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Abstract 

The work described in this thesis comprises two distinct components. In the first 

part, Monte-Carlo computer simulation methods are employed within a finite-size 

scaling framework to investigate both universal and non-universal behaviour in two 

scalar models, the 1-d 04  model and the 2-d Lennard-Jones fluid. In both these 

models the properties of interest are obtained from studies of the large-length-scale 

configurational patterns via measurements of the probability distribution function 

(PDF) of the coarse-grained (block) ordering variable. 

For the l-d 04  model, simulations are employed to obtain the block PDF of the spin 

variable. This function is shown to map onto an analytically-derived expression for 

the block PDF of the 1-d Ising chain, thus exposing the model's essentially Ising-

like character. It is further demonstrated that the corrections to the limiting form 

of the block PDF reflect system-specific features of the 1-d 44  model associated 

with its elementary excitations. 

In the 2-d Lennard-Jones fluid, the combined use of simulation and finite-size scal-

ing is shown to provide a powerful method for accurately determining the location 

of the liquid-vapour coexistence curve and critical point. At the critical point, the 

limiting form of the coarse-grained density distribution is found to collapse onto a 

previously determined function characteristic of the 2-d Ising model, thereby con-

firming and clarifying fluid-magnet universality. Clear evidence is also presented 

for mixing of the temperature and chemical potential in the two relevant scaling 

fields—a phenomenon responsible for the failure of the law of rectilinear diameter. 

As an addendum, a discussion is given of the prospects for generalising to fluids, 

the cluster updating techniques recently developed to reduce critical slowing down 

in simulations of spin systems. 

The second distinct part of this thesis is concerned with a neutron powder diffrac-

tion study of the structural patterns of crystalline cyclohexane. The use of auto-

matic indexing techniques to determine the unit cell and spacegroup of two hith-

erto unsolved high-pressure phases of cyclohexane is reported. The deduction of 



atomic coordinates from lattice energy minimisation calculations and constrained 

least squares refinement is then described and the limitations of this technique for 

structure solution are discussed. Finally the physical mechanisms determining the 

deduced structures of cyclohexane are considered in relation to the general factors 

believed to influence the adopted crystal structures of simple organic molecular 

systems. 
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Chapter 1 

Static Critical Phenomena—an Overview 

1.1 Preamble 

It seems appropriate to preface this work with a general discussion of those aspects 

of critical phenomena which will prove relevant to the present studies. Owing to 

the wide-ranging nature of the background material it will not be possible to per-

form an exhaustive, or even extensive review. Instead this chapter will merely seek 

to provide an overview of principal aspects of the theory, placing particular em-

phasis on those topics which serve to equip the reader for an adequate appreciation 

of the material to be presented in succeeding chapters. For a more comprehen-

sive coverage, the reader is referred to the introductory reviews appearing in the 

literature (see e.g. Stanley [1], Ma [2], Wallace and Zia [3], and Fisher [4]). 

1.2 Introduction 

A wide variety of physical systems undergo rearrangements of their internal con-

stituents in response to the thermodynamic conditions to which they are subject. 

Two classic examples of systems displaying such phase transitions are the ferro-

magnet and fluid systems. As the temperature of a ferromagnet is increased, its 
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magnetic moment is observed to decrease smoothly, until at a certain temperature 

known as the critical temperature, it vanishes altogether. Similarly, a change of 

state from liquid to gas can be induced in a fluid system (though not in an ideal 

gas) simply by raising the temperature. Typically the liquid-vapour transition is 

abrupt, reflecting the large density difference between the states either side of the 

transition. However the abruptness of this transition can be reduced by applying 

pressure. At one particular pressure and temperature the discontinuity in the 

density difference between the two states vanishes. These conditions of pressure 

and temperature serve to locate the critical point for the fluid. 

In the vicinity of a critical point a system will exhibit a variety of remarkable effects 

known collectively as critical phenomena. Principal among these effects is the 

divergence of thermodynamic response functions such as the specific heat and the 

compressibility or susceptibility. It transpires that the origin of the singularities 

in these quantities can be traced to large-length-scale co-operative effects between 

the microscopic constituents of the system. The recalcitrant problem posed by 

the critical region is how best to incorporate such collective effects within the 

framework of a rigorous mathematical theory that affords both physical insight 

and quantitative explanation of the observed phenomena. This matter has been 

(and still is!) the subject of intense theoretical activity. 

The importance of the critical point stems largely from the fact that many of the 

phenomena observed in its vicinity are believed to be common to a whole range of 

apparently quite disparate physical systems. This observation implies a profound 

underlying similarity among physical systems at criticality, regardless of many 

aspects of their distinctive microscopic nature. These ideas have found formal 

expression in the so-called 'universality hypothesis' which, since its inception some 

25 years ago, has enjoyed considerable success. 

In this chapter, principal aspects of the contemporary theoretical viewpoint of 

static critical phenomena will be reviewed. The ideas of power laws, critical expo-

nents and their relationship to scaling phenomena will be described and set within 

the context of the powerful renormalisation group technique. The notion of univer- 



sality as a phenomenological hypothesis will be introduced and its implications for 

real and model systems will be explored. Finally, the utility of finite-size scaling 

methods for computer studies of critical phenomena will be discussed, culminat-

ing in the introduction of a specific technique suitable for exposing universality in 

scalar models. 

1.3 The Approach to Criticality 

It is a matter of experimental fact that the approach to criticality in a given 

system is characterised by the divergence of various thermodynamic observables. 

The archetypal example of a critical system is the ferromagnet, whose critical 

temperature will be denoted as T. For temperatures close to T and in vanishing 

external field (H = 0), the response function (in this case the magnetic suscepti-

bility x) is found to be a singular function, diverging as the power y of the reduced 

temperature t (T - 

	

X o 	(H = 0) 	 (1.1a) 

Similarly, the correlation length , i.e. the distance over which fluctuations of 

the magnetic moments are correlated, is observed to diverge with an exponent ii. 

	

x t' 	(T> T,H = 0) 	 (1.1b) 

Power law behaviour is also found in the behaviour of the order parameter which 

measures the degree of order in a system. For the case of a simple magnetic 

system, the order parameter is taken to be the spontaneous magnetisation in. At 

temperatures below T, the order parameter is non-zero reflecting the presence of 

a preponderance of magnetic moments (spins) which are mutually aligned. As the 

critical temperature is approached from below, thermal disorder increases and the 

magnetisation tends smoothly to zero. 
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mxt 	(T<T,H=O) 	 (1.1c) 

The quantities -y, ii, 8 in the above equations are known as critical exponents. 

They serve to control the rate at which the various thermodynamic quantities 

change on the approach to criticality. Further power law behaviour is found in 

the behaviour of the specific heat (whose exponent is conventionally denoted c) 

and in the behaviour of the magnetisation as a function of an applied magnetic 

field (exponent 8). 

Remarkably, the form of singular behaviour observed at criticality for the example 

ferromagnet also occurs in qualitatively quite different systems such as the fluid 

system. All that is required to obtain the corresponding power law relationships 

for the fluid is to substitute the analogous thermodynamic quantities in to the 

above equations. Accordingly the magnetisation is replaced by the density differ-

ence Pliq Pgas while the susceptibility is replaced by the isothermal compressibility. 

The approach to criticality in a variety of qualitatively quite different systems can 

therefore be expressed in terms of a set of critical exponents describing the power 

law behaviour for that system. 

The principal aim of theories of critical point phenomena is to provide a sound 

theoretical basis both for the existence of power law behaviour and the factors 

governing the observed values of critical exponents. Historically, the first step 

towards these goals was taken by the static scaling hypothesis. 

1.4 The Static Scaling Hypothesis 

The static scaling hypothesis is essentially a plausible conjecture which appears 

to be consistent with observed phenomena [5] [6]. Its basic assertion is that the 

singular dependence of the response functions enters through a single variable, 

namely the reduced temperature (or alternatively the correlation length ) and 

that any other dependence on temperature is smooth and can be regarded as 
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constant over a small temperature range around T. 

The basis for scaling phenomena in near-critical systems is expressed in the claim 

that: in the neighbourhood of a critical point, the basic thermodynamic functions 

(most notably the Gibbs Free energy) are generalised homogeneous functions of 

their variables. For such functions one can always deduce a scaling law such 

that by an appropriate change of scale, the dependence on two variables (e.g. the 

temperature and applied field) can be reduced to dependence on one new variable. 

This claim may be warranted by the following general argument. 

A function of two variables f(u, v) is called a generalised homogeneous function 

if it has the property 

f\au,Abv) = )f(u,v) 	 (1.2) 

for all ), where the parameters a and b (known as scaling parameters) are con-

stants. Now, the arbitrary scale factor )¼ can be redefined without loss of generality 

as Aa = r' giving 

f(u,v) = Uh1af(1,._la) 	 (1.3) 
Ub 

A corresponding relation is obtained by choosing the rescaling to be Ab = v'. 

f(u,v) = v11bf( (1.4) 

This equation demonstrates that f(u, v) indeed satisfies a simple power law in 

one variable, subject to the constraint that U/V,/b  is a constant. It should be 

stressed, however, that such a scaling relation specifies neither the function f nor 

the parameters a and b. 

Now, the static scaling hypothesis asserts that in the critical region, the singular 

part of the Gibbs free energy G is a generalised homogeneous function of the ther- 
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modynamic fields. Remaining with the example ferromagnet, the following ad hoc 

scaling assumption [1] can then be made in terms of the reduced temperature and 

the dimensionless applied field h:- 

G°t, Abh) = )G(t, h) 	 (1.5) 

Of course, the Gibbs free energy provides the route to all thermodynamic functions 

of interest. Hence an expression for the magnetisation can be obtained simply by 

taking the field derivative of the Gibbs function for zero applied field h = 0 

m(t, 0) = (_t)"m(_1, 0) 	 (1.6) 

where the particular choice A = (_1/t)h/a has been made. Equation (1.1c) then 

allows identification of the exponent 8 in terms of the scaling parameters a and b. 

(1.7) 

By taking appropriate derivatives of the Gibbs function, other relations between 

scaling parameters and critical exponents may be deduced. Such calculations 

yield the results 8 = b/(1 - b), y = (2b - 1)/a and a = (2a - 1)/a. Relationships 

between the critical exponents themselves can be obtained trivially by eliminating 

the scaling parameters from these equations. The principal results (known as 

"scaling laws") are:- 

(1.8) 

(1.9) 

Thus, provided all critical exponents can be expressed in terms of the scaling 

parameters a and b, then only two critical exponents need be specified, for all 

others to be deduced. Of course these scaling laws are also expected to hold 
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for the appropriate thermodynamic functions of analogous systems such as the 

liquid-gas critical point. 

1.4.1 Experimental Verification of Scaling 

The validity of the scaling hypothesis finds startling verification in experiment. To 

facilitate contact with experimental data for real systems, it is first necessary to 

obtain a scaled equation of state. For a magnetic system the appropriate scaling 

relation is 

= Ab_l m (Aat , Ah) 	 (1.10) 

Making the substitution .A = t/' and eliminating the scaling parameters a and 

b in favour of the exponents 3 and 5 gives 

m(t, h) 
t/3 	

= m(1,  

In fact this last equation is really only a function of one variable. This feature can 

be brought out by the following redefinition 

F(H) m(1,H) 	 (1.12) 

where H t 36 h(t, M). 

Measured rn-h isotherms for a particular magnetic system, can be used to demon-

strate scaling by plotting the data against M = tm(t, h) and H = t 6h(t, M). 

Under this scale transformation, it is found that all isotherms (for t close to zero) 

coincide to within experimental error [1]. Reassuringly, similar results are found 

using the scaled equation of state of simple fluid systems such as He' or Xe [7]. 

In summary, the static scaling hypothesis is remarkably successful in providing a 

foundation for the observation of power laws and scaling phenomena. However, 
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it furnishes little or no guidance regarding the role of co-operative phenomena at 

the critical point. In particular it provides no means for calculating the values of 

the critical exponents appropriate to given model systems. 

1.5 Models and Approximations 

In order to probe the properties of the critical region, it is common to appeal to 

simplified model systems whose behaviour parallels that of real materials. The 

sophistication of any particular model depends on the properties of the system it 

is supposed to represent. The simplest model to exhibit critical phenomena is the 

two-dimensional Ising model of a ferromagnet. Actual physical realisations of 2-d 

magnetic systems do exist in the form of layered ferromagnets such as K 2 CoF4 , 

so the 2-d Ising model is of more than just technical relevance [8]. 

The 2-d Ising model envisages a regular arrangement of magnetic moments or 

'spins' on an infinite plane. Each spin can take two values, +1 ('up' spins) or —1 

('down' spins) and is assumed to interact with its nearest neighbours according 

to the Hamiltonian 

= —J E ssj 	 (1.13) 
<ii> 

where J > 0 measures the strength of the coupling between spins and the sum 

extends over nearest neighbour spins s i  and s3 . 

The fact that the Ising model displays a phase transition may be understood in a 

qualitative sense as follows. At low temperatures there is little thermal disorder 

and the free energy is a minimum when there is a preponderance of aligned spins 

and hence a net spontaneous magnetic moment. As the temperature is raised, 

thermal disorder increases until at a certain temperature T, entropy drives the 

system through a continuous phase transition to a disordered spin arrangement 

with zero net magnetisation. Although each spin interacts only with its nearest 



neighbours, the phase transition occurs due to cooperative effects among a large 

number of spins. In the neighbourhood of the transition temperature these coop-

erative effects engender fluctuations that can extend over all length-scales from 

the lattice spacing up to the correlation length. 

Although the 2-d Ising model may appear at first sight to be an excessively sim-

plistic portrayal of a real magnetic system it transpires that close to criticality, 

many physical observables are not materially influenced by the actual nature of 

the microscopic interactions. The Ising model therefore provides a simple, yet 

quantitatively accurate representation of the critical properties of a whole range 

of real magnetic (and indeed fluid) systems. This universal feature of the model 

is largely responsible for its ubiquity in the field of critical phenomena. 

Of the wide variety of models of interest to the critical point theorist, the major-

ity have shown themselves intractable to direct analytic assault. In a very limited 

number of instances models have been solved exactly, yielding the critical expo-

nents and the transition temperature [9]. The 2-d spin- i  Ising model is certainly 

the most celebrated such example, its principal critical exponents are found to be 

/9 = 1 , ii = 1, y = . Unfortunately such solutions rarely afford deep insight to the 

general framework of criticality although they do act as an invaluable test-bed for 

new and existing theories. 

For many years prior to the introduction of the renormalisation group method, 

the bedrock of information about the criticality in model systems was provided by 

series expansion techniques. These methods seek to deduce results for the critical 

region using known results obtained away from criticality. One simple example is 

the high-temperature series which expresses the Boltzmann factor in terms of a 

temperature expansion with 11T assumed small. 

exp(—fl/kBT) = 1 - 1 -(/kBT + (fl/kBT)2  + 	 (1.14) 

Successively higher terms in this series can be regarded as characterising correla- 



tions over successively larger distances. Known results for the high-temperature 

fully disordered phase can be applied to permit the (rather laborious) calculation 

of the partition function using the significant terms in this expansion. This pro-

cedure can yield surprisingly accurate numerical results although it is typical that 

the expansions break down close to the critical point, a failure that can be traced 

back to the divergent correlation length. Series expansions are dealt with in some 

detail by Gaunt [10]. 

1.6 The Renormalisation Group 

The crucial feature of the critical region is the existence of correlated microstruc-

ture on QIL  length-scales up to and including the correlation length. Such a pro-

fusion of degrees of freedom can only be accurately characterised by a very large 

number of variables. As already described, approximation schemes fail in the crit-

ical region because they only incorporate interactions among a few spins, while 

neglecting correlations over larger distances. Similarly, the scaling hypothesis fails 

to provide more than a qualitative insight into the nature of criticality because it 

focuses on only one length-scale, namely the correlation length itself. Evidently a 

fuller understanding of the critical region may only be attained by taking account 

of the existence of structure on all length-scales. Such a scheme is provided by the 

renormalisation group method, pioneered by K.C. Wilson, which stands today as 

the cornerstone of the modern theory of critical phenomena. 

1.6.1 Philosophy and Methodology 

The central thesis of the renormalisation group (RG) method is a stepwise elimi-

nation of the degrees of freedom of the system on successively larger length-scales. 

Many specific realisations of this procedure have been formulated but all contain 

this one basic ingredient. For illustrative convenience, real-space RG techniques 

will be described for a lattice of N spins {a}.  Corresponding arguments can 
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however be developed in Fourier space and for continuous (off-lattice) systems. 

The RG method is defined for a near-critical system in terms of a two stage pro-

cess involving a coarse-graining operation followed by a rescaling. The first step, 

the coarse-graining operation, entails the elimination of a number of neighbouring 

spins in favour of a single new spin chosen to reproduce the effect of its environ-

ment. One common method for achieving this is to perform a partial trace over 

(N - N') of the original spin variables {0 2,}, in such a way that the N' surviving 

spins {o} form a new lattice with spacing larger than that of the physical system 

by a factor b>> 1. Absorbing factors of (—kBT) 1  one can write 

exp(') = Tr'_N,(exp(fl)) 	 (1.15) 

where the effective Hamiltonian fl' can be viewed as characterising the interaction 

among those spin variables that survive the coarse-graining procedure. 

Clearly, the coarse-graining operation reduces the number of spin variables from 

N to N' = N/bd. In order to preserve the spatial density of spins, it is therefore 

necessary that all surviving spins have their spatial vectors rescaled by the factor 

b. Explicitly therefore, the lattice spacing of surviving spins is shrunk back to the 

lattice size of the original system before coarse-graining. 

= x/b 
	

(1.16) 

The essential condition to be satisfied by the RG operation is that the partition 

function must be preserved 

ZNI('J-(') = ZN(fl) 	 (1.17) 

In order to satisfy this condition and hence maintain the basic spin-fluctuation am-

plitude, the scales of the coarse-grained variables must be amplified by a constant 

factor A(b). 
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-+ oi = A(b)or,, (1.18) 

This rescaling, which completes the RG transformation, ensures that configura-

tions of coarse-grained spins appear with the correct relative probability via the 

effective Hamiltonian fl'. 

Consider now the Hamiltonian representing the system before and after the RG 

operation. For generality it is necessary to assume that the Hamiltonian fl of 

the original system is a function of a set of coupling constants {K} {J 1 /k2T}, 

reflecting the possibility of many different types of spin interactions. The effective 

Hamiltonian fl' of the coarse-grained system is also expressed in terms of a set of 

couplings which characterise the interactions among the coarse-grained spins o. 

In general however, the set of couplings appropriate to the coarse-grained system 

differs from the set for the initial system although they implicitly encapsulate all 

the information regarding the initial system. The most that can be said about 

the new couplings is that they are some function of the old couplings 

K = f(K1 , K2 .....) f(K) 	 (1.19) 

Symbolically, the RG transformation can be expressed by some function R b relat-

ing the effective Hamiltonian of the coarse-grained variables to the Hamiltonian 

before coarse-graining 

= 
	

(1.20) 

Furthermore as its name implies, it is possible to implement the RG operation 

iteratively, such that a fraction b' of the coarse-grained spins surviving the first 

application are themselves eliminated under a second RG operation. However 

for this to succeed, it is necessary that two applications of the operation with 

scale-factor b is equivalent to a single application with scale-factor V. 
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JbJb = Rb2 	 (1.21) 

The fulfillment of this condition is contingent upon A(b) taking the form 

A(b) 	If 	 (1.22) 

where c is independent of b. 

By now it should be apparent that the net effect of the RG transformation is 

to reduce the number of length-scales associated with the description of the sys-

tem. At each successive RG iteration, fluctuations on progressively larger length 

scales are subsumed, thereby reducing the ratio of the correlation length to the 

lattice spacing. Effectively therefore, the JIG may be viewed as transforming a 

system close to criticality into one further from criticality. Unfortunately, the 

form of Ii' can no-more be calculated exactly than could the original Hamilto-

nian 7-(. However, because the renormalised Hamiltonian is less critical than the 

original Hamiltonian, the approximation schemes that fail close to criticality are 

potentially of use for solving the Hamiltonian of the renormalised system. 

1.7 The Fixed Point Concept 

Consider now the situation precisely at the critical point. Since the correlation 

length is infinite at criticality, a finite number of coarse-graining steps cannot 

decrease the ratio of the lattice spacing to the correlation length. Thus after 

any number of RG iterations, the system is still at its critical point. Within the 

RG framework, this phenomenon of scale invariance can be formally expressed in 

terms of the effective Hamiltonian which controls the coarse-grained coordinates 

'H*= RbV 	 (1.23) 
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where V represents a Hamiltonian which is invariant under the ItG. The solution 

to this equation (in terms of the effective couplings K*  which serve to define fl*) 

is known as a fixed point. It will usually be found that a fixed point solution 

exists only for one particular choice of the auxiliary scaling operation A(b) bc. 

It may be shown (appendix A.1) that the appropriate choice is c = —//zi. 

The fixed point concept can best be elucidated by considering the space of coupling 

constants of the system. In general, this coupling space will span an infinite 

number of dimensions, reflecting the possibility of many different types of spin 

interaction, not only among the 'bare' spins, but also among the coarse-grained 

spins. According to the RG theory, there exists within the full coupling space 

a large subspace known as the critical surface. This critical surface is defined 

as the set of all coupling constants (in units of 1/kBT) which locate the critical 

temperature for models of a given class. As previously claimed, the effect of the 

RG transformation on the effective coupling constants of a system is, in general, 

to produce a new set of couplings. However, the ratio of lattice size to correlation 

length for a critical system is unchanged by the RG operation—the system remains 

at criticality. Thus if the set of effective couplings {K1 } at each successive RG step 

is represented by a point on the critical surface, points for a series of RG steps 

trace out a trajectory or flow-line on the critical surface. This flow-line emanates 

from the point corresponding to the critical couplings of the initial system, and 

for b sufficiently large, it converges on the fixed point. The existence of this limit 

reflects the fact that for large enough b the effective Hamiltonian 7 -C' is invariant 

under the RG. 

1.8 Perturbations, Exponents and Scaling 

The role of critical exponents in determining the characteristic near-critical be-

haviour of a system emerges in a natural way from the RG formalism. To appre-

ciate this, it is instructive to consider the behaviour of points in coupling space 

that lie close to the fixed point. This can be achieved by expanding f(K) around 
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K*. To linear order, 

K f1  (K*) + 	 (K - K*) 3 	 (1.24) 
OKj 

where the summation convention has been assumed. At the fixed point itself 

K4 = f2 (K*), thus 

(K' -  K*), = M,(K - K*), 	 (1.25) 

where 

LV.L 
11,1-,J  .. 	 (Tf* 

- 

The eigenvalues Aa(b) and eigenvectors v of 	are defined by the following 

eigenvalue equation:- 

'- (a) Mi = A a (b)V 	a = 13 2 	 (1.27) 
j 

Perturbations from the fixed point can then be expanded in the basis of these 

eigenvectors. 

K_K* /.LaVa 	 (1.28) 

Equation (1.25) thus becomes 

K' - K* = 	1tVa 	 (1.29) 

with the perturbation components Ya  satisfying the relation 

/.L(b) = A a(b)ita 	 (1.30) 
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These perturbation components are known as 'scaling fields' and equation (1.30) is 

a recursion formula describing their evolution under the coarse-graining operation. 

Dependent on the value of A a (b), the Pa  are expected to exhibit differing trans-

formation behaviour. For the case when Aa(b) > 1, it follows that p > Pa and 

hence the effective coupling K' is further from K*  than was K. The scaling field 

associated with this eigenvalue is therefore amplified by the RG and the effective 

coupling is driven away from its fixed point value. Such a scaling field is said to be 

'relevant'. Conversely, when A a (b) < 1, it follows that p, < Pa and the effective 

coupling moves closer to the fixed point value. The scaling field associated with 

the eigenvalue in this latter case is therefore diminished under the RG operation 

and is said to be irrelevant to the fixed point. 

Within the construct of the critical surface, the eigenvectors of the coupling combi-

nation matrix Mji define special directions relative to the critical surface. Specif-

ically, the eigenvectors associated with relevant scaling fields are normal to the 

critical surface, while those associated with irrelevant scaling fields lie within the 

critical surface itself. Under the coarse-graining operation, the flow of the effective 

coupling will be modified according to the values of the relevant and irrelevant 

scaling fields. Consider the case of a finite relevant scaling field, corresponding 

to a small but finite deviation from criticality. Initially the effective coupling 

will flow towards the fixed point along the direction of the irrelevant eigenvec-

tor. However deviations from criticality are amplified by the RG operation which 

reduces the correlation length. Hence, as the RG is iterated the coupling flow 

ultimately diverges away from the fixed point along the eigenvector corresponding 

to the relevant scaling field. Only when all the relevant scaling field are zero will 

the effective coupling flow asymptotically approach the fixed point. Figure 1.1 

shows a simplified schematic representation of this process. The most important 

couplings in the original system are represented on the ordinate, while all others 

describing the effective Hamiltonian are represented on the abscissa. It is as-

sumed that the original Hamiltonian of the 'bare' systems is characterised by a 

single nearest-neighbour coupling constant (c.f. the Ising model). 

Thus a given system is unstable with respect to perturbations out of the criti- 
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ALL OTHER COUPLINGS K 

Figure 1.1: Schematic representation of the flow-process of the effective Hamilto-

nian in coupling space under the RG transformation. The vertical axis corresponds 

to the nearest-neighbour coupling constant, while all other coupling constants are 

represented by the horizontal axis. For sufficiently large b, the effective coupling 

flow for slightly super-critical () and slightly sub-critical (o) systems diverges 

along the direction of the relevant eigenvector of the temperature scaling field 

(shown as a broken line). Precisely at criticality the effective coupling flow (x) 

asymptotically converges on the fixed point. 
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cal surface but stable to perturbations within the critical surface. From this it 

should be clear, that the relevant or unstable scaling fields represent precisely those 

quantities that have to be tuned in order to be at the critical point. For magnetic 

systems there are, in general, two relevant scaling fields which can be identified 

with the reduced temperature and the applied field. The physical interpretation 

of the irrelevant scaling fields is however slightly less tangible, they measure the 

extent to which the value of the scale factor b fails as an approximation to the 

asymptotic limit. This measure is usually termed the 'correction to scaling'. 

The significance of critical exponents, can now be re-examined in the light of the 

foregoing analysis. Firstly it should be evident that the critical exponents (0, .y, ii 

etc) are intimately related to the eigenvalues A a (b) of the relevant perturbation 

eigenvectors. Intuitively this can be deduced from equation (1.30) which shows 

that the eigenvalues determine the rate at which the deviation from criticality 

grows under the RG transformation. This, of course, is exactly the role played 

by the critical exponents themselves. As a concrete example, consider the scaling 

field yj  which is assumed to correspond to perturbations of T away from T. 

Y J  o (T - T) 
	

(1.31) 

Hence from the recursion formula (1.30) 

(T - Tr )' = A1(b)(T - T) 	 (1.32) 

However, under the RG transformation the correlation length of a near-critical 

system is reduced by a factor of the coarse-graining scale factor b. 

= 	 (1.33) 

Recalling the behaviour of the correlation length o (T - T)", then shows that 

A, (b) o 	 (1.34) 
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This is one example of a more general result, namely that the eigenvalues A 0 (b) 

take the form 

A,, (b) OC 
	

(1.35) 

where the eigenvalue exponents )'a  are some function of the critical exponents. The 

rescaling factor b may then be seen to be effectively arbitrary since by iterating 

equation (1.30) 1 times one finds that the scaling fields evolve according to 

14'(b) = A(b)p a  = b'p0  = (bi)/ia 	 (1.36) 

with bi=b'. It follows from equation (1.36) that two points in coupling space are 

related by a single coarse-graining operation. Clearly therefore, the large-length-

scale properties of all near-critical systems differ only in a matter of length-scales. 

This is, of course, just the assertion made on phenomenological grounds by the 

scaling hypothesis. 

In general, there will be two relevant scaling fields p i  and .i2, corresponding re-

spectively to deviations of the temperature and reduced field from their critical 

values. Invoking specific results for the eigenvalue exponents )'a  (appendix A.2), 

the RG transformation properties of it, and JL2  can be written explicitly:- 

= A 1 (b)pi  aibAlt = 	a1b'i (1.37a) 

1 2 (b) = A 2 (b)p 2  = a2 bX2h = 	a2b''h (1.37b) 

where h = h - h and a1 , a2  are both system-specific parameters. 

Clearly, the quantities pi (b) and jt2 (b) form a coordinate system which provides 

a unique measure of the location and direction of flow of the effective coupling 

in coupling space. However, as will become apparent in chapter 3, the form of 

the scaling fields given in equations (1.37a) and (1.37b), strictly only applies to 

a system whose Hamiltonian is symmetric with respect to positive and negative 
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values of the reduced ordering field. Although most magnetic systems satisfy this 

criterion, fluids do not. 

Finally, it is possible to express the effective Hamiltonian fl as a function of the 

scaling fields. Near the fixed point: 

= fl* + 	j(b)0 	 (1.38) 

where the variable Oi  are called scaling operators and are defined by equation (1.38). 

The scaling operators are the quantities conjugate to the scaling fields. For a sim-

ple magnetic system, 02 may be identified as the magnetisation (conjugate to the 

applied field) while 01  is the energy density (conjugate to the temperature). 

1.9 Universality 

The universality hypothesis constitutes one of the cornerstones of the contempo-

rary theoretical view of critical phenomena and is its central unifying theme. It 

is founded upon the observation that, in the vicinity of a critical point, the ther-

modynamic properties of whole classes of physical systems exhibit a remarkably 

degree of insensitivity to the (possibly) quite distinctive nature of their microscopic 

interactions. As its basic tenet, the hypothesis holds that systems possessing the 

same set of 'symmetries' also possess an identical set of critical exponents and 

scaling functions. Such systems are said to belong to the same 'universality class'. 

Those system symmetries that are known (thus far!) to delineate the universality 

classes are:- 

• The spatial dimensionality of the system (d). 

• The degree of isotropy of the order parameter (n). 

• The range of the interactions. 
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• The rotational symmetry of the configurational energy. 

A number of so-called 'standard models' are adopted as representative members 

of the most common universality classes. The nominated models are the simplest 

of their universality class and are classified according to the dimensionality of 

the order parameter (n). For n = 1 (scalar) models the standard model is the 

Ising model which was introduced in section 1.5 and is defined by equation (1.13). 

Models for which the order parameter is n = 2 (vector models) are typified by the 

X-Y model, defined by the equation 

J(SS;+SSy) 	 (1.39) 

The order parameter of the X-Y model is the vector sum of the spins in the x-y 

plane and the model is appropriate for describing easy-plane magnets. Isotropic 

magnetic systems (for which n = 3) are represented by the Heisenberg model. 

This model is defined by the equation 

fl= — E J(SS7+SSX+SS) 	 (1.40) 
<ii> 

Lastly, there is the spherical model which assumes an infinite number of spin 

components n = 00. This model seems to have no physical analogue, but it does 

have the advantage that it is exactly solvable. 

The key theoretical elements underlying the notion of universality are to be found 

within the RG formalism. Under the RG transformation, all trajectories that start 

anywhere on the same critical surface, are borne towards the same fixed point and 

hence the same scale-invariant limit. Only gross differences in symmetries between 

systems are capable of altering the fixed point which controls critical behaviour. 

One fixed point (and hence one critical surface) can therefore be considered as 

generic to a whole class of models possessing the same symmetries. For systems 

of a given universality class, the convergence of the effective Hamiltonian to the 

fixed point may be expressed algebraically as follows:- 
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urn Rbfl = 	 (1.41) 
b-+oo 

where fl denotes the specific microscopic Hamiltonian of a critical system before 

coarse-graining. Under repetition of the RG operation, the effective Hamiltonian 

contracts to the fixed point along the direction of the leading irrelevant eigenvector. 

Thus for b sufficiently large, different members of the same universality class are 

controlled by the same fixed point and hence the same eigenvectors and eigenvalues 

corresponding to perturbations away from criticality. It follows that all such 

systems share the same set of critical exponents and scaling functions. 

Although the origin of universality can be traced to the controlling fixed point, 

it should be emphasised that the system need not be precisely at criticality for 

universal behaviour to be apparent. In fact, universality is to be expected when-

ever both b and 6 are large compared to the smallest length-scale. Provided this 

condition is satisfied, the system specific details (associated with transient flow 

towards the fixed point along the irrelevant eigenvector) will be erased. The loca-

tion in coupling space of the effective Hamiltonian will then be uniquely described 

by the relevant scaling fields jul  (b) and A2  (b) and the effective Hamiltonian is said 

to reside on a 'universal manifold'. Thus provided their scaling fields are iden-

tical, different systems (which are member of a common universality class) will 

be described by the same effective Hamiltonian. In such circumstances it is to 

be expected that configurations of coarse-grained coordinates will be statistically 

indistinguishable. 

1.9.1 Experimental Tests of Universality. 

Experimental data abounds for most facetsof critical phenomena, especially for 

the values of critical exponents. Although it is not appropriate to review the 

relevant literature in great depth at this juncture, (though see references [11, 8, 121 

for comprehensive reviews), some results will be cited to illustrate one instance of 

the validity of the universality hypothesis. 
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Three systems of general interest are: uniaxial ferromagnets, single component flu-

ids and order-disorder structural phase transitions with short-range interactions. 

Each of these systems possesses the same symmetries as the 3-d Ising model and 

are accordingly all expected to belong to the 3-d Ising universality class. In the first 

category, measurements of the critical exponents of a uniaxial (anti)ferromagnet 

system have been made for FeF 2  by Belanger and Yoshizawa [13]. These workers 

employed neutron scattering techniques to determine the critical exponents con-

trolling the correlation length and the susceptibility. They found ,i = 0.64 (0.632), 

/9 = 0.325 (0.326) and -y = 1.25 (1.25) where the numbers in parenthesis are the 

3-d Ising-model values calculated from field theoretical methods. 

Turning next to uniaxial fluids, highly accurate experiments have been performed 

by Hocken and Moldover [14] on xenon, sulphur hexafluoride and carbon monox-

ide. Experiments on critical fluids are technically difficult to perform for a num-

ber of reasons, principally because the divergent compressibility leads to gravity-

induced density gradients in the sample. It is therefore only latterly that mea-

surements have been possible of sufficient precision to verify the predictions of the 

universality hypothesis. The measured values of the principal exponents for SF 6  

are ii = 0.623,/3 = 0.323, -y = 1.266. 

Few realisations of the 3-d Ising universality class are to be found among the 

ranks of order-disorder structural phase transitions. Most structural transitions 

are mediated by long-range dipolar interactions which bring them outwith the 

Ising class. For those Ising-like systems such as ND 4C1 that do exist, it is often 

rather difficult to attain the range of reduced temperature for which asymptotic 

scaling is valid. Nevertheless the order parameter exponent /3 = 0.31 has been 

measured for this material by Yelon et al [15], a result that is in reasonable accord 

with the 3-d Ising result. 

It seems that at least in the case of the 3-d Ising universality class, there is substan-

tial experimental evidence favouring the validity of the universality classification. 

In fact a similar body of evidence exists for other universality classes such as that 

typified by the 3-d Heisenberg model (see e.g. the work on EuS by Als-Nielson et 
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al [16]). Taken together, all the available evidence weighs heavily in favour of the 

general validity of the universality hypothesis. 

1.10 Practical Methods for RG Calculations 

1.10.1 Analytic Methods 

Practical RG methods may be broadly categorised as based on either real-space 

or Fourier-space representations. The former category are used predominantly for 

lattice-based systems of low-dimensionality, while Fourier-space techniques are 

more useful for systems with continuous degrees of freedom (such as fluids) and 

for systems of high dimensionality. For a lattice system, one might implement 

a real-space RG calculation by first performing a spatial average over groups of 

neighbouring lattice variables. In contrast when employing Fourier-space meth-

ods, one describes the system in terms of plane waves of the ordering variable (the 

density in the case of a fluid). The coarse-graining then involves an integration 

over the shorter wave-length components. Of course the essential physics of the 

critical region must be independent of the particular coarse-graining method cho-

sen to expose it. The choice of method is therefore merely one of calculational 

expediency. 

The principal difficulty facing real-space RG calculations is the proliferation of 

coupling constants appearing in the effective Hamiltonian. Although the basic 

interaction range of the underlying lattice may only extend to nearest-neighbour 

spins, new and more exotic couplings are introduced at each step of a real-space 

RG scheme. These new couplings describe rather more complex interactions be-

tween the block variables, e.g. second and third neighbour interactions. The 

algebraic complexity associated with calculations of fl' therefore increases at each 

iteration. To deal with this complexity a commonly adopted strategy is to make 

an approximation that eliminates all but a finite number of interactions. This 

truncation is usually justified on the grounds that the renormalised coupling con- 
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stants are fairly short ranged, so their effect can be ignored with relatively little 

error. The task therefore becomes one of determining which interactions can be 

reliably neglected, and estimating the error arising from their truncation. Once 

a good estimate for the fixed point couplings has been obtained, further analysis 

may yield information on the values of critical exponents. Most success in the 

area of analytic real-space RG has centred on exact blocking-schemes for finite 

lattices for which the range of couplings is limited by the size of the lattice. A few 

exact results also exist for infinite systems. 

In practice many problems are often more amenable to assault by Fourier-space 

RG methods. Implementation of these techniques shows that all systems with 

short-ranged interactions, exhibit only very weak fluctuations in four dimensions 

(the upper critical dimension for Ising-like systems). At this dimensionality, such 

systems therefore exhibit essentially classical (mean-field) behaviour. From this 

observation it transpires that the critical exponents of systems with dimensionality 

d < 4 may be expressed perturbatively in terms of a power series in the (small) 

parameter e = 4— d. These 'epsilon-expansions' yield surprisingly accurate values 

for the critical exponents in three dimensions, compared with experiment and 

computer simulation. 

Notwithstanding the considerable successes of analytic RO calculations, it is the 

exception rather than the rule, that they yield quantitatively reliable estimates 

for critical exponents and amplitudes. There remain a great many systems that 

cannot be accurately investigated using current analytic techniques. This applies 

particularly to systems of lower spatial dimension for which real-space methods 

are often intractable and whose large-length-scale behaviour cannot be reliable 

characterised using the epsilon expansion. The task of investigating these systems 

therefore falls predominantly to computer simulation. 
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1.10.2 Computer Simulation Techniques 

In those instances where a model has not yielded to analytic solution, it is common 

to appeal to computer simulation techniques. Computer simulation represents a 

powerful tool for studies of phase transitions and critical phenomena. In many 

respects a computer simulation resembles an experiment. No a-priori bias is in-

corporated in a simulation, one simply specifies the physical laws governing the 

interactions between the constituents of the system and allow the simulation to 

evolve as it will. In common with real experiments, simulations offer the possibil-

ity of new discoveries, whilst possessing the additional advantage that complete 

control is retained over all parameters of the model. For these reasons computer 

simulations plays an increasingly important role in the study of phase-transitions 

and critical phenomena. 

Computer simulations methods have been successfully married with R.G tech-

niques to circumvent the problems associated with the proliferation of coupling 

constants generated by real-space RG transformations. A technique known as 

the Monte-Carlo Itenormalisation Group method (MCRG) employs a computer 

to generate a sequence of configurations characteristic of the original Hamiltonian 

on a finite lattice. RG transformations can then be applied to each configuration 

to produce a sequence of block-spin configurations appropriate to the effective 

Hamiltonian. The method has the advantage that, unlike analytic real-space 

methods, there is no error involved in truncating interactions to form an approx-

imate effective Hamiltonian. The configurations at each iteration are therefore 

distributed according to an effective Hamiltonian that derives exactly from its 

predecessor. Correlation functions may be calculated at each RG step and these 

provide information on effective couplings that can in turn be used to estimate 

critical exponents. 

Notwithstanding its advantages over analytic techniques, the MCRG method is 

not completely error-free. Computers can only simulate a finite system and the 

effective Hamiltonian at each step is therefore necessarily only an approximation 

to that of the infinite system. This problem is not usually too serious provided 
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the effective range of the interactions in the effective Hamiltonian does not exceed 

the system size. Comparisons of data from systems of different sizes will indicate 

whether this is the case. 

As alluded above, the most serious drawback of computer simulations of criti-

cal phenomena in general, is that their spatial extent is often small relative to 

the correlation lengths over which co-operative phenomena can occur. In these 

circumstances, a simulation can develop spurious artifacts and non-physical fea-

tures, usually termed 'finite-size effects'. The most significant breakthrough in 

enabling the accurate study of the critical region by numerical simulation came 

with the development of finite-size scaling, a method which circumvents many of 

the difficulties associated with the study of criticality in finite systems. 

1.11 Finite-Size Scaling 

The theory of finite-size scaling was first proposed by Fisher [17]. It provides a 

framework for the inclusion of finite-size effects within the context of a scaling 

theory expressed in terms of the critical exponents of the corresponding infinite 

system. In essence, finite-size scaling invokes a scaling ansatz for the Helmholtz 

free energy, parameterised in terms of the system size and the correlation length 

. For a hypercubic system of side L" the Helmholtz free energy F may be written 

F(h, t, L) 	 , L 1 1ut) 	 (1.42) 

where F is a scaling function and in this context t 1-T/T(oo) where T(oo) 

is the transition temperature in the thermodynamic limit. A derivation of equa-

tion (1.42) on the basis of renormalisation group methods can be found in Suzuki 

[18]. Corresponding finite-size scaling relations for the magnetisation, the mag-

netic susceptibility and the specific heat follow directly from equation (1.42). 

Although finite-size scaling is very important in the context of films and sur- 
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faces, arguably its greatest utility lies in its relevance to computer simulations. 

As direct experimental confirmation of theoretical predictions often exceeds the 

capability of modern techniques, the task of verification may fall to computer sim-

ulation. Unfortunately, owing to the constraints of current computer technology, 

simulations often operate with model systems whose size is insufficient to provide 

reliable conclusions regarding the validity of theoretical predictions pertaining to 

the thermodynamic limit. Clearly then, a scaling theory that explicitly embod-

ies finite-size effects is potentially of great service. A convenient realisation of 

finite-size scaling ideas appropriate for computer simulation, is to be found in the 

properties of the probability distribution function (PDF) of block coordinates. 

1.11.1 Block Distribution Functions 

An important result to emerge from finite-size scaling and renormalisation group 

methods, concerns the scaling and universal properties of block distribution func-

tions. In real space, a block coordinate may be defined as the instantaneous value 

of the local ordering variable (assumed scalar) spatially averaged over a block of 

linear dimension L. The construction of block coordinates may be regarded as a 

form of coarse-graining operation. Denoting the block coordinate as UL and the 

local ordering variable as u, 

Ld 

(1.43) 

where CL  is the block variable scale factor to be prescribed below. 

Formally, the probability of a measurement of UL yielding a given value u'1 , is 

defined by the equation 

PL(u) =< 8(u - UL)> 	 ( 1.44) 



It will be found convenient for the purposes of analysis to use the integral repre-

sentation of the 6-function to recast this relation in the form 

1Foo 

FL(u') = - J PL(Q) exp(—iQu,)dQ 	 (1.45) 
2ir—oo 

where 

PL(Q) =< exp(iQuL)>., 	 (1.46) 

is a characteristic function. From the properties of characteristic functions [19], 

FL(Q) may itself be written as a M'Claurin expansion in terms of the cumulants 

J(')  defined as the connected parts of the moments of PL(U'L).  The cumulant 

expansion takes the form 

oo 

PL(Q) = exp( 	
(iQ)flJ(fl)) 	

(1.47) 
n=1 

and proves valuable for the analysis of the universal properties of the block PDF. 

1.11.2 Universal Configurational Structure 

In what follows a slightly modified version of a general argument due to Bruce 

[20] is presented, which serves to show that in the limit of large L and large , the 

cumulants j and hence the distribution PL(UL)  itself, assume limiting forms 

that are universal functions of the relevant scaling fields p1 (L) and p2 (L). 

Consider first a set of scalar coordinates u(x), associated with the N sites of a 

hypercubic lattice. The connected n-point correlation function at the reduced 

temperature t and reduced field h is 

K(x i  ... x; t; h) =< u(x1) ... u(x) > 	 (1.48) 
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where it is assumed that the average is evaluated in the canonical ensemble and 

the subscript c denotes connected part. 

Suppose now, that the sites 	are separated by distances large compared to 

the lattice spacing. An RG operation may be performed on the partition function 

in the form of a partial trace over some fraction of the {u(x)} sites. It is assumed 

that the u(xi) . . . u(x) are among the coordinates that survive this operation and 

which form a new lattice of spacing exceeding that of the original system by a 

factor b>> 1. The RG operation is then completed by scaling the new lattice size 

back to that of the original lattice and rescaling the coordinates, according to 

u(x) = aob'u'(x/b) 	 (1.49) 

where a0  is a system specific constant. The following identity for the correlation 

functions may then be seen to hold 

< u(xi) ... u(x,) >= (aob")' < u'(xi /b) ... u'(x/b) > 	(1.50) 

where the average on the RHS of this equation is evaluated for the configura- 

tional energy of the effective Hamiltonian V. For b and both large, the RG 

scaling hypothesis predicts that the location of 7 -C on the universal manifold 

will be determined uniquely by the relevant scaling fields p1 (b) = al b'/'t and 

= a2bdi_PIhIh. Combining equations (1.48) and (1.50) thus shows that 

K(x j  ... x;t;h) =(aob--81 v (1.51) 

where the functions k (n)  are universal functions of t i  ( b) and 92  (b). 

Now, the cumulants appearing in the expansion of the characteristic function 

PL(Q) of the block PDF are defined as 
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J = 	>2 	• 	>2 	K° (XI ... x;t;h) 	(1.52) 
{xi}€S(L) 	{c}€S(L) 

where S(L) is the set of all coordinates in the block. To the extent that the 

block-size L is large, the principal contributions to these cumulants derive from 

correlations between coordinates whose site separation is large. Accordingly the 

functions appearing in equation (1.52) may be approximated by their scaling 

forms. If further, one sets the arbitrary scale factor b equal to the block size L, 

then 

= [Ci,aoL 	JnJN 	(L), A2  (L)) 	 (1.53) 

where the universal functions J()(p1 (L), 2 (L)) are defined as 

= 	>2 	>2 k(xi ...x;pi (L),p 2 (L)) 	(1.54) 
{vi}ES(L) 	{r n }ES(L) 

Finally, in order to guarantee the existence of a fixed point form of the block PDF 

it is necessary to specify the scaling factor CL.  Setting the variance of the fixed 

point block PDF <u1, 
2 >= j2) 1 implies that 

CE  = a0L 1'I[J(2)(0, 0)1 1 / 2 	 (1.55) 

It follows that provided both L and are large compared to the lattice spacing, 

then the characteristic function L(Q)  and thus the block PDF itself are indeed 

universal functions of pi (L) and 92 (L). A finite-size scaling ansatz for the block 

PDF, expressed in terms of the relevant scaling fields, can therefore be written 

[21] 

PL(UL) = CLP(CLuL,1z l (L),I1 2 (L)) 
	

(1.56) 
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where F is a universal function of the scaling fields p1 (L) = a1 L 111 "t and p2 (L) = 
a2Ld_/h. Here the block-variable scale factor CL = a 1 L 1" in the argument of F 
serves to ensure the existence of a fixed point. The prefactor of CL  merely ensures 

that the block PDF remains normalised as the block variable scale is eroded. 

In the special case when 92 = 0, one finds that equation (1.56) simplifies to scale 

as a function of a single variable z L/. Setting p 2 (L) = 0 and making use of 

the relation t', gives 

PL(UL) = CLP(CLuL,z 1 ) 	 ( 1.57) 

The finite-size scaling properties of block coordinates expressed through equa-

tion (1.56), can be exploited by computer simulation to yield detailed information 

on critical scaling behaviour. This information is delivered in the form of whole 

scaling functions (principally F) which are expected to be common to members of 

the same universality class. By measuring the scaling behaviour of the block PDF 

(and its derivatives) for a number of different system sizes, one can also deduce 

values for the critical exponents (most significantly the exponent ratios 11u and 

/3/u). 

The great utility of the block PDF method for investigating critical phenomena, 

was first demonstrated by Binder [21] who performed monte-carlo simulations of 

the 2-d and 3-d Ising models. Binder's study elucidated the precise nature of 

the Ising fixed point block PDF (whose form had already been approximately 

derived using RG methods by Bruce [20]), and allowed him to accurately measure 

the critical exponents. The universality of the limiting form of the critical block 

PDF was also subsequently confirmed by Nicolaides and Bruce who carried out 

simulations on other members of the 2-d Ising universality class, most notably the 

2-d q'  model [22]. 

The power of the block PDF method should be apparent, Indeed, for real-space 

problems, it may arguably be considered superior to the MCRG approach in 
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the sense that it provides a more direct route to scaling properties and critical 

exponents. In the MCRG method, configurations are generated merely as a means 

of calculating effective couplings from which scaling properties and exponents are 

then deduced. However, all the scaling information is implicit in the configurations 

themselves and can be extracted directly from the finite-size scaling behaviour of 

the block coordinates, thereby obviating the need to calculate effective couplings 

and avoiding the errors introduced therein. 

To summarise the results of this section, it is found that in the regime where both 

L and c are large, the block distribution function exhibits universal behaviour as 

a function of the variables 1z 1 (L) = a1 L 11"t and p2(L) = a2Ld_P1Lh. The critical 

limit (for which t, h = 0) represents a special case of this general result. Precisely 

at criticality the scaling fields vanish and consequently the asymptotic form of the 

block PDF is invariant with respect to changes in the block size. Such scale invari-

ance is an essential feature of the critical point: when viewed on all (sufficiently 

large) length-scales, configurational patterns appear statistically indistinguishable 

regardless of the microscopic parameters that characterise the 'bare' Hamiltonian. 

Of course this finding simply reflects the fact that at criticality, all configurations 

of coarse-grained variables are controlled by the fixed point Hamiltonian fl'. How-

ever, because each universality class is associated with a distinct fixed point, the 

limiting fixed point form of the block PDF is expected to be unique to a univer-

sality class. It may therefore be usefully regarded as a hallmark or signature of a 

given universality class. 1  

1.12 Concluding Remarks 

It has been seen that the RG method provides a formalism whereby the great com- 

plexity associated with the critical region can be simplified in a step-wise fashion. 

The method succeeds in placing the phenomena of scaling and universality on 

'It should be noted that the universal form of the block PDF is dependent on the choice of 

boundary conditions applied to the block itself [21]. 
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a firm footing and in some instances permits accurate calculations of the criti-

cal properties of model systems. Notwithstanding these successes, many model 

systems exist for which current RG techniques do not yield accurate predictions 

of critical point quantities. In consequence the RG has been unable to provide a 

thorough test of the universality hypothesis. In view of this, it is clearly important 

that universality be submitted to ever more stringent tests both by experiment 

and computer simulation. 

The work described in the following two chapters details the application of the 

block PDF formalism described above, for investigations of universality in two 

scalar models. In chapter 2, the 1-d q  model is studied with a view to resolving 

contention surrounding its supposed Ising-like behaviour. In chapter 3, simu-

lations of the liquid-gas critical point are used to expose the physical basis of 

fluid-magnet universality and to elucidate the principal system-specific features of 

near-critical fluids. 
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Chapter 2 

Universality in the One-Dimensional 

Continuous Spin Model 

2.1 Introduction 

A structural phase transition occurs when a material changes its crystallographic 

structure [12]. The prototype microscopic model for a structural phase-transition 

is known as the continuous spin (or q ) model. This model may be envisaged in 

terms of an assembly of particles (of unit mass) whose high temperature equilib-

rium positions define a hypercubic lattice. Each particle resides in a double-well 

potential 1/8 (u) and is coupled to its immediate neighbours by harmonic forces. 

It is assumed that V3 (u) has a uniaxial anisotropy, restricting particle movements 

to a single direction. Accordingly the position of each particle is described by 

a scalar displacement u, measured with respect to its lattice site. The single-

particle potential itself, can be regarded as arising from a passive, incompressible, 

sublattice of atoms which do not actively participate in any phase transition. A 

one-dimensional realisation of the 04  system is depicted schematically in figure 2.1. 

In the absence of an ordering field the configurational Hamiltonian of the q  system 

takes the form 
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Figure 2.1: Schematic representation of the 1-d q model 

n.n. 

fl=E (uj — uj) 2 +EV3(uj) 	 (2.1) 
<ii> 

with 

V3 (u)—Au 2 +Bu4 ; 	A<O,B>O 	 (2.2) 

Here the coupling constant J determines the strength of the coupling between 

nearest-neighbour (n.n) particles, while the parameters A and B serve to charac-

terise the potential well. 

For spatial dimensions d > 2 the qf" model exhibits a continuous phase transition. 

The order parameter for this transition corresponds simply to the net particle 

displacement < ui >. That such a phase transition exists can be appreciated in 

a qualitative sense as follows. At zero temperature the energy (2.1) must be at a 

minimum. This corresponds to a fully ordered system with all particles residing 

in just one of the two degenerate ground states: u1  = +u0  or u1  = —u0 , where 

I1 



= ±(IAI/ 2B) locate the well-minima. In this state the energy per particle, 

, simply corresponds to the well-depth: c. = —A 2/4B. As the temperature is 

raised, small 'islands' or clusters of the alternative low-temperature structure are 

formed within the otherwise ordered arrangement. These clusters are bounded 

by large-amplitude distortions or 'domain walls' which separate them from the 

majority phase. The spatial extent of the clusters may be regarded informally as 

some measure of the correlation length. Further increasing the temperature causes 

the clusters to grow in size until eventually, at some transition temperature, the 

proportion of particles associated with the clusters equals that associated with the 

original low temperature structure. At this point a continuous phase transition 

occurs to a state in which there is no net preponderance of one phase over the 

other. Close to the transition, response functions such as the susceptibility and 

the specific heat diverge. At and above the transition temperature, the order 

parameter < ui > vanishes and each particle is equally likely (on average) to be 

found in either of the well minima. 

One system that exhibits an order-disorder phase transition similar to that de-

scribed above is the ferroelectric material NaNO 2 . At high temperatures, this 

substance has a disordered (para-electric) phase in which the N atom of the tri-

angular NO 2  group lies with equal probability along the positive and negative 

directions of the b-axis of the unit cell. Below the phase transition, the N atoms 

assume a more ordered arrangement, being all aligned in the same sense along 

the b-axis. It should also be mentioned, however, that many structural phase 

transitions do not conform to the order-disorder model. Systems such as stron-

tium titanate (SrTiO a) exhibit a so-called 'displacive' phase transition. For this 

latter category of materials, the typical thermal energy of the particles partici-

pating in the phase transition is always large compared to the well depth and the 

phase-transition must be explained in terms of unstable phonon modes. 

The one-dimensional realisation of the q  model (which forms the focus of the 

present work) corresponds to a chain of particles. In common with all 1-d sys-

tems having short-range interactions, it cannot exhibit an order-disorder phase-

transition at finite temperatures. This reflects the fact that in the thermodynamic 
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limit, the increase in the entropy-related part of the free energy, from the insertion 

of a domain wall into an ordered chain, is always less than the associated increase 

of internal energy [23]. The ordered arrangement is therefore unstable against 

domain wall formation for all T> 0 and hence no stable long-range order can be 

established. 

Although the l-d q' model possesses no phase transition, it does exhibits two 

types of elementary excitations. In one dimension the nature of these excitations 

has been illuminated analytically [24, 25]. The principal excitations are solitary 

non-linear distortions (kinks) of a domain-wall nature, separating islands of the 

two favoured low temperature structures. These domain-wall excitations interact 

only weakly with one another and exhibit remarkable stability and other particle-

like behaviour. At low temperatures, the correlation length is inversely related to 

the kink population density, which has a thermally activated form controlled by 

a kink energy of order the well-depth, so that In ' eo I /T. 

The second type of excitation are small-amplitude (harmonic) oscillations of the 

particles about the well-minima. These oscillations resemble phonons in charac- 

ter and have an associated coherence length 	(J/IAI) [24]. Much of the 

importance of the l-d 	model stems from the fact, that the basic features of its 

excitations (analytically tractable in one-dimension), persist to physically realis-

tic higher dimensions for which a phase transition does take place. This in turn 

indicates that many of the interesting features of the 04  model are attributable to 

the double-welled character of the particle potential, rather than to the existence 

of a phase transition itself. 

Notwithstanding the lack of a phase transition (and an associated non-trivial 

fixed point), the l-d q'  model is still expected to exhibit universal behaviour 

with respect to its trivial fixed point at T = 0. The short-ranged character of 

the particle interactions and the scalar nature of the local ordering variable both 

suggest that the model should fall into the 1-d Ising universality class—the default 

for systems of these symmetries. To test this assertion, and in the light of a claim 

that universality fails for the 1-d 04  model [26], it seems worthwhile to conduct 



an investigation into the large-length-scale properties of the model. 

According to the arguments developed in the preceding chapter, the spectrum 

of coarse-grained configurations of a given system is expected to exhibit universal 

behaviour whenever the coarse-graining length and the correlation length are large 

compared to all microscopic lengths (the latter of which are represented princi-

pally in the present context by the phonon coherence length). From a practical 

standpoint, this universality may be exposed by obtaining the block distribution 

function. In the limit of large block size and in the absence of an ordering field, 

the block PDF assumes a form that is unique to a universality class and that 

scales as a single variable z L/e, the ratio of the block size to the correlation 

length. The issue of whether or not the 1-d 0 model actually falls into the Ising 

universality class may therefore be resolved from studies of the block PDF of both 

the 1-d q  and the 1-d spin-! Ising model. If the large-length-scale properties of 

the 1-d q  model are indeed Ising-like in character, it is to be expected that there 

should exist a direct one-to-one mapping between the block PDFs of these systems 

for a given value of z. It is the purpose of the work described in this chapter to 

determine whether such a mapping can be effected. 

2.2 The Transfer Matrix Method 

One-dimensional systems lend themselves to a certain degree of analytic tractabil-

ity. Indeed for the case of a 1-d assembly of N spins each having m discrete energy 

states it is possible to reduce the evaluation of the partition function to the calcula-

tion of the eigenvalues of a matrix—the so called transfer matrix [27]. To illustrate 

this method, consider the joint energy E(x, xj) of a pair of neighbouring spins 

xi and x1+1.  If it is assumed that the assembly has cyclic boundary conditions, 

then the partition function may be written 
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ZN 	exp{-13[E(x i , x2) + E(x2 , x 3) + ....E(XN,xl)]} 
Xi 

= 	 (2.3) 

where the V1, = exp(—/E 3 ) are elements of an m x in matrix V, known as the 

transfer matrix. 

It transpires that the sum over the matrix elements in equation (2.3) is simply 

just the trace of VN,  given by the sum of its eigenvalues:- 

ZN=A+A+...A 	 (2.4) 

For very large N, this expression simplifies further because the largest eigenvalue 

A 1  dominates the behaviour since (A2/A1)N  vanishes as N -* 00. Consequently 

in the thermodynamic limit one may put ZN = AN and the problem reduces to 

identifying the largest eigenvalue of the transfer matrix. 

2.3 The Block PDF of the 1-d Periodic Ising 

Chain 

In this section transfer matrix methods are employed to obtain an analytic ex-

pression for the block PDF of the 1-d Ising model. The form of the block PDF 

depends on the choice of boundary conditions both for the block and for the sys-

tem itself [21]. The system considered in this work was a linear chain Ising model 

of fixed length N having cyclic boundary conditions. For simplicity the block size 

L was chosen to coincide with the system size so that L = N. With this choice, 

the boundary conditions on the block are simply those which apply to the system 

as a whole. Other types of boundary conditions have been considered by other 

authors e.g. Bruce, who calculated the distribution function for the case when the 

block is a sub-unit of the total system [20]. 
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In the absence of an ordering field, the configurational energy of the 1-d Ising 

model takes the form 

N 
fl 0  = —Ko(x)o(x i ); 	K = J/kT 	 (2.5) 

The total magnetisation variable UN for the chain is then simply 

	

UN = 	o(x) 	 (2.6) 
j= 1  

where the index j runs over the N sites of the chain and ax) takes the values 

±1. The equilibrium probability distribution of this variable may then be written 

formally as 

PN(UN) < 5(i - 	x))> 	 (2.7) 

It is useful to focus on the Fourier transform of the distribution function 

PN(TN) = 1
- 

f 

 P(Q)et1dQ 	 (2.8) 

	

2ir 	 00 

where 

FN(Q) =< expiQUN 
>= Z(Q/N) 

 (2.9) 
Z(0) 

and Z(h) is defined by the configuration sum 

Z(h) 	 (2.10) 
{o} 

Expressed in this form, the task of determining PN(TN) is simply one of calculating 

the Fourier transform of the partition function of the Ising model. This task can 

be accomplished analytically by employing the transfer matrix method. 

The appropriate transfer matrix is that of the spin- i  Ising model in the presence 

of an applied field. 

/ 6iK 
F(h) = 	

e_iK ) 
	

(2.11) 
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This matrix has two eigenvalues which can be readily calculated in the usual 

fashion. They are 

= e cosh(1 ± a(h)) 	 (2.12) 

where 

cr(h)(i 	
2sinh2k \ 

1/2 
= 	

- e21cos2h) 	
(2.13) 

The transform of the block PDF then follows as 

PN(Q) - 
- Z(Q/N) -  

(2.14) 
 Z(0) - 	1=1,2[y(0)1N 

Substituting in the form of the eigenvalues A± yields 

eNK C0S1(y) 
PN(Q) = 2N(coshN K + sinhN K) 

[(1 + ())% + (1 - a(Q))N] 	(2.15) 

In the universal regime of large N and low temperature (for which is large on 

the scale of the lattice spacing a = - x) this expression for PN simplifies 

considerably. To facilitate the simplification, consider first the behaviour of the 

pair correlation function r(r 2 ) for the Ising model. It can be shown [1] that 

r(r) = [tanhK}''i = exp[(1ntanhK)r] (2.16) 

where r 3  = Ix. - x11/a. For low temperatures (large K), tanh K 1 - 2e 21< so 

that the correlation length (in units of the lattice spacing a) is 

—1/lntanhK 
	

(2.17) 

Also in the same limit, one finds (1_e 2 <)' 	(1+z/2N)N ez12,  where z = 

Feeding these results back into equation (2.15) then yields 

1 
2cosh(z/2) 

[cos(Q/N) + [cos2 (Q/N) —1 + 

+ [cos(Q/N) - [cos2 (Q/N) - 1 + e_]1/2]'1 	(2.18) 
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To the extent that the ratio Q/N is small, the cosines can be expanded to first 

order as a power series giving 

FN (Q) 	
cosh(. - Q2)

1
/2 	 (2.19) 

- 	cosh(z/2) 

This final expression for PN(Q), valid in the large N, low temperature regime 

may be Fourier transformed analytically. Employing results tabulated by Ober-

hettinger, one finds [28] 

1 	1zI((1 - 0.2 )1/2) 

PN(0-N) = 2 cosh(z/2) L 2(1 - ) h/2 0(1 - a) + 5(1 - N) + 5(1 + EN)] 

(2.20) 

where I is a modified Bessel's function and 10N1 < 1. 

Equation (2.20) is the principal result of this section. It constitutes an explicit 

finite-size scaling expression for the one-dimensional spin-! Ising model for the 

particular case when the block-size coincides with the chain-length N and periodic 

boundary condition are imposed on the chain. The expression is valid in the limit 

of large block-size N, and low temperature (so that is large). It depends solely 

on the ratio of the chain length to the correlation length. 

It transpires, that the PDF (2.20) has a whole spectrum of states bounded by 

two extremes which merit specific attention. Firstly the temperature may be 

so low that the average thermal energy per particle is small on the scale of the 

well-depth. The particles are then localised in the vicinity of the well minima. 

As the temperature approaches zero for fixed N, the correlation length grows 

systematically larger on the scale of the block-length. Very few domain-walls will 

be found within a block and the probability distribution of the block magnetisation 

variable therefore assumes a sharply peaked form whose maxima lie close to the 

fully ordered states UN = ±1. It follows that in the limit as T vanishes for fixed 

N (i.e. z -+ 0), the magnetisation distribution can be expressed by a pair of 

delta functions. This is consistent with equation (2.20) given that the first term 



vanishes as z -+ 0. 

Alternatively the temperature may be fixed at some finite value but the block-size 

is permitted to become very large on the scale of the correlation length so that z 

oo. Simple fluctuation theory then dictates that in this limit the magnetisation 

distribution will be a gaussian centred on 0N = 0. That this is also consistent 

with equation (2.20) may be readily verified directly from equation (2.19) 

lim PN(Q) exp([1 - 2Q2 /z 2  + ...])/exp(z/2) = exp(—Q 2 /z), 	(2.21) z-p 

which implies that the magnetisation distribution PN(0N)  is itself also a gaussian. 

This result (which may be regarded as an expression of the central limit theorem) 

is reflected in the asymptotic gaussian form of the modified Bessel function in the 

limit of large z. 

Intermediate between the two limits z -+ 0 and z -+ oo, the distribution function 

is non-trivial in character. In particular, the first term in (2.20) will not, in general, 

be gaussian and the delta-functions will contain finite weight. Figure 2.2(a) shows 

the behaviour of the distribution function calculated for a representative selection 

of values of z. The singular structure at 0N = ±1 has been suppressed in the figure, 

but its weight is implied by the constraint that the overall integrated weight is 

normalised to unity. From the figure it is evident that the distribution evolves 

smoothly between the limiting behaviour described above. 

Finally, it is instructive to compare the block PDF of the periodic Ising chain (2.20) 

to that of the sub-block expression derived by Bruce [20]. Differences between the 

two expressions can be traced to the fact that the periodic chain can only support 

an even number of kinks. Figure 2.2(b) shows examples of the sub-block PDF for 

distributions having the same values of z as those in figure 2.2(a). Comparison of 

the two figures shows that for large z, the distributions are essentially identical, 

but that they differ significantly for small z. This observation reflects what one 

might expect intuitively, namely that the influence of the boundary conditions 

on the large-length-scale behaviour depends on the magnitude of the correlation 
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Figure 2.2: The limiting one-dimensional form of the Ising block PDF for selected 

values of z. (a) Periodic-block boundary conditions. (b) Sub-block boundary 

conditions. 
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length relative to the system size. If the correlation length is small compared to 

the system size, then the block PDF will be relatively insensitive to the boundary 

conditions. Conversely, if the correlation length is comparable with the system 

size then the boundary conditions will have a major influence on the block PDF. 

Specifically, particles in the periodic system will tend to form an ordered arrange-

ment more easily than those in sub-blocks. Consequently for a given value of z 

(assumed small), greater weight is associated with the (implied) delta-function 

peaks of the periodic system than with those of the sub-block system. 

2.4 The Block PDF of the 1-d 04  Model 

As its name implies, the continuous spin model does not possess a finite set of 

single particle energy states. In consequence, the partition function cannot be 

expressed in terms of a transfer matrix of finite dimension and must instead be 

treated by transfer operator methods. Unfortunately, such methods do not furnish 

an exact expression for the distribution of the block coordinate op = >, ui 

of the 1-d q  model. Nevertheless, they do indicate that the large-length-scale 

behaviour is dominated by the two largest eigenvalues of the transfer operator 

[29]. This finding itself implies that the block PDF of the 1-d 0 model should 

coincide asymptotically with that of the spin-! Ising model [20]. Notwithstanding 

this proposition, direct confirmation of the universality of the 1-d 0' model has 

hitherto, been lacking. 

One route via which the block distribution function can be accessed directly is 

the method of computer simulation. This section describes a computer study 

undertaken to calculate the block PDF of the 1-d 04  model. 

The simulated systems comprised a periodic chain of N particles. The block size 

was chosen to equal the system size so that L=N, thus facilitating contact with 

the expression for the block PDF of the Ising chain (2.20) having the same bound-

ary conditions. Systems having N= 128 and N= 256 particles were studied for a 
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number of couplings. Particle configurations were generated using a Metropolis 

Monte-Carlo algorithm. The form of this algorithm adapted to deal with contin-

uous variables, is that of Bruce [30]. General aspects of Monte Carlo methods for 

the simulation of statistical systems are described by Binder and Heermann [31]. 

The program was implemented in parallel on the AMT Distributed Array Proces-

sors (DAPs) at the Edinburgh Parallel Computing Centre. The DAP computer 

consists of an array of 4096 linked but independent processors which execute in-

structions on their data concurrently. The processor links can be configured in 

software to form either a square grid of processors or alternatively (and as adopted 

in the present study), a one dimensional processor-chain. Many computational 

problems (especially lattice-based spin/particle systems) possess a high degree of 

inherent parallelism and so benefit enormously from implementation on a machine 

of parallel architecture. A common strategy is to assign each spin or particle to 

the control of one processor. The links between nearest neighbour processors then 

provide for the calculation of particle interactions. In this way, many particles can 

be updated simultaneously, subject to the condition they do not interact. Par-

allelism, when exploited to the full, can therefore greatly enhance the speed and 

efficiency of computer simulations. As a result, larger systems can be studied and 

superior statistics can be accumulated. Further details of the DAP architecture 

and parallel mapping strategy are described in appendix B.1 and reference [32]. 

In the present work, each particle was placed under the control of one processor. 

The characteristics of the processor array then favour systems sizes of the form 

N = 2' with N = 4096 as the upper limit. As the number of available processors 

greatly exceeds the number of particles in each of the systems studied, it was pos-

sible to simulate a number of independent systems simultaneously, thus enhancing 

considerably the rate of data acquisition. The simulations were all performed at 

the so-called 'border' point in the 0'1  parameter space (A= —J) since this point lies 

intermediate between the displacive and order-disorder regimes of the 4 model. 

So defined, only one free variable is required with which to tune the correlation 

length, namely the nearest neighbour (reduced) coupling K= J/KBT. For the 

N=128 system simulations were performed at reduced couplings of K= 0.75 and 
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K= 0.95 while for the larger system N= 256, couplings of K= 0.95 and K= 1.071 

were employed 

Prior to data collection, it was necessary to thoroughly equilibrate each system 

at the designated coupling. To this end, a number of preliminary monte-carlo 

sweeps of the system were performed. This equilibration procedure ensures that 

the generated configurations are independent of the initial configuration and thus 

truly representative of thermodynamic equilibrium. For the lower couplings, equi-

libration runs comprised 106  monte-carlo sweeps of the system. At the highest 

coupling K = 1.071, (for which equilibration problems were more acute), the equi-

libration period was extended to 2 x 106  monte-carlo sweeps. Once equilibrated, 

approximately 5 x iO observations of the block variable 0 N = N- ' Ej  ui were 

collected, each separated by 200 intermediate monte carlo sweeps to reduce cor-

relations between the observed values. The observations of ON were accumulated 

to form a histogram of PN(oN)  in accordance with its definition (equation 2.7). 

To facilitate the mapping of the simulation data onto the Ising expression (equa- 

tion 2.20), it was necessary to establish (for a given coupling constant), the value 

of the correlation length and hence the factor z N/a. The appropriate value of 

is, of course, that pertaining to the infinite length system, since it is this quan-

tity that is used in the derivation of equation (2.17). Values of were measured 

from the correlation function (out to a distance of 64 neighbours) at couplings 

of K = 0.75 and K = 0.95 in a simulation of N = 16384. This method yielded 

values of 5.14 and = 22.34 respectively. 

One disadvantage imposed by the DAP architecture is that system sizes must 

preferably take the form N= 2.  This constraint causes some difficulty if one 

wishes to investigate scaling behaviour by studying different system sizes at the 

same value of z. For the chosen systems sizes, N= 128 and N= 256, it was 

necessary to search for two couplings whose associated correlation lengths were 

also related by a factor of two. A coupling of K=1.071 was found to yield the 

correlation length = 44.67, almost exactly twice that of = 22.34 obtained with 

a coupling of K = 0.95. 



By way of a consistency check on the measured values of the correlation length, 

was also measured independently from the 'kink' or domain wall population 

of the chain. In the low temperature limit it is to be expected that kinks are 

distributed according to a Poisson distribution. It can then be readily shown that 

the correlation length (in units of the lattice spacing) is 

= - 	 (2.22) 

where p is the probability of finding a kink per unit length. In order to exploit 

this relation to measure the correlation length, some computational criterion for 

defining a kink was necessary. The chosen criterion required that the difference 

in the displacements of two neighbouring particles ui - u should exceed the 

absolute displacement Iun+iI, jUnj of both particles. 

Measurements of the kink population were performed for a system of N = 16384 

particles at couplings of K = 0.95 and K = 0.75. For the former coupling, this 

procedure yielded = 22.29 in good agreement with the value obtained from corre-

lation functions. At lower couplings the measured correlation length was = 4.96, 

in less satisfactory agreement. The discrepancy in this latter measurement is prob-

ably attributable, in part at least, to the breakdown at higher temperatures of 

the validity of the poissonian distribution as a description of the kink number 

density distribution. Moreover at higher temperatures, where the particles are 

not localised at the well minima, the whole concept of what constitutes a kink 

becomes less well-founded. From a computational standpoint therefore it seems 

that although kink density measurements provide a reasonable measure of the 

correlation length at low temperatures, the method is no substitute for the calcu-

lation of from correlation functions. In the results that follow the stated values 

of derive solely from correlation function. 

Figures 2.3 and 2.4 present the measured 04  block distribution function (data 

points) for two different values of z. In both cases, the expression (2.20) for the 

limiting form of the block PDF of the Ising model is also shown (smooth curve). 

The data in figure 2.3 corresponds to a value of z = 128/5.14 = 24.90, obtained for 
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a coupling K = 0.75. The permitted tuning of the block variable scale 0N  has been 

applied to bring the variance of the 04  distribution function into coincidence with 

that of the Ising coarse-grained variable (c.f. chapter 1). Clearly for this value 

of z, the system is in the displacive regime, as evidenced by the near-gaussian 

nature of the distribution function. Although the correlation length = 5.14 is 

not particularly large, the accord between the scaled distribution of the model 

and the Ising curve is striking. 

Figure 2.4 provides substantially more compelling evidence of the essentially Ising-

like nature of the 1-d 0 4  model. The results in this figure correspond to a value 

of z = 5.73. Unlike the approximately gaussian function depicted in figure 2.3, 

the form of the distribution in figure 2.4 is non-trivial. It therefore represents 

a considerably more exacting test of universality. The data shown was obtained 

from studies of two different system sizes. The first system, consisting of N= 128 

particles was simulated for a coupling of K = 0.95, while the second—twice the 

length of the first, was studied for a coupling of K = 1.071. As detailed previously, 

the stated couplings serve to maintain the same value of z for both system sizes. 

In both instances the block variable of the simulation data has been scaled to 

equate the variance of the distributions with that of the Ising curve. 

Except in the vicinity of oN = 1, the simulation results collapse onto one an-

other and onto the Ising curve. In the vicinity of ON = 1 the simulations show 

near-gaussian peaks narrowing with increasing systems size, thus realising asymp-

totically the 8-functions in equation (2.20). This smearing-out of the delta func-

tions into near-gaussian peaks is a non-universal feature of the 1-d qY model and 

represents the leading corrections to the asymptotic form of the block PDF. To 

understand more fully the nature of these corrections, it is necessary to incorpo-

rate the effect of small spatial fluctuations of the particles within the particle well. 

This matter forms the subject of the following subsection. 
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Figure 2.3: Estimates for the probability distribution PN(cTN) of the coarse-grained 

variable of the 1-d q5'1  model with z N/ = 24.90. The statistical uncertainties 

do not exceed the symbol sizes. The exact expression (equation 2.20), which is 

valid in the large N, regime is represented by the full curve 
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Figure 2.4: Estimates for the probability distribution FN(UN) of the coarse-grained 

variable of the 1-d 04  model with z N/ = 5.73. Two cases are shown: N=128, 

= 22.34(0) and N=256, = 44.67(o). The statistical uncertainties do not 

exceed the symbol sizes. The exact expression (equation 2.20), which is valid in 

the large N, regime is represented by the full curve, with the singular structure 

at 0 N = 1 suppressed. The broken lines through the near-Gaussian peaks serve 

merely to guide the eye. 
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2.4.1 Leading Corrections to the Asymptotic Form 

In one dimension, the leading corrections to the asymptotic Ising form (2.20) are 

non-universal, reflecting specific microscopic properties of the given system. In the 

case of the 04  model, the corrections are attributable to small amplitude oscilla-

tions of the particles within the single-particle well—phonons. These oscillations 

disturb the otherwise ordered character of the clusters and for finite block-size 

this is reflected by a smearing-out of the singular structure near ajq = ±1 into the 

near-gaussian peaks seen in fig 2.4. 

To determine in a rigorous fashion the leading corrections to the block PDF re-

quires the evaluation of the two next-largest eigenvalues of the transfer operator 

for the 1-d 04 model. No exact expressions exist for these eigenvalues. However, 

an approximate perturbative calculation can be performed, based on the following 

simple phenomenological argument [20, 25]. 

At low temperatures the particle displacement ui can be decomposed into an 

Ising-like variable ±o o  = ±uo  and a small-amplitude harmonic fluctuation g(x). 

U(X) = c(x) + g(x) 	 (2.23) 

The harmonic fluctuations g(x) have RMS amplitude go  and a correlation length 

Except in the vicinity of a kink (whose number density is assumed small), 

correlations between the g(x) coordinates and the o variables can be assumed 

negligible. The dominant correction to the moments of the block PDF can there- 

-  fore be assumed to arise from correlations between the g(x) variables themselves. 

If further, one retains only two-body correlations between the g(x) coordinates 

(assuming higher order correlations to be small in comparison), the leading cor-

rection involves only the second moment of the block PDF. Accordingly, one can 

write 

M 2  = M 2 °° + AM ( 2) (2.24) 
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where 

LM 2 = E 	<g(xi )g(x2)> 	 (2.25) 
X 1 =1 12=1 

represents the leading correction to the second moment of the block PDF and 

	

<g(xi )g(x2 ) >= g exp(—x2 - 	 (2.26) 

It may then be readily shown that 

AM (2) 2gokph 
(2.27) 

Finally, recalling the definition 1.47 of the block PDF in terms of its cumulant 

expansion, and noting that 4,2) = 	one immediately finds 

	

PL(Q) = Pi° (Q)Ph(Q) 	 (2.28) 

where 

Ph(Q) = exp(—Q 2gh/crL) 	 ( 2.29) 

In other words, the measured block PDF comprises a convolution of the limit-

ing Ising function with the non-universal (gaussian) correction function deriving 

from phonon oscillations. With this perspective it is easier to understand the 

discrepancies, apparent in figure 2.4, between the measured PDF and its limiting 

form. The deviations are most pronounced in the vicinity of 0 N = ±1 simply 

because the limiting function (2.20) is singular at this point. Indeed, due to the 

action of the 6-functions, the near-gaussian peaks in the measured distribution 

represent precisely the non-universal component of the block PDF whose Fourier 

transform features in equation (2.29). Away from 0N = ±1, the limiting function 

is relatively smooth and flat; the convolution with the phonon-based correction 

therefore yields negligible discrepancy in this region. 
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2.5 Pluralism in the 1-d fr model? 

Claims (alluded to in the introduction) that universality fails in the 1-d 0'1  model, 

have centred around a transfer-matrix analysis performed by Baker [26]. In his 

analysis, Baker finds a temperature dependence for the correlation length that 

differs radically from that of the 1-d Ising model, thus leading him to conclude in 

favour of pluralism (the antithesis of universality) in the l-d qY' model. The source 

of this apparent failure of universality can, however, be traced to Baker choice of 

a physically unreasonable temperature dependence for the model parameters A 

and B featuring in equation (2.2). 

The essential features of Baker's argument are as follows. Suppose, that the 

potential parameters A and B are chosen to be temperature—dependent, such that 

A= —J+kTA and B= 0kT, with g,, and A constants. The 'ground state' energy 

(minimum energy at a given T) will then also be temperature-dependent: e, 

—1/T. Now, as recorded in the introduction, the correlation length has a thermally 

activated form that behaves as in 	I c, I /T. Thus for Baker's form of the 

potential parameters, the correlation length will grow as In 	1/T 2 . This result 

is indeed, radically different from that of the standard one-dimensional Ising model 

for which In  l/T (c.f. equation 2.17). However, its peculiar nature reflects 

the physically artificial temperature-dependence of Baker's choice for the model 

potential. The choice is unreasonable because it implies 'critical' behaviour in the 

temperature dependence of the ground-state energy which diverges as T -+ 0. 

The 'failure' of universality identified by Baker is thus of a trivial kind, which is 

always possible to engineer if one so wishes. It has no bearing on the validity 

of the hypothesis in the context of physically realistic models. Moreover, and 

notwithstanding manually-inserted temperature-dependent pathologies, key ele-

ments of the universality phenomenon can always be exposed by parameterising 

the problem in terms of length-scales. Thus whenever the correlation length is 

asymptotically large on microscopic length-scales, coarse-grained configurational 

patterns will be universal and statistically self-similar. This point is graphically 
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illustrated for the 1-d q'  model in figure 2.4. 

2.6 Concluding Remarks 

Evidently the results of figures 2.3 and 2.4 bear out the universality of the scaling 

function (2.20) and the picture it expresses: the large-length-scale configurational 

patterns of the 1-d q  model match quantitatively those of the 1-d Ising model. 

That such a mapping exists is a consequence of RG-based scaling theory and 

represents perhaps the single most exacting test of the universality hypothesis. 

The results therefore lend very strong support to the contention that the one-

dimensional 0'  model does indeed belong to the Ising universality class. 

The limiting universal form of the block PDF for 1-d Ising systems also pro-

vides insight into the nature of the typical ordering configurations in this class 

of models. As e - oo, for large but finite block-size, the order is seen to reside 

entirely in clusters, whose typical size is characteristic of the correlation length. 

These clusters are local regions of perfect homogeneous order, separated from their 

neighbours (whose order is necessarily of the opposite sense) by spatially-localised 

cluster-walls or kinks. As these kinks represent the only disturbance to the order 

of the system, it is possible to formulate the limiting properties of 1-d systems 

purely in terms of the statistical mechanics of the kink population [25]. 

From the results presented in this chapter, it should be apparent that the block 

distribution method provides a simple, yet powerful technique for investigating 

universality in scalar models. As will become apparent in the following chapter, 

the method finds even greater utility in higher dimensions where it can be em-

ployed to locate critical points with high accuracy and to probe subtle theoretical 

predictions whose direct experimental verification has proved problematic. 
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Chapter 3 

Critical behaviour in the Two-Dimensional 

Lennard-Jones Fluid 

Plus ça change, plus c'est la même chose. 

Alphonse Karr 

3.1 Preamble 

In the field of critical phenomena, the major advances over the last two decades 

have been in the context of magnetic systems. Experimental studies of near-critical 

magnets have yielded a vast body of data on quantities such as critical indices and 

correlation functions [8]. Considerable theoretical progress has also been made 

through Renormalisation Group studies of lattice-based spin models such as the 

Ising and Heisenberg models and continuum models such as the Landau-Ginsburg-

Wilson model. Both the experimental and theoretical work have been supported 

and complemented by extensive computer simulations, providing new insight into 

the microscopic nature of cooperative phenomena in critical magnets. 

By contrast, the continuous phase transition associated with the liquid-vapour 

critical point remains relatively poorly characterised compared to its magnetic 

counterpart. The evidence that has emerged from experimental and theoretical 
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investigations of the universality class of the transition is rather circumstantial 

and somewhat less than satisfying. Furthermore, little progress seems to have 

been made towards a determination for even simple model systems of the non-

universal quantities associated with the fluid critical point. Principal among the 

non-universal respects in which the critical fluid differs from its Ising counterpart 

is the nature of the relevant scaling fields which, it has long been appreciated, 

should comprise mixtures of the temperature and chemical potential. However 

the fundamental issue of the physical character of these scaling fields seems to 

have been somewhat neglected. 

This chapter reviews principal aspects of the progress to date and highlights some 

of the main difficulties that have hindered experimental, theoretical and compu-

tational investigations of the liquid-vapour critical point. Shortcomings in the 

current knowledge of both universal and non-universal features of critical fluids 

are discussed and addressed by means of extensive Monte-Carlo simulations of the 

2d Lennard-Jones fluid. The simulations confirm the Ising-like nature of the criti-

cal fluid while serving to illustrate, at a configurational level, the sense and depth 

of the universality. With regard to the non-universal features of the fluid critical 

point, the simulations graphically expose the physical manifestations of the mixed 

character of the relevant scaling fields and yield the first accurate estimates for 

the critical temperature. 

3.2 Introduction 

On the basis of the universality hypothesis, it has been widely, though tentatively 

assumed that single-component fluids and simple uniaxial magnets are members 

of a common 'Ising' universality class—the default for systems with short range 

interactions and a scalar order parameter [33, 2, 34]. Unfortunately, both the 

experimental and theoretical verification of fluid-magnet universality has proved 

troublesome. On the experimental front, studies of critical phenomena in fluids 

are hampered by gravity effects, which induce a density gradient in the sample in 
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the region of high-compressibility close to the critical point. For several years this 

gradient effect precluded accurate measurements of fluid critical properties [34]. 

Only latterly (with the advent of novel optical diffraction techniques) has it been 

possible to compensate for the effects of gravity and obtain reliable estimates 

of critical exponents. Reassuringly, these measurements do now seem to be in 

general agreement with the predictions of the universality hypothesis, albeit in 

a surprisingly small range of reduced temperature [35]. However, such evidence 

must necessarily be regarded as somewhat circumstantial, since the exponents 

themselves convey no insight into the sense in which the critical fluid resembles 

the critical magnet. 

Theoretical studies of universality in critical fluids have also encountered a number 

of obstacles. The main difficulties seem to stem from the fact that the fluid 

Hamiltonian, unlike that of the magnet, is not symmetric with respect to positive 

and negative values of the ordering (chemical potential) field. This lack in fluids 

of the so-called 'particle-hole symmetry' which prevails in magnetic systems has, 

at times, engendered concern regarding fluid-magnet universality. Some attempts 

were made to address this matter by incorporating particle-hole asymmetry within 

the framework of a partly phenomenological Landau-Ginzburg-Wilson (LGW) 

model. This was effected by inserting odd powers of the local ordering field 0 into 

the LGW Hamiltonian. Although it was feared initially that these new powers of 

q may act as relevant perturbations, driving the system to a fixed point other than 

that of the Ising model [36], subsequent 4 - d expansion calculations suggested 

that the new perturbations are actually irrelevant (at least near d = 4), leading 

instead to additional correction-to-scaling exponents [37]. 

In fact, the bulk of theoretical work on criticality in fluids has been confined 

to somewhat artificial systems (such as the asymmetric LGW model) which do 

not accurately portray microscopic properties such as the interparticle potential. 

Ideally, more realistic models of fluids should be studied if a comprehensive the-

oretical understanding of fluid criticality is to emerge. However, although it is 

possible to recast the partition function of a realistic fluid model in a form os-

tensibly amenable to renormalisation group methods [33], some basic aspects of 
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the subsequent analysis have proved recalcitrant [38, 391. Notwithstanding this, 

recent advances have been made by Reatto et al [40, 41] who developed a novel 

computational formalism for dealing with critical fluids. Their method yields nu-

merically impressive results for both universal and non-universal critical point 

parameters, though it seems to rely implicitly upon a small '4 - d' approxima-

tion. Unfortunately, because of the originality of its formulation, the new method 

fails to illuminate the essential Ising-like nature of the critical fluid. Consequently 

the issue of fluid-magnet universality (at least in physical dimensions) remains 

somewhat equivocal. 

The extent of the current knowledge of non-universal features of critical behaviour 

in model fluids is also less than complete. It has long been appreciated that the 

absence of particle-hole symmetry in fluids should result in relevant scaling fields 

which comprise mixtures of the chemical potential and the temperature. Although 

there is some understanding of the system-specific factors which control the extent 

of this mixing [42, 43, 44], little has been done to expose the physical character of 

the relevant scaling fields themselves. Instead, attention has focused principally on 

one predicted manifestation of field mixing, a rectilinear diameter Pd  (the mean 

of the densities of the two phases on the coexistence curve) displaying a weak 

energy-like singularity on the approach to criticality [45, 461. The existence of 

this singularity (which represents a departure from the classical 'law of rectilinear 

diameter' requiring a linear variation of Pd  with reduced temperature), does indeed 

appear to have been borne out by some experiments on critical fluids [47, 48, 49], 

though not all [50, 51]. 

As regards computer simulation studies of the liquid-vapour critical point, there 

is no work even remotely comparable with the work on lattice models. This 

dearth of large-scale simulations is presumably attributable to the inherent com-

putational difficulties of the fluid system. Unlike many lattice-based spin models 

(e.g. the Ising model) having discrete spin interactions energies, calculations of 

particle interactions in fluids can be extremely computationally intensive due to 

the continuous nature of the interaction potential. The computational problem 

of locating the critical point in fluids is also substantially harder than in systems 
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Figure 3.1: The form of the Lennard-Jones potential. 

having particle-hole symmetry. While in the Ising magnet, the line of phase co-

existence is prescribed by symmetry; in the fluid it must be identified empirically. 

In addition there are the usual problems of critical slowing down that plague all 

conventional studies of criticality and that all too often represent the limiting 

factor for the viability of large-scale simulations of the critical region. 

Most previous computational studies have focussed on the prototype model for 

a realistic fluid—the Lennard-Jones (U) system. In this model, particles interact 

via a semi-empirical pairwise potential. The form of this potential is shown in 

figure 3.1; it is characterised by a steep repulsive core and a short-range attractive 

well. Although the LJ system is not a highly accurate representation of a real 

fluid (see e.g. a comparison with Argon gas [52]), it is the most computationally 

tractable system with the credentials of a real fluid. In two dimensions, the U 

system finds direct experimental relevance for low-dimensional systems such as 

submonolayer fluids [53]. 

Using Monte-Carlo and Molecular Dynamics methods, several groups have mapped 
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the phase diagram and determined the equation of state for both the 2d and 3d 

Lennard-Jones systems [54, 55, 56, 57, 58]. However, these studies focussed largely 

on the one and two-phase regions of the phase diagram. Such efforts that were 

made to explore the critical region, were not accompanied by a finite-size scaling 

analysis. Perhaps as a consequence, the various studies yielded quite disparate es-

timates of the critical temperature and no reliable results regarding the universal 

properties of the model. 

One previous attempt has, however, been made to apply finite-size scaling tech-

niques to the fluid problem. Rovere et al [59, 60] employed Monte-Carlo methods 

to study the liquid-vapour transition of the 2d Lennard-Jones fluid in the canonical 

(NVT) ensemble. Their study was performed with the aid of a block distribution 

analysis similar to those described in the preceding chapters, but extended to 

off-lattice problems. Their approach involved the Monte-Carlo study of the distri-

bution of fluctuations in the density of the fluid. Since the density of the system 

as a whole is fixed in the canonical ensemble, fluctuations were studied within 

sub-volumes of linear dimension 1 of a. system of linear dimension L. Although this 

approach has the potential to expose the connection with the distribution function 

of the order parameter in lattice-based members of the 2d Ising universality class, 

the results obtained were largely qualitative. This failure would seem to reflect 

the limitations imposed by the choice of the canonical ensemble for the study. 

Specifically, in order to ensure that density fluctuations were not suppressed it 

was necessary to choose a sub-block size 1, small relative to the system size L. 

Consequently the results were adversely influenced by finite size effects. 

In the present work, the 2d Lennard-Jones fluid is revisited with a view to per-

forming a more detailed exposition of its critical behaviour [61]. The strategy of 

the work follows in the spirit of that by Rovere et al, but with significant differ-

ences and extensions. Its essential features are as follows. A Monte-Carlo study 

of the probability distribution of the particle density has been performed within 

the grand-canonical (j.tVT) ensemble. In this ensemble, the density of the sys-

tem as a whole is a statistical variable and consequently many of the problems 

encountered in the canonical case can be circumvented. In particular, density 
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fluctuations can be studied on length-scales comparable with that of the system 

itself, thereby ameliorating the problems associated with finite size effects. The 

distribution function of the density is analysed within a finite-size scaling theory, 

the structure of which is similar to that developed to describe the properties of 

block coordinates in lattice-based spin systems. The theory has, however, been 

generalised to take account of the reduced symmetry of the fluid, of which the 

mixed character of the relevant scaling fields is an essential corollary. According 

to this theory, field mixing manifests itself most significantly, as a correction to the 

limiting large L behaviour of the critical density distribution. The functional form 

of this correction has a different symmetry from the limiting form (it is an odd 

function) and is prescribed by independently-determined functions characteristic 

of the Ising universality class. As will be seen, the simulations bear out both the 

universality of the limiting form of the density distribution and, more remarkably, 

the existence and form of the correction. 

3.3 Background 

The system considered in this work is a classical, single-component fluid whose 

particles interact via a pairwise potential 0 which is a function of the particle 

separation. The configurational energy (in units of kBT)  is simply the sum over 

the interactions among the N particles which comprise the fluid. 

N 
= 	00 r, - r, I) 	 (3.1) 

i<j=1 

The interaction potential q  is assumed to take the Lennard—Jones form (c.f fig-

ure 3.1) 

	

q(r) = w[(o./r)12  - ( o./r)6 ] 	 (3.2) 

where o is a parameter which serves to set the interaction range while w measures 

the well-depth (in units of kBT).  The particles are confined to a volume V = 
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(with d = 2 in the simulations described later) but it is assumed that the system 

is thermodynamically 'open' so that particles can be exchanged with a particle 

reservoir. Both the total energy and the system density are therefore statisti-

cal variables whose behaviour is characterised by the grand-canonical partition 

function, which takes the form: 

ooN 

	

ZL = : H if dFi I 	 (3.3) 
N=O i=1 

where p is the chemical potential (in units of kBT).  Within this framework the 

well depth w and the chemical potential p define the parameter space for the U 

fluid. 

The quantities of central concern are the number density 

	

p=LN 
	

(3.4a) 

and the configurational energy density 

u = Lw'({}) 	 (3.4b) 

which has been written in units of the dimensionless well-depth, w. In equilib-

rium, the statistical behaviour of these variables is fully described by their joint 

probability distribution, defined formally by 

	

pL(p, u) =< S [p - L"N} 8 [u 	- L_ w_1 ({})] > 	(3.5a) 

or, more explicitly, 

N=L'p 

PL(p, u) = L'ZL 	H {J di} 
Ld[pp—WU] 

 [ - L'w4({})] 	(3.5b) 
i=1 

Within the parameter space of the LJ fluid, the critical point is uniquely specified 

by critical values Pc  and w of the (reduced) chemical potential and well-depth. 

The deviations of these two control parameters from their critical values 
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tw c  — w 	 (3.6) 

control the sizes of the two relevant scaling fields, 'r and h, of the fluid fixed 

point characterising the critical behaviour [62]. It transpires that in the absence 

of particle-hole symmetry, these scaling fields are expected to comprise linear 

combinations of the well-depth (temperature) and chemical potential [45]. 

h=p—p+r(w—w) 	(3.7) 

where s and r are system-specific parameters determining the extent of the mixing. 

Conjugate to the two scaling fields are the two relevant operators, E and M 

defined by the relations 

	

<e > L -dl  lnZL 	<M >= L 	 (3.8) 

In systems exhibiting particle-hole symmetry (such as the Ising model), these 

quantities are simply the energy density and order parameter (magnetisation) 

respectively. However for fluids, the mixed character of the relevant scaling fields 

implies that the conjugate operators are themselves linear combinations of the 

energy and particle densities: 

	

- s [u - rp]  	 (3.9)i  —r 	— i—sr  

where the pre-factor (1 - sr)' derives from the Jacobian of the transformation of 

variables. The joint distribution of the mixed operators is simply related to that 

of the energy and number densities. 

	

PL( 0 ,U) = jj PL (M,6) 	 (3.10) 

In the vicinity of the critical point (where the correlation length is assumed 

large), one can make a phenomenological postulate (valid for sufficiently large L), 
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for the finite-size scaling behaviour of this joint distribution of energy and density 

fluctuations: 

PL(M, E) AAj3 M ,e (A8M, 	AMh, Aer) 
	

(3.11a) 

where 

Ae = a,,L A e 	AM = aMLM 	AMA = AtA 
	

(3.11b) 

and 

	

SMM—<M>. 	e— <e > 	(3.11c) 

with 

= 1/v 
	

)'M =d—f3/v 
	

(3.11d) 

the exponents associated with the two relevant scaling fields AM and A. The sub-

scripts c in equations (3.11c) signify that the averages are to be taken at criticality. 

Modulo the choice of the non-universal scale factors am and ae (equation 3.11b), 

it is expected that the function Pm ,e  will be universal. 

The finite-size scaling ansatz (equation 3.11a) is motivated by basic RG postu-

lates [20] and represents a generalisation of the usual finite-size scaling expression 

characterising the behaviour of the order parameter (magnetisation) in systems 

exhibiting particle-hole symmetry (c.f. 1.11.2) [21]. This special case is recovered 

by making the substitutions M -p M (the magnetisation), e -p E (the energy 

density), r -+ t, with h the magnetic field. Integration over the energy fluctuations 

then yields: 

PL (M)  AM(AM,AMh,Aet) 
	

(3.12a) 

where 

	

PM(X,Y,Z) = AJdS13M,e(x,A5E,Y,z) 
	

(3.12b) 

which is simply a restatement of equation (1.56). 
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Preliminary evidence supporting the validity of the generalised scaling ansatz 

(equation 3.11a) as a description of the near-critical properties of fluids is pro-

vided by its predictions concerning the behaviour of the rectilinear diameter Pd, 

the mean of the densities of the two phases on the liquid-vapour coexistence curve. 

According to scaling theories of the fluid free-energy and equation of state [44, 45], 

the rectilinear diameter is expected to display a weak energy-like singularity on 

the approach to criticality. The amplitude of this singularity is predicted to be 

proportional to the parameter a controlling the degree of mixing of the chemical 

potential i into the temperature-like scaling field r. That this is consistent with 

equation (3.11a) can be seen as follows. 

The average density of the system is given by 

<P >= f f PPL(p, u)dudp 	 (3.13) 

now, employing equations (3.9) and (3.10) one finds 

<P>Pc = (1-sr)-2 JdEfdM(M+s)pL(M,E) 

= (1 - sr)- ' {< M > +s < E >} 	 (3.14) 

The rectilinear diameter is defined as 

1 
Pd - PC = 

= (1_ sr)  2 {<M>++<M>+s(<g>++<e>)](3.15) 

where here the superscripts + and - denote quantities measured on either side 

of the coexistence curve (defined by h = 0). The known symmetries of the Ising 

problem then imply that 

<M > 	± r 1(d-))/A 	 (3.16a) 

<5 >± 	I - 	 (3.16b) 
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It therefore follows that 

S 
Pd - Pc 	(1 - sr)2 

T 'ho 	. I t -a 	 (3.17) 

where Pc < p >, and the scaling relation d = (2 - cr)/v has been employed. 

The scaling ansatz (equation 3.11a) is therefore seen to reproduce the diameter 

singularity observed in critical fluids. 

The specific concern of the present work is with the block distribution function of 

the fluid number density. From equations (3.5a), (3.9), (3.10) and (3.11a), 

PL(P) = j duPL(P,U) 

AA - fdez3M,e(A[P_ Pc - sse1,Ase,AMh,Aer)16 

(3.18) 

Now, in the vicinity of the critical point, the typical size of fluctuations in the 

energy-like operator, 6E, will vary with system size L as [A] 1  = while 

the typical scale of the ordering operator fluctuation, 6M will vary as [At,1 ] 1  = 

L1v. Accordingly, and to within corrections which are down on the leading 

term retained by of order L_(l_a_P)/LI,  the contribution of the energy fluctuations 

to the first argument of the function i3M,e  in equation 3.18 can be neglected. The 

integration on can then be performed, yielding 

PL (P) AM(A[p - pci, Am h, Aer) 	 (3.19) 

where M(x,y,z) is the universal function (identified in equation 3.12a), appropri-

ate to the distribution of the magnetisation in the Ising context. This is the first 

key result of this section: In the vicinity of the critical point (and to within the 

accuracy afforded by the aforementioned corrections), the limiting density distri-

bution of the 2d fluid is expected to match the limiting magnetisation distribution 

of the 2d Ising ferromagnet. In particular, precisely at criticality, equation (3.19) 

implies (recalling 3.11b): 



PL(P) aM 'L' 	(L'aM'[p - pa]) 	 (3.20) 

where 

	

= PM(X,y = 0,z = 0) 	 (3.21) 

is a function describing the universal and statistically scale-invariant configura-

tional spectrum characteristic of the critical point of Ising-like systems. The form 

of this function has been well-established in studies of the 2d spin-i Ising model 

and its claim to describe other members of the 2d Ising universality class substan-

tiated by studies of the spin-1 Ising model and the qY model [22]. 

In addition to the anticipated universality of the critical density distribution func-

tion, equation (3.19) also implies universal behaviour for the near-critical form of 

pL(p), subject only to the requirement that L and are both large on microscopic 

length-scales. This near-critical universality may be verified either by determin-

ing PL(P)  for points in the neighbourhood of the critical point, or alternatively 

and more straightforwardly, by exploiting the properties of the derivatives of the 

fixed-point distribution function with respect to the control parameters w (which 

determines the critical temperature) and the chemical potential y. If PL(P)  is 

indeed a universal function for points in parameter space lying close to the criti-

cal point, then its functional form can be represented as a Taylor expansion with 

respect to the universal fixed point form It follows that the terms in this 

expansion (most significantly the first derivatives) must collectively be universal. 

The form of the first derivatives of PL  (p) can be deduced by appeal to its definition 

equation (3.6a), from which one finds 

	

ôpL(p) - Ld [p <p >] PL(P) 	 (3.22a) - 

and 

UPL(P) _Ld [< u(p)> - <u >]pL(p) 	 (3.22b) 
9w 

where < u(p) > is the mean energy density for a given p. These derivative 

functions play a dual role. Firstly in the context of the simulations (to be de-

scribed in the following section) they provide a means for locating and tracking 



the coexistence curve. Secondly and more significantly, they together provide a 

testable universal relation embodying one form of the scaling field mixing, namely 

the contribution of the temperature to the scaling field h. Specifically, utilising 

the proposed density scaling form (3.19), together with the w-dependence of the 

scaling fields recorded in equations (3.7) and (3.6) and feeding the consequences 

into equation (3.22b), one finds that at criticality (for which < u > u) 

<u(p)> —ui, L' {rAM '°(At,1[p - pci) + Ae'(A[p - pc])} (3.23) 

where 

= alnpM(x,y,o) 

	

ay 	
(3.24a) 

(0,1) 	 OlnpM(x, 0, z) 
PM (x) = 
	9z 	

(3.24b) 

are universal functions. The first of these functions has a simple form: 

-(1,0) 

	

PM (x) x 	 (3.25) 

a result which follows from the Ising context (equation 3.12a) together with the 

identity ô lflpL(M)/Oh = LdM. The second function is non-trivial: its form has 

(like that of ) been established in earlier Monte Carlo studies of the Ising 

universality class [22]. Substituting (3.25) into (3.23) and appealing to (3.11b) 

yields 

. —u 	r[p - p] + ae d+1/z'L 	PM
(0,1) (am -1  L"[p - Pc]) 	(3.26) 

where r (equation 3.7 ) controls the temperature-dependence of the ('ordering') 

scaling field h, and thus the limiting critical slope of the coexistence curve which 

is identified by the condition h = 0 (c.f. figure 3.2). 

Equation (3.26) provides an explicit test of one form of field-mixing, a thermal 

contribution to the ordering scaling field. To illustrate the consequences of the 

other form of mixing (the contribution of the chemical potential to the thermal 
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Figure 3.2: Schematic representation of the liquid-vapour coexistence curve show- 

ing the directions of the relevant scaling fields. The angles 01  and '02 are related to 

the field-mixing parameters s and r (equation 3.7) by r = tan and .s = tan b2. 
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scaling field r) it is necessary to go beyond the approximations underlying equa-

tion (3.19) and consider the contribution of the energy fluctuations to jiM.  This 

may be achieved on a perturbative basis by expanding equation (3.18) in powers 

of the mixing parameter s . In this way, the leading corrections can be separated 

out from equation (3.19) to give 

PL (P) = AjiM(At,1[P - Pc], Am h, Aer 	'. ) + APL (P) 	(3.27) 

with 

LPL(p) = _3JdE_SepL(M,E) ap 
a 

= —s-  p {[< u(p) > —u - r(p - PC)] PL(p)} + Q(2) 	(3.28) 
o 

Substituting this result into equation (3.26) then gives 

APL(P) 	A [—sae aM 1L(1a13)/L1] - {')( x)1(x)} 	_1L/v[p_p] 
(3.29) 

Equation (3.29) is the second key result of this section. The leading correction to 

the density distribution (which derives from the contribution of the energy opera-

tor in the fluctuation spectrum of the density) is seen to reveal the L-dependence 

anticipated in the argument used to justify equation (3.19). This correction term 

explicitly captures the consequences of the field-mixing represented in the param-

eter s. Moreover it is prescribed by functions l) and fim which are charac-

teristic of the Ising universality class and both even in the scaling variable x. 

Equation (3.29) therefore represents the leading contribution to the critical dis-

tribution that is odd in the scaling variable x. However, and notwithstanding its 

status as a 'correction' to the leading behaviour, it transpires that the symme-

try of these functions can be exploited through computer simulation to provide 

striking corroboration of both the existence and functional form of the correction. 

Finally, it will prove useful to consider the finite-size scaling properties of the 

isothermal compressibility KT(L).  According to the fluctuation response theorem 

KT(L) is defined as follows:- 
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<(p)2  >L=< (p <p>) >L=  L' < >2 ICBTKT(L) 	(3.30) 

It then follows from the structure of the scaling form (3.19) that the second mo-

ment of the density distribution behaves as 

< (Lp)2  >L=  L 2 'f2 (Am  h, Aer) 	 (3.31) 

where f2  is some scaling function. Combining equations (3.30) and (3.31), and 

making use of the scaling relation y + 2,8 = dii then yields 

KT(L) = L'Yh'(< >2 kBT) - 'f2(AMh,Aer) 	 (3.32) 

which shows that the isothermal compressibility scales with system-size as 

This relation provides a further test of universality (this time embracing the value 

of the exponent ratio y/v), that can also be exploited by simulation. 

To summarise the principal results of this section, it is found that in the critical 

region, the joint distribution of the fluctuations of the energy and number densities 

is describable by a finite-size scaling expression given by equation (3.11a). This 

relation implies that the limiting distribution of the number density coincides with 

the limiting distribution of the magnetisation in the Ising model, as expressed 

by equation (3.19). The leading correction to the large L density distribution 

is found to manifest the mixed character of the scaling fields that results from 

broken particle-hole symmetry. This correction has a different symmetry from 

the asymptotically-dominant form and is prescribed by independently-determined 

functions characteristic of the Ising universality class. Accordingly it represents a 

potentially distinctive signature of the field-mixing phenomenon. 
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3.4 Monte Carlo Studies 

3.4.1 Computational Aspects 

The Monte Carlo (MC) simulations described here were implemented in parallel 

on the Distributed Array Processors (DAPs) at the Edinburgh Parallel Computing 

Centre. The DAP consists of a large number of independent processing elements 

(PE's) which are arranged as a two-dimensional square array. The edges of the 

array are connected together to form a torus topology. Processors execute in-

structions concurrently and communicate with their four nearest neighbours via 

orthogonal data highways. Although each processor operates on its own data, all 

processors execute identical instructions in lockstep. The DAP is therefore known 

as a Single Instruction Multiple Data (SIMD) computer. 

Many systems for which a MC update scheme is typically implemented, possess a 

high degree of inherent parallelism. The parallel architecture of the DAP computer 

allows this parallelism to be exploited for dramatic improvements in simulation 

speed. Systems that benefit from a parallel implementation can therefore be tack-

led much more effectively on a parallel computer than on a machine of conventional 

architecture. Indeed, the benefits that accrue from a parallel implementation of-

ten scale linearly with the number of processors brought to bear on the problem. 

Thus, compared with commonly available serial machines, a modestly-sized par-

allel computer (having some 103  processors) can yield a speed increase of up to 

three orders of magnitude. 

The 2d Lennard-Jones fluid is a system that possesses a high degree of parallelism 

and is therefore a good candidate for simulation on the DAP computer. In order 

to effect the mapping of the fluid onto the DAP architecture, a geometrical decom-

position was employed. This involved partitioning the 2-dimensional simulation 

space into a square array of £ x £ square 'cells', each of side 'a'. Periodic bound-

ary conditions were applied to the array as a whole. Each cell was assigned to the 

control of an individual member of the processor array, in the sense that the given 
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processor element was responsible for handling the coordinates and interactions 

of those particles within the given cell. The DAP architecture and general aspects 

of parallel mapping strategy are described in appendix B.1 and in reference [32]. 

A review of liquid-state simulations is given by Allen and Tildesley [63]. 

The choice of the cell size 'a' required that a compromise be struck between two 

unfavourable limits. If the cell size is too small then particles in one cell inter-

act with particles in many distant cells. Consequently the task of calculating the 

interactions involves communication between many different PE's thus impairing 

the speed of the simulation. Conversely, if the cell size is too large then the sim-

ulation becomes badly 'load-balanced' in the sense that those cells which control 

a 'dense' region of the system have a considerably heavier computational burden 

than those that control only a few particles. In practice, the cell size was set equal 

to the Lennard-Jones cutoff a = r, the choice of which is described below. This 

assignment ensured that interactions emanating from particles in one cell do not 

extend beyond the 8 cells adjacent to it. 

The choice of the system size £ was motivating primarily by the concern that 

it should be large enough to minimise errors from corrections to scaling. Unfor-

tunately, an upper limit on the choice of £ is imposed by the need to perform 

adequate equilibration and to gather sufficient statistics in the face of critical-

slowing-down. The possible choices of £ are further restricted by the character-

istics of the DAP processor array which, for reasons of efficiency, favour choices 

of the form £ = 2's. In practice it was found feasible to study two system sizes 

consistent with the above considerations. The two cases studied had £ = 8 and 

£ = 16 containing respectively of order 100 and 400 particles at criticality. As 

the number of available processors (4096) greatly exceeds the number of cells in 

both cases, it was possible to study a number of independent systems simultane-

ously, thus enhancing considerably the rate of data acquisition once all systems 

had equilibrated. 

When simulating systems whose interaction potential decays rapidly with particle 

separation, it is usual to truncate the potential to reduce the computational effort. 
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In the present work the LJ potential was truncated at r = 2.0o. This value is 

at the lower end of the range of cutoff values to be found in the literature e.g. 

Rovere et al have r = 2.5o, while Singh et al chose r = 10o. It was chosen partly 

in anticipation of the computational difficulties associated with the critical point 

but mainly in recognition of the fact that differences in the assignment of r have 

no consequences for the universal parameters. It should be noted however that 

the choice of the cutoff does have consequences for assignments of non-universal 

parameters such as the critical temperature. 

A Metropolis Monte Carlo algorithm was employed for the simulations. Its form 

is similar to that described by Adams for the grand canonical ensemble [64], but is 

tailored for the critical region by implementing only particle transfers (insertions 

and deletions); no particle movement algorithm is employed. This choice (which 

clearly realises an ergodic system), has the advantage that it concentrates the com-

putational effort on the long-lived density fluctuations which are the bottleneck 

for phase-space evolution in the critical region. Unfortunately, the acceptance 

rate for this procedure can be quite low, especially at high densities were there 

are few opportunities to insert new particles and existing particles are typically 

bound tightly to their neighbours. 

For future reference, it should be noted that the algorithm uses not the true 

(reduced) chemical potential i, but an effective chemical potential which is 

related to the true chemical potential by the relation 

+ /to - in (
N ) 
	 (3.33) 

where go  is the chemical potential in the non-interacting (ideal gas) limit. Use of 

this effective value ensures that the algorithm satisfies detailed balance. Its form 

reflects the differences in which the insertion and deletion operations sample phase 

space. When nominating a candidate particle for deletion one simply chooses a 

particle at random from those present. In contrast, when inserting a particle, one 

must first choose a random insertion site from the whole volume before attempting 

to insert the particle. The relative asymmetry of these operations is responsible 
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for the appearance of the particle number and system size in equation (3.33). 

Following convention, all future references to the particle density will be expressed 

in terms of the mean number of particles, p, contained within the region defined 

by the Lennard-Jones potential parameter o: 

= 1,.d = N F_i 	 (3.34) 
La J I  

The observables sampled from the simulation data were the block probability 

distribution PL(p)  and the energy function u(p) (which is used to determine the 

derivative function ap(p)/*).  In accordance with its definition, PL(p)  was deter-

mined in the form of a histogram. The energy function u(p) was also determined 

in histogram form by accumulating the interaction energy for each value of p 

explored in the course of the simulation. 

3.4.2 Equilibration and Sampling Considerations 

The principal concern of this work is with the behaviour on and around the liquid-

vapour coexistence curve and the critical point in which it formally terminates. 

Extended equilibration times are associated with both of these regions. In the 

vicinity of the coexistence curve metastability effects are generally to be expected, 

signalled by an abrupt shift in the system density at some point along the Markov 

chain. In the neighbourhood of the critical point, the phenomenon of critical-

slowing-down hinders equilibration. Since serious measuring errors can arise from 

an improperly equilibrated system, considerable efforts were expended to try to 

gauge the time required for proper equilibration. 

To this end, the average density and block distribution function were monitored 

throughout the simulation runs in an attempt to identify any transient (non-

equilibrium) effects. This monitoring was effected by dividing each run into a 

number of consecutive measuring periods, each consisting of some 2 x iO Monte 
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Carlo steps per cell (MCS). Observations of the density were accumulated over 

each measuring period and used to construct the block distribution function. In 

order to reduce correlations in the data, successive observations were separated by 

a number of intermediate MCS. Comparisons of the data built up over each period 

thus served to aid the identification of any systematic trends in the behaviour. 

Using this strategy, test runs were carried out in the vicinity of the coexistence 

curve, located in a manner described in the following subsection. The test runs 

comprised a pair of simulation runs, each assigned identical model parameters 

but different starting configurations. In one case the run was started from a pure 

vapour configuration while in the other a pure liquid configuration was used. The 

behaviour observed in the test runs was found to be dependent on the system size, 

the initial configuration and the chosen position on the phase boundary. 

Well within the two-phase region, metastability effects were very pronounced. An 

example of this is illustrated in figure 3.3 which shows the time evolution of the 

density distribution for a system of size £ = 16 that lies close to the coexistence 

curve at a temperature 1% below criticality. The distributions shown represent 

data accumulated over a series of measuring periods. The initial state of the 

system lies in the pure vapour phase; the chemical potential slightly favours the 

liquid phase. Evidently, the system remains in the metastable vapour phase for 

approximately 6 x 10 MCS before condensing, over a relatively short period, to the 

liquid phase where it remains. In this regime, the equilibration period (controlled 

by the potential extent of metastability) was set at 1 x 106  MCS. Corresponding 

tests on the £ = 8 system, revealed no abrupt shifting of the sampled density, 

showing that metastability problems are less acute, presumably as a result of the 

smaller free energy barrier. For the £ = 8 system, 3 x 10 MCS was found to be 

adequate for equilibration. 

Closer to the critical point the behaviour was markedly different. The density 

fluctuations were found to be very much longer lived than in the two-phase re-

gion. This was manifest as slow oscillations of the density between well separated 

ranges which represent the vestiges of the coexisting phases. The presence of these 
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Figure 3.3: The time-evolution of the density distribution of a £ = 16 system 

initially in a metastable vapour phase, at a temperature 1% below criticality. 
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fluctuations made it difficult to discern underlying trends in the density behaviour. 

The problems are illustrated in figure 3.4, which shows the time-evolution of the 

density distribution very close to criticality (again for £ = 16), the data being 

gathered in the same fashion as described above. In this regime, guided by the 

behaviour of the mean density, equilibration periods of 2.5 x 106  and 4 x 10 were 

used for the £ = 16 and £ = 8 systems respectively. For both system sizes, the 

number of equilibration steps required in the region beyond the critical point was 

considerably less than in the critical region and decreased systematically with in-

creasing temperature. Typical critical configurations for the £ = 16 system are 

shown in figure 3.5. 

The number of sample observations required to build a time-invariant distribution 

free of spurious structure, also depended on the proximity to the critical point. For 

the £ = 16 system in the two phase region, the data shown below typically involved 

1 x 106  observations, each separated by 15 intermediate MCS. In the critical region 

observation periods were required to be long compared to the typical time-scale of 

the critical fluctuations. Measuring periods comprising up to 2 x 106  observations 

separated by 25 intermediate MCS were therefore utilised. Observations times of 

approximately half these values were found to be adequate for the £ = 8 system. 

3.4.3 Locating the Coexistence Curve and Critical Point 

The computational problem posed by the location of the critical point in the fluid 

is substantially harder than its magnetic counterpart. In (symmetric) magnetic 

systems the coexistence curve is prescribed by symmetry. By contrast in the 

fluid, no information is available a-priori regarding the locus of the phase bound-

ary which must therefore be determined empirically, as a prelude to locating the 

critical point itself. 

Precisely on the liquid-vapour phase boundary, the free energy of the coexisting 

phases is equal and the system fluctuates with equal probability between the two 

phases. Accordingly, the measured block distribution function PL(p)  on the coexis- 
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Figure 3.4: The time-evolution of the density distribution of a £ = 16 system at 

criticality, showing the large, slow fluctuations in the density. 
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tence curve must be doubly peaked with equal weight in each peak. A reasonable 

criterion for mapping the coexistence curve (and hence for locating the critical 

point), is therefore to tune the model parameters (* and w) such that equal 

weight is maintained in both peaks. In practice, this task is made substantially 

easier by the use of the derivatives of the density distribution with respect to the 

control parameters it and w. The derivative with respect to w is provided by 

the energy function measured in the simulation (equation 3.22b); the derivative 

with respect to p is trivially related to the distribution itself (equation 3.22a). 

Appeal to these derivatives provides initial estimates (subsequently refinable) for 

the changes in p and w that, together, preserve the equality of heights of the two 

peaks. 

Equilibrium measurements of the block distributions function along the coexis-

tence curve are given in figure 3.6 and figure 3.7 for the £ = 8 and £ = 16 

system sizes respectively. Each distribution has been normalised to unit inte-

grated weight. The distributions shown are those which most closely satisfy the 

equal height criterion. 

The feasibility of using. the equal-height criterion for accurately locating the co-

existence curve, depends crucially on the system size under study. For a given 

choice of w, great precision was required in the choice of p to fulfill the criterion: 

in the £ = 8 system it was necessar (for a given choice of coupling w ) to spec-

ify the chemical potential it to 4 significant figures. For the £ = 16 system, the 

coexistence curve was identifiable (at substantially more computational cost) to 

5 significant figure. These finding reflect the fact that for small system sizes, the 

discontinuity in the density at the phase boundary is smeared out by finite size 

effects. Consequently the region of coexistence is moderately wide and the block 

distribution function relatively stable against small changes in the model param-

eters. In contrast, for larger system sizes the transition becomes very abrupt and 

PL(p) becomes extremely sensitive to changes in the model parameters. The coex-

istence curve in w - p space that derives from the distributions of figures 3.6 and 

3.7 is presented in figure 3.8. The results for both system sizes are fully consistent 

with one another to high precision. 
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In strict terms, the liquid-vapour coexistence curve is defined only as fax as the 

critical point. No distinction between the liquid and vapour phases exists beyond 

that point. Nevertheless, the critical point does not itself mark the entry to a 

totally disordered regime. Local order persists beyond the critical point, and for 

a finite block-size, this fact is reflected in the block distribution function, which 

retains its dual-peaked character. For convenience the analytic extension of the 

coexistence curve beyond the critical point (for which the distribution function 

has two equally weighted peaks) will be referred to as the continuation curve. 

The distributions displayed in figures 3.6 and 3.7 exhibit two distinct types of 

cross-over behaviour which furnish insight into the degree of order in the system 

and provide an initial estimate of the location of the critical point. From the 

figures, it is clear that for strong enough couplings the change from £ = 8 to 

£ = 16 is accompanied by a sharpening of the double-peaked character of the 

distribution. This indicates that the system resides in the two-phase region, where 

the distribution function should asymptotically (for large enough system size £) 

show two gaussians centred on the densities of the two coexisting phases [60]. 

On the other hand, for weaker couplings, the change from £ = 8 to £ = 16 is 

accompanied by a broadening of the two peaks, and a transfer of weight into the 

central portion of the distribution. This indicates that the degree of correlated 

local order (as measured by the bulk correlation length) is small on the scale of 

the block-size. In this regime, the limiting distribution is a single gaussian. 

The critical point is defined formally as the point on this 'pseudo'-coexistence 

curve, for which the distribution function is scale-invariant. This point must 

therefore separate the two forms of crossover behaviour identified above. On this 

basis, an inspection of figures 3.6 and 3.7 shows that couplings w of 8.925 or below 

are subcritical while those of 9.1 or above are supercritical. Thus the majority of 

the points shown in figure 3.8 lie not on the coexistence curve itself, but on the 

continuation curve that persists in finite size systems. 

0 



3.4.4 The Critical Limit: The Function j3* 

As an expediency for locating more precisely the critical point, the known form of 

the Ising critical universal function,was employed to refine the initial estimates 

of the critical parameters stated above. The refinement procedure anticipates 

fluid-magnet universality by presuming that the fixed-point distribution function 

of fluid matches that of the Ising model. However, the validity of this assumption 

can be verified a-postiori from consistency checks on the critical fluid critical 

exponents, once accurate values for the critical parameters have been determined. 

In order to refine the previous estimate of the critical parameters, the following 

dimensionless combination of moments of the block PDF was employed [19] 

GL 	[3(< ()2  >L)2 _ < ( p) >L]/2(< (p)2  >i.,)2 , 	( 3.35) 

which provides a convenient numerical measure of the character of a probability 

distribution. Previous studies of the 2d spin-'2  Ising model, have established that 

the moment ratio for takes the value G* = 0.9145(6) [22]. Using this value as 

a target, the £ = 16 distribution functions at couplings of w = 9:1 and w = 8.925 

were used in conjunction with the derivative functions (equations 3.22a and 3.22b) 

to predict the well-depth appropriate to the universal Ising form of the distribution 

function. This procedure gave an estimated critical well-depth of w 9.0. When 

the block distribution function was duly measured at w = 9.00, p = —2.2025, it 

was found, somewhat fortuitously, to have a GL value of 0.9147, extremely close 

to the universal Ising value. These parameters were therefore adopted as close 

estimates for the location of the critical point. 

Figure 3.9 demonstrates the data collapse of the block distribution function for 

both the £ = 16 and £ = 8 systems onto the corresponding distribution obtained 

from studies of the 2d spin-i  Ising model at its exact critical point [22]. In both 

cases, the variance of the distributions have been brought into coincidence with 

the Ising data by a single scaling of the ordering variable. In the case of the £ = 16 

system, the level of accord with the Ising model data is strikingly good although 
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this is not altogether unexpected, given that the extent of the agreement is a 

motivation for the choice of the critical coupling, rather than further corroboration. 

Nevertheless, the fact that it is possible at all, provides clear evidence in support of 

fluid-magnet universality. In the £ = 8 system, the agreement is also substantial, 

although not quite as impressive as for the larger system. In view of the rather 

small system size, it seems reasonable to attribute the discrepancy in the £ = 

8 system to corrections to scaling, implying that this block-size does not quite 

afford full access to the universal regime. Indeed, the form of the discrepancy 

is remarkably similar to that which has been shown to arise from corrections to 

scaling in another member of the Ising universality class, the 2d c model [22]. 

It will be seen however, that the distributions also contain further structure of a 

much more significant form. 

The consistency of this picture is further supported by the measured values of the 

exponent ratios /3/v, -'1'/u and 11u, which feature in equations (3.20), (3.32) and 

(3.26) respectively. The determination of /31u and y/u is described below. The 

ratio 11u is addressed in the next subsection. 

The exponent ratio 01u relates to the rate at which the block-variable scale is 

eroded with increasing block size. Inspection of equation (3.20) reveals that the 

block-variable must be rescaled by a factor am - 'L-'Iv in order to map the critical 

fluid density distribution onto the critical Ising magnetisation distribution. The 

relative rescaling for the two system sizes £ = 8 and £ = 16 is therefore 0•5/P•  A 

comparison of the scale factors required to bring the variance of both the £ = 8 and 

£ = 16 distributions into coincidence with that of the Ising distribution (figure 3.9) 

therefore provides a measure of the ratio /3/v. The measured scale-factor ratio 

required to effect the mapping is 0.9171, which in turn implies /3/u=0.125(1). 

Despite the discrepancies between the £ = 8 distribution and the universal Ising 

form, this value is in extremely close accord with the exact result 91u = 1/8 for 

the 2d Ising model. 

The exponent ratio -y/u relates to the finite-size scaling properties of the compress 

ibility at the critical point. Figure 3.10 shows the compressibility measurements 
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(c.f. equation 3.30) as a function of the well-depth, for points along the coexis-

tence curve and its finite-size continuation. The error bars associated with these 

measurements are quite large because the compressibility is highly sensitivity to 

small departures from coexistence. The main qualitative feature of the two data 

sets is the strong influence of finite size effects. As the critical point is approached 

along the continuation curve, the compressibility of the larger system rises very 

much more rapidly and attains a considerably greater maximum value than in 

the smaller system. This observation (which is in accordance with equation 3.32) 

reflects the fact that a larger system can accommodate correspondingly larger fluc-

tuations than a smaller system. The singularity pertaining to the thermodynamic 

limit is therefore smeared out substantially less in the larger system. 

The compressibility measurements at the assigned values of the critical param-

eters were used to calculate the exponent ratio y/u. From equation (3.32) one 

finds that at criticality K( = 8)/K(L = 16) = 0.51LI. The measured critical 

compressibilities imply a value of -y/u = 1.77(4) which compares favourably with 

the exact result of 'y/u = 1.75 for the 2d Ising model. 

To conclude this subsection, the assignments of the critical parameters are sum-

marised together with their error bounds. In accordance with established con-

vention, the critical temperature T has been quoted, where T 4/w e . The 

reduced chemical potential was defined in equation (3.33). The quoted value of 

p(defined in equation 3.34) represents both the mean and median of the critical 

density distribution. 

T = 0.44 ± 0.005 	= —2.20 ± 0.04 	= 0.368 ± 0.003 	(3.36) 

A discussion of these values (and their errors) features in the concluding section. 
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3.4.5 Deviations from Criticality 

As previously noted, the form of the block distribution function in the near-

critical region is controlled by the derivatives of the critical distribution function 

with respect to the model parameters w and A. For large block-size £ and large 

correlation length, the combination of derivative functions described by the scaling 

relation (equation 3.26) is expected to be universal. To expose the properties of 

this relation it is useful to consider the symmetries of the individual constituent 

terms appearing therein. 

The right hand side of equation (3.26) consists of two terms, each having distinct 

symmetries: the asymptotically dominant function r[p - Pc] is trivially odd in the 

scaling variable, while a consideration of the Ising case shows that the universal 

function (1)  is even in the scaling variable [22]. The form of the measured energy 

function < u(p) > - <u> which appears on the left hand side of equation (3.26) 

is shown in figure 3.11 for both the £ = 8 and £ = 16 systems; its symmetry is 

neither odd nor even. 

The symmetries of the respective terms appearing in equation (3.26) can be ex-

ploited to permit a calculation of the mixing parameter r and to expose the an-

ticipated universality. The value of r, can be determined by antis ymmet rising 

the function < u(p) > - < u > about p = p. From this procedure, one finds 

r = — 0.529(2), which agrees extremely well with the measured slope of the co-

existence curve. In a similar vein, the claim regarding the universality of equa-

tion (3.26) can be tested by symmetrising the function < u(p) > - < u >. 

The results for the even (sub-dominant) component of the energy function are 

expressed in figure 3.12 for both system sizes. The smooth curve represents the 

measured function l)  established in earlier studies of the 2d spin-! Ising model 

[22]. The data points correspond to the symmetrised energy function u8  defined 

by 
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scale factor ae has been chosen so that the £ = 16 data and the Ising form match 

at x = 0. The value of 11v implicit in the vertical scale is 11v = 1.03[3] 
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U'(< p > :ELp) = (2ae )_lrd_l/v  <{u(< p> +Lp)+u(< p> —/.p)-2u(p)}> 

(3.37) 

which represents the 'even' part of the left hand side of equation 3.26, with u 

and Pc  replaced by their finite-size equivalent forms. This is one way of coping 

with 'corrections' to equation (3.26); it has the merit that, in this amended form, 

equation (3.26) satisfies the sum rule that follows with integration on p. 

Clearly the data collapse (figure 3.12) onto the Ising curve is substantial for both 

system sizes, especially the larger. Moreover, the data can be used to calculate the 

exponent 11u. From equation (3.26), the relative amplitude of the symmeterised 

fluid energy function in both system sizes is 0.5h/L.  The optimal data collapse of 

the symmeterised fluid energy functions onto the Ising data was obtained with 

an amplitude ratio of 0.49(2) implying 11v=1.03(3), compared with the exact 

Ising result ii = 1. While the agreement as regards the exponent is satisfactory 

(although no allowances were made for corrections to scaling), the level of cor-

respondence of the scaling function (as in figure 3.9) provides substantially more 

compelling evidence in favour of fluid-magnet universality. 

3.4.6 Antisymmetric Corrections to the Limiting Form 

In section 3.3 it was proposed that the mixed character of the scaling fields (specif-

ically the presence of the chemical potential in the thermal scaling field r (equa-

tion 3.7)) manifests itself as an antisymmetric correction to the limiting scale-

invariant form of the critical density distribution. Moreover it was predicted that 

the form of this correction is prescribed by independently determined functions 

characteristic of the Ising universality class. 

The correction, should it exist, must manifest itself in the differences between the 

measured density distributions and the limiting Ising form (c.f. figure 3.9). In 

fact there are no less than four sources for such discrepancies. Small differences 



between the assigned and true values of w and y., account for two of these, giving 

rise to two relevant corrections, associated with small values of h and r . The 

third source of discrepancies is the leading correction to scaling associated with 

the irrelevant eigenvector of the Ising fixed point. Lastly, there is the correction 

arising from scaling-field-mixing itself, identified in equation (3.29). Although an 

identification of the field-mixing component amidst the other corrections might 

seem an unlikely proposition, there are a number of reasons why it does actually 

prove possible. 

The first reason is the symmetry of the correction (3.29), which is odd in p - Pc• 

The odd contributions to the measured density distribution can thus be isolated by 

antisymmeterising the distribution about its median point. This procedure elim-

inates the corrections associated with the leading irrelevant correction to scaling 

and the contribution (
1) associated with the thermal scaling field r , both of 

which are even functions. 

The second reason is that the functional forms of the two antisymmetric correc-

tions are independently known. The correction due to a non-zero h is specified by 

the function PM  (equation 3.24a), while that due to field-mixing is prescribed in 

equation (3.29). The functions, both of which have been determined from studies 

of the 2d Ising model [22], are shown in figure 3.13; their forms are clearly quite 

distinct. Now, consideration of these functions shows that the measured distri-

bution must have contributions from both of these sources since mutual cancel 

must occur in order to satisfy the equal-peak-height criterion which was used to 

locate the coexistence curve and criticality. To isolate the field-mixing component, 

it is therefore necessary to identify the antisymmetric contribution to the mea-

sured distribution, and then remove from it the contribution due a small deviation 

from coexistence. The results of applying this procedure to the measured density 

distributions (figure 3.9) are shown in figure 3.14 for the £ = 16 systems. The 

correction made to account for departures from coexistence corresponds to a shift 

in the assigned 4u by an amount —0.00013. This shift is small compared with the 

uncertainties (described below) associated with the location of the critical point 

along the coexistence curve. The agreement with the predicted form is excellent, 
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providing substantial corroboration of the mixed-scaling-field theory. The scale 

factor required to effect this mapping implies a value a = —0.24(3) for the param-

eter describing the degree to which the chemical potential features in the thermal 

field r. 

3.5 Conclusions 

The work described in this chapter was motivated by the need to fill two sub-

stantial gaps in the understanding of critical behaviour in simple fluids. Firstly 

it was perceived that there is an inadequate appreciation of the sense and depth 

in which the critical fluid resembles the critical magnet. This issue was addressed 

via a study of the probability distribution of the coarse grained density variable. 

The results (expressed in figure 3.9) convincingly demonstrate the configurational 

correspondence between the density fluctuations of the critical fluid and the mag-

netisation fluctuations in the Ising model. This correspondence represents possibly 

the single most exacting test of the universality hypothesis and provides corrobo-

ration of fluid-magnet universality that transcends critical exponent values. 

Secondly, it appears that heretofore, relatively little attention has been paid to the 

physical nature of the relevant scaling fields in fluids, the form of which represents 

one (non-universal) respect in which the critical fluid differs from the critical 

magnet. Although it has long been appreciated that these scaling fields should 

comprise mixtures of the simple scaling fields featuring in systems of the Ising 

symmetry, the generalised finite-size scaling theory advanced in this work, shows 

that this mixing is manifest in the interplay of the energy and density fluctuations 

near criticality. The results presented in figure 3.12, bear out one aspect of this 

theory, namely the manner in which the temperature features in the ordering 

scaling field h . The other, more significant aspect of field mixing (the fact that 

the chemical potential features in the thermal field r), is predicted by the scaling 

theory to contribute an antisymmetric (odd) energy-like correction to the limiting 

form of the critical density distribution. The existence of this form of mixing is 
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strikingly demonstrated in the results of figure 3.14. Experiments have found it 

difficult to demonstrate this mixing through the weak non-analytic behaviour of 

the rectilinear diameter. Computer simulation therefore provides an alternative 

and potentially much more powerful method for studying field mixing in critical 

fluids. 

Turning now to the computational aspects of simulating near-critical fluids, it has 

been demonstrated that the finite-size-scaling methods that were employed so suc-

cessfully for studies of criticality in magnets, can (albeit with vastly greater com-

putational effort), be generalised to permit detailed study of critical phenomena in 

fluid systems. The successes of this investigation attest to the power of finite-size 

scaling techniques when coupled with large-scale computing resources. Indeed, the 

present work has proved materially much more successful than its predecessors. 

This is evident from a consideration of the errors associated with assignments of 

critical point parameters: the uncertainties assigned in equation (3.36) represent 

a significant improvement on the error bounds cited by previous workers (at least, 

those who cite any!). Moreover, the uncertainties quoted in equation (3.36) are 

rather conservative. Their range extends to the two coupling values (u = 9.1 and 

u = 8.925 ) on either side of the designated critical value (cf figures 3.6 and 3.7) 

which are certainly sub- and super-critical respectively. If it were to be assumed 

that finite-size corrections die out with £ at the rate suggested by comparison of 

the £ = 8 and £ = 16 'critical' data, the requirement that the £ = 16 distribution 

should match the Ising form provides substantially tighter bounds on the critical 

parameters. This point is conveyed by the inset in figure 3.9 which shows the 

sensitivity of the peak-height of the measured £ = 16 distribution to a change in 

the coupling w of I Lw 1= 0.02 corresponding (ci the units introduced in equa-

tion 3.36) to a change of only AT = 0.001 along the line of pseudo-coexistence (ie 

with * also changed so as to maintain the equal-height criterion). 

Most previous computer studies of the critical region seem not to have appreciated 

the scale and character of finite-size effects which are demonstrated so graphically 

in the present work. In general, previous workers have obtained estimates of the 

critical temperature and exponents by extrapolating power-laws for the order pa- 
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rameter and correlation length. However, in a simulation, these quantities are 

necessarily finite-size limited and represent only a fragment of the data poten-

tially available. Only rough estimates of the critical parameters can therefore be 

obtained in this manner. This point is illustrated in figures 3.6 and 3.7 which 

demonstrate that the point at which the coexisting phases coalesce in a finite-size 

system can represents a serious over-estimate of the critical temperature, espe-

cially in 2-dimensions. This observation has also been made recently by Mon and 

Binder [65] in a critique of Monte Carlo studies of phase coexistence using the 

Gibbs ensemble. 

In view of the foregoing remarks, is not too surprising that comparisons among the 

previous computer studies of the 2d Lennard-Jones system, reveal large disparities 

regarding the assignments of the critical temperature. Thus, for example, using 

the same units as those employed in equation (3.36), Tsien and Valleau [66] suggest 

T between 0.625 and 0.7, Henderson [67] gives T ='0.56, Barker et al [56] quote 

T 0.52, Rovere et al [60] suggest T = 0.50 ± 0.02 while Singh et al [68] quote 

T = 0.472. Comparisons amongst these assignments, and with the estimate of 

this work (equation 3.36) are complicated by differences in the value assigned to 

the Lennard-Jones cutoff. The extent of the consequences of the different cutoff 

assignments has been estimated by utilising the values of the 2nd Virial coeffi-

cient to give the associated van der Waals transition temperature. Making the 

approximation that the fractional change in the true critical temperature (arising 

from a change in the cutoff) matches the fractional change in the van der Waals 

transition temperature, it transpires, for example, that the difference between the 

cutoff (r = 2.5o) employed by Rovere et al [60] and that of the present work 

(rc  = 2o), accounts for approximately of the difference between the assignments 

the critical temperature. Thus it would seem that virtually all previous studies 

have significantly overestimated the critical temperature, presumably because (as 

discussed above) it is all too easy to mistake the finite-size continuation of the 

coexistence curve for the real thing. 

Finally, with regard to the prospects for refining and extending the work described 

here, it should be noted that the largest system size studied (containing of order 
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400 particles), approaches the limits of what is feasible using modern computer 

technology. In fact the present study consumed well over 5 x iO hours computer 

time, even with state-of-the-art parallel computers. One difficulty encountered was 

that the acceptance rate for particle insertions and deletions in the grand canonical 

ensemble decreases rapidly as a function of increasing density. This problem 

was found to be particularly acute in the two-phase region. Close to criticality, 

however, the low acceptance rate was compounded by critical slowing down, which 

dictated enormously long equilibration and sampling times. Although growing 

computational power will go some way to alleviating these problems, it is clear 

that algorithmic acceleration techniques are desirable and necessary if significantly 

larger and more complex systems are to be studied. One method for improving 

the acceptance rate of dense systems in the grand canonical ensemble has been 

suggested [69], although it appears to satisfy detailed balance only approximately. 

In response to the difficulties encountered, alternative algorithms for studying 

near-critical fluid have been sought. Recently developed collective (cluster) up-

dating schemes have dramatically improved the problem of critical-slowing-down 

in lattice-based spin systems. However, no generalisation of lattice-based cluster 

updating methods to off-lattice problems has yet been reported. The feasibility of 

applying cluster updating ideas to fluids has therefore been considered. This study 

and its conclusions form the subject of the following addendum to this chapter. 
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3.6 Addendum: Collective Coordinate 

Updating 

3.6.1 Background 

The most serious problem hindering traditional Monte Carlo studies of critical-

ity, is the phenomenon of critical-slowing-down (CSD). This phenomenon occurs 

principally when implementing 'local' updating schemes where the constituents of 

a system (spins or particles) are updated individually. The origin of CSD can be 

traced to the critical divergence of the correlation length. Intuitively it is clear 

that in a single step of a local algorithm, information about the state of a spin 

propagates only as far as its nearest neighbours. Now, in order to attain a truly in-

dependent configuration, this information must propagate a distance of order the 

correlation length . However, due to the stochastic nature of the local update 

scheme, the information executes a random walk through the system. Conse-

quently, one expects that the auto-correlation time should behave like r "- e2. 
More generally, one finds r 	where z is known as a dynamic critical exponent. 

Computer simulations measure z 	2.125 for Ising models using local updating 

schemes. 

Although the correlation time T is necessarily bounded for a finite system, it 

can become very large for large simulations (r Lz).  As a result, the rate of 

phase space exploration can become extremely slow, necessitating considerable 

computational effort to generate independent configurations. For many years, 

CSD represented the limiting factor governing the size of simulations of the critical 

region. A welcome improvement to this state of affairs (at least in the context 

of spin systems) came with the introduction by Swendsen and Wang of cluster 

updating (CU) methods [70]. These methods greatly reduce or even eliminate 

CSD by adopting a global rather than a local updating scheme [71]. This is 

achieved by identifying clusters of connected spins (of the same spin value) which 

can be updated as a whole. Since clusters range in size up to the correlation length, 
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the CU method has the potential to generate radically different configurations in 

a single step. 

The primary requisite when defining a cluster, is that the constituent spins should 

be strongly coupled to each other, but only weakly coupled to the cluster envi-

ronment. In other words, the boundary of the cluster should be an energetically 

favourable energy surface, thereby ensuring an acceptably large cluster flip prob-

ability. In this sense therefore, the structure of clusters realised by the algorithm 

should conform to the intuitive perception of a cluster as being a physically well-

connected collection of like spins. 

The first CU method was formulated in terms of the q-state Pott model [70], 

but similar techniques were soon developed to deal with other more complex spin 

systems such as 0(n) models [72]. Although various specific realisations of CU 

schemes exist, the strategy most frequently employed for spin models is a two-step 

process that can be summarised as follows: 

Beginning with an arbitrary configuration of spin states, one attempts to 

create 'satisfied bonds' between all pairs of interacting sites i and j having 

the same spin type. Satisfied bonds are assigned according to some prob-

ability q 3 . No bonds are formed between unlike spins. At the end of the 

procedure, all spins connected by some path of satisfied bonds are deemed 

to be members of the same cluster. 

A new value is assigned to the spins comprising each cluster according to 

some probability p(V), where V is the cluster 'potential'. The same new 

spin value is assigned to all the spins in the cluster. 

In general, the cluster potential V, determining the update probability, will de-

pend on the interactions between the spins comprising a given cluster and those 

bordering on it. The strength of the coupling between the cluster and its environ-

ment is crucial in determining the ease with which clusters can be updated. This 

coupling is mediated by the choice of the bond-assignment probability q 13 . For 
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certain types of spin interactions it is possible to choose q13  such that the clusters 

effectively decouple from one another. This is the situation realised by the SW 

algorithm for the Potts model, whose choice of q j, = 1 - exp(—J) implies that no 

inter-cluster interactions appear in the detailed balance calculations. Under such 

conditions all clusters can be updated simultaneously. Using the SW method the 

dynamical exponent is found to be z = 0.35, a significant improvement on the 

value of z = 2.125 appropriate to conventional single-site updating. 

In general, clusters do interact with one another and must therefore be updated 

sequentially, taking due account of their interactions with other clusters [73]. In 

fact there are often advantages in updating clusters singly even when it is possible 

to produce a decoupled cluster configuration. This was shown by Wolff in the 

context of 0(n) models [72]. His technique seeks to locate the cluster associated 

with a randomly chosen site on the lattice. Since this site has the highest prob-

ability of belonging to the largest cluster, the method directs the computational 

effort at that cluster which (when flipped), produces the most radically different 

configuration. Compared to the SW algorithm, the Wolff method expends pro-

portionally much less computational effort on smaller clusters. When applied to 

the Ising model, the Wolff algorithm actually appears to suffer less from CSD than 

does the original SW algorithm. 

In more recent developments, CU methods have been successfully extended to 

deal with the q  model [74]. The technique in this case involves the decomposi-

tion of the 0 spin ordering variable into a combination of an Ising-like variable 

and a displacement variable. The Ising-like spins are updated according to the 

method outlined above while a separate single-site method is used to update the 

displacement terms. 

In view of the seemingly disparate nature of the various CU scheme, some attempts 

have been made to unify existing CU techniques within a single framework. While 

some success has been had in the context of lattice-based spin systems [75], the 

generalisations do not yet extend to systems displaying particle-hole asymmetry. 

In the remainder of this section, an outline is given of the specific difficulties 
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associated with the application of existing CU techniques to the fluid problem. 

3.6.2 Cluster Updating and Fluids 

From the point of view of cluster formation, the most obvious drawback of fluids 

is the lack of symmetry of the Hamiltonian with respect to positive and negative 

values of the (reduced) ordering field. This lack of particle-hole symmetry means 

that unlike, for instance, the Ising model which has two types of correlated order, 

corresponding to clusters of 'up' and 'down' spins, the fluid possesses only particle 

clusters. Thus while one may obviously 'flip' the occupancy of clusters of particles 

causing them to be removed from the system, it is not immediately obvious that 

one can perform a complementary operation by creating clusters of real particles 

from the void. This is the first obstacle which must be overcome when devising a 

cluster updating algorithm for fluids. 

One solution to the problem posed by particle-hole asymmetry is to populate 

with 'ghost' particles, those regions of the system that contain no real particles. 

These ghost particles have no interactions either with other ghost particles or 

with real particles; they are merely artifacts designed to restore a measure of 

symmetry to the system. The aim is then to try to form clusters from the ghost-

particles, and to transform them into clusters of real particles. Of course, clusters 

of ghost particles should be chosen such that they yield an energetically favourable 

cluster of real (interacting!) particles once flipped. When seeking to identify ghost 

clusters, one therefore assumes an interaction potential between the ghost particles 

(and between ghost particles and real particles) of the same form as that existing 

between real particles. It should be emphasised however, that this interaction 

is solely for the purpose of identifying clusters; ghost particles have no physical 

interactions. 

When studying a system comprising both real and ghost particles, it is necessary 

that the number of ghost particles be sufficiently large to ensure ergodicity. In 

other words, there must be sufficient ghost particles such that if all were trans- 
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formed into real particles, the particle density would be as large as one might ever 

reasonably expect to realise for given values of the model parameters. In the case 

of the Lennard-Jones fluid, this can be achieved by partitioning the system into 

square cells, the linear extent of which is of order the hard-core radius (c.f. figure 

3.1). Each cell is permitted to contain one ghost particle or one real particle. 

The most common method for forming clusters in spin systems is the 'bond' 

method. At first sight, this method can be straightforwardly applied to the fluid 

system with ghost particles. Pairs of particles of the same occupancy type (real or 

ghost) are considered in turn and a satisfied bond is formed between them accord-

ing to some probability qij  which depends on their interaction energy. When all 

interactions have been considered, particles that are connected to other particles 

by some path of satisfied bonds, are deemed to be members of the same cluster. 

Although the bond method works perfectly satisfactorily for spin systems, it will 

be shown that when applied to the fluid problem, it fails to produce energetically 

favourable clusters. 

For the truncated LJ potential, a reasonable choice of the bond-assignment prob 

ability is 

qjj = 1 - exp 	 , 	 (3.38) 

where çij  is the LJ interaction potential and 8(-jj) is a unit step function 

inserted to ensure that probabilities never exceed unity. For this choice of qj3 , one 

can show that detailed balance is satisfied if the cluster update probabilities are 

drawn from the distribution: 

p(n) = Z - ' exp(—V(n)) 	 (3.39) 

where 

Z = E exp(—V(n)), 	n = 0, 1 	 (3.40) 
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and 

V = —n{Np - 	q5ij + 	 - 1)(Sfl)1 - ö)} (3.41) 
iEc j 	 i€c jc 

Here Nc  is the number of particles in a given cluster, p is the chemical potential, 

and the occupancy variable takes the value n = 1 for real particles and m = 0 for 

ghost particles. 

Now, under typical conditions of temperature and chemical potential, real par-

ticles are separated by distances of order the well-minimum position ('..s  1.130). 

However, to ensure ergodicity, the cell size must be of order the hard-core radius 

("- 0.8o). Clearly therefore, for moderate (real) particle densities, many more cells 

will contain ghost particles than contain real particles and consequently many 

ghost particles will occupy positions very close to their neighbours. From the 

point of view of the bond assignment probability, no satisfied bonds can ever be 

formed between such close-lying ghost particles, because their interaction energy 

is large and positive. However, because of the high density of ghost particles over-

all, and the long-distance nature of the interaction potential, it is still possible 

(and indeed as will be seen, highly likely) that these close-lying ghost particles 

will be members of the same cluster. The simplest example of this situation is 

depicted in figure 3.15. In this figure, ghost particles A, B and C are members of 

the same cluster because satisfied bonds link particle A to both B and C. However, 

ghost particles B and C lie very close to one another. Hence it is energetically 

extremely unfavourable to flip this cluster because the interaction energy between 

real particles placed at positions B and C would be large and positive. 

The manner in which this problem translates to the wider context of the system 

as a whole is illustrated in figure 3.16. Although perfectly acceptable clusters of 

real particles are formed, all the ghost-particles are seen to be members of a single 

percolating cluster. This latter cluster can never be flipped because the energy 

of the resulting real-particle cluster would be extremely high. Even if it could 

be flipped, the move would be trivial in terms of phase-space exploration. Thus 

it is clear that when applied to systems that lack particle-hole symmetry, cluster 

formation by the bond method fails in its basic aim: ghost clusters are formed 
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Figure 3.15: A cluster of ghost particles generated using the bond method. Ghost 

particle A is linked to B and C by satisfied bonds. No bond exists between particles 

B and C. 

that cannot be transformed into real particles without a large energy cost. 

At first sight, it would seem that the best method for circumventing these problems 

is to discard the bond method in favour of a cluster formation technique that does 

produce clusters having an energetically favourable energy surface. Unfortunately, 

this approach also appears to break down because of a failure to treat real and 

ghost particles on an equal footing. To illustrate this, consider the following 

revised cluster formation scheme. 

The revised scheme entails visiting (in turn) connected particles of a given occu-

pancy type and assigning them to the current cluster with a probability 

qj(nj) = exp(—V 1 (n)) 	 (3.42) 

with 

V(n) = > 	+ > çbij5n o 	 (3.43) 

where = - ç and 0w  is the well depth. 
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The chosen form of the potential V8   takes account of all the interactions of a given 

particle, not just individual pair-wise terms. It therefore ensures that the problem 

illustrated in figure 3.15 cannot arise. However, to achieve this, the potential treats 

the two types of particle differently. When forming real clusters, only interactions 

between real particles are considered. In contrast, when forming ghost clusters, 

both ghost-ghost and ghost-real interactions are considered, thereby ensuring that 

no ghost clusters are formed in the immediate vicinity of real clusters. 

Although the revised method does indeed allow the formation of energetically 

favourable clusters, a large penalty must be paid for distinguishing between the 

two types of particle. One finds that in order to satisfy detailed balance, the cluster 

potential 1/ appearing in the update probability p(n) (equation 3.39) must contain 

an additional term of the form Eie,,j qf,(i - S T ). This term acts as an effective 

interaction between real-clusters and ghost particles which unfortunately prevents 

the flipping of most real-particle clusters. 

Thus in summary, it seems that there is no straightforward generalisation to flu-

ids of the cluster updating methods deployed so successfully for lattice models. 

Existing CU schemes seem to rely implicitly on particle-hole symmetry and, as 

demonstrated above, cannot be simply grafted onto a model fluid. Similarly, 

attempts to camouflage the lack of particle-hole symmetry in order to produce 

energetically favourable fluid clusters, must necessarily involves a method that 

distinguishes between the two types of particle at the cluster-formation stage. 

This failure to treat both real and ghost particles on an equal footing also leads 

to a highly inefficient CU scheme. In view of this prognosis, it must be concluded 

that the immediate prospects for radically reducing critical-slowing-down in fluids 

are not favourable. 
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Figure 3.16: A cluster configuration generated using the 'bond' method. The 

circles represent real particles. The number inside each circle represents the cluster 

label for that particle. All particles having the same cluster label are members 

of the same cluster. Numbers not associated with particles represent the cluster 

labels of ghost particles which, in the present case, form a single percolating 

cluster. It can also be seen that ghost particles approach real particles arbitrarily 

closely. 
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Chapter 4 

The Crystal Structures of Cyclohexane—d 12  

4.1 Introduction 

It is a feature of many organic molecular crystals that they exhibit a rich variety 

of phase structure in quite modest ranges of temperature and pressure. The 

particular structure adopted by a molecular crystal is thought to owe much to 

the rules of compact packing: the 'protuberances' of one molecule should fit into 

the 'hollows' of another. In many instances, however, the 'globular' shape of 

organic molecules implies that there exist several different packing arrangements 

for which the lattice energy is similar in magnitude. Additional factors such as 

dynamic disorder, molecular distortion, sample history, and isotopic substitution 

[76] must then be invoked to explain which of the favourable structures is actually 

adopted in practice. The complex interplay between these factors is believed to 

be responsible for the high degree of structural polymorphism exhibited by many 

organic molecular systems [77]. Unfortunately, the extent and manner of their 

influence in determining the observed structures is far from being satisfactorily 

understood [78]. 

Extreme examples of the influence of dynamic effects in determining crystallo- 

graphic structure are to be found among the ranks of so-called 'plastic' crystals 

whose molecules enjoy a high degree of orientational freedom. For these systems, 
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the molecular centres lie on high-symmetry positions but the molecules under-

goes rapid reorientations. Each molecule may therefore be regarded in terms of a 

spherical 'pseudo-molecule' the radius of which corresponds to the mean sphere of 

revolution of the real molecule. Accordingly, and almost without exception, the 

crystal structures of plastic crystals are found to be F.C.C. or B.C.C. cubic, these 

providing high packing densities for hard spheres. 

Examples of the role played by molecular distortion and preferred bonding direc-

tions are given by materials such as cyclopentene and succinonitrile in which the 

molecules undergo conformational (geometric) changes and distortions at phase 

transitions [79, 801. For such systems the crystal structure is determined by the 

result of competition between the conformation associated with the lowest intra-

molecular (strain) energy, and that yielding the lowest inter-molecular (lattice) 

energy. 

Crystallographic structure is also occasionally dependent on the thermodynamic 

history of the sample. Although for specified values of the temperature and pres-

sure there can exist only one structural groundstate, it is often the case that the 

free-energy of other structures is similar to that of the global free-energy minimum. 

If further, a large energy barrier discourages transitions from these other low-lying 

states to the global-minimum structure, extremely long-lived metastable states 

can arise. For specified values of the temperature and pressure, certain thermo-

dynamic paths may provide easier routes to the structure of minimum free-energy 

than others. 

The lack of a thorough understanding of the processes governing the formation of 

any given phase means that as yet, it is not possible to predict a priori which crys-

tallographic structure a given organic molecular system will adopt for prescribed 

values of the temperature and pressure. A clear elucidation for a simple organic 

system of the adopted structures, together with the conditions under which they 

are formed is therefore a vital step towards an understanding of the mechanisms 

governing structural polymorphism. To this end, a study of the solid phases of cy-

clohexane has been undertaken. Cyclohexane is a good candidate for such a study 
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because whilst being a relatively simple and compact molecule, it is also known to 

exhibit a wealth of phase structure. Since rather comprehensive data already exists 

for the ambient pressure phases of cyclohexane, the present investigation focuses 

primarily on the high-pressure phases which have not been previously studied in 

great detail. This work therefore complements earlier studies of cyclohexane and 

allows a more complete picture of its phase diagram to be constructed. 

4.2 Background 

Of the previous structural studies on cyclohexane, most have focussed on the 

ambient-pressure phases, which have been extensively investigated using a vari-

ety of techniques including x-ray diffraction, infra-red spectroscopy and NMR. 

At ambient pressure two stable solid phases of cyclohexane are known to exist. 

Phase I, the plastic phase, exists between 186.1 K and the melting point at 279.82 

K. It is cubic (a=8.61(2)A; Z=4; space-group Fm3m) and from NMR studies is 

known to be characterised by a large degree of dynamic molecular disorder, the 

molecules undergoing rapid reorientations on the lattice sites [81]. Below 186.1 K 

a first-order phase transition takes place to an orientationally ordered structure 

(phase II). Single crystal x-ray diffraction measurements performed by Kahn et 

al [82] have shown that phase II possesses a monoclinic unit cell (a=11.23(2), 

b=6.44(2), c=8.20(2)A; 3 = 108.83(4) 0 ; Z=4 and space group C2/c). In the same 

work, a determination of the molecular positions and atomic coordinates also re-

vealed that the molecules are in the 'chair' conformation (which is believed to be 

the geometrical configuration of lowest energy [78]), but exhibit a slight though 

significant deviation from D3d symmetry. 

Cyclohexane also exhibits a metastable phase at ambient pressure. This phase was 

discovered by Renaud and Fourme in 1963, who found that it could be formed 

by quenching to approximately lOOK from either the liquid or the plastic phase 

[83]. Their x-ray powder work showed its structure to differ from either of the 

other ambient pressure phases, though the poor quality of their data precluded 
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a structural determination. It has been speculated however, that the structure 

of the metastable phase is the same as that of one of the stable phases normally 

existing only at high pressures. 

In contrast to the ambient-pressure phases, relatively little is known about the 

structures existing at high pressure and it is only comparatively recently that 

they have come under scrutiny. Previous high-pressure investigations have been 

carried out using differential thermal analysis (d.t.a), vibrational spectroscopy and 

neutron powder diffraction techniques. 

D.t.a heat capacity measurements on the hydrogenated system performed by 

Würfiinger [84], point clearly to the presence of a new structure (phase III) at 

pressures above 0.25 kbar. The temperature range over which this phase is stable 

was observed to increase with pressure. Similar d.t.a work by the same group 

on the deuterated system also indicated the existence of a further high-pressure 

structure (phase IV), lying intermediate between phase III and the low tempera-

ture structure [85]. Phase IV was not observed below 3 kbar in the hydrogenated 

system, suggesting that deuteration plays a major role in determining the region 

of stability of the high-pressure phases. Reproductions of the phase diagrams of 

Schulte and Würflinger for both C 6 1112  and C6D 12  up to 3 kbar are included in 

figure 4.1 (a) and (b) respectively. 

Ambient temperature vibrational spectroscopy measurements on both C 6 H12  and 

C6 D 12  as a function of pressure have recently been reported by Haines and Gilson 

[86, 87]. Using Raman and Infra-red techniques, these workers detected two phase 

transitions in both molecular systems. In the deuterated system, the first tran-

sition occurred at 5.3 kbar and the second occurred at 7.4 kbar. In contrast for 

the hydrogenated system, phase transitions were seen at 5.1 kbar and 9.6 kbar. 

From an analysis of the vibrational modes of both systems, the phase above the 

first transition (i.e. at higher pressure), was found to possess orthorhombic D2h 

site symmetry. A similar analysis for the upper phase suggested that here the 

molecules possess monoclinic C2h  site symmetry, prompting the conclusion that 

the upper phase is none other than the monoclinic phase II. No clear findings 
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Figure 4.1: The phase diagram of Schulte & Würflinger [85] for (a) cyclohexane 

and (b) cyclohexane-d 12 . The broken lines represent the extrapolation to room 

temperature of a polynomial fit to the d.t.a data. The points (x) at 293 K 

correspond to the boundary of phase III as determined by Haines & Gilson [86, 87]. 

The points (o) at 5 kbar, 280 K and 5 kbar 250 K correspond to the conditions 

under which structural determinations were performed in the present study. 
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relating to a transition above 7.4 Bar have been reported by Haines and Gilson, 

though recent and as yet unpublished Raman measurements at Edinburgh have 

revealed a room-temperature transition at approximately 12 kbar in the deuter-

ated system [88]. Such a transition pressure is consistent with an (albeit large) 

linear extrapolation to room temperature of the phase II to phase IV boundary 

shown to 3 kbar in figure 4.1(b). 

The d.t.a. results for phase III in both C 6 D 12  and C6 H12  can be seen to be 

consistent with those of the vibrational spectroscopy, by means of an extrapolation 

to 293 K of the phase diagrams of Schulte & Würflinger [85]. Using a polynomial 

fit based solely on the d.t.a data, the phase lines delineating phase III have been 

projected to room temperature (figure 4.1, broken lines). For the hydrogenated 

system this procedure yields transitions at approximately 5.0 kbar and 8.6 kbar, 

whilst for the deuterated system transitions are found at 5.1 kbar and 7.0 kbar. 

Evidently these estimates are in reasonable accord with the values measured by 

Haines & Gilson. There seems little doubt therefore that in both C 6 D 12  and 

C6 11 12 , the structure existing at pressures slightly above 5 kbar at 293 K is phase 

III, as defined in the phase diagrams of figure 4.1. 

Neutron powder diffraction studies of C 6 D 12  have been performed very recently by 

Mayer et al [89, 90] for pressures in the range 1 bar to 3.7 kbar and temperatures 

down to 160 K. This investigation confirmed the presence of the phases observed 

in the d.t.a. work and showed that the crystal structures of the various phases (I—

IV) differ. Moreover, the study revealed that the high-pressure phases can exhibit 

a surprising degree of metastability, strongly dependent on the thermodynamic 

history of the sample. Thus for example it was found that phase IV (as defined 

in the phase diagram of figure 4.1(b)) is obtained only if the sample is first cooled 

to phase II, followed by the application of pressure, and finally by the raising of 

the temperature. Other thermodynamic paths such as the application of pressure 

at room temperature followed by cooling, allowed phase IV to be supercooled 

(relative to figure 4.1(b)) by several tens of degrees. Owing to low instrumental 

resolution, the quality of the diffraction data from this study was inadequate to 

allow a determination of the unknown crystal structures of phases III and IV. 
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In view of the lack of a full understanding of the effects of pressure and deuter-

ation on the phase diagram of cyclohexane, a determination of the high-pressure 

structures has been performed by neutron diffraction techniques [91]. Neutron 

diffraction was preferred to x-ray diffraction for this study because it allows a 

superior resolution of the positions of Hydrogen atoms. As single crystal work at 

high-pressure is fraught with difficulties, a high-resolution neutron powder diffrac-

tion study was performed. Unfortunately it is not feasible to study hydrogenated 

cyclohexane by neutron scattering because Hydrogen (in contrast to deuterium), 

has an extremely large incoherent scattering cross-section for neutrons [92]. This 

incoherent scattering gives rise to a very high background count in the diffrac-

tion pattern which considerably complicates refinement of structural parameters. 

Thus it was necessary to work with a deuterated sample, C 6 D 12 , for which the 

incoherent scattering is much smaller. 

4.3 Experiment and Structure Determination 

Owing to the typically large number of overlapping reflections seen in a powder 

profile, access to a large-wavelength neutron source and a high-resolution diffrac-

tometer were essential to the feasibility of this study [93]. All data were collected 

using the high-resolution D1A and D2B angle-dispersive neutron diffractometers 

at the Institut Laue—Langevin (ILL) [94]. These diffractometers play somewhat 

complementary roles to one another. 

The virtue of the D1A diffractometer is its ability to operate with a large incident 

neutron wavelength of 2.989 A. This instrument is therefore suitable for unit-cell 

indexing of unknown phases because the individual Bragg reflections are widely 

spaced. Unfortunately, the large wavelength is accompanied by a paucity of Bragg 

peaks within the operating angle of the detectors. Furthermore the neutron flux 

associated with D1A is rather small and there is present in the beam, a 1% )/3 

contamination, originating from the Ge monochromator. Thus, whilst D1A is ideal 

for solving unit-cell parameters, the data it provides is inadequate for accurate 
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structural refinement. 

In contrast, the D2B instrument has seven times the neutron flux of D1A and 

can be used in conjunction with a neutron wavelength of 1.595 A to obtain a 

large number of Bragg peaks and data of high statistical quality. Data from this 

instrument is suitable for accurate structural refinement, once the basic structure 

has been determined using the data provided by D1A. No significant harmonic 

contamination is present at this smaller wavelength. 

For high-pressure measurements at low temperatures, a 6 kbar helium pressure 

cell was employed in conjunction with a standard orange cryostat. The pressure as 

indicated by the calibration of the pumping apparatus was independently corrob-

orated by a strain gauge instrument accurate to better than 0.1 kbar. Structure 

determination at high-pressure is unfortunately complicated by scattering from 

the aluminium housing of the pressure cell. At a wavelength of 2.989 A, this gave 

rise to a main aluminium diffraction peak (200), centred at 94° of 29. The corre-

sponding A/3 contamination was identified at 28.5°, with further peaks at 40.8° 

and 79.5°. Those reflections lying in the immediate vicinity of these reflections 

were excluded from the set used for the unit cell indexing procedure. 

A commercially available sample of C 6 D 12  with a stated deuterium purity of 99.5% 

was obtained from the Aldrich chemical company. The sample was introduced in 

liquid form to the sample holder, a 12mm diameter vanadium can. In order to 

ensure homogeneity of the powder, the sample can was packed with silica wool 

prior to introduction of the sample. In this way, no single crystals of significant 

size can be formed on cooling. The effect of the silica wool on the powder patterns 

is known to be negligible, adding uniformly to the background [95]. 

At a pressure of 5 kbar, scans were collected at temperatures of 280 K, 250 K and 

175 K. The temperature was then fixed at 175 K, while the pressure was reduced 

in successive steps to 3 kbar, 2 kbar, 1 kbar and finally to 1 bar. The constant 

pressure powder patterns are presented in figure 4.2, while those at constant tem-

perature are given in figure 4.3. In the interests of clarity these patterns have 
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been truncated to show only the portions between 30° and 900  of 20. 

4.3.1 Phase III: The Orthorhombic Phase. 

Initially a short run was performed at 5 kbar, 300 K, yielding a rather featureless 

powder pattern of few peaks, consistent with the high symmetry of the cubic 

structure and dynamic orientational disorder. The temperature was then reduced 

to 280 K whereupon it became evident that a phase transition had occurred. A 

data set of substantial duration (12 hours) was then collected at this temperature 

yielding data in the 20 range 10-130 0  for a 20 step size of 0.05 O  A portion 

of the resulting profile is presented in figure 4.2(a). In the light of the d.t.a. 

and spectroscopic results discussed above, it was assumed that the 280 K pattern 

corresponds to phase III, and an attempt was made to determine its structure. 

Automatic indexing of the 280 K pattern was carried out using KOHL, an adap-

tation [96] of a program by Kohibeck and Hon [97] which uses semi-exhaustive, 

index-trial methods for the ab initio determination of unit cell parameters from 

powder patterns of single solid phases. Trial indices are assigned to the lowest 

angle reflections to yield trial unit cells which are checked against volume con-

straints and then used to attempt to index the remaining lines. In common with 

most indexing programs, KOHL requires 20 preferably low-angle reflections for 

its operation. A figure of merit is attached to each solution and this assessment 

criterion and its reliability have been discussed by de Woolf [98]. 

Table 4.1 includes a list of all the observed sample reflections and their intensi-

ties for the 280K pattern as a function of 20. Using as input the 20 lowest-angle 

reflections of reasonable intensity, the program produced a number of candidate 

solutions only one of which successfully indexed all 20 lines. The second and 

subsequent candidate lattices matched 15 or fewer lines and were clearly incon-

sistent with many of the observed reflections. They were thus duly discarded as 

incorrect. The accepted solution, to which the program assigned a high figure of 

merit (25.3), gave an orthorhombic unit cell with parameters a=6.580, b=7.839 
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Figure 4.2: 5 kbar diffraction patterns (a) 280 K (b) 250 K (c) 175 K. 
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c=5.289 A and a primitive lattice. Clearly the volume for this unit cell (V=273 A3 ) 

is approximately half that of the phase II unit-cell at ambient pressure (V=561). 

Accordingly it is reasonable to postulate that Z=2 for phase III. 

With the unit cell from KOHL, it was possible, by noting the systematic absences 

in the reflection list, to deduce the reflection conditions given in table 4.2. These 

reflections are consistent with either the centro-symmetric spacegroup Pmnn or 

non-centrosymmetric P2nn (Nos. 58 and 34 respectively). For expediency, the 

higher symmetry spacegroup, Pmnn, will be assumed provisionally. This choice 

will be justified a postiori. 

The symmetry operators of the Pmnn spacegroup dictate that, given two com-

pact molecules in the unit cell, the centre of one molecule must coincide with a 

lattice site at the cell corner whilst the other must occupy the body centre. The 

spacegroup also has a centre of symmetry and a mirror plane at x=0, which place 

restrictions on the atomic positions. Using the Pmnn spacegroup, the deduced 

lattice parameters were refined in conjunction with the profile data, using the 

ALLHKL program of Pawley [99]. Refined values for the cell parameters are to 

be found in table 4.3. These parameters were used to generate the calculated 

reflection angles, also listed in table 4.1. 

The approximate molecular orientation for phase III was determined using a com-

bination of lattice energy minimisation and constrained Rietveld refinement as 

follows. Initially, an idealised rigid 'chair-shaped' cyclohexane molecule was as-

sumed having tetrahedral bond angles and D3d symmetry. The coordinates of this 

molecule, which are identical to those used for the molecular dynamics simulations 

of Trew et al. [100] are given in table 4.4, and the molecule is represented pictori-

ally in figure 4.4. The bond-lengths are those appropriate to a deuterated system, 

having a C-D distance slightly shorter than the usual C-H bond-length by 0.007 

A . By virtue of the mirror plane at x=0, the one two-fold rotation axis of the 

molecule is preserved and is constrained to coincide with the x-axis, permitting 

the rigid molecule only a single degree of freedom, namely a rotation about the 

x-axis. 
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h k 1 20(Obs) Count 20(Zero) 20(Calc) L(20) 
1 1 0 34.426 670 34.478 34.476 0.002 
0 1 1 39.774 737 39.826 39.828 -0.002 
1 0 1 42.411 198 42.462 42.473 -0.011 
0 2 0 44.711 196 44.762 44.809 -0.047 
1 1 1 48.269 519 48.320 48.320 0.000 
2 0 0 53.923 270 53.975 53.985 -0.010 
0 2 1 56.568 504 56.620 56.629 -0.009 
1 2 1 63.468 137 63.520 63.445 0.075 

0 0 2 68.759 441 68.810 68.752 0.058 
2 1 1 69.046 392 69.098 69.148 -0.050 
2 2 0 72.658 1784 72.710 72.695 0.015 

0 1 2 * 73.10 
1 3 0 75.87 

1 1 2 * 79.18 

0 3 1 79.184 249 79.236 79.229 0.007 
2 2 1 82.031 200 82.083 82.065 0.018 
1 3 1 85.136 263 85.188 85.188 0.000 
0 2 2 85.797 413 85.849 85.879 -0.030 

3 1 0 89.940 207 89.991 89.980 0.011 

1 2 2 91.73 

2 0 2 92.803 312 92.855 92.843 0.012 

3 0 1 94.842 94.894 94.910 -0.016 

2 1 2 96.961 248 97.013 97.021 -0.008 

3 1 1 99.083 885 99.134 99.152 -0.018 

0 4 0 * 99.28 

2 3 1 102.96 

0 3 2 106.848 533 106.900 106.936 -0.036 

0 4 1 108.717 194 108.769 108.757 0.012 

2 2 2 109.838 206 109.890 109.885 0.005 

Table 4.1: Observed and calculated reflections of cyclohexane-d 12  at 5 kbar, 280 

K in the Pmnn spacegroup. The calculated reflections were generated using the 

refined cell parameters and zero error given in table 4.3. Those reflections that 

may not havc been resolved are marked by an asterix (*). The 301 reflection has 

not been assigned an intensity as it lies very close to the 200 Al line. 
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h 0 1 h+l=2n 

h k 0 h+k=2n 

h 0 0 h=2n 

o k 0 k=2n 

o o 1 l=2n 

Table 4.2: Reflection conditions deduced from the 5 kbar, 280 K diffraction profile. 

Parameter T=280 K T=250 K T=175K 

a(A) 6.587(3) 6.526(4) 6.518(5) 

b(A) 7.844(7) 7.597(6) 7.496(7) 

C(A) 5.295(3) 5.463(5) 5.460(4) 

ON 90 97.108(4) 97.725(3) 

Volume (A3) 273.64(4) 268.71(3) 264.42(4) 

Table 4.3: Lattice parameters of cyclohexane-d 12  at 5 kbar for T= 280 K, 250 K 

and 175 K. 
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Figure 4.4: The ideal cyclohexane molecule in the 'chair' conformation. The 

molecule has DU symmetry and tetrahedral bond angles. 

127 



Parameter x(A) y(A) z(A) 

Cl 1.2664 0.7311 -0.2585 

C2 1.2664 -0.7311 0.2585 

C3 0.0000 -1.4623 -0.2585 

Dl 1.2664 0.7311 -1.3415 

D2 1.2664 -0.7311 1.3415 

D3 0.0000 -1.4623 -1.3415 

D4 2.1506 1.2416 0.1024 

D5 2.1506 -1.2416 -0.1024 

D6 0.0000 -2.4833 0.1024 

Table 4.4: Atomic coordinates of the idealised molecule used for energy minimi-

sation calculations. Only half the atoms of the molecule are given, the remainder 

follow from an inversion through the origin. 

Using the deduced unit cell parameters and idealised molecular dimensions, en-

ergy minimisation was performed for a cluster of approximately 100 computer-

generated, rigid molecules. The intermolecular potential employed was of the 

Buckingham form (6-exp) with the parameters of Williams [101]. These param-

eters are those appropriate to hydrogenated systems as non could be found in 

the literature for deuterated systems. No intra-molecular (strain) energies were 

included in these calculations. 

Whilst maintaining the symmetry constraints associated with the Pmnn space-

group, the lattice energy was monitored as a function of the molecular rotation 

angle, for a rotation of 90° about the x-axis. This procedure yielded a global 

energy minimum when the vector from the origin to the C3 atom was inclined 

at 38.48 ° degrees to the y axis. The molecular orientation corresponding to this 

energy minimum was used as the starting point for a Rietveld refinement of the 

powder diffraction profile of phase III. 

Rietveld refinement was carried out using data collected at 5 kbar, 280 K from 
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the D213 diffractometer. As previously described, the smaller neutron wavelength 

(1.595 A) associated with this diffractometer permits a greater number of Bragg-

peaks to be collected (compared to the larger wavelength employed on D1A), 

thereby increasing the information content of the data. The Rietveld method 

involves a least-squares refinement of structural and thermal parameters from 

powder diffraction patterns and is discussed in detail in reference [102]. The re-

finements were carried out using the PROFIL neutron powder refinement program 

available at ILL [103]. Initially 8 parameters were refined (cell parameters, scale, 

zero error and U,V,W) with no adjustment of atomic coordinates. The back-

ground was treated by a polynomial fit to 150 visually estimated points and a 

pseudo-Voigt peak shape was employed to model the observed peaks. Isotropic 

thermal parameters were not refined and were set to be 5.53 for D atoms and 1.11 

for C atoms. The refinement converged quickly with a final intensity It-factor of 

8 %, where 

E.Iyobs 	ycalc1 

R, =_ E1 Y0lc 

Chemical or 'slack' constraints were then placed on the bond lengths and angles 

in order that they should favour the geometry of the idealised molecule. This 

brought the number of refinable parameters to 19. The size of the maximum per-

mitted deviation of the bond parameters from the idealised structure was limited 

(somewhat arbitrarily) to be consistent with the deviation from the ideal geome-

try observed by Kahn et al [82] for phase II. Of course, the constraints imposed 

by the spacegroup symmetry were not relaxed. 

Allowing refinement within these constraints, the intensity R-factor improved 

markedly to 4%. The refined profile is presented in figure 4.5 with the corre-

sponding atomic coordinates, principal bond parameters and refinement parame-

ters appearing in tables 4.5, 4.6 and 4.7 respectively. The refined bond parame-

ters suggest that the cyclohexane molecule in phase III deviates only slightly from 

tetrahedral symmetry, for which bond angles assume the value 109.6°. The mea-

sured bond lengths also agree well with values encountered in the literature i.e. 
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Parameter x/a y/b z/c 

Cl 0.19041 0.03837 -0.13348 

C2 0.19041 -0.03837 0.13348 

C3 0.00000 -0.14136 0.17404 

Dl 0.19041 -0.06616 -0.26537 

D2 0.19041 0.06616 0.26537 

D3 0.00000 -0.25253 0.06142 

D4 0.31114 0.12485 -0.14824 

D5 0.31114 -0.12485 0.14824 

D6 0.00000 -0.19821 0.36632 

Table 4.5: Refined atomic coordinates of cyclohexane-d 12  at 5 kbar and 280 K. 

C1-C3(A) 1.509(8) C3-D3(A) 1.06(7) 

C1-C2(A) 1.538(6) C3-D6(A) 1.11(9) 

Ci-Di (A) 1.07(6) C2-C1-C3(°) 109.9(7) 

C1-D4(A) 1.05(5) C1-C3-C1 1 ( 0
) 

112.6(4) 

Table 4.6: Estimates of the independent bond-lengths and principle bond-angles 

obtained from the refinement of D2B data for phase III at 5 kbar 280 K. 
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Parameter Value 

Refined parameters 19 

U(0) 0.228 

v(°) —0.321 

W(0) 0.265 

scale factor 2.7345(3) 

zero angle(o) —0.050(3) 

Asymmetry parameter 0.292 

20 refinement range 150_800 

20 step size 0.050  

Observed data points 2100 

R1 4.4 

Rwp  8.6 

Table 4.7: Values of the instrumental parameters and R-factors for the refinement 

of the phase III powder pattern at 5 kbar, 280 K. 
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c-c 1.536, C-D 1.083 [104]. Furthermore, the success of the refinement demon-

strates that the centrosymmetric spacegroup is indeed the appropriate choice for 

this structure. A carbon skeletal representation of the refined molecular arrange-

ment relative to the unit cell is shown in figure 4.6. 

4.3.2 Phase IV : The Monoclinic Phase 

A number of short data sets were collected at 5 Bar between 280 K and 260 K in 

5 K steps, in order to establish closely the temperature of any further transition. 

At 265 K a clear change in the powder profile was observed, heralding the entry 

to a new phase. Another short data set at 260 K revealed a pure phase, showing 

the 265 K profile to be a mixture of the upper and lower phases. The temperature 

was subsequently reduced further to 250 K to ensure that the sample was fully 

in the lower phase at that temperature, and a high quality data set was collected 

over a period of some 8 hours, yielding data in the 29 range 10-117°. Again a 20 

step size of 0.05 ° was used. The associated pattern is shown in figure, 4.2(b). 

The indexing procedure described above for phase III was repeated with the 250 

K data, the peak positions of the lowest angle reflections (of reasonable intensity) 

being input to the KOHL program. Again this program offered a number of 

solutions. The 'best', indexing all 20 reflections with a figure of merit of 20.4 

was a primitive monoclinic cell with parameters a6.523, b=7.585, c=5.457A, 

= 97.1270 . The next best solution with a figure of merit of just 9.3, failed 

to index some of the reflections and was rejected. A comparison of the above 

cell with that derived for phase III shows clearly that they are closely related, 

the transition being affected by a simple tilting of the c axis of the orthorhombic 

structure concomitant with a small (.-.-' 2%) reduction in unit cell volume. In view 

of the previously mentioned d.t.a. and neutron scattering results, the structure 

at 5 kbar, 250 K will be assumed to be phase IV. 

All the observed sample reflections and their intensities for the 5 kbar, 250 K 

pattern are presented in table 4.8. From a consideration of the systematic absences 
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Figure 4.5: A difference plot of the observed and calculated powder diffraction 

profile of phase III at 5 kbar, 280 K. The measured data points are shown as 

dots and the calculated profile is shown by the solid line. Vertical bars denote 

the positions of Bragg reflections. The peaks centred on 39° and 46°, arise from 

scattering from the aluminium housing of the pressure cell and were excluded from 

the data used for refinement. 
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Figure 4.6: The refined structure of phase III relative to the orthorhombic unit cell. 

Note the 'herring-bone' molecular stacking common to many organic molecular 

crystals. 
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h k 1 20(Obs) Count 29(Zero) 20(Calc) i(20) 
1 1 0 35.314 566 35.318 35.305 0.013 

-1 0 1 * 39.38 
0 1 1 39.541 1100 39.545 39.595 -0.050 
1 0 1 44.716 202 44.720 44.768 -0.048 

-1 1 1 45.904 205 45.908 45.929 -0.021 
0 2 0 46.269 172 46.273 46.338 -0.065 
1 1 1 50.792 291 50.796 50.761 0.035 
1 2 0 54.300 190 54.304 54.276 0.028 
2 0 0 55.018 141 55.022 54.975 0.047 
0 2 1 57.462 511 57.466 57.427 0.039 
2 1 0 60.23 
-1 2 1 62.436 252 62.440 62.397 0.043 
-2 1 1 65.968 1016 65.972 65.953 0.019 
1 2 1 66.39 
0 0 2 66.974 235 66.978 66.929 0.049 
0 1 2 71.661 493 71.665 71.671 -0.006 
2 1 1 73.65 
-1 1 2 * 74.28 
2 2 0 74.622 1609 74.626 74.672 -0.046 
1 3 0 78.64 

-2 2 1 79.90 
0 3 1 * 81.29 
1 1 2 81.637 242 81.641 81.664 -0.023 
-2 0 2 84.73 
0 2 2 85.284 363 85.288 85.280 0.008 
-1 3 1 * 85.62 
2 2 1 87.192 164 87.196 87.17 0.026 
-1 2 2 87.78 
-2 1 2 89.214 180 89.218 89.176 0.042 

Table 4.8: Observed and calculated reflections of cyclohexane-d 12  at 5 kbar, 250 

K in the P12(1)/ni spacegroup. The calculated reflections were generated using 

the refined cell parameters and zero error given in table 4.7. The 122 and -311 

reflections have not been assigned an intensity as they lie very close to the 200 Al 

line. Those reflections that may not have been resolved are marked by an asterix 
(*). The apparently unobserved reflections -131 and 131 are coincident with their 

neighbours and are visible in the 5 kbar 175 K pattern. 
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h 0 1 h+1=2n 

h 0 0 h=2n 

o k 0 k=2n 

o o 1 l=2n 

Table 4.9: Reflection conditions deduced from the 5kbar, 250K diffraction profile. 

from this reflection list, it transpires that the structure satisfies the reflection 

conditions given in table 4.9. 

These reflection conditions are compatible only with the P 1 2 (1)/n 1 space-

group (a setting of P 2 (1)/c, b axis unique, cell choice 2, No.14) spacegroup. 

Significantly, this spacegroup is a maximal non-isomorphic subgroup of the Pmnn 

spacegroup for the phase III structure, corresponding to the removal of half the 

symmetry elements in the transition from the orthorhombic to the monoclinic 

structure. This independent deduction therefore lends weight to the validity of the 

findings for both structures. In particular the non-centrosymmetric orthorhombic 

spacegroup P2nn is not compatible with the transition to the P 2 (1)/c structure. 

Moreover, the vast majority of organic homomolecular crystals are centrosymmet-

nc and fall into the P 2 (1) / c spacegroup [105]. 

The pattern at 5 kbar, 175 K, fig 2(c), was also subjected to the indexing procedure 

yielding a 'best' cell of a=6.511, b=7.485, c=5.463 A; 3 = 97.733°; with a figure 

of merit of 25.5. Evidently the structure at this temperature is still essentially the 

same as that observed at 250 K although the temperature is considerably below 

that where one would expect to find phase IV according to the phase diagram of 

Schulte and Würflinger (figure 4.1(b)). No evidence of a phase transformation to 

phase II was observed at 5 kbar 175 K even though the sample was maintained 

under these conditions for a period in excess of 12 hours. Clearly this finding is in 

accord with that of Mayer et al [90] who observed that the temperature range of 

stability of phase IV is increased considerably on cooling from phase III compared 

to heating from phase II. 
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Both the 250 K and the 175 K cell solutions were refined using the ALLHKL 

program, yielding the lattice parameters presented in table 3. Differences between 

the profiles of fig 2(b) and fig 2(c) may be traced to the small difference in the 

lattice parameters between the two temperatures. The somewhat larger figure of 

merit of the 175 K indexing compared to that at 250 K arises from the splitting of 

accidently coincident low-angle peaks which separately receive greater weight in 

the figure of merit calculation. Those peaks not observed at 250 K (and therefore 

absent from table 4.8 which are apparent in the 175 K data, are the (-131) and 

(131) reflections. It is instructive to try to gauge the angular resolution of the 

diffraction profile from those close lying peaks (e.g. the (002) and the (221) 

reflections in table 4.1 and figure 4.2(a)) which are only just resolved. From the 

data it appears that the angular resolution is approximately 0.4°. Thus a number 

of the reflections apparently absent from tables 4.1 and 4.8 may just not have been 

resolved. In these cases the table entry for a reflection is marked with an asterix. 

In a manner similar to that described for phase III, energy minimisation calcu-

lations for the phase IV structure have been performed in an attempt to find a 

molecular orientation sufficiently close to the real configuration to permit Rietveld 

refinement of the powder data. Again the molecule coordinates of table 4.4 were 

used, suitably transformed into the monoclinic basis. However, the task of locating 

the energy minimum was complicated considerably by the lack in the monoclinic 

structure of the mirror plane existing in the orthorhombic phase. Consequently, 

no orientational constraints are imposed on the molecule which thus possesses 

three degrees of orientational freedom. For a rather compact, spherical molecule 

such as cyclohexane it is to be expected that a number of spurious local minima 

exist in the potential energy surface. Indeed this was found to be the case, neces-

sitating an exhaustive search of trial starting orientations, until one lying within 

the basin of attraction for the global energy minimum was eventually found. A 

stereoscopic carbon skeletal representation of the molecules in the orientation of 

minimum energy is given in figure 4.7. 

The minimum energy molecular orientation in phase IV is clearly related to that of 

phase III. The main qualitative difference appears to be a rotation of the molecular 
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Figure 4.7: A stereoscopic view of the calculated structure of minimum potential 

energy for phase IV. The structure was obtained using the molecular geometry of 

Trew et al [100] combined with the potential parameters of Williams [101]. 

orientation in the same sense as the monoclinic tilt. This 'solution' was used as the 

starting point for a constrained Rietveld refinement of the powder profiles in which 

the bonding parameters were again constrained to favour the idealised molecule. 

Unfortunately, the best intensity R-factor which could be obtained by this process 

was 18% (for 1959 data points and 35 refined parameters), significantly inferior to 

that obtained in the orthorhombic phase. Discussion of possible reasons for this 

are deferred to the following section. 

4.3.3 The Transition to Phase II 

Figure 4.3(a) to (c) shows the result of decreasing the pressure from 3 kbar at a 

constant temperature of 175 K. At 3 kbar, fig 3(a), the structure is evidently still 

that of phase IV observed at 5 kbar. However at 2 kbar, (fig 4.3b), a dramatic 

change occurs in the powder pattern. By comparing the 1 bar pattern of fig 4.3(c) 

with that at 3 kbar it is evident that the 2 kbar pattern simply comprises a mixture 
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of the upper and lower pattern, implying phase coexistence. At this temperature, 

the actual transition pressure is clearly therefore very close to 2 kbar. Moreover, 

the observation of phase coexistence suggests that this transition has first order 

character. 

In certain circumstances, however, phase IV does not transform to phase II, even 

when the pressure is reduced to its ambient value [90]. Provided the pressure is 

released at temperatures below 160 K, phase IV persists (apparently stably) down 

to ambient pressure. The transformation to phase II can then only be effected by 

heating to approximately 160 K. This rather interesting finding will be discussed 

further in the concluding section. 

The 1 kbar and atmospheric pressure patterns (the latter shown in figure 4.3(c)) 

correspond to the known structure of phase II as determined by the single-crystal 

x-ray study of Kahn et al for C6 11 12 . The latter profile was, however, indepen-

dently indexed by way of a test of the indexing procedure. For this pattern, the 

KOHL program yielded a best solution (figure of merit 25.4) with lattice param-

eters a=11.28, b=6.43, c= 8.24A; /9 = 108.84° and a centred cell, in excellent 

agreement with the x-ray results. 

Powder patterns were also collected for phase II, using the D2B diffractometer. 

Rietveld refinement of this data was performed using as starting conditions, the 

atomic parameters determined in the single-crystal x-ray study of Kahn et al [82]. 

This refinement proceeded normally and converged with a final R-factor of 5%. 

The refined positions of the carbon atoms were found to be in good agreement with 

the results of the x-ray study. However, the deuterium atoms were found to occupy 

positions much closer to the ideal cyclohexane structure than had been reported 

previously. Leaving aside the possibility of differences due to isotopic substitution, 

this disparity can almost certainly be traced to the relative accuracy of x-ray and 

neutron diffraction for determining the position of hydrogen atoms. Although 

single-crystal diffraction data is normally much more reliable than powder data, 

the coherent scattering cross section presented by hydrogen (and deuterium) to 

x-rays is considerably less than to neutrons. Accordingly, the positions of the 
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Parameter x/a y/b z/c 

Cl 0.206(2) 0.469(7) -0.005(4) 

C2 0.345(3) 0.408(3) 0.085(2) 

C3 0.382(3) 0.214(3) 0.006(3) 

Dl 0.190(2) 0.501(7) -0.127(2) 

D2 0.184(1) 0.603(5) 0.048(5) 

D3 0.354(3) 0.386(1) 0.216(6) 

D4 0.404(4) 0.534(3) 0.080(4) 

D5 0.376(2) 0.251(2) -0.117(5) 

D6 0.477(5) 0.189(5) 0.068(4) 

Table 4.10: Refined atomic coordinates of cyclohexane-d 12  in phase II at 1 bar 

and 175 K. The refined unit cell parameters are a= 11.30(3)A, b= 6.43(6)A, 

c = 8.23(4)A, 9 = 108.84(5)°. 

deuterium atoms can be determined considerably more accurately by neutron 

diffraction than by x-ray diffraction. It would seem likely, therefore, that at least 

with regard to the positions of the hydrogen atoms, the cyclohexane molecule is 

rather less distorted than reported by Kahn et al. The refined atomic positions 

for phase II are given in table 4.10. Table 4.11 shows the principal bond lengths 

and representative bond angles for phase II as determined both by Kahn et al and 

by the present study. 

4.4 Discussion and Conclusions 

The orthorhombic structure of phase III is clearly consistent with the spectroscopic 

deduction of D2h site symmetry by Haines & Gilson [86]. Their finding of C2h 

symmetry for the room-temperature structure existing above 7.4 kbar in C 61) 12  

could, however, correspond either to phase II or to phase IV as both possess this 

site symmetry. Extrapolations of the phase diagram (figure 4.1(b)) suggest that 
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Parameter Reference [82] This work 

C(1)-C(2) 1.528(6) 1.537(12) 

C(2)-C(3) 1.52(1) 1.522(7) 

C(3)-C(4) 1.51(1) 1.522(8) 

C(6)-C(1)-C(2) 110.4(6) 110.7(6) 

C(1)-C(2)-C(3) 111.3(4) 111.3(5) 

C(2)-C(3)-C(4) 112.3(4) 112.0(7) 

C(1)-D(1) 0.88(3) 0.98(3) 

C(1)-D(2) 1.14(4) 1.04(3) 

C(2)-D(3) 1.05(3) 1.05(4) 

C(2)-D(4) 0.93(3) 1.07(2) 

C(3)-D(5) 1.10(2) 1.03(3) 

C(3)-D(6) 0.94(4) 1.07(4) 

C(1)-C(2)-D(1) 106.7(3) 112.6(7) 

C(1)-C(2)-D(2) 105.7(5) 109.9(5) 

C(2)-C(1)-D(4) 118.2(4) 110.7(3) 

Table 4.11: Principal bond lengths and selected bond angles for the cyclohexane 

molecule in phase II. 
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phase IV is the best candidate for this phase. Indeed, the recently discovered 12 

kbar transition at room temperature [88] also appears to be consistent with an 

extrapolation to room temperature of the phase IV to phase II boundary. 

The failure to obtain a satisfactory Rietveld refinement for phase IV may be par-

tially traced to the fact that energy minimisation is less powerful when trying 

to orient 'globular' molecules having unconstrained orientational freedom. Under 

such unfavourable conditions, any shortcomings in the authenticity of the poten-

tial parameters [101] can make the correct solution illusive. In fact the potential 

parameters employed for the energy minimisation calculations were those appro-

priate to hydrogen, rather than deuterium. Given that the region of stability 

of phase IV is heavily influenced by isotopic factors (as evidenced by the phase-

diagrams of figure 4.1), it is perhaps not too surprising that energy minimisation 

produced an apparently spurious result. A further possibility is that the cyclo-

hexane molecule is significantly distorted in phase IV. If this is indeed the case, 

energy minimisation based on a rigid-molecule approximation cannot be expected 

to succeed. 

Notwithstanding the failure to obtain a full structural solution to phase IV, a good 

deal of confidence is reserved for the results pertaining to the orthorhombic phase 

III. Here the molecule is tightly constrained by the spacegroup symmetry, and the 

success of the Rietveld refinement implies that the deduced molecular orientation 

lies very close to the correct solution. 

The finding that phase III is an ordered phase possessing no large-scale dynamic 

disorder is at variance with recent speculation that phase III is actually a one-

dimensional rotator phase [90]. This claim was made on the basis of an observed 

change in the phonon-mode spectrum at the phase Ill—phase IV transition. It is 

nevertheless difficult to see how such a claim can be reconciled with the results 

of the present study. The refined bond parameters for phase III (table 4.6) mdi-

cate that the cyclohexane molecule does not deviate significantly from the ideal 

structure. Such a result could not have been obtained were the molecule rotating 

rapidly about one axis. Moreover, previous neutron powder work on 1-d rotator 
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phases, such as that of n-butane, show that the orientational disorder leads to 

a large thermal Debye-Waller effect, manifest as a loss of peak intensity at high 

angle [106, 107]. No obvious diminution of peak intensity was observed in phase 

III compared to either phase IV or phase II, and no anomalous behaviour of the 

temperature parameters was encountered in the refinement. In fact, in order to 

perform successful Rietveld refinement of a uniaxial rotator such as n-butane, it is 

necessary to employ rather complex models, which explicitly embody the disorder 

about the rotation axis [106, 107]. 

The assertion that phase III is characterised by large-scale dynamic disorder would 

also appear to run contrary to the thermodynamic evidence. Only a small vol-

ume change occurs at the phase Ill-TV transition (table 4.3). If phase III were 

extensively disordered, one would expect (on the basis of the Clausius- Clap eyron 

equation), that the gradient of the phase ITT-TV boundary should be large. The 

measured gradient (fig 4.1) does not, however, differ significantly from that of the 

phase II-IV boundary. Thus, while it is possible that the cyclohexane molecule 

in phase III undergoes occasional symmetry related reorientations, (similar to the 

phenomenon observed in solid benzene [108]), it is the author's view, that the 

molecules in phase III spend their time predominantly in the orientation shown 

in figure 4.6. 

Turning finally to the general issues raised in the introduction, it would appear 

that several factors govern the particular crystalline structure adopted by cyclo-

hexane. In the plastic phase I, the isotropic orientational freedom of the molecules 

leads to a cubic structure corresponding to the close-packing of hard spheres. At 

lower temperatures, this orientational freedom freezes out, and the ordered phase 

II is formed. The packing density in this latter phase is considerably (12%) greater 

than that of phase I. As there is little evidence to suggest that the cyclohexane 

molecule is significantly distorted in either phase II or phase I, it would appear 

that the phase TI-phase I transition is essentially entropy driven. 

At higher pressures, two further structures (phases III and IV) exist. Phase III 

is formed by cooling from phase I and further cooling then yields phase IV. Both 
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phases III and IV appear to be orientationally ordered and their crystallographic 

structures are closely related. In phase III, the molecule is in the chair confor-

mation and is not significantly distorted. Raman measurements indicate that no 

large-scale conformation changes occur at the phase Ill-TV transition although it 

is possible that the molecule is distorted in phase IV [87, 88]. Given that the 

decrease in molecular volume (.--' 2%) at the phase Ill-TV transition is relatively 

small, both compact packing and molecular distortion may be responsible for 

driving this transition. 

One of the more intriguing features of the phase behaviour of deuterated cyclo-

hexane is the dependence of the locus of the phase II - phase IV boundary on 

the direction in which it is traversed. The position of this boundary as shown in 

figure 4.1(b), relates only to the transition from phase II to phase IV. Once phase 

IV is formed, decreasing the pressure will regain phase II only if the temperature 

is maintained above 160K. Otherwise, phase IV will persist (apparently stably), 

right down to ambient pressure. The source of this pronounced hysteresis may 

presumably be traced to a large energy barrier separating the two phases. Indeed 

no obvious structural relationship exists between the unit-cells of phases II and IV, 

implying that the transition involves large-scale molecular rearrangements, possi-

bly involving an energetically unfavourable intermediate state. The existence of 

the hysteresis poses the intriguing question as to which phase is the true structure 

of minimum free energy at ambient pressure and low temperature. 

With regard to the effect of deuteration on the phase diagram of cyclohexane, 

it appears that this matter is still poorly understood. Although the C-D bond 

length is known to be approximately 0.007 A shorter than its C-H counterpart, 

it is doubtful that this alone can account for the presence of phase IV. In fact, 

a recent Raman study has identified phase IV in the hydrogenated system at 

considerably higher pressures than observed in the deuterated systems [88]. On 

this basis, it would seem that the effect of deuteration is to produce an increase in 

the chemical or internal pressure rather than to introduce a completely new phase 

altogether. 
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To summarise, the observed phase structure of cyclohexane is mediated by a 

complex interplay between several factors: dynamic effects, compact packing, 

molecular distortion, isotopic substitution and thermodynamic history. In gen-

eral, high-symmetry dynamical disordered phases are favoured at high temper-

ature and lower-symmetry orientationally ordered arrangements are favoured at 

lower temperatures and higher pressures. This trend is observed across a variety 

of related organic molecular systems such of cyclohexanone, cyclopentane and cy-

clohexanol whose phase diagrams are topologically similar to that of cyclohexane 

[109]. Qualitative features of the structural determinations reported in this work 

may very well carry over to these related systems. 

4.5 Prospects for Further Work 

Evidently a full structural solution of phase IV is a prerequisite for a comprehen-

sive understanding of the phase behaviour of cyclohexane. Such a determination 

might be possible using direct methods, whereby one evaluates the individual 

structure factors associated with each reflection in the powder diffraction profile. 

In principal, knowledge of these structure factors permits a full structural deter-

mination of atomic positions, although the task is non-trivial and has not been 

attempted here. Energy minimisation may also yet prove useful for solving phase 

IV, provided more information is forthcoming regarding the manner and extent 

of molecular distortion. 

A determination of the structure of the ambient-pressure metastable phase ob-

served by Renaud and Fourme [83] would also be worthwhile. Such a solution 

might convey important insight into the role of pre-transitional molecular order-

ing in determining the low-temperature structure of phase II. As previously de-

scribed, this metastable phase is formed by quenching cyclohexane from phase I 

or the liquid and has recently been studied by Raman spectroscopy at Edinburgh 

[88]. The Raman study clearly identified lattice modes in the spectra, demon-

strating that the metastable phase is ordered and contrary to some reports [111], 
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not a quenched glass. It was found, however, that the pure metastable phase can 

only be produced for small quantities of the hydrogenated system. Larger sample 

volumes and/or a deuterated sample, yielded a mixture of the metastable phase 

and the low-temperature monoclinic phase II. For these reasons, X-ray powder 

diffraction rather than neutron diffraction would be the preferred technique for 

structure solution since the latter requires large-volume deuterated samples. 

The advent of new constant-pressure molecular dynamics techniques also provides 

further scope for study of the high-pressure structures and transitions of cyclohex-

ane [110]. These new techniques allow one to simulate first order structural phase 

transitions that involve a volume change. Molecular dynamics simulations have 

already been performed with some success for the ambient pressure phases of cy-

clohexane [100]. It would be extremely interesting to see if they can also reproduce 

the high-pressure structures, possible by incorporating flexible molecules. Simu-

lations of this type could provide valuable information on the dynamic reordering 

processes taking place at the phase-transitions as well as providing indications 

concerning the accuracy of the existing form of atom-atom potentials. 
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Appendix A 

Derivations of Scaling Results 

In this appendix, further details are given of some of the scaling results stated in 

chapter 1. 

A.1 The Form of the Scale Factor A(b) 

As stated in chapter 1 of the main text (section 1.7), the basic spin amplitude 

o must be rescaled by a factor A(b) in order that the partition function remains 

invariant under the RG operation (c.f. equation 1.18). The iterable properties of 

the RO operator further stipulate that A(b) must be of the general form A(b) = 

with c constant. 

The explicit form of A(b) derives from a consideration of the two-point spin cor-

relation function G(x) =< 000x >. At criticality and for large spin separation x, 

it turns out that [4] 

G(x) Dx_(d_ 2+) 	 (A.1) 

where D c  is a critical amplitude and ij is a critical exponent. Now, the operation 

of the RG transformation on the correlation function may be written 
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G(x,fl) = A(b) 2G(x1b,fl') = b2'G(x1b,7-C) 	 (A.2) 

Setting the arbitrary scale factor b equal to x, then immediately yields 

A(b) = b_"_24'2 = 	 (A.3) 

where the hyper-scaling relation 8 = v(d - 2 + )/2 has been used. 

A.2 The Form of the Relevant Scaling Fields 

Pi and /12 

The form of the relevant scaling fields is simplest for systems having the Ising 

symmetry, where the Hamiltonian is symmetric with respect to positive and neg-

ative values of the ordering field. Explicit forms for the relevant scaling fields 

are derived below for this special case. The situation for systems with broken 

symmetry, such as fluids, is discussed in detail in chapter 3. 

Given a Hamiltonian '7-i describing the interaction between an assembly of N spins, 

the Gibbs free energy per degree of freedom (in units of kBT),  may be written as 

lnZ 
g=--71 (A.4) 

Under the RG operation, the total free energy (like the partition function) re-

mains invariant, although the number of degrees of freedom associated with the 

description of the system is reduced by a factor b_d  to N' = N/bd. Accordingly 

and to within less singular terms one can write 

g = b'g'(K) 
	

(A.5) 
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where g'(K) is the Gibbs free energy per site for the coarse-grained system. In the 

region of the fixed point, the coupling-space vector K can be eliminated in favour 

of the scaling field perturbations p(b) (equation 1.36), which suggests that the 

most singular part of the Gibbs free energy per site has the homogeneity property 

g(t, h) = b'g(pj (b), 92  (b)) = b_ g (bA1t, 02h) 	 (A.6) 

where the quantities It, (b) 	b"t and /12(b) 	V 2  h are the relevant scaling fields 

whose system specific pre-factors have been suppressed for clarity. In writing down 

equation (A.6) it has been assumed that only two relevant scaling fields exist and 

that the system is sufficiently close to criticality that irrelevant perturbations can 

be ignored. In fact, equation (A.6) is identical to that written down in chapter 1 

(equation 1.5) on the basis of purely phenomenological scaling theory. 

On differentiating equation (A.6), one obtains corresponding scaling expressions 

for the order parameter and the susceptibility. 

Q(t, h) = 	bA2_Q(bht ,  02 h) (A.7a) 

X(t, h) = 	b22_dx(b1t, b1\2  h) (A.7b) 

Exploiting the homogeneity property, one can choose the arbitrary scale factor b 

such that 

01 It 1=: 1 	 (A.8) 

from which one finds 

Q(t, h) = I t  1(d-2)/A1 Q (±i i l2Th) 	
(A.9a) 

(t 1 
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similarly, 

X(t, h) = I t 1-(2A2-1 x 	
h 

(±i, It 	 (A.lOa) 

( I  t j A2/ AI) 

	

(A.lOb) 

Now, invoking standard results expressed in equations (1.1a) and (1.1c), one finds 

d - A 2  
/3 

= 	
(A.11a) 

A 1   
2A 2  - d 

= 	
(A.11b) 

A 1   

so that finally the scaling fields can be written explicitly:- 

= a1b"t 	 (A.12a) 

P2 = a2 bd101"h 	 (A.12b) 

where a 1  and a 2  are system-specific constants and the scaling laws a = 2 - ud 

and a +2/3 + y = 2 have been used. 
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Appendix B 

Parallel Computation 

B.1 The DAP Architecture and Parallel Map-

ping Strategy 

The DAP is a massively parallel SIMD supercomputer which contains either 32 >< 32 

(DAP 500 series) or 64 x 64 (DAP 600) Processing Elements (PEs). It is hosted 

by a UNIX workstation which provides the operating system and program I/O. 

From the user's point of view, therefore, operation is very straightforward. 

The PEs are arranged as a two-dimensional array, the edges of which may be 

connected together to form a torus topology. This ability to select the hardware 

configuration from software enhances the range of application of the machine 

considerably. The PEs can perform variable precision arithmetic and are con-

nected to their nearest-neighbours by high-speed links which provide a very rapid 

inter-processor communication rate of 1.1 Gbyte/s, making data broadcast very 

efficient. In addition, the provision of logical masks, allows individual processors 

to be effectively switched off from parts of the calculation if required. 

Each PE has direct connection to its own local memory, the size of which depends 

upon the individual machine but, for example, that at Edinburgh has 64 kbit 
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per PE, giving a total of 32 Mbyte. There is no global memory, though there is a 

separate code store in direct communication with the Master Control Unit (MCU) 

which issues commands to the processor array. A schematic diagram showing the 

structure of the DAP is given in figure B.1. All current DAPs have a 10 MHz 

clock, however, that at Edinburgh is a somewhat older model and runs at 8 MHz. 

The performance figures quoted below (table B.1) can therefore be updated for 

the new hardware. 

The PEs are simple bit-serial processors which handle all functions (real and inte-

ger multiplication, trigonometric functions etc.) in software. This has the disad-

vantage of some loss of speed compared to handling by hardware, but does allow 

for a greater range of variable precision than is found normally. A new DAP with 

8-bit coprocessors attached to each PE has also recently been released. This ad-

dition greatly enhances its performance for integer and floating-point arithmetic. 

A fuller description of the DAP hardware may be found in reference [112]. 

The DAP is programmed in an expanded dialect of Fortran called FORTRAN-

PLUS which supports a number of parallel datatypes facilitating simple mapping 

of problems onto the processor array. Table B.1 gives some impression of the 

arithmetic speed of the DAP 608 when using FORTRAN-PLUS. The figures il-

lustrate certain unusual features, for example a squaring is much faster than a 

multiplication. 

Operation Rate Operation Rate 

Real*4 multiply 22.6 Real*4  add 42.2 

Real*4 square 43.0 Integer*1  multiply 117 

Real*4 saxpy 86 Logical OR 2500 

sin(Real*4) 7.6 log(Real*4) 19.2 

Table B,1: Rate of operation on the DAP 608 measured in million operations/s 

The suitability of the DAP for logical or short length arithmetic is particularly 

evident from these figures and this feature is exploited for many problems such 
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1-bit processors 

8-bit processors 

Figure B,1: Schematic diagram of the DAP 610c architecture showing the pro-

cessor array, its memory and the master control unit. The host computer is also 

shown. 
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as Ising model simulations (see below). Nevertheless, even for real arithmetic 

applications (e.g. the simulations of the Lennard-Jones fluid described in chapter 

3), the speed of the DAP 608 is twice as fast as the Cray-1 when both are running 

an appropriate algorithm. 

Data transfer between the host and the DAP is handled by a special purpose 

SCSI interface which operates at a rate of 1 - 2 Mbyte/s. A faster data channel 

for both input and output is also available, this being used predominantly for 

graphical display. The provision of good graphical visualisation is often essential 

for the full exploitation of such machines since it can display results in a very 

direct and immediate fashion. 

In common with all parallel computers, a little thought is required prior to writing 

a DAP program to effect the optimal mapping of a problem onto the machine ar-

chitecture. In practice, the appropriate mapping almost invariably takes the form 

of some type of geometrical decomposition in which the total problem is subdi-

vided into a number of subunits, each of which contains one or more interacting 

subsystems. The programmer then tries to assign one subunit to each processing 

element such that neighbouring subunits of the problem are mapped onto neigh-

bouring PEs. Such a decomposition ensures that all information transfer between 

subunits (needed for the calculation of interactions) involves only physically close 

processors, thereby minimising communications overheads. Once realised, an effi-

cient mapping allows the full exploitation of the SIMD character of the DAP by 

permitting the simultaneous manipulation of whole matrices of variables. 

Whilst the parallel character of the DAP makes it extremely fast for a wide range of 

problems, it is clear from table B.1 that its performance is most outstanding when 

dealing with subsystems whose state can be represented by logical variables. This 

is in contrast to many machines which often wastefully use a byte per logical. In 

fact, a surprising number of models can be represented in terms of logical variables. 

The best example is the Ising model, whose spin states take the values +1 and 

—1. In FORTRAN-PLUS, the bit-matrices used to hold these spin states could 

be easily handled with statements like the following: 
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logical L(*100,*100) 

C 

C Set spins randomly using system-supplied random number generator. 

C 

L = RANDOM-SETUP( 

do 10 istep=1, nsteps 

L = FUNC( L, shNc(L), shSc(L), shEc(L), shWc(L) ) 

10 continue 

This declares L to be a two-dimensional (100 x 100) logical matrix, though the 

same program structure will hold irrespective of the datatype of L. The '' in the 

declaration of L indicates that these dimensions may be operated on in parallel. 

The interaction function used to calculate the spin flip is expressed by FUNC 

which operates on the subsystems themselves (stored in L), and their four nearest 

neighbours each shifted by one lattice spacing in the north, south, east and west 

directions. These shift functions are part of the FORTRAN-PLUS language, and 

take only a few machine clock cycles to move a whole matrix. By virtue of the 

SIMD character of the DAP, all PEs update their elements of L simultaneously. 

Since the matrix L is larger than the size of the processor array it is necessary 

to take into account the mapping of the data structure across the physical array 

boundaries when performing shift functions etc. In older implementations of the 

compiler such allowances had to be carried out by the programmer, but in the 

latest version this is handled by system software and is transparent to the user. 

Although this has resulted in a considerable increase in ease of use it is still true 

that the DAP is most efficient when the matrix dimensions are integral multiples 

of the physical array size. 

Despite being a 2-D array of processors, the DAP is nevertheless readily pro- 
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grammed for 1-D, 3-D and indeed models of any dimensionality. The DAP sys-

tem software allows a quantity declared as a matrix to be treated as a 1-D array 

known as a long-vector, with the differences in connectivity handled by the system 

software at a little loss of speed. Problems involving dimensionality greater than 

two are handled by using stacks of matrices. In general, programming is simplest 

if one restricts the parallelism to 2-D with serial looping over higher dimensions. 

However more sophisticated mapping strategies have been developed [113]. 
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