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CHAPTER 1 

INTRODUCTION 

Vibrational energy in a gas of polyatoinic molecules can 

be transferred either collisionally or radiatively. The rate 

of a collisional energy transfer process is characterised by a 

'relaxation time"' 	This quantity is defined by the 

relation 

d(LT)/dt = 	-AT/v ••..' (1.1) 

which describes how rapidly a particular degree of freedom 

reverts to its equilibrium temperature after being perturbed 

by an amount LIT • Radiative lifetimes of vibrationally 

excited states are, on  gas kinetic scale, long; even the 

shortest being of the order of tens of milliseconds. A molecule 

must therefore remain vibrationally excited for many collisions 

before it can fluoresce back to the ground state. Consequently, 

collisional relaxation usually dominates over radiative relax-

ation* The collisional process is characterised not only by 

being inefficient but by showing a vast range in inefficiency. 

Relaxation times at 1 atm. from 10 9  see. up to 5 sec.provide a 

challenge for both experimentalist and theoretician (1) 9 (2) 9 (3). 

It has been well established, even at high densities, 

that only isolated binary collisions are involved in the 

degradation of vibrational energy. Hence the measured 
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'relaxation time' is inversely proportional to the gas pressure 

and must be quoted at specified pressure and temperature. By 

invoking some model to define a collision (4) the observable 

relaxation time can be reduced to a molecular parameter, such 

as the probability per collision for a certain transition. 

Here we have the necessary link between the results of theoretical 

and experimental investigations 

One of the ultimate aims of chemistry must be the 

interpretation, of chemical reaction at a molecular level. 

Accumulation and interpretation of knowledge about vibrational 

energy transfer should help us towards this end. As in chemical 

reaction the energy transfer process involves an intramolecular 

• change caused by an intermolecular event. However the changes 

being only small a quite detailed specification of the systems 
possible on  molecular scale. Vie can then severely, test our 

grasp of molecular interactions in attempting to explain the 

wide range of observed results. Molecules, in order to decompose, 

must become highly excitea vibrationaily or, if newly formed, must 

rapidly lose' vibrational energy to achieve stability. Transferof 

vibrational energy is therefore, an important aspect of the 

current theoretical approach (5) to the prediction of absolute 

rates for uniinolecular decomposition and atom recombinationo 

Many gas laser systems, especially those operating in the 

infra-red e.g. CO2-N2 laser (6), depend for their design and 

operation upon an appreciation of vibrational relaxation processes. 
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 More generally, vibrational relaxation means that the 

thermodinamic properties of gases are time-dependent. By 

observing some suitable bulk property of a gas in a system 

incorporating a built-in time scale relaxation times ban therefore 

be measured • The classical techniques in the field the 

dispersion and absorption of' ultrasonic waves, measure the time-

dependence of the heat capacity against the frequency of the 

ultrasound. Until recently most of our knowledge about energy 

transfer tame from ultrasonic measurements (1) • Acoustical 

methods are1  however g  fundamentally limited in :scope since the 

energy which probes the translational-vibrational coupling is 

supplied to the translational mode. Very high, experimentally 

inaccessible temperatures are required before the populations 

of the higher energy modes in a molecule contribute sufficiently 

to the heat capacity to make them 'visible'. This upper energy 

limitto ultrasonic investigation (ev.1 9'500 cm) is used to define, 

rather arbitrarily, what we mean by a "Higher energy vibrational 

mode" 	Furthermore, after the translational temperature is 

perturbed the energy relaxes up into all the accessible 

vibrational modes and the observed relaxation time cannot refer 

to any one in particular. The technique is non-specific. By 

postulating a model (1), ultrasonic workers endeavour to improve 

their measurement ('h') by conversion into a reduced relaxation 

time (fi ) which is taken to. refer to the lowest vibrational mode 

In the molecule. Development (1) 9  (8) from the basic theory of 

Zener (9) has produced, on the whole, good agreement between 



calculation and experiment for the relaxation times of the low 

energy modes of simple molecules*  

The theory of energy transfer from the. higher modes is 

not well developed (10) 9  (11), reliable experimental results 

being scarceo 	n addition to simple collisions transferring 

vibrational energy directly to translation (V *--3,- T process), 

the, possibility of 'complex collisions' must be considered. 

These, involve an exchange of vibrational energy between the 

internal modes of collision partners (V -' V process). A 

simple exaxnle easily demonstrates' the great importance 'complex 

collisions' can have ,,in removing energy from the higher modes in 

a polyatomic molecule. Consider the.-mode in carbon 

dioxide (2349  cm). ' Direct de-excitation by simple collision 

would have a relaxation time of many seconds. (c.f. CO= 2143 cm,1  

= 4 sec (12) ) 
Transfer by a V-V process to the third 

harmonic of the 12 bendix; mode, then a rapid 'cascade' down to 

the. fundamental V2 which relates Wi th a 	of 6.5 ,j.ieec (1) might 

show an overall relaxation time of 7psec. The possibility of 

complex collision has improved the efficiency of the energy 

transfer by a factor of a million. 

Much more information is required about the relaxation times 

of higher energy vibrational modes and this research has been 

concerned with the further (13)  development of a technique for 

their measurement. During the construction of apparatus an 

ltrasonic method for studying non-ideality in polar gases was 

developed. This work Is reported at the end of the thesis. 
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CHAPTER 2 

METHODS FOR HIGHER ENERGY VIBRATIONAL MODES. 

Vlhat are the problems facing the experimentalist who wishes to 

study the relaxation of specific highor energy 'modes? After 

finding some means of exciting the vibration he must be able to 

measure how swiftly 'the energy returns to its equilibrium value. 

Such a system will measure a "relaxation time" as defined by (1.1) 

It is also possible to learn about energy transfer by introducing 

the perturbation at one level, say vibration, azid watching the 

energy reappearing, after a time lag, at another level, say, 

translation, c .f. the 'spec trophone'. ILowever, without being 

aware of the degradation mechanism.one isn't fully justified in 

equating this time lag with the "relaxation time," of the specific 

mode initially excited (see p.(S). 

Absorption of suitably energetic radiation makes the specific 

excitation of an infra-red active mode easy.. Otherwise, 

generation of a high translational temperature in the gas, as in 

a shock-tube, can be used to non-specifically excite all the modes 

In the molecules. Furthermore, sonievibrationally excited species 

e.g. N2(V=l) '(14) are extremely stable to both collisional and 

radiative degradation. A high concentration of these, allowed to 

mix with a gas of polyatomic molecules, will increase the 

vibrational temperature of the most nearly resonant mode (15 (16)0 

For sinail energy differences this V<--).V transfer may be very rapid 
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e.g. N2(2,331 cn7 1-) and CO2(2,349 cnr') (6) or N2 and CO(2143 cm'(17). 

On the other hand, a considerable mismatch may provide an 

opportunity for measuring a slow VoV process e.g. 

CO and CH., A 617 cm (18) Lastly, when the heat of a reaction 

appears largely as the vibrational energy of the product, 

chemically activated molecules (19), excited to very high 

vibrational levels, are made available. 

How have these sources of vibrationally excited molecules 

been exploited in the current techniques for relaxation measurement? 

THE SPECTROPHONE: Having excited a. particular vibrational mode 

by irradiating the gas at the appropriate wavelength, the energy 

is couisiona1].y degraded to translation. If the radiation is 

modulated at sonic frequencies, then there will be a corresponding 

oscillation in the translational temperature, which, in a 

constant volume system, will generate a sound wave. Because of 

relaxation this sound wave will lag behind the modulated radiation 

input. In principle, measurement of the phase lag provides an 

idea], method for preferentially studying energy transfer from 

specific vibrational levels. Since the object of this research 

has been the design and operation of a 'reliable' spectrophone, 

further comment on the topic will be reserved for the next chapter. 

THE SHOCK TUBE: 	High translational temperatures are rapidly, 

uniformly and homogeneously generated in a gas by the sharp 
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adiabatic compression associated with the passage of a shock 

wave. Gas .at ambient temperature ahead of the shook must pass 

through a region of change, the "shook front", before returning 

to equilibrium at the much higher temperature of the 'shocked' 

sample. Within some ten collisions of the incident shock the 

molecular motion has been randomised to a nev translational 

temperature • For all but monatomic gases the ensuing 

redistribution of energy among the translational, vibrational 

and rotational modes extends the shock front.. Investigation 

of shock front structures has therefore been widely used (3) 

for studying the mechanics of energy transfer at high temper-

attires (800 	5 90000K). 

Because of fluid dynamic constraints, the vibrational 

relaxation region is one of essentially constant pressure. 

Therefore, as the translational temperate of the gas falls 

(in order to supply energy to the vibrational modes) there is 

a corresponding rise in gas density. Various techniques have 

been developed (1), (3) to study the resultant density profile 

at the shock front. By following the relaxation of the 

translational temperature, however, only a general rate constant, 

describing the flow of energy into all the accessible vibrational 

modes, is measurable. 

There have also been several attempts at defining the 

vibrational temperature in a shock front. The growth of the 

infra-'red emission from shock-heated gas hasc been used to 



follow the excitation of specific modes. Several molecules, 

including carbon monoxide (20) 9  (21), carbon dioxide (22) and 

the hydrogen halides (23). have been studied in this manner. 

Although still a matter of .  debate (3) alkali metal atoms in a 

shock front are thought to follow the vibrational rather than 

the translational temperature of the gasi allowing measurement 

of vibrational excitation by the sodium line reversal 

techniques (24)0 	Obviously the shock tube's future in this 

field will depend upon the discovery of observables sensitive 

to specific vibrational temperatures. Several ideas of less 

general application than those described above already seem 

promising. The method of Richards and Sigafoos (25) for methane 

serves to illustrate the type: since only vibrationally excited 

methane molecules can absorb the 1470A  Xenon resonance radiation, 

the continuum of the first electronic level starting from 

the observed absorption coefficient is a function of 

the vibrational temperature. 

QUENCHING OF VIBRATIONAL FLUORESCEWCE: It has already been 

stated (p. 1) that collisional relaxation usually dominates over 

radiative relaxation. . If, however, the relaxation time and the 

radiative lifetime are of the same order of magnitude the two 

processes will compete. Under these circumstances, for an 

optically thin gas (no self-absorption), the 'radiative lifetime', 

being independent of both pressure and temperature, can be used 

to gauge the rate ofco1lisiona1 degradation. Applying these 

ideas I,iillikan has developed a quenching experiment to study 
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relaxation in carbon monoxide mixtures (26), (27) 9  (28). 

• 	co* 	co +h. ...........(A) 

CO + M * CO + M + K.E. .....(B) 

The radiative lifetime corresponding to(A)is 0.033  sec., 

while the relaxation time (B) at 3000K and 1 attn. pressure is 

>1 sec. if II is Co or At Under strict experimental, conditions 

the carbon monoxide, raised by irradiation to a vibrational 

temperature of l,000°K9 returns all the energy as resonance 

fluorescence. If the chance of collisional degradation is 

now increased by introducing, in known amounts, some more 

efficient collision partner M (e.g0 H29  CH4) the intensity of 

the observed fluorescence is decreased. At 'half-quenching' the 

rates of the radiative and collisional. processes have been 

equalised. 

Another consequence of competition between radiative and 

collisional energy transfer has been exploited at Edinburgh, 

where a spectrophone experiment (see p.6 ) has been used to 

measure the relaxation times of pure carbon monoxide (12) and 

the hydrogen halides (7). 	Incident energy absorbed by the gas 

but lost in fluorescence cannot contribute to the collisionally 

generated optic-acoustic signal. Comparison, therefore, of the 

signal level in the pure gas with that developed after fluorescence 

has been fully quenched by some efficient collision partner e,g, H2, 

leads to a value for the pure gas relaxation time. 
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SPECTROSCQPIC. METHODS: Both absorption and emission spectroscopy 

have been. used, to follow directly the redistribution of energy 

among the vibrational, levels of highly excited molecules. 

Excited species' formed in flash photolysis experiments (29),e.g. 

d02 	ClO: 0  

O(3P) + C102 - 02 + ClO + 61 Kcal. 

have ,been studied by recording the ultra-violet absorption 

spectra at progressively longer delay. times after the flash, 

Hydrogen chloride, chemically activated during' its formation in 

the reaction 

H + C12 -+ HC]Y + Cl + 45 kcal., emits infra-red 

cheiniluminescence used by Charters and ?o]..anyi. (30)  to determine 
the populations in the various vibrational and rotational levels. 

Such techniques have been 'usefully applied to a number of simple 

systems. 

CONCLUSION: Of the two problems posed to the experimentalist 

at the outset of this discussion it has been the second,. the 

measurement of specific vibrational, temperatures., which has 

proved more difficult. No generally applicable method has 

evolved. A suggestion by Gauthier and Wlarcoux (31) might give 

a lead to future developments. Since the intensity of a mode's 

infra-red absorption depends upon the rate of change of dipole 

moment during vibration, the first excited level should absorb 

more strongly than the ground state.' They applied this idea 

to the ') 3-mode of nitrous oxide. Now, if tunable I.R. lasers 
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become available their highly monochromatic output will permit 

a much sharper distinction between the ground and excited states 

to be exploited. By tuning the laser radiation to a unique 

rotational line in an upper level the observed absorption 

coefficient will give a specific and instantaneous (rotational 

relaxation being very rapid) measure of the vibrational 

temperature of the mode. 

/ 
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THE OPTIC .ACOUSTIC EFFECT AND ENERGY TRANSFER. 

That certain gases, when subjected to modulated irradiation, 

emit sound was discovered independently by three workers as 

early as 1881 (32), (33), (34). One of these Tyndall, 

establiéhed that the pressure rise was caused by absorption of 

energy near the red end of the visible spectrum, now known to 

be the infrared region, but the lack of a convenient sound 

detector halted further progress. Not until 1938 was interest 

in the 'optic-acoustic effect' revived. Aided by a deeper 

understanding of the interactions between molecules and radiation 

and by the availability of developed microphonic and electronic 

technique several workers constructed optic-acoustic gas  analysers 

(35) 9  (36), (37). By incorporating a rnonochromator into his 

equipment Veingerov (38), using the strength of the optic acoustic 

signal as a measure of the gas's intensity of absorption, 

recorded infra-'red spectra of good resolution. This device was 

called a "Spec trophonet. 

To date, all attempts to measure relaxation times with the 

Spectrophone have been based on Gorelik's original suggestion (39). 

He pointed out that if there is a time lag between the absorption 

of a vibrational quantum and its degradation to thermal energy, 

then it should determine a phase difference between the modul- 

ation of the incident radiation and the emitted sound wave (c.f.p.() 

Although, according to an analysis by Cottrell (40), the 

frequency dependence of the mean translational temperature is also 
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determined by the translational-vibrational relaxation time, 

the effect was later (1). shewn to be probably very small 

(1 in io-lo). Delaney (41) confirmed this estimate, being 

unable to experimentally detect any change. 

Theoretically, the optic-acoustic effect has been 

treated in two ways. Both, the kinetic-molecular treatment 

used by Delaney (41) and Kaiser (42) and the thermodynamic 

treatment started by Gorelik (39) and developed by Cottrell 

and MeCoubrey (1), predict the same frequency dependences (13) 

for the phase and the amplitude.of the sound wave. The 

treatment due to,Cottrell and MeCoubrey will be. followed. 

We consider a volume of gas whose linear dimensions 

are small compared with the length of the sound wave which 

corresponds to the frequency of modulation of the infra-red 

radiation. For an average gas at a frequency of a few hundred 

cycles per second the wavelength of sound is between 10 and 

100 cm., thus this condition is easily fulfilled. The state 

of the gas is characterised by two temperatures, Ttr and Tvjb. 

These are the translational (and rotational) and vibrational 

temperatures and it is assumed that they are not in equilibrium 

with each other. 	Wtrdt and  Wvib4t are the energies received 

from outside during time dt by each of these groups and C. and 

Cvjb are their respective heat capacities. The energy 

transrnttt.ed in time dt from the group at Ttr  to the group at 

Tvib is o( (Ttr - Tvjb) dt and the energies given by each of 



these groups groups to the environment (at temperature T 0 ) are respectively 

- Tj dt and3,(T 4 . 	- Tj dt. The principle of conservation 
V 

of energy gives the equations: 

	

C 1 tx, +G((Tt - Tvjb) +31(Tt - T0) = Wtr 	(3.1) 

and cjTvib +(T
vjb - Tt) (Tvib - T0 ) 	••'• ( 3.2)vib dt 

17 t = O since the volume of the system is assumed constant, and 
Wvjb = W0  + Aexp(i(it), Wbeing the angular frequency of 

modulation of the radiation and W ot  A being constants. The 

temperature of the gas may be expressed as 

Ttr 	Ttr +6exp(i&t) ............ (3.3) 

Tvib=Tvib+BXP(it)t) •........... (3.14) 

Ois the oscillatory part of the translational temperature 

which, for a constant volume system, is proportional to the 

oscillatory part of the pressure. Ye therefore require to 

ca1culateas a function of the oscillatory part of the energy 

input. Inserting these expressions for the temperature, 

considering only the oscillatory part of the equations, we have 

...............,.. (3.5) 

where: L\ =o((,+fl) 	icXG +ACtr +/3,Cyib) 	trCvib 

and 	= 0tr + Cvjb 

The assumption is now made that energy transfer from vibration to 

translation is much quicker than energy transfer from the 

apparatus to the environment. 
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Thus 

and 	64= 	ocR 
icC 

which leads to 

= 	A 
/ 	2 	2\. 
C(1+trevib 

If ,d is the phase angle between 94 and A, 

Tan 	= 	0< 	
(3 • 7) 

Cii CtrCvib 

We now require a molecular interpretation for 0< 
The energy transmitted in time at from the group of 

molecules atTtr  to the group at Tvib  is 

dE = 0< (T+ - Tvib)dt 

dt 
= 0< AT where iS T= T, - Tvjb  

But 	dE = 	_Cvjb.! 	!'• 	•••••••• (3.9) 
dt 	 dt 

Therefore, from (3.8) and  (3.9) 

iu.dL\T = 	< 
at 	Cvjb 

and comparing this with (1.1) we see that 

Cvib 
- 

2;' 
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For a two state gas (vibrational levels 0 and i) 

1= f .LU  ,., 	 + 	f,% 
LSJ.

, 

where f 0  and f01  are transition probabilities per molecule per 

second for the 1 >- 0 and 0 	l processes. 

Now:- f01  = f10  exp(-h/kT) 	 (3912) 

whereis the vibration frequency. 

For exp(-h")/k2) <<1, (3.11) becomes:- 

= flO  

and hence o = 	Cvjb f10  . . ...• ... ... . . .. ........ (3.13) 

With the more usual energy transfer notation vthere Ctr + Cvib  = 

and Ctr = c ,(i)may be written as 

Tan =l0 C0 
C.J. 	C 

or as 	Tan (' - 0) = 	..........,..... ( 3.lLi.) 
10 CO 

defines the phase (0) of the oscillatory component of the 

translational temperature relative to the modulated light input 

and, substituting for 0< in (3.6):- 

• 	 A 

• 	 t 	&)Co f 1 + 	I cJ * , o,..., (3.15) 

1lo2 t) 
gives the amplitude of the 

fluctuations. Consider two oases; for modulation frequencies 

low compared with f 10, then:- 
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-<<co (1) sound wave is 900  out of phasewith vibrational 

energy input i.e. (/2 Ø)'J0 (Eqt. 3.111), and; 

(2) amplitude is inversely proportional to the 

frequency i.e. 	Ali 	JC 	(Eqt. 3015)9 

but asCii becomes comparable with f, then:- 

w>f 	(1) a phase lag deves, defined by 0 = tan wl._~ ((3.14); 

CC especially for ") large), and:  

(2) amplitude becomes inversely proportional to the 

second power of the frequency. 

The full relationships are plotted, in Fig, ifor the phase 

change and in Fig, 2 for the amplitude. The frequency 

dependence, therefore, of either the phase or the amplitude 

of the optic-acoustic signal should give information about gaseous 

relaxation times, 

Of the several assumptions required by this analysis of 

Gorelik's model only one seems capable of deviating sufficiently 

from reality, under practical conditions, to invalidate the 

theory: that 	 Here, it has been assumed that the 

transfer of heat from the gas to the environment occurs at a 

rate negligible in comparison with that of the relaxation 

mechanism. Refining the basic equations to take account of the 

heat conduction effect Deany (111) defined a parameter )a which 

must be<<w for va2leffectc to be negligible. 

= K.112  
/ 	2-  

,O.Cma 

where: K is the thermal conductivity of the gas, p is its density, 
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Cm the specific heat per unit mass and 'a' $  the radius of the 

vessel (considered spherical). The relevant gas property, 

termed the "thermal diffusivityttL\ = 	should give an 

idea of when and how the simple Gorelik model might be expected 

to break down. Introducing a frequency dependent phase lead 

and decreasing the amplitude of the acoustic pressure s  thermal 

diffusivity can interfere with both the obeorvablea suitable 

for relaxation studies, For an average gas e.go carbon dioxide 

at $ *T *P L ' 101Cm2ee&"l, giving,p ' 1eo. fora vessel of 

radius 2. cm. ' However, for a light gas, e.g* methane. at 

0.01 atm. pressure \1 300  soc, and a high modulation 

frequency would be required to damp the effect, the calculated 

phase lead at/5 /sec (1571  rad.sec) bQt " iø? • Furthermore, 

the efficiency of the relaxation process is also important for 

the continuing satisfaction of the Inequality 0)fl,21. If, in 

addition to /3, and/3 )_increasing c< undergoes a large and 

oimultancouo xeductión e.g. 002/N2 mixtures (see Chapt.7) then 

this crucial condition and hence the validity of the Gorelik 

treatment may be easily broken. Experimentally, however., it 

is possible to focus attention on the relaxation phenomenon by 

raising the modulation frequency (W). to a sufficiently high level. 

Elsewhere it w6s .  assüthad that eV (- k/kT) << I and that the 

gas had .a uniform temperature. 	For a gas at 3Q0j 	and with a 

vibration frequency of 1 9 000 cm 	exp (-h/kP) = 8x10"3. The 

latter, however, is . not strictly true, but t, Delaney (41) 9  on 
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calculating the temperature distribution and hence the average 

temperature for spherical and cylindrical vessels, obtained 

results agreeing with those of the simple theory, Delanay, 

in his extensive study of the optic-acoustic effect (41) ,(43), 

has also experimentally confirmed the predictions of the simple 

model within its range of applicability* 

In addition to the phenomena due to those two 

fundamental procesce, relaxation and heat conduction, further 

frequency-dependent effects can arise from the properties of 

the apparatus • Indeed, recognition and elimination of 

spurious phase and amplitude changes, defines essentially 

the problem of 'spec trophony' • There have been two lines of 

attack. The first, pioneered by Slobodskya in Russia(44), 

sets out to measure phase lags while the second, pursued by 

flecius in the U.S.A.(45) 9  uses the fvequency..deparxdencc of the 

signal amplitude. 

XITL DWPMET: Although there have been important 

developments in the technique, of spectrophony over the past 

fifteen years, the basic experiment has remained the same (Fig.3) 

A beam of infra.red radiation s  condensed and filtered through 

an optical .ystn, is modulated by a motor-driven chopping 

disc and focussed into a spctrophone cell filled with the 

absorbing gas. The optic-acoustic signal generated is detected 

by a sensitive microphone whose output can be compared with a 
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reference for either phase or amplitude properties. Since 

the bulk of gas in the cell ' and the microphone diaphragm are 

in oscillation, gross interference from resonances is 

possible and can modify both phase and amplitude readings. 

Phase changes, experimentally determined, can be split 

into four components: 

ØExp = ØRelax + ØDia + ØElec. + Øgas 3944(3017) 

where: 	Ø1elax is the required phase lag 

ØDia. is the phase shift due to diaphragm properties 
*1cc. is the phase Shift caused by the Electronics 

of the detection system 

ØGas* is the phase shift caused by variations in 

gas properties e.g* thermal diffusivity, 

sound velocity. 

Slobodskaya's exploratory work (44), although not very 

productive in terms of relaxation measurements, (established 

an approach which formed the basis for a study on carbon dioxide-

nitrogen mixtures by $lobodsk ya and Gasilevich (46). Their 

spectrophone system (Fig94) provided a reference signal of 

adjustable and measurable phase from a photocell and lamp for 

an electronic null-comparison with the microphone output *  

Phase lags were measured for a series of mixture compositions 

at a number of modulation frequencies but at constant gas. pressure. 

Since nitrogen is very inefficient in de-exciting carbon dioxide, 

the relaxation lags, very large at low CO2 concen rations, decrease 

with the proportion of nitrogen until, at high CO2 concentrations 



they fall below the detection level of the system. Therefore, 

by assuming the apparatus phase shift (ØDia + ØEleo + ØGas) to 

be independent of mixture composition its value is determined 

by the asymptote of the phase characteristic* That the lags 

measured relative to this level for the 4.3ji band described 

relaxation times () self-consistent for the various 

modulation frequencies, was taken as proof of the method's 

validity. No direct confirmation about the behaviour of the 

apparatus phase shift was, however, attempted and the phase 

characteristic associated with the 2.7 ,p. mode was anomalous, 

passing through a maximum. Although the results do not 

follow the simple relationship // o (O2) an extrapolation 

based on its applicability has been forced (41) to give a 

relaxation time of 12 ,).lsec for the 4 .3 ,,u band in carbon dioxide. 
Thus, essentially Slobodskaya's approach requires the 

relaxing gas to be mixed with an inefficient diluent which 

lengthens the relaxation time of the mixture • By measuring 

phase changes as a function of mixture composition an estimate 

of the apparatus phase shift, assumed constant for constant 

gas pressure is given at the fast-relaxing end of the scale and 

is used to correct the observations made at the slow-relaxing 

end. Now, if the possibility is accepted of controlling the 

apparatus phase shift, even under conditions of changing 

pressure, a much more flexible experiment is conceivable. 

Lowering the gas pressure reduces the collision frequency and 

hence lengthens the relaxation time. • Both single gases and 
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mixtures can, therefore, be etdicd by the reeeuredependcnco 

of their phase shifto and the 1nuup3rticipation of. the appcwatu 

con be checked with foot relaxing gasco in thich Øeiax io zero. 

A firot attempt at the pi suro'dopendont method vas 

reported. by Jacox and. Dauer (47) vtho ob rved the phase chifte 

in o number of fmeeo at a high modulation frequency (2.550  ko/sec). 

Noviover t  gross deviation from the theoretical linea, thought to 

have been due to the inertial phase lQg of the microphone (Ø )ia), 
completely obscured any connection the recults may have had with 

relaxation px'ooesseo. 

Delaniy (41),' aouing phaso lags electronically and 

determining the inherent microphone phase shift (Ole) by a 

reciprocity technique before each measurement, studied 

(at 520 c/eec) carbon monoxide and carbon dioxide by both the 

Slobodekayctype and the 	urepond.ont methods, Although 

the performance of the apparatus seema to have boon faultless 

the gas puritios were suspect; the carbon monoxide reu1t at 

13 peso being too short by five, orders of magnitude (12). 

Vihcn examined over a pressure range, the 4.3,,u band in carbon 

dioxide was ouxd to relax in 2.3 soo, but vhon a series of 

'CM2/172 mixtures W40 analysed in tero of a linear relation 

and 002), the relaxation time wco estimated at 

Upee. Delany auXcoto that the 2 a3,yiscc value has been 

lovered by ipuzitios. 

Recently, the frequency response of an I .R. gas 

analyser has been expressed in terms of thcaol effects, 
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influence of capillary passages and the relaxation time of the 

gas (48). An electrostatic compensation technique was used 

tO trace the frequency-dependence of the signal phase in 

carbon monoxide-nitrogen mixtures between 2 and 100 c/sec. 

By fitting the results to the theoretical expression a value 
of 300 1.isec emerges for the relaxaion time of caibOn monoxide: 

very short. The author invokes impurity effects, but 

attempting to. separate several closely involved phenomena in the 

analysis of results must always be inferior to experimentally 

limiting attention to one. This approach can have little 

future, therefore, in energy transfer studies. 

Turning now to the work involving the frequency-dependence 

of signal. amplitude, Vioodmansee and Decius (45) have, reported 

a study on carbon monoxide in which they find' 2 meec. Once 

more the fact that the gas produced any optic-acoustic signal 

at all proved its impurity (p. ? ) • It is unfortunate that 

carbon monoxide attracted the attention of spectrophone workers 

during the development of their equipment because its very long 

relaxation time is exceedingly sensitive to impurities and in 

a static metal system adequate purity control is impossible. 

However, Decius's measurements were also hampered by resonances 

in the cell. Although these were thought to be standing waves 

made possible by the compliance of the microphone diaphragm, 

Helmholtz resonances set up by the shape of the cell cavity are 

much more likely. Redesign of the system has cured the 

resonance problem and the ) mode in methane is being studied 
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at modulation frequencies up to 1 9600 c/sec. (49).  A novel 

spectrophone system for unambiguously isolating relaxation 

phase lags from other gas and apparatus effects was suggested 

by Cottrell (50) and investigated by Read. (13). 

• 	

:eII1.TL5tr=:. 

Radiation. 	 RadiaIon. 

'DOUBLE CELL 5PECTROPHONE 

Optic-acoustic signals of equal amplitude generated in two 

volumes (1 and 2) of gas separated by a microphone diaphragm 

will be in phase with one another when the microphone diaphragm 

remains, stationary (. 	Dia = 0) and no signal is detected 
(..ØEl 0). 	By matching gas properties. 

(.. Øas = 0), the 
phase lag which has to be introduced, into the beam 

illuminating a fast-relaxing gas in cell 1 is a' direct measure . 

of the relaxation lag characteristic of the gas in cell 2. 

Unfortunately, while the diaphragm had to be stiff to separate 

the gases, the detection of the low, signals near to balance 

demanded great flexibility.. 

Incompatible. 

These two. requirements were 

Some of the advantages of this conceptually elegant 

device were salvaged in a two-cell spectrophone system which 

Read (13)  then developed. Instead of generating a reference 
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signal for phase comparisons with a photocell it was supplied 

by a second spectrophone filled with a fast relaxing gas. By 

matching cell sensitivities and gas properties it was hoped to 

eliminate most of the apparatus phaseshift (ØD1a + ØGas + 5ZSE1). 

Several gases (CO29 N20,C}14) were briefly studied at one 

modulation frequency (189 c/see) and a relaxation time of 

100 isec for the 	mode of methane was reported (51 ). 
The initial promise of the two-cell approach encouraged 

further work to confirm its preliminary results and to 

establish the technique more solidly. These aims motivated 

the research currently being reported. 
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CHAPTER 4 

"THE TtiO-CELL SPECTROPHONE EERI1J1E!TT". 

As the two-cell spectrophone experiment had seemed to offer 

a superior method for studying relaxation processes involving 

higher energy modes it was decided firstly to consolidate on 

lead's results (13); then to establish the experiment on an 

absolute basis by measuring an ultrasonically determined mode 

e .g. ) 4 in methane. 

In this system phase comparison of signals from two 

spectrophone cells is used 	A fast-relaxing gas generates 

a reference signal in one cell with which the lagging output 

from a gas with a long relaxation time is compared. It 

should be possible, therefore, to compensate to some extent 

for non-relaxion phase shifts. 

SPECTROPHQNE: The brass spectrophone cells (Fig.5) have 

condenser microphone diaphragms made from metallized ' elinex' 

po].yesterfi1m (35 gauge) stretched on an. adjustable tensioning 

ring. The position of the condenser backplate 8  also 

adjustable. A 2 cm* absorption path is bounded by polished 

sodium hióride windows. The cells are connected to a 

conventional high-vacuum system by needle valves, and external 

vibration is iaimimised by fixing the spectrophone to a rubber'.. 

mounted steel plate supported from a main wail of the building. 
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OPTICAL SYSTELI: (Fig.6): Infra-red-energy from two electrically 

(13 v, 120 amp) heated nichrome rods (7 cm. long, 0.3 cme dia.) 

is focussed by 23 cm. dia. front-silvered mirrors. The 

radiation is modulated by a chopping disc, driven by a Synchronous 

motor. The phase of one of the beams is controlled by a movable 

slit which can be rotated about the same axis as the - rotating -

disc. Angular movement of the slit shifts the path of the 

light beam round the are of the chopping disc s  hence altering 

its phase of modulation with respect to the other beam. When 

necessary, low energy. radiation ( < 1 ,70O cm) is eliminated 

by an optical filter (Barr & Stround calcium aluminate glass 

type BS-39B). 

ELECTRONICS: Each speotrophone has a detecting channel, one 

of which is shown as a block diagram in Fig.7. The diaphragm 

acts as the tuning capacitor of a solid state Franklin 

oscillator and produces a 10.7 iic/s carrier wave whose 

deviation is proportional to pressure fluctuations. Conventional 

frequency modulation and detection techniques, followed by 

selective amplification of the audio output, allow the two 

signals to be displayed on an oscilloscope for phase comparison. 

Basic signal output is monitored by a long-time-constant 

millivoltmeter and a meter indication is given of. carrier 

frequency. 
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EXPER.flffENTAL PRCCEDUE; The sensitivities of the microphones 

in the two cells were matched as closely as possible, using a 

loudspeaker driven at the chopping frequency to provide the 

input. Complete matching of the cells was never achieved. 

In fact microphone sensitivity was not a constant s  the 

diaphragms appearing to "mature" for several days after 

fitting until the sensitivity reached a relatively constant 

value which drifted with changing environment e.g. temperature. 

The Itma+aIjng tt  was thought to be due to the natural 'relaxation' 

of the plastic material at points of strain on the tensioning 

ring. After assembly and pumping, the spectrophones were 

filled with gas and the optic acoustic signals, observed on the 

oscilloscope, brought into coincidence by manipulation of the 

phase-shifting mechanism, a precision of about 1 10 being 

obtained. 

The experimental phase lags were plotted against the 

reciprocal of gas pressure and compared with the curves defined 

by (3.14) 

tan0 ZP 

where , is the phase lag, tj is the modulation frequency in 

radians/sec., 2' is the relaxation time at 1 atm., and p is 
the pressure in atmospheres. 

MATERIALS: Infra-red analysis was used as the criterion of 

purity for all the gases used. 
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CHL0R0TRIFLU0ROTHANE: (I .0 .1. 'Arc ton 13 1 ) was chosen as 

the reference gas. A strong infra-red band around 3.150 cm 

absorbs energy which is expected to relax rapidly by complex 

collisions into the lowest vibrational level which has a very 

short relaxation time. (52). Cylinder 'Arcton 13'  was purified 

by low-temperature distillation. 

Carbon Dioxide was prepared by heating sodium bicarbonate, 

dried over magnesium perchlorate and phosphoric oxide, and 

stored over phosphoric oxide for several weeks. 

1thane from a cylinder was purified by low-temperature 

distillation, and dried over phosphoric oxide. The vapour 

pressure was 8.3 cm. at -183.1°C. 

Nitrous oxide was the middle fraction from a low-temperature 

distillation of a cylinder sample, dried over phosphoric oxide. 

RESULTS: Signal phase was independent of amplitude over the 

accessible range. This. was determined with CC].F3 in both 

cells, controlling signal amplitude by varying source intensity. 

Initially a relaxation phase lag for carbon dioxide was 

sought by noting the phase differences between a series of. 

pressures of CO2 in cell 1 and a fixed pressure. of CC1F3 in 

cell 2. However, as the pressure of CO2  was reduced, the 

phase of the signal form cell 1 was found to advance with 

respect to that from cell 2: the opposite direction from 'a 

relaxation effect. This was due to varying gas density 

influencing the phase, confirmed by observing a similar though 
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greater, effect between a varying and a fixed pressure of CC].F 3 . 

Another series of experiments showed that if both cells 

were filled to the sane pressure with the same gas, a pressure-

dependent phase change was observed, although ideally there 

should be no such change under these conditions, since any 

phase changes in one cell should be cancelled by equivalent 

phase changes in the other. Several of these phase 

characteristics are shown in Fig. 8. The degree of 

mismatch between the cells appeared to be the crucial factor 

in determining the size of. the effect which could become large. 

Before making relaxation nasurements, correction 

procedures to deal with these phase changes had to be devised. 

The first was compensated for by generating the reference signal 

in a pressure of CC1F3  which matched the density of the slowly 

relaxing gas.. Correcting for the cell mismatch by applying the 

data in ' ig.8, however, involved some uncertainty, there being 

two equally applicable but different mismatch curves for each 

pair of gases • It was therefore essential to minimise the 

mismatch. 

Phase lags, measured in a number of gases at two 

modulation frequencies (189 c/sec. and 283.5 s/sec.), were 

analysed by Read's (13) correction technique and interpreted 

as relaxation phenomena. Only high energy modes being 0  
examinable through the radiation filters currently available 

it was not possible, at this stage, to establish the validity 

of the interpretation by studying an ultrasonically determined 
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mode. However, the good agreement of the results, which were 

self-consistent for the two modulation frequencies, with Read's 

original work, even after. a complete apparatus rebuild, suggested 

that it was a fundamental and not an apparatus effect which was 

being observed. The sets of phase measurements agreed closely 

with the shape of theoretical relaxation curves (see Figs. 9 & 10) 

and the accumulated results are compared with Read' s values in 

Table 1. TWO-CELL SPECTROPHONE EXPERILT: APPARENT RELAXATION-TIES. 

GAS Mode Excited. L- At189c/sec. At 2835cec. 
At l89csec. 

R EAU 5resufts(13). 

CH4  ,3020cr? 70t15 	sec. 6I1I0fisec. 100±30)Jsec (51) 

CO2 32349crñ1  . - 	 17±3 173 17±6 

L 'N90  \)3,22235Cm1  13±6 - 13±6 

Although at this stae in the work the interpretation of the 

experimental results still depended on the assumptions that the 

observed phenomena were due to relaxation and that Arcton relaxed 

very rapidly, it was obvious that the spectrophone would have to be 

established absolutely. Due to the fundamental restrictions on 

conventional experimental techniques, relaxation times at normal 

temperatures were only available for the lowest modes in molecules. 

Generation of a usable optic-acoustic signal through these low-energy 

modes raised two problems. Once an efficient means of filtering 

the high-energy component from the incident radiation was achieved, 

enough power had to be made available at the long wavelengths 

transmitted to produce a useful pressure signal in the gas • This 
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second problem, on account of the spectal distribution of the source 

emission, later proved to be the controlling factor in most 

experiments. 

During the course of this work a 'Peekel Phase Meter' 

(Type FB.120) was incorporated into the system to supersede the 

mechanical "i].l method" of phase measurement. An unforeseen 

discrepancy.betweeñ the theoretical and actual phase shift 

(0' actual = 0676 ,, )0' theoretical) produced by the rotating vane 

was revealed and subsequently shown to be due to the 4.5 cm. gap 

between the vane and the chopping wheel (see Fig.6). Since the 

energy emitted from the filament was condensed by a spherical 

mirror the incident angle of the radiation on the vañe changed 

with the vane's position hence introducing an' unwanted phase 

Change. The elimination of this discrepancy by constructing 

a vane almost in contact with the chopping wheel confirmed the 

explanation. This discovery made it necessary to revise the 

1relaxátion times quoted in Table 1 to the foliowirig.values :- 

At 189 c/sec. modulation, 2349 crnCO2• (12±2) x 10 see..  

3020 cm 1CH4 = (5ot4) x 10 6sc, 

At 283.5 c/sec Modulation, 2349 cmCO2  = (13±2) x 10sec. 

3020 cmcH4  x (464) x 10-6sec. 

AMMONIA AS AN ABSOLUTE REFERENCE: 	' 

By virtue of its very short relaxation time (< O.l5xl0sec(53)' 

and 'not too low energy (931-58--968,o8  cnf'1) the \)zmode in ammonia 
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seemed to offer a reasonable path towards establishing the 

spectrophone on an absolute basis. At this time radiation 

filtering was by some 'chemical filter' capable of removing the 

frequencies. corresponding to the "l"3 and 	modes whilst 

remaining tolerably transparent in the 900 - 1 1000 cniregion. 

Eventually formamide was found to answer these requirements and 

a critical assessment of source emission, absorption intensities, 

filter transmission and observed signal strengths established 

the belief that it was efficient in permitting the excitation of 

only the \)2 -mode. 

Construction of the "correction curves", by measuring the 

phase shifts with equal pressures of the same gas in both cells, 

in preparation for the NH3(92) / Arcton experiment gave the first 

hint of anomaly; the ammonia run producing a large phase change i.e. 

Arcton/Arcton, totalA 0 30 	Fig.11) 

but, Ammonia/Ammonia, total 	41 (c.f. Fig.8) 

Balancing the densities of ammonia and Arc ton and exciting 

only the \) i-mode in ammonia was expected to generate signals 

showing little pressure-dependent phase change (once corrected). 

Since relaxation of NH3-V2 is effectively instantaneous and that of 

Arcton is conceivably longish, a slight lagging of the Arcton 

signal with decreasing pressure would not have been surprising. 

The large phase lag observed was certainly nOt anticipated; the 

ammonia lagged behind the Ax'cton. Application of the correction 

factor wqs of little significance since the plot of phase lag 

against reciprocal gas pressure extrapolated to infinity. However, 
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another ammonia/Arc ton run with the gases in the opposite cells 

to the first experiment gave a more manageable set of phase 

values which were processed to give an indifferent fit to the 

theoretical line for a 150  jisee relaxation time (Fig.12) 

An explanation based on the modification of the physical 

properties of the Melinex polyester diaphragm by its absorbing 

large amounts of the compact, polar ammonia molecules seemed 

feasible. Support for this idea came from several sources. 

On observing the capacitance of the microphone in an atmosphere 

of ammonia, it was found to increase with the pressure of the 

gas and the time of treatment up to a maximum of +13 0/o its 

original value, whilst an ordinary parallel plate condenser was 

unaffected. Mé].inex film left in an ammonia atmosphere showed 

a, 1% weight increase and 1iteratC from I.C.I. described its 

einbrittlement and reduction in mechanical strength. Although 

subsequent 'correction curves' for Arcton, CO2 etc. showed some 

aggravation the physical nature of the absorption was established 

when the diaphragms regained their original properties after 

several days pumping. 

Hence, a progressive accumulation of ammonia within the 

polymer matrix increasing the diaphragm's inertia and affecting 

its rigidity seemed the only solution. Without doubt these 

factors must have played their role in ammonia's anomalous 

behaviour, but the root of the problem, not reached until the 

analysis of the methane experiments, was much more general. 
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METHANE as an ABSOLUTE REFERENCE: 

Sound velocity and absorption studies in methane have 

determined the relaxation time of the -) 4-mode to be 

2.0)isec((3 1 5J1sec) (54). Very close to the practical limits 

of interferometry the relatively high energy (1306 cm) of this 

mode made it probably the most suitable reference on which to 

establish' the spectrophone • A long wavelength path interference 

filter acquired from Perkin Elmer cut on sharply at 187 and gave 

a 70% transmission level at the desired wavelength • In addition 

to calibrating Areton, methane provided an opportunity of 

comparing different modes within the same molecule i.e. measuring 

the ') 3-mode (5.0)1se 	cij asn stL the eaL?/isAec 	iode.. 

These two crucial experiments altogether invalidated our 

previous interpretation of the spectrophone results. No phase 

lag was detected between the 93(3020 cm")' and the V4(13o6 cm) 

modes in methane, and the \)4-methane/Arcton run found the methane 

lagging behind the Arcton with decreasing gas pressure, to yield 

an apparent relaxation time of 507sec (Fig.].2). 

After some speculation about the possibility of the molecules 

initially going through a relatively stable electronically excited 

state before transferring the energy to vibration by an inefficient 

collisional process, it seemed most probable that the measured 

phase lags had, in fact," no connection with relaxation processes. 

Having reached this unwelcome conclusion the correct iource of these 

phase lags had to be traced. 

(I 
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PHASE LAG HYPOTHESIS: 

A good mathematical model for the critical processes occurring 

within a spectrophone cell was found in Heading (p.469) (55). 

Consider a particle of unit mass (i.e* the diaphragm) moving 

along the, axis OX under the action of the following forces:.' 

An applied force aCoswt (a and w being constants), which 

approximates to the pressure wave generated optic-acoustically 

from the trapezoidally-modulated infra-.red beam. 

A restoring force, proportional to its distance from 0 9 ..n2X. 

This is the critical factor in the analysis, n being the natural 

frequency of the system: when w = n the system comes into resonance. 

Apart from the mechanical propertieà of the diaphragm, the influence 

of the gas surrounding it must also be considered. Obviously the 

gas pressure behind the diaphragm reinforces 'the restoring influence 

of the material's tension and hence raises the natural frequency of 

the system. However, during, compression the inertia of the gas 

has to be overcome and hence it must be added to the 'inertia of the 

diaphragm i.e, 	tension of diaphran+ pressure of gas 

mass of diaphragm 	+ mass of gas 

A+B.p 

+ 111g. 	....•........•.. (4.1) 

A resistive force proportional to velocity, -2ldc, is exerted 

as a result of the viscosity of the gas when it is forced out on 

compression, between the diaphragm and the back-plate. At normal 

pressures viscosity is independent of pressure, but under conditions 

when the molecular mean free path is of the same order as the 

dimensions of the system, then viscous drag is proportional to 



density. Arcton at the lowest pressures used (0'50m.Hg)  has 

a mean free path of about 0.6)1. Assuming the spec trophone to 

be comparable with the B. & K. microphone, which has a 227 gap 

between the diaphragm and 'back-plate, the pressure-independent 

situation should, still apply to these low pressure measurements. 

Solution of the relevant differential equation for this 

problem gives' the diaphragms equation of motion:- 

X 	a(n2-w2) Co'swt + 2a.k.w Sinwt ....... (4.2) 
(ri2-w2 2 	4kw 

and 'by considering the vector diagram, 

Appi ied Force 

i/AX a(n2- ()2) 

Diaphragm. 

A4(n2 -& 2) + 4k2 & 21 

)/4 92cjkw.  

the phase lag of the diaphragm behind the applied pressure wave (,) 

is given by:- 

tanØ 
	2kw 	

, and inserting the expression for 

(41) 
2kw 

tan % = 	fA +' 	- w2 	...... • .... e... (4.3) 
IiIg/ 
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If n2>>w2,  then tan 0, 0 - 0 and none of these factors can 

introduce any pressure-dependent phase shifts. However, If xiv w2  

then enormous pressure-dependent phase shifts are easily induced. 

Graphically, the situation near resonance can be represented by:- 

TT 

PhaseLagØ i-i- 
(radians) 

o 

Now, the two properties of a gas critical to the positioning 

of the resonance frequency for the system are its pressure and its 

density, but these act in the opposite sense to one another i.e 

An increase, in pressure raises the natural frequency of the 

diaphragn (B.p0 term in (463)) and produces a phase lead 

An increase in density raises the Inertia term (Mg in (4o3)), 

hence lowering the resonance frequency and introducing a phase Lag. 

While both effects operate simultaneusly, for the light gases 

CH4, NH3 the "pressure effect" will predomirate and for the 

heavy gases e.ge Arctonj.CO2 9  the. density effect' will be dominant. 

An easy explanation is now available for all the anomalous 

phase changes which have appeared  experimentally. The phase lead 

observed when a decreasing pressure of Arc'ton or carbon dioxide was 

compared with a. fixed pressure of Arctorx ás the 'density effect' 
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whilst the corresponding experiment with a fixed and variable 

pressure of methane gave a lag because. of the 'pressure effect'. 

By matching the densities of the gases in the two cells the 

chance of a phase lead with decreasing pressure was eliminated, 

but the measured phase lags merely reflected the difference 

between the actual densities through the different pressures 

e .g • in a typical CH/Arc ton experiment. 

.L\ p CH4 :. 18.0 cm Hg 	4305 cm.Hg 

Ap Arcton: 2.73  Cm Hg 	6.67 Cm Hg. 

Only in the comparison of different modes within the same 

molecule can the perfect matching of gas properties necessary for 

relaxation measurements be approached e.g.3(CH4)/'\4(CH4) 

experiment. 

Although this hypothesis explained the existing situation 

clearly, its ultimate validity had to be judged on the basis of 

its predictions. If in fact the methane phase lags arose not 

from molecular relaxation but as a result of the gas's low density, 

then a mixture of Arcton and hydrogen of methane density should 

produce the same apparent relaxation time. It did. (Fig.13). 

The successful theory then suggested that the simultaneous 

matching ,of both pressure and density. in the sample and the 

reference, by diluting the Arcton with hydrogen, should permit a 

rough examination of relaxation phenomena in the spectrophone. 

On this assumption, the 2349 cm band in CO2 was compared with 

the necessary mixture and gave phase lags corresponding to a 
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(4.0 t  loo) psec. relaxation time. Rather shorter than expected 

(667 cm-1 mode in CO2 has 2= 6.8ysec.)(56), the points 
nevertheless shewed little deviation from the theoretical line 

over a long pressure range. 

Several experiments comparing modes within 7n6lecules were 

not very encouraging in that they indicated very short relaxation 

times for the higher energy modes, certainly beyond the capabilities 

of the spectrophone in its current state of development e.g. 

GAS DETAILS 

('s)3)20cm1CH4 against (0],306cInCH4 

(3)29349cm1Co2 	". (\)) 667cif1c 2  

(3)2,223.5cm12o 	" 	('\)l)l, 285cm N20 

(3)3 ,27CrnC2H2 	It 
	(1328.1 + 729 .IcmH2 	0 ± l,Psee* 

The hypothesis was further strengthened by a series of' Third 

reference channel' experiments in which a fixed.'base-line' was 

provided for phase measurements by a photocell signal. Previously, 

without a stable reference for guidance,'one could not distinguish 

experimentally between a phase lag on one channel and a lead on 

the other. These experiments showed all the measured phase lags 

to be differences between two much larger individual channel 

variations. In the case, of the 'correction curves' where -signals 

from the same pressures of the seine gas in both cells were compared, 

the differences in individual response which produced the phase 

changes were merely a reflection of slightly different diaphragm 

resonances. This later received direct experimental confirmation. 

APPARENT RELAXATION TIME 

0 ± 2yseo. 

o t 4jisec. 

1.75 ± 1 psec. 
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For the heavy gases e.g. A)rcton, carbon dioxide the correction 

factors were small because the density 3rd pressure effects 

worked in opposition,. whereas in the case of the light gases 

e.ge methane, ammonia large phase changes arose from big pressure 

fluctuations nearly uncompenoated by the density effect. 

Carbon dioxide and nitrous oxide having the same molecular 

weight, it was argued that their relaxation properties could be. 

safely compared in the spectzophone. This experiment between 

the 	'-mode of CO2  and the  - -mode o:V.N20 9  when previously 

done by Read (13):9 had gIven a difference n relaxation times of 

44.6 tsec . Since these results showed sane scatter the experiment 

was repeated giving a value of 3.31usea*  for AT 

Finally, nitrous oxide was studied in what had been shown 

to be the only reliable system possible with this spectrophone; 

the single cell system. Using only one cell the outputs generated 

by successive excitation of the 	and the 	modes, equalise 

in intensity by adjustment of the I .R. sources, were. compared at 

each pressure with the phase of the fixed standard from the photocell. 

Thus, the cell characteristics could only have exerted a minor in-

fluence on any phase shifts measured. Three runa g  two in the green 

and one in the red cell showed, with excellent agreement, the 

higher mode lagging behind the lower to give a difference in 

relaxation times of:- 

both green cell runs gave AT= (4.0 ± 2.0psec.) (Fi.14) 

the red cell run gave 	 (495 * 2.Otsec.). 
Despite the complete experimental fulfilment of its predictions, 
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the hypothesis still required the diaphragms to have an extremely 

low resonance frequency. Whereas most microphone, systems 

resonate at N 10 Icc/eec, the spectrophone cells would have to 

resonate at several hundred cycles. A Bruel and K.jaer (Type 4132) 

condenser microphone, taken as a standard of flat amplitude and 

phase response, was, used to calibrate the cells', loudspeaker test 

rig (see p.a8) 4 their awplitt4e and phase characteristics 

were measured directly. 	Fig.15 shows the results for one of the 

cells • 	That the cell diaphragm resonance lies in the range 

100 c/sec • .+ 200 c/sec • 	substantiates the hypothes 

evolved to explain the large pressure-dependent phase changes 

found in the appaátus. 

• 	Why the resonance frequency was so seriously underestimated 

during the design of this spectrpphone (13) may be due, in part, 

to the choice of Melinex as 

"maturing period" described 

from the region strained by 

relatively thick, heavy, cei 

annulus of material., Such 

frequency than the original 

a diaphragm material. During the 

earlier (p.2) the plastic may flow 

the tensioning ring to leave a 

tral portion supported by a thin 

a ,system wou]d resonate at a lower 

uniform diaphragm. 

Jacox and Bauer (47), as reported previously (p.22), found 

inexplicable pressure-dependent phasë changes confusing their 

spectrophone measurements.. Although these workers used a 

commercial condenser microphone (CAPPS CM- 2003X) which should have 

had a resonance in the 10 Icc/sec region, they modulated the infra-

red energy at .2*550,kc/seco Now, the B.&Ko one inch condenser 
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microphone No.4132 1  being a high quality coniercia1 product, 

should have a comparable phase angle characteristic to the Capps. 

At 245 kc/sec there is a 3501ag. A similar situation, therefore, 

seems to have prevailed in the Jacox and Bauer experiments in 

which their meaningless (relaxation-wise) phase measurements 

were due to a pressure-dependent microphone-resonance. 

Usingthe experience gained in operating and investigating 

the "Two-Cell Spectrophone Experiment" a new system was designed 

round Erueland Kjaer condenser microphones: the 	and K. 

Spectrophone Experiment." 



FIG 16THE B. and K,5PECTROPHONE CELL 
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CHAP2ER . 

'THE B. and K. SPECTROPHONE EXPERIMENT: DESIGN AND DEVELOPMENT' . 

From the previous experiment, practicable matching of either 

gas or apparatus properties being inadequate, it was learnt that 

the balancing of spurious phase lags in a spectrophone was no 

substitute for their absolute elimination. Only by using the 

one speotrophone cell to successively examine different modes 

within the same molecule could the matching necessary to ensure 

reliable relaxation comparisons be achieved. The current 

experiment, based on the flat audio-frequency response and low 

inherent noise of a highly developed condenser microphone, 

(Bruel and K.jaer Type 4132)  should permit sensitive yet faithful 

detection of optic-acoustic signals over a wide pressure-range. 

Although designed as a single-cell system with a photocell signal, 

as in the classical experiments, providing the phase reference, 

two spectrophones were initially incorporated to accelerate the 

development stage. Subsequently only one of these aé taken up 

to the final specification. 

SPECTROPHONE CEU: The stainless steel spectrOphone cell is 

shown in Figs. 16 and 17. One wall of the cell chamber is formed 

by the diaphragm ef the diophrai of the Bruel arid K.jaer (Type 4132) 

one inch condenser microphone which feeds out through a guard-ring 

seal (Kodial glass, Nib-K) into its cathode-follower via a 31 inch 
long connecting system. Separation of the electronics from the 
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cell allows the latter to be baked if required* up to frequencies 

of 1 kc/sec. the diaphragm of this microphone remains in phase 

with the driving force to within 10.  Radiation traverses a 3 cm. 

absorption path parallel to the diaphragm and bounded by polished 

sodium chloride windows. Al]. the detachable components, 

including the windows, are vacuum-sealed to the cell-body by 

Viton 0-rings set in trapezoidal grooves. To efficiently 

evacuate the chamber, gas purity being crucial to the successful 

study of long-relaxing species, while retaining the ability to 

isolate it acoustically from the pumping system during phase 

measurements required the design of a special 'bakeable' valve. 

By compressing the 'Hydroflex' bellows (see Fig-16) a plunger 

completely fills the high conductance ( 5 l.sec'l) pathway provided 
by the chamber entrance, sealing it with an 0-ring. This valve 

links the cell through a flexible coupling to the main glass 

pumping system. The collar (seen in Fig.17) below the flexible 

coupling is. located in space by three steel rods and prevents the 

tension produced by the atmospheric pressure acting on the 

evacuated bellows from straining the fragile and immediately 

adjacent Kovar-Pyrex seal. During assembly.. all joints were tested 

to the satisfaction of a Centronic mass spectrometer leak detector. 

(leak rate (lO91.ps). The cells are suspended from an 

insulated bar which, along with their main pumping line, is 

supported by a light Dexion frame. Normally firmly secured to 

the optical bench, the frame can easily be freed during phase 

measurements to float on a set of foam rubber pads minimising 
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interference due to external vibration. 

VACUUI/1 SYSTEM: (fig.18): A two-stage rotary pump backs two 

separate conventional high-vacuum systems. 

A Pyrex gas-handling system is evacuated by a small mercury 

diffusion pump (speed 31seo 1 ). Pressure monitoring in both 

this and the backing line is by Pirani gauge, registering to 

10 3tozar. Two lines linked into the storage globes via P-taps 

allow both spectrophone cells to be simultaneously supplied through 

the capillary leaks with any of the gases available. 

A fast pumping system, based on a Speedivac G.11.2 mercury 

diffusion pump (speed rl0_l5 lsec), to allow efficient 

evacuation of the spectrophories is built into the light Dexion 

frame supporting the cells. By optimising the bores of the tubing, 

taps and traps (57) and minimising the distance between the pump 

and the cell, the maximum available pumping speed is developed at 

the chamber. Without baking the metalwork a pressure of 

5 x lO 7torr* is possible under - 	-. conditions, but the. 

working range, swiftly and reliably reached is (8 - 10) x l0 7torr. 

Pressure measurement is by ionisation gauge. Although facilities 

for bakeout are available they have yet to be found necessary. 

Gases are admitted from system (a) through a series of capillary 

leaks and flexible glss coils; the latter permitting the frame-

work to float freely during relaxation measurements. 
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OPTICAL SYSTEM: (Fig.19): Infra-red energy from an electrically 

heated nichrome rod (7 cm0 long, 093 cm. .diameter) is focussed 

by front silvered mirrors. When necessary filters are used. to 

eliminate either high energy radiation (>2100  cm, Perkin-..Elmer 

interference filter) or low energy radiation (K 1700 cm,, Barr 
and Stroud, calcium aluminate gass Type BS39) • A 39000 r ip.m. 

synchronous motor drives the 12 11  diàmater chopping discs. Unless 

the radiation holes in the chopper guard are kept blocked, for 

example with the filters, they generate a 'siren effect' with the 

aid of the holes in the revolving disc. The resultant noise is 

a serious problem for, being at the chosen modulation frequency, 

it cannot be removed electronically. 

ELECTRONIOS:' (Fig.20) The condenser microphone is used with a 

D.C. polarizing 'voltage of 200v. when it has .a capacity of 57 pt'. 

and a sensitivity of 4.0 mv/ybar. in order to .  avoid damaging 

the 4)1 thick diaphragm ,  it is essential to monitor its position 

during the evacuation or filling Of the cell. A' reed switch, 

therefore, is incorporated in the connection between the 

microphone and its cathode-follower within the guard tube which 

provides input capacitance degeneration. By operating the switch 

the unpolarized microphone may be made to form the äapacitor in the 

tuned circuit of a .10.7 Mc/sec. Franklin-type transistor 

oscillator whose. output, monitored with a, conventional frequency.-

modulated ratio detector, gives a sensitive indication of diaphragm 

position. 
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The output from the high input impedance, zero phase shift, 

cathode follower uzergoes preamplification, then selective 

amplification at a bandwidth which is typically 10 db. down at 

50 c/sec. either side of signal frequency. Max1mwn gain through 

the system is about 90 db. A phase meter (Peekel Type FB.120) 

is used to compare this signal with a reference supplied by a 

lamp and photovoltaic cell operating on the chopping disc • The 

reference, signal, by means of a coaxial switch and a phase 

shifter, can also be used to set a zero phase shift condition 

between the channels, eliminating before a measurement is made, 

the slight phase shifts due to motor speed variations and drift 

in the selective amplifier. Extensive testing of the electronics 

showed that phase shifts due to operation of attenuators etc. 

were less than 0 4 50 . 

EXPERIMENTAL PEF0R1MNCE: 

After the cell's evacuation to an acceptable level 	lxlO 6torr.) 

the spectrophone pump was shut off at the large taps and gas 

slowly admitted through the capillary leaks at a rate set by the 

diaphragm position monitor until the required pressure, read on 

the manometer in the gas-handling line, was developed in the cell. 

In the first eqeriments a five sector chopping disc modulated 

the incident radiation at 250  c/sec. Having firmly closed the 

acoustic valve the - speetrophone frame was released and allowed' to 

float freely on its rubber supports: the conditions for phase 

measurement, When the degree of amplification 'required by a 
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particular signal was set, the photocell reference was comrnoned 

(see p.J) through both channels and the electronics adjusted 

to read an arbitrary zero phase shift. Imniediate].y, the 

channels were separated and the phase difference between the 

two signals read Iran the phase meter. 

At the outset, before attempizg relaxation measurements, 

criteria for the spectrophone 'a required performance had to be 

set and satisfied. The pressure-independence of signal phase 

in fast relaxing gases of high molecular weight offered testing 

of least ambiguity, deviations due to thermal diffusivity (po /3) 

being possible in light gases e.g0 NH3. It was demanded, 

therefore, that the spectrophone signal remain constant in phase 

over the accessible pressure range in A'cton 13 (CC 1F3)(cf.p.fl) 

A RESONANCE PROBLEM: The criterion was not satisfied (Fig.21). 

The Arcton signal)  far from being pressure-.independent developed 

a phase lead of 650  between the pressures of lcm.Hg  and 55 cm.Hg . 

On extending the investigation to a range of gases, a confusion 

of effects emerged. While at the lower pressures (2- lOcmHg) 

some gases (e.g. CO2, N20,  CH4) lagged increasingly with 

decreasing pressure in a manner suggestive of relaxation their 

higher pressures showed anomalous phase leads. Another heay 

molecule, SF6,  behaved (35°lead) similarly to arcton but at the 

lowest pressures .( (2cmHg) the phases of all the gases started to 

lead with further pressure lowering. 

In order to gain greater insight into these phenomena the 
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frequency-dependence of the signal amplitude was studied. The 

variable frequency motor used to drive the chopping disc allowed 

scanning of the range between 50 c/sec. and 550 c/eec. 

According to the predictions of Gorelik's model (eq.3.15) the 

amplitude of the optic-acoustic signal is inversely proportional 

to a modulation frequency (w) small compared with the collision 

efficiency (f&o) in the gas. Delany (41) has experimentally 

confirmed this down to the modulation frequencies (50 c/sec.) 

where heat conduction effects lower the intensity of the 

acoustic signal. A double logarithmic plot of signal amplitude 

against modulation ftequency .should, therefore, be a straight 

line of gradient minus one. 

Instead of a straight line the Arcton signal described a 

strong resonance peak centred at a modulation frequency of 

'255 c/sec.(Fig.22). 	Likewise, 

SF6 resonated at 215 c/sec. modulation, 

	

CO2 	 S 	
" "430 c/sec. 	 (Fig.22) 

	

and CH4 	 " > 550 c/sec. 	 ; the positions 

of the resonance peaks being in direct proportion to the sound, 

velocities in the various gases. Although their characteristic 

frequencies were pressure-independent, the resonances did not 

appear until a certain critical pressure (' l0cmH g.in all cases) 

had been exceeded; thereafter their intensity developing with its 

continuing increase. Even at the higher pressures all the gases 

showed a low-frequency (w <100 c/sec.) deviation presumably due 

to the heat conduction effects. 
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Similar behaviour was previously noted in a spectrophone 

experiment by Decius (45). A set of pressure-independent 

resonances was found at modulation frequencies between 400 and 

6co c/see, the resonance frequency for any gas beixgdirect1y 
proportional to the velocity, of sound in the gas, Encouraged 

by the large phase changes associated with this phenomenon to. 

abandon phase iiieasurements, in favour of amplitude studies, 

Decius went no further than to suggest that a critical factor  

in the development of these resonances might be the compliance 

of the diaphragm which forms one cell wall. 	/ 

Diaphragm resonance, as found in the 'Two-cell Experiment', 

being impossible with the B. and K. microphone and the metre 

wavelengths, associated in these gases with 250  c/sec sound, 

being incapable of "seeing" the spectrophone cell, whose 

characteristic 'dithens1on, with its, valve. closed, are only 2 cm., 

the only acoustically feasible explanations remaining had to 

involve a Helmholtz Resonator. Deciiis's idea, that the 

compliance of the diaphragm somehow permits the development of 

standing waves in the cell, was experimentally disproved by 

establishing the resonance frequencies' independence of the 

diaphragm tension. The tension was reduced by changing' the 

microphone polarization voltage from 200v to 137v.. 

A Helmholtz resonator.(59) is a mechanical system 

analogous to a mass suspended on a spring. Looking at Fig.16 1  

two gas. volumes, A and B, are seen to be connected by the 

annular pumping passage around the microphone cartridge • If 
DZ 
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the inertia of the gas in the annular neck plays the part of 

the mass and the compressibility of the gas in either A or B 

that of the 'spring, then the conditions are satisfied for a 

resonating system with' a fundamental frequency given by, 

f = S IC. 
"liv 

Where S is the velocity of sound, 

C the cross-sectional area and 1 the length of the neck, and 

V the volume of the cavity. 

Confirmation of the hypothesis was sought by screwing a 

collar to the microphone cartridge, reducing the cross-sectional 

area of the annulus (d). The expected lowering of the 

resonance frequencies was not, hoviever g  observed. Not until 

later in the investigation did a technique, of sufficient power 

to confirm the He].mholtz resonance,, evolve. During the 

intervening period several experiments were devised which, 

although negative in outcome, were interesting' in their failure 

to reveal any further flaws in the system. 

At high gas pressures an optic-acoustic signal is formed 

near the front window of the cell. Propagating back into the 

chamber the pressure wave sweeps across the face of the diaphragm 

with the possibility of exciting complex oscillations of unknown 

properties. A thin stainless steel plate with a 2.5 m.m. hole 

centrally bored was fixed in front of the diaphragm ensuring that 

pressure pulses only struck its centre normally. The frequency 

characteristics were unmodified: the propagation effect is 

therefore unimportant. 
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That the resonances were not unique to optic-acoustically 

generated signals was demonstrated by introducing a sound wave 

into the spectrophone from a small pressure transducer 

(Ashida Vox) mounted in a brass plate replacing one of the cell 

windows. From the previous data the system was expected to 

resonate at" 600 c/eec for laboratory air. A resonance was 

detected at 610 c/sec. Another transducer, with a quite 

distinct free space calibration, was fitted and the resonance 

measured at 620 c/eec. In addition to establishing the 

resonances' independence of sound source the transducer 

experiment, by not requiring the cell to be either filled with 

an infra-red active gas or bathed in radiation, allowed the 

system to be much more instructively modified. Volume B was 

separated from both the annular neck a nd volume A by blocking 

the three pumping holes in the microphone support flange. The 

Anomaly at 600 c/sec disappeared (Fig.23): the Helmholtz 

Resonance hypothesis was proved. 	 ' 	 S  

Before this proof could be checked with an optic-acOustic 

• signal the spectrophone cell had to be modified to provide a new 

pumping route for the gas volume behind the microphone. A 

stainless steel tube, sunk into the back plate (Fig.16) was 

brought round the front of the cell and fitted into the main 

pumping line outside, the acoustic valve • In order to permit 

acoustic isolation of-'the minor volume (B) a simple magnetic 

valve involving the movement' of a ball-bearing vzas incorporated 

into the auxiliary line. Only one of the 'two spectrophone cells 
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originally built was modified (Fig.17). 

HEAT CONDUCTION EFFECTS: Optic-acoustic signals (for to >100c/sec) 

in all the gases now obeyed the linear relationships required 

by theory (3.15); no trace of resonance 'remained; the evidence 

from the transducer experiment was substantiated. Only at 

frequencies 0<100 c/sec did the amplitudes deviate, falling 

below the ideal line of 450  slope. Although Delany (41) noted 

the same effect, which is predictable from a consideration of 

heat conduction  to the cell walls (see p.18), at 3 5o c/sec., 

the dissipation of acoustic energy remained an observable in 

the 'B. and K-1 ,  Spectx'ophone' at rather higher modulation 

frequencies. That the cell dimensions are critical to the 

extent of the deviation has already been shown (3.16); another 

factor seemed to involve the irradiation of the cell walls by 

the divergent incident beam. By allowing the beam access to 

the cell through only a small aperture in the centre of the 

front window, the direct surface heating of the walls was 

eliminated. Under these Conditions the signl from a sulphur 

hexafluoride sample followed the theoretical line down to. 

co= 60 c/eec, to be compared with its normal limit for linearity 
at ). = 120 c/sec. It was therefore concluded that, on returning 

to the fixed frequency phase measurements some thermal 

diffusivity lead was to be expected at the lowest gas pressures. 

- Down to 2.5 CIfl.Hg  the signal phase in Arcton 13 (Fig.24) 

was pressure-independent (0.1. Fig.2l), but between 205cm.Hg 
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and 0.5 cm.Hg  a phase lead of 49 developed; our. criterion was 

not quite satisfied. Before attempting to reduce the effect 

by further apparatus modification the origin of the lead was 

checked by studying ammonia whose light, fast-relaxing (53) 

molecules would magnify wail-effects without interference from 

relaxation lags. At the lowest pressure (0.7 cm) the phase 

lead reached 11 (Fig.24); indeed worse than Ax'cton. 

Solving (41) the equations for heat flowing radially 

in a spherical container describes the phase and amplitude of 

an oscillating pressure signal in terms of a summation whose 

first term is adequate for comparison with experiment. The 

relevant phase lead is, 

= ~ -1 
J&i 	

/ W o • . S . . • • • 	I, 7 • 

where p was defined in (3.16)  and w is the modulation frequency.. 
At 0.5 cm.Hg pressure, spherical radius a = 1 cm. and 
w = 157 1 rad/sec., the lead predicted for Arcion 13 is ,Ø2.00  

and for Ammonia is 09'9.0 0  

Varying correctly with gas properties and in quantitative' 

agreement with the predictions of the simple heat conduction model, 

it seemed certain that the small deviations still marring the 

spectrophone's performance were due to the thermal diffusivity of 

the gas and as suchcould be further reduced by raising the 

modulation, frequency (c.f.p.I) to 450 c/sec. 

In the new, higher frequency, experiment the phase of the 

Arcton signal remained constant over the accessible pressure 

range (Fig-25): the criterion was satisfied. 
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Although the set standard had been achieved, relaxation lags 

at the lowest pressures in light gases were still confused by 

thermal leads,. The effect being small, however, (50  or 60 at 

most) measurements on fast-relaxing gases were assumed suitable 

for correcting the phase lags in gases of similar transport 

properties. Ammonia and hydrogen cyanide are shown in Fig.25. 

The latter on excitation ('2 ' 	2 modes) by low energy,  

radiation (Perkin Elmer filter) relaxes rapidly (7'<0.1)1sec(60) ) 

and as might be expected from its molecular vieight,(M = 28) gave 

phase leads midway between wiunonia and. Areton • From the trend 

it can be seen that the midweight gases-e.g. CO2,N20 will suffer 

little interference; a set of carbon dioxide results added to 

Fig.25 serves as a reminder of the experiment's goal: the study 

of relaxation phenomena.' 

MOVING SIGNAL CENTRE EFFECT: At higher pressures in most gases 

the optic-acoustic signal is formed near the front window of the 

spectrophone. When the pressure is lowered, especially in 

weakly absorbing gases, the radiation may have to penetrate 

significantly further into the cell before all the relevant 

energies are removed and therefore the origin of the pressure 

pulse is shifted. In the 'B • and K. Spectrophone', with an 

absorption path of 3 cm., the signal centre will move 1.5 cm. 

from the edge to the middle of the cell and in gases with low 

sound velocities this may produce a few degrees of phase lead 

with decreasing pressure. Only one weakly absorbing gas studied, 
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sulphur hexafluoride had a low sound velocity 

(136 rn/sec c.f.VNH3 = 440 ni/sec.) and being :fast relaxing 

((3 = 0.2 )laec.(61) ) could clearly show these small phase leads 
= 90  between p = 5.0 and 0.5 cm.Hg), dependent on both 

pressure and signal intensity. In this system at 250 c/sec. 

the phase sensitivity calculated as a function of signal 

position is . 10  per 0,14 cm. Restricted in influence, the 

effect did not interfere with any of the other studje, the 

gases being either more intensely absorbing or having higher 

sound veloctes: 

ESTABLISHING THE EXPERIJ1ENT AS0LUTELY: So far the spectrophone' s 

performance has only been tested negatively with gases capable, 
undesii'able because their relaxation is rapid,. of revealing 	oe- i-x?±e 

phase effects • Before all measured phase changes can be 

confidently claimed as relaxation lags a link with classical 

technique is required; this is possible through the \)4-mode 

(1306 cm) in methane (c.f.Chapt.4 p. 35). Phase measurements 

made in methane (Perkin Elmer filter) and corrected for thermal 

diffusivity as described above by phase leads observed in ammonia, 

au essentially similar molecule from this point of view, are 

plotted in Fig.26 and compared with the theoretical relaxation 

line for 1.6).lsec; the ultrasonic fl.at 250C is 1.5 t O.2t see*  (54): 
excellent agreement. 

The belief that the 'B. and K. Spectrophone Experiment' is 

capable of reliably measuring relaxation phase lags. in gases seems 
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therefore to be fully justified. In the next chapter studies 

on the higher energy modes of a series of simple molecules are 

described. 
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CHAPTER 6 

THE B. and K • SPECTROPHOI'IE EXPERIMT: RELAXATION IN SIMPLE GASES. 

Assuming pressure-dependent phase lag's to be due solely to 

.molecular relaxation processes several simple gases were studied 

in the 'B • and K. Spectrophone'. Phase changes measured' at 

450 c/sec. modulation by the technique described in the previous 

chapter were plotted against the reciprocal of gas 'pressure and 

compared with curves defined by (3.14): 

tan 0 = 	p where 0 is the phase lag j t̂ the relaxation 

time at 1 atm., p the pressure in atm. and C'-) the modulation 

frequency in radians per second. 

The importance of gas purity in relaxation measurements has 

been repeatedly demonstrated, particularly in studies of the 

longer relaxation times; water's strong' catalytic effect on the 

degradation of energy from the ')2-mode in carbon dioxide (6b 5) 
is a well-known example. Details of the procedures used to 

purify the gases measured in this work are summarised in Table II. 

Restricted to simple molecules, their few fundamental modes 

normally being of well separated energies,, a situation often 

improved in the infra-red by the non-appearance of Ramanactive 

vibrations, these experiments allowed adequately specific 

excitation of modes to be achieved with the two filters described 

under Optical System (Chapt. 5 1  p.47).  ' The Barr and Stroud 

filter eliminates low energy (<1,700 cm) and the Perkin Elmer 



GASES USED IN B. and K. SPECTROPHONE EXPERIMENT. 

GAS 	 ORIGIN 	 PURIFICATION 
	

CRITERION OF PURITY 

DIST 

Carbon Dioxide 

Nitrous Oxide 

Methane 

ChiOrotrifluoro-
:methane 

(Arcton 13) 
84phur 

H ezaluorido 

Ammonia 

Carbonyl Slpbde 

Nitrogen 

Xenon 

Neon 

'Analar' NaCO 
+ heat 

Dental Cylinder 

Cylinder., 97% pure 

I .0.1.. Ltd:: 
Cylinder 

14.1. Ltd: 
cylinder. 

Cylinder (ànbydró 

Matheson Co., Inc. 
(97%. pure) 
lecture bottle 
B.O.C.. Ltd. 

(02 free) 
B.O.C. Ltd. 

B .0.0.. Ltd 

ICr. )-Id, " ,y7'deI 

By warming 
from Liq N2. 

From liq N2  

Clusius - 
Riccobini (58) 

(Column refluz-
:ing under liqO, 
From liq N2 

From liq N 2  

From liq N 2  

From liq N & 
equilibrated 
at -63.5 C. 

-a 

m so/i cLeO2  i-acefo,  

P205  

(3 Days, 

P205  

,P205  

,CaO 

P205  

P205  

05  

Infra-red AnalySis, 

Infra-red Analysis. 

Mass spectrometer, 
traces of M 28 
probably CO 

infra-red Analysis. 

Intra-red Analyss, 

'Infra-red Analysis. 

Infra-red and mass 
:spectrometer.. 
.1% 082 present. 

Quoted 9 Xe, blóe. Kt. 

Quoted 	Net.,, 0. 
2 p.p.m 02,  .1 p.p.xa 



high energy radiation (>2,100  am-1). 

A precision of better than ± jO can be quoted for the phase 

measurements; the reliability of a relaxation time estimate 

depends, however, on the available signal strength in the gas. 

If the limiting signal level is reached at 10 cm.. pressure then 

short relaxation times (<5pec.) can only be quoted to ±l ,,psec 

whereas the relaxation time of a gas allowing measurements at 1 cm. 

is determined to within ±0.1ysec. 
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RESULTS: 

CARBON DIOXIDE,. Fig.27: irradiated at 

high energies (> 1 ,700  cm-l ): -)3 (2,349.3 cm) vibration 

excited 'with possible small contributions from overtone and 

combination bands. The measured phase lags, thermal effects 

being small for this molecule, are compared with the 71sec 

theoretical relaxation limo. 

low energies (<2,100  cm): \" 2(667.3 cm) vibration 

excited but, because of the source's spectral distribution, 

insufficient energy was absorbed to generate a useful signal. 

No measurements were possible. 

METHA3'E, Fig. 27:  irradiated at 

high energies : \) 3 (3020.3 cm) vibrational mode excited; 

measured phase lags are compared with the O.9 ,psee relaxation line.. 

low energies: \)4(I306.2 cm) vibrational mode excited; 

phase lags are included with the ")3results, but were, only 

measurable down to 3 cmo pressure, the signal level being Low. 

Thermal effects must be considered for this light molecule 

and a set of corrected .phases, derived by the previously described 

ammonia procedure, are compared with the 1.6jise0 

relaxation line. 
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IITR0US OXIDE, Fig.28: irradiated at 

$1) high energies ( >1,700 cm): 3 (2223.5 cm) vibrational 

mode excited; phase lags are compared with the 1.6jisec theoretical 

relaxation line. 	 - 

(2) low energies ( <29100 cm -1  ): simultaneous excitation of 

the ')i( 1285,0 cm) and the ") 2(588.8 cth) vibrational modes; 

phase lags, limited to pressures> 2 cni. by the low signal level, 

are compared with the 1.1 .isec theoretical relaxation line. 

A6 in carbon dioxide thermal effects are negligible. 

CABOIYL SULPHIDE, Fig.28: irradiated at 

• 	high energies: ) 3(2079 cm) vibrational mode excited 

with possible small contributions frxn overtone and combination 

bands; phase lags, measurable down to 0950 cm, pressure because 

of the high signal levels, are compared with the 0.ç?r1.lseco 

theoretical relaxation line. No thermal effects need be 

considered (.W. = 60). 

U 
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ICNiA Fig.29: irradiated at 

high energies (> 1 ,700 cm1); i(33.36 cm) vibrational 

mode excited; phase behaviour followed to within 10  the results 

from irradiation at, 

low energies ((2,].O0 cm) ')2(950  em) and 94(1627.5 cm) 

modes simultaneously excited and shoving a thermal diffusivity phase 

lead with decreasing pressure, as discussed ,earlier (p.S) 

HYDROGEN CYdNIDE, Fig.29: irradiated at 

high energies: \)3 (33.L.2 cm) vibrational mode excited giving 

phase results identical with those from irradiation at 

low energies: 92(712  am-1 ) vibrational mode and its first 

overtone (4)2 = 1412. cmhml) excited; no relaxation lag shown, only 

a light thermal lead. 

QHL0ROTRIFLUOROETHNE (rcton 13),  Fig.  25:  irradiated at 

low energies, gave no phase shift over a range of pressures 

from 0.75 to 60 cmi. 
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SUARY: 

Relaxation times for the gases studied in this work are 

gathered in Table III; the errors quoted are based on the fit 

between the experimental points and the theoretical curves, 

taking into account the possible influence of the thermal 

conduction effect. 

TABLE III 

Gas Fundamental Vibration Relaxation Time 	see) Ultrasonic,q(jisec) 
Excited / II. 

CO2 ,2349 cm-1 7,0 ± 0.5 6.5 (2) 

CH4 \)3 1 3020 cm 1.6 t 0.2 

CH4 )4,1306 cnil 1.6 t 0.4 105 (54) 

N20 3,2223.5crn'1 1.6 	0.2 

N20 1+\,588.8cm"1+l285cm1- 1.1 t 0.2 0.9 (62) 

COS. \)3,2079cm1. 0.7 	0.1 0.69 (3) 

3 1, 333645="J  
<0.1 

\)fV4 	950c7+1627.5crn1 
<9.1 09001 (53) 

HCN 3312cm"1 <0.1 

HCN '\'2+2V2, 712cn""+1412cm"'1 <0.1 091 

CC1F3 All fundamental modes <0.1 0.09 (52)  



-65- 

DISCUSSION: 

Before reviewing this work in the light of available 

experimental and theoretical results, some discussion about the 

fundamental significance of the spectrophone's measurements is 

required. A 'relaxation time', as definedin terms of (1.1), 

the simple relationship derived by Landau and Teller (66) from 

the harmonic oscillator model of a molecule, can be measured 

strictly for a particular mode only by a technique sensitive to 

energy change within that mode. Since in the spectrophone, 

the energy change is observed not in the vibrational mode 

excited but in translation, is it justifiable to equate the 

delay time measured with the relaxation time of the specific 

mode? Decius has argued (67) that "the hope of studying 

'separate modes' by the spec trophone is quite illusory". 

Considering a polyatomic molecule as a set of coupled oscillators, 

the decay of vibrational energy will be governed by a rate matrix 

whose eigenvalues, involving mixtures of the fundamental processes, 

will be the observables for the system. That these characteristic, 

times are independent of how the system has been excited forms the 

basis for Decius's arguments: periodic variation of a selected 

vibrational temperature, as in the spectrophone, can reveal no 

more than that .of the translational temperature, as in ultrasonics. 

However, the amplitudes of the different 'normal modes' may be 

particularly sensitive to the nature of the driving function and 

if several have similar but not identical characteristic times 

then Decius 's statement will be invalidated. Another important 
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factor must be the degree of coupling between the molecule's 

fundamental modes. Decius's description of relaxation cannot 

account for the double dispersions found in ultrasonics and 

assigned to the separate excitation of different groups of 

vibrations. Two cases, those of sulphur dioxide (68) and 
ethane (69), have been well-established. Both involve a low 

energy mode (at 290 cm in ethane) separated by a large energy 

gap from the lowest (821 cm-1 in ethane) of the next group of 

vibrations, Such assignments of different relaxation times to 

separate vibrational groups within a molecule seem to invalidate 

the general applicability of the Decius hypothesis and hence its 

comment on the spectrophone's potential. 

Stretton (10) has determined the eigenvalues of the rate 

matrix for methane, producing a set of relaxation times which ca'n' 

be associated with the fundamental processes normally considered 

in simple de-excitation mechanisms: the excited \)3-mode transferring 

its energy to the first overtone of th'e'2-mode and so on. At the 

present level of theoretical development it would therefore seem 

justifiable to interpret the results in terms of the redistribution 

of energy amongst the fundamental vibrational levels by a series of 

complex collisions.. 

Since the fate of the relaxing energy is immaterial to 

equation (1.1), its definition of the 'relaxation time' for a 

specific higher energy vibrational mode refers to the first of the 

series of energy transfer processes. The spectrophone sums the 

'relaxation times' for all the processes required to reduce the 
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energy to translation. If a single 'relaxation time' (J) is 

measured ultrasonically for a group of vibrations then, by 

assuming that energy slowly enters the group from translation 

via the lowest mode before being rapidly distributed amongst the 

others, a 'reduced relaxation time ', associated with the lowest 

mode s  can be derived from, 

1 	
= (Clb/cSvib), (6.1)9 

where Civib  is the 

vibrational heat capacity of the lowest mode a14 	the 

total heat capacity of all the modes. 

By comparing a 'spectrophone relaxation time' with the 

'reduced relaxation time', a measurement is obtained of the 

facility with which energy, injected at a high vibrational level, 

can be degraded by complex collisions to the lowest vibrational 

mode in the molecule. 

The well-developed theory of energy transfer from the lower 

vibrational levels (1) is based upon a simple model which can be 

invoked during speculation about complex collisions. For a 

molecule to make a vibrational transition (E1 	E2) it must 

• suffer, during a collision with another, an oscillatory perturbation 

of frequency ') defined by the energy gap: 

')= (E1..E4//1  .......(6.2) 
where /-i is Planck's constant. The perturbation experienced, 

effectively a measure of the sharpness of the collisional interaction, 

is a function of the molecules' relative velocities and the shape 



of the intermolecular potential. The number of effective 

perturbations generated in a gas under given conditions in unit 

time defines theo1lis1on efficiency' whose value is exponentially 

related to the energy gap: the larger the gap the less frequent 

the critical collisions.' From a knowledge of the relaxation time 

of the lowest mode In a particular polyatomic molecule the rates of 

possible complex collision processes for de-exciting a higher mode 

can therefore be roughly estimated by comparing the widths of the 

energy gaps Involved. 

Measurements, agreeing with the ultrasonic/3 's for five 

groups of low energy modes, emphasise both the spectrophone's 

consistent performance for a wide range of molecules and the 

justifiability of the thermal diffusivity correction. None of 

the fast-relaxing modes (N 3(" 12+V4), HCN()2)9 CC1F3) lagged in 
phase but their small thermal leads pex'niitted an estimation of 

this minor effect whichapplied to methane, gave a corrected 

relaxation time for the )4-mode in good agreement with ultrasonic 

values (2). 

Of the higher energy levels only the \)3-modes in nitrous 

oxide and carbon dioxide appear to remain vibrationally excited 

for a detectable time before their energy is degraded to the 

lowest level in the molecule. Relaxation of the \) 3-mode in methane 

was indistinguishable from that of the \) 4-mode. The \1-mode in 

ammonia and the 93-mode in hydrogen cyanide relax, as do the lowest 

modes in these molecules l  too rapidly for measurement in the 

spectrophone. In carbonyl sulphide, despite the wide energy gap 



below the high energy mode (V: 2079cm, ')1 :859cm, \2:527cxn) 9  
the relaxation time measured for the \) 3-mode agrees well with 
Fricke's (63) ultrasonic result ('i  +\)2modes) but is lower than' 
that of Eucken and Aybar (64) (/S 1o35psec). For these molecules 
there is an easy. path for the degradation of energy to the lowest 

levels. In each case there is close energy matching between the 

level excited and overtone of a lower mode; an energy gap (100onf 1  
followed by a resonant 'cascade' from the overtone to the 

fundamental suggests a rapid process. 

A direct comparison was possible between the \)3-'mode in 

nitrous oxide and those of lower energy (Vj+V2) because the 
symmetric stretch is I.R. active. A careful ultrasonic study (62), 

using both absorption and dispersion techniques, has established 

that the relaxation of the low modes is governed by a single time 

constant. Although interference from the 'Moving signal centre 

effect' (p.S) cannot be discounted, only limiting 'signal levels 

being available from the (V1+\)2 ) modes at the lowest gas pressures 
the maximum deviation possible is equivalent to -' 0.3 

insufficient to account for the difference of 045)useo. measured 

between their relaxation time and that of the \) 3-mode.. That the 

experiment, comparing different modes within the same molecule, 

reaches the peak of the spectrophone's potential supports the 

claim that the measured difference', albeit small is real. Borrell 

and Hornig (23), by watching the growth of I.R. emission from shock-

heated . nitrous oxide measured the relaxation time for the V3-mode 

at 600K as lljieec., rather longer than found here but shorter 



than the result of a flow experiment devised by Gauthier and. 

1\flarcoux (31). Their estimate of 100 jisec., at  3700K  is however 

outwith the limits set by the current interpretations of these 

effects. 

Within its error spread, the spectrophone found the 

')3-mode in carbon dioxide relaxing at the same rate as the lowest 

mode (V2 ) 9  which has been the subject of repeated ultrasonic 

examinations (2). Because the symmetric stretch is only 

Ramanactive the sigial level generated by the low energy group 

was inadequate for a direct comparison with the \) 3-mode as was 

made in nitrous oxide. However, experiments on carbon dioxide 

mixtures (Chapt.8) require for an explanation of the relaxation 

times' concentration dependence that the removal of energy frczn 

the '\)3-mode is an inefficient process with a relaxation time of 

about 0 .57 sec. Such a difference is allowable, and indeed is 
indicated, by the measurements on pure carbon dioxide and is 

supported by the observation of an equivalent p'rocess In the 

similar molecule, nitrous oxide. 

Discussion of the nitrogen-'dilution studies on carbon 

dioxide by Delany '(41) and Slobodskaya and Gasilevich (46) is 

postponed until the next chapter. Both report relaxation time 

of "'12 ,psee. for the\)3-mode but .the analysis of their results' 

depended upon an unjustified assumption about the concentration 

dependence of the mixture relaxation times. At high temperatures, 

a small difference between the relaxation times of the \) 3 and \2-niodes 

will be undetectable by current shock-tube technique which there- 



-fore should, according to the spectrophone, see all the 

vibrational modes relaxing together. This is in general. agreement 

with the work of Witteman (70)  and Camac (22) but in disagreement 

with that of both Gaydon and Hur].e (71) and ]3orrel]. and Hornig (23).9 

Wheres the latter, examining the \) 3-mode directly, measured a 

relaxation time of 7jisec. at 600°K(cf.N20), the former, using 

sodium line reversal to filow the vibrational temperature in 

carbon dioxide shocked to ultimate dissociation, deduced very long 

relaxation times for the \)3-mode e.g. 5L4. )lsec. at 2,520 °K. 	The 
/ 

on6was66p of the ôonditions in the latter experiment suggests a 

cautious approach to the interpretation of its results. Since 

Borrell is attempting to reduce the scatter in his measurements 

by repeating the experimentS, a detailed comparison with the 

spectrophone work would be premature at this time. 

Because of the lack of experimental results there have been 

few theoretical determinations of the rate of energy transfer from 

higher energy levels. Herzfeld (72)  calculated the relaxation 

time of the ") 3-mode of carbon dioxide to be approximately ten times 

that of the lowest 	mode, whilst Marriott (ii) in a more 

recent work concludes that the various modes will all relax at 

very similar rates,, the maximum difference in relaxation times 

being 0.51isec. Stretton (10) has shown that for methane the 

relaxation time of the \) 3-mode is less than 0.ljisec. longer than tint 

of the IqT mode in agreement with the spectrophone results. 

In agreement with the latest theoretical work the 

spectrophone has demonstrated a strong coupling, presumably 

through complex collision processes, between the higher and lower 
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energy vibrational modes of even the simplest polyatoniic molecules. 

Only the studies on nitrous oxide and carbon dioxide suggested 

the existence of a barrier to the degradation of vibrational, energy 

within a molecule but the effects were small, at the apparatus" 

limit of detection. It has been found that the. 'B. and K. 

Spectrophone',. while capable of measuring 0.5)lsec, relaxation 

time to within 0.1 )isee, for very strongly absorbing modes, has 

a more general limit of practicability at /\j(1.0 ± 0.2) Jlsec, 

A rapid survey soon shows the majority of ultrasonic measurements 

(1), (2) made at room temperature to be shorter than lpsec. (at 

1 atm.). Therefore, until a much higher radiation density (laser?) 

can be supplied to the gas in the cell further work on pure gases. 

is unlikely to be instructive. However, certain of the noble and 

diatomic gases are known 'to be inefficient in vibrational].y 

de-exciting polyatomic molecules (1), (2)0 Although a pure gas 

relaxes at a rate close to the spectrophone's lower limit of 

detection the addition of an inefficient collision partner will 

give a mixture with a longer relaxation time, falling within the 

spectrophone t s optimum range of operation (lyisec --- 100 ).lsee.). 

A series of experiments on carbon dioxide mixed with nitrogen, 

neon and xenon are described in the next chapter. 	- 
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ORAnM. Z 

¶iIi B. and K. iCTROPt0NE EXPEBILNT : - GAS MIXTUPS . 

In addition to revealing the easy degradation of vibrational 

energy from the higher to the lower levels in simple molecules the 

work on pure gases showed the lower limit for the average I B and i 

Speetrophone' measurement to be at about 1 jiacc. Fost of the few 

gases with relaxation times longer than l ,psee* were studied, 

Hlowever l  several of these, mixed with inefficient collision 

partners, give long 'relaxing mixtures which offered a promising 

field for investigation. Precise ultrasonic measurement of long 

relaxation times (> 10,,.iseo.) is technically difficult; transverse 

wave effects (56) 9  for instance, can interfere at the low sound 

frequencies required. Little accurate work on such mixtures has 

therefore been reported. 

That both neon and xenon are inefficient in de-exciting the 

2-mode in carbon dioxide has been ultrasonicall.y established(73) 

while the early spectrophone workers (41) (46) founded their 

technique upon nitrogen' s inefficiency in dc-exciting the ") 3-mode. 

1ixturee of carbon dioxide with nitrogeno neon end xenon were 

studied In the 'B. and K. spectrophone' at two modulation frequencies: 

250 c/sec • and 450  c/3ec • The \)3.'rnode vsae excited (Barr and Stroud 

filter)* to in the single gas work the 250 C/SCQ. reclts, being 

more affected by thermal deviation, served only to check roughly 

the reliability of the more precise 450 c/sec. measurements. Gas 

purities are quoted in Table 11 (opposite p.(;O)., 	thctures were 
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prepared by firstly freezing the required amount of pure, carbon 

dioxide into a trap attached to the P205-coated mixing lobe. 

Nitrogen was admitted via a tube' filled with glass wool-supported 

Both the neon and the xenon were supplied from sealed bulbs 

(BO.C, Ltd.), the I crmer being transferred with the aid of a Tpler 

pump, and underwent no further purification. After the second gas 

was added and. the carbon dioxide allowed to expand, twenty-four 

hours were allowed 'for mixing before' measurements were made in the 

spectrophone. 

The phase lags were analysed in the manner described for the 

single gases, 
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RESULTS: 	(a) CARBON DIOXIDE-NITROGEN MIXTURES 	Fig • 30 

Measurements at 450  c/sec. gave: 

Curve Number Mole Fraction CO2 	isec.) 	(11v x 10 5) sec 

• 	0 1.000 790 ± 0.5 1.430 ± 0.100 

1 0.8 51 8.7 ± 05 1.149 0.070 

2 0.747 10.0 ± 0.5 1.000 ± 0.050 

3 0.650 12.0 ± o.6 0.833 ± 0.640 

4 0.550 14e6 2 0.7 0,685 ± 00030 

5. Oôo 17.8 1.0. 0.562 It 0.033 
6 0.350 2514 1,5 09394  0.025 

7 0.200 43.3 5.0 04231 0.030 
8 00101 76.0 ±15.0 0.132 t 0.030 

9 	 0649 	223 	O.0 	0.045 10 0 012 

Errors have been estimated from the fit between the experimental 

points and the theoretical curves, taking into account the possible 

effect of thermal conduction p3ase  shifts. The gradual expansion of 

the error limits between curves 0 and 6 reflects the reduced 

sensitivity of the fitting process at longer relaxation times but 

the large increase between curves 6 and 9 arises from the brea1ovi 

of the simple theory at very long relaxation times, as can be seen 

for curve 8. This will be more fully discussed later... 
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(B) CARBON DIOXIDE-NEON MIXTURES 	Fig. 31. 

Measurements at 450 c/sec • gave: 

Curve Number Mole Fraction c02 ' 	(18C) (1/ 	x 10 5)sec 

0 1.000 7.0 t  0.5 1.430 t 0.100 
1 0.792 7.5 t 0.5 1.333 1 0 .090 
2 0.587 8.4 t 0.5 1.190 t  0.070 

3 09400 9.9 t 0.5 10010 ± 0.050 
4 0.202 13.0 ± o.6 0.769 ± 0.040 

Note that the thermal diftüsjvjty of these mixtures increases 

with the concentration of neon, a light molecule (M.VJ. = 20). 
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(C) 	CARBON IOxIDE-XENON MIXTURES 	Fig.32. 

Measurements at 450  c/sec. gave: 

Curve Number Liole Fraction CO2 j(i.isec) ( 1/'C x 

0 i.cco 7.0 0.5 1.430 ± 0.100 

1 0.844 8.6 0.5 1.163 ± 0-070 

2 0.724 10.1 0.5 0.990 0.050 

3 6.667 11.0 & 0.6 0.909 0.050 

4 0.526 13.9 0.7 0.719 0.040 

7 .37' 
- lj.j 1.0 ,- 	ri v.770 + - _ - 

6 0.285 22.2 1.5 0.451 ± 0.030 

7 0,115 36.7 t 3.0 0,273 ± 0.025 

• In contrast to the neon mixtures here the thermal diffusivity. 

decreases with increasing concentration of xenon, a heavy 

molecule 	= 131), and an exact correspondence between the 

450 c/sec and 250  c/sec measurements was obtained for every mixture. 
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DISCUSSION: 

Breakdown of the Simple Theory: The validity of the simple 

theory, predicting a tangential relationship between relaxation 

phase lag and reciprocal gas pressure in the spectrophone, depends 

upon the satisfaction of the inequality, 

(see P918), 

which summarises the assumption that energy transfer from vibration 

to translation (Go is much more rapid than the interaction of the 

gas with its environment (3 ]2) i.e, the eel]. walls, Purely 

thermal effects (11,/32)  treated theoretically by Delany(41), 

produce small phase leads which have been observed in the light, 

fast-relaxing gases e.g. IH3, HCN (Chapt.) and are dependent on 

gas properties and the modulation frequency.'With the carbon 

dioxide-nitrogen mixtures, particularly at high nitrogen 

concentrations,o< can become very small and in addition to the 

development of small thermal leads the basis of the theory used to 

interpxaette measurements becomes questionable. If the mole 

fraction of carbon dioxide is 0.100 then the relaxation time for 

the mixture at 1 atme is 100ueéc., but at 0.1 atm., representing 

the lowest pressure used in the determination, it has risen to 

1 9000 seek Furthermore as the concentration of 'the lighter N2 

increases so does the thermal diffusivity of the mixture. Under 

these conditions it would not be surprising if the assumption 

that 	/l,/ 2 proved unrealistic, and the simple theory broke 

down. That the tangential relationship does in fact become 

inadequate in describing the measurements is seen in Fig o33. 
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Cu.rve (1) represents a 50J1sec. relaxation line fitted to the 

phase lags measured at 250  c/sec • in the higher pressures of a 

20/80 : CO2/N2 mixture.. Similarly curve (2), a 220 )isec. 

relaxation line, cannot fit the set of measurements made in a 

499/95. 1  : CO2N2 mixture at 450  c/sec. Almost identical in 

their failure to follow the theoretical linesat low pressures 

the two sets of results demonstrate how the applicability of 

the simple theory may be extended by raising the modulation 

frequency. An upper limit however is imposed by the phase 

characteristic of the microphone; at 1 kc/sec the phase shift 

in the B. and K. one inch Type 4132  has already reached 5. 

Carbon Dioxide-'Nitroexi Mixtures: In Fig.34 the reciprocal• 

relaxation times for the mixtures are plotted against the mole 

fraction of carbon dioxide. 

Both Delany(41) and S].obodakaya and Gasilevich (46), using 

a nitrogen dilution technique (p.20), deduced the relaxation 

time of the -\)3-mode in pure CO2 from their speàtrophone 

measurements, by assuming a linear relation between the reciprocal 

relaxation time and the mole fraction of CO2. They quoted results 

at 1]. psec. and 12 ,yiseo. respectively. Since the measurements 

were made at contant gas pressure, although Slobodskaya did use 

several modulation frequencies, a close check on the concentration 

dependence of the relaxation times was Impossible, particularly at 

the higher concentrations of CO2 ((> 0.500) when the phase lags 

- were at the limit of detection. That their assumption of 



linearity was unjustified is apparent from Fig-34. Considering 

only those mixtures with higher N2  concentrations  (%<0.500)1  a 

linear extrapolation fran the Be and K. results predicts a 't  CO2 

of 9.0 1.0 usec., similar to the conclusions of the earlier 

workers. 

What is already known of the behaviour of the system vdiich 

might lead to an explanation of the observed concentration 

dependence? It has been shown that: 

the relaxation time of the ") 2-mode in carbon dioxide is 

A = 6.5 t 044 "see* (2) c/tv'tSo'c 

Nitrogen is very inefficient in de-'exciting the V.2-mode 

of carbon dioxide (74) L/i'aso 

The \)3-mode in carbon dioxide (21349cnr1)  is nearly 

resonant with the fundamental vibration frequency of. 

nitrogen (2031cm). This almost perfect matching 

between the levels should make the energy exchange 

process 

C0 ( \)3  = 1) + N2(V 0) 	CO2(\)30) + N(V = 1) 

very rapid, occurring every few collisions • Experimental 

confirmation is supplied by work on the CO2quenching of 

vibrationally excited nitrogen (14) and from the development of 

the CO2/N2 laser (6). 

Homogeneous deactivation of N2 is extremely slow and at 

room temperature in snail vessels virtually all the deactivation 

occurs on the walls. (14). (ej?p) 

From these facts one end of the concentration curve can be 

qualitatively defined. A single vibrationally excited carbon 



dioxide molecule injected into nitrogen gas will transfer its 

energy almost immediately to one of its molecules. Since the 

probability that the CO2molecule again encounters its lost 

quantum is virtually zero, the energy will be degraded to 

translation at a rate characteristic oft he nitrogen: 1/ = 0. 

The system is little changed by adding another one, ten or 

a hundred excited CO2 molecules; therefore the curve must 

leave the point (Xc02 = 0 1 	= 0) asymptotically along the 

mole fraction axis. This is in agreement with the Slobodskaya 

and Gsilevich measurements which are also plotted on Fig. '34. 

One postulate is required for an explanation of the 

remainder of the curve: that a vibrational quantum has a finite 

existence time in the \)3-mode of carbon dioxide. The following 

evidence supports the claim. 

The single gas work reported in Chapter Six allows a 

difference in relaxation times of"vO.Sjiseo.. between the '\)3-mode 

and the ')2-mode in carbon dioxide ('7'= 7.0 t  04psec 
= 6e4 ± 093 ,)isec.) 

iiarrjott's theoretical treatment (11) of the relaxation 

of the carbon dioxide molecule predicts a OoSJlsec.  lag between 

the \)3-mode and the remainder of the vibrations. 

An analogous molecule, sulphur dioxide, displays a 

well-substantiated ultraoonic double dispersion (68), (75). The 

higher energy stretching modes are considered to be slower 

relaxing ( = i.2 ,jisee) than the low energy bending mode 

= 0.06 ,.isec.) Since the obvious schemes for degrading 
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energy from sulphur dioxide's higher levels are almost identical 

with those possible in carbon dioxide, being based on transferring 

the quanttm into an overtone of the bending mode, their relative 

inefficiency is suggestive of a similar state of affairs in 

carbon dioxide0 

Energy from the \) 3 (2 9349cnf 1) mode in carbon dioxide would 

seem to be most easily transferred into the second ( 1932 .5onr1 ) 

or third (2553.3cm) overtone of the ")2-bending mode s  then 

rapidly 'cascaded' down the ne&ly resonant levels to the 

fundamental. That the conversion of an anti-symmet±ic stretch 

into a bend is a relatively inefficient process is not too 

surprising, a critical geometric factor may have to be satisfied 

during collision. 

Agreeing that it is not unreasonable to postulate a 

relaxation time ofrjO.5,,usec.  for the 3-mode, how does it help 

to explain the results? If 	in the pure gas is given a 

value X, then in a 50150  mixture with aa inefficient collision 

partner it will have a value 2X. But in nitrogen, because of 

the almost perfect matching between the relevant energy levels, 

the quantum will spend half its time associated with a nitrogen 

molecule (the 'principle of microscopic reversibility' stating 

that the transfer in one direction is as easy as in the reverse). 

Since the energy only stands a chance of degradation in a 

collision between two carbon dioxide molecules, thie'nitrogen 

'storage-effect' will further double the relaxation time to 4X. 

Extending the argument, in a 10/90:CO2/N2  mixture only 1 in 10 
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of an excited CO2 molecule's collisions stand a chance of being 

efficient, but the quantum only spends a tenth of its time 

associated with the CO2 molecule, the rest in 'nitrogen-storage'. 

The total relaxation time for is then (lO).(lO).. X = bOX. 

Only vibrational quanta in the \)3-mode of carbon dioxide can, 

of course, participate in this exchange process and if their 

existence time is short the effects described above will be 

unimportant.. 

The theoretical line drawn in Fig.34 was calculated by 

assuming: (a) '\)3 = O.7psec. 

'2 	6.7 ).sec. 

N2 is completely inefficient in deactivating the 

2-mode. 

(U) easy energy exchange between CO20)3)  and 1\12. 

Carbon Dioxide-Neon Mixtures: The reciprocal relaxation times are 

plotted against the mole fraction of carbon dioxide in Fig.35. 
The relation is not linear. Ultrasonic work( 56) has produced 

a value of 12± 3, Jisee . for the V2-mode's  relaxation time infinitely 

dilute in neon. As in the CO2/N2 mixtures the .spectrophone 

results require a vibrational quantum to have a finite existence 

time in the\)3-mode. The probable -  importance of a geometric 

factor in transferring energy from a stretching mode to ,a bending 

mode has been previously emphasised. It is not difficult to 

imagine that the small neon molec4e might be inadequate in this 

respect, and therefore be bnly an inefficient collision partner 

for the transition. Using these ideas the theoretical line in 
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Fig-35 was calculated by assuming the values: 

?T 	.6sec and (b) CO24Ly dil.inWe2 	20.0 'see*  In pure c02 9  3=op 	 3 	 )  
tV2= 6.2psec. 	 12.5).lseC. 

Carbon Dioxide-Xenon Mixturess The reciprocal relaxation times 

are plotted against the mole fraction, of carbon' dioxide in Fig.36 

and the results are 'adequately represented by a straight line. 

It would therefore seem that xenon is approximately as inefficient 

in de-exciting the V3 as the 'Q2-mode. Ultrasonic work '(56) has 

foüxxl the relaxation time of carbon dioxide infinitely dilute 

In xenon to be >3OJ1see; the spectx'ophone gives a value of 

85 ± lojtsec. 
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CONCLUSIONS and FUTURE WORK. 

The spectrophone allows the rates of energy transfer processes 

from the infra-red active vibrational modes of gas molecules to be 

accurately and swiftly measure4. Whereas the precise determination 

of a relaxation time by ultrasonic iriterferometry requires several 

days effort by the experimenter the spectrohone can produce a 
( 	 . 	 ) 

result within an hour. In its present form the B and K Spectrophone 

is suitable for studying relaxation times in the range itsec  to 

lOotseo. These limits,- may be extended by a factor of two in 

favourable cases. Further work is therefore possible on gases 

such as carbon dioxide, nitrous oxide, etc* mixed with inefficient 

collision partners. 

Exr,ansion of present limits: At the fast-relaxing end of the 

scale more energy must be made available to generate a stronger 

optic-acoustic signal in the gas. Once the extra energy has been 

supplied however the thermal diffusivity effect will preclude the 

extension of measurements.-t6,lower gaa.pressuree and the modulation 

frequency will have to be raised. 	Similarly, to study slow- 

relaxing gases, unless a more sophisticated theory is developed, 

a hiEher modulation frequency is néessary to .damp wall effects 

and preserve the validity Of the simple theoretical interpretation 

of the results. Hence, assuming that the delivery of a higher 

radiation density is possible, the spectrOphone's range is 

extendable to both shorter and longer relaxation times by raising 

the modulation trequenCy. The device used to detect the optic-

acoustic signal now becomes the limiting factor. 	With one inch 



• 	 the zero phase, shiftoondition is not 

preserved'beyond 1 k6/sec, A balance will therefore require to be 

struck between the sen8vity of the detecting device and its. 

resonance frequency iihalf inch microphones may be:  an improvement. 

It'is felt 'that the irformati0n provided by the spectrophone 

about the--relaxation times Of higher energy brational modes 

'widens our 'appreciation of' the c011isional interactions between gas 

molecules and thatthe'.;spéctrohone has 'still'morè'to contribute 

in the field of energy. 	 •: 	' 	 '" 
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C_RAPT ER 8 

THE JLTBASOtIC METHOD FOR STUDYING GAS IMPERMUOR . 

The pressure-dependence of the velocity of sound in a gas has 

been widely studied in the measurement of vibrational relaxation 

timee(.l). Another gas property, howGver, also causes a pressure 

dependence which must be corrected for in energy transfer work: 

gas imperfection. Velocities are Corrected by a factor (8) a 

function of the gas's second zirtal coefficient (B). Studying 

sound velocjties outside the dispersion region therefore provides 

an opportunity for measuring a gas's imperfection by a method 

independent of adsorption effects. This is an important factor 

in establishing the virial coefficients of polar gases, The 

development of a technique and its application to two polar gases1 

ammonia and hydrogen cyanide, is described in Appendix 1. 
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APPENDIX .1 



Gas Imperfection in Ammonia and Hydrogen Cyanide 
Determined by an Ultrasonic Method : 

By T. L. COTTRELL,*  I. M. MACFARLANE AND A. W. READ 

Dept. of Chemistry, The University, Edinburgh 

Received is! February, 1965 

• . 	 Measurement of the velocity of ultrasound in ammonia and hydrogen cyanide, outside the 
vibrational dispersion region, confirms the expected linear prcssure..dependcnce of this quantity. 

• The values of the gas imperfection parameter S at the temperatures 30 and .75°C are in fairly good 
agreement with values calculated from F, V, T data. Small discrepancies are discussed in terms 
of possible errors in the latter. . 

Various properties of gases, such as the compressibility and the Joule-Thomson 
coefficient, have been used to determine the extent of gas imperfection. Another. 
convenient property is the velocity of sound, which depends on the quantity 
,J(dp/dp) acliab auc . This quantity is independent of pressure for an ideal gas, but does 

-. show a small pressure dependence in an imperfect gas. It may be shown 1, 2 that, 
to the first order in the correction term, the velocity V of sound in a gas is given by 

[RT( RV1/ Sp\
1 	]+) ')i' 

 

where 
TdB 	T 2  d 2 B 

S=B+_+2(1) . 	• 	• 	(2) 

The factor in square brackets is the ideal gas contribution, the second factor the 
imperfection correction. B is the second viriàl coefficient, C is the ideal molar 
heat capacity at constant volume, and c = C/R. . . 

The sound velocity has the advantage, particularly for polar gases, that its 
measurement is unaffected by adsorption of the gas on the surface of the vessel. 
It can be measured 1,2  to about I part in 1000, so that a gas imperfection correction 
of about I % at I atm can readily be determined. The quantity S is not so familiar 
to physical chemists as is B, so it may be helpful to note that if B is given (for example), 
by the Berthelot equation (where P and Q are essentially positive functions of the 
critical constants), . • . . . 

• 	 • 	. • 	 B=P—QT 2 , 	 . 	 • 	(3) ; 
then 	 . 	 . 	. 	• . 	. ••. . 

S=P—GT2, 	• 	• 	.. 	•. • 	(4) 	• 
• 	. 	where 	 • 	 • 

/ 	3\ 	. 
• 	 . 	 .,• 	G=Q(1__

2 
 + (1)).. 	 (5) 

• The factor (i - + 
c(c+ 1)) 

is always positive and does not vary greatly from one 

gas to another, being 054 for diatomic molecules and about 07 for moderately 	 S  
* at present, visiting professor, Oregon State University. • • 
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complicated polyatomic molecues This means that S generally follows B in its 
behaviour, but is somewhat greater. 

In this paper S values for the polar gases ammonia and: hydrogen cyanide are 
determined ultrasonically and compared with values derived from P. V, T data. 

EXPERIMENTAL 

Commercial anhydrous ammonia was purified as already described. 3  Hydrogen 
cyanide (l.C.I. Ltd.) was dried over phosphoric oxide, and distilled from solid CO2+ 
acetone and ice+salt freezing mixtures. Infra-red analysis of both gases showed no 
impurities. 

1 he sound velocities were measured in a conventional ultrasonic interferometer. Except 
or the results for ammonia at 30°C, which have been reported previously, 3  all the measure-
ments were made with a quartz crystal transducer at 93 kc/sec. The analysis of the 
results in terms of eqn. (I) will only be valid if no dispersion of tile velocity because of vibra-
tional relaxation is taking place under the experimental conditions. Dispersion does not 
take place in ammonia up to 13 Mc see - ' atm-1 ,4  nor in hythogen cyanide up to 3 Mc 
sec' atm-1 . 5  The present experiments cover the range 006-09 Mc sec' atm -1 . 

U 

E 

02 	04 . 06 	0-8 	10 	12 

- 	 p(atm) 

FIG. I.—Sound velocity in ammonia as a function of pressure. Frequency at 30°C, 694-8 kc/scc; 
at 75°C, 93148 kc/sec. 

The observed velocities, particularly at 93 kc/sec, required the application of .a transverse. 
wave correction, to give the true plane-wave velocity. 3  This was determined by adjusting 
the extrapolated value of the ideal velocity for HCN at 308 °C to fit the theoretical value. 
The correction amounted to 015 %, slightly less than we have found before for a crystal 

• of this frequency. The same correction was applied at the higher temperature. Provided 
the transverse wave correction is independent of pressure its magnitude is not important 
since the absolute value of the velocity is not significant in connection with the deter-
mination of S. Measurements on air, whose second virial coefficient is well, established, 

TABLE 1 .—S VALUES (cm3  mole-1 ) FOR 'NH3 AND HCN - 
S (ultrasonic, this work) 	 S (P, V, T, see text)  

NH3 	. 	. . 30°C - 142±10 	.' —145 
'75°C 	- 80±10 	, 	• -. 98' • 	• 

I-ICN 	30-8°C —1118±20 	' 	—930 
• 75°C —513±20 	 —512 	 • 

4" 



1634 	GAS IMPERFECTION BY AN ULTRASONIC METHOD 

showed the correction to be independent of pressure. The reasonably satisfactory agree-
ment of the correction with expectation, and the consistency of the HCN and NH 3  results 
confirm that the gases must be free from impurities of substantially different molecular 
weight. 

The observed velocities, with transverse wave correction, are plotted against pressure 
in fig. 1 and 2. Least-squares analysis gave the S values, with standard deviations, shown 
in tame i. - 

372 

338 

	0.1 	02 	0, 3 	04, 	O 

p(atm) 

FIG. 2.—Sound velocity in hydrogen cyanide as a function of pressure. Frequency at both 
temperatures, 93148 kc/sec. 

DISCUSSION 

Most discussions 68  of gas imperfection in ammonia have started from Keyes' 9 

analysis of Meyers' and Jessup's 10  F; V, T measurements, in which the pressure 
exerted by a known weight of gas in-a variety of fixed volumes was measured as a 

• function of temperature, the pressures being as high as 30 atm at the higher tem-
peratures. Keyes' analysis has, however, been criticized," and we re-analyzed 
the original data by fitting them to the relation S • 

(6) . . 	RT 	V. 	V' 

- where V is the molar volume, with results in agreement with Hirschfelder, McClure 
and Weeks." The B values thus, obtained were then fitted to an equation of the 
form used by Keyes,' • ' , • • ., •" 

B(T) = 	exp (T 
2) 

	 . 	

•• , • 

	

• 	 (7) 

•1 
4' 
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the constants being cc = 41 cm 3  mole', fJ-= 4088 x 10  cm 3  mole- 'deg., y 

683 x 10  deg. 2. This equation fitted the B values exactly in the temperature range 
25-200°C. From it were calculated the values of S given in table I. 

Whereas agreement is excellent at 30°, the F, V, T value is more negative than 
the ultrasonic value at 750, by an amount which may just be gignificant. The 
pressures in the higher temperature P, V, Twork were rather high, and if it is assumed - 

that the experimental B values at higher temperatures are slightly too negative, 
dB/dT will be slightly too small, and d2B/dT2 will be too negative, in that the gradient 
will be flattening off too quickly, and hence the derived S value will be too negative. 
Thus, although the agreement between the ultrasonic and F, V,-T results is reasonably 

- good, the slight discrepancy found could be explained on the assumption that the 
higher temperature P, V, T results for B are a few cm 3  mole' too .negative. 

The P, V, T data for hydrogen cyanide 12 were obtained in the same way as those 
for ammonia. At lower temperatures, particularly at 0°C, measurements were 
made near the saturation point and large adsorption effects were reported. We 
analyzed the data in the same way as for ammonia, and found for the constants in 
eqn.(7): a = 295 cm3mole',fJ = .3 x I05 cm3mole'ldeg., y = 1030x 10 4-deg2 . 

The equation gave a good fit in the region 0-100°C. The gas density of hydrogen 
cyanide has been measured 13 at 30, 70 and I IQ°C, and these results may be inter-
preted in terms of the second virial coefficient, giving the results noted in table 2. 

• - 	
TABLE 2.—B(HCN) (cm3  mole-') 

tcmp. 'C 	 P. V, T 	 gas dcrtsity 	ultrasonic (this work) 

30 	—1564 	—1602 	—1332±100 

70 	—989 	—811 
75 	- 940 	- 760 	- 765 ±75 

110 	- 672 	- 507 

	

* interpolated 	 -, 

The P, V, T virial coefficients were used to calculate the S values given in table 1. - 
Whereas the agreement is excellent at 75°C, the F, V, T S-value is Iaig-r negatively 
than the ultrasonic one,A. This is the direction in which errors due to adsorption cq3o"( - 

would be expected .to oj5erate. 
In order to go from the observed S-values to the virial coefficient B, it is necessary 

to make a simple assumption about the form of B(T). A convenient expression which 
requires only two-empirical constants is derived on the assumption that the virial 
coefficient consists of two terms, one due to dispersion forces and given, by the 
Berthelot equation, and the other due to dimerization (assumed small) so that 1 4 

B(T) = P—QT2—RT/K, • -; 	 - 	(8) 

where 	• 	- 	 - 	 - 	• 	-: 

	

P=9RT/128p, 	 1• • 	 '• 	
- 	 (9) 

	

Q =,27RT/64p, 	 •. 	(10) 	' 

and 

	

K(T) = PJPAZ, 	 '• 	 (11) 

where T and p are the critical temperature and pressure, PA is the partial pressure 

of monomer, and PA, is the partial pressure of dimer. We then have for S 	- 

RTr 	1/ • 	 I 	'feH\fl. 	' 	 • 	 - 

- 	S_P_GT2_[1+T)+2C(C+l)) j 	
(12) 	 - - - 



) 	 ,- - 

I 

1636 	GAS IMPERFECTION BY AN ULTRASONIC METHOD 

where G is given by eqn. (5) and EH is the enthalpy of dissociation of the dimer. 
The expression in square brackets is positive for all c and iH, so that dimerization 

must make the value of S more negative. 
An analysis of the S-values along these lines was attempted for ammonia, but 

it was found that S calculated from the Berthelot equatioll at 75° was approximately 
equal to the S value found ultrasonically. This means that K2 is so large that the 
analysis cannot be usefully applied, or that the Berthelot equation gives too large a 
negative value of S. This difficulty does not appear to arise for hydrogen cyanide, 
however, and the B values calculated by fitting eqn. (12) are given in table 2. They 
are slightly smaller (negatively) than those from the F, V, Tdata at both temperatures, 
but in exact agreement with the gas density value at 75°C. On the other hand, 
since the modified Berthelot equation does not fit the F, V, T data very well, it may 
be that this particular method of analysis of the ultrasonic data is not-fully justified. 
- It appears, then, that the ultrasonic method is an acceptable one for considering 
gas imperfections, and that the existing F, V, T data for second virial coefficients 
may be slightly in error at the higher temperatures for ammonia and at low 
temperatures for hydrogen cyanide. - - 
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