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Abstract 

This thesis analyses the capabilities and limitations of query learning by using the tools 

of statistical mechanics to study learning in feed-forward neural networks. 

In supervised learning, one of the central questions is the issue of generalization: 

Given a set of training examples in the form of input-output pairs produced by an 

unknown teacher rule, how can one generate a student which generalizes, i.e., which 

correctly predicts the outputs corresponding to inputs not contained in the training 

set? The traditional paradigm has been to study learning from random examples, 

where training inputs are sampled randomly from some given distribution. However, 

random examples contain redundant information, and generalization performance can 

thus be improved by query learning, where training inputs are chosen such that each new 

training example will be maximally 'useful' as measured by a given objective function. 

We examine two common kinds of queries, chosen to optimize the objective func-

tions, generalization error and entropy (or information), respectively. Within an ex-

tended Bayesian framework, we use the techniques of statistical mechanics to analyse 

the average case generalization performance achieved by such queries in a range of 

learning scenarios, in which the functional forms of student and teacher are inspired by 

models of neural networks. In particular, we study how the efficacy of query learning 

depends on the form of teacher and student, on the training algorithm used to generate 

students, and on the objective function used to select queries. The learning scenarios 

considered are simple but sufficiently generic to allow general conclusions to be drawn. 

We first study perfectly learnable problems, where the student can reproduce the 

teacher exactly. From an analysis of two simple model systems, the high-low game and 

the linear perceptron, we conclude that query learning is much less effective for rules 

with continuous outputs - provided they are 'invertible' in the sense that they can 

essentially be learned from a finite number of training examples - than for rules with 

discrete outputs. Queries chosen to minimize the entropy generally achieve generaliza-

tion performance close to the theoretical optimum afforded by minimum generalization 

error queries, but can perform worse than random examples in scenarios where the 
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training algorithm is under-regularized, i.e., has too much 'confidence' in corrupted 

training data. 

For imperfectly learnable problems, we first consider linear students learning from 

nonlinear perceptron teachers and show that in this case the structure of the student 

space determines the efficacy of queries chosen to minimize the entropy in student 

space. Minimum teacher space queries, on the other hand, perform worse than random 

examples due to lack of feedback about the progress of the student. For students with 

discrete outputs, we find that in the absence of information about the teacher space, 

query learning can lead to self-confirming hypotheses far from the truth, misleading 

the student to such an extent that it will not approximate the teacher optimally even 

for an infinite number of training examples. We investigate how this problem depends 

on the nature of the noise process corrupting the training data, and demonstrate that 

it can be alleviated by combining query learning with Bayesian techniques of model 

selection. Finally, we assess which of our conclusions carry over to more realistic neural 

networks, by calculating finite size corrections to the thermodynamic limit results and 

by analysing query learning in a simple two-layer neural network. The results suggest 

that the statistical mechanics analysis is often relevant to real-world learning prob-

lems, and that the potentially significant improvements in generalization performance 

achieved by query learning can be made available, in a computationally cheap manner, 

for realistic multi-layer neural networks. 
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Chapter 1 

Introduction 

1.1 Motivation 

This thesis deals with the general problem of learning a rule from examples. This is a 

task which humans normally perform with relative ease, but which is much more diffi-

cult to accomplish for conventional computers, robots and other non-human learners. 

Learning from examples is necessary when a rule is either unknown or too compli-

cated to be specified explicitly and encoded into, for example, an expert system. A 

few examples of situations of this kind are: speech and image recognition, prediction 

of chaotic time series, forecasting, control, prediction of protein secondary structure, 

robot navigation; the list could be extended almost indefinitely. We can think of many 

of these scenarios in terms of a mapping from certain inputs (such as a speech signal, 

a digitized image, the previous values of a time series, the amino acid sequence of a 

protein etc.) to the corresponding outputs (for example a phoneme sequence, a string 

of characters, the next value of a time series, the secondary structure of a protein etc.), 

which one is trying to infer on the basis of a number of known input-output pairs. 

This kind of problem has been investigated in a number of different disciplines, each 

bringing its own emphasis and terminology to the subject, being called machine learn-

ing in computer science, regression, classification, interpolation-, and extrapolation in 

statistics, pattern recognition in engineering, etc. In the last decade or so, important 

contributions to the field have also been made by researchers interested in (artificial) 

neural networks. The distinguishing feature of the neural networks approach is its in-

spiration from biological networks of interconnected neurons. Artificial neural networks 

are extremely abstract version of such networks, consisting of a collection of neurons 

or elementary processors which perform some simple computation (such as threshold-

ing, or application of a nonlinear transfer function) on the input they receive, and 
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CHAPTER 1: INTRODUCTION 	 2 

feed the resulting output into the neurons to which they are connected. In this con-

text, the problem of learning a rule became known as supervised learning. The desired 

input-output mappings were most frequently modelled by feed-forward networks with a 

layered structure, which can approximate a large class of input-output mappings (see, 

e.g., [HSW89]) and can indeed be viewed as a particular class of nonlinear statistical 

models (see, e.g., [Whi89]). Supervised learning in such feed-forward networks will be 

the focus of this thesis. However, the framework in which we investigate our topic will 

also draw on concepts from machine learning and in particular from statistics in order 

to provide a wider perspective, and we shall, frequently relate our results to research in 

these disciplines. 

In the language of supervised learning, the problem that we are concerned with 

can be stated as follows: One is given a set of training examples (input-output pairs) 

produced by a teacher according to some underlying but unknown rule. The aim is 

to generate, using a suitable learning or training algorithm, a student (e.g., a neural 

network) which generalizes, i.e., which can predict at least approximately the out-

puts corresponding to previously unseen inputs. The traditional approach has been 

to study generalization from random examples, where the input-output pairs which 

make up the training set are obtained by picking at random an input value according 

to some probability distribution, 'labelling' it with the corresponding output from the 

teacher and then possibly corrupting one or both of these values with some noise. It 

is clear, however, that the amount of novel information contained in random exam-

ples decreases towards zero as learning proceeds. This is due to the fact that as the 

size of the training set increases, the student becomes increasingly confident about its 

predictions in large regions of input space; random examples falling into these regions 

are essentially redundant and yield only a negligible improvement in generalization 

performance. The alternative approach of query learning (also referred to as active 

learning, active sampling, active data selection, experimental design etc.) has there-

fore attracted considerable interest. Here the inputs are not chosen at random, but 

rather by a query selection algorithm which, depending on the previously seen exam-

ples, selects an input value for the next input-output pair to be added to the training 

set. The motivation for query learning is that eliminating the redundancy contained in 

random examples should improve generalization performance or, equivalently, reduce 

the number of training examples needed to attain a certain level of generalization per-

formance. In the context of human learning, one could loosely describe query learning 

as giving a student the possibility to ask non-redundant, 'intelligent' questions, rather 

than presenting her with randomly selected pieces of information. 

Query learning makes most sense in situations where obtaining training outputs is 



CHAPTER 1: INTRODUCTION 	 3 

in some sense 'expensive'. For example, the teacher output could actually be the result 

of a complicated physical measurement (with control parameters given by the inputs). 

Or it might be that training outputs can only be obtained from a human expert, as is 

often the case in tasks like phoneme recognition, medical diagnosis of X-ray images etc. 

A further motivation for query learning is that the cost of training, i.e., producing a 

suitable student on the basis of the training set, can increase strongly with the number 

of training examples. Finally, it is often undesirable to store large amounts of training 

data, and one might like to restrict attention to the examples which are most relevant 

for learning a given rule. 

The main question that we will try to answer in this thesis is: How useful is query 

learning? Quite apart from its independent theoretical interest, this question has sig-

nificant implications for practical applications. The reason for this is that the improve-

ments in generalization performance afforded by query learning do of course have their 

price in so far as a query selection algorithm can itself be computationally expensive, 

possibly off-setting the savings due to the reduced number of training examples that 

are needed. In order to decide whether to use query learning in a certain application 

or not, it is therefore of paramount importance to know what performance gains can 

be expected from query learning, in order to be able to assess the trade-off with the 

costs of query selection itself. Our approach to this problem will be explained in more 

detail below; first, however, we review some of the existing research in the area of query 

learning to put our work into its proper context. 

1.2 Review of existing work 

We will concentrate on the analysis of query learning in scenarios where training outputs 

are expensive. That is, we assume that the aim is to achieve a certain generalization 

performance (as measured by the generalization error, which is formally defined in 

Chapter 2) while keeping the number of training outputs that need to be obtained from 

the teacher at a minimum. This excludes situations where training data is in principle 

abundant and one is concerned with identifying a minimal subset of a given larger 

training set which will yield the desired generalization performance. For references on 

this approach, sometimes referred to as 'active (subset) selection', we refer to [PW93]; 

a more extensive list can be found in [P1u94]. We will also confine our analysis to 

training algorithms which generate a student on the basis of the whole training set 

('batch' or 'off-line' learning). The alternative approach of 'on-line' learning, which 

modifies students only on the basis of the most recent training example, would be 

inappropriately wasteful when training data is expensive. Techniques closely related to 
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query learning have nevertheless been used to optimize the behaviour of on-line learning 

algorithms by selecting a particular order in which training examples are presented (see, 

e.g., [Cac94, Mun92] and [SR95] for a more extensive review from the point of view of 

cognitive science), but this is an issue that will not be addressed in this thesis. Finally, 

the use of active learning in unsupervised learning tasks such as clustering (see, for 

example, [HB95, CRL94]) is also beyond the scope of our work. 

Having excluded the cases with which we will not be concerned, we define query 

learning as follows: The 'intelligent' selection of new training inputs (or 'queries') on 

the basis of the existing training set, before the corresponding new training outputs are 

known'. Note that we regard data gathering (i.e., query selection) and inference from 

the data (as defined by a learning or training algorithm) as distinct processes, which 

could be implemented separately'. In the context of human learning, for example, our 

point of view would allow queries to be selected by an independent 'adviser' different 

from the student and the teacher. The selection of queries is in general a sequential 

process in the sense that the choice of each query can be made only once the outputs 

corresponding to 'earlier' training inputs are known. However, we shall also discuss 

cases in which each new training input depends only on the previous inputs. A sequence 

of training inputs can then be determined before any outputs are received, and query 

selection becomes what we will term 'effectively non-sequential'. 

A first classification of existing work on query learning is afforded by the criterion 

of whether queries are chosen heuristically or, alternatively, in a principled way, defined 

by the requirement of optimizing a given objective function. Another distinction can 

be made between approaches where queries are constructed, i.e., calculated (maybe 

stochastically) on the basis of the existing training set, or filtered from a stream of 

random input values until some criterion is met. 

Heuristic query construction algorithms for two-layer feed-forward networks (with 

one layer of hidden units and one layer of output units) were proposed by, for example, 

Baum [Bau9l, BL911 and Hwang et al. [HCOM91]. Baum considered a student network 

with binary threshold units (which output either 0 or 1) and suggested an algorithm for 

identifying hyperplanes in input space which separate examples with training output 0 

'Formally, the condition that training inputs should be selected before their corresponding outputs 
are known ensures that our inferences are not biased by the way we gather training data; see Section 2.6. 
It is this condition that excludes most techniques for active selection of subsets training data from our 
discussion, since these normally base the selection of training examples on both the new input and 
output (see, e.g., [PW93, P1u94]). However, our approach can be straightforwardly extended to include 
methods for subset selection which choose new training examples only on the basis of their inputs. 

2 1n the machine learning literature, data gathering and inference are normally viewed as forming a 
single 'learning algorithm'. 
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from examples with output 1; these hyperplanes determine the weights of connections 

between inputs and hidden units. Baum analysed the algorithm within the framework 

of probably approximately correct (PAC) learning and proved that if the teacher was 

defined by a network of the type considered with no more than four hidden units, 

then the desired mapping can be learned in polynomial time. This contrasts with 

the case of random examples, where the problem of learning such a network is NP 

complete [BR88]. Experiments on more complicated teacher rules also appeared to 

yield promising results. Extensions to situations with a noisy teacher or with student 

networks with continuous rather than threshold units were suggested, but not discussed 

in detail. 

Hwang et al. [HCOM91] considered query learning starting from a partially trained 

two-layer network with sigmoidal transfer functions at the hidden and output units. 

The rule to be learned was a binary classification task, with outputs 0 and 1 corre-

sponding to the two classes. Hwang et al. considered the heuristic of selecting training 

examples near the decision boundary of the student network, defined as the input 

region for which the predicted output was 0.5; this region was identified by an ap-

proximate inversion of the mapping realized by the student network. Their approach 

was critized by MacKay [Mac92c], who argued that there is no guarantee that inputs 

near the currently learned decision boundary will necessarily be very informative (in 

particular after a large number of queries have been selected), and pointed out that 

the algorithm runs the risk of not identifying decision boundaries that have not been 

found after training on the initial set of random examples. 

For the simpler case of binary perceptron students and teachers (i.e., single layer 

networks with a threshold output unit), Kinzel and Ruján [KR90] and Watkin and 

Rau [WR92] analysed query construction based on an approach similar to the one 

in [HCOM91], using a statistical mechanics approach. The decision boundary of a 

binary perceptron is the hyperplane orthogonal to its weight vector, and thus queries 

were selected at each step orthogonally to the current weight vector. For batch learning, 

the average generalization error was found to decay exponentially with the number of 

training examples, which constitutes a significant improvement over the case of random 

examples. The improvement for a simple on-line learning algorithm was found to be less 

drastic, as expected. The above heuristic query construction algorithm was justified 

by Kinouchi and Caticha [KC92] through explicit minimization of the generalization 

error in an on-line learning scenario, and an exponential decay of the generalization 

error was found for a suitably optimized, though slightly unrealistic, learning algorithm. 

In the context of on-line learning of a time-varying rule, heuristic query construction 

for binary perceptron students was also studied by Biehi and Schwarze [BS93], and a 
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moderate performance improvement was found. 

Cohn [Coh90, CAL90, CAL94] first proposed the method of query filtering. He 

studied concept learning (where there are only two different target outputs, 0 and 1; 

this is one of the most widely studied scenarios in machine learning) and argued that 

queries should be selected from what he called the 'region of uncertainty', where at least 

two students which are compatible with all the existing training examples make different 

predictions. He suggested ways of achieving this by training two students on the same 

training set but with different additional constraints which would make them maximally 

different (one 'most specific', the other 'most general'). He also demonstrated explicitly 

the drawbacks of the approach in [HCOM91] that were discussed above. 

In an approach similar to Cohn's heuristic 'region of uncertainty', Seung et at. intro-

duced the 'query by committee' algorithm for filtering queries [S0S92]. This algorithm 

relies on training a committee of several students, and queries are selected according 

to the principle of 'maximal disagreement' between the committee members. They 

justified their algorithm within an objective function approach to query selection by 

showing that as the number of committee members grows large, the query by commit-

tee algorithm maximizes the expected information gain from a new training example. 

A worst-case analysis of query by committee within the framework of PAC learning was 

given by Freund et at. [FSST93, Fre93]. For concept learning problems in which the 

student has exactly the same form as the teacher and the training examples are free of 

noise, they managed to relate the information gain to the decrease of the generalization 

error. In particular, they showed that an exponential decay of the generalization error 

is obtained if the information gain for queries selected by query by committee does 

not decay to zero as the number of training examples increases, and they identified an 

interesting class of learning scenarios for which this is the case. 

At this point, let us mention some related research on learning from queries in 

the field of machine learning 3 . A lot of work in this area has focused on exact concept 

identification (see, e.g., [Va184, Ang88, MT92]), corresponding to perfect generalization, 

and on the computational complexity of query learning (see, e.g., [BEH89] and [AK95] 

and references therein). Of more interest to us are studies relating to the sample com-

plexity of query learning [BEH89], which in our terminology is the number of training 

examples needed to achieve a certain generalization error. Eisenberg and Rivest [ER90] 

'Note that our definition of query learning corresponds to the notion of 'membership queries' in 
machine learning. The term 'membership' arises because in concept learning the query "what is the 
output corresponding to input x ?" can be rephrased as "is x a member of class 1 ?". Other types 
of queries such as 'equivalence queries' - where the student can ask whether its guess for the teacher 
rule is entirely correct, and receives a counterexample if not - have also been studied, but will not be 
considered in the following. 
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investigated this issue within a worst-case, distribution-free model of learning, where 

nothing is known about the distribution of inputs. They found that a combination of 

random examples and queries selected by query construction does not yield a signif-

icantly lower sample complexity than learning from random examples alone. Similar 

results were derived by Kulkarni et al. [KMT93] for learning from general binary val-

ued queries. The intuitive reason for this failure of query construction to be useful in 

distribution-free scenarios is that after any finite number of queries, a 'malicious ad-

versary' can always pick an input distribution which has negligible weight in the input 

regions where the queries were chosen, thus rendering the information from the cor-

responding training outputs useless for the purpose of generalization. To prevent this 

problem, we shall assume in our discussion of query construction that the input distri-

bution is known (either a priori or as an estimate based on a sample of random inputs) 

to the query selection algorithm; the results in [KMT93] show that in this case, queries 

can reduce the sample complexity. The alternative is to use query filtering instead of 

query construction, as advocated by Freund et al. [FSST93, Fre93] on the basis of the 

negative results for query construction mentioned above; this automatically incorpo-

rates knowledge about the input distribution through the sampling from a stream of 

random inputs. Note that for either query filtering or query construction, we implicitly 

assume that 'unlabelled' inputs (i.e., inputs without the corresponding outputs) are 

cheaply available, so that we only have to concern ourselves with reducing the number 

of training outputs needed. This assumption applies to a wide range of scenarios. Cohn 

et al. [CAL94] give speech recognition as an example: while speech recordings (inputs) 

can be obtained fairly easily and by a more or less automatic process, the phonetic 

classification (output) normally requires expensive human work. 

The work of [S0S92, FSST93] referred to above provides an example of query se-

lection for optimization of a given objective function. This general approach can be 

traced back to research in statistics on optimal experimental design. This field has 

been studied in great depth, and in this short survey we cannot hope to do justice 

to the vast body of existing literature. For reviews of earlier work, which concen-

trated on linear students (and teachers) and non-sequential query selection, we refer 

to, for example, [Fed72, AH78, 5i180, Atk821; research in the closely related field of 

'response surface methods' has been summarized in [BD87, KC87, MKC89]. Work on 

nonlinear learning problems is comparatively more recent, and has been reviewed in, 

e.g., [FTW85, FTK89, Pi191, AD91, CM93]. The general emphasis of work in optimal 

design has been the theoretical investigation of equivalences between different objec-

tive functions and the properties of the resulting predictors, such as unbiasedness and 



CHAPTER 1: INTRODUCTION 	 8 

asymptotic consistency. The question of how much query learning can improve gener-

alization performance has been addressed only occasionally with the help of computer 

simulations; Cohn [Coh94, CGJ951, for example, used simulations to compare the per-

formance obtained by query selection based on optimal experimental design procedures 

with learning from random examples. 

Among the different approaches to optimal experimental design, the one that is 

most closely related to the framework that we shall use is 'optimal Bayesian sequential 

design' (see e.g., [Pi191]). MacKay [Mac92c] has proposed several objective functions 

for query selection in this context, all based on measures of information gain (i.e., 

entropy). Within a Gaussian approximation for all probability distributions involved in 

the analysis, he confirmed the intuitive notion that queries should be selected in regions 

where the uncertainty of the student's prediction is high. MacKay also pointed out and 

demonstrated the 'Achilles' heel' of the Bayesian approach [Mac92c, Mac92b], which 

consists in the implicit assumption that the training algorithm (or, more generally, 

the 'inference model') is correct, i.e., reproduces the true (posterior) distribution of 

teachers that could have generated the data. This point, which is discussed in more 

detail in Chapter 5, is our main motivation for using a framework which allows for an 

explicit distinction between student and teacher space (see Chapter 2). 

Finally, we mention the work of Paass and Kindermann [PK95], who explored the 

practical implementation of Bayesian strategies for query learning using Monte Carlo 

methods. They used a decision theoretic framework and analysed, in several simple 

scenarios, the performance of queries selected to minimize the expected average loss. 

In our terminology, their approach corresponds to minimizing the generalization error, 

under the assumption that the inference model is correct. Sung and Niyogi [5N95] used 

a similar framework and found encouraging performance results for query learning in 

two toy learning problems with a one-dimensional input space. 

1.3 Aims and approach 

As explained above, the main question that we are interested in answering is: How 

useful is query learning? We already touched on the fact that an answer to this question 

has two components: On the one hand, one has to know by how much generalization 

performance can be improved by query learning; on the other hand, one should also 

take into account the computational cost of the query selection process itself, which can 

off-set the benefits of a reduced number of training examples. For simplicity, we shall 

largely ignore the second point in our work, focusing instead on an assessment of the 

performance gains afforded by query learning. The emphasis will be on exploring some 
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of the more basic capabilities and limitations of query learning, rather than necessarily 

finding practical query selection algorithms. 

In our review of existing work, we have divided query selection algorithms into 

two categories: heuristic, and those derived from the optimization of some objective 

function. It has been pointed out before [Mac92c] that, while heuristic approaches 

can demonstrate the power of query learning in specific instances, they do not allow a 

systematic study of possible. improvements of query selection algorithms, nor do their 

results generalize easily to learning problems other than those for which they have 

been designed. We shall therefore restrict our attention to query selection algorithms 

derived from optimization of objective functions, which we expect to yield more widely 

applicable insights. Existing work in this area as reviewed above leaves a lot of open 

questions, and the picture is far from complete. In particular, analytical evaluations 

of the generalization performance achievable by query learning [KR90, KC92, WR92, 

BS93, S0S92, FSST93] have been confined to extremely idealized situations where the 

student is of exactly the same form as the teacher, i.e., the rule is perfectly learnable, 

and the training examples are not corrupted by any form of noise. Noise is generally 

taken into account in work on optimal experimental design, but the analysis there 

is not normally concerned with the question of how much optimal design (i.e., query 

learning) improves generalization performance (with the exception of simulation work 

like [Coh94, CGJ95]). Bayesian optimal experimental design can be hampered by the 

built-in assumption of a correct inference model, which may lead to non-sensical query 

selection schemes [Mac92c, Mac92b]. In light of the above, the framework that we 

shall use will be probabilistic in order to allow a convenient representation of both 

noise processes corrupting the training data and non-deterministic training and query 

selection algorithms. As such, it will be similar to a 'traditional' Bayesian setup, but we 

will extend this to allow for an explicit distinction between student and teacher space, 

based on the work of Wolpert [Wo192]. Within this framework, we will try to elucidate 

the following questions: How does the efficacy of query learning depend on the nature 

of the rule to be learned (i.e., the functional form of the teacher)? How is it affected 

by noise, and by training algorithms which are not optimally matched to the learning 

problem at hand? What effect does the choice of the objective function for query 

selection have? What happens in scenarios where the student cannot reproduce the 

teacher perfectly, i.e., the problem is imperfectly learnable? What influence does the 

'size' of the learning problem (given, for example, by the number of parameters needed 

to describe a student) have? And what are the differences between query learning in 

single-layer and multi-layer networks? 

Our philosophy with regard to the above questions will be to study them in model 
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learning problems which are simple enough to be analysed analytically, but generic 

enough to allow conclusions of some generality to be drawn. The particular scenarios 

that we consider are inspired by models of feed-forward neural networks, and their 

simplicity will allow us to use the tools of statistical mechanics in analysing them. The 

power of these tools in the analysis of learning has been amply demonstrated in the 

past (see, e.g., [Ami89, HKP91, WRB93]). Of particular interest to us is their abil-

ity to predict average-case results - which can differ significantly from the worst-case 

bounds typically studied in machine learning and computational learning theory (see, 

e.g., [HKST94]) - and which are more representative of 'typical' behaviour. Further-

more, by considering an appropriate thermodynamic limit, statistical mechanics allows 

us to study situations with an effectively finite number of training examples, in con-

trast to the large sample size asymptotics conventionally used in statistics. Overall, we 

follow the theorist's paradigm that simple, analytically solvable models can go a long 

way towards improving our understanding of phenomena occurring in more realistic 

situations; although we will concentrate on theoretical analysis, computer simulations 

will occasionally be used to confirm and supplement the theoretical results. 

1.4 Structure of thesis 

The rest of this thesis is structured as follows. We begin in Chapter 2 with an exposition 

of the probabilistic framework within which we will discuss query learning, introducing 

also the objective functions for query selection which we shall investigate. In Chapter 3, 

this framework is then applied to simple learning scenarios in which student and teacher 

space are identical (perfectly learnable problems). The emphasis is on an elucidation 

of the dependence of the efficacy of query learning on the objective function used for 

query selection, and on the functional form of the rule to be learned. We also explore 

the effects of using training algorithms which are suboptimally matched to the learning 

problem. General issues such as the dependence of the effect of a single query on the 

'learning history', i.e., on whether the previous examples were selected randomly or by 

querying, and the differences between 'globally' and 'locally' optimal query sequences 

are also investigated. Chapter 4, which focuses on learning with linear students, ex-

pands the focus out to imperfectly learnable problems. This gives us the opportunity 

to investigate the differences between objective functions for query selection defined 

in teacher and in student space, which can be applied depending on whether or not 

knowledge about the teacher space is available. In Chapter 5, we discuss why in the 

absence of such knowledge one is essentially forced back to a 'traditional' Bayesian 

framework for query learning. The consequences are explored in detail for learning 
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with binary perceptron students, in particular with regard to the effects of different 

kinds of noise on the training data. Several pitfalls are exposed which can limit the 

usefulness of query learning. A potential solution consists in combining query learning 

with methods for selecting or adapting the inference model in the light of the data. 

This idea is explored in Chapter 6, with encouraging results. In the final two chapters, 

we extend our analysis further, with the aim of making contact with neural networks 

that would be used in practical supervised learning problems: In Chapter 7, we in-

vestigate corrections to the thermodynamic limit of infinite system size on which most 

of the analysis in the preceding chapters is based; our findings demonstrate that the 

thermodynamic limit analysis is often directly applicable to learning systems of typical 

'real-world' sizes. Chapter 8 constitutes a first step towards a better understanding 

of query learning in multi-layer networks, with results which point to the applicability 

of query learning in networks more complex than the ones we analyse explicitly. We 

conclude with a summary of our main results, a discussion of their implications, and 

an outline of open questions that remain or have been raised. 



Chapter 2 

A probabilistic framework for 

query selection 

Abstract 

A general probabilistic framework for deriving query selection algorithms 
from the requirement of optimizing a given objective function is described. 
We use an 'extended Bayesian' formalism, which has the advantage of dis-
tinguishing clearly between .teacher and student space. Two important ob-
jective functions for query selection are introduced, which will be used fre-
quently in later chapters: entropy (or information gain) and generalization 
error. Finally, we discuss the evaluation of the average generalization per-
formance obtained by a query selection algorithm. 

2.1 Introduction 

In this chapter we introduce a general probabilistic framework for the derivation of 

query selection algorithms based on optimization of a given objective function. The 

structure is similar to Wolpert's 'extended Bayesian framework' [Wol92J, but the no-

tation we employ (explained in detail in Section 2.2 below) is closer to that normally 

used in the neural networks community, see e.g., [WRB93]. Two common objective 

functions for query selection, entropy and generalization error, are introduced in Sec-

tion 2.3. In Sections 2.4 and 2.5, which form the core of this chapter, we explain 

how query selection algorithms should be derived from the requirement of optimizing a 

given objective function and how their generalization performance should be evaluated. 

General conventions and assumptions that will be used throughout this thesis are given 

in Appendix 2.6, together with some proofs. 

12 
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2.2 Notation 

In a discussion of supervised learning, the basic variables are the teacher, a training 

set of examples generated by the teacher, and the student, which is chosen on the basis 

of the training set and which is supposed to generalize, i.e., to make good predictions 

for outputs corresponding to new inputs. Our general approach will be to cast the 

problem in terms of probability distributions of these quantities. Although we shall 

use the terminology normally used by researchers in the field of neural networks, our 

framework is in fact applicable to more general forms of statistical inference (nonlinear 

regression, classification etc.). 

We denote students by Al (for 'Neural network') and teachers by V (for 'elements 

of the Version space', a term borrowed from Artificial Intelligence terminology [Mit82] 

which we will encounter more frequently in the following chapters). Each teacher and 

each student implement a mapping from inputs x (typically E RN) to outputs y (often 

E Ia). Let OW denote a (ordered) training set consisting of p examples (x's, y / '), 

ft = 1,...,p. We define the following probability distributions: 

• P(ylx, V), the probability of, given input x, obtaining output y from teacher V. 

This probability distribution specifies the input-output mapping implemented by 

the teacher V, including possible corruption by noise. If P(ylx, V) can be written 

in the form 8(y - f(x)), we call the teacher 'noise free', otherwise 'noisy'. 

• P(x), the probability distribution of inputs when these are randomly selected, i.e., 

not queried. As commonly assumed, this distribution also governs the selection 

of test examples, from which the generalization error is calculated. 

• P(® () IV), the probability of obtaining a specific training set from the teacher V 

(plus noise, possibly, which is always understood in the following). For randomly 

(and independently) selected examples, this can be written as 

P(E)IV) = flP(Ix,V)P(x). 	 (2.1) 

• P(V), the prior distribution of teachers 1 . 

'As a notational shorthand, we assume that in all probability distributions in which E" appears, 
the number of examples p is held fixed, without writing this explicitly. Thus, for example, P(®"IV) 
should strictly be written as P(®IV,p); hence it is normalized to one when integrating over all 
possible training sets of size p. To make this convention consistent with the use of Bayes' Theorem as 
in (2.2), we also make the natural assumption that the number of training examples is independent of 
the teacher rule that we are trying to learn. Thus, P(pV) = P(p) and hence P(VIp) = P(V), so that 
we only need one prior teacher distribution for all values of p. 
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• P(VIO(')), the posterior teacher distribution, which can be calculated from P(O()IV) 

and P(V) using Bayes' Theorem 

P(VIO 	
P(O()IV) P(V) 	

(2.2) ) 
= fdVP(O(P)IV) P(V) 

• P(Jt.fI®()), the 'post-training' distribution of students which specifies the training 

or learning algorithm in terms of the probability that training on the given set 

of examples  0(P)  will yield the student Al. We shall assume that students are 

deterministic, i.e., that for each input x a student Al provides an output which 

can be written in the form y = f(x). 

We emphasize that in a real-world learning problem, normally only P(AlI0()) and 

possibly P(x) will be known, whereas all the probability distributions concerning the 

teacher V will be unknown. The latter occur in two different roles below. Firstly, they 

are used in the definition of query selection algorithms with the aim of optimizing a 

given objective function (see Section 2.4). This is reasonable since knowledge about 

the teacher space and the relevant probability distributions, if available, should of 

course be used for selecting queries optimally. Scenarios of this type (i.e., with a known 

teacher space) are considered in detail in Chapters 3, 4 and 8. If the teacher space is 

unknown, the definition of query selection algorithms given below has to be modified by 

approximating unknown teacher space quantities by suitable student space quantities. 

This is explained in detail in Chapter 5; in such cases, the results obtained from analyses 

of learning scenarios with a known teacher space can only serve as a theoretical baseline 

for the optimal generalization performance that can be obtained by query learning. 

The second role in which probabilities involving the teacher V will appear below is in 

the performance evaluation of query selection algorithms. This cannot be circumvented 

since quantitative analysis of a learning scenario is only possible if assumptions are 

made about the teacher space. The necessity of such assumptions follows from the 

intuitively obvious result that, in the absence of any knowledge about the functional 

form and complexity of the teacher, generalization (and hence also its improvement by 

query selection) is impossible [W6192]. 

'The outcome of the learning algorithm can in principle depend on the order in which the training 
examples are presented. For brevity, however, we will continue to use the term 'training set' instead 
of the more technically correct alternative 'sequence of training examples'. 
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2.3 Candidate objective functions 

There are a variety of objective functions that one might want to optimize by a query 

selection algorithm. We restrict our attention to two very common ones: Entropy (or 

information) and generalization error. 

For a given training set 	the entropy in teacher space can be defined as the 

entropy of the posterior distribution  P(VIO()) 

S(®) = - J dV P(VIO () ) in P(VI®). 	 (2.3) 

The entropy in student space is defined similarly as a functional of the post-training 

distribution P(.AlI®()) (which depends on the learning algorithm that we are using). 

The information gain due to an additional example in either teacher or student space 

is defined as the decrease in the corresponding entropy. 

We emphasize that student and teacher space entropy coincide only if P(V I@) and 

P(AlIO ( ') ) have exactly the same form. This is always the case in Bayesian analyses, 

where V and Al are effectively identified (see, e.g., [Mac92c]). In recent research on 

query learning [S0S92, FSST931 where the distinction between V and Al was taken into 

account, the learning algorithm was nevertheless always chosen such that P(VIO()) and 

P(AlI®()) were still identical. In the applications of our framework in the following 

chapters, we shall see that new features can emerge if this is not the case. 

The generalization error is probably the most commonly used measure of the per-

formance of a student when trying to approximate a given teacher. It is defined starting 

from a specifically chosen error measure 

e(y, x, A() 
	

(2.4) 

which determines how much the output of the student Al for input x is in error compared 

to the correct output y. Averaging this over all input/output pairs produced by a 

teacher V, we obtain the generalization error, a measure of how closely Al approximates 

V: 

Eg(J\l,V) = (e(y,x,A())p(IV)p(). 	 (2.5) 

Regarding the relationship between generalization error and entropy, we note that a 

decrease in entropy need not necessarily be correlated with a decrease in generalization 

3 1f there is a continuum of teachers V, P(VI®") is a probability density which has the dimension of 

the inverse of V. Strictly speaking, a dimensional normalizing constant is then necessary to make the 
argument of the logarithm in (2.3) dimensionless, but we shall not write this explicitly since it cancels 
from the entropy differences we will be concerned with. 
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error, cf. the discussion in [FSST93]. Note also that we have followed the bulk of the 

literature on the subject of supervised learning and statistical inference by defining the 

generalization error as an average of the error measure over all possible inputs. One 

could argue that this is incorrect since generalization should, strictly speaking, refer to 

making correct predictions for new inputs, and that the average should therefore only 

be taken over inputs not contained in the training set. For a detailed discussion of the 

properties of the resulting 'off-training-set' generalization error in scenarios where the 

total number of different inputs is finite, see [W6192, W6195]. In the cases that we will 

consider, there will always be a continuum of inputs (normally real vectors), so that 

the exclusion of a discrete set of training inputs will not make any difference to the 

definition of the generalization error. 

Finally, for examples of a class of objective functions which have a somewhat inter-

mediate character between entropy and generalization error, the 'prediction probabili-

ties' and variants thereof, we refer the reader to [AM93, LTS90]. 

2.4 Derivation of query selection algorithms 

We assume now that we are given an objective function, such as entropy or generaliza-

tion error, which our query selection algorithm is supposed to optimize. We write this 

objective function in the generic form 

€ (Al, V, 0(v)) 

We only consider query selection algorithms which are local in the sense that they work 

one example at a time, performing a greedy optimization of the given objective function 

at each query selection (see however Section 3.4, where we discuss what happens if this 

restriction is dropped). We also assume that after the new example is added to the 

training set, complete retraining takes place, i.e., the learning algorithm is re-applied to 

the enlarged training set ®(p+1).  This excludes a dependence of query selection on the 

specific student (a representative of the distribution P(J'(IO(°) ) ) obtained after training 

on the existing data set, as considered in [KR90, WR921. Of course, a dependence on 

the actual—unknown—teacher V that generated the training data is not possible either, 

and so query selection can only be based on the existing training set O(). We therefore 

need to derive a function E (x, ®(')) which depends only on this existing training set 

and the next input, x. A query construction algorithm is then defined as picking, each 

time it is invoked, as the next query the value of x at which e (x, ®()) attains its global 
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optimum, or randomly one such value if there is more than one global optimum 4 . As 

pointed out in the introduction (Chapter 1), we shall not be concerned with the actual 

implementation or computational complexity of this optimization process. In order to 

prevent the construction of non-sensical queries, we restrict the range of input values 

from which the query construction algorithm is allowed to choose to the support of 

P(x), i.e., to values of x which could also appear in a random training or test example. 

We remark in passing that the function E (x, 0(P))  or an approximation to it can also be 

used to define a query filtering (as opposed to construction) algorithm which accepts 

a random input x with a probability which is a function of the corresponding value 

of € (x, O(7 )). In the following chapters, we will not consider this possibility further, 

focusing instead on query construction. However, we shall return to the topic of query 

filtering in Chapters 5 and 8, where we discuss the 'query by committee' algorithm. 

In order to obtain the function € (x, 0)), which we do not want to depend on Al, 

we first average the given objective function over the post-training distribution: 

€ (V, o()) = € (Al, v, 0(P))) 	 (2.6) 

Averaging this result over the posterior teacher distribution, we obtain an average 

objective function which depends on the training data only: 

€ (®(P)) 
= (€ ( V, 0 (P))) P(vQ( . 	 ( 2.7) 

We can now calculate the function defining a query selection algorithm by averaging 

(2.7), evaluated for the training data set 0 + (x, y), over the possible outputs y that 

the teachers in the posterior distribution produce for the input x: 

= (€(o(P) + (x,Y))) p(YX®(P)) 	 (2.8) 

where P(ylx, 0(P)) is given by 

P(ylx, O(P)) 
= J dVP(ylx, V)P(VI0). 	 (2.9) 

We show in Appendix 2.6 that the same result can be obtained by first evaluating 

€(V, o()) for the training set 0(P) + ( x, y), averaging over the outputs that V produces 

'This randomization is important to prevent certain pathologies that could otherwise occur; an 
explicit example of this, due to Freund [Fre93, FSST93], is described in Section 3.2. 
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for x, and then averaging this over the posterior teacher distribution: 

= ((E(V '  0 (p)  + ( xY)))p(YIXv))p(VIO). 	 (2.10) 

Equations (2.8) and (2.10) constitute the main result of this section and can be used 

interchangeably as definitions of the function € (O(') ,  x) which defines a query selection 

algorithm. 

2.5 Performance evaluation of query selection algorithms 

A query construction algorithm as defined in the previous section yields a probability 

of querying x if the existing training set is (r) ,  

PQ(xIO) 	 (2.11) 

which is uniform over the set of all x for which €(®(P),  x) attains its global optimum 

(among the x for which P(x) is nonzero) and zero everywhere else. We shall evaluate 

the performance of this query construction algorithm when used to generate query 

sequences, using the generalization error as our performance measure. Starting from 

(2.5) we define first by analogy with (2.6) the average generalization error with respect 

to the post-training distribution: 

€g (V, ®) = (€g()\f, V))p( JvIe(p)). 	 (2.12) 

We then define the average generalization error obtained after a sequence of p queries 

when the true teacher is V as 

Eg ,Q(V) = (€g (V, O (7) )\ 	 (2.13) 
/PQ (®(P)IV) 

where the training sets are now generated according to the distribution 

PQ(®IV) = 11 P(yIx, V)PQ(xI0 ( _ 1) ) 	 ( 2.14) 

in analogy to (2.1) which applies to the case of random examples. By averaging over 

the prior teacher distribution, we obtain the generalization error for an average teacher: 

g,Q = ( Eg ,Q(V)) p(V) 	 (2.15) 
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In terms of € g  (0(1')) = (cg (V, 0(1'))) 
P(VIO(P))

, this can be written as follows: As shown 

in Appendix 2.6, the posterior distribution of teachers P(VI0(1')) is the same for random 

examples and for queries. This reflects the intuitively obvious fact that the way we 

generate data by querying or random sampling does not influence our inferences about 

the underlying rule [Mac92c]. Using Bayes' theorem, one can thus write 

g,Q = ((€g(V, e(P)))p(QIV)) 

= 
((E

g (v, e(P))) ) 

= (Eg(0))p(0(p)) . 	 ( 2.16) 

Again applying Bayes' theorem, the distribution PQ(0(P)) can be written as 

PQ(0(1')) 
= 

rl P(yx, 0 	 0 _ 1) )PQ(xI_ 1) ); 	 (2.17) 

P(yIx, 0(_ 1 )) is given by (2.9). For the case of training sets which are generated 

by a mixture of queries and random examples, one can still use (2.16) as long as in 

(2.17) the terms PQ(xI0(_ 1) ) are replaced by P(x) for the examples (x,y') that 

were generated randomly. 

We remark that if one wants to know the average generalization error obtained by 

adding a query x and the corresponding output y to an existing fixed training set 

all one needs to do is drop the average over 	in (2.16), with the result 

+ 1 query) = ((€g (0 	+ ( X, Y)))P(yjX,e(P)) )PQ (xlE)(P)) 

- (cg (0 (1' )
' 
 x)) 	 (2.18) - 	

P(xI®(P)) 

We have derived equations (2.13), (2.16) and (2.18) in order to show that for the 

evaluation of performance of a query selection algorithm, the same functions €g (V, 0(2)), 

and €g (0(2), x) can be used that have to be calculated anyway for the derivation 

of minimum generalization error query selection. In the following chapters, however, 

we shall avoid formal use of these results whenever more direct and intuitive derivations 

are possible. 
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2.6 Appendix: Assumptions and proofs 

Let us first explain some general conventions regarding our notation, which will be used 

throughout this thesis. In all the learning scenarios that we consider, we will assume 

that both students Al and teachers V have a natural parameterization in terms of a 

vector of parameters. This vector will normally be referred to as a 'weight vector', in 

analogy with the term 'synaptic weights' which is often used in the neural networks 

literature. In our case, the weight vector components will normally be real, correspond-

ing to a continuum of students or teachers. Integration over student and teacher space 

will be written symbolically as fdA/ and f dv, respectively, and represents an integra-

tion over the weight space with the standard Lebesgue measure. The corresponding 

probability distributions such as P(A(I0(14 ), P(VIO ( ') ) etc. should be understood as 

probability densities with respect to this measure. As a general rule, we shall not 

distinguish in our notation between random variables and their realizations. 

For inputs and outputs, we use similar conventions. While the inputs x will normally 

be real vectors in the cases that we consider, outputs y can be either real or discrete. In 

the latter case, an integration fdy over outputs should be understood as a summation 

over all the values that y can take, and quantities such as P(ylx,  V) should be read as 

probabilities rather than probability densities. 

We now state some general assumptions which we make regarding the probability 

distributions that were introduced in Section 2.2. Since these assumptions will apply 

to both random examples and queries, we drop the subscript 'Q' used in Section 2.5 

to denote probability distributions for the case of query learning. We start with the 

natural requirement that any training algorithm can only generate students on the 

basis of the training set, and does not have any other information about the unknown 

teacher. This is formalized as 

P(AfI®, V) = P(A( I& ) ) 	 ( 2.19) 

(see, e.g., {Wo1921) and implies that the distributions of students and teachers (post-

training and posterior distribution, respectively) are independent once a training set 

is given: 

P(Al,VI®() ) = P(AlI® () )P(VI® () ). 

We have implicitly used this assumption in the definition of the average over students 

and teachers of the objective function for query selection (see eqs. (2.6, 2.7)). 

Our next assumption formalizes the fact that the selection of a query is made only 

on the basis of the existing training set, and does not depend on either the unknown 
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teacher V or a particular student Al obtained after training: 

P(I'),1%1,V) = P(xI® (1) ). 	 (2.20) 

This is trivially verified for random examples (where, in addition, x is independent of 

e0_ 1 )). Note that the relation (2.20) would not hold if any of the training inputs or 

outputs added to the training set after XIL  has been selected were added to the variables 

on which the distribution of xA is conditioned. This is due to the fact that the outputs 

of these 'later' training examples depend on their corresponding inputs, whose selection 

in turn depends on the output y;  this would destroy the independence of the teacher 

V since y''  and xA are coupled through V. 

The last assumption that we make concerns the generation of training outputs, 

whose probability distribution is fully determined once the corresponding input and 

the teacher are known: 

P(yIx,O(1),V) = P(yIx,V). 	 (2.21) 

We now derive some general relations which follow from the above assumptions. 

First of all, by applying Bayes' theorem and using (2.20, 2.21) one has 

P(®()IV) =P(yx, O(1), V) P(xI®', V)  rj 

= 	 (2.22) 

as stated in (2.14). It follows that 

p(®(P)) = JdVP(® (14  IV) P(V) 

(1 

P(xI0 ( _ 1) )) JdV P(V) 	P(yIx, V) 

and this gives the posterior teacher distribution 

P(VIe()) 
= P(®()  IV)P(V) = 	P(V) [11P(y4Ix', V) 	

(2.23) 
f dV P(V) fl1P(y'Ix',  V)  

The independence of this result of the distributions P(x 1 I0( 1 )), which describe how 

training examples are selected, proves that the posterior teacher distribution is the 

same for random examples and queries [McC81]. This can be rephrased by saying that 
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our inferences about the teacher, as represented by the posterior distribution, are not 

biased by query learning [Mac92c]. Note that this no longer holds if, as is commonly 

done in procedures for selecting informative subsets of a given larger training set, the 

selection of a training input would be allowed to depend on the corresponding output 

(M. Plutowski, private communication; see also [Ber85, Mac92c]). 

Our assumptions also imply the general result (2.9). From Bayes' theorem, one has 

P(yIx, O(1)) 
= J dV P(y tl 	O(1),  V) P(VIx, Ø_1)) 	(2.24) 

The last term on the right hand side can be simplified by using the following conse-

quence of (2.20): 

P(VIx, 9(_1)) = P(VI 1 ). 	 (2.25) 

Eq. (2.9) then follows by inserting (2.21) into (2.24). 

Let us now derive from our assumptions the equivalence of the two definitions 

given in the text, eqs. (2.8, 2.10), of the function €(O(h),x)  defining a query selection 

algorithm. If we denote the training set with the new training example added by 
®(p+1) = + (x,y) (remember that we set (x,y) (xP,yP+') in Section 2.4 in 

order to simplify the notation), the definition (2.8) takes the form 

= 	
P(yIx,®(P)) 

= ((E(V,O(P+')))P(VIE)(
P+1)))P(yi.,E)(P)) 

 

while the second definition (2.10) reads 

= ((C(V '  0 (P+
1 /P(vlx,V) )P(VIO(p)) 

To prove that q(O(° ) , x) is identical to c2 (0(), x), it therefore suffices to show that 

P(Vl® 1 ) P(ylx, e(P)) = P(ylx, V) P(VIOM) 	 (2.26) 

Using Bayes' theorem, the left hand side can be written as 

P(V, ylx, e() ) = P(yx, 	V) P(Vlx, ®()) 

and equality with the right hand side of (2.26) follows from assumption (2.21) and the 

relation (2.25) derived from assumption (2.20). 

We conclude by considering the case of effectively non-sequential queries (see, e.g., 
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Section 3.3), where each training input depends only on the previous training inputs 

and not on the corresponding outputs. One then has the stronger version of (2.20) 

P( x I0 1 ) , A(, V) = P(x'Ix('1)) 

where 	denotes the (ordered) set of training inputs x1, X2 . . . x'. This leads to 

the following simpler form of eq. (2.22) 

P( 01P) 1V) = (P(y '1 1x A, V)) P(x) 	 (2.27) 

which we will use in Chapters 3 and 4 in order to split the average over training sets 

into an average over training outputs followed by an average over training inputs. 



Chapter 3 

Perfectly learnable problems: 

Two simple examples 

Abstract 

We study query construction in learning problems where the student can 
learn the teacher perfectly. For two simple scenarios, the high-low game and 
the linear perceptron, the generalization performance obtained by queries 
for minimum entropy and minimum generalization error is evaluated and 
compared to learning from random examples. We find qualitative differ-
ences between the two scenarios due to the different structure of the under-
lying rules (nonlinear and 'non-invertible' vs. linear); in particular, for the 
linear perceptron, random examples lead to the same generalization abil-
ity as a sequence of queries in the limit of an infinite number of examples. 
We also investigate the case of training algorithms which are ill-matched 
to the learning environment and find that in this case, minimum entropy 
queries can in fact yield a lower generalization ability than random exam-
ples. Finally, we study the efficacy of single queries and its dependence on 
the learning history, i.e., on whether the previous training examples were 
generated randomly or by querying, and the difference between globally and 
locally optimal query construction. 

3.1 Introduction 

In this chapter we apply the framework set out in the preceding chapter to two specific 

learning scenarios. We assume in both cases that the problem is perfectly learnable, 

i.e., that students and teachers have the same form. The case of imperfectly learn-

able rules, which must occur frequently in real-world problems, will be treated in the 

24 
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next chapter. For a first pass at the problem of how the choice of objective function 

affects the performance of the corresponding query selection algorithms, we consider 

query construction based on optimization of the two objective functions entropy (or 

information gain) and generalization error. The specific learning scenarios considered 

are the 'high-low game' [FSST93] and the 'linear perceptron'. These two examples will 

allow us to gain some insight into the differences between query learning in linear and 

nonlinear systems. Since query selection is most effective when applied to all examples 

in the training set, i.e., when one allows the input of every new training example to be 

determined by the query construction algorithm, we consider the performance of the 

respective query construction algorithms when applied to generate query sequences, 

and compare the results to training on random examples. As performance measure 

we choose the generalization error because generalization is after all what we want to 

improve by query selection. For the linear perceptron, we also investigate the influence 

of a non-optimal training algorithm which is poorly matched to the posterior teacher 

distribution. In Section 3.4 we discuss some related issues: the efficacy of a single query 

and its dependence on the learning history, i.e., on whether the query is part of a query 

sequence or whether it is an isolated query after random examples; and the difference 

between locally optimal query selection, which builds up the training set step by step in 

a 'greedy' procedure, optimizing the given objective function at every step, and globally 

optimal query selection, which optimizes the whole query sequence for a given number 

of examples. We conclude in Section 3.5 with a summary and discussion of our results. 

3.2 High-low 

In the present section we consider the 'high-low game' [S0S92, FSST93], which is an 

extremely simple example of a nonlinear rule with real input x and binary output 

y E {O, 11. The output is simply 1 or 0 depending on whether the input x is greater or 

less than a certain preset threshold. Thus, for one-dimensional high-low, a noise free 

teacher is specified by a 'weight' w, such that 

P(ylx,V) = 6y,f v () f(x) = ®(x - W) 	 (3.1) 

where the Kronecker delta 5i,j  is equal to 1 if i = j and 0 otherwise, and the step 

function 0(x) is defined to be 1 if x > 0 and 0 otherwise. We assume that both 

inputs and teacher weights are taken from the unit interval [0, 1]. An N-dimensional 

generalization of this can be defined as follows [FSST93]: Inputs are now ordered pairs 

(i, x), where i E 11, 2, . . ., N}, x E [0, 1], and a teacher V is defined in terms of an 
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N-component vector w v  = (wV,) =1,2 .... N and gives the output 

	

f(i, x) = 	- WV,). 	 (3.2) 

As explained in [FSST93], N-dimensional high-low is basically equivalent to N concur-

rent one-dimensional high-low games. 

As pointed out above we assume that the rule is perfectly learnable, i.e., that our 

students have the same functional form as the teachers, a student Al being specified 

by an N-dimensional weight vector w. We assume the distribution of inputs to be 

P(i, x) = P(i)P(x) with P(i) = 11N, and P(x) uniform on [0, 1] and zero everywhere 

else. We also assume the prior teacher distribution P(w) to be uniform on [0, 1]N• 

Under these assumptions, the posterior teacher distribution can easily be derived to be 

constant over the 'version space', i.e., the set of all teacher weight vectors which could 

have generated the training data, which is here simply a hypercube: 

- XL,)O(XR, - WV,) 	 (3.3) 

where we have denoted by XL,i and XR,i  ('L' for left and 'R' for right boundary of the 

version space) the largest and smallest x-value of inputs from the training set O() with 

a given value of i and output 0 and 1, respectively. The entropy in teacher space then 

follows from the definition (2.3) as 

N 

S(E) ( ') ) = 	In (xR, - XL,). 	 (3.4) 
i=1 

For the calculation of the generalization error, an obvious error measure is 

e(y, (i, x),Al) = 	- f(i, x)I 	 (3.5) 

which is 0 if y and ffrj.(i, x) agree and 1 otherwise, yielding 

	

(AI, V) = 
N 	

lwv,i - wI. 	 (3.6) 

We consider two training algorithms: Zero temperature Gibbs learning, which is just 

given by 

PGibbs(JVI0) = P(Vl& 1' ) ) vA ,. 	 (3.7) 
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and optimal learning in the sense of [Wat93] for which 

P.pt 	= H 6(w, - (x L, + XR,)/ 2 ). 	 (3.8) 

We remark that whereas for Gibbs learning the entropy in student space is identical to 

that in teacher space, the former is undefined for optimal learning, as is generally the 

case for deterministic training algorithms. 

For the generalization error averaged over the post-training distribution according 

to (2.6) and then over the posterior teacher distribution as in (2.7) one obtains 

3 	 1N 
Eg,opt(e) = Eg,Gibbs(®) 

= 4N 	
(xR, - XL). 	 (3.9) 

i=1 

Due to the proportionality between the two results we can restrict our attention to 

optimal learning in the following, dropping the subscript 'opt'. 

Using (2.8), it is straightforward to calculate from (3.4) and (3.9) the defining 

functions for query construction for minimal teacher space entropy and minimal gen-

eralization error, respectively: 

(i, x)) = S(O () ) + qj  in qj  + (1 - qi) ln(1 - qj) 	(3.10) 

€g (e, (i, x)) = cg(0) 
- 	- XL,i 

q(1 - qi) 	 (3.11) 
2N 

where we have used the abbreviation 

qi = P(y= 1 I(i,x),O) 

0 

= 	(x - xL,)/(xR, - XL,i) XL,j < X < XR,i 	 (3.12) 

1 	 X>_XR,i. 

Equations (3.10) and (3.11) are both minimized for qj  = 1/2, i.e., x = ( XL, + xRi)/2. 

This corresponds to the intuitively obvious method of bisecting a component of the 

version space. For qj  = 1/2 the value of S(Ei( 74 ,(i,x)) is independent of i, so that 

query construction for minimal teacher space entropy selects randomly any of the N 

possible values for i and then x = ( XL, + xR,)12. By contrast, query construction for 

minimal generalization error can only select from those i-values for which XR,i - XL,i is 

maximal since only then will €g (® (1) , ( i, x)) be minimized. Thus, query construction for 

minimal generalization error specifies along which component the version space should 

be bisected, a piece of information which cannot be obtained from the requirement 
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of maximal information gain. In fact, as explained in [FSST93], one can, simply by 

always bisecting the same component of the version space, construct a sequence of 

queries which at each step achieves the maximal entropy reduction but for which the 

generalization error never drops below a finite threshold. In our framework for query 

construction, this kind of pathology is avoided by randomly selecting one of the inputs 

for which the expected information gain is maximized. 

The difference between the two objective functions, entropy and generalization er-

ror, is reflected in the average performance of the two query construction algorithms 

when they are used to generate query sequences: Query construction for minimal gen-

eralization error yields, after a sequence of p = aN = ([a] + a)N queries (where 

La] denotes the integer part of a and La = a - [a] its non-integer part) and the 

corresponding outputs, a version space with NLa components of length (1/2)Ld 

and N(1 - a) components of length (1/2)Lai  and hence from (3.9) a generalization 

error of' 
1 	 \ 

	

€g (min. gen. error queries) = /l
j) *i (I 

 Aa) 
- .--- 	

(3.13) 

so that increasing a by one always reduces the generalization error by a factor of 1/2. 

For minimal teacher space entropy, on the other hand, one obtains after a sequence of p 

queries a version space with components of length (1/2)P1 , ( 1/2)P2 , . . . , ( 112) where 

pi is the number of times the i-th component of the version space has been bisected 

(Ei  pi  = p); averaging over the distribution of the p i  one obtains 

1 N (1"y 	1 	1 )NI a .,  
Eg (mlfl. entropy queries) = 	

NPP1 . . PN! 	kj) = 	1 - 

(3.14) 

Comparing (3.13) and (3.14), we see that for N = 1, teacher space entropy and gen-

eralization error perform equally well as objective functions for query sequence con-

struction, whereas for N > 2 a query sequence constructed for minimization of teacher 

space entropy needs to contain more examples than one constructed for minimization 

of generalization error in order to obtain the same generalization performance. As 

N -* oo, (1— 112N)N  exp(-1/2) and thus —ln(1/2)/(1/2) = 1n4 1.39 as many 

examples are needed. 

We have seen that query construction both for minimal teacher space entropy and 

minimal generalization error yields a generalization error which decays exponentially 

'For the case N = 1, the result (3.13) has been rederived and reformulated in terms of probably 
approximately correct (PAC) learning in [SN95]. 



CHAPTER 3: PERFECTLY LEARNABLE PROBLEMS 	 29 

with the number of examples normalized by the number of parameters of the high-

low rule, a = p/N, which is a drastic improvement over the case of random examples 

where the generalization error only decays algebraically with a. The result for random 

examples has been given in [S0S92] for N = 1 as eg(random examples) = 1/2(p + 2); 

for N > 2 it generalizes to 

P! 
	1 N 	2 

cg (random examples) = > NPp1!. PN! 4Np2  + 2 
{pi} 

NI 	N ) 

- 2(p+1)1 
p+2  [i_ (i_ 1 

k)p+2]  
j (3.15) 

which as a = p/N —* oo gives a decay with 1/2a + 0(1/a2 ) from the inequalities 

1 
-' 

2(a + 2) €
g (random examples) < 11 — -

1 
 (1 - e)]. 	(3.16) 

a 

Our results in this section show that in the learning scenario considered, the teacher 

space entropy (or for the case of zero temperature Gibbs learning, the equivalent student 

space entropy) can serve as a useful guideline for query construction and does provide 

a large increase in generalization performance over random examples, but does not 

achieve quite as good a performance as query construction for minimum generalization 

error. 

3.3 Linear perceptron 

As a second application of the query learning framework set out in Chapter 2 we now 

consider the linear perceptron. A teacher is specified by a vector w e RN such that 

it yields (in the absence of noise) the output 

f(x) = 
	

(3.17) 

for the input x which is also an N-dimensional vector. Here w denotes the transpose of 

Wy, SO that w5x is simply the scalar product of w y  and x. Again, we take the problem 

to be perfectly learnable, and thus assume students to be of the same functional form, 

with weight vectors wN. We will mainly be interested in the thermodynamic limit 

N —*oo, p —* oo at constant a = p/N; the effects of finite system size N will be 

discussed in Chapter 7. 
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For convenience, we consider inputs x from a spherical distribution, 

	

P(x) x 6(x 2  - No) 	 (3.18) 

and a Gaussian prior on teacher space 

P(V) = c(o,a1) x exp(—w,/2o). 	 (3.19) 

Here we have used the notation G(,  E) for a multivariate Gaussian distribution with 

mean jt and covariance matrix E, and denoted by 1 the N-dimensional unit matrix. 

In order to fix P(yx, V), we consider two forms of noise: Gaussian noise on the 

output of variance 1//13, i.e., 

P(ylx, V) = c(f(x), 1 100 	 (3.20) 

and Gaussian noise on the teacher weights, yielding the output corresponding to a 

perturbed weight vector w, distributed as 

P(ylx, V) = ((y - fv 1 (x)))w' 	(f(x), & x 2 /N) . 	(3.21) 

Under the spherical constraint for the inputs, (3.18), this is of the same functional form 

as (3.20) and need not be considered separately in what follows; all results for noise on 

the output also hold for noise on the weights with the replacement & -* 1/o&,. 

Combining (3.19) and (3.20) and using Bayes' formula one obtains that the posterior 

teacher distribution P(VI®()) is a Gaussian distribution 9(M 1 a, (0M)1)  where 

we have set 
11 

MV 
= 	2 1 + 	x ( xIL)T 	 (3.22) 3  

and 
p 

	

a= ----- 	y'x'. 	 (3.23) 

The entropy in teacher space is thus simply 

= —lnI9v - lnIMvI + constant. 	 (3.24) 

Its independence of the outputs yA in the training set reflects the well known fact that 

in linear models information-based objective functions always lead to query selection 

algorithms or 'experimental designs' which can be expressed solely in terms of the input 

values of the training examples [Mac92c, Fed72]. 
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For calculation of the generalization error we start from the commonly used quadratic 

error measure 

e(y,x,Al) = 	- f(x))2 	 (3.25) 

which yields according to (2.5) the generalization error between student Al and teacher 

V 
1 	a2  

Eg (.AI, V) = -- + -(wN - wy ) 2 . 	 ( 3.26) 
20v 

The constant term 1120 w  which arises from the noise on the teacher alone will be 

omitted in the following. 

For the training algorithm, we take Gibbs learning with weight decay (see, e.g., [DW93]), 

specified by a learning temperature T = 1//3 and weight decay parameter ). The cor-

responding post-training student distribution 

P(AlIO) oc exp [_ (1 (y - fN(x))2 
+ A 2 

\ 1 
(3.27) 

can be thought of as the long time limit of stochastic gradient descent (see, e.g., [SST92]) 

on an 'energy function' which is the sum of the error on the training set > 	(y'' - 

fM(x'i)2 and the weight decay term 	The motivation for having a weight decay 

is to prevent the student from fitting noise in the training data, i.e., to regularize it, by 

penalizing large weight vectors. The size of the weight decay parameter A determines 

how strong this regularization effect is. 

For our linear perceptron students, the Gibbs distribution (3.27) is simply a Gaus-

sian, 
P(AlIO)= c(M.1a,(/3MN)_1) . 	 (3.28) 

Here we have introduced the matrix M, defined as 

p 

= Al + ' 
	

x(x)T 	 (3.29) 

which only differs from M by a multiple of the unit matrix 2  . It follows from (3.29) 

that A/U 2  is a dimensionless quantity which we denote by 

	

A=2L 
	

(3.30) 

'In statistics, learning with linear students in the presence of a weight decay is often referred to as 
'ridge regression', see, e.g., [HK70]. This is due to the appearance of the diagonal 'ridge' proportional 
to .X in the matrix M,.r. 
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and also simply refer to as the weight decay parameter. The student space entropy is 

from (3.27) 

SN(O ) = —
N  
--lnf3 - 1  lnIMNI + constant. 	 (3.31) 

Averaging over the post-training distribution according to (2.6) and then over the 

posterior teacher distribution as in (2.7) we get for the average generalization error as 

a function of the training set 

= US [(M.1 a  - M1a)2 + tr M 1  + -tr M1] 	(3.32) 

Since a finite training temperature T = 1/0 only gives a positive definite additive 

contribution to the generalization error, we restrict ourselves to the case T = 0, i.e., 

00 in the following'. We remark that optimal learning in the sense of [Wat93] is 

obtained as a special case of Gibbs learning (at T = 0) by setting the weight decay 

parameter ,\ to its optimal value 

\opt =
= 	

( 3.33) 01,0,2 01 2 

where 

= (fl22)1t2 = 
((Y2)P(1xv)P(xP(v) - 1/0v)h/2 	

(3.34) 

is the root-mean-squared signal to noise ratio of the training examples. A opt  = 0 thus 

corresponds to the limit of a noise free teacher, and a non-zero )opt  measures the typical 

amount of corruption of noise relative to the average uncorrupted signal; for A opt  = 1 

noise and signal levels are equal on average. In the special case of optimal weight decay, 

one sees from (3.22, 3.29) that M = M- and hence the generalization error assumes 

the simple form 
a2  1 

Egopt(0) = --- tr M 1 . 	 (3.35) 
2N 0,  

From (3.24) and (2.8) the defining function for query construction for minimal 

teacher space entropy follows immediately as 

S(&, x) = S(®) + In IMvI - 	M 'vi In 	' 	 (3.36) 

where M, is defined as the value of M calculated for the training set O() with the 

'The divergence as T -* 0 of the term (N12) in T in the student space entropy (3.31) does not 
present a problem here since we will only be concerned with entropy differences for which this term is 
irrelevant. 
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new example (x, y) added: 

M,, = M + XXT. 	 (3.37) 

The analogous expression for the case of the student space entropy as objective function 

is obtained simply by replacing M v  by MN, whereas the corresponding result for the 

generalization error, which can be straightforwardly derived from (3.32) and (2.8), is: 

Eg(O,x) 
= a2 1,3V

_tr M' + (M 1 a  - M/-/1a)2 

+ 	(I+ xTM;1 x) (Mx - M;1x)2] 	(3.38) 

where 

M. = MM + xxT 	a, = a+ xxTM1a. 	 (3.39) 

For the case of optimal weight decay this simplifies to 

a 2  1 

	

Eg,opt(O,X) = --- tr MJ 1 . 	 ( 3.40) 
2N /3  

It is to this simpler case that we now turn. 

3.3.1 Optimal weight decay 

In the case of optimal weight decay, it is straightforward to derive that under the spher-

ical constraint (3.18) the defining functions for query construction for minimal teacher 

space entropy, (3.36), student space entropy (which can be derived analogously from 

(3.31)), and generalization error, (3.40), are all optimized (i.e., minimized) by choosing 

the query x along the direction of an eigenvector of M v  with minimal eigenvalue 4 . For 

p < N, i.e., a < 1 this amounts to choosing x to be perpendicular to the subspace 

spanned by the previous training inputs x's, a = 1, . . . ,p, an intuitively obvious result. 

Applying this query construction algorithm to generate a sequence of queries, one 

sees that with each new query the lowest eigenvahie of M is increased by a. After 

p = aN queries M v  thus has a (Na)-fold eigenvalue (A 0  + a] + 1)o 2  and a 

N(1 - La)-fold eigenvalue AOP + Lai)a (we use the decomposition a = a] + La 

introduced earlier). Thus from (3.35) one obtains 

Eg ,opt (qlleries) = 	GQ(Aopt ) 	 ( 3.41) 

4 A similar result has been found for the more general class of additive models' (which include 
the linear perceptron) in [Pil91, HBH931. A generalization to the case where more than one query is 
selected at the same time ('batch query learning') is discussed in [CS70]. 
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with 

La 	1—La 
GQ(Aopt) = 	

tr M1)(0()) = A + [a] + 1 
+ 

A + [aj• 	
(3.42) 

This result can now be compared to the generalization error achieved by training on 

random examples. We use the results of Krogh et al. [KH92a], who have calculated in 

the limit N - oo the function  

G(),0)- 	i'tr  M_ 1 \ 
- N \ 	V  /p(o(P)) 

1 
a - A 0  + ( 1 - a - A 0 ) 2  + 4A 0 ) 	( 3.43) 

2A 0   

which is the analogue of GQ(A(, pt) for random examples. Thus, for the average gener-

alization error after training on p random examples, one has 

eg , opt(random examples) = 
	

(3.44) 

The generalization error Eg , opt as a function of a is shown in figure 3.1 for various values 

of )'opt = 1/ s2 ,  both for random examples and for query sequences. Also shown is the 

relative reduction in generalization error due to query selection, i.e., the ratio of (3.44) 

and (3.41) which we denote by 

K(a) = €
g (random examples) 	

(3.45) 
Eg (queries) 

For moderate noise levels (a numerical calculation yields A opt  < 0.92), the maximum 

of ic(a) is reached at a = 1; its height 

\1/2 	1 
= 1) = (1 + A0 ) [ i + 	- 1] 	 (3.46) 

decreases monotonically with A 0t—hence increases with the signal-to-noise ratio s-

and is simply given by (.A 0 ) 1 / 2  = s in the limit of small Query construction thus 

yields the greatest improvement of generalization performance for low noise levels. The 

fact that in the low noise regime the maximum of k(a) is at a = 1 can be understood as 

'Strictly speaking Krogh et al. consider a Gaussian distribution for the inputs instead of the spherical 
distribution (3.18), but in the limit N -* oc these produce identical results, as can be checked by a 
direct calculation of the average eigenvalue spectrum of M v  along the lines of [K091]. Compare also 
the discussion in Chapter 7. 
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follows. For random examples, the average eigenvalue spectrum [K091] of M extends 

down to (\opt + (1 - \/) 2 )0, , and this lower spectral limit tends to zero as A,, Pt  - 0 

and a -* 1. This makes tr M 1  much larger than for the case of query construction, 

where at a = 1 all eigenvalues of M are (A 0  + 1)o. For larger noise levels, the 

maximum of K(a) shifts to larger integer values of a and has a height which can be 

bounded by 1 + and which thus tends to 1 in the limit of large noise levels, 

\opt -f00. 

The plots in figure 3.1 suggest that independently of the value of .A, ic(a) tends to 

1 as a -* oc, which means that for a sufficiently large number of examples, the relative 

improvement in generalization error that can be obtained from queries as compared to 

random examples tends to zero. This can be confirmed by an asymptotic expansion of 

k(a) which yields 

k(a) = 1+ +0 
(-).  	

(3.47) 

The above result is in stark contrast to the results for the high-low game obtained above 

and similar results for the binary perceptron [S0S92, FSST93], where the asymptotic 

behaviour of n(a) for large a is 

r. (a) oc 	(exp(—ca)) 1 	 (3.48) 

for some positive constant c, which clearly tends to infinity as a -* oo. A plausible 

explanation for this qualitative difference might be that in the limit of a noise free 

teacher, N examples are actually enough to specify a teacher linear perceptron com-

pletely, so that beyond a = 1 one is trying to reduce generalization error due to noise; 

by contrast, for high-low or the binary perceptron, the teacher cannot be uniquely 

specified by any finite set of examples even in the noise free limit. In this sense, the 

high-low game and the binary perceptron are 'non-invertible' for any finite a, and thus 

by querying the average amount of information about the teacher that can be gained 

from each new training example can be kept finite as a -* oo. This property was shown 

in [FSST93] to be a sufficient condition for exponentially decaying generalization er-

ror, at least for the specific query filtering algorithm considered there. For the linear 

perceptron, on the other hand, the information available about the teacher is, loosely 

speaking, 'exhausted' at a = 1 and the information that can be gained from each new 

training example tends to zero as a -* 00. 
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Figure 3.1. (a) Generalization error €5 (a) achieved by training a linear perceptron on 
aN random examples (higher, 'smooth' curves) and on the same number of examples 
generated by a sequence of queries (lower curves), in units of or 2  The weight 
decay A is assumed to be set to its optimal value A 0 t; hence minimum generalization 
error and minimum entropy queries are identical. The values of the (squared) teacher 
noise-to-signal ratio A,, pt  = 1/ s2  are 0.01, 0.1 and 1. (b) Relative improvement in 
generalization error due to querying, ic(a), defined as the ratio of the values of 6g  for 
random examples and for query sequences. 
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3.3.2 Non-optimal weight decay 

We now turn to the case of non-optimal weight decay, where the weight decay parameter 

) in the training algorithm is not set to the optimal value determined by the signal-to-

noise ratio of the teacher as in (3.33). 

We consider first query construction for minimization of the entropy in teacher 

space (3.24). Since this quantity is independent of ), the query construction algorithm 

remains the same as for optimal weight decay. (The same conclusion holds for the case 

of minimization of the student space entropy.) Therefore, as in the preceding section, 

query construction is effectively non-sequential in the sense that it only depends on the 

previous input x 4  and not on the corresponding outputs. This simplifies the calculation 

of the average generalization error after a sequence of p minimum entropy queries, i.e., 

the average of (3.32) over the training set distribution obtained by querying, PQ(O()). 

Using the decomposition (2.27), one can first perform the average over the yO to derive 

- au 
[OPtGQA + A(0 - 
	

d) I 

	

)dGQ(A) 		
(349) 

2 
eg (min. entropy queries) -  

where the average over the x is taken care of in the definition of the function GQ(.) 

in (3.42). (A formal derivation of this result—in a more general scenario—can be 

found in Section 4.6.) The analogue of (3.49) for the case of random examples, as 

derived in [KH92a], is obtained simply by replacing GQ(.) with G(.). The resulting 

values of K(a) are plotted in figure 3.2 for various values of \ and ).opt.  The most 

striking feature is that now ic can actually assume values smaller than 1, implying that 

minimal entropy query construction leads to a higher generalization error than random 

examples, a seemingly counter-intuitive result. It can be checked numerically, however, 

that ic < 1 occurs only when ) is smaller than the optimal value \opt,  combined with 

high teacher noise levels ) opt > 2 and values of a for which the underlying rule is 

only just beginning to be learned, in that c g  is still more than over 80% of its value at 

a = 0, i.e., before any training examples were presented. In these cases the training 

algorithm is over-confident in that it underestimates the amount of noise in the training 

examples, making the entropy reduction or information gain a spurious indicator of an 

improvement in generalization ability. The correlation between reductions in entropy 

and generalization error is recovered as soon as a is large enough for the generalization 

error to be significantly smaller than at a = 0; in the limit of an infinite number of 

training examples, one has 

1 	ii  
k(a) = 1 + - + 	- 	+ 2 - A. pt 

 - a(1 - a)} 
+0  () 	

(3.50)
Aopt 	 a3 



CHAPTER 3: PERFECTLY LEARNABLE PROBLEMS 	 38 

so that ic is again greater than one for large a. The last result also shows that for 

fixed, large a, r, increases with increasing (A - A 0 ) 2 , i.e., with the degree of mismatch 

between the training algorithm and the actual learning problem at hand. 
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A 0 1 

'4 
0 1 2 3 4 	5 

a 

 

Ic 

2-I 

Ic 

) 	1 	2 	3 	4 	5 
a 

Figure 3.2. n(a) for minimum entropy queries for the case of non-optimal weight decay 
A 54 A. pt . (a) 'Under-confident', i.e., unnecessarily large weight decay A = 10 for 

A 0 =0.01, 0.1 and 1. (b) 'Over-confident', i.e., inappropriately small weight decay 
A = A0 /10, for A0=0.1, 1 and 10. Notice that in the last case values of ic(a) < 1 

appear, which means that a sequence of minimum entropy queries can lead to a higher 
generalization error than the same number of random examples. 

Now we consider for comparison the performance of query construction for minimal 

generalization error as defined by minimization of (3.38). Since we have not been able 

to perform this minimization analytically for the general case, we restrict our attention 
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to the special case in which a is an eigenvector of the matrix M, and to the limit of a 

noise free teacher, A 0  -+ 0. If we also assume that M v  has full rank, i.e., that at least 

N training examples with linearly independent input vectors have been presented, then 

only the second term in (3.38) survives: 

Eg(®,X) 

= 	
- M71a)2 	 (3.51) 

Setting 

= M4 - M' 1 a, 	 (3.52) iv 

= Ma - M 1 a 	 (3.53) 

one can derive that 
= A - M1xxTi 	 (3.54) 

and under the above assumptions and the spherical constraint (3.18) one finds that 

Eg (O, x) is minimized by choosing x along A and hence along a. This makes intuitive 

sense: Under our assumption that a is an eigenvector of M, a is proportional to M 1 a 

which is in fact the true teacher, WV, due to the assumptions of full rank of M v  and 

0. Querying along a therefore yields the largest possible signal y = w5x/v '7 
crlwvI and hence reduces the generalization error (3.51) (which is due to the mismatch 

between ) 0 and A,, pt  = 0) most quickly. We remark that x cx a is a truly sequential 

query construction criterion since it involves, through a, the previous outputs. This is 

in contrast to query construction for minimum entropy where the choice of each query 

is determined solely by the preceding inputs, as discussed above. 

Let US now apply the query construction criterion x cx a to a simple case where the 

above assumptions are fulfilled. Namely, consider a noise free teacher w, and a training 

set of N examples generated by minimum entropy query construction, i.e., containing 

N mutually orthogonal input vectors and thus having M = o1 and a = 

Querying at x = a(Na/a2 )'/2  then yields a new matrix M, = M + aaT(o/a2) 

and a new vector a' = a + yx/JiT = a + 
0,

Wv = 2a. a' is again an eigenvector of 

M and hence the next minimum generalization error query will have to be selected 

along a', i.e., again along a. Sp = Na such queries in sequence generate a matrix 

M v  and a vector a with Ma = ( 6p + 1)oa and a = ow(1 + 6p), thus leading to a 

generalization error (using (2.12) and (3.26)) 

2 	01  2  W, 	
(3.55) €g(O,V) 	(M1a_wv) = 2 

Nav 
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This result contains the size of the perceptron, N, and for fixed Sa converges to zero in 

the thermodynamic limit N -* oo, implying that in this limit 69  expressed as a function 

of a has a step discontinuity at a = 1. This result in itself, due to the limiting assump-

tions that we had to make, .is probably less important than a more general conclusion 

which can be drawn: For query construction even in purely linear learning problems, 

maximizing information gain is not necessarily identical to minimizing generalization 

error, and to obtain the optimal generalization performance one will generally have to 

resort to truly sequential query selection. 

3.4 General issues 

In the preceding sections we have focussed our attention on the generalization perfor-

mance obtained from query sequences. We now turn to two other interesting aspects 

of query learning: Single queries and locally vs. globally optimal query construction. 

We again investigate them for the two example learning scenarios considered above, 

confining ourselves to query construction for minimum entropy in the case of the linear 

perceptron in order to keep things analytically tractable. 

3.4.1 Single queries 

We refer to a single query which is constructed on the basis of an existing training set 

of random examples as 'isolated'. It is then natural to ask the question: How does the 

improvement in generalization capability due to an isolated query, i.e., the decrease in 

generalization error, compare with that due to a query in a query sequence and that 

due to a random example? The first comparison concerns the question of how the 

performance of a single query depends on the previous learning history, i.e., on the 

method by which the previous training examples have been generated (randomly or by 

querying). It is not entirely obvious whether for answering this question the relative 

or the absolute decrease in generalization error is the relevant quantity, and we shall 

consider both of these options below. 

High-low 

As derived in section 2.5, the average generalization error after a single query can 

simply be calculated by averaging the function Eg (® (2) , x) over the respective query 

construction distribution PQ(xI®()).  For the high-low game, we thus find from (3.11) 

that a single query constructed for minimum generalization error and minimum teacher 



CHAPTER 3: PERFECTLY LEARNABLE PROBLEMS 	 41 

space entropy, respectively, reduces the generalization error by 

1Eg (1 mm. generalization error query) = 	max(xR, - XL,) 	 (3.56) 

and 

N 

LXEg (1 mill, entropy query) = 
8N N 
------- 	- XL,) = _L€g(O(P)). 	(3.57) 

i=1 

Let us first consider the dependence of these results on the learning history. From (3.57), 

a minimum entropy query reduces the generalization error by an amount proportional 

to the generalization error before querying—which will therefore be large for previous 

training examples generated randomly and smaller if queries have been used—, mak-

ing the relative improvement independent of the learning history. Comparing (3.56) 

and (3.57) one sees that a minimum generalization error query provides, as expected, 

a greater reduction (for N > 2; for N = 1 the two query construction algorithms 

are equivalent) in generalization error than a minimum entropy query, which is also 

more strongly dependent on the learning history. For previous training examples gen-

erated using minimum generalization error queries, the maximum in (3.56) is (1/2)La1 

as follows from the discussion before equation (3.13), giving an absolute decrease in 

generalization error decaying exponentially with the number of examples; from (3.13), 

the corresponding relative decrease is (1 - ) - 1 12N and thus between 112N (the 

value for a minimum entropy query) and 11N. The difference to the case of previous 

random training examples is most clearly exhibited for N -f oo, because in this limit it 

follows from the well-known combinatorial 'collector's problem' (see, e.g., [Fe170J) that 

for any a there is with probability one at least one component of the version space 

for which no training examples exist at all, making the maximum in (3.56) equal to 1 

and yielding an absolute decrease in generalization error of 118N, independently of a. 

From (3.16) the corresponding relative decrease  is (a + 0(1))14N, greater by a factor 

of 0(a) than for previous training examples generated by queries. 

We now compare isolated queries to random examples. From (3.15), one finds that 

the absolute decrease in generalization error due to a random example after previ-

ous random training examples is given by 11(2Na 2 ) + 0(1/Na3), yielding a relative 

decrease of 11Na + 0(1/Na2 ). As a -* oo, this tends to zero, reflecting the fact 

'For finite but large N, this expression can be estimated to be valid for values of a much smaller 

than in N, from results for the mean waiting time in the 'collector's problem' (see e.g., [Fe1701); this 
ensures that the relative decrease (c + 0(1))14N is always smaller than one as it has to be. 
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that the information carried by new random examples becomes more and more redun-

dant. By comparison, for an isolated minimum entropy query we found above that 

the relative decrease in generalization error is 112N, showing that minimum entropy 

query construction successfully avoids this redundancy. For a minimum generaliza-

tion error query and in the limit N —* oo, the relative generalization error decrease 

of (a + O(1))14N is still larger, by a factor of a/2 + 0(1), than the relative decrease 

achieved by a minimum entropy query, implying that minimum generalization error 

query construction selects among all queries providing non-redundant information the 

one with the greatest potential for improving generalization. 

Linear perceptron 

We now turn to the case of the linear perceptron. As pointed out before, we consider 

only the case of query construction for minimum (teacher or student space) entropy. In 

this case the reduction in generalization error due to a single query is particularly easy 

to calculate, since only the change in G(A) and dG(A)/dA (or GQ(A) and dGQ(A)/dA, 

respectively) needs to be worked out. One obtains a result which in general depends 

on the learning history through the minimal eigenvalue of M, which we write as 

(A + Aj 11)a. For a < 1, however, there is no such dependence since one always 

has = 0 because the correlation matrix xP(x)T  does not have full rank. In 

the case of previous random examples [K091] one obtains, using the fact that in the 

thermodynamic limit N —* oc the eigenspectrum of MAr  is self-averaging, 

0 	for a<l 
Amin={ (_1) 2  for a>1. 

(3.58) 

For a query in a query sequence, one simply has Arnin = [a] as discussed in section 3.3. 

Using these values of A mj, one finds that a query in a sequence generally leads to an 

absolute reduction in generalization error less or equal to that due to an isolated query. 

The exception is the case of over-confidence and high noise level, where at finite a a 

query in a sequence can reduce the generalization error by a larger amount than an 

isolated query. Asymptotically, a query in a query sequence reduces the generalization 

error by (1/20 vN)a 2 (1 + O(a 1 )), which corresponds to a relative decrease of 1/Na + 

0(1/Na 2 )), whereas for an isolated query both the absolute and relative reductions 

are bigger by a factor of 1 + 4a_1/2  + O(a 1 ). 

Now let us compare isolated queries to random examples. The reduction in gener-

alization error due to a single random example can be straightforwardly obtained by 

differentiating the analogue of (3.49) for random examples with respect to Na, and is 
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shown in figure 3.3 along with the corresponding results for isolated queries'. It can 

be seen that the trend of the comparison between query sequences and sequences of 

random examples discussed in section 3.3 is mirrored in the result for isolated queries 

and single random examples: For optimal weight decay, an isolated query always per-

forms better than a random example (maximally, it reduces the generalization error 

by 5 times as much as a random example, which is achieved at a = 9/4 in the limit 

)¼opt —)- 0) whereas for non-optimal, over-confident weight decay and small a it can 

perform worse. Asymptotically, the reduction due to an isolated query is greater by a 

factor of 1 + 4a_1/2  + 0(a 1 ) than that due to an additional random example. 

To summarize our discussion of single minimum entropy queries for the linear per-

ceptron, we have found quite a different behaviour than for the high-low game, as would 

have been expected from the significant differences between the two systems regarding 

the efficacy of query sequences. Whereas minimum entropy queries in the high-low 

game—whether isolated or in a query sequence—lead to a relative improvement in 

generalization error which remains finite as a —* x, the relative improvements in the 

linear perceptron decay towards zero roughly as 1/a and to lowest order in 1//& are 

identical to those obtained from random examples. Again, we argue that the reason for 

this qualitative difference is that for large a learning in the linear perceptron is mainly 

learning against noise, for which queries are not significantly more useful than random 

examples. 

We found for both high-low and the linear perceptron with optimal weight decay 

that the absolute reduction in generalization error is always larger for an isolated query 

than for one in a query sequence, whether we consider minimum generalization error 

or minimum entropy queries. This result makes intuitive sense because, if the previous 

training examples have already been generated by queries, one expects there to be less 

scope for reducing the generalization error by another query. We speculate that this 

might be more generally valid in learning problems where the training algorithm is 

well-matched to the learning environment, i.e., the posterior teacher distribution. For 

the linear perceptron with non-optimal weight decay, i.e., a poorly matched training 

algorithm, we find that the above does hold at least asymptotically (as a — oo) for 

minimum entropy queries, but not necessarily for finite a. In terms of the relative 

reduction in generalization error, we observe that for large a an isolated query still 

TNote in figure 3.3(c) that for over-confident weight decay and small a, negative values of Ac, can 
occur, corresponding to an increase of the generalization error as more training examples are received. 
This seemingly pathological behaviour is due to the fact that in this regime the student learns mainly the 
noise in the training data. An increase in the number of training examples thus effectively corresponds 
to 'more noise' and hence worse generalization. 
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Figure 3.3. Relative reduction in generalization error (in units of 11N) due to an 
isolated minimum entropy query and a random example, respectively. (a) Optimal 
weight decay .A = .A0t ; Ao =0.01, 0.1, 1. (b) 'Under-confident' weight decay A = 
10 A0 ; ) OP =O.Ol, 0.1, 1. (c) 'Over-confident' weight decay A = A 0 t/10; A 0 =0.1, 1, 
10. Notice that in the last case for high teacher noise level (A 0 =10) a minimum entropy 
query can reduce the generalization error less than an additional random example. 
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performs better than one in a query sequence, whereas for small a it can be shown that 

one can also have the reverse relationship between the two. 

3.4.2 Locally vs. globally optimal query construction 

All our considerations so far have been based on the assumption that query construc-

tion can be viewed as a 'greedy' optimization of some appropriate objective function. 

If one is looking for query construction algorithms which are applicable independently 

of the total number of queries that will eventually be used in the learning process, 

this approach, which we shall call 'locally optimal query construction', is perfectly 

reasonable. If the total number of allowed queries were known, one might want to 

optimize the query construction algorithm 'globally' in order to achieve the optimum 

of the relevant objective function after learning from the specified number of queries 

and the corresponding outputs (for a formal definition see, e.g., [DeG62]). It is the 

aim of the present section to compare the performance of globally and locally optimal 

query construction, with the goal of assessing the loss in performance that one incurs 

if one restricts oneself to locally optimal query construction. We emphasize that what 

we mean by globally optimal query construction is not identical to what is normally 

referred to as 'statistical' (or 'exact') design in the statistics literature, where all queries 

are chosen before any outputs are received; globally optimal query construction shares 

with this approach the fact that the total number of training examples is fixed, but 

sequentially selects each new query on the basis of all preceding training examples, 

inputs and outputs alike. We also stress that the major disadvantage of globally op-

timal query construction is that it is tied to the specific number p of queries that is 

considered; in fact, one must expect that a globally optimal sequence of p queries can-

not be augmented by more queries later without leading to suboptimal generalization 

performance. 

We shall first consider the question of possible equivalence of locally and globally 

optimal query construction in terms of the final value of the relevant objective function 

that they achieve. Intuitively, one expects that if a globally optimal sequence of p 

queries can always be augmented by another query to give a globally optimal sequence 

of p+  1 queries, then globally optimal query sequences can be constructed using a local, 

i.e., step-by-step approach. This criterion can be formalized and one can check that it 

does indeed hold for the high-low game, whether generalization error or entropy is used 

as the objective function for query construction; thus locally and globally optimal query 

construction perform equally well. For the linear perceptron, however, the situation 

is different, as we now show. Consider the case of optimal weight decay, where the 
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generalization error is given by (3.35). From the convexity inequality 

tr M 1 ~ (tr M v) = (u(A 0  + a)) 1 	 (3.59) 

one has the bound 

€g,opt(0) 	
1 	1 

(3.60) 
20vAopt+ a 

For a < 1, this bound can be tightened using the fact that M v  must have at least 

N(1 - a) eigenvalues of size ) 0 to: 

cg,opt(0)> 	
/ 	a 	1 - a 

- 
2 	+ 1 + A0 

) 	

(3.61) 

A result from [GP82] shows that the above inequalities can be made into equalities by 

appropriate choice of the xIL,  so that globally optimal query construction for minimum 

generalization error saturates the bounds (3.60),(3.61). Comparing this with the re-

sult (3.41),(3.42) for locally optimal query construction, one sees that the two achieve 

identical performance for a < 1 and for the integer values a = 2, 3, ..., but that for 

all other values of a locally optimal query construction performs worse. This can also 

be read off from figure 3.4 which shows the ratio p of the generalization error achieved 

by globally and locally optimal query selection as a function of a, for different values 

of )'opt.  This ratio attains its minimum of 8/9 at a = 3/2 for A0 -* 0, and is for large 

a given by 1 - L\a(1 - a)/a 2  + 0(a 3 ), showing that although locally optimal query 

construction in general performs worse for finite a, it 'catches up' again with globally 

optimal query construction asymptotically. 

To illustrate the reason for the difference between locally and globally optimal query 

selection, we consider briefly the case N = 2, p = aN = 3. The locally optimal query 

construction algorithm selects the first two queries x 1  and x2  orthogonal to each other 

and the third one randomly, leading to a (2 x 2) correlation matrix (11N) E ,,  x (x )T 

with eigenvalues a and 2o. Globally optimal query selection selects the three queries 

x1 , x2 , x3  at angles of 120° to each other, making the eigenvalues of the correlation 

matrix both equal to 3/2 and thus saturating the bound (3.60). This example also 

illustrates another point which was mentioned above: for an unknown total number 

of training examples globally optimal query construction is not normally a good idea. 

If, after having chosen the globally optimal queries for p = 3, we were allowed an 

additional query, we would end up with a correlation matrix with eigenvalues 3/20, 

5/20,2 which does not saturate the bound (3.60), whereas the locally optimal query 

construction algorithm would select the fourth query orthogonal to x 3 , yielding the 
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Figure 3.4. Ratio p of generalization error achieved by globally vs. locally optimal 
query sequences, for the linear perceptron with optimal weight decay ) = A.pt. Values 
of A,,pt  are 0.01, 0.1, 1. The globally optimal query sequence leads to a generalization 
error which is at most smaller by d. factor of 8/9 (at a = 3/2 and for A0 - 0) than 
that of the locally optimal query sequence. 

optimal correlation matrix with two eigenvalues of 2a. 

Summarizing, we have found that in general locally optimal query construction 

will perform worse than its globally optimal equivalent, but that, at least for the two 

learning problems we have considered, the differences in performance, if they exist, 

become negligibly small for large values of a. Overall, the advantage of locally optimal 

query construction algorithms, namely their applicability whatever the total number of 

training examples is, thus seems to compensate well for the loss in performance com-

pared to globally optimal query construction. It remains a matter of further research 

to establish how general this result is. 

3.5 Conclusion 

In the present chapter, we have explored the differences between the objective functions 

entropy and generalization error in two learning scenarios, the high-low game and 

the linear perceptron. Evaluating the average generalization ability obtained after 

training on examples generated by a sequence of queries and comparing to learning from 

random examples, we have found strong qualitative differences in the efficacy of query 

learning. These differences are due to the different structure of the underlying rule in 

the two scenarios: In the high-low game with its nonlinear and 'non-invertible' rule, the 
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generalization error decays exponentially with a, the number of examples normalized 

by the number of parameters in the system, which is a dramatic improvement over 

the asymptotic decay with 1/a for random examples. For the linear perceptron with 

its purely linear rule, on the other hand, we have found that the relative reduction in 

generalization error due to querying is much less pronounced and indeed is given by a 

reduction factor ic(a) as small as 1 + 1/a for large a. We have related this qualitative 

difference to the fact that in the high-low game query construction can realize a finite 

information gain per training example as a -* oo, whereas for the linear perceptron 

the maximal information gain per example tends to zero in this limit, the available 

information essentially being 'exhausted' at a = 1. 

As to the difference between entropy and generalization error as objective functions 

for query construction we have found that most of the time the entropy can serve as a 

useful guideline for query construction, but does not achieve the optimal performance 

obtained by query construction for minimum generalization error. For the case of the 

linear perceptron, we have observed that if the training algorithm is ill-matched to 

the details of the learning problem at hand (although the rule was still assumed to be 

perfectly learnable), minimum entropy queries can actually lead to a higher general-

ization error than random examples, but only if the teacher is very noisy, the training 

algorithm is over-confident (i.e., under-estimates the noise level) and the number of 

training examples is so low that the rule is only just beginning to be learned. 

In section 3.4, we have considered the performance of isolated queries, i.e., queries 

which follow a training set of random examples, and compared them to single queries in 

a query sequence and single random examples. We have observed in our two example 

learning scenarios that for large a an isolated query leads to a greater (absolute) reduc-

tion in generalization error than a query in a query sequence and speculate that this 

result, as well as its analogue for the relative reduction in generalization error, might 

hold more generally. We have also investigated how much one could improve on the 

approach we have adopted in this paper, namely locally optimal query construction, 

i.e., 'greedy' optimization of the objective function at each step, by allowing global 

optimization of the query construction algorithm for a fixed total number of queries. 

We have found that the two methods will not in general be equivalent, but we expect 

from the results for our two example systems that the difference in performance will be 

small for many learning problems, especially for large numbers of training examples. 

It should be clear from the above that much remains to be done in the field of query 

learning. In particular, more complicated rules need to be analysed and scenarios with 

imperfectly learnable rules considered. Some of these issues will be explored in the 

following chapters. 



Chapter 4 

Imperfectly learnable problems: 

Linear students 

Abstract 

We study the generalization performance achieved by query learning in 
situations where the student cannot learn the teacher perfectly. As a simple 
model scenario of this kind, we consider a linear perceptron student learning 
a general nonlinear perceptron teacher. Two kinds of queries for minimum 
entropy are investigated: Minimum student space entropy (MSSE) queries, 
which are appropriate if the teacher space is unknown, and minimum teacher 
space entropy (MTSE) queries,, which can be used if the teacher space is 
assumed to be known, but a student of a simpler form has deliberately been 
chosen. We find that for MSSE queries, the structure of the student space 
determines the efficacy of query learning. MTSE queries, on the other hand, 
which we investigate for the extreme case of a binary perceptron teacher, 
lead to a higher generalization error than random examples, due to a lack of 
feedback about the progress of the student in the way queries are selected. 

4.1 Introduction 

In the previous chapter, query learning has been investigated for perfectly learnable 

problems, where student and teacher space are identical. In particular, we considered 

queries selected to minimize the entropy (i.e., maximize the information gain) in the 

parameter space of the student or teacher. Their effect on generalization performance 

was found to depend qualitatively on the structure of the input-output mapping to 

be learned. For the linear perceptron, for example, we obtained a relative reduction 

in generalization error compared to learning from random examples which becomes 

49 
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insignificant as the number of training examples, p, tends to infinity. For high-low, on 

the other hand, minimum entropy queries result in a generalization error which decays 

exponentially as p increases—a marked improvement over the much slower algebraic 

decay with p in the case of random examples. Similar results have also been obtained 

for the binary perceptron {S0S92, FSST931. 

We now extend our investigation to imperfectly learnable problems, where the stu-

dent can only approximate the teacher, but not learn it perfectly. This implies that stu-

dent and teacher space are different, and we therefore now have to distinguish between 

minimum student space entropy and minimum teacher space entropy (MSSE/MTSE) 

queries. In practical situations, imperfectly learnable problems can arise for two rea-

sons: Firstly, the teacher space (i.e., the space of models generating the data) might 

be unknown. Because the teacher space entropy is then also unknown, MSSE (and not 

MTSE) queries have to be used for query learning. Secondly, the teacher space may 

be known, but a student of a simpler structure might have deliberately been chosen in 

order to facilitate or speed up training, for example. In this case, MTSE queries could 

be employed as an alternative to MSSE queries. The motivation for doing this would 

be strongest if, as in the learning scenario that we consider below, it is known from 

analyses of perfectly learnable tasks that the structure of the teacher space allows more 

significant improvements in generalization performance from query learning than the 

structure of the student space. 

With the above motivation in mind, we investigate in this chapter the performance 

of both MSSE and MTSE queries for a simple imperfectly learnable problem, in which a 

linear perceptron student is trained on data generated by a general nonlinear perceptron 

teacher. Both student and teacher are specified by an N-dimensional weight vector with 

real components, and we will consider the thermodynamic limit N -+ oo, p -* 00, with 

the normalized number of training examples, c = p/N = const. 

Let us comment briefly on the practical relevance of the analysis of a learning 

scenario with a linear student. While it is true that in most applications of neural net-

works, for example, nonlinearities play an important role, many fundamental insights 

into supervised learning have been obtained from analyses of linear model systems, 

where analytical solutions can be obtained (see, e.g., [KH92a, DW93, B5S95, LTS90, 

B594, BH95]). Furthermore, it has been argued that the properties of networks with 

smooth nonlinearities can often be related to those of linear models by means of a local 

linearization procedure [SST92, K1192b, BK093]. It is therefore reasonable to expect 

that at least qualitatively, the results of our analysis will to some extent carry over to 

learning with more realistic feedforward neural networks. 

The remainder of this chapter is structured as follows: In Section 4.2, we formally 
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define the learning scenario to be investigated. The generalization error for learning 

from random examples and from MSSE queries is calculated in Section 4.3; MTSE 

queries are considered in Section 4.4 for a binary perceptron teacher, which is in some 

way the most extreme case as explained below. We conclude in Section 4.5 with a 

summary and discussion of our results. 

4.2 The model 

We denote students by Al (for 'Neural network') and teachers by V (for 'elements of 

the Version space', see Section 4.4). A student Al is specified by an N-dimensional 

real weight vector w- E RN and calculates its output yAr  for an input vector x E RN 

according to 
1 T 

Y = f(x) = —x w. 
vv 

Teachers are similarly parameterized in terms of a weight vector w E RN, but calcu-

late their output y, by passing the (scaled) scalar product of x with this weight vector 

through a general nonlinear output function. Since we allow the teacher outputs to be 

corrupted by noise, we only specify the average output for a given input and assume 

that it can be written in the form 

	

(Yv)p(IX,v) = 	 (4.1) 

where (.) is a 'noise-averaged' output function. Implicit in eq. (4.1) is the assumption 

that the noise process preserves, on average, the perceptron structure of the teacher. 

Similarly, we assume that the variance of the fluctuations A y, of the teacher outputs 

Yv around their average values (4.1) can be written as a function 2(.) of XTWV 

alone: 

	

(yV2)p(yIxv) 	
2 	 (4.2) 

 ( v'-N- 
This  condition is fulfilled, for example, for additive noise on the outputs with finite, 

input-independent variance or (for inputs obeying a spherical constraint as considered 

below) when the components of the teacher weight vector are corrupted by additive 

Gaussian noise with identical variance for each of the components. Noise on the in-

puts, which has previously been studied with the aim of improving generalization per-

formance (see, e.g., [HK92, G5W89, WS93]), can be treated similarly: For additive 

Gaussian noise on the input vector x (again with identical variance for each compo-

nent), eq. (4.2) holds as long as the length of the teacher weight vector wv is fixed; this 

condition is enforced with probability one in the thermodynamic limit for the Gaussian 

rff 
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teacher prior considered below. 

We assume that the inputs are drawn from a uniform spherical distribution, P(x) o 

6(x 2  - No). Using as our error measure the standard squared output deviation, 

- yy ), we obtain for the generalization error, i.e., the average error that a student 

Al makes on a random test input when trying to approximate teacher V, 

€g ()f, V) 	
1 

= 	
- y

v ) 2 
 ) P(yvlx,V)P(x) 

= [Q,,0,2 + (p2(h)) —2 	(hg(h))h] + (&(h)) 	(4.3) 

where 

R =Q = 	Q, = 	 (4.4) 

Here ()h  denotes an average over a Gaussian random variable h with zero mean and 

 and we have assumed the thermodynamic limit, N -* oo, of a per- variance 

 with a very large number of input components. We have kept the last term 

in (4.3), which arises from the noise on the teacher outputs alone and could in principle 

be discarded, in order to make the comparison of linear and nonlinear teachers more 

transparent. 

As our training algorithm we take stochastic gradient descent on the training error 

Et  which, for a training set 	= {(x,y),ji = 1.. .p}, is 

= 	(y - f(x)) 2 . 	 (4.5) 

A weight decay term 	is added for regularization, i.e., to prevent overfitting 

of noise in the training data, parameterized in terms of a dimensionless weight decay 

parameter A. Stochastic gradient descent on the resulting energy function 

(4.6) 

yields a Gibbs post-training distribution of students 

P(A1IO) cx exp(—E/T) 	 (4.7) 

where the training temperature T measures the amount of stochasticity in the training 

algorithm. For the linear perceptron students considered here, this post-training distri- 

bution of students is a Gaussian distribution with mean M.1 a and covariance matrix 
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TM 1 , where (see eq. (3.27)) 

MN = Ao1 + A 	A = 	x (x )T 	a = = 1: yl'x 	(4.8) 

with 1 denoting the N x N unit matrix. To have a well defined thermodynamic 

limit, we assume, as usual, that p = aN, i.e., that the number of training examples 

is proportional to the size of the perceptrons. We will concentrate our analysis on 

the average generalization error, which is obtained by successively averaging eq. (4.3) 

over the post-training distribution of students, over the distribution of training sets 

@() produced by a given teacher V, and finally over the prior distribution of teachers, 

which we assume to be Gaussian, P(V) cx exp(—w,/a). Under this prior, Q = 

a + O(1/VW), so that in the thermodynamic limit Q can be replaced by o in (4.3). 

Hence the only nontrivial averages in the calculation of the average generalization 

error are the averages of the overlap parameters ft and QM  defined in (4.4). Note that 

typical deviations of the generalization error from its average value are O(1/v'i.7) and 

are therefore vanishingly small in the thermodynamic limit. This property is normally 

referred to as 'self-averaging' and holds quite generally for a wide range of quantities 

which are 'intensive', i.e., do not scale with the system size N (see, e.g., [BY86]); we 

will use it frequently throughout this and the following chapters. 

The main aim of the present chapter is to calculate for the learning scenario defined 

above the average generalization error as a function of the normalized number of train-

ing examples, a = p/N, for learning from MSSE and MTSE queries. By comparing the 

results to learning from random examples, we will be able to draw conclusions about 

the efficacy of query learning in imperfectly learnable problems. 

4.3 Random examples and minimum student space en-

tropy (MSSE) queries 

We now calculate the generalization performance resulting from random examples and 

from MSSE queries. For learning from random examples, each input in the training 

set is drawn randomly and independently from the assumed uniform spherical input 

distribution. By contrast, for MSSE queries each new training input is chosen such that 

the entropy of the post-training distribution of students is minimized. The properties 

of MSSE queries for linear students have been discussed in detail in Section 3.3, and 

we only review the salient features here. 

For the stochastic gradient descent learning algorithm described above and the 
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resulting Gaussian post-training distribution, the student space entropy (normalized 

by N) is given by 

SN= — 	lnIM)jl 	 (4.9) 

up to an unimportant constant which depends on the learning temperature T only. 

The student space entropy is independent of the training outputs y,  which is charac-

teristic of linear students (see, e.g., [Mac92c, Si180]). The entropy (4.9) is minimized 

by choosing each new training input along an eigendirection of the existing MN  with 

minimal eigenvalue. If we apply such minimum entropy queries in sequence, we find 

that the first N training inputs are pairwise orthogonal but otherwise random (on the 

sphere x 2  = No), followed by another block of N such examples, and so on. The 

overlap '(x)Txv  of two different inputs in a training set generated by MSSE queries 

is thus either 0 (if they belong to the same block) or of the size typical for random 

inputs, which is O(i//). These 'pseudo-random' overlaps simplify the calculation of 

the average generalization error, which is outlined in Appendix 4.6. 

We obtain the following result for the average generalization error for learning from 

random examples and MSSE queries (primes denote derivatives): 

12 22 
Cg = Yeff00 x [) 0 G(A) + A(Aopt - A)G'(X)] + g,rnin. 	 (4.10) 

Here we have introduced the constants 

7eff = 	22 (h(h))h = ('(h))h 	 (4.11) 

1 
aeff 	act + [(29(h))h - 	(h(h))] 	= (&(h)) 	(4.12) 

 U2 U2 

£T - 

opt - 
	

22 
eff 

 2 	 (4.13) 
01   

12 
Eg , min  =t7eff 	 (4.14) 

where ... ) h  denotes an average over a zero mean Gaussian random variable with 

variance The function G is the average of tr M- 1  over the training inputs and 

is given by  

G(A)= 	I—a—A+V(1—a—A) 2 +4A) 	 (4.15) 
2A ( 

for random examples [KH92a], whereas for MSSE queries its value is (see eq. (3.42)) 

La 	1—L 
G(\) = 

+ La] + 1 + + 	
(4.16) 
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where [a] is the greatest integer less than or equal to a and La = a - L°]. In 

eq. (4.10) we have restricted ourselves to the case of zero learning temperature T as 

nonzero T gives only an additional positive definite contribution TG(A) to the average 

generalization error. For finite a, Eg  is minimized when the weight decay parameter .\ 

is set to its optimal value, which is related to the effective signal-to-noise ratio 

of the teacher as explained below. As a -* oo, the generalization error tends to the 

minimum achievable value, Eg , fl  which is independent of ;\ as expected for the limit 

of an infinitely large training set. 

We now explain the remaining constants introduced in eqs. (4.11-4.14). First note 

that, in all of the averages involved, avo sets the scale of the arguments of g(.) and 
2(.). This was to be expected since, under the assumed input distribution and teacher 

space prior,xTwv  has zero mean and variance 0,20r2.In  eq. (4.12), o is the averageac  
variance of the fluctuations of the teacher outputs around their average, i.e., the actual 

noise level. In order to clarify the meaning of 7eff  and o., consider the special case 

of a linear teacher with gain constant' -y, which is given by (h) = -yh, and let the 

teacher outputs be corrupted by zero mean additive noise. It then follows that 7eff = 7 

and or =and the minimum generalization error becomes Eg,fl  = which2 ac eff 	ac

is simply the contribution from the noise on the teacher output. The optimal weight 

decay is \opt = 	 which can be shown to be the inverse of the mean-square 

signal-to-noise ratio of the teacher (see eq. (3.33)). For a general nonlinear teacher and 

noise model, we can interpret eqs. (4.11, 4.12) as definitions of an appropriate effective 

gain constant and noise level, from which )opt  and 	are calculated just like for 

a linear teacher with additive output noise. The difference U,ff - o 	is greater than 

zero for nonlinear .), and can be interpreted as effective noise arising from the fact 

that the linear student cannot reproduce the teacher perfectly. Note from eq. (4.12) 

that this contribution to the effective noise can be very large for noise-averaged teacher 

output functions (.) containing a large part which is even in h. Since the effective 

gain 7eff  only depends on the odd part of (.), it follows from (4.13) that A,, pt  can be 

arbitrarily large even if there is no actual noise on the teacher outputs. 

By way of example, we show in Figure 4.1 plots of or 2  vs. 	for a teacher with act eff

tanh(.) output function, for additive output noise (Fig. 4.1a), and for additive Gaussian 

noise with zero mean and identical variance on each of the N components of the teacher 

weight vector (Fig. 4.1b). In the latter case we have, denoting the noise variance by 

&,, (h) = (tanh(h + ii)).. and A2  (h) = Ktanh 2 (h + h)) - g2 (h), where h is Gaussian 

with mean zero and variance 	Applying eq. (4.12) we obtain a ff  and a as 

functions of &; eliminating &v yields o as a function of 	as shown in Fig. 4.1b. 

As o 	---+ 1 (which corresponds to &v -4 oc), the difference off—oC  decreases towards 
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Figure 4.1. Effective noise level vs. actual noise level for a teacher with tanh output 
function, for additive Gaussian noise on (a) the outputs and (b) the components of the 
teacher weight vector. The curves are labelled by the values of cia. 

zero because, with increasing &, (.) becomes approximately linear over an increasingly 

large range. Note that due to the nonlinearity of the teacher tanh(.) output function, 

aeff remains nonzero in all cases even for o, 2 ct = 0. 

We have seen that the average generalization error obtained when learning to ap-

proximate a nonlinear teacher with a linear student is exactly the same as for a noisy 

linear teacher with an effective gain and noise level given by eqs. (4.11, 4.12). Conse-

quently, the efficacy of query learning for a nonlinear teacher is identical to that for a 

noisy linear teacher. Specifically, if we define the relative improvement in generalization 

performance due to querying, Ic, as 1  

ic(c)= €
g (random examples) - Eg,min 

6g(queries) - 6g,min 

then the teacher nonlinearity enters the result only through the value of A 0P . Fur-

thermore, the functional dependence on ) and A. pt  is the same as for a noisy linear 

teacher. Figure 4.2 shows plots of #c(c) for some representative values of \ and 

For large c, ic has the asymptotic expansion ic = 1 + 1/of  + 0(1/a 2),  which means that 

for c - oo, random examples and queries yield the same generalization performance. 

This can be interpreted in the sense that for large c, learning is essentially hampered by 

(effective) noise in the data, for which queries are not much more.effective than random 

'Note that this definition, although apparently different, agrees with the one in Chapter 3, eq. (3.45). 
This is due to the fact that for perfectly learnable problems, Cg,mjfl is just the contribution to the 
generalization error arising from the teacher noise alone, which we disregarded in Chapter 3 (see after 
eq. (3.26)). 
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Figure 4.2. Relative improvement ic in generalization error due to MSSE queries, for 
(a) optimal weight decay, A = 	and (b) ;\ = )t/10. 

examples (cf. the discussion in Section 3.3). For finite a, the behaviour of K depends 

on A and Aopt. For optimal weight decay A = A 0  (Fig. 4.2a), ic has a maximum at 

a = 1 the height of which diverges as AOP
-1/2  for A0 --+ 0. For A > A,pt, the results 

are qualitatively similar but, for identical values of Ao pt, ,c is generally larger than for 

optimal weight decay A = For A < A 0  (Fig. 4.2b), K tends to be smaller than 

for optimal weight decay; in fact, for A 0  > 2, values of ic < 1 can occur which means 

that queries do worse than random examples. As discussed in Section 3.3, this can be 

interpreted in the sense that for A < Aopt, the weight decay 'underestimates' the effec-

tive teacher noise level, leading to spurious information gain in student space and thus 

making the student space entropy an unreliable indicator of generalization performance 

improvement. This case is particularly relevant for nonlinear teachers where A opt  can 

be very large even if there is no actual noise on the teacher outputs. Nevertheless, even 

for A < A,pt  the asymptotic expansion of ic = 1 + 1/a + 0(1/a 2 ) given above remains 

valid, and hence K necessarily increases above one for large enough a. 

The fact that ic tends to unity for a -* oo implies that the relative improvement 

in generalization error over random examples due to MSSE querying tends to zero 

in this limit. We shall explore in the next section whether it is possible to improve 

generalization performance more significantly by using MTSE queries. Before doing so, 

however, we briefly mention the analogue of the result (4.10) for the average training 

error, in order to show that the training error is affected by the teacher nonlinearity in 

qualitatively the same way as the generalization error. To remove the trivial scaling of 

the training error Et  defined in (4.5) with the number of training examples, we consider 

the quantity 6t = Es /p. Performing an average over students, training sets and teachers 
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Figure 4.3. Average training error ct, in units of g,,,,",  for MSSE queries (curves 
which are constant for a E [0, 1]) and random examples. The weight decay parameter 
is (a) set to its optimal value, A = and (b) A = 10 

as for the generalization error, we find 

= Eg,n [i - + 	
2 

(G(A) + (A - A o t)G'(A))j. 	(4.17) 
a 

For a linear teacher and random training examples, this result agrees with the one 

derived in [KH92a, DW93]. As above, we have restricted ourselves to the case of 

zero training temperature T; nonzero T would give an additional positive contribution 

T(1 - AG(A))/2a to the average training error. The function G(A) is again given 

by (4.15) for random training examples and by (4.16) for MSSE queries. In eq. (4.17) 

the teacher nonlinearity only enters through f g jfl  and and hence we find again 

the analogy between nonlinear and noisy linear teachers discussed above. Figure 4.3 

shows plots of Et(a) for selected values of A and Interestingly, it can be shown 

that the training error is always smaller for MSSE queries than for random examples 

for A < A opt , whereas for A > Aopt  it can also be greater. In comparison with the 

analogous relationships for the generalization error discussed above, the roles of the 

two A-regimes are thus reversed here. For large a, the ratio of the training error for 

random examples to that for queries is 1 + A 2 /(A 0 a3 ) + 0(1/a4 ), which is always 

larger than one for sufficiently large a. 

Note that for a -* oo, ct tends to 6g,m.in,  as does the average generalization error 

fg . For random training examples, this is necessarily the case as the training error 

becomes an unbiased estimate of the generalization error for an infinite number of 

training examples. The fact that the result also holds for MSSE queries shows that 
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they 'cover' the input space as well as random examples in the limit a -* oo. This is 

not necessarily the case for queries chosen to optimize an objective function other than 

the student space entropy. An example of this are the MTSE queries discussed in the 

next section, for which the generalization error tends to a limiting value for a -* oo 

which depends on the weight decay A, whereas the training error converges to 1/2 in 

this limit, independently of A, as shown in Appendix 4.7. In this case, therefore, the 

training error does not give an unbiased estimate of the generalization error, even for 

an infinite number of training examples. 

4.4 Minimum teacher space entropy (MTSE) queries 

We now consider the generalization performance achieved by MTSE queries. We remind 

readers that such queries could be employed if the teacher space is known, but a 

student of a simpler functional form has deliberately been chosen. As an example, 

consider a classification task, for which the teacher outputs are discrete class labels. In 

order to be able to use a training algorithm of gradient descent type, one might then 

choose to consider students with continuous outputs, for which the training error is a 

differentiable function of the student parameters. The scenario considered below, with 

a binary perceptron teacher and a linear perceptron student, can in fact be thought 

of as a simple model for situations of this kind. In general, the aim in using MTSE 

rather than MSSE queries would be to exploit the structure of the teacher space if 

this is known (for perfectly learnable problems) to make query learning very efficient 

compared to random examples. In the binary teacher/linear student scenario, this is 

indeed the case: as mentioned in the introduction, the efficacy of minimum entropy 

query learning is high for a perfectly learnable task with binary perceptron student 

and teacher, whereas it is comparatively low when both student and teacher are linear 

perceptrons. In the imperfectly learnable case, one would thus hope, by using MTSE 

queries, to 'transfer' the benefits for query learning of the binary perceptron structure 

of the teacher space into the student space. 

The generalization performance achieved by MTSE and MSSE queries will differ 

most when the post-training student distribution and the posterior teacher distribu-

tion are maximally different. For continuous, invertible teacher output functions g(h), 

the posterior teacher distribution will be approximately Gaussian once the number of 

training examples is sufficiently large, and thus similar to the post-training student 

distribution (which, as explained above, is Gaussian for the linear students we are 

considering). This motivates our choice of considering a non-invertible teacher output 

function in our analysis of MTSE queries; specifically, we study the extreme case of an 
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output function which only takes on the two different values ±1, g(h) = sgn(h), corre-

sponding to a binary perceptron teacher. Since in this case the length of the teacher 

weight vector has no influence on the teacher's input-output mapping, we set a 2 = 1 

without loss of generality. Similarly, the value of a only scales the student overlap 

parameters R and Q- and cancels from the average generalization error, and hence we 

also set cr = 1. 

For simplicity, we assume that the training data generated by the binary percep-

tron teacher is noise free (corresponding to L 2 (.) 0). The posterior probability 

distribution in teacher space given a certain training set is then proportional to the 

prior distribution on the version space (the set of all teachers that could have produced 

the training set without error) and zero everywhere else. From this the teacher space 

entropy (normalized by N) can be derived to be, up to an additive constant, 

Sv  = In  

where the version space volume V is given by (0(z) = 1 for z > 0 and 0 otherwise) 

V = Idw, P(wv) fT 0 (y WX i ). 

It can easily be verified that this entropy is minimized  by choosing queries x which 

'bisect' the existing version space, i.e., for which the hyperplane perpendicular to x 

splits the version space into two equal halves [S0S92, FSST93]. Such queries lead to 

an exponentially shrinking version space, V(p) = 2, and hence a linear decrease of 

the entropy, S = —a In 2. We consider instead queries which achieve qualitatively the 

same effect, but permit a much simpler analysis of the resulting student performance. 

They are similar to those studied in the context of a perfectly learnable problem in 

Ref. [WR92], and are defined as follows. The (p + 1)th query, xP+1,  is obtained by first 

picking a random teacher vector * v  from the version space defined by the existing p 

training examples, and then picking the new training input x 1  from the distribution 

of random inputs but under the constraint that * 'XP+l = 0. 

For the calculation of the student performance, i.e., the average generalization error, 

achieved by the approximate MTSE queries described above, we use an approximation 

based on the following observation. As the number of training examples, p, increases, 

'More precisely, what is minimized is the value of the entropy after a new training example (x, y) is 
added, averaged over the distribution of the unknown new training output y given the existing training 
set and the new training input x. See Chapter 2 for a formal definition, and Section 5.4 for a more 
general discussion of minimum entropy query learning in binary output systems. 
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the teacher vectors * v  from the version space will align themselves with the true teacher 

w,; their components along the direction of wo will increase, whereas their components 

perpendicular to w will decrease, varying widely across the N - 1 dimensional hyper-

plane perpendicular to w,. Following Ref. [WR92], we therefore assume that the only 

significant effect of choosing queries Xp with 5xP+l = 0 is on the distribution of 

the component of x 1  along w,. Writing this component as = ( xP+i )Tw/IwI, 

its probability distribution can readily be shown to be 

P(x') X exp (_(xh/as)2) 	 (4.18) 

where s is the sine of the angle between * v  and w. For finite N, the value of 

S P  is dependent on the p previous training examples that define the existing version 

space and on the teacher vector *v  sampled randomly from this version space. In 

the thermodynamic limit, however, the variations of s p  become vanishingly small. We 

can thus replace sp  by its average value, which is a function of p alone. As N -* oo, 

this average value becomes a continuous function of a = p/N, the number of training 

examples per weight, which we denote simply by .s(c). The calculation can then be 

split into two parts: First, the function s(a) is obtained from a calculation of the 

teacher space entropy using the replica method, generalizing the results of Ref. [GT90]. 

The average generalization error can then be calculated by using an extension of the 

response function method described in Chapter 7 or by another replica calculation 

(now in student space) as in Ref. [DW93]. Below, we only give the results of these 

calculations, deferring details to Appendix 4.7. 

The first part of the calculation yields the teacher space entropy S. as the saddle 

point of 

i - q + 
	- 	+ 2 I 'da' 

  J Dy / Dt ln H(t - r2  yr 	
(4.19) 

(q_r2
111 ( 1  q)) 
	0  

with respect to q and r, which are respectively the average scalar product (normalized 

by N) of two teachers from the version space, and of the true teacher and a teacher 

from the version space. Here we have used the abbreviations Dz = exp(—z 2 ) dz// 
3 and H(z) = f Dz / . The value of s(a) can be expressed in terms of the saddle 

point value of r, which we denote by r(a), as s 2 (a) = 1 - r2 (o). The saddle point 

equations derived from (4.19) yield r(c) and hence s(o) as a function of the values of 

.s(&) for 0 < c' < c. This determines the function s(c) recursively, starting from the 

initial condition s(0) = 1. Evaluating this recursion numerically, we obtain the results 

plotted in Figure 4.4. For large a values, the teacher space entropy decreases linearly 
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Figure 4.4. MTSE queries: Teacher space entropy, S, (with value for random exam-
ples plotted for comparison), and In s, the log of the sine of the angle between the true 
teacher and a random teacher from the version space. 

with a, with gradient c 0.44, whereas the entropy for random examples, also shown 

for comparison, decreases much more slowly (asymptotically like - In a [GT90]). The 

linear a-dependence of the entropy for queries corresponds to an average reduction of 

the version space volume with each new training example by a factor of exp(—c) 0. 64, 

which is reasonably close to the factor 1  for proper bisection of the version space. This 

shows that our approximate MTSE queries achieve qualitatively the same results as 

true MTSE queries, and thus justifies our choice of analysing the former rather than 

the latter. 

Before discussing the student performance achieved by (approximate) MTSE queries, 

we note from figure 4.4 that In s(a) decreases linearly with a for large a, with the same 

gradient as the teacher space entropy. Hence s(a) oc exp(—ca) for large a, and MTSE 

queries force the teacher weight vectors from the version space to approach the true 

teacher exponentially quickly. It can easily be shown that if we were learning with a 

binary perceptron student, i.e., if the problem were perfectly learnable, then this would 

result in an exponentially decaying generalization error, c 9  oc exp(—ca). MTSE queries 

would thus lead to a marked improvement in generalization performance over random 

examples (for which c g  oc 1/a [GT90]). It is this significant benefit (in teacher space) 

of query learning that provides the motivation for using MTSE queries in imperfectly 

learnable problems such as the one considered here. 

From the numerical values of s(a), the average generalization error achieved by the 

linear student when learning from our approximate MTSE queries can be calculated as 

outlined in Appendix 4.7. The results plotted in Figure 4.5 show that MTSE queries do 

not have the desired effect of translating benefits in teacher space into improvements 

in generalization performance for the linear student. In fact, they actually lead to 
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Figure 4.5. Generalization error for MTSE queries (higher curves of each pair) and 
random examples (lower curves), for weight decay )¼ = 0.01, 0.1, 1. The curves for 
random examples (which are virtually indistinguishable from one another already at 
a = 10) converge to the minimum achievable generalization error Eg , fl  (dotted line) 

as a -* 00. 

a deterioration of generalization performance, i.e., a larger generalization error than 

that obtained for random examples. Worse still, they mislead' the student to such 

an extent that the minimum achievable generalization error is not reached even for 

an infinite number of training examples, a -* 00. How does this happen? It can be 

verified from (4.30, 4.31) that the angle between the student and teacher weight vectors 

tends to zero for a -* oo as expected, while Q, the normalized squared length of the 

student weight vector, approaches 

2( 	
)2 

(4.20) Q(a - 00) = - 
7r 

where (oo) = f ° da s(a), ;2  (oo) = f000da S2  (a) as defined in (4.28). Unless the weight 

decay parameter A happens to be equal to (oo) - (oo), this is different from the 

optimal asymptotic value, which is 2/7r. This is the reason why in general the linear 

student does not reach the minimum possible generalization error even as a -* x. 

The approach of QA to its non-optimal asymptotic value can cause an increase in 

the generalization error for large a and a corresponding minimum of the generalization 

error at some finite a, as can be seen in the plots for A = 0.01 and 0.1 in Figure 4.5. For 

A = 0, eq. (4.20) has the following intuitive interpretation: As a increases, the version 

space shrinks around the true teacher w, and hence MTSE queries become 'more and 

more orthogonal' to w. As a consequence, the distribution of training inputs along 

the direction of w o  is narrowed down progressively (compare eq. (4.18)). Trying to find 

a best fit to the teacher's binary output function over this narrower range of inputs, 
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the linear student learns a function which is steeper than the best fit over the range of 

random inputs (which would give minimum generalization error). This corresponds to 

a suboptimally large length of the student weight vector, in agreement with eq. (4.20): 

-* oc) > 2/7r for A = 0 because s2(00)  <(oo). 

Summarizing the results of this section, we have found that although MTSE queries 

are very beneficial in teacher space, they are entirely misleading for the linear student, 

to the extent that the student does not learn to approximate the teacher optimally even 

for an infinite number of training examples. With the benefit of hindsight, we note that 

this makes intuitive sense since the teacher space entropy, according to which MTSE 

queries are selected, contains no feedback about the progress of the student in learning 

the required generalization task, and thus MTSE queries cannot be guaranteed to have 

a positive effect. 

It is tempting to think that sufficient feedback might be restored by selecting queries 

orthogonal to the weight vector of a random student from the post-training distribu-

tion, rather than the weight vector of a random teacher from the version space, i.e., the 

posterior teacher distribution. In this case, s(a), R and QAr  are obtained by solving 

eqs. (4.30, 4.31) together with the relation s(a) = [1 - R 2 /QM] 1/2  in a self-consistent 

manner. The result is a power law decay s(a) x a' for large a, and a diverging 

length of the student weight vector, Q oc a1/2.  From (4.3), this leads to a simi-

lar divergence of the average generalization error, and the generalization performance 

achieved by such 'heuristic feedback queries' is thus even worse than for MTSE queries. 

Again, an intuitive explanation of this result can be found by considering the narrow-

ing down of the input distribution along the direction of the true teacher w, that is 

generated by querying: For MTSE queries, this narrowing down is exponentially fast, 

effectively 'freezing' the length of the student weight vector to a suboptimal value for 

sufficiently large a, whereas for the heuristic feedback queries considered above the 

narrowing down is sufficiently slow to allow the length of the student weight vector to 

adapt steadily and thus to grow arbitrarily large as the width of the input distribution 

shrinks to zero. 

4.5 Summary and discussion 

We have found in our study of an imperfectly learnable problem with a linear perceptron 

student and a general nonlinear perceptron teacher that queries for minimum student 

and teacher space entropy, respectively, have very different effects on generalization 

performance. Minimum student space entropy (MSSE) queries essentially have the 

same effect as for a linear student learning a noisy linear teacher, with the effective 
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noise level given by the sum of the actual noise level and an additional contribution due 

to the fact that the student cannot learn the teacher perfectly. Hence the structure of 

the student space is the dominant influence on the efficacy of query learning. Minimum 

teacher space entropy queries (MTSE) on the other hand, which we have investigated for 

the case of a binary perceptron teacher, perform worse than random examples, leading 

to a higher generalization error even for an infinite number of training examples. This 

result is intuitively reasonable since the teacher space entropy contains no feedback 

about the progress of the student in learning the required generalization task. We have 

also found that such feedback cannot easily be restored by more heuristic methods of 

query selection similar to MTSE queries. 

Our results, then, are a mixture of good and bad news for query learning for mini-

mum entropy (i.e., maximum information gain) in imperfectly learnable problems: The 

bad news is that MTSE queries, due to a lack of feedback information about student 

progress, are not enough to translate significant benefits in teacher space into similar 

improvements of student performance and may in fact yield worse performance than 

random examples. The good news is that for MSSE queries, we have found evidence 

that the structure of the student space is the key factor in determining the efficacy 

of query learning. If this result holds more generally, then statements about the ben-

efits of query learning can be made on the basis of how one is trying to learn only, 

independently of what one is trying to learn—a result of obvious practical significance. 

4.6 Appendix: Calculation for random examples and MSSE 

queries 

In this appendix, we outline the calculation of the average generalization error for 

random examples and MSSE queries. For this purpose, as pointed out in Section 4.2, 

it is sufficient to obtain the averages of the overlap parameters R and Q. The averages 

over the Gaussian post-training distribution are straightforward and yield 

(R) p(10() )  = wMa 	(Q)p ie 
= aTM2a + Ttr M 1 . (4.21) 

Since both for random examples and for MSSE queries, each new training input depends 

at most on the previous training inputs, we can use Bayes' theorem to decompose 

the remaining average over training sets and teachers into one over training outputs, 

teachers and training inputs. Formally, one has (see eq. (2.27)) 

P(OIV)P(V) = P({y}I{x}, V)P(V)P({x}) 	 (4.22) 
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where 

P({y}I{x}, V) 
= 

rl P(yIx, V) 

and we will perform the averages on the r.h.s. of (4.22) in the order from left to 

right. The average over the y"-dependent terms in (4.21) yields, from the assumptions 

(4.1, 4.2), 

/awT\ 	 = 
\ 	V/p({ y } I{ xt }v) 

/aaT 	 = 	 + \ 	/ P({yP}I{x!},V) 	N 
/2 

where we have set hO = *w'x/2. Performing the average over the prior teacher 

distribution P(V) cx exp(—w,/cr) for fixed {x}, the h' become Gaussian random 

variables with zero means and (co-)variances 

(hh)p(v) = 	(x /1)Tx.  

For the assumed spherical input distribution, (x) 2  = U2 , and the variance of each 

of the hO is thus identical toThe covariance between h'2  and h" for i 54 v is 

much smaller since, for random examples, (x/2)Txh1 is O(1/VT). The same holds 

for MSSE queries, due to the pseudo-random overlaps between training inputs that 

they produce. The resulting weak correlation of h'2  and h" can be used to expand 

the average of (h')(h"). To this end, one writes h' as = eh + (1 - 2)1/2j ,  

where e = (h'2h') / ((W' )2) = (x /2)T xL/(N a ) and h is a zero mean Gaussian variable 

uncorrelated with h which has variance (h2) = ((h/2 ) 2 ) = ((hv)2) = Expanding 

in the small parameter e = O(1/v') < 1, one obtains (' d/dh) 

1 
= ((h)) + _2 (x/2 ) Txv (hg(h)) (g'(h)) + 0(11N) 

where h is a zero mean Gaussian random variable with variance 	The remaining 

averages over the teacher prior P(V) are straightforward: 

(2(h/2) + A2(h/2)\
P(V) = 

(g2 (h)+ &(h))h 	(wv(h))p(v) = 	(h(h))h / 

where the second equality follows from the fact that due to the isotropy of the teacher 

prior, the contribution from the components of wp orthogonal to x' 2  vanishes. 

Collecting the results obtained so far we have for the averages of R and Q v  at fixed 
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{x}: 

	

(H) I{x} = (h(h))h
N2a 	

(4.23) 

	

(Qi) I x} = Ttr M — '+ 	 +2(h))h (x)TM2x 
 JV 

M  N2 

+ 	
1 

N3a 
(hg(h)) ((h)) h 	 Ar 

Lov 

+ 	((h)) 	(x) T M 2 x (4.24) 

The last term in (4.24) can be shown to vanish upon averaging over the training inputs, 

due to the fact that both for random examples and for MSSE queries the distribution of 

each individual training input xO is invariant under the reflection x —* —x, whatever 

the values of the other training inputs. The summations over ji and v in (4.23, 4.24) 

can be written more succinctly by exploiting the definitions (4.8): 

= 	tr MkA 	(k = 1,2)Ar  iv  XA 
N2 	 N Ii 

= 	tr M 2  [A — x ( x )T] x ( x )T 
N3 	 Ar 	

N2 	 N 

1 
= 	tr M.2 A 2  — tr M 2 A 

If we now introduce the function G(A) = 0 (tr M1)p({X})  and the constants 7eff, 

t7eff defined in (4.11, 4.12), we can use the relations A = M — Ao1 and G/A 

= -Ø (tr M-2)p({X})  to write the final averages of R and Qr as 

(H) = 0 v ''eff(l — AG) 

= 	 + ff (G + AG')  + 7eff(1 — 2AG — A 2 GF) 
or 2  012 	

] 
cr, 

Inserting these results into (4.3), we finally obtain the expression (4.10) for the av-

erage generalization error. Parenthetically, we note that for random examples, the 

result (4.10) can also be obtained from a replica calculation [Dun]. 



CHAPTER 4: IMPERFECTLY LEARNABLE PROBLEMS 	 68 

4.7 Appendix: Calculation for MTSE queries 

In this appendix, we sketch the calculation of the average generalization error achieved 

by our linear perceptron student when learning to approximate a noise free binary 

perceptron teacher from MTSE queries. We use the approximation explained before 

eq. (4.18) in order to carry out the average over training inputs. Specifically, we 

assume that the effect of MTSE queries on the distribution of training inputs is non-

negligible only for the input components along the direction of the true teacher w,, 

which are distributed according to eq. (4.18). The other input components, i.e., the 

ones orthogonal to the true teacher, which for the (p + 1)th query Xp are given by 

x 1  xP1 - x 1 w , / IwI, are therefore distributed as for random examples, obeying 

the spherical constraint x 2  = N (remember that we set o = = 1): 

P (X P+1 1 I p+i'\ 
) 

o  ((x1)2 + ( x 1
) 2  - N) 

In the thermodynamic limit, this spherical distribution can be replaced by a Gaussian 

distribution yielding the same average value of (xl)2,  and the term (xl)2,  which is 

of order unity, can be neglected compared to N. Combining this with eq. (4.18), the 

distribution of xP+1  can be written as a Gaussian with reduced covariance along the 

direction of the true teacher w 

(w 	I.   P(x 1 ) exp I— 	(WV 

 [i + (s2 
- 1\wv(wv) 	

(4.25) 
1 1

0)2 

As explained in the text, s, the sine of the angle between the true teacher and a random 

teacher from the version space defined by the first p training examples, is self-averaging 

in the thermodynamic limit and can therefore be regarded as a fixed constant whose 

value will be calculated later. 

In the first part of the calculation, the average  of the teacher space entropy over 

all training sets generated by MTSE queries is determined, and this is then used to 

obtain the actual values of the s p  as explained after eq. (4.19). One uses the replica 

trick (see, e.g., [MPV87, Gar88, 5ST92]) 

(ln V) p(o() )  = lim ln 
n-40 n. 

3 The teacher space entropy is, like the generalization error, self-averaging, which means that its 
value for a typical training set becomes arbitrarily close to its average over all training sets in the 
thermodynamic limit. 
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calculating the r.h.s. for positive integer values of n and continuing analytically to 

n = 0. By introducing n replicas of the teacher space, the n-th moment of the version 

space volume is expressed as 

n 	 p n 
V' = f fl (dwP(w))  fi fl e (y1L)=(w)TX). 

a=1 	 i=1 a=1 

Following Ref. [GT90], one can use the fact that for the noise free binary perceptron 

teacher yli = sgn((w,)Tx) to decompose the product of 0-functions for fixed 

training example index i as 

(Y,, (W)TX) 
= ft ® ((W)TX) 

+ Io0 
(_(W)TX). 

a=O 

(Note that the products on the r.h.s. include the value a = 0, which represents the 

contribution from the true teacher w e .) Introducing Gardner representations for the 

0-functions one can rewrite this as 

a dh / 	 \ 	/ 	

\ I 

	/ . 

II J 	j dha) exp (uiaha) exp (*(w)Tx) + c.c.]. (4.26) 

For a fixed true teacher w,, this expression can now easily be averaged over the dis-

tribution of xL  as given by (4.25). In principle, an average over the distribution of 

true teachers, P(w°)  o exp(—w,) also has to be carried out. However, this average 

can be dropped due to the isotropy of the problem both in input space and in weight 

vector space: The result for fixed w can only depend on (w,) 2 , which for the chosen 

Gaussian teacher space prior equals N up to corrections which can be neglected in the 

thermodynamic limit. Using this, the average of (4.26) over x 4  becomes 

2exp {- [3_i + 2 s_ 	ra + 	(qab + (_ - l)ab)l } 

a1 	a,b=1 	 j 

where we have introduced the order parameters 

ra = 	 qab = (w)Twt,. 
N 

The calculation from this point onwards proceeds exactly as in Ref. [GT90], yielding 

a saddle point integral over r', qab  and the corresponding conjugate order parameters. 

Assuming a replica symmetric saddle point, ra = r and qab = q + (1 - q)6ab, and 

replacing the sp  by a continuous function s(a) of a = p/N, one obtains the average 
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teacher space entropy in the form (4.19) given in the text'. 

In the second part of the calculation, the average generalization error achieved by 

the linear perceptron student when learning from MTSE queries is calculated. The 

necessary averages of the overlap parameters R and Qfi.r can again be obtained from 

a replica calculation. One starts from the free energy corresponding to the Gibbs 

post-training distribution of students (4.7) 

f= — lnZ 	JdwAr 	 (4.27) 

which can be regarded as a generating function for the averages of the overlap param-

eters. The free energy is self-averaging and its value in the thermodynamic limit can 

hence be obtained by averaging over all training sets, again using the replica method. 

The calculation follows closely the standard method [SST92], with appropriate modifi-

cations taking into account the presence of a weight decay [DW93] and the nonlinearity 

of the teacher output function [BK093]. The only major difference from the calculation 

for learning from random examples is the modified input distribution (4.25). Introduc-

ing the averages 

= 100 
da's(ce') 	(a) = 10 dcV s 2 (a ) 	 (4.28) 

one obtains the average free energy as the saddle point of 

- 	- R2 - Tln[2(Q - Q)]+ aTln[1  +(Q - Q)/T]+ 

+ 	
- R 2  + 1) - 2(2/7r)1/2(c)R + s2(a)R2 

} 	
(4.29) 

i+(QN — Q)/T 

with respect to R, Q A, and Q = (wj)(g1®(p)). The saddle point values of H and Q1 

are, in the thermodynamic limit, identical to their averages. Solving the saddle point 

equations and restricting attention to the limit T -* 0, one thus finds: 

/2h/2 	F 	
(4.30) (H) = I - 	(a) 

\jr) 	1±G 

4 Note that within an exact treatment not relying on the approximation explained before eq. (4.18), 
it can be shown that the exact symmetry q = r must hold at the saddle point (see, e.g., Section 8.6.1). 
In our approximation, this q-r symmetry is violated. However, the violations are relatively small, in 
the sense that the relative deviation between q and r (and 1 - q and 1 - r, which are the more relevant 

quantities for large a, when both q and r tend to unity) is never larger than 10%. 
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(QN) = G + A 
i 

+ 
9G 2 (1) )2 [_2F OG 8F1  
-— 

ir 1 + G 	1+G 	- 	
(4.31) 

Here the functions G and F are given respectively by (4.15) and 

1 	s2 (o) 
_ 

The average generalization error achieved by the linear student as shown in figure 4.5 

is obtained by inserting the results (4.30, 4.31) into eq. (4.3) (with the substitutions 

(h) = sgn(h) and A 2 (h) 0 appropriate for a noise free binary perceptron teacher) 

and using the numerical results for s(a) obtained from the calculation of the teacher 

space entropy. Note that eqs. (4.30, 4.31) can also be obtained within the response 

function formalism of Chapter 7. The function F then emerges as a generalization 

of the standard response function G in the form F = (tr M;1M1)P({X.}).  The 

matrix M = )1 +,(1/s - 1) x (x )T, with ) determined by the condition 

*'tr M 1  = 1, occurs in the correlations of the variables z 1  = (x1i)Tw/Iw,I in the 

form (zz )P(VI{x}) = xM; 1 x'. 

Finally, the replica formalism can also be used to obtain the average training error 

achieved by MTSE queries. From the definitions (4.6, 4.27), one has 

Ct  = I (Et ) = I ( E — 1  Aw 2 ) = 1 [ 0((f) /T) 

 (1/T) 

By differentiating (4.29) and inserting the saddle point value of Q, given by Q = 

- TG, one obtains in the limit T -f 0 

1 	-./\(Q - 
R 2 ) + .s

2 (a)R2  - 2/(c)R 

= 2(1 + G) 2c 	 2(1 + G) 

In the limit c -* oc, only the first term survives and converges to 1/2 since G -* 0; 

this proves the .X-independence of the asymptotic value of the average training error 

referred to in Section 4.3. 



Chapter 5 

Query learning assuming the 

inference model is correct 

Abstract 

We investigate the definition and performance of query learning in situa-
tions where there is no knowledge about the rule to be learned (the teacher 
space). The extended Bayesian framework used so far is modified to allow 
for the approximation of distributions over teacher space by corresponding 
distributions over student space, leading to the definition of query learning 
assuming the inference model is correct. Several drawbacks of the corre-
sponding query selection procedures are exposed: Using the case of linear 
perceptron students as an example, we demonstrate that queries selected 
to optimize a given objective function can actually lead to values of this 
objective function which are worse than for learning from random exam-
ples. For binary output students, we find the problem of self-confirming 
hypotheses far from the truth, which means that even an infinite number 
of training examples does not lead to minimal generalization error. A po-
tential solution to these dangers of query learning assuming the inference 
model is correct is discussed in the next chapter. 

5.1 Introduction 

We have argued in previous chapters that in most real-world learning scenarios, one 

is faced with imperfectly learnable problems, where the student cannot reproduce the 

teacher perfectly. We have also touched on the question of how query learning performs 

when the problem is imperfectly learnable and there is no information available about 

the type of rule that one is trying to learn, i.e., the teacher space (see Section 4.4 

72 
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We now proceed to investigate this issue in more detail. In Section 5.2, we describe 

how the extended Bayesian framework for query selection has to be modified in the ab-

sence of knowledge about the teacher space: Unknown quantities describing the teacher 

space have to be approximated, with the natural candidates being the corresponding 

quantities in student space. This leads us to the definition of query learning assuming 

the inference model is correct and effectively brings us back to a 'traditional' Bayesian 

framework; the connection to the extended Bayesian framework, however, allows us to 

see clearly where the approximations that we make enter the formalism. In the following 

sections, we then explore the efficacy of queries selected assuming the inference model 

is correct. For the case of linear perceptron students, we show in Section 5.3 that mini-

mum generalization error and minimum entropy queries now become equivalent. Using 

the results of Chapters 3 and 4, we conclude that query learning assuming the inference 

model is correct runs the risk of achieving suboptimal values of the objective 'function 

(in this case the generalization error) that one wants to optimize by query learning. In 

Sections 5.4 and 5.5, we then focus on binary output systems. The general features of 

query learning for minimum entropy in such systems are discussed in Section 5.4, and 

a generalized bisection criterion is derived. In Section 5.5, we then proceed to analyse 

the effects of a mild form of inference model misspecification (incorrect noise model) 

on such bisection queries, for the case of binary perceptron students learning from 

binary perceptron teachers. Studying both small and large systems analytically and 

by computer simulations, we find the problem of self-confirming hypotheses far from 

the truth: When it is assumed that the inference model is correct, query learning may 

not yield optimal generalization performance even for an infinite number of training 

examples. In the space of 'hyperparameters' determining how strongly misspecified the 

inference model is, phase transitions are possible from such self-confirming hypotheses 

to a regime where query learning is extremely beneficial, yielding an exponential decay 

of the average generalization error with the number of training examples. We also 

discuss the phenomenon of learning in 'bursts' of successive refinement and rejection 

of hypotheses. We conclude in Section 5.6 with a brief summary and discussion of our 

results. 

5.2 Assuming the inference model is correct or: Back to 

Bayes 

In the present chapter, we continue our investigation of the performance of query 

learning in situations where knowledge about the structure of the teacher space is not 
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available. Let us briefly recapitulate how the lack of such knowledge affects the deriva-

tion of query selection algorithms. In the general framework set out in Chapter 2, we 

started from the requirement that queries should optimize a certain objective func-

tion €(J3.f,  V, 0(P))  which, in its most general form, can depend on the student Al, the 

teacher V, and the training set ®() consisting of p input-output pairs (x', y).  Assum-

ing that complete retraining takes place after each new training example is added, the 

dependence of the objective function on the particular student obtained after training is 

eliminated by averaging over the post-training student distribution P(AlI0(°)); likewise, 

the dependence on the unknown teacher V is removed by averaging over the posterior 

teacher distribution P(V10(")). This yields an objective function which depends on the 

training set only: 

= 	
(Al, V, e(P))) 	

)P(VO(P)) 	
(5.1) 

Given the training set OW, the next query x should be selected such as to optimize 

the value of this objective function for the enlarged training set 0(1) + (x, y). Since the 

new training output y is unknown, however, only the average of the objective function 

over the distribution of y is available for optimization by query selection: 

€(0,x) = (€0(P) + (x,Y))) (1Q()) 	 (5.2) 

where P(ylx, 0(P)) is given by 

P(ylx, 0(r)) = J dVP(ylx, V)P(Vl0()). 	 (5.3) 

Looking back at this derivation of the function e  (0), x) according to which queries 

should be chosen, we see that knowledge of the teacher space enters (through the 

posterior distribution P(VI0())) in the teacher-average over the objective function 

(eq.(5.1)) and in the distribution of the unknown new training output y (eq.(5.3)). 

How, then, are we to select queries in the absence of knowledge about the teacher 

space? In (5.1), the requirement of having to know the posterior P(VI0(P)) can be 

avoided by considering an objective function which does not depend on the teacher V 

such as, for example, the student space entropy. A scenario of this kind has in fact been 

investigated in Chapter 4 for linear students. There, the fact that the student space 

entropy does not depend on the training outputs made the average over the unknown 

new training output in eq. (5.2) trivial, and the objective function for query selection 

was therefore automatically well defined without knowledge of the teacher space. This 
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feature of query learning for minimum student space entropy with linear students was 

already hinted at in one of the earliest papers on optimal experimental design in the 

statistics literature, Ref. [Lin56]. 

In general, however, merely using a teacher-independent objective function for query 

selection will still leave us with the average (5.2), for which from (5.3) we need to know 

the teacher posterior P(VJ0(°)) and the probability P(yx, V) of a given teacher V 

producing output y for input x. In the absence of information about the teacher 

space, the only solution is to approximate these distributions in some way. An obvious 

replacement for the teacher posterior is of course the post-training student distribution 

P(Af 0(P)).  This suggests that P(yx, V) should be approximated by a corresponding 

quantity f(yIx,A1 ), where the tilde indicates that this quantity is not a true, but only 

an assumed probability (since it is the teacher and not the student tht produces the 

training examples (x, yb')). To keep things consistent, one is then naturally led to 

the consideration of post-training distributions which can be written in a posterior-like 

form: 

P(All0) x P()llP(yIx,Al) 	 (5.4) 

Note that just as the P(yIx,A 1) are not true probabilities, the 'pseudo-prior' i(Al) 

is not identical to the true marginal probability distribution of students', P(A1) (which 

would be obtained by averaging the post-training distribution P(H10(P)) over all train-

ing sets, cf. the discussion in [WL92]). Eq. (5.4) defines not only a post-training dis-

tribution of students but also a 'data generation model': Once (yIx,A/) is specified, 

it can be used to approximate the true distribution (5.3), which specifies how new 

training outputs are generated, by 

P(ylx, 0(r)) 
= J dVP(yIx, Al)P(A1I0()). 	 (5.5) 

We can therefore refer to (5.4) as the definition of an 'inference model' which specifies 

both how we learn from the data and how the data generation process is modelled. The 

discussion so far can then be summed up by saying that in the absence of knowledge 

about the teacher space, one can still define a query selection algorithm by assuming 

that the inference model is correct: One substitutes in eqs. (5.1-5.3) all occurrences 

of teachers V by students' Al, correspondingly replacing the probabilities P(VI0(P)) 

'Although neither P(ylx,.iV)  nor P(.iV) are true probabilities, we do of course assume that they 
obey the usual normalization conditions fdy P(ylz,V) = I and fdJ'P(.AI) = 1. 

'Note that if an objective function e ((, V, ®) which depends on both teacher V and student Al is 
used, then one has to replace the teacher by an independent copy of the student in order to get sensible 
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by P(AII®()) and P(ylx,V) by  P(ylx,Af). This procedure relies on the assumption 

that these replacements constitute sufficiently good approximations to yield sensible 

results. It has previously been pointed out that this can be the Achilles' heel of query 

learning [Mac92c, Mac92b], and the results in this chapter support this statement. 

Note that the above definition of query learning assuming the inference model 

is correct effectively brings us back to a 'traditional' Bayesian framework for query 

learning (see, e.g., [Ber85, El-91, Mac92c, PK95J): all reference to the teacher space 

has disappeared, and one is left with only the student space, which can now be viewed 

as a space of hypotheses (see, e.g., [BS94, W6192]) about the probabilistic relationship 

between inputs and outputs. This implies a slight conceptual shift from the framework 

we have used so far, in which students were defined as implementing a deterministic 

input-output mapping y = f(x). The connection is that the assumed probabilistic 

input-output relation P(yx,iV) is normally simply a noisy version of the deterministic 

mapping y = fN(x). 

The dual picture of students as either deterministic predictors or stochastic hy-

potheses also entails a choice of definitions for the generalization error € g . So far, we 

have defined Eg  as the average error between the deterministic student output and the 

noisy or noise-free teacher output. With the motivation of real-world neural network 

learning in mind, where the goal is normally to produce a single network for predicting 

the, outputs corresponding to previously unseen inputs (although the uncertainty of 

these predictions may have to be quantified using the complete post-training student 

distribution), we shall retain this definition of the generalization error in the following. 

One possible alternative would be to compare the teacher output to the 'noisy' student 

output distributed according to f'(yx,A1); this normally yields a higher value of the 

generalization error than our previous definition. Secondly, and more in the spirit of 

traditional Bayesian inference, one could consider the generalization error of the Bayes 

optimal predictor. For each input x, the Bayes optimal prediction for the output is 

defined as the value that minimizes the average error between and the true output 

y, assuming that y is distributed according to f)(yx, e (P) ) as defined by (5.5). How-

ever, with the exception of very simple cases (such as the linear perceptron discussed 

in the next section), the Bayes optimal predictor cannot normally be represented by 

a single student Al from the assumed student space; for binary perceptron students, 

for example, the Bayes optimal predictor would be a committee machine with a large 

number of hidden units [0H91]. 

results. This means that instead of c (.iV, V, e(P)) one has to consider c (AI 	e()) with JVi and A/ 
independently drawn from the post-training distribution P(J\1IO"). 
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5.3 Linear perceptron revisited 

To illustrate the formalism of query learning assuming the inference model is correct 

with a simple example, we return in this section to the simple scenario of learning with 

linear perceptron students. A linear perceptron maps inputs x E RN  to real outputs 

via the linear mapping y = f(x) = wx//V, and is specified by a weight vector 

w,v  E RN In Chapters 3 and 4, we considered the Gibbs post-training distribution of 

students, 
'p 

P(I) cx exp [-/3 ( 	(y - f(x))2 + W2 
2 
	(5.6) 

which is parameterized by a temperature parameter 3 and a weight decay parameter 

.\ [DW93]. This has the posterior form (5.4) if we define a probabilistic input-output 

relation 

(yIx,A1) 	exp (_ I  ( - f(x))2) 	 (5.7) 

and the pseudo-prior 

/ / 	2 "  = (27r//3)_2exp 	 . 	 (5.8) 

One can therefore now re-interpre't 1//3 as the variance of Gaussian noise added to the 

'clean' student outputs fAr(x), while 1/3\ determines the width of the pseudo-prior in 

student space (see, e.g., [BW91, Mac92d]). 

We now consider the various objective functions that can be used to select queries. 

As already pointed out above, queries for minimum student space entropy can be 

selected without knowledge of the teacher space, and hence are not affected by the 

assumption that the inference model is correct. Therefore, all the results for linear 

perceptron students learning from linear and nonlinear perceptron teachers obtained 

in Chapters 3 and 4 remain valid 3 . More interesting is the case of queries for minimum 

generalization error. In the scenario considered in Chapter 3 it was shown (eq. (3.26)) 

that the generalization error between a linear perceptron student and teacher with 

weight vectors wy  and W, respectively, is 

€g(./V, V) = 	- w v ) 2 	 (5.9) 

3 Trivially, the results obtained for minimum student space entropy queries also hold for minimum 
teacher space entropy queries if we assume that the inference model is correct, since the teacher space 
entropy becomes identical to the student space entropy if teachers are replaced by students in its 
definition. 
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up to an irrelevant additive constant'. Here o determines the radius of the hypersphere 

x 2  = N U2  from which random inputs are assumed to be sampled uniformly. Replacing 

the teacher weight vector w in this expression by an independent copy of the student 

weight vector and performing the average over the post-training student distribution, 

one obtains essentially the overall variance of this distribution as given in (3.27), 

1  2  
a tr M .Af1 	 (5.10) Eg(O ) = j 
  

where the matrix OM Ar  determines the curvature of the post-training student probabil-

ity distribution (5.6) at its maximum and is defined in terms of the correlation matrix 

of the training inputs as 

M=A1+A A=x(x)T. 

As pointed out in Section 3.3.1, under the assumed spherical constraint on the input 

vectors, x 2  = Na, minimizing the objective function (5.10) leads to exactly the same 

query selection algorithm as minimizing (student or teacher space) entropy. Assuming 

the inference model is correct therefore has theeffect of making minimum generaliza-

tion error and minimum entropy queries identical, independently of the teacher space. 

In light of the results obtained in Chapters 3 and 4, this means that queries for mini-

mum generalization error can actually yield a higher generalization error than random 

examples (namely, when the weight decay A is too small to prevent over-fitting of noise 

in the training data). This constitutes a first example of the dangers of assuming 

the inference model is correct: queries can yield sub-optimal values of the objective 

function which they are selected to optimize. In the present context of learning with 

linear students, however, the consequences as discussed in Sections 3.3.2 and 4.3 re-

main rather benign: Queries still yield better generalization performance than random 

examples for a sufficiently large number of training examples or when the teacher noise 

level is not too high. For students with binary outputs, the effects of assuming the 

inference model is correct can be much more significant, as the results in the following 

sections show. 

4 Note that the precise value of this additive constant depends on whether we interpret students as 
deterministic predictors or as stochastic hypotheses: In the first case, it would be zero since students 
with equal weight vectors always agree in their deterministic outputs (and since the teacher weight 
vector is replaced by an independent copy of the student weight vector if we assume that the inference 
model is correct). In the second case, the constant would be the sum of the variances of the stochastic 
student outputs times the factor 4 included in the definition of the error measure 4(yi..- - yV) 2 , i.e., 
2(1/2/3) = 1/3. 
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5.4 Minimum entropy queries for binary output students 

In the following sections we will (as already in the previous chapter) focus on queries for 

minimum student space entropy. It will always be implicit in the following that queries 

are selected assuming that the inference model is correct. Using this assumption, let 

us first derive a general expression for the expected (student space) entropy decrease 

due to the addition of a new training example (x, y) to an existing training set 

yielding the enlarged training set ®(p+1)  The new post-training student distribution 

follows from the assumed posterior form (5.4) as 

P(JVl0(1) ) o P(yx,A1)P(Al0(1')) 	 (5.11) 

with the normalizing factor 

f diVP(ylx,Al)P()V I® () ) = P (yIx,®) 	 (5.12) 

from (5.5). Using the definition of the student space entropy,, 

= _JdAlP(AIO (2) ) 1nP(AlIO (P) ) 

it only takes a few lines of algebra to show that the expected entropy decrease can be 

written as 

S(OW) - ( S(e(P+1 ))) (1Q)  = - f dy P(Ix, ®(P)) in P(ylx,  e()) 

+ (jdyP(yjx,.1V)lnP(yjx,)V))
P(ArJOW)  

(5.13) 

The right hand side is the difference between the entropy of the (assumed) distribution 

of the unknown new training output y given the training set ®() and the entropy of the 

(assumed) distribution of y given a student Al, averaged over the post-training student 

distribution. The selection of a query x which maximizes the expected entropy decrease 

is in general determined by a competition between these two terms. Intuitively, the 

reason for this is that on the one hand, it is desirable to choose an input x with a 

corresponding output about which we are maximally uncertain given only the training 

examples 0(P)  that we have already seen (corresponding to a large value of the first term 

on the right hand side of (5.13)). On the other hand, such an input will only decrease 

the entropy of the post-training student distribution significantly if the corresponding 

output can rule out some students in this distribution, i.e., if some students make 

rather definite predictions about this output (this corresponds to a small entropy of 
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the distribution P( y x,Af) and hence to a large value of the second term on the right 

hand side of (5.13)). 

We now specialize (5.13) to the case of binary outputs, y = +1. Furthermore, we 

restrict attention to post-training distributions which can be written as Gibbs distri-

butions 

P(AfI0) oc exp(_/3E(A1,0))P(jV) 	 (5.14) 

with the training error Et  as the 'Hamiltonian' and a temperature parameter 0. An 

intuitive motivation for this derives from the fact that most learning algorithms are 

based on the principle of minimization of the training error in some form or other; 

eq (5.14) constitutes a natural generalization to stochastic training error minimization. 

For a more elaborate discussion and theoretical justification of the use of Gibbs post-

training distributions see, for example, Refs. [LTS90, BV92, SST92]. For binary output 

systems, the output of a student can either agree or disagree with a given training 

output, and any error measure is determined by the two values of the error it assigns 

these two cases. The standard choice, onto which all others can be mapped by a 

rescaling of the temperature parameter 3 and a shift of the origin of the error scale, is 

the 0/1 error measure, yielding the simple 'error count' training error 

	

E(Al, 0(P)) = E 0(—yf(x)). 	 (5.15) 

(Here the Heaviside step function is defined as usual by 0(x) = 1 for x > 0 and 

0(x) = 0 otherwise.) The post-training distribution (5.14) therefore has the posterior 

form (5.4), with 

	

(yIx,AO = exp(—/30(—yf(x)) 	
(5.16) 

1 + exp(—/3) 

In the stochastic interpretation of students, this can be interpreted by saying that the 

'true' output f(x) of student Al is corrupted by reversing its sign with probability 

1 
p= 1+e0 	1+e 	

(5.17) 

This sign-flip probability pA, will in the following also be referred to as the student 

noise level. Inserting (5.16) into the general expression (5.13) for the expected entropy 

decrease, we obtain 

S(0(')) - (S(0 (1+1))) p(YIXe(p))  = h (i(y=+1lx,0)) - h(p) 	(5.18) 
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where 

h(p) = —pinp—(l —p)ln(1 —p) 

is the entropy of a binomial distribution over two events occurring with probability 

p and 1 - p, respectively. Since the second term in (5.18) is now independent of 

the new input x, the entropy decrease (or information gain) achieves its maximum 

In 2 - h(p) when P(ylx, O()) = . In the absence of (student) noise, p V  = 0, this 

yields, as expected, a maximum expected information gain of In 2 = 1 bit from a 

binary output. Using the definition (5.5) of P( y Ix, e(r)) and eqs. (5.16, 5.17), one finds 

that the condition P(yx, e()) = for minimum entropy queries is equivalent to the 

requirement that 

f d ®(fN(x))P(A(IO) = JdAf O( —f(x))P(IO () ) = . 	( 5.19) 

This means that exactly half the students from P(ArIO () ) predict output +1 and the 

other half output —1 for the query x, i.e., that the query x has to bisect the post-

training distribution. Note that this result only relies on the Gibbs form (5.14) of the 

post-training distribution, and requires no further assumptions about, for example, the 

actual form of the binary functions f(x) computed by the class of students considered. 

For the high-low game with a correct inference model (where the post-training student 

distribution and the posterior teacher distribution are identical), we have already found 

the bisection criterion (5.19) in Section 3.2. 

5.5 Binary perceptron 

Having established the bisection criterion for minimum entropy queries (for binary out-

put students with Gibbs post-training distributions), we now explore the performance 

achieved by such queries in the special case of binary perceptron students. A binary 

perceptron is specified by an N-dimensional weight vector w V  and, in the absence of 

noise, maps inputs x E 1P1J' to outputs 

y = f(x) = sgn 	W 
T 

 X 	 (5.20) Ar ) 

Due to the invariance of the output under a resca]ing of either the input or the weight 

vector, we assume without loss of generality the normalizations (or 'spherical con-

straints') w 2 = N and x2  = N. A weight vector is therefore effectively specified by 

N - 1 (rather than N) free parameters, leading to the definition of the number of 

examples per weight parameter as a = p/(N - 1). 
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In order to facilitate the analysis and to control the number of parameters in the 

problem, we focus on a relatively mild case of inference model misspecification: The 

teacher space is assumed to be identical to the student space, consisting of all binary 

perceptrons operating on the input space of dimension N. The pseudo-prior P(Af) 

is also assumed to be identical to the true prior P(V); we take both to be uniform 

on the hypersphere of weight vectors obeying the spherical constraint w 2 = N (or Ar 

W , = N, respectively) and zero otherwise. The only inference model misspecification 

arises from the noise model: whereas the student always assumes sign-flip noise with 

probability pp-, eqs. (5.16, 5.17), the true noise process is either sign-flip noise with a 

probability p, p, or weight noise, where (independent) Gaussian noise of variance 
.2 is added to each of the components of the teacher weight vector, independently for 

each new training example. We will find below that these two noise processes yield 

significantly different results. Note that for (true) sign-flip noise, setting the assumed 

noise level p to be equal to the true noise level p  brings us back to a scenario 

with a correctly specified inference model; for weight noise, the inference model is 

more strongly misspecified since the correct model cannot be obtained for any value 

of p. The two different noise models will be considered separately below, for the 

two limits of very small (N = 2) and very large (N -* oo, thermodynamii limit) 

systems. The main quantity of interest in our analysis will be the generalization error 

averaged over all training sets and teachers. As pointed out above, several definitions 

of the generalization error are possible; we confine ourselves to the version defined by 

comparing the noise-free student and teacher outputs. Using the 0/1 error measure 

(for agreement /disagreement between the binary student and teacher outputs), the 

generalization error, i.e., the average error on a random test input (assumed to be 

sampled uniformly from the sphere x 2  = N), is then (for a formal derivation, see 

Section 8.6.3 or [OKKN90]) 

f g (J\f,V) = arccosR 	 (5.21) 

where 

R = 	T WV 
	 (5.22) 

is the overlap between weight vectors of student and teacher. The result (5.21) has a 

natural geometrical interpretation, which is shown in figure 5.1. In the thermodynamic 

limit N -* oo, the overlap R is self-averaging, i.e., equal to its average value with 

probability one. The average generalization error, which we simply denote by Eg  to 

avoid clutter, can therefore be evaluated by inserting the average of ft into (5.21). 

For finite N, the fluctuations of ft are non-negligible and one has to average € g (A(, V) 
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Figure 5.1. Geometrical interpretation of the generalization error between a binary 
perceptron student and teacher with weight vectors wAr  and w v , respectively. Shown 
is the projection of the input space onto the plane spanned by wAr  and Wv; the input 
regions for which the outputs of student and teacher disagree are marked by asterisks. 
The generalization error cg  is equal to the probability with which a random input vector 
will 'land' in one of these regions. For isotropically distributed inputs, this probability 
is simply q/ir where q, the angle between w r  and WV, is given by 0 = arccos(ww v /N) Ar 
due to the normalization w 2 = w, = N. 

directly, as we do in the next section. 

5.5.1 Small system size limit, N = 2 

Consider now the case of an extremely small system, N = 2. Due to the assumed 

spherical constraints, weight vectors and inputs can then be represented by points on a 

circle. For simplicity of presentation, we map this circle onto the interval' [-1, 1], where 

the end points —1 and 1 represent the same weight vector or input vector (corresponding 

to a 'wrap-around' geometry). This emphasizes the similarity between the N = 2 binary 

perceptron and the high-low game considered in Chapter 3. The binary perceptron is, 

however, more suitable for our present purposes due to the absence of 'edge effects' 

in weight space which would occur for high-low (for weight noise, for example, the 

perturbed weight could end up outside the unit interval on which the clean weights are 

defined, and would have to be redefined in a suitable way). 

5 A mapping onto the interval [—ir, 7r], i.e., a representation in terms of angles, might be considered 
more natural but would make the notation more cumbersome due to the introduction of factors of 7r 
in most intermediate results. 
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If we denote the representatives of the 2-dimensional vectors wN, w, x, on the 

interval [-1, 1] by Wr, w.v , x, the input output mapping (5.20) implemented by a 

student (and, analogously, by a teacher) becomes 

y - f(x) 
- { + 1 for Ix e IDMI < 

	

- 	
- –1 otherwise 

where e denotes subtraction modulo 2, with the result always in the interval [-1, 1]. 

Correspondingly, the generalization error (5.21) can be written as 

cg (AI,V) = lwewI. 
	 (5.23) 

Sign-flip noise 

Consider now the generalization performance achieved by minimum entropy queries 

when the true noise process is sign-flip noise with probability Pv•  A simple case which 

can be solved analytically is the one in which the student assumes that there is no 

noise, corresponding to p = 0. As shown in Appendix 5.7, the average generalization 

error as a function of the number of examples a = p/(N - 1) = p is then 

cg(a) = 	–(1-2p) [i_ 
(1+p2–pv)] 

1 

	

+ (1– 2Pv) 	-3(1  
+P,) 

(1 2 Y - 3(2 Pv) (
pv

) J. (5.24) 

At a = 0, the average generalization error equals 1/2 as expected, since the student 

can only guess randomly as long as no training examples have yet been presented. 

When the student's noise level estimate is correct, i.e., when the teacher is noise free, 

PV = p v  = 0, one obtains an exponentially decaying generalization error € g (a) oc 2 

in close analogy with the results for the noise free high-low game obtained in Chapter 3 

(see eq. (3.13)). For Pv > 0, the generalization error still exhibits an exponential decay 

with a, but to a nonzero asymptotic value 

11 	1 	1 
CS  (a '  oo) = - (1-2pv ) {1_ 

(1+p)(2_p)j 

(which increases smoothly from 0 to 1/2 as PV  increases from 0 to 1/2, the latter 

Emit corresponding to completely random training outputs). This conclusion is borne 

out by the results of simulations (described in more detail below) shown in figure 5.2. 

The nonzero asymptotic value of the generalization error is not due an inability of the 

students to reproduce the correct teacher—remember that in the scenario considered, 
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Figure 5.2. Average generalization error Eg  vs. number of training examples c in the 
binary perceptron of size N = 2, for query learning based on an assumed noise level 
p = 0, i.e., assuming noise free training outputs. The true sign-flip noise level is Pv 
0.1, 0.2. The lines give the analytical result (5.24); symbols show simulation results, 
with statistical errors smaller than the symbol size. Note the nonzero asymptotic 
value of the generalization error, corresponding to the occurrence of self-confirming 
hypotheses far from the truth. 

student and teacher space are identical—but rather due to the fact that query learning 

assuming the inference model is correct can produce what one could call self-confirming 

hypotheses far from the truth: The queries 'home in' on a student which can be far 

from the teacher; and they do it in such a way that even an infinite number of training 

examples will not correct this wrong hypothesis. An example of how this happens 

is shown in figure 5.3: For pjv  = 0, the post-training student distribution is simply 

constant over the version space (the set of all students which predict all training outputs 

correctly), and zero otherwise. The bisection criterion for minimum entropy queries 

then tell us that this version space is simply halved with each new training example. 

Once a single wrong training output is received, only that half of the version space which 

does not contain the teacher is retained, and any further training examples will only 

be able to refine this 'wrong' version space, but never lead to an escape from it. Note 

that at all times, the training set produced by bisection queries and the corresponding 

teacher outputs is entirely consistent with the assumption of a noise free teacher (see 

figure 5.3) and in this sense not only the students from the 'wrong' version space but 

also the assumption pN = 0 constitute self-confirming hypotheses far from the truth. 
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Figure 5.3. How self-confirming hypotheses occur for query learning with assumed 
noise level p = 0. Shown is the post-training student distribution P(.A(I0 4 ) (o = 
1, 2, 3) for an exemplary sequence of training examples. Training inputs are marked by 
arrows along the x-axis, with the corresponding training outputs shown underneath. 
The first input x 1  = 0.3 is selected randomly; the training output y 1  = + 1 provided by 
the teacher (with weight 'vector' wv = 0) is uncorrupted. The version space (i.e., the 
region where F(A(I0( 1 )) is nonzero) therefore includes the teacher. The next output 
y2  corresponding to the bisection query x 2  = 0.8 is corrupted (due to teacher noise), 
so that the 'wrong' half of the version space is discarded and cannot be recovered even 
if the following training outputs are all uncorrupted (as an example, y3  = + 1 for the 
query x 3 = 0.05 is shown). Note that at all times, the students from F(A1IO()) predict 
all training outputs correctly; it is therefore impossible to conclude from the training 
data that the teacher is noisy. 
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At this point the reader may well expect that the behaviour discussed above relies 

on a pathology of the case p jv  = 0. If we are not sure what the true noise model is, then 

we would almost certainly not start off with the guess that there is absolutely no noise. 

Surely any nonzero value of p v  would get around the problem of these self-confirming 

hypotheses far from the truth? We have not been able to obtain analytical results 

for the case p .Ar  > 0, and have therefore carried out computer simulations to verify 

whether this expectation is correct. The student distribution P(J'fI®(')) is piecewise 

constant on the interval wm E [-1, 1] as follows from eqs. (5.14, 5.15), and can therefore 

easily be stored and manipulated on a computer. The determination of minimum 

entropy queries, which must obey the bisection criterion (5.19), is then straightforward; 

the corresponding training outputs were produced by reversing the sign of the 'clean' 

teacher output with probability p, Averaging over 10,000 training sets generated in 

this way  (for each value of cr), we obtained the average generalization error 

as shown in figure 5.4 for teacher noise level Pv = 0.2 and a range of values of ph-. 

It can clearly be seen that the asymptotic generalization error remains nonzero for a 

range of nonzero p (in the case Pv = 0.2 shown in the figure, this range extends at 

least up to p = 0.01), implying that the problem of self-confirming hypotheses far 

from the truth is not confined to the 'pathological' case pAf  = 0. For larger p,  the 

average generalization error decays exponentially with c, with the fastest decay rate 

when pv = Pv This implies that there exist two substantially different regimes or 

'phases' for the ci dependence of cg , with a phase transition' taking place at some p 

in the range 0 < PM < p. The difference between the two regimes is emphasized 

by comparing the results for query learning with the generalization error for random 

examples, which has the asymptotic behaviour c g  oc 1/a as shown in figure 5.4. If we 

define the improvement factor ft due to querying as in Chapter 3, 

cg (random examples) 

€g (minimum entropy queries) 

then we obtain for small PM -. in the self-confirming hypotheses regime - a value of 

which tends to zero as a -* oo, due to the fact that random examples reach zero 

(average) generalization error whereas queries do not. For high enough p, on the other 

'Once the average over training sets has been taken, the result does not depend on the direction of 
the teacher weight vector any more. It is therefore unnecessary to perform an explicit average over the 
teacher space prior. 

7  A the system we are considering is extremely small, this phase transition will naturally not be 
sharply defined, but rather 'smeared out', with a cross-over regime in between the two phases. This 
can be seen in figure 5.4 for p- = 0.1, where c g (c) seems to decay to zero for a .- oc but does so more 
slowly than exponentially with a. 
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hand, ic tends to infinity for a -* oo since the exponential decay of C. with a produced 

by query learning is much faster than the algebraic 1/a decay for random examples 

(see figure 5.4). These two regimes can clearly be distinguished in figure 5.5. 
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Figure 5.4. Left: Average generalization error c g  achieved by query learning with 
various values of p  (shown next to curves), for teacher sign-flip noise level p v  = 0.2, 
vs. number of training examples a. A nonzero asymptotic value of Eg  persists for a range 

of nonzero ps-,  while for py  of the order of Pv  or larger, 6g  decays to zero exponentially 
with a. Right: Results for random examples; asymptotically, Eg  cx 1/a independently 
of p. Statistical errors from the simulations are appreciable only for very small values 

of € (one standard deviation less than 4% for c g  > 0.01; up to 17% for cg  5 10). 

To get an intuitive understanding of how self-confirming hypotheses far from the 

truth can persist for nonzero p,  we show in figure 5.6 an example of how the post-

training student distribution P(ArIO ( ' ) ) changes as more and more training examples 

(with inputs selected by minimum entropy queries) are received. One observes that 

every corrupted training output creates a kind of barrier, skewing the post-training 

student distribution away from the teacher. The next queries are then selected to 

bisect this incorrectly skewed distribution on the 'wrong' side of the barrier. If the cor-

responding training outputs are uncorrupted, the student distribution will be bisected 

increasingly close to the barrier by successive queries, until finally the probability mass 

on the 'right' side of the barrier becomes large enough for bisection to continue there. 

At this stage, the barrier has lost its function as a 'trap' for the student distribution. 

The 'time' (i.e., number of uncorrupted training outputs) it takes to cross the barrier 

erected by a corrupted training output increases with decreasing p,  as one can see by 
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Figure 5.5. Improvement it in generalization error due to query learning, for teacher 
sign-flip noise with probability pv = 0.2. See text for discussion. 

considering the following two extreme cases: For p jv  close to 1 , each new training exam-

ple can only skew the post-training student distribution very slightly, and the barriers 

built up by corrupted training outputs are therefore low and can be crossed quickly. 

For p v  = 0, on the other hand, barriers can never be crossed as discussed above. For 

intermediate values of ph-,  the 'barrier crossing time' must therefore increase with de-

creasing pAr  and diverge as p -* 0. For finite teacher noise level Pv,  new barriers will 

appear due to corruption of training outputs before existing barriers have been crossed, 

provided the barrier crossing time is sufficiently long, i.e., p V  is sufficiently small. If 

the number of new barriers thus created before old ones are crossed is large enough, it 

appears reasonable that the student distribution will get permanently trapped, mak-

ing the asymptotic generalization error nonzero. This corresponds to the appearance 

of self-confirming hypotheses far from the truth observed above for p v  significantly 

smaller than Pv. 
Parenthetically, we note that for a learning scenario similar to the one considered 

here, it had previously been argued that the fastest decay of the generalization error 

achievable by query learning is c 9  cx 1/a when learning from a noisy teacher [KS 95]. 

The apparent contradiction with the exponential decay we found for Pv Pv is resolved 

by noting that this statement was based on 'the Cramér-Rao 'information inequal-

ity' [Cra46] which only applies when the output probability distribution P(y = + lIx, V) 
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Figure 5.6. Sample evolution of the student distribution P(A1I0()), for query learning 
with assumed sign-flip noise level pr = 0.005 from a noisy teacher w V  = 0. Right: 
In F(Jf1®(P)) (shifted by additive constants for better visualization) on a subsection of 
the weight space w E [-1, 1]. Left: Corresponding generalization error (averaged over 
P(J\fIO(74 )). Atp = 5, a corrupted training output has skewed the student distribution 
away from the teacher. The following queries (for which uncorrupted outputs are 
received) zoom in on the 'barrier' formed by the corrupted output until at p = 11, the 
barrier is crossed because enough probability mass has been shifted from the 'wrong' 
(right hand) side of the barrier to the 'right' (left hand) side. Training output y 11  is 
corrupted and erects another barrier, which is crossed at p = 19. While the student 
distribution is 'trapped' on the wrong side of a barrier, the generalization error is 
dominated by the error of students near the barrier; when a barrier is crossed, larger 
changes in Eg  occur since the student distribution can respond more strongly to the 
new training examples. 
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depends smoothly on the teacher weights. This condition is not fulfilled in the case of 

sign-flip noise, where there is a discontinuity in P(y= +lIz, V) at the decision boundary 

x e w v  = ±12  (xTw = 0 in vector notation). 

Summarizing the results for teacher sign-flip noise, we have found that minimum 

entropy queries selected assuming the inference model is correct can perform both much 

worse and much better than random examples. They achieve worse generalization 

performance if the assumed noise level p  is significantly smaller than the true noise 

level Pv,  due to the occurrence of self-confirming hypotheses far from the truth. If, 

on the other hand, p is approximately equal to PV  (so that the inference model is 

'approximately correct'), the performance of query learning is vastly superior to that 

of random examples. The fact that the inference model can be approximately correct 

or grossly incorrect, depending on the value of ph-, is crucial for the occurrence of these 

two different regimes or phases. In the next section, we consider weight noise, for which 

the inference model is always incorrect, whatever the value of p, and we shall confirm 

the expectation that in this case there is only one 'phase' in ph--space as far as the 

efficacy of query learning is concerned. 

Weight noise 

Consider now the case where the actual teacher noise is weight noise, while the student's 

inference model is based - as before - on the assumption that there is only sign-reversal 

noise (with probability pa). The training outputs are generated as the output of a 

perceptron with a perturbed weight vector w', = WV + LWV, where the components 

of the random vector LWp (sampled independently for each new training output) are 

Gaussian with mean zero and variance a2 . Following Ref. [GT90], we parameterize 

the noise variance a 2  in terms of the typical ratio of the lengths of the true and the 

perturbed weight vector, 

- 	(we.) 	
= ( 1+ 0- 2)-1/2 	 (5.25) 

- ((WV + LWv) 2 ) 

The limits y = 1 and y -* 0 correspond to noise free and completely random training 

outputs, respectively. The effect of weight noise is illustrated in figure 5.7 in terms of 

the probability P(y = +11 x, V) vs. x for a given teacher V. Comparison with the case of 

sign-flip noise, which is also shown, demonstrates that the outputs y corresponding to 

inputs near the 'decision boundary' of the teacher (where the clean output changes from 

—1 to +1 and vice versa) are much noisier for weight noise than for sign-flip noise. In 

fact, weight noise can bethought of as producing sign-flip noise with an input dependent 
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Figure 5.7. The effect of weight noise on teacher outputs. Shown is the probability 
of obtaining output +1, P(y = +lIx, V) as a function of the input x, for the teacher 

= 0 and weight noise 'y = 0.99. Approaching the decision boundary of the teacher 
(x ±1=the outputs become more and more random. This is not the case for sign- 

2) 1  
flip noise (the case PV = 0.2 is shown as an example), where all outputs are 'equally 
random'. 

noise level tending to 1  as x approaches the teacher's decision boundary. Since only 

training examples close to the decision boundary will decrease the generalization error 

Eg  significantly once a large enough number of training examples a have been received, 

this corresponds to increasing effective sign-flip noise as a increases. The generalization 

error €g (a) must therefore be expected to decay much more slowly for weight noise than 

for sign-flip noise. 

This expectation is confirmed by the simulation results in figure 5.8 for minimum 

entropy queries and random examples. Random examples yield a very slowly decaying 

generalization error; the results are compatible with a power law Eg  X a_h/3  for large a 

(independently of p) in agreement with the results of Ref. [KS92]. For query learning, 

we observe a faster power law decay (Eg  Cx a 8  with 6 approaching 2 for the largest 

values of p v  that we tested) for intermediate a which tails off into a nonzero asymptotic 

value of the generalization error for a -* oc. As expected from the discussion at 

the end of the previous section, this qualitative picture is independent of the value 

of the assumed noise level p r , due to the fact that in the presence of weight noise, 

the inference model remains incorrect for any value of p. Indeed, the simulations 
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Figure 5.8. Left: Average generalization error Eg  achieved by query learning with 
various values of p (shown in the legend), for teacher weight noise 'y = 0.99, vs. number 
of training examples a (note the logarithmic scales). For intermediate a, a power law 
decay is observed, tailing off to a nonzero asymptotic value of Eg  for larger a. See 
text for a discussion of the 'bumps' occurring for small p. Right: Results for random 
examples, compatible with an asymptotic power law cg  (x a_1/3  independently of p. 
Statistical errors from the simulations (one standard deviation) are smaller than 2%. 

results strongly suggest that the asymptotic generalization error c g (a --- ). oo) achieved 

by minimum entropy queries is nonzero for any PN < 1 , although it decreases towards 

zero with increasing p. This means that query learning will always get trapped (on 

average) in self-confirming hypotheses far from the truth. Correspondingly, queries 

always perform worse than random examples for a -* oo, and the improvement factor 

ic shown in figure 5.9 tends to zero in this limit. For intermediate values of a, queries 

do achieve better generalization performance than random examples (ic> 1) due to the 

faster initial decay of the generalization error, but the improvement is not as significant 

as for the case of sign-flip noise discussed previously. 

In summary, we have found that for weight noise, the efficacy of query learning based 

on the assumption of sign-flip noise is significantly reduced compared to the case where 

the true noise process is actually sign-flip noise. For any assumed noise level, queries 

perform worse than random examples when the number of training examples a becomes 

sufficiently large, because they eventually get stuck in self-confirming hypotheses far 

from the truth. Even for intermediate a, the fastest generalization error decay that 

we found was c9  c a 2 , much slower than the exponential decay observed for sign-flip 

noise. We will explore in the next chapter whether these limitations of query learning 
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Figure 5.9. Improvement ic in generalization error due to query learning, for teacher 
weight noise -y = 0.99. Values of pAr  are shown next to the curves. 

can be overcome by adapting the assumed noise level p (or, more generally, any 

hyperparameters of the inference model) as more training examples are accumulated. 

So far, we have not yet discussed the 'bumps' that appear in the learning curves 

cg (a) for small p (see figures 5.8 and 5.9). They suggest that learning proceeds in 

'bursts' when using minimum entropy queries. An intuitive understanding of this phe-

nomenon can be gained if we look back to figure 5.6. We discussed above how corrupted 

training outputs act as barriers for the post-training student distribution, and explained 

that the number of uncorrupted training examples needed to overcome such barriers 

diverges as PM —* 0. The effect of this behaviour on the generalization error is shown 

on the left hand side of figure 5.6. The error varies slowly before a barrier is crossed, 

being dominated by contributions of students near the barrier. After the barrier has 

been crossed, the student distribution becomes once again more sensitive to the new 

training examples, leading to much larger variations of the generalization error (which 

can be either positive or negative, depending on whether the new training outputs are 

corrupted or not). The corresponding bumps in the variation of the generalization 

error with a are most pronounced for small p, where the barrier crossing time is long 

enough for single barrier crossings to be distinguished clearly. 

The discussion so far explains why bumps in the learning curves € g(a) can occur, 

and why they must be expected to be most pronounced for small values of p. It only 
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remains to be discussed why these bumps do not disappear when an average over all 

training sets is taken, as they do for sign-flip noise (see figure 5.4). For sign-flip noise, 

every training output is by definition corrupted with equal probability. The values 

of a at which bumps in €g(a) occur for a particular sequence of training examples 

are therefore randomly distributed, leading to a smooth average generalization error. 

Weight noise, on the other hand, can be thought of as effective sign-flip noise which 

becomes increasingly strong as a increases and 6g  decreases. It seems plausible that 

this should lead to preferred a values at which bumps would occur, preventing them 

from being washed out by a training set average. 

At this point, one might be tempted to rephrase some of the above results in terms 

normally reserved for learning by humans: Incorrect information received by a learner 

can lead to unjustified 'false beliefs' or prejudice (corresponding to the barriers referred 

to above) which can slow down learning significantly; only when enough evidence has 

been received to demonstrate that the prejudice is founded on false beliefs can new 

information be used beneficially. The strength of the prejudice and the amount of 

evidence needed to overcome it depends on how strongly the learner believes in the 

correctness of the information she receives. Learning can therefore proceed in 'bursts' of 

refinement and rejection of hypotheses which approximate the underlying 'truth' more 

and more closely. Such a rephrasing of our findings is of course purely speculative, 

and we do not mean to imply a connection between the results obtained above and 

real-world human learning. However, the question of whether such a connection could 

exist appears to be an interesting topic for future research. 

5.5.2 Thermodynamic limit, N —* oo 

We now consider the thermodynamic limit N —* oo of a binary perceptron student 

and teacher with high-dimensional input (and weight) space, in order to see which 

of the conclusions obtained above for an extremely small system (N = 2) remain 

valid. The general derivation of the bisection criterion (5.19) for minimum entropy 

queries assuming the inference model is correct is independent of the system size N 

and therefore remains unchanged. However, the search for queries which fulfill this 

criterion becomes non-trivial for large N, when both the input space - in which the 

search for queries takes place - and the weight space - on which the post-training 

student distribution P(JVI®()), which queries should bisect, is defined - are high-

dimensional. The 'query by committee algorithm' proposed in Ref. [S0S92] provides 

a solution to this problem: For the selection of each new query, one first samples 2k 

students y = 1 . . .2k, from the post-training distribution P(A1I®()). With these 
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students, a finite sample approximation to the weight space integral in the bisection 

criterion (5.19) is then constructed as 

2k 

J dAf 0(fN(x))P(AfJ0) 	0(f(x)). 
'Y=1 

The requirement that this average be equal to for a bisection query x then simply 

translates into the condition that exactly k of the 2k students predict output +1 for the 

input x, while the other k predict —1. In other words, the 'committee' of students has to 

be in 'maximal disagreement' over the query x. Approximate bisection queries can be 

found by filtering inputs which meet this requirement from a stream of random inputs. 

By construction, the query by committee algorithm yields exact bisection in the limit' 

k -* oo. We focus on this limit in the following; however, previous analyses [S0S92] 

suggest that the results would remain qualitatively unchanged for finite k. 

As pointed out in Section 5.5, the average generalization as a function of the nor-

malized number of training examples a can be calculated from the average overlap  

R of the teacher and student weight vectors as defined in (5.22). This overlap is con-

veniently obtained from a replica calculation of the average free energy of the Gibbs 

post-training student distribution (5.14) 

-f = 	(in Z)p(e(p)Iv)p(v) 	Z 
= J dAIP(Af) exp(—Et(, 0(P))) 	(5.26) 

As pointed out above, the average over the teacher prior P(V) can actually be dropped, 

since the result for a particular teacher does not depend on the orientation of its weight 

vector once the average over all training sets is carried out. 

An outline of the replica calculation of the free energy is given in Appendix 54•8• 

One obtains —j3f in the saddle point form 

J 1I q _R 2 	 1 00 

-f = extr q,R 1 L 1 - q + 
in(1 - q)] +—E 2 

J000  
Dh / Dt 

N 

	

.J—oo 
1L0 

[(1— p)in(H(u) + e(1 - H(u))) +pv 1n(eH(u) + 1— H(u))]} (5.27) 

'This statement is true for any fixed system size N, i.e., if the limit k - oo is taken before the 
thermodynamic limit N -+ . In the analytical calculations, we actually reverse the order of these 
limits and verify a posteriori that the results are correct. 

9 We use the same notation for R and its average over all training sets and teachers since the two 
are identical with probability one in the thermodynamic limit. 
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where we have used the shorthand Dz = exp(—z 2 ) dz/./ and H(z) = f°° Dz'. 

In (5.27), q is the (average) overlap between two students sampled from the Gibbs 

distribution P(JV10(0 ), which can also be interpreted as the normalized length of the 

average weight vector from P(J(I®()): 

	

q 
- 1 (W T—p - i(w)2 	w = (wj4p(j1®(p)) 	 (5.28) -- -) w — 

Like R, q is self-averaging in the thermodynamic limit and therefore identical to its 

average over training sets with probability one. The variable u appearing in (5.27) is 

defined as 

h 	- ____ 	
T - (_()2h/2 	

5 u— - p + T 	P— - 	 - 	
1—q ) 	

. 29 ) 

where 
R'' /LZp/ L 

R— (  
- 	. _ jp ) I2j 	 530 

(11'y - ( RiL)2/ qI1)l/2  

The new order parameters appearing in these definitions are qli  and R', which are the 

equivalents of q and R for training sets of size ,u <p, and q, the overlap between 

two students trained on tt and p training examples, respectively: 

q - l(WTWP 
N 	

w = 	 (5.31) 

The latter arise as the overlaps of the committee members defining the selection of the 

(i + 1)-th query and the students produced after training on the complete training set 

OW. In the thermodynamic limit, all overlap parameters can be replaced by functions 

of the continuous variables 10  a = PIN and a' = ftIN < a (q = qP * q(a), qIL * q(a'), 

similarly for R and R, and q' - q(a', a)). This turns the saddle point equations 

resulting from the extremum condition in (5.27) into integral equations for q(a) and 

R(a). The main hurdle is then the determination of q(a', a), for which no independent 

saddle point equation exists. 

In the relatively simple case where the inference model is correct, i.e., PM = Pv and 

= 1 (no weight noise), we shall now prove that in fact q(a,  a) = q(a') for all a > a'. 

This relation has previously been assumed without proof in an analysis of the query by 

committee algorithm [S0S92]. For the proof, we temporarily revert to the notation in 

terms of ji and p rather than a' and a. We assume as usual that all overlap parameters 

"The definition of a for finite N, a = p/(N - 1), becomes identical to the simpler form a = p/N in 
the thermodynamic limit. 
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are self-averaging. It then suffices to show that 

(q  11 ) p(6(,) )  
/p(®(P)) - 

(q/i)p(®(P)) 	 (5.32) 

in order to prove the desired relation q(c', c) = q(c'). Only the left hand side depends 

on the training examples IL + 1, i t + 2. 
. 
.p, which we collectively denote by 	\ 

Inserting the definitions of q and q, eqs. (5.28, 5.31), we rewrite the desired relation 

as 
/_p T 	 - 	 - /— \T—/L \ 
\\wN1p (o(p)\e()Ie()) W//p(®()) - \tWM) W.Ar/p(e(l))• 

This in turn follows from 

(Wf)p(e(p)\eIe) = w. 	 (5.33) 

Writing out the averages in the definition of Wpv  and W, one sees that it is sufficient 

to show that 

K P(ifIo())) 	\()IOU) 
= P(ArIe) 

which by induction holds if 

I®) 
= p(ArIo()) 	 (5.34) 

for all JL. This finally, can be derived by averaging the relation (see eqs. (5.11, 5.12)) 

P(A1I (/ ~ ') 
= 	IL ,+l IxL+ , jV)P(VI®()) 

p(yL+lIx L+l )  O(')) 	
(5.35) 

over 	for fixed 	and OW ,  using the fact that for a correctly specified inference 

model the true distribution of y/L+l  equals the assumed distribution, i.e., 

P(y 1 Ix 1 , &')) = P(l,/L+ h lx/ L + l , o()) 

so that the denominator in (5.35) is cancelled exactly. Eq. (5.34) then follows from the 

normalization condition 

J dy 1 F(y 1 Ix 1 ,Af) = I. 

Note that the above proof does not rely on any specific properties of the query selection 

scheme as long as it is sequential in the sense that the probability distribution of each 
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query only depends on the existing training set" (and not on any outputs or inputs 

that are received later). 

The relations (5.32, 5.33) which we have proved may seem counter-intuitive at first, 

suggesting that since the average student weight vector remains unchanged, no learning 

can take place as more and more training examples are received. This interpretation 

would only be correct, however, if the average over the 'future' training examples 

o() \ e(' in (5.33) was absent. As it stands, eq. (5.33) expresses the fact that if we 

only know that the training examples ji + 1,t  + 2.. .p have been received, but not 

what their actual values are, then we have not gained any additional knowledge about 

the student distribution. This reasoning depends on the correctness of the inference 

model because an incorrect inference model introduces a bias into the post-training 

student distribution P(A1I®(')) which will cause it to be skewed away from the teacher 

posterior distribution P(VIO()). As more training examples are learned, this bias is 

expected to be reduced even when an average over future training examples is taken. 

Sign-flip noise 

Let us now explore the performance of minimum entropy queries - selected assuming 

the inference model is correct - in the case when the training outputs are corrupted by 

sign-flip noise. Specializing further to the case where the assumed student. noise level 

p,w equals the true noise level Pv,  which means that the inference model is correct, we 

can use the relation q(a', a) = q(a') derived above to 'close' the system of saddle point 

equations for q(a) and R(a) arising from (5.27). The equations can then be solved 

numerically, and one obtains the results shown in figure 5.10. It can clearly be seen 

that for large a, the generalization error decays exponentially fast as a increases. The 

decay constant can be obtained analytically, as explained in Appendix 5.8, with the 

result 

Eg(a) x exp[—(ln 2 +p v  lnp +(I - Pv) ln(1 - p))a]. 	(5.36) 

For the noise free case Pv = 0, one has 69  oc exp(—a in 2) in agreement with the analysis 

in Ref. [50S92]. For almost random training outputs ( - Pv << 1), on the other hand, 

one reads off 6g  oc exp(-2( - pv ) 2 a), with the decay constant decreasing to zero for 

Pv as expected. We can conclude that the main qualitative effect of query learning, 

namely, the exponential decay of the generalization error, is the same in the limit of 

a very large system (N -* oo) as for the very small system (N = 2) studied in the 

previous section, as long as the inference model is correct. 

"This implies, of course, that the proof is also valid for learning from random examples, where 
training inputs are sampled independently from some fixed distribution. 
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Figure 5.10. Generalization error E g  vs. a for query learning in the N -* oo binary 
perceptron with a correct inference model (pv = Pv), as predicted by the replica 

calculation. For large a, the decay of 6g  is exponential (note the logarithmic cg-axis), 

with decay constant given by (5.36). 

In the case where the inference model is incorrect, i.e., Pj.r 7~ Pv,  an analytical 

treatment is much more involved due to the lack of a simple relation between q(a,  a) 

to q(a). In principle, it should be possible to obtain the q(a', a) = q 11P from a (double) 

replica calculation of the correlations between the free energies for training sets of 

size IL and p, as outlined in Appendix 5.8. However, conceptual and computational 

difficulties with this approach remain, and we have therefore resorted to Monte Carlo 

simulations (see, e.g., [AT87]) in order to gain a qualitative understanding of the large 

system behaviour. The simulations where carried out as follows: Each time a new 

training example was added to the training set, 5000 Monte Carlo steps in the student 

weight vector space (with the training error (5.15) as energy function) were taken for 

equilibration towards the post-training Gibbs distribution (5.14). Of the next 5000 

Monte Carlo steps, 20% were sampled to calculate the 'thermal' averages over the 

post-training distribution. Throughout, the acceptance ratio for Monte Carlo steps 

was kept around 0.2 by adaptation of the stepsize for trial weight vector changes; the 

value 0.2 was obtained from a rough empirical minimization of the correlations between 

successive steps. The next query was then selected to be orthogonal to the thermally 

averaged student weight vector, but otherwise random; this procedure for selecting 

queries is computationally cheaper than the query by committee approach and yields 
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the same results in the thermodynamic limit (see Appendix 5.8). The corresponding 

uncorrupted teacher output was calculated, its sign reversed with probability Pv, and 

the whole procedure repeated. The final results were obtained by averaging over 50-100 

training sets generated this way. 
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Figure 5.11. Left: Average student-teacher overlap R for query learning in the binary 

perceptron with a correct inference model, Pr = Pv = 0.1. Shown are the results of 

Monte Carlo simulations for system size N = 4, 10, 20; the agreement with the theoret-

ical prediction for N -* oo is already fairly good for N = 10, 20. Some exemplary error 

bars (+1 standard deviation) for the simulation results are shown for N = 20, where 

they are largest since only 50 training sets were sampled. Right: Average student-

student overlap q. The similarity to the graph on the left is not accidental: For the 
case of a correct inference model, the averages of q and R must be identical (see Ap-

pendix 5.8). 

To verify the correctness of the Monte Carlo simulations, we first compared them 

to the analytical results for the case p v  = Pv discussed above. Figure 5.11 shows the 

a dependence of the student-teacher overlap R obtained from Monte Carlo simula-

tions for system sizes N = 4, 10, 20; note that even for such moderate system sizes, 

the agreement with the analytical results for N -* oo is good. Moving on the case of 

an incorrect inference model, Pj.r 54 Pv, we would like to know whether the problem 

of self-confirming hypotheses far from the truth persists for large N. The simulation 

results shown in figures 5.12 and 5.13 answer this question in the affirmative; in fact, 

they suggest that the average generalization error Eg  for fixed and sufficiently large 

a = p/(N - 1) increases with the system size N, so that the problem of self-confirming 

hypotheses is, if anything, exacerbated for larger systems. This also implies that the 

value of pAr  at which, for given Pv, the phase transition from self-confirming hypotheses 
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to exponentially decaying generalization error occurs, must be expected to increase 

with N. Given the computational resources that would be required for Monte Carlo 

simulations of larger systems, we are not at present in a position to obtain more precise 

information about the location of the phase transition in the N - oo limit. We there-

fore leave this topic (and, in particular, the question of whether the phase transition 

for an infinitely large system occurs at the largest allowed value, PN = Pv, or below) as 

an interesting avenue for further research. 

ME 

0.2 

0 	2 	4 	6 	8 	10 

Figure 5.12. Average generalization error e g  vs. a for query learning with p 

0.0 from a teacher with sign-flip noise level p v  = 0.2, as obtained from Monte Carlo 
simulations. The results suggest that for large a, 6g  is an increasing function of system 

size N. Exemplary error bars (+1 standard deviation) are shown for N = 20. 

Weight noise 

Consider now the case of where training outputs are corrupted by weight noise. As 

emphasized above, the student's inference model is then incorrect for any value of pg - . 

Consequently, we find ourselves again in a situation where no obvious relationship be-

tween the order parameters q(a, a) and q(a') exists, rendering an analytical treatment 

distinctly non-trivial. As above, we therefore rely on clues from Monte Carlo simu-

lations to analyse the large system behaviour. Turning first to the question of the 

occurrence of self-confirming hypotheses, we see from the results shown in figures 5.14 

that as in the case of sign-flip noise, the average generalization error normally increases 
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Figure 5.13. As figure 5.12, but for assumed noise level p v  = 0.01. 

with N, making self-confirming hypotheses more likely for large systems. Based on the 

results for N = 2 obtained in Section 5.5.1, we can therefore conclude that for large 

system size N, the student distribution will eventually get trapped in self-confirming 

hypotheses far from the truth as the number of training examples a increases, whatever 

the value of the assumed (sign-flip) noise level p. For a qualitative discussion of the 

behaviour of the generalization error for intermediate values of a, we show in figure 5.15 

a case with relatively weak weight noise, y = 0.99, and moderate student noise level, 

= 0.1, where self-confirming hypotheses only manifest themselves for rather large 

a. A power-law behaviour 6g  cx a can be observed, with an exponent 8 of order 

unity. This is in qualitative agreement with the high temperature analysis (0 -* 0 at 

= /3a = const) carried out in Appendix 5.8, which gives the asymptotic behaviour 

Eg  cx 1/a. Note, however, that the high temperature limit cannot in general be relied 

upon to give the correct asymptotic behaviour at finite temperature, i.e., p < 1/2 (see, 

e.g., [SST92, Spo95]). The above results for query learning should be compared with 

the corresponding power laws for learning from random examples in the presence of 

weight noise: the high temperature analysis yields Eg  cx &112,  whereas in Ref. [GT90], 

Cg  cx a_1/4  was derived within the replica symmetric approximation. Qualitatively, we 

therefore obtain the same picture regarding the efficacy of query learning for large N 

as for the small system limit N = 2: Before the onset of self-confirming hypotheses, 

queries yield a power law decay of the generalization error which is faster than that for 
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Figure 5.14. Average generalization error c g  vs. a for query learning with p = 0.01 
from a teacher with weight noise y = 0.8, as obtained from Monte Carlo simulations. 
The results suggest that for large a, c g  is an increasing function of system size N. 
Exemplary error bars (+1 standard deviation) are shown for N = 20. 

C g  

0.3 

0.1 

0.06 

0.03 

 

0.1 	0.3 0.6 1.0 	3.0 6.010.0 

10 

Figure 5.15. As figure 5.14, but for assumed noise level p v  = 0.1 and teacher weight 
noise 7 = 0.99. This case shows more clearly the power-law decay of the generalization 
error Eg  in the regime before it reaches its nonzero asymptotic value. 
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random examples. This implies that, as for N = 2, the improvement factor ic will be 

larger than one for intermediate a, implying improved generalization performance from 

query learning, but must decay to zero for large a when self-confirming hypotheses far 

from the truth start to degrade the performance achieved by queries. 

5.6 Summary and conclusion 

In this chapter, we have studied query learning in the absence of prior knowledge about 

the teacher space. The introduction of query learning assuming the inference model 

is correct has, in effect, lead us back to a traditional Bayesian framework for query 

selection. Applying this to learning with linear and binary perceptron students, we 

have found two potential pitfalls of assuming the inference model is correct. Firstly, 

queries selected to optimize a given objective function such as the generalization error 

may in fact lead to a higher value of this objective function than random examples. 

Secondly, query learning can generate self-confirming hypotheses far from the truth, 

which means that the optimal approximation to the teacher is not learned even in the 

limit of an infinitely large number of training examples. These problems obviously have 

to be overcome if query learning is to be useful and reliable in practical applications; a 

potential solution is proposed and investigated in the next chapter. 

The results summarized above also add to our understanding of the effect of noise 

on query learning in binary output systems. In Chapter 3, it was suggested that 

queries generally yield drastic reductions in generalization error—compared to random 

examples—for binary or discrete output systems. In light of the findings in the present 

chapter, this statement has to be qualified slightly: The efficacy of query learning 

(as captured in the improvement factor ic) depends significantly on the noise process 

corrupting the training data. Loosely speaking, the two noise models that we have 

considered for the binary perceptron can be distinguished according to whether they 

preserve the discontinuous nature of the underlying rule or not. For sign-flip noise, the 

probability of obtaining output +1, say, is still (as in the absence of noise) a discon-

tinuous function of the input x for a fixed teacher weight vector w y  (or vice versa), 

while for weight noise, this discontinuity is 'smoothed out'. Correspondingly, we found 

in the first case that queries still yield an exponential decay of the generalization error 

resembling the behaviour for a noise free binary perceptron teacher (PV = PM = 0, 

see also [S0S921), while in the second case, a power law decay was obtained at best 

and the improvement in generalization performance over random examples remained 

bounded, reminiscent of the results for students with continuous outputs (see Chap-

ters 3 and 4). While it seems likely that the crucial difference between the two cases 
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is indeed the discontinuity in the probabilistic input-output relation, further work is 

clearly needed in this direction, in particular with the aim of identifying more gen-

erally the classes of learning scenarios for which query learning will achieve the most 

significant improvements in generalization performance. A closer investigation of the 

typical noise processes occurring in practical supervised learning problems with discrete 

outputs would be interesting for the same reason. 

Finally, note that as emphasized above, the scenarios considered in this chapter 

contain only fairly mild forms of inference model misspecification. An extension of the 

analysis to problems with mismatched student and teacher space or mismatched priors 

would certainly be desirable. This would appear to be a fruitful avenue for future 

research, which could clarify the extent to which our conclusions are general rather 

than problem specific. 

5.7 Appendix: Analytical results for the binary percep-

tron, N = 2 

In this appendix, we outline the calculation of the average generalization error achieved 

by minimum entropy queries (selected assuming the inference model is correct) for 

binary perceptrons of size N = 2. In particular, we derive the result (5.24) for assumed 

noise free outputs (p r  = 0), when the training outputs are in fact corrupted by sign-flip 

noise with probability Pv• 
The quantity that we want to calculate  is the average generalization error, defined 

by 

Eg  = (cg(Al, V))p(J&fIe(p)p(epIv)p(v). 	 (5.37) 

As explained in the text, the average over students Al and training sets ®() makes 

the result independent of the teacher, so we can drop the average over the teacher 

prior P(V) and simply consider a fixed teacher. We use the mapping of weight vector 

space and input space onto the interval [-1, 11 with wrap-around boundary conditions 

as explained in Section 5.5.1, and consider the teacher given by w v  = 0 in this repre-

sentation. To calculate the dependence of the average generalization error (5.37) on 

the number of training examples p, we analyse how the averaged post-training student 

distribution 

P(AIV,p) = (F(Jvle(P)))p(O(P)IV) 	 (5.38) 

changes with p. An explicit example of P(AIIV,p) for p = 0, 1,2 is shown figure 5.16. 
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Figure 5.16. Student distributions for query learning with assumed noise level p = 0, 

for p = 0, 1,2 training examples (top to bottom). The teacher wv = 0 generates train-

ing outputs with sign-flip noise p v  = 0.2; the first training input x 1  = 0.3 is chosen 
randomly. Training inputs are marked by arrows, with the corresponding outputs (+1) 
shown underneath. P(AIIV, p, x 1 ) is shown on the extreme right; the other distribu-
tions show its decomposition into the P(A1Ie(°)) for the different possible training sets 

(P) (see eq. (5.38)). The weight of each of the P(AI]®(')), shown underneath the 
diagrams, is given by the probability of obtaining the corresponding output sequence, 
each uncorrupted/corrupted output contributing a factor of 1 - Pv or Pv,  respectively. 
We have only shown one of the two possible values of the second query x 2 ; see footnote 
on p.108. Note finally that the regime p 2 is 'pathological' in the sense that query 
selection is independent of the training outputs received previously; for p ~! 3, this is 

no longer the case. 

The first training input is selected randomly; in the figure, we chose x 1  = 0.3. There- 

after, the selection of minimum entropy (i.e., bisection) queries becomes a deterministic 
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process depending only on the teacher outputs". For fixed x 1 , there are therefore only 

2' different post-training distributions P(ArI®( ) ) for training sets of size p. Each of 

them is non-zero only on an interval of length 2p, where it has the constant value 

2' derived from the normalization condition. The union of all these (disjoint) inter-

vals covers the whole weight space [-1, 1] (see figure 5.16). In the average post-training 

distribution (5.38), each of the P(jVI®(')) is simply multiplied by the probability of the 

corresponding sequence of training outputs, which is p,(1 - pv)" if exactly k outputs 

are corrupted. The distribution P(Af Iv, p, x 1 ), where x 1  denotes the fixed first training 

input, is therefore piecewise constant over 2P sub-intervals 13  of [-1, 1] of equal length 

2P+1 , which we shall call 'sectors'. 

Consider now what happens to the sectors of P(A(IV,p,x 1 ) when p is increased by 

one. The following explanation is probably most easily understood by looking at the 

graphs in the rightmost column of figure 5.16, remembering that p increases from top 

to bottom. As we increase p by one, each sector of P(A(IV,p, x') is split into two equal 

halves by a bisection query for the corresponding P(Jf1o () ). The half sector closer 

to the true teacher corresponds to P(A1I0( 1 )) for the case where the new training 

output yP+l  is uncorrupted; hence, the value of P(J'sfIV, p + 1, x 1 ) there is obtained by 

multiplying P(AIIV,p,x') by 2(1 - p4. The factor of 2 comes from the normalization 

of P(ArlO( 1 )), while the factor (1 pv)  is the probability of receiving an uncorrupted 

output. The multiplication factor for the other half sector, corresponding to a corrupted 

training output, is 2Pv•  Together, the two new sectors contribute the same probability 

mass to P(.A[IV,p+ 1,x') as their 'parent' sector to P(AIIV,p,x'). 

Let us now examine the effect on the average generalization error of these changes 

in the average student distribution. The generalization error (5.23) equals €g (AI, V) 

I w Ar l for the teacher w v  = 0 considered here. We have to distinguish two kinds of sectors 

of P(A1IV, p, x'): Firstly, there are the 2 - 2 sectors for which the generalization 

error is either given by WN, or by —'w M , in the whole sector. In the remaining two 

sectors, containing either the true teacher w v  = 0 or its 'opposite' on the circular 

weight space (corresponding to the boundary point —1 = 1 (mod 2) of [-1, 1]) the 

generalization error is given by w v  in part of the sector and by —w V  in the rest. For 

the first class of sectors, the effect of incrementing p on their contribution to the average 

12  In fact, the situation is slightly more complicated since there are always two possible bisection 

queries for p > 1, related by x - —.x in the vector notation or x -+ x ED 1 (addition modulo 2) 
in the interval representation. However, it is easy to verify that these two inputs, together with their 
corresponding corrupted/uncorrupted teacher outputs, have exactly the same effect on the post-training 
student distribution, so they need not be distinguished for our purposes. 

"Due to the assumed wrap-around boundary conditions, the two sub-intervals containing the end-
points of [-1,1] are considered as one. 
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generalization error can be derived as follows: Consider a sector of P(A(IV, p, x 1 ) with 

probability mass m and midpoint w> 0, contributing mw to the average generalization 

error. As explained above, this sector splits into two subsectors of equal length 2 in 

F(jV]V, p + 1, x 1 ), with midpoints w T  21  and probability masses m[I + ( - 

the one with the midpoint closer to the teacher w v  = 0 carries the larger probability 

mass as pointed out above. These two subsectors together contribute 

m(1 - 	- 2-P_l) + mpv(w + 21) = mw - m(1 - 2p)2 1  

to the generalization error, giving a reduction of m(1 - 2p)2 1  from the value for 

p training examples. This result also holds for sectors with midpoints w < 0, as can 

easily be checked. Summing over all sectors in the first class, we therefore obtain a 

reduction in average generalization error of 

LEg (sectors in first class) = M(1 -. 2p)2 1 	 (5.39) 

where M is the joint probability mass of all sectors in the first class. Due to the 

normalization of P(Af IV, p, x 1 ), M can be expressed in terms of the probability mass 

of the two sectors in the second class; since these correspond to training sets of size p 

with either all training outputs uncorrupted or all corrupted, it follows that 

M = 1 - (1 - POP  - pl, . 

Now we only need to find the reduction in average generalization error contributed 

by the sectors in the second class. Consider first the sector of P(.AIIV, p, x') containing 

the teacher, w = 0, with probability mass (1 - p )P and midpoint w. The calculation 

of the reduction in average generalization error contributed by this sector proceeds 

similarly to that outlined above for the sectors in the first class, apart from the fact 

that the modulus in €g (Af, V) = Wj1 has to be taken into account explicitly. One 

obtains 

LEg (Sector containing teacher) = (1 - p)P(1 - 2p)2_1(1 - 482 ) . 	( 5.40) 

The first three factors are in complete analogy with (5.39). The quantity 6 measures 

the distance of the teacher from the closest boundary of the sector, as a fraction of 

the sector length 2l,  and is given in terms of the midpoint w of the sector by 

6 = (2P - IwI)/2 P+1. Hence, the factor 1 - 482  in (5.40) equals one when the teacher 

is on one of the sector boundaries (8 = 0, JwI = 2P) and zero when the teacher is in 
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the middle of the sector (6 = 1/2, w = 0). This makes intuitive sense since in the first 

case, the sector could actually have been viewed as a sector of the first class; while in 

the second case, the generalization error is only affected by the sum of the probability 

masses of the two halves of the sector, which remains unchanged as p is increased by 

one. As explained above, the selection of bisection queries is a deterministic process for 

p > 1; the position of the sectors of P(Af Iv, p, x 1 ) and hence the value of 6 therefore 

only depends on the first training input x 1 , which we have kept fixed so far. Since x 1  

is randomly and uniformly chosen from the interval [-1, 1], 6 assumes all values in the 

interval [0, ] with equal probability. Averaging the reduction in generalization (5.40) 

over 6, the factor .  1 - 462  is therefore replaced by 2/3. 

The same line of reasoning as for the sector containing the teacher w = 0 can also 

be applied to the sector including its opposite —1 = 1 (mod 2), and the result is exactly 

analogous, with the appropriate replacement for the probability mass (1 - Pv) °  pt, . 

Collecting everything, we therefore obtain for the reduction in average generalization 

error 

€g(p)cg (p+ 1) = (1-2p)2 1  [l_(l_  POP  p+(l_p)+ 

 I  A,3 

	 3 V] 

= (1 - 2p)2 	1  - (1 - Pv) - 	
. 	 (5.41) 

The derivation of this expression relies on the condition p ~ 1, since we have assumed 

that there are two sectors in the second class, which is not true for p = 0 where there 

is only one single sector. However, eq. (5.41) does actually hold for p = 0 as well, as 

can be checked by an explicit calculation. Starting from E g (p = 0) = , one obtains 

the desired quantity g(p)  by summing (5.41) over p, yielding a geometric series. The 

result (5.24) given in the text is obtained by separating the p-dependent parts from the 

constant terms, using that for N = 2, a = p/(N - 1) = p- 

5.8 Appendix: Replica calculation for the binary percep-

tron, N —* oo 

5.8.1 Calculation of free energy 

In this Appendix, we sketch the replica calculation of the free energy 

—Of = 	(In Z)p(e(p)IV) 	Z 
= J dAfp(Ar) exp(—fiE t (AI, 0(P))) 	(5.42) 
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for binary perceptron students in the thermodynamic limit N -* oo. We consider 

queries for minimum entropy, selected assuming the inference model is correct, i.e., 

assuming sign-flip noise on the training outputs with probability p (related to /9 

by (5.17)). The teacher is a binary perceptron, with sign-reversal noise Pv  and weight 

noise (see eq. (5.25)). 

We use the replica trick 

On Z)p(e(p)1v) = lim ln (Z')p(e(p)Iv) 
n--+O U 

to average the log partition function over training sets, calculating the right hand side 

for integer values of n and continuing analytically to n = 0. By introducing n replicas 

of the student space and using the explicit expression for the training error (5.15), the 

n-th moment of the partition function is expressed as 

n 	 p n 

Zn  =111 (dw(w)) II fl exp [—/90 (sgn ((w)Tx))] 

a=1 	 L=1 a1 

where 1(wN-) 
is the assumed uniform prior on the hypersphere w = N, P(wK) o 

Ar - N). Using the fact that the training outputs y  are binary, the n-fold product 

of exponentials for a given training example index JL (which we drop for now) can be 

decomposed as [GT90] 

exp [—/90 ( sgn (*(wf) T  fl 	 x))] 

= o(Y)I (( W ) TX) + 	ft 	1 w) Tx) 	(5.43) 
a=1 (-( 

where 

= 0(z) + e0(—z). 

From this representation, one sees that sign-flip noise y -* — y merely interchanges the 

roles of q(z) and (—z), and hence of the factors 1 and e in the definition of q(•). 

This translates directly into the corresponding terms in the final result for the free 

energy, eq. (5.27), and we therefore ignore sign-flip noise in the following and restrict 

attention to the case of weight noise. The training output y can then be written as 

sgn((w v  + Awv )Tx//W), with Aw, the Gaussian perturbation of the teacher weight 
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vector. Introducing the usual Gardner integral representations of the form 

1 = J dh-  5(ha - _L(W)TX) = I 2ir 

dhadha 
exp (i1zha - 

in order to shift all terms containing the input x into an exponential, one can then 

rewrite (5.43) in the form 

I dhl— 	 (ha)1exP(ih+iIha) 
°° 	' dli 

a (f 
dhadha 

Jo 	J2ir 
fl 	7r 	/ 

X [ex (*(WV + Aw)Tx  + 2 
	Ja(Wa)TX) + c.c.]. 	(5.44) Ar 

Here we have used the same symbols h and h for integration variables relating to the 

student replicas and the teacher, distinguished only by the additional replica index 

superscript for the students. This emphasizes the fact that all the h's denote products 

of weight vectors with the input vector, while the h's are their conjugate variables. 

The average over the Gaussian weight noise is now trivial, 

	

(exp ( = itz wx"i\ 	= exp(_a2 ii2 ) 	 ( 5.45) 

due to the spherical constraint on inputs, x 2  = N. The main task consists in calculating 

the average of 

exp (*itw'x 
+ 	

> 
a(W)TX) 	 (5.46)Ar 

over the distribution for bisection queries. 

We do this by exploiting the query by committee approach described in the text, 

following Ref. [S0S92]. For committee size 2k, the distribution of the (i+ 1)-th query 

x 1  selected on the basis of a training set of ft examples, O ( A) , is 

2k 
P(xhIO) cx P(x) 	II ® (0,, = (W r)Tx 1 ) 	( 5.47) 

where the w are the weight vectors of the 2k committee members Af randomly 

sampled from .P(AIIO()), and the a = +1 are their outputs". According to the 

principle of maximal disagreement between committee members, the summation is 

"In principle, an average over the w, has to be taken on the right hand side of (5.47), but this is 
unnecessary in the thermodynamic limit due to the self-averaging of the overlaps (5.51,5.52). 
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over all combinations of the o,-, for which exactly k of the a are +1 and the others —1. 

The distribution P(x), finally, implements the spherical constraint on input vectors, 

P(x) oc 8(x 2  - N). To calculate the average of (5.46), we have to multiply it by the 

right hand side of (5.47), integrate over x 	x 1 , and divide by the corresponding 

normalization factor. Denoting the scalar products of x 	with the various weight 

vectors by 15 

1 	T--1 	a 	1 	
1 Z = =rwv x 	Z = 	r(Wj)TXl 	Z = z= (wi r )T X1  

 VN 

the desired average of (5.46) can therefore be written as a ratio of two averages over z, 

{ 
Za

} and {z}: 

	

(ex (_±_uiwTx+1 + 	ha(Wa)TX/i+1) 

)P(x+1  O(I)) = 

fl @(az) exp(ihz + i Ea iaza)) 

(5.48) 

In the thermodynamic limit, z, {z"} and {z} become zero mean unit variance Gaussian 

variables with correlations 

(ZZa) = = a 
(zz) = = (5.49) 

(zazb) = (Wa )TWb 	= q (5.50) 

ZIY 
	
= (w)Tw 6 	= q' (5.51) 

(ZaZ) = ( w jTw 	= q/P 
Ar (5.52)  

where we have used the self-averaging property of the overlaps between the various 

weight vectors to replace them by the corresponding order parameters 16 . The inde-

pendence of the overlaps q and q in (5.50, 5.52) of the replica indices a, b embodies 

the assumption of replica symmetry. Since the committee members can be viewed as 

15  Again, we use the same symbol z for scalar products with the weight vectors of the teacher, the stu-
dent replicas and the committee members, in order to emphasize functional similarities between them. 
Greek superscripts always refer to committee members in the following, while Roman superscripts 
denote student replicas. 

'It is at this point that we have to assume that the committee size k is much smaller than the 

system size N, since otherwise the overlaps of the committee members could not be assumed to be 
self-averaging any more. For k = 0(N), for example, one cannot expect all the committee members to 
have identical overlaps (5.51,5.52). 
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student replicas sampled from the distribution P(A1I001)) (rather than P(J\f I®(')) as 

for the 'real' replicas), replica symmetry also implies the independence of the over-

laps (5.51, 5.52) of the committee indices 'y and 8. We have not explicitly analysed 

the stability of the replica symmetric solution against replica symmetry breaking (see, 

e.g., [MPV87]). However, for the case of perceptron students with continuous - as 

opposed to discrete - weights that we are dealing with, replica symmetry breaking is 

normally signalled by the order parameter q approaching one at some finite value of a 

(see, e.g., [GT90, MEZ93]), for which we have not found any evidence. 

At this point, we would like to point out an important feature of eqs. (5.49, 5.51, 

5.52): The average of (5.46) over the distribution P(x h I0( ) ) of the (ji+  1)-th train-

ing input has now effectively become independent of the particular realization of the 

existing training set being dependent solely on self-averaging overlap parame-

ters. This justifies a posteriori our procedure of carrying out the averages over the 

different training inputs separately, which is crucial in making the problem analyti-

cally tractable. This a good demonstration of the power of the statistical mechanics 

approach, which allows one to treat complex correlations between successive training 

examples such as the ones generated by query learning. 

To carry out the averages in (5.48), we represent z, { z a} and {z} in terms of 

uncorrelated zero mean unit variance Gaussian variables i, , , f ia and {i}: 

z -y = 	/iY\/1q 

= 

z = 

where 

Cl 	= (q - (q4P)2/qL)1/2 	C2 = 	q 	 (5.53) 

	

= c(R - Rq'P/q) 	C4 = (1 - - ( R') 2  /q)"2 . 	( 5.54) 

Averaging over the fill, one obtains 

/ 	2k 

fl 0(az)\ 	
= (

2 ) H 	_q 	Hk 
 (_' _q)) 	

(5.55) 
(1—q)) 

where H(z) = f°° Dx, with Dx the Gaussian measure Dx = exp(—x 2 ) dx//. In 

the limit k -* c: of interest to us, the factor (5.55) in the numerator and denominator 

of (5.48) constrains to values arbitrarily close to zero, effectively approaching a delta 
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distribution with respect to 	Having set i to zero, the remaining averages in (5.48) 

can easily be carried out. Using the values of the constants c 1  . . . C4 given in (5.53, 

5.54), one obtains 

	

exp [- 
(I_ 	

)

(R)2\ j2 -(R -

q 	
qL 	

a 

1( 	
(qP)2\ (a)21(1q)(a)21 	

(5.56) - 	
q ) a 	j 

This result together with the weight noise average can now be plugged into (5.44). 

We omit details of the manipulations leading from this stage of the calculation to 

the result (5.27), as they follow exactly the calculation for random training examples 

described in Ref. [GT90]. 

We note at this point that the above result (5.56) for query by committee in the 

k -* X limit also results from a much simpler algorithm for query selection. Suppose 

each query x 1  is selected to be orthogonal to the average weight vector W from 

the post-training student distribution P(A(Ie(')) generated by the existing training set 

eCu), but otherwise random, i.e., according to P(x). Then the average over x 1  of a 

quantity of the form (5.46) is, in the thermodynamic limit, 

	

(exp(-__-aTx) 	
i 1 (± 2 (*aTWr)2)1 

=exp 1 -- 	a 

L 2 
N - _L (WP 

Inserting a = hw + a haw , it can easily be verified from the definitions (5.22, 

5.28, 5.31) that this expression is identical to the result (5.56). This implies that it 

is possible to construct queries which, in the thermodynamic limit, achieve the same 

effect as queries filtered by an infinitely large committee from a stream of random inputs. 

This is particularly interesting since it has been shown [FSST93] that the time for query 

filtering increases exponentially with c, due to the fact that the student distribution 

becomes more and more narrow as c increases, and is bisected only by a small fraction of 

all possible input vectors. In practical terms, having a constructive query algorithm at 

one's disposal which avoids this problem but achieves the same performance is therefore 

a clear advantage. We shall return to this point in our discussion of query learning in 

multi-layer neural networks in Chapter 8. 
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5.8.2 Asymptotic solution 

Let us comment briefly on the large c behaviour of the solution of the saddle point 

equations derived from the free energy (5.27), for the case of a correctly specified 

inference model, where the correct sign-flip probability is assumed, PJ'I = Pv, and 

there is no weight noise, y = 1. As shown in Section 5.5.2, one then has q 2  = q. 

Furthermore, q = R in this case due to the symmetry between the posterior teacher 

distribution and the post-training student distribution (see, e.g., [S0S92, WRB93]); 

this can also be confirmed directly from the numerical solution of the saddle point 

equations derived from (5.27). 

The numerical results show an exponential decay of the generalization error € g  with 

c (see figure 5.10). To calculate the corresponding decay constant, one can proceed 

as follows. First, we note that for bisection queries in a binary output system, the log 

partition function in Z is always a linear function of the number of training examples. 

This can be seen by using the definition of Z, eq. (5.42), to rewrite the ratio between 

two successive' partition functions as 

= JdAIP(Ar) (z(e (P) )) 1  exp 

= fdA (P(A(I@ () )exp [_o (_yP+1f(xP+1))]. 

Using the decomposition exp(—/3®(—z)) = e(z)+eO(—z), it follows that for queries 

xP1 selected according to the bisection criterion (5.19), 

In Z(O (1) ) In Z(® () ) = In 1(1 + e_ 13 )] = - ln[2(1 - p)] 

With Z(O( °)) = 1 from the normalization of the pseudo prior Al), this gives 

In Z(O (") ) = —pin[2(1 - p-)]. 	 (5.57) 

If the inference model is correct, this is in agreement with our replica calculation of 

the average free energy. To show this, let us first rewrite (5.27) in a simpler form by 

replacing (11N) by an integral over c' (as is appropriate in the thermodynamic 

limit), inserting the relations q(c', o) = q(a) and q = R. Using the identity 

j'DhfDtf(ph+-rt)=jDvf (vp 2 + 2)(_) 

(which, incidentally, can also be employed to simplify the numerical solution of the 
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saddle point equations), one obtains 

-f = 	( in Z) = extrq  {(q + ln(1 - q)) + 10c, 
da'F ( q 	(a)) } 

	
( 5.58) 

2  

with 

F(x) = 2 PvH(xv) x [(1 - pg)ln (H(xv) + e(1 - H(xv))) 

+ pa in (eH(xv) + 1 - H(xv))]. 

This gives for the a derivative of the average log partition function 

1 d(lnZ) - 1O (In Z)  
N da 	

N ôa = F(0) = —ln[2(1 —pfr4] 	 (5.59) 

in agreement with the general result derived above. In (5.59), we have used the fact 

that the variation of q with a does not contribute to the variation of the log partition 

function due to the saddle point condition. The fact that the correct behaviour of the 

log partition function is predicted by the replica calculation supports our assumptions 

of replica symmetry and interchangeability of the limits k -* oo and N --4 00. 

•Let us now use the result (in Z) = —Naln[2(1 - pr)] to derive the decay constant 

in the exponential decay of the average generalization error Eg  with a. Using (5.21) 

and q R, 69  is expressed £g  = ( 1/7r) arccosq. As 6g 0, q -* 1, and one has 

Eg  o (Aq) 1 / 2 , where Lq = 1 - q. An asymptotic exponential decay 6g  oc exp(—ca) 

therefore corresponds to an exponential decay of Lq o exp(-2ca). Inserting this 

into (5.58), one derives for the large a behaviour of the log partition function 

 \ 
(In Z) = —a I 	G 	] c + pAr  In PAr 

 

up to terms which remain bounded as a -* 00. Comparing this with the result (5.59), 

one finds the value of the decay constant 

c=1n2+pinp / +(1—p)4ln(1—p r ) 

given in the text (see eq. (5.36); note that pj'j = Pv in the case considered here). 

5.8.3 Free energy correlations 

We conclude this Appendix by some comments on how the case of an incorrect inference 

model could be treated analytically. As explained in the text, the main hurdle is 
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the determination of the q' 	q(c', o, which are no longer simply related to the 

q 	q(a'). A solution would be to calculate the correlations of the fluctuations of the 

log partition functions corresponding to training sets of size ji and p ( i < p) around 

their averages, i.e., 

pLP 	i_ ((ln Z(0) In Z(®)) - Kin Z(O (1 )) (ln Z(@))) 
N 

where the averages are over the training set distribution P(O(1')IV). The logarithms 

inside the averages can be removed by a double replica trick 

_1 8 
PIP 

 
- In (Z m (® () )Z n (O (P) )) P(OUIV) 	 (5.60) 

- N 0m8n Ln=0 

One now has m replicas of students from P(A1I0 () ) and m replicas of students from 

F(ArIe()), with the overlap of two students from the two replica groups being simply 

qIiP from the definition (5.31). Since we are calculating correlations between In Z(® ( ' ) ) 

and in Z(e(P)), it is natural that q would appear as a saddle point parameter in the 

result for f. Indeed, by a calculation similar to the one outlined in Section 5.8.1, one 

obtains 

fP = extr q P 
1 (q1lP - RI2R)2 

{(1_q)(1_q) 

/L- 1 
+ 	p) 	+ PV ((i 	- ( lu) 	}. (5.61) 

where 

1 4  = In (H(u) + e(1 - 

= In (11(u) + e(1 - 11(u))) 

and 1 and 1 are obtained by reversing the roles of the factors e and 1 in the above 

definitions. The averages on the right hand side of (5.61) are taken over zero mean 

Gaussian variables h, t which are related to u and u by 

u=pIhI+t 	u=pIhI+t. 

The (co-)variances of t and t are 

((t)2) = (r')2 	(t2) = T 2 	(pt) = 
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while h is uricorrelated with t" and t and has unit variance. The coefficient p is defined 

as in (5.29, 5.30) apart from the replacement of the subscript y by v everywhere, and 

pA is the corresponding quantity for p training examples (i.e., with q and R replaced 

by qZ  and Ri'). Equivalent definitions hold for r and r. As expected, it is only in the 

correlation coefficient 
Ttlp 	 (h IP - li/LhiP / ( hI 

1 1 f1 - 
-  

that the overlap q appears. Note that the 'standard' overlap parameters q, R and q, 

RA are not determined by extremizing (5.61), but rather the usual 'single replica' free 

energies (5.27) for p and jt training examples, respectively. This is because the single 

replica free energies appear as 0(m) and 0(n) contributions in In (Zm(O())ZTh(O(T4)) 

and, being much larger in the limit m -* 0, n -* 0 than the O(mn) contributions which 

according to (5.60) determine f 4P, fix the limiting values of the single replica order 

parameters. 

In principle, the q4P can be determined from the saddle point equation generated 

by (5.61). This is, however, a very computationally demanding task: The introduction 

of an additional auxiliary integration variable tA makes the explicit evaluation of the qP 

derivative of (5.61) expensive; furthermore, for a given value of a = p/N, qP q(a', a) 

has to be determined for all a' E [0, a], with a new saddle point equation having to be 

solved for each value of a'. For smalla, this can be circumvented by Taylor expanding 

all overlap parameters in and a and calculating the coefficients successively. This, 

however, reveals a more profound problem arising from (5.61): We find that the average 

log partition function is no longer linear in a, but contains a contribution of order a3 , 

whose coefficient only vanishes when the inference model is correct, i.e., pAr = pv  

and y = 1. This contradicts the general result (5.57) derived above, which holds 

independently of whether the inference model is correct or not. At present, we can only 

speculate on the reasons for this disagreement: While it is in principle possible that 

replica symmetry breaking might play a role, this appears unlikely. A more probable 

cause is the exchange of the limits k - oo and N -* 00: it may be that the query by 

committee algorithm does not generate bisection queries in the limit k -* x as long as 

k remains much smaller than the system size N. Monte Carlo simulations for a range 

of values of k and N should be able to shed some light on this question; we leave this 

as a topic for future research. 

Notwithstanding the above problems associated with the double replica approach 

to determining the q, we shall use eq. (5.61) to analyse the asymptotic behaviour of 

the generalization error achieved by (minimum entropy) query learning in the so-called 

high temperature limit (see, e.g., [SST92]). This limit is defined by -* 0 at constant 
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= 6a and can often give qualitatively, though not quantitatively, correct predictions 

for the behaviour at large but finite temperatures 1/13.  The saddle point equation for 

qI1P q(&',d) resulting from (5.61) simplifie considerably in the high-temperature 

limit and can be solved explicitly to give 

	

q(&', ) = R(&')R() + 0(13 ). 	 (5.62) 

This relation has the following intuitive interpretation: One can think of learning as a 

directed random walk of the average weight vector WJ from the student distribution 

P(J/IO), with the number of training examples a = p/N acting as a kind of time 

coordinate. The overlap parameter R captures the directed component of this random 

walk along the direction of the teacher w, while qP  determines the correlation between 

random walkers at times a' = pjN and a = p/N. Eq. (5.62) then expresses the fact 

that in the high temperature limit, where the separation between the times a' = 

and a = &/ 0 diverges as 1/0, the correlations between the non-directed components 

(orthogonal to w v ) of the random walk decay to zero. 

Inserting the relation (5.62) into the high temperature form of the saddle point 

equation for R derived from the single replica free energy (5.27), one obtains in the 

case of weight noise on the training outputs (y < 1, PV = 0) 

R 	2 -1/2 
R2)(1/72 - 1)] 	+0(13). 

1—R 2 	ir 

In the high-temperature limit, the 0(13) term can be neglected, and one finds 

	

ca 	 2 
R— 	

- 1• 
1 
___

+c22 	
c-1_2. 

For large a, this yields the power-law decay for the generalization error 

Eg  = arccoscx (1 —R) 1 / 2  

referred to in Section 5.5.2. The corresponding result for random examples can be 

derived similarly: The form of the free energy (5.27) remains unchanged up to the 

replacement of 4 and 1? by q and R [GT90]; in the high temperature limit, one obtains 

the saddle point equation 

 ft 	- 	(1/y 	
—1/2 

2 - R2) 
1 - ft2  - 71• 

which asymptotically gives 1 - ft o 1/a and 6gOCà1/2 



Chapter 6 

Combining query learning and 

model selection 

Abstract 

In the previous chapter, we exposed several problems of query learning as-
suming the inference model is correct. As a potential solution, we propose 
to combine query learning with inference model selection or adaptation. 
We first outline an appropriate theoretical framework and then analyse the 
consequences of combining query learning with a particular model selection 
technique, called the evidence procedure. The results that we find for the 
two scenarios considered in the previous chapter (linear and binary percep-
tron students) are encouraging: The problem of self-confirming hypotheses 
is avoided, and the resulting generalization performance is consistently and 
significantly better than for learning from random examples. 

6.1 Introduction 

We have seen in the previous chapter that query learning assuming the inference model 

is correct has several drawbacks when the assumed inference model is actually incorrect. 

For the linear perceptron, we saw that queries are no longer guaranteed to yield a 

lower generalization error than random examples, even if they are explicitly selected to 

minimize the generalization error. More seriously, for binary output students we found 

the problem of self-confirming hypotheses far from the truth, where query learning 

prevents the student from approximating the teacher optimally even after having been 

presented with an infinite number of training examples. These problems obviously need 

to be circumvented if we are to trust what we have learned from queries. Since they 

121 
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stem from the fact that the inference model is incorrect, it is natural to expect that they 

will at least be alleviated by considering more than one inference model and selecting 

the most appropriate one in the light of the training data. We will explore this idea in 

the present chapter, focusing on learning with linear and binary perceptrons as in the 

previous chapter. 

We begin in Section 6.2 by outlining a theoretical framework for combining query 

learning and inference model selection. In Sections 6.3 and 6.4, we then apply this 

framework by investigating the consequences of a particular model selection technique, 

called the evidence procedure, for query learning with linear and binary perceptron 

students. The different inference models between which we choose in these cases are 

parameterized by the 'hyperparameters' (see, e.g., [Ber85]) weight decay ) and tem-

perature parameter 0 for the linear perceptron, and assumed sign-reversal probability 

p for the binary perceptron 1 . We are therefore effectively considering a continuum of 

inference models, and the term 'inference model adaptation' might be more appropriate 

than 'model selection' in this context, in particular if, as considered below, the hyperpa-

rameters are adapted continuously as new training examples are received. Section 6.5 

offers a brief summary of our results and some perspectives for future work. 

6.2 Theoretical framework 

Let us outline how inference model adaptation or selection can be incorporated into 

the framework for query learning assuming the inference model is correct as set out 

in Section 5.2. Assume that the inference models between which we can choose are 

parameterized by a certain hyperparameter. This hyperparameter can be a continuous 

parameter such as, for example, the assumed noise level p m  for the binary perceptron, 

it may be discrete, e.g., simply numbering different inference models, or it may in 

fact be a collection of several hyperparameters. In terms of notation, we shall not 

distinguish between these three cases, and simply use the generic symbol ) for the 

hyperparameter(s). In general, the objective function for query selection will depend 

on ; for the binary perceptron, for example, the student space entropy is a function 

of the hyperparameter p.  Furthermore, the value of A can affect both the assumed 

student prior (.A1) and the assumed probabilistic input-output relation P(yx,Af). 

We therefore make the replacements 

P(Ar) -* P(VA) 	P (yIx,A1) -* P(ylx,V, A) 

Unless otherwise specified, the notation used in this chapter is the same as in Chapter 5. 
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and correspondingly for the post-training distribution defined by (5.4) 

P(A(I®) 	P(HI0,A) 	 (6.1) 

We now want to determine the plausibility of the different inference models, given a 

training set 0(P).  This can be done in a variety of ways, in the same way as there are 

(if we do not restrict ourselves to a posterior-like form) many different possible choices 

for the post-training distribution P(Jsf o()) determining how we infer the plausibility 

of different students IV from the training data. However, as noted in the previous 

chapter, our framework for query learning assuming the inference model is correct has 

essentially brought us back to a 'traditional' Bayesian framework, and it is therefore 

most natural to base our choice between different inference models on the 'posterior' 

distribution of A: 

P(AI 0) ) 	P(0()IA)P(A) = ( 6.2) 

Here P(A) is an assumed prior on the hyperparameters, which will normally chosen to 

be 'fiat', i.e., uninformative, if we have no specific preference for any of the inference 

models. In Chapter 2, we argued that query selection cannot depend on the unknown 

true teacher V. Similarly, in the present context the probability of selecting query x" 

should depend only on the existing training set (_1),  not on any particular 'true' 

value of A. In fact, it can be shown that without this assumption, nonsensical results 

would be obtained 2 . We can therefore write 

P(xI 001) , A) = P(x"I® (1) ). 	 (6.3) 

We now exploit the analogue of (5.5), 

(ylx, 0( 1 ) ,  A) 	J dIV(yIx,IV, A) P(IVI0(1 , A) 	(6.4) 

'Consider, for example, the binary perceptron with N = 2 (see Section 5.5.1). It is a simple matter 
to convince oneself that the selection of the first three training inputs by minimum entropy queries is 
independent of the assumed noise level p jv , whereas the position in input space of the fourth query (with 
respect to the first three inputs), if based on a particular value of pjv , is in one-to-one correspondence 

with the value of pAr. This means that the probability P(xI03, would be nonzero only for this 

particular value of pp.r.  The same would then hold for the probability distribution P(puI®"), which 

contains P(x4I0(3,p) as a factor for p > 4 (see eq. (6.2)), so that further adaptation of the value of 

p'.j- would be impossible. 
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which using (6.1) can be rewritten as 

O(_ 1 ) ,  )) = 
f dJV P(J\(IA) fl=i P(ylxl,A(, A) 

fdAf P(A(IA)fJ1 	y"lx',Ar,A) 

Combining this with (6.3), it follows that the A posterior (6.2) is given by P(AIO()) o 

(A)(o()IA) with 

(0)IA) oc f d(ArIA)H 	 A) 	 (6.5) 

where the proportionality constants are independent of A. 

The choice of A (and hence an inference model) affects both the post-training stu-

dent distribution (6.1), i.e., the way we make inferences about students on the basis 

of the training data, and the query selection process, through a possible A dependence 

of the objective function for query selection and through the assumed distribution of 

new training outputs, eq. (6.4). One possible way of using the posterior distribution of 

A, P(AIO()), as derived above, would be to average all quantities dependent on A over 

this distribution, analogous to the averaging over the posterior teacher distribution 

P(VlO()) in the original framework for query selection of Chapter 2 (see eq. (2.7)). 

However, the computational cost of this method, which corresponds to 'hierarchical 

Bayesian inference' (see, e.g., [Ber85]), would appear to be prohibitively high in all 

but the simplest scenarios. We therefore consider a somewhat simpler approach, where 

instead of averaging over A, we simply fix its value to maximize the so-called evidence 

P(e()IA), eq. (6.5); this adaptation of A is repeated every time a new training example 

is added to the training set. In the context of learning from random examples, it has 

previously been argued that this 'evidence procedure' can constitute a good approxi-

mation to the hierarchical Bayes scheme' [Mac92a, Mac92d, Gu1891, although claims 

to the contrary have also been advanced [Wol93, WSW93, WS95]. Here, we will disre-

gard this question and simply explore the consequences of the evidence procedure for 

inference model selection when it is combined with query learning. 

'Note that in the case where the hyperparameters influence only the (pseudo-) prior, the evidence 
procedure corresponds to the well-known statistical technique of 'type II maximum likelihood' (ML-11) 
(see, e.g., [Ber85]). 
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6.3 Linear perceptron 

We now investigate the effects of combining query learning with the evidence procedure 

for the case of linear perceptron students, continuing the discussion in Section 5.3. 

The inference models that we consider are parameterized by the weight decay A and 

the temperature parameter 0 which appear in the Gibbs post-training distribution of 

students (5.6), 

r"'  exp I - ( 	(y - f(x)) 2  + w 
2
N)]. 	(6.6) 

L 
As discussed in Section 5.3, queries selected for minimum entropy and for minimum gen-

eralization error (assuming the inference model is correct) are identical. Furthermore, 

query selection is not affected by the values of the hyperparameters A and 3. The only 

effect of choosing A and 3 is therefore on the post-training student distribution (6.6). 

Using the explicit forms of the probabilistic input-output relation (5.7) and the 

pseudo-prior (5.8) leading to the post-training distribution (6.6), the evidence (6.5) for 

A and 3 can easily be shown to be 

N12 / 3 ) p/2 
= const 

IMNI1/2 	
exp [_ 

	

- aTM 1 a)] 

where the multiplicative constant depends only on 	Here we have, as usual, defined 

the matrix MN and vector a as 

MN=A1+A A=x(x)T
1 

a = 

with 1 denoting the N x N unit matrix. Choosing A and 0 to maximize the evidence 

is equivalent to maximizing the normalized log-evidence 

= —tr In (MN)+1n/3_ 	(()2 - aTM 1 a) +const. 

(6.7) 

In general, the values of A and 3 obtained by maximizing (6.7) obviously depend on 

the training set In the thermodynamic limit N -* oc, however, their variances 

vanish as 0(11N) [MS95]. With probability one, A and /3 therefore equal their aver-

age values, obtained by maximizing the average log-evidence (ln P(O(P)IA, 13)) (())  

[BS94, M595]. To perform the average, an assumption about the functional form of 
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the teachers actually producing the training data has to be made. In the following, 

we restrict attention to the case of noisy nonlinear perceptron teachers considered in 

Chapter 4, writing the average output of teacher V for input x as 

/ 
1 xTwv' = (Y)p yx , = 	 I 

with a nonlinear noise-averaged output function (.), and its variance as 

- )2)P(Iv) = 2 (xTw). 

(compare eqs. (4.1, 4.2)). The teacher weight vector wv is assumed to be drawn 

from a Gaussian prior, P(V) cx exp(—w,/o), while input vectors x are taken to be 

normalized to x 2  = No. Given these assumptions, the average of the log-evidence (6.7) 

can be carried out using the techniques described in Appendix 4.6. As in Chapters 3 

and 4, it is convenient to express the result in terms of a rescaled version of the weight 

decay, .A = 

1PCO 

= - I 	' (G(') 
- 	

+ In 
P(O(P)) 	2 j, 

+3 U,2ff
[(1 - G()) (i_ 	- a] 

	
(6.8) 

pt  

The notation employed here follows that introduced in Chapter 4: The 'response func-

tion' G(A) is the average of -tr M 1  over the training inputs selected by queries and 

is given by 
1 

G()= 	
—Ao 

 

where [cj is the greatest integer less than or equal to c and Aa = a - [cj. The 

effective noise level of the teacher, given by 

1 
Uff = act + [K2(h))h - U2012(h(h))] 	aact = (2(h)) 

(where h is a Gaussian variable with zero mean and variance o,a) is the sum of the 

actual teacher noise and the effective noise arising from the fact that the linear student 

cannot reproduce a nonlinear teacher perfectly. The optimal weight decay A pt , finally, 

is the value of A for which optimal generalization performance is achieved at zero 

learning temperature (T = 1/0 -* 0); it is defined formally in eq. (4.13). Note that 

eq. (6.8) is also valid for learning from random examples if the appropriate value of the 

(6.9) 
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response function, 

G(A)= I  1—a—A+V(1—a—A) 2 +4A) 
2A ( 

is used; it therefore generalizes the result derived for linear teachers in Ref. [BS94]. By 

differentiating the average log-evidence (6.8) with respect to A and /3, one finds that it 

always has a maximum at 

A = 	/3 = 1/o ff . 	 (6.10) 

For learning from (minimum entropy or minimum generalization error) queries, it can 

be verified numerically that this maximum is unique for a > 1; for random examples, 

the same holds true for any nonzero a. For a detailed discussion of the consequences of 

the hyperparameter assignments (6.10) resulting from the evidence procedure, we refer 

to Ref. [BS94]. For our purposes, it is sufficient to note that the resulting (average) 

generalization error is given by 

12 1  
€g(a) - 	eff = (

0,2+ 
	G(A0 ) = effG(AOpt) 	 (6.11) 

where the contribution 1 0 arising from the (effective) teacher noise alone has been 

subtracted off explicitly on the left hand side. The result (6.11) follows from the 

generalization to finite T = 1/0 of the result (4.10) (cf. the discussion after eq. (4.16)). 

As was to be expected on the grounds that the evidence procedure actually assigns the 

value Aopt  to A, eq. (6.11) is (up to the slightly modified prefactor 4 ) identical to the 

result (3.41, 3.44) derived in Chapter 3 for the case of optimal weight decay. We found 

there that queries always lead to a lower generalization error than random examples. 

Our main conclusion at this point is therefore that the evidence procedure avoids the 

problem of query learning assuming the inference model is correct which we discussed 

in Section 5.3: Queries selected to minimize the generalization error can now no longer 

lead to a higher generalization error than random examples, but perform consistently 

better. 

So far, we have not yet discussed the effects of combining the evidence procedure 

with query learning in the regime a < 1. From the results (6.8, 6.9) obtained above, 

4 1n Ref. [BS94], the generalization error is defined by the deviation of the average (over the post-
training distribution) student output from the teacher output, which corresponds to an evaluation of 
the Bayes optimal predictor (see, e.g., [Ber85, Pil91]). This would simply remove the contribution 
proportional to 1/0 from (6.11) and therefore yield exactly the optimal generalization error (3.41, 
3.44). 
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one derives in this case 

a 1' 	 ___  
In _A 
	

+lnfi — /3aeff 	 +const. 
N \ 	 P(O(P)) - 2 L k.A + i) 	 (A + 1)A0t j  

(6.12) 

This means that the log-evidence becomes independent of a apart from an overall 

prefactor. For given A, its maximum value with respect to /3 is 

a1 / A O  
[111 

A 	+ i) _i] 

independently of A. This means that the log-evidence does not have a unique maximum; 

instead, there is a line of degenerate maxima in 3-A space. Intuitively, the fact that for 

query learning in the regime a < 1, the evidence does not contain sufficient informa-

tion to determine A and 0 uniquely may not be too surprising: We recall that queries 

for minimum entropy or minimum generalization error select input vectors which are 

mutually orthogonal (as long as this is possible, i.e., for a < 1), because this yields 

most information about the student weight vector. In order to estimate both hyperpa-

rameters A and 0, however, some overlap between training inputs is needed to separate 

the signal and noise components of the training outputs. Queries can therefore be de-

scribed as obtaining maximum information about the student Al, leaving only a limited 

amount of information about the hyperparameters. This suggests that, in particular 

when query learning is to be combined with inference model selection, it might be use-

ful to select queries which maximize the joint information about student parameters 

and hyperparameters. We leave a more detailed investigation of this approach (which 

can be traced back to work on optimal experiment design in the statistics literature, 

see, e.g., [Bor75]), as a topic for future research. 

Finally, note that our above conclusion that the evidence procedure is ill-defined for 

query learning in the regime a < 1 is not an artefact of averaging the log-evidence over 

training sets. This can be verified directly from the expression (6.7) for the unaver-

aged log-evidence, using the fact that for queries and a < 1, all input vectors x are 

orthogonal to each other (and of equal length, due to the assumed spherical constraint 

on inputs vectors). 

6.4 Binary perceptron, N = 2 

Let us now explore the performance achieved by query learning for minimum entropy 

combined with the evidence procedure, when applied to binary perceptron students. 
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We use the same general setup and notation as in Section 5.5. The inference models 

that we consider are parameterized by the parameter pN  which determines the assumed 

probability of sign-reversals of the training outputs due to noise. In contrast to the 

case of linear perceptron students, the value of p v  affects both how inferences are made 

from the training data and how queries are selected. This makes an analytical treat-

ment of this scenario extremely difficult, and we have therefore resorted to computer 

simulations. For simplicity, we restrict ourselves to the small system limit, N = 2, 

leaving the analysis of larger systems for further study. 

The simulation results shown below were obtained using the techniques described 

in Section 5.5.1. After each new training example had been added to the training 

set, the evidence (which, as can be seen by inserting (5.16, 5.17) into (6.5), is simply 

a polynomial in pu), was calculated and p v  set to the value at which it attained 

its maximum in the interval p [0, 1/2]. For a = p < 3, where the evidence is 

independent of p, the value of p v  was left unchanged from its initial value, chosen 

here to be  pr = 0. 

Figure 6.1 shows the average generalization error achieved by minimum entropy 

queries combined with the evidence procedure, for the case where the true noise process 

is sign-flip noise. The average generalization error is seen to decay to zero exponen-

tially quickly with a, as was the case for an almost correct, fixed noise level p 

(see Section 5.5.1). As expected, the values of pjj -  chosen by the evidence procedure 

(see the histogram in Figure 6.2) approach the true noise level p v  for increasing a. In 

this case, combining query learning with the evidence procedure is therefore a definite 

advantage: the problem of self-confirming hypotheses far from the truth is avoided, 

and the resulting generalization performance is significantly better than for random 

examples (compare Figure 5.4). For the case where the true noise process is Gaussian 

weight noise, one sees from Figure 6.3 that the evidence procedure still prevents the 

occurrence of self-confirming hypotheses far from the truth. However, the decay of 

the generalization error to zero is much slower than for sign-flip noise, in agreement 

with our qualitative description in Section 5.5.1 of weight noise as sign-flip noise which 

becomes increasingly strong as a increases. The p a-histogram in Figure 6.4 also sup-

ports this picture, with the largest values of p v  selected by the evidence procedure 

steadily increasing as more and more training examples are collected. The simulation 

results suggest that minimum entropy queries combined with the evidence procedure 

actually yield the same asymptotic power law decay of the generalization error with a 

5 1t is a straightforward exercise to verify that query selection is independent of p jj- for a < 3. The 
results for a > 3 are therefore entirely independent of the initial value of p.,v-  at a = 0. 
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Figure  6.1. Query learning combined with the evidence procedure for the binary 
perceptron of size N = 2, when learning from a teacher with sign-flip noise level 

Pv = 0.2. The average generalization error (statistical error less than 4%) decays 
exponentially with the number of training examples a, while the average value of p 
selected by the evidence procedure tends to the true noise level Pv = 0.2. 

as random examples (Eg  cx a_h/3),  but with a reduced prefactor. This can be seen from 

the generalization performance improvement factor ic, which tends to a constant ( 2) 

for a -* oo (see figure 6.3). Although much less drastic than in the case of sign-flip 

noise, where ic diverges for a -* oc, the improvement in generalization performance is 

therefore still appreciable: after all, a value of ic 2, say, together with a power law 

decay E5  cx a_13  implies that the number of training examples needed to achieve a 

certain generalization error is roughly eight times smaller for query learning (combined 

with the evidence procedure) than for random examples. 

In summary of our results for the N = 2 binary perceptron, we have found that 

a combination of query learning with the evidence procedure avoids the problem of 

self-confirming hypotheses far from the truth. This result is particularly encouraging 

for the case of weight noise: Although the true inference model is not contained in 

the class of inference models from which the evidence procedure can select the most 

appropriate one (by choice of the hyperparameter p4,  the fact that the inference 

model is adapted at all seems to be sufficient to prevent self-confirming hypotheses. 

The evidence procedure also secures a generalization performance for queries which is 

consistently and significantly better than from random examples. 
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Figure 6.2. Histogram of p v  values selected by the evidence procedure for teacher 
sign-flip noise. As the number of training examples a increases, the distribution of p Af  
narrows down around the true noise level p = 0.2. 
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Figure 6.3. Query learning combined with the evidence procedure for the binary 

perceptron of size N = 2, when learning from a teachei with weight noise -y = 0.99. 
The average generalization error (statistical error less than 1.5%) decays as a slow power 
law with the number of training examples c, while the average value of p.Ar  selected 
by the evidence procedure keeps increasing towards the maximum value p = 0.5. 
The improvement in generalization error ic over the best performance obtainable from 
random examples (corresponding to p = 0.0, see figure 5.8) tends to a constant, it 2, 
for c —* oc. 
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Figure 6.4. Histogram of PN  values selected by the evidence procedure for teacher 
weight noise y = 0.99. As the number of training examples c increases, larger and 

larger values of PM  are selected. 
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6.5 Summary and conclusion 

Combining query learning with an adaptation of the inference model using the ev-

idence procedure, we have found for the scenarios considered that the problem of 

self-confirming hypotheses is avoided, and that the generalization error is consistently 

reduced compared to learning from random examples. Overall, the examples that we 

have studied suggest that combining query learning and model selection is a promising 

method for making query learning robust against inference model misspecifi cation ; it 

will of course be necessary to test this statement for more realistic learning scenarios 

before any claim to generality can be made. 

Let us conclude by mentioning a few possible extensions of the work presented 

in this chapter. We have only explored one of a variety of conceivable methods for 

making query learning more robust against inference model misspecification. First of 

all, other procedures for selecting appropriate inference models based on, for example, 

cross-validation, bootstrap etc. (see, e.g., [Sto74, Sto77]) could be tried and compared 

to the evidence procedure, building on the analyses for learning from random exam-

ples [MS95]. Furthermore, it would be interesting to consider the possibility of enlarging 

the space of inference models dynamically as more training data are received. Finally, 

it might also be possible to tackle the problem of self-confirming hypotheses by relat-

ing it to the 'exploration-exploitation' dilemma studied by researchers in the field of 

reinforcement learning (see, e.g., [BSW90, BBS91, TM92]). This could prove useful be-

cause the problem of self-confirming hypotheses can be viewed as a case of 'exploiting' 

the teacher's knowledge to make the student distribution as narrow as possible, while 

not 'exploring' the input space sufficiently. 



Chapter 7 

Towards realistic neural networks 

I: Finite size effects 

Abstract 

Our previous analyses of the efficacy of query learning have focussed mainly 
on the thermodynamic limit N -* oo of infinite system size. We now remove 
this restriction by studying finite N corrections. In particular, we consider 
a learning scenario with a linear perceptron student learning from a noisy 
linear teacher, for which most properties of learning and generalization can 
be derived from the average response function G. A method for calculating 
G using only simple matrix identities and partial differential equations is 
presented. Using this method, we first rederive the known result for G in 
the thermodynamic limit of infinite perceptron size N, which has previously 
been calculated using replica and diagrammatic methods. We also show 
explicitly that the response function is self-averaging in the thermodynamic 
limit. Extensions of the method to more general learning scenarios with 
anisotropic teacher space priors, input distributions, and weight decay terms 
are discussed briefly. Finally, finite size effects are considered by calculating 
the 0(11N) correction to G. We verify the result by computer simulations 
and discuss the consequences for the efficacy of query learning in linear 
perceptrons of finite size. 

7.1 Introduction 

In the present chapter, we extend our previous analyses of query learning by removing 

the restriction to the thermodynamic limit of large system size, N -* oo. In particular, 

we study finite size effects for learning with linear perceptron students by calculating 

135 
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0(11N) corrections to the average generalization error and related quantities. We 

use the results to bound the critical system size N above which the thermodynamic 

limit predictions are valid to a good approximation. Our main conclusion will be that 

except in a small region in parameter space around a phase transition in the learning 

behaviour, the critical system size is small enough for the thermodynamic limit to be 

directly relevant to real-world system sizes N of the order of several tens or hundreds. 

Let us first review briefly the scenario of linear perceptron learning that we consider, 

described in more detail in Chapter 3. A linear perceptron student Al is parameterized 

in terms of a weight vector wN  E RN and maps real input vectors x E RN to real 

outputs y E lit according to 

Y = fM(x) = =wx. Ar 

A commonly used learning algorithm for the linear perceptron is minimization of the 

training error E, i.e., the error that the student Al makes on the training set. Using 

as an error measure the usual squared output deviation, the training error for a given 

set of p training examples, o() = I W, Y"), ft = 1.. .p}, is 

p 

= 	(y - fr(x))2 = 
1 	 i 	2 

L1 ( - 

To prevent the student from fitting noise in the training data, a quadratic weight decay 

term jAW2  is normally added to the training error, with the value of the weight decay 

parameter ,\ determining how strongly large weight vectors are penalized. Thus, it is 

the function 

B = E +
1 
 Aw 2 	 (7.1) 

that is minimized. This minimization can be realized by stochastic gradient descent, 

for example, leading to the Gibbs distribution of students (3.27), 

P(AlIe) 
exp [_ ( 	

(y - fAr(x))2 + 

	

( 7.2) 

where the 'temperature' T = 1/0 measures 'how stochastic' the gradient descent is. 

This distribution has an associated entropy 

= —1lnI3 - lnlMNI + constant 
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where the matrix MN is related to the correlation matrix of the training inputs by 

MN=A1+A (73) 

We shall consider minimum (student space) entropy queries in the following, which are 

chosen to minimize SN. If we assume training inputs to be normalized to x 2  = N, 

then this implies that each new training input has to be chosen along the direction of 

an eigenvector of MN with minimal eigenvalue, as explained in Section 3.3. Applying 

such queries in sequence, one obtains 'blocks' of size N of mutually orthogonal (but 

otherwise random) training inputs. 

As usual, we have to specify what type of rule our linear perceptron student is trying 

to learn in order to examine the resulting generalization performance. In other words, 

we have to define the teacher space. The simplest assumption is that the problem is 

perfectly learnable, i.e., that the teacher, like the student, is a linear perceptron. A 

teacher V is then specified by a weight vector w l, and maps a given input x to the 

output y = f(x) = wx/\/i. We assume that the test inputs for which the student 

is asked to predict the corresponding outputs are drawn from an isotropic distribution 

over the hypersphere x 2  = N, P(x) cx 6(x 2  - N). The generalization error, i.e., the 

average error that a student .Af makes on a random input when compared to teacher 

V, is then given by eq. (3 . 26) : 1  

= ((f(x) - f(x))2) P(x) = 1 (WV - w)2. 	 (7.4) 

The main quantity of interest to us will be the average of the generalization error over 

all possible training sets and teachers; to avoid clutter, we write this average simply 

as 6g  We assume that the training outputs generated by the teacher are corrupted 

by additive noise, y' = f(x') + where the 17/1  are independent random variables 

with zero mean and variance o ,2 . To perform the average over teachers, we assume 

that teacher weight vectors are sampled randomly from an isotropic Gaussian prior, 

P(w) cx exp(- 2 w,). Specializing to the limit T -* 0 (corresponding to deterministic 

gradient descent), the resulting average generalization error is given by eq. (3.49), 

I 

	

Eg  = {2G + A(7 2  - A)
aG  
	 (7.5) 

2 	 OA 

'As in Section 3.3, we neglect the additive contribution arising from noise on the teacher outputs 
alone. 
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where G is the average of the response function over the training inputs: 

1 
G = (c)P({x}) 	= tr M 1 	 (7.6) 

In order to determine the effects of finite system size N on the improvement in gener-

alization performance due to query learning, 

€g (random examples) 
(7.7) 

eg (minimum entropy queries) 

we therefore need to calculate the average response function for random examples 

and minimum entropy queries. For minimum entropy queries, we denote the response 

function by cQ  and its average by GQ; the two are actually identical and can be 

evaluated exactly for any system size N, with the result (3.42) 

Lci 
GQiEcQ= 	 + 

1—Lci 
 

).+[aj+1 A +[a] 

where [a] denotes the integer part of a and La = a - [a] its non-integer part. Our 

main task in this chapter is therefore the calculation of the average response function 

G for random training inputs. 

We will sometimes find it useful to interpret our results in terms of the average 

eigenvalue spectrum p(a) of the input correlation matrix A. It is defined as 

p(a) = K8(a_ a)\ (7.8) 

where we have denoted the eigenvalues of A by a (i = 1 . . . N). From this definition, 

it follows directly that 

G= 1 da 	. 	 ( 7.9) 

Conversely, p(a) can be related to G by using the identity 

. 

6(x)= 
1  
—hmlm 
7r€—o+ 	x — iE 

which yields [Kro92] 

p(a) = 	lim ImGI,_ a _j e  . 	 ( 7.10) 
11 	

71• 

As could have been expected, the singularities of the average response function G in the 

complex .\ plane determine the average eigenvalue spectrum of the input correlation 

matrix A. 
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Parenthetically, we note that the result (7.5) for the average generalization error 

can be viewed as the long time limit of gradient descent in weight space on the energy 

function E given by eq. (7.1). The average eigenvalue spectrum p(a) can be used to 

determine the corresponding time evolution for finite times [Kro92]; for a discussion of 

finite size effects in this context, see Ref. [Sol94]. 

Equations (7.5, 7.10) show that the key quantity determining learning and gener-

alization in the linear perceptron is the average response function G defined in (7.6). 

This function has previously been calculated in the thermodynamic limit, N -* 00 

at c = p/N = const., using a diagrammatic expansion [HKT89] and the replica 

method [Opp89, K091]. In Section 7.2, we present what we believe to be a much 

simpler method for calculating G, based on simple matrix identities. We also show ex-

plicitly that the response function G  is self-averaging in the thermodynamic limit, which 

means that the fluctuations of G around its average G become vanishingly small as 

N -* 00. This implies, for example, that the generalization error is also self-averaging. 

In Section 7.3, the method is extended to more general cases such as anisotropic teacher 

space priors and input distributions, and general quadratic penalty terms. Finally, fi-

nite size effects are considered in Section 7.4, where we calculate the 0(11N) correction 

to G, verify the result by computer simulations and examine the resulting effects on 

the generalization performance for learning from random examples and on the efficacy 

of query learning. We conclude in Section 7.5 with a brief summary and discussion of 

our results. 

7.2 Calculating the response function 

Our method for calculating the average response function C is based on a recursion 

relation relating the values of the (unaveraged) response function G  for p and p + 

1 training examples. Assume that we are given a set of p training examples with 

corresponding matrix M. By adding a new training example with input x, we obtain 

the matrix M- = M + xxT. It is straightforward to show that the inverse of M-
can be expressed as 

(M 1 
 = M1.1 - MxxTM;. 	

(7.11) 
1+xTMx 

(One way of proving this identity is to multiply both sides by M and to exploit Af 

the fact that M-M-1  = 1 + xxTM.) Taking the trace, we obtain the following 
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recursion relation for g: 

c(p+ 1) =  c(p)- i!: _
XTM.2X 

N 1 + xTMx 	
(7.12) 

 Ar 

Now denote zi = XTM X  (i = 1, 2). With x drawn randomly from the assumed 

input distribution P(x) cx 6(x 2 —N), the z.j can readily be shown to be random variables 

with means and (co-)variances 

1 
(z) = tr M 	(zjzj) 

= N+ 
2 [-Ltr M 3  - ( tr M) (tr My)] 

where we have used the notation Azi = z.j - (z). Combining this with the fact that for 

k > 0, tr M-c < N.\ = 0(N), we have that the fluctuations Lz.j of the zi around 

their average values are 0(i/./W); inserting this into (7.12), we obtain 

1 	trM 2  
c(p + 1) = c(p) - 	 '+ 0(N-3/ 2 ) 

N  + tr M1  Ar 

= c(p)+ 
1 ac() 	1 	f -) A T -3/ 2  

O) l+c(p) 
-r L'i1V (7.13) 

Starting from (0) = 1/A, we can apply this recursion p times to obtain c(p)  up to 

terms which add up to at most 0(pN 3/2 ). This shows that in the thermodynamic 

limit, defined by N -* 00, c = p/N = const., the response function G  is self-averaging: 

whatever the training set, the value of G will always be the same up to fluctuations 

of 0(N 1 / 2 ). in fact, we shall show in Section 7.4 that the fluctuations of G are only 

0(1/N). This means that the 0(N 3/2 ) fluctuations from each iteration of (7.13) are 

only weakly correlated, so that they add up like independent random variables to give 

a total fluctuation for c(p) of 0((p/N3)1/2) = 0(1/N). 

We have seen that, in the thermodynamic limit, G  is identical to its average, G, 

because its fluctuations are vanishingly small. To calculate the value of G in this limit as 

a function of o and A, we replace G  by C in (7.13), insert the relation G(p+ 1)— G(p) = 

aG(c)/ac + 0(1/N2 ), and neglect all finite N corrections. This yields the partial 

differential equation 
ÔG ÔG1 - 

o 	aAl+G 
—o 	 (7.14) 

U  

which can readily be solved using the method of characteristic curves. A brief account of 

this method can be found in Appendix 7.6. Using the initial condition GIo = 1/A, one 



CHAPTER 7: FINITE SIZE EFFECTS 	 141 

obtains hG = ). + ü/(1  + G) which leads to the well-known result (see, e.g., [HKT89]) 

G= 2A  (1—a—A+ \F(l—a—A) 2 +4A).  (7.15) 

In the complex )¼ plane, G has a pole at \ = 0 and a branch cut arising from the root; 

according to (7.10), these singularities determine the average eigenvalue spectrum p(a) 

of A, with the result [Kro92] 

p(a) = (1— )0(1 - a 	
1 

)6(a) + 	- a)(a -  a) 	(7.16) 
27ra 

where 0(x) is the Heaviside step function, 0(x) = 1 for x > 0 and 0 otherwise. The 

root in (7.16) only contributes when its argument is non-negative, i.e., for a between 

the 'spectral limits' a_ and a+, which have the values a± = (1 + /)2.  Since G  is 

self-averaging, the fluctuations of the true eigenvalue spectrum of A around its average 

p(a) are also vanishingly small in the thermodynamic limit 2 . 

7.3 Extensions to more general learning scenarios 

We now discuss some extensions of our method to more general learning scenarios. 

First, consider the case of an anisotropic teacher space prior, given by P(w v ) cx 

exp(—w? 1 W,) with a symmetric positive definite covariance matrix E. This 

does not affect the definition of the response function, but (7.5) now has to be replaced 

by 

Eg (t --+ oo) = (tr E) I&2G  + A(& 2 
 - 9G1 

with a renormalized noise level &2 = a 2/(tr E u ). The factor tr E determines by 

how much the average squared length of the teacher weight vector is now larger than 

for the isotropic teacher space prior considered in the previous section. This factor 

also scales the size of the typical squared teacher output. Therefore, it appears as a 

multiplicative factor in the generalization error, and also determines the renormalized 

noise level (which is, effectively, a mean square noise-to-signal ratio). 

As a second extension, assume that the inputs are drawn from an anisotropic dis-

tribution, P(x) cx 8(xT_1x - N). It can then be shown that the asymptotic value of 

the average generalization error is still given by (7.5) if the average response function is 

redefined to be G = (tr This modified response function can be calculated 

'More precisely, the fluctuations of linear functionals of the eigenvalue spectrum of A (which is, 
mathematically, a distribution) vanish as N -+ oo. 
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as follows: First we rewrite G as (4tr 	_1 + A) - '), where A = 
is the correlation matrix of the transformed input examples 3  * = E_1/2x. Since 

the RA are distributed according to P(*1 ) oc 6((*lL)2 - N), the problem is thus re-

duced to finding the average response function GL = (GL) = ( y tr (L + A)_ 1 ) for 

isotropically distributed inputs and L = )_ 1 As explained in Appendix 7.6, a differ-

ential equation analogous to (7.14) holds for GL.  Together with the initial condition 

GLIa=O = Itr L- ', one obtains GL as the solution of the implicit equation 

—1 

GL=tr(L+lG1) . 	 ( 7.17) 

As explained above, the modified response function G = ( y tr EM' )  for the case JV  

of an anisotropic input distribution considered here is given by the value of GL which 

solves (7.17) for L = AE' '. If the eigenvalue spectrum of E has a particularly simple 

form, then the resulting dependence of C on a and ) can be expressed analytically, 

but in general (7.17) will have to be solved numerically. 

Finally, one can also investigate the effect of a general quadratic weight decay term, 

wAwM , in the energy function E, eq. (7.1), which defines the training algorithm. 

This modifies the definition (7.3) of the matrix MM to MM = A+A, and the calculation 

of the average generalization error becomes more complicated in this case. In addition 

to the average response function C = ( y tr M1),  which can be obtained as the 

solution of (7.17) for L = A, one now also needs to know the modified response functions 

GAn = (tr AThM1)  for n = 1, 2. Fortunately, it is possible to calculate the general 

modified response function GBL = ( tr B(L + A)_ 1 ) for positive definite symmetric 

L and a general matrix B by extending the methods of the previous section. As outlined 

in Appendix 7.6, one obtains in the thermodynamic limit a differential equation for GBL 
similar but not exactly identical to (7.14), which can be solved to give 

GBL = tr B (L 
+ 1 +GL1). 	 (7.18) 

Thus, GBL  can be calculated straight away once CL is known. In the specific case of 

a general quadratic weight decay that we consider here, one has L = A and CL = G, 

and by setting B = A and A 2  in (7.18), one obtains GA = 1 - cG/(1 + C) and GA2 = 

*tr A—a/(1+G)+a 2G/(1+G) 2 . Using these relations, the average generalization error 

can be written in terms of G alone, although the final expressions become rather more 

3 We write E 112  for the unique positive definite symmetric matrix which obeys E1"2E1"2 = E1 
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cumbersome than (7.5). We note parenthetically that expressions (7.17) and (7.18) can 

also be obtained using diagrammatic methods [Saa]. 

7.4 Finite size effects 

So far, we have considered the calculation of the response function for random training 

examples in the thermodynamic limit of perceptrons of infinite size N. The results are 

clearly only approximately valid for real, finite systems, and we therefore now turn to 

an investigation of the corrections for finite N, by calculating the 0(11N) correction 

to G and p(a). We will use the results to analyse the effects of finite system size 

on the average generalization error € g  for random examples and the improvement in 

generalization performance ic due to query learning. Rather than directly calculating 

the desired quantities for the case of normalized inputs of interest (P(x) cx 6(x2  - N)), 

we shall first study the case of Gaussian distributed inputs, P(x) cx exp(—x 2 ), for 

which both the analysis and the interpretation of the results is somewhat simpler. The 

superscipt 'G' will be used to denote quantities for Gaussian inputs, while 'n' refers to 

inputs normalized to x 2  = N. 

First note that, for A = 0, the exact value of the average response function for 

Gaussian inputs is [Han93] 

GGI 0  = 	( tr A_i) = (a - 1 - 11N) 	 (7.19) 

for a > 1 + 11N. This result follows straightforwardly from the fact that the inverse in-

put correlation matrix, A — ', obeys an 'inverted Wishart distribution' (see, e.g., [Eat83], 

Def. 8.1 and Exercise 8.7). Eq. (7.19) clearly admits a series expansion in powers of 

11N. Assuming that a similar expansion also exists for nonzero A, we write 

GC-  = G0 + G?/N  + 0(1/N2 ). 	 (7.20) 

Here G0  is the value of G in the thermodynamic limit as given by (7.15), which is 

identical for Gaussian and for normalized inputs'. We calculate G below, and verify 

the analytical result by computer simulations. Note that there is no a priori guar-

antee that an expansion of the type (7.20) exists; compare for example the results 

of [DGPB91], which suggest that for the binary perceptron, finite size effects depend 

4 This follows directly from our derivation of the recursion relation (7.13), which depends only on 
the averages of the variables zi = xTMx  (i = 1,2) and hence only on the correlation matrix ( xxT) 

N IV

of the training inputs. 
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non-analytically on 1/N. However, the simulation results presented below do provide 

compelling evidence for the existence of the expansion (7.20) of the average response 

function in powers of 1/N. 

For finite N, not only the corrections to the average response function C but also 

the fluctuations AG = G - G of G  around its average value G become relevant. For 

A = 0, the variance of these fluctuations is known to have a power series expansion in 

1/N (see, e.g., [BSS95]), and again we assume a similar expansion for finite A, 

((Ac)2)G = (G)2  /N + 0(1/N 2 ) 

Here the first term is 0(11N) and not 0(1) because, as discussed in Section 7.2, the 

fluctuations of 9 for large N can be no greater than 0(N 1 / 2 ). 

To calculate GG and (L ° ) 2 , we start again from the recursion relation (7.12). 

However, now we cannot neglect terms involving fluctuations of and z = xTMix  

(i = 1, 2), but have to expand everything up to second order in the fluctuation quantities 

AG and Azi . To carry out the averages, the (co-)variances of z1  and z2 are needed,. 

given by 

	

(zz) = 	t  M 3  Ar 

for Gaussian inputs. Averaging over the training inputs and collecting orders of 11N 

yields after some straightforward algebra the known equation (7.14) for C0  and 

C G DG 	1 	a 	a0 1 	Aôü 	DA 1+ C0  = 	
r,' 	-( G)2)(1 

	 0)2] 

GG 0G0 1a2 G0  
(7.21) 

(1+ Co ) 2  

By squaring the difference between (7.12) and its average over the training inputs, one 

can similarly derive an equation for (0)2: 

	

a(AG) 2  - O(AG)2 1 	
- —2 

(G)2  OGo
(7.22) 

	

ac 	DA 1 + 	C0  - ( 1 + Co ) 2  a  

Details of the solution of these two partial differential equations are again relegated 

to Appendix 7.6. At c = 0, one has 9 = C = G0  = 1/A (for both Gaussian and 

normalized inputs). It follows that C° = (z°) 2  = 0; using these initial conditions, one 

finds ()2 = 0 for all a and A, and 

- G(1 - AG 0 ) 

(7.23) 
1 - ( 1-j-AG)2 
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In the limit A -* 0, G 	1/(a - 1) 2  consistent with (7.19); likewise, the result 

(L) 2  0 agrees with the exact series expansion of the variance of the fluctuations of 

G for A = 0, which begins with an 0(1/N 2 ) term [BSS95]. 

Note from (7.23) that G °  is positive for all a > 0, since G 0  < 1/A. This means that 

at least to first order in 11N, the average response function is an increasing function of 

11N. This can be related to the 1/N corrections to the average eigenvalue spectrum 

p(a) of the input correlation matrix. Setting 

PG(a) = p0(a) + p?(a)/N  + 0(1/N2 ) 	 ( 7.24) 

where po (a) is the N -* oo result given by (7.16), one derives from (7.10) and (7.23) 

1 	1 
p?(a) = 6(a - a) + 6(a - a) 

- 	
(7.25) 

4 	 4 	2(a - a)(a— a 

Figure 7.1 shows sketches of po (a) and p(a). Note that fdap(a) = 0 as expected 

since from the definition (7.8) the normalization of p(a), fdap(a) = 1, is independent 

of N. Furthermore, there is no 0(11N) correction to the 6-peak in po(a) at a = 0, 

since this peak arises from the N - p zero eigenvalues of A for a = p/N < 1 and 

therefore has an exact height of 1 - a for any N. The 6-peaks in p(a) at the spectral 

limits a+  and a_ are an artefact of the truncated 11N expansion: p(a) is determined by 

the singularities of G as a function of A, and the location of these singularities is only 

obtained correctly by resumming the full 11N expansion. The 8-peaks in p(a) can be 

interpreted as 'precursors' of a broadening of the eigenvalue spectrum of A to values 

which, when the whole 1/N series is resummed, will lie outside the N -* oo spectral 

range [a_, a+]. The negative term in p(a) represents the corresponding 'flattening' of 

the eigenvalue spectrum between a_ and a+.  We can thus conclude that the average 

eigenvalue spectrum of A for finite N will be broader than for N -* oo for Gaussian 

inputs. Since the average response function is from (7.9) an average of the convex 

function 1/(A + a) over p(a), this broadening translates into a higher value of the 

response function for finite N than for N -* oc, in agreement with the result G? > 0 

found above. 

Note that our prediction of a broadening of pG(a)  for finite N can also be confirmed 

by considering the extreme case N = 1: In this case, the 'matrix' A becomes the scalar 

sum of p Gaussian random variables with zero mean and unit variance. Hence, p(a) 

is just the probability density of a 2 -distribution with p degrees of freedom, which 

is nonzero for all a > 0, i.e., over a much broader range than the spectrum [a_, a+] 

predicted for N -* oo. 
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(a) 
	

(b) 

Figure 7.1. Schematic plot of the average eigenvalue spectrum p(a) of the input 
correlation matrix A. (a) Result for N -* oo, po (a). (b) 0(1/N) correction, pi(a), for 
Gaussian (solid line) and normalized (broken line) inputs. Arrows indicate 6-peaks and 
are labelled by the corresponding heights; in (b), the 6 peaks are identical for Gaussian 
and for normalized inputs. 

Before comparing the result (7.23) to the corresponding 0(11N) correction to the 

average response function for normalized inputs, we present the results of computer 

simulations, performed to test our analytic predictions. For perceptron sizes between 

N = 4 and N = 80, we calculated the response function by direct matrix inversion, 

averaging over between 1200 (for N = 80) and 200 000 (for N = 4) randomly sampled 

sets of training inputs to obtain an 'experimental' value GG  of the average response 

function. In figure 7.2, we plot the results in the form (GG - G o )/G versus 11N for 

= 0.5, 1,2 and A = 0.01, 0.1, 1, using the results for G0 and G °  from eqs. (7.15,7.23). 

The simulation results are seen to agree well with the theoretical prediction from (7.20), 

namely, (GG - Go )/G 11N + 0(1/N 2 ). The 0(11N 2 ) terms, which correspond to 

corrections to GG  of second and higher order in 11N, appear as deviations from the 

straight line (G °  - G0 )/G = 11N in figure 7.2 for larger values of 11N. These higher-

order corrections are expected to-be negligible as long as 1/N << G0 /G, because this 

entails that the first-order correction G° /N is already small compared to the zeroth 

order contribution G0. Correspondingly, the strongest higher-order corrections in the 

plots in figure 7.2 are seen to occur for A = 0.01, c = 1, which has the smallest value 

of Go/G?  amongst all the (A, a) values used in the plots. 

We also used the computer simulations to calculate directly the average eigenvalue 

spectrum of the input correlation matrix A. Figure 7.3 shows the results for a = 10 

and N = 4, N = 8, which are based on 10 7  and 2 x 106  randomly sampled sets of 
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Figure 7.2. Simulation results for the average response function GG  for Gaussian in-

puts at finite perceptron size N, for different values of weight decay A and (normalized) 
number of training examples a. The plots of (GG - Go )/G' versus 11N show that as 

11N approaches zero, the results (symbols connected by dotted lines as a visual aid) are 
well approximated by (G - Go)/G? = 1/N (broken line), in agreement with (7.20). 
Statistical errors due to the finite number of simulation samples are smaller than the 
symbol size. 

training inputs, respectively. The average eigenvalue spectrum pG(a)  was found by 

sorting the numerically determined eigenvalues of A into 100 histogram slots, evenly 

spaced across the spectral range shown in figure 7.3, and then applying a suitable 

normalization. Instead of displaying the resulting pG(a)  directly, we plot in figure 7.3 

the quantity N(pG(a) - p o (a)), which should approach p(a) for large N from (7.24). 

This approach can already clearly be seen for the relatively small values of N used in 

our simulations. We note parenthetically that the results of more extensive computer 

simulations for perceptron sizes N = 2. . . 10 suggest that for any a, N(pG(a) - p o(a)) 

as a function of a has 2N turning points between a_ and a+ (compare figure 7.3). This 

appears to be a signature of the 'level repulsion' in the joint probability density of the 

N eigenvalues of A, which tends to zero proportionally to Ia - aI as two eigenvalues 

or 'energy levels' a, and a3  approach each other (see, e.g., [Eat83]). 

Let us now compare the above results for Gaussian inputs to the case of normalized 

inputs. Expanding 

= G0 + G/N + 0(1/N2 ) 
	

(7.26) 

and 

= (z) 2 /N + 0(1/N2) 
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N(pG_po) 	 (a) 	 (b) 
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Figure 7.3. Simulation results for the average eigenvalue spectrum, pG(a),  of the 
input correlation matrix A, for the case of Gaussian inputs. The normalized number 
of training examples is c = 10 and the system size is (a) N = 4, (b) N = 8. Shown is 

the scaled difference N(pG(a) - po (a)) (full line), which should approach p(a) (dotted 

line) for large N from (7.24). The arrows indicate the delta-peak contributions to p 
at the N - oc spectral limits a± = (1±\/) 2  (compare equation (7.25) and figure 7.1); 
typical error bars for the simulation results are shown in the legend. 

as before, differential equations for G n  and (n1)2  can be obtained by the methods 

outlined above. The equation for ())2  is identical to that for (A ° ) 2 , yielding again 

the solution (t1)2 	0, while G is determined by an equation analogous to (7.21), 

but with an extra term 
2 ôG0  G0  

9A (1+G0) 2  

on the right hand side. The corresponding solution can be shown to be 

1 	2 

1+AG 	1+AG 1+G0 

The first term in brackets just yields G, the result for Gaussian inputs, and hence 

G n < G G  always. In fact, one can show that the ratio G'/G is bounded by 

G" 
—1 < 	< 2 min{ c, 1/a) - 1 	 (7.28) 

and decreases monotonically with .\, the lower and upper bound being attained for 

oc and A -* 0, respectively. This behaviour is shown in figure 7.4, which also 

illustrates that Gn can be both positive and negative (since G?  is always positive). 

The reason for this can be understood by looking at the 0(11N) correction to p(a). 
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10 1 2 3 4 

Figure 7.4. Ratio G' IGG of 0(11N) corrections to average response function for 
normalized and Gaussian inputs, as a function of a for fixed weight decay A. From top 
to bottom, the values of A are: A -* 0, A = 0.02, 0.05, 0.1, 0.2, 0.5, 1.0. 

N(p"—Po) 	
(a) 	 (b) 

0.4- 
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Figure 7.5. Analogue of figure 7.3 for the case of normalized inputs. 

Writing 

p'(a) = po(a) + p(a)/N  + 0(1/N2 ) 	 ( 7.29) 

one finds from (7.10, 7.27) that 

p(a) = p?(a) + 	- a)(a - a) - 	
(a 	a)(a a) 	

(7.30) 

as illustrated in Figure 7.1 and in agreement with the simulation results shown in Fig- 

ure 7.5. The difference p? - p, which integrates to zero over the thermodynamic limit 

!iI 
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spectrum [a_, a+],  is positive in the middle of this interval and negative at the edges, 

representing a shift of spectral weight towards the center of the spectrum. In p', this 

counteracts the broadening of the spectrum contributed by p. Depending on which 

of the two effects is stronger, G' can therefore have either positive or negative sign, in 

agreement with our above results. This of course implies that G can become 'acciden-

tally' zero at nonzero a (compare figure 7.4), in which case it cannot be expected to 

give a good estimate of the size of finite N corrections to the average response function 

since corrections of order 1/N 2  and higher may become significant. This is illustrated in 

figure 7.6, where the linear extrapolations in 11N from the thermodynamic limit result 

do not always give a good estimate of the deviation of C" from Co  for, say, N = 4 (see 

for example the case a = 1, \ = 0.1). However, the result G?I IGI shown above 

suggests that the size of the finite size corrections for normalized inputs should be (at 

least approximately) bounded by the corrections for Gaussian inputs, and inspection 

of figure 7.6 shows that this is indeed the case. Below, when we estimate the critical 

system size for validity of the thermodynamic limit analysis for normalized inputs, we 

shall therefore in fact use the results for Gaussian inputs to obtain an upper bound. 

First, however, we examine more closely the finite size corrections to the aver-

age generalization error for learning from random examples and the efficacy of query 

learning implied by the 0(11N) corrections for the response function derived above. 

From the 11N expansions (7.20, 7.26) of C we obtain a corresponding expansion of the 

average generalization error, which we write in the form 

eg (random examples) = Eg ,O + Eg,i/N + 0(1/N 2 ). 	 (7.31) 

From (7.5), the explicit expressions for 6g,O  and Eg,1 are 

1 	 G0 1 	1 [0,2

C 
+A( 2 	é3G1

Eg ,O= [cr2Co  + A(O 2 	 j , 6g,1 = a. -aA 

From (7.31) one has a corresponding expansion of the improvement in generalization 

performance due to query learning, ic, as defined in eq. (7.7): 

K = no + ic11N  + 0(1/N2 ) 

Since the average generalization error achieved by minimum entropy queries is inde-

pendent of the system size N, the expansion coefficients are simply 

6g,0 	
/4 - 
	CO 

	

eg (queries) 	- Eg(querieS) 
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Figure 7.6. Comparison of finite size effects for G for Gaussian (squares) and normal-
ized (triangles) inputs, from simulations. Shown is the ratio of the average response 
function C and the thermodynamic limit value C0. The dotted lines indicate the 
theoretical result up to 0(11N), 1 + G1 /NG 0 , with C1 given by (7.23) and (7.27), 
respectively. Top to bottom: a = 0.5, 1,2; left to right: A = 0.01, 0.1, 1. Error bars are 
smaller than the symbol size. 
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The relative size of the 0(1/N) correction is therefore the same for e g (random examples) 

and ic, 
= g,1 

	

no 	fg,o 

The thermodynamic limit value e g ,o  is independent of whether Gaussian or normalized 

inputs are considered, while Egj  assumes different values in the two cases  arising 

from the corresponding response function corrections G and G. Figure 7.7 shows 

plots of fg,o together with the relative correction Eg,1 /Eg,o for the case of Gaussian and 

normalized inputs, for teacher noise level a 2  = 0 and 0,2  = 0.5. The graphs suggest 

that the modulus of the relative correction is largest when A is small and a is close 

to 1. This is in fact not surprising; as has been pointed out by several authors (see, 

e.g., [HKT89, LKS91, BS94, Kro92, KH92a]), a phase transition in a-A space takes 

place at the point a = 1, A = 0, signalled by a critical slowing down of the learning 

dynamics [HKT89, LKS91], divergences of generalized susceptibilities [BS94, MS95] 

etc. It is therefore only reasonable to expect that finite size effects should be largest in 

this region. 

This expectation can also confirmed by an estimation of the critical system size N. 

N should be defined such that the thermodynamic limit predictions for e g (random 

examples) and K (for the case of normalized inputs) are valid to a good approximation 

for system sizes N >> N. This suggests the definition 

t 
I G I 	1fl I •  

1E  9,1 	 Eg,1 	
(7.32) 

	

N = max 	,  
Eg,O 	Eg,O J 

which ensures that Ie g , i /NI << Eg,O and k1/NI < ro for N >> N. As argued above, 

taking the maximum over the cases of Gaussian and normalized inputs ensures a rea-

sonable estimate for N even in the regime where G' is 'accidentally' close to zero. In 

principle, N depends on the number of training examples a, the weight decay A and 

the noise level a 2 . We confine ourselves to bounding N from above by maximizing over 

a 2  (which, in an experimental setting, is beyond our control anyway), replacing (7.32) 

by 
( 

6g1 	Eg l
G  

I N = max max 
( Eg ,O 	Eg o 

The second bounding operation is easily performed since Ig,1/g,OI  attains its maximum 

w.r.t. a 2  either at a 2  = 0 or for 0,2  —*oo, due to the monotonicity of Eg,i/Eg,o as a 

5 Note that unlike C e is not defined for Gaussian inputs since we have only calculated q(queries) 
for the case of normalized inputs; Gaussian inputs would lead to problems in the definition of query 
selection because the optimal queries would be input vectors of unbounded length. 
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Figure 7.7. Average generalization error for random examples: Thermodynamic limit 

results and 0(11N) corrections. Top row: Average generalization error €,o for N -* 
Middle row: Relative size 	of 0(11N) correction (with factor 1/N suppressed) 

for Gaussian inputs. Bottom row: 0(11N) correction € ,1 /c5 , o  for normalized inputs. 
All quantities are shown as functions of ) and a, for teacher noise level a 2  = 0 (left 

column) and a 2  = 0.5 (right column); for visual purposes, the top left graph is slightly 
rotated compared to the others. Note that finite size corrections are generally largest 

near A = 0, a = 1. 
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Figure 7.8. 	Critical perceptron size N: For N >> N, the results for 

€g (random examples) and ic obtained in the thermodynamic limit are valid to a good 
approximation, for any noise level a 2 . Note that the maximum of N w.r.t. A is obtained 

for A -* 0. 

function of a 2 . The above definition of N also a provides an additional safeguard 

against 'accidentally' small values of kg,i I which can occur for particular combinations 

of a, A and a 2  (see figure 7.7). We plot the resulting a dependence of N in figure 7.8 

for several values of A. N is maximal for A -* 0; evaluating this limit, we obtain  

c  <Nc(a)={ 

 

1/(1—a) 	 for 0<a< 
N 	

1 

(3a + 1)/[a(a - 1)] for a > 1. 	
(7.33) 

 

Therefore, results for c g (random examples) and n derived in the thermodynamic limit 

will be valid for any A and a 2  provided that N >> N(a). For large a, N(a) = 

3/a + 0(1/a2 ), and the condition N >> N(a) will easily be fulfilled. For finite A 

and near a = 1, the bound (7.33) is unnecessarily pessimistic, as figure 7.8 shows. 

To remedy this, we have verified numerically that for A > 2, N attains its maximum 

'Note that N is discontinuous at o = 0: its limit as a -+ 0 is in general nonzero, whereas at a = 0, 
where e 5 , 1  vanishes, it is exactly zero. 

N 
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w.r.t. a for a -* 0. From this one can derive an alternative bound for N, 

2.) - 1 
Nc < (1)2 	for A>2 

which is independent of a and a 2  and will be tighter than (7.33) near a = 1 and for 

sufficiently large A. 

7.5 Summary and discussion 

In this chapter, we have analysed finite size effects on the efficacy of query learning, in 

a learning scenario with linear students learning from a noisy linear teacher. In order 

to calculate finite size effects to first order in 11N, we have presented a new method, 

based on simple matrix identities, for calculating the average response function G. 

This function determines most of the properties of learning and generalization in lin-

ear perceptrons. In the thermodynamic limit, N -* oo, we have recovered the known 

result for G and have also shown explicitly that the response function is self-averaging. 

The versatility of our method has been demonstrated by using it to extend the ther-

modynamic limit analysis to more general learning scenarios. We have calculated the 

0(11N) correction to G for the case of both Gaussian and normalized training inputs, 

and found good agreement with the results of computer simulations in both cases. The 

effect of finite system size on p(a), the average eigenvalue spectrum of the input corre-

lation matrix, has also been derived, confirmed by simulations, and used to interpret 

the response function results. Finally, the 0(11N) corrections to the average general-

ization error for learning from random examples and the corresponding correction to 

the efficacy of query learning (for normalized inputs) has been obtained. We have used 

these results to estimate quantitatively how large the system size N has to be for the 

results obtained in the thermodynamic limit to be valid. The corresponding critical 

system size N was found to be of order unity except in the region around a = 1, .A = 0, 

where a phase transition in the learning and generalization behaviour takes place. This 

is also the region where strong overfitting occurs if the teacher is noisy, leading to a 

large value of the generalization error. For other values of a and ) - where successful 

generalization takes place - we can conclude from the smallness of the critical system 

size that the thermodynamic limit results are directly relevant for real-world system 

sizes of the order of a few tens or hundreds. The misgivings that have often been 

expressed by non-physicists about the applicability of thermodynamic limit results to 

practical learning scenarios therefore seem to be unfounded; the system size certainly 

does not have to be as large as for the physical systems typically studied with the help 
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of statistical mechanics ( 10 23 ) in order for the thermodynamic limit to yield valid 

predictions. 

Parenthetically, we remark that the 0(11N) corrections that we have calculated in 

this chapter can also be used in different contexts. For example, the generalization 

error can be estimated by the test error, obtained by comparing the outputs of student 

and teacher on a finite number of randomly chosen test inputs. Using our results, test 

error fluctuations can be analysed, and an optimal test set size can be derived for the 

case where the total number of training and test examples is limited [BSS95]. Another 

application is in an analysis of the evidence procedure in Bayesian inference for finite 

N, where optimal values of 'hyperparameters' like the weight decay parameter .A are 

determined on the basis of the training data [MS95]. Finally, the methods presented 

in this chapter can also be used to analyse finite size effects in on-line learning [BSS]. 

We therefore hope that our results will be able to provide the basis for a systematic 

investigation of finite size effects in learning and generalization. 

7.6 Appendix: The method of characteristic curves 

In this appendix, we briefly describe the method of characteristic curves for the solution 

of partial differential equations, following the exposition in [Joh78]. We then apply the 

method to obtain the solutions of the differential equations for the various response 

functions introduced in this chapter. 

Consider the following quasi-linear first-order partial differential equation for f(x, y), 

Of 	Df 
a—+b---e=0 	 (7.34) 

Dx 	ay 

where a, b, and c are functions of x, y, and f. The solution f = f(x,y) can be 

thought of as a surface in (x, y, f) space, which has normal vectors proportional to 

(Df1Dx,0f1Dy,-1). Equation (7.34) can then be interpreted as defining a vector 

field (a, b, c) of 'characteristic directions', which are orthogonal to the normal vectors 

of the solution surface. This suggests that any curve starting at a point within the 

solution surface remains within that surface if it follows the characteristic direction 

at every point. Formally, such 'characteristic curves' are defined by the requirement 

d(x, y, f)/dt = (a, b, c), where t parameterizes the points along the curve. It can be 

shown rigorously [Joh78] that the solution surface is indeed given by the union of all 

characteristic curves which pass through a one-parameter family of points defining the 

initial conditions for f(x, y). 
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Consider now equation (7.14) for the average response function C in the thermo-

dynamic limit. The characteristic curves are the solutions of 

dadA 	1 	dG 

dt 	' dt - 1+G' dt 	
0 

which are given by 

a=ao+t, A=A0— 1+G0' G=G0. 	 (7.35) 

The initial condition GIa=0 = 1/A selects the characteristic curves with Cj = 0, )o 

arbitrary, G 0  = 1/A o . Inserting this into (7.35), one can eliminate c, A, C0 and t to 

obtain 11C = A + a/(1 + G). This yields the solution (7.15) for G(a, A). 

We now turn to equation (7.17) for the modified response function CL = (cL) = 

(*tr (L + A)_ 1 ) .  To obtain this result, one first replaces the matrix L by L + Al. 

The recursion relation (7.12) between c(p + 1) and c(p) remains valid for cL,  and 

results, in the thermodynamic limit, in a differential equation for GL exactly analogous 

to (7.14), with G replaced by CL.  The corresponding characteristic curves are the 

same as in (7.35), but the initial condition GLIo = tr (L + A1) 1  now selects 

a different subset of these characteristic curves. This leads to the equation CL = 

tr [L + (A + a/(1 + GL))11 1 ; from which (7.17) is obtained by setting A = 0. 

The solution for the general modified response function CBL = ( N 
tr B(L + A)_1) 

given in (7.18) is obtained as follows: First, one again replaces the matrix L by L+Al. 

Multiplying the matrix equation (7.11) by B and taking the trace, one can follow 

the procedure described in Section 7.2 to obtain, in the thermodynamic limit, the 

differential equation 
ÔGBL t9GBL 1 - 0 
ac - OA 1+GL 

Since GL is a fairly complicated function of a and A, the corresponding characteristic 

equations 
da 	dA 	1 	dGBL 
-- 	

0 
=1, dtl+GL(a,A)' 	dt 

might seem hard to solve. However, GL is in fact constant along the characteristic 

curves: As pointed out above, GL obeys equation (7.14) (with G replaced by GL),  and 

hence 
dGL - da 9GL dA aGL - ÔGL 	1 ÔGL - 0 
dt - dt aa + dt 8A - a 	1+GL aA - 
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Therefore, the characteristic curves are 

t 
a = a0  + t, A = A0 - 

1 + GL GBL = 
const. 

Together with the initial condition GBLIaO = *.tr B(L+A1) 1 , this yields GBLIcO 
tr B[L + (A  + a/(1  + GL)) 1 1 1 . 

Equation (7.18) is recovered for A = 0. 

Finally, we consider the solution of (7.21) and (7.22), dropping the superscript 

'G' for brevity. One first verifies that A2  0 satisfies (7.22) and the corresponding 

initial conditions; of course, this solution can also be obtained using the method of 

characteristic curves. One can then simplify (7.21) by inserting L 2  = 0 and by using 

the fact that G0, the value of G in the thermodynamic limit, obeys (7.14) (with G 

replaced by Go ). After some algebra, one obtains 

0G1  aGi 1 - 
	- G1_ 

G' 
(7.36) 

ôaôAl+G02 	1+Go'  

Here we have introduced the abbreviations G'0  = OGo /ôa, G" = 19 2 Go/8a2 . By the 

same reasoning as above, one can show that G0 is constant along the characteristic 

curves of (7.36). The characteristic curves obeying the initial condition G1Io = 0 are 

therefore given by 

	

t 	dG1 = 
1 G - G a=t, A=A0 — 	 -  

1+G0' 	dt 	2 	1+G0 

with G 1 (t = 0) = 0. The constant value of G0 along a characteristic curve is related 

to A 0  by G0 = Go(t = 0) = GoI0,o = 1/Ao . Using the explicit form of Go (a, A) 

given in eq. (7.15), both G'0  and G" can be expressed as functions of G0  and A alone 

as follows: 

G'— 	
1 	

G"— 	
2/Gg 

° 	
A+ 1/Ga' 	0 (A+ 1/G) 3  

This finally leads to the following linear differential equation for G1  as a function of A 

along a characteristic curve with a given value of G0 : 

dG1 	 dGI 	(1 + G0)/Gg 	G1  
= 	

2)3 -G
—(1 + Go) 	

TA-G 	
(7.37) 

Since A = A 0  = 11G0  at t = 0, the initial condition is G 1 (A = 11Go) = 0. The 

integration of (7.37) is straightforward and yields directly the solution (7.23) given in 

the text. 



Chapter 8 

Towards realistic neural networks 

II: Multi-layer networks 

Abstract 

In this chapter, we provide an exact average case analysis of query learn-
ing for maximum information gain in a multi-layer network. In particu-
lar, we consider a large tree-committee machine (TCM) trained on noise 
free training data produced by a TCM of the same architecture. Our re-
suits show that the generalization error decreases exponentially with the 
number of training examples, providing a significant improvement over the 
slow algebraic decay for random examples. The results are compared to 
those obtained previously for query learning in the binary perceptron, and 
the resulting implications for the connection between information gain and 
generalization error in multi-layer networks are discussed. We conclude by 
suggesting a computationally cheap algorithm for constructing approximate 
maximum information gain queries, which can be extended to more com-
plicated multi-layer networks and which in our analysis shows performance 
even slightly superior to exact maximum information gain queries. 

8.1 Introduction 

In this chapter, we continue our investigation of query learning for maximum infor-

mation gain (or, equivalently, minimum entropy). The generalization performance 

achieved by maximum information gain queries has been analysed in previous chapters 

for single-layer neural networks such as linear and binary perceptrons (see also [SOS92, 

FSST93]). For multi-layer networks, which are much more widely used in practical 

applications, several heuristic algorithms for query learning have been proposed (see 

159 
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e.g., [Bau91, HCOM91]). While such heuristic approaches can demonstrate the power 

of query learning, they are hard to generalize to situations other than the ones for 

which they have been designed. Furthermore, the existing analyses of such algorithms 

have been carried out within the framework of 'probably approximately correct' (PAC) 

learning, yielding worst case results which are not necessarily close to the potentially 

more relevant average case results. 

In this chapter the powerful tools of statistical mechanics are used to analyse the 

average generalization performance achieved by query learning in a multi-layer network. 

This is the first quantitative analysis of its kind that we are aware of. In particular, 

we consider query learning in a large tree-committee machine ( TCM), with noise free 

training data generated by a teacher network of the same architecture. The details of 

the model are explained in the next section. In Section 8.3, we then outline the calcu-

lation of the main quantity of interest, the average generalization error Eg  as a function 

of the (normalized) number of training examples, ci. The results are compared to exist-

ing analyses of learning from random examples in a TCM and related to corresponding 

results for the binary perceptron. We also discuss the relationship between information 

gain and generalization error in the TCM. In Section 8.4, we analyse a computation-

ally cheap algorithm for constructing approximate maximum information gain queries, 

and find that it achieves generalization performance even slightly superior to that of 

exact maximum information gain queries. In Section 8.5, we summarize and discuss 

our results and offer our conclusions regarding the potential for practical applications 

of query learning in multi-layer neural networks. 

8.2 The model 

8.2.1 Tree-committee machine 

A tree-committee machine (TCM) is a two-layer neural network with N input units, K 

binary hidden units and one binary output unit. The 'receptive fields' of the individual 

hidden units do not overlap, and each hidden units calculates the sign of a linear com-

bination (with real coefficients) of the N/K input components to which it is connected. 

The output unit then calculates the sign of the sum of all the hidden unit outputs. A 

TCM therefore effectively has all the weights from the hidden to the output layer fixed 

to one. Formally, the output y for a given input vector x is 

y = f(x) = sgn 
(v/K-- 	

cr = sgn 	 (8.1) 
 (' FL

N 
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where the ai are the outputs of the hidden units, the wi E RN/K are their weight 

vectors, and we have decomposed the input vector xT = (xT,. . . , x) into the vectors 

Xi e IRN/K containing the N/K inputs to which hidden unit i is connected'. The N 

components of the K hidden unit weight vectors w 2 , which we denote collectively by w, 

form the adjustable parameters of a TCM. Without loss of generality, we assume the 

weight vectors to be normalized to w = N/K. This ensures that typical individual 

weights are roughly of order one and that the arguments of the sgn-functions in (8.1) 

are of order unity for typical hidden unit input vectors xi of length x = N/K. We 

shall restrict our analysis to the case where both the input space dimension and the 

number of hidden units are large (N -* oo, K -* oo), assuming that each hidden unit 

is connected to a large number of inputs, i.e., N/K>> 1. The K -* cx limit is chosen 

because it is most likely to yield qualitatively new results compared to the case of the 

binary perceptron (K = 1). 

As our training algorithm we take (zero temperature) Gibbs learning, which gener-

ates at random any TCM (in the following referred to as a 'student', as usual) which 

predicts all the training outputs in a given set of training examples o() = {(xl, yI-'), tt = 

1 . . .p} correctly'. As usual, the number of training examples p is taken to be propor-

tional to N, p = cN, in order to ensure the existence of a well-defined thermodynamic 

limit. We take the problem to be perfectly learnable, which means that the outputs y 

corresponding to the inputs x are generated by a teacher TCM, V, with the same ar-

chitecture as the student but with different, unknown weights WV. It is further assumed 

that there is no noise on the training examples. For learning from random examples, 

the training inputs x are sampled randomly from a distribution P(x). Since the out-

put (8.1) of a TCM is independent of the length of the hidden unit input vectors x, we 

assume this distribution P(x) to be uniform over all vectors xT = (xi ,. . . , x) which 

obey the spherical constraints x N/K. For query learning, the training inputs x 

are chosen to maximize the expected information gain of the student, as explained in 

the next section. 

At this point we would like to remind the reader that in order to achieve optimal 

'We assume that K is odd in order to avoid having to define the output y for the case when the 
hidden unit outputs ai sum to zero. 

2 1n the terminology of Chapter 5, this corresponds to a post-training student distribution P(A(Ie') 
of posterior-like form (5.4) with an assumed spin-flip noise level p..r = 0 (see eqs. (5.16,5.17)) and a 

pseudo-prior P(A/') which is uniform over all student TCMs satisfying the constraints w = N/K. 
In the following, we simply denote student weight vectors by w, dropping the subscript 'Al' for the 
sake of brevity. As in previous chapters, we also abuse the notation by identifying weight vectors 
with the students or teachers that they represent, so that for example P(wlE") P(Alle ( ") ) and 

P(wvIO) P(VIO"). 
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generalization performance, the theoretically optimal choice of queries would of course 

be based on direct minimization of the generalization error, and not on maximization 

of the information gain. However, the generalization error as an objective function 

for query selection is in general not easy to calculate, while the expected information 

gain of a query can often be determined fairly easily. Since information gain and 

decrease in generalization error are normally correlated (cf. the results in Chapter 3), 

maximizing information gain therefore provides a practical method for achieving near-

optimal generalization performance by query learning. 

8.2.2 Maximum information gain queries 

The definition of maximum information gain (i.e., minimum entropy queries) for TCM 

students follows the general framework described in Section 5.4, the relevant features of 

which we briefly review below. We assume a teacher space prior P(V) which is, like the 

student pseudo-prior, uniform over all TCMs with weight vectors satisfying w = N/K. 

Since the student correctly assumes that there is no noise on the training examples, 

we are thus dealing with the case of a correct inference model. Minimum entropy 

queries as defined in Chapter 5, selected assuming the inference model is correct, are 

therefore identical to true minimum entropy queries according to the general definition 

in Chapter 2. 

Information gain is defined as the decrease in the entropy S in the parameter space 

of the student. The entropy for a given training set (r)  is given by 

S# 0)) 

= - f dwP(wIO ( °) ) in P(wIO()). 	 (8.2) 

For the Gibbs learning algorithm considered here, P(wI®('))  is uniform on the 'version 

space', the space of all students which predict all training outputs correctly (and satisfy 

w = N/K), and zero otherwise. Denoting the version space volume by V(O()), the 

entropy can thus simply be written as S(E)()) = in V(O( 14 ). When a new training 

example (xP+l, yP+l) is added to the existing training set, the information gain is 

I = S(O(P)) - S(®(P)). Since the new training output yP+l  is unknown, only the 

expected information gain, obtained by averaging over is available for selecting 

a maximally informative query x1'+'. The probability of obtaining output yP+l = + 1 

given input xP+1  is simply v± = V(O(1) )Ip+1±i/V(0), the fraction of the version 

space left over after the new example (xP+l,y1' = +1) has been added [S0S92]. 

This follows from the fact that the posterior teacher distribution P(VIO()) is, like the 

student distribution P(A1IO()), uniform on the version space and zero elsewhere. The 
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expected information gain is therefore 

(I)p(P+1 IxP+ 0(P)) 
= v + In  v+ - v in v 	 (8.3) 

in agreement with the general result (5.18). It attains its maximum value In 2 ( 1 bit) 

when v ± = , i.e., when the new input Xp bisects the existing version space. This 

is intuitively reasonable, since v ± = corresponds to maximum uncertainty about the 

new output and hence to maximum information gain once this output is known. 

Due to the complex geometry of the version space, the generation of queries which 

achieve exact bisection is in general computationally infeasible. The 'query by commit-

tee' algorithm [S0S92} provides a solution to this problem by first sampling a 'commit-

tee' of 2k students  from the Gibbs distribution P(wi0(P))  and then using the fraction 

of committee members which predict +1 or —1 for the output y corresponding to an 

input x as an approximation to the true probability P(y = ± lix, ®()) = v ±. The 

condition v± = 1 is then approximated by the requirement that exactly k of the com-

mittee members predict output +1 and the others —1 for the new training input Xp+. 

This corresponds to the requirement of 'maximal disagreement' between committee 

members. An approximate minimum entropy query can thus be found by sampling 

(or filtering) inputs from a stream of random inputs until this condition is met. The 

procedure is then repeated for each new query. As k -* oo, this algorithm approaches 

exact bisection, and we focus on this limit in the following. Based on the results for the 

binary perceptron [S0S92], however, we would expect the results to be qualitatively 

similar for finite k. 

8.3 Exact maximum information gain queries 

The main quantity of interest in our analysis is the generalization error Eg  defined as the 

probability that a given student TCM will predict the output of the teacher incorrectly 

for a random test input sampled from P(x). In the thermodynamic limit N -p 

K -* x, N/K >> 1 that we consider here it can be expressed in the form [SH92] (see 

also Appendix 8.6.3) 

= --arccosR eff 	 (8.4) 

'Each of these students is, of course, itself a TCM - the number of committee members 2k should 
therefore not be confused with the number of hidden units K in the TCM architecture. 
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where Reff  is an effective overlap parameter given by 

K K T 

	

ff>arcsinRi 	R i Re = N wj Wv,i 	 (8.5) 
i=1 

in terms of the student and teacher hidden unit weight vectors wi and WV,2. In the 

thermodynamic limit, the R2  are self-averaging, i.e., their values for a specific training 

set and student from the Gibbs distribution are identical to their averages with prob-

ability one. These averages can be obtained from a replica calculation of the average 

entropy S as a function of the normalized number of training examples, a = p/N, 

following the calculations in Refs. [S0S92, S1192]. We use the assumption of replica 

symmetry, which is believed to be exact for the case of noise free training data [SH92]. 

The replica calculation involves, in addition to the R, the overlap parameters 

qP = (WP)2 q/P = '( (wr)TwIi  ( 8.6) 

where W' = (wi)p( w Ie(p)) and similarly W = (wi)p( W Ie()) (p<p). The q arise as 

the overlaps of the students trained on p examples with the committee members which 

determine the selection of the ( + 1)-th example. The q' can be determined from 

saddle point equations, whereas for the q,  an independent ansatz has to be made. 

In Ref. [S0S92], it was assumed that q = q, i.e., that the overlap of two students 

trained on i and p examples, respectively, is the same as the overlap of two students 

both trained on ji examples. From the discussion in Section 5.5.2, it follows that this 

ansatz is in fact exact for the case of a correct inference model considered here. 

Following {S1192, EKT+921 1  we assume symmetry between the hidden units, i.e., 
qP = qP q, qP = q = qli q(a') (a' = 1i/N) and R 2  = R. The calculation, details 

of which are relegated to Appendix 8.6.1, can be further simplified by exploiting the 

relation R = q, which expresses the symmetry between teacher and student. One then 

obtains the normalized entropy s = SIN (apart from an irrelevant additive constant, 

which we fix such that s = 0 at a = 0) in the saddle point form 

(1 
s =extr q  j(q+ln(1_))+2I c da'jDz H(7z) In H(-yz) } 	(8.7) 

where 

I qeff -  qeif (a') 	 2 	. 	 2 

V 	1— qe 	
qff = arcSinq 	qeff(a) = —arcsinq(a) 	(8.8) 

if 7r 	 7r 

and we have used the usual shorthand Dz = dzexp(—z 2 )/v" and H(z) = f Dx. 
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The effect of query learning enters in (8.7) only through q eff(a'), and by replacing 

qeff(a) -* 0, the known result for random examples [SH92] is recovered. Differentiat-

ing (8.7) with respect to c, one verifies that ds/do = - In 2 as expected for maximum 

information gain queries  (the large committee limit k -p oo has already been taken). 

Solving the saddle point equation (which is an integral equation for q(a)) numeri-

cally, we obtain the average generalization error as plotted in Figure 8.1. For large o, 

one finds analytically that c 9  cx exp(—ca) with c = !In 2 as discussed below. This 

Eg  

DO 

0 	2 	4 a 6 	8 	10 

Figure 8.1. Generalization error c. as a function of the normalized number of exam- 

ples, c. Full line: exact maximum information gain queries (Section 8.3); broken line: 
queries as selected by constructive algorithm (Section 8.4); dash-dotted line: random 

examples. 

exponential decay of the generalization error Eg  with c provides a marked improvement 

over the 69  cx 1/of decay achieved by random examples {SH92]. The effect of maximum 

information gain queries is thus similar to what is observed for a binary perceptron 

student learning from a binary perceptron teacher [S0S92], but the decay constant c 

in c9  cx exp(—ca) is only half as large in the TCM. This means that asymptotically, 

twice as many examples are needed for a TCM as for a binary perceptron (when learn-

ing from a teacher with the respective architecture) to achieve the same generalization 

performance, in agreement with the corresponding result for random examples [5H92]. 

Since in both networks, due to the binary nature of their outputs, maximum informa-

tion gain queries lead to an entropy s = —o In 2, we can also conclude that the relation 

Inc  g  for the binary perceptron [S0S921 has to be replaced by s 	Incfor the 

'The fact that the entropy is predicted correctly lends further support to the claim that the as-
sumption of replica symmetry is correct for the problem considered here. 
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0 
In Eg  

-1 

-2 

-3 

exact 

random 

-6 	-4 	s 	-2 	0 

Figure 8.2. Log generalization error In c g  vs. (normalized) entropy s, for queries 
(exact /constructive algorithm) and random examples. For both queries and random 
examples, in Eg  for large negative values of .s (corresponding to large a). The 
very small separation between the curves is more clearly seen in the inset, which shows 
Inc. — is vs. S. 

tree committee machine. This relation should hold generally, independently of whether 

one is learning from queries or from random examples. We have confirmed this by 

calculating the entropy for learning from random examples and comparing with the 

corresponding generalization error [SH92], as shown in Figure 8.2. 

The above results apply for any finite a in the limit K —* oc. We now briefly 

discuss the large a asymptotics of the generalization error for large but fixed K (which 

corresponds to the limit a —* oo being taken before K —* oo). The relation q = R 

arising from the symmetry between student and teacher holds for any value of K, and 

we therefore write q = R = 1 — , with A < 1 in the large a regime. For K —* oo, the 

asymptotic behaviour of L(a) can be derived from the expression (8.7) for the entropy: 

Following the reasoning in [S0S92], it can be shown that if A decreases exponentially 

for large a, i.e., A oc exp(—e'a), then the integral over a' in (8.7) approaches a constant 

for a —* oo. The entropy is therefore well approximated by s = 1  In (1 — q) + const = 

In z+const  in this limit. Comparing this with the known a dependence of the entropy 

for maximum information gain query learning, .s = —a In 2, it follows that the ansatz 

A cc exp(—c'a) is self-consistent, with c' = 21n2. This result for K —* oo is identical 

to that obtained for the binary perceptron (corresponding to K = 1) in [S0S92]. 

Excluding the unlikely possibility that the asymptotic behaviour of A(a) depends non-

monotonically on K, we thus conclude that A cc exp(—a 21n2) asymptotically for all 

K. For the K —* oc case, where 6g  cx A1/4  for small A from (8.4), one then obtains the 
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large a behaviour cg  cx exp(—a In 2) referred to above. For large but finite K, one has 

to consider the 0(11K) correction to the expression for the generalization error (8.4), 

which as shown in Appendix 8.6.3 is 

1 	 1 	Reff 	
+ o (k). 	(8.9) Eg  = - arccos Reff - 	__________ 

7r 	 2 K \,/1—R ff  

For small A, it follows from (8.5) that the first and the second term on the right hand 

side of (8.9) scale as A 114  and KA_ 1 /4 , respectively. This implies that as long as 

A 1 !2  >> 0(11K) or, equivalently, c g  >> O(K_h/ 2 ), the first term dominates, yielding 

C. cx exp(—c4  In 2) as for K --+ 00. In the opposite regime 6g << O(K -1 / 2 ), we show in 

Appendix 8.6.3 that the generalization error is given by 

2K 1 
= 	(1 - Reff) =

F~r- 
for

arccosR 	 (8.10) 
27r ir 

 large K. The functional dependence of €g  on R is the same as for the binary 

perceptron, due to the fact that the dominant contribution to the generalization error 

arises from errors for which student and teacher only differ in the output of a single 

hidden unit. This yields 69  cx A1 t2  for small A and hence Eg  cx exp(—aln2) as for 

the binary perceptron [S0S92]. We have thus found that the large a behaviour of the 

generalization error obtained for K -* 00 is valid until the generalization error reaches 

values of O(Ih/2),  while for larger a a crossover to behaviour typical of the binary 

perceptron occurs. This result is consistent with the corresponding observation for 

random examples in [SH92]. 

8.4 Constructive query selection algorithm 

We now consider the practical realization of maximum information gain queries in 

the TCM. The query by committee approach, which in the limit k -* oo is an exact 

algorithm for selecting maximum information queries, filters queries from a stream of 

random inputs. This leads to an exponential increase of the query filtering time with 

the number of training examples that have already been gathered [FSST93]. As a cheap 

alternative we propose a simple algorithm for constructing queries, which is based on 

the assumption of an approximate decoupling of the entropies of the different hidden 

units, as follows. Each individual hidden unit of a TCM can be viewed as a binary 

perceptron. The distribution P(wIO(P))  of its weight vector w i  given a set of training 

examples o() has an entropy Si associated with it, in analogy to the entropy (8.2) 
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of the full weight distribution P(wIO(')).  Our 'constructive algorithm' for selecting 

queries then consists in choosing, for each new query x 1 , the inputs to the 

individual hidden units in such a way as to maximize the decrease in their entropies S. 

As discussed in Appendix 5.8, this can be achieved simply by choosing each x 1  to be 

orthogonal to Will  (and otherwise random, i.e., according to P(x)), thus avoiding the 

cumbersome and time-consuming filtering from a random input stream. In practice, 

one would of course approximate W by an average of 2k (say) samples from the Gibbs 

distribution P(wI®("));  these samples would have been needed anyway in the query by 

committee approach. 

An analysis of the generalization performance achieved by this constructive algo-

rithm proceeds along the same lines as the calculation in the last section; an outline is 

given in Appendix 8.6.2. Again restricting attention to the limit k -+ (X), we find that 

the saddle point expression (8.7) for the normalized entropy s still holds, but with 'y 

now given by _____ 

	

____ 	2 	(q—q(a')\ 

	

= V 1— a 	
a = arcsin 	

- q(a')) 
 

7r 	 I 

Differentiating (8.7) with this replacement with respect to a, we find again that ds/da 

- In 2, which means that in the thermodynamic limit that we consider, queries selected 

to minimize the individual hidden units' entropies also minimize the overall entropy of 

the TCM. This may seem surprising at first; heuristically, however, one can argue that 

for a large number of hidden units K, the correlations in the Gibbs distribution be-

tween the hidden unit weight vectors must be weak, and may indeed become negligible 

in the K -* oc limit considered here. The generalization performance achieved by the 

constructive query algorithm, shown in Figure 8.1, is actually slightly superior to that 

of exact maximum information gain queries as calculated in the previous section. This 

decrease in generalization error, although slight (about 4% for large a), exemplifies the 

fact that while information gain and decrease in generalization error are normally cor-

related, there is no exact one-to-one relationship between them (compare the discussion 

in Chapters 3 and 4). Query selection algorithms which achieve the same information 

gain can therefore lead to different generalization performance. 

Parenthetically, we note that the two query selection algorithms that we have dis-

cussed are quite different in the way they achieve maximum information gain. This 

can be seen by considering, for a fixed training set and fixed students chosen ran-

domly from the Gibbs distribution P(wI®(')),  the statistics of the hidden unit outputs 

induced by the distribution of the next query XP+l  as chosen by either of the two al-

gorithms. The constructive algorithm does not introduce any correlations between the 

hidden unit outputs, since by definition the x 1  are selected independently of each 



CHAPTER 8: MULTI-LAYER NETWORKS 	 169 

other. Maximum information gain is achieved in this case by choosing the hidden unit 

inputs x 1  such that the output of any given hidden unit is +1 or —1 with probability 

, i.e., maximally uncertain. For the exact algorithm discussed in the last section, 

on the other hand, the distribution of the output of any given hidden unit turns out 

to be (up to 0(11K) corrections) the same as for random examples (see eq. (8.39) in 

Appendix 8.6.1). The total output of the TCM is still made maximally uncertain by 

creating correlations between the outputs of different hidden units (of 0(11K), com-

pare eq. (8.45)), which cause the sum of all the hidden unit outputs to be positive 

or negative with equal probability. The two algorithms can therefore be seen as two 

opposite extremes in the way they realize maximum information gain, one based solely 

on the behaviour of individual hidden units, the other relying only on correlations 

between hidden units. This leads us to speculate that other algorithms for selecting 

maximum information gain queries, which would have to operate somewhere between 

these two extremes, would achieve a generalization performance in the range defined 

by the results for the two algorithms discussed above. 

8.5 Conclusions 

We have used the tools of statistical mechanics to analyse query learning for maxi-

mum information gain in large tree-committee machines (TCM). For the noise free, 

perfectly learnable scenario that we have considered, the generalization error Eg  decays 

exponentially with the normalized number of training examples a, which is a signifi-

cant improvement over learning from random examples, for which Eg  oc 1/a for large a. 

Comparing with results for query learning in the binary perceptron, the decay constant 

C 111 6g x exp(—ca) turns out to be half as large in the TCM, and this implies that 

the relationship between entropy s and generalization error is s In in the TCM, 

rather than s In Eg  as in the binary perceptron. Modifications of the relationship 

between s and €g  must also be expected for multi-layer networks with architectures 

more complicated than that of the TCM. This leads to a number of interesting open 

question regarding the dependence of the decay constant c in the exponential decay 

of Eg  with a on the number of hidden units K in general multi-layer networks. The 

bound in [FSST93], derived for the k = 1 query by committee algorithm, implies a 

lower bound on c which scales inversely with the VC-dimension [VC71] of the class of 

networks considered. Taking the storage capacity of a network as a coarse measure of 

its VC-dimension, one would then conclude from existing bounds [MD89] that c could 

be as small as 0(1/ In K) for large K. However, the existing results for the capacity 

of particular networks like the TCM (which was conjectured to be finite for K -* oo 
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in [Opp94] on the basis of the results of [SH92], but estimated to be infinite in the same 

limit in [BHS92]) are not unambiguous enough to decide whether realistic networks can 

saturate the Mitchison- Durbinbound [MD89]. Furthermore, it has been argued previ-

ously [Opp94] that both the input space dimension and the VC-dimension determine 

the cr-dependence of the generalization error. It may therefore be possible to replace 

the VC-dimension in the bound in [FSST93] with the input space dimension, and this 

would yield a e of 0(1) independently of K. Further theoretical work is clearly needed 

to clarify these issues. 

In Section 8.4, we have analysed a computationally cheap algorithm for construct-

ing (rather than filtering) approximate maximum information gain queries, based on 

the assumption of a decoupling of the entropies of individual hidden units. We have 

found that this constructive algorithm actually achieves slightly better generalization 

performance than exact maximum information gain queries. This result is particularly 

encouraging considering the practical application of query learning in more complex 

multi-layer networks. For example, the proposed constructive algorithm can be modi-

fied for query learning in a fully-connected committee machine (where each hidden unit 

is connected to all the inputs), by simply choosing each new query to be orthogonal to 

the subspace spanned by the average weight vectors of all K hidden units. As long as 

K is much smaller than the input dimension N, and assuming that for large enough K 

the approximate decoupling of the hidden unit entropies still holds for fully connected 

networks, one would expect this algorithm to yield a good approximation to maximum 

information gain queries 5 . It is an open question whether the same conclusion would 

also hold for a general two-layer network with threshold units (where, in contrast to 

the committee machine, the hidden-to-output weights are free parameters), which can 

approximate a large class of input-output mappings. In summary, our results suggest 

that the drastic improvements in generalization performance achieved by maximum 

information gain queries can be made available, in a computationally cheap manner, 

for realistic neural network learning problems. 

'To make the algorithm work once the permutation symmetry between hidden units is broken, one 
would of course have to restrict all weight space averages to one of the K! 'ergodic' weight space sectors. 
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8.6 Appendix: Calculations 

8.6.1 Exact maximum information gain queries 

In this appendix, we outline the replica calculation of the average entropy (8.7) for 

exact maximum information gain queries. As usual, the replica trick is employed to 

remove the logarithm in the average of the (normalized) student space entropy s = 

SIN = ( 11N) in V(0(P)) over all training sets and teachers, 

1 	(e (P) )) 	 = 	lim ln(Vfl(0)) ()  ()P(e(P)Iv)P(v) 	- 	V 
N \ 	 P(e(P)v)P(v) 	N n0 

The r.h.s. is calculated for positive integer values of n and continued analytically to 

n = 0. The version space volume V(0(0 ) appearing in the above expression can be 

written as 

= f dw (w) rJ 0 (yf(x)). 

The product of Heaviside 0-functions ensures that the binary student outputs f(x') 

are the same as the training outputs y', i.e., that the integration runs only over students 

which are compatible with the training set. Introducing n replicas wa  of the student 

space and writing the average over training sets and teachers explicitly, one has 

71  

/P(e(P)Iv)P(v) 
Idw, P(w v)J rl ( w a (W')) 

fi [J dxP(xI0 (1 ) 	P(Ix, V) ft 0 ( Y fa(x ))]. 	(8.12) 
a1 

Due to the assumption of noise free training outputs, one has 

P(yIx,V) = 0(yfv(x')) 

where fv (x) is the 'clean' teacher output. Since we have also assumed that the teacher 

prior P(w v) and the student pseudo-prior P(w) are identical, it follows from (8.12) 

that the teacher wv can be treated just like an additional student replica w 0 . This we 

do in the following, using the convention that the replica index a runs over the values 

0,1 . . . n unless otherwise specified. The above teacher-student symmetry, which holds 

whenever the inference model is correct (see, e.g., [50S92, WRB93] and Chapter 5), 

also implies the equality of the overlap parameters Ri and qj defined in (8.5, 8.6). 

In (8.12), the factors contributed by individual training examples are coupled 

through the dependence of the probability distribution of input x 1  (i = 0. . . p— 1) on 
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the existing training set 	As in the calculation for the binary perceptron, however, 

we shall find that the dependence on 	only manifests itself through overlap param- 

eters which are self-averaging in the thermodynamic limit, so that the averages over 

individual training examples can be treated as decoupled. Let us therefore now focus 

on a specific training example (x 1 , y'). Carrying out the sum over the training 

output ybi+l,  we have a contribution 

rI 0 (fa(xi+1)) + ITO (fa(x+1)) 	 (8.13) 

to (8.12), which has to be averaged over P(xPhJO(1)).  The superscript i+1 is dropped 

in the following to simplify the notation. Writing the student outputs explicitly in terms 

of their hidden unit outputs, 

	

fa(x) = sgn (ai(x)) 
	

= sgn (F(W,)TX,) 

and using integral representations for the 0-functions, the term (8.13) takes the form 

 V1[  
(10"o

dyaf 	 exp _iya 

 a 

[exp (aa(X)) +c.c.]. 	 (8.14) 

The average over x of the terms in square brackets can be written as a cumulant 

expansion 

(exP(±* a(x))\ =exp 
1 1 

ab 	ii. 

1 abcd E (a(x)(x)(x)a(x)) C + . . .} 

 	

( 8.15) 
— 241( 2  

abcd 	 ijkl 

where the superscript 'c' on the averages refers to cumulant (or connected) averages. 

Cumulants involving odd powers of the ja  or a, do not occur in (8.15) because the 

distribution of x is invariant under x --+ —x. This can be seen from the fact that for 

the TCM, y = 1(x) —* —y for x —f —x, which implies that x is a bisection query (or 

is selected by a particular committee of 2k students) if and only if —x is. This entails 

in particular that (o(x)) = 0, which means that the second order cumulant in (8.15) 
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reduces to a normal average, while the fourth order cumulant can be written as 

 A; I
(bd)C = 

	 - (a:1cr.) () - () ( o1) 
- 

(o'a) (aT). 

(8.16) 

The terms in the expansion (8.15) can therefore be calculated from averages of products 

of an even number of the a', and we will show below how this can be done. Intuitively, 

one would expect that although the c', (for fixed a) may be correlated, the linear 

combinations 1C 112  E i  a' will become Gaussian random variables in the limit K -* oo, 

leaving only the contribution from the second order cumulants in (8.15). We will 

confirm this below by showing that the fourth order term is smaller by a factor of 11K 

than the leading second order term. 

To calculate averages over products of the a', we use the representation 

a(x) = 	
® (a (w )Tx ) 

cr"±1 

= 
00 

a 	I 	dh 
Jo 

' dh i - exp (_ih 
.j2ir 

+ iIta ( wflTxi) 	(8.17) FLN 

Multiplying a finite number of the o and collecting the factors depending explicitly 

on x, we are therefore lead to the consideration of averages of the form 

IF = (ex (i aFx)) 	 (8.18) 

in which only a finite number of the a, which are linear combinations of the w, are 

nonzero. These averages can be evaluated using the query by committee approach, in 

analogy with the calculation in Appendix 5.8. The probability distribution of x can be 

written in the form 

P(xO() ) oc P(x) E fl 0 (yf(x)) P(x) g(x) 	(8.19) 
{yY=±i} y 1  

The index y labels the 2k committee members w, which are sampled randomly from 

the student distribution after p training examples, P(wIO ( L) ); their outputs for input 

x are denoted by f'(x). The summation over the y is restricted to those combinations 

for which exactly k of the y -1  are +I and the others are —1, according to the principle of 

'maximal disagreement' between committee members. The distribution P(x), finally, 

implements the assumed spherical constraint on hidden unit input vectors, P(x) cx 
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fl (x - N/K). Introducing the hidden unit outputs o7 of the committee members, 

the non-trivial factor on the r.h.s. of (8.19) can be written as 

g(x) = 	> 	fl 
[o 

(y4 > at 11° (a?/(w?) Txi)]. 	( 8.20) LN 
{yY}{=±1} Y 

Using (8.19), the desired average (8.18) takes the form 

= 
(g(x) exp 	axi)) 

(8.21) 
(g(x)) 

of a ratio of two averages over x distributed according to P(x). From (8.20), one sees 

that the quantities to be averaged depend on x only through the scalar products 

z7 = 	(w7  )Tx 	z = 	aFx. 	
K L 

In the limit N/K >> 1 of interest to us, these become zero mean Gaussian variables 

with covariances given by 

	

K -y 	 K 
(z7z) = j (wj)T w6 	(z7z) = Sjj (w7)Ta3 	(zjz) = 	 5jj 	aj (8.22) 

As usual, the overlaps (K/N)(w7)Tw  are assumed to be self-averaging and can there-

fore be replaced by q = q, the latter equality following from the assumption of hidden 

unit symmetry. The z7 and zi  can thus be written in terms of uncorrelated Gaussian 

random variables , j and ii with zero mean and unit variance, in the form 

zi  = 	 (8.23) 

zi = + iivi (8.24) 

with only a finite number of nonzero ui and vi (corresponding to the nonzero aj). 

We only need to consider explicitly the average in the numerator of (8.21), since the 

denominator is obtained by setting u v 0. The i7 occur only in the 'input-to-

hidden' 0-functions in g(x), eq. (8.20), and can be averaged out immediately: 

	

(0 (a 	+ ii V —1 --q A )) = H(_iq• 



CHAPTER 8: MULTI-LAYER NETWORKS 	 175 

Introducing integral representations 

I Y
dh dhexp 

 2ir 

for the remaining 0-functions in g(x), the sum over the o can be carried out by using 

_____  

	

exp (I 	---a' H (_c?I?) 	+ iyH sin 	(8.25) = cos 

cT : =± 1  

where 

fti = k 	q=1— 2H(.) 

Collecting these results, one obtains for the numerator of (8.21) 

exp (_) E [rj I.dh'y
Jexp(_iIh)I {yY}Y 	

27r  

/exp Ii 	UiJvi + in cos 
/ 	

+ i 
. 

(yH 

	

\ 	I 	L 	
sin 	

)] }) 	
(8.26) 

where the first factor arises from the trivial average over the . 

So far, all manipulations hold for TCMs with any number K of hidden units. We 

now specialize to the limit K -* oc and expand 

	

In (cos = + 	iIj sin 	= 1 + 	 - -jj (i - i) 
(It)2 + O(I(_3/2) 

;Tj
(8.27) 

When summed over i = 1 . . . K, the O(K 3/ 2 ) terms can contribute at most O(K 1 /2 ) 

and are therefore negligible for K -* oc. Inserting the expansion (8.27) into (8.26), the 

integrals over the h and h' can be carried out, each giving a factor 

H (—y-Y 
N/1 

 cl 
2) 

where 

Ci =rj: J i 	c2kIHi. 

The summation over the y'y then becomes trivial, and by setting u 	0 to obtain 
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the denominator of (8.21), one finds 

p exp 	

(exp(iiui)Hk '1-c )H/c (— Cl 	

(8.28) 
(H k 

 (_) Hk  (_ 

Since the 	and hence the H. are uncorrelated, the variance of c 2  is 0(11K), while 

its average is 0(1). This means that in the K -* 00 limit, c2  can be replaced by its 

average 

C2=k(H) =JDft(\/) 

So far we have not yet exploited the limit of a large committee, k -* 00, which yields 

the desired exact maximum information queries'. This we do now by noting that the 

product of H-functions in (8.28) constrains c 1  to values arbitrarily close to zero for 

k -f x, so that we can write 

	

1 	) (exp (i > 	8(el)){} 	
(8.29) 

	

F = exp 
(- 	

. 	(*04,~0 

in this limit. The numerator can be written explicitly as 

I exp 	 8(ci) 	
dt 

 = 	_JJJD exp 	+ =tft). 	(8.30) 
\ 

We now make use of the fact that only a finite number s of the u (and vi), which we 

denote by uj1  . . .0 (and v 1  ... vi . , respectively), are nonzero. The numerator (8.30) 

therefore contains K - s factors of the form 

f (t2 1K) = JD.~ j exp (=tft) - 1 - 	t2 + O(t4 /K 2 ) 
VT1 	- 2K 

which give 

[f (t21K)] 
Ks 

= exp (_t22/2)  (1 + C(t; K)) 

where 

C(t;K) = >K 1 C1(t) 

'This is true if k -+ oo for fixed K and N. As in Chapter 5, we have reversed the order of the 

limits, taking the limit k -+ oo last. The fact that the correct ce dependence of the entropy results (see 
Section 8.3) shows that this procedure is valid. 
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and the C1(t) are polynomials in t. One therefore obtains for (8.30) 

(exp 	 6(ci )\ 	= 
/{} 

( 	

/ s 

	

( 2  c 	
) 	

/ 
- /2  exp (i 	Ujrr exp (- 	1 (1 + (C(t; K)))) 	(8.31) 

r=i 	 \ 2E2) 

	

where the outer average is taken over the 	the average of C(t; K) is performed over 

a Gaussian distribution of t with mean —IF,/ E2  and variance 1/2,  and we have set 

= 7F r=1 

The averages (Ci(t)) contributing to (C(t; K)) t  are simply polynomials in E 2  (with 

coefficients containing ?2). Expanding 

2 

( — 	

\ 	 / 	00 

exp (1 + (C(t; K))) = exp (_i (1 + 	(C1(t))) 	(8.32) 

	

C2J 	 2) \ 	1=1 

in powers of E  2, we can deduce that in the limit K -* oo, the contribution from 

C(t; K) to the coefficient of any power of E2  can be neglected compared to that from 

the exponential. It is crucial that this is true for all powers of E 2  since E 2  is itself 

proportional to 11K and the leading terms of the expansion of the exponential in (8.32) 

can be cancelled when the average (8.29) is used in a calculation of averages of products 

of the a(x); we shall see an explicit example of this below. Neglecting (C(t; K)) 

in (8.31) and combining this with the corresponding result for the denominator of (8.29), 

obtained by setting ui,. = 0, .s = 0, r, = 0, we finally obtain 

= 	 ) 	 K (E )

2]) 

	

exp- 
	

v 	(ex 

L
i 	 Ei r  	 (8.33) 

	

r  

( 	r=1 
	2ë2 	1 

the average being taken over the ii,. As pointed out above, the second term in the 

exponential has to be expanded to the first order in 11K which contributes to the 

specific average of a product of the a' that one is trying to calculate. Note that the 

first term of this expansion gives 

F = exp(- 
	

+ Vfl) 	 (8.34) 

which, as can be verified by setting k = 0 in (8.28), is simply the result for random 
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examples. 

Let us now apply the result (8.33) together with the representation (8.17) to the 

calculation of the averages 

(0'i (X)01'j1(x)) 	 (8.35) 

which give the leading term in the cumulant expansion (8.15). For i = j, a = b, one 

has trivially 

= 1. 	 (8.36) 

For i = j, a 	one has 

a(x)a(x) = 	aa I dh dh 
J.d1'Z  dM 

(2ir) 2  
c7 ,u±1 

exp (i?h? - iMh + i(?aw? + IMWbTX) 	 (8.37) 

so that there is only one nonzero vector 

aj = h?aw + h4'w 

while all al, with k i are zero. It then follows from (8.22, 8.24) that 

U?  + V2 = 	a 2 = (a)2 + (I)2 + 	I4(w)Tw 	(8.38) 

The self-averaging overlap (I(/N)(w)Tw  can be replaced by the overlap parameter 

q = q defined in (8.6), where we have again used the assumption of hidden unit 

symmetry. The independence of the overlap parameter q of the replica indices a and 

b arises from our assumption of replica symmetry. As pointed out above, the leading 

contribution in 11K of the result (8.33) for the required x average (8.18) is given by 

exp(—(u + v?)). Inserting this into (8.37) and using (8.38), the integrals can be 

carried out and one finds 

1 	 2 
—arccos(—aaq) = — arcsinq 	(8.39) (a(x)o(x)) %= 	
27r 	 7r 

,o=±1 

up to terms of 0(11K). As explained above, this result is identical to that for random 

examples since we have only used the zeroth order term (8.34) in the 11K expansion 

of eq. (8.33). 
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Let us now consider the remaining case i 54 j. In this case, one has 

a1a 
P00 

dh 	
dhdh I (2ir) exp 

(_i(?h? + uih)) 

	

I 	? dh 	
? 

 

(8.40) 

where now two nonzero vectors 

ai = hw' 	a = 
2 	It 

appear in F. The corresponding values of u, and vi are determined by 

	

- 	La? 	= (,a)2 	 (8.41) 

= (w7)Taj = (8.42) 

where w7 is the i-th hidden unit weight vector of any of the 2k committee members 

and we have again used the self-averaging of weight vector overlaps. It is at this point 

that we use the identity q' = q1  which holds for the case of a correct inference model 

considered here (see Section 8.3). Exploiting again the assumed hidden unit symmetry 

q = q, eqs. (8.41, 8.42) can be solved to give 

= 	 vi = I/fq. 

Exactly analogous expressions are obtained for uj and v3 . Inserting these values into 

the result (8.33) for F, one has 

	

F exp H )2 - (i)2 	1 
) - 22KexP [-1(1 - q) ((I)2 + (I)2)] x 

2 3

[ 
(exp(iI 	/)J) exp(_q/L(I)2) 

+ (exp(ia 	li) exp Hq(j)2) 

+ 2 (exp(ia/i)ii) (exp(ia/â)ftj) 1 + O(K 2 ) ( 8.43) 
jJ 

All the terms in this expansion which do not change sign when the sign of either o' 

or ojb is reversed are cancelled by the sums qa.±1  c = = 0 in (8.40) and 

hence do not contribute to the desired average (8.40). It can easily be verified that 

this means that only the term in the last line of (8.43) survives, which when inserted 
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into (8.40) leads to terms of the form 

00 	 , 
/ dh / dh 

!a 
exp (_iIt?h? - 	

- qIL)(ha)2) (exp(ii?a/)1i) =% 
.io 	.j 2ir xi 

(ft H(_aJ7)) = 7 1 (H 2 ) 

 x i  

where the second equality follows from the fact that JI —* —fl i  under - — j. This 

average can now be evaluated explicitly by using the result 

	

. 	ab 	
(8.44) f —arcsin D  H(az) H 	

2 
() = 	

/i + a2i  + 

which can be verified by differentiation with respect to either of the parameters a or b 

(not to be confused with replica indices). One finally obtains 

2 

	

(af(a b ) 2 	2 
( 	

1 

 ) 

/1 	 1 2 
- 	( _ arcsinqi) = -_arcsinqhi 

	

2ë2K 	\jr 
cr" ,cT±1 

(8.45) 

where we have used (8.44) to evaluate E2 = (2/7r) arcsinq'. 

Inserting the results (8.36, 8.39, 8.45) into (8.15), one finds 

(ex (+7=>rcT(X))) = 

/ 	2 

exp [_(i - qff) 	(2 - 
(qe — qff) (a) + O(4)] 	(8.46) 

in terms of the effective overlap parameters 

2 	. 	 2 
qff = —arcsinq 	qff = — arcsinq. 

7r 

Evaluating the fourth order cumulants (8.16) in the same manner as demonstrated 

above for the second order averages, one can show that the Q(4)  term in (8.46) is at 

most 0(11K) for large K. This confirms our expectation that the linear combinations 

K— 1/2  Ej  cr' become Gaussian random variables for K —* oo. 

The result (8.46) can now be inserted into (8.14), yielding an expression exactly 

analogous to that obtained for learning from random examples in the binary percep-

tron (see, e.g., [GT901). Details of the remaining standard manipulations leading to 

the saddle point form of the entropy, eq. (8.7), are therefore omitted. We only note 
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that the product over p., which by exponentiation is converted into a sum, is replaced 

by an integral over cV = p./N in the thermodynamic limit, with the corresponding 

replacement of the qff  by a continuous function qeir(cV). 

8.6.2 Constructive query selection algorithm 

Let us now consider how the above calculation is modified for the constructive query 

selection algorithm proposed in Section 8.4. The manipulations leading to (8.14) remain 

unchanged. However, now there is no need to resort to a cumulant expansion to average 

the terms in square brackets in (8.14) over the input vector x. This is because the hidden 

unit input vectors xi are uncorrelated by definition of the constructive algorithm. This 

allows the decomposition 

	

K exp 	
= H (exP (+)=acr(x))) 	(8.47) 

where we have changed our earlier notation o(x) for the hidden unit outputs to a(x) 

in order to emphasize that they only depend on the inputs to the respective hidden 

unit. Focusing on one of the factors on the r.h.s. of (8.47), i.e., fixing i, we use a 

representation similar to (8.17) to write 

	

exp 
(± 	

a(X)) = 	exp (± a) I-Jo 
 (0'.FLK-(W ~,)TX, 

(8.48) 

where the summation is over the n + 1 binary outputs aa = +1 (a, = 0. . . n) of the 11-th 

hidden unit of the student replicas. We now carry out the average of the r.h.s. over 

the input x2 . By definition of our constructive algorithm, xi is chosen to be orthogonal 

to the average weight vector W of the hidden unit (where the average is taken over 

the version space defined by the existing training set ®()) and otherwise random, i.e., 

according to P(x). In the limit N/K>> 1 that we consider, this means that the scalar 

products 

Za = (wflTx 

become zero mean Gaussian random variables with covariances 

( za zb)
x 
 = (w)Tw - (K/N)(w?) T W . 	(K/N)(W ~ )TW ,11  

(K/N)(w)2 
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As usual, the weight vector overlaps are assumed to be self-averaging and are replaced 

by the corresponding overlap parameters 

q + Sab(1 - qfl = q + 6ab(1 - q) 

	

( 	
up - — 

w') w 
- - q —q 

'(Wli)2 = qL = q li 

where we have again used the assumptions of replica symmetry and hidden unit sym-

metry and the fact that q) = q. This leads to the representation 

= 	- qli + /f 

of the z' in terms of uncorrelated unit variance Gaussian variables 	and .. The 

average over the i is trivial and gives 

(® (aa(q - qli + 	 = H (_a 	 = 	+ aaft) 

where 
- Ii 

H=H(x 
q q 

\ 	1—q 

The summation over the aa  in (8.48) can now be carried out as in (8.25), yielding for 

the desired average (8.47) 

(ex 
 (± 	

a(x) '\ \ = 
[~ rj

(cos __ + iH sin 
a

h/xa 

Due to the occurrence of the K-th power, which arises from the product over i in (8.47), 

we only have to expand the average over up to terms of order 11K: 

'II (Cos- +iLsin_'sl) =

\a \/ 

	

( 

1± i fj. E~a_ I 	
'2 

- k2)a)2 - 'E 	

) 

2 (a \ . (8.49) 

	

_V71 	2K 	X 2K a 	 \a 	/ 
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Since 1T is an odd function of , the 0(1/v"k) term vanishes while the remaining 

terms give 

(ex (+ aa(X))) =  exp 	
1

_(i - a)(r)2 - 
a (a)2] 

(8.50) 

where the coefficient a (not to be confused with a replica index) is 

a = (k 	arcsin ) 	
2 	. (q - q')\ 

= - 
1—q(a')) 

(8.51) 

in agreement with the definition (8.11); the second equality in (8.51) follows by ap-

plying (8.44). Eq. (8.50) is the analogue of (8.46) for the constructive query selection 

algorithm; standard manipulations leading to the expression (8.7) for the average en-

tropy, with the modified value of as defined in (8.11), are again omitted. 

8.6.3 Generalization error 

Finally, let us sketch how the generalization error (8.4) for K —* oc and the 0(11K) 

correction given in (8.9) is calculated. The generalization error as the probability that 

the outputs 1(x) and f(x) of a given student and teacher, respectively, disagree on a 

random test input, is defined by 

= (0 (—f(x)fv(x)))p() = 2 (0 (—f (x)) 0 (fv(x)))p( X ) 

where the second equality follows from the invariance of the distribution P(x) of random 

test inputs under x —f —x. Introducing dummy variables aj, r.j for the hidden unit 

outputs of student and teacher and using the decoupling of the hidden unit input 

vectors x, one has 

6g 2 
{cr 1  ,r ±1) 0  (— I  r-  ai) 0  ( I  li : -r) 

-j (e 	 (8.52) ( A T 

The scalar products 	

=Wi Xi 	ZV = 
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become zero mean Gaussian variables in the limit N/K>> 1, with covariances 

Z 	(z) 	1 	(zzv). = 	= 	= R 

from the definition (8.5) of the overlap parameters Ri and the assumption of hidden 

unit symmetry 7.  Writing z y  = zR + /i -- R 2 , in terms of a zero mean Gaussian 

variable uncorrelated with z and of unit variance, one has 

(o (awx) 
o 

(,r, KWT,X, 

), 
= (O(aiz) ® (r(zi + s/f— R))) 

= - ( + ajT— arcsin R 
= 

jDzH (_airizR2) 	
1 	2 	

)• 	

(8.53) 1 _  
4\ 

The form of this result is intuitively obvious, since for ojr = —1, the average simply 

corresponds to half the probability that the i-th hidden units, which are binary per-

ceptrons with weight vectors w i  and W,j, differ in their outputs for the random inputs 

x2 . This probability is (compare eq. (5.21)) 

€= 	
1 	2 1 

arccos = 1 R 	11— _arcsinR) = (1R eff) —  

where 

Reff = arcsin R 	 (8.54) 
ir 

as defined in (8.5). It follows that 

69 
=21K 	® 	 €l(1_E)K_l 	(8.55) 

{o ,r = ± 1) 

where l is the number of i E 11 . . .K} for which JT = — 1. This representation of 

the generalization error is useful for determining its large a behaviour for fixed K. For 

a -* cc, R and Reff  tend to one, so that € -+ 0; hence the low 1-terms in (8.55) dominate. 

Counting the possible configurations of the jai, r} for l = 1 and l = 2, one obtains 

7 Below, we only describe the calculation of the generalization error for the case of hidden unit 

symmetry. The K -+ oc result (8.4) for the general case (Ri 0 R, for some i,3) can be obtained by 

trivial modifications. 
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—K 1 ( K \ = 21 	L+1) (Ltl)E(l_c_1 

[(L'+
\ 7L+1'\ I K 

+ i) 	2 	+ L+2) (L+2)] 
c2( l _ c)K2 + 0( E3)} 

K! 	2 
= (2LL!)2 

- L€ + O(c)1 	 (8.56) 

where we have set L = RK - 1) (remember that K was assumed to be odd, so that L 

is an integer). Evaluating the prefactor for large K using Stirling's formula, 

K! 
(2LL!)2 

F 
 (8.57) 

and neglecting the O(€2)  term gives the asymptotic form of the generalization error 

	

FL21K~ 	2 K 
C9 	

7r FZ

~ 7r 
- arccos R 

stated in the text (eq. (8.10)). Comparing the contributions of order c and 0 in (8.56), 

we see that this expression is valid as long as € << i/L = 0(11K), corresponding to 

To obtain the large K behaviour of the generalization error for finite a , it is easiest 

to go back to (8.52) and introduce integral representations for the 0-functions that 

remain once the result for the averages (8.53) is inserted. Using (8.54), one obtains 

J €
9

21_2K 	J dxdy 
 di  d 

 
— —exp(–ix – iy) 
27r 27r 

- 	 r) fJ(i + arRff) 	 (8.58) 
xexp ( 

2 

The contributions from different i now factorize, and the sums over the ai and -ri can 

be performed to give 

	

= 2 
100 

 dx dy --exp 	–iy)I 
 
cos– 	--- + Reff sin 	

KI 	
n 

2 2  

Expanding 

 

 the K-th power explicitly, one obtains 

= 
 

2> ('f) (I1) 2 Rff 	 (8.59) 
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where 

rdl 
x) I = I dx J - exp(—z 	cosK_t(/v'k)  sin'(//ik) 

Jo 

	

dá 	1 cosK_l(ó//k) sin'(/v"k) 	 (8.60) 
J27ri i — iE 

with € 	0+. For even 1, one can replace 1/(1 - i€) by iirS() since the remaining part 

of the integrand is odd; this yields 

10  = 1/2 	121 = 0 for 1 > 1. 	 (8.61) 

For odd 1, one can replace 1/( - i€) by 1/i; for simplicity of notation, we also relabel 

x. For large K, one has 

cosK(x/) = e_2 (i - 	+ 0(111(2)) 

and we discard the last term since we are only interested in contributions up to 0(11K). 

However, we have to respect the periodicity of the cosine in order to get the correct 

0(11K) term and therefore replace 

	

00 	 / 	4\ 
cosK (x/v /k) = 	(- 1)m f(x - miJk) 	f(x) = e 	

1 - 
M=-00 

Rescaling the integration variable by s/k, one then has from (8.60) 

27r1111
fdx 	i = —tan x (_1)mf(/k( x _ rn7r)) 

X 
M 

For large K, the factor f(/k(x - m7r)) is vanishingly small except in regions of width 

0(1//17) around the points x = m7r. The remaining part of the integrand, (tan 1  x)/x, 

can therefore be Taylor expanded around these points, yielding a sum of Gaussian 

integrals for 1-1 which can be carried out explicitly. From the m = 0 term, one finds the 

contribution 

I - 	'2 I  

	

v/2-7r It 	
1 (! ,, - (1 + 2)!! - = K 	(1 - 2)!! + k 	12 	

+ 0(1/1(2)] m 0  

while for m 54 0 one gets 

,,moo - J( -1 / 2  ( (-1)"1!! 

- 	j 	1(m2 	
+ 0(1/1(2)). 
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Here we have used the notation 1!! = 1(1 - 2) .3 1 (remember that I is odd). The 

sum over m is performed by using 

00 (—i) = 

L 	m 2 	12 
M=1 

and yields 

	

'1= 	- 2)!! + —f --I!! + 0(1/1( 2 )] . 	 (8.62) 
4K 

Inserting (8.61, 8.62) into (8.59) and using that 

/K\ 1 	1 

(1- 
 1(1 - 1) + 0(1/1(2)) 

2K 

one obtains after a bit of algebra 

11 K ((1 - 2)!!)2 [i + 
	+ 0(1/1(2 )] R ff . 

1! 

Comparing this with the Taylor expansions of the functions arccos Reff  and (1—R ff ) 1 /2 , 

one reads off that for large K 

	

1 	 1 	Re 	+0(1/K2) = - arccos Reff - 	________
7r 	 27rK \/1_Reff 

This completes the derivation of the results (8.4, 8.9) given in the text. 



Chapter 9 

Summary and Outlook 

Let us summarize the main results of the work presented in this thesis. For perfectly 

learnable problems, we found qualitative differences between linear, 'invertible' and 

nonlinear, 'non-invertible' rules, which suggested that query learning is generally more 

useful for the latter than for the former. However, queries also yield significant im-

provements for linear rules when the number of training examples is of the order of the 

number of parameters of the student (provided that the training data is not too noisy). 

This case may occur quite frequently in practice, where the total number of training 

examples can be severely limited. Based on our general arguments about the crucial 

role of 'invertibility' of the rule, which essentially allows perfect generalization after pre-

sentation of a finite number of noise free training examples, we expect that the results 

for simple nonlinear, invertible rules (such as perceptrons with nonlinear, monotonic 

output functions) would be similar to those for the linear case. We also found that in 

situations where the training algorithm is ill-matched to the learning problem at hand, 

queries can perform worse than random examples if they are not explicitly selected to 

minimize the generalization error (but rather the entropy, for example). However, this 

phenomenon was found to be confined to situations in which the generalization error 

has not decreased significantly from the value it had before any training examples had 

been received; it may thus not be a problem of great practical relevance. It would be 

interesting to explore whether this still holds for query learning of more complicated 

rules. 

For imperfectly learnable problems with linear students, we studied minimum en-

tropy queries. Minimum teacher space entropy queries proved to be counterproductive, 

due to lack of feedback about the progress of the student in learning the rule; for min-

imum student space queries, which are the only practical choice if the teacher space 

is unknown, the structure of the student space was seen to dominate the efficacy of 
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query learning. We pointed out that this result, if it holds more generally, has signifi-

cant practical implications: it would enable predictions about the usefulness of query 

learning on the basis of how one is trying to learn (as determined by the student space 

and the training algorithm), independently of what one is trying to learn. One way 

of checking the potential generality of this conclusion would be to calculate finite size 

effects in a scenario with linear students and nonlinear perceptron teachers, in order to 

see whether the functional form of the teacher manifests itself in a qualitatively new 

form. This would be straightforward using the response function methods described in 

Chapter 7. 

In Chapter 5, we investigated query learning in situations where knowledge about 

the teacher space is not available. This lead us to the definition of query learning 

assuming the inference model is correct, which was shown to have to significant draw-

backs: The actual optimization of a given objective function is no longer guaranteed, 

even when selecting queries expressly for this purpose. More importantly, we found 

that for discrete (in particular, binary) output students, query learning can perform 

worse than random examples even for an infinitely large number of training examples; 

we termed this the problem of 'self-confirming hypotheses far from the truth' due to 

the fact that query selection can produce training sets which will continually reconfirm 

a wrong hypothesis about the true rule. In our investigation of the effect of different 

noise processes corrupting training examples with binary outputs, we also saw that, 

depending on the form of the noise, the discrete nature of a rule can be 'smoothed out'. 

This reduces the efficacy of query learning to a level that we had previously associated 

with continuous output rules. We pointed out the need for a more careful investigation 

of this point, in particular with regard to typical noise models that might occur in 

practice. 

To overcome the problems of query learning assuming the inference model is correct, 

we proposed to combine query learning with inference model selection or adaptation. 

For the scenarios considered, the results were encouraging; in particular, the problem 

of self-confirming hypotheses was avoided and the generalization performance achieved 

by queries was consistently better than that for learning from random examples. A 

more detailed study of this topic would therefore appear to be worthwhile, in particular 

given the rather limited range of scenarios that we have explored in this context. 

In the final two chapters, we tried to gauge the importance of effects that can occur 

in neural networks which would realistically be used in practical supervised learning 

problems. Chapter 7 dealt with finite size effects, and we found that the results derived 

in the thermodynamic limit of infinite system size are generally valid even for fairly 

small systems with a number of parameters of the order of tens or hundreds. This 
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is certainly encouraging and suggests that the thermodynamic limit can often make 

accurate predictions for real-world problems. Exceptions to this rule were regions in 

the neighbourhood of phase transitions in the learning behaviour. A further study of 

this topic in the context of learning problems with first order phase transitions (see, 

e.g., [SST92]) would therefore be an interesting extension. 

In Chapter 8, we investigated query learning in a simple multi-layer network with 

binary outputs, the tree committee machine. Two main conclusions emerged: Firstly, 

the form of the relationship between entropy or information gain and generalization 

error was found to be modified compared to single-layer networks; this raised a number 

of interesting questions regarding the efficacy of query learning for minimum entropy 

in more complex multi-layer networks. Secondly, and more importantly from a practi-

cal point of view, we found a computationally cheap constructive algorithm for query 

selection which does yield significantly better generalization performance than learning 

from random examples. It has been outlined how this algorithm could be adapted to 

more powerful neural networks; it remains to be seen whether a calculation of the re-

sulting generalization performance is tractable and whether qualitatively new features 

of query learning will emerge. 

We hope that the above results shed some light on the general capabilities and lim-

itations of query learning; the possible extensions mentioned above and in the course 

of the preceding chapters, should help to make the picture more complete. There are, 

however, still many missing pieces of the puzzle: One major point that we have not 

addressed is query learning in multi-layer networks with sigmoidal transfer functions 

for the hidden and output units. Since such networks implement continuous input-

output mappings, one might naively say that they should show qualitatively the same 

behaviour as linear networks. However, as the presence of local minima in the train-

ing error 'surface' of such networks makes clear, they are not 'invertible' in the sense 

that linear networks are; for any number of (noise free) training examples, there will 

typically be a finite (and possibly large) number of networks which are compatible 

with the training set. Some of these networks will be simple transformations of one 

another (related, for example, by a permutation of the hidden units and the corre-

sponding weights), but there may also be other 'accidental degeneracies'. One could 

therefore classify multi-layer networks with continuous output functions as 'continuous 

non-invertible' networks. It is tempting to think that the efficacy of query learning in 

these networks would lie between the two extremes of 'invertible' networks on the one 

hand and discrete, 'non-invertible' networks (such as the binary perceptron) on the 

other hand. This hypothesis is based on the number of networks compatible with a 

sufficiently large training set, which is one for invertible, larger than one and finite for 
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continuous non-invertible, and infinity for discrete non-invertible networks. This topic 

certainly deserves further study; an investigation of query learning in single-layer per-

ceptrons with non-monotonic continuous output functions might be a useful starting 

point. 

Another topic that we have not tackled is query learning for 'over-sophisticated' 

students, which due to their functional form can learn rules which are more complex 

than the actual teacher. It is unclear how the sub-optimally large number of parame-

ters of such students would affect query learning. On the one hand, one could argue 

that a lot of these parameters might be irrelevant to the actual predictions that the 

student makes, and that queries (especially for minimum student space entropy) could 

waste a large number of training examples trying to determine these irrelevant pa-

rameters (D. Cohn, private communication). On the other hand, one might turn the 

argument around and say that the post-training distribution of irrelevant parameters 

will only be affected very weakly by new training examples, if at all, and that con-

sideration of the expected entropy decrease would force queries to concentrate on the 

determination of relevant parameters. A logical extension of an investigation of over-

sophisticated students would be to consider 'universal' students, making use of the 

universal approximation properties of multi-layer networks (see, e.g., [HSW89]). Such 

universal networks would have to have an infinitely large number of hidden units, but 

one can choose appropriate priors over the weights which give sensible priors over the 

corresponding input-output mappings [Nea94]. With such universal students, problems 

associated with query learning of imperfectly learnable rules would no longer occur. In 

fact, one could extend the idea even further and, discarding the neural network repre-

sentation of students altogether, consider learning with more general models such as, 

for example, Gaussian processes [Wi195]. It would be exciting to see what form query 

selection for minimum entropy, say, would take in such models, and how such queries 

would improve generalization performance. 

In line with our general philosophy, we have concentrated mainly on theoretical 

questions about query learning so far. Having reviewed our results along with possible 

extensions and perspectives for future work, a brief discussion of challenges arising 

from the practical application of query learning is now in order. One major point is 

of course the implementation of query selection algorithms. If one wants to retain the 

principled approach of selecting queries to optimize a given objective function, then 

the first step would be the calculation of the relevant averages of the objective function 

over the student post-training distribution, the teacher posterior and the distribution 

of the unknown new training output to obtain the function c (0),  x) defining a query 

selection algorithm (see Chapter 2). This can in principle be accomplished using Monte 
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Carlo techniques (see, e.g., [GS90, Nea93]), as has been demonstrated by Paass and 

Kindermann [PK95] for several toy learning scenarios. Another approach would be to 

choose the functional form of the students and the training algorithm in such a way that 

at least some of the averages can be carried out analytically (see, e.g., [CGJ951). Finally, 

one could also consider using cheaply computable 'proxies' for objective functions; 

in [PK95], for example, the 'current loss' (essentially the generalization error calculated 

for a specific input x, rather than averaged over the input distribution) was proposed 

as a proxy for the 'future loss' (the expected generalization error after query x and 

the corresponding output have been added to the training set), and this appeared to 

produce acceptable results. Having obtained the function c(O('), x), the next step is the 

identification of an input which optimizes it. If a stream of random inputs is available 

cheaply, this can be done by query filtering; however, it has to be borne in mind that 

query filtering times may become very large as learning proceeds [FSST93]. Also, 

the situation may often not be as simple as for maximum information gain queries 

in binary output models, where the globally optimal value of the objective function 

(in 2 = 1 bit) is known a priori; one would then have to come up with a prescription as 

to when to accept an input yielding only a 'local' optimum of the objective function. 

For query construction, the most direct way of finding the optimum of the objective 

function is by an exhaustive search of a set of candidate inputs which cover the input 

space reasonably well (see, e.g., [PK95]). In high-dimensional input spaces, however, 

this may well be infeasible, and one might have to rely, for example, on gradient 

descent techniques as in [CGJ95], or restrict the search to the neighbourhood of previous 

training inputs [Coh94]. An additional complication could arise in scenarios where the 

distribution P(x) of random inputs is highly structured. As explained in Chapter 2, 

queries should only be chosen from regions of inputs space where P(x) is nonzero, since 

otherwise the corresponding teacher output may be ill-defined. If these regions consist 

of a number of well-separated 'clusters', query construction may become a highly non-

trivial task (see also [Fre93]). One will then probably be forced back to query filtering; 

alternatively, one could first try to find the structure of the input distribution by some 

unsupervised learning technique such as vector quantization or Kohonen networks (see, 

e.g., [HKP91]) and then use this to map inputs to a representation in which random 

inputs have a near-uniform distribution. 

Query learning, certainly in its principled form based on objective function opti-

mization, can be computationally expensive in practical applications. This is partic-

ularly true if Monte Carlo techniques have to be used to carry out all or some of the 

necessary averages. There are several ways in which this problem could be tackled: 

One of the most obvious suggestions would be to cut down on the computational effort 

13 
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of query learning by selecting queries in batches, rather than one by one as assumed in 

our analysis. This approach has been studied by simulations; the results reviewed in, 

for example, [FTK89], suggest that it might only result in a small loss in generalization 

performance, even for comparatively large batches (see also [CAL94]). An alternative 

to this would be to mix queries and random examples; as we saw in Section 3.4.1, single 

queries are normally more effective after previous random examples than after queries, 

and this could be expected to offset the loss in performance due to the interspersed 

random examples, at least to some degree. 

Mixing of random examples and queries would most likely also make query learning 

(which in practical situations will often have to be carried out using the assumption that 

the inference model is correct) more robust against inference model misspecification. 

In light of the risks associated with query learning with incorrect inference models (see 

Chapter 5), this would be a very desirable property. It could also be achieved by several 

other methods; beyond those already mentioned at the end of Chapter 6, one could, for 

example, 'prime' query learning with an initial set of random training examples, select 

an inference model on the basis of this training set, and then proceed with sequential 

query selection as usual. A related approach was investigated in [CM93], and appeared 

to have desirable statistical properties. In situations where one is reasonably confident 

that the correct inference model is contained in a finite collection of models, one might 

also contemplate using query learning initially to select the most appropriate model 

(see, e.g., [PR93] and references therein), with subsequent queries selected to learn the 

teacher rule within this (hopefully correct) inference model. Finally, there might also 

be some potential for incorporating the techniques of 'robust experimental design' into 

practical query selection algorithms. The approach typically taken in robust design 

(see, e.g., [Ber85, 131386]) is to assume that the correct inference model is a member of 

a certain (often infinite) family of models. Queries are then chosen to maximize the 

minimum of the objective function over all models, or to maximize its average over a 

'hyper-prior' expressing how likely the different inference models are deemed to be 1 . 

This approach obviously makes the query selection process even more computationally 

intensive. So far, it has therefore been explored mainly for simple 'almost linear' or 

one-dimensional scenarios (see, e.g., [CN82, SY84, DS91, Det94, DJ94, Wie94, CF95]); 

it remains to be seen whether it can be extended to more complex scenarios. 

The above discussion shows that although we have provided some answers to our 

original question 'how useful is query learning?', many more questions have been raised 

'This applies if the sign of the objective function for query selection is such that its optimum is a 
maximum; otherwise the roles of 'maximum' and 'minimum' have to be reversed. 
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by our results, and much work remains to be done. Given this fact and the enormous 

potential for fruitful interaction between the disciplines of statistics, computer science, 

physics, and others, query learning looks set to remain an exciting area of research for 

years to come. 
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