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Abstract

In the past sixty years, X-ray, neutron and electron diffraction have emerged

as the structural techniques of choice in the solid state. However, despite many

advances in theory and instrumentation, these diffraction methods are still reliant

on a number of assumptions. Chief amongst these is that the atoms in the crystal

vibrate in a harmonic fashion.

This thesis is concerned with understanding the effects of anharmonic motion on

crystal structure determination and developing new ways of moving beyond the

harmonic approximation used in crystallography.

A method has been developed, using molecular dynamics simulations, to correct

experimental structures to equilibrium structures. This has been applied to

the crystal structures of phase-I deutero-ammonia, deutero-nitromethane and

benzophenone. Path-integral molecular dynamics simulations have been used

to obtain meaningful comparison with experimental data collected at low

temperatures. The simulations also offer information on the probability density

functions that describe thermal motion in solids. Using data from simulations of

nitromethane and other compounds it has been demonstrated that the molecular

dynamics-derived data can be used to assess and develop new functions for

modelling thermal motion in crystal structure refinements.

Finally, similar molecular dynamics techniques have been applied to determine

the equilibrium structures of some polyhedral oligomeric silsesquioxanes in the

gas phase. Some members of this class of compounds feature such strong

anharmonic motion that refinement of the structures using gas electron diffraction

is impossible without taking into account the effects of the anharmonicity.
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Abbreviations and acronyms

ADP anisotropic displacement parameter

BOMD Born-Oppenheimer molecular dynamics

CI configuration interaction

CNDO complete neglect of differential overlap

CPMD Car-Parrinello molecular dynamics

DFT density functional theory

DMUOX 2:1 adduct of dimethyl-urea and oxalic acid

EHT extended-Hückel theory

EP empirical potential

EPSRC engineering and physical sciences research council

Expt. experimental

FF force field

GC Gram-Charlier

GGA generalised-gradient approximation

GPW Gaussian plane-wave

GTO Gaussian-type orbital

HF Hartree-Fock

HMT hexamethylenetetramine

INDO intermediate neglect of differential overlap

LD lattice dynamics

LDA local-density approximation

MD molecular dynamics

Me methyl

MNDO modified neglect of diatomic overlap
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MP Monkhorst-Pack

NH Nosé-Hoover

OPP one-particle potential

PCA principal component analysis

PDF probability density function

PI(MD) path-integral (molecular dynamics)

PP pseudopotential

PW plane wave

QM quantum mechanical

RDC radial distribution curve

𝑟 interatomic distance

𝑟a average interatomic distance (definition depends on method)

𝑟e equilibrium distance

𝑟p most probable distance

SCF self-consistent field

SE semi-empirical

SN skew-normal

STO Slater-type orbital

TLS translation, libration and screw tensors

UPA 1:1 adduct of urea and phosphoric acid

vdW van der Waals

ZPE zero-point energy
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Chapter 1

Thermal motion in crystalline

solids
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1.1 Diffraction Methods

The fundamental goal of chemistry is to understand and manipulate chemical

systems. Its scope is therefore very broad, encompassing many different areas

and topics, from the behaviour of materials to the targeting of active sites in

proteins. Structural chemistry is a field of study which transcends all of the

applications of chemistry. Techniques such as spectroscopy, elemental analysis,

diffraction and computer simulation yield the critical information that allows us

to understand chemical systems, spurring us on to manipulate them in ever more

innovative and useful ways. Application of chemical knowledge is naturally the

primary focus of chemical research but it will always be important to ensure

that the methods that yield such knowledge are developed, tested and validated

regularly.

The main focus of this thesis is the field of diffraction, in particular, solid-state

diffraction. Diffraction methods can probe matter in the solid, liquid and gaseous

phases to reveal raw structural parameters such as bond lengths, angles and

atomic positions. Depending on the type of diffraction used, information on

bonding, vibrations, phase transitions and even reactions can also be obtained.

Solid-state diffraction, especially using X-rays, is one of the most widely used

structural techniques with currently over 450,000 organic or metallo-organic

structures in the Cambridge structural database (CSD). That the CSD reference

paper by Allen,1 dating from only seven years ago (2002), is entitled “The

Cambridge Structural Database: a quarter of a million crystal structures and

rising” illustrates the phenomenal growth in the application of this versatile

characterisation technique.

The phenomenon of diffraction has a long and venerable history dating back to

Young,2 whose double-slit experiment demonstrated that light can be diffracted

and therefore had wave-like properties. Diffraction of X-rays by a crystal

was first shown by von Laue in 1913,3 while diffraction by a gas (with X-

rays) was first performed by Debye in 1929.4 From then on there have been

many developments of diffraction techniques and theory, extending diffraction to

2



electrons and neutrons and studying ever more complex systems.

Structural chemists do not consider individual systems in isolation. Some of

the most important insights are to be found in comparing different materials,

polymorphs, and even the same molecule at two different temperatures or

pressures. Doing this requires comparing structural information but quantitative

comparison can be hindered by a number of things. Chief amongst these is

the fact that most structural observations are averaged over the thermal motion

that occurs in the system of interest. This is a result of the short time-scale

of vibrations and motions compared to the time an experiment takes. The

nature of thermal motion will, naturally, be different from system to system,

preventing direct comparison. To overcome this problem it is preferable to

correct structural parameters to values that represent the system at rest with

no thermal motion. These equilibrium values can then be directly compared.

Equilibrium values are routinely obtained by computer simulations of chemical

systems. Comparison of computational results with experimental ones is desirable

not just to confirm an experimental result or augment it in some way but also to

validate the computational theory for use in systems on length and time scales

were experimentation is not feasible.

Thermal motion has been a consideration in solid-state diffraction from

practically the beginning.5 The majority of diffraction experiments model thermal

motion in a harmonic fashion (as outlined in Section 1.3.1). Despite the work

of Cruickshank6 and many others in highlighting the deficiencies of this model

and proposing more sophisticated methods of dealing with it, it is still rare to see

structural analysis performed using anything other than a harmonic treatment.

The two main reasons for this were the lack of data of sufficient quality for an

anharmonic model of thermal motion and also a lack of information about the

true nature of the problem specifically because models of anharmonicity involve

so many extra parameters. Technical developments mean that the former is no

longer a serious issue, while addressing (or at least starting to address) the latter is

the focus of the work presented in this thesis. Theoretical simulations of thermal

motion, using the molecular dynamics (MD) technique, will be used to bridge the

3



gap between time-averaged and equilibrium crystal structures. The information

obtained using the MD simulations will be used to understand and hopefully

improve the process of modelling anharmonic thermal motion.

The remainder of this chapter outlines the basic equations and mathematics

of crystallography, showing why thermal motion is important. The various

approaches for modelling anharmonic thermal motion that have been developed

already will also be discussed.

1.2 Diffraction by a lattice

The majority of diffraction experiments in the solid state are carried out on

perfect or near-perfect crystalline solids. In such a solid the atoms are packed

and positioned in a regular order that repeats in all space upon a lattice. The

smallest repeating unit is the unit cell of the crystal, which can be mathematically

represented using three basis vectors, a1, a2 and a3. Positions in the unit cell

may be referenced using these vectors and fractional coordinates, (𝑥, 𝑦, 𝑧):

r = (𝑥a1 + 𝑦a2 + 𝑧a3). (1.1)

In total there are fourteen unique types of lattices, which are referred to as Bravias

lattices.7 The regular positioning of atoms in the lattices results in numerous

planes of atoms being formed. Each plane can be labelled with a Miller Index,

H = (ℎ,𝑘,𝑙), which is the inverse of the fractional coordinate at which the plane

intersects the crystallographic axes. The long-range order that results from these

planes may be succinctly represented using the reciprocal lattice of the Bravias

lattice. This lattice is comprised of all of the wave-vectors that represent the

planes of the Bravais lattice, where each plane can be represented as a plane-

wave. The reciprocal lattice basis vectors can be obtained from the real space

ones:

b1 =
a2 × a3

a1 · (a2 × a3)
;b2 =

a3 × a1

a2 · (a3 × a1)
;b3 =

a1 × a2

a3 · (a1 × a2)
. (1.2)
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A position, r*, in the reciprocal lattice can be represented in a similar fashion to

that in the real lattice. In particular,

r*H = ℎb1 + 𝑘b2 + 𝑙b3 = H b𝑇 . (1.3)

where b𝑇 is the transpose of b.

It is the planes of atoms in the crystal that diffract the incident beam of light

or wave-particles. The necessary condition for constructive interference of the

diffracted beam is given by Bragg’s law,7

𝑛𝜆 = 2𝑑ℎ𝑘𝑙 sin 𝜃, (1.4)

where 𝑑ℎ𝑘𝑙 is the spacing between two ℎ𝑘𝑙 planes and 𝜃 is the scattering angle.

Bragg’s law leads to the relationship between scattering angle and distance in

reciprocal space:

2 sin 𝜃/𝜆 =
1

𝑑ℎ𝑘𝑙
, (1.5)

2 sin 𝜃/𝜆 = |r*H|. (1.6)

For diffraction from a single crystal the result is a pattern of diffraction spots. If

a powder sample is used then the random orientation of the microcrystals leads

to a diffraction pattern comprised of concentric rings. As each spot gives us

information on a plane in the lattice the diffraction pattern is directly related

to the reciprocal lattice of the crystals. The intensity of a given ℎ𝑘𝑙 diffraction

spot can be determined from the structure factor, 𝐹 (ℎ𝑘𝑙) which is the Fourier

transform of the real-space scattering density of the 𝑁 atoms in the unit cell to

reciprocal space:

𝐹 (H) =
𝑁∑︁

𝑛=1

𝑓(H) exp(𝑖2𝜋H · x𝑛), (1.7)

where x is the fractional position of an atom in the unit cell and 𝑓(H) is the form

factor or scattering density for the 𝑛th atom. Equation 1.7 is given in terms of

the dimensionless vector H. Alternatively, the substitution Q = 2𝜋Hb𝑇 is made
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to give:

𝐹 (Q) =
𝑁∑︁

𝑛=1

𝑓(Q) exp(𝑖Q · r𝑛), (1.8)

where the use of Q means that x𝑛 is replaced by the Cartesian position of the

atom, r𝑛. The diffraction experiment determines the intensity of scattering in

reciprocal space, which is the square modulus of the structure factor:

𝐼𝑜𝑏𝑠(Q) = |𝐹 (Q)|2. (1.9)

Each value of 𝐹 has a phase associated with it that relates the positions of the

atoms to each other. This information is lost in the diffraction experiment as

the intensity determines only the square of the amplitude, |𝐹 (H)|. This phase

problem has been a major consideration of crystallography for many years,8

and as a result a number of different methods have been developed to “solve”

crystals structures and determine suitable initial guesses for the phases for use in

refinement.

1.2.1 Form factors

The interaction of the crystal with the diffraction beam is determined by the type

of particles incident on the sample. This is incorporated into Equation 1.7 by the

form factor, 𝑓(H). X-rays interact with the electron density surrounding an atom

and it can be shown that the X-ray form factor is the Fourier transform of the

electron density to reciprocal space. As a first approximation this may be assumed

to be spherically symmetric and many structure refinements use scattering factors

of this type. As the electron density of the atom is of the order of the wavelengths

used in diffraction experiments, the scattering factors vary with the angle of the

incident X-ray beam. A nine parameter analytical expression was developed by

Cromer and Mann9 to represent the scattering factor as a function of sin 𝜃/𝜆,

which is equivalent to |Hb|/2:

𝑓x-ray(sin 𝜃/𝜆) =
4∑︁

𝑖=1

𝑎𝑖 exp(−𝑏𝑖 sin 𝜃/𝜆) + 𝑐, (1.10)
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with the value of 𝑓(0) equal to the number of electrons for that atom. The

exponential form means that this function tails off at higher values of sin 𝜃/𝜆. In

a molecule the valence electron density will be significantly deformed from that

of an isolated atom and may no longer be centred on the position of the nucleus.

Correctly modelling the density requires specific fitting for each system of interest

and is not routinely performed due to the large number of parameters required.

As a result the majority of X-ray diffraction structures determine the centre of

the electron density and not the true atomic position.

In neutron diffraction scattering occurs directly from the nucleus. As the

nucleus is much smaller than the wavelength of the neutrons the scattering is

effectively from a single point and displays no angular dependence. Thus 𝑓(H)

in Equation 1.7 is a constant for a given atom and is usually referred to as

the coherent scattering length, 𝑏, which is measured in fm (10−15 m). The

total scattering in neutron diffraction is typically much smaller than from X-

ray diffraction, due to the small size of the nucleus, but the scattering lengths

are not directly proportional to atomic number as 𝑓(0) is in X-ray diffraction.10

The result is that lighter atoms can be much easier to distinguish in neutron

diffraction. In particular, deuterium is used often in neutron diffraction as its

scattering length is very similar to that of the carbon atom (approximately 6.6

fm). Some nuclei, including H with 𝑏H = −3.7 fm, have a negative scattering

length, indicating that neutrons scattered by these nuclei have a phase of 180∘

relative to neutrons scattered by other nuclei.

The form factor for electrons is dependent both on the nuclear charge, 𝑍, and

the electron density and thus is dependent on the X-ray form factor:8,11

𝑓elec(sin 𝜃/𝜆) =
𝑍 − 𝑓x-ray(sin 𝜃/𝜆)

2𝜋 sin2 𝜃/𝜆2
. (1.11)

Typically electron diffraction intensities are higher than those for X-ray or neutron

diffraction. As a result electron diffraction may be performed for very small

sample sizes, making it a very useful characterisation technique in the solid state.

Electrons are also used for diffraction in the gas phase.
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1.3 Thermal motion in the solid state

The crystal described by Equation 1.7 is at rest, with no movement of the

atoms. In a real system there will be a significant amount of thermal motion. In

molecular crystals this motion may range from intramolecular vibrations (bond

stretches, angle bends 𝑒𝑡𝑐.) to intermolecular lattice vibrations. Some of these

intermolecular vibrations may involve translational motion, where atoms move

along straight lines, or librational motion along curved trajectories.

This thermal motion can be incorporated into the structure factor by considering

the structure factor of a system where the 𝑛th atom has a Cartesian displacement,

u𝑛, from its mean position, x𝑛0:
12

𝐹 (H) =
𝑁∑︁

𝑛=1

𝑓(H) exp(𝑖2𝜋H · (x𝑛0 + r*H · u𝑛)) (1.12)

𝐹 (Q) =
𝑁∑︁

𝑛=1

𝑓(Q) exp(𝑖Q · r𝑛0) × exp(𝑖Q · u𝑛). (1.13)

The experimentally measured intensity is the square modulus of the time and

space average over all of the possible displacements of the atoms:

𝐼𝑜𝑏𝑠(Q) = |⟨𝐹 (Q)⟩|2

⟨𝐹 (Q)⟩ =
𝑁∑︁

𝑛=1

𝑓(Q) exp(𝑖Q · r𝑛0) × ⟨exp(𝑖Q · u𝑛)⟩. (1.14)

The mean or average value of a function, 𝑓(𝑥), is given by

⟨𝑓(𝑥)⟩ =

∫︁ ∞

−∞
𝑓(𝑥)𝑃 (𝑥) d𝑥, (1.15)

where 𝑃 (𝑥) is the probability density function (PDF) for the variable 𝑥.

Combining Equation 1.15 with the term in angle brackets from Equation 1.14

yields:

⟨exp(𝑖Q · u𝑛)⟩ =

∫︁ ∞

−∞
exp(𝑖Q · u𝑛)𝑃 (u) du. (1.16)
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This equation represents the characteristic function of the probability distribu-

tion. The characteristic function, 𝑃 (Q), is closely related to the Fourier transform

of 𝑃 (u) and the two terms are often used interchangeably in crystallographic

literature. The structure factor then takes the form

⟨𝐹 (Q)⟩ =
𝑁∑︁

𝑛=1

𝑓(Q)𝑃 (Q) exp(𝑖Q · r𝑛0). (1.17)

𝑃 (Q) is known as the Debye-Waller factor after Debye and Waller, who first

identified its role in the structure factor.5 It is also known as the atomic

temperature factor or the atomic displacement factor.13 𝑃 (Q) reduces the

scattering intensity, accounting for the fact that the atom will not spend all of

its time on the lattice site that fulfils the condition for Bragg scattering. At large

values of Q the scattering should be completely damped out. In the classical

limit of Boltzmann statistics the PDF can be related to the underlying effective

free-energy surface, 𝑉eff(u), by the Boltzmann equation:12,14

𝑃 (u) ∝ exp(−𝑉eff(u)/𝑘b𝑇 ). (1.18)

𝑉eff(u) represents the motion of an atom in the mean field of the other atoms

present in the system.

The functional form of 𝑃 (u) can have a significant effect on the structure

parameters that crystallography determines and a number of different types of

PDF have been used previously to approximate the true probability function.

There is generally a trade off between the sophistication of the model and the

number of parameters that are required to fit it.

1.3.1 Gaussian approximation

A useful starting approximation for thermal motion is to assume that the atoms

behave like harmonic oscillators. If the atoms move independently of each other

then the oscillations will be identical in all directions and we may consider them as

one-dimensional oscillators. The potential energy, 𝑉 (𝑢), for a harmonic oscillator

9



is given by 𝑘𝑢2 and it can be shown using Equation 1.18 that this leads to a

Gaussian distribution in 𝑢:12

𝑃 (𝑢) =
1

2𝜋
√︀
𝑈eq

exp

(︂
− 𝑢2

2𝑈eq

)︂
, (1.19)

where 𝑈eq is the variance, ⟨𝑢2⟩, of the distribution. The Fourier transform of this

is given by:

𝑃 (|r*H|) = exp(−2𝜋2𝑈eq|r*H|2) = exp(−8𝜋2𝑈eq sin2 𝜃/𝜆2). (1.20)

The isotropic model is very useful for systems with poor or incomplete data as it

only requires a single parameter per atom and is often used in powder diffraction

studies and protein crystallography. The effect of isotropic motion on a neutron

scattering length is shown in Figure 1.1.

Figure 1.1: Neutron scattering factor with a isotropic Debye-Waller factor
(dashed line) and without (solid line).

����������������

Sin Θ

Λ

fi kj j j j j
���
���
���
���
���
�

Si
n
Θ

Λ

y {z z z z z

Another common approximation is to take 𝑃 (u) as being a trivariate Gaussian

PDF. This allows for harmonic motion along three separate axes. A trivariate

Guassian PDF is given by:15,16

𝑃 (u) =
𝑑𝑒𝑡(U−1/2)

8𝜋3
exp(−1

2
u𝑇U−1u), (1.21)
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where U is the symmetric, 3×3 variance-covariance matrix of the distribution,

whose elements 𝑈𝑖𝑗 equal ⟨𝑢𝑖𝑢𝑗⟩. Taking the Fourier transform leads to

𝑃 (Q) = exp(−1

2
Q𝑇UQ). (1.22)

The six unique elements of U usually have units of Å2 and are referred to as

the anisotropic displacement parameters13(ADPs), although other names and

forms for them are given in some older papers. The trivariate or anisotropic

approximation can lead to significantly better 𝑅 factors and is widely used in

small-molecule X-ray and neutron diffraction.

The Gaussian probability distributions are easily visualised using surfaces of

constant probability. The size of the surface is scaled so that the atoms have a

certain percentage chance of being within them. For a monovariate Gaussian the

probability surface is spherical in shape, while in the trivariate case probability

ellipsoids are depicted.17 Figure 1.2 shows a typical probability ellipsoid plot for

nitromethane.

Figure 1.2: Theoretical thermal ellipsoids of deuterated nitromethane at 228 K,
plotted at the 50% probability level. See Chapter 4 for more information.
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1.3.2 Equilibrium and time-averaged positions

Central to structural studies of crystals is the determination of the atomic

positions in the lattice. It is important to note though that a number of

different types of position may be defined and determined. The formulation of the

structure factor leads to a 3-dimensional (3-D) PDF being determined for each

atom. The 3-D PDF represents the motions of the atom in the mean field of all of

the other atoms in the system. It is the full (3𝑁−3)-dimensional crystallographic

PDF integrated over the other atoms in the unit cell. By definition the position,

r𝑛0 or x𝑛0, appearing in the structure factor (Equation 1.17) is the mean or time-

averaged atomic position given by the 3-D PDF, which will be denoted ra. For

a 1-dimensional (1-D) object the mean is the position about which the object

would balance. From the Boltzmann relationship (Equation 1.18) the atomic

PDF corresponds to an effective free-energy surface. The minimum of this surface

corresponds to the maximum or mode of the PDF. This position is referred to

as the mode position by Johnson.16 To avoid confusion with a mean position, in

this work it will be referred to as the probable position, rp.

In a harmonic system the probable and time-average positions will coincide as the

distribution is symmetric about the mean/probable position. If the free-energy

surface is anharmonic then they will differ. In integrating the full 3-D PDF we

lose information about the correlated motions of atoms. As such the geometry

obtained from the combination of probable positions may not coincide with the

minimum of the (3𝑁 −3)-D potential-energy surface the equilibrium position, re.

Only in the harmonic case will all three positions be guaranteed to be the same.

For an anharmonic system the equilibrium position can only be obtained from

experiment with an assumption on the relationship between the full (3𝑁 − 3)-D

potential-energy surface and the 3-D effective free-energy surface.

The equilibrium and time-averaged geometries can differ significantly and

determining the time-average geometry can result in physically meaningless

structural parameters. The problem was highlighted by Cruickshank,6 who

considered the librational motion of an atom relative to another where the time

12



-averaged position differed substantially from the equilibrium or most probable

position. As Figure 1.3 illustrates the harmonic ellipsoid is placed at the time-

averaged position leading to poor agreement with the anharmonic PDF and thus

a poor agreement factor. In general librational motion between atoms leads to

shortening of bonded distances. Asymmetric free-energy surfaces will also lead to

apparent lengthening or shortening of bonds. Comparison of bond lengths and

other parameters from different structures is fraught with difficulties unless the

effects of thermal motion are taken into account.

Figure 1.3: Representation of the curved PDF of an atom (grey) showing the
equilibrium position and the averaged position (with the corresponding harmonic
ellipsoid).

1.3.3 Beyond the Gaussian Approximation

A considerable amount of research has been performed with the aim of improving

the description of thermal motion in crystallography. Some of these methods aim

to analyse the harmonic model and correct for librational motion, while other

utilise more complex expressions for the PDF. In general these approaches are

based on physical, statistical or kinematic interpretations of the anharmonicity.

The full mathematical treatment of these methods is detailed and only a brief

overview is provided here. A more comprehensive overview is available within

the International Tables for Crystallography.15 Expressions using tensors are

shortened using Einstein sum notation (where all indices repeated twice are

implicitly summed over) with the indices running from 1 to 3 unless otherwise

stated.18

13



Kinematic models

The kinematic methods model the thermal motion as having a specific physical

form. The curvilinear or librational motion of Figure 1.3 has been of considerable

interest to many authors. If the motion of the atoms in a molecule are correlated,

i.e. the molecule behaves as a rigid body, then differences between the ADPs

of atoms in different parts of the molecule can be interpreted as being the

result of the librational motion of the molecule. The TLS method refines 20

parameters that describe the librational (L), translational (T) and screw (S)

motions of the molecule from the ADPs.19 Screw motions are a correlation of

translational and librational motion. Only the librational motion leads to thermal

shortening effects (in the “harmonic” limit) and the L tensor can be used to

correct the interatomic distances. In systems that deviate from the rigid-body

approximation such models can lead to spurious results. A similar method, TLX,

was developed by Cruickshank and Pawley.20 These a posteriori methods provide

only intramolecular distance corrections. Corrections for intermolecular distances

cannot be obtained from a single-temperature measurement as the correlations

between the motions of different molecules are unknown. Some of this information

can be recovered using multi-temperature datasets.21 A stand-alone program

THMA22 is available for performing TLS analysis and it is also incorporated

in the CRYSTALS program.23

An alternative to a posteriori corrections is to include the librational effects in

the structure-factor equation. Willis and Pawley developed such an approach

by modelling the librational motion as occurring around a fixed axis of libration

with structure factors expressed for isotropic24 and anisotropic25 motion of rigid

bodies. Incorporating the curvilinear motion into the structure factor has the

advantage of leading to better agreement factors, the 𝑅 factor, weighted 𝑅 factor

etc.

14



Physical models

The physical models aim to fit the potential, 𝑉 (u), that describes the thermal

motion of the atom as given in Equation 1.18. The true form of the

potential should reflect the correlation between atomic motions. However, most

formulations treat the potential as being for a single particle and so these methods

are often referred to as the one-particle potential (OPP) or isolated-atom potential

(IAP) approach. The original formalisation for the OPP method was given by

Willis26 for cubic space groups and extended to generic symmetry by Tanaka

and Marumo.27 Combining Equation 1.18 with Equations 1.14 and 1.15 in an

orthogonal coordinate system leads to the OPP expression for 𝑃 (Q):

𝑃 (Q) =

[︂∫︁ ∞

−∞
exp(𝑖Qu) exp(−𝑉eff(u)/𝑘b𝑇 ) du

]︂
/𝑍OPP, (1.23)

where 𝑍OPP is the partition function

𝑍OPP =

∫︁ ∞

−∞
exp(−𝑉eff(u)/𝑘b𝑇 ) du. (1.24)

The anharmonic effects are incorporated using a power series expansion about

the harmonic potential with higher order force constants, 𝛾 and 𝛿:

𝑉OPP(u) = 𝑉harm(u) + 𝛾𝑖𝑗𝑘𝑢
𝑖𝑢𝑗𝑢𝑘 + 𝛿𝑖𝑗𝑘𝑙𝑢

𝑖𝑢𝑗𝑢𝑘𝑢𝑙

= 𝑉harm(u) + Δ𝑉.
(1.25)

Equation 1.23 cannot be analytically determined with the anharmonic potential

given by Equation 1.25, so an approximation is required for practical use of the

OPP method:

exp (−Δ𝑉 (u)/𝑘b𝑇 ) ≃ 1 − Δ𝑉 (u)/𝑘b𝑇. (1.26)

This approximation holds only while the anharmonic contribution is small,

limiting the application of the OPP method.14 The resulting anharmonic

structure factor is a power series expansion of the harmonic part.27 In addition,

while the fitted potential may reflect the experimental behaviour, the force

constants may not have any real physical significance. The effective potential
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can also be obtained using other methods using Equation 1.18 and numerical

evaluation if required. Fourier-invariant expressions for the OPP method are

also available15 but direct, analytical refinement of the potential will always be

hindered by the approximation of Equation 1.26.

Statistical models

The final group of methods focus on improving the functional form of 𝑃 (u). Some

of these methods parametrise the probability density function for motion on the

surface of sphere or circle and expanding 𝑃 (u) in terms of spherical harmonics

has also been used.15 The most widely used statistical methods are the Gram-

Charlier (GC) and Edgeworth series.14,16 Both of these methods expand the

anharmonic PDF in terms of the harmonic one multiplied by various different

orders of Hermite polynomials. For crystallographic use these are defined as:15,28

𝐻(u)𝛼𝛽𝛾... = (−1)𝑝 exp

(︂
1

2
𝑈−1
𝑗𝑘 𝑢

𝑗𝑢𝑘
)︂[︂

𝜕𝑝

𝜕𝑢𝛼𝜕𝑢𝛽𝜕𝑢𝛾...
exp

(︂
−1

2
𝑈−1
𝑗𝑘 𝑢

𝑗𝑢𝑘
)︂]︂

.

(1.27)

The super- and subscript indexes refer to the contra and co-variance of the

polynomials and coefficients.8,14 For the one-dimensional standardised normal

distribution the first five Hermite polynomials are:

𝐻0(𝑥) = 1

𝐻1(𝑥) = 𝑥

𝐻2(𝑥) = 𝑥2 − 1

𝐻3(𝑥) = 𝑥3 − 3𝑥

𝐻4(𝑥) = 𝑥4 − 6𝑥2 + 3,

which are plotted in Figure 1.4. The odd polynomials are odd functions and

will skew the anharmonic distribution while even order terms will change its

“peakedness”. In 2 dimensions the odd-order functions can bend the probability

16



Figure 1.4: The first five 1-dimensional Hermite polynomials of the standardised
normal distribution. (𝐻0(𝑥) is along the 𝑥-axis.)

distribution to give an approximation of curvilinear motion. The Gram-Charlier

series PDF is given by:15,29

𝑃GC(u) = 𝑃 (u)harm

[︂
1 +

1

3!
𝑐𝑗𝑘𝑙𝐻𝑗𝑘𝑙(u) +

1

4!
𝑐𝑗𝑘𝑙𝑚𝐻𝑗𝑘𝑙𝑚(u) + ...

]︂
. (1.28)

where 𝑃 (u)harm is the normal trivariate Gaussian distribution and the expansion

coefficients, 𝑐𝑗𝑘..., are the quasi moments of the PDF given by the appropriate

generating function:30

𝑀(Q) = exp

(︂
1

2
⟨(Q · u)2⟩

)︂[︃ ∞∑︁
𝑁=0

𝑐𝑗𝑘𝑙...
𝑖𝑁

𝑁 !
𝑄𝑗𝑄𝑘𝑄𝑙...

]︃
; (1.29)

𝑐𝑗𝑘𝑙... =
𝑑𝑁𝑀(0)

𝑑Q
. (1.30)

The Fourier transform of Equation 1.28 is the quantity directly determined by

the refinement:

𝑃GC(Q) = 𝑃harm(Q)
[︀
1 − 𝑖𝑐𝑗𝑘𝑙𝑄𝑗𝑄𝑘𝑄𝑙 + 𝑐𝑗𝑘𝑙𝑚𝑄𝑗𝑄𝑘𝑄𝑙𝑄𝑚 + ...

]︀
. (1.31)
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The first- and second-order Hermite polynomials are not included in Equa-

tion 1.28 as the first- and second-order quasi-moments can become correlated with

the harmonic mean and variances.14,16,31 The method has been used a number of

times and is incorporated in the PROMETHEUS refinement program32 and the

more recent XD2006 code.33 The functional form of the GC series is very flexible

but at a cost of a substantial number of parameters, with up 60 parameters

required per atom to perform a sixth-order refinement. The flexibility of the GC

series has seen it used to model disorder and split-atom systems.34

In the Edgeworth series, different expansion coefficients are used. Instead of

quasi-moments the cumulants, 𝜅, of the PDF are used:

𝐾(Q) = exp

(︃
∞∑︁

𝑁=0

𝜅𝑗𝑘𝑙...
𝑖𝑁

𝑁 !
𝑄𝑗𝑄𝑘𝑄𝑙...

)︃
. (1.32)

A given order cumulant is determined by lower order cumulants and moments

and vice versa. As a result truncation of the Edgeworth series to a given order

leaves the highest order cumulants poorly defined. The Fourier transform of 𝑃 (u)

between real and reciprocal space is not analytically possible. For crystallographic

use, the Edgeworth series is defined in reciprocal space:

𝑃EW(Q) = 𝑃harm(Q) exp
(︀
−𝑖𝜅𝑗𝑘𝑙𝑄𝑗𝑄𝑘𝑄𝑙 + 𝜅𝑗𝑘𝑙𝑚𝑄𝑗𝑄𝑘𝑄𝑙𝑄𝑚

)︀
. (1.33)

The suggested form for the real space PDF is given by:14,16,35

𝑃EW(u) = 𝑃 (u)harm

[︂
1 +

1

3!
𝜅𝑗𝑘𝑙𝐻𝑗𝑘𝑙(u) +

1

4!
𝜅𝑗𝑘𝑙𝑚𝐻𝑗𝑘𝑙𝑚(u) + 𝜅𝑗𝑘𝑙𝜅𝑚𝑛𝑜𝐻𝑗𝑘𝑙𝑚𝑛𝑜(u)

]︂
.

(1.34)

The exponential form of 𝑃EW(Q) in Equation 1.33 makes it possible for the

Edgeworth series to diverge, as in the case of the OPP method. The Gram-

Charlier and Edgeworth expansions are identical in the limit of an infinite

expansion.
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1.3.4 Modern usage of anharmonic Debye-Waller factors

The use of anharmonic refinements has been restricted. In the 1970’s and 80’s a

number of groups and researchers both developed and applied the methodologies

outlined in the preceding section. However, application of the method has been

held back for a number of reasons. First, many of the methods can require a large

number of extra parameters and thus a substantial number of reflections, as a

10:1 reflection to parameter ratio is preferred in crystallographic studies.36 While

sufficient quality data can be collected with X-rays, refinement of the aspherical

form factors is necessary to model thermal motion correctly. This introduces yet

more parameters and there is potential for correlation of the results. This will

still yield the correct atomic positions but the charge density and vibrational

PDF may not be physically meaningful. The TLS method does not require more

reflections but it is limited to correcting distances for a specific type of curvilinear

motion and relies on accurate ADPs.

Each of the methods is also held back by mathematical considerations. The

OPP method relies on a significant approximation that limits is use, while the

Edgeworth series may diverge in reciprocal space (due to its exponential form)

and has no closed form in real space. Some of these deficiencies could be overcome

using numerical methods, which were not considered feasible when these methods

were first developed. Any statistical method that involves polynomials with

odd powers, including the GC series, may also lead to a PDF with negative

regions. Kuhs argued that such regions are acceptable if they are far from the

nucleus and within experimental error.14 The most flexible method is the Gram-

Charlier series being preferred by a number of authors,14,29,37 and it is the method

recommended by the IUCr’s ADP nomenclature committee.13 The Edgeworth

and Gram-Charlier series are available in the XD2006,33 PROMETHEUS32 and

Jana200638 codes but not in the two most widely used codes, SHELX39 and

CRYSTALS.23

Visualisation of the PDF resulting from anharmonic refinements can also be

an issue. The definition of constant probability surfaces is more cumbersome
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in the anharmonic case and visualising the analytical surface is not readily

possible. The surfaces could be visualised using numerically calculated surfaces

and interpolation. The differences between an anharmonic and harmonic PDF

may not be discernible visually despite a dramatic effect on the positional

parameters.

Interpreting the refined parameters also poses difficulties. In a normal refinement

the mean and variance of the distribution are the fitting parameters of the

trivariate Gaussian, and their uncertainties are determined directly by the least-

squares method. In an anharmonic refinement the true mean and variance are

given by the moments of the anharmonic PDF or Debye-Waller factor, and

may not be directly refined, complicating the analysis or derivation of their

uncertainty.

1.4 Moving forward – a molecular dynamics

approach

Improving the crystallographic description of thermal motion faces a number of

challenges. Determining equilibrium structures requires more information than

experimental methods alone can give. Developing and benchmarking current and

new forms for 𝑃 (u) or 𝑃 (H) requires detailed studies of very accurate neutron

diffraction data. While experiment may yield enough data to refine a fourth-

order Gram-Charlier series, to understand fully what parameters and forms are

required, refinement of much higher order series may be necessary.

The natural step forward is to use theoretical means to further our understanding

of the experimental process. The focus of this present work is to provide such an

understanding using molecular dynamics (MD) simulations. The theoretical basis

of MD will be provided in the following chapter but the method in essence allows

one to simulation the dynamics of a system at the unit or supercell scale, providing

trajectories of atomic motions that can be used to determine diffraction patterns

and the atomic PDF’s numerically, free of any approximations concerning thermal
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motion. The results of such simulations can be used to assess and develop

anharmonic Debye-Waller factors. Such assessments benefit from the fact that

we know the numerical forms for the analytical functions we seek. Also the MD

simulations will yield time-averaged coordinates of the atoms. The differences

between the theoretical time-averaged and equilibrium structures are corrections

that can be applied to the experimental structure to determine experimental

equilibrium structures for the first time.

MD simulations have been applied to study crystallographic systems previously

mostly for the prediction of ADPs,40 but also for probing the effects on

anharmonic motion.41,42 No concerted, detailed study has been carried out using

MD simulations and with recent developments in experimental and theoretical

methods such a study is timely.
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Chapter 2

Computational techniques for the

study of solids
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2.1 Introduction

There is a plethora of computational methods that can be applied to study

chemical systems. The following section outlines a number of these methods

with a particular focus on performing solid-state simulations that make up the

bulk of the work presented in later chapters. Section 2.3 details the molecular

dynamics technique that can apply these various computational methods to probe

the dynamic behaviour of chemical systems.

2.2 Introduction to computational chemistry

The principal aim of most computational chemical theories is to calculate the

total energy, 𝐸, of a molecule, lattice or other form of chemical system. From

the energy the atomic forces can be determined:

𝑓𝑛 = − 𝜕𝐸

𝜕𝑥𝑛
. (2.1)

The sophistication with which the energy is evaluated ranges from full quantum

mechanical treatments to simple pair-potential models. The more sophisticated

methods yield molecular orbitals and the electron density. Knowledge of the

forces, energies and electronic properties of a system can be used to determine a

wealth of information including equilibrium geometries, vibrational and electronic

spectra and the energetics and dynamics of reactions.

2.2.1 Ab initio methods

Ab initio methods aim to determine 𝐸 from first principles through the solution

of the time-independent Schrödinger equation:1

ℋ̂Φ = 𝐸Φ (2.2)
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where ℋ̂ is the Hamiltonian operator and Φ is the wavefunction that describes

the system of interest. This is an eigenvalue equation. The Hamiltonian operator

is the sum of the potential and kinetic energy operators, 𝑈̂ and 𝐾̂. The full

form of the Schrödinger equation includes the full dynamic interactions between

the nuclei and electrons. The majority of static quantum chemical calculations,

and all those presented in this thesis, use the Born-Oppenheimer approximation2

whereby the nuclear and electron degrees of freedom are separated and we deal

with the electrons in a field of fixed nuclei. The approximation is valid because

the differences in the masses of the nuclei and electrons mean that the electron

dynamics occur on a much faster time-scale. The electronic Schrödinger equation,

for a 𝑛-electron system, in atomic units,2,3 is given by

[︃
−

𝑛∑︁
𝑖=1

1
2
∇2

𝑖 −
𝑛∑︁

𝑖=1

𝑀∑︁
𝐴=1

𝑍𝐴

𝑟𝑖𝐴
+

𝑛∑︁
𝑖=1

𝑛∑︁
𝑖>𝑗

1

𝑟𝑖𝑗

]︃
Φelec = 𝐸elecΦelec (2.3)

where the subscripts 𝑖 and 𝐴 refer to electrons and nuclei respectively, 𝑍𝐴 is the

nuclear charge and 𝑟𝑖𝑗 is the separation of the 𝑖th and 𝑗th particle in the system.

The first term in Equation 2.3 is the kinetic energy operator, the second details

the electrostatic interaction between the nuclei and the electrons, while the third

is the electrostatic interaction between electrons. The Schrödinger equation can

only be solved analytically for one electron systems due to the form of the electron-

electron electrostatic interaction. It may be solved numerically for many electron

systems using a variety of theories that approximate the Columbic interaction. It

is also impossible to determine a closed form for the electronic wavefunction Φelec

so an approximate form must therefore be used, usually based on a product of

molecular orbitals (MOs). In general, any MO, 𝜑𝑖, may be approximated using a

linear combination of simple or basis functions:

𝜑𝑖 =
∞∑︁
𝑗=1

𝑐𝑗𝜒𝑗 (2.4)

where 𝑐𝑖 is the expansion coefficient for the 𝑗th basis function. In general the

expansion in Equation 2.4 is limited to a few well-chosen functions. Various

types of basis functions, referred to as basis sets, have been proposed. An
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important requirement for the total wavefunction is that it obeys the Pauli

Exclusion principle, which requires that Φ is antisymmetric to the exchange of

two electrons. This can be achieved by using a Slater determinate comprised

of the MOs.2 A manifestation of this principle is the requirement that only two

electrons of opposite spin occupy an orbital. Some common basis sets will be

detailed in Section 2.2.3.

Hartree-Fock (HF) theory approximates the Columbic interaction using mean-

field theory. The electrostatic interaction between two electrons, 𝑉ee, is described

as the interaction of an electron with the continuous charge distribution, 𝜌, of the

other electrons in the system:

𝑉ee, HF =
𝑛∑︁

𝑖=2

∫︁
𝜌(r𝑖)

𝑟1𝑖
𝑑r𝑖. (2.5)

Equation 2.5 treats each atom independently and ignores the potential for

correlation between electrons. Using a basis set that enforces the antisymmetry

principle results in a term for electron “exchange” appearing in the HF

Hamiltonian. The Hamiltonian arising from the HF approximation is best derived

using an example such as the He atom, as detailed in full by Levine3 or Szabo

and Otslund.2 The resulting Hamiltonian is formulated as a summation of one-

electron Hamiltonians (called the Fock operator, 𝐹 in HF theory):

𝐻̂HF =
𝑛∑︁

𝑖=1

𝐹 (1) =
𝑛∑︁

𝑖=1

⎡⎣ℎ̂core +

𝑛/2∑︁
𝑖=1

(2𝐽𝑖(1) − 𝐾̂𝑖(1))

⎤⎦ , (2.6)

where the numbers in brackets [e.g. (1)] indicates the electron of the MO, the

summations run to 𝑛/2 to account for the fact that two electrons occupy each

orbital and ℎ̂core is the sum of the kinetic and electron-nuclear operators given

by:

ℎ̂core = 1
2
∇2

𝑖 −
𝑀∑︁

𝐴=1

𝑍𝐴

𝑟𝑖𝐴
. (2.7)

This one-electron Hamiltonian operates on an orbital to yield its energy:

𝐹 (1)𝜑𝑖(1) = 𝜀𝑖𝜑𝑖(1). (2.8)

28



𝐽 in Equation 2.6 is the Columb operator, which stems from the approximation

of Equation 2.5. It is defined as

𝐽𝑗(1)𝑓(1) = 𝑓(1)

∫︁
|𝜑𝑖(2)|2 1

𝑟12
𝑑𝑣2 (2.9)

with 𝑓(1) being an arbitrary function and the integral being taken over all space

of electron 2, 𝑣2. 𝐾̂ is the exchange operator that arises from the antisymmetry

principle:

𝐾̂𝑗(1)𝑓(1) = 𝜑𝑗(1)

∫︁
𝜑*
𝑖 (2)𝑓(2)

𝑟12
𝑑𝑣2. (2.10)

Inserting Equation 2.4 with 𝑏 basis functions into Equation 2.8 we obtain

𝐹 (1)
𝑏∑︁

𝑠=1

𝑐𝑠𝑖𝜒𝑠 = 𝜀𝑖

𝑏∑︁
𝑠=1

𝑐𝑠𝑖𝜒𝑠. (2.11)

If we multiply by 𝜒*
𝑟 and integrate over all space we obtain the Roothaan

equations:
𝑏∑︁

𝑠=1

(𝑐𝑠𝑖𝐹𝑟𝑠 − 𝜀𝑖𝑆𝑟𝑠) = 0, 𝑟 = 1, 2, 3, ..., 𝑏 (2.12)

where

𝐹𝑟𝑠 ≡
∫︁
𝜒*
𝑟𝐹𝜒𝑠 𝑑𝑣, 𝑆𝑟𝑠 ≡

∫︁
𝜒*
𝑟𝜒𝑠 𝑑𝑣. (2.13)

𝑆𝑟𝑠 indicates the overlap between the 𝑟th and 𝑠th basis functions. Equation 2.12

gives a set of 𝑏 simultaneous equations with 𝑏 unknowns (the MO coefficients

𝑐𝑖) which is best solved using matrix methods.3 The Fock matrix elements

can be computationally intensive to determine as inserting Equation 2.4 into

the equations for 𝐾̂ and 𝐽 leads to integrals, centred on one to four different

basis functions, that are time-consuming to evaluate. The result of solving the

Roothaan equations is 𝑏 MO’s with energies 𝜀𝑖. If more than one basis function is

used to represented each AO then many of these orbitals will be unoccupied. The

total HF energy of the system, 𝐸HF, is evaluated by summation of the occupied

orbital energies taking into account double summations of the repulsion integrals.

As the 𝐹 operator is dependent on the orbitals, the Hartree-Fock formulation

of the Schrödinger equation cannot be solved directly. Instead it is solved in
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an iterative fashion, refining an initial guess wavefunction in a self-consistent

manner, which is often referred to as the self-consistent field (SCF) method.

The neglect of full electron correlation is the main deficiency of HF theory and

there are numerous methods for incorporating electron correlation into the SCF

process. Those that use the HF solution as an initial solution are referred to as

the post Hartree-Fock methods. One example is configuration interaction (CI),

which expands the true wavefunction as being a summation of HF solutions of

the system in the ground state (Ψ0) and various excited electronic configurations

(Ψ𝑛 ; 𝑛 ≥ 1)

ΦCI = 𝑐0Ψ0 + 𝑐1Ψ1 + 𝑐2Ψ2 + · · · . (2.14)

The summation may be truncated at various levels of excited configuration to lead

to various forms of CI. Full CI, taken over all possible configurations is an exact

method within the limitations of the basis set used to represent each configuration.

As such it is an important benchmarking tool. However, its practical use is limited

to only very small systems. Truncated CI calculations suffered from a number of

problems, most notably that some of them are not size consistent. This property

means that the total energy is proportional to the size of the molecule and is

important for comparing the energies of different molecules.3 Other methods for

including correlation include perturbation theory, usually in the form of Møller-

Plesset Theory4 (MP2 and higher) and coupled-cluster methods.2,3

2.2.2 The Hellmann-Feynman theorem

Quantum chemistry methods give the total energy of the system directly.

However, it is also important to know how the energy changes with respect to

specific parameters. For a parameter, 𝜆, in a Hamiltonian, ℋ̂, that operates on

a system described by the wavefunction Φ, the generalised Hellmann-Feynman

theorem3 states that
𝜕𝐸

𝜕𝜆
=

∫︁
Φ*𝜕ℋ̂

𝜕𝜆
Φ d𝜏. (2.15)

This theorem can then be applied to molecular systems to give the Hellmann-

Feynman electrostatic theorem, that shows the force acting upon a nucleus
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to be the sum of the Coulombic forces exerted by the other nuclei and the

electron cloud determined by solving the time-independent Schrödinger equation

(Equation 2.2). This important theorem permits the direct calculation of forces

in QM calculations, which is essential for the molecular-dynamics method. Forces

may also be evaluated using finite displacements but this is unsuitable for

molecular-dynamics simulations (Section 2.3), which can be computationally

intensive without the need for multiple evaluations of the energy at each step.

2.2.3 Basis sets

The choice of basis set is very important for a calculation and has as much bearing

on the accuracy of the result as the level of theory chosen. As stated above in

Section 2.2.1, the wavefunction of the system is expanded as the summation of a

finite number of appropriate functions. For molecular systems this often takes the

form of a linear combination of atomic-like orbitals (LCAO). Slater-type orbitals

(STO’s) are a simple and intuitive basis set based on the analytical wavefunctions

for the one-electron system:5

𝜑STO = 𝑁𝑟𝑛−1 exp(−𝜁𝑟)𝑌 𝑚
𝑙 (𝜃, 𝜓), (2.16)

where 𝑌 𝑚
𝑙 is a spherical harmonic of degree 𝑙 and order 𝑚. While the STO basis

set is intuitive, the integrals that result from its use can be time-consuming to

evaluate numerically due to the large number of multi-site integrals that result.

The most commonly used type of basis set in isolated-molecule calculations are

comprised of Gaussian-type orbitals (GTOs).3,6 An orbital centred on nucleus

𝑏, with coordinates 𝑥𝑏, 𝑦𝑏 and 𝑧𝑏, can be represented by a series of Cartesian

Gaussians of the form:

𝑔𝑖𝑗𝑘 = 𝑁𝑥𝑖𝑏𝑦
𝑗
𝑏𝑧

𝑘
𝑏 exp(−𝛼𝑟2𝑏 ), (2.17)

where 𝑁 is normalisation constant, 𝛼 is the positive orbital exponent, and the

positive integers, 𝑖, 𝑗 and 𝑘, denote the type of orbital. The sum 𝑖 + 𝑗 + 𝑘 = 0
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gives an 𝑠 orbital, 𝑖 + 𝑗 + 𝑘 = 1 yields a 𝑝 orbital and so on. A single Gaussian

function does not approximate the form of an atomic orbital (AO) very well

so more that one Gaussian is required to model orbitals. However, it can be

shown that all multi-centre integrals involving Gaussians reduce to two-centre

integrals, which are far less computationally demanding; multiple Gaussians can

be used to model an AO accurately with a significant speed-up compared to STO

calculations. Much of the work on GTOs was done by Pople and co-workers,

who introduced many of the standard basis sets, e.g. 6–31G*,7 used in quantum

chemistry. Extra functions are typically added to the GTOs to account for the

polarisable and diffuse nature of valence orbitals in larger atoms. Optimised basis

sets are available for most potential applications in quantum chemistry. For post-

HF methods the correlation-consistent basis sets of Dunning and co-workers are

quite popular.8

For calculations on periodic systems, such as crystals, a periodic basis is often

preferable. Instead of using atom-centred orbitals a plane-wave basis can also be

used:

𝜑PW = 𝑐× exp(−𝑖G · r), (2.18)

with G being the plane-wave vector. The quality of a plane-wave basis set is

determined by the cut-off energy, 𝐸cut, which describes the highest energy wave-

vector that is included in the basis-set summation in Equation 2.4. A higher

energy means a shorter wavelength allowing the plane-wave basis set to model

the more detailed features of the wavefunction.

2.2.4 Solid-state calculations

The electronic structure of a periodic solid is much more complicated than that

of an isolated molecule. This is because the electronic wavefunctions extend over

the effectively infinite range of the crystal lattice. The combination of atomic

orbitals from different cells, some of which are in phase and others which are out

of phase, leads to wavefunctions with periods longer than a unit cell.

To deal with these wavefunctions we can again turn to the reciprocal space of the
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infinite lattice (Section 1.2). Here, spatially infinite wavefunctions are reduced

to particular points in k -space, where the value of the wave-vector, k, denotes

the period of the wavefunction. For a given value of k there are potentially a

large number of wavefunctions resulting from LCAO within cells. A wavefunction

where AO’s from different cells are combined in phase is located at the centre of

the Brillouin zone, the Γ-point (0, 0, 0). For a cubic system with lattice length, 𝑎,

a wavefunction involving alternating in-phase and out-of-phase AOs in all three

directions has the wavevector 2𝜋
𝑎
× (1

2
, 1
2
, 1
2
). To calculate the electronic structure

of a solid we make use of Bloch’s theorem,9 which allows us to represent our

electronic wavefunction as the product of a lattice periodic function, 𝑓(r), and

a wave-like part that accounts for the position we are sampling in the Brillouin

zone:

Ψ(r) =
∑︁
𝑘

exp(𝑖k · r)𝑓(r) (2.19)

From this equation we can see that all of the wavefunctions of the system can be

described by confining k to the range 0 to 1 (×2𝜋
𝑎

). The problem of determining

an infinite number of wavefunctions is reduced to that of determining a finite

number of wavefunctions at an infinite number of k -points. However, in practice

we can sample the Brillouin zone using a finite mesh of k -points and interpolate

the result to obtain an accurate solution. A number of schemes are available for

choosing the important k -points including the widely used Monkhorst-Pack (MP)

grid method.10

2.2.5 Pseudopotentials

In any electronic structure calculation the bottleneck is the number of

wavefunctions required and so a major consideration in solid-state calculations,

or those isolated-molecule calculations involving large atoms, is to reduce this

number. This is done by treating only the valence electrons, which are the

most important for describing chemical properties. By treating only the valence

electrons we remove the real ionic potential and replace it with a weaker

pseudopotential (PP) that makes the valence electrons behave as if the core
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electrons were present.

The real ionic potential makes the valence wavefunctions oscillate near the

nucleus (to preserve orthogonality with the core wavefunctions). The near-

nucleus oscillations mean that many more plane waves or more complex GTO’s

are required to depict it accurately. With the PP we smooth the inner-most part

of the wavefunction (removing nodes etc.) to reduce the required number of plane

waves or Gaussian primitives used.9 This is subject to the assumption that the

properties of the real and pseudo wavefunctions are the same in the core region

we are smoothing and that the real potentials and pseudopotentials are the same

outside this core region. PP’s were originally developed for use with plane-wave

basis-set calculations of solids and are now nearly universally used in solid-sate

calculations due to the significant computational speed-up they garner.

One of the constraints applied in the original formulation of PPs was that the

charge of the real potential was conserved by the pseudopotential. PPs generated

in this fashion are termed norm-conserving and include the Martins-Troullier11

PP’s commonly used in the CPMD program.12 This constraint limits the amount

of smoothing that can be applied to the PP. Vanderbilt13 relaxed this constraint

to make ultrasoft pseudopotentials. With these much smoother potentials a

significantly smaller basis set (i.e. smaller value of 𝐸cut) can be used, greatly

speeding up the computation. However, the charge omitted from the potential

must be re-introduced later. This requires significant theoretical and coding

effort and as a result many computational chemistry codes have limited ultrasoft-

pseudopotential support.

2.2.6 Density-functional theory

Density-functional theory (DFT) is one of the most successful and widely used

methods in theoretical chemistry.14 The key concept exploited by DFT is that the

ground-state energy and electronic properties of the system are functions of the

ground-state electron density, 𝜌0(r). A functional is an expression that relates a

function [e.g. 𝜌0(r)] to a number and is usually denoted using square brackets
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(e.g. 𝐹 [𝜌]). It can also be shown that the energy of the system changes in a

variational manner with the electron density. This means that the most likely

form for 𝜌 is that which gives the lowest ground-state energy, 𝐸0. These concepts

are known as the Hohenburg-Kohn theorems.15

Kohn and Sham built upon these ideas to give the method applied today in

DFT.16 They considered a non-interacting system of 𝑛 electrons with the one-

electron Hamiltonian (in atomic units),

ℎ̂s =

[︃
−1

2
∇2

𝑖 −
𝑀∑︁

𝐴=1

𝑍𝐴

𝑟1𝐴
+

∫︁
𝜌(r′)

𝑟1′
𝑑r′

]︃
, (2.20)

where the first term represents the kinetic-energy operator, the second term is

the interaction between the electrons and the 𝐴 nuclei and the third term is the

interelectronic repulsion operator of the non-interacting system (whose charge

is smeared out into a continuous distribution). The assumption in Kohn-Sham

DFT (KS-DFT) is that there is some potential, 𝑣xc(r), that can be added to this

Hamiltonian that results in the non-interacting system’s electron density equalling

that of the real system. This term accounts for the exchange and correlation that

occurs in the real, interacting system and has the form:

𝑣xc(r) =
𝜕𝐸xc[𝜌(r)]

𝜕𝜌(r),
(2.21)

where 𝐸xc is the exchange-correlation (XC) energy given by:

𝐸xc[𝜌] =

∫︁
𝜌(r)𝜖xc(𝜌) dr, (2.22)

with 𝜖xc(𝜌) being the XC energy per electron in the system of interest. The exact

form of the XC potential is unknown. It if were known then DFT would give

exact results. The term 𝑣xc(r) can be used to describe a set of Kohn-Sham (KS)

orbitals, [︁
ℎ̂s + 𝑣xc

]︁
𝜓KS
𝑖 = 𝜀KS

𝑖 𝜓KS
𝑖 , (2.23)

from which the ground-state energy and electron density may be calculated. For

isolated molecules the same types of STO’s and GTO’s used in HF and post-HF

35



methods can be used to represent the KS orbitals. Plane-wave basis sets are often

used in standard DFT simulations of solids as many parts of the calculation can

be performed efficiently using them in conjunction with fast-Fourier transform

(FFT) techniques.

Determining a suitable form for 𝑣xc(r) has been a focus of research for

numerous chemists and physicists since the Hohenburg-Kohn theorems where first

postulated and a number of expressions for it have been derived. The local-density

approximation (LDA) assumes that 𝐸xc for a particular 𝜌 can be determined

from the 𝐸xc for a homogeneous electron gas, jellium, which has the same 𝜌. For

jellium, 𝜖xc as a function of 𝜌 has been accurately determined using Monte-Carlo

simulations.17 In Equation 2.22 𝐸xc is a function of how 𝜌 changes over space.

LDA assumes that 𝜌 varies slowly over space so that the local electron density

is homogeneous as is the case for jellium. LDA is quite useful for metals as the

electron density is smeared out and reasonably uniform. For molecular systems,

however, 𝜌 will change over small distances due to the more discrete nature of

molecules and so LDA is a poor approximation. This can be overcome with the

generalised-gradient approximation (GGA), which includes the gradient of 𝜌 to

account for it rapidly changing over space. Naturally, this leads to much more

complex equations for the exchange-correlation functional and in some cases GGA

functionals are parametrised.3 The GGA also has some limitations. In particular

van der Waals dispersion forces are poorly described by all mainstream LDA and

GGA functionals. Dispersion forces depend on long-range interactions between

electrons, requiring an understanding of how 𝜌 changes over large distances in our

system. GGA, while including information about the gradient, is still essentially

a semi-local method and neglects long-range effects on 𝐸xc.

It is possible to separate the exchange and correlation parts of the functional

such that 𝐸xc = 𝐸x +𝐸c. This allows mixing of different functionals and also the

use of exact Hartree-Fock exchange energies. Functionals that incorporate some

form of exact exchange are called “hybrid functionals”. B3LYP is a widely used

hybrid functional parametrised for organic systems.18

The XC functional can involve more complex expressions than HF theory. The
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DFT Hamiltonian is dependent only on the three positional coordinates of the

electron density as opposed to the 3𝑁 coordinates that are required for dealing

with orbitals, greatly simplifying calculations. The use of hybrid functionals

can significantly slow a calculation as it requires the explicit evaluation of the

exchange integral for each basis function. In solid-state simulations this can be a

severe restriction due to the number of AO’s and resultant MO’s and as a result

hybrid-DFT and HF simulations of solids are far less common than normal DFT

simulations of solids. In particular, a plane-wave basis is unsuitable for hybrid-

functional calculations as the number of plane waves in the basis can be upwards

of 10,000, compared to the Gaussian-type basis sets that would typically comprise

1/20th of this.

2.2.7 Empirical “force-field” calculations

Despite the many advances in computational software and hardware, methods

based on quantum theory remain time-consuming. An alternative approach is

to use simple analytical or tabulated potentials to describe interactions between

atoms. In molecular systems a number of different potentials are used to model

the various types of interactions that make up the real system:

𝑉total = 𝑉bonds + 𝑉bends + 𝑉torsions + 𝑉eletrostatic + 𝑉vdW + · · · . (2.24)

Each interaction is modelled using a specific potential defined by a number of

parameters. The complete set of potentials and parameters is often referred to as

a “force field” (FF). Most force fields utilise pair potentials, where the potential

energy depends only on the distances between atom pairs. A number of generic

parameter sets are available, including the MM and AMBER series.19,20

To model a bond between two atoms a simple harmonic potential, 𝑉 (𝑟) = 𝑘𝑟2,

may be used. Anharmonicity can be incorporated using a Morse potential or

a higher order polynomial expression (often quadratic). Bending motions can

be reproduced using similar potentials dependent on bond angles. Torsions,

inversions and other forms of motion can also be explicitly defined. Electrostatic
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interactions are modelled by associating a point charge with each atom in the

system. The interaction energy can be evaluated using the usual Columbic

expression:

𝑉 (𝑟)Col =
𝑞1𝑞2
𝑟
, (2.25)

where 𝑟 is the distance between atoms 1 and 2 that have charges 𝑞1 and 𝑞2

respectively. The expression in Equation 2.25 is evaluated in a double summation

over all atoms and often converges slowly. It is usually replaced by some variation

on the Ewald sum method, which breaks the long-range real space summation into

more efficient real and reciprocal space components.21 The long-range interactions

are typically modelled using a potential that is repulsive at small 𝑟 and attractive

at intermediate distances. A number of different potential forms are used,

including the Lennard-Jones potential and the Buckingham potential:21,22

𝑉 (𝑟)LJ = 4𝜀

[︂(︁𝜎
𝑟

)︁12
−
(︁𝜎
𝑟

)︁6]︂
(2.26)

𝑉 (𝑟)buck = 𝐴 exp(−𝐵𝑟) −
(︂
𝐶

𝑟6

)︂
. (2.27)

The fitting parameters in the potential can be determined in a variety of ways.

For simple systems the parameters may be adjusted to reproduce experimental

observations including structural and spectroscopic data. It is now common to use

ab initio or DFT calculations, particularly when generating a force field specific

to a molecule or a small set of molecules. Most fitting procedures use some form

of self-consistent least-squares analysis to reproduce various physical properties

of the desired system. Despite the many sophisticated methods for determining

force fields, there is no guarantee that the property of interest will be correctly

modelled by the force field.

Force fields are far less computationally demanding than QM methods and can

be used to study a range of systems and time-scales inaccessible to DFT and ab

initio methods alone. As an example, a simulation of the unit cell of phase-I ND3

with DFT might take 4 days using 8 processors in parallel. The corresponding

force field simulation would take less than half an hour on a single processor.

However, force field simulations are naturally less robust than QM methods.

38



Traditional force fields are limited to systems where no chemical reactions occur,

i.e. no bond breaking or forming. Reactive force fields, such as ReaxFF,23 can

be used to overcome this limitation but more parametrisation is required for

meaningful results. Polarisable force fields are also available to model electrostatic

interactions more realistically.

2.2.8 Semi-empirical methods

Semi-smpirical (SE) methods represent a balance between QM and empirical-

potential approaches. SE methods usually treat only the valence electrons of

the system using a Hamiltonian, which neglects certain interactions and/or

parametrises others. The earliest SE methods such as Hückel theory and the

Pariser-Parr-Pople method, treated the 𝜋 electrons of aromatic hydrocarbons and

yielded reasonable qualitative results.3 A variety of methods have been developed

that extend the basic principles of these methods to non-planar hydrocarbons and

more recently the majority of the periodic table.

Extended Hückel theory (EHT) was developed by Hoffmann in 1963.24 This

method treats only the valence electrons of H and C atoms. STOs are used

to represent the H atom 1𝑠 orbitals and the 2𝑠 and 2𝑝 orbitals of the C atom.

The ETH MO’s are determined using the Roothaan equations (Equation 2.12)

but with the Fock operator replaced by an effective Hamiltonian,

𝑏∑︁
𝑠=1

(𝑐𝑠𝑖𝐻
eff
𝑟𝑠 − 𝜀𝑖𝑆𝑟𝑠) = 0, 𝑟 = 1, 2, 3, ..., 𝑏. (2.28)

𝐻eff
𝑟𝑠 is not explicitly defined. For 𝑟 = 𝑠 it is taken as the valence-state ionisation

potential (VSIP) of the 𝑟th AO.3 The off-diagonal elements are given by:

𝐻eff
𝑟𝑠 =

1

2
𝐾(𝐻eff

𝑟𝑟 +𝐻eff
𝑠𝑠 )𝑆𝑟𝑠, (2.29)

where 𝐾 is a general scaling constant.

More sophisticated methods were developed by Pople and co-workers using an

explicit Hamiltonian, which features the electron-electron repulsion operator 1
𝑟12

.
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Inclusion of this operator leads to all of the computationally intensive one- and

two-electron integrals (ranging from one- to four-centre integrals) that result

in HF theory so some of these integrals are “neglected”, often using the zero

differential overlap approximation:

𝑓 *
𝑟 (1)𝑓𝑠(1) d𝑣1 = 0, 𝑟 ̸= 𝑠. (2.30)

The core Hamiltonian is approximated using some form of spectroscopic data

(often VSIP as in ETH). The aim of these methods was to reproduce small-

basis HF calculations at a fraction of the computational cost. The complete

neglect of differential overlap (CNDO) method25 neglects all overlap between

different orbitals (thus removing the majority of repulsion integrals), while the

intermediate neglect of differential overlap (INDO) method26 includes overlap

between basis functions on the same atom but only in one-centre integrals.

Pople et al. also suggested the neglect of diatomic differential overlap (NDDO)

method25 where all overlap is included for orbitals on the same atom in two-centre

repulsion integrals. As these methods were aimed at reproducing low-level HF

calculations they provide reasonable results for molecular geometries but not for

binding energies and other quantities where HF theory is likely to fail.

More recent work on semi-empirical methods has focused on parametrising

them to provide binding energies and thermochemical properties to within the

“chemical accuracy” that research into higher levels of theory is still trying to

achieve (∼ 1 kcal mol−1).3 These SE methods were based on the INDO and NDDO

methods but with many of the repulsion integrals derived in some manner from

atomic spectra or, especially for more recent methods, used as fitting parameters

to experimental and ab initio results. The modified neglect of diatomic overlap

(MNDO) method27 was the first widely-used SE method parameterised to provide

accurate thermochemical properties with average errors for a set of C, H, O and

N containing compounds of 6.3 kcal mol−1 in heats of formation, 0.014 Å in bond

lengths and 2.8∘ in bond angles. Most SE methods use only 𝑠- and 𝑝-type basis

functions. The MNDO/d method28 adds 𝑑 oribtials to second row and larger

atoms improving the accuracy of results.
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The most recent SE method is PM6 (parameterised method 6).29 This method

was based on the earlier PM3 method,30 which itself was derived from MNDO.

In PM6 many of the electron repulsion integrals are treated as fitting parameters

to mimic experimental structures (both gas phase and solid state) and heats

of formation. Specific corrections were made for inaccurate geometries or

interactions and unlike previous PM methods 𝑑 orbitals were used for all non-first

row atoms.

SE methods have found considerable use in studying large systems although

primarily using static calculations or geometry optimisations. A number of SE

methods have been recently implemented in the CP2K program31 for use in

isolated-molecule MD simulations.

2.3 Molecular dynamics simulations

The molecular dynamics (MD) method is a powerful and rich method for

exploring the dynamics and statistical thermodynamics of chemical systems.

There are many variants and applications of MD but the underlying principle

is to use some level of chemical theory to determine the forces acting upon atoms

in a representation of the molecular system, e.g. the unit cell of a crystal, and to

use these forces to evolve the system such that it behaves just as the real system

should.

The two most important aspects of MD simulations are the manner in which

the dynamics is performed and the type of theory used. The evolution of a

system of particles with positions, r, and momenta, p, can be described using the

Lagrangian equation21

d

d𝑡

𝜕ℒ
𝜕ṙ𝑘

− 𝜕ℒ
𝜕r𝑘

= 0 (2.31)

where the Lagrangian function is given by the potential and kinetic energies

ℒ = 𝐾 − 𝑉. (2.32)

From this equation we can derive a series of 3𝑁 second-order differential
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equations, 𝑚r̈ = f, that relate positions to forces. Alternatively the Hamiltonian,

ℋ, can be used to derive 6𝑁 first-order differential equations.21 These differential

equations are solved using finite difference methods in which we solve and

integrate the equations of motions at suitably small intervals. There are numerous

integration schemes but many molecular dynamics simulation codes still use the

simple Verlet algorithm32 or modifications of it.21 The Verlet leapfrog algorithm

can be written as:

r(𝑡+ 𝛿𝑡) = r(𝑡) + 𝛿𝑡v(𝑡+ 1
2
𝛿𝑡) (2.33)

v(𝑡+ 1
2
𝛿𝑡) = v(𝑡− 1

2
𝛿𝑡) + 𝛿𝑡a(𝑡). (2.34)

Its name originates from the manner in which the evaluation of the velocities and

positions “leap-frog” each other. The system is initialised at a time 𝑡− 1
2
𝑡 using

velocities derived from the initial kinetic energy of the system and the Maxwell

Boltzmann distribution.33 The velocities at at a time 𝑡 are determined using

v(𝑡) = 1
2

(︀
v(𝑡+ 1

2
𝛿𝑡) + v(𝑡− 1

2
𝛿𝑡)
)︀
. (2.35)

The timestep, 𝛿𝑡, is chosen so that the iterative solution of Equations 2.33 and 2.34

leads to a smooth and stable trajectory. This can be achieved by sampling the

system at an interval 10 to 15 times smaller than the highest frequency vibration.

The most time-consuming process in an MD simulation is the evaluation of the

forces to determine a(𝑡). High-frequency vibrations can be a hindrance when

studying some systems, e.g. organic systems with 𝜈C–H circa 3000 cm−1, as the

phenomenon of interest may occur at much longer time-scales, requiring many

force evaluations. It is possible to constrain flexible degrees of freedom to increase

the timestep,21,34,35 but this can only be performed when high-frequency motions

are known not to influence the property or behaviour of interest.
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2.3.1 Ensembles and thermostats

A statistical mechanical ensemble is a collection of systems of identical

composition. These systems will each have a specified volume, temperature and

energy that defines the type of ensemble. An ensemble in which the volume

and energy of each system is identical is the micro-canonical ensemble, often

referred to as the NVE ensemble, as the number of particles, volume and energy

are constant. Each type of ensemble has a specific expression for its partition

function, which can then be used to determine quantities such as the entropy

and pressure.21,36 The NPT ensemble with constant pressure and temperature

is a good approximation to experimental conditions for diffraction studies as

experimental set-ups are such that temperature and pressure should be constant.

If no external force interacts with a system in an MD simulation, then the total

energy of each configuration should be conserved (i.e. the same). With a constant

number of particles and constant volume, the MD simulation generates an NVE

ensemble of systems. To generate an NVT ensemble, with constant temperature,

the simulation must be coupled to a mathematical “heat bath”, which acts as a

thermostat. There are numerous schemes for achieving this including, amongst

others, the Nosé-Hoover thermostat,37 the “canonical sampling through velocity

re-scaling” thermostat38 and the Anderson thermostat.39 All of these methods

aim to adjust the kinetic energy, and hence temperature, of the system in a natural

fashion. Constant pressure and temperature simulations in the NPT ensemble

are performed using a barostat to control the pressure as well as a thermostat

for the temperature. The practical details of thermostatting and NVT and NVE

simulations will be discussed more in Chapter 3.

It is important when performing an MD simulation in a particular ensemble that

the simulation explores the phase space of the system sufficiently. The phase

space is the 6𝑁 -dimensional space comprising all the positions and momenta in

the system. A simulation that explores every possible phase-space configuration is

said to be ergodic. In practice, exploring the complete phase space is impossible

for all but the simplest of systems and in many cases is not necessary as the
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complete phase space may include thermodynamically or kinetically inaccessible

states (i.e. other phases). It is still important that the simulation explores

the relevant areas of the potential-energy surface properly. If this is the case

then the MD time averages will be equivalent to the ensemble space averages.

In simulations with thermostats, the application of the thermostat acts as a

randomising force that can encourage ergodic behaviour. Stronger thermostatting

will ensure ergodicity, yielding meaningful time averages. However, the true

dynamical behaviour of the atoms will be lost as their velocities are altered

regularly by the thermostat.

2.3.2 Car-Parrinello molecular dynamics

Standard ab initio/DFT-MD calculations proceed by evolving the atomic

positions and recalculating the electronic ground-state wavefunctions. This is

termed Born-Oppenheimer molecular dynamics (BOMD), as it separates the

motions of the nuclei from the electronic wavefunctions. However, another

approach to ab initio/DFT MD was developed by Car and Parrinello,40 who

proposed treating the electronic wavefunction as a fictitious particle and evolving

it based on the forces acting upon it. They constructed an equation of motion

for the electron wavefunctions:

𝜇𝜙𝑖(r, 𝑡) =
𝛿𝐸

𝛿𝜙𝑖(r, 𝑡)
+
∑︁
𝑘

Λ𝑘𝜙𝑘(r, 𝑡), (2.36)

where 𝜇 is an inertia (i.e. like mass for a real particle), the first term represents the

forces acting on the wavefunction, 𝜙𝑖, and the second term represents constraints

(Λ𝑘) on the wavefunction to ensure orthogonality with the k other wavefunctions.

This elegant method allows the atomic positions and wavefunctions to be evolved

in step and is now referred to as Car-Parrinello molecular dynamics (CPMD).

CPMD simulation steps are usually much faster than BOMD steps as the

electronic wavefunction is evolved rather than calculated from scratch as in

BOMD. However, dynamic processes for electrons occur much faster than for

nuclei (this is the basis of the Born-Oppenheimer approximation) and so a much
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smaller timestep (< 0.1 fs) is required for a CPMD simulation to converge

properly. Predictor-corrector methods21 are often used for extrapolation of the

wavefunction in BOMD with the result being that CPMD and BOMD simulations

can take roughly the same amount of time.

2.3.3 Path-integral molecular dynamics

The dynamics of the nuclei in normal MD simulations are evolved using purely

Newtonian mechanics. Thus the treatment of the nuclei is purely classical; there

is no zero-point energy (ZPE) contribution and QM tunnelling of particles is not

possible. For some simulations, especially those in the high-𝑇 limit, neglect of

ZPE and tunnelling effects is not a significant issue. However, for low temperature

simulations or those of lighter particles the neglect of quantum dynamics can be

a serious issue. Numerous lattice-dynamics studies of thermal motion in the solid

state have shown that in some cases the zero-point contribution to an atom’s

anisotropic displacement parameters can be as large as 30–50% of the room

temperature values.41

Path-integral molecular dynamics (PIMD) is a method widely used to simulate

ensembles quantum mechanically. This method is based on the work of Feynman,

who devised the path-integral formulation of quantum statistical mechanics.42

In PI theory classical trajectories of particles are replaced by many quantum

paths that the particle may take. Integration over these paths yields the correct

quantum behaviour.

PIMD simulations stem from considering the canonical QM partition function,

𝑍𝑁𝑉 𝑇 . For a one-dimensional system with Hamiltonian, 𝐻 = 𝑝2

2𝑚
+ 𝑣(𝑥), 𝑍 is

given by (in Dirac notation2):

𝑍𝑁𝑉 𝑇 (𝛽) =

∫︁
d𝑥
⟨︀
𝑥
⃒⃒
e−𝛽𝐻

⃒⃒
𝑥
⟩︀
, (2.37)

𝑍𝑁𝑉 𝑇 (𝛽) =

∫︁
d𝑥
⟨︀
𝑥
⃒⃒
e−𝛽(𝐾+𝑉 )

⃒⃒
𝑥
⟩︀
,

where 𝛽 is given by 1/𝑘b𝑇 and 𝐾 and 𝑉 refer to the kinetic and potential energy
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parts of 𝐻. Application of Trotter’s theorem:

𝑒𝜆(𝐴+𝐵) = lim
𝑃→∞

[︂
e

𝜆
2𝑃

𝐵e
𝜆
𝑃
𝐴e

𝜆
2𝑃

𝐵

]︂𝑃
, (2.38)

leads, eventually, to the following expression for the partition function:21,43

𝑍𝑁𝑉 𝑇 (𝛽) = lim
𝑃→∞

(︂
𝑚𝑃

2𝜋𝛽ℏ2

)︂𝑃/2 ∫︁
d𝑥1 · · · d𝑥𝑃

× exp

(︃
−

𝑃∑︁
𝑖=1

[︂
𝑚𝑃

2𝛽ℏ2
(𝑥𝑖+1 − 𝑥𝑖)

2 +
𝛽

𝑃
𝑣(𝑥𝑖)

]︂)︃
, 𝑥𝑃+1 = 𝑥1

(2.39)

where 𝑃 is the Trotter dimension. Close examination of Equation 2.39 will

show that 𝑍 for a particular value of 𝑃 corresponds to the partition function

of a purely classical system of 𝑃 particles where nearest neighbour particles

are joined by harmonic oscillators in a cyclical fashion. The 𝑃 particles are

often referred to as beads as the chain of particles resembles a necklace. This

formulation of a quantum system in terms of a classical one is know as the

classical isomorphism.44,45 For a 𝑁 -body system we obtain 𝑃 replicas of the

system which interact through the harmonic oscillations. As 𝑃 → ∞ the classical

approximation of the quantum system becomes more accurate. There are a

number of important aspects to performing PIMD simulations, in particular

ensuring ergodicity, which require specific re-formulations of Equation 2.39 and

strong thermostatting.43 PIMD simulations are in principle exact if a sufficiently

large value of 𝑃 is used. However, it is important to stress that the path-integral

formalism of Equation 2.39 yields only static, i.e. time-averaged, quantities.

Recovering dynamic information such as correlation functions requires methods

such as centroid MD46 and ring-polymer MD.47
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[37] (a) S. Nosé, J. Chem. Phys., 1984, 81, 511; (b) W. G. Hoover, Phys. Rev.

A, 1985, 31, 1695.

[38] G. Bussi, D. Donadio and M. Parrinello, J. Chem. Phys., 2007, 126, 014101.

[39] H. C. Anderson, J. Chem. Phys., 1980, 72, 2384.

[40] R. Car and M. Parrinello, Phys. Rev. Lett., 1985, 55, 2471.

[41] T. Pilati, F. Demartin and C. M. Gramaccioli, Phys. Chem. Minerals, 1998,

26, 149.

[42] R. P. Feynman and A. R. Hibbs, Quantum mechanics and Path Integrals,

McGraw-Hill Book Company, 1965.

[43] M. E. Tuckerman, Path Integration via Molecular Dynamics, John von

Neumann Institute for Computing, Jülich, 2002, vol. 10.
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Chapter 3

Molecular dynamics simulations

of phase-I ammonia
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3.1 Introduction

The molecular-dynamics simulation technique has been in use for over 40 years

and has been applied to many challenging problems in all phases and types of

matter. Its use in studying thermal motion from a crystallographic viewpoint has

been limited to a few studies.1–3 The present work represents the first systematic

study using MD simulations. In performing such a study it is important to choose

molecules that are both well suited to the methods being employed and have a

variety of experimental data available for comparison with the simulated data.

The crystal structure of phase-I ammonia, NH3, has been the focus of

experimental and theoretical investigation for over 50 years. Experimentally the

deuterated crystal structure has been determined by powder neutron diffraction

by Reed and Harris,4 and more recently by Hewat and Reikel.5 X-ray diffraction

has also been employed,6 as well as diffuse neutron scattering.7 Numerous

experimental and theoretical studies have explored the phonon spectrum of

phase-I ammonia using infra-red spectroscopy,8,9 Raman spectroscopy,8 inelastic

neutron scattering,10 DFT calculations11 and empirical models.12 The result is

an array of information for comparison with the results of the MD simulations.

Figure 3.1: Unit-cell of phase-I ammonia (NH3).

Phase-I ammonia is a cubic crystal structure in the 𝑃213 space group. There
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are four molecules in the unit cell as shown in Figure 3.1. With 12 symmetry

operations acting on the unit cell, the asymmetric unit simplifies to just one

hydrogen and one third of a nitrogen. The powder neutron study by Hewat and

Reikel determined the crystal structure at 2, 77 and 180 K and applied TLS

corrections (see Section 1.3.3) to the experimental N–D bond lengths to estimate

experimental equilibrium (i.e. vibration free) distances. This should make

ammonia an ideal test case for the molecule dynamics method of determining

experimental equilibrium distances.

A combination of DFT and empirical-potential (EP) simulations have been used

to apply the MD method for equilibrium structures. DFT should offer more

quantitative information, while the EP simulations provide qualitative validation

for the DFT-derived results.

3.2 Simulation methods

3.2.1 DFT-MD simulations

DFT-MD simulations were performed using a variety of ensembles and super-

cell sizes. A 1×1×1 unit cell of phase-I ND3 was simulated using the CASTEP

plane-wave (PW) DFT code.13 ND3 was simulated to allow direct comparison

with the neutron diffraction results. The PW91 GGA-type exchange-correlation

functional14 was used for all these calculations, together with a PW cut-off

energy of 400 eV. The core-valence interactions were represented by the standard

ultrasoft psuedopotentials provided with the CASTEP code. The wavefunction’s

reciprocal space was sampled using a 2×2×2 Monkhorst-pack (MP) grid. The

cut-off energy and MP grid were determined by converging the change in the total

energy and atomic forces with respect to these parameters to sufficiently small

values (less than 1 meV atom−1 and 1 meV Å−1, respectively). The equilibrium

geometry of the crystal structure was determined by optimisation of both the

ionic positions and the lattice parameter until changes in the total energy, forces

and stress tensor fell below acceptable limits (less than 5 × 10−7 eV, 1 meV Å−1
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and 0.02 GPa, respectively).

MD simulations of the 1×1×1 cells were carried out in both the NVE and NVT

ensembles starting from the equilibrium geometry with the unit cell size fixed

at the equilibrium value irrespective of the simulation temperature. The initial

temperature of the simulation depended on which ensemble was used. These

MD simulations were carried out using the BOMD method with wavefunction

extrapolation (see Section 2.3.2). A simulation timestep of 0.8 fs was used.

This timestep sampled the highest frequency stretch, 𝜈N–D, more than 15 times

ensuring a stable trajectory.

Simulations were also carried out using a 2×2×2 supercell with the CPMD

program.15 For these simulations the PBE functional16 was used together with a

PW cut-off of 800 eV. The larger cut-off was required as the standard norm-

conserving psuedopotentials provided with the CPMD code were used. The

CPMD code did not support the use of multiple 𝑘-points at the time these

simulations were performed. However, as the use of the supercell allows the

electronic wavefunction to sample more 𝑘-points than just the Γ-point. The

geometry was re-optimised but the unit-cell size was fixed, as the CPMD program

does not have robust cell optimisation methods. MD simulations were carried out

at a number of temperatures in the NVT ensemble. The Car-Parinello method17

(Section 2.3.2) was used to perform the dynamics, necessitating a much smaller

timestep of 0.09 fs.

Calculations were performed using the computational resources of the EPRSC

National Service for Computational Chemistry (http://www.nsccs.ac.uk) and the

Edinburgh Parallel Computing Centre (http://www.epcc.ed.ac.uk).

3.2.2 EP-MD simulations

To complement the DFT-MD simulations classical and path-integral (PI)

empirical-potential MD simulations of ND3 were carried out using a force field

previously detailed in the literature by Hinchliffe et al.12 Hinchliffe’s Model

C (abbreviated to HC) comprises an electrostatic component, with a charge
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(0.462 𝑒) on each H/D atom and a charge (−1.386 𝑒) on a site suspended

below the N atom (towards the plane of the hydrogens). The non-electrostatic

intermolecular interactions are split into dispersive components (only between

N atoms), repulsive interactions between all atoms and a mildly attractive

interaction between N and H atoms. This force field was developed for rigid-

body simulations so the harmonic bond stretches and angle bends suggested by

Diraison et al.18 were used to model intra-molecular degrees of freedom.

The HC model was implemented in an “in-house” PIMD code developed by

Mr. T. Markland and Dr. S. Habershon, both of the University of Oxford.

To ensure ergodicity during the classical and PI simulations an Anderson

thermostat19 was applied. It was evident from initial simulations that the

experimental cell parameter for ammonia was unsuitable for simulations with

these models. The finite-𝑇 cell vectors for 77 K and 180 K were determined

by performing an NVT simulation using a 4×4×4 supercell with random

attempts at Monte-Carlo NPT20 changes in cell size. All calculations were

performed on the Hare cluster of the EaStCHEM Research Computing Facility

(http://www.eastchem.ac.uk/rcf). This facility is partially supported by the

eDIKT initiative (http://www.edikt.org.uk).

3.2.3 Trajectory analysis

The trajectories that resulted from the MD simulations were analysed in a variety

of ways. For analysis of crystallographic parameters the space-group symmetry

may be exploited to increase the number of data points. In ammonia all of the

H/D atoms and all of the N atoms are equivalent to each other. Application of the

inverse symmetry operations maps each atom in the supercell into the asymmetric

unit. When in the asymmetric unit the coordinates adopted by the symmetry

related atoms can be used to calculate the mean and variance of each asymmetric

atomic position. For the asymmetric nitrogen, the three positional coordinates

are equivalent and were averaged accordingly. The mean Cartesian position of an
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atom, ū, can be calculated from the mean components of the position vector:

ū = (𝑢1, 𝑢2, 𝑢3), (3.1)

𝑢𝑖 =
1

𝑁

𝑁∑︁
𝑛=1

𝑢𝑖,𝑛, (3.2)

where 𝑁 is the total number of steps the average is calculated over and 𝑢𝑖,𝑛 is

the value of 𝑢𝑖 at step number 𝑛. It is routine to discard the first few picoseconds

of a trajectory to allow for the MD simulation equilibrating. Time-averages over

the equilibrated trajectory will be denoted using angle brackets, e.g. ⟨𝑢𝑖⟩. The

variances, 𝜎2
𝑖𝑖, and covariances, 𝜎2

𝑖𝑗, of an atomic position are given by:

𝜎2
𝑖𝑗 = ⟨(𝑢𝑖 − 𝑢𝑖)(𝑢𝑗 − 𝑢𝑗)⟩ = ⟨Δ𝑢𝑖Δ𝑢𝑗⟩. (3.3)

The numerical evaluation of the mean and variances yields the true anharmonic

mean and variance as we are effectively using a numerical probability density

function (PDF) for discrete evaluation of Equation 1.15. The Gaussian

approximation used in crystallography (Section 1.3.1) determines harmonic mean

and variance values. If the true probability distribution is not harmonic then it is

possible for the harmonic and MD/anharmonic values to differ. There has been

no systematic study of how much the potential difference might be but Scheringer

has shown various differences of 0.0004 – 0.0052 Å for bonded distances of

thiopyridone when calculated with harmonic and anharmonic means.21 However,

it is likely that the numerical variances will provide a reasonable approximation

to the experimental anisotropic displacement parameters (ADPs):

𝜎2
𝑖𝑗 ≈ 𝑈𝑖𝑗. (3.4)

There is no direct uncertainty associated with a static, theoretically calculated

geometry, although there will be some errors due to convergence of the various

calculation parameters such as the cut-off energy etc. However, there is a sampling

uncertainty associated with averages calculated from an MD simulation. The
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uncertainty or standard error in the mean value of random variable, 𝑥, is given

by the Central Limit Theorem:20

𝜎𝑥̄ =
𝜎𝑥√
𝑁 − 1

, (3.5)

where 𝑁 is the number of random samples taken of the value 𝑥 and 𝜎𝑥 is the

standard deviation of 𝑥. The standard error in the variance of 𝑥 is given by:22

𝜎𝜎2
𝑥

=

√︂
2

𝑁 − 1
𝜎2
𝑥. (3.6)

𝜎𝜎𝑥 =
𝜎𝑥√︀

2(𝑁 − 1)
. (3.7)

The uncertainty in a covariance can be estimated by noting that

𝑈𝑖𝑗 = 𝜌𝑖𝑗𝜎𝑖𝜎𝑗, (3.8)

where 𝜌𝑖𝑗 is the correlation coefficient of the 𝑖th and 𝑗th variable. Propagation of

the errors in 𝜎𝑖 and 𝜎𝑗 leads to the following expression for the uncertainty in a

covariance:

𝜎𝑈𝑖𝑗
=

√︂
1 + 𝜌𝑖𝑗
𝑁 − 1

𝜌𝑖𝑗𝜎𝑖𝜎𝑗. (3.9)

As 𝑈𝑖𝑖 is given by 𝜌𝑖𝑖𝜎𝑖𝜎𝑖 and 𝜌𝑖𝑖 = 1, Equation 3.9 reduces to Equation 3.6

for 𝑖 = 𝑗. The derivation of Equation 3.9 neglects the error in the correlation

coefficient. To ensure the standard error is not artificially smaller as a result of

this, a value of 𝜌𝑖𝑗 = 1 is used in all calculations to give an upper limit to the

uncertainty. The uncertainty in a bond length has been calculated by propagation

of the uncertainties in the positions of the two atoms in question.

An MD simulation does not randomly sample a quantity. A smooth and stable

trajectory requires correlations between values in different steps. The result of

this is that the preceding equations underestimate the standard errors in the

mean and variance. This can be overcome by including only every 𝑛th step in

analysis of the data. Alternatively the correlation can be removed using a blocking
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procedure in which adjacent data points are iteratively averaged so that 𝑁 ′ =

𝑁/2.22 Averaging of correlated data points will not change the mean but it will

increase the variance, whilst 𝑁 ′ decreases, resulting in the standard error of the

mean rising until the correlation is removed or blocked out. A drawback of the

blocking method is the uncertainty in the standard error itself:

𝜎2
𝑥̄ =

𝜎2
𝑥

𝑁 − 1
±
√︂

2

𝑁 − 1

𝜎2
𝑥

𝑁 − 1
. (3.10)

𝜎𝑥̄ =

√︂
𝜎2
𝑥

𝑁 − 1
±

(︃
1√︀

2(𝑁 − 1)
×
√︂

𝜎2
𝑥

𝑁 − 1

)︃
. (3.11)

The result is that for a completely blocked dataset (with 𝑁 ′ = 2) the uncertainty

in the standard error is the error itself divided by
√

2. Typically the largest value

of 𝜎𝑥̄ obtained with the blocking method is taken as a reasonable estimate of

the uncertainty. The uncorrelated uncertainty in the variance must be estimated

from the ratio between the correlated and uncorrelated mean. In general this

ratio will be same for the mean and the variance.20 In general, the uncorrelated

uncertainties in the simulations of ND3 are an order of magnitude larger than the

correlated values.

As well as determining the standard mean and ADPs for comparison with

experiment, the MD simulation can be used to determine the numerical PDF.

The positions adopted by an atom in the course of the simulation can be binned

to form 1–, 2– or 3–dimensional histograms. These numerical PDF’s can then

be fitted to analytical functions (such as those presented in Chapter 1). Code

has been written to post-analyse MD trajectories from a variety of DFT and

classical MD programs, providing the multi-dimensional histograms as well as the

“blocked” mean and variances of each asymmetric atomic position. Analysis of

the classical and PIMD simulations for ND3 was performed “on the fly” because

of the large volume of data produced. As a result the blocking method could

not be applied to these simulations. Instead only every 5th step was included in

the analysis of the trajectories. The resulting uncertainties are so small that a

uncertainty of ±1 is assumed in the last reported digit.
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The equilibrium experimental structure is determined by using the differences

between the theoretical equilibrium and time-averaged structures as correction

to the experimental time-averaged structure. The correction vectors are defined

relative to the crystallographic system, so care must be taken in applying

corrections where the experimental and theoretical molecular orientations are

different. Overlapping the experimental and theoretical principal axes systems

should overcome this problem. As the initial study on ammonia is focused on

benchmarking the MD method this procedure has not been applied here; instead

the theoretical distance corrections are reported for comparison with the TLS

corrections of Hewat and Reikel. Analysis of differences between the anharmonic

and harmonic mean positions and fitting of the numerical distributions will be

described in Chapter 5.

3.3 Results and Discussion

3.3.1 Equilibrium geometry

The equilibrium geometry of ammonia as determined using the two supercell sizes

and DFT functionals is given in Table 3.1. The agreement of the theoretical values

with the experimental ones of Hewat and Reikel is reasonable. The calculated N–

H bond length is 0.02 Å larger than the experimental value. This is most likely a

result of the tendency of GGA functionals to over-estimate bond lengths. At 2 K

we expect only very small thermal motion effects. The theoretical equilibrium

cell vector is 2.6% bigger than the 2 K experimental value.

3.3.2 Thermostatting and ergodicity

In studying ammonia the principal aim was to use it as a system to benchmark

various theoretical methods and analysis techniques from the crystallographic

viewpoint. NPT simulations should reproduce the experimental conditions the

best. However, such simulations often require a large PW cut-off energy (1.5–2

times that of an NVT simulation) to converge the stress tensor and plane-wave
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Table 3.1: Equilibrium atomic positions (fraction coordinates), interatomic
distances and angles and the optimised lattice constant, 𝑎, for ammonia
determined using PW-DFT, together with experimental5 values at 2 K.

1×1×1a 2×2×2b Experiment

D𝑥 0.3460 0.3471 0.3750(3)
D𝑦 0.2714 0.2711 0.2712(4)
D𝑧 0.0910 0.0932 0.1129(3)
N𝑥 0.1935 0.1925 0.2109(3)
𝑟(N–D)/ Å 1.0347 1.0361 1.012(2)c

𝑟(N· · ·D) / Å 2.3354 2.3319 2.357(2)
∠(D–N–D) / ∘ 107.12 106.01 107.5(2)
𝑎 / Å 5.1846 5.1846d 5.048

a CASTEP; PW91/USPP; 400eV cut-off.
b CPMD; PBE/NCPP; 800eV cut-off.
c Uncorrected for librational effects.
d Fixed at CASTEP unit-cell value.

grids adequately.23 A drawback of not performing NPT simulations is that the

pressure of the system may deviate from the experimental conditions we wish

to compare with. In particular, using the optimised cell geometry will lead to

pressures larger than 1 bar. For small systems (such as 1×1×1 and 2×2×2 cells

of ammonia) the pressure can be poorly defined and oscillate substantially so

attempts at barostatting will be futile unless very long simulations are performed

to allow the cell parameters and other quantities to converge properly. As a result

initial simulations focused on 1×1×1 unit-cell simulations of ND3 in the NVE and

NVT ensembles. It is important to note that simulations of a unit cell will neglect

lattice vibrations with periods longer than unit cells. The positional parameters

and ADPs determined from such simulations include only the contributions of

Γ-point or zone-centred phonons.

NVE simulations conserve the total energy of the system. However, when

equilibrated an NVE simulation will have an average kinetic energy and hence

an average temperature. For a harmonic system an initial kinetic energy will be

equi-partitioned between the kinetic and potential energies of the system.24 If we

start the simulation from an equilibrium geometry with a temperature 𝑇 then

the system should converge to an average temperature of 𝑇/2.

Thermostatting to reproduce the NVT ensemble would help ensure ergodicity.
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However, dynamic information could then be lost or distorted. While the

main interest is the static distribution of atomic positions it is prudent to try

and maximise the information these potentially expensive MD simulations can

produce. Therefore, initial simulations applied no thermostat. Attempts to

simulate the crystal structure at 180 K failed. Performing this simulation required

an initial temperature of 360 K, far in excess of the melting point of ammonia

(≈ 195 K). This large initial kinetic energy lead to significant deviations from the

initial starting point. Some form of thermostatted equilibration might permit

such a simulation but this was not possible with the CASTEP program.

Experimental data at 77 K also exists so three NVE simulations were performed

with an initial temperature of 155 K. The average temperatures and positions are

given in Table 3.2. The temperatures of the simulations are reasonably close to

the desired temperature of 77 K. However, there are clear differences between

the theoretical averages and distance corrections from the three simulations.

Simulations 1 and 2 agree reasonably but simulation 3 suggests a smaller distance

correction. While the theoretical results are within 3 to 4 𝜎 of each other, it

must be remembered that the blocking method provides worst case estimates of

the errors. Repeating the simulations a number of times gives us a better idea

of the uncertainties, although three simulations is sufficient only for qualitative

observations. Encouragingly, the uncertainties themselves are smaller than the

experimental uncertainties. The experimental (TLS) distance correction of

0.051 Å is much much larger than the mean correction of 0.0067 Å obtained

from theory. The disagreement between the simulations and experiment is more

evident from the variances or ADPs, which are given in Table 3.3. There are

large and statistically significant differences between the theoretical variances.

The experimental ADPs are much larger than the theoretical ones and the larger

experimental distance correction makes sense in terms of the larger experimental

ADPs. It is clear that the NVE simulations do not provide reproducible results.

Small differences between runs is acceptable and expected but the differences in

the ADPs are large and should disappear with some form of thermostatting.

A further three MD simulations were performed in the NVT ensemble with a
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Table 3.2: The length, average temperature, standard deviation of the
temperature, fractional coordinates, N–D bond length and difference in
theoretical equilibrium and time-averaged length for each of the three ND3 NVE
runs together with the experimental neutron diffraction positions at 77 K.5

Run 1 Run 2 Run 3 Experimental

Simulation length /psa 30 37 35 –
⟨𝑇 ⟩ / K 73.5 80.1 77.4 77
𝜎𝑇 / K 11.2 12.3 12.3 –
⟨D𝑥⟩ 0.3520(3) 0.3525(4) 0.3515(1) 0.3694(6)
⟨D𝑦⟩ 0.2697(1) 0.2696(2) 0.2699(1) 0.2694(6)
⟨D𝑧⟩ 0.0965(2) 0.0971(4) 0.0957(2) 0.1141(11)
⟨N𝑥⟩ 0.1975(5) 0.1977(7) 0.1969(3) 0.2108(11)
𝑟(N–D)av / Å 1.0270(28) 1.0272(39) 1.0301(17) 0.988(9)
Δ𝑟(N–D)b/ Å 0.0077(28) 0.0075(39) 0.0047(17) 0.051(22)c

a 1 ps = 10−12 s
b Δ𝑟 = 𝑟e − 𝑟a
c TLS distance correction.

Table 3.3: Γ-point thermal ADPs of the N and D atoms of the asymmetric
unit of ND3 extracted from the three 77 K NVE-MD simulations, together with
experimental values of Hewat and Reikel.5

ADP / Å2 Run 1 Run 2 Run 3 Experiment

N
𝑈𝑖𝑖 0.0047(3) 0.0059(4) 0.0033(1) 0.0290(22)
𝑈𝑖𝑗 −0.0010(1) −0.0011(2) −0.0008(1) −0.0015(15)
D
𝑈11 0.0091(2) 0.0120(2) 0.0068(1) 0.0467(36)
𝑈22 0.0076(2) 0.0079(2) 0.0062(1) 0.0407(38)
𝑈33 0.0097(2) 0.0117(2) 0.0071(1) 0.0552(30)
𝑈12 −0.0027(1) −0.0032(1) −0.0024(1) −0.0096(21)
𝑈13 0.0026(1) 0.0041(1) 0.0020(1) 0.0091(34)
𝑈23 −0.0005(1) −0.0009(1) −0.0005(1) −0.0027(24)

Nosé-Hoover (NH) thermostat.25 It has been shown that a single NH thermostat

does not ensure ergodicity so a chain of five thermostats was used.26 Chaining

the thermostats, so that the temperature of each “heat bath” is controlled

by another promotes ergodicity as it randomises the thermostat’s effect. The

resulting average temperatures and positions are given in Table 3.4, while the

ADPs are given in Table 3.5. The temperature is now much closer to the desired

temperature of 77 K. Unfortunately, the agreement between the time-averaged

positions is no better than for the NVE simulations. The ADPs are also still

different by a significant amount. The value of 𝑈11 for the D atom during each
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simulation is shown in Figure 3.2. The oscillations in the value are not large

and to some extent all three simulations look as if they are reasonable converged,

even though the final values are very different. Larger systems, in terms of both

supercell and molecule size should yield better results. However, it is evident that

strong thermostatting is required for the the present system to achieve meaningful

results.

Table 3.4: The length, average temperature, standard deviation of the
temperature, fractional coordinates, bond length and difference in theoretical
equilibrium and time-averaged lengths for each of the three ND3 NVT runs.

Run 1 Run 2 Run 3

Simulation length /ps 50 33 35
⟨𝑇 ⟩ / K 77.0 76.9 76.9
𝜎𝑇 / K 16.1 16.2 16.3
⟨D𝑥⟩ 0.3519(3) 0.3517(2) 0.3525(5)
⟨D𝑦⟩ 0.2699(1) 0.2701(2) 0.2696(3)
⟨D𝑧⟩ 0.0968(2) 0.0963(3) 0.0974(2)
⟨N𝑥⟩ 0.1974(4) 0.1973(3) 0.1978(3)
𝑟(N–D)av / Å 1.0271(22) 1.0283(20) 1.0261(27)
Δ𝑟(N–D)a/ Å 0.0076(22) 0.0063(20) 0.0086(27)

a Δ𝑟 = 𝑟e − 𝑟a

Table 3.5: Γ-point thermal ADPs of the N and D atoms of the asymmetric unit
of ND3 extracted from the three 77 K NVT-MD simulations.

ADP / Å2 Run 1 Run 2 Run 3

N
𝑈𝑖𝑖 0.0050(3) 0.0044(3) 0.0061(1)
𝑈𝑖𝑗 −0.0003(1) −0.0007(2) −0.0007(1)
D
𝑈11 0.0102(2) 0.0078(2) 0.0126(1)
𝑈22 0.0086(2) 0.0083(2) 0.0089(1)
𝑈33 0.0103(2) 0.0089(2) 0.0126(1)
𝑈12 −0.0028(1) −0.0024(1) −0.0035(1)
𝑈13 0.0038(1) 0.0022(1) 0.0044(1)
𝑈23 −0.0003(1) 0.0000(1) −0.0007(1)

The CASTEP code implements the Langevin dynamics method,20,27 which adds

a friction term to the momenta of the particles in the system. This friction term

represents interactions of the particles with a solvent or gas, which can be used

to control the temperature of the system in a similar manner to the Anderson

thermostat, which effectively models collisions of gas-phase particles with the
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Figure 3.2: Cumulative value of the D atom 𝑈11 displacement parameter during
the course of the three NH NVT-MD simulations at 77 K.

system. Two Langevin dynamics simulations were performed in unit cells of ND3

at 77 K. A relaxation time equivalent to 100 MD steps was used. The resulting

mean positions and ADPs are given in Tables 3.6 and 3.7. The effect of the

Langevin thermostat on the time-averaged parameters is dramatic, with all of

the time-averaged parameters now within 2–3 𝜎 of each other. It is likely that

small differences will always arise between simulations unless they are run for

a computationally excessive amount of time. The results of Tables 3.6 and 3.7

may represent the best precision attainable for such a system. The disagreement

between the unit-cell ADPs and the experimental values remains.

3.3.3 Supercell size and quantum effects

There are a number of potential sources for the disagreement between the

theoretical and experimental ADPs. The simulation pressure might play an

important role. Fixing the cell vector at its optimised value generates an average

pressure of 0.1 GPa during the 77 K simulation. This will restrict the thermal

motion in the system. The reduction in thermal motion between experiment and

theory would suggest that a pressure of 0.1 GPa has a substantial effect on the

potential energy surface. This seems unlikely as the structure of Phase-I ammonia
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Table 3.6: The length, average temperature, standard deviation of the
temperature, fractional coordinates, bond distances and difference in theoretical
equilibrium and time-averaged positions for both of the ND3 Langevin NVT runs.

Run 1 Run 2

Simulation length /ps 50 34
⟨𝑇 ⟩ / K 76.4 76.9
𝜎𝑇 / K 16.4 16.3
⟨D𝑥⟩ 0.3522(3) 0.3518(5)
⟨D𝑦⟩ 0.2698(1) 0.2701(1)
⟨D𝑧⟩ 0.0968(2) 0.0966(3)
⟨N𝑥⟩ 0.1975(4) 0.1974(7)
𝑟(N–D)av / Å 1.0279(22) 1.0270(42)
Δ𝑟(N–D)a/ Å 0.0068(22) 0.0077(42)

a Δ𝑟 = 𝑟e − 𝑟a

Table 3.7: Γ-point thermal ADPs of the N and D atoms of the asymmetric unit
of ND3 extracted from the two 77 K Langevin NVT-MD simulations.

ADP / Å2 Run 1 Run 2

N
𝑈𝑖𝑖 0.0046(1) 0.0048(4)
𝑈𝑖𝑗 −0.0006(1) −0.0006(1)
D
𝑈11 0.0089(1) 0.0092(2)
𝑈22 0.0084(1) 0.0084(2)
𝑈33 0.0095(2) 0.0098(2)
𝑈12 −0.0028(1) −0.0027(1)
𝑈13 0.0028(1) 0.0029(1)
𝑈23 −0.0003(1) −0.0002(1)

is stable up to 1.4 GPa11 and the vibration frequencies are changed by less than

5 cm−1 over this pressure range.28 While pressure may play a role a more likely

explanation is offered by the use of only a unit cell. As detailed above, simulations

of a unit cell restrict the types of lattice vibrations that occur in the system to

having periods of a single unit cell. Thus non-Γ-point phonon modes are neglected

by the calculations presented in the previous section. Of particular importance

will be the low-frequency large-amplitude acoustic phonons that appear away

from the Γ-point. At the Γ-point these modes correspond to the translational

degrees of freedom of the crystal. To partly address their omission a DFT

simulation of a 2×2×2 supercell of ND3 was performed using the CPMD code.
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The CPMD code, however, only supports the use of Nosé–Hoover thermostats,

which were shown earlier to perform poorly. To encourage ergodicity a “massive”

NH thermostat was used.29 The resulting ADPs and bonded distance correction

from a 15 ps simulation are given in Table 3.8. The agreement between theory and

experiment is somewhat better with the ADPs being 50–100% larger than those of

the single unit-cell simulations. The distance correction is only slightly larger than

that for the Langevin dynamics simulations (∼ 0.0071 Å). This in not unexpected

as the acoustic modes have predominantly translational character; they have a

significant impact on atomic displacements but little effect on intramolecular

distances. Other non-Γ-point librational modes will have similar types of motion

to those already present at the Γ-point.

Table 3.8: ADPs (in Å2) of the N and D atoms of the asymmetric unit of
ND3 together with the time-averaged bonded distance and distance correction
extracted from the 77 K 2×2×2 supercell NVT-MD simulation. Experimental
values of Hewat and Reikel5 are provided for comparison.

ADP / Å2 DFT-MD Experiment

N
𝑈𝑖𝑖 0.0103(6) 0.0290(22)
𝑈𝑖𝑗 −0.0010(1) −0.0015(15)
D
𝑈11 0.0147(4) 0.0467(36)
𝑈22 0.0155(2) 0.0407(38)
𝑈33 0.0163(3) 0.0552(30)
𝑈12 −0.0038(1) −0.0096(21)
𝑈13 0.0025(1) 0.0091(34)
𝑈23 −0.0004(1) −0.0027(24)
𝑟(N–D)av / Å 1.0281(36) 0.988(9)
Δ𝑟(N–D)a/ Å 0.0083(36) 0.051(22)b

a Δ𝑟 = 𝑟e − 𝑟a
b TLS distance correction.

Another likely source of disagreement is the application of classical Newtonian

mechanics for simulations at such a low temperature (77 K). The neglect

of quantum effects could lead to significant underestimation of the ADPs.

Performing a DFT-PIMD simulation would be very computationally intensive.

However, a NVT simulation of the structure at the higher temperature of 180 K

can be performed as the initial temperature will not be as high as in the NVE case.

Agreement between theory and experiment at the higher temperature should be
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better if quantum effects play a role. A 15 ps simulation of a 2×2×2 supercell was

performed at 180 K in the same manner as for the 77 K simulation. The resulting

ADPs and bonded distance correction are presented in Table 3.9. The results

show a large increase in both the ADPs and the distance corrections. While the

agreement between the ADPs is somewhat better, substantial differences remain.

Table 3.9: ADPs (in Å2) of the N and D atoms of the asymmetric unit of
ND3 together with the time-averaged bonded distance and distance correction
extracted from the 180 K 2×2×2 supercell NVT-MD simulation. Experimental
values of Hewat and Reikel5 are provided for comparison.

ADP / Å2 DFT-MD Experiment

N
𝑈𝑖𝑖 0.0176(4) 0.0384(8)
𝑈𝑖𝑗 −0.0013(2) −0.0014(5)
D
𝑈11 0.0260(3) 0.0575(16)
𝑈22 0.0272(3) 0.0709(22)
𝑈33 0.0287(3) 0.0676(23)
𝑈12 −0.0066(1) −0.0186(11)
𝑈13 0.0051(1) 0.0093(14)
𝑈23 −0.0005(1) −0.0029(14)
𝑟(N–D)av / Å 1.0213(36) 0.989(5)
Δ𝑟(N–D)a/ Å 0.0152(31) 0.069(9)b

a Δ𝑟 = 𝑟e − 𝑟a
b TLS distance correction.

Figure 3.3 shows the theoretical thermal ellipsoids of the ammonia molecule.

The plotted thermal ellipsoids seem reasonable in size and orientation. The

experimental ellipsoids are much larger and at larger probability contours, greater

than 90%, they begin to overlap. The TLS distance corrections are also very

large and suggest a much longer equilibrium distance (1.058 Å as determined at

180 K) than the DFT calculations using the PBE and PW91 functional. This

value is also much longer than the time-averaged interatomic N–D distance of

1.005(1) Å determined by diffuse scattering.7 MD simulations will determine

thermal ADPs, that is ADPs that result from thermal motion. Disorder in a

crystal structure and errors in data analysis can contribute to ADPs and may

explain the discrepancies encountered here.

Leclercq et al.30 re-refined the original dataset of Hewat and Reikel using a

curvilinear structure factor. This structure factor treated the D atoms as rotating
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Figure 3.3: Calculated crystal structure of ND3 at 180 K. (Ellipsoids plotted at
50% probability level.)

around the 𝐶3 axis of the ammonia molecule and was defined in an internal

coordinate system of the molecule. As a result the refinement using this structure

factor yielded distances free from the effects of librational motion. Isotropic

estimates of the amount of thermal motion of the D atoms were also obtained.

Table 3.10 gives the 𝑈eq values as determined at 77 K and 180 K from the 2×2×2

supercell DFT-MD simulations and the two experimental refinements. At 77 K

there is much closer agreement between the MD values and those of Leclercq et

al. At the higher temperature the results are within 3 𝜎 for the N atom and

within 6 𝜎 for the D atom. This shows that the original refinement of Hewat

and Reikel was most likely flawed. The discrepancy in the values at 77 K is

likely the results of neglecting quantum mechanics in the motions of the atoms.

Leclercq determined an equilibrium distance of 1.001(7) Å. Applying the MD

distance correction of 0.0152 Å at 180 K to the time-averaged distance of Hewat

and Reikel yields an 𝑟e value of 1.004(6) Å. The agreement is encouraging but to

determine the equilibrium structure correctly a more reliable experimental time-

averaged geometry must be determined. The geometry determined by Leclercq et

al. neglects internal vibrations of the molecule, which may also affect the atomic
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positions and interatomic distances.

The theoretical equilibrium bond length in the gas phase is 1.0107 Å, determined

using the coupled cluster method and extrapolation of large basis-set results,

while the empirical experimental equilibrium value (calculated using experimental

microwave spectroscopic results and theoretical vibrational corrections) is

1.01139(60) Å.31 With solid-state H-bonding the N–D/H equilibrium bond length

would be expected to be longer than the gas-phase value but the solid-state values

from diffuse scattering and the present work are both shorter than the gas-phase

values, although they are within the estimated uncertainties. More precise solid-

state structural studies would confirm whether this observation has any physical

significance.

Table 3.10: Isotropic displacement parameters (𝑈eq) of the N and D atoms in
ND3 from DFT-MD simulations and refinements by Leclercq et al.30 and Hewat
and Reikel.5

N – 𝑈eq / Å2 D – 𝑈eq / Å2

77 K DFT-MD 0.0103(6) 0.0155(3)
77 K Leclercq et al. 0.0144(3) 0.0222(4)
77 K Hewat and Reikel 0.0290(22) 0.0475(40)

180 K DFT-MD 0.0176(4) 0.0273(3)
180 K Leclercq et al. 0.0166(4) 0.0243(5)
180 K Hewat and Reikel 0.0384(8) 0.0653(24)

3.3.4 Empirical potential simulations

Further validation of the DFT results presented in the preceding section would

require PIMD simulations or the use of larger supercells. Simulations with a

small number of path-integral beads are feasible, as might be simulations with a

3×3×3 supercell. However, converging these results would require a number of

beads and supercell size that is not possible with DFT-MD simulations. To probe

the importance of these factors we can turn to empirical-potential simulations.

While the accuracy of these simulations may not be as good as that for DFT,

they should provide a useful qualitative picture of the dynamics of ammonia.

The optimised cell parameter was determined from a number of MC-NPT runs
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using different initial cell sizes. A 4×4×4 supercell was used because a cell of this

size should give a sufficiently converged value. At 77 K a value of ∼ 4.82 Å was

found, while at 180 K the lattice constant was ∼ 4.89 Å. Table 3.11 gives the

isotropic displacement parameter for the N and D atoms determined for a variety

of supercell sizes using a 30 ps NVT simulation. The results are discouraging

as they suggest quite large super-cells are required to converge the displacement

parameters properly. However, an important parameter in empirical simulations

is the cut-off distance, 𝑟cut, after which intermolecular dispersion interactions are

neglected. The Ewald summation method ensures that electrostatic interactions

take into account the long-range order of the lattice. However, to avoid particles

interacting with their periodic images the cut-off must be less than the lattice

constant. Thus in empirical MD simulations a large cell can be required for an

atom to interact with enough particles to behave as if it was in the solid state. In

a DFT simulation the periodicity of the wavefunctions ensures that this problem

does not arise; the importance of supercells in DFT simulations is to allow

flexibility in thermal motions and avoid self-interactions for small systems. The

poor convergence of the displacement parameters with the smaller cells may be

the result of a small value of 𝑟cut. Previous liquid-phase simulations of ammonia,18

using the same electrostatic model as the HC model and a LJ potential proposed

by Impey and Klein,32 suggested that there was no significant finite-size effect

with a 32-molecule system, which is equivalent to a 2×2×2 supercell. It is evident

from Table 3.11 that for solid-state simulations using empirical potentials at least

a 4×4×4 supercell is required to have meaningful results.

Table 3.11: Isotropic displacement parameters (𝑈eq) of the N and D atoms in
ND3 from 77 K NVT simulations with a variety of supercell sizes.

N𝑈eq
/ Å2 D𝑈eq

/ Å2 𝑟cut / Å

2×2×2 0.00584(1) 0.01355(1) 4.82
3×3×3 0.00678(1) 0.01437(1) 7.23
4×4×4 0.00741(1) 0.01519(1) 9.64
6×6×6 0.00789(1) 0.01559(1) 14.46

The effect of pressure on the system can also be studied using the EP simulations.

Calculations were performed with a 4×4×4 cell of ND3 with the 77 K ambient
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pressure cell vector (4.82 Å) and two different cell vectors to explore how

the displacement parameters change with pressure. The results are given

in Table 3.12. The pressure has been calculated using the standard virial

estimator.20,33 The ambient pressure of 0.05 GPa is quite large but illustrates the

problem of converging the cell vector with respect to pressure. This is partially a

result of the bonding Morse potential’s large contributions to the virial. Changing

the cell length by only 0.07 Å results in substantial changes in the pressure.

Encouragingly, going from nearly 0 GPa to 0.63 GPa only leads to changes of the

order of 15% in the thermal parameters. As the pressure in the DFT simulations

is much smaller at 0.1 GPa it is therefore likely that pressure will not play a

significant role in the DFT results.

Table 3.12: Isotropic displacement parameters (𝑈eq) of the N and D atoms in
ND3 from 4×4×4 77 K NVT simulations with different lattice constants.

𝑎 / Å N𝑈eq
/ Å2 D𝑈eq

/ Å2 ⟨𝑃 ⟩ / GPa

4.75 0.00624(1) 0.01363(1) 0.63
4.82 0.00741(1) 0.01519(1) 0.05
4.89 0.00891(1) 0.01699(1) −0.35

PIMD simulations were performed at 77 K and 180 K to compare with classical-

MD trajectories. Again the simulations were carried out using a 4×4×4 supercell.

The results are given in Table 3.13. The displacement parameters are 180 K

are much larger than those determined by the DFT simulations but it is not

surprising that the potential over-estimates thermal motion as it was optimised

for the liquid phase. The 𝑈eq values are still smaller than those of Hewat and

Reikel. Comparison of the 1 and 32 bead simulations shows that quantum effects

could easily explain the majority of the disagreement between the DFT values

and those of Leclercq et al. at 77 K. A 64 bead simulation shows that a 32 bead

simulation is sufficient for modelling ammonia at 77 K and higher temperatures.

Better agreement between the EP and DFT results could be obtained using a

more sophisticated potential. Janerio-Barral et al. have recently updated the

HC model to include polarisible charges and intermolecular parameters fitted to

more modern quantum-chemical calculations.34
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Table 3.13: Isotropic displacement parameters (𝑈eq) of the N and D atoms
in ND3 from 4×4×4 simulations at 77 K and 180 K with different Trotter
dimensions, 𝑃 .

𝑃 T / K N𝑈eq
/ Å2 D𝑈eq

/ Å2

1 77 0.00741(1) 0.01519(1)
32 77 0.00979(1) 0.02649(1)
64 77 0.00966(1) 0.02666(1)

1 180 0.02196(1) 0.04565(1)
32 180 0.02284(1) 0.05358(1)

A final validation of the DFT-MD simulations was carried out by comparison

of the NVE DFT-MD vibrational frequencies, determined from the Fourier-

transform of the velocity autocorrelation function,20 for NH3 and ND3 with

experimental phonon and vibron data. Approximate eigenvectors were also

determined from the MD trajectories. Full details of the analysis and results are

provided elsewhere.35 The DFT-MD frequencies or eigenvalues agree well with

experimental and hybrid-DFT lattice dynamics (LD) results. However, the MD

and LD eigenvectors suggested a number of changes in the assignments of the

experimental symmetry assignments, which resolve the conflicting experimental

reports of the phonon spectrum of phase I ammonia. This provides further

justification for the use of DFT-MD simulations in studying ammonia.

3.3.5 Vibrational probability density functions

The numerical PDFs determined from the MD trajectories can be visualised

and analysed in a variety of ways. The harmonic information is easy depicted

using the normal thermal ellipsoid approach as in Figure 3.3. Information about

anharmonicity can be viewed using 1-, 2- or 3-D histograms. The 2–D histograms

of the D atom at 180 K are given in Figure 3.4. It is relatively easy to orientate

the numerical PDF along the harmonic principal axes of thermal motion. In

the case of the D atom the resulting PDFs do not appear to deviate that much

from a Gaussian distribution. There is a significant amount of high-frequency

noise that distorts the distributions. This noise may be removed using low-pass

Fourier filters to aid visualisation. Difference maps of the numerical PDF minus
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an equivalent harmonic PDF can be used to illustrate anharmonicity that is not

readily visible in the anharmonic distribution. The analysis and visualisation of

numerical PDFs will be detailed more in Chapter 5.

Figure 3.4: 2–D vibrational probability distributions of the D atom in ND3 at
180 K plotted along the three harmonic principal axes. (𝑥 is the longest axis; 𝑧
the shortest.)

(a) 𝑥𝑧 (b) 𝑥𝑦 (c) 𝑦𝑧

3.4 Conclusion

A series of DFT and empirical-potential simulations of the phase-I crystal

structure of ammonia have been performed with the aim of determining the

experimental equilibrium crystal structure. The results have highlighted serious

flaws in the neutron powder-diffraction structure determined by Hewat and

Reikel. Excellent agreement has been found between the isotropic displacement

parameters and vibrationally-corrected N–H/D distance determined using the

DFT simulations and those found by Leclercq et al. at 180 K by re-refining

the data of Hewat and Reikel. Lower temperature simulations have highlighted

the importance of quantum dynamics on the vibrational parameters determined

by crystallography. The results show that a new neutron diffraction study of

ammonia would be useful to remove doubts surrounding the Hewat and Reikel

dataset. Quantitative comparison with X-ray studies (even the recent multipole

refinement of Boese et al.) is difficult because the fitting process can distort the

vibrational information. Boese’s study was performed at 150 K with NH3. At

that temperature, with H atoms, we expect quantum effects to still be important.
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When performing the MD simulations it was found that strong thermostatting,

preferably using an Anderson thermostat or the related method of Lagevin

dynamics, was essential to obtain converged results. The single unit cell

simulations using Nosé-Hoover chains gave substantially different results in a

series of simulations.

Although the uncertainty in the experimental values complicates matters, it is

clear that the present study has successfully applied and benchmarked the MD

methodology for determining equilibrium structures. The next step in developing

this method is to study larger molecules that will have significant contributions

from internal degrees of freedom (such as torsions).
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Chapter 4

Anharmonic thermal motion in

nitromethane
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4.1 Introduction

To develop and apply molecular dynamics (MD) simulations to the study of

thermal motion from a crystallographic viewpoint it is important to choose

simple, yet interesting systems. Nitromethane, CH3NO2, is one such system.

It crystallises in the 𝑃212121 space group with four molecules in the unit cell as

shown in Figure 4.1.1 The methyl group of nitromethane has a very low barrier to

rotation, which results in large-amplitude motions of the hydrogen atoms around

the axis of the C–N bond. This motion makes the H atoms appear to be closer to

their centroid and results in smaller C–H distances than would be expected. This

phenomenon is routinely seen for methyl groups in many crystal structures, even

in cases where the methyl-group rotation is hindered.2 Nitromethane is therefore

a model system for one of the most common manifestations of the effects of

thermal motion in crystallography.

Figure 4.1: Unit cell of d3-nitromethane.

Many of the structural and dynamical studies previously reported for ni-

tromethane have focused on the thermal motion of the methyl group. All three
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neutron diffraction studies of deuterated nitromethane (d3-nitromethane) have

applied some form of experimental method for correcting the C–D distances for

the effects of libration and were performed at low temperatures (4.2–78 K) to

minimise the amplitude of this motion.1,3,4 Other studies have applied neutron

scattering techniques to investigate the potential surface and barrier governing

the methyl group libration.5,6

Most of the recent interest in nitromethane has focused on its role as an

energetic material. A number of studies of its behaviour under high pressure7,8

have been made as well as theoretical simulations of its physical properties.9

Many of the theoretical simulations have applied a force field developed by

Sorescu et al.10 This force field is used for all of the simulations presented

in this chapter as it has been widely applied to both solid-state and liquid

nitromethane and has been demonstrated to reproduce key physical properties

such as the thermal expansion and bulk modulus. Normally, it would be

preferable to use DFT to perform the MD simulations but a previous study

of nitromethane with DFT by Byrd et al. showed that the lack of dispersion

forces in mainstream DFT functionals limited the accuracy of DFT-calculated

cell vectors and other properties for this material.11 Recent work,12 however, has

shown that Grimme-type dispersion corrections13 improve the DFT modelling

of nitromethane. Nevertheless our choice of empirical potentials will allow us

to simulate larger supercells and to acquire longer trajectories, which would be

at the limit for DFT-based modelling approaches. Crucially, the computational

speed of force-field-based methods permits us to perform path-integral molecular

dynamics (PIMD) simulations. Such simulations are essential for comparison

with the low-temperature experimental data. We can also study nitromethane

over a large temperature range, gathering data over an appreciable number of

points to study temperature dependence of the anharmonicity and anisotropic

displacement parameters (ADPs). It is important to characterise the effects of

thermal motion over a large temperature range as the chemical and physical

nature of a system does not always permit studies at very low temperatures (<

10 K).
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4.2 Experimental and theoretical methods

4.2.1 EP simulations

Empirical-potential MD simulations of d3-nitromethane were carried out using

an “in-house” PIMD simulation code written by Mr. T. Markland and Dr. S.

Habershon, both of the University of Oxford, which was modified to use the force

field of Sorescu et al.10 Morse potentials are used to represent bond stretches,

while angle bends are represented using harmonic functions. It should be noted

that the harmonic bending constants given in the original paper were incorrect;

the values reported by Agrawal et al.14 have been used instead. The important

O–N–C–D torsions were modelled as having three-fold symmetry (in the absence

of the crystal field) using a cosine function:

𝑉 (𝜑) = 𝑉0 [1 + cos(𝑚𝜑− 𝛿)] , (4.1)

where 𝑚 is 3 and 𝛿 is the phase of the potential, which adjusts its minima.

In the original paper values of ±90∘ were used. Trial and error suggested

that values of ±70∘ reproduced the experimental torsional angles better. The

agreement is still not perfect but as we might expect thermal motion to affect

the experimental values we can only hope to be close enough to obtain valid

corrections, not absolute agreement. Intermolecular dispersion and repulsion

interactions were modelled using a Buckingham potential (Equation 2.27) with

parameters originally developed for the explosive hexahydro-1,3,5-trinitro-1,3,5-𝑠-

triazine.15 These parameters have been shown to be transferable to a wide range of

nitro-group based energetic materials. Finally, the electrostatic interactions were

modelled using a Columbic interaction evaluated using an Ewald summation.

A 5×4×3 supercell was used for all simulations. A cell of this size is roughly

cubic and allows a cut-off distance of ∼ 10 Å, which has been used for previous

simulations reported in the literature.9,10,14

Classical MD NVT simulations were run at a number of temperatures ranging

from 4.2 K to 228 K. Sorescu et al. determined time-averaged lattice constants at
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a number of temperatures using NPT simulations. These lattice constants were

either used for the equivalent NVT simulations or where no NPT simulation

had been performed data from adjacent temperatures were used to estimate

lattice vectors, assuming linear expansion of the cell. The temperatures and

corresponding lattice parameters are given in Table 4.1. A time step of 0.5 fs

was used in all simulations, together with an Anderson thermostat to ensure

ergodicity. Simulations above 78 K were run for 30 ps, while those below 78 K

were run for 20 ps.

Table 4.1: Temperatures and lattice parameters used in the classical-MD and
PIMD simulations of nitromethane. Lattice parameters were taken from, or
extrapolated from, the values of Sorescu et al.10

𝑇 / K 𝑎 / Å 𝑏 / Å 𝑐 / Å

4.2 5.2116 6.3416 8.6464
8.0 5.2119 6.3451 8.6550
15.0 5.2125 6.3516 8.6652
25.0 5.2134 6.3608 8.6935
50.0 5.2184 6.3494 8.7266
78.0 5.2195 6.3794 8.7543
100.0 5.2222 6.4173 8.7734
125.0 5.2267 6.4229 8.7979
150.0 5.2298 6.4605 8.8204
175.0 5.2373 6.4889 8.8608
200.0 5.2452 6.5167 8.8808
228.0 5.2534 6.5481 8.9195

Path-integral MD simulations were run at the same temperatures as the classical

simulations using the same cell sizes. PIMD simulations at temperatures as low

as 4.2 K require very large Trotter dimensions, 𝑃 (Section 2.3.3). To increase the

speed of the simulations the ring-polymer contraction method of Markland and

Manolopoulos was applied.16 This method exploits the fact that the electrostatic

and intermolecular forces acting on the beads representing the same atom will be

very similar and need only be evaluated for a subset of beads and extrapolated for

the rest of them. Intramolecular contributions and the harmonic forces tethering

beads together must still be evaluated in full but these calculations are far less

computationally intensive than the intermolecular calculations. The result is that

the computational time can reduced by a significant amount. In the case of a 32-

bead simulation of liquid water the PIMD simulation only took six times as long
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as the classical (𝑃 = 1) simulation. Different values of 𝑃 can be used to calculate

the electrostatic interactions and the dispersion interactions. Simulations with

different values of 𝑃 were performed for low 𝑇 simulations to converge the Trotter

dimension properly. The number of beads used for each temperature is given in

Table 4.2.

Table 4.2: Trotter dimensions used for PIMD simulations at different
temperatures.

𝑇 / K 𝑃total 𝑃vdW 𝑃electrostatic

4.2 500 149 151
8.0 500 149 151
15.0 500 149 151
25.0 500 99 101
50.0 200 99 101
78.0 200 99 101

≥ 100.0 100 49 51

Analysis of the trajectories was performed on the fly during the course of the

simulation using every 10th step. Means, variances and covariances of each

atom in the molecule were calculated using the full space-group and supercell

symmetry. The uncertainties were calculated in the same manner as used for the

simulations of ammonia (see Section 3.2.3). As the analysis was performed on

the fly the blocking method could not be used. In some cases when comparing to

experimental data the theoretical values for the 3-D probability density functions

(PDFs) were also determined for each atom. As the methyl group rotates even

at very low temperatures the D atoms were assigned at each step by determining

the dihedral angle of each D atom relative to the equilibrium O(1)-N-C fragment.

Equilibrium geometries were determined by performing 0 K MD simulations for

up to 30 ps.

4.2.2 Distance corrections and conventions

There are a number of possible different structural parameters that can be

determined using theory and experiment and it is important to define properly

what type of parameter is being reported for the purpose of comparison. Table 4.3
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shows the various types of distances that will be discussed in this chapter

and others. All of these distances (apart from the TLS derived distance) are

determined using methods that yield complete geometries so there are equivalent

bond angle, dihedral angles etc. as well. The Gram-Charlier and Edgeworth

series methods (Section 1.3.3) determine “probable” positions: they determine the

maxima of the 3-D atomic PDFs, which correspond to the free-energy minima of

each atom in the mean field of all other atomic motions in the crystal structure. In

the case of intramolecular parameters it is likely that the probable and equilibrium

parameters will be the same.

Table 4.3: Definition of different types of structural parameters.

Name Definition

𝑟a, MD MD time-averaged distance
𝑟a, exp Experimental time-averaged distance
𝑟e Equilibrium geometry determined using theoretical calculations
𝑟e, MD Experimental equilibrium distance determined using MD positional corrections
𝑟p, GC Experimental probable distance determined using Gram-Charlier series refinement
𝑟p, EW Experimental probable distance determined using Edgeworth series refinement
𝑟TLS Experimental distance determined using TLS corrections
Δ𝑟MD 𝑟e − 𝑟a, MD

To obtain the 𝑟e, MD structure the MD distance corrections must be applied in

some fashion to the experimental structure. Initially, the manner suggested in

Section 3.2.3 was used to apply the MD corrections. In this approach the principal

axes of the theoretical and experimental time-averaged structures are overlapped

to ensure differences in the orientations of the systems perturb the results as

little as possible. This is important because the corrections are defined relative

to the crystal lattice and not to the molecule. If the experimental and theoretical

molecular orientations differ, then the positional corrections may lead to different

experimental and theoretical corrections for bond lengths and other parameters.

However, this method gave spurious results for bonded distances (particularly

for the 4.2 K structure discussed in Section 4.3.3), which resulted from the

slightly different geometries of the experimental and theoretical molecules (i.e.

torsions and bends) affecting the relative orientation of the molecules. Instead of

overlapping the molecules, the position corrections were applied directly to the
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fractional coordinates of the experimental structure. In this way the experimental

equilibrium structure can be obtained in a simple and consistent manner. The

effect of the experimental and theoretical systems having different orientations

and geometries will often be negligible and of the order of the experimental

uncertainty.

Where experimental data are not available, or direct comparison is not possible,

it is useful to calculate the theoretical corrections such as Δ𝑟MD to give an idea

of the magnitude of the effect of thermal motion.

4.3 Results and Discussion

4.3.1 Effect of quantum dynamics

The ring-polymer contraction method allows us to apply the PIMD method

over the complete temperature range that solid nitromethane exists (at ambient

pressure). Previous lattice dynamics studies17 and the MD simulations of

ammonia (Chapter 3) have shown that quantum dynamics can be very important

to include when simulating materials at low temperatures. PIMD simulations,

even using EP or semi-empirical methods, can not always be performed so it is

important to understand the effects and limitations of a classical approach.

Figure 4.2: Classical (C) and quantum (Q) variances, 𝑈𝑖𝑖, of the C and D(1)
atoms in d3-nitromethane from 4.2 K to 228 K.

(a) C (b) D(1)
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The classical and quantum temperature dependences of the C and D(1) atom

variances are shown in Figure 4.2. As expected the quantum ADPs level out as

the temperature approaches 0 K, while the classical values fall rapidly to zero

in the absence of any zero-point motion. By 78 K the classical D atom ADPs

are 80% of the quantum value, which rises to 95% by 228 K. The remaining

quantum contribution probably arises from the high-frequency internal degrees

of freedom such as stretches and bends. High-frequency motions require a higher

temperature to be faithfully reproduced by classical simulations. This is because

a quantum harmonic oscillator with a large frequency has a larger zero-point

energy contribution. The classical simulation must reach a higher temperature

to compensate for this fully. For the C atom agreement at 228 K between the

classical and quantum simulations is slightly closer as a result of the more low-

frequency vibrations it is involved in. The shapes and orientations of the ellipsoids

are very similar even at 78 K, which is encouraging. The thermal ellipsoids are

determined by assuming that the probability distribution is a harmonic trivariate

Gaussian. Figure 4.3 shows the thermal ellipsoids from the classical and quantum

simulations at 228 K and 78 K. Figure 4.4 shows the classical and quantum 2–

D 𝑥𝑧 probability density functions (PDFs) for the D(1) atom at 78 K. From

this we can observe that the distributions are highly anharmonic, with both

curvature and asymmetry clearly visible. It appears that the longest principal

axis is reproduced well by the classical simulations but the shortest is not as big

as in the quantum case. Even if we can not use classical simulations for direct

comparison with experiment they may still be useful for qualitative analysis of

systems with highly anharmonic potential-energy surfaces.

The differences between the classical and PIMD simulations arise because of zero-

point motion and quantum-mechanical tunnelling. Quantifying this difference a

priori is difficult as at a given temperature some vibrational modes may be better

approximated than others, depending on their vibrational frequency. Feynman

and Hibbs proposed a quasi-classical potential that would account for some of the

quantum behaviour.18 In this model the classical potential for a particle, 𝑉 (𝑟) is
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Figure 4.3: Classical and quantum thermal ellipsoids of nitromethane simulated
at 228 K and 78 K.

(a) Classical – 228 K (b) Quantum – 228 K

(c) Classical – 78 K (d) Quantum – 78 K

Figure 4.4: Classical and quantum 2–D probability distributions of the D(1)
atom at 78 K in the 𝑥𝑧 plane, where 𝑥 is longest principal axis and 𝑧 the shortest.

(a) Classical (b) Quantum
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replaced by an effective potential:18

𝑉eff(𝑟c) =
1√
𝜋Δ𝑟2

∫︁ ∞

−∞
𝑉 (𝑟c + 𝑟) exp

(︂
−𝑟2

Δ𝑟2

)︂
d𝑟, (4.2)

where Δ𝑟2 is related to the free-particle radius of gyration, 𝑟G, free, and the thermal

wavelength, Λ(𝑇 ), of the free particle:18,19

Δ𝑟2 =
Λ(𝑇 )2

8𝜋
=

2

3
𝑟2G, free =

𝛽ℏ2

6𝑚
, (4.3)

where 𝛽 is 1/𝑘b𝑇 and 𝑚 is the mass of the particle. In Equation 4.2 the classical

potential is convoluted or smeared by an isotropic Gaussian distribution. Voth

showed that the quasi-classical probability density is also given by a convolution

of the classical density and a Gaussian with a width of 2
3
𝑟2G, free. The convolution of

two isotropic Gaussians with widths 𝑎 and 𝑏 is a Gaussian with a width of 𝑎+𝑏 so

the Feynman-Hibbs (FH) approximation can be investigated by comparison of the

difference between the classical and quantum values of the isotropic displacement

parameter, Δ𝑈eq, with 2
3
𝑟2G, free. These are plotted for the C atom in Figure 4.5.

Note that for this analysis it is best to consider a heavy atom as the D atoms are

likely to undergo some amount of tunnelling.

The plot shows that 𝑟2G, free is much larger than the difference between the classical

and quantum 𝑈eq values. Therefore, the FH method significantly overestimates

the quantum swelling effect. This is perhaps not that surprising as the free-

particle radius of gyration is unlikely to be suitable for solid-state simulations.

The FH approximation has usually been used for simulations of fluids.20,21 In our

solid-state simulations the atoms are far more confined and take part in more

high-frequency vibrations. The actual radius of gyration, 𝑟2G, of the C-atom ring

polymer might prove a more useful approximation. This could be estimated

from relatively short trajectories and used to correct much longer simulations.

However, as Figure 4.5 shows, this is also much larger than the difference in the

𝑈eq values, clearly showing that the ring-polymer dynamics are not simply the

smeared out dynamics of the classical system.
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Figure 4.5: Plot of the free-particle radius of gyration, actual radius of gyration
and difference between the classical and quantum values of 𝑈eq for the C atom
versus temperature. The lines through the points are provided as a guide to the
eye.

4.3.2 Comparison with previous experimental datasets

Single-crystal neutron diffraction

As detailed in the introduction, nitromethane has been studied a number of times

using neutron and X-ray diffraction with an emphasis on correcting for thermal

motion effects. Single-crystal neutron diffraction studies have been limited to the

work of Jeffrey et al. at 15 K.1 Their study determined positions and ADPs to a

good degree of precision. Table 4.4 gives the experimental and theoretical (PIMD)

ADPs. The agreement between the two sets of ADPs is quite good, with many

of the displacement parameters being within 3𝜎 of each other. Only the D(1)

ADPs differ substantially from the experimental values. It is satisfying that the

PIMD simulation yields ADPs in such good agreement with experiment. There

has been renewed interest22 in the use of ab initio methods to predict ADPs for

use in multipole X-ray or high-pressure structural refinements. This work has

demonstrated that MD simulations may offer a robust method for estimating

ADPs.

The good agreement between the experimental and theoretical ADPs means that

the differences between the theoretical time-averaged and equilibrium structures
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Table 4.4: Experimental1 and theoretical ADPs (in Å2) of d3-nitromethane at
15 K.

𝑈11 𝑈22 𝑈33 𝑈12 𝑈23 𝑈31

C
Expt. 0.0059(3) 0.0074(3) 0.0103(3) 0.0015(2) −0.0005(2) −0.0005(2)
MD 0.0065(1) 0.0074(1) 0.0086(1) 0.0019(1) −0.0004(1) −0.0009(1)

N
Expt. 0.0047(2) 0.0055(2) 0.0074(2) 0.0006(2) 0.0000(2) 0.0002(2)
MD 0.0048(1) 0.0050(1) 0.0058(1) 0.0005(1) −0.0002(1) 0.0001(1)

O(1)
Expt. 0.0064(3) 0.0091(3) 0.0100(3) 0.0008(3) 0.0001(3) −0.0021(3)
MD 0.0072(1) 0.0099(1) 0.0086(1) 0.0010(1) 0.0006(1) −0.0023(1)

O(2)
Expt. 0.0093(3) 0.0084(3) 0.0108(3) 0.0012(3) −0.0037(3) 0.0003(3)
MD 0.0104(1) 0.0096(1) 0.0089(1) 0.0020(1) −0.0036(1) 0.0006(1)

D(1)
Expt. 0.0353(6) 0.0439(7) 0.0185(4) 0.0234(6) −0.0017(5) −0.0087(5)
MD 0.0438(1) 0.0514(1) 0.0161(1) 0.0317(1) −0.0030(1) −0.0091(1)

D(2)
Expt. 0.0184(5) 0.0259(5) 0.0610(8) 0.0046(4) 0.0149(5) 0.0190(5)
MD 0.0163(1) 0.0225(1) 0.0599(1) 0.0020(1) 0.0090(1) 0.0170(1)

D(3)
Expt. 0.0229(5) 0.0165(4) 0.0461(6) 0.0050(4) −0.0145(4) −0.0084(4)
MD 0.0212(1) 0.0171(1) 0.0435(1) 0.0029(1) −0.0146(1) −0.0032(1)

should provide suitable positional corrections for the experimental structure.

Even at 15 K these corrections are sizeable, ranging in magnitude from 0.021

Å for the N atom to 0.115 Å for D(1). The refinement of Jeffrey et al. employed

a TLS model to correct bond lengths for librational effects. The original TLS

method could only be performed on rigid bodies. This could not be used

to model the internal rotation of the methyl groups so Jeffrey et al. used

a segmented rigid-body method,23 whereby the CNO2 and CD3 were treated

as rigid fragments. In addition, an anharmonic distance correction was also

applied to the C–D distances to correct for potential lengthening effects due

to the anharmonic nature of the bond stretching motion. The TLS distance

corrections therefore provide a useful benchmark for the MD corrected values.

The differences in distances between the experimental equilibrium and time-

averaged structures are compared to the TLS values in Table 4.5. Very small

corrections, insignificant compared to the experimental uncertainties, are found

for the heavy-atom bond lengths. These are of the same magnitude but opposite

in sign to the TLS corrections. The experimental corrections neglect the Morse

contributions that result in longer experimental bonds than expected. For the

C–D distances both methods determine large corrections of approximately 0.015–

0.02 Å. The agreement between the two methods is not that surprising because at
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low temperatures the “harmonic” librational effects, that the TLS method deals

with very well, will dominate. As the C–D corrections are more that 14 times the

bond length uncertainties they are highly significant.

Table 4.5: Experimental time-averaged bond lengths of nitromethane, 𝑟a, exp,
together with theoretical distance corrections.

𝑟a, exp / Å Δ𝑟TLS
a–c/ Å Δ𝑟MD

d/ Å

𝑟C–N 1.4855(9) 0.002 −0.0040(9)
𝑟N–O(1) 1.2270(9) 0.004 −0.0028(9)
𝑟N–O(2) 1.2225(9) 0.002 −0.0014(9)
𝑟C–D(1) 1.0751(13) 0.018 0.0159(13)
𝑟C–D(2) 1.0736(14) 0.018 0.0183(14)
𝑟C–D(3) 1.0739(13) 0.017 0.0144(13)

a Δ𝑟 = 𝑟TLS − 𝑟a, exp
b TLS corrected distances were reported to only
three decimal places with no uncertainties.

c The C–D distances include an extra anharmonic
distance correction of −1.3168(𝑈

‖
𝐷−𝑈

‖
𝐶), where 𝑈

‖
𝐶

and 𝑈
‖
𝐷 are the components of the C and D atoms’

ADPs parallel to the bond.
d Δ𝑟 = 𝑟e, MD − 𝑟a, exp

Table 4.6 gives some of the intramolecular valance angles and torsions in the

experimental time-averaged and equilibrium structures. Thermal motion seems

to affect the valance angles only slightly but there are substantial corrections to

the torsion angles, which are greater than 30 𝜎. The TLS method is based on

a assumption of harmonic curvilinear motion. It is evident in nitromethane that

the rotation of the methyl group is anharmonic. This can be seen easily in the

78 K probability density function for D(1) (Figure 4.4).

Most force fields are fitted or validated based on comparison of equilibrium

structures with experimental data. In the case of nitromethane such an approach

will be flawed in some respect when dealing with the torsions because of

the significant effect of thermal motion. As one of the principal interests in

nitromethane is in the dynamics and bonding of the methyl group it is important

to ensure that force fields and theoretical calculations are fitted or compared to

the correct structural parameters.

As stated above there has been interest previously in the O· · ·C–D hydrogen

bonding in nitromethane.1 The 15 K experimental structure has a number of
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Table 4.6: Selected experimental time-averaged bond angles (∠) and torsions
(𝜑) of d3-nitromethane, together with the experimental equilibrium values.

Angle / ∘ Time-averaged Equilibrium ΔMD
a

∠C–N–O(1) 118.2(1) 118.1(1) −0.1
∠O(1)–N–O(2) 123.7(1) 123.8(1) 0.1
∠N–C–D(1) 107.7(1) 107.4(1) −0.3
𝜑[O(1)–N–C–D(1)] 151.7(1) 148.0(1) −3.7
𝜑[O(1)–N–C–D(2)] −89.4(1) −92.9(1) −3.5
𝜑[O(1)–N–C–D(3)] 29.9(1) 26.4(1) −3.5

a ΔMD = ∠e − ∠a or 𝜑e − 𝜑a

short contacts between O atoms and D atoms. The N–O distances also differ

by 0.0045(15) Å in the time-averaged experimental structure suggesting that

they have different intermolecular bonding environments as a result of hydrogen

bonding. The MD simulations suggest that this difference is significant with small

and similar corrections to the N–O distances (Table 4.5). Table 4.7 gives some

of the O· · ·D short contacts. The corrections to the distances are large and in

every case statistically significant, with values ranging from 10 to 40 times the

uncertainty in a distance. The corrections do not alter the conclusions of Jeffrey

et al. that O(1) has four H-bonds while O(2) has none. However, having such

large corrections at 15 K shows the pitfalls of ignoring thermal motion effects.

Increasingly, structural studies are focusing on comparing intermolecular

distances, particularly for understanding more about the processes of co-

crystallisation and polymorphism. When precision is essential it is now common

to study materials at low temperatures (as was the case with nitromethane with

two reports of crystal structures at 4.2 K and one at 15 K). While going to

lower temperatures reduces the affect of thermal motion it does still remain

significant. Methyl groups will always be extreme cases, due to the potential

for large-amplitude rotations of the groups. In nitromethane there are still

significant corrections for heavy-atom intermolecular distances. For example the

N· · ·N intermolecular experimental equilibrium distance of 4.004(2) Å is 0.024

Å longer in the time-averaged structure. More studies, on a wide range of crystal

structures, are required to understand the extent of this issue, especially with

crystal structures being used to fit force fields and parametrise semi-empirical
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methods (such as the PM6 method,24 which used structural information from the

Cambridge Structural Database25) and also as direct input into computational

techniques such as the Pixel method,26 which uses theoretical calculations to

determine lattice and intermolecular binding energies.

Table 4.7: Selected experimental time-averaged intermolecular distances (in Å)
of d3-nitromethane, together with the MD-corrected experimental equilibrium
values.

Distance 𝑟a, MD 𝑟e, MD Δ𝑟a Molecule

𝑟O(1)· · ·D(1) 2.386(1) 2.404(1) 0.018 1
2 − 𝑥, 2− 𝑦, 1

2 + 𝑧

𝑟O(1)· · ·D(2) 2.582(2) 2.572(1) −0.010 1
2 + 𝑥, 3

2 − 𝑦, 1− 𝑧

𝑟O(1)· · ·D(3) 2.566(1) 2.605(1) 0.039 1
2 + 𝑥, 5

2 − 𝑦, 1− 𝑧

𝑟O(1)· · ·D(2) 2.465(2) 2.453(2) −0.012 1 + 𝑥, 𝑦, 𝑧

𝑟O(2)· · ·D(1) 2.692(2) 2.703(2) 0.011 −𝑥,− 1
2 + 𝑦, 1

2 − 𝑧

𝑟O(2)· · ·D(3) 2.859(2) 2.779(2) −0.080 1
2 − 𝑥, 2− 𝑦,− 1

2 + 𝑧

a Δ𝑟 = 𝑟e − 𝑟a

4.3.3 Previous powder neutron diffraction studies

4.2 K high-resolution powder diffraction data

The crystal structure of d3-nitromethane has been studied a number of times

using powder neutron diffraction. The most precise study was performed by

David et al.3 using the HRPD machine at the ISIS facility. The large volume of

data collected by the HRPD machine allowed for the refinement of ADPs. This

study focused on comparing powder diffraction results with the 15 K single-crystal

work of Jeffrey et al. that was discussed above. To ensure the comparison was

meaningful the same TLS approach that was used for the 15 K data by Jeffrey

was applied to correct the 4.2 K bond lengths for thermal effects. Table 4.8

compares the MD and TLS-determined equilibrium distances at 4.2 and 15

K. Being able to compare equilibrium structures at two temperatures is very

important as the equilibrium structures (particularly bond lengths and angles)

should be very similar if the corrections and indeed experimental structures are

correct. The work by David et al. found that the single-crystal data were superior
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and the larger uncertainties in the 4.2 K distances ensure that the data from

the two temperatures are in reasonable agreement. It is highly encouraging

that differences between the equilibrium geometries at the two temperatures

are smaller when the MD corrections are used in all but one case. The sole

discrepancy is in the C–D(1) distance, which has a very small Morse correction

compared to D(2) and D(3) due to the unusual orientation of the ADPs. We

would expect very similar corrections for the three distances.

Table 4.8: Experimental equilibrium and TLS bond lengths of nitromethane
determined at 4.2 and 15 K.

4.2 K 15 K
𝑟e, MD / Å 𝑟TLS / Å 𝑟e, MD / Å 𝑟TLS / Å Δ𝑟e, MD

a Δ𝑟TLS

𝑟C–N 1.4803(27) 1.4867 1.4815(9) 1.4887 0.0012 0.0020
𝑟N–O(1) 1.2294(29) 1.2402 1.2242(9) 1.2309 −0.0052 −0.0093
𝑟N–O(2) 1.2237(31) 1.2318 1.2211(9) 1.2253 −0.0026 −0.0065
𝑟C–D(1) 1.0809(38) 1.0926 1.0910(14) 1.0911 0.0101 −0.0015
𝑟C–D(2) 1.0880(41) 1.0838 1.0922(14) 1.0929 0.0042 0.0091
𝑟C–D(3) 1.0877(37) 1.0858 1.0883(14) 1.0908 0.0006 0.0050

a Δ𝑟 = 𝑟15 K − 𝑟4.2 K

4.2 K and 78 K datasets

Powder neutron diffraction data were also collected at 4.2 K and 78 K by Trevino

et al.4 Unlike the studies detailed above, this work did not refine ADPs for all of

the atoms. Instead isotropic displacement parameters were refined for the N and

O atoms, while ADPs were determined for the C and D atoms. To facilitate the

refinement of the ADPs a 𝐶3 axis of symmetry was assumed for the methyl group

ADPs (about the C–N bond), significantly reducing the number of parameters.

This also permitted a third-order Edgeworth series term (Section 1.3.3) to be

included in the structure factors for the D atoms. The cumulant terms were

determined using the results of a TLS rigid-body calculation. The assumption of

symmetry and use of different types of structure factors (i.e. isotropic, anisotropic

and anharmonic) means that direct comparison of the experimental structure with

the MD simulations is not easily achieved.

It is still useful to compare the experimental isotropic displacement parameters

94



Table 4.9: Experimental isotropic displacement parameters (in Å2) of d3-
nitromethane as determined by Trevino et al.4 at 4.2 K and 78 K, together with
the MD values.

4.2 K 78 K
𝑈eq Expt. MD Expt. MD

C 0.0113(8) 0.00726(1) 0.0197(21) 0.01396(3)
N 0.0043(5) 0.00498(1) 0.0099(9) 0.01142(2)
O(1) 0.0103(5) 0.00835(1) 0.0218(9) 0.01778(4)
O(2) 0.0103(5) 0.00927(1) 0.0218(9) 0.02127(4)
Da 0.0283(14) 0.0311 0.0712(38) 0.0661

a In the experiment structures the D atoms are assumed to
be related by symmetry and therefore have the same 𝑈eq;
the quoted theoretical value is the average of the three
values for the D atoms.

with the MD values. Table 4.9 lists them at 4.2 and 78 K. The agreement between

the values is reasonable although the difference in the C-atom values at 4.2 K is

quite large (5 𝜎). The two O atoms have identical displacement parameters in the

experimental structures. There is no mention in the original paper of the values

being constrained to be the same but it seems highly likely given the fact that

they are different in the MD simulations and also in the other powder neutron

structures. The change in a bond length going from one temperature to another

should be comparable to the difference in the MD corrections (Δ𝑟MD) between

those two temperatures. Unfortunately in this case the agreement is not good.

We expect bonds to appear shorter at high 𝑇 as the librational effects dominate.

However, some of the experimental 𝑟a values actually increase with temperature;

the 78 K C–N bond length is 0.008 Å longer than the 4.2 K one. This is possible

but unlikely, especially above 20 to 30 K, where librational motion will begin

to exceed the intramolecular motions that might lead to apparently longer bond

lengths and interatomic distances. While the uncertainties are large enough to

account for the differences the data should be reasonably consistent as they were

collected from the same sample and apparatus.

Further disagreement between the MD simulations and experimental data occurs

when comparing the time-averaged C–D bond lengths. In the experimental 78 K

structure the average C–D bond length is 1.001(9) Å suggesting an equilibrium

distance correction of the order of 0.09 Å. However, the MD distance correction,
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Δ𝑟MD, averaged over the three C-D distances is 0.058 Å. The good agreement

between the MD and experimental ADPs/𝑈eq values at 4.2 and 78 K means that

we should get good agreement with the experimental distances. The mix-and-

match nature of the experimental refinement may account for these discrepancies.

4.3.4 Multi-temperature analysis

The reasonable agreement of the MD simulations with the previous structural

studies, particularly the 15 K single-crystal study, should spur us on to extract

quantitative information on the temperature dependence of the anharmonic

motion. This can be obtained in a variety of ways. We can examine the ADPs

and how they change with temperature. Figure 4.6 shows the 𝑈11 values of the

co-variance matrix of the O(1) atom as a function of temperature. The 𝑈 value

for a harmonic oscillator is given by:27

𝑈harm =
ℏ

2𝜔𝑚
× coth

(︂
ℏ𝜔

2𝑘b𝑇

)︂
(4.4)

where 𝜔 is the frequency of vibration of the oscillator and 𝑚 is the oscillator

mass. A fit of this function to 𝑈11 for O(1) is shown as a solid line in

Figure 4.6. At large values of 𝑇 the function will be linear while at low 𝑇 it

converges to a finite value representing the zero-point contribution to the motion.

Deviations from the ideal harmonic behaviour were defined by Bürgi et al.27 as

“positive anharmonicity” when the thermal motion increased faster than the low-

temperature linear behaviour would suggest and “negative anharmonicity” when

the thermal motion increased less than expected. At higher temperatures more

of the free-energy surface is explored. Thus positive anharmonicity represents

a broadening of the free-energy surface away from the equilibrium point while

a steeper surface is the case with negative anharmonicity. In Figure 4.2 the D

atom clearly shows negative anharmonicity, whilst the O(1) and C atom ADPs

have positive anharmonicity. In the case of the D atoms, there is an upper limit

on the size of ADPs due to the pseudo axis of symmetry of the D atoms. The

fact that the 𝑈33 value of the D(1) atom behaves normally is an indication that
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the anharmonicity is primarily in the 𝑥 and 𝑦 directions, which makes sense in

terms of the orientation of the D(1) atom and the axis of rotation. Negative

anharmonicity is likely to occur for rotating groups or systems with static or

dynamic disorder that is modelled using split-atom sites.

Figure 4.6: 𝑈11 value of the O(1) atom as a function of temperature. The
squares represent the MD values. The straight and dashed lines are the harmonic
and quasi-harmonic fits to the MD data.

The anharmonicity in the temperature dependence of ADPs can be modelled

using an effective frequency, 𝜔eff(𝑇 ), in Equation 4.4. The effective frequency can

be defined by a Grüneisen parameter, 𝛾:27

𝜔eff(𝑇 ) = 𝜔

[︂
1 − 𝛾

(︂
𝑉 (𝑇 ) − 𝑉min

𝑉min

)︂]︂
(4.5)

where 𝑉 is cell volume and 𝑉min is the volume at the lowest experimental

temperature. The volume term is equivalent to the thermal expansion coefficient,

𝜒𝑇 . This approach is referred to as a quasi-harmonic model. Bürgi et al. analysed

the temperature dependence of the ADPs of hexamethylenetetramine (HMT)

by treating the molecule as a rigid body, modelling the three translational and

three librational modes. Values for 𝛾 of between 2.3 and 5.3 were determined
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for a variety of models applied to the ADPs of HMT over the range of 15 to

298 K. For comparison, Equation 4.4, with the effective frequency given by

Equation 4.5, was used to fit the 𝑈11 values of the O(1) atom. The thermal

expansion 𝜒𝑇 was fitted to the function 𝑎1𝑇 + 𝑎2𝑇
2 after Schwarzenbach et al.28

and the harmonic frequency was treated as a fitting parameter. The dashed line

in Figure 4.6 represents the quasi-harmonic fit, which models the temperature

dependence significantly better than the harmonic model, although a multi-

frequency model would yield an even better fit. The fit gives a value of 3.0(5) for

the Grüneisen parameter. It has been shown by Bürgi that multi-temperature

ADP data can, with a number of approximations, be used to determine correlated

motions between different atoms.27,29 The ADPs give information on the motions

of individual atoms; information on the motion of atoms relative to each other is

not available in a single diffraction experiment. Another potential use of multi-

temperature MD simulations is to evaluate and study further Bürgi’s approach.

Figure 4.7: Bonded distance corrections (𝑟e − 𝑟a, MD) as a function of
temperature. The lines through the points are provided as a guide.

As well as studying the harmonic information contained in the ADPs we can
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look at the distance corrections and the numerical PDFs. Figure 4.7 shows the

bonded distance corrections as a function of temperature. The C–D corrections

rise to very large values of ∼ 0.1 Å. As we might expect from the ADP behaviour

the correction begins to plateau at higher 𝑇 . In contrast the smaller C-N and

N-O(1) corrections continue to rise. This tallies with the concept of positive

anharmonicity, where the free-energy surface appears more anharmonic as the

temperature rises. We can correlate this with the PDFs: Figure 4.8 shows the

O atom 𝑥𝑧 PDF at 15 K and 228 K. At 15 K the PDF appears reasonably

Figure 4.8: O(1) atom 𝑥𝑧 2-D PDF at 15 K and 228 K. The 𝑥 axis corresponds
to the longest principal axis of the harmonic ellipsoid, while the 𝑧 axis is the
shortest axis.

(a) 15 K (b) 228 K

elliptical. However, by 228 K the distribution is egg (or pear)-shaped. The D

atoms also have highly anharmonic distributions. In particular, the D(2) atom

PDF (Figure 4.9) does not resemble a Gaussian PDF at all. Such anharmonic

distributions can be fitted with a Gram-Charlier series or some other form of

probability distribution. This will be the focus of the following chapter.
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Figure 4.9: The 𝑥𝑧 2-D PDF of the D(2) atom at 228 K.

4.4 Conclusion

A series of empirical-potential path-integral MD simulations have been performed

on d3-nitromethane over the temperature range of 4.2 to 228 K. The results have

compared favourably to the existing low-temperature neutron diffraction datasets.

In particular, the experimental equilibrium structures have been determined

at 4.2 and 15 K. The corrections to atomic positions are large in magnitude,

ranging from 0.02 to 0.1 Å at 15 K. As a result, corrections to C–D distances,

intermolecular distances and torsions are large and significant, highlighting the

importance of including thermal motion effects in diffraction studies.

The use of the path-integral MD method has been crucial for determining the

distance corrections at such low temperatures. A comparison was made between

the full PIMD simulations and an approximation based on the work of Feynman

and Hibbs, which has been used a number of times for liquid simulations.

Unfortunately, the FH approximation substantially overestimates the swelling

effect of the quantum regime. This is most likely a result of the stronger intra-

and intermolecular forces found in the solid state.
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The temperature dependence of the ADPs and correction has also been explored.

The ADPs deviate significantly from the ideal behaviour expected for harmonic

oscillators. It has been shown that a simple quasi-harmonic model can model

the temperature dependence adequately. The deviations can be correlated with

the numerical PDFs and distance corrections. In studying nitromethane the MD

method has been applied to the important class of methyl groups, which are the

classical example of curvilinear/anharmonic motion. However, the simulation

also gives us a useful example of a skewed Gaussian distribution in the form

of the pear-shaped PDFs obtained for the O atoms at high temperatures. The

various numerical PDFs can be used to assess whether or not it may be possible

to simplify current methods of performing anharmonic refinements, enabling the

routine analysis of anharmonicity in crystal structures.
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Chapter 5

Fitting anharmonic atomic

probability density functions
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5.1 Introduction

Molecular dynamics (MD) simulations can provide us with great insight into the

dynamics of molecular crystals. These insights can be particularly useful from the

point of view of crystallography as the preceding chapters have shown. While it is

very useful to be able to use MD simulations to determine equilibrium structures,

the ultimate focus of performing these types of simulations is to collection datasets

that can be used to assess the current and potential methods for modelling

anharmonic thermal motion.

In this chapter the numerical probability density functions (PDFs) of ammonia,

nitromethane and two other compounds have been modelled using a variety of

different functions. This study is by no means complete but should serve to

demonstrate how useful the numerical datasets can be. With the numerical PDFs

we can assess how well the probable (rp; defined in Section 1.3.2) and equilibrium

positions of atoms agree. Such a comparison is only possible with a theoretical

dataset and is very important for understanding whether it is possible to compare

theoretical and (anharmonically refined) experimental structures directly without

the need for some form of correction. Initial results suggest that the differences

may be significant, preventing the routine determination of equilibrium structures

from experimental data alone. As a further example of the usefulness of the MD

datasets, two new types of anharmonic PDF are tested by fitting to the various

numerical PDFs.

5.2 Simulation and analysis methods

5.2.1 MD simulations

The results of a number of MD simulations are presented and used in this chapter.

The details of the simulations of ammonia and nitromethane are detailed in

Sections 3.2 and 4.2.1 respectively. In the case of ammonia, only the results

of the DFT simulations are used here.
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Urea-phosphoric acid (1:1)

The 1:1 adduct of urea and phosphoric acid (UPA) has attracted considerable

interest in the literature owing to the short, strong hydrogen bond between the

urea oxygen proton and an oxygen of phosphoric acid (Figure 5.1). UPA has been

studied using neutron diffraction1 and computational methods, including plane-

wave DFT.2,3 The experimental and theoretical results show that the proton

migrates from the urea to the phosphoric acid as a function of temperature

and that its effective potential is likely to be skewed, particularly at lower

temperatures.

Figure 5.1: Molecular structure of the 1:1 adduct of urea and phosphoric acid.

Simulations of UPA were performed at 150 K and 350 K. The simulations were

carried out on unit cells (fixed at the experimental cell vectors) using the CPMD

code4 and simulation method.5 The plane-wave cut-off energy was 1400 eV and

Troullier-Martins norm-conserving pseudopotentials were used to represent the

core-valence interactions.6 The PBE functional7 was used to model the exchange

and correlation energies. An electronic timestep of 0.0725 fs was used. The

temperature was regulated using a chain of Nosé-Hoover (NH) thermostats for

the ions and the electrons. The 150 K MD simulation was run for a total of 24 ps,

while the 350 K simulation was run for 30 ps, with data being collected every fifth

CPMD step in both simulations. Analysis of the trajectories was carried out in

a similar fashion to that for ND3 using the same Fortran90 code (Section 3.2.3).
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Dimethyl-urea oxalic acid (2:1)

The 2:1 adduct of dimethyl and urea oxalic acid (DMUOX) (Figure 5.2) is another

structure that features short, strong hydrogen-bonding behaviour. Gaussian

plane-wave (GPW) DFT8 MD simulations of phase I of DMUOX9 were performed

by Dr. C. A. Morrison using the CP2K program.10 The electronic wavefunction

was represented in real space using double-𝜁 Gaussian basis functions with

polarisation functions,11 while plane-waves were used in reciprocal space to

represent the electron density. A density cut-off energy of 4000 eV was used.

Valence-core interactions were modelled using the GPW-optimised analytical

pseudopotentials of Goedecker, Teter, and Hutter.12,13 An NH chain was used to

regulate the temperature during a Born-Oppenheimer MD simulation. A timestep

of 0.55 fs was used for each simulation.

Figure 5.2: Molecular structure of the 2:1 adduct of Dimethyl-urea and oxalic
acid.

Initial analysis of the trajectory from a 350 K simulation showed that a significant

amount of methyl group rotation was occurring. The trajectory was analysed

further using the same method as for UPA and ND3. For brevity, only the PDF

of the H atom marked by an asterisk in Figure 5.2 is discussed here.

108



5.2.2 Analysis and fitting of probability density functions

The MD trajectories were used to determine numerical PDFs by “binning” each

position adopted by an atom over the course of the MD simulation. This

procedure results in 3-D histograms, which when normalised yield a PDF. 2-

D and 1-D PDFs that represent marginals of the 3-D PDF with one or two

variables integrated out, were determined in a similar fashion, or where the 3-

D distribution was determined on the fly, by numerical integration of the 3-D

distribution and re-normalisation. In most cases the histograms were determined

in the coordinate system of the harmonic approximation so the distributions

were centred on the numerical mean and orientated so that 𝑈𝑖𝑗 = 0 (𝑖 ̸= 𝑗),

with the longest principal axis directed along the 𝑥 axis and the shortest along

the 𝑧 axis. Visualisation and manipulation of the data are greatly simplified

in this coordinate system. For nitromethane the on-the-fly distributions were

determined with a histogram of 2003 bins. The process of analysing the datasets

used only 1003 bins as this grid was more than sufficient for fitting the PDFs. The

2003 histogram was orientated and then re-binned to produce the coarser PDF.

An artefact of this process was that this process introduced some high-frequency

noise into the datasets. To aid visualisation, a low-pass Fourier filter may be

applied to the numerical distribution.

The analysis and fitting of PDFs has been carried out using the Mathematica

program,14 with the fitting of the various models performed using the

NonlinearRegress function. This uses a variety of fitting methods to find the

best possible fit of a function to a dataset. It provides uncertainties and can also

provide estimates of correlations. However, the latter is a time-consuming process.

The maximum or mode of a distribution was found using the FindMaximum

function in Mathematica. The function does not provide uncertainties and

evaluating them would be difficult. It is a reasonable assumption that the

maximum has an uncertainity similar to (but perhaps slightly larger than) that

of the refined mean position. These are still smaller than typical experimental

values. It is convenient to have a measure of how well a particular function fits

the numerical PDFs. This is defined in a similar manner to the 𝑅 factor in
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crystallography:

𝑅 =

∑︁
|𝑃𝑛(u) − |𝑃𝑓 (u)||∑︁

𝑃𝑛(u)
× 100, (5.1)

where 𝑃𝑛 is the numerical (or observed) PDF and 𝑃𝑓 is the model or fitted PDF.

By definition 𝑃𝑛 must be positive over all space and so there is no need to take

its modulus. It is hard to assess what a good 𝑅-factor is for this situation so the

𝑅 factor should simply be taken as a measure of the relative quality of the fit of

two models to the MD dataset. Note that if high-frequency noise is present in

the numerical dataset (as a result of the binning process or a short trajectory)

this will adversely affect the 𝑅 factor but should not affect the fitting process as

this focuses on the broad, low-frequency features of the distribution.

5.3 Positions and variances

5.3.1 Harmonic and anharmonic means and variances

The Gaussian approximation of thermal motion (Section 1.3.1) has remained the

most widely used method in crystallography due to its simplicity. The functions

involved can be readily implemented in refinement software and the values of

parameters determined can be interpreted with ease. It determines the mean (or

time-averaged) position of the atom and the variance of the PDF. The variance

is in part a measure of the size or extent of the PDF and therefore how far

the atom moves from the mean position. In contrast the statistical methods

for incorporating anharmonicity involve much more complex equations and yield

parameters such as quasi-moments that are difficult to relate to the physics or

chemistry of the crystal in question. However, it is important to note that the

mean and variance determined from a harmonic fit may differ from the true

mean, ⟨𝑢⟩ (the average position adopted by the atom over time), or variance,

⟨𝑢2⟩ (the average square displacement from the mean), that is obtained from the
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true probability function, 𝑃 , by integration:

⟨𝑢𝑛⟩ =

∫︁ ∞

−∞
𝑢𝑛𝑃 (𝑢) d𝑢. (5.2)

If the distribution is centred on the mean then ⟨𝑢1⟩ = 0 and ⟨𝑢2⟩ is the

variance. Some forms of anharmonic PDF [such as the Gram-Charlier (GC) series

(Equation 1.28)] are formulated so that the mean and variance are determined

directly as the parameters of the harmonic part of the PDF. There have only

been a few studies that have considered the difference between the harmonic

and anharmonic values. Scheringer15 has shown that the differences between

the harmonic and anharmonic mean bond lengths (i.e. the distance between the

mean position of two atoms) of urea were of the order of 0.002–0.01 Å at room

temperature. This effect seems small but could still be significant for a precise

experiment. It is therefore useful to use the MD-derived numerical PDFs to assess

how important this issue might be.

The true mean and variance of a PDF can be readily calculated numerically using

Equations 3.2 and 3.3. The term “numerical” will be used to refer to the values

calculated directly from the trajectory in this fashion. The difference between

means obtained from harmonic and anharmonic models can be determined by

fitting the MD-derived PDFs to a harmonic PDF and to a GC PDF, respectively.

To simplify the analysis each of the MD-derived numerical datasets has been

centred on the numerical mean position and oriented along the eigenvectors of

the numerical co-variance matrix. For a harmonic system these eigenvectors

correspond to the principal axes of the thermal ellipsoid. The Gaussian PDF

used to model the data was of the form:

𝑃 (v) =
𝑑𝑒𝑡(U−1/2)

8𝜋3
exp(−1

2
v𝑇U−1v), (5.3)

where U is the co-variance matrix and v = (𝑥 − 𝑢1, 𝑦 − 𝑢2, 𝑧 − 𝑢3) so that the

mean position is given by x = (𝑥, 𝑦, 𝑧). (PDFs used in crystallography are usually

defined as describing the Cartesian displacement, u, about a fractional mean, x.)

As the PDF is orientated along the numerical principal axes, the co-variance
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matrix was chosen to be of the form,

U =

⎛⎜⎜⎜⎝
𝑈11 0 0

0 𝑈22 0

0 0 𝑈33

⎞⎟⎟⎟⎠ . (5.4)

The GC series PDF is of the same form as Equation 1.28. Equation 1.27 defines

Hermite polynomials, 𝐻𝑗𝑘𝑙, centred on the mean position (where u = 0 by

definition). This expression results in the correct definition of the Debye-Waller

factor for use in crystallographic refinements but for refinements of the numerical

PDFs in real space it is necessary to include parameters for the mean:16

𝐻(v)𝛼𝛽𝛾... = (−1)𝑝 exp

(︂
1

2
𝑈−1
𝑗𝑘 𝑣

𝑗𝑣𝑘
)︂[︂

𝜕𝑝

𝜕𝑣𝛼𝜕𝑣𝛽𝜕𝑣𝛾...
exp

(︂
−1

2
𝑈−1
𝑗𝑘 𝑣

𝑗𝑣𝑘
)︂]︂

, (5.5)

where all indices that are repeated twice are implicitly summed over

𝑗, 𝑘, 𝛼, 𝛽, 𝛾, ... = 1, 2, 3 and the order of the polynomial, 𝑝, is given by the

number of subscripts on 𝐻. The use of a diagonal co-variance matrix greatly

simplifies the resulting polynomials, speeding up the fitting process. The resulting

polynomials are also directed along the principal axes of thermal motion, an

advantage which will be discussed further in Section 5.4. Equation 5.5 generates

10 unique third-order polynomials and 15 unique fourth-order polynomials. The

odd-order polynomials skew the distribution in a variety of ways, changing the

mean and probable positions of the distribution, while the even-order terms affect

the variance and “peakedness”.

Table 5.1 lists the mean positions (𝑥, 𝑦, 𝑧) obtained fitting the numerical PDFs

for ammonia, nitromethane and UPA to harmonic PDFs (Equation 5.3), and

anharmonic PDFs using third-order GC series PDFs. An advantage of the GC

series is that the mean is still given by the harmonic part of the distribution.

In general the difference between the numerical (i.e. the raw MD) and harmonic

means is less than 1 pm (10−12 m). Only for the D(1) atom of nitromethane at

the high temperature of 228 K is the value larger than 1 pm. For all but one case,

the use of the GC series improves the agreement between the fitted mean and the

112



numerical value. For the D(1) atom at 228 K the agreement is made worse but

the strong, curvilinear anharmonicity of the D atoms in nitromethane is likely

to be difficult to represent adequately with just a third-order GC series (see

Section 5.5), resulting in erroneous values. The number of values in Table 5.1

is not enough to draw any meaningful conclusion. However, it is encouraging

that the differences are relatively small (even at high temperatures) and that,

in general, the anharmonic model improves the agreement. This means that

the harmonic model is adequate for getting a good picture of the structure and

estimating the mean positions. Even the values for the D(1) atom of nitromethane

are small in comparison to the equilibrium positional corrections.

Table 5.1: Harmonic and anharmonic mean of selected atomic PDFs. The
numerical mean is (0, 0, 0).

Harmonic mean / Å Anharmonic mean / Å
Atom 𝑇 / K 𝑥 𝑦 𝑧 𝑥 𝑦 𝑧

D – ND3 180 −0.0037(2) −0.0056(2) −0.0027(1) −0.0021(4) −0.0005(3) 0.0010(3)
C – MeNO2 15 −0.0001(2) −0.0007(2) −0.0002(1) 0.0000(3) 0.0000(2) 0.0001(2)

D(1) – MeNO2 15 0.0077(3) −0.0031(1) −0.0087(1) −0.0005(4) 0.0006(2) 0.0009(1)
O(1) – MeNO2 15 0.0004(2) −0.0006(2) 0.0013(1) 0.0000(3) −0.0001(3) −0.0002(2)

C – MeNO2 228 −0.0029(1) −0.0006(1) −0.0015(1) −0.0002(2) 0.0001(2) −0.0008(2)
D(1) – MeNO2 228 0.0072(5) 0.0085(3) −0.0151(1) −0.0088(7) 0.0243(3) 0.0259(3)
O(1) – MeNO2 228 0.0051(1) −0.0048(1) 0.0071(1) −0.0005(3) 0.0000(2) 0.0000(1)

H – UPA 150 −0.0011(1) −0.0028(1) 0.0009(1) 0.0018(3) −0.0007(2) −0.0006(1)
H – UPA 350 −0.0070(3) 0.0046(3) −0.0005(2) 0.0043(6) 0.0033(5) −0.0007(4)

The variance of the PDF is affected only by even-order terms in a polynomial

expansion. A harmonic PDF models the atom as having a quadratic free-energy

surface. Higher-order polynomial terms permit the potential to be broader or

steeper than this. For a nearly-Gaussian distribution the three 𝐻𝑖𝑖𝑖𝑖 (𝑖 = 1, 2, 3)

polynomials will have the most important contribution if these polynomials are

directed along the principal axes of the system. This is because in this case

they are functions of only a single variable (like in Figure 1.4) and will affect

the peakedness of the three orthogonal directions separately, in keeping with the

approximation of independent variables implicit in the Gaussian approximation.

A GC series with only the fourth-order diagonal, 𝐻𝑖𝑖𝑖𝑖, terms was used to fit a

number of PDFs; the harmonic, anharmonic and numerical values of the largest of

the three variances, 𝑈11, are given in Table 5.2. In the case of the C and O atoms

of nitromethane, small differences are seen between the harmonic and numerical
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values. The anharmonic fit improves the agreement in some cases but taking

the uncertainties into account the discrepancies are not significant. However,

for the D atoms of ND3 and nitromethane large and significant differences are

found between the harmonic and numerical values. For the D atom of ND3 the

anharmonic model reduces this difference to within error. The disagreement is

particularly serious at 228 K for the D(1) atom with the harmonic value being

nearly 33% larger than the numerical value. The inclusion of the 𝐻1111 parameter

does improve the agreement significantly. A full third- and fourth-order GC series

would improve things further but higher-order terms might still be important.

Figure 5.3 shows the numerical 2-D 𝑥𝑧 and 1-D 𝑥 PDFs of the D(1) atom at 228 K,

which clearly illustrate the high degree of anharmonicity that leads to both the

harmonic and anharmonic fits deviating from the true mean and variance values.

Table 5.2: Harmonic, anharmonic and numerical values of 𝑈11 (in Å2) for a
series of atomic PDFs.

Atom 𝑇 / K Harmonic Anharmonic Numerical

D – ND3 180 0.03443(6) 0.03575(17) 0.03555(3)
C – MeNO2 15 0.00980(3) 0.00978(6) 0.00968(1)

D(1) – MeNO2 15 0.08342(10) 0.07626(20) 0.08065(4)
O(1) – MeNO2 15 0.01046(3) 0.01049(7) 0.01041(1)

C – MeNO2 228 0.04646(5) 0.04692(10) 0.04699(5)
D(1) – MeNO2 228 0.38550(60) 0.25840(40) 0.28068(15)
O(1) – MeNO2 228 0.07803(7) 0.07871(10) 0.07929(8)

The data in Tables 5.1 and 5.2 highlight the importance of remembering that the

mean and variance determined by the standard harmonic model are still primarily

fitting parameters. While they may and often are close to or within the error of

the true mean or variance, their physical significance cannot be taken for granted.

The temperature dependence of the ADPs (see Section 4.3.4 for an example) may

give an indication of where this might be an issue.

5.3.2 Probable and equilibrium position

A single diffraction experiment tells us about the 3-D effective free-energy surface

that an atom experiences in the mean field of the motions and interactions of the
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Figure 5.3: Nitromethane D(1) atom PDFs at 228 K obtained by integrating
3-D PDFs.

(a) 1-D 𝑥 (b) 2-D 𝑥𝑧

other atoms in the system. A 3-D PDF describes how the atom moves on this

surface. Its maximum or mode (i.e. where the derivative is zero) corresponds to

the minimum of the surface. This mode position is termed rp, with p standing for

probable. If the potential is harmonic, then this probable position will correspond

to the average position the atom adopts over time, ra. For a harmonic system this

also corresponds to that atom’s minimum on the (3𝑁 −3)-dimensional potential-

energy surface, otherwise known as its equilibrium position, re. If, the effective

surface is anharmonic, then the fitted mean, probable and equilibrium positions

may all differ.

Relating the potential and free-energy surfaces to each other requires some

assumptions or the use of theory. The MD simulations allow us to determine the

mean and probable positions, while geometry optimisations yield the equilibrium

geometry of the system. We can therefore use the MD datasets to see how the

probable and equilibrium positions compare.

Nitromethane

It is best to consider a case in which the positional corrections should be quite

large to ensure that limitations of the anharmonic model (particularly in the
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definition of means etc.) do not affect the results. The magnitude of the positional

correction to the nitromethane D(1) atom is 0.1153 Å at 15 K. In the thermal

motion coordinate system (i.e. centred on the numerical mean and principal axes)

rp, GC was, in Å, (0.0151,−0.0063,−0.0173) when modelled with a third-order GC

series PDF. The numerical correction from the mean (0, 0, 0) to the equilibrium

position, re, is (0.1149,−0.0033,−0.009). The difference between the equilibrium

and probable positions is very large and naturally discouraging. Figure 5.4 shows

the numerical 2-D 𝑥𝑧 PDF of the D(1) atom at 15 K with equilibrium and third-

order GC probable positions marked. It is clear the the discrepancy is not a

result of the probable position being wrong: the GC determined maximum is

clearly very close to the maximum of the numerial PDF, which in turn is far

from the equilibrium position. A similar situation is found for the other D atoms

as well, with the majority of the equilibrium correction being along the longest

principal axis in each case. This implies that the methyl group rotates going from

the equilibrium to probable structure. The value of rp − ra is very small for the

C atom, with a magnitude of only 0.0016 Å. The magnitude of the equilibrium

correction is much bigger at 0.0365 Å. Similar corrections are seen for the other

heavy atoms. In general there is a large contribution to the equilibrium correction

for each atom that grows with temperature and is not accounted for by the

probable correction. However, for the D(2) atom the magnitude for the correction

is ∼ 0.057 Å over the full temperature range. This may be a result of the “static”

equilibrium correction cancelling the part that arises from thermal motion.

Ammonia

For the D atom of ammonia the agreement between the probable and equilibrium

corrections is much better, with re − rp = (−0.0012,−0.0043,−0.0013). The

magnitudes of the corrections are much smaller than in nitromethane with |re|

being only 0.0176 Å, and taking the uncertainties in the positions and the nature

of the fitting process into account, the differences between the probable and

equilibrium positions are not that significant. The small size of the corrections

may stem from the much higher symmetry of the ammonia crystal structure.
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Figure 5.4: The 𝑥𝑧 2-D PDF of the D(1) atom at 15 K. The black dot indicates
the third-order GC probable position, while the white dot is the equilibrium
position.

This makes the potential and free-energy surfaces less complicated.

UPA

The migratory proton of UPA has, as we might expect from its behaviour, a non-

Gaussian PDF. The 150 K distribution [shown in Figure 5.5(a)] is asymmetric or

egg-shaped. The distribution features far more high-frequency noise compared to

the nitromethane and ammonia distributions because the size and nature of the

nitromethane and ammonia simulations permitted longer trajectories and larger

datasets. In general, DFT-MD simulations will produce noisier distributions. At

350 K the distribution, which is shown in Figure 5.5(b), appears to be more

Gaussian like. The shape and temperature dependence of the free-energy surface

of the migratory proton has been of considerable interest in recent publications.2,3

A consequence of thermal expansion is that different cell vectors were used for

the two simulations. This means that the equilibrium positions must be different

in the two structures. However, the equilibrium O–H and O· · ·H distances are

not affected by this; the latter is 1.344 Å at 150 K and 1.346 Å at 350 K. To

determine the probable positions of the two O atoms and the H atom a third-
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order GC series was fitted to each of the MD datasets at both temperatures. The

equilibrium position of the H atom at 150 K (relative to the numerical mean) is

(−0.0169, 0.0273, 0.0104). The GC probable position is (−0.0212, 0.0056, 0.0024)

giving magnitudes of 0.0338 Å for the equilibrium correction and 0.0225 Å for the

probable (GC) correction. At 350 K the equilibrium correction for the H atom

is 0.0677 Å but the probable correction is only 0.0190 Å. A more direct measure

of how the system changes would be to compare the probable bond lengths at

the two temperatures. At 150 K 𝑟O–H = 1.1089 Å and 𝑟O· · ·H = 1.3289 Å. At

350 K 𝑟O–H = 1.1468 Å and 𝑟O· · ·H = 1.2981 Å. The minimum of the effective

potential might change due to the change in cell vectors but if the potential is the

same at the two temperatures then the bond lengths calculated from the probable

positions (rp) should be the same.

This illustrates that for atoms with very shallow potential-energy surfaces (such

as that for a migratory proton) the probable position may be unsuitable for

determining “equilibrium” bond lengths. However, in fitting the anharmonic

PDF we do learn a considerable amount about the proton’s migration. In the

past simulations have been used to get this sort of information but if sufficient

quality data are collected then the anharmonicity and temperature dependence

of the potential could be studied experimentally.

Figure 5.5: The simulated 𝑥𝑧 2-D PDF of the migratory H-atom of UPA.

(a) 150 K (b) 350 K
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Experimental equilibrium structures

The MD simulations allow us to determine experimental equilibrium structures

but at significant cost in terms of computational time and effort. While this

might change with better theoretical methods and computational hardware

and software for the present it would be highly desirable to determine the

equilibrium geometry directly from the experiment without the need for time-

consuming MD simulations. This goal was a major motivation for the present

work. Unfortunately, the results of the calculations to date, particularly for

nitromethane and UPA, suggest that this will not be possible, because there are

large differences between correction to the equilibrium position and that to the

most probable position. In nitromethane the effect is quite large and repeated

attempts were made to optimise the equilibrium geometry to ensure it represented

the true minimum. However, annealing MD simulations (where the temperature

is gradually lowered to 0 K) starting from 40 and 100 K both gave essentially the

same equilibrium geometry and position corrections as the initial optimisation.

That we can not determine equilibrium geometries experimentally is naturally

quite discouraging but it is physically reasonable. The structure factor relies on

an assumption that each atom can be treated independently: we only obtain a

picture of what an atom does in the mean field of all the other (vibrating) atoms.

This is a further manifestation of the phase effect. The 3-D PDFs obtained from

a diffraction experiment are marginals of the full PDF that corresponds to the

(3𝑁−3) dimensional free-energy surface. The minimum of this distribution might

well provide a better estimate of an equilibrium geometry. Constructing such a

(3𝑁 − 3) distribution is difficult without any information on the correlation of

each 3-D PDF with another to each other.17,18 The correlations do affect the

shape of the 3-D distributions and as Bürgi et al. have shown18–20 this sort of

information is obtainable from multi-temperature analyses.

It should be stressed that the present study is limited to only a few compounds.

A broader study is necessary for firm conclusions. Such a study might extract

information on correlations from the MD simulation and use them to calculate
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the full (3𝑁 − 3) PDF, which may shed light on whether the corrections found

in nitromethane and the other molecules do make sense physically.

Nevertheless, the refinement of probable positions is still very useful for a number

of reasons. First, the 𝑅 factor and therefore reliability of the structure will be

greatly improved for systems where anharmonic motion is important. It is quite

likely that a number of structures are deemed unacceptable for publication or

deposition simply because the approximation of thermal motion is inadequate.

Secondly, the correlations between atoms will still be apparent in the 3-D

PDFs. We would expect that bonded distances and angles will be very close

to their equilibrium values because of the strength of bonding interactions.

At the very least the probable and anharmonic mean are more useful and

meaningful parameters to report than the harmonic mean alone. The C–D(1)

bond length obtained from the probable positions of the C and D atoms at 15 K

is 1.0886 Å. The equilibrium value is 1.0880 Å. The close agreement is perhaps

somewhat fortuitous as improvements could be made to the anharmonic model

(see Section 5.5) but the result is at least encouraging.

5.4 Orientation of anharmonic PDFs

The preceding sections have employed GC series centred and orientated along the

principal axes of thermal motion using a coordination transformation based on

the numerical co-variance matrix. In crystallographic use the GC series is defined

by Equation 1.27, with the standard co-variance matrix, U, having non-zero

off-diagonal elements.16 Perhaps surprisingly, the resulting Hermite polynomials

are not directed along the crystallographic axes nor are they directed along any

particularly significant directions (unless symmetry dictates that this be the case).

This can be illustrated using 2-D Hermite polynomials. Figure 5.6(a) shows a

bivariate normal distribution, while (b) and (c) show the skewing effect of 𝐻111

and 𝐻222. Neither of the two skewing functions is directed along the principal

axes of the PDF. In the case when 𝑈𝑖𝑗 = 0 they are directed along the principal

axes.
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Figure 5.6: Effect of Hermite polynomials on a bivariate Gaussian PDF with
𝑈11 = 1, 𝑈22 = 2

3
and 𝑈12 = 1

2
.

(a) 2-D PDF (b) PDF(1 + 0.1𝐻111) (c) PDF(1 + 0.1𝐻222)

For some situations, such as when the three 𝑈 values of an atom are very

similar or there is a very complex and anharmonic distribution, the standard

crystallographic formulation is perfectly acceptable. However, for some simpler

forms of anharmonic PDF it may be more economical to use only a few

Hermite polynomials and then refine the three parameters that orientate them.

Alternatively, the axis system dictated by the harmonic approximation could

be used. In nitromethane the anharmonicity in the D atoms is clearly along

the largest principal axis. We can compare the general third-order GC fit of

one of the PDFs with a fit orientated in the principal axis system. For this

comparison, the distributions have both been centred on the anharmonic mean.

The general GC expressions become far more complex if the mean is included in

the anharmonic part so for both the general and orientated fits the mean has been

fixed at the anharmonic value of (0, 0, 0). In a crystallographic refinement the

“mean” is fitted separately from the Debye-Waller factor. The resulting third-

order quasi-moments for the D(1) atom at 15 K are given in Table 5.3. All ten

of the general GC series quasi-moments are large and significant as the 𝑐𝑖𝑗𝑘/𝜎𝑐𝑖𝑗𝑘

values show. In comparison the oriented distribution has only three large values,

𝑐111, 𝑐112 and 𝑐113. The remaining seven quasi-moments are quite small and their

corresponding contributions to the probability function are negligible compared

to the other three. Another benefit of the orientated frame of reference is that

we can associate the quasi-moments with specific contributions. For example,

without plotting any density maps, we know that 𝐻111 skews the PDF along
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Table 5.3: Third-order quasi-moments (in Å3) for the general and orientated
fits of the D(1) atom of nitromethane at 15 K. The pre-factor and multiplicities
required for use in a crystallographic refinement have been omitted.

General Orientated
𝑐𝑖𝑗𝑘 𝑐𝑖𝑗𝑘/𝜎𝑐𝑖𝑗𝑘 𝑐𝑖𝑗𝑘 𝑐𝑖𝑗𝑘/𝜎𝑐𝑖𝑗𝑘

𝑐111 0.000114 100 -0.000593 48
𝑐222 -0.000381 277 0.000006 5
𝑐333 0.000025 113 -0.000001 2
𝑐112 -0.000155 52 0.000524 41
𝑐122 -0.000542 166 0.000059 9
𝑐133 -0.000184 213 0.000018 6
𝑐113 0.000550 376 0.001314 140
𝑐123 0.001457 530 0.000061 9
𝑐223 0.000896 550 0.000046 21
𝑐233 -0.000211 238 -0.000008 5

the longest principal axis. At higher temperatures all of the 𝑐𝑖𝑗𝑘 values become

significant but the 𝑐111, 𝑐112 and 𝑐113 values still give the largest contribution,

being more than a order of magnitude bigger than the other values.

The general GC series Debye-Waller factor (Equation 1.31) is formulated along

the crystallographic axes (in keeping with its definition in real space). To use

another axis system we must modify the structure-factor equation accordingly.

The key component is the transformation matrix, A, that relates the crystal

lattice axes to the desired axis system. We need to transform the orientated U

matrix and GC coefficients into the crystal frame of reference. The matrices of

third- and higher-order GC polynomials are contravariant tensors.21,22 This means

that the same transformation that changes the basis of the crystallographic lattice

applies to them. The matrix of coefficients of contravariant tensors (such as the

matrix of 𝑐𝑖𝑗𝑘 values or the fractional coordinates) transform with the inverse

transpose transformation matrix and are referred to as covariant tensors. For an

𝑛th order tensor the transformation from L to L̂ is given by:

𝐿̂𝑖𝑗𝑘... = 𝑇𝑖𝑞𝑇𝑗𝑟𝑇𝑘𝑠....𝐿𝑞𝑟𝑠.. 𝑖, 𝑗, 𝑘, 𝑞, 𝑟, 𝑠 = 1, 2, 3 , (5.6)

where T is the appropriate contra- or co-variant 3×3 transformation matrix and

all indices appearing twice are implicitly summed over. The one-particle potential
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(OPP) method (Section 1.3.3) is typically formulated along the principal axes of

thermal motion and features a power series similar to the GC series. Tanaka and

Marumo23 derived the required expressions for the harmonic and anharmonic

parts of an OPP structure factor oriented along an arbitrary set of axes. In their

notation,

A =

⎛⎜⎜⎜⎝
a1.i a2.i a3.i

a1.j a2.j a3.j

a1.k a2.k a3.k

⎞⎟⎟⎟⎠ , (5.7)

where a𝑖 is the 𝑖th lattice vector, i, j and k are the unit vectors along the desired

axis system. To orientate the probability distribution along the principal axes

of thermal motion, the vectors i, j and k should be derived from the eigenvector

matrix of U (defined in the crystallographic basis). The eigenvector matrix can

either be found numerically or take the analytical form of Kronenburg.24 The

inverse transformation is given by:

A−1 =

⎛⎜⎜⎜⎝
b1.i b1.j b1.k

b2.i b2.j b2.k

b3.i b3.j b3.k

⎞⎟⎟⎟⎠ , (5.8)

where b𝑖 is the 𝑖th reciprocal-lattice vector. The harmonic Debye-Waller factor

orientated along the crystal lattice [H = (ℎ, 𝑘, 𝑙);Q = 2𝜋Hb, where b =

(b1,b2,b3)
𝑇 ] but using the desired U matrix is given by:

𝑃 (Q) = exp(−2𝜋2H𝑇A−1UcA
−1𝑇H) (5.9)

where A𝑇 is the transpose of A and Uc is the diagonal variance matrix in the

preferred coordinate system. The anharmonic part of the structure factor can

be obtained using Equation 5.6 and the appropriate transformation matrix. In

Tanaka and Marumo’s notation letting Q = 2𝜋HA−1 produces the correct power-

series expansion.
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5.5 Curvilinear PDFs

5.5.1 Hermite polynomials

For molecular crystals the most important form of anharmonic motion is

librational or curvilinear motion. The GC and Edgeworth series, both of which

use Hermite polynomials in real space, have been applied a number of times

to model such motion.25 As well as statistical methods, kinematic models (see

Section 1.3.3) have also been employed. As the statistical series expansions are

nearly always truncated to third or occasionally fourth order it is difficult to assess

their merit in modelling the true PDF. For a third-order GC series, the bending

of a distribution is achieved primarily using the 𝐻𝑖𝑖𝑗 (or 𝐻𝑖𝑗𝑗) polynomials, as

we have seen above for nitromethane. Figure 5.7 shows the probability density

contribution of a bivariate 𝐻122 polynomial. The density contribution of a

polynomial is given by 𝑃 (u)harm × 𝑐𝑖𝑗𝑘...𝐻(u)𝑖𝑗𝑘.... It is evident from Figure 5.7

(and the appropriate equations) that 𝐻𝑖𝑗𝑗 bends the 𝑗th axis about the 𝑖th one.

Figure 5.7: The probability density associated with a bivariate Hermite
polynomial, 𝐻122. (The 𝑥 axis is horizontal; dark probability densities indicate
negative contributions while lighter indicates positive contributions.)
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5.5.2 Parabolic coordinate system

As well as perturbing a Cartesian Gaussian PDF with polynomials we might

also consider a change of the coordination system. In particular, librational

motion could be represented as having a circular, parabolic or higher-order even-

polynomial path. Following a suggestion by Dr. K. R. McLean26 we consider a

parabolic transformation of the coordinates, u, of a trivariate Gaussian:

𝑢̂1 = 𝑢1

𝑢̂2 = 𝑢2 + 𝑘1𝑓(𝑢1)

𝑢̂3 = 𝑢2 + 𝑘2𝑓(𝑢1),

(5.10)

where 𝑓(𝑢1) is a function of 𝑢1, which for a parabolic transformation is given

by 𝑢21 and 𝑘1 and 𝑘2 are the bending constants. This transformation turns lines

parallel to the 𝑦 and 𝑧 axes into parabolas, bending the coordinate system along

the 𝑥-axis. For simplicity we can formulate the PDF in a coordinate system

where 𝑈𝑖𝑗 = 0; the methods outlined in the previous section can be used to give

a general PDF, which takes the form:

𝑃 (û) =
𝑑𝑒𝑡(U−1/2)

8𝜋3
exp

[︂
1

2

(︂
− 𝑢21
𝑈11

− (𝑢2 + 𝑘1𝑢
2
1)

2

𝑈22

− (𝑢3 + 𝑘2𝑢
2
1)

2

𝑈33

)︂]︂
. (5.11)

Figure 5.8 shows the density contribution of performing this change of basis from

Cartesian to parabolic coordinates. The function gives the desired curving effect.

A PDF of the form given in Equation 5.11 might be a better approximation for

a librating atom because the density contribution is more realistic for curvilinear

motion. The Hermite polynomial (Figure 5.7) has two nodes along the longest

axis, adding density near the mean, while it removes density further away. To

incorporate parameters representing the mean we can use a PDF of the form:

𝑃 (û) =
𝑑𝑒𝑡(U−1/2)

8𝜋3

× exp

[︂
1

2

(︂
−(𝑢1 − 𝑥)2

𝑈11

− (𝑢2 + 𝑘1𝑢
2
1 − 𝑦)2

𝑈22

− (𝑢3 + 𝑘2𝑢
2
1 − 𝑧)2

𝑈33

)︂]︂
,

(5.12)

where x = (𝑥, 𝑦, 𝑧) represents the mean when 𝑘1 = 𝑘2 = 0.

125



Figure 5.8: The difference density map [𝑃 (u)−𝑃 (û)] of a bivariate distribution
with 𝑢1 = 𝑢1+0.2𝑢22. (The 𝑥 axis is horizontal; dark probability densities indicate
negative contributions while lighter indicates positive contributions.)

Nitromethane

The D atoms of nitromethane represent a perfect system for studying modelling

of the librational motion of methyl groups. However, it is evident from the values

in Table 5.3 that the D(1) PDF is skewed as well as being bent. Therefore to

model the D atoms properly a PDF of the form:

𝑃 (û) (1 − 𝑐111𝐻111) , (5.13)

was used. The Hermite polynomials were defined using the normal Cartesian

Gaussian PDF. This skewed parabolic PDF gave an agreement factor of 13.6%

when fitted to the numerical PDF. The 16 parameter third-order GC fit (3 means,

3 variances and 10 quasi-moments) to the D(1) atom of nitromethane at 15 K gave

an 𝑅-factor of 14.3%, while the trivariate harmonic model gave a fit of 19.3%. The

difference between the GC and parabolic fits may not be significant statistically

but it is clear that they both provide a much better fit to the distribution than the

harmonic model. The full GC model has 7 more parameters than the parabolic

but if we restrict the GC series to the three most important parameters (cf.

Table 5.3) then they have the same number of parameters.

At 228 K the Gaussian PDF 𝑅-factor is 30.3%, while the GC and skewed parabolic
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fits give values of 23.1 and 22.3%, respectively. The GC and parabolic 𝑥𝑧 2-D

PDFs are shown in Figure 5.9(b) and (c) together with the numerical PDF.

While both distributions are bent, neither match the large asymmetry seen in

the numerical PDF. They also extend much further out than the numerical

distribution. In Section 5.3.2 it was shown how the fourth-order GC parameters

were important for representing the true variance (and hence size) of the D(1)

PDF. Including only the 𝐻111, 𝐻112 and 𝐻113 polynomials the agreement factor

is 24.1%, perhaps suggesting that the other parameters are still important at

higher temperatures. This is encouraging from the point of view of using the

parabolic PDF as it fits better with far fewer parameters. The 𝑘1 and 𝑘2 values

are -0.1614 and -0.2134 respectively. While these values have dimensions of Å−1,

it is important to remember the value of 𝑈𝑖𝑖 they are associated with. As 𝑈33 is

much smaller than 𝑈22 the 𝑥 axis will be bent mostly in the 𝑧 direction.

If we include the three diagonal fourth-order Hermite polynomials in the GC

model we obtain a fit of 18.5%, while with a distribution of the form

𝑃 (û)

(︃
1 − 𝑐111𝐻111 +

3∑︁
𝑖

𝑐𝑖𝑖𝑖𝑖𝐻𝑖𝑖𝑖𝑖

)︃
, (5.14)

a fit of 18.2% was obtained. The corresponding 2-D 𝑥𝑧 PDFs are plotted

in Figure 5.9(d) and (e). The inclusion of the fourth-order terms allows the

distributions to model the asymmetry much better. Visually, the agreement

could still be better; the extent of the PDF remains too large. The parabolic

PDF produces a more realistic curvature but evidently requires more even-order

Hermite polynomial terms to produce a better fit. Of the three diagonal terms

only the 𝐻1111 term seems important. Its value of −9.96 × 10−3 Å4 is two

orders of magnitude larger than the two other values. Examining the 𝑥𝑦, 𝑥𝑧 and

𝑦𝑧 2-D distributions it is clear that the vast majority of the anharmonicity is

the 𝑥𝑧 plane. In two dimensions there are only five unique fourth-order terms.

Adding the 𝐻1111, 𝐻1133, 𝐻1333 and 𝐻1113 Hermite polynomials to the expansion

in Equation 5.13 reduces the 𝑅 factor slightly but affects the visual appearance of

the distribution marginally suggesting that the 𝐻1111 term is the most important
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in this type of system and that a full fourth-order refinement might not improve

things that much. Adding in the sixth-order diagonal terms reduces the parabolic

PDF agreement index to 17.8% but the general shape is still very similar to that

in Figure 5.9(e).

Figure 5.9: 2-D 𝑥𝑧 PDFs of the D(1) atom of nitromethane at 228 K.

(a) Fourier-filter Numerical PDF (b) third-order GC series PDF

(c) Skewed parabolic PDF

(d) Fourth-order GC series PDF (e) Fourth-order skewed parabolic PDF

128



It is hard to assess the relative merit of the GC and parabolic refinements from

the 𝑅 factors alone. The maxima or modes of the respective PDFs may give

an indication of how well they model the data. For the full 3-D PDF the

fourth-order GC refinement [Figure 5.9(d)] the maximum, relative to the mean,

is (0.1875,−0.0090,−0.0529), while the fourth-order parabolic fit [Figure 5.9(e)]

has a 3-D maximum at (0.2995,−0.0052,−0.0343). The difference is quite large.

Interestingly, if we consider only the 𝑥𝑧 plane and integrate out the 𝑦 variable in

the PDFs the maxima are (0.274032,−0.0272024) and (0.290595,−0.0354248),

for the GC and parabolic fits, respectively. These positions are plotted on the

numerical 2-D 𝑥𝑧 PDF in Figure 5.10. To facilitate comparison, a low-pass

Fourier filter was applied to the numerical PDF. In 2-D there is little to choose

between the two positions. It does seem more realistic for the maximum of the 𝑥

coordinate in three dimensions to be close to that in two dimensions as is the case

with the parabolic distribution. In fact, looking at the 1-D and 2-D distributions

(Figure 5.3) it is evident that the maximum is broad and relatively poorly defined.

Fitting a third-order GC series to the C atom and using the parabolic maximum

for the D(1) atom, a probable C-D(1) bond length of 1.086 Å is obtained, which

compares well with the 𝑟e value of 1.089 Å. The GC series fit for the D(1) atom

gives a bond length of 1.074 Å.

Figure 5.10: Numerical 2-D 𝑥𝑧 PDF of the D(1) atom of nitromethane. The
black dot indicates the parabolic PDF maximum, while the white dot is the
maximum of the limited fourth-order GC series PDF.
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For the D(1) atom of nitromethane the parabolic PDF of Equation 5.14

consistently produced the best agreement with the numerical dataset. This is

in part because the direction of curvature matches the principal axes of thermal

motion quite well. The D(2) atom of nitromethane has a much more lop-sided

PDF [Figure 5.11(a)], which should favour the GC series over the parabolic PDF.

Fitting the limited fourth-order GC series leads to an 𝑅 factor of 17.9%, while

the fourth-order parabolic PDF gives a fit of 20.0%. Figures 5.11(b) and (c)

show the GC and parabolic 2-D 𝑥𝑧 PDFs. The skewness of the PDF is such

that the third-order 𝐻111 term dominates the parabolic distribution and leads

to regions of negative probability on the right-hand side of the plot. A smaller

region of negative probability is encountered in the fourth-order GC series. These

regions of negative probability are one of the main disadvantages of PDFs based

on polynomial expansions, although in some cases it is acceptable as long as the

regions are small.22,27 Noting that the 𝐻1111 term was the only fourth-order term

to be significant for the D(1) atom we can fit a distribution with the corresponding

sixth- and eighth-order terms:

𝑃 (û) (1 − 𝑐111𝐻111 + 𝑐1111𝐻1111 + 𝑐111111𝐻111111 + 𝑐11111111𝐻11111111) . (5.15)

This fit is shown in Figure 5.11(d). The agreement factor for this model is 16.1%.

Refining a third-order GC series with the fourth, sixth and eighth-order 𝑥 axis

terms leads to hardly any improvement over the fit shown in Figure 5.11(b). The

probable C-D(2) bond length with the parabolic model is 1.078 Å. The eighth-

order GC value is 1.068 Å. The equilibrium value is 1.089 Å, while the 𝑟a value

is 0.977 Å, showing that both fits capture most, if not all, of the desired distance

correction.
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Figure 5.11: 2-D 𝑥𝑧 PDFs of the D(2) atom of nitromethane at 228 K. The dark
purple region indicates the lowest probability, which in some cases is negative.

(a) Fourier-filtered numerical PDF (b) Fourth-order GC PDF

(c) Fourth-order parabolic PDF (d) Eighth-order parabolic PDF

DMUOX

The methyl groups of DMUOX provide a useful dataset to validate the results

obtained by applying the parabolic PDFs (Equations 5.13–5.15) to model the

PDFs of the D atoms of nitromethane. The PDF of a methyl hydrogen was fitted

using the limited fourth-order GC series and Equation 5.15 in the same way as for

nitromethane. As with nitromethane the fourth-order parameters were essential

to realistically model the asymmetry of the distribution. The numerical and

parabolic distributions are shown in Figure 5.12. The parabolic fit appears to be

quite good but the numerical distribution is particularly noisy, hindering proper

comparison between the parabolic and GC fits.
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Figure 5.12: 2-D 𝑥𝑧 PDFs of one of the H atoms of DMUOX.

(a) Numerical PDF (b) Fourier-filter numerical PDF

(c) Eighth-order parabolic PDF

Mean and variance

One of the strengths of the Gaussian, GC and Edgeworth series is that the

mean and variances of the model distribution are directly determined as fitting

parameters. The nature of the parabolic PDF results in the mean and variance

terms from a normal Gaussian distribution no longer corresponding to the actual

mean and variances of the distribution. Instead they must be found by applying

Equation 5.2. For a PDF of the form given by Equation 5.12 this gives the mean
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coordinates as

𝑢1 = 𝑥

𝑢2 = 𝑦 − 𝑘1(𝑥
2 + 𝑈11)

𝑢3 = 𝑧 − 𝑘2(𝑥
2 + 𝑈11).

(5.16)

Equation 5.2 yields the non-centred moments of the distribution. For 𝑛 = 1 this

gives the mean. For 𝑛 = 2 this gives the variance plus the mean squared. Thence,

combining Equations 5.2 and 5.16 yields variances of

𝜎2
1 = 𝑈11

𝜎2
2 = 𝑈22 + 2𝑘21𝑈11(2𝑥

2 + 𝑈11)

𝜎2
3 = 𝑈33 + 2𝑘22𝑈11(2𝑥

2 + 𝑈11).

(5.17)

Naturally, when 𝑘1 or 𝑘2 is zero then x and U have their usual significance as the

mean and co-variance matrix of the distribution.

Structure factor

To use the parabolic PDF in a crystallographic refinement we have to find its

Fourier transform or characteristic function. If we consider only curvature along

a single direction then letting 𝑘1 = 0 and 𝑘2 = 𝑘 in Equation 5.12 gives a

distribution of the form:

𝑃 (û) ∝ exp

[︂
1

2

(︂
−(𝑢1 − 𝑥)2

𝑈11

− (𝑢2 − 𝑦)2

𝑈22

− (𝑢3 + 𝑘𝑢21 − 𝑧)2

𝑈33

)︂]︂
. (5.18)

The characteristic function is found by by finding the expectation value of

exp(𝑖x.Q) [i.e. ⟨exp(𝑖x.Q)⟩]. This is given by

𝑃 (Q) = exp (𝑖(𝑦𝑄2 + 𝑧𝑄3)) × exp

(︂
−1

2
(𝑄2

2𝑈22 +𝑄2
3𝑈33)

)︂
× exp

(︂
− 𝑖(𝑥+ 𝑖𝑄1𝑈11)

2

2𝑈2
11𝑘𝑄3 − 𝑖𝑈11

− 𝑥2

𝑈11

)︂
×
(︁√︀

1 + 2𝑖𝑈11𝑘𝑄3

)︁−1

.

(5.19)
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The first two exponential terms represent the standard harmonic parts of the

Debye-Waller factor for the 𝑄2 and 𝑄3 directions. If 𝑘 = 0 then the usual

Gaussian distribution is obtained for the 𝑄1 coordinate as well. For curvature

in two directions (i.e. like Equation 5.12) only the third and fourth terms in

Eqaution 5.19 are affected:

𝑃 (Q) = 𝑃 (𝑄2, 𝑄3)harm × exp

(︂
− 𝑖(𝑥+ 𝑖𝑄1𝑈11)

2

2𝑈2
11(𝑘1𝑄2 + 𝑘2𝑄3) − 𝑖𝑈11

− 𝑥2

𝑈11

)︂
×
(︁√︀

1 + 2𝑖𝑈11(𝑘1𝑄2 + 𝑘2𝑄3)
)︁−1

.

(5.20)

Equations 5.19 and 5.20 are of a suitable form and length for use as analytical

functions in refinement programs. Unfortunately, when the parabolic PDF is

expanded with Hermite polynomials, as in Equations 5.13–5.15, the analytical

form for the structure factor is prohibitively complicated and long.

An alternative to using an analytical Debye-Waller factor is to perform a

numerical Fourier transform of the analytical PDF. Such an approach has been

suggested before for methods such as the OPP approximation.22 It has also been

applied by Hohlwein28 to calculate structure factors for orientationally-disordered

molecules. However, for a variety of reasons the numerical approach has not

been widely tested. First, the analytical GC series is considered superior to

the OPP approximation, the main anharmonic model that would benefit from

a numerical approach. Secondly, the computational effort in terms of coding

and more importantly the evaluation time would have been prohibitive when the

majority of the investigations of such methods were carried out (the 1970s and

80s). Finally, it is preferable to have an analytical form to determine the various

parameters directly in the refinement.

Neither of the second or third reasons is a substantial obstacle to implementing a

PDF such as the parabolic one studied here. Harmonic refinements that took

a significant amount of computational time and effort ten years ago can be

performed in minutes with modern codes and computer hardware. An analytical

form for the PDF is preferable but if the model is inadequate then the parameters

determined may be wrong, leading to inaccurate crystal structures.
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5.6 Skew-normal distribution

Curved (bent) PDFs only demonstrate one effect of anharmonic thermal motion.

Skewed or asymmetric PDFs are seen both for nitromethane [Figure 4.8(b)] and

for UPA (Figure 5.5). The GC series can effectively model asymmetry using

the diagonal odd-order polynomials such as 𝐻111. One disadvantage of using

polynomial expansions is that for such odd-ordered polynomials there must exist

a region of space where the probability is negative. In many cases this region will

be far from the atom and also small in magnitude. However, at high temperatures

negative regions can be a serious issue27 and they are clearly visible in the

probability distributions fitted to the D(2) atom PDF (Figure 5.11).

The skew-normal (SN) distribution was suggested by Azzalini for modelling

asymmetric datasets.29 For a one dimensional case it has the form

𝑃 (𝑥)SN = 2𝑃 (𝑥)Φ(𝑎𝑥), (5.21)

where 𝑃 (𝑥) is a Gaussian with mean, 𝑢, and variance, 𝑈 , and Φ(𝑎𝑥) is a

cumulative density function of the form

Φ(𝑎𝑥) =
1

2

[︂
1 + erf

(︂
𝑎(𝑢− 𝑥)√

2𝑈

)︂]︂
. (5.22)

where the error function, erf(𝑥), is given by:

erf(𝑥) =
2√
𝜋

∫︁ 𝑥

0

exp(−𝑡2) d𝑡. (5.23)

The error function is limited to the range −1 to 1 and is shown in Figure 5.13.

Being limited to that range ensures that a PDF of the form of Equation 5.21

can not have any negative regions. The multivariate SN distribution is

defined differently depending on the nature of the problem and whether or

not correlation/orientation parameters are necessary. For our purposes it seems

reasonable to start by skewing along the principal axes of the distribution. The
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distribution then takes the form:30

𝑃 (u)SN = 𝑃 (u)harm

3∏︁
𝑖=1

[︂
1 + erf

(︂
𝑎𝑖(𝑥𝑖 − 𝑢𝑖)√

2𝑈𝑖𝑖

)︂]︂
. (5.24)

The form of Equation 5.24 skews each direction of the PDF in turn. This

ensures that the distribution can not have negative probability. When the skew

coefficients 𝑎𝑖 are zero we recover the normal Gaussian distribution. The mean

of the distribution is

𝑢𝑖 = 𝑥𝑖 +

√︂
2

𝜋
𝛿𝑖
√︀
𝑈𝑖𝑖, (5.25)

with 𝛿1 = 𝑎𝑖/
√︀

1 + 𝑎2𝑖 . The variance is given by

𝑢2𝑖 = 𝜎2
𝑖 = 𝑈𝑖𝑖(1 − 2

𝜋
𝛿2𝑖 ). (5.26)

The characteristic function of the PDF given by Equation 5.24 is given by:30,31

𝑃 (Q) = exp (𝑖xQ) exp

(︂
−1

2
Q𝑇UQ

)︂ 3∏︁
𝑖=1

[︁
1 + erf

(︁
𝑖𝑄𝑖𝛿𝑖

√︀
𝑈𝑖𝑖

)︁]︁
. (5.27)

Figure 5.13: Functional form of the error function with 𝑎 = 1, 𝑈 = 1 and 𝑢 = 0
(cf. Equation 5.22).
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Figure 5.14: 2-D 𝑥𝑧 PDF of the migratory proton of UPA at 150 K modelled
with a SN distribution.

Equation 5.24 can be used to model the anharmonicity seen in the UPA migratory

proton and the O atoms of nitromethane. At 150 K an agreement index of 27.5%

is obtained in the case of the UPA H atom. The large value is a result of the

high-frequency noise. A GC series with only the three 𝐻𝑖𝑖𝑖 polynomials gives

essentially the same agreement factor. The full third-order GC series model

(with ten polynomials) does give a better fit of 27.1% but all three refinements

yield similar values for the probable position. The SN distribution successfully

reproduces the egg shape of the 𝑥𝑧 distribution as shown in Figure 5.14.

For the O atom of nitromethane the agreement is not so good. A standard

Gaussian model gives an 𝑅 factor of 14.9%. The SN distribution gives a value

of 14.3%, while the full third-order GC series gives a value of 12.8%. The SN

model also gives a distribution that does not match the visual appearance of

the numerical distribution very well. However, a GC series PDF with only the

three 𝐻𝑖𝑖𝑖 terms produces very similar results to the SN distribution, suggesting

that while the SN distribution is as effective as the GC series at skewing the

distribution, the off-diagonal GC polynomials are important in this case at least.

As well as skewing a harmonic distribution we could “bend” the shortest axis

using the 𝐻𝑖𝑖𝑗 polynomials. The correction combination could produce the desired
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egg-shaped distribution. Whether the bending polynomials are important will

probably depend on the profile of the distribution and the correlation between

motion in different directions. Gradual asymmetry may be better approximated

using skew functions only, whereas distributions that are more harmonic near the

maximum may require the flexibility of the full GC series.

5.7 Combining the SN distribution with other

PDFs

Despite its poor performance for the nitromethane O atom, the SN distribution

may prove useful in crystallography where distributions are skewed. We could

incorporate the error function into the parabolic PDF discussed in Section 5.5.2.

Fitting the 228 K nitromethane D(2) atom PDF to a distribution of the form:

𝑃 (û) × (1 + erf

(︂
𝑎(𝑥− 𝑢1)√

2𝑈11

)︂
+𝑐1111𝐻1111 + 𝑐111111𝐻111111 + 𝑐11111111𝐻11111111) ,

(5.28)

gives an 𝑅-factor of 15.9%. This is marginally better than the fit obtained with

the PDF given by Equation 5.15. As the error function is contained within the GC

series expansion it is still possible for the distribution to have negative regions.

However, for systems with large amplitudes the error function may be more useful

than the 𝐻𝑖𝑖𝑖 functions because it has a limited range, limiting its contribution to

negative regions in the PDF. The probable C-D(2) bond length obtained using the

probable position of this distribution is 1.081 Å, which is closer to the equilibrium

value (1.089 Å) than the other two models discussed in Section 5.5.2.

In fact, the error function may represent a useful way to define a PDF based on

polynomial perturbations that cannot have negative regions. We may define a

PDF of the form:

𝑃 (u)SN = 𝑃 (u)harm [1 + erf (𝑓 (u))] . (5.29)
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where 𝑓(u) is an appropriate polynomial function. If 𝑓(−u) = −𝑓(u) then

Eqaution 5.29 represents a true PDF31 and therefore must have a characteristic

function. The third-order Hermite polynomials satisfy this condition when

centred on the mean position. At 15 K the D(1) atom of nitromethane required

only three such polynomials to fit. If we let 𝑓(u) = 𝑐111𝐻111 + 𝑐112𝐻112 +

𝑐113𝐻113 then we obtain a 𝑅-factor of 14.4%, which is slightly better than the

14.6% obtained by using them directly (i.e. without using the error function).

The anharmonic parts of the resulting PDF obtained using the two types of

perturbation are plotted in Figure 5.15. This shows similar contours lines for

both but with different scales.

Figure 5.15: 2-D 𝑥𝑧 anharmonic components of SN and GC fits to the D(1)
atom PDF of nitromethane at 15 K.

(a) 𝑐111𝐻111 + 𝑐112𝐻112 + 𝑐113𝐻113 (b) erf(𝑐111𝐻111 + 𝑐112𝐻112 + 𝑐113𝐻113)

Further investigation is obviously required but a PDF of the form of Equation 5.29

may prove useful in crystallography, particularly at high temperatures where the

negative probability density inherent to the GC series can be an issue. As the

SN distribution represents a current field in statistics there exists the possibility

for collaborations with statisticians to develop its application in crystallography.

5.8 Conclusion

The MD-derived numerical PDFs of a variety of atoms in different molecules

have been modelled using a number of different analytical functions. In doing
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so the numerical datasets have shown their use in providing realistic models for

understanding the nature and suitability of the various PDFs employed to model

them.

The differences between the probable and equilibrium positions of atoms have

been studied and the results suggest that in general the positions will be quite

different. Encouragingly the bond lengths obtained using probable positions

are far closer to the true equilibrium values than the time-average values. The

difference between the true and refined values of the mean and variance of a PDF

has also been investigated. For systems with strong anharmonicity the harmonic

values deviate significantly from the true value evaluated numerically, suggesting

that the physical meaning of the fitting parameters is not always assured. In

addition, the simulations show large differences between the equilibrium and

fitted probable positions of atoms in a number of molecules. This suggests that

experimentally-determined probable positions will not give suitable estimates of

equilibrium positions. However, further and wider study is required to make firm

conclusions.

Two new forms of PDF have been fitted to the numerical PDFs. The first, based

on a parabolic coordinate system, models the curvilinear motion of the protons in

nitromethane and DMUOX as well as the GC series but with fewer parameters.

Irrespective of whether the third-order GC series or parabolic PDF was used to

model the curvature, it was essential to include fourth-order GC terms (primarily

the 𝐻𝑖𝑖𝑖𝑖 terms) to model the asymmetry of the PDF. To cut down on the number

of GC parameters it has been suggested that the Hermite polynomials employed

be defined in the harmonic thermal motion coordinate system.

A skew-normal PDF based on the univariate form introduced by Azzalini29 has

also been used to model anharmonic distributions. In this limited study it has

been found to be as effective at skewing a PDF as the 𝐻𝑖𝑖𝑖 terms of the GC series

but in some cases the flexibility of the full GC series permits it to model the data

better. However, the SN distribution may provide a useful basis for a “true” PDF

that can not feature negative regions - a significant drawback of existing methods

at high temperatures.
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Chapter 6

Further application of MD

simulations to crystallography
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6.1 Introduction

In the preceding three chapters, molecular dynamics (MD) simulations have been

used to shed light on the nature of anharmonic thermal motion and its effect

on crystal structure determination. The primary motivation for this work has

been to provide useful data to enable the improvement of the formulae used in

refinement programs, yielding more accurate and meaningful structures. The use

of new or traditional anharmonic Debye-Waller factors is reliant on high-quality

data that allows the extra parameters, compared to a harmonic model, to be

refined.

Despite the many advances in X-ray and neutron sources and equipment, suitable

high-quality data are not always available. Experiments at high pressure or

temperature require experimental setups (such as diamond-anvil cells1) that can

limit the amount of data collected substantially. At high temperatures the Debye-

Waller factor has the effect of damping out diffraction at larger values of the

scattering angle leading to fewer data. In these circumstances, the data can be so

poor as to prohibit the refinement of even anisotropic displacement parameters

(ADPs).

The refinement of ADPs for light atoms in single-crystal X-ray diffraction

experiments can also be difficult due to the lack of scattering from these

atoms. This can be a significant issue for charge-density studies where the

asymmetry of the electron density is fitted as part of the refinement. The

convolution of the electron density and vibrational probability density function

(PDF) means that meaningful interpretation of the refined electron-density maps

requires a good description of thermal motion. A variety of methods have

been devised to estimate H-atom ADPs from heavy-atom values. The TLS

method (Section 1.3.3), which assumes rigid motion of molecules, can be used

to extrapolate heavy-atom ADPs to H atoms. More sophisticated schemes,

including the TLS+ONIOM method,2 combine the rigid TLS model with ab

initio computed estimates of the contribution from internal degrees of freedom.

The SHADE web server (http://shade.ki.ku.dk) can perform the requisite TLS
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analysis of an experimental refinement and provides empirical estimates of the

contribution of non-rigid motions.3

The use of experimental information by way of the TLS method ensures that

the SHADE web server and other methods give reasonable and sensible results.

For systems where there are no heavy-atom ADPs then prediction of thermal

parameters can only be achieved readily using lattice dynamics (LD) or MD

simulations. Lattice dynamics4,5 calculations can be performed in a variety of

ways but the method in essence uses a series of static calculations of a perturbed

system to determine its normal-mode eigenvectors and eigenvalues. Lattice

dynamics has been used a number of times to compute ADPs for a number

of different types of systems.6,7 One of the main benefits of lattice dynamics is

the direct inclusion of zero-point energy. It is also possible to include the effects

of phonon dispersion using calculations at different parts of the Brillouin zone

(Section 2.2.4). This incorporates phonon dispersion in a far more economical

manner than the use of supercells as in an MD simulation. However, the principal

disadvantage of LD calculations is that they are nearly always performed in the

harmonic limit. At high temperatures, attempting to fit an anharmonic potential

with a harmonic one may lead to spurious results (as is discussed in the following

chapter for an equivalent situation in the gas phase). MD simulations have been

used for a number of room or high-temperature studies. Recently, Glykos has used

empirical-potential MD simulations to calculate ADPs for a small protein crystal

structure.8 The MD simulation predicted displacement parameters roughly a

third of the experimental values. However, the theoretical information did prove

useful in parametrising the refinement.

With recent advances in computational software and hardware, there has been

renewed interest in using LD calculations to estimate ADPs.9 As LD calculations

are liable to be best suited to low-temperature nearly-harmonic systems, MD

simulations should be complementary as they are best suited to high-temperature

systems (for classical simulations) and can deal with any degree of anharmonicity.

In the case of nitromethane (Chapter 4) the MD-derived displacement parameters

were in very good agreement with experimental values and the ADPs calculated
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for ND3 (Chapter 3) agreed very well with one of two very different descriptions

of the thermal motion.

This chapter builds on the previous ones in this regard by using DFT-MD

simulations to predict the ADPs of the crystal structure of benzophenone. The

DFT simulations are complemented by experimental neutron diffraction data.

While the experimental data are not of a sufficiently good quality for detailed

analysis, comparison of the simulations with experimental refinements does show

that the DFT-MD simulations perform reasonably and also highlights the impact

of van der Waals dispersive forces on the ADPs.

6.2 Crystal structure of benzophenone

The solid-state structure of benzophenone (C13H10O) has been studied a number

of times using X-ray diffraction and two phases or polymorphs are known in the

literature, a stable form and a metastable form.10–12 Indeed, benzophenone was

the first organic compound reported to exhibit polymorphism. This present study

focuses on the stable 𝛼 phase, which crystallises in the orthorhombic 𝑃212121

space group. No neutron diffraction structure of either phase has been reported

before.

Benzophenone is a much more rigid system than the other molecules studied in

the course of this work. The migratory proton of urea-phosphoric acid and the

methyl group of nitromethane are examples of atoms/systems that will always

show significant thermal motion effects. It is useful to study more rigid systems

to assess how serious such effects will be for such molecules. In addition the

solid-state interactions of benzophenone will be dominated by dispersion forces,

which DFT traditionally models quite poorly. Therefore this study will allow

us to investigate how serious the deficiency could be for DFT simulations and

whether or not recently developed empirical corrections13,14 to DFT can improve

its modelling of organic solids.
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6.2.1 Methods

Experimental

Single-crystal neutron diffraction data were collected on the SXD instrument

at the ISIS spallation neutron source, Rutherford Appleton Laboratories,

Oxfordshire, UK.15 The SXD instrument uses the time-of-flight Laue diffraction

method and is capable of capturing large amounts of reciprocal space with a

stationary crystal due to the large area detectors used in the instrument.

Undeuterated crystals of benzophenone were grown by slow evaporation from

hexane after Fleischer et al.10 It was not possible to grow individual crystals of

an appropriate size for neutron diffraction, so the multi-crystal method16 was

used with two colourless crystals approximately 1.0×3.0×0.5 mm in size. Data

were collected with the assistance of Dr. A. Daoud-Aladine and Dr. D. A. Wann

at temperatures of 70 and 300 K. Four crystal orientations were used at each

temperature with data being collected for 11 hours in each orientation. The

SXD-2001 program was used by Dr. M. J. Gutmann to index the unit cells and

to reduce the raw data into a format suitable for refinement. Refinements were

carried out using the SHELX97 code,17 starting from coordinates from a previous

X-ray structure of benzophenone.11

MD simulations

All of the DFT simulations of the crystal structure of benzophenone were carried

out using the Gaussian and plane-wave formalism18 using the CP2K code.19 The

generalised gradient corrected PBE functional was used together with the PBE-

optimized double-𝜁 basis set provided with the code and a plane-wave density

cut-off of 4250 eV. This cut-off energy ensured convergence of the atom forces

and the total energy to within 2 meV/Å and 1 meV/atom respectively. For

some simulations an empirical correction for van der Waals (vdW) dispersion

was added. The vdW-corrected DFT calculations will be referred to as DFT+D

calculations. The correction used the functional form of Elstner et al.14 together

with the PBE-optimised 𝐶6 and 𝑅0 parameters of Williams et al.20
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Equilibrium geometries were determined for both the DFT and DFT+D levels of

theory. As the CP2K program does not currently support symmetry constraints, a

2×2×2 supercell was optimised with 𝑃1 symmetry and the equilibrium geometry

determined by averaging the optimised geometry using the 𝑃212121 set of

symmetry operations. The deviations between the symmetry-related positions

were of the order of 1 fm, which is well within the error in an experimental

structure.

Test simulations using 2×1×1 and 2×2×2 supercells showed that the larger

cell would be necessary to obtain even reasonable agreement with preliminary

experiment refinements. This may be a combination of a finite-size effect and

lack of phonon dispersion. MD simulations were therefore carried out on 2×2×2

supercells both with and without the vdW-correction term. A chain of five Nose-

Hoover thermostats21 was used to maintain the temperature. The 2×2×2 cell

contains 768 atoms. The linear scaling of the CP2K code makes MD simulations

of such a system feasible.

In total, three production simulations were performed. Initial issues with the

experimental data lead to two simulations being performed at 300 K using

the previously reported 90 K cell vectors of Moncol and Coppens.11 The DFT

simulation was run for 9 ps, while the DFT+D simulation was run for 14 ps.

Using the smaller cell vectors should have the effect of elevating the simulation

pressure, which may affect the thermal motion and reduce the magnitude of the

ADPs. However, in the empirical potential simulations of ammonia (Section 3.3.4)

different pressures (in the range expected here) did not alter the ADPs by any

significant amount. Finally, a 13 ps DFT+D simulation was performed at a

temperature of 70 K using the cell vectors determined at that temperature as

part of this work.

The trajectories were analysed using the same Fortran90 code and procedures

as used for ND3 (Chapter 3). The simulations were performed using the

computational resources of the EPRSC National Service for Computational

Chemistry (http://www.nsccs.ac.uk) and HECToR, the UK’s national high-

performance computing service, which is provided by UoE HPCx Ltd. at the
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University of Edinburgh, Cray Inc. and NAG Ltd., and funded by the Office of

Science and Technology through EPSRC’s High End Computing Programme.

6.2.2 Effect of vdW correction

Table 6.1 gives some representative 𝑈eq values calculated from the two MD

simulations at 300 K, while Figure 6.1 shows the ellipsoids derived from the

simulated ADPs. The DFT+D values are within 3–4 𝜎 of the isotropically refined

experimental values; this is much closer than the standard DFT simulation. The

carbon- and hydrogen-atom parameters that define the vdW correction used in

the DFT+D simulation were specifically fitted to modelling benzene and they

seem to reproduce the experimental behaviour quite well. The total energy of

the equilibrium DFT geometry is −3065.38 eV. The dispersion correction adds

a further −2.60 eV. This is only 0.08% of the total energy of the DFT+D

equilibrium structure but it makes a substantial difference to the dynamic

behaviour of the system.

Minor differences between the computed and experimental 𝑈eq values are to be

expected, particularly because the experimental refinement models the thermal

motion as being isotropic in nature. 𝑈eq derived from experimental ADPs would

be better for comparison but due to the quality of the data these can not be

reliably determined (as will be discussed below in Section 6.2.3).

Table 6.1: Selected simulated (DFT and DFT+D) and experimental 𝑈eq values
(in Å2) of benzophenone at 300 K. [See Figure 6.1(a) for atom numbering.]

DFTa DFT+Da Expt.b

C(1) 0.0374(1) 0.0485(1) 0.055(2)
C(2) 0.0340(1) 0.0631(1) 0.065(2)
C(3) 0.0554(1) 0.0696(1) 0.079(2)
H(1) 0.0558(2) 0.0694(2) 0.081(4)
H(2) 0.0781(2) 0.0986(2) 0.099(4)
H(3) 0.0885(2) 0.1074(2) 0.104(5)
O 0.0679(2) 0.0786(2) 0.089(3)

a Calculated from the numerical ADPs as
𝑈eq = 1

3 (𝑈11 + 𝑈22 + 𝑈33)
b Isotropic refinement. [See Table 6.5
(model I1) for more details.]
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Figure 6.1: Simulated ADPs of benzophenone (50% probability level) at 300 K.

(a) DFT+D

(b) DFT

Benzophenone is, in principle, relatively rigid compared to systems like

nitromethane, urea-phosphoric acid etc., which have been discussed in previous

chapters. The theoretical distance corrections (Δ𝑟 = 𝑟e, MD − 𝑟a, MD) are likely

to be reasonably small. Table 6.2 lists some of the corrections determined

by the DFT and DFT+D simulations. The DFT+D corrections are typically

larger, which makes sense in terms of the larger amplitudes that vibrations

have in the DFT+D simulation. How significant these corrections are depends

on the final uncertainties in the experimental time-averaged distances. The

uncertainties would be expected to be reasonably large due to the temperature of

the experiment and the small size of the crystals used. More accurate studies are

of course possible and it is useful to have an idea of the magnitude of the effect

of thermal motion on structures similar to benzophenone at this temperature.
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Table 6.2: Theoretical distance corrections, Δ𝑟 = 𝑟e, MD − 𝑟a, MD (in Å),
for a selection of bond lengths in benzophenone. [See Figure 6.1(a) for atom
numbering.]

Distance DFT DFT+D

Δ𝑟C(1)–C(2) 0.0082 0.0076
Δ𝑟C(1)–H(1) 0.0113 0.0122
Δ𝑟C(1)–C(6) 0.0090 0.0203
Δ𝑟C(6)–C(7) 0.0036 0.0050
Δ𝑟C(7)–O 0.0135 0.0179

6.2.3 Refinements

70 K

A number of different types of refinement have been carried out using the 70 K and

300 K datasets. The crystallographic data determined at those two temperatures

are given in Table 6.3. Significantly more data were collected at 70 K compared

to 300 K, which permits the use of ADPs without the need for restraints or

constraints. Typically, the merit of a fit is assessed using three values:

𝑅 =

∑︀
||𝐹o| − |𝐹c||∑︀

|𝐹c|
, (6.1)

𝑤𝑅 =

√︃∑︀
𝑤 × (𝐹 2

o − 𝐹 2
c )2∑︀

𝑤 × (𝐹 2
o )2

, (6.2)

𝑆 =

√︃∑︀
𝑤 × (𝐹 2

o − 𝐹 2
c )2

𝑛− 𝑝
, (6.3)

where 𝐹c is the calculated value of the structure factor, 𝐹o is the observed

structure factor value, 𝑤 is the statistical weight of a particular value of 𝐹o, 𝑛 is

the number of reflections and 𝑝 is the number of parameters. The𝑅 and 𝑤𝑅 values

are the traditional measures of the merit of a fit and are based on refining against

𝐹 or 𝐹 2, respectively. The value of 𝑅 should normally be below 0.1 and that of

𝑤𝑅 below 0.25.22 In the present case (and indeed most refinements) 𝐹 2 values are

used as the overall merit of fit, although the 𝑅 value is still quoted. The goodness

of fit, 𝑆, is a measure of the validity of the model in a more statistical sense; 𝑆

151



should ideally be close to unity.23 A statistical weighting scheme, 𝑤 = 1/ (𝜎2(𝐹 2
𝑜 )),

was used for all refinements discussed here. More sophisticated schemes can be

employed to reduce statistical bias but they are more suited to X-ray datasets.24

Such schemes typically aim to minimise the variance of the dataset and to make

𝑆 as close to unity as possible. For multi-temperature data the use of a more

complex weighting scheme can hinder quantitative comparison of the structures.

Data from different crystals and area detectors can be integrated/reduced

separately. In this case two separate datasets were produced. As different scale

factors can be refined for the two datasets, merging of Friedel pairs (values of H

that when squared will produce the same value of 𝐹 2) was performed only for

the final calculation of the 𝑅 factor. The actual refinement uses all of the data.

The quoted reflection-to-parameter ratio only includes the unique reflections.

Table 6.3: Crystallographic data at 70 and 300 K for benzophenone.

70 K 300 K

Crystal system orthorhombic orthorhombic
Space group 𝑃212121 𝑃212121
𝑎 / Å 7.731(2) 7.988(2)
𝑏 / Å 10.253(2) 10.293(3)
𝑐 / Å 12.054(3) 12.138(4)
𝑉 / Å3 955.5(4) 998.0(5)
Reflections collecteda 6710 3057

a Total number of reflections before merging/omission
of “bad” reflections.

An anisotropic refinement was carried out using the SHELX17 program by Dr.

M. J. Gutmann. The various parameters determined by the refinement are given

in Table 6.4. The 𝑅 and 𝑤𝑅 factors are close to the limits of acceptability. Lower

values of 𝑤𝑅 and 𝑆 could be obtained using fully-merged data but this does not

affect the 𝑅 factor significantly and would only hide inconsistencies in the data.

At 70 K thermal motion should not affect this structure seriously so the high 𝑅

and 𝑤𝑅 factors are disappointing. The large agreement factors may stem from

the two crystals used in the sample having different responses to the cooling of

the experimental apparatus from 300 K to 70 K. To obtain a stable fit, five of

the collected reflections were omitted from the refinement.
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Nevertheless, the structure determined is reasonable in appearance. The

molecular structure with ellipsoids is shown in Figure 6.2 alongside the MD-

derived structure. The theoretical H-atom ellipsoids are typically much smaller

than the experimental values while the sizes of the C-atom ellipsoids are

reasonably close to the experimental ellipsoids.

Table 6.4: Details of the anisotropic refinement of benzophenone at 70 K.
(Distances are given in Å.)

𝑅[𝐹 2 > 2𝜎(𝐹 2)] 0.1069
𝑤𝑅(𝐹 2) 0.2211
𝑆 4.830
Number of parameters (𝑝) 219
Number of unique reflections used (𝑛) 1532
Data to parameter ratio 6.9
maxΔ/𝜎

a <0.0001
Δ𝜌max, Δ𝜌min / e Å3 4.36, −2.16

𝑟C(1)–C(2) 1.383(5)
𝑟C(1)–H(1) 1.107(10)
𝑟C(1)–C(6) 1.393(5)
𝑟C(6)–C(7) 1.502(6)
𝑟C(7)–O 1.226(6)

a The maximum shift of any parameter divided by its
uncertainty, which is a measure of the convergence
of the refinement.

Figure 6.2: 70 K experimental and simulated ADPs of benzophenone (plotted
at the 70% probability level).

(a) Expt. (b) MD

300 K

The 300 K data are very much inferior to the 70 K data in terms of the

number of reflections. The number of parameters required for a full anisotropic

refinement is 219, which gives a reflection-to-parameter ratio of 2.6. To obtain
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a refinement with a more reasonable ratio either a simpler model of thermal

motion has to be adopted or some form of restraint or constraint must be

introduced. Instead of an anisotropic refinement a single-parameter isotropic

model could be used. Table 6.5 lists the various parameters and selected bond

lengths obtained from a freely-refined isotropic model (labelled model I1). The

𝑤𝑅 and 𝑆 values are actually smaller than for the anisotropic 70 K refinement,

which is a further indication that something is awry with the 70 K data. The 𝑅

value is large at 0.1331 and the C–H bond lengths vary substantially and some of

them are far shorter than their DFT-calculated equilibrium values of ∼ 1.09 Å.

The DFT+D MD simulation, which gave reasonable 𝑈eq values, suggests small

distance corrections, so it is clear that the large variance in the C–H bond lengths

is unphysical.

The poor quality of the refined structure is most likely a result of the small number

of unique reflections, which in turn stems from the temperature of the experiment

and the small size of the crystals used. It is possible that the use of a restrained

or constrained refinement might improve matters. The SHELX program does not

support the use of flexible restraints on positions and displacement parameters.

Instead it allows for geometric restraints and restraints that ensure ADPs of

bonded or close atoms are similar in a physically reasonable way. While individual

coordinates and displacement parameters can not be restrained, they can be

constrained. Model I2 in Table 6.5 represents an isotropic model in which the

positions are freely refined but the value of 𝑈eq for each atom is fixed at the

number determined by the DFT+D MD simulation. The 𝑅 factor is slightly

smaller than in the I1 refinement but the 𝑤𝑅 and 𝑆 values are slightly larger.

However, the C–H bond lengths appear to be much more reasonable and the

spread is much smaller. The heavy-atom distances are not really affected.

Despite the poor quality of the data, the use of the DFT+D 𝑈eq values does

appear to produce a more reasonable model of the structure. The use of the MD-

derived ADPs might improve the picture further. Refinement A1 (in Table 6.5)

is the free anisotropic refinement at 300 K, while A2 is the refinement with the

ADPs constrained to the DFT+D values. The various agreement factors are
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Table 6.5: Details of the refinements of benzophenone at 300 K.

I1 I2 A1 A2

𝑅[𝐹 2 > 2𝜎(𝐹 2)] 0.1331 0.1309 0.0974 0.1037
𝑤𝑅(𝐹 2) 0.1636 0.1729 0.1382 0.1533
𝑆 3.456 3.638 2.982 3.227
𝑝 99 75 219 75
𝑛 575 575 575 575
𝑛 : 𝑝 5.8 7.7 2.6 7.7
maxΔ/𝜎 <0.0001 <0.0001 <0.0001 <0.0001
Δ𝜌max, Δ𝜌min / e Å3 1.02, −1.05 1.06, −0.95 0.56, −0.37 0.53, −0.50

𝑟C(1)–C(2) 1.403(7) 1.392(7) 1.387(8) 1.368(6)
𝑟C(1)–C(6) 1.383(7) 1.379(7) 1.382(8) 1.382(6)
𝑟C(6)–C(7) 1.484(7) 1.490(7) 1.485(9) 1.490(7)
𝑟C(7)–O 1.262(8) 1.254(8) 1.224(8) 1.211(6)
𝑟C(1)–H(1) 1.077(17) 1.118(16) 1.092(19) 1.149(13)
𝑟C(4)–H(4) 1.018(21) 1.077(21) 1.121(24) 1.140(15)
𝑟C(10)–H(7) 1.033(23) 1.068(20) 0.990(26) 1.130(16)

naturally smaller for the A1 refinement compared to I1 and I2 but the model has

too many parameters freely refining and features a number of artefacts including

some very short C–H bonds [e.g. 𝑟C(10)–H(7) = 0.990(26) Å]. The constrained

model, A2, yields a better fit than I1 and I2 and also produces a more consistent

structure than A1, with slightly smaller uncertainties. The C–H bond lengths are

longer than would be expected but are within error of the likely values at 300 K.

It would be preferable to use the MD data to restrain the refinements as opposed

to constraining them. In gas electron diffraction studies it is common for

theoretical/computed data to be used for this purpose, using methods such as

SARACEN.25 In the case of the A2 model the constrained data produce C–H

bond lengths that are consistent but too long. If the MD data could be used to

restrain/constrain the shape of an ellipsoid but not its size then better agreement

should be possible. Alternatively the orientation might be restrained, while the

size is constrained. There are many possible ways that the data could be used

to supplement the experimental refinement. The CRYSTALS26 program does

support such flexible restraints but the process of inputting them is cumbersome

and more suited to geometrical restraints.
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6.3 Conclusion

The structure of the stable 𝛼 phase of benzophenone has been studied using

DFT-MD simulations and multi-crystal neutron diffraction at 70 and 300 K.

The DFT simulations were performed with and without an empirical correction

for van der Waals forces. These forces represent long-range correlations of the

electron density, which are poorly modelled by most mainstream functionals.

The dispersion correction significantly improves the agreement between the MD-

derived displacement parameters and 𝑈eq values from an isotropic refinement of

the experimental data at 300 K.

There are insufficient data at 300 K to obtain an acceptable anisotropic refinement

at 300 K. However, the use of the MD-derived ADPs/𝑈eq in constrained isotropic

and anisotropic refinements improves the structural consistency of the refinements

and does not adversely affect the various agreement factors that much. The use of

MD-derived data as flexible restraints on ADPs would probably improve matters

further.

At 70 K an anisotropic refinement is possible and yields a reasonable structure.

However, the large agreement factors suggest some issue with the experimental

data, possibly as a result of the cooling of the two crystals used in this multi-

crystal experiment.

While the poor quality of the experimental data impacts upon the importance of

this study, it is clear from this and the previous simulations of nitromethane and

ammonia that MD simulations are capable of providing reasonable estimates of

ADPs.
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Chapter 7

Experimental equilibrium

structures in the gas phase:

silsesquioxanes
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7.1 Introduction

Polyhedral oligomeric silsesquioxanes (POSS) are a class of molecules with the

general formula (SiO1.5)𝑛 where 𝑛 = 4, 6, 8, 10, 12..., which have attracted a

considerable amount of interest in the literature. They are highly functional,

nano-sized molecules, with a number of applications including additives for paints

and resins, polymers and chemical-vapour deposition coatings. The chemistry of

a wide selection of POSS molecules and details of more applications is provided

in a review by Lickiss and Rataboul.1

The interest in the properties of silsesquioxanes has naturally lead to a

large number of structural studies being performed on these molecules. In

particular the eight-membered (in terms of silicon atoms) and ten-membered

variants, Si8O12R8 and Si10O15R10, have been studied a number of times

using computational and experimental methods. Si8O12H8 was the first POSS

molecule to be studied and was characterised using X-ray diffraction.2 Since

then studies have been performed on a number of different molecules using X-

ray3–5 and neutron diffraction6 on crystals as well using NMR and infra-red (IR)

spectroscopy in solution.7

Recent work in the Rankin research group has focused on elucidating the

experimental gas-phase structures of a series of POSS molecules. The technique

used to perform these gas-phase studies will be outlined in the following

section, while a discussion of the gas-phase and solid-state structures of some

of these molecules will be give in Sections 7.3 and 7.4. A gas-phase study of

these molecules is important because many of the solid-state structures feature

deformations from the highest possible molecular symmetry. In the gas phase

the molecules can be studied in the absence of packing effects, so independent

molecular features of the molecules can be probed. This should in turn help us

to understand lattice effects.
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7.2 Gas electron diffraction

Structures in the gas phase can be studied by a number of techniques. These

include spectroscopic methods such as IR and microwave spectroscopy and

also gas-phase electron diffraction (GED). Of these methods, GED is the most

versatile and widely used method for total structure determination in the gas

phase. Microwave methods rely on molecules having a dipole moment and are

only applicable to relatively small molecules.

Electrons are used for diffraction in the gas phase because they give higher

diffraction intensities than X-rays or neutrons (cf. the electron form factor given

by Equation 1.11).8 This permits shorter experiments and smaller samples. A

typical GED experiment involves heating a solid or liquid sample of the compound

of interest to produce vapour, which is then passed in front of a beam of electrons

resulting in diffraction.9 The rotational disorder of the gaseous molecules leads

to a pattern of concentric rings being generated on the detector, which can

be photographic film, image plates or a CCD camera. The circular pattern is

averaged to produce a 1-D scattering curve. The diffraction pattern arises due

to interactions of the electrons with one, two or more atoms at a time. From

a structural point of view, the two-atom scattering is of most use as it tells us

about each of the interatomic distances in the molecule. Once the atomic and

background scattering have been removed we have a molecular scattering curve,

which when Fourier transformed yields a radial distribution curve (RDC), which

shows the probability of finding a given distance in the molecule; see Figure 7.1 for

an example. As in the case of solid-state diffraction, vibrations play an important

role in the GED technique. The root-mean squared amplitude of vibration, 𝑢, is

the GED equivalent of the anisotropic displacement parameters. In the harmonic

approximation, each peak in the RDC corresponds to a Gaussian distribution

(with variance 𝑢2) for each type of interatomic distance.

The nature of the 1-D data collected in a GED experiment makes it very difficult

to refine structures directly from the experimental data. One of the primary

reasons for this is the overlapping of peaks in the RDC. As can be seen in

162



Figure 7.1: RDC of 1,3,5-trichlorotriazine (C3N3Cl3). Each of the vertical
“sticks” represents a distance and its relative intensity (but not multiplicity).

Figure 7.1 the third to sixth smallest interatomic distances are so close that they

produce what appears to be only two peaks that overlap each other. The more

distances there are under a given peak the harder it is to refine them without

serious correlations or artefacts in the refinement. Other issues involve the

number of parameters required to model a structure and also the small scattering

factor of light atoms such as hydrogen.

A variety of methods have been developed to overcome these issues and it is now

possible to determine the structures of molecules with ∼ 100 atoms successfully.

Data from complimentary techniques such as microwave spectroscopy or liquid-

crystal NMR can be used to supplement the GED dataset. However, it is

more routine to use theoretical data. The SARACEN method10 incorporates

theoretical data into the refinement by using the computed values as initial

guesses and also to decide restraints for various parameters and amplitudes of

vibration.

As stated above, GED experiments are subject to vibrational effects just like

solid-state diffraction. The distance determined by the GED molecular scattering

function is a time-averaged one, referred to as 𝑟a. The traditional scattering

equation is formulated in such a way that this distance is not the direct average
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of the interatomic distance:

𝑟a = ⟨𝑟−1⟩−1. (7.1)

To allow for anharmonicity in the thermal motion, the scattering equation also

incorporates a term that models the effective interatomic potential as being

Morse-like in nature.11 A more general scattering equation that can model any

degree of anharmonicity, using a polynomial expansion, has also been developed.12

7.2.1 Equilibrium structures in the gas phase

There has been considerable interest in correcting experimental GED structures

to obtain structures more suited for comparison with theory. This is especially

important in the gas phase because more accurate computational techniques

such as hybrid DFT, MP2 and the various CI methods are less computationally

demanding in the gas phase. Initial attempts at correcting for thermal motion

effects used either experimental or theoretical “force fields” (i.e. dynamical matrix

or Hessian) to estimate distance corrections.11,13 These corrections assumed that

the atoms moved in a particular fashion relative to each other. For example the 𝑟h0

distance/structure is obtained by modelling the atoms as moving harmonically

along straight lines. The 𝑟h1 structure assumes that the motion is harmonic

but along parabolic paths. These types of corrections can be calculated from a

theoretical force field by the SHRINK program.14

More recently it has become common to calculate cubic force fields to allow for the

effects of anharmonic motion of the atoms.15 This approach, which yields 𝑟a3, 1

distances, is well suited to systems for which a cubic potential is an appropriate

model for thermal motion. However, for very anharmonic motion, where fourth-

order and higher terms may be important, the cubic force field can give spurious

results. The EXPRESS method was developed recently by McCaffrey et al.16 as

a general method capable of modelling any degree of anharmonicity. It uses a

series of ab initio or DFT calculations along the normal modes of the molecule

to map the potential-energy surface and calculate the 𝑟a. The method has been

successfully applied to NaCl, which forms a mixture of monomers and diamond-
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like dimers in the gas phase. However, it is a very labour intensive approach to

the problem and also relies on the assumption that only simple coupling of the

normal mode motions occur.

7.2.2 Equilibrium structure of 1,3,5-chlorotriazine

determined using molecular dynamics simulations

As we have seen in Chapters 3–6, MD simulations provide a useful and generic way

to determine the differences between equilibrium and time-averaged structures.

Dr. P. McCaffrey first applied this type of approach to the gas-phase structure

of octahydridosilsesquioxane, Si8O12H8.
17 This molecule will be discussed below

in Section 7.3 with other silsesquioxanes that have been studied using GED. The

method will be outlined here using a more detailed benchmark of the method,

the structure of 1,3,5-trichlorotriazine. This compound, shown in Figure 7.2,

is small and rigid and should not feature any particularly large-amplitude

anharmonic vibrations. Therefore, both the MD and traditional methods should

give reasonable and comparable results.

Figure 7.2: Structure of 1,3,5-chlorotriazine.
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Computational details

Gaussian basis set calculations of C3N3Cl3 were performed by Dr. D. A.

Wann (University of Edinburgh) using the Gaussian03 program,18 with the

computational resources of the EPRSC National Service for Computational

Chemistry (http://www.nsccs.ac.uk). Calculations were performed at a variety

of levels of theory up to MP219 and B3LYP,20 with basis sets including 6–31G(d)

and 6–311+G(d). A cubic-frequency calculation was performed at the B3LYP/6–

311+G(d) level of theory to determine the RMS amplitudes of vibration and

distance corrections required for an 𝑟a3,1-type refinement.16

Plane-wave DFT calculations were performed using the CPMD code.21 To

simulate an isolated molecule in the gas phase using a periodic code such

as CPMD, a supercell of 14 Å length was used together with a Tuckerman-

Poisson solver,22 to limit electrostatic interactions between periodic images

of the molecule. The PBE functional,23 Troullier-Martins norm-conserving

pseudopotentials24 and a plane-wave cut-off energy of 1250 eV were used. After

a geometry optimisation a classical NVT simulation was performed at 398 K (the

average experimental temperature), with the temperature being regulated by a

“massive” chain of Nosé-Hoover thermostats for the ions. The system was evolved

using the usual Car-Parinello method with a time step of 0.0725 fs for a total of

41 ps. Data were collected every 5 CPMD steps.

A path-integral (PI) MD simulation of C3N3Cl3 was also performed using the

CPMD program. The basic simulation and system parameters (cut-off, etc.)

were the same as for the classical DFT simulation. A Trotter dimension (bead

number) of 16 was used. The standard normal-mode transformation approach25

was used to propagate the equations of motions of the PI beads. The simulation

was run for a total of 20 ps. The shorter simulation time, compared to the

classical simulation, is justified as the PI beads are equivalent to each other so

the trajectory is effectively collecting 16 times the data of the classical simulation.
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Trajectory analysis

The time-averaged distance between two atoms 𝑖 and 𝑗, 𝑟a,𝑖𝑗, determined by a

GED experiment can be calculated from a trajectory as:

𝑟a,𝑖𝑗 =

(︃
1

𝑁

𝑁∑︁
𝑛=1

(𝑟𝑖𝑗,𝑛)−1

)︃−1

, (7.2)

where 𝑁 is the total number of steps being averaged over. If symmetry results

in different distances being symmetrically equivalent then these can be averaged

over as well. The RMS amplitude of vibration is given by:

𝑢𝑖𝑗 =

⎯⎸⎸⎷ 1

𝑁

𝑁∑︁
𝑛=1

(𝑟𝑖𝑗,𝑛 − ⟨𝑟𝑖𝑗,𝑚⟩)2, (7.3)

where 𝑟𝑖𝑗,𝑚 is the direct mean interatomic separation:

𝑟𝑖𝑗,𝑚 =
1

𝑁

𝑁∑︁
𝑛=1

𝑟𝑖𝑗,𝑛. (7.4)

The uncertainties in these quantities can be estimated from the Central limit

theorem as discussed in Chapter 3.26 The analysis of the PIMD simulations was

performed using the above equations and considering each replica of the system

in turn so that for a 𝑃 bead simulation, 𝑃 times as many distances were used for

the calculations in Equations 7.2 and 7.3.

It is also possible to estimate the Morse constants to allow for asymmetry in the

probability density function (PDF) that describes the vibrational distribution

of each interatomic distance. The instantaneous interatomic distances adopted

by an atom pair can be easily “binned” during the course of the simulation

to determine a histogram of atomic distances. Normalisation of this histogram

produces a probability density function, 𝑃 (𝑟) for each pair of atoms. The

Boltzmann equation relates this function to the effective interatomic potential

𝑉 (𝑟) such that:

𝑃 (𝑟) =
1

𝑍
exp

(︂
−𝑉 (𝑟)

𝑘b𝑇

)︂
, (7.5)
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where 𝑘b is the Boltzmann constant and 𝑍 is the partition function. The potential

can be obtained from

𝑉 (𝑟) = −𝑘b𝑇 (ln[𝑃 (𝑟)] − ln[𝑃 (𝑟e)]). (7.6)

The subtraction of ln[𝑃 (𝑟e)] gives 𝑉 (𝑟e) = 0 and eliminates the partition function,

𝑍, from Equation 7.6. The numerical potential can then be fitted to a Morse

potential to extract the desired value.

A program called MDSIM was written by Dr. A. V. Zakharov (Ivanovo State

University of Chemistry and Technology), during a visit to the University of

Edinburgh, which performs the trajectory analysis outlined in this section. In

addition, it provides suitable input files for the ed@ed refinement program.27

RMS amplitudes of vibration, distance corrections and Morse

constants

The MD-derived distance corrections and amplitudes of vibration are given in

Table 7.1, along with the cubic force-field values. A PIMD simulation was

performed because it is likely that the inclusion of zero-point energy will be

important for some vibrational modes. This is clearly evident in the amplitudes

and distance corrections for the classical and PI simulations. In all but one case

the amplitude of vibration is found to be larger in the PIMD simulation. The

distance corrections are also correspondingly different. The agreement between

the PIMD and force-field amplitudes is very good and the distance corrections

are nearly identical.

The classical-MD and PIMD Morse parameters disagree substantially. The

classical values for the bonded distances agree reasonably with the tabulated

values of Kuchitsu et al.28 The non-bonded values are quite small apart from

N(4)· · ·N(5) and N(4)· · ·Cl(4). The latter at least will have some bonding

character as the Cl is directly opposite that N in the structure. In contrast, the

PIMD non-bonded values are larger, while the bonded values are much smaller

than would be expected. This is most likely an artefact of the manner in which
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Table 7.1: RMS amplitudes of vibration, 𝑢, distance corrections, 𝑟a − 𝑟e, and
Morse constants, 𝑎, determined from the DFT-MD simulations and the cubic
frequency calculation of C3N3Cl3.

𝑎

DFT-MD (𝑃 = 1) DFT-PIMD (𝑃 = 16) Cubic freq. calc.𝑏

Atom pair 𝑢 𝑟a − 𝑟e 𝑎 𝑢 𝑟a − 𝑟e 𝑎 𝑢h1 𝑟a − 𝑟a3,1 𝑎𝑐

C(1)–N(5) 3.1(1) 0.4 21.7 4.6(1) 0.6 10.0 4.5 0.6 22.7
C(1)–Cl(8) 4.3(1) 0.8 21.5 5.2(1) 0.9 11.2 4.8 0.8 18.3
C(1)· · ·Cl(8) 4.0(1) 0.2 0.4 5.3(1) 0.7 4.2 5.2 0.6 0.0
N(4)· · ·N(5) 4.5(1) 0.3 10.3 5.6(1) 0.8 5.3 5.3 0.8 0.0
N(4)· · ·Cl(7) 5.9(1) 0.8 9.5 6.6(1) 1.1 6.1 6.2 1.0 0.0
C(1)· · ·N(4) 5.1(1) 0.8 2.1 6.2(1) 0.7 4.4 5.9 0.7 0.0
C(1)· · ·Cl(7) 5.9(1) 0.3 2.9 6.5(1) 0.9 8.2 6.2 0.8 0.0
N(1)· · ·Cl(8) 6.2(1) −0.1 1.3 6.8(1) 0.7 2.4 6.3 0.7 0.0
Cl(7)· · ·Cl(8) 8.6(1) 0.1 0.0 8.5(1) 0.8 4.7 8.4 0.8 0.0

a Distances and amplitudes are in pm, while Morse constants are in nm−1.
b B3LYP/6–311+G(d) level of theory.
c Tabulated values of Kuchitsu et al.28 The values are for diatomic species and therefore
do not include non-bonded distances.

the trajectory is analysed. While treating each replica molecule individually gives

acceptable amplitudes and corrections, it appears to produce spurious Morse

constants. This is supported by calculations on 1,3,5-trazine (C3N3H3).
29 Morse

parameters are rarely used for anything other than bonded distances, where a

Morse potential is likely to be physically reasonable. If they are necessary, then

values from a classical MD simulation should be used until an appropriate way

of estimating them properly from a PIMD simulation is found.

Otherwise, the close agreement of the PIMD values with the cubic force-field

values shows that MD simulations are capable of reproducing ab initio results.

This provides a strong validation for their application to more complex systems.

It is not feasible to perform PIMD simulations for all molecules but the majority

of systems that this method will be applied to will have low-frequency high-

amplitude vibrations that are far better approximated by classical dynamics.

Distances between bonded atoms or atoms separated by only one or two atoms will

still be poorly represented as they will have significant contributions from high-

frequency stretches and bends but the force-field approach should give suitable

values for those distances. It is for longer interatomic distances, with large

amplitudes, that MD simulations will be most important and suitable.
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Equilibrium structure

The ab initio and DFT calculations confirmed the natural assumption of 𝐷3h

symmetry. The GED refinement was carried out by Dr. D. A. Wann using the

ed@ed program and a model of the molecule with 𝐷3h symmetry, defined by

the parameters, 𝑟C–Cl, 𝑟C–N and ∠N–C–N. Details of the data extraction and

refinement are given elsewhere;29 the final geometric parameters (𝑟e), determined

using the DFT-PIMD simulation results, were 𝑟C–Cl = 1.7024(9) Å, 𝑟C–N =

1.3214(6) Å and ∠N–C–N = 127.04(9)∘.

7.3 Gas-phase structures of silsesquioxanes

The MD method outlined in the previous section has been successfully applied to

the structures of four silsesquioxanes. These are Si8O12H8, Si8O12Me8, Si10O15H10

and Si6O9(OSiMe3)6 (where Me = methyl). Figure 7.3 shows the molecular

structure of each molecule. As the details of the experiments and refinements

are either published or due to be published,30–32 for brevity only the features of

the structures that are of interest will be discussed here. The MD simulations of

Si8O12H8 were performed by Dr. P. D. McCaffrey, while some of the simulations

of Si6O9(OSiMe3)6 were performed by Mr. C. Jackson, a B.Sc. project student.

The remaining simulations were carried out in the course of this work.

7.3.1 Si8O12H8 and Si8O12Me8

The first two silsesquioxanes studied were the octahydrido and octamethyl

compounds. Both compounds feature a cube-like structure with the Si atoms

at the corners joined by O atoms and possess overall 𝑂h symmetry. In the

case of Si8O12H8 the classical DFT-MD simulations gave amplitudes of vibration

that were too small. Instead of using all of the MD-derived values, the distance

corrections were taken from the MD simulation while the amplitudes of vibration

were taken from the ab initio frequency calculation. This refinement and an all ab

initio refinement were essentially the same. In contrast, attempts to use the force
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Figure 7.3: Structures of four POSS molecules studied using GED.

(a) Si8O12H8 (b) Si8O12H8

(c) Si10O15H10 (d) Si6O9(OSiMe3)6

field amplitudes and distance corrections for Si8O12Me8 failed. The presence of

the methyl groups altered the dynamics of the cage to the extent that harmonic

or cubic potentials were no longer suitable. In addition the H atoms of the methyl

groups rotate freely. Such motion is also poorly modelled by second- or third-

order polynomials. The MD-derived values permitted an acceptable refinement

of the equilibrium structure. Quantum effects were not a serious issue because

of the slightly higher temperature of the experiment (490 K versus 400 K for

Si8O12H8) and the low frequencies of the dominant anharmonic vibrations.
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The most interesting structural feature of these two molecules is not contained in

the absolute parameters but in the 𝑟a − 𝑟e distance corrections. Nearly all of the

non-bonded distance corrections are negative, indicating that the effect of thermal

motion is to contract the silsesquioxane molecule. However, the effect is relatively

small, with the diagonal Si· · · Si distance being 0.015 Å shorter in Si8O12H8

and 0.025 Å shorter in Si8O12Me8 compared to the equilibrium values. While

the Si· · · Si distance corrections are small, distance corrections to O atoms are

larger. The across-face O· · ·O distance in Si8O12H8 is 0.046 Å shorter while the

corresponding O· · ·O distance in Si8O12Me8 is 0.056 Å shorter. The shortening

most likely arises from anharmonic motions of the O atoms transverse to the

direction of Si linkage. In this case the pairs of O atoms can be thought of as

vibrating towards and away from each other. They spend more time moving

towards each other from their equilibrium position, pulling the Si atoms and

shrinking the cage. Studies of Si8O12H8 and other silsesquioxanes in the solid

state3,4 have shown that this motion arises from rigid motions of the SiHO3

“tetrahedra” relative to each other. This leaves the strong O–Si–O linkages intact,

with the result being that the corresponding motions have very low vibrational

frequencies. The motions of SiO4 tetrahedra in zeolites and silicates are also very

soft and the cooperative motions of these tetrahedra has been shown to have an

important role in the structural and phase behaviour of some materials.33 Such

low-frequency cooperative vibrations are referred to as rigid unit modes.

The analysis of such vibrations is complicated by the obviously large degree

of anharmonicity but it is still useful to study the harmonic frequencies and

eigenvectors obtained using the ab initio calculations. Figure 7.4 shows the

eigenvectors of the 29 cm−1 vibration of Si8O12Me8, obtained at the B3LYP/6–

31G* level of theory. This 𝑇2u symmetry mode is the second-lowest frequency

vibration in the structure and it is clear that it and similar vibrations are

responsible for the across-face motions of the O atoms. The vectors show that

the motions of the O atoms relative to one another preserves the strong O–Si–O

linkages. Bieniok and Bürgi4 performed principal component analysis (PCA) of

the deformations of solid-state Si8O12 fragments, finding that the deformations
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from ideal symmetry were a result of 𝐴2g, 𝐸g and 𝑇2u type distortions.4 These

correspond to the three lowest frequency vibrations in the gas-phase harmonic

frequency calculation (but in the order 𝐴2g, 𝑇2u and 𝐸g). In fact, at the B3LYP/6–

31G* level of theory the 𝐴2g vibration has an imaginary frequency (15𝑖 cm−1)

that prohibits its inclusion in the SHRINK treatment of vibrations. The frequency

and eigenvectors will be very sensitive to the degree of anharmonicity so it is not

surprising that the traditional approaches fail to model them adequately.

Figure 7.4: Eigenvectors of the 29 cm−1 vibrational mode of Si8O12Me8
(calculated at the B3LYP/6–31G* level of theory).

7.3.2 Si10O15H10

The Si10O15 fragment has also been studied a number of times in the solid

state.7,34 The gas-phase structure of Si10O15H10 was determined in a similar

fashion to the structures of Si8O12H8 and Si8O12Me8. Ab initio and DFT

calculations showed that the molecule had 𝐷5h symmetry with two ten-membered

Si5O5 rings joined with O atoms at each Si atom resulting in five eight-membered

rings on the sides of the molecule. The pentagonal ten-membered rings are more

flexible than the eight-membered rings in the Si8O12 molecules and attempts to
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use traditional force-field methods failed. As in the case of the cube-like structures

a number of the distance corrections are negative. Within the ten-membered

rings there are two O· · ·O distances, a 1,2 distance (in terms of O atoms) and

a 1,3 distance. The former is slightly shorter in the equilibrium structure by

0.006 Å but the latter is 0.134 Å longer in the equilibrium structure compared to

the time-averaged one. The distances between ten-membered rings are typically

shortened by thermal motion; the O· · ·O distance straight down from one ten-

membered ring to the other is 0.143 Å shorter in the time-averaged structure.

However, the distance between the O atoms that bridge the two larger rings

are slightly longer in the time-averaged structures, suggesting expansion of the

eight-membered rings in one direction, with compression in the other.

It is impossible to have repeating five-fold symmetry in 3-D space. It is therefore

natural that the Si10O15H10 molecule be distorted from the ideal 𝐷5h symmetry

seen in the gas phase. The distortions have also been the subject of PCA analysis

by Bürgi and co workers.34 Their results indicated that two pairs of degenerate

distortions are responsible for the vast majority (97%) of the deviations from

the ideal 𝐷5h symmetry. The first pair involves the contraction of one of the

ten-membered rings and expansion of the other ten-membered ring, while the

second degenerate pair involves in-phase contraction/expansion of the two ten-

membered rings. These correspond to the two lowest frequency vibrations in

the gas-phase harmonic frequency calculation, which are depicted in Figure 7.5.

Examining the plotted eigenvectors we can see the origin of the ten-membered

ring distance corrections in the gas phase. The 1,3 O· · ·O distances have large

vectors pointing towards each other, suggesting that this distance will shorten,

while the 1,2 eigenvectors are nearly at 90∘ to each other, suggesting only a small

correction. As in the case of the cube-like structures the lowest frequency modes

all preserve the shape of the HSiO3 tetrahedra.
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Figure 7.5: The two lowest frequency vibrations of Si10O15H10 (calculated at
the HF/6–31G* level of theory).

(a) 17 cm−1 (b) 22 cm−1

7.3.3 Si6O9(OSiMe3)6

The Si6O9(OSiMe3)6 molecule has 𝐷3h symmetry with a trigonal prism of silicon

atoms at its core; it is the smallest of the silsesquioxanes (in terms of cage size) to

be studied in the gas phase using the GED method. Unlike the previous molecules

it features SiO4 tetrahedra. While this cage does not feature in known zeolites,

Si6O9(OSiMe2Br)6 has been used as a precursor to porous polymeric materials

based on the Si6O9 core,35 and the Si6O
6−
15 ion is well known.36,37

The spatial extent of the molecule, with its bulky OSiMe3 ligands, rendered

plane-wave or Gaussian plane-wave DFT simulations impossible to perform due

to the length of time and computational expense they would entail. Instead,

semi-empirical (SE) methods (Section 2.2.8) were used to provide the forces for

the MD simulation. The general-purpose CP2K code38 was used to perform a

series of simulations using a variety of SE methods including PM3,39 PM6,40

MNDO41 and MNDO/D.42 It was found that the best results (suitable for use in

the GED refinement) were obtained using the MNDO/D and PM6 methods, both

of which include 𝑑 orbitals in the basis set used for the Si atoms. The inclusion of

𝑑 orbitals is important for modelling the barriers to rotation of the various parts

of the ligands.
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The MD-derived distance corrections show that as for the Si10O15H10 molecule,

the vibrations make the Si6O9 cage contract in one direction and expand in

another. The Si· · · Si distance bridging the the trigonal faces of the prism

shortens by 0.021 Å in the 𝑟a structure, while the across-face Si· · · Si distance

is 0.013 Å longer.

7.4 Silsesquioxanes in the solid state

The distance corrections calculated from the MD simulations of the gas-phase

silsesquioxane molecules suggest that the internal dynamics of the Si𝑛O1.5𝑛 cages

affects the apparent “size” of the molecules. In the gas phase, the effect is small

in magnitude and is only an issue for the refinement of the equilibrium structures

but in the solid state, with the fixed reference of the lattice, the shrinkage or

expansion of the cages could have an interesting affect on the thermal expansion

of the materials. Contraction of the silsesquioxane molecules with increasing

temperatures might lead to very low, or possibly even negative, coefficients of

thermal expansion. The volumetric expansion coefficient is defined as:

𝛼𝑉 =
1

𝑉
× 𝜕𝑉

𝜕𝑇
≃ 1

𝑉0
× Δ𝑉

Δ𝑇
, (7.7)

where 𝑉0 is the initial volume. Some zeolites show volumetric expansion

coefficients in the range of −15.1 × 10−6 K−1 to 32.1 × 10−6 K−1.43 The zeolite

ITQ-744 has a volumetric expansion coefficient of −5.6 × 10−6 K−1 and features

the Si8O12 core in its structure. The phenomenon of negative thermal expansion

has attracted considerable interest as composite materials made of negatively and

positively expanding components could have zero expansion coefficients, making

such materials suitable for use over a large temperature range, or have well defined

expansion coefficients to match specific applications (e.g. tooth fillings).

Si8O12R8 molecules have been studied extensively in the solid state using both

experimental and computational techniques. Only a few of the experimental

studies have determined structures at two or more temperatures. The symmetry
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in the solid state is always lower than the ideal, 𝑂h, symmetry found in the

gas phase. In the case of Si8O12H8, Si8O12Me8 and Si8O12Cl8 the crystallographic

symmetry is R̄3. This enforces 3̄ symmetry on the molecular sites but higher non-

crystallographic symmetry of 𝑇h occurs in the case of Si8O12H8 and Si8O12Me8.
4

7.4.1 NVT DFT-MD simulation of Si8O12Me8

A detailed study of the behaviour, in particular thermal expansion, of the

molecular crystals of silsesquioxanes is beyond the scope of this present work.

Such a study would require NPT DFT-MD simulations to calculate the time-

averaged cell vectors at a series of temperatures. However, such calculations

would be very difficult to converge without long simulation times or large

supercells. However, it is feasible to use NVT DFT-MD simulations of unit cells

to assess whether the dynamics in the solid state resemble those in the gas phase

and if as a result similar distance/positional corrections occur in the solid state.

A Gaussian plane-wave45 (GPW) DFT-MD simulation of a unit cell of Si8O12Me8

was performed using the CP2K code in the NVT ensemble. The calculations made

use of the facilities of HECToR, the UK’s national high-performance computing

service, which is provided by UoE HPCx Ltd. at the University of Edinburgh,

Cray Inc. and NAG Ltd., and funded by the Office of Science and Technology

through EPSRC’s High End Computing Programme. The starting coordinates for

the simulation were obtained from a geometry optimisation of the reported 291 K

single-crystal X-ray structure.5 The electronic wavefunction was represented in

real space using double-𝜁 Gaussian basis functions with polarisation functions,46

while plane-waves were used in reciprocal space to represent the electron density.

A density cut-off energy of 5200 eV was used. Valence-core interactions were

modelled using the GPW-optimised analytical pseudopotentials of Goedecker et

al.47,48 A simulation time step of 0.55 fs was used with data collected for a total

of 12 ps. The trajectory was analysed in a similar fashion to the other DFT-MD

trajectories discussed previously.

As the experimental structure was determined with a X-ray source, it is not
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possible to determine the equilibrium structure for Si8O12Me8. However, it is

still useful to compare the experimental and theoretical estimates of the amount

of thermal motion. Table 7.2 shows the isotropic temperature factors for the six

heavy atoms present in the asymmetric unit. A further four hydrogens make

up the asymmetric unit but a combination of the methyl rotation and spherical

form factors used in the experimental refinement renders meaningful comparison

impossible for these atoms. The theoretical heavy-atom values are smaller in all

cases than the experimental values by about 0.01–0.015 Å2. This may arise from

a lack of long-range phonon modes (as in the case of ammonia).

Table 7.2: Si8O12Me8 experimental5 and theoretical heavy-atom 𝑈eq values (in
Å2).

Expt. Theory

Si(1) 0.0357(6) 0.0192(1)
Si(2) 0.0340(5) 0.0165(1)
O(1) 0.047(1) 0.0399(1)
O(2) 0.046(1) 0.0384(1)
C(1) 0.060(3) 0.0483(1)
C(2) 0.050(2) 0.0416(1)

The CP2K code does not have the ability to enforce the crystallographic

symmetry (or the higher molecular symmetry). As a result, the geometry

optimisation lead to small differences in the structures of the three molecules in

the unit cell. Using only one of the optimised molecules the position corrections

were of the magnitude of 0.017 Å to 0.032 Å for the heavy atoms. Similar results

would be expected if an averaged or full symmetrised equilibrium geometry was

used instead. Figure 7.6 shows (unit length) vectors pointing from the time-

averaged coordinates to the equilibrium coordinates. For clarity, the hydrogen

atoms are omitted and only a single molecule is shown in the cell. The vectors

clearly show that the cage contracts. The intra-cage distance corrections are

similar to those seen in the gas phase.
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Figure 7.6: Si8O12Me8 molecule with correction vectors (of unit length) pointing
from the time-averaged position to the equilibrium position.

7.4.2 NPT EP-MD simulations

DFT simulations of the thermal expansion of the silsesquioxanes would be

prohibitively expensive. However, a number of sets of empirical potentials

have been tested for their suitability in modelling the Si8O12 cage in the solid

state by Ionescu et al.49 The potentials tested included the condensed-phase

optimised molecular potentials for atomistic simulation studies (COMPASS) force

field developed by Sun50 and a hybrid-COMPASS force field with and without

electrostatic interactions. All of them were found to give acceptable results.

To assess the thermal expansion of Si8O12H8 and Si8O12Me8, simulations of

both were performed at 300 and 400 K using the hybrid-COMPASS force field

with no electrostatic interactions. The simulations were run in the anisotropic

NPT ensemble using DL POLY51 version 2.20, running on the EaStCHEM

Research Computing Facility (http://www.eastchem.ac.uk/rcf) Hare cluster.

The simulation cell was a 2×2×2 supercell and a 7 Å cut-off radius was used

for the intermolecular interactions. The simulations were run for a total of 360 ps

using a time step of 0.6 fs. Using the average volumes at the two temperatures and

the approximate form of Equation 7.7, 𝛼𝑉 is estimated to be 152.8 × 10−6 K−1

for Si8O12H8 and 192.2 × 10−6 K−1 for Si8O12Me8, clearly indicating that the
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molecular crystals have positive thermal expansion. Although DFT would be

expected to model the cage contracting modes more accurately, these values are

likely to be representative for these materials. At 293 K, 𝛼𝑉 for liquid water is

206×10−6 K−1, while for ethanol it is 1400×10−6 K−1.52 Hard materials, such as

metals, typically have much small coefficients; commercial titanium has a value

of 25.5 × 10−6 K−1 at 298 K.52

The thermal expansion coefficients of Si8O12H8 and Si8O12Me8 are not that

surprising for molecular crystals. While the cages contract, the vibrations of the

molecules relative to each other will lead to overall expansion of the cage. If the

silsesquioxanes were joined in one, two or three dimensions then it is possible

that the contraction of the cage will dominate. The majority of crystalline

systems featuring low or negative thermal expansion are framework or non-

molecular materials. Investigating the thermal expansion of the silsesquioxanes

cages in industrial applications may prove fruitful. Indeed, some epoxy resins

with a Si8O12R8 core are already known to have quite small thermal expansion

coefficients in the range of 22× 10−6 K−1.53 Interestingly, this behaviour is often

explained in terms of the Si8O12 cores being rigid.

7.5 Conclusion

An MD method for determining experimental equilibrium structures from

GED data has been outlined and benchmarked using the structure of 1,3,5-

chlorotriazine. This method uses classical or path-integral MD simulations to

calculate amplitudes of vibration, distance corrections and Morse anharmonicity

constants, all of which can be used in a GED refinement. Path-integral

simulations are important for determining accurate amplitudes and distance

corrections for interatomic distances involving light atoms or high-frequency

vibrations.

This MD method has been used to determine the equilibrium structures of

four silsesquioxane molecules. In the case of three of the four molecules the

traditional force-field approach to estimating amplitudes of vibration and distance
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corrections proved inadequate. For Si8O12R8 (R = H, Me) the theoretical distance

corrections show that low-frequency vibrations result in an apparent shrinking of

the Si8O12 cage. The lower symmetry of the other two silsesquioxanes, Si10O15H10

and Si6O9(OSiMe3)6, leads to shrinkage of some (SiO)𝑛 rings and expansion of

others.

Solid-state MD simulations of Si8O12H8 and Si8O12Me8 using DFT and empirical

potentials suggest that while the Si8O12 cages still contract in the solid state there

is overall expansion of the cell. More rigid systems, where the silsesquioxanes

are joined, may exhibit much lower coefficients of thermal expansions than the

molecular crystals of the monomer species.
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Chapter 8

Conclusions, recommendations

and future work

187



8.1 Experimental equilibrium crystal structures

8.1.1 Molecular dynamics-derived equilibrium structures

Equilibrium structures are of particular use to structural chemists because they

represent the system at rest without the potentially distorting effects of thermal

averaging. To compare different experimental structures quantitatively with each

other or with theory the use of equilibrium structures is essential. However, in

the solid state there has been no generic way to correct structures for the effects

of thermal motion up until now. Molecular dynamics (MD) simulations have

been used to overcome this problem. MD simulations allow us to simulate the

theoretical time-averaged structure of a crystal. This can be used together with

a theoretical equilibrium structure to estimate corrections to experimental time-

averaged structure. The resulting experimental equilibrium structure combines

the best of theory and the best of experiment.

This MD method has been successfully applied to a series of molecules including

ammonia, nitromethane and 1:1 urea-phosphoric acid (UPA). The results show

large and significant corrections to atomic positions and interatomic distances.

To study systems at low temperatures path-integral methods have been used

to include the effects of zero-point energy and tunnelling. The results from

nitromethane show that even systems with only zero-point energy can have

statistically significant corrections to structural parameters.

The simulations carried out to date represent only an initial benchmarking and

validation of this method. Further simulations are required to have a broader

picture of what systems and chemical motifs are likely to be affected appreciably

by thermal motion. In addition, all of the simulations performed in the course of

this work have used either the relatively high-level DFT methodology or empirical

potentials specifically optimised for the molecule of interest. A study of the

suitability of more generic semi-empirical methods (such as PM61) or optimised

sets of empirical potentials (such as Amber2 etc.) would be useful.
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8.1.2 Equilibrium structures from experiment alone

Performing DFT-MD simulations is not feasible for all crystal structures and even

with the use of empirical potentials or SE methods it is by no means a trivial

procedure. It would be preferable if thermal motion could be accounted for

using only experimental data. The experimental information on thermal motion

takes the form of the 3-D probability density functions (PDFs) that describe the

thermal motion of each atom in the mean field of the other 𝑁−1 atoms in the unit

cell. The 𝑁 3-D PDFs are marginals of the full (3𝑁−3)-D PDF that describes the

complete thermal motion of the crystal lattice. These PDFs have corresponding

free-energy surfaces associated with them. It was hoped that the minimum of

the 3-D potentials would correspond to the minimum of the global potential,

thus providing an estimate of the equilibrium structure. However, analysis of the

results from a number of systems suggests that the minimum of an atom’s 3-D

potential can not be taken as a reliable estimate of its equilibrium position.

A possible way to overcome this problem would be to combine the individual 3-D

PDFs to obtain the full (3𝑁 −3)-D PDF. However, this would require knowledge

of the correlations between different atoms. In the harmonic limit the correlations

between two atoms, 𝑘 and 𝑘′, can be described by:

𝑈𝑖𝑗,𝑘𝑘′ = ⟨Δ𝑢𝑖,𝑘Δ𝑢𝑗,𝑘′⟩. (8.1)

where 𝑢 is a displacement from the mean atomic position and 𝑖, 𝑗 = 1, 2, 3. For

𝑘 = 𝑘′ we obtain the standard anisotropic displacement parameters. Information

on the 𝑘 ̸= 𝑘′ terms is lost in a single experiment but is obtainable from a multi-

temperature study.3–5 Combining the PDFs and analysing the result would be

challenging computationally but for some systems the majority of the effect could

be captured by combining PDFs of atoms that will be strongly correlated. For

example, in UPA the behaviour of the migratory proton will be strongly influenced

by the two O atoms that it migrates between. The correlations between the

three atoms could be extracted from the MD simulation that has already been

performed and could be used to produce a 9-D PDF. If the minimum of this
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compares more favourably to the equilibrium position then this would confirm

the origin of the differences in the probable and equilibrium positions.

Although multi-temperature studies could be used to determine the correlations,

they may not always be feasible and for neutron studies they would be particularly

expensive to perform. Another way to estimate the correlations would be

to use a lattice dynamics calculation. Such a calculation would give only

harmonic information but this should be sufficient for estimating correlation

terms. Correlations might also exist in the higher-order terms but these should

be small in comparison to the harmonic quantities.

8.2 Anharmonic probability density functions

and Debye-Waller factors

The need to “correct” experiment structures for thermal motion effects arises

because of anharmonicity in the potential-energy surface. In the diffraction

experiment this anharmonicity manifests itself in deviations of the 3-D atomic

PDFs from normal or Gaussian distributions. The vast majority of crystal

structures only model thermal motion as Gaussian or harmonic in nature. While

anharmonic PDFs may not provide a reliable estimate of equilibrium positions

it is still important to model thermal motion properly. This can be seen by

the considerable interest that anharmonic thermal motion has garnered in the

crystallographic literature. The use of anharmonic PDFs should lower 𝑅 factors

and also provide structures that make more physical sense. In the case of

nitromethane the C–D bond obtained by using anharmonic PDFs is far closer

to the equilibrium value than the average distance.

The primary deficiency (and in a sense strength) of the previously developed

anharmonic PDFs and Debye-Waller factors is their general form. A variety

of different methods have been implemented that can fit nearly any degree of

anharmonicity but at a significant cost in the number of parameters. The generic

form was partly a result of the fact that little independent evidence or data could
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be collected about the nature of the anharmonicity and its effect on the shape

of the PDF. In this present work MD simulations have been used to fill this

gap. Numerical PDFs can be readily obtained from the MD simulations. As

a test case, numerical PDFs showing a significant degree of curvature and/or

asymmetry have been modelled using the traditional Gram-Charlier (GC) series

approach as well as a parabolic and skew-normal PDF. The latter two PDFs,

introduced to crystallographic use in the present work, model curvature and

asymmetry, respectively. The results suggest that the numerical PDFs will prove

useful in assessing the merit of different models of anharmonicity. In particular

the parabolic PDF consistently produced better agreement with the numerical

data but with far fewer parameters than the GC series.

The MD simulations used to collect the numerical PDFs need not be of the

highest possible level of theory. Good agreement with experiment is of course

preferable but all that is required is that the PDFs represent physically-reasonable

distributions. A semi-empirical study of a large range of systems could be used

to obtain a broad test set for new analytical PDFs.

8.2.1 Implementing new anharmonic Debye-Waller fac-

tors

For anharmonic treatment of thermal motion to become more widespread in

crystallography it is important that new PDFs are intuitive, contain as few

parameters as possible and are available in free and widely used software.

Functions that model anharmonic motion intuitively, such as the parabolic PDF,

will be most easily defined in real space. In some cases it will not be possible

to obtain analytical forms for the corresponding Debye-Waller factors. Even

“true” PDFs, which must have an analytical Debye-Waller factor, may not have

a succinct expression suitable for use in refinement programs. Refining structures

using numerical Debye-Waller factors could overcome this problem and indeed the

process of testing different functions on experimental data would be simplified if

such a method could be easily implemented.
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There is quite a variety of crystallographic software available for performing

crystal structure refinement. Of these, the computational crystallography

toolbox6 (cctbx) (http://cctbx.sourceforge.net) is probably the most suited for

implementing new Debye-Waller factors. The cctbx consists of a series of

modules, written in C++ and python, that contain flexible code for handling

crystallographic data and performing refinements. Its modular design allows new

features to be implemented without the need for changes to every part of the code.

Although developed for macromolecular crystal structures, where conventional

programs perform poorly, the cctbx routines can be used for any type of system.

The cctbx itself is command-prompt based but the graphic-user-interface based

OLEX2 program7 can use some cctbx features.

8.2.2 Visualisation of PDFs

Information on the harmonic approximation to thermal motion is easily visualised

using surfaces of constant probability. For a 3-D Gaussian PDF such surfaces take

the form of ellipsoids.8,9 The depicted thermal ellipsoids can be used to assess

how much different atoms move in the system and to assess the quality of the

refinement.10

For anharmonic PDFs there has been practically no work on visualising analytical

surfaces of constant probability. Older programs such as PROMETHEUS11

were capable of plotting 2-D density and difference-density maps. The more

recent XD200612 program renders GC-series PDFs numerically using volumetric

datasets. Such an approach is probably the most efficient and effective one,

especially with the wide variety of programs capable of rendering volumetric

data.

One of the more widely used formats for volumetric data is the cube file format

originally introduced by the Gaussian program as an output format for electron

densities and molecular orbitals.13 A number of chemical visualisers can use this

format including VMD,14 molekel15 and Jmol.16 Fortran90 programs have been

written that take the output of an MD simulation and convert it into a cube
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file for visualisation of the numerical PDFs. Figure 8.1(a) shows the PDFs of

d3-nitromethane at 228 K rendered using Jmol and POV-ray.17 A particular

advantage of Jmol is its ability to take arbitrary “slices” through the volumetric

data; Figure 8.1(b) shows the plane through the three D atoms. Jmol also

supports a compact file format for isosurfaces and planes called jvxl, which

could be used for interactive inspection of 3-D structures just as crystallographic

information files (cifs) can be used to visualise thermal ellipsoids in programs

such as Mercury.18

Figure 8.1: Jmol and POV-ray renderings of the numerical PDFs of d3-
nitromethane at 228 K. [Probability increases from red to blue in (b).]

(a) 3D isosurface (b) 2D plane through D atoms

8.3 Predicting anisotropic displacement

parameters

The primary focus of this thesis has been extracting information on anharmonicity

from MD simulations. It is also possible to extract harmonic information from

the simulations. The theoretical prediction of ADPs would be of use for H atoms
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in X-ray studies or for studies at high pressure etc., where experimental data

are limited by the nature of the experimental apparatus. The results from the

compounds studied in this work suggest that MD simulations could give reliable

estimates of ADPs. Lattice dynamics (LD) calculations represent an alternative

method and are more suitable for routine application. This is because they require

far less computational effort and therefore permit higher levels of theory, such

as hybrid DFT, to be used. LD calculations may have difficulties with highly

anharmonic systems and MD simulations may prove useful for those systems in

testing the LD approach.

8.4 Gas-phase equilibrium structures

The MD method can also be used in the gas phase, building on previous work by

Dr. P. D. McCaffrey. The equilibrium structures of four silsesquioxane molecules

have been determined using this method. Three of these molecules could not be

studied with traditional gas electron diffraction (GED) approaches that use the

gas-phase equivalent of lattice dynamics to estimate vibrational parameters. MD

simulations are likely to be particularly suited to large molecules that feature low-

frequency high-amplitude vibrations. Studying systems whose thermal motion is

dominated by high-frequency vibrations may require the use of expensive path-

integral MD simulations.

The application of MD simulations to GED structure determination is still in its

infancy and further studies, particularly of compounds outside the silsesquioxane

class of molecules, are required to fully assess the range of compounds it will be

best suited to. It would be beneficial to implement the more generic scattering

equation of McCaffrey et al.19 into the ed@ed20 refinement program. The

standard Morse-potential based scattering equation is only effective at modelling

anharmonicity between bonded atoms where the approximation of a Morse

potential is valid. Using a more generic equation would allow all of the MD-

derived data to be used in the refinement process.
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Appendix B

Conferences and courses attended

Conferences

∙ ScotCHEM Computational Chemistry Symposium
University of St Andrews, April 2007
Poster presentation “The equilibrium structure of crystalline ammonia”

∙ BCA Annual Spring Meeting
University of Kent, Canterbury, April 2007
Poster presentation “Towards equilibrium crystal structures”

∙ 12th European Symposium on Gas Electron Diffraction
Blaubeuren, Germany, June 2007
Poster presentation “The equilibrium structure of crystalline ammonia”

∙ 22nd Austin Symposium on Molecular Structure
Austin, TX, USA, March 2008
Poster presentation “A molecular dynamics approach to equilibrium
structures in crystals: nitromethane”

∙ BCA Annual Spring Meeting
University of York, April 2008
Oral presentation “A molecular dynamics approach to equilibrium
structures in crystals”

∙ ScotCHEM Computational Chemistry Symposium
University of Glasgow, April 2008
Poster and flash presentation “A molecular dynamics approach to
equilibrium structures in crystals: nitromethane”

∙ 20th IUCr Congress
Osaka, Japan, August 2008
Poster presentation “A molecular dynamics approach to equilibrium
structures in crystals: nitromethane”
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∙ ISIS Crystallography User Group Meeting and PCG/SCMP Autumn
Meeting
Abingdon, Oxfordshire, November 2008
Poster presentation “Understanding the effects of anharmonic thermal
motion”

∙ ScotCHEM Computational Chemistry Symposium
Heriot-Watt University, Edinburgh, April 2009
Poster presentation “Applications of molecular dynamics simulations to
crystallography”

∙ 13th European Symposium on Gas Electron Diffraction
Blaubeuren, Germany, June 2009
Poster presentation “Applications of molecular dynamics simulations to
crystallography”

Courses and seminar series

∙ NSCCS CASTEP Workshop, 2006

∙ Intermediate Unix, 2006

∙ Unix shell programming, 2006

∙ ISIS neutron training course, 2006

∙ SUPA course in density functional theory (SUPADFT), 2006

∙ CCP5 summer school in molecular simulation, 2007

∙ Programming in Perl, 2007

∙ Creating web pages with HTML, 2008

∙ Formatting web pages with cascading style sheets, 2008

∙ Departmental colloquia, 2006-2009

∙ Inorganic, structural, materials and chemical physics section talks, 2006–
2009
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Appendix C

Contents of electronic appendix

The electronic appendix consists of a number of folders:

∙ Benzophenone: The intensity files (.hkl), SHELX input files (.ins) and
resulting crystallographic information files (cifs) are provided here for the
70 K refinement and the four 300 K refinements. The cifs have not been
fully validated.

∙ Code: This contains source code for the programs used to analyse some of
the MD simulations performed as part of the work presented in this thesis.
Some sample Mathematica notebooks for fitting anharmonic probability
density functions to MD datasets are also provided. The vast majority of
the empirical-potential MD code used for nitromethane and ammonia was
written by other authors and is not included here.

∙ Publications: Copies of the first six publications listed in Appendix A are
provided here as .pdf files. The remainder are in press or in preparation.

∙ Thesis: The cross-referenced electronic copy of this thesis is included in
this folder.
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