression of genes involved in p53 signalling pathways. Loss of p21
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and aberrant localisation of p53 was shown to be associated with an over-all decrease

in p53-dependent gene expression in the HCT116 cancer cell model, the NHF model

and the transgenic mouse model. The decrease in gene expression was not as

pronounced in HCT116 p21 -/- cells as compared to the other models, however this

maybe expected as HCT116 p21 -/- cells stably support inactivation of the p21 gene

and may have adapted alternative strategies to ensure cell survival. Indeed, NHF

cells treated with p21 siRNA showed an 86% decrease in number of genes expressed

compared to control siRNA treated cells, except for HSP90, whose expression was

increased 2-fold compared to control cells. The HSP90 gene encodes a molecular

chaperone, and has been implicated as a facilitator of tumour progression by

stabilising conformations of mutant proteins (Zhang & Burrows, 2004; Calderwood

et al., 2006). To speculate, initial loss of p21 may constitute as a micro-

environmental stress, similar to the unfolded protein response activated by a

potentially toxic accumulation of mis-folded proteins in the endoplasmic reticulum

(Feldman et al., 2005). This response involves a reduction in the global rates of

transcription and protein synthesis, but causes a robust increase in molecular

chaperones, which assist in protein re-folding and undesirably, stabilising

conformations of mutant proteins (Feldman et al., 2005; Calderwood et al., 2006).

Therefore elevation of HSP90 protein levels may provide a mechanism akin to

natural selection in overcoming normal cell defences, to oncogenic transformation

(Zhang & Burrows, 2004; Calderwood et al., 2006). siRNA mediated gene

knockdown of p21 in NHF cells is only transient, where as loss of p21 in HCT116

and mouse B-cells is due to stable inactivation of the p21 gene. Therefore cells from
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these model systems have previously adapted to loss of p21, and HSP90 expression

levels have reduced accordingly.

A remarkable finding was illustrated by the transgenic mouse model, where

p53-dependent gene expression was decreased by the loss of one allele of p21, and

then further decreased by loss of both p21 alleles (Figure 4.17). This data indicates

that p53 activity is fine-tuned to levels of p21 and provides insight into the sensitivity

of this feedback loop, and is an indication of its cellular importance. In comparison,

the MDM2-p53 negative feedback loop, consisting of p53 transactivation ofMDM2

and MDM2-mediated ubiquitination and degradation of p53, is predicted to set up an

oscillator with p53 and MDM2 levels increasing and decreasing with time and out of

phase in the cell (Lev Bar-Or et al., 2000). Similarly, oscillations of p21 levels, as

observed during the cell cycle (Li et al., 1994a), may be sufficient to regulate p53

activity. Cell and mouse models with p21 gene expression under inducible control

will prove invaluable in further dissecting this novel feedback loop in regards to p21

levels (See chapter 6 for future directions).

Previously, Lohr et al. (2003) reported that increased expression of p21 is

necessary for negative regulation of gene expression by p53. Genes down regulated

by p53 include BRCA1 (MacLachlan et al., 2000), CDC25C (Badie et al., 2000),

Cyclin B1 (Badie et al., 2000), and Survivin (Hoffman et al., 2002). Lohr et al.

(2003) speculate that p53 reduces the expression of certain genes indirectly by

enhancing the expression of p21. Elevated p21 protein levels would cause

inactivation of cyclin-dependent kinases, leading to hypo-phosphorylation of Rb and

subsequent conversion of E2F transcriptional activators to transcriptional repressors.

Taken in context with the data presented in this chapter, p21 may regulate both
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positive and negative p53-dependent transcription, enabling p21 to fully orchestrate

the p53 response to cellular damage.

4.3.3 p21 and apoptosis

The Microarray analysis of HCT116 and NHF cells showed that two genes which

consistently diverged from the general trend were BAK1 and DAPK-1. Both genes

have roles in promoting cell death. BAK1 is similar to BAX, in that in response to

pro-apoptotic stimuli, BAK1 effects the permeabilisation of the mitochondrial

membrane, allowing proteins in the mitochondrial inter-membrane space, such as

cytochrome c, to escape into the cytosol where they can induce caspase activation

and cell death (Antignani & Youle, 2006). DAPK-1 has roles in both, apoptotic and

autophagic cell death, whereby over-expression of DAPK-1 leads to pronounced

death associated cellular changes including membrane blebbing, cell rounding,

detachment from extracellular matrix, and the formation of autophagic vesicles

(Bialik & Kimchi, 2006). The mechanisms of DAPK-1 mediated cell death are yet to

be determined, although DAPK-1 catalytic activity is required (Bialik & Kimchi,

2006), and has been associated with p53-dependent apoptotic cell death (Raveh et al.

2001).

An emerging function of p21 is as a modulator of apoptosis (Gartel & Tyner,

2002). Deciphering the role of p21 in apoptosis is complicated as a number of studies

have shown that p21 can assume both pro- and anti-apoptotic functions depending on

cell type and cellular context (Liu et al., 2003). Overall, the evidence in favour of an
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anti-apoptotic role for p21 outweighs the evidence suggesting p21 has apoptosis

promoting abilities.

Wu et al. (2002) showed that p21 can induce apoptosis, by over-expressing

p21 in human ovarian cancer cells with mutant p53. p21 induced apoptosis caused

no detectable activation of BAX and BCL-2 genes, while significant differential

expression of those genes preceded p53-induced apoptosis, suggesting that p21

induces apoptosis through a distinct apoptosis pathway. Similar results were obtained

in a papillary serous endometrial carcinoma cell line (Ramondetta et al., 2000) and

human cervical cancer cells (Taso et al., 1999).

p21 can also act as an inhibitor of apoptosis in a variety of systems,

dramatically limiting the effectiveness of anticancer agents (Gartel & Tyner, 2002).

The mechanism of how a cell chooses between apoptosis and p21-dependent cell

cycle arrest after DNA damage is not yet defined, but often high levels of p21

expression mediate cell cycle arrest and protect from apoptosis. For example,

Martinez et al. (2002) show that doxorubicin treatment of human prostate cancer

with wild-type p53, strongly induced p53 expression while p21 expression was

increased at low doses and decreased at high doses. Doxorubicin induced apoptosis

occurred in parallel with p21 down-regulation, and knock-down of p21 using anti-

sense oligonucleotides efficiently sensitised prostate cells to doxorubicin (Martinez

et al., 2002). This indicates that p21 may regulate apoptosis, by inhibiting apoptosis

when a low degree ofDNA damage has occurred, allowing cells to repair the damage.

Upon a high degree of cellular damage, a decrease in p21 expression may induce

apoptosis in an attempt to eliminate the damaged cells. Similarly, differential

apoptotic effects were observed in the human HCT116 cell line expressing wild-type
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p53, following treatment with the anti-cancer drug camptothecin (Han et al., 2002).

Camptothecin induces topoisomerase I mediated DNA damage. Low doses of

camptothecin induced apoptosis in HCT116 p21 -/- cells compared to growth arrest in

WT cells. High doses of same drug induced apoptosis independent of p21 status

(Han et al. 2002). This suggests that p21 is capable of blocking apoptosis and

inducing growth arrest in cells with a low degree of damage. In general, p21 status of

cancer cells may be important to consider prior to treatment. RKO human colorectal

carcinoma cells express low levels of p21 and normally undergo apoptosis in

response to prostaglandin A2 (Gorospe et al., 1996a). In contrast NIH 3T3 cells

(Hitomi et al., 1996) and MCF-7 cells (Gorospe et al., 1996a) express high levels of

p21 and undergo G1 arrest in response to prostaglandin A2. Hence, levels of p21 may

be a central factor in determining the cellular response to different drugs.

The molecular mechanisms by which p21 can prevent cells from undergoing

apoptosis remain to be elucidated. p21 is capable of interacting with several proteins

which may contribute to its anti-apoptotic functions. These include binding to

procaspase-3 and blocking its processing and activation (Suzuki et al., 1998; Tang et

al., 2006a), inhibition of key apoptosis regulatory proteins such as stress activated

protein kinase (SAPK) (Shim et al., 1996), and apoptosis signal-regulating kinase 1

(ASK1) (Dotto, 2002), and inhibition of apoptosis-stimulating transcription factors,

Myc, E2F1 (Roninson, 2002) and as we have presented here, p53. Javelaud &

Besanqon (2002) have presented an alternative mechanism, where inactivation of p21

in HCT116 cells exhibits inhibitory effects on apoptosis induced by enhancement of

p53 expression at the post-transcriptional level. This correlated with an elevated

expression of pl4/19ARF, an inhibitor of the ubiquitin ligase activity of MDM2.
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This suggests that enhanced sensitivity of HCT116 p21 -/- cells to anti-tumour agents

may result from a stabilisation and activation of wild-type p53, leading to enhanced

BAX expression and apoptosis. The results presented by Javelaud & Besamjon

(2002) are in stark contrast to our own, where we show that loss of p21 in HCT116

cells causes transcriptional inactivation of p53 and low expression levels of BAX.

Importantly, we show that reconstitution of p21 into HCT116 p21 -/- cells restores

p53 transcriptional activity and BAX levels (Figure 3.10). The study by Javelaud &

Besan9on (2002) is also contradictory of studies where loss of p21 sensitised cells to

apoptosis in a p53-null background (Gorospe et al., 1996b; Han et al., 2002; Marches

et al., 1999; Mahyar-Roemer & Roemer, 2001; Wang et al., 1999).

The microarray analysis of HCT116 and NHF cells presented here, implicates

the pro-apoptotic genes BAK1 and DAPK-1 in p21-mediated inhibition of apoptosis.

In HCT116 cells loss of p21 caused an increased expression of DAPK-1 in non-

irradiated cells (Figure 4.6), however immunoblot analysis could not detect DAPK-1

protein in p21 -/- cells (Figure 4.1). This may indicate that p21 -/- cells have adapted a

survival mechanism to compensate for high DAPK-1 expression levels by preventing

DAPK-1 protein translation. In response to irradiation in HCT116 cells (Figure 4.6)

and in NHF cells (Figure 4.11), BAK1 expression is increased compared to control

cells. HCT116 p21 -/- cells have also been shown to undergo extensive cytochrome c

release, mitochondrial membrane depolarisation, and caspase activation in response

to damage (Le et al., 2005). These observations taken together indicate that p21

could mediate sensitivity of the mitochondria to pro-apoptotic signals by regulating

BAK1 expression. Therefore loss of p21 may sensitise cells to DNA-damage induced

apoptosis due to increased expression of the pro-apoptotic gene BAK1. The pro-
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apoptotic role of p21 inactivation could result in increased apoptosis, and may

partially explain, given that loss of p21 causes inactivation of p53, why p21-null

mice are less tumour prone than p53-null mice (Martin-Caballero et al., 2001) and

why mutation of p21 is rarely observed in human tumours (Shiohara et al., 1994).

In this chapter, exciting and novel data has been presented indicating that loss

of p21 mediates transcriptional inactivation of p53 via aberrant subcellular

localisation of p53 from the nucleus to the cytoplasm; has a global effect on p53-

target gene expression; and that p53-dependent gene expression is gene dose-

dependent on p21.

- 151 -



WT p21 -/-

F1 F2 F3 F4 F1 F2 F3 F4

B

/«

p53

p53 P-Ser15
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Figure 4.1 Loss of p21 is associated with mislocalisation of p53. (A) Subcellular fractionation
of HCT116 p21 -/- cells show defects in p53 localisation. Proteins from HCT116 WT and p21 -/-
cells were extracted according to their subcellular localisation: Fl- Cytosol; F2-

Membrane/organelle; F3- Nucleus; F4- Cytoskeleton (ProteoExtract® Subcellular Proteome
Extraction Kit (S-PEK), Calbiochem®). Proteins from each fraction were resolved by SDS-PAGE
and analysed by immunoblotting for p53; p53 serine-15 phosphorylation; MDM2; CHK2; CHK1;
E2F1; DAPK1 and p21. 10 pg protein was loaded per lane. (B) Protein expression patterns from
each fraction are clearly distinct. Proteins from each fraction were resolved by SDS-PAGE and

analysed by coomassie staining. 5 pg protein was loaded per lane. (C) In the absence of p21, p53
is predominantly cytoplasmic. HCT116 WT and p21 -/- cells were fractionated by the method of
Gilbert and Allan (2001). E - total cellular extract; P- insoluble nuclear fraction; SN- soluble

nuclear fraction. p53 protein levels were detected by immunoblotting. 10 pg protein was loaded

per lane.
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Figure 4.2 p53 nuclear localisation is p21-dependent. (A) Stable reintroduction of p21 into

p21 -/- cells is sufficient to restore p53 subcellular localisation. Proteins from HCT116 WT, p21-
/- and Clone 2 cells were extracted according to their subcellular localisation: Fl- Cytosol; F2-

Membrane/organelle; F3- Nucleus; F4- Cytoskeleton (S-PEK, Calbiochem®). Proteins from
each fraction were resolved by SDS-PAGE and analysed by immunoblotting for p53; CHK2;
and p21. 10 pg protein was loaded per lane. (B) The C-terminus of p21 is not required for
recovery of p53 localisation. Proteins from HCT116 WT, p21 -/- and p21 -/- cells stably

expressing either full length p21 (p21) or p21 1-133 truncation (1-133), were extracted

according to their subcellular localisation, as before. Proteins from the Fl and the F3 fractions
were separated by SDS-PAGE and analysed by immunoblotting for p53, E2F1, and p21. 10 pg

protein was loaded per lane.
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Figure 4.3 Mislocalised p53 is not unfolded in the absence of p21. (A) Loss of p2l is
associated with loss of damaged induced p53 ubiquitination and accumulation of lower

molecular-weight adducts. HCTl 16 WT and p21 -/- cells were irradiated at 7 Gy and harvested
over the indicated time course. Whole cell urea lysates were analysed by immunoblotting for

p53 with anti-p53 (DOl). (3-actin was used as a loading control. 10 pg protein was loaded per

lane. (B) and (C) Antibody-capture ELISA using p53 conformation sensitive antibodies shows

the extent of p53 unfolding in cells. Cell lysates were prepared as described in materials and

methods (2.16). p53 proteins in lysates were captured by monoclonal antibodies DOI, D012,

PAbl620 and PAb240 coated onto ELISA wells, followed by polyclonal antibody CM1

incubation and ECL® detection. The data are represented as luminescence in relative light units

(RLU) as a function of the monoclonal antibody used to capture p53. (C) shows a comparison

between PAbl620 which detects folded p53 and PAb240 which detects unfolded p53.
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IR (7Gy, 4hrs)

WT p21 -/- WT p21 -/-

Figure 4.4 p53 localisation is not DNA damage-dependent. HCT116 WT and p21 -/- cells
were irradiated with 7 Gy and incubated for 4 hr, before all proteins were extracted according to

their subcellular localisation: Fl- Cytosol; F2- Membrane/organelle; F3- Nucleus; F4-

Cytoskeleton (S-PEK, Calbiochem®). Proteins from each fraction were resolved by SDS-
PAGE and analysed by immunoblotting for p53 and CHK2. 10 pg protein was loaded per lane.
Coomassie staining (5 pg protein was loaded per lane) confirmed that protein expression
patterns from each fraction are distinct.
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Figure 4.5 Analysis of gene expression alterations in the absence of p21. HCT116 WT, p21 -/-
and as a negative control p53-/- cells were irradiated with 7 Gy and incubated for 4 hr to activate

expression of p53-target genes. DNA microarrays, profiling the gene expression of 113 genes

related to p53-mediated signal transduction (OligoGEArray® System, SuperArray), were used (as
detailed in materials and methods, 2.17) to indicate the extent of p53 activation in the absence of

p21 and in response to IR. Normalisation genes are indicated by red arrows. The genes analysed
further are indicated by red boxes.
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Figure 4.6 Graphical representation of microarray results of selected genes indicates
aberrant basal and IR-induced gene expression in the absence of p21. Genes selected to be

analysed in more detail included: genes representing the overall trend (see figure 4.7) including
CDK4, JUN and STAT1; genes divergent from the overall trend including BAK1 and DAPK1\

genes of interest due to previous data including ATM and MDM2\ and as a positive control
HSP90. mRNA levels are indicated by relative units (RU) and were determined by fluorescence

intensity normalised to background intensity ofmicroarray membranes.
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Figure4.7Geneexpressionprofilesshowanoveralldecreaseinp53targetgeneexpressionintheabsenceofp21.(A)Basalgeneexpressionof HCT116p21-/-cellsislowerthanbothHCT116WTandp53-/-cells.Colourswereassignedaccordingtothevalueofthegeneinallsamples,whereby expressionofeachgeneisnotcomparabletoothergenesinthesamesample,butiscomparabletothesamegeneindifferentsamples.(B)IR-induced geneexpressionisdecreasedintheabsenceofp21.MicroarrayswereanalysedusingtheclustergramdataanalysistooloftheGEArrayExpression AnalysisSuiteprogramme(SuperArray).Colourswereassignedaccordingtoallthevaluesinallthesamples,wherebyexpressionofeachgeneis relativetoanotherinthesample,andacrosssamples.Thecolourrepresentsthemagnitudeofgeneexpressiononascaleofgreen(lowest)tored (highest).



HCT116

WT WT + IR p21 -/- p21 -/- + IR p53-/- p53-/- + IR
Symbol

Apoptosis
apaf1 X

bak1 X X X X X X

bax X X X X

bcl2 X X X X X X

bid X

dapk1 X X

fadd X X X X X

hdac1 X

tp53 X X X X X

Cell Cycle
atm X X X X

brca1 X X X X X

brca2 X X

ccng2 X X X X X

cdk4 X X

cdk7 X X X X X X

cdkn1a X X X

cdkn2a X X X X X X

chek1 X X

chek2 X

e2f1 X X X X X

frap1 X X

hk2 X X X X X

pten X X X X

rb1 X X X X X

sesn3 X X X X X

stat1 X X X X X

tp53 X X X X X

Cell Growth, pro iteration and differentiation
bah X X

btg2 X X X X X

cia01 X

esr1 X

jun X X

klf6 X X

mdm2 X X X X X

myod1 X X X X X

pttg1 X X X X X

Control
actb X X X X X X

hsp90 X X X X X X

rps27a X X

x - Gene expression detected by visual assessment

Table 4.1 Genes expressed in HCT116 isogenic cell panel in response to IR



HCT116

p21-/-Vs WT p53 -/- Vs WT WT + IR Vs WT p21 -/- + IR Vs p21-/- p53-/- + IR Vs p53-/- p21 -/- + IR Vs WT + IR
Symbol

Apoptosis
apaf1 ▲ 0 •0 0 ■ A o* ■

bak1 +2.03 + 1.80
bax • ■ • ■

bcl2 -3.57 -3.45
bid AO •0 0 ■ A o» ■

dapk1 +4.12 •0 0 ■ o» ■

fadd -1.64 -1.56 ■ ■

hdac1 AO •0 0 ■ A o* ■

Cell Cycle
atm A -1.85 ■ A ■

brca1 -1.81 ■ ■

brca2 A • ■ A o» ■

ccng2 -1.54 ■ -1.75 ■

cdk4 A • + 1.81 ■ A o» ■

cdk7 -1.92 -1.64

cdkn1a A + 1.78 ■ A o ■

cdkn2a -1.59 -1.67 -1.61

chek1 A • +2.33 ■ A o* ■

chek2 AO • 0 ■ A o» ■

e2f1 ■ ■

frap1 A • ■ A o* ■

hk2 -2.44 ■ ■

pten -2.63 • ■ • ■

rb1 ■ ■

sesn3 ■ ■

stat1 -2.00 -1.61 ■ ■

tp53 ■ ■

Cell Growth, pr >liferation and differeritiation
bah A • + 1.89 ■ A o* ■

btg2 -1.54 ■ ■

cia01 AO •0 0 ■ A 0* ■

esr1 AO •0 0 ■ A o« ■

jun A • ■ A o« ■

klf6 A • ■ A o* ■

mdm2 -1.56 ■ ■

myod1 -2.63 -2.00 ■ ■

pttg1 -1.59 ■ ■

Control
actb 2.33 1.70
hsp90
rps27a -2.56 -2.27 ■ ■

▲ Absent in p21 -/- • Absent in p53-/- 0 Absent in WT ■ Absent in p21 -/- + IR o Absent in p53-/- + IR

Table 4.2 Ratio of gene expression between HCT116 isogenic cells in response to IR
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Figure 4.8 In normal human fibroblast cells basal levels of BAX protein are reduced by

p21 siRNA mediated gene knockdown. Normal human fibroblast (NHF) cells were transfected
with either 1 pg p21 siRNA or control (Cnt) siRNA and harvested after 48 hr. p21, p53, p53
serine-15 phosphorylation, and BAX were detected by immunoblotting. P-actin was included as

a loading control. 10 pg protein was loaded per lane.

p21 Cnt
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Figure 4.9 p53 subcellular localisation is p21-dependent in NHF cells. NHF cells were

transfected with either 1 pg p21 siRNA or control siRNA and after 48 hr, all proteins were

extracted according to their subcellular localisation: Fl- Cytosol; F2- Membrane/organelle;
F3- Nucleus; F4- Cytoskeleton (S-PEK, Calbiochem®). Proteins from each fraction were

resolved by SDS-PAGE and analysed by immunoblotting for p53, MDM2, CHK1, E2F1, and

p21. 10 pg protein was loaded per lane. Coomassie staining confirmed that protein expression

patterns from each fraction are distinct. 5 pg protein was loaded per lane.
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Figure 4.10 Reduction of p21 protein levels in NHF cells causes defects in basal and IR

induced p53-dependent gene expression. NHF cells were transfected with either 1 pg p2!

siRNA or control siRNA. After 48 hr cells were irradiated at 5Gy and incubated for a further
4 hr prior to harvesting. DNA microarrays, profiling the gene expression of 113 genes related

to p53-mediated signal transduction pathways (OligoGEArray® System, SuperArray), were

used (as detailed in materials and methods, 2.17) to indicate the extent of p53 activation in the

absence of p21 and in response to IR. Normalisation genes are indicated by red arrows. The

genes analysed further are indicated by red boxes.
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Figure 4.11 Microarray analysis of individual genes indicates aberrant basal and IR-
induced gene expression in the absence of p21 in NHF cells. Genes selected to be analysed
in more detail included: genes representing the overall trend (see figure 4.13) including CDK4

and JUN; genes divergent from the overall trend including BAK1 and DAPK1\ genes of interest

due to previous data including A TM, BAX and MDM2\ and as a positive control HSP90. mRNA

levels are indicated by relative units (RU) and were determined by fluorescence intensity
normalised to background intensity ofmicroarray membranes.
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Figure 4.12 Graphical representation of NHF microarray results shows a general reduction
of gene expression in the absence of p21 and partial recovery in response to IR. (A) Bar

graph comparing gene expression levels of control siRNA- to p21 siRNA- treated NHF cells. (B)
Bar graph comparing gene expression levels of p21 siRNA- to irradiated p21 siRNA- treated
NHF cells. (C) Bar graph comparing gene expression levels of irradiated control siRNA- treated
cells to irradiated p21 siRNA treated- NHF cells. mRNA levels are indicated by relative units

(RU) and were determined by fluorescence intensity normalised to background intensity of

microarray membranes.
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NHF

Control sIRNA Control siRNA + IR p21 siRNA p21 siRNA + IRSymbol

Apoptosis
aatf X X X
apaf1 X X X
bag1 X X

bak1 X X X X

bax X X X

bcl2 X X

bcl2a1 X X X

bid X X X

bnip3 X

casp2 X

cradd X

dapk1 X X X X

daxx X X X

fadd X X X

hdac1 X X X

lrdd X
p53aip1 X X X

pcbp4 X X X

ppp1r13l X
siah1 X X

sirt1 X
snca X
tnf X

tnfrsf10b X X X
tp73 X X X
tp73l X
traf2 X

Cell Cycle
atm X X X
atr X X
brca1 X X X
brca2 X X
ccng2 X
ccnh X
cdc25a X X
cdk4 X X X

cdk7 X X X X

cdkn1a X X X
cdkn2a X X X

chek1 X X X

chek2 X X X
e2f1 X X X X

e2f3 X X
frap1 X X X

gas1 X X

gtse1 X X X

hk2 X X X

myc X X X
plk1 X
ppm1d X X X
pten X X X

rb1 X X X

sesn1 X

sesn2 X X X

smarcb1 X X

stat1 X X X X
tp53 X X X

tsc1 X

tsc2 X

Cell Growth, proll eration and different! ition
bah X X X
bap1 X X X
btg2 X X X
cdc25c X X
cia01 X X X
cyr61 X X

klf6 X X X
esr1 X X X
il6 X

jun X X X

mdm2 X X X
my0d1 X
ndrg1 X
pml X
pmp22 X
pttg1 X X X
shc1 X

Control

hsp90 X X X X
rps27a X X X X

x - Gene expression detected by visual assessment

Table 4.3 Genes expressed in NHF cells in response to p21 siRNA and 1R



NHF

p21 siRNA Vs Cnt siRNA Cnt siRNA + IR Vs Cnt siRNA p21 siRNA + IR Vs p21 siRNA p21 siRNA +IR Vs Cnt siRNA + IR
Symbol

Apoptosis
AATF A +4.99 A -9.09

APAF1 A +5.91 A -6.67

BAG1 A +1.86 A -10.0
BAK1 +1.76 -2.44 -1.79

BAX A +2.85 A -3.57
BCL2 A A

BCL2A1 A +1.61 A -5.0

BID A +2.01 A -4.35

BNIP3 A A o

CASP2 A +3.52 A

CRADD A -14.29 A

DAPK1 -10.0 +1.73 ♦11.85

DAXX A A -7.14

FADD A A -2.44

HDAC1 A ♦1.50 A -4.55

LRDD A A o

P53AIP1 A A •4.17
PCBP4 A A -12.5
PPP1R13L A A o

SIAH1 -25.0 0 o

SIRT1 A A

SNCA A A

TNF A -2.27 A o

TNFRSF10B A A -2.70
TP73 A A -16.67

TP73L A A

TRAF2 A 0 A o

Cell Cycle
ATM A +3.04 A -2.56

ATR A A o

BRCA1 A A

BRCA2 A > A 0

CCNG2 A A 0

CCNH A A o

CDC25A A A o

CDK4 A +1.83 A -2.44

CDK7 -2.32 +2.28

CDKN1A A +1.56 A -4.55

CDKN2A A A

CHEK1 A A -2.0

CHEK2 A A -2.50

E2F1 -11.11 +9.76

E2F3 A ■ A 0

FRAP1 A A -2.27

GAS1 A +4.08 A -3.45

GTSE1 A +1.56 A -6.67

HK2 A A -4.55

MYC A A -2.70
PLK1 A A

PPM1D A A -2.70
PTEN A A -1.56

RB1 A A

SESN1 A +5.98 A o

SESN2 A A -10.0

SMARCB1 A A -12.5

STAT1 -100.0 +101.38

TP53 A A

TSC1 A A

TSC2 A A

Cell Growth, proli e ration and differentiation
BAH A A -2.56

BAP1 A +3.72 A -11.1

BTG2 A +1.83 A -3.45

CDC25C A ■ A o

CIA01 A A

CYR61 -16.67 ■

KLF6 A A -4.35

ESR1 A A -7.69

IL6 A ■ A

JUN A A -4.0
MDM2 A A -2.08
MY0D1 A ■ A o

NDRG1 A A o

PML A +1.88 A

PMP22 A +1.60 A o

PTTG1 A A -1.75
SHC1 A 0 A o

Control
HSP90 +1.76

RPS27A

A Absent in p21 siRNA 0 Absent in Control siRNA ■ Absent in Control siRNA + IR o Absent in p21 siRNA + IR

Table 4.4 Ratio of gene expression between NHF cells treated with either control or p21
siRNA and with or without IR
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Figure 4.14 B-cells extracted from p21 -/- mice contain mislocalised p53 compared to WT

counterparts. B-cells were extracted from WT and p21 -/- mice (as described in materials and
methods 2.10), and incubated for 24 hr. Proteins were extracted according to their subcellular
localisation: Fl- Cytosol; F2- Membrane/organelle; F3- Nucleus; F4- Cytoskeleton (S-PEK,
Calbiochem®). Proteins from each fraction were resolved by SDS-PAGE and analysed by
immunoblotting for p53 and p21. 10 pg protein was loaded per lane.

- 173 -



WT

Pycard

Hsp90

Birc5

Mdm2

Perp

t tttt

p21 +/-

D

p21 -/-

f

® o

a
□

t tttt ! tttt

Figure 4.15 Microarray analysis of B-cells extracted from WT, p21+/- and p21 -/- mice

show that p53-dependent gene expression is affected by p21 gene dosage. B-cells were

extracted from WT, p21+/- and p21 -/- mice (as described in materials and methods 2.10), and
incubated for 24 hr. DNA microarrays, profiling the gene expression of 113 genes related to

p53-mediated signal transduction pathways (OligoGEArray® System, SuperArray), were used

(as detailed in materials and methods, 2.17) to indicate the extent of p53 activation in the

absence of p21. Normalisation genes are indicated by red arrows. The genes analysed further
are indicated by red boxes.
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Figure 4.16 Graphical representation of microarray results of selected genes indicates p21

gene dosage effects. Genes selected to be analysed in more detail included: genes representing
the overall trend (see figure 4.18) including, Bax, Caspase-2, Jun, Mdm2 and Perp\ genes

divergent from the overall trend Bir5 and Pycard\ and as a positive control HSP90. mRNA
levels are indicated by relative units (RU) and were determined by fluorescence intensity
normalised to background intensity of microarray membranes.
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Figure 4.17 p53-dependent gene expression is affected by p21 gene dosage. (A) Bar graph

representation of microarray results comparing gene expression of B-cells extracted from WT,

p21+/- and p21 -/- mice. (B) Line graph representation of microarray results comparing gene

expression of B-cells extracted from WT, p21+/- and p21 -/- mice. mRNA levels are indicated by
relative units (RU) and were determined by fluorescence intensity normalised to background

intensity ofmicroarray membranes.

- 177-



Magnitude of gene expression

inin avg max

Figure 4.18 Gene expression profiles of B-cells extracted from WT, p21+/- and p21 -/-
mice show an overall decrease in basal p53 target gene expression in the absence of p21.

Microarrays were analysed using the clustergram data analysis tool of the GEArray Expression

Analysis Suite programme (SuperArray). The colour coding was assigned according to all the
values of all samples, whereby expression of each gene is relative to another, as well as across

genotypes. The colour represents the magnitude of gene expression on a scale of green (lowest)
to red (highest).
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Mouse B-Cells

WT p21 +/- p21 -/-
Symbol

Apoptosis
Apafl X X

Bak1 X X X

Bax X X X

Bbc3 X

Bcl2 X X

Bid X X X

Birc5 X X X

Bnip3 X X X

Casp2 X X

Foxo3a X

Perp X X

Pycard X X X

Rela X

Sirtl X

Tnf X

Cell Cycle
Atm X X

Atr X X

Aurkb X X

Brcal X X

Ccng2 X X

Ccnh X X X

Cdc25a X X

Cdk4 X X

Cdk7 X

Cdknla X

Chek2 X

Gadd45a X X X

Kras X X

Msh2 X X X

Pmp22 X

Reprimo X X X

Sesn2 X X

Statl X X

Cell Growth, prolife'ration and differentia ion

Btg2 X X

Cdc25c X

Ciaol X X X

Cx3cl1 X

116 X X

Jun X X X

Mdm2 X X

Myodl X

Ndrgl X X

Nf1 X X

Pttgl X

DNA Repair
Lig4 X

Rev3l X X X

Control
B2m X X X

Hsp90 X X X

Ppia X X X

Rps27a X X X

x - Gene expression detected by visual assessment

Table 4.5 Genes expressed in B-cells extracted from transgenic mice either wild-type,
heterozygous, or nullizygous for the p21 gene



Mouse B-Cells

p21+/- Vs WT p21 -/- Vs WT p21-/-Vs p21+/-
Symbol

Apoptosis
Apafl -1,62 ▲ A

Bak1 -2.86 -7.14 -2.43

Bax -16.67 -11.11

Bbc3 • A • A

Bcl2 -3.33 A A

Bid -1.79 -9.1 -5.0
Birc5

Bnip3 -14.28 -11.11

Casp2 -1.59 -14.29 -8.33

Foxo3a • A • A

Perp -4.17 A A

Pycard
Rela • A • A

Sirtl 0 A A

Tnf +5.40 A A

Cell Cycle
Atm -16.67 A A

Atr -2.63 A A

Aurkb A A

Brcal -2.08 A A

Ccng2 -7.70 A A

Ccnh -9.10 -6.67

Cdc25a • -1.81 -1.59
Cdk4 -16.67 A A

Cdk7 • A A

Cdknla • A • A

Chek2 • A • A

Gadd45a
Kras -1.89 A A

Msh2 -7.69 -5.26

Pmp22 0 A A

Reprimo -1.72
Sesn2 A A

Statl A A

Cell Growth, prolife'ration and differentiation

Btg2 A A

Cdc25c • A A

Ciaol
Cx3cl1 • A A

116 -6.67 A A

Jun -4.35 -3.7

Mdm2 -9.09 A A

Myodl • A A

Ndrgl A A

Nf1 -2.63 A A

Pttgl • A A

DNA Repair
Lig4 • A A

Rev3l -1.59 -10 -6.25

Control
B2m

Hsp90
Ppia
Rps27a

0 Absent in WT • Absent in p21+/- AAbsent in p21 -/-

Table 4.6 Ratio of gene expression in B-cells extracted from transgenic mice either wild-
type, heterozygous, or nullizygous for the p21 gene



CHAPTER 5

A GENETIC INTERACTION BETWEEN ATM AND p21

MAINTAINS p53 NUCLEAR LOCALISATION

5.1 Introduction

ATM kinase plays a central role in regulating the cellular response to DNA damage

through the phosphorylation of proteins involved in cell cycle checkpoints and DNA

repair. The ATM gene is defective in the autosomal recessive disorder Ataxia

Telangiectasia, a disease characterised by neurodegeneration, immunodeficiency,

growth retardation and cancer susceptibility. Cellular features of Ataxia

Telangiectasia include hypersensitivity to agents that cause DNA double strand

breaks and a decreased capacity to activate the Gl, S, and G2 cell cycle checkpoints

(Canman & Lim, 1998; Lavin & Shiloh, 1997).

ATM is predominantly a nuclear protein (Andegeko et al., 2005; Lakin et al.,

1996), and is recruited to sites of DNA damage, leading to activation of DNA

damage response pathways (Falck et al., 2005). Consistent with ATM's role as a

primary transducer of the DNA damage response, northern blot analysis showed that

ATM is ubiquitously expressed in all human tissues (Chen & Lee, 1996), and ATM

steady-state protein levels do not significantly vary during the cell cycle or in

response to IR (Chan et al., 1998; Larkin et al. 1996; Gately et al., 1998). The lack of

observable changes in ATM is in marked contrast to the changes in p53 and other
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proteins, which are induced in response to DNA damage. Although ATM is

constitutively expressed through out the cell cycle, ATM kinase activity increases

approximately 3-fold following cellular exposure to IR (Canman et al., 1998).

Exposure of cells to IR causes a rapid autophosphorylation of ATM on serine-1981,

and leads to dissociation of inactive ATM homodimers to generate catalytically

active monomers (Bakkenist & Kastan, 2003). ATM activation has also been shown

to depend on two additional ATM autophosphorylation sites, serine-367 and serine-

1893 (Kozlov et al. 2006), and acetylation mediated by Tip60 histone

acetyltransferase (Sun et al., 2005). Similarly, two protein phosphatases have been

implicated in ATM regulation, protein phosphatase 2A mediated dephosphorylation

inhibits ATM activation (Goodarzi et al., 2004), whereas protein phosphatase 5

interacts with ATM in a DNA damage inducible fashion and contributes to ATM

activation (Ali et al., 2004). This illustrates that ATM is highly regulated by a

repertoire of post-translational modifications, and regulation of ATM may involve

yet uncharacterised interactions with additional proteins.

Activation of ATM results in phosphorylation of a plethora of downstream

targets. Some of these proteins are direct targets of ATM, for example ATM directly

phosphorylates p53 at serine-15 (Canman et al., 1998) and histone H2AX at serine-

139 (Rogakou et al., 1998). Other proteins may be phosphorylated indirectly,

through ATM-mediated regulation of additional protein kinases, such as CHK1 and

CHK2. Recently, a large scale proteomic analysis of proteins phosphorylated in

response DNA damage on consensus sites recognised by ATM, revealed an

incredible 700 human proteins are potentially targeted by ATM (Matsuoka et al.,

2007).
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An important target of ATM is p53, and phosphorylation of p53 at serine-15

is frequently used as an indicator of ATM kinase activity. ATM phosphorylates p53

directly at serine-15 in response to IR (Canman et al., 1998; Banin et al., 1998;

Sciliciano et al., 1997). This contributes primarily to enhancing the activity of p53 as

a transcription factor (Ashcroft et al. 1999; Dumaz & Meek, 1999). ATM also

regulates the phosphorylation of p53 at serine-20, by activating an intermediate

serine/threonine protein kinase, CHK2. CHK2 is phosphorylated by ATM at

threonine-68 in response to IR (Matsuoka et al., 2000). ATM and CHK2 therefore

cooperate to ensure optimal stabilisation and activation of p53 by reducing the

interaction of p53 with MDM2, as MDM2 docks to the N-terminal region of p53

(amino acids 18-23) and targets it for proteasome-mediated degradation (Haupt et al.,

1997; Kubbutat et al., 1997). ATM-dependent phosphorylation of MDM2 at serine-

395 (Khosravi et al. 1999) may also contribute to p53 stabilisation by decreasing the

ability of MDM2 to shuttle p53 from the nucleus to the cytoplasm (Maya et al.,

2001). In addition, phosphorylation of p53 at serine-15 has been shown to recruit the

transcriptional co-activator p300 and to stabilise the p53/p300 complex (Dumaz &

Meek, 1999). p300 acetylates p53 at lysine-373 and lysine-382, activating p53-

sequence specific DNA binding. p300 and MDM2 bind to overlapping sites in the N-

terminus of p53, therefore phosphorylation of this region may regulate the activity of

p53 by influencing the steady state binding of these molecules (Lakin & Jackson,

1999; Dornan & Hupp, 2000). Hence, ATM-mediated activation and stabilisation of

p53 protein is achieved by several different ATM-dependent mechanisms, and the

existence of additional ATM targets in this pathway is not unlikely.
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Specific inhibition of ATM by a small molecule compound would enable

further dissection of the ATM signalling pathway. ATM is a member of the

phosphatidylinositol-3-kinase like kinase (PIKK) family of serine/threonine protein

kinases (Shiloh, 2003). The mammalian members of this family include, ATM, ATR,

hSMG-1, mTOR, and DNA-PK. The PIKK protein kinases are conserved from yeast

to mammals, and respond to various stresses by phosphorylation of substrates in the

appropriate pathways (Abraham, 2004a). All members of the PIKK family are

classically inhibited by two small molecule inhibitors, wortmannin and caffeine

(Sarkaria et al. 1998; Sarkaria et al., 1999).

Wortmannin (Figure 5.1A) is a sterol-like fungal metabolite, which competes

with ATP for binding to the kinase domain. Once inserted into the binding cleft,

wortmannin undergoes nucleophilic attack by a conserved lysine residue in the

catalytic domain of the PIKK, resulting in the formation of a covalent bond

(Wymann et al. 1996; Price & Youmell, 1996). Wortmannin is therefore a potent

irreversible inhibitor of ATM (IC50 150 nM), DNA-PK (IC50 16 nM), and hSMG-1

(IC50 80 nM), and to a lesser extent ATR (IC50 1.8 pM) (Sarkaria et al. 1998).

Caffeine (Figure 5.IB) is a purine analogue, and competes with ATP to inhibit the

phosphotransferase activities of PIKKs. Caffeine inhibits the protein kinase activities

of ATM, ATR, hSMG-1, and mTOR with IC50 values ranging from 0.2 to 1 mM,

although DNA-PK activity seemed to be relatively resistant to caffeine (IC50 10 mM)

(Sarkaria et al., 1999; Yamashita A. et al., 2001). Wortmannin and caffeine have

previously been used at the cellular and molecular level to study the PIKK family.

However interpretation of these results has proved difficult due to the non-specific

nature of these drugs.
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Identification and characterisation of a specific inhibitor of ATM (Hickson et

al. 2004) has provided a novel molecular tool in a new era of ATM research,

including classifying the role ATM plays in HIV-1 replication (Lau et al., 2005).

Hickson et al. (2004) through screening a small molecule compound library

developed for the PIKK family identified an ATP competitive inhibitor, 2-

morpholin-4-yl-6-thianthren-l-yl-pyran-4-one (KU-55933) (Figure 5.1C) that

inhibits ATM with an IC50 of 13 nM. KU-55933 was shown to be specific with

respect to other members of the PIKK family. The cellular activity of KU-55933 was

illustrated in the human oesteosarcoma cell line, U20S. KU-55933 had a dose

dependent effect, inhibiting ATM-dependent phosphorylation of p53 at serine-15

with an estimated cellular IC50 of 300 nM. However this has not been shown in other

cell lines which may exhibit varying sensitivity to the drug.

In this chapter, KU-55933 was utilised as a specific and cellularly active

ATM inhibitor to elucidate the role ofATM in p21-dependent regulation of p53.

5.2 Results

5.2.1 Elevated phosphorylation of p53 at serine-15 is abated by specific

inhibition of ATM

To determine the effectiveness of KU-55933 as a specific ATM inhibitor in the

HCT116 cell line, HCT116 WT cells were treated with increasing concentrations of

KU-55933, irradiated at 7 Gy and harvested after 4 hours (Figure 5.2). The

phosphorylation status of p53 at serine-15 and CHK2 at threonine-68 were used as

- 186-



markers of ATM activity. KU-55933 had a dose dependent effect, inhibiting ATM-

dependent phosphorylation of p53 at serine-15 and CHK2 at threonine-68 with an

estimated cellular IC50 of 300 nM and 100 nM, respectively. These values are

comparable to those found for U20S cells (Hickson et al. 2004). KU-55933 also had

a dose dependent effect on phosphorylation of ATM at serine-1981 (Figure 5.2),

which confirms that phosphorylation of ATM at serine-1981 in response to IR is

ATM-dependent. CHK2 is a very stable protein and has a half-life longer than 6

hours (Bartek et al., 2001), consistently CFIK2 protein levels remained constant with

increasing doses of KU-55933. In contrast p53 is a relatively unstable protein with a

half-life of approximately 30 minutes (Figure 3.2A). Phosphorylation of p53 at

serine-15 is associated with stabilisation of p53 protein (Siliciano et al., 1997).

Interestingly, inhibition of ATM did not cause the expected decrease in p53 levels

associated with dephosphorylation of p53, indicating that KU-55933 mediated ATM

inhibition may uncouple p53 phosphorylation and protein levels. This data indicates

that additional factors maybe involved in p53 stabilisation. In the F1CT116 cell line

ATM kinase activity, as analysed by immunoblotting of ATM targets in response to

IR, was effectively inhibited using KU-55933 at a concentration of 10 pM. This

concentration was therefore selected for use in further experiments to inhibit ATM

kinase activity.

As previously shown, p53 serine-15 phosphorylation levels are elevated in

HCT116 p21 -/- cells compared to WT cells (Figure 3.4A) and in response to cellular

stress are not further induced (Figure 3.5A). This indicates that p21 negatively

regulates a p53 serine-15 kinase whereby loss of p21 facilitates constitutive

activation of the kinase and enhances phosphorylation of p53 at serine-15. CFIK2
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threonine-68 phosphorylation levels are also elevated in the p21 -/- cells compared to

WT cells (Figure 3.5B), as CHK2 threonine-68 is a specific ATM target, this data

suggests that ATM may be the active p53 serine-15 kinase in p21 -/- cells. The

specific ATM inhibitor, KU-55933 was used a molecular tool to dissect the role of

ATM in p21-dependent p53 serine-15 phosphorylation. HCT116 WT and p21 -/- cells

were incubated with 10 pM KU-55933 for 0 hour, 14 hours and 24 hours (Figure 5.3).

In WT cells p53 and CHK2 protein levels were not affected by ATM inhibition and

neither p53 serine-15 nor CHK2 threonine-68 phosphorylation could be detected. In

p21 -/- cells, both p53 and p53 serine-15 phosphorylation levels were elevated

compared to WT cells. In p21 -/- cells p53 protein levels were unchanged by ATM

inhibition, whereas levels of p53 serine-15 phosphorylation were significantly

attenuated although not fully reduced, after 24 hours incubation with KU-55933

(Figure 5.3). Similarly, levels of CHK2 phosphorylation at threonine-68 were

elevated in p21 -/- cells compared to WT cells at 0 hour and 14 hours. Following 24

hours incubation with KU-55933, CHK2 threonine-68 phosphorylation levels were

diminished (Figure 5.3). Phosphorylation of p53 at serine-15 and CHK2 at threonine-

68 are specific ATM targets. In the absence of p21, phosphorylation of both proteins

at ATM targets sites are elevated, specific inhibition of ATM by KU-55933

confirmed that phosphorylation of these sites are ATM-dependent. This data suggests

that ATM activity is influenced by p21 levels and that ATM is constitutively active

in the absence of p21.

Phosphorylation of ATM at serine-1981 is associated with ATM activation,

and has been proposed to be an autophosphorylation site (Bakkenist & Kastan, 2004).

However, ATM and ATR have similar consensus phosphorylation motifs and target
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common substrates, although CHK1 at serine-317 and CHK2 at threonine-68 are

specific ATR and ATM substrates, respectively (Jazayeri et al., 2006). In response to

UV treatment and replication fork stalling, phosphorylation of ATM at serine-1981

and ATM activation is ATR-dependent, and phosphorylation of ATM at serine-1981

has been shown to be targeted by ATR in vitro (Stiff et al., 2006). Here, we show

that p21 -/- cells contain elevated levels of ATM and ATM serine-1981

phosphorylation compared to WT cells (Figure 5.3). Phosphorylation of ATM was

unaffected by ATM inhibition mediated by KU-55933 and suggests that in p21 -/-

cells phosphorylation of ATM at serine-1981 is ATM-independent (Figure 5.3).

Therefore ATM appears to be the principal p53 serine-15 kinase active in p21 -/- cells

however additional kinases may be active which are able to target ATM at serine-

1981 and p53 at serine-15 but not CHK2 at threonine-68. This data indicates that

p21-dependent regulation of p53 serine-15 phosphorylation is predominantly

mediated by ATM, but supplementary kinases, such as ATR, may be involved.

5.2.2 In vitro ATM kinase activity is unaffected by loss of p21

In the absence of p21 and exogenous cellular stress, ATM appears to be

constitutively active as a p53 serine-15 and CHK2 threonine-68 kinase. Previously,

specific inhibition of ATM in HCT116 p21 -/- cells by a specific small molecule

inhibitor was shown to reduce p53 serine-15 and CHK2 threonine-68

phosphorylation to levels comparable to WT cells (Figure 5.3). This data indicates

that in vivo ATM is more active in the absence of p21. To assess specific ATM

kinase activity in vitro, ATM was initially immunoprecipitated from the nuclear
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extracts of HCT116 WT and p21 -/- cells. To confirm that the immunoprecipitation of

ATM had been successful, samples were analysed by immunoblotting (Figure 5.4A).

WT and p21 -/- nuclear extracts contained approximately equal amounts of

immunoprecipitated ATM (Figure 5.4A). Previously, immunoblotting of WT and

p21 -/- whole cell extracts has shown that p21 -/- cells contain more ATM than WT

cells (Figure 5.3). This apparent difference in immunoblots suggests that WT and

p21 -/- cells contain the same quantity of nuclear ATM, but that p21 -/- cells may

contain more cytoplasmic ATM than WT cells.

Specific kinase activity of immunoprecipitated ATM from WT, p21 -/- and as

a positive control HeLa nuclear extracts, was measured by immunochemical

detection of a phospho-substrate (Figure 5.4B) or radiolabelling the substrate with [y-

P] ATP (Figure 5.4C). The substrates used in both experiments were N-terminal 66

amino acids of p53 fused to GST (GST-p53N66), and as a negative control GST-

p53N66 fragment with serine-15 mutated to alanine (GST-p53N66-S15A).

Immunochemical detection of GST-p53N66 with a p53 serine-15 phosphorylation

specific antibody showed no difference in p53 serine-15 phosphorylation between

WT and p21 -/- cells (Figure 5.4B). As expected the negative control, GST-p53N66-

S15A, was not detected. ATM immunoprecipitated from HeLa nuclear extract

appeared more active than that of WT cells (Figure 5.4B). Similar results were

obtained by radiolabelling the substrate with [y- P] ATP (Figure 5.4C). To fully

confirm that ATM is specifically immunoprecipitated from the cell lysates and is

responsible for the specific phosphorylation of the substrate, an additional negative

control should have been included, consisting of ATM immunoprecipitated from

- 190 -



ATM-null cells. Therefore specific ATM activity can only be presumed to be

assayed here and requires further confirmation.

In contrast to in vivo data, no difference in presumed ATM kinase activity

could be detected in vitro between WT and p21 -/- cells. Here, ATM was

immunoprecipitated from nuclear extracts as ATM is principally characterised as a

nuclear protein (Goodarzi & Lees-Miller, 2003). However, previous papers have

shown that small amounts of ATM can be localized to the cytoplasm (Lim et al.,

1998; Barlow et al., 2000; Wu et al., 2006), and our data indicates that there may be

more cytoplasmic ATM in HCT116 p21 -/- cells compared to WT cells. In

speculation, different pools of ATM within cells maybe influenced by different

factors depending on its subcellular localisation. Cytoplasmic ATM may interact

with cytoplasmic p21, which maintains ATM in a readily activated state. Therefore

in the absence of p21, p53 could be shuttled out of the nucleus and phosphorylated at

serine-15 by a small cytoplasmic pool of active ATM. This is supported by

subcellular fractionation data which showed that phosphorylated p53 at serine-15 in

the p21 -/- cells is localised to the cytoplasm and membranes/organelles, and not

detected in the nucleus (Figure 4.1).

5.2.3 Specific inhibition of ATM disrupts cellular localisation of endogenous p53

Previous data shows that loss of p21 in three model systems caused aberrant cellular

localisation of endogenous p53 (Chapter 4). In control cells p53 is strictly nuclear,

whereas loss of p21 causes p53 redistribution to both the cytoplasm and the nucleus.

To assess the role of ATM in p53 localisation, HCT116 WT and p21 -/- cells were

- 191 -



treated with 10 pM KU-55933 and incubated for 24 hours. Proteins were

differentially extracted according to their subcellular localisation, and analysed by

immunoblotting (Figure 5.5A). Surprisingly, specific inhibition of ATM in WT cells

caused mislocalisation of endogenous p53, to the same extent as direct loss of p21. In

DMSO treated WT cells (0 pM, Figure 5.5A) p53 was localised to the nucleus,

consistent with previous observations (Figure 4.1). In contrast, in WT cells treated

with KU-55933 p53 was localised to the cytoplasm, membranes/organelles and

nucleus (Figure 5.5A). Interestingly, p21 levels were also elevated in WT cells

treated with KU-55933 compared to DMSO treated WT cells, indicating that

inhibition ofATM may be stimulating an endogenous cellular stress response (Figure

5.5A). In untreated p21 -/- cells, p53 was localised to the cytoplasm,

membranes/organelles and nucleus (Figure 5.5A), which corresponds with previous

observations (Figure 4.1). Inhibition of ATM in p21 -/- cells slightly increased p53

protein levels but had no effect on p53 localisation (Figure 5.5A).

To confirm that this result is specific to ATM inhibition, HCT116 WT and

p21 -/- cells were also treated with a specific small molecule inhibitor of DNA-PK,

NU-7441 (Leahy et al., 2004). DNA-PK is a member of the PIKK family and has a

role in DNA double strand break repair (Izzard et al., 1999). WT and p21 -/- cells

were treated with 1 pM NU-7441 and incubated for 24 hours. Proteins were

differentially extracted according to their subcellular localisation, and analysed by

immunoblotting (Figure 5.5B). In WT cells p53 was localised to the nucleus, and

localisation was unaffected by DNA-PK inhibition. p21 protein levels were elevated

in response to DNA-PK inhibition, similar to ATM inhibition, and may indicate the

activation of a general stress response to small molecule inhibition of cellular targets.
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In p21 -/- cells, DNA-PK inhibition had no effect on the subcellular localisation of

p53.

Direct inhibition of ATM kinase activity in HCT116 WT cells results in the

same p53 localisation phenotype as observed in p21 -/- cells, yet has no effect on p53

localisation in p21 -/- cells. This data indicates that a genetic interaction between

ATM and p21 exists, and that both are mutually required to ensure nuclear

localisation of p53.

5.2.4 Lack of evidence that ATM and p21 physically interact

Previously, we have shown that p21 regulates ATM activity, and provided evidence

that ATM and p21 genetically interact to maintain p53 nuclear localisation. To

establish if ATM and p21 physically interact, co-immunoprecipitation assays were

carried out (Figure 5.6). As earlier results indicate that ATM and p21 may have

cytoplasmic roles, ATM and p21 were immunoprecipitated from whole cell lysates

of HCT116 WT and p21 -/- cells, as opposed to nuclear extracts. ATM

immunoprecipitated from HeLa nuclear extract has been characterised (Goodarzi &

Less-Miller, 2004), and was used here as a control for ATM immunoprecipitation.

As a negative control, an equal volume of cell lysate was replaced with NP40 lysis

buffer (Blank, Figure 5.6), and provided a control for IgG light chain contamination

in the p21 immunoblot. Immunoprecipitation samples were analysed by

immunoblotting. ATM was successfully immunoprecipitated from HeLa nuclear

extract, WT and p21 -/- whole cell lysates, however co-eluting p21 was unable to be

detected in these samples (Figure 5.6). In the parallel experiment, p21 was
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immunoprecipitated from HeLa nuclear extract, WT and p21 -/- whole cell lysates.

p21 was only immunoprecipitated from WT cells, and no co-eluting ATM could be

detected (Figure 5.6). This data indicates that ATM and p21 do not physically

interact.

5.2.5 ATM inhibition of normal human cells mimics loss of p21 by causing p53

mislocalisation

Loss of p21 in NHF cells by p21 siRNA mediated gene knockdown, revealed that

p53 nuclear localisation is p21-dependent (Figure 4.9). In HCT116 cells, through the

use of specific inhibitors, p53 nuclear localisation also depends on ATM kinase

activity (Figure 5.5A) yet not DNA-PK activity (figure 5.5B). To assess the role of

ATM, DNA-PK and MDM2 in p53 localisation in normal cells, NHF cells were

treated with DMSO (vehicle control), 10 pM KU-55933 (ATM inhibitor), 1 pM NU-

7441 (DNA-PK inhibitor) or 10 pM nutlin-3 (p53-MDM2 interaction inhibitor), and

incubated for 24 hours. Proteins were extracted according to their subcellular

localisation and analysed by immunoblotting for p53, E2F1, and p21 (Figure 5.7).

E2F1 was included here to determine if ATM inhibition has a similar effect on E2F1

localisation as loss of p21. Previously, in NHF cells treated with p21 siRNA, E2F1

was partially mislocalised to the cytoplasm, compared to control cells where E2F1

was nuclear (Figure 4.9). Here, NHF cells were treated with DMSO as a vehicle

control, and p53 and E2F1 were shown to be nuclear (Figure 5.7). Specific inhibition

of ATM by KU-55933 caused aberrant p53 subcellular localisation compared to

DMSO treated NHF cells (Figure 5.7). In DMSO treated NHF cells, p53 was
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localised to the nucleus, whereas in KU-55933 treated NHF cells p53 was localised

to both the cytoplasm and the nucleus (Figure 5.7). This is in agreement with

previous observations in p21 siRNA treated NFIF cells (Figure 4.9). Similarly,

inhibition of ATM caused E2F1 to be partially mislocalised to the cytoplasm

compared to DMSO treated control cells (Figure 5.7). These results are specific to

ATM inhibition, as specific inhibition of DNA-PK by NU-7441 had no effect on p53

or E2F1 localisation compared to DMSO treated control cells (Figure 5.7). This data

indicates that inhibition ofATM can mimic p21 siRNA mediated gene knockdown in

NHF cells, with respect to p53 and E2F1 localisation.

MDM2 is a key negative regulator of p53, which binds and targets p53 for

proteasomal degradation (Harris & Levine, 2005). Nutlin-3 fits into the hydrophobic

pocket ofMDM2 and competes with p53 binding to MDM2, therefore disrupting the

p53-MDM2 interaction and inducing expression of p53 regulated genes (Vassilev et

al., 2004). Here, inhibition of the p53-MDM2 interaction by nutlin-3 induced a large

increase in p53 protein levels (Figure 5.7). Nutlin-3 treatment also altered p53

subcellular localisation, where a majority of p53 was localised to the nucleus, and to

a lesser extent the cytoplasm and membranes/organelles. However, in the presence of

Nutlin-3 E2F1 levels were unchanged and maintained nuclear localisation (Figure

5.7). p21 levels were elevated compared to DMSO treated control cells, reflecting an

increase in p53-dependent gene expression induced by nutlin-3 treatment (Figure

5.7). The redistribution of p53 in nutlin-3 treated cells is probably due to the

substantial increase in the p53 protein level which has saturated the nucleus, and

therefore excess p53 has been deployed to additional subcellular locations. However,
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it is not inconceivable that MDM2 is involved in ATM/p21 regulation of p53

localisation, and warrants further investigation.

5.2.6 p53 subcellular localisation is MDM2-independent

To assess the role of MDM2 in p21-dependent p53 localisation, p21 and MDM2

protein levels were decreased by siRNA mediated gene knockdown. NHF cells were

treated with control siRNA, p21 siRNA, MDM2 siRNA, or a combination of p21 and

MDM2 siRNA, and the effect on p53 subcellular localisation was analysed by

immunoblotting for p53, p21, and MDM2 (Figure 5.8). In control siRNA treated

NHF cells, p53 was localised to the nucleus, and p21 and MDM2 were localised to

the cytoplasm. siRNA mediated gene knockdown of p21 caused a significant

reduction in the p21 protein level and alteration of p53 subcellular localisation

compared to control siRNA treated NHF cells. In p21 siRNA treated NHF cells p53

was mislocalised to the cytoplasm and the nucleus, compared to control siRNA

treated cells where p53 is confined to the nucleus (Figure 5.8). In contrast, MDM2

siRNA mediated gene knockdown had no effect on p53 nuclear localisation, or p21

levels. In combined siRNA mediated gene knockdown of both p21 and MDM2, loss

ofMDM2 did not rescue the aberrant p53 localisation phenotype associated with loss

of p21 (Figure 5.8). This data indicates that loss of MDM2 does not effect p53

localisation, and that MDM2 does not impinge on ATM/p21 regulation of p53

subcellular localisation.
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5.3 Discussion

5.3.1 Evidence of a genetic interaction between ATM and p21

Lymphoblasts derived form patients suffering from Ataxia Telangiectasia express a

chronically high level of p21, which suggests a genetic interaction between ATM and

p21 (Beamish et al., 1996). Ttm-deficient mice recapitulate most of the ataxia

telangiectasia phenotype, and similarly mouse embryonic fibroblasts derived from

yltm-deficient mice show elevated levels of p21 (Xu et al., 1998). Attn-deficient

mouse fibroblasts grown in culture show proliferative defects and enhanced

senescence, these effects are correlated with increased levels of p21 (Xu & Baltimore,

1996; Westpal et al., 1997). Genetic deletion of p21 in an /Lw-deficient mouse can

rescue cells from senescence and overcome growth arrest seen in Atm-null fibroblasts,

indicating that p21 is a downstream effector of ATM-mediated growth regulation and

cellular senescence (Wang et al., 1997; Xu et al., 1998). Loss of p21 in Atm-

deficient mice also delays onset of lymphoma and increases radiation sensitivity by

inducing an apoptotic response (Wang et al., 1997). However, Shen et al. (2005)

provided a detailed analysis of the tumour spectrum observed in Atm-/-p21-/- mice,

including sarcomas, myeloid, leukaemia, hepatomas and tetratomas. These tumours

were not observed in either Atm-/- or p21 -/- mice, but the tumour spectrum was

strikingly similar to those observed in p53-/- mice. In this chapter, data has been

presented indicating that p21 and ATM may cooperate to maintain p53 nuclear

localisation and subsequently p53 transcriptional activity. Therefore the observation
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that Atm-/- p21 -/- mice develop similar tumours to p53-/- mice further corroborates

our data.

ATM may act upstream of p21 by regulating basal p21 expression in a p53-

independent manner, via histone acetylation-mediated gene expression (Ju & Muller,

2003). In eukaryotic cells, DNA combines with core histones and other chromosomal

proteins to form chromatin, where the nucleosome core particle is composed of a 146

base pairs of DNA wrapped around a histone octamer (consisting of a H3-H3-H4-H4

tetramer and two H2A-H2B dimers). The nucleosomes, connected by linker DNA

and stabilised by histone HI, are further packaged into higher order structures (Luger

et al, 1997; Akey & Luger, 2003). The presence of histones on DNA limits the

access of non-histone DNA-binding proteins and thereby represses transcription.

There is a strong electrostatic interaction between the negatively charged phosphate

groups of DNA and the positively charged lysine and arginine residues of histone

proteins (Stanley et al., 2001). Therefore dynamic changes in chromatin structure can

be mediated by post-translational modifications of histones for example, acetylation

of N-terminal tails of histone core proteins neutralises the positive charge of basic

histones and weaken histone-DNA interactions thus making nucleosomes more

accessible (Kuo & Allis, 1998). Consequently, histone acetyltransferases (HAT),

which catalyse the addition of acetyl groups to lysine residues of proteins, activate

transcription (Grunstein, 1997), and histone deacetylases (HDAC), which remove

acetyl groups, facilitate a closed chromatin structure and repression of gene

expression (Laherty et al., 1997). Inhibitors of HDACs, including butyrate,

vorinostat and trichostatin A, induce growth arrest and apoptosis, and are therefore of

therapeutic value (Ocker & Schneider-Stock, 2007). Chromatin becomes more
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accessible to transcription factors with HDAC inhibition resulting in the activation of

2% of all genes (Van Lint et al., 1996), including increased expression of p21 in a

p53-independent mariner (Huang et al., 2000). Ju & Muller (2003) subsequently

showed that HDAC inhibitor activation of p21 expression requires ATM however the

nature of the requirement is unknown. Therefore functional ATM is required for

histone acetylation-dependent p21 gene expression. Although this is in stark contrast

to the studies showing that p21 protein levels are elevated in cells derived from

ataxia telangiectasia patients and U/w-deficient mice (Beamish et al., 1996; Xu et al.,

1998), Xu et al. (1998) found that despite elevated p21 protein levels, p21 mRNA is

significantly lower in the Atm-l- MEFs compared to that ofAtm+/+ MEFs.

In the context of our findings, ATM could regulate histone acetylation-

dependent p21 gene expression in undamaged cells, maintaining low basal

expression of p21 independent of p53. Upon cellular stress, p53-dependent p21

expression mechanisms predominate, leading to enhanced p21 expression. The low

basal level of p21 protein maintained by ATM may be essential in regulating p53

subcellular localisation, whereby inhibition or loss of ATM would lead to decreased

expression of p21 and loss of functional p53. Therefore ATM may be a master

regulator of the DNA damage response, by not only initiating signalling cascades

immediately after damage, but by priming the cell before damage, via coordination

of key components of the DNA damage response pathway, in anticipation of threats

to genome integrity.
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5.3.2 Induced ATM kinase activity is associated with loss of p21

In vivo evidence has been presented indicating that in the absence of p21, ATM

kinase activity is enhanced (Figure 5.3). Although in vitro studies could not confirm

that nuclear ATM kinase activity is altered by loss of p21 (Figure 5.4), we can

speculate that cytoplasmic ATM kinase activity is increased. We have previously

shown that reintroduction of the p211-133 truncation, which lacks the C-terminus NLS,

into p21 -/- cells is sufficient to restore p53 nuclear localisation (Figure 4.2B),

indicating a cytoplasmic function of p21 in the regulation of p53 localisation.

Therefore cytoplasmic ATM and p21 may interact, either directly or indirectly, to

modify each others function, by an as yet undefined mechanism. Alternatively, ATM

activation may be a secondary effect caused by defective p21-mediated genome

stability. Loss of p21 has been associated with DNA re-replication (Chang et al.,

2000) and DNA damaged cells lacking p21, arrest in a G2-like state, but then

undergo additional S-phases without intervening mitoses, and as such acquire grossly

deformed, polyploid nuclei and subsequently die by apoptosis (Waldman et al.,

1996). Subsequent studies utilised cell systems with inducible p21 expression and

showed that cells released from a p21-induced G2 arrest resulted in DNA re-

replication in a small proportion of cells (Bates et al., 1998; Chang et al., 2000).

Regulation of DNA replication ensures that origins of replication that have fired once

in S-phase do not fire a second time within the same cell cycle, and therefore

prevents re-replication of segments of the genome (Dutta & Bell, 1997). S-phase

CDK2 activity is necessary for the firing of origins, however an increased level of

Cyclin A and associated CDK2 activity has been shown to promote DNA re-
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replication (Vaziri et al., 2003). Induction of re-replication is sufficient to activate

the ATM/ATR-mediated DNA damage response pathway, leading to activation of

p53 and increased expression of p21 (Vaziri et al., 2003). p21 is a potent inhibitor of

Cyclin A-CDK2 and therefore protects the cell from DNA re-replication (Vaziri et

al., 2003). Loss of p21 would facilitate re-replication, leading to the propagation of

aneuploid cells. As previously discussed, loss of p21 may sensitise cells to undergo

apoptosis in response to DNA damage (4.3.3), and DNA re-replication may be

sufficient to activate this process. In cells lacking p21, DNA re-replication may

represent a persistent form of endogenous cellular stress capable of activating ATM,

and therefore may account for elevated ATM kinase activity observed in HCT116

p21 -/- cells. In addition, Shen et al. (2005) demonstrated that Atm-/- p21 -/- mouse

embryonic fibroblasts exhibit increased chromosomal instability, by chromatid

breaks and aneuploidy, compared to Atm-/- or p21 -/- cells. This data suggests that

Atm and p21 cooperate to suppress aneuploidy development and subsequent

tumorigenesis.

Generally, the related protein kinases, ATM and ATR, are considered to work

independently of one another. However, a degree of cellular crosstalk between ATM

and ATR pathways is being gradually revealed. In Xenopus laevis egg extracts, Atm

and Atr were both shown to be required to prevent DSB accumulation during DNA

replication by promoting the restart of collapsed replication forks (Trenz et al., 2006).

In human cells, ATM is required for ATR function in response to DSBs, and ATM

regulation of ATR occurs in a cell-cycle dependent manner (Jazayeri et al., 2006). In

contrast, ATR has been shown to regulate ATM phosphorylation and activation in

response to UV treatment or replication fork stalling (Stiff et al., 2006). Furthermore
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certain substrates of ATM and ATR overlap, for example, p53 serine-15 and BRCA-

1 serine-1423 are common targets. However CHK2-threonine-68 is exclusively

targeted by ATM (Abraham, 2001; Jazayeri et al., 2006). In response to IR, ATM is

rapidly activated and phosphorylates p53 at serine-15, while ATR activation occurs

more slowly and is involved in maintaining p53 serine-15 phosphorylation (Canman

et al., 1998; Tibbetts et al., 1999). Here, data has been presented showing that ATM

kinase activity is activated in HCT116 p21 -/- cells compared to WT cells, as specific

inhibition ofATM completely blocked elevated CHK2 threonine-68 phosphorylation

and significantly decreased elevated levels of p53 serine-15 phosphorylation

observed in p21 -/- cells (Figure 5.3). However, a small amount of residual p53

serine-15 phosphorylation persists following ATM inhibition, and ATM serine-1981

phosphorylation is unaffected, suggesting up-regulation of an additional kinase. ATR

is the prime candidate due to its functional similarity to ATM, and its ability to target

p53 serine-15 (Canman et al., 1998; Tibbetts et al., 1999) and ATM serine-1981

(Stiff et al., 2006), but not CHK2 threonine-68 (Jazayeri et al., 2006). In speculation,

loss of p21 may permit DNA re-replication, which persistently activates ATM, in a

similar manner as IR, eventually leading ATR activation which contributes to

phosphorylation of p53 at serine-15. Hence ATM is the principal kinase activated by

loss of p21, yet may be supported to a lesser extent by ATR.

5.3.3 ATM/p21 regulation of p53 localisation is independent of MDM2

MDM2 is an important negative regulator of p53, by targeting it for ubiquitination

and proteasomal degradation (Harris & Levine, 2005). MDM2 also has a role in p53
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nuclear export, as MDM2-dependent degradation of p53 occurs mainly in the

cytoplasm. Although the mechanism of MDM2-dependent p53 nuclear export has

not been clearly defined, evidence favours the model in which MDM2 ubiquitination

of p53 unmasks the p53 NES resulting in nuclear export (Stommel et al., 1999;

Lohrum, et al., 2001). Therefore in light of our research, p21 may mediate p53

nuclear import, and MDM2 ubiquitination of p53 controls nuclear export, and the

equilibrium between these systems may serve to coordinate p53 subcellular

localisation to the cell's requirements. However, no cross talk between p21 and

MDM2 could be identified. Where siRNA mediated gene knockdown of MDM2 and

p21 had no effect on loss of p21 -mediated aberrant p53 subcellular localisation

(Figure 5.8). This data indicates that p21 regulation of p53 subcellular localisation is

independent ofMDM2.

In this chapter, specific small molecule inhibitors of ATM have enabled

dissection of the role of ATM in the novel p21 feedback loop that regulates p53. We

have shown that ATM kinase activity in vivo is elevated in cells lacking p21, and

speculate that this may be caused by DNA re-replication. Surprisingly, a genetic

interaction between ATM and p21 was uncovered, and illustrates that ATM and p21

cooperate to ensure functional p53 by maintaining its nuclear localisation.
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Wortmannin Caffeine

N

O

KU-55933

Figure 5.1 Chemical Structures of ATM inhibitors. (A) Wortmannin (adapted from

Wymann et al., 1996). (B) Caffeine. (C) 2-morpholin-4-yl-6-thianthren-l-yl-pyran-4-one (KU-

55933) (Hickson et al., 2004).
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IR (7 Gy, 4 hr)
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p53
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CHK2

CHK2 P-thr68

ATM P-ser1981

P-actin

Figure 5.2 Small molecule inhibition of ATM leads to a dose dependent decrease in ATM
substrate phosphorylation. HCT116 WT cells were treated with increasing concentrations of
the specific ATM inhibitor, KU-55933, prior to irradiation with 7 Gy. Cells were harvested 4hr
after irradiation. Urea lysates were resolved by SDS-PAGE and analysed by immunoblotting for

p53; p53 serine-15 phosphorylation; CHK2; CHK2 threonine-68 phosphorylation and ATM
serine-1981 phosphorylation. P-actin was included as a loading control. 30 pg protein loaded

per lane.
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HCT116

WT p21-/-
- + + - + + 10pM KU-55933
0 14 24 0 14 24 hr

p53

p53 P-ser15

CHK2
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ATM

ATM P-ser1981

p-actin

Figure 5.3 Specific inhibition of ATM decreases the elevated p53 serine-15 and CHK2
threonine-68 phosphorylation levels that are induced by loss of p21. HCT116 WT and p21 -
/- cells were incubated with KU-55933 for 0 hr, 14 hr and 24 hr. Whole cell lysates were

resolved by SDS-PAGE and analysed by immunoblotting for p53; p53 serine-15

phosphorylation; CHK2; CHK2 threonine-68; ATM and ATM serine-1981. p-actin was

included as a loading control. 30 pg protein loaded per lane.
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Figure 5.4 ATM kinase activity is not affected by loss of p21 as measured by in vitro kinase

assays. ATM was immunoprecipitated from the nuclear extract of HCT116 WT, p21 -/- and HeLa

cells. (A) Immunoblot analysis of extracted ATM from HCT116 WT and p21 -/- cells. (B)

Immunochemical detection of ATM kinase activity showed no difference between HCT116 WT,

p21 -/- and HeLa cells. ATM kinase activity was monitored by immunochemical detection of a

phospho-substrate, GST-p53N66 fragment (N-terminal 66 amino acids of p53 fused to GST; -34

kDa) (Lane 1) and as a negative control GST-p53N66-S15A mutant fragment (Lane 2). Kinase

reactions containing cold ATP and 2 pg substrate were assembled in the presence of

immunoprecipitated ATM and incubated for 30 min at 30 °C. The reaction products were

resolved by SDS-PAGE and transferred to nitrocellulose. Phosphorylation of p53 at serine-15 was

detected by immunoblotting. (C) Radioactive detection of ATM kinase activity showed no

difference between HCT116 WT and p21 -/- cells. ATM kinase activity was detected by

radiolabelling the substrate with [y32P]ATP. GST-N66p53 fusion protein (Lane 1) and the

negative control GST-p53N66-S15A mutant fragment (Lane 2) were used as substrates. Kinase

reactions containing [y32P]ATP and 2 pg substrate were assembled in the presence of

immunoprecipitated ATM and incubated for 30 min at 30 °C. The reaction products were

resolved by SDS-PAGE and [ y 32P]ATP incorporation was visualised by autoradiography.
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0pM 10 pM 0 pM 10 pM
F1 F2 F3 F4 F1 F2 F3 F4 F1 F2 F3 F4 F1 F2 F3 F4
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KU-55933

p53
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Coomassie
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HCT116 WT HCT116 p21-/-

0 pM 1 pM 0 pM 1 pM NU-7441
F1 F2 F3 F4 F1 F2 F3 F4 F1 F2 F3 F4 F1 F2 F3 F4

p53
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Figure 5.5 Specific ATM inhibition mimics the p21 -/- phenotype. (A) Specific inhibition of
ATM causes mislocalisation of p53. HCT116 WT and p21 -/- cells were incubated with either

DMSO (0 pM) as a vehicle control or KU-55933 (10 pM) for 24 hr. Proteins were extracted

according to their subcellular localisation: Fl - cytosol; F2- membranes/organelles; F3- nucleus;
F4- cytoskeleton (S-PEK, Calbiochem®). Proteins from each fraction were resolved by SDS-
PAGE and analysed by immunoblotting for p53 and p21. 10 pg protein was loaded per lane.
Coomassie staining confirmed that protein expression profiles from each fraction were distinct. 5

pg protein was loaded per lane. (B) Specific inhibition of DNA-PK does not affect p53
localisation. F1CT116 WT and p21 -/- cells were incubated with either DMSO (0 pM) as a

vehicle control or Nu-7441 (1 pM) for 24 hr. Proteins were extracted according to their
subcellular localisation: Fl - cytosol; F2- membranes/organelles; F3- nucleus; F4- cytoskeleton
(S-PEK, Calbiochem®). Proteins from each fraction were resolved by SDS-PAGE and analysed
by immunoblotting for p53 and p21. 10 pg protein was loaded per lane.
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Figure 5.6 Endogenous ATM and p21 do not co-immunoprecipitate. ATM and p21 were

immunoprecipitated from HeLa nuclear extract, HCT116 WT whole cell lysate and HCT116

p21 -/- whole cell lysate, with anti-ATM monoclonal antibody (a-536, KuDOS) and with anti-

p21 monoclonal antibody (Ab-1, Oncogene), respectively. Blank control, cell lysate is replaced
with an equal volume of NP40 lysis buffer. Reactions were resolved by SDS-PAGE and

analysed by immunoblotting for ATM and p21. Arrows indicate protein bands correlating to

immunoprecipitated protein of interest.
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Figure 5.7 p53 nuclear localisation is ATM-dependent in NHF cells. NHF cells were

incubated for 24 hr with either DMSO as a vehicle control; specific ATM inhibitor, KU-55933

(10 pM); specific DNA-PK inhibitor, NU-7441 (1 pM); or MDM2 inhibitor, Nutlin-3 (10 pM).

Proteins were extracted according to their subcellular localisation: Fl- cytosol; F2-

membranes/organelles; F3- nucleus; F4- cytoskeleton (S-PEK, Calbiochem®). Proteins from
each fraction were resolved by SDS-PAGE and analysed by immunoblotting for p53, E2F1 and
p21. 10 pg protein was loaded per lane. Coomassie staining confirmed that protein expression
profiles from each fraction were distinct. 5 pg protein was loaded per lane.
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Figure 5.8 MDM2 is not required for p21-dependent localisation of p53. NHF cells were

transfected and incubated for 24 hr with either control siRNA; p21 siRNA; MDM2 siRNA; or
both p21 and MDM2 siRNA. Proteins were extracted according to their subcellular
localisation: Fl- cytosol; F2- membranes/organelles; F3- nucleus; F4- cytoskeleton (S-PEK,

Calbiochem®). Proteins from each fraction were resolved by SDS-PAGE and analysed by
immunoblotting for p53, MDM2 and p21. 10 pg protein was loaded per lane.
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CHAPTER 6

CONCLUSIONS AND FUTURE PERSPECTIVES

6.1 Regulation of p53 transcriptional activity by p21

The p53 tumour suppressor protein is a key regulator of a range of processes

involved in the prevention of cancer formation, including cell cycle arrest, DNA

repair and apoptosis (Lane, 1992). The regulation of p53 functions is tightly

controlled through several mechanisms including p53 transcription and translation,

protein stability, post-translational modifications, and subcellular localisation (Hayon

& Haupt, 2002). In this study, p21 has been identified as a novel regulator of p53

transcriptional activity. p21 regulates p53 subcellular localisation and is required for

global p53-dependent gene expression. Loss of p21 is associated with increased

cytoplasmic localisation of p53 and a dramatic decrease in p53 transcriptional

activity. We propose that p21 is an essential co-factor of the p53 pathway.

6.1.1 Mechanism of p21-dependent regulation of p53 localisation

In this study p21 has been identified as a novel regulator of p53 subcellular

localisation (Figure 4.1). We have shown that reconstitution of p21 into HCT116

p21 -/- cells restores p53 nuclear localisation (Figure 4.2), as yet a mechanism has not

been identified. The p53 negative regulator MDM2 is required for efficient export of
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p53 from the nucleus to the cytoplasm (Lohrum et al., 2001). Interestingly, MDM2

has also been identified as a negative regulator of p21, whereby increased expression

ofMDM2 decreases p21 protein stability (Zhang et al., 2004). In the context of our

data, the following model can be proposed, whereby MDM2 drives p53 nuclear

export and p21 drives p53 nuclear import (Figure 6.1). Basal levels of p21 may

maintain p53 nuclear localisation, such that it is poised for responding to damage. In

response to damage, p53 activation would lead to increased levels of MDM2 protein

which drives p21 degradation and p53 nuclear export. In this model, ATM may

function as a master regulator, cooperating with p21 to sustain p53 activation and

gene expression, and inhibiting MDM2-p53 interaction by phosphorylation of

MDM2 at serine-395 and p53 at serine-15. However, we were unable to substantiate

this model. Targeted inactivation of MDM2 by siRNA mediated gene knockdown

had no effect on p53 subcellular localisation in cells lacking p21 (Figure 5.8).

Nevertheless, more rigorous testing of this model may provide evidence for or

against the model, for example, over-expression of MDM2 in wild-type cells may

cause degradation of p21 and aberrant localisation of p53.

Further investigation should focus on identifying the mechanism by which

p21 regulates p53 localisation. To determine if p53 is actively exported from the

nucleus in the absence of p21, cells lacking p21 could be treated with inhibitors of

nuclear export, such as leptomycin-B. Leptomycin-B is a potent, specific inhibitor of

the nuclear export factor, CRM-1, and inhibits NES-dependent protein export from

the nucleus. Therefore if loss of p21 induces active exportation of p53 from the

nucleus, leptomycin-B treatment of cells lacking p21 should restore nuclear
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localisation. Alternatively, if p53 is sequestered in the cytoplasm prior to nuclear

import, leptomycin-B treatment would have no effect on p53 localisation.

As previously discussed (4.3.1), the C-terminus of p21 is not required for

restoration of p53 nuclear localisation. The C-terminus of p21 contains the PCNA

binding site and the NLS (Dotto, 2000). Therefore p21 may have cytoplasmic

functions in the regulation of p53. p53 is synthesised in the cytoplasm and must be

transported to the nucleus to exert its transcriptional effect on downstream targets

(O'Brate & Giannakakou, 2003). Cytoplasmic p21 may enhance p53 binding to a

nuclear import protein or block p53 interaction with a cytoplasmic anchor, leading to

increased nuclear localisation. A detailed analysis of cytoplasmic binding partners of

p21 and p53 may yield new insight into the mechanisms of p21-dependent regulation

of p53, and of intracellular trafficking of p53.

6.1.2 p53-dependent gene expression is associated with p21 gene dose

Microarray analysis of primary cells derived from transgenic mice nullizygous,

heterozygous and wild-type for p21 provided new insight into p21-dependent

regulation of p53-dependent gene expression. Loss of one allele of p21 caused a

21 % decrease in p53-dependent gene expression, whilst loss of both p21 alleles

resulted in a 68 % decrease compared to wild-type cells (Figure 4.17). These striking

and significant findings illustrate that p53-dependent gene expression is mediated by

p21 gene dose.

Culture cell models with inducible p21 expression would provide an

important experimental tool to further characterise the dependence of p53 activity on
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p21 levels. Long-term over-expression of exogenous p21 in cells may have cytotoxic

side effects as p21 is a negative regulator of cell growth. Future work could therefore

include development of constructs that enable the controlled induction of p21 activity.

Expression of p21 from a promoter induced by isopropyl-P-thio-galactoside (IPTG)

has previously been characterised (Broude et al., 2007). This would allow temporal

regulation of p21 activity, and enable examination of the kinetics of p21-dependent

regulation of p53 localisation. Similarly, we used transient expression of siRNA to

mediate gene knockdown of p21 (Figure 3.6, Figure 4.8). Stable expression of

siRNAs to target p21 would mediate persistent suppression of p21 gene expression

(Fritah et al., 2005), and allow detailed analysis of the p21 loss-of-function

phenotype over a longer period of time. To further investigate the relationship

between the level of p53 activity and the amount of p21 protein, commercially

available tetracycline-regulated expression systems (T-REx™ System, Invitrogen)

allow expression levels of, for example, p21 to be gradually modulated in accordance

tetracycline concentration. This system would provide a cell culture model to

compare to our previous observations in mice (Figure 4.17) and enable detailed

characterisation of p53 dependence on p21 levels.

Mouse models with p21 expression under inducible control, would also

provide a versatile experimental tool as over-expression of p21 in a transgenic

animal would probably have catastrophic effects. An elegant system has previously

been used to investigate p53 tumour suppressor functions, consisting of a switchable

knock-in mouse model in which endogenous p53 can be reversibly switched between

functional and non-functional states, by substituting the endogenous p53 gene with

one encoding a p53 fusion protein whose function is dependent on ectopic provision
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of 4-hydroxytamoxifen (Christophorou et al., 2005). Application of this system to

p21 expression would allow detailed characterisation of p21-dependent regulation of

p53 activity, in terms of kinetics, dependence, persistence, and reversibility. Also

studies could be extended from B-cells to include specific tissues and additional

primary cell lines.

6.2 Further characterisation of the ATM-p21 interaction

Evidence has been presented suggesting that ATM and p21 cooperate to maintain

p53 nuclear localisation (Figure 5.5A) and therefore p53 transcriptional activity.

Future work should focus on further characterisation of the ATM-p21 interaction.

Findings presented here suggest that ATM and p21 do not interact to form a complex

as they did not co-immunoprecipitate (Figure 5.6). However, in undamaged cells it is

likely that only small pools of ATM and p21 specifically interact, making detection

difficult. Therefore further optimisation of co-immunoprecipitation conditions and

utilising additional methods of protein detection other than immunoblotting, for

example, silver staining of SDS-PAGE gels and mass spectrometry analysis may

yield greater insight into the ATM and p21 interaction. Alternatively, ATM and p21

may interact within the context of a multi-protein complex, and essential co-factors

required to maintain binding may be lost during the co-immunoprecipitation

procedure. However, no evidence of a multi-function complex involving ATM and

p21 has been ascertained so far.

ATM has previously been shown to be involved in histone acetylation-

mediated p21 gene expression (Ju & Muller, 2003). Our findings suggest that ATM
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functions upstream of p21 in the regulation of p53 localisation. This is based on the

observation that specific inhibition of ATM produced the same phenotype as loss of

p21, in regard to aberrant p53 localisation, in HCT116 WT cells. In HCT116 p21 -/-

cells, inhibition ofATM was ineffective in altering p53 localisation (Figure 5.5A).

A model (Figure 6.2) can be presented to account for these observations, in

which ATM maintains basal expression of p21 independent of p53, via histone

acetylation-dependent gene expression. In unstressed cells, ATM may maintain low

level expression of p21. Basal levels of p21 protein may regulate p53 subcellular

localisation and transcriptional activity. In response to damage, p53-dependent p21

expression mechanisms may supersede ATM-dependent expression of p21, leading

to enhanced p21 expression. Enhanced p21 protein levels would lead to further

activation of p53 (Figure 6.2). Therefore specific inhibition or loss of ATM before

damage would lead to decreased expression of p21 and loss of functional p53, which

could no longer up-regulate p21 in response to damage. To test this model, inhibition

of HDAC in HCT116 WT and NHF cells would be predicted to result in aberrant

localisation of p53, as observed with ATM inhibition and loss of p21. This model

would not require direct interaction between ATM and p21, nor would ATM kinase

activity expected to be altered, which is consistent with previous in vitro data (Figure

5.4B, C; Figure 5.6). However in disagreement with this model, inhibition of ATM

caused an increase in p21 protein levels, not the predicted decrease (Figure 5.5A).

The observed accumulation of p21 protein may be via increased stabilisation of p21

rather than increased expression levels, and may be a consequence of treatment with

small molecule inhibitors, as a similar elevation of p21 levels was observed with

DNA-PK inhibition (Figure 5.5B). Validating the effects of the ATM inhibitor with
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ATM siRNA mediated gene knockdown will further clarify non-specific effects of

ATM inhibition by KU-55933.

ATM and p21 are both multi-functional proteins with important roles within

the cell. Additional studies are required to begin understanding the ATM-p21

interaction, elucidate the mechanism by which these two important proteins impinge

upon each other, and to determine the cellular consequences of this interaction.

6.3 Investigation of p21-dependent regulation of p53 within the cell cycle

During an unperturbed cell cycle, p53 shuttles between the nucleus and the

cytoplasm. Nuclear p53 is only detected in cells at the Gl/S transition, and

cytoplasmic p53 is associated with S-phase cells (Shaulsky et al., 1990b). Strikingly,

expression levels of p21 are highest at the Gl/S transition when p53 is localised to

the nucleus and lowest at the S-phase of cell cycle when p53 is localised to the

cytoplasm (Li et al., 1994). The work presented here was carried out in asynchronous

populations of cells. However, future studies involving synchronised cell populations

and cell cycle analysis may show that in normal cells p21 plays an important role in

coordinating the cell cycle and p53 transcriptional activity via its subcellular

localisation.

p21 also accumulates in the cell during the G2/M transition (Li et al., 1994),

and is subsequently degraded in early mitosis to allow cell cycle progression (Li et

al., 1994). CDC20 associates with and activates the ubiquitin ligase APC/C

(anaphase-promoting complex/cyclosome) (Fung & Poon, 2005) and controls

ubiquitin-mediated degradation of p21 in mitosis (Amador et al., 2007). Substrates of
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APC/CCDC20 are often characterised by the presence of a "destruction box" or D box,

which consists of a minimal RxxL motif. In the N-terminus of p21 (at positions 86-

89 in human) one conserved RxxL motif was identified and shown to be necessary

for p21 degradation (Amador et al., 2007). Interestingly, the C-terminus of p21 is not

required for restoration of p53 nuclear localisation (Figure 4.2B). In speculation the

minimal domain of p21 required for regulation of p53 may include the D box motif,

to block APC/C ~ ubiquitin-mediated degradation of p21 in response to cellular

stress, therefore causing a G2 arrest and allowing p21 accumulation and subsequent

activation of p53. Further identification and characterisation of the minimal domain

of p21 essential to restore p53 activity is required.

CDC20 expression is repressed by genotoxic stresses in a p53-dependent

manner (Kidokoro et al., 2007). In context of our results, a model can be proposed

where p21 is an essential co-factor of p53 transcriptional activity by maintaining p53

nuclear localisation (Figure 6.3). In unstressed cells, CDC20 may maintain

cytoplasmic localisation and inactivation of p53 by degrading p21. In response to

cellular insult, stabilisation of p53 may lead to inhibition of CDC20 expression and

decrease CDC20 protein levels accordingly. Subsequently, inhibition of CDC20 may

enable accumulation of p21, leading to increased nuclear localisation and activation

of p53. Future studies should focus on validating the role of CDC20 in this model.

Consistent with this model, CDC20 is frequently up-regulated in a range of

malignancies, including oral squamous cell carcinoma (Mondal et al., 2007) and

gastric cancer (Kim et al., 2005). Increased expression of CDC20 may cause loss of

p21 and inactivation of p53, which would be of selective advantage to cancer cells,

enhancing tumour progression.
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6.4 Potential therapeutics

6.4.1 Specific inhibition of ATM

Cells derived from Ataxia Telangiectasia patients are hypersensitive to IR and fail to

arrest the cell cycle after the induction of DNA double strand breaks (Khanna et al.,

2001). Many current non-surgical cancer treatments target the integrity of cellular

DNA, which is crucial to cell survival. These agents directly and/or indirectly

damage DNA by inducing DNA breaks e.g. IR; forming crosslinks e.g. trizenes and

platinum compounds; and targeting DNA-related proteins e.g. topisomerase

inhibitors (Ding et al., 2006). However, the anticancer effectiveness of these agents

is limited by the activation of DNA repair pathways (Hoeijmakers, 2001). Inhibition

of these pathways may increase the effectiveness of DNA damaging agents and

improve cancer therapy.

Specific inhibition of ATM by KU-55933 in a range of ATM-proficient cells

significantly sensitised them to IR and DSB-inducing chemotherapeutics including

etoposide, doxorubicin and camptothecin (Hickson et al., 2004). Therefore

combinational therapy against cancer may include KU-55933 as a novel radio- and

chemosensitizer to enhance efficacy of conventional radio- and chemotherapy.

In this study ATM inhibition has also been shown to induce mislocalisation

of p53 and possibly functional inactivation (Figure 5.5A). However this does not

impinge on the radiosensitivity caused by ATM inhibition, and may indicate that

cells are undergoing apoptosis independent of p53. Further understanding and
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characterisation of ATM functions will allow judgement of the therapeutic benefits

of specific ATM inhibition.

6.4.2 Specific p21 peptides for reactivation of p53

Loss of p53 function is a common feature of human cancers (Sherr, 2004). Several

pharmacological strategies aimed at restoring p53 have been proposed including:

small molecules that restore mutant p53 protein to conformationally active p53

(Bykov et al., 2002); compounds that interfere with the MDM2-p53 interaction

(Vasilev et al., 2004); and gene-therapy based approaches aimed at introducing a

wild-type copy of the p53 gene into tumour cells (Roth, 2006). Here, a novel

mechanism of p53 inactivation has been identified, mediated by loss of p21. The C-

terminus of p21 is not required to restore nuclear localisation of p53 in HCT116 cells

(Figure 4.2B). Hence, further mapping of the domain of p21 required to restore p53

activity by mutational analysis, may provide novel drug targets. If this domain of p21

directly binds p53, or blocks interaction of p53 with a cytoplasmic anchor, direct

targeting of these interactions could counteract aberrant p53 localisation and restore

p53 transcriptional activity. These interactions are relatively uncharacterised

therefore the development, screening and effective targeting with small-molecule

drugs may be difficult (Baines & Colas, 2006). However with the advances in cell-

permeable peptide technology, the development of specific peptides of the minimum

domain of p21 required to restore p53 nuclear localisation may be more

therapeutically viable. Specific peptides can be fused to specific protein transduction

domains, consisting of short amino acid peptide motifs, which penetrate virtually all
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cells, independent of surface transporters and of cell cycle phase (Prive & Melnick,

2006). Commonly used protein transduction domains include the penetratin motif,

derived from the Drosophila antennapedia protein, and the pTAT motif, derived

from the HIV transactivator protein (Joliot & Prochiantz, 2004). As these domains

are naturally occurring, and have physiological roles in protein transduction, they are

generally non-toxic to cells. The validity of this technique has been illustrated by a

specific peptide inhibitor of HSP90 (Plescia et al., 2005). HSP90 is strongly

activated in cancer and stabilises proteins required for survival and proliferation

(Calderwood et al., 2006). Specific peptide inhibition of HSP90 caused massive cell

death in vitro and in vivo, with greater potency and less toxicity than equivalent small

molecule inhibitors (Plescia et al., 2005).

In human cancer loss of p21 correlates with tumour progression and has been

characterised in a range of different malignancies, including lung (Komiya et al.,

1997), breast (Wakasugi et al., 1997), bladder (Stein et al., 1998), ovarian (Anttila et

al., 1999), cervical (Lu et al., 1998), head and neck (Kapranos et al., 2001), and anal

carcinomas (Holm et al., 2001). In light of our data, malignancies under-expressing

p21 may have defects in p53 transcriptional activity. Specific peptides corresponding

to the minimal domain of p21 required for maintaining p53 nuclear localisation,

fused to a protein transduction domain, may stimulate reactivation of p53 and be of

important therapeutic value in cancers lacking p21.
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6.5 Conclusion

The p53 tumour suppressor protein is an essential component of an intricate network

of proteins which communicate with each other throughout the cell cycle to preserve

DNA integrity by eliciting appropriate cellular responses, such as DNA repair, cell

cycle arrest or apoptosis. An established downstream effector of the p53 pathway is

the cyclin-dependent kinase inhibitor, p21. This study has identified and

characterised a novel p21 feedback loop in the regulation of p53, where levels of p21

protein maintain p53 nuclear localisation and transcriptional activity. Additional

work is required to unravel the molecular mechanisms that underlie p21-dependent

regulation of p53. However, these exciting observations have provided insight into a

novel mechanism of p53 regulation, the intricacies of the ATM-p21 interaction, and

have further defined the role of p21 in tumour progression.
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NUCLEUS CYTOPLASM

Figure 6.1 A model of the regulation of p53 subcellular localisation. Transcriptional

activity of p53 is regulated by its subcellular localisation. MDM2 mediates p53 nuclear export,

driving cytoplasmic localisation of p53 and transcriptional inactivation. p21 mediates p53

nuclear import, driving p53 nuclear localisation and transcriptional activation. ATM

cooperates with p21 to ensure activation of p53, and by inhibiting MDM2 activity. Inhibition

represented by T-shaped lines. Activation represented by arrows.

- 225 -



UNSTRESSED STRESSED

1

Figure 6.2 A model of ATM-dependent regulation of p21 expression and activation of p53.
In unstressed cells ATM mediates histone acetylation-dependent gene expression of p21 and
maintains low basal expression of p21 independent of p53. Low levels of p21 maintains nuclear
localisation of basal levels of p53. In stressed cells ATM stabilises and activates p53. p53

specifically up-regulates p21 expression. Increased levels of p21 feedback to maintain p53
nuclear localisation and activation. Solid lines represent the dominant pathway regulating p2l

gene expression. Dashed lines represent the minor pathway regulating p21 gene expression.
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Figure 6.3 A model of a novel p21 feedback loop in the regulation of p53. CDC20 mediates

p21 degradation preventing p21 activation of p53. Stabilisation of p53 in response to cellular
stress inhibits CDC20 expression and up-regulates p21 expression. Inhibition of CDC20

prevents p21 degradation, enabling p21 accumulation and activation of p53 transcriptional

activity. Inhibition represented by T-shaped lines. Activation represented by arrows.
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APPENDIX A

IDENTIFICATION OF NOVEL SMALL MOLECULE COMPOUND

INHIBITORS OF hSMG-1

A. 1 Introduction

Human suppressor of morphogenesis in genitalia-1 (hSMG-1) is the newest member

of the phosphoinositide 3-kinase related kinase (PIKK) family of serine/threonine

protein kinases. hSMG-1 has been shown to play a crucial role in non-sense

mediated mRNA decay (Yamashita et al. 2001; Denning et al. 2001), and has been

implicated as a genotoxic stress activated kinase (Brumbaugh et al., 2004).

KuDOS Pharmaceuticals Ltd. (Cambridge) aims to discover and develop

novel small molecule inhibitors that will significantly improve the treatment of

cancer by inhibiting DNA repair and overcoming cancer cell resistance to radio- and

chemotherapy. hSMG-1 is a very attractive target, as hSMG-1 deficient cells

accumulate DNA damage indicating that hSMG-1 functions as a tumour suppressor

gene product (Brumbaugh et al., 2004) and therefore specific small molecule

inhibitors of hSMG-1 could sensitise cells to conventional cancer therapies. During a

six week placement at KuDOS Pharmaceuticals, small molecule compound libraries

designed for the PIKK family were screened to identify specific small molecule

inhibitors of hSMG-1.
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A.l.l Biochemistry of the PIKK family

The PIKK family consists of high molecular mass signaling proteins that initiate

cellular stress responses when genome integrity, mRNA translation, or nutrient

availability is compromised (Abraham, 2004a; Bakkenist & Kastan, 2004).

Mammalian cells express six PIKK family members, ATM, ATR, DNA-PK,

mammalian target of rapamycin (mTOR), transformation/transcription domain

associated protein (TRRAP) and the newest member of the family, hSMG-1.

The five mammalian PIKKs which have been identified as active protein

kinases, share a strong preference for protein substrates containing serine/threonine

followed by a glutamine (S/T-Q) motif, which are frequently found in multiple

copies localized in "S/T-Q rich domains" (Kruz & Lees-Miller, 2004). In addition,

the PIKK family members exhibit similar overall structural organisation (Figure

A.l). The most characteristic feature of these proteins is the catalytic domain (-300

amino acids), located near their C-terminus, which shows homology to the catalytic

domain of phosphatidylinositol 3-kinase (PI3-K). The catalytic domain is flanked by

two conserved domains termed FAT (FRAPMTR/7RRAP) and FAT-C (C indicates

C-terminus). The functions of the FAT (-600 residues) and FAT-C (-30 residues)

regions are as yet unknown, however it is speculated that they may interact to

stabilise the conformation of the interposed kinase domain (Abraham, 2001;

Abraham, 2004a; Bakkenist & Kastan, 2004).

Typically the catalytic domain and the FAT-C domain are separated by no

more than a few hundred residues, except in hSMG-1 which contains a large insert

(-1000 amino acids) between these two conserved domains (Brumbaugh et al, 2004;
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Abraham, 2004b; Bakkenist & Kastan, 2004). Therefore the kinase domain of

hSMG-1 is located in the central region of the molecule rather than the near C-

terminus (Figure A.l). Interestingly the hSMG-1 ortholog in Caenorhabditis elegans

does not contain this large insert region, and Abraham (2004b) has speculated that its

late appearance in metazoan evolution may enable hSMG-1 to interact with a broader

range of upstream regulatory proteins and downstream targets.

The structure and function of the N-terminus of PIKK family members is

relatively unknown. However the N-termini of ATM, ATR and mTOR have been

predicted by bioinformatics, to contain 40-54 HEAT (//untington disease protein,

Elongation factor 3, a subunit of phosphatase 2A and TORI) repeats (Perry &

Kleckner, 2003). This is also likely to apply to hSMG-1 and DNA-PK. Each HEAT

repeat is ~40 residues long, consisting of two anti-parallel alpha helices linked by a

flexible loop, and the multiple repeats stack to form a large superhelical structure,

which may act as a surface for protein-protein interactions (Khanna et al., 2001;

Kruz & Lees-Miller, 2004).

A.1.2 Suppressor of morphogenesis in genitalia-1 (hSMG-1)

The newest addition to the PIKK family was cloned independently by Yamashita et

al. (2001), Denning et al. (2001) and Brumbaugh et al. (2004) and was termed

human SMG-1, based on its sequence and functional homology to the

Caenorhabditis elegans protein CeSMG-1. The hSMG-1 gene has been mapped to

16p 12 in human chromosomes (Yamashita et al., 2001). However each group found

mRNAs encoding hSMG-1 proteins of varying lengths. Yamashita et al. (2001)
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isolated overlapping cDNA clones encoding an open reading frame (ORF) of 3657

amino acids residues with a deduced molecular mass of 409 kDa; Denning et al.

(2001) isolated a cDNA encoding a 3031 amino acid polypeptide with a molecular

mass of 340 kDa; and Brumbaugh et al. (2004) cDNA encodes a 3521 amino acid

polypeptide with a deduced molecular mass of 395 kDa. The principle disparity

between the three variants occurs at the N-terminus, indicating different splice

variants of hSMG-1. However, whether these different splice variants are actually

expressed in mammalian cells and their biological significance remains to be

determined.

A.1.3 The role of hSMG-1 in nonsense mediated mRNA decay

Yamashita et al. (2001) and Denning et al. (2001) have shown that hSMG-1 plays a

central role in nonsense-mediated mRNA decay (NMD). NMD is a conserved

surveillance mechanism that eliminates imperfect mRNAs that contain premature

translation termination codons (PTCs) and therefore protects against potential

deleterious gain of function and consequent dominant negative effects of aberrant

truncated proteins.

In mammals, human Upf (hUpf) proteins cooperate with an exon-junction

complex (EJC) to identify PTCs in mRNA (Figure A.2). The EJC consists of

multiple proteins deposited 20-24 nucleotides upstream of exon-exon junctions after

splicing. A central regulator of NMD is hUpf-1, an ATPase/helicase which interacts

with hUpf-3/hUpf-2 bound to EJCs located >50-55 nucleotides downstream of the
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termination codon. This leads to hUpf-1 dependent exonucleolytic degradation of

substrate mRNAs (Singh & Lykke-Andersen, 2003).

hUpf-1 is a phosphoprotein, containing multiple potential S/T-Q

phosphorylation site motifs, and under normal conditions is subject to continuous

cycles of phosphorylation and dephosphorylation (Denning et al., 2001). Recent

studies by Grimson et al. (2004) in C.elegans and in human cells, has clearly

implicated hSMG-1 as the major upstream kinase for hUpf-1. Genetic evidence in

C.elegans shows that ccSMG-1 mutants block phosphorylation of ceSMG-2, the

orthologue of hUpf-1, and that ceSMG-1 kinase activity is required in vivo for NMD

(Grimson et al., 2004). Yamashita et al. (2001) provided evidence that in mammalian

cells inhibition of hSMG-1, using wortmannin and caffeine, leads to suppression of

NMD. However these drugs also inhibit other PIKKs and will therefore have

pleiotropic effects. Furthermore, silencing of hSMG-1 or hUPF-1 gene expression in

mammalian cells with small interfering RNA (siRNA) leads to dramatic decline in

cell viability and proliferation, highlighting the importance of NMD (Brumbaugh et

al., 2004).

A.1.4 The Role of hSMG-1 in the stress response

Abraham (2004b) has reasoned that the incorporation of a protein kinase, hSMG-1

into the NMD pathway indicates that this pathway is capable of responding to

environmental factors, such as growth factors and stress inducing stimuli, such as IR.

In support of this, hSMG-1 has been found in both the cytoplasmic and nuclear
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compartments of human cells and hUpf-1 undergoes nuclear-cytoplasmic shuffling

(Brumbaugh et al., 2004).

A compelling study by Brumbaugh et al. (2004) provides evidence that

hSMG-1 is a genotoxic stress activated protein kinase, displaying functional overlap

with ATM. They initially established hSMG-1 as p53 serine-15 kinase and showed

that the specific kinase activity of hSMG-1 towards p53 is 3.5-fold higher than that

of ATM in in vitro kinase assays. Interestingly, exposure of cells transfected with

recombinant hSMG-1 to IR or UV stimulated hSMG-1 p53 serine-15 kinase activity,

with IR proving to be the more effective stimulus. In line with this, transfection with

kinase dead hSMG-1 or knockdown of endogenous hSMG-1 using siRNA, led to

impaired accumulation and phosphorylation of p53 in IR treated cells (Brumbaugh et

al., 2004). However in the absence of extrinsic genotoxic stress, hSMG-1 depleted

cells displayed elevated basal levels of p53 and phosphorylation, as well as histone

H2AX serine-139 phosphorylation, indicating that loss of hSMG-1 is sufficient to

trigger a spontaneous DNA damage response. hSMG-1 depleted cells also exhibit a

loss of cell viability and accumulate at the G2 DNA damage checkpoint (Brumbaugh

et al., 2004). Interestingly, these phenotypic abnormalities are similar to those of

ATR-depleted cells.

The role of hSMG-1 in mammalian cells requires further clarification, but

present published evidence indicates that hSMG-1 may mediate mRNA and DNA

surveillance mechanisms in human cells to ensure the quality of the proteome pool.

Development of small molecule compound inhibitors of hSMG-1 will be a valuable

tool in elucidating its biological function, and may yield therapeutic value beyond

cancer treatment, because although NMD protects the cell from the dominant effects
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of aberrant truncated proteins, there are some cases where truncated proteins contain

residual activity and can compensate for normal gene function. Therefore specific

inhibitors of hSMG-1 would be of potential therapeutic importance for all genetic

diseases associated with PTC mutations, such as P-thalassemia.

A.2 Materials and Methods

A.2.1 Screening for Small Molecule Compound Inhibitors of hSMG-1

This work was carried out during a six week placement at KuDOS Pharmaceuticals

(Cambridge).

A.2.2 General Equipment and Reagents

Equipment used included 8-channel multi-pipette (10, 50, 300 pi Finn pipette); 96

well V-bottomed polypropylene plate (Greiner); 96 well white opaque non-treated

plate (Corning); Adhesive plate covers (Greiner); Stepper (multipette® Eppendorf);

Incubated plate shaker (Titramax 1000, fleidolph); Chemiluminescence counter

(Topcount Packard); Refrigerated centrifuge (ALC 4237R, Jencons PLS); Buckets

for 96 well plates for the above centrifuge (Jencons PLS); Refrigerated centrifuge

(RC5C, Sorvall); Rotor SS-34 for RC5C (Sorvall); and Rotor Mixer (Agar Scientific).

hSMG-1 mouse monoclonal (In house, KuDOS). Test Compounds were made up at

100 pM in 50 % (v/v) DMSO and used at a final concentration of 10 pM.
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A.2.3 Immunoprecipitation of hSMG-1

25 ml HeLa Nuclear Extract (Computer Cell Culture Centre, Belgium) was thawed

on ice and clarified by centrifugation at 2000 g for 15 min at 4 °C. The clarified

supernatant was transferred to a 50 ml falcon tube, and 250 pi lOOx protease

inhibitor mix (Roche), and 125 pi anti-SMG-1 antibody (mouse monoclonal, in

house) was added. The mixture (NE mix) was incubated for 3 hr at 4 °C on a rotary

mixer. 6.25 ml Protein A sepharose (Sigma) slurry, (pre-washed in PBS three times)

was added to the NE mix and incubated for a further 1 hr on the rotary mixer at 4 °C.

The immune complexes were sedimented by centrifugation at 200 g for 2 min at 4 °C.

The hSMG-1 depleted nuclear extract was decanted. The beads were washed twice in

50 ml ice cold IP buffer (250 mM KC1, 25 mM Hepes, 10 % Glycerol, 2 mM MgCh,

0.5 mM EDTA, 0.1 mM Na3V04, 1 % NP-40) then once in 50 ml ice cold high salt

buffer (100 mM Tris-HCl pH 7.4, 500 mM LiCl), and twice in ice cold incomplete

kinase buffer (10 mM Hepes, 50 mM (3-glycerol Phosphate, 50 mM NaCl). The final

bead pellet was resuspended in 18.75 ml complete kinase buffer (10 mM Hepes, 50

mM p-glycerol phosphate, 50 mM NaCl, 10 % Glycerol, 1 mM DTT, 10 mM MnCh,

0.1 mM NasVO/O, aliquoted into cryogenic vials and stored at -80°C.

A.2.4 hSMG-1 in vitro Kinase Assay

The hSMG-1 beads from the IP were resuspended and 35 pi was added per well to a

V-bottomed 96 well polypropylene plate. Test compounds (100 pM in 50 % DMSO)
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from the KuDOS library were replicated in microtitre plates (Greiner). In the primary

screen 5 pi of each compound was added to the beads to give a final working

concentration of 10 pM. This was incubated for 15 mins at room temperature with

shaking. 10 pi of the substrate mix (p53Ni„66 GST fragment (1 pi, 1 pg/pl), ATP (1

pi, 2.5 mM), 8 pi Kinase Buffer (10 mM Hepes pH 7.6, 50 mM NaCl, 50 mM p-

glycerol phosphate, 1 mM DTT, 10 mM MnCE, 0.1 mM Na3V04) was added per

well. For the negative control the p53Ni_66 fragment was substituted with a p53Ni_66

double mutant (serl5->ala, ser37-»ala). The plate was incubated on the plate shaker

for 40 min at 30°C. The reaction was terminated by adding 25 pi PBS per well. To

pellet the beads the plate was centrifuged at 250 g for 10 min at 4 °C.

50 pi of the assay mix was transferred to the corresponding wells of an

opaque white ELISA (enzyme linked immunosorbent assay) plate (Corning),

incubated for 1.5 hr on a shaker at room temperature. The plate content was

discarded and washed twice in 300 pi PBS. The plate was blocked in 3 % BSA (w/v)

in PBS (300 pi per well) for 16 hr at room temperature. The plate was washed as

before, and 50 pi of a 1:10,000 dilution of anti-Phospho-p53serl5 mouse monoclonal

antibody (Cell Signalling Technology) in 3 % BSA was added to each well and

incubated for 1 hr on a shaker at room temperature. The contents were then discarded

and washed four times in 300 pi PBS. 50 pi of a 1:25,000 dilution of goat-anti-

mouse-HRP antibody (Pierce) in 3% BSA was added per well and incubated for 1 hr

on a shaker at room temperature. The plate was then washed 4 times in PBS as

before. 50 pi of ECL (1:1 ratio ECL I: ECL II (Amersham Pharacia Biotech) was

added to each well and the luminescence detected by a Packard Scintillation counter,
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Top Count™. The raw data was tabulated in Microsoft Excel and the KuDOS

Pharmaceuticals database program, Activity Base.

The percentage inhibition for each compound was then calculated using the

following equation:

% Inhibition = 100- (cps ofwell-mean negative cps)

(mean positive cps-mean negative cps)-^

x 100

A.3 Results

A.3.1 Screening small molecule compound libraries

The hSMG-1 in vitro ELISA assay was used to screen small molecule compound

libraries. The assay is based on the ability of hSMG-1 to phosphorylate p53 at serine-

15 (Braumbaugh et al, 2004). Immuno-purified hSMG-1 was used to phosphorylate a

recombinant GST-fused N-terminal fragment of p53 (p53Ni-66 GST fragment). The

specific phosphorylation event at serine-15 was detected by a phospho-specific p53

serine-15 monoclonal antibody (Cell Signaling Technology). In turn, this was

detected by the secondary HRP-conjugated anti-mouse antibody through the

oxidation of luminol resulting in the emission of light, which is detected and

measured by a plate reader (Packard Scintillation counter, Top Count™). In the

presence of an inhibitor of hSMG-1 the extent of p53 serine-15 phosphorylation

would decrease resulting in a corresponding decrease in chemiluminescence. The

positive control represents hSMG-1 activity in the absence of any drug. In the
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negative control a p53 double mutant lacking the hSMG-1 phosphorylation site, was

used as the substrate and is representative of the background reading.

Small molecule compound libraries (2480 compounds in total) were primarily

screened at a final concentration of 10 pM to identify any potential inhibitors. From

this initial screen 240 compounds were identified to have a percentage inhibition of

45 % and above. All 240 hits were then re-screened in duplicate at both 10 pM and 1

pM. The secondary screen highlighted 18 compounds which showed 45 % inhibition

and above at 1 pM (Table A.l).

A.3.2 IC5o Determination

IC50 is a common method for assaying drug efficiency in pharmaceutical screening

regimens. In this case, IC50 would be defined as the concentration of the drug needed

to inhibit hSMG-1 activity by 50%. Therefore to determine the potency of the 18 hits,

each compound was tested in duplicate at semi-log concentrations (Figure A.3) on

two separate occasions, termed A and B. The raw data generated was used to

calculate the percentage hSMG-1 activity in the presence of each compound at each

concentration, this was then transferred to a graphical form and the IC50 deduced.

The IC50 values of the hits identified in the secondary screen range from 254 nM to

inactive (Table A.2). The most potent inhibitor identified on the first testing was KU-

0055958 with an IC50 of 289 nM. The IC curve for KU-0055958 is shown in Figure

A.4 and this is contrasted with less potent compounds tested.

The IC50 screen highlighted the effectiveness of the drugs identified in the

secondary screen. To determine if the drugs were specific to hSMG-1, IC50 databases
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held within KuDOS Pharmaceuticals were analysed to determine the effect of each

compound towards other members of the PIKK family including ATM, ATR, DNA-

PK, mTOR and PI3 Kinase (table A.3). Analysis of the IC50 records show that KU-

0055958 is the only specific h-SMG-1 inhibitor identified with an IC50 of 289 nM,

this is a ten-fold order of magnitude less than the IC50 for ATM (3 pM) and the

compound is not active towards DNA-PK, ATR, mTOR or PI3 Kinase. The majority

of the other inhibitors of hSMG-1 identified in this screen where shown to be

approximately ten times more potent for ATM than hSMG-1, indicating that the

structure of the hSMG-1 active site is most closely related to that of ATM as opposed

to other members of the PIKK family.

KU-0055958 has therefore been identified as a specific and potent inhibitor

of hSMG-1 and is the lead compound identified in this screen.

A.4 Discussion

Genome instability is one of the main forces driving the onset and progression of

carcinogenesis. Genetic degradation is intimately linked with DNA maintenance

mechanisms. Therefore further study into these mechanisms will not only reveal the

biological impact of damage on the genome, but also uncover new paradigms for

prevention, genetic susceptibility, diagnosis and therapeutic intervention

(Hoeijmakers, 2001). On this basis, KuDOS pharmaceuticals have developed small

molecule inhibitors of DNA repair proteins, including ATM and DNA-PK, and aim

to extend this to other members of the PIKK family. These inhibitors may not only
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lead to the development of therapeutics but will also provide useful probes for

elucidating the role of each PIKK and defining the signalling pathways they regulate.

The newest member of the PIKK family, hSMG-1 has been characterised by

Brumbaugh et al. (2004) as a genotoxic stress activated protein kinase that displays

some functional overlap with ATM, in human cells. Therefore identification of a

novel and specific small molecule inhibitor of hSMG-1 could be used to dissect out

the role of hSMG-1 in the cells and to determine the extent of functional overlap with

ATM.

A high throughput in vitro kinase assay for hSMG-1 was developed at

KuDOS Pharmaceuticals. This was utilised to screen small molecule compound

libraries developed for the PIKK family. We identified an ATP-competitive inhibitor,

KU-0055958 that inhibits hSMG-1 with an IC50 of 0.289 pM. KU-0055958 shows

specificity with respect to inhibition of other PIKK family members (Table A.3).

Figure A.5 shows the chemical structure of KU-0055958. The critical oxygen

(highlighted in red) is believed to form a hydrogen bond within the hinge region of

the ATP binding site of hSMG-1. The aryl group (highlighted in green) is

hydrophobic and has been proposed to fill the ATP-binding site. The unmarked

region may act as a scaffold to correctly orientate the critical oxygen molecule for

hydrogen bond formation. Potentially, these areas could be modified to increase the

compounds selectivity, efficiency for hSMG-1 or cellular penetrance. However it is

important to note that the structural relationship of these regions with the ATP-

binding site of hSMG-1 can only be fully established from a crystal structure

determination of hSMG-1 bound to KU-0055958.
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This screen, as well as identifying a novel and specific inhibitor of hSMG-1,

also gave insight into the structure of the active site of hSMG-1. Most of the other

inhibitors of hSMG-1 identified in the second screen were approximately ten times

more potent for ATM indicating that the structure of the hSMG-1 active site is most

closely related to that ofATM, compared to other members of the PIKK family.

KU-0055958 has therefore been identified as a specific and potent inhibitor

of hSMG-1 with an IC50 of 289 nM and is the lead compound identified in this

screen. However systematic modification and evaluation of this lead inhibitor will be

continued until an IC50 value in the low nanomolar range is obtained.

In addition, kinetic analysis of KU-0055958 will be carried out to confirm

that inhibition of hSMG-1 by KU-0055958 is ATP competitive. Lineweaver-Burke

plots will be produced to determine the mode of inhibition and the Ki value of the

compound. KU-0055958 will also be subject to cell based assays to evaluate its

ability to inhibit hSMG-1 at a cellular level. Compounds which are promising in the

in vitro assay can behave unexpectedly in cells, showing little or no activity. This

may be because compounds are insoluble and therefore not taken up by the cell, or if

compounds are taken up, they could be rapidly broken down to give inactive

products. KU-0055958 may also be toxic to cells as hSMG-1 has been shown to play

a crucial role in NMD. To initially assess the effect of KU-0055958 at the cellular

level, an in vitro clonogenic survival assay will be used to study the effect of KU-

0055958 on ionising radiation induced cytotoxicity on different cell lines. The data

obtained can be used to determine the percentage cell survival in the presence of

different concentrations of the drug in combination with irradiation. Cellular IC50

value has also to be determined as a measure of effectiveness in vivo. Yamashita et al.
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(2001) have shown that hSMG-1 directly phosphorylates hUPF-1 at serine-1078 and

serine-1096 in vivo and in vitro. Therefore the phosphorylation status of these sites of

hUPF-1 could be used as a marker of hSMG-1 activity and used to assess the

function of hSMG-1 at the cellular level.
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2644
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H
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Domains: FAT PI3-K FAT-C

Figure A.l Schematic representation of the human PIKK proteins. The number of
residues is indicated for each protein. Three domains are common to all members of the
PIKK family, FAT, PI3-K catalytic domain and the FAT-C domain (Adapted from Shiloh et

al., 2004; Khanna et al., 2001)
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>50-55nt
Active NMD complex

Figure A.2 A model of nonsense mediated mRNA decay pathway. A multi-protein exon

junction complex (EJC) is deposited 20-24 nucleotides upstream of each exon-exon junction
after splicing. hUpf-3 is recruited to the EJC followed by hUpf-2. The first translation event

removes the EJCs from the mRNA. If translation terminates >50-55 nucleotides upstream of
the last exon-exon junction, one or more EJC remain associated with the mRNA downstream
of the termination complex. hUpf-1 is then recruited to bridge the terminated ribosome and
the downstream EJC, this interaction may trigger hSMG-1 dependent phosphorylation of

hUpf-1, forming an active NMD complex that triggers rapid decay of mRNA. The proteins

hUpf-1, hUpf-2, and hUpf-3 are labelled 1, 2 and 3 respectively. The translation apparatus
consists of the cap-binding complex (green), the ribosome (purple) and the poly(A)-binding

protein (dark blue), and release factors (dark green) (Adapted from Abraham, 2004: Singh &
Lykke-Andersen, 2003).
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Compound ID
% Inhibition

lOpIVI
% Inhibition

lpM
Compound ID

% Inhibition

lOpM
% Inhibition

lpM
KU-0051664 74.5 50 KU-0059083 86.5 79.5

KU-0055958 98.3 94.4 KU-0059089 90.7 45

KU-0059473 84.5 60.5 KU-0059090 86 46

KU-0056296 53.5 56 KU-0059097 96.8 79.4

KU-0056788 86.4 55 KU-0059098 97 44

KU-0058315 78 56.3 KU-0059103 94.2 61

KU-0058321 86.7 52.8 KU-0059919 64.5 50.5

KU-0058541 65.4 44 KU-0060027 80 46.4

KU-0058545 83.3 55.3 KU-0051840 74 60

Table A.l Hits identified in the secondary screen. Values for percentage inhibition are

averages of duplicates.
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Figure A.3 Plate layout for IC5« determination. All compounds were tested in duplicate.
DMSO (5% v/v) was used as a control. Positive control is shown in green. Negative control
is shown in red. p53 double mutant (SI5A/ S37A) substrate was used as the negative control.
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Compound ID IC5oA(pM) IC5oB(pM)
Average IC50

(ixM)
KU-0051664 2.226 1.485 1.856

KU-0055958 0.289 0.412 0.350

KU-0059473 1.983 1.620 1.802

KU-0056296 Inactive Inactive Inactive

KU-0056788 unavailable unavailable unavailable

KU-0058315 0.707 0.556 0.632

KU-0058321 0.527 0.204 0.366

KU-0058541 0.841 0.982 0.912

KU-0058545 1.242 0.752 0.997

KU-0059083 0.338 0.170 0.254

KU-0059089 0.318 0.963 0.641

KU-0059090 0.898 0.792 0.845

KU-0059097 0.541 0.187 0.364

KU-0059098 0.620 1.308 0.955

KU-0059103 0.598 0.832 0.715

KU-0059919 37.757 Inactive 37.757

KU-0060027 4.100 4.631 4.366

KU-0051840 Inactive Inactive Inactive

Table A.2 Compounds identified in the secondary screen and their IC50 values.
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KU-0055958

&
>

POTENT

IC50 = 0.289pM

0.1 10
Concentration (uM)

KU-0058545

CSc^ro
KU-0060027

LESS POTENT

IC50 = 1.242pM

0.1 10
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O.I 10
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Figure A.4 Inhibitors of hSMG-1. Three examples of hSMG-1 inhibitors tested. KU-
0055958 was shown to be the most potent inhibitor tested, KU-0058545 was less potent

where KU-0060027 was shown to be a weakly active compound. The structures and IC50

values (pM) are shown
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IC50/pM

Compound
ID

Structure hSMG-1 ATM ATR DNA-
PK

mTOR PI3
Kinase

KU-0055958 0.289 3.0 >100 >10 >10 10

K.U-0058321 0.527 0.041 NA >1 >10 >10

KU-0058545 1.242 0.034 NA 10 >10 >10

KU-0059083 0.338 0.057 NA >1 >10 >10

KU-0059089 0.318 0.008 NA >1 >10 >10
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IC5„/pM

Compound
ID

Structure hSMG-1 ATM ATR DNA-
PK

mTOR PI3
Kinase

KU-0059090 0.898 0.006 NA >1 <10 10.539

KU-0059097 0.541 0.008 NA >1 >10 10

KU-0059103 0.598 0.007 NA >1 >10 10

KU-0059919

(^\r°

37.78 0.1 NA NA >10 >10

KU-0060027 4.1 0.022 NA NA >10 >10

Table A.3 Comparison of IC50 Values. IC50 values are in pM. NA = data not available
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Figure A.5 Chemical structure of KU-0055958. The oxygen highlighted in red is likely to

form a critical a hydrogen bond within the ATP binding site. The hydrophobic aryl group

highlighted in green may fill the ATP binding site. The unmarked region may act as a

scaffold.
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APPENDIX B

BUFFERS AND SOLUTIONS

Ampicillin - a stock solution of 100 mg/ml was prepared and used at a final

concentration of 100 pg/ml. The solution was stored at -20 °C.

ATP (Boehringer) - a stock solution of 2.5 mM was made and used at a final

concentration of 0.5 pM. The solution was stored at -20 °C.

ATM Kinase Buffer - Hepes (50 mM, pH 7.5), Sodium Chloride (150 mM),

Managanese (II) Chloride (4 mM), Magnesium Chloride (6mM), Glycerol (10 %),

DTT (1 mM), Sodium Orthovanadate (0.1 mM).

Bovine Serum Albumin (Sigma) - 3 % Bovine Serum Albumin (BSA) was

prepared in Phosphate Buffered Saline (PBS) and used as a blocking agent. The

solution was stored at 4 °C.

Coomassie Blue stain -Methanol (45 %), Acetic acid (10 %), Coomassie Blue R250

(0.1 % (w/v)).

Destain 1 -Methanol (5 % (v/v)), Acetic Acid (7 % (v/v)).
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Destain 2 -Methanol (50 % (v/v)), Acetic Acid (10 % (v/v)).

Dithiothreitol - a stock solution of 1 M Dithiothreitol (DTT) was stored at -20°C.

DNA Loading Buffer - Glycerol (40 % (v/v)), EDTA (50 mM), Bromophenol Blue

(0.1 % (w/v))

ECL® Solution I - Luminol (2.5 mM), Coumaric Acid (396 pM), Tris (100 mM, pH

8.5). The solution was stored at 4 °C protected from light.

ECL® Solution II - Hydrogen peroxide (0.02 % (v/v)), Tris (100 mM, pH 8.5). The

solution was stored at 4 °C protected from light.

Ethidium bromide - a stock solution of 10 mg/ml was made and used at a final

concentration of 5 pg/ml. The solution was stored at room temperature protected

from light.

Freezing Media - Tissue culture media (50% (v/v)), FBS (40 % (v/v)), DMSO (10%

(v/v))

High Salt Buffer - Tris-HCl (50 mM, pH 8), Glycerol (5 %), EDTA (1 mM),

Magnesium Chloride (10 mM), Potassium Chloride (400 mM)
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IP Buffer - Potassium Chloride (250 mM), Hepes (25 mM), Glycerol (10 %),

Magnesium Chloride (2 mM), EDTA (0.5 mM), Sodium Orthovanadate (0.1 mM),

NP-40 (1 %).

Low Salt Buffer - Hepes pH 7.4 (10 mM), Potassium Chloride (25 mM), Sodium

Chloride(10 mM), Magnesium Chloride (1 mM), EDTA (0.1 mM)

Luria Bertani (LB) -bacto-tryptone (1 % (w/v)), bacto-yeast extract (0.5% (w/v)),

Sodium Chloride (1 % (w/v)). Adjust to pH 7.5.

Marvel - Marvel powdered milk (5 % (w/v)) dissolved in PBS-Tween.

NBA - Potassium Chloride (85 mM), Sucrose (5.5 % (w/v)), Tris-HCl (10 mM pH

7.5), EDTA (0.2 mM), Spermidine (0.5 mM), PMSF (250 pM)

NBB - Potassium Chloride (85 mM), Sucrose (5.5 % (w/v)), Tris-HCl (10 mM pH

7.5), EDTA (0.2 mM), Spermidine (0.5 mM), PMSF (250 pM), NP40 (1 %).

NBR - Potassium Chloride (85 mM), Sucrose (5.5 % (w/v)), Tris-HCl (10 mM pH

7.5), Calcium Chloride (1.5 mM), Magnesium Chloride (3 mM), PMSF (250 pM).

NP40 Lysis Buffer - NP40 (1 %), Hepes (25 mM pH 7.6), Potassium Chloride (400

mM), Sodium Orthovanadate (200 pM)
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NP40 Lysis Buffer 2 - NP40 (1 %), Tris-HCl (50 mM, pH 7.4), EDTA (1 mM pH

7.4), Sodium Chloride (150 mM), glycerol (10 %).

Phosphate Buffered Saline (lOx) - 100 tablets (Oxoid) are dissolved in 1 litre

distilled water. (Typical formula (g/1) Sodium Chloride (8 g), Potassium Chloride

(0.2 g), Di-Sodium hydrogen Orthophosphate (1.44 g), Potassium dihydrogen

orthophosphate (0.24 g))

PBS-Tween - Tween (0.1 % (v/v)) in PBS.

Proteasome Lysis Buffer - Tris-HCl (20 mM, pH 7.2), EDTA (0.1 mM), 2-

mercaptoethanol (1 mM), ATP (5 mM), glycerol (20 %), NP40 (0.04 %).

Resolving Gel - Acrylamide (6-15 %), Tris-HCl (390 mM, pH 8.8), SDS (0.1 %),

Ammonium peroxidisulphate (0.1 %), TEMED (0.08 %)

SDS-PAGE Running Buffer - Glycine (192 mM), Tris (25 mM), SDS (0.1 % (w/v))

SDS sample buffer (4x) - SDS (4 % (w/v)), Tris-HCl (250 mM, pH 6.8), EDTA (10

mM), DTT (0.2 M), Bromophenol blue (1% (w/v)).

Separation Buffer - EDTA (2 mM), BSA (0.5 % (w/v)) in PBS pH 7.2
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Stacking Gel - Acrylamide (5 %), Tris-HCl (123 mM, pH 6.8), SDS (0.1 %),

Ammonium peroxidisulphate (0.1 %), TEMED (0.1 %)

TAE Electrophoresis Buffer (lOx) - Tris-HCl (0.4 M, pH 8.0), Sodium Acetate

(0.2 M), EDTA (0.02 M, pH 8.0)

TEEP20 - Tris-HCl (10 mM pH 8.0), EDTA (1 mM), EGTA (1 mM), PMSF (250

pM), Sodium Chloride (20 mM)

Transformation Buffer 1 - Rubidium Chloride (100 mM), Manganese (II) Chloride

(79 mM), Potassium Acetate (30 mM pH 7.5), Calcium Chloride (13.5 mM),

Glycerol (15 %). Adjust to pH 5.8 with Acetic acid (0.2 M).

Transformation Buffer 2 - MOPS (10 mM pH 6.8), Rubidium Chloride (10 mM),

Calcium Chloride (13.5 mM), Glycerol (15 %). Adjust to pH 6.8 with Sodium

Hydroxide.

Transfer Buffer -Glycine (192 mM), Tris (25 mM), Methanol (20 % (v/v)).

Urea Lysis Buffer - Urea (7 M), DTT (0.1 M), Triton x-100 (0.05 % (v/v)), Sodium

Chloride (25 mM), Hepes (20 mM, pH 7.6).

Wash Buffer -, Hepes (25 mM pH 7.4), Potassium Chloride (150 mM), EDTA (1

mM), Sodium Orthovanadate (200 pM)
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