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Abstract 

The problem of controlling tsetse flies in Africa is an old one. The tsetse fly transmits the 

trypanosome parasites which cause sleeping sickness in humans and disease in cattle. 

Because cattle are a favoured food source for tsetse much work has been done looking at 

the use of insecticide treated cattle as a control strategy for the tsetse fly. Such treatment 

methods possess many advantages; they are safe and relatively environmentally benign, 

they can be applied by individual farmers without the need for logistically demanding and 

costly traditional control programmes and, in addition to tsetse flies the insecticides are 

effective against a wide range of other harmful cattle parasites. The cost of the insecticide 

is however a significant constraint to the number of livestock keepers who can afford to 

employ the technique and as a result many cattle remain untreated. Following the 

discovery that tsetse had a significant predilection for feeding on the legs and belly of 

cattle, it was hypothesised that restricting the insecticide to only  those areas could offer 

comparable protection to treating the whole animal. Such an approach would use up to 

80% less drug and thus make the treatment per animal much cheaper. In addition, 

preferentially targeting areas favoured by tsetse, and leaving the rest of the animal 

untreated, preserves some important ecological balances between cattle and their parasites 

which traditional treatment methods destabilise. 

 This thesis describes the design, implementation and analysis of a longitudinal study run 

over 8 months in south east Uganda that sought to compare the effect of applying 

insecticide to cattle only on the regions favoured by tsetse flies. Cattle were recruited to 

the study and assigned one of four treatment groups; a whole body application of 

deltamethrin insecticide pour-on; a restricted application of deltamethrin spray, applied to 

the front legs, ears and belly; a prophylactic trypanocide injection of isometamidium 

chloride, and a control group, that received no further treatments. All animals in the study 

were however cleared using twin doses of a trypanocide diminazene aceturate at the start 

of the study. 
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 Animals were blood sampled every 28 days for the duration of the study, clinically 

examined and tested for anaemia using a portable haemoglobinometer.   Samples were 

subsequently screened in the UK using a molecular diagnostic technique (ITS-PCR).  

In terms of incident trypanosome infections as measured by ITS-PCR, there was no 

significant difference between the restricted application spray method and whole-body 

treatment using pour on, with both conferring significant protection against reinfection 

with trypanosomes compared with the control group. In terms of more general indicators 

of animal health, such as anaemia, only the pour on group showed a significant 

improvement in haemoglobin values over time. There were indications that the 

prophylactic use of isometamidium was in some cases detrimental to the health of the 

animals and reasons for this are explored. 

Finally, in terms of clinical signs, the pour-on group showed significant improvements in 

terms of tick burden and condition score during the study. Beneficial effects were also 

apparent but less pronounced in the restricted spray group. The study concluded that the 

restricted application had the potential to be of use in controlling trypanosomiasis but 

required a shortened treatment interval. The restricted spray technique was estimated to be 

approximately one-fifth of the cost of whole-body spray treatment and one-eighteenth the 

cost of using pour-on insecticide.  The long term sustainability of trypanosomiasis control 

using this method in the current framework of veterinary service provision in Africa is 

discussed. 
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“Either there is no tsetse fly anywhere in the Ugandan Protectorate, or it is not able 

to introduce into the bodies of domestic animals the malarial germs which cause 

tsetse fever, therefore theoretically there is no part of the Protectorate in which cattle, 

sheep goats and horses cannot be productively kept.” 

 

Sir Harry Johnston, Special Commissioner to the Ugandan Protectorate, 1899‐

1902; in The Ugandan Protectorate Vol 1 (1902). Page 288 

 

 

 

 

“It is the unexpected which always happens in Africa” 

 

Sir Harry Johnston, Special Commissioner to the Ugandan Protectorate, 1899‐

1902; in The Ugandan Protectorate Vol 1 (1902) Page  302 
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Overview 

Epidemic diseases can be dramatic, but the insidious attrition caused by endemic diseases 

is more of an economic burden  (Tisdell et al., 1999). Seventy percent of the rural poor in 

Africa depend on livestock (LID, 1999) and cattle play a fundamental role in the 

provision of a route out of poverty. Cattle are a source of food, manure, draught power for 

arable agriculture, as well as functioning as an investment and credit source, to be sold 

when sudden expenses arise. Furthermore, they fill numerous social functions and are a 

display of status (Moll, 2005). 

Parasitic diseases represent many of the important endemic diseases that afflict African 

livestock, of which the most economically damaging are those vectored by ticks and 

tsetse flies (McLeod & Kristjanson, 1999; Swallow, 2000). Ticks transmit a number of 

blood parasites whose impacts range from debilitating to rapidly fatal. Tsetse flies vector 

trypanosomiasis, a blood borne parasite that causes severe production losses in indigenous 

cattle breeds and high mortalities in introduced potentially more productive, breeds. In 

addition trypanosomes cause sleeping sickness in humans, an invariably fatal disease 

without treatment and currently afflicts between 30,000 and 300,000 people per year 

(Barrett et al., 2003a). The uncertainty in the above estimate is due to issues with 

unreporting of the disease (Odiit et al., 2005) (World Health Organization, 1998). 

Control of trypanosomiasis dominated the imperial colonial agenda, at one time taking a 

quarter of colonial research spending (Rogers & Randolph, 2002) and for many years 

focused on the control of the tsetse vector. With the decline of government services in the 

1970’s and 1980’s, the disease increasingly became managed by individual farmers as a 

private good. Although drug control has been historically effective, the compounds have 

been in use for over 40 years, resistance is manifest and there are no replacement 

compounds on the horizon. Consequently, emphasis has shifted to look for alternative 

methods of control, and one such option has been the use of insecticides on cattle. In 

addition to providing tsetse control, insecticides offer control of ticks, and although this is 

usually beneficial, it has the potential to cause problems due to differing host-parasite 

ecologies of trypanosomiasis and tick-borne diseases. Moreover, conventional insecticide 
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use remains too costly for the majority of rural livestock keepers to adopt. Following on 

from the discovery that tsetse have a predilection for feeding mainly on the legs and belly 

of the cattle (Vale et al., 1999), it was hypothesised that restricting the application of 

insecticide to just  these sites could reduce the costs of insecticide whilst still providing 

adequate protection from disease. This thesis describes the background to, design, 

implementation and subsequent analysis of a longitudinal study conducted in south-east 

Uganda, the aim being to compare this novel approach of restricted insecticide use with 

conventional treatments currently available to livestock keepers. 
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1.1 Livestock and poverty 

Sub-Saharan Africa is home to some of the world’s most impoverished people. There are 

an estimated 790 million people globally who do not have adequate access to food, of 

which 25 % reside in sub-Saharan Africa (Pretty et al., 2003). Put another way, over 70% 

of the rural population of Africa live with food insecurity (Rosegrant, 2005). It is sadly 

ironic that smallholder farmers, the producers of over 90 % of the continent’s food 

supply, make up half of this population. The rest of the food insecure population consists 

of the landless poor in rural areas (30 %) and the urban poor. For comparison, throughout 

the developing world agriculture accounts for around 9 % of the gross domestic product 

(GDP) and more than half of total employment. In countries where over a third of the 

population is considered undernourished, agriculture represents 30 % of GDP and nearly 

70 % of the population relies on agriculture for their livelihood (Pinstrup–Andersen, 

2002). 

Current development paradigms admit the links between disease, poverty and hunger 

hence eradication of extreme poverty occupies the top position in the United Nation’s 

Millennium Development Goals (United Nations, 2006). The raising of national levels of 

food production to meet increasing domestic demand and the concomitant reduction in 

dependency of foreign imports of food is a primary objective.(World Bank, 2005) Key to 

this expansion is better use of animal traction, and the main constraint on this goal is 

tsetse-transmitted trypanosomiasis. 

1.1.1 Current state of veterinary provision 

The veterinary service industry in the developing world is in a state of flux. Although 

largely decimated by the structural reform programmes of the last 15 years (Umali et al., 

1994), it is about to be met with some very interesting challenges. While the international 

donor community is increasingly reticent about funding large scale, top-down veterinary 

intervention projects, the current emphasis on poverty reduction places livestock in a key 

role (Commission for Africa, 2005). On a global stage, population growth, urbanisation 

and an increasing amount of disposable income are rapidly expanding the market for 



 Chapter 1 :- Introduction 

 5

livestock products (Scoones & Wolmer, 2006), with climate change, land tenure and 

environmental degradation promising to starkly alter current agricultural zones. Finally, 

expanding globalisation of trade and travel is increasing the risk of zoonotic diseases and 

threatening food security (de Haan, 2004; Turner, 2005). 

1.2 Trypanosomiasis 

African animal trypanosomiasis places a severe constraint on agricultural production in 

Africa as it prevents the use of livestock in some of the continent’s potentially most fertile 

areas (WHO, 1998). In high challenge areas, or in trypanosusceptible livestock, the 

disease can be rapidly fatal, and animals living with even moderate risks of 

trypanosomiasis are less productive, suffer from  lower milk yields, slower weight gain, 

lower calving rates and elevated rates of calf mortality (Swallow, 2000). Livestock 

owners are faced with the necessity to control the impact of the disease, either through 

treatment of their animals with curative or prophylactic trypanocidal drugs, or through 

vector control.  

Any assessment of the influence of trypanosomiasis on African livelihoods is often 

confounded by other concurrent production constraints, for example livestock health 

problems e.g. tick borne diseases, or social factors, e.g. civil insecurity. Various analyses 

that draw the distinction between direct and indirect impacts and their interactions are 

highlighted in Figure 1-1 
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Trypanosomiasis has a direct impact on the average number of livestock kept by farmers. 

Using geographical information systems to spatially link cattle density data with 

economic model data, Kristjanson et al. showed that cattle density is highest in tsetse free 

areas in all ago-ecological zones, except those classified as arid. (In arid areas tsetse 

distribution is solely along water courses where cattle and human population also cluster). 

A summary of the data for East Africa is shown in Figure 1-2. This model demonstrated 

that the costs of trypanosomiasis alone are immense. Tsetse-free areas produce 83% more 

milk and 97% more meat than the equivalent infested areas. This alone translates to a 

potential economic surplus of US$700 million should trypanosomiasis control be 

possible. The model estimated the costs of trypanosomiasis from the associated reduction 

in meat and milk production compared with a simulated, tsetse free herd. The estimated 

annual cost of trypanosomiasis in terms of foregone meat and milk is around US$1.3 

billion per year(Kristensson & Bentivoglio, 1999). 

Figure 1-1:-Framework of the impacts of endemic cattle 
diseases. Based on Swallow (2000) 
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Whilst this is possibly an over-simplistic way of quantifying the cost of trypanosomiasis, 

it perhaps serves to give some indication of the magnitude of the problem. 

  Region and 
agro-ecological 

zone 

Total 
number 
of cattle 
(million) 

Number 
of cattle 
in tsetse 
infected 
areas 

(million) 

Percent of 
total 

Tsetse 
infected 

area 
Cattle/km

2 

Tsetse-
free area 
Cattle/km

2 

Eastern Africa           

Arid  15.5 1.5 10% 13.7  5.4

Semi‐arid  17.9 5.09 28% 23.7  16.9

Subhumid  10.2 6.19 61% 9.9  13.7

Humid  0.9 0.59 66% 7.9  8.6

Highlands  31.7 7.96 25% 21.5  34.5

Total: East Africa  76.2 21.32 28% 15.3  15.8

Total:  All  sub‐Saharan 
Africa 

149.8 47.75 32% 5.3  7.2

Aside from the direct effects of trypanosomiasis on reproductive efficiency and herd 

mortality, the disease requires that farmers structure and manage their herds to ameliorate 

its potentially devastating effects. Breeds of animal well suited to a particular function, 

e.g. traction or dairying, can be so susceptible to trypanosomiasis that, even when they are 

under prophylaxis treatments, they are non-viable in some areas (Marples, 1967). This has 

particular impact in mixed crop/livestock agricultural systems where livestock provide a 

form of transport, manure fertilizers and traction. A study in the Ghibe valley of Ethiopia 

showed oxen in areas with a high risk of trypanosomiasis were 38% less efficient 

providers of traction than oxen in low-risk areas (Swallow, 1998). Animal traction has 

been shown to be instrumental in increasing the agricultural productivity of smallholder 

farmers (Savadogo et al., 1998). With economic policy placing agricultural productivity 

Figure 1-2:-Number and density of cattle in tsetse areas of 
east Africa by region and agro-ecological zone. Adapted 
from Kristjanson et al. (1999). 
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key to raising the income of Africa’s rural poor, (Thirtle et al., 2003; Bahiigwa et al., 

2005) the requirement for cost-effective solutions to the constraints of livestock 

production increases. 

1.2.1 Outline of trypanosome ecology, biology and distribution 

The trypanosomiases are a group of human and animal diseases caused by a unicellular 

flagellate protozoan parasite of the genus Trypanosoma. Trypanosomes are obligate 

parasites and the group infects most vertebrate genera, including man.  In sub-Saharan 

Africa two subspecies of Trypanosoma brucei cause human African trypanosomiasis, or 

sleeping sickness, and in the Americas Trypanosoma cruzi causes Chagas’ disease. These 

parasites are collectively responsible for profound human misery, yet remain probably 

one of the most neglected human diseases of our history (Coleman, 2002; Molyneux, 

2004). The African trypanosomiases are cyclically transmitted by the tsetse fly. Following 

a bite from an infected fly, the parasites proliferate in the circulation, evading the host’s 

immune response by continuously changing their antigenic coat of variant surface 

glycoprotiens. This enables a trypanosome population to continually evade removal by 

the immune system whilst simultaneously immunosuppressing and destabilizing the 

immune system by the release of other inflammatory mediators (Cook, 1996). Pathology 

stems from these trypanosome-induced derangements of the host immune system. 

Additionally, Trypanosoma brucei species can leave the circulation and invade tissues or 

enter the cerebrospinal fluid (CSF). In humans, the presence of parasites in the CSF and 

the concomitant meningitis lead to the somnolent state that gives the disease its common 

name of sleeping sickness (Stich et al., 2002). 

Trypanosomiasis infections in livestock are important for two reasons. Firstly, some 

trypanosome species are pathogenic to livestock in their own right and secondly T. brucei 

infections in livestock are important in the epidemiology of human sleeping sickness 

(Hide et al., 1996; Fevre, 2002; Waiswa et al., 2003). In south east Uganda, livestock 

serve as asymptomatic reservoirs for the T.brucei rhodesiense zoonosis that causes human 

sleeping sickness and thus pose a risk to the human population. As such, management of 

the cattle reservoir must be included in any attempt to control T. b. rhodesiense sleeping 

sickness (Welburn et al., 2001a). 
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1.2.2 Animal trypanosomiasis 

Nagana, or African bovine trypanosomiasis, is considered to be the most important 

constraint on livestock production in Africa (Budd, 1999). Cattle can be infected with T. 

vivax, T. congolense and T. brucei., with the most important pathogenic effects confined 

to bloodstream infections with T. vivax and T. congolense (Uilenberg, 1998).  T. 

congolense is divided into subtypes dependent on geographical distribution and 

pathogenicity and is considered the most significant cause of bovine trypanosomiasis in 

East Africa (Stephen, 1986). In West Africa, T. vivax infection in cattle is often an acute 

form with high mortality. In contrast, with the exception of a sporadic hemorrhagic 

syndrome, East African strains of T.vivax tend to produce mild infections which are self-

limiting in healthy animals (Gardiner, 1989). 

                                                 
1 Significant zoonotic reservoir    

2 Significant zoonotic reservoir    

3 Mechanical transmission     

4 Venereal transmission 

Table 1-1: Pathogenicity of clinically important trypanosomes. -- Not 
pathogenic, ++ mild, ++, moderate, ++++++ severely pathogenic. Adapted 
from (Connor, 1992) 

Trypanosome classification Human Cattle Goats Sheep Pigs Horses Donkeys

T.b.brucei  ‐‐   ++   ++++   ++++   ++   ++++++   ++++  

T.b.rhodesiense ++++++   ‐‐11   ‐‐   ‐‐   ‐‐22   ‐‐   ‐‐  T.brucei 

T.b.gambiense  ++++++   ‐‐   ‐‐   ‐‐   ‐‐   ‐‐   ‐‐  

T.evansi3  ‐‐   ++++   ++   ++   ++++   ++++++   ++++  

Trypanozoon 

T.equiperdum4  ‐‐   ‐‐   ‐‐   ‐‐   ‐‐   ++++++   ++++  

T.congolense  ‐‐   ++++++   ++++   ++++   ++   ++++   ++++  
Nannomonas 

T.simiae  ‐‐   ‐‐   ++   ++   ++++++   ‐‐   ‐‐  

Duttonella  T.vivax  ‐‐   ++++++   ++++   ++++   ‐‐   ++++   ++  

Pycnomonas  T.suis  ‐‐   ‐‐   ‐‐   ‐‐   ++++   ‐‐   ‐‐  
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Trypanosomiasis clinically manifests as a wasting disease with progressive loss of 

condition,  increasing anaemia and weakness to the point of extreme emaciation, collapse 

and death (Uilenberg, 1998).  T. brucei infections usually cause a mild or asymptomatic 

disease with a prolonged parasitaemia but with low morbidity, although cases showing 

central nervous system involvement infections of T.brucei in Zebu cattle (Wellde et al., 

1989a; Wellde et al., 1989b), and Ankole breeds (Clausen et al., 1999) have been 

recorded. 

1.2.3 Varying susceptibility to trypanosomiasis and 
trypanotolerance 

Trypanosomes can circulate in a variety of domestic and wildlife hosts; in the latter case 

co-evolution has arguably allowed these infections to be tolerated with little pathology. 

The existence of many alternative hosts, often living in close contact with each other, 

makes control of the disease problematic and elimination potentially impossible. An 

individual ox will exhibit different susceptibilities to trypanosomiasis dependent on age, 

previous exposure and immune status. However, the most important factor when 

assessing susceptibility is breed. Bos taurus African cattle breeds were likely 

domesticated from northern African herds of the, now extinct, wild ox, or aurochs, (Bos 

primigenius) (Bradley et al., 1996). These cattle have shared the continent with 

trypanosomes for at least 10,000 years. In contrast, the Bos indicus cattle, the Zebu, have 

spread westward across Africa from a population of cattle which evolved independently 

to Bos taurus in south Asia, and have probably only existed in Africa since the Arab 

invasions post 670 A.D. (Bradley et al., 1998). West African Bos taurus breeds, for 

example N’Dama,  exhibit a degree of trypanotolerance allowing them to be productive 

under a disease challenge destructive for Bos indicus cattle (Kemp & Teale, 1998). 

Trypanotolerant animals have been shown to be more competent at limiting parasitaemias 

and controlling the anaemia associated with trypanosomiasis (Dwinger et al., 1992), 

rather than demonstrating an acquired immunity. Of the two, anaemia control is the most 

important for controlling pathology (Naessens, 2006). However, in SE Uganda, some 

Nkedi Zebu performed better than Ankole cattle when exposed to the same challenge, 

indicating a degree of acquired resistance may be evident even in the ‘trypanosuceptible’ 

Zebu breeds(Magona et al., 2004c). Conversely, although N’Dama cattle may be more 
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productive than Zebu in areas of high challenge (Itty, 1996), they can still succumb to the 

disease if under stress (Mattioli et al., 1999). 

1.2.4 Trypanosomiasis as a production disease 

Various studies based on longitudinal monitoring, case-control or pre- and post-

trypanocidal intervention methodologies have investigated the impact of trypanosomiasis 

on animal productivity. Trypanosomiasis infection most consistently impacts on birth 

rates and mortality of young stock. Calving rates were shown to be reduced by 1-12% in 

tolerant cattle (Trail et al., 1990b) and between 11-20% in susceptible breeds (Fox et al., 

1993). Similar percentages were seen in the increase in calf mortality, with a 0-10% 

increase in tolerant breeds of cattle and 10-20% in susceptible breeds (Fall et al., 1999; 

Ganaba et al., 2002).  From a clinical perspective, most studies show infection with 

pathogenic trypanosomes results in an increase in anaemia, a decrease in weight gain and 

a lowered immunity to concurrent infections (Agyemang et al., 1993; Dwinger et al., 

1994; Mattioli et al., 1999). It is worth highlighting that even in controlled field trials, the 

presence of concurrent infections, seasonal variation in management practices, and a 

multitude of other confounders make precise and unbiased quantification of the biological 

effect of trypanosomiasis difficult (Rowlands et al., 1996). However, stress, due to 

concurrent disease, malnutrition or dehydration, work, pregnancy or lactation are likely to 

precipitate and exacerbate any pathology (Holmes et al., 2000). 

1.2.5 Trypanosomiasis in humans 

Human African trypanosomiasis is caused by two subspecies of Trypanosoma brucei. 

Both manifest with different clinical presentations, epidemiology and geographical 

location. Infection with either subspecies is uniformly fatal if untreated (Barrett et al., 

2003a). In West and Central Africa, T. brucei gambiense causes a chronic form of the 

disease, and transmission occurs directly from person to person via the tsetse vector. In 

east and southern Africa however, T. brucei rhodesiense is a zoonosis, causing an acute 

form of the disease and involves an animal reservoir. Both infections are classified as 

either early (stage 1) or late (stage 2) dependent on whether parasites have passed into the 

CNS and become manifest in the cerebrospinal fluid.  
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1.2.5.1 T. brucei rhodesiense: Eastern and Southern African Sleeping 
Sickness 

T. b. rhodesiense sleeping sickness is characterised by a rapid progression to severe 

disease, and over 80% of deaths occur within 6 months of the onset of illness (Welburn & 

Odiit, 2002). The first symptoms can be seen at the site of the tsetse fly bite.  Around five 

days after inoculation, the proliferating parasites cause a localised skin reaction termed a 

chancre. Parasites then spread to the draining lymph node, causing a regional 

lymphadenopathy, and on to the bloodstream. The haemolymphatic stage of the disease is 

characterised by general malaise, headache and an undulating fever following the ‘waves’ 

of parasite multiplication in the blood. At this stage parasites are present in blood, lymph 

and tissue but are often below levels of detection (Barrett et al., 2003a). The second or 

late stage of the disease involves the parasites invading the internal organs such as the 

CNS and can occur within a few weeks of infection. Headaches become severe and, with 

progressive CNS involvement, mental impairment, sleep dysfunction and ataxia begin to 

manifest. This culminates in coma and death in untreated cases (Stich et al., 2002). 

1.2.5.2  T. brucei gambiense: West and Central African Sleeping Sickness 

T. b. gambiense sleeping sickness is often described as a chronic infection as the disease 

progresses over a matter of months and years.  Patients can remain asymptomatic or with 

only mild clinical signs for long periods before progressing to severe disease. As a result, 

early symptoms in T. b. gambiense infection are usually mild and often unnoticed.  A 

generalised lymphadenopathy with swellings in the posterior triangle of the neck, known 

as Winterbottom’s sign, is a typical indication of early stage T. b. gambiense infection. 

Other non-specific symptoms are rash and hepatosplenomegaly. However, after a few 

months the parasites invade the CNS and the disease progresses to the late stage with the 

same sequelae as T. b. rhodesiense infections, with chronic encephalopathy and death if 

untreated (Cook, 1996). 

1.2.6 Sick people? Treat the cows 

Unlike T. b. gambiense which is directly vectored between humans, T. b. rhodesiense 

transmission involves an animal reservoir. In SE Uganda the most epidemiologically 
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significant species in this cycle are cattle (Maudlin et al., 1990). In recent years, outbreaks 

of sleeping sickness occurring north of their traditional foci have been demonstrated to be 

caused by the movement of infected cattle from regions endemic for  T. b. rhodesiense 

(Fèvre et al., 2001; Welburn et al., 2001b; Fèvre et al., 2005). In response to this, 

government policy is to treat all translocated cattle at point of sale with a trypanocidal 

drug (Wendo, 2002; Hutchinson et al., 2003). However, the implementation of this 

strategy is probably not yet achieving coverage necessary to reduce transmission (Fevre et 

al., 2006). 

1.2.7 Diagnosis of trypanosomiasis 

The most basic way to detect trypanosome infection is by direct observation of the blood 

under a microscope, using medium magnification (usually a dry objective of 40x and eye 

pieces of 5-10x) (Uilenberg, 1998). Trypanosomes are either seen directly moving 

between the blood cells or indirectly by the movement of the blood cells around them. 

Alternately, preparation of thick and thin blood smears allows the samples to be collected 

and stored. Examined under a microscope using oil immersion and 100x objective, this 

method allows the identification of different species by morphology (Uilenberg, 1998). 

However, T. b. brucei, T. b. rhodesiense and T. b. gambiense are morphologically 

identical so cannot be visually distinguished. The above techniques are straightforward 

but, due to the trypanosomes ability to alter their antigenic coat, the concentration of 

trypanosomes in the blood can fluctuate below detection levels resulting in a low 

sensitivity of the microscopic techniques (Paris et al., 1982; Stich et al., 2002). 

1.2.7.1 Concentration methods 

Trypanosomes in a blood sample can be concentrated to give increased sensitivity.  

Trypanosomes have a specific gravity between that of erythrocytes and white blood cells. 

By either allowing a whole blood sample to settle and clot or by centrifugation the 

parasites tend to concentrate on the border between the two layers. This border is called 

the buffy coat, and removal and analysis of this layer under phase contrast increases the 

probability of detection. Methods of applying these principles are detailed in (Uilenberg, 

1998), and form the basis of the haematocrit centrifugation technique (HCT) (Bennett, 

1962; Woo, 1970) and buffy coat technique (BCT) (Murray et al., 1977). 
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1.2.7.2 Card agglutination test for trypanosomiasis (CATT) 

This method can be used for the diagnosis of T. b. gambiense trypanosomiasis in humans 

(Magnus et al., 1978). This is currently the only serological test that is used in control 

programmes (Pépin & Méda, 2001). It relies on the detection of host antibodies using a 

variable antigen type (VAT) from the trypanosome. This test can be done very simply and 

cheaply, with good sensitivity and specificity (Chappuis, 2002). However, there is no 

similar test for T. b. rhodesiense or any of the pathogenic animal trypanosomes. 

1.2.7.3 Molecular diagnosis of trypanosomiasis 

Molecular assays which demonstrate the presence of parasite DNA in the host are very 

sensitive, and specific tests exist for trypanosomiasis. A positive result will indicate an 

active infection in the host at the time of sampling, as the DNA does not survive in the 

host long after the death of the parasite (Picozzi, 2001). In comparison with microscopic 

techniques, molecular diagnosis is 2-3 times more sensitive (Solano et al., 1999; Picozzi 

et al., 2002). Techniques such as DNA probing and polymerase chain reaction (PCR) 

(Desquesnes & Dávila, 2002) are used for diagnosis and species identification in the 

laboratory. However, due the specialised nature of these techniques, the equipment 

needed and the cost, they are currently not practical for widespread field use. In addition, 

molecular techniques, such as PCR, do not distinguish active infections that will produce 

clinical signs in an animal from infections at a subclinical, endemic level. The actual 

clinical impact of infection tends to be low in trypanosomiasis endemic areas, despite the 

recorded high levels of incidence in susceptible cattle breeds that are affected by tsetse, 

and form a reservoir for trypanosomes (Van den Bossche, 2001). As such, interpretation 

of molecular diagnosis results must consider that active infection is not the same as 

clinical disease. These techniques do however allow for reliable differentiation between T. 

b. rhodesiense and T. b. brucei. T. b. rhodesiense possesses a gene which confers 

resistance human serum. Identification of the serum resistance associated (SRA) gene can 

therefore be used as a diagnostic test to differentiate between these two forms. This is a 

useful tool for screening the animal reservoir to find the portion of animals infected with 

T. b. rhodesiense (Welburn, Picozzi et al. 2001). 
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1.2.7.4 Diagnosis of trypanosomiasis in livestock 

Although definitive diagnosis of the disease can be achieved using the techniques listed 

above, these are not widely available to farmers or animal health assistants. Field 

diagnosis depends on the clinical signs, which include anaemia, pyrexia, weigh loss, 

abortion and, if left untreated, death (Stephen, 1986). 

 The development of anaemia is an inevitable consequence of trypanosome infection, and 

is the best indicator of the presence of the disease (Murray, 1988).  Measurement of 

anaemia is commonly done by assessment of the packed red-blood cell volume (PCV), 

and average PCV has been shown to correlate closely with trypanosome prevalence 

(Eisler, 1998). However, measurement of PCV requires a centrifuge and therefore a 

power sources and therefore not ideal for field diagnosis. Other techniques such as those 

which use ocular mucous membrane pallor, or a visual comparison of blood spots against 

standardised colour scales, are possibilities where standard laboratory facilities are limited 

(Montresor et al., 2003). 

Progressive cachexia and emaciation of infected animals are good indicators of the 

disease. A simple scoring system which has been shown to be a repeatable and 

reproducible method of quantifying the body condition of cattle has been developed 

(Nicholson & Butterworth, 1986). Used in conjunction with an assessment of anaemia, 

they offer the best possibility for reliable diagnosis of trypanosomiasis in a field setting. 

Both of these techniques are employed in the study examined in this thesis and will be 

described in more detail in the relevant section. 

1.2.8 Trypanosomiasis control using drugs 

There is no vaccine for trypanosomiasis. The vast variation in surface antigens does not 

present a constant target for antibody-mediated immunity and therefore negates the use of 

a vaccine. However, the costs in terms of human health and livestock production have 

given this parasite a prominent position on Africa’s development agendas for over a 

century. The main control strategies include use of trypanotolerant livestock, control of 

the vector or control of the parasite using drugs.  The oldest method of dealing with 

trypanosomiasis is simply to avoid the areas infested with tsetse, and, combined with 
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strategic use of trypanocidal drugs, constitutes the control strategy employed by the vast 

majority of livestock keepers. Treatment relies on the use of curative (chemotherapy) and 

preventive (chemoprophylaxis) drugs (Brightwell et al., 2001).  

1.2.8.1 History of drug control of trypanosomiasis 

In the 1920’s the successful treatment of human patients suffering from sleeping sickness 

prompted the search for veterinary analogues for treating animal trypanosomiasis. The 

first compound, Sodium antimony tartrate was only relatively successful: it was difficult 

to use, was irritant to tissues so could only be administered intravenously and clinical 

resolution of disease frequently required repeated treatments (Hoppe, 2003). 

In the late 1930’s the phenanthridinium class of drugs appeared (Browning et al., 1938) 

and in 1949, quinapyramine was introduced. The formulation, known as Antrycide Pro-

Salt was the first chemoprophylactic drug (Willett, 1963). These compounds effected a 

cure with usually one treatment and offered significant periods when cattle were free from 

the disease, providing a potential for keeping cattle in areas of high tsetse challenge 

productively for the first time. It was not long, however, before the reappearance of the 

disease in treated cattle led to recognition that the development of drug resistance was 

severely curtailing the effectiveness of these compounds (Finelle & Yvore, 1962). In 1948 

another phenanthridinium compound, homidium chloride, was released. In 1955, the 

German pharmaceutical company Hoechst brought out a Berenil®, whose active 

ingredient was diminazene aceturate, a diminadine developed as a spin-off to the dye 

industry (Fussganger, 1995). In the early 1960’s, May and Baker isometamidium chloride 

was released, and in contrast to the solely trypanocidal properties of diminazene, could 

also be given at a elevated dose to provide prophylaxis (Sutherland et al., 1991; Mdachi, 

1999).    

1.2.8.2 Current drugs 

Three drugs are currently available for the treatment of bovine trypanosomiasis: 

isometamidium chloride, homidium (chloride and bromide) and diminazene aceturate. 

Table 1-2 shows the current range of drugs, and some trade names, that can be used to 

control trypanosomiasis. With such a small number of drugs on offer in the therapeutic 
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armoury, the need to manage the development and propagation of drug resistance has 

become increasingly apparent over the four decades since the last novel trypanocide agent 

was introduced for African livestock. 

Compound 
Trade 
names a 

Dose 
(mg/kg)

Activity 
Rout
e 

Type

i.m  T 

i.m   Diminazene aceturate 
Berenil® , 
Veridium®, 
Numerous others 

3.5‐7 

T. congolense, 
T.vivax 
T. brucei at higher 
dose     

Homidium chloride  Novidium®  1.0  i.m  T 

Homidium bromide  Ethidium®  1.0 

T. congolense 
T.vivax  i.m  T 

0.25‐0.5  i.m  T 

0.5‐1.0  i.m  P Isometamidium chloride 
Samorin®, 
Trypamidium®, 
Veridium® 

0.5‐1.0 

T. congolense 
T.vivax 
T.brucei 

i.m  P 

i.m., intramuscular; T, therapeutic; P,prophylactic 

a non exhaustive list 

 

1.2.8.3 Mode of action of trypanocides 

Since its introduction in 1958, isometamidium chloride has remained the only agent 

available for the chemoprophylaxis of trypanosomiasis in animals. Assay of the original 

formulation, Samorin®,  reveals a mixture of isomers with isometamidium 8-(3-m-

amidinophenyl-2-triazeno)-3-amino-5-ethyl-6-phenylphenanthridinium chloride 

hydrochloride, mercifully abbreviated to ISM II, as the major active component. 

Synthesis of this particular active isomer requires rigid control of reaction temperature 

and pH to avoid the formation of other, less biologically active compounds (Geerts et al., 

2001). Assays of generic isometamidium formulations have shown large variability in 

their isomeric constituents and hence pharmacological efficacy (Tettey et al., 1999). The 

main mode of action of both isometamidium and diminazene is cleavage of kDNA-

topoisomerase complexes (Burri et al., 1996). The process of resistance is uncertain, but 

Table 1-2:- Currently available trypanocidal drugs for cattle 
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is thought to involve a decrease in the uptake or increased efflux of the drug by the 

parasite (Barrett & Fairlamb, 1999). It has been shown that in arsenical resistant T. b. 

brucei accumulation of diminazene was markedly reduced owing to alterations in the 

nucleoside transporter system (P2) which prevented uptake of the drug (Carter & 

Fairlamb, 1993). 

Isometamidium is administered by deep intramuscular injection. The solution is irritant 

and forms a sterile abscess in the tissue which acts as a depot from which the drug is 

released into circulation. Work done using an ELISA showed considerable individual 

variation in the pharmodynamics of ISMM, an interesting observation being that the 

duration of detection of the drug in the serum seems to be dependent upon the intensity of 

challenge and resistance status of the challenging trypanosomes (Eisler et al., 1994; 

Mdachi, 1999). This could be explained by considering that each trypanosome 

‘consumes’ a small amount of drug before it is killed, hence higher challenge, or more 

tolerant clones of trypanosomes will use up more drug (Torr et al., 2002).  

1.2.8.4 Drug resistance 

It is estimated that 35 million doses of trypanocide are administered each year in the 37 

African countries afflicted with trypanosomiasis (Geerts & Holmes, 1998). Historically, 

trypanocides were controlled and largely administered by government departments. With 

the decline in centralised veterinary services and the deregulation of the pharmaceutical 

sectors, trypanocides, along with many other pharmaceuticals are now traded on the open 

market and can be purchased directly by farmers (Van den Bossche et al., 2000). With 

this large increase in availability came the risk of misappropriate use. Trypanocides are 

considered to be one of the most commonly bought veterinary products in Africa and, in 

the absence of access to diagnostics, are often used by livestock keepers as the empirical 

treatment for all manifestations of disease (Geerts et al., 2001). How and why an 

individual farmer chooses to treat their animals depends on a variety of factors including 

breed of cattle, management practices, knowledge about the disease and financial ability, 

but interestingly not always actual trypanosomiasis risk (Van den Bossche et al., 2000; 

Machila et al., 2003).  
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Given these patterns of usage, and the fact that all three trypanocides are used in cattle 

and small ruminants, it is not surprising that resistance has emerged.  

It is said that ‘drug resistance attends chemotherapy like a faithful shadow’, resistance in 

this case defined as the loss of sensitivity by a strain of an organism to a compound to 

which it had previously been susceptible (Uilenberg, 1998). The mechanisms for how 

trypanosomes acquire drug resistance are not clear. Other organisms generally acquire 

resistance in their populations by the selection pressure favouring pre-existing genetic 

resistance in a small number of individuals (Anene et al., 2001). Some authors attribute 

trypanosomes with an adaptive capability to respond to environmental insults, either by 

up regulating processes which ameliorate the toxic effect of the drug, or by leaving the 

bloodstream and hiding in tissues the drug cannot sufficiently penetrate (Uilenberg, 

1998).  

The development of resistance to trypanocides has been considered to come with an 

associated fitness cost, and the removal of the selection pressure from the drug will 

eventually lead to the disappearance of the resistance trait (Berger et al., 1995; Mutugi et 

al., 1995). Investigation in Ghibe, Ethiopia, showed that, once established, multiple 

resistant trypanosomes were maintained in the population for several years (Mulugeta et 

al., 1997). Additionally, recent work with isogenic clones of T.congolense showed 

significantly higher infection rates in tsetse flies infected with the T. congolense clone 

with the highest level of drug resistance (Van den Bossche et al., 2006). 

Using Plasmodium spp. as a general model for the behaviour of clonal parasites, it is 

thought that drug resistance is likely to occur under the circumstances of: i) large-scale 

drug use; ii) inadequate dosing; and iii) using adequate dosing with drugs that are slowly 

eliminated from the body (Geerts & Holmes, 1998). It is also ironically possible that, 

given the mutagenic nature of some of the trypanocidal agents, chemotherapy could be 

accelerating the development of resistance in the trypanosome populations. 

1.2.8.5 Where are the new drugs? 

Only three trypanocidal drugs are currently available - isometamidium chloride, 

diminazene aceturate and homidium salts. These compounds have been on the market for 
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over 40 years. There are currently no novel compounds in the pipeline because, despite an 

annual market for trypanocides by African farmers and national veterinary/livestock 

services of over US$35 million, trypanosomiasis is not considered sufficiently financially 

important to justify investment by large pharmaceutical companies in the development 

and licensing of new trypanocides. Developing a novel drug from initial screening results 

to registration typically costs over US$160 million, with no guarantee of a marketable 

product at the end of it (Pecoul et al., 1999). Additional costs of drug licensing at national 

levels, combined with the laxity of patent laws have not inspired pharmaceutical 

companies to believe there is any economic return in innovating new compounds for this 

disease. 

Given the absence of any novel compounds in the pipeline, the requirement to maintain 

the lifespan of the current drug arsenal is paramount. The following points have been 

recommended to delay the development of trypanocidal drug resistance. 

The selection pressure generated by exposing the parasites to the drug drives the 

acquisition of resistance. Consequently, reducing the number of treatments reduces the 

selection pressure. Exclusive reliance on drugs for the control of trypanosomiasis, 

especially in areas of high challenge, and frequent, block treatments of a whole herd are 

practices to be discouraged. Integrating chemoprophylaxis with other modalities, e.g. 

vector control, or land use management offer the best chance of delaying resistance, and 

integrated approaches are now widely advocated as the best way of managing 

trypanosomiasis in cattle (Holmes, 1997; Eisler, 2003). 

1.2.8.6 One size does not fit all 

Sub-therapeutic drug concentrations exert a strong selective pressure for propagation of 

clones that have any pre-existing resistance (Mdachi, 1999). Inadequate dosing, from 

errors in weight estimation, deliberate under-dosing or poor drug preparation and 

administration will contribute to this problem. Incorrect weight estimation, for example 

by calculating the weight of the animal from the amount paid for similar sized dead 

weight carcasses, will underestimate the weight by about 50% (Personal observation). 

Use of weigh bands not standardised to the local cattle or adoption of a simple ‘one 
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individual sachet fits all’ approach to dosage are all likely to lead to under dosing. The 

individual sachets of diminazene aceturate sold throughout Africa contain the correct dose 

for an animal weighing 300kg. In the study herds considered in this thesis, 20% of cattle 

weighed over this threshold, so unless multiple sachets are used under-dosing is a risk. As 

the drugs are relatively expensive there is a temptation to over dilute the drug and hence 

under dose. Education of livestock keepers about treatment regimes and development of 

weigh bands calibrated for the relevant breeds could significantly reduce this problem 

(Eisler et al., 2003). 

1.2.8.7 Selective treatments of specific animals 

Block treatment of an entire herd has been effectively used for many years at keeping 

animals productive in the face of high trypanosome challenge (Trail, 1985). However, 

increasing the percentage of trypanosomes exposed to a drug will increase the probability 

that resistance will emerge. Limiting treatment to individual clinical cases reduces 

exposure of the trypanosome population to the drug. Models for anthelmintic resistance in 

sheep suggest that leaving 20% of the herd untreated significantly decreases the rate of 

development of resistance (Barnes et al., 1995).  

There are other reasons to attempt to minimise mass treatments. Aside from the obvious 

economic benefits to the livestock keeper from strategically minimising drug use, there 

are production benefits from reducing the blanket treatment of a herd. Although 

isometamidium has been well proven to provide prophylaxis in areas of high challenge, 

work done in E Kenya demonstrated that, in the absence of parasitaemia, isometamidium 

prophylaxis could have a deleterious effect on both PCV and body weight when 

administered to cattle in the absence of significant tsetse challenge (Mdachi, 1999).  

Strategic drug use however relies on adequate disease detection methods and also has to 

be balanced against the benefit of treating subclinical cases. It is obviously unsuitable if 

the aim of treatment is eradication of a trypanosome population from a herd, for example 

to prevent the spread of human infective sleeping sickness through the cattle reservoir 

(Fevre et al., 2003). 
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Trypanosome resistance is not binary, and even when prevalent in an area, chemotherapy 

can be, and in many places has to remain, a possible treatment option. Early use of a 

‘sanative pair’; a combination dose regime of isometamidium/homidium and diminazene, 

can theoretically remove clones before they acquire multiple resistance (Sinyangwe et al., 

2004). Cattle kept in the Ghibe valley, southwest Ethiopia, an area of high 

trypanosomiasis risk where resistance to all available trypanocidal drugs was established, 

were productively maintained on a combination  of  tsetse control measures and drug 

therapy (Rowlands et al., 1994). Above all, the immunological status of the patient plays 

a important role in the outcome of chemotherapy, as an example from human medicine 

demonstrates; malnourished children in a refugee camp in the Congolese town of Goma, 

considered to be immuno-compromised, showed a higher risk from treatment failure 

resulting from drug-resistant Plasmodium falciparum than well-nourished children 

(Wolday et al., 1995). Host-parasite dynamics at the level of the individual are thus 

influential, not only on the outcome of a given drug treatment, but also on the 

development of drug resistance. 

1.2.8.8 The problems with drug use 

The privatisation of veterinary services is shifting animal treatment campaigns from top 

down project-driven approaches to schemes demand-driven by livestock keepers. In 

addition, financial support is moving away from external international donor funding to a 

situation where increasingly projects are expected to recover their costs, ultimately from 

the livestock owners (Leonard, 1998). This has resulted in a largely unsupervised delivery 

system of animal health care which coupled with the zoological ignorance of the farmers, 

can lead to inappropriate drug administration. (Machila et al., 2003). Drugs are often not 

used properly, resistance is developing and there are few prospects on the horizon for 

novel ‘wonder drugs’. Therefore, a system exists where a reliance on an age-old 

technique for the control of trypanosomiasis remains: the control of the biological vector 

of the trypanosome - the tsetse fly. 

1.3 Tsetse control 

African trypanosomiasis is transmitted between the vertebrate hosts by tsetse flies, genus 

Glossina, family Glossinidae and order Diptera. The genus Glossina is made up of 31 
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known species, subdivided into three subgenera (Table 1-3). Classification is based 

largely on morphological differences in genital structure; however, the subgenera can be 

broadly divided by habitat preference. The fusca group are a savannah species tolerant of 

arid conditions,  the palpalis group are riverine flies found along watercourses and gallery 

forests of Central and West Africa, and the morsitans group contain predominantly forest 

flies of East Africa (Leak, 1999). G. brevipalpis, G. pallidipes and G. fuscipes fuscipes are 

the main species of tsetse fly found in Uganda (Okoth, 1986). 

Subgenus 
(group) 

Species (subspecies) 
Preferred 
habitat 

Glossina 
(morsitans) 

G. morsitans 
         G. m. submorsitans, 
         G. m. centralis, 
         G. m. morsitans 
G. pallidipes 
G. swynertoni 
G. austeni 
G. longipalpis 

Savannah 

Nemorihina 
(palpalis) 

G. tachinoides 
G. palpalis 
         G. p. palpalis, 
         G. p. gambiensis 
G. fuscipes 
         G. f. fuscipes 

Riverine, 
lacustrine and 
forest 

Austenina (fusca) 

G. brevipalpis 
G. longipennis 
G. fusca 
G. medicorum 
G. tabaniformis 

Lowland 
forests, gallery 
forests 

The tsetse’s role in trypanosomiasis transmission has been known for over a century 

(Bruce & Nabarro, 1903; Pépin & Méda, 2001). For most of this time, efforts of the 

scientific community have focussed on developing ways of protecting, at current 

estimates, some 29 million people, 45 million cattle and unknown millions of sheep and 

goats at risk from contracting trypanosomiasis from the tsetse fly (Reid et al., 2000).  

Table 1-3: Tsetse classification 
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Tsetse ought to be simple to control. Tsetse flies are highly mobile and have an obligate 

requirement for regular blood meals. They exist within a relatively narrow ecological 

range of temperature, humidity and vegetation and have a reproduction strategy usually 

associated with small mammals rather than insects. Ecologically, tsetse are K-strategists; 

they have a low reproduction rate, produce a single offspring with a high chance of 

survival. By comparison, mosquitoes are R-strategists, they produce many offspring but 

with a low probability of survival. K strategists are highly adapted to exploit their habitat 

but are sensitive to interventions that alter their environment or lower their reproductive 

rate (Barrett et al., 2003b). Control strategies only have to remove 3-4% of the total 

number of female tsetse each day to cause the population to decline (Hargrove, 2003).  

1.3.1 Game clearance 

Tsetse flies are unusual amongst insects in that both sexes feed exclusively on vertebrate 

blood. They cannot survive without regular blood meals; remove the hosts and tsetse 

populations should plummet. This tsetse control technique was employed with great 

success by colonial administrations, such as in Shinyanga, Tanzania, where between 1945 

and 1951, more than 8000 game animals were shot (Potts & Jackson, 1952). During this 

time mean catches of non-teneral (fed at least once) male tsetse declined from 180 to zero. 

Nowadays such deliberate game clearance is anathema, not only from an ecological 

standpoint but because, as can be seen in south east Uganda, in an area with virtually no 

wild animals, tsetse populations can be happily supported on domestic livestock (Waiswa 

et al., 2003). 

1.3.2 Bush clearance 

According to Ford et al (1970) ‘Total, sheer or ruthless clearing means the destruction of 

all trees and shrubs in the area treated. It is a completely effective method of eliminating 

Glossina and the oldest’ (Hargrove, 2003). There is much debate as to the reasons bush 

clearance was effective. The opinion that tsetse have a particular ‘home’ vegetation type 

which, if removed, causes the population to crash, is now considered too simplistic 

(Hargrove, 2003). Certainly total clearance is effective, although this can possibly be 

attributed to its impact on the hosts as much as on the flies themselves. 
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Although purposive ecological destruction is abhorred nowadays, it does serve to 

highlight the effectiveness of the method. As Bourne pointed out, ‘the greatest changes in 

tsetse distribution have resulted simply from the expansion of human populations into 

tsetse habitats with the consequent reduction in game numbers and land clearance for 

agriculture’(WHO, 1998; Bourne, 2001; Hargrove, 2003). 

1.3.3 Ground and Aerial Spraying 

Tsetse are exceptionally sensitive to insecticides, moreover, due to their low dispersion 

and reproductive rate, they do not make strong candidates for developing resistance 

(Krafsur, 2003). Application of insecticide to vast tracts of land by either ground or aerial 

spraying has been used in the past to successfully eradiate tsetse from northern Nigeria 

and Zimbabwe; between 1955 and 1978 approximately 570 tonnes of DDT was sprayed 

over some 200,000km2 of northern Nigeria (Jordan, 1986).  The use of DDT fell out of 

favour, partly due to valid ecological concerns about insecticide residues, but also because 

its application made logistical demands beyond that of the increasingly resource-deprived 

tsetse control departments (Robertson, 1971; Okoth, 1999). In an attempt to overcome the 

problems associated with ground spraying, aerial spraying with synthetic pyrethroids was 

increasingly adopted in the 1980’s (Holmes, 1997). Compared with ground spraying, ultra 

low doses of insecticide can be used, applied as aerosols and released from helicopters or 

low flying aircraft. Although effective on adult tsetse, this spray is not effective on flies in 

the pupal stage as they live underground. Therefore, careful attention needs to be paid to 

the spraying interval of 19 days in order to ensure that the emerging females are killed 

before they can replenish the protected pupal population. It is also vital to have reliable 

geo-positioning information of the treatment area to avoid ‘islands’ of tsetse remaining in 

untreated patches which can quickly reinvade a treated area (Hargrove, 2003). The recent 

successful eradication of tsetse from the Okavango Delta in Botswana is attributed to GIS 

guided application of an adequate dose of deltamethrin and the effective use of targets to 

prevent tsetse re-invasion (Kgori et al., 2006). 
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1.3.4 Bait technology: Traps and targets 

Tsetse can be controlled by exploiting their predisposition to visual and olfactory cues. 

Traps, essentially coloured fabric and netting constructions, have been developed to 

capture most tsetse species and provide a way of both controlling and monitoring tsetse 

populations. Targets work by the same principle but are impregnated with insecticide and 

are often simple and cheaper to construct.  Fly capture was first used in the 1900’s to 

eradicate tsetse from the island of Principie by simple hand netting or attaching sticky 

panels to people and sending them into a tsetse area (Hargrove, 2003). The first bi-conical 

traps were developed in the early 1970’s by Challier and Laveissiere and were shown to 

be effective against riverine tsetse species (Allsopp, 1984). In the early 1980’s, a decline 

in the use of environmentally applied insecticides caused by concern over their ecological 

impact stimulated research into other control strategies, such as traps and targets (Grant, 

2001). Initial work demonstrated that traps failed to catch many of the flies visiting them, 

but highlighted the importance of odour as a tsetse attractant (Vale, 1980).  A 

demonstration trial followed on Antelope Island using odour bated traps and target 

devices and successfully eradicated a closed population of G.m.mortisans and G. 

pallidipes (Vale et al., 1988). Since then, carbon dioxide, acetone, butanone, 1-octen-3-ol, 

p-cresol, 4-methylphenol, 3-n-propylphenol and cow urine have been shown to act as 

attractants. Impregnating the fabric of tsetse traps and targets with insecticides kills 

alighting flies even if structural damage prevents physical trapping. These augmentations 

can increase the efficacy of traps and targets by 200% (Vale et al., 1988).  
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Several types of trap have been developed, but a cheap and effective design employed in 

south east Uganda is a version of the pyramidal trap (Lancien, 1986), demonstrated in 

Figure 1-3. Maintenance of traps is critical, and theft or vandalism is a risk (Kioy & 

Mattock). When such traps are distributed at a density >4 per km2 they are sufficient to 

reduce transmission (Lancien, 1986). Due to the low cost of materials and the low level of 

technology used, traps and targets have been thought to be potentially the most affordable 

and sustainable method of tsetse control (Holmes, 1997).  Traps can be very cheap to 

Figure 1-3: Version of a pyramidal tsetse trap used in south east 
Uganda. Damage to mesh probably renders this trap ineffective 
unless impregnated with insecticide. 

Flies trapped in inner mesh 

Tsetse attracted to arrangement of 
blue and black colours.  

Treating the fabric with insecticide 
renders the structure effective at 
killing flies, even if too physically 
damaged to work as a trap 
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make, and a study in 1991 in Uganda estimated the cost of materials at US$4.70 (Okoth et 

al., 1991).  

In the 1990’s, researchers across east Africa began to implement ‘community based’ 

tsetse control projects. These projects typically aimed to transfer tsetse control to the rural 

communities, enabling the rural population to implement and maintain their own traps 

and targets. Local communities were eventually to hold responsibility for the cost and 

maintenance of the traps, including re-treating and protecting them from damage and 

theft. It was found that, as the levels of tsetse decreased following a successful control 

program, the obvious need for action decreased and commitment from the local 

community became difficult to maintain (Kamara et al., 1995; Machila et al., 2003). 

Consequently, whilst these projects were often initially very successful, with dramatic 

reduction of the tsetse population, maintenance was often not sustained and the cleared 

areas were reinvaded by the fly (Okoth et al., 1991; Budd, 1999; Okoth, 1999). The lack 

of long term project sustainability essentially lay in how the projects were implemented, 

confusion over ownership and financial responsibility of the projects, and the intrinsic 

problems associated with demanding a private investment for a public good (Swallow, 

2000; Brightwell et al., 2001; Catley et al., 2002).  

1.3.5 Bait technology: Insecticide treated cattle 

A logical alternative to the use of artificial baits is the use of natural ones. In areas where 

there are large numbers of cattle, application of the insecticide to the animal has been 

shown to be a cheap, simple and effective method of vector control in a number of 

countries; Zimbabwe (Thompson et al., 1991), Burkina Faso (Bauer et al., 1992a), 

Tanzania (Fox et al., 1993), Ethiopia (Leak et al., 1995) and Kenya (Baylis & Stevenson, 

1998b). Although the principle was trialled in the 1940’s, the lack of persistence of the 

insecticide (DDT) did not make it a viable control option at the time (Whiteside, 1949). In 

the 1980’s however, synthetic pyrethroid insecticides, specifically deltamethrin, were 

tested and shown to be effective for up to a month (Thompson, 1987).  Cattle are treated 

with synthetic pyrethroid insecticides in either spray, pour-on or dip formulations and 

these compounds had a ‘knockdown effect’, causing alighting flies to be incapacitated 

before taking a feed (Bauer et al., 1992a). Spray and dip formulations are aqueous and 
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require 100-1000 times further dilution before application.  Application by spray requires 

equipment that can deliver the insecticide in fine droplet form. In the case of dips, cattle 

are fully immersed in a solution of insecticide. A description of the logistics of dipping is 

given in (Norval et al., 1992) and (Okello-Onen et al., 1994).  

Pour-on applications in contrast are low volume insecticide applications. The first pour-on 

application of an insecticide was reported in 1957 when aldrin, a systemic insecticide was 

used to control body lice in sheep and poultry (McCosker, 1957; McCosker & Osborne, 

1957). Applied to a small area of skin, the drug was systemically absorbed, distributed in 

the blood stream and excreted to reach all skin surfaces (Brimer et al., 1994). The use of 

organophosphates such as rulene (Rogoff & Kohler, 1960) were successful at controlling 

the cattle grub and revolutionised the control of cattle lice (Nickel, 1971). Following their 

introduction in the early 1970’s (Mitchell, 1996), synthetic pyrethroids, namely 

deltamethrin, cypermethrin and α-cypermethrin, became widely employed, initially to 

control the cattle louse Damalinia ovis (Kettle & Lukies, 1979). In comparison with the 

mode of action described for organophosphates, these compounds do not become 

systemic. Application is by a concentrated formulation of the active ingredient mixed with 

a lipophilic dispersal agent, poured along the spine of the animal. The insecticide rapidly 

diffuses through the sebaceous layer between the coat and skin surface, but is not 

absorbed into the tissues (Magnusson et al., 2001). The concentration of active agents 

decreases with distance from the application site (Magnusson et al., 2001). However, 

using radio-labelled [14C] cypermethrin it was found that redistribution is rapid, with 

pour-on formulations spreading radially across the skin within the stratum corneum at a 

rate of approximately 11 cm/h (Jenkinson et al., 1986). 

Use of pyrethroid insecticides confers other benefits to animal health by controlling 

nuisance flies (e.g. Stomoxes spp.) and ticks (Vale et al., 1999). This technique offered 

several advantages over existing control strategies - it was cheaper (than using a fly 

control and an acaracide), it could utilise the dipping infrastructure already in place for the 

control of tick borne diseases, and adoption of the technique was good within smallholder 

livestock keeper communities due to the more obvious benefits to animal health (Torr et 

al., 2002). The pour-on formulations were easy to use and did not require large volumes 
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of water, although they were expensive (mainly due to the cost of the dispersal agent 

(Vale et al., 1999)). 

However, there are problems with the widespread use of insecticide treated cattle for 

tsetse control. Cattle do not equally disperse themselves across a landscape, so many 

tsetse habitats can go unexposed to the insecticide control (Hargrove et al., 2000). 

Insecticide formulations are so costly they are largely beyond the budget of the majority 

of rural livestock keepers (Shaw, 2004) and, due to the mobility of tsetse and the risk of 

reinvasion, these techniques were only successful at controlling fly populations if 

deployed over areas of several hundred square kilometres (Vale et al., 1999). Concern has 

also been raised about the ecological effects of this treatment method, for example its 

impact on dung fauna (Vale et al., 1999) and on the endemic stability of tick-borne 

diseases ((Eisler et al., 2003) and section 1.4.6. below). 

1.3.6 Sterile insect techniques 

At the other end of the spectrum of tsetse control comes the sterile insect technique (SIT). 

This involves the release of irradiated sterile males into the wild. Matings between these 

males and wild females produce no offspring. As female tsetse usually only mate once, 

have a low reproductive rate and produce only one larva every 10 days, SIT can 

significantly affect the fly population. Application of SIT methodology to a trial on the 

island of Unguja, Zanzibar successfully eradicated G. austeni. However, successful 

application of SIT to mainland Africa is a topic of vigorous debate in the literature 

(Vreysen et al., 2000; Allsopp, 2001; Rogers & Randolph, 2002). The eradication of G. 

austeni from Zanzibar took over two years and the release of more than 8.5 million sterile 

males to complete the eradication of a population whose male component comprised only 

1000 flies at the start of the release programme (Hargrove, 2003). Extending this 

technique to areas of Africa supporting 22 tsetse species and with a constant risk of re-

invasion raises feasibility issues, in addition to the huge financial and logistical 

commitments such an undertaking requires. The sterile insect technique is however the 

only mode of tsetse control where efficacy increases with decreasing tsetse density, and if 

used in conjunction with other forms of control could provide a final coup de grace to 

eradicate a suppressed or resistant tsetse population. 
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1.3.7 Eradication or control? 

As the above section shows, the toolbox of tsetse control options is far from empty. And 

the pervasive persistence of tsetse is arguably due to the misapplication of the 

technologies rather than their design. Although ‘eradication’ has been achieved in many 

areas by various modalities, re-invasion remains the main problem for tsetse control 

(Molyneux, 2001). Without effective barriers and reliable monitoring, tsetse populations 

can recover alarmingly rapidly to their original levels. Donor agencies, jaded by the 

financial demands of large scale programmes are looking towards a more farmer-driven 

approach to tsetse control (Leonard, 1998). However, modelling of tsetse population 

dynamics suggests that the scale of operations needed for these attempts to succeed is 

beyond the financial or organisational means of community-driven organisations 

(Hargrove, 2003; Torr et al., 2005). Increasingly, the problem of effective 

trypanosomiasis control is being managed in a climate of decentralising health care, 

decreasing capacity for ‘top-down’ interventions and the increasing acceptance that, for 

animal disease control, the livestock farmer is being left to ‘go-it alone’ (Eisler, 2003). 

Trypanosomiasis control has to be contextualised as just one of the many endemic 

diseases afflicting domestic livestock, in particular diseases vectored by ticks. 

Additionally, treatment methodologies such as the use of insecticide on cattle to control 

tsetse can have an impact on the tick populations, which due to significant 

epidemiological and immunological differences between the two vectors, may not always 

be beneficial (Torr et al., 2002). 

1.4 Ticks and tick‐borne diseases  

Ticks, and the diseases they vector, are a major constraint on livestock production. 

Worldwide, estimates of their cost to livestock production are in excess of US$15 billion 

(Griffiths & McCosker, 1990; McLeod & Kristjanson, 1999)  and on the African 

continent tick-borne diseases (TBD) are overshadowed only by trypanosomiasis in terms 

of importance as a livestock disease (Kivaria, 2006).  

Ticks can damage their hosts by the direct effects of attaching, by injection of toxins (tick 

pyaemia, or, in large enough numbers, by causing anaemia (de Castro, 1997). It is the 
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indirect effect of ticks that are the most damaging, however, through the morbidity and 

mortality associated with the diseases they vector. 

The major tick-borne diseases of cattle can be classified in terms of the genera of their 

vectors: 

Boophilus ticks transmit Babesia, a protozoon, and Anaplasma, a rickettsial, species of 

pathogen. The respective diseases, babesiosis and anaplasmosis, are the most widely 

distributed TBD worldwide, and particularly affect highly producing exotic dairy and beef 

cattle. 

Amblyomma ticks transmit the rickettsia Ehrlichia (formerly Cowdria) ruminantum which 

causes heartwarter, a serious disease that is often fatal in small ruminants and exotic 

cattle. Amblyomma ticks can also transmit the protozoa Theileria mutans and the 

actinomycete Dermatophilus congolensis. Adult Amblyomma ticks have a predilection 

site for the ventrum and axilla regions of the animal. 

Rhipicephalus ticks transmit the protozoa Theileria parva which cause East Coast fever 

(ECF) a hugely destructive disease in sub-Saharan and southern Africa. In a recent study 

in Tanzania, ECF accounted for 68% of the 1.3 million cattle lost each year to tick borne 

diseases, at an estimated cost of US$364 million (Kivaria, 2006). Adult Rhipicephalus 

ticks have predilection sites for the perimeum and ears, giving them the common name of 

the brown ear tick. 

1.4.1 Anaplasmosis 

The anaplasma group of diseases are mainly transmitted by ticks, but can also be 

transmitted mechanically by biting Dipteran flies or iatrogenically through contaminated 

needles (Minjauw & McLeod, 2003). The parasite enters the host’s erythrocytes early in 

infection. The two Anaplasma species, Anaplasma centrale and Anaplasma marginale, 

are morphologically indistinguishable but occupy different locations in the red blood cell, 

from which they take their names. A. marginale is the more pathogenic of the two species 

with up to 50% mortality in susceptible animals (de Castro, 1997). 
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Anaplasmosis is characterised by pyrexia, anaemic and jaundice. Morbidity and mortality 

are higher in exotic animals although local breeds can be affected under conditions of 

stress, brought about for example by poor nutrition, parturition (Richey, 1992) or 

concurrent disease (Fox et al., 1993). Mixed infection with Babesia spp. is common 

(Eisler et al., 2003). 

1.4.2 Babesiosis 

Babesiosis is caused by two protozoan parasites B.bigemina and B.bovis, both transmitted 

by Boophilus ticks. B.bigemina is vectored by Boophilus decoloratus (the blue ear tick) 

which is widespread across Africa. B.bovis is more pathogenic but is only vectored by 

Boophilus microplus and Boophilus annulatus, both with geographical foci around south-

east and  western Africa, and not present in S.E Uganda (Minjauw & McLeod, 2003).  

 

Clinical signs of babesiosis result from the severe intravascular haemolysis brought about 

by the sequential invasion and destruction of red blood cells by the parasite. Babesiosis’ 

common name of ‘redwater fever’ comes from the often stark haemoglobinuria as a result 

of this process. Peracute infections can also exhibit neurological signs. As with 

anaplasmosis, the severity of disease can be exacerbated in animals with a compromised 

immune system. 

 

The disease can be controlled by chemotherapy using diminazene aceturate or imidocarb 

dipropionate. Unlike the other TBD discussed here, Babesia spp. can be transmitted 

transovarially in the vector, i.e. through the eggs of the infected tick to its progeny. This is 

epidemiologically significant as the disease can be maintained in the environment in the 

absence of infected hosts (Eisler et al., 2003). 

 

1.4.3 Heartwater 

Vectored by Amblyomma spp. ticks, heartwater, caused by the rickettsia Ehrlichia 

ruminantum, is a disease mainly found in small ruminants and exotic cattle. However, as 

with the previous two disease cases, health, nutrition and immune competence are 
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influential, and when these parameters are low indigenous cattle can also be affected. 

Clinical signs are largely neurological and linked to increased vascular permeability; the 

name heartwater is derived from the hydropericardium often seen on post mortem 

examination. The disease is very difficult to diagnose; Giemsa stained brain smears are 

the most reliable way of demonstrating the organism’s presence. Consequently, it was not 

possible to investigate the prevalence of heartwater in this study, although the disease is 

considered to be the second most important TBD after ECF in East Africa, so its control is 

of some relevance (Mukhebi et al., 1999; Minjauw & McLeod, 2003). 

1.4.4 Theileriosis 

The protozoan parasite species Theileria is responsible for the most pathogenic TBD of 

cattle (Perry et al., 2002). Theileria parva, transmitted by the brown ear tick 

Rhipicephalus appendiculatus, is the causative agent of East Coast fever. Theileria 

annulata is a widespread problem in the countries bordering the Mediterranean, along the 

Nile and throughout Asia, although not, at present, in Uganda.  

 

East Coast fever is predominantly a lymphoproliferative disease, with high mortality 

resulting from leucopaenia and oedema from invasion of alveolar tissue by parasitized 

lymphocytes (Urquhart et al., 1996). Pyrexia is common and although the piroplasmic 

form of the parasite subsequently invade erythrocytes, anaemia is not a common clinical 

feature (Norval et al., 1992). Clinical signs are lymphadenopathy, fever, lacrimation, 

diarrhoea and petechial haemorrhages, in addition to respiratory signs consistent with 

pulmonary oedema (Shannon, 1977). 

 

East Coast fever can be treated with parvoquone, buparvaquone and halguginone, 

although the drugs are expensive and much less effective in the advanced stages of the 

disease when clinical signs are more obvious (Dolan et al., 1984; Musoke et al., 2004). 

Most prevention is by an ‘infect and treat’ method of establishing immunity, whereby 

cattle are challenged with live sporozoites and simultaneous administration of a 

tetracycline drug. Tetracyclines ameliorate the effect of the challenge and usually allow 

for the establishment of a solid immunity (Torr et al., 2002). The technique is not without 

its problems however, since immunity can be strain specific, vaccination teams require a 
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cold-chain delivery and, given the technique relies upon live vaccination of pathogenic 

organisms, any failure of the tetracycline can have serious consequences (Minjauw & 

McLeod, 2003). 

1.4.5 Diagnosis of tick borne diseases 

Given the endemic nature of TBD (Perry et al., 1991), it can be difficult to accurately 

assess their clinical impact because infection is not synonymous with disease. 

Identification of parasites from thin film blood smears may merely indicate that the 

animal is a carrier rather than diseased (Norval et al., 1992). Clinical assessment of lymph 

node size can give a indication of  lymphadenopathies associated with early infection of 

Theileria parasites although for accurate assessment of tick-borne diseases, microscopic 

identification of stained lymph node aspirates (Norval et al., 1992), antibody detection 

(Katende et al., 1998; Rubaire-Akiiki et al., 2004) or parasitic DNA amplification 

(Skilton et al., 2002) are preferred. 

1.4.6 Endemic stability 

Endemic stability is an important aspect of the control of tick-borne diseases in 

indigenous cattle. Whist the diseases are often severe and associated with sudden and high 

mortality in exotic breeds, indigenous cattle are able to exist in areas where the diseases 

are endemic and suffer much lower losses. A major reason for this is the establishing of a 

state of endemic stability; an epidemiological state where clinical disease is rare despite 

high levels of infection in the population. This relies on an inverse age-related immunity, 

whereby younger animals are more resistant to developing clinical disease following 

infection than older animals (Norval et al., 1992; Torr et al., 2002). If calves and young 

animals acquire the infection whilst young and are innately protected, they will develop a 

long lasting immunity which protects them from disease when challenged as older 

animals. The concept of endemic stability was first used to describe Babesia infections in 

Australian cattle (Mahoney & Ross, 1972) and it is well accepted to occur with babesiosis 

and heartwater, is sometimes seen in anaplasmosis, but only occasionally appears to be 

the case with ECF. There is very limited evidence of inverse age immunity in ECF, and 

indeed unlike other TBDs in endemic areas disease tends to affect calves (Bruce et al., 
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1910) On the other hand, the phenomenon of 'quantum of infection' is recognised in ECF, 

whereby the severity of disease depends upon the size of the inoculum (Jarret et al., 

1969). Together these features of the disease suggest that a different type of stability may 

exist for ECF (Eisler, 2005). This idea fits with the significant ECF induced mortality in 

calves and young stock in endemic areas that is not seen with the other tick-borne diseases 

(Gitau et al., 2000). 

1.4.7 Control of ticks in crop‐livestock systems of east Africa  

Control of TBD is achieved in three main ways; control of the tick vectors, immunisation 

and chemotherapy. Acaracides, applied by running cattle through plunge dips, were the 

mainstay of the colonial approach to tick control. The Ugandan administration made 

dipping compulsory in the mid 1960’s (Ministry of Animal Industry Game and Fisheries, 

1968), in some cases at intervals of every 2-3 days. Increasing resistance among the tick 

populations to acaracides, capacity reduction of the veterinary infrastructure, the increased 

cost of dip chemicals and a reversion of cattle demography towards indigenous breeds 

have diminished the number of working dips by more than 70% (ICIPE, 1997; Okello-

Onen et al., 1998a). In the current management systems of south east Uganda, the largely 

indigenous cattle population are managed with a non interventionist approach where 

vaccination is seldom practised and acaracides infrequently used (Okello-Onen et al., 

2003). The low incidence of clinical disease arises from an innate resistance of Zebu 

cattle raised in such endemic areas combined with the development of acquired immunity 

to infection as a result of the low but virtually continuous exposure of calves to ticks 

(Perry & Young, 1995). Calves are protected from the detrimental effects of anaplasma 

and babesiosis infection by their endemic stability and losses due to ECF are, to some 

degree, an accepted part of farmers’ management strategy (Rubaire-Akiiki et al., 2006). It 

is possible the low infection rates of T.parva in ticks, acquired from low parasitaemias in 

immune carrier cattle, control the disease more than traditional endemic stability seen 

with other TBD (Kariuki et al., 1995). In contrast, studies conducted in south west 

Uganda, a more pastoralist farming region, found a much less laissez-faire towards TBD, 

and most farmers engaged in proactive tick control, mainly through regular spraying with 

insecticide (Mugisha et al., 2005). 
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Method  Advantages  Disadvantages 

Bush clearance   Low technology method of control   Requires maintenance 

 Ecologically damaging 

 Potential source of 
disagreement between 
communities 

Trypanocidal 
drugs 

 Effective 

 Obvious ‘private good’ benefit to 
individual 

 Affordable to many farmers  

 

 Drug resistance 

 Drug availability 

 Drug residues in meat  

Cattle 
movement 

 Simple 

 Well known method of control 

 Conflict over land use with 
other communities 

 

Community 
based targets 
and traps 

 Environmentally friendly 

 Relatively inexpensive 

 Effective 

 Easy to use and train 

 Require sufficient numbers 
and adequate spacing of traps 
to be effective 

 Easily stolen or damaged 

 Need strong community 
organisation to manage 

Insecticide  
Pour‐on 
formulation 

 Effective, insecticide supplied in a oil 
emulsion. Insecticide disperses through 
sebaceous layer of skin from an 
application of 10‐20ml along dorsum. 

 Benefit to individual 

 Controls of ticks and biting flies 

 Requires no additional equipment to apply 

 Very expensive due to cost of 
dispersal agent. 

 Insecticide can be licked off 
and contaminate faeces ‐> 
impact on dung beetles ‐> soil 
ecology disrupted 

Insecticide Dips   Effective 

 Provide a central point to acquire 
advice/treatments from AHW(Cohen & 
Uphoff, 1980) 

 Require expensive building of 
dip tanks 

 Can cause problems collecting 
and manage costs of 
insecticide. 

 Require a minimum 
throughput to be cost 
effective 

 Ecological concerns over 
disposal 

Insecticide 
spraying 

 Effective 

 Benefit to individual 

 Control of ticks and biting flies 

 Relatively expensive 

 Requires pump equipment 
and water source 

 Persistence variable, may 
require regular treatments for 
effective control 

Sterile Insect 
Technique 

 No drug residues in environment 

 Efficacy improves as tsetse populations 
decrease. 

 Requires large financial, 
logistical and political 
commitments 

 Many species of fly to control 

 Questionable reproductive 
fitness of released sterile 
males  

Table 1-4: Summary of tick borne disease and 
trypanosomiasis control methods.
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1.5 Integrated control of tick and tsetse 

Table 1-4 summarises the various control methods for tick and tsetse vectored diseases, 

along with comparative advantages and disadvantages.  

1.5.1 Summary of tick and tsetse control methods applicable to 
south‐east Uganda 

In south east Uganda domestic cattle are continually challenged by a variety of endemic 

and epidemic diseases, of which TBD and trypanosomiasis, along with helminthiasis and 

malnutrition, are the major constraints to productivity (Magona et al., 2003). Farmers are 

precluded from owning more productive breeds due to their high susceptibility to these 

diseases, and the predominantly Zebu herds are maintained in a state of equilibrium with 

endemic tick-borne diseases. Endemic stability does not exist for trypanosome infections 

however, and trypanosomiasis has severe impacts on livestock health and productivity. 

Additionally, cattle in south east Uganda are a significant reservoir for human infective 

trypanosomiasis, making control of the disease in cattle a development priority (Fèvre et 

al., 2001). Disease control methods are largely devolved to private investment from the 

individual livestock keeper and control options have to be demonstrably functional at this 

level. Insecticide treated cattle offer an alternative to the use of traps and targets for tsetse 

control. Livestock keepers are more likely to adopt technologies that show a visible effect 

on the tick burdens compared with the suppressed G. fuscipes tsetse population (Okiria et 

al., 2002a). 

1.5.2 Integrated control and endemic stability 

Insecticide treated cattle are proving to be the only control method rural farmers are likely 

to adopt without continuous external input, although several of the drawbacks (Section 

1.3.5) need to be addressed for it to be successful. Tsetse and tick control protocols in 

indigenous cattle populations are designed with different agendas. The aim with tick 

control is to allow the exposure of animals, particularly young stock, to ticks so endemic 

stability can be established and maintained, whilst minimising the damage from the direct 

effects of ticks and the excessive inoculation of T.parva sporozoites. Conversely, there is 
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no benefit to be gained from infection with trypanosomiasis early in life so the aim of 

tsetse control programmes is simply to prevent transmission of the disease to livestock 

animals, in this case by the use of insecticides to knockdown tsetse. There is a potential 

situation where excessive use of insecticides provides protection against trypanosomiasis 

but prevents exposure to TBD during the period of innate resistance, leaving animals 

vulnerable to develop extreme pathology should they meet tick-borne diseases later in 

life. This was seen when unrest in Zimbabwe stopped tick control programmes and over a 

million cattle died of TBD (Peter et al., 2005). This theoretical relationship has been 

modelled (Eisler et al., 2003) and explained in Figure 1-4. 

 

 

 

 

 

 

 

Figure 1-4:- Conceptual model of clinical disease over 
increasing forces of infection (adapted from Eisler et al. 
(2003)) 
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Figure 1-4 shows the output for a conceptual model linking the force of infection to 

disease index for TBD (green) and trypanosomiasis (red). The y-axis is a representation of 

the disease incidence or morbidity in a population. The x-axis shows the force of 

infection, given for example by the number of feeds from an infected vector. 

Trypanosomiasis exhibits a logarithmic relationship where increased force of infection 

leads to increase disease.  Tick-borne diseases in contrast exhibit a climax relationship at 

the level of disease challenge shown by line A. If animals exist in an environment where 

the disease challenge is higher, to the right of line A, then any reduction in the challenge 

will be beneficial at reducing trypanosomiasis but may, paradoxically, cause an increase 

of TBD. This is because as the force of infection drops, so does the probability that 

animals are infected by TBD as young-stock. Consequently the disease index can be 

higher in adult cattle, even though the overall force of infection is lower. 

1.5.3  Restricted application of insecticide to cattle 

In order to conserve the endemic stability in a cattle herd, yet still supply protection from 

trypanosomiasis, some elegant entomological research has offered several options for 

control. Both techniques use less insecticide by selecting certain application areas. Whilst 

this has obvious financial benefits, these techniques also minimise some of the 

environmental contamination that is associated with blanket applications, such as the 

detrimental effect on dung beetles (Vale et al., 1999; Sommer et al., 2001; Vale & Grant, 

2002). 

1.5.3.1 Size matters 

Tsetse show a bias towards feeding on older and larger animals, to the extent that in herds 

comprising a mixture of two oxen, four cows/steers and two calves, 80% (range, 67% -

91%) of meals were from the two largest animals and < 3 % of tsetse fed on the calves 

(Torr et al., 2001). Consequently, avoiding treating the calves allows exposure to ticks 

and hence immunity to be acquired to TBD without compromising the efficacy of the 

herd at controlling tsetse. This can be taken a stage further, whereby only treating the two 

largest animals in the herd is was thought to kill 75% of the tsetse feeding off that herd 

(Torr et al., 2002). This would at least halve insecticide costs and, given many livestock 
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owners tend to bias treatment towards the larger, more productive and valuable animals 

(Machila, 2004), may be widely adopted.  

1.5.3.2 Sick cows? Treat their legs 

Tsetse have preferences for where they feed on an animal. From observing cattle exposed 

to natural tsetse populations, various work has shown that 80% of G.pallidipes feed on the 

legs, and mostly the front legs, of cattle (Thompson, 1987; Torr & Hargrove, 1998; Vale 

et al., 1999). Further work showed that 55% of tsetse feeds were from the lower third of 

the legs, or to put another way, over half the tsetse fed on about 2% of the body surface 

(Vale, 2003). Application of insecticide only to those areas of the animal favoured by 

tsetse offers many advantages. It can reduce the amount of insecticide used by 90% 

saving money, labour time, and, if spray insecticide is used, water. Not covering the entire 

animal with insecticide potentially mitigates the effect on tick populations, by allowing 

some challenge for ticks to establish and maintain endemic stability. The restricted 

application also puts less active ingredient on the animal and places it in a location 

unlikely to be licked off which may minimise dung contamination and unwanted 

environmental effects of insecticide. 
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2.1 Design of the longitudinal study 
 

The aim of this longitudinal study was to investigate the use of a restricted insecticide 

application protocol as a novel technique for the integrated control of endemic 

trypanosomiasis and tick-borne diseases under typical smallholder farming conditions in 

Uganda.  The study aimed to evaluate the effect on parasite burden and animal health of 

chemotherapeutic interventions applied to cattle over a six-month time period in agro-

pastoral production systems in villages in SE Uganda, and in specific to assess the effect 

of restricting the application of insecticide to those parts of the animal favoured by tsetse 

flies. This was compared with treating animals with the same insecticide in a pour-on 

formulation and with a single prophylactic dose of injectable trypanocide. 

 

2.2 Study area 
Two districts in the south-east of Uganda were chosen for the study. The study covered an 

area of approximately 1000km2, extending north from the shores of Lake Victoria to the   

southernmost swamps of the  Lake Kyoga drainage system. Mixed crop-livestock farming 

is practised in these areas, with cotton forming the main cash crop and maize, finger 

millet, cassava, beans and sweet potatoes grown for home consumption (Okiria et al., 

2002b). The farming systems were deemed typical of the peri-lake regions of eastern 

Uganda. The  area  was known to be endemic for both human and animal trypanosomiasis 

(Hide, 1999; Fevre, 2002), and tick-borne diseases (Okello-Onen et al., 1998b). The 

predominant tsetse species is Glossina fuscipes fuscipes (Moloo et al., 1980; Lancien, 

1991) although recent evidence suggested Glossina pallidipes is present in increasing 

densities (Magona et al., 1997); (Magona et al., 2005). The topography of the area was 

uniform high plain between 1050-1200m above sea level and dissected with a network of 

slow streams and ephemeral swamp. Mean annual rainfall ranged from 1250-1500mm on 

the shores of Lake Victoria to 100-1500mm around Tororo. Rainfall was generally well 

distributed over the year with peaks in April and September and relatively drier periods in 

January and July (Director of Lands and Surveys, 1962; Ndyabahinduka, 1993). Figure 

2-1 shows a land use map of the area.   
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Figure 2-1:-Landuse map of study area in S.E.Uganda. (Source 
data from (Uganda Forest Department, 1996)
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Technical support for sample processing was available at the Ugandan Livestock 

Research Institute in Tororo (LIRI). 

 

2.3 Cattle demographics 

The vast majority of cattle in the area were East Africa shorthorn Zebu farmed by 

traditional management practices. Cattle owners in the area were sedentary agro-

pastoralists who undertook no regular drug treatments to manage tick, tsetse or pasture-

vectored diseases. The cattle were grazed on communal pastures during the day, and 

tethered or corralled close to homesteads at night. The extent of daytime ranging was 

highly seasonal. During the dry seasons cattle may be driven several hours each day for 

water and grazing whereas in the wetter seasons cattle were permitted to graze in smaller 

herds closer to the homesteads. In both cases however, exposure to the ticks, tsetse and 

pasture transmitted heliminths highly prevalent in swamp areas pose a considerable 

hazard to both cattle (de la Rocque et al., 1999) and cattle drivers (Odiit et al., 2006; 

Zoller et al., in press). 

 

2.4 Study site selection 
The study required the comparison of three interventions with a control. Each intervention 

was to be repeated at three separate sites, and consequently twelve sites needed to be 

recruited. Potential sites had to meet these requirements: 

 Established herds of cattle in the area and livestock management practices 
consistent across all sites.   

 No recent, current or planned animal health interventions from government 
or non-governmental organisations, nor any community based programmes 
of vector control. 

 Logistically possible to reach the site by 4 wheel-drive vehicle, within two 
hours of daybreak, to ensure the cattle could be sampled before they were 
taken to graze. 

 Sites, and their potential grazing areas, had to be physically isolated from 
each other so that there would be no contact between groups. 

 
 In October and November 2002, 22 sites meeting these criteria were identified with the 

help of the local veterinary services. A minimum of 50 animals were sampled from each 

site and screened for trypanosomes by the haematocrit centrifugation technique, HCT, 
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(Bennett, 1962; Woo, 1970) and buffy coat technique, BCT (Murray et al., 1977). In 

addition, 20 samples were randomly selected for subsequent processing for T.brucei by 

polymerase chain reaction (PCR) assay (described in section 3.4.2 ). 

 

Table 2-1 shows the geographical coordinates and screening details from the initial visits, 

mapped in Figure 2-4. In general, the twelve villages showing the highest prevalence of 

trypanosomiasis by PCR were selected for the study, contingent on the sites remaining 

free of planned interventions when revisited and recruited in March 2003. Figure 2-2 

shows trypanosome prevalences for the 22 screened sites and the selected villages.  
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Budimo Busia  N0.28715  E34.03305  80  1  3  3  0.04  20  5  0.25  Yes 

Buduma Bugiri  N0.34749  E33.67280  50  2  3  3  0.06  21  3  0.14  Yes 

Budunyi Bugiri  N0.30726  E33.95576  100  4  4  5  0.05  20  3  0.15  Yes 

Bukhunya Busia  N0.37268  E33.91748  81  9  6  9  0.11  20  2  0.10  Yes 

Bunyadeti Busia  N0.34310  E34.04790  66  7  7  7  0.11  20  1  0.05  Yes 

Butangasi Busia  N0.53671  E33.89739  53  3  3  4  0.08  18  2  0.11  Yes 

Buwumba Busia  N0.44711  E34.04290  51  7  7  7  0.14  20  1  0.05  Yes 

Lwangosia Bugiri  N0.30239  E33.88262  50  5  8  8  0.16  20  1  0.05  Yes 

Madwa Busia  N0.24748  E33.99279  61  2  2  2  0.03  20  3  0.15  Yes 

Magale Busia  N0.43711  E34.03290  50  9  7  8  0.16  20  3  0.15  Yes 

Muwayo Bugiri  N0.54833  E33.93465  80  5  5  5  0.06  20  5  0.25  Yes 

Nsango Bugiri  N0.64531  E33.87403  80  2  3  3  0.04  20  3  0.15  Yes 

Budola Bugiri  N0.40459  E33.90210  81  4  4  4  0.05  20  1  0.05  No 

Bufasi Bugiri  N0.56718  E33.90976  56  5  6  6  0.11  20  0  0.00  No 

Bufunda A Bugiri  N0.59700  E33.87008  52  2  2  2  0.04  20  0  0.00  No 

Bwoya East Bugiri  N0.27323  E33.89039  80  9  9  9  0.11  20  1  0.05  No 

Lugano Bugiri  N0.54892  E33.95205  58  2  3  3  0.05  20  0  0.00  No 

Maanga Busia  N0.35943  E34.08184  53  1  1  1  0.02  20  0  0.00  No 

Namaji Bugiri  N0.44083  E33.87805  67  5  4  5  0.07  20  0  0.00  No 

Nayenda Swamp Busia  N0.34871  E33.93431  58  1  1  1  0.02  20  0  0.00  No 

Rukaba Bugiri  N0.26775  E33.95321  72  7  7  7  0.10  20  1  0.05  No 

Sironyo Bugiri  N0.56563  E33.94383  68  2  2  2  0.03  20  0  0.00  No 

Table 2-1:-Results of initial screening for sample selection.
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Figure 2-2:- Trypanosome prevalence in screened villages 

Prevalences of trypanosomiasis in potential study sites 

0

0.05

0.1

0.15

0.2

0.25

0.3

B
ud

ol
a

B
uf

as
i

B
uf

un
da

 A

B
w

oy
a 

E
as

t

Lu
ga

no

M
aa

ng
a

N
am

aj
i

N
ay

en
da

S
w

am
p

R
uk

ab
a

S
iro

ny
o

B
ud

im
o

B
ud

um
a

B
ud

un
yi

B
uk

hu
ny

a

B
un

ya
de

ti

B
ut

an
ga

si

B
uw

um
ba

Lw
an

go
si

a

M
ad

uw
a

M
ag

al
e

M
uw

ay
o

N
sa

ng
o

Not selected for study Selected for study

Villages/Sites

P
re

va
le

n
ce

Prevalence of tryps. by microscopy Prevalence of T.brucei by PCR 

Prevalence of trypanosomiasis in potential study sites 



 

 49

Figure 2-3:- Location of study sites coded by intervention grouping.  
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Figure 2-4:- Map of trypanosome prevalence in potential 
study villages 
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2.5 Village groupings 
Initial baseline sampling revealed a fair degree of heterogeneity between the villages in terms 

of trypanosome prevalences (Figure 2-2). The study area covered the veterinary departments 

of two districts, Busia and Bugiri. It was decided therefore to stratify the villages by 

trypanosome prevalence and administrative district and form uniform groups based on this 

information. Each group was then allocated an intervention at random. Figure 2-5 shows the 

trypanosome prevalence by intervention group. 

Figure 2-5: Trypanosome prevalences by intervention group 
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Figure 2-6:-Administrative boundary map of study area in S.E.Uganda. (Source data from UBOS 2002) 
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2.6 Calculation of sample size 

 

In an ideal scenario, calculating the number of animals required to effectively test the 

hypotheses of interest are primary considerations in the design of a study. In actuality, the 

number of animals recruited is often constrained by the resources available and a more 

pragmatic approach need to be adopted(Crawley, 2005). In this study, factors such as 

stocking density, staff availability, sampling time, socio-political norms of host villages 

and the attrition expected from longitudinal studies all influenced the number of animals 

we recruited. The issue is whether the eventual sample size gave a reasonable chance of 

identifying the impacts under investigation.  

     

The minimum number of animals, n, required to be recruited in each group can be 

estimated using the WinEpiscope program (Thrusfield et al., 2001) using to the following 

equation for comparison of prevalences: 

 

 

Where n= sample size 

t= students T value, taken to be 1.96 for a 95% confidence level 

P= prevalence, taken to be 0.15 from screening results 

l= absolute level of precision or power, taken to be 5% 

 

 

Given these parameters the minimum number of animals in each group has to be: 
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Despite this admittedly post-hoc calculation of sample size, it appears that the decision to 

recruit between 70-80 cattle in each village, giving a group size of at least 230 animals, 

was sufficient to pick up the key impacts under investigation. It was recognized that in 

many cases a significant proportion of the total number of animals present in the area 

would be recruited although technically the above equation is only valid for sample size 

of < 10% of the population. Table 2-2 shows the demographics of the recruited villages 

and shows the percentages of cattle from each village recruited to the study. Figure 2-5 

shows the age and sex structure of the cattle in each intervention group. 

2.7 Recruitment of cattle into the study 

Prior to recruiting cattle for the study, a meeting was held in each selected site attended by 

local livestock keepers and members of the sampling team. The nature of the study was 

explained in addition to the intervention each village would receive. This provided an 

opportunity for cattle keepers to ask questions and decide if they wished to take part in the 

study. A communal grazing area was identified in each of the 12 villages which would 

serve as a sampling point and a local person was nominated to organise the farmers 

presenting their animals for sampling and act as a liaison between the village and the 

sampling team. A house to house questionnaire was carried out to establish the size of the 

village (represented by number of households) and the total number of cattle owned by 

the village. Results are tabulated in Table 2-2. 

At the first sampling visit, cattle were selected for inclusion into the study. In situations 

where more cattle were presented than required for the study, animals were selected to 

attempt to represent the age and sex structure of the entire herd and include all cattle 

keeping households. This was done by requesting each livestock keeper presented animals 

they were not intending to sell of varying age and sex. All study cattle were ear tagged 

with a unique identifier consisting of the village code (Table 2-2) prefixing a two digit 

number between 01-80. 
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  Village Name 
Villag

e 
Code 

Total of 
house-
holds 

Total 
number of 
cattle kept 
in village 

Total 
number of 

cattle 
recruited 
to study 

Percentag
e 

Number 
of 

livestoc
k 

keepers 
in study 

Madwa  WA 42 406 70  17.2%  11

Magale  MG 54 212 80  37.7%  33

Nsango  NS 63 234 80  34.2%  22
Control 

Total  159 852 230  27.0%  66

Bunyadeti  YA 42 213 80  37.6%  28

Butangasi  BT 30 267 80  30.0%  17

Muwayo  YO 45 265 80  30.2%  38

Isometa
midium 

Total  117 745 240  32.2%  83

Buduma  DU 30 390 80  20.5%  20

Buwumba  BW 44 245 80  32.7%  29

Lwangosia  LW 39 164 75  45.7%  10
Pour‐on 

Total  113 799 235  29.4%  59

Budimo  IM 32 362 80  22.1%  14

Budunyi  BI 35 169 80  47.3%  26

Bukhunya  BK 50 223 80  35.9%  15
Spray 

Total  117 754 240  31.8%  55

  Overall total 506 3150 945  30.0%  263

Table 2-2:-Demographics of recruited villages
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2.8 Aging cattle 
Cattle were aged using a combination of dentition scoring and information provided by 

the farmer. Adult cattle have 8 pairs of permanent incisors that begin erupting from 25-27 

months of age and are complete by 4 years old. Dentition scoring measures are not precise 

as they are dependent on nutrition and inter-breed variability (Kikule, 1953). However 

they provided a useful indicator to support the information provided by the owner.  

 

Age, in months Terminology 
Number of 
permanent 
incisor pairs 

Age coding 

0‐8  Calf  0  A 

9‐27  Juvenile  0  B 

25‐35  Young adult  1  C 

33‐39  Adult  2  C 

40‐46  Adult  3  C 

47 onwards  Adult  4  C 
 

 

Table 2-3: Age of cattle by teeth eruption. Age coding 
refers to classifications used in the study. Eruption times  
show considerable variability hence the overlap of age 
brackets. 
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Figure 2-7 shows a mosaic plot of the age and sex structure of the animals recruited into 

the study. Group codings are as described in Table 3-1. The larger proportion of female to 

male animals in the study was representative of the overall herd structure apparent in the 

selected villages.  

Figure 2-7: Mosaic plot of age and sex structure of herd 
Mosaic plots and their residuals are described in section 3.18. Age 
groupings are defined in Table 2-3, Sex F=female, M=Male, N=Neutered 
male 
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2.9 Initial treatment of all cattle with trypanocide. 

All study cattle were treated with two doses of a chemotherapeutic trypanocide, 

diminazene aceturate, 42 (day -42) and 14 (day -14) days prior to beginning the 

interventions. This was done to attempt to clear any existing trypanosome infection. 

Diminazene aceturate was supplied as sachets of Veriben™ (CEVA Sante Animale) 

containing 1.05g active ingredient. The drug was reconstituted with distilled water 

according to the manufacturer’s instructions and administered at a dose rate of 7mg/kg by 

deep intramuscular injection. 

2.10  Interventions 

Interventions began on day 0, 14 days after the second diminazene treatment, and each 

village was sampled every 28 days until day 112. Due to the availability of the field team, 

there was then a 35 day interval before the final visit on day 147. At each visit, presented 

animals were cast in lateral recumbency to aid clinically examination and sample 

collection. Samples collected are outlined in  section 3.2. 

Interventions details are given below and summarised in Table 2-4: 

2.10.1 ’Spray Group’: Restricted application of a deltamethrin 
insecticide spray 

All cattle were sprayed with a 1:1000 aqueous solution of 5% deltamethrin, (Decatix®, 
Coopers) using a 10 litre pump‐pressurized knapsack sprayer capable of delivering the 
solution in fine droplet form. 

20% of the volume advised for whole body treatment was applied. For a 200kg animal 
this was 400ml of solution. Saturation of the hair coat to the point of runoff was 
achieved with this dosage volume. 

The application was only applied to the front legs, belly and ears of the animal. Figure 
2‐8 shows a cartoon of the area sprayed. 

Cattle were retreated every 28 days for the duration of the study. 

2.10.2 ‘Pour‐on Group’: Application of a pour‐on deltamethrin 
insecticide 

All cattle were treated with a 1% deltamethrin pour‐on formulation (Spot‐On™, Coopers) 
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Application was at the recommended rate of 1ml/10kg applied topically along the spine 
of the animal. 

Cattle were retreated every 28 days for the duration of the study. 

2.10.3 ‘Isometamidium Group’: Single administration of a 
prophylactic trypanocide 

All cattle treated on day 0 with the prophylactic trypanocide isometamidium chloride 
hydrochloride 2% solution (Veridium®, Ceva.) 

 Animals were treated at a dose rate of 1mg/kg by deep intramuscular injection into the 
middle third of the neck region.  

In an attempt to minimise the tissue reactions, no more than 15ml of solution was 
injected at any one site. Animals over 300kg thus require a divided dose. 

No further routine treatments were administered on subsequent visits. 

2.10.4 ‘Control Group’: No treatments 

From Day 0, the control group received no further interventions.
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Visit 

number
1 

(Baseline) 
2 3 4 5 6 7 8 

  
Day of 
study -42 -14 0 28 56 84 112 147 

Group Village         
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No 
treatment 

No 
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Restricted 
application 

of 
deltamethrin 

spray 

Restricted 
application 

of 
deltamethrin 

spray 

Restricted 
application 

of 
deltamethrin 

spray 

Restricted 
application 

of 
deltamethrin 

spray 

Restricted 
application 

of 
deltamethrin 

spray 

Restricted 
application 

of 
deltamethrin 

spray 

 

Table 2-4: Outline of drug treatments applied during the study 
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Figure 2-8:-Cartoon showing extent of sprayed areas for 
restricted application on front legs, ears and belly. 
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 Chapter 3 :‐ Methods used for data 
collection and analysis  
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3.1 Data collection 
A general clinical examination was conducted on all cattle presenting during the visits. 

Examinations were made by a veterinarian, either the author or Dr Charles Waiswa, on 

animals cast in lateral recumbency prior to sampling. The list of clinical variables assessed 

and the levels used to record the data are given inTable 3-1. 

3.2 Field based examination techniques 

3.2.1 Body weight 

Body weight was recorded for all cattle at the beginning (day -42) and end (day 147) of the 

study, and for the isometamidium group at day 0 to ensure correct dosing. Weight was 

estimated using a weighband. 

3.2.2 Clinical assessment 

 Each animal was assessed for signs of a rough or ‘staring’ coat, an indication of poor 

condition linked to chronic trypanosomiasis (Machila et al., 2003). In addition, the skin was 

assessed for indications of trauma, burns, photosensitisation, evidence of Dermatophilus 

congolense, Parafilaria bovicola or capripoxviruses (lumpy skin disease). Superficial lymph 

nodes (femoral, prescapular, parotid and sunbmadibular) were palpated and an overall 

assessment of lymphadenopathy made on a four point scale (normal, or mild, moderate or 

severe lymph node enlargement). Any discharges were noted in terms of site (ocular, nasal, 

vaginal), type (clear, sero-sanguineous, purulent) and severity (mild, moderate, or severe). 

Diarrhoea was graded on a similar four point scale.  

3.2.3 Tick counts 

The number of skin-attached adult stages of Amblyomma variegatum, Boophilus decoloratus 

and Rhipicephalus appendiculatus on half the body surface was recorded. The information 
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was coded according to a tick score for each species: 0 = no ticks, 1=1-10 ticks, 2=11-50 

ticks, 3=more than 50 ticks. 

3.2.4 Condition scoring 

Condition scoring is a well established indication of production performance. Changes in an 

animal’s weight do not necessarily provide consistent information about the condition of an 

animal due to variations attributable to skeletal size, hydration levels, gut fill, or pregnancy 

status (Bartholomew et al., 1994; Moran, 2005). Although of particular relevance to dairy 

cattle, the technique is equally applicable to any breed. It is a visual assessment of the amount 

of fat and musculature covering the bones of the animal and has been shown to by highly 

repeatable and consistently reproducible between sufficiently trained scorers (Nicholson & 

Sayers, 1987). Condition scoring was performed as described by Nicholson & Butterworth 

(1986) using a nine point scale specifically designed for Zebu cattle. An individual is scored 

to one of three main categories, lean (L), medium (M) or fat (F), each grading further 

subdivided into three (-, or ., or +), thus forming a nine point scale. This is coded with 

integers from 1-9, 1 representing the lowest condition ration of L-, 9 the highest F+. This 

scale can approximate to a continuous distribution for modelling purposes. 
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Identification  variables Description of factor levels 
Factor name in 
models 

Type of 
variable 

Coded factor levels 

Tag Number  Alphnumeric code  Tag.No  Nominal  Unique to animal 

Village Name  Text  Village.Name  Nominal  Text 

Intervention Group 

No intervention, 
Single isometamidium treatment,  
Pour‐On deltamethrin application,  
Restricted application of 
deltamethrin 

Group  Nominal 
Control, Iso‐1, Pour‐on, 
Spray 

Cattle owner’s name  Text  Owners.Name  Nominal  Text 

Sampling visit number  1 to 8   Visit.Number  Ordinal  1‐8 

Time from start of 
interventions 

‐42 to 147  Day  Continuous  ‐42,‐14,0,28, 56,84,112,147 

Predominant coat colour 
Black/Grey/ Black+White/ Brown/ 
Brown+White/Mixed 

Colour  Nominal  Text 

Age  Calf/ Juvenile/ Adult  Age  Nominal  A, B, C 

Sex  Female/Male/ Male Neuter  Sex  Nominal  F,M,N 

 

Table 3-1: Data recorded for each animal in study 
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Clinical examination Description of factor levels 
Factor name in 
models 

Type of 
variable 

Coded factor levels 

Weight  kg  Weight  Continuous  Numeric  

Condition score  L‐/L/L+/M‐/M/M+/F‐/F/F+  Cond.Score  Continuous  1,2,3,4,5,6,7,8,9 

Coat condition  Normal/ Staring  Staring.Coat  Nominal  0,1 

Dermatophilus  Nominal  0,1 

Skin condition 

Normal/ Dermatophilus congolensis 

 traumatic wound, /burns, 

photosensitisation/ lumpy skin  Skin  Nominal  Text 

Lymph node enlargement  Normal/Mild/Moderate/Severe  LN  Ordinal  0,1,2,3 

Half body tick count,  
Rhipicephalus appendiculatus 

No ticks/ 1‐10 ticks/ 11‐50 ticks/ 
>50 ticks 

Rh  Ordinal  0,1,2,3 

Half body tick count,  
Boophilus decoloratus 

No ticks/ 1‐10 ticks/ 11‐50 ticks/ 
>50 ticks 

Amb  Ordinal  0,1,2,3 

Half body tick count,  
Amblyomma variegatum  

No ticks/ 1‐10 ticks/ 11‐50 ticks/ 
>50 ticks 

Boo  Ordinal  0,1,2,3 

Blood haemoglobin level  g/dl  Hemocue  Continuous  Numeric  

Presence of diarrhoea 
No diarrhoea, 
Mild/moderate/severe 

Diarrhoea  Ordinal  0,1,2,3 

Severity   Ordinal  0,1,2,3 
Presence of discharge 

No discharge, 
Mild,/moderate/severe 
Site of discharge  Site  Nominal  Text 

Table 3-2: Data collected from each animal at each sampling point 
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3.2.5 Measurement of Haemoglobin 

A handheld digital haemoglobin meter developed for use in the human medical field 

(HemoCue, AB, Angelholm, Sweden) was recently positively evaluated for its application as 

a field tool to quantify bovine haemoglobin (Magona et al., 2004b).The device was used in 

this study with a set method. A small amount (10µl) of whole blood from a lancet prick to an 

auricular vein was drawn into a customised microcuvette by capillary action. The 

microcuvettes required for the test are produced to provide a fixed (0.13mm) light path 

between parallel, i.e. non-refractive, walls. Additionally, the inner cavity of the microcuvette 

contains the dry reagents necessary to convert haemoglobin into azide methaemoglobin. 

Following visual inspection to ensure the cuvette contained no air bubbles or external 

contaminants, it was is placed into the HemoCue instrument for analysis. The HemoCue 

calculates the concentration of haemoglobin from the differential absorption of two 

wavelengths of light (565 and 880nm) shone through the sample and displays the result (in 

g/dl) within a few seconds. Although the device needed to be used out of direct sunlight, it 

provided a robust and technically simple method of measuring the haemoglobin of bovine 

blood samples in the field.  

3.3 Laboratory diagnostic techniques 

3.3.1 Faecal analysis 

A worm egg count (WEC) was carried out for each animal at each sampling point. Samples 

were taken from the rectum and placed in separate plastic bags, labelled and transported to 

LIRI for analysis. Samples were examined for strongylid eggs using the McMaster technique 

described in Hansen & Perry (1994). In summary, a salt solution containing 4g sodium 

chloride and 5g sucrose per 10ml water was added to a faecal sample, thoroughly mixed and 

strained. Examination of the filtrate under 10x objective in a Macmaster chamber allowed for 

a quantification of the egg burden. Counts below 400 eggs/g were considered subclinical, 

over 1000 eggs/g a heavy nematode infection (Hansen & Perry, 1994). Trematode egg 
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burden was assessed by the sedimentation qualitative technique, also described in Hansen & 

Perry (1994). Trematode eggs are dense, and the technique removes the lighter supernate of 

faecal material and the eggs are stained with 5% methylene blue and visualised by 

microscopy. An animal was deemed to be infected if any Fasciola spp. or Schistosoma spp. 

eggs were found. 

3.3.2 Blood smear analysis for haemoparasites 

A blood sample was collected using a microhaematocrit capillary tube and a lancet prick to 

the marginal ear vein.  A drop of blood was applied to a clean microscope slide and thick and 

thin smears made on the same slide. The slide was labelled with the animal’s tag number 

using an indelible marker and transported to LIRI for analysis that day. 

The thin blood film was stood in a fresh solution of methanol for 3 minutes to fix the sample, 

followed by the immersion of the thick blood film area of the slide in distilled water for 5 

minutes to cause erythrolysis. The blood smears were dried and stained in a 10% Giemsa 

solution phosphate buffered to pH 7.2. Following rinsing, air drying and covering with a 

mountant and coverslip, the samples were examined by microscopy under 100x oil 

immersion objective. Fifty microscopic fields were examined for each sample. 

Samples were screened for Theileria spp., Anaplasma spp., T.brucei, T.congolense and 

T.vivax. Trypanosome species were identified according to morphological forms (Uilenberg, 

1998) and the intensity of parasitaemia scored: 0=no parasites detected, 1=1 organism found 

every 10 or more fields, 2= one organism found every 2-10 fields, 3=one organism found per 

field. 

 

3.4 Molecular diagnostic techniques 

Diagnostic methodologies of haemoparasites using molecular techniques based on the 

polymerase chain reaction (PCR) are able to demonstrate the presence of DNA sequences 

specific to the organism in question. Polymerase chain reaction techniques present a 

diagnostic option with potentially excellent diagnostic specificity and sensitivity. The 
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question of what a positive result means in epidemiological and clinical terms is discussed in 

Chapter 4. In molecular terms, a positive result is taken to mean viable parasites were present 

in the blood of the host at the time of sampling.  

Polymerase chain reaction techniques involve the iterative amplification of a particular DNA 

sequence specific to the parasite such that over the course of 20 cycles a single strand of 

parasitic DNA can undergo a 106 amplification. The DNA can then by separated by size 

using electrophoresis and the resultant banding pattern stained and visualised.  

The ability of this technique to amplify minute amounts of parasite material allow for the 

identification of low parasitaemias with high analytical specificity. The test can also be very 

sensitive; of the order of 1 trypanosome per 10 ml of cattle blood (Masake et al., 2002). 

Targeting multiple copy genes or using a nested PCR can increase the sensitivity of these 

techniques, as can using concentration techniques such as DNA extraction (Chomczynski et 

al., 1997) or centrifugation and amplification of the buffy coat layer (Picozzi et al., 2002). 

3.4.1 Preparation of samples 

Whole blood samples were collected from an auricular vein using a lancet and a 100μl 

microhaematocrit capillary tube and immediately applied in a spiral pattern on Whatman 

FTA® filter paper. The cards were allowed to dry thoroughly at ambient temperature. Four 

samples could be collected per card. Each card was labelled with the animal IDs, location, 

date, and visit number of the sample, placed in foil pouches with a silica desiccant and mailed 

back to the UK. 

3.4.2  FTA® Cards 

FTA® cards (Whatman BioScience, Cambridge, UK) are a storage medium designed to 

simplify the collection, transport, analysis, and archiving of DNA from a range of sources, 

including whole blood and tissue. The card is a paper matrix impregnated with protein 

denaturants, chelating agents and free radical traps When a sample is applied to FTA® Cards, 

cells are lysed and nucleic acids immobilised and stabilised within the FTA® Card's matrix. 
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Once the sample is dry, the cards can be shipped, by mail if necessary, without the 

requirement for refrigeration or the hazard packaging normally associated with the 

transportation of biological materials. The cards can be stored at room temperature without 

sample degradation for at least 14 years (Whatman, 2004). 

 

 

 

 

 

 

 

 

 

 

Figure 3.1: FTA® card with four blood samples. Holes show 
the discs punched out for screening. 
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3.4.3 Sample processing 

Deoxyribonucleic acid (DNA) is bound to the FTA® card so PCR amplification is performed 

directly on small discs cut from the card, washed, dried and placed in the reaction tube.  The 

FTA® card was placed on a mat and a 2mm circular disc of sample saturated FTA® matrix 

cut from the card using a Harris Micro Punch ™ tool (Whatman Bioscience, Cambridge). 

Each disc was transferred into a 1.5ml eppendorf tube for washing. Two discs were cut out 

from each sample and each disc was transferred to a separate eppendorf tube. To prevent 

cross contamination the tool was cleaned by punching a blank filter card between samples. 

Whole blood contains potent PCR inhibitors; immunoglobulin G in plasma, haemoglobin in 

erythrocytes and lactoferrin in leukocytes (Al-Soud, 2000). Prior to DNA amplification, each 

disc had to be washed to remove these compounds from the sample. Discs were prepared 

according to the manufacturer’s instructions. Each disc was washed three times for 10 

minutes in 200μl of FTA® purification reagent (Whatman Bioscience, Cambridge, UK) and 

rinsed twice for 5 minutes in 200μl of 1 mM Tris-EDTA buffer (Sigma Aldrich, Dorset, UK) 

to remove traces of FTA® buffer.  Each sample was then transferred into a clean PCR tube 

and dried at 35oC for 45 minutes before performing the PCR reaction. A blank disc was 

included in the washing and in the PCR to act as a negative control. 
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Target species Code Primer Sequence Supplier 
Size 
 (bp) 

References 

Trypanozoon (T. brucei) 
T.vivax 
T.congolense (River/Forest) 

T.congolense (Kilifi) 
T.congolense (Savannah) 
T.congolense (Tsavo) 
T.simiae 
T.evansi 
T. theileri 

ITS-1 
ITS-2 
ITS-3 
ITS-4 

5’ GAT TAC GTC CCT GCC ATT TG-3’ 
5’- TTG TTC GCT ATC GGT CTT CC-3’ 
5’- GGA AGC AAA AGT CGT AAC AAG G-3’ 
5’- TGT TTT CTT TTC CTC CGC TG-3’ 
 

MWG 
Biotech 

1215 
620 
1501 
1430 
1408 
951 
847 
550 
998 

(Cox et al., 
2005) 

Amplification conditions : 95C for 7 minutes (1 cycle)→ 94C for 60s, 55C for 60s, 72C for 120s (35 cycles) 
 

 

Target species Code Primer Sequence Supplier Size (bp) References 

T. brucei 
TBR1 

TBR2 

5’ AGA ACC ATT TAT TAG CTT TGT TGC-3’ 

5-‘CGA ATG AAT ATT AAA CAA TGC GCA 

GT-3’ 

MWG-Biotech 177 

(Moser et al., 

1989), 

(Artama et al., 
1992) 

Amplification conditions : 94C for 3 minutes (1 cycle)→ 94C for 60s, 55C for 60s, 72C for 30s (30 cycles) 

Table 3-3: Data for ITS-PCR screening protocol 

Table 3-4: Data  for PCR protocol for screening T.brucei 
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3.4.4 Detection of T. brucei trypanosome prevalence by PCR  

The individual prevalence of T.brucei was investigated during the set up of the 

longitudinal study (section 2.4). T.brucei alone was amplified using a set of species 

specific primers as listed in Table 3-4. The target is a non coding 177bp satellite DNA 

repeat sequence (Sloof et al., 1983). Post washing and drying, discs were ready for PCR 

amplification. PCR amplifications were carried out in 25l reactions, each containing a 

the following reagents: Sigma Aldrich PCR buffer (10mM TrisHCl pH 8.3, 50mM KCl, 

1.5mM MgCl2, and 0.001% gelatine), 200m of each of the 4 deoxynucleotide 

triphosphates, dNTPs (Sigma Aldrich), 1 Unit of REDTaq DNA polymerase recombinant 

(Sigma Aldrich) and 0.4 μM of each TBR primer. Positive control was provided by 1 μl 

of T.brucei (ILtat 1.2). Thermal cycling conditions were as listed in Table 3-4. An initial 

denaturation step of 3 minutes at 94˚C followed by 30 cycles of 94˚C for 60 seconds, 

55˚C for 60 seconds and 72˚C for 30 seconds. The reaction concluded with a final 

extension step of 5 minutes at 72˚C.  Reactions were carried out in a DNA Engine 

DYADTM Peltier Thermal Cycler. Twenty microlitres of the resultant product was 

visualised by electrophoresis as detailed below. 

3.4.5 Detection of all trypanosome prevalences by ITS‐PCR  

The internal transcribed spacer polymerase chain reaction (ITS-PCR) protocol targets the 

internal transcribed spacers region located within the genes encoding the ribosomal RNA 

subunits. It is able to identify and differentiate all clinically relevant African trypanosome 

species listed in Table 3-3. A high copy number combined with inter-species variation in 

the length of the ITS region allows for identification and, importantly, species 

differentiation of trypanosomes. Sensitive enough to detect a single parasite, a unique size 

of PCR product is produced for each species of trypanosome.  Initially demonstrated by 

(Desquesnes et al., 2001), (Cox et al., 2005) refined the technique to improve the 

detection of T.vivax and the resultant protocol uses a simple nested PCR optimised for 

whole blood samples collected on FTA® cards. Figure 3.3 shows the amplification 

regions of three hypothetical trypanosome species. 
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3.4.6 ITS‐PCR methodology 

 Primer sequences for the ITS protocol are listed in Table 3-3. Each washed and dried disc 

was placed directly in PCR tubes. The reaction volume of 25 l reactions each contained 

the following reagents: Super Taq PCR buffer from HT Biotechnologies, Cambridge 

(10mM TrisHCl pH 9.0, 50mM KCl, 1.5mM MgCl2, and 0.1% Triton X-100 and 0.01% 

(w/v) stabilizer), 200m of each of the 4 deoxynucleotide triphosphates, dNTPs (Sigma 

Aldrich), 1.25 Units of REDTaq DNA polymerase recombinant (Sigma Aldrich) and 

0.2μM of each outer primer ITS1 and ITS2. Positive control was provided by 1 μl of 

T.brucei (ILtat 1.2) and T.vivax (ILDat 1.2). Thermal cycling conditions were as listed in 

Table 3-3. An initial denaturation step of 7 minutes at 95˚C was followed by 35 cycles of 

94˚C for 60 seconds, 55˚C for 60 seconds and 72˚C for 120 seconds. Thermal cycling was 

carried out on a Strategene Robocycler. 

For the second (nested) reaction, 1μl of the PCR product from the first round reaction was 

placed in a fresh tube and 24μl of the reaction mixture as listed for the outer primers 

above, with the exception of the substitution of the outer primers ITS1 and ITS2 with the 

inner primers ITS3 and ITS4. Twenty micro-litres of the resultant product was visualised 

by electrophoresis as detailed below. 

3.4.7 Amplicon visualisation using electrophoresis 

Samples were electrophoresed on 30x20cm 1.5% agarose gels. 10ml of Tris Borate 

EDTA 10x concentrate (Sigma Aldrich) was added to 90ml of distilled water, to which 

0.005mg of ethidium bromide was added. This formed the buffer solution. 1.5g of agarose 

(Sigma Aldrich) was added to the buffer solution, dissolved by heating and allowed to 

cool until set. Twenty micro-litres of 100bp molecular weight marker ‘ladder’ (Bioline) 

was dry loaded into the first, middle and last well followed by 20μl of each PCR reaction, 

the positive and negative controls. The gel was placed in a gel tank (Sigma Aldrich) 

containing buffer solution and electrophoresed at 100v and visualised using a Flowgen 

Alpha 1220 gel imaging system and BioRad Gel Doc 2000 imaging software. Figure 3.2 

shows a representative gel with illustrated band sizes. 
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Figure 3.2: Representative gel showing bands obtained 
from PCR amplification using ITS protocol.  

L represents a marker graduated in 100bp intervals (band 
sizes illustrated). Samples 15, 18 and 20 are positive for 
T.brucei, Samples 16 and 24 positive for T. congolense, 
samples 5 and 15 positive for T.vivax and sample 4 for T. 
theileri. Sample 15 thus shows a mixed T.b./Tv. Infection. 
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Figure 3.3: Cartoon showing the structure of part of the 
ribosomal RNA gene locus.  

Present in tandem arrays of 100-200 copies, each 
gene consists of conserved coding regions (green) 
and no coding spacer regions (ITSά & ITSβ). The 
ITS regions vary between species. Nested primers 
designed to the conserved regions are represented 
by the black arrows (outer primers) ITS1 and ITS2 
and the white arrows (inner primers) ITS3 and ITS4 
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3.5 Techniques for data analysis 

3.5.1 “All models are wrong, some are useful” 

This quote by industrial statistician George Box (Box, 1979) is a tongue-in-cheek 

appraisal of the issues with modelling, and is of particular relevance to data generated by 

observational longitudinal studies. An unbalanced dataset, animal drop out and diagnostic 

variability are just three factors that promised to make a very ‘noisy’ dataset. There were 

two simple aims in analysing the data in this thesis 1) to test the significance of various 

biological and management factors on the prevalence and incidence of parasitic 

infections, and 2) to quantify the efficacy of different treatment protocols in terms of a 

range of diagnostic and clinical variables.  The models used have been selected to answer 

these questions. 

3.6 The R statistical environment 

All modelling was carried out in using the R statistical environment (R Foundation for 

Statistical Computing, 2006). R is a language and environment for statistical analysis and 

graphics production. It is an open source version of the S language and environment and, 

although there are some significant differences, much code written for S runs unaltered 

under R. R is freely available through the internet as a General Public Licence. Some 

specific statistical processes require additional packages. Known as libraries, these add-on 

functions are freely downloadable and, when used in the thesis, are specified by name. 

For an introduction to the R programming language there is copious information available 

through http://www.R-project.org or in the introductory reviews (Dalgaard, 2002; 

Venables & Smith, 2006). Throughout the thesis, salient extracts of code are included as 

follows: 

Text in this font represents commands or code executable in the R environment.   
 

3.7 Types of models used 

Different types of models were fitted depending on the structure of the data. Generalised 

linear models (GLM) were fitted to non-clustered data. Linear mixed effect models 

(LME) provided a method of analysing clustered data with a continuous outcome 
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variable. Generalised linear mixed effect models were employed to model clustered count 

or binary data.  

 

3.8 Structure of the data from longitudinal studies 

Longitudinal studies are defined by the repeated measurements of the same subjects over 

time, thereby allowing for the direct study of change in an individual. Investigation of the 

way a subject changes is indeed only possible by repeatedly sampling the individual 

through time. Cross sectional studies in contrast can only provide information about the 

differences between individuals, and provide no way of separating variation within a 

individual from variation between different individuals (Fitzmaurice et al., 2004). 

 

Data derived from longitudinal studies are very likely to exhibit clustering (Liang & 

Zeger, 1986). In the context of this thesis, samples were taken from the same animals at 

different time points, and from animals in villages based in different geographical areas. 

Consequently this data is clustered in both space and time. Temporal clustering is likely 

due to the positive correlation of repeated measures from the same individual, i.e. 

measurements taken from the same individual are likely to be more similar than 

measurements taken from different individuals. Spatial clustering is likely because it is 

reasonable to expect animals from the same geographical area will be exposed to similar 

environmental conditions and livestock management to the degree that variation within 

villages will be less than variation between villages. Analysis of the data has to take these 

sources of clustering into account.  

3.8.1 Sources of variation in longitudinal studies 

Mixed effect models provide a method of analysing clustered data. The purpose of the 

analysis of longitudinal data is to separate the effect due to treatment from the ‘noise’ 

generated by the intrinsic random variation of subjects in time and space. In order to 

model the effect of the treatment effectively, it was necessary to account for the following 

three sources of random variation:  
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1. Animal effects: The animals in the study have been sampled from a population, 

and their response to an intervention may show a stochastic variation between 

individuals. The response is likely to vary between individuals as a result of a 

number of unmeasured variables, genetics, immune status, clinical history etc., 

which make some animals intrinsically more, or less, capable of responding to a 

treatment. 

2. Serial correlation: Some of the observed responses are likely to be attributable to 

intrinsic biological processes which vary through time. Two samples taken from 

the same animal are therefore correlated, and typically, this degree of association 

becomes weaker as the time separation between samples increases. A low blood 

haemoglobin reading at one timepoint is likely to influence the probability of an 

animal presenting with a low reading at the next sampling time, but will be much 

less influential on a reading six months later. 

3. Measurement error: The measurement process itself may introduce a component 

of variation to the data. Using the haemoglobin example to again illustrate the 

point, two samples taken simultaneously from a cow may have different blood 

haemoglobin values because the small variations in the assay technique, i.e. the 

haemoglobinometer, may add a component of random variation. 

 

These three sources of error can be thought of as incorporation of two distinct levels of 

variation; between subjects and variation within subjects. Because the cattle are grouped 

by intervention, a third level of random variation has to be added to describe the 

variability between groups. In the context of this study, we could consider the random 

variation between villages assigned to a treatment group, between animals within a single 

village, and between samples taken through time from a single animal. These issues can 

be approached using a methodology of multi-level random effect models which has 

largely been adopted for analysis of this dataset (Goldstein, 1986; Paterson & Lello, 2003; 

Faraway, 2006). 
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3.9 Generalised Linear Modelling 

The presence of spatial and temporal  serial correlation disturb two of the most important 

assumptions of linear modelling, constant variance and normal distribution of errors. In 

addition, some of the outcome variables are of a binomial or count nature which also 

require particular modelling techniques. To address the specific question in this thesis it 

has been necessary to use generalised linear models appropriate for these types of data. 

3.9.1  Modelling count data 

Count data has several attributes which negate the use of standard linear regression 

models. It refers to data where an event has happened a known number of times, but there 

is no way of knowing how many times it did not happen. Models using count data have to 

account for the following attributes: 

 The model cannot predict negative values (a negative count is nonsensical) 
 Variance of the response is not constant and likely to increase with the mean 
 Non-normal errors 
 Transforming data is difficult with zero’s 

 

GLM’s are fitted using R and the above factors accounted for by specifying a poisson 

error structure 

glm(Response variable~ Explanatory variables) family=Poisson. 

3.9.2  Modelling proportion data 

Proportion data modelling is a specific example of count data for situations where we 

know how many subjects have responded in a particular way, and how many have not, for 

example infection rates. Models using proportion data have to account for the following 

attributes: 

 Predictions are strictly bounded between 0% and 100%. 
 Variance is not constant, in fact it is an n-shaped function greatest at 50%, 

and converges to equal the mean at the extremes of 0% and 100%. 
 

Modelling with a GLM, specifying a response, y, as a two variable vector where: 

y<‐(number of successes, number of failures) 

glm(y~ Explanatory variables), family=binomial. 
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This method has considerable advantages over the traditional method of modelling 

proportions by fitting models to percentage data because it takes into account the sample 

size from which the proportion is taken.  

 

3.9.3  Modelling binomial data 

Binomial data modelling is used where the individual is the unit of interest. Examples of 

such data are infected/not infected, dead/alive, above threshold/below threshold. The 

response variable is a single column of 1 or 0, and models share the similar variance as 

proportion data as only two outcomes are possible, 1 or 0. 

 glm(y~Explanatory variables), family=Binomial. 
 

3.10 Components of generalised linear models (GLM’s) 

GLM’s have three important components, the error structure, the linear predictor, and the 

link function. 

 

The structure of a generalised linear model relates each observed y value to a predicted 

value. This predicted value is obtained by transforming the value emerging from a linear 

predictor. The linear predictor, ŋ, is the sum of the explanatory variables in the model 

and contains as many terms as there are parameters to be estimated from the data. The 

outcome of the linear predictor is not itself a value of y, but is related to it by a link 

function. This use of a link function to relate the observed value of y to the outcome of the 

linear predictor allows for the extension of linear modelling techniques to data otherwise 

unsuitable for normal regression, i.e. data described in sections 3.9.1 to 3.9.3.  The link 

function is chosen to make sure the fitted values, are within meaningful bounds. For 

example, a log link is appropriate for count data because fitted values therefore become 

antilogs of the linear predictor and all antilogs are greater than or equal to zero. This 

avoids the nonsensical prediction of a negative count. Binomial errors similarly use the 

“logit” link to bound the predicted values between 0 and 1, appropriate for proportion 

data. 
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Estimates obtained from the directive summary (modelx) represent the difference between 

the means for the different factor levels. Back transformation from logits to more 

conventional proportion estimates is made by using the directive predict(modelx, type= 

“response”). The models in this thesis output the difference between the factor level in 

question and the control. The difference between the logits of two probabilities is the 

logarithm of the odds ratio, hence the antilog of the model coefficients gives the odds 

ratio. 

 

3.11 Parameter estimation 

Parameters are estimated in linear mixed effect models by maximum likelihood (ML) or 

restricted maximum likelihood (REML) algorithms. REML are preferred in the statistical 

literature ((Diggle & Heagerty, 2002; Crawley, 2005) because the ML ignores the degrees 

of freedom used by the fixed effects and thus underestimates the size of the variance 

components. Parameter estimation for generalised linear models is by iterative, weighted 

least squares (Faraway, 2006), similar to the conventional estimation using maximum 

likelihood estimatiors which are not usually available for GLMs. Parameters in 

generalised linear mixed effect models fitted using the function glmmPQL are estimated 

by penalised-quasi likelihood methods. This was demonstrated to be a robust method for 

the type of longitudinal data analysed in this thesis (Breslow & Clayton, 1993). 

 

3.12  Notation and model building 

The classes of linear models used in this thesis share a general notational format: 

y ~ a + b 
models the response, y, against main terms a, b. 

y ~a*b 
models the response, y, against the main terms of a and b in addition to the interaction 

between a and b. Also written as y ~ a + b +  (a:b), interaction terms essentially ask the 

question, does the response of a depend on the level of b?  
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3.12.1 Simplifying models 

The assessment of the significance of a main or interaction term is carried out as specified 

in Crawley (2005) Initially a full model is fitted and simplified using the Akaike 

information criteria (AIC). The AIC is given as  

AIC = -2 x log likelihood + 2 (p+1) 

where p is the number of parameters in the model. The log likelihood is the log of the 

maximum likelihood, itself simply the value of the parameters of the model which make 

the data most likely. The AIC is a useful way of balancing the complexity of an estimated 

model against how well the model fits the data; if the model included a parameter for 

every data point the fit would be perfect but the explanatory power zero. Superfluous 

parameters in the model are penalised by the AIC by adding 2p to the deviance so the 

smaller the AIC, the better the fit of the model. 

 

3.13 Mixed effect models 

The general structure of mixed effect models was proposed by Laid & Ware (1982). 

Mixed models are a subset of linear models designed to analyse observations structured 

into groups and have two components; fixed and random effects. Fixed effects are those 

common to any group of observations and represent the mean value of the response 

variable, regardless of the group of animals sampled. Random effects represent the 

consistent deviations from the predicted value (given by the fixed effects) attributable, for 

example, to innate differences between the susceptibility of animals or disease challenge. 

(Laird & Ware, 1982) Pseudoreplication from temporal and spatial groupings can be 

handled successfully with a mixed model approach (Paterson & Lello, 2003). The non 

independence of errors associated with pseudoreplicated data is managed by modelling 

the covariance structure, i.e. the correlation between individuals in a particular group. 

This approach of aggregating the variation of a group into a single term carries the major 

benefit of economising on the degrees of freedom used up by the factor levels. For 

example in this study, modelling the village (n=12) as a fixed effect uses 11 degrees of 

freedom, whereas fitting village as a random effect uses only a single degree of freedom, 

increasing the explanatory power of the model. In addition, whilst the variability between 

villages is of interest, the level of a particular village is not; villages studied were selected 
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at random from a larger number of potential villages. These models are particularly suited 

for longitudinal data; they can handle balanced or unbalanced datasets, missing data 

values and, by specifying a more complex random effect structure, can simultaneously 

account for the temporal correlation between repeated measures from the same individual 

as well as spatial correlation between individuals from a particular site (Pinheiro & Bates, 

2000). Model specification in this thesis has been in accordance with Pinhero & Bates 

(2000) using the lme function in the nlme library of R. 

 

3.14  Generalised linear mixed effect models 

Extensions of mixed effect models for binomial or count data were fitted using the 

glmmPQL directive available in the MASS library of R. GlmmPQL allows for the 

specification of a non normal error structure and estimate parameters using a penalised 

quasi-likelihood (PQL) method (Breslow & Clayton, 1993; Heagerty, 1999). PQL is an 

approximation to the maximum likelihood tests and as such AIC or anova tests cannot be 

used to simplify different models. Comparison and simplification of models products by 

glmmPQL is still unclear (Venables & Ripley, 2002). As a result models fitted using 

glmmPQL were ‘compared’ by fitting the same fixed effect to variety of different random 

effects as given in Table 3-5. If the results were robust when tested against the range of 

biologically plausible random effects, the fixed effect was considered to be significant. 
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Random effect structure  Interpretation 

~1|Tag.No 
 
 

 Animals have different intercepts 

 Villages have a common intercept 

 Villages and animals within villages have a 
common time slope 

~ 1|Village.Name/Tag.No 
 
 

 Villages have different intercepts 

 Individual  animals  nested  within  villages 
have different intercepts. 

 Villages  and  animals within  villages,  have 
common time slope 

list(Village.Name=~Visit.Number,Tag
.No=~1) 

 Villages have different intercepts 

 Individual  animals  nested  within  villages 
have different intercepts. 

 Villages have different time slopes. 

 Time  slopes  are  common  to  all  animals 
within a village. 

 

Either; a) 
~Visit.Number|Village.Name/Tag.No 
 
Or,b) 
list(Village.Name=~Visit.Number,Tag
.No=~Visit.Number) 

 Villages, and animals within villages, have 
different intercepts. 

 Villages, and animals within villages, have 
different time slopes 

 

3.15 Interpreting model output 

In this thesis several output tables or plots include the R code as an annotation. This 

hopefully augments the table and gives insight into the data sources and error structure of 

the objects under discussion. A sample table is included here to allow for an explanation 

of the terms. 

 

Table 3-5:-Random effect structure fitted in mixed effect 
models 
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demomodel<‐(glmmPQL(YESNO~Group ,random=~Visit.Number|Village.Name/Tag.No, 
data=dataset, family="binomial", na.action=na.omit. 

 

 
Coeffi

cient 

Std.Er

ror 
DF t-value 

p-

value 
OR 

1X 
Value 

+x 

Value -

x 

Upper 

CI 

Lower 

CI 

(Intercept)  ‐0.667  0.107  5096  ‐6.24               

Group B  ‐0.248  0.228  933  ‐1.09  0.28  0.78  0.45  0.20  ‐0.69  1.22  0.50 

Group C  ‐0.408  0.154  933  ‐2.65  0.01  0.66  0.30  ‐0.11  ‐0.71  0.90  0.49 

Group D  ‐0.281  0.150  9  ‐1.87  0.09  0.75  0.29  0.01  ‐0.58  1.01  0.56 

 

 1X= Std.Error*(qt(0.975, degrees of freedom)) 

Lower 95% CI= exp(coefficient-x) 

Upper95% CI= exp(coefficient+x) 

Table 3-6 shows the fixed effects from model object ‘demomodel’ fitted using 

glmmPQL, the form of output is however generally applicable to GLM’s. The binomial 

explanatory variable ‘YESNO’  is a vector containing a value for each animal as either Y 

(positive) or N (negative). This is fitted as a fixed effect to a single categorical 

explanatory variable ‘Group’, which has four levels, A,B,C or D. The random effects are 

fitted with the structure Visit.Number|Village.Name/Tag.No, explained in Table 3-5. The 

data under analysis exists in a dataframe called dataset and family=”binomial” defines a 

binomial error structure and a log link function. na.action=na.omit ignores data rows for 

which there is no data.  

 

The output is a comparison between the means or group of means as specified by the 

contrasts used in the model. R by default uses treatment contrasts, which are the same as 

the factor levels, hence in this example the model asks the question ‘is there a significant 

difference between levels A, B, C and D in the factor Group in terms of the explanatory 

variable YESNO?’ The output compares the difference between factor levels and is 

interpreted as follows.  

Table 3-6: Summary of fixed effects from a GLM. 
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 Intercept in row 1 is the intercept for Group A. The standard error in this 
row is the standard error of the mean. 

 The subsequent rows display coefficients of the differences between the 
intercepts and standard errors of the differences between the means. For 
example row 2, labelled Group B, is the difference in intercept between 
Groups A and B. 

 The p value is the probability that the observed difference will arise due to 
chance when the means are actually the same, and for significance at the 
95% confidence level has to be <0.05. 

 Coefficients are back transformed for presentation of odds ratios with 
corresponding 95% confidence intervals. The odds ratio is the reverse of the 
log link, i.e. the exponent of the coefficient.  

 

3.16  Odds ratio 
Odds ratios are measures of effect size. They are defined as the ratio of the odds of an 

event occurring in the first group, to the odds of it occurring in a second group. If the 

probabilities of the event in each of the groups are p (first group) and q (second group), 

then the odds ratio is: 

   
)1(

1

)1/(

1/

pq

qp

qq

pp








 

For most of the models used in this thesis, the probabilities were not calculated explicitly, 

instead the odds ratios are calculated through back transformation of model estimations. 

An odds ratio of 1 indicates that the condition or event under study is equally likely in 

both groups. An odds ratio greater than 1 indicates that the condition or event is more 

likely in the first group; an odds ratio less than 1 indicates that the condition or event is 

less likely in the first group. Consequently, confidence intervals that cross 1 are not 

significant.  In the case of odds ratios connected with disease prevalences, odds ratios less 

than 1 confer a protective effect, greater than 1 a risk. For example, an odds ratio of 10 

from prevalence data between groups A and B is interpreted as animals in the group A 

have 10 times higher odds of being positive than animals in group B. Note, this is not the 

same as saying that animals in the group A are 10 times more likely to be positive than 

those in group B; this involves the calculation of relative risks which is less 

straightforward with GlmmPQL outputs (R helpgroup  r-help@stat.math.ethz.ch). 
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3.17  Tree models 

 

Although it is theoretically possible to fit generalised linear models to all the possible 

combinations of factors measured in the study (over 5000), it is not always clear what 

high level interaction terms actually mean, and, due to the unbalanced nature of the data 

in this study, such models are often impossible to fit. In contrast, tree based models offer 

an alternative way of tackling multi-factor data analysis, and are increasingly being used 

as a graphical alternative to the generalised linear modelling techniques described above 

(Breiman et al., 1984; Cappelli et al., 2002).  

 

Tree models are computationally intensive methods that are useful for datasets containing 

a large number of explanatory variables. As with generalised linear models, tree-based 

methods compare a dependent variable with a series of independent factors. They are able 

to cope with both dependent and explanatory binary, categorical or continuous variables. 

Tree models are fitted by binary recursively partitioning the data on the basis of the 

lowest deviance. Each explanatory variable is assessed in turn and the variable explaining 

the greatest amount of the deviance in the response variable is selected. That variable is 

then split into two partitions at a particular threshold; the threshold value calculated as the 

value which minimises the deviance within the partition and maximises the deviance 

between the partitions. The process is then repeated for the values associated with low 

values of the first explanatory variable, and again with the high values, to form the second 

bifurcation. The process is further repeated until there is no residual explanatory power. 

Trees are then pruned at points where comparisons are no longer significant (Fisher’s 

exact test), as trees are arguably clinically meaningless at the ends of the branches. A 

good introduction to tree based methods is given in (Crawley, 2005) and a more detailed 

explanation in (Chambers & Hastie, 1992). 

 

Tree models have a great advantage in data inspection as they give as a clear picture of 

the structure of the data and an insight into the interactions between the variables. They 
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also deal well with missing data and will exclude cases only if all the explanatory 

variables are missing, thus increasing the data points in the model (Venables & Ripley, 

2002). Tree models also have the considerable advantage that it doesn’t matter which 

order the explanatory factors are put into the model. As such they do not allow for 

interactions between factors, but they do allow for a graphical illustration of the entire 

interaction structure which can be analysed subsequently using linear modelling 

techniques. 

Tree models are fitted using package library (tree) and the directive tree. 

treedemo<‐tree(testresult~ Clinical.Index+Group+Age+Serum, 
data=treedemo,na.action=na.omit) 

 

Figure 3.4 shows the plotted output of the treedemo model;  the binary outcome 

‘testresult’ modelled against explanatory variables ‘Clinical.Index’,  ‘Group’,  ‘Age’  and 

‘Serum’. Of an overall prevalence of 32%, the first partition is made on the basis of the 

categorical variable ‘Group’, of whose levels  B and D show a prevalence of 14%, 

compared with a  prevalence of 75% for A and C.  Following the left hand side down, the 

next split is made on the basis of the continuous variable ‘clinical  index’. Individuals 

below 2.5 have a prevalence of 8%, compared with 50% for those with a clinical index 

above 2.5. The split marked ‘A’ on Figure 3.4 is a terminal node and shows that, for a 

clinical index of above 2.5, group B are all negative and group D all positive. Considering 

the right hand branch, individuals in groups A and C,  the clinical index variable does not 

appear, instead the  variable serum is used to partition the variance (‘B’ in Figure 3.4). 

Finally, the variable Age in the model does not appear at all in the final tree diagram; no 

partition of age explains the variance in the treedemo dataset.  

 

The significance of the splits marked A and B can be established by chi squared tests, in 

this example given the low sample size this is unlikely. In general, comparisons of interest 

were tested for significance using a chi-squared contingency table. Tables were 

constructed using the function x<‐  table(a,b)) with a representing the split of the factor 

and b the population under test. The function ‘chisq.test(x)’ was then applied to tests 



Chapter 3:- Techniques for data analysis  

 90

where the expected values were >5, or the function ‘fisher.test(x)’ for values less than 5, 

to test for significance. 

 

 

 

 

Figure 3.4:- Tree model output for the example described 
in text. Percentages refer to value of each partition. 
Comparisons A and B refer to regions of the tree 
described in the text. 
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Figure 3.5:- Example of a full (a) and pruned (b) tree. 

| 
(a) (b) 

| 
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3.18  Comparing categorical data using Mosaic plots  

3.18.1 Log linear models 

 

Log linear models are specialised cases of generalised linear models for Poisson-

distributed data (Friendly, 1994; Crawley, 2005). Log linear analysis extends the two-way 

contingency table to higher dimensional data where the conditional relationship between 

two or more discrete, categorical variables is analysed by taking the natural logarithm of 

the cell frequencies within a contingency table. In this case however, the models are only 

fitted to a two way contingency table and residual outputs are the same as those calculated 

by chi-square values testing the hypothesis of independence. Log-linear models consider 

all variables as response variables, so only the association and not the dependence can be 

distinguished by these techniques. 

3.18.2 Mosaic plots 

Mosaic plot graphs represent a contingency table, and are essentially grouped bar charts 

where width and height of the bars show the relative frequencies of the two variables 

(Hartigan & Kleiner, 1984). The tiles in a mosaic plot are proportional to the observed 

cell frequencies.  Extended mosaic displays (Friendly, 1994) use a colour coding of the 

tiles to visualise deviations (residuals) from a given log-linear model fitted to the table. 

Negative residuals are shaded red and with broken outlines; positive residuals are blue 

with solid outlines.  

Analyses using mosaic plots have been done by time point. Significant differences are 

between the other groupings at that time point, so the plots do not directly provide 

information about change over time. To interpret the association between treatment group 

and pathogen count, consider the pattern of positive (Blue) and negative (Red) tiles in the 

mosaic display. A cell is coloured blue if its observed frequency is significantly greater 

than that which would be found under independence, and red if its frequency is 
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significantly less. Threshold residuals correspond to p <0.05 and p<0.001 for the 

standardized Pearson residuals of 2-4 and >4 of a Chi-squared statistic. 
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 Chapter 4 :‐ The use of molecular 
techniques to assess the impact of 
control strategies 



Chapter 4:- Impact of interventions on trypanosome prevalence 

95 

 

4.1 Introduction 

An accurate classification of an animal’s infection status is arguably the most important 

step in the design and validation of a disease control strategy. Analysis of the data 

discussed in this thesis primarily aims to assess the effect of the different treatment 

regimes with particular reference to trypanosomiasis. There is no pathogonomic clinical 

indication of trypanosomiasis (Uilenberg, 1998), and parasitological detection methods 

lack sensitivity. Traditional methods of epidemiological screening rely on the visual 

identification of the parasite in the blood sample by microscopy. Although widely used, 

microscopy can suffer from poor sensitivity due to characteristically low parasitaemia in 

endemic cattle (Paris et al., 1982; Picozzi et al., 2002). In addition such techniques are 

labour intensive, require a skilled and dedicated microscopist and can be difficult to 

manage in a field situation away from a reliable power source. 

 Immunological techniques to demonstrate active infection have so far not proved 

sensitive enough to be of diagnostic value (Eisler et al., 1998). Over the last few years, 

DNA based diagnostic tools have greatly improved, and are now sensitive, specific, 

robust and cheap enough to be employed as screening techniques for epidemiological 

studies (Duvallet et al., 1999; Desquesnes & Davila, 2002; Picozzi et al., 2002; Gasser, 

2006).  

 

4.2 What is a pathogen? 

The aetiology of an infectious disease has traditionally been investigated through the 

establishment of Koch’s postulates, namely 

1. The organism must be found in all animals suffering from the disease, but not in 
healthy animals. 

2. The organism must be isolated from a diseased animal and grown in pure culture 
3. The cultured organism should cause disease when introduced into a healthy 

animal. 
4. The organism must be re-isolated from the experimentally infected animal (Koch, 

1882) 
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Many diseases do not comfortably fit into these postulates; Koch himself saw the 

limitations in the  second part of first postulate when he discovered asymptomatic carriers 

of cholera (Koch, 1893). Although it was rapidly recognised that some infectious agents 

were causal for disease despite the fact that they did not fulfil all of the criteria, Koch’s 

postulates provided a logical framework for convincing sceptics that micro-organisms 

caused disease and a robust methodology for studying the aetiology of infectious diseases 

(Falkow, 2004). Indeed, as noted by Fredericks and Relman, 

  “The power of Koch’s postulates comes not from their rigid application, but 
from the spirit of scientific rigour that they foster. The proof of disease causation 
rests on the concordance of scientific evidence, and Koch’s postulates serve as 
guidelines for collecting this evidence.”(Fredricks & Relman, 1996) 

To redefine Koch’s postulates in the context of contemporary disease diagnosis and 

therapy raises an interesting question - what is a pathogen? Given the increasingly 

apparent sophistication and subtlety of interactions between host and parasite, for most 

clinical cases demonstrable proof of the presence of a parasite within its host is no longer 

sufficient to account for a disease. The reservoirs of many common, and often quite 

deadly, infections persistently infect asymptomatic individuals (Falkow, 2004), and in 

many cases the transition from asymptomatic carrier to clinically sick is more to do with a 

failure of the host’s immune capabilities than an increase in pathogenicity on the part of 

the parasite (Evans, 1991; Poxton, 2005).  

 

This is of particular relevance when considering the use of molecular techniques to 

analyse samples collected in the longitudinal study covered in this thesis. The molecular 

screening techniques discussed in this chapter provide the capacity to identify minute 

amounts of parasitic genomic DNA. The longevity of dead parasite DNA in the host’s 

bloodstream is not known, but most work suggests that it does not survive for long in the 

blood. Using a very sensitive PCR and DNA hybridization assay, Clausen et al. (1999) 

found it possible to detect a positive signal 4 days after treatment with a known effective 

trypanocide although they noted that the signal strength was notably weaker after the 

trypanocidal treatment. In contrast, Lo et al (1999) monitored the clearance of circulation 

foetal DNA postpartum in twelve women in order to assess the survival of extra cellular 
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DNA in blood. Eighty-seven percent of women had undetectable foetal DNA after 2 

hours and further investigation yielded a mean half-life for circulating foetal DNA of 16.3 

minutes. In the context of this study it is probably fair to assume that a positive result 

indicates the presence of live trypanosomes in the circulation at the moment the sample 

was taken. However, these results should be taken in context. The molecular techniques 

employed here are not quantitative, and unlike real time PCR the response is a binary yes 

or no. Whilst PCR techniques are of great benefit for their specificity, it could be argued 

they are too sensitive for some analyses. A positive result does not distinguish between 

‘fortuitously’ taking a punch containing trypanosomal DNA from an animal with one 

circulating trypanosome and a punch taken from an animal with a parasitaemia six orders 

of magnitude higher. Given the endemic status of trypanosomiasis in the sample 

population, many animals appear to exist in a continual state of infection, resolution and 

re-infection (Waiswa, 2003). In trypanosomiasis endemic areas where susceptible cattle 

breeds constitute the main host of tsetse and are the reservoir of trypanosomes, the clinical 

impact of infection tends to be low (Van den Bossche, 2001). Consequently, relating PCR 

results to the actual clinical impact that the disease has to be done with caution. Care 

should also be used when making inferences about the epidemiological significance, i.e. 

transmissibility, of the treatment options due to the difficulties in quantifying infection 

burden using these tools.   

With these caveats in mind, this chapter aims to assess the impact of the different 

interventions applied to cattle during a longitudinal study run in south east Uganda, based 

upon ITS-PCR test for trypanosomiasis. The study design was described in chapter 2 and 

the material and methods for the molecular analysis are described in section 3.4.  

 

4.3 Methodology 

Whole blood samples were collected and stored of FTA® cards as described in section 

3.1. Four timepoints were selected from the study for analysis of trypanosomal DNA by a 

polymerase chain reaction protocol described in 3.4.5. To attempt to improve the 

sensitivity of the technique, each sample was screened twice by taking two punches from 

the FTA® card, with each punch processed in parallel using identical reagents and 
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equipment.   The selected timepoints were the baseline, and the first, third and sixth (final) 

intervention on day -42, 0, 56 and 147 respectively. All animals presenting at a timepoint 

were screened by PCR however particular analysis may involved subsets of this data. 

 

4.4 Results overview 

Table 4-1 shows the results of the PCR screening arranged by timepoint and treatment 

group. To ensure consistency within treatment groups, subsequent analysis is restricted to 

those animals that received two treatments of trypanocide prior to day 0. In addition 

animals in the villages receiving isometamidium that did not receive the drug on day 0 

have been removed from subsequent analysis. An animal was recorded as positive if 

either of the punches gave a positive result. Figure 4.1 is a graphical representation of 

Table 4-1, included to aid the descriptions. 95% confidence intervals for binomial 

probabilities were calculated using the binconf function in R as described in section 3.9.3. 

It should be noted that up to and including samples taken on Day 0, all groups received 

identical treatments (see section 2.9). Classification of villages into groups at day -42 and 

day 0 has been done to show the future allocation of interventions from Day 0 onwards.  

4.5 Trypanosome prevalence for each intervention group 

Initial trypanosome infection at the baseline varies between groups but, as can be seen 

from the overlapping binomial exact confidence intervals, this is not significant. At day 0, 

following two treatments with diminazene aceturate at a dose rate of 7mg/kg, the 

prevalence in all the groups has dropped to zero. Fifty-six days later trypanosome 

prevalence has increased to between 2.3% and 8.2% however overlapping 95% 

confidence intervals indicate this is not statistically significant. 147 days after beginning 

the interventions, the prevalence of the control and isometamidium treated villages have 

returned to ≈15%; within the range of the baseline values. In contrast, intervention groups 

receiving monthly insecticide treatment have a prevalence of 3.8% and 1.3% for the pour-

on and spray groups respectively. Error bars do not overlap, demonstrating significance at 

p=0.05. 
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 n Prevalence Lower 95% CI Upper 95% CI 

Baseline:- Day -42     

Control  274 20.8% 16.4% 26.0% 

Isometamidium 197 13.2% 9.1% 18.6% 

Pour 235 17.0% 12.7% 22.4% 

Spray 240 19.2% 14.6% 24.6% 

Visit 3:- Day 0     

Control 183 0.0% 0.0% 2.1% 

Isometamidium 175 0.0% 0.0% 2.3% 

Pour 203 0.0% 0.0% 1.7% 

Spray 210 0.0% 0.0% 1.8% 

Visit 5:- Day 56     

Control 184 8.2% 5.0% 13.0% 

Isometamidium 150 3.3% 1.4% 7.6% 

Pour 172 2.9% 1.2% 6.6% 

Spray 176 2.3% 0.9% 5.7% 

Visit 8:- Day 147     

Control 110 15.5% 9.9% 23.3% 

Isometamidium 117 15.4% 9.9% 23.0% 

Pour 134 3.8% 1.6% 8.5% 

Spray 149 1.3% 0.3% 4.8% 

 

4.6 Modelling prevalence data 

Initial data inspection suggests there are differences between the treatment groups, so 

further analysis is warranted. This data is investigated to ask two specific questions. 

 Is there a difference in trypanosome prevalence among different treatment 
groups? 

Table 4-1:- Trypanosome prevalence for pathogenic 
trypanosome species with binomial 95% confidence 
intervals. 
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 Could this difference be explained by other factors other than the treatment 
protocols? 

 

Primarily, it of interest to model the change in trypanosome infection over time in order to 

quantify differences between the groups, secondly it is interesting to compare the 

differences between the samples in terms of other clinical and diagnostic indicators. 

The incidence of trypanosome infections could be used as an assessment of the degree of 

protection to disease transmission conferred by the different interventions. Consequently, 

results were amalgamated across trypanosome species and coded as a binary variable 

representing the outcome of the ITS-PCR screening. A positive state was recorded if the 

animal was positive for any pathogenic (T brucei, T.vivax, T.congolense) trypanosome 

species, by either one of the screening punches, at a given time. Descriptions of the 

molecular techniques used are given in section 3.4 



Chapter 4:- Impact of interventions on trypanosome prevalence 

101 

Day -42

Group

P
re

va
le

nc
e

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

0.
30

Control Iso Pour-on Spray

Day 0

Group

P
re

va
le

nc
e

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

0.
30

Control Iso Pour-on Spray

Day 56

Group

P
re

va
le

nc
e

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

0.
30

Control Iso Pour-on Spray

Day 147

Group

P
re

va
le

nc
e

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

0.
30

Control Iso Pour-on Spray

 

Figure 4.1:-Plot of overall trypanosome prevalence by visit number 
and intervention group. Error bars represent 95% binomial 
confidence intervals. 
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Figure 4.2:- Barplot of trypanosome prevalence by treatment group and individual species. Vertical bars 
represent binomial 95% confidence intervals. 
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4.6.1 Trypanosome prevalence by individual species 

Figure 4.2 shows the prevalence by ITS-PCR of three clinically important trypanosome 

species; T.brucei. T.congolense and T.vivax. Prevalence was modelled using a generalised 

linear model for count data described in section 3.9.1. At the baseline there is a significant 

difference (p<0.01) between the prevalence of T.brucei and the other two species; T.brucei 

approximately half the prevalence of the other two. (Table 4-2). This pattern appears to be 

broadly maintained over the incidence of infections emerging after day 0, although these 

were not significant (p>0.05) 

 

Species Positive Negative Prevalence Significance
T.congolense  52  893  5.50%   

T.brucei  22  924  2.33%  p>0.01 

T.vivax  57  889  6.03%   
 

4.7 Univariate analysis of PCR results  

Initial analysis involved comparing the trypanosome prevalence to a range of  clinical and 

‘signalment’ (individual descriptive variables, such as age, sex, breed) to look for potentially 

significant associations. This is of relevance in its own right, but was also employed at this 

stage to look for associations that may confound analysis of the treatment effect. 

Multiple, univariate analyses were carried out using a generalised linear mixed effect model 

as described in 3.14. 

glmmPQL(PCRresult~VariableX ,random=~Visit.Number|Village.Name/Tag.No, 
,family="binomial") 

 

Table 4-2:- Difference between prevalence for individual 
trypanosome species at baseline. Significance calculated 
from a glm with binomial errors 
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PCRresult is the binary response variable, VariableX the univariate in question. Random 

effects allowed for different intercepts for villages within treatment groups and a different 

slope over time. Variables were coded as outlines in section 3.2.2 and included the results of 

the laboratory and field analysis. 

 

Table 4-3 and Table 4-4 show the outcome for each of the univariate analysis, with 

concomitant p value and odds ratios. Most of the factors are not significant, the exception 

being the gender and the infection status of the animal for the tick-borne parasite Anaplasma 

marginale. Compared with female animals, male animals have significantly (p=0.02) higher 

odds of becoming infected than females, (Odds ratio 1.75, (CI1.1-2.8)). Animals found 

positive for Anaplasma by microscopy show significantly (p<0.001) higher odds of also 

being found positive for trypanosomes by PCR (Odds ratio 2.45, (1.54 3.87)). There also is a 

significant association (p<0.05) between Boophilus tick counts and positive trypanosome 

signal.  

These findings are consistent with previous work. Analysis of longitudinal data set of 

trypanosome infections in cattle in the Ghibe Valley, Ethiopia using transition models 

showed a similar odds ratio (1.46, CI 1.30-1.63) between male and female cattle (Schukken, 

2004). Similar results were found in Boran cattle in Kenya (Dolan, 1997)  This effect was 

attributed to the extra demands placed on male cattle for provision of draught power, this 

would also be consistent with the management systems in the Ugandan study villages.  

The significance of concurrent anaplasmosis increasing the odds of trypanosomiasis are 

consistent with other studies in S.E. Uganda (Magona & Mayende, 2002) in addition to work 

in other management systems. Mkwaja ranch in N.E Tanzania employed deltamethrin dips to 

control trypanosomiasis. Following the introduction of deltamethrin insecticide, the 

percentage of cattle mortality attributed to anaplasmosis declined.  It was not considered this 

was due to tick control although the possibility of a reduction in mechanical transmission 

from biting flies was considered. A possible explanation was chronic, subclinical 
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trypanosomiasis caused sufficient physiological stress to cause patent parasitaemia, or even 

clinical disease, in Anaplasma carrier animals (Fox et al., 1993). 

It is also important, although perhaps unsurprising, to note that there is a significant (p<0.01, 

OR 3.03) association between anaemia (blood haemoglobin of below 8.5 g/dl), and a positive 

trypanosome diagnosis by ITS-PCR. The link between Boophilus and trypanosome infections 

is investigated in section 6.3 but this result could be attributable to the apparent low recovery 

rate of Boophilus tick species to insecticide and thus serve as an indicator for the effect of the 

pour and spray interventions. 
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Signalment 

(Intercept) Female  ‐4.657  0.245  ‐19.03           

Male  0.562  0.239  2.35  0.02  1.75  2.80  1.10  * Sex 

Male, Neuter  ‐0.706  0.904  ‐0.78  0.44  0.49  2.91  0.08  NS 

(Intercept) Black  ‐4.309  0.314  ‐13.71           

Black & White  0.603  0.435  1.39  0.17  1.83  4.28  0.78  NS 

Brown  ‐0.394  0.295  ‐1.34  0.18  0.67  1.20  0.38  NS 

Brown & White  ‐1.671  0.905  ‐1.85  0.07  0.19  1.11  0.03  NS 

Grey  ‐0.356  0.680  ‐0.52  0.6  0.70  2.66  0.18  NS 

Mixed  ‐0.083  0.366  ‐0.23  0.82  0.92  1.89  0.45  NS 

Colour  

White  ‐0.392  0.395  ‐0.99  0.32  0.68  1.46  0.31  NS 

(Intercept) A  ‐3.910  0.455  ‐8.59           

Age B  ‐0.240  0.463  ‐0.52  0.6  0.79  1.95  0.32  NS Age  

                           Age C  ‐0.730  0.445  ‐1.64  0.1  0.48  1.15  0.20  NS 

 

Table 4-3:- Result of multiple, univariate analyse of  signalment factors 
against trypanosome prevalences from ITS-PCR screening 

*=significant, NS= not significant 
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Clinical Parameters 

(Intercept) >4  ‐4.676  0.751  ‐6.22           
Cond.Score 

<4 (Thin)  0.007  0.151  0.05  0.96  1.01  1.35  0.75  NS 

(Intercept) Normal  ‐4.747  0.264  ‐17.98           

Enlarged  0.373  0.232  1.61  0.11  1.45  2.29  0.92  NS 
Lymph node size 

 
Severely enlarged  0.098  0.978  0.1  0.92  1.10  7.50  0.16  NS 

Laboratory outcomes 

(Intercept)   No  ‐4.690  0.283  ‐16.56           
T.parva positive? 

                      Yes  ‐0.454  0.236  ‐1.93  0.05  0.63  1.01  0.40  NS 

(Intercept)  No  ‐5.054  0.288  ‐17.54           
Anaplasma positive? 

                      Yes  0.897  0.233  3.86  <0.01  2.45  3.87  1.56  * 
(Intercept)  ‐4.457  0.227  ‐19.67           

WEC 
WEC score  ‐0.022  0.051  ‐0.43  0.67  0.98  1.08  0.88  NS 

(Intercept) No  ‐4.472  0.227  ‐19.73           
Coccidia? 

                     Yes  ‐0.123  0.642  ‐0.19  0.85  0.88  3.11  0.25  NS 

(Intercept) No  ‐4.813  0.270  ‐17.51           
Fluke eggs 

                     Yes  0.170  0.270  0.63  0.53  1.19  2.01  0.70  NS 

(Intercept) No  ‐4.623  0.331  ‐13.95           Anaemic? 
(Hb<8.5g/dl)                       Yes  1.107  0.273  4.06  <0.01  3.03  5.16  1.77  * 

Tick burden 

(Intercept) No ticks  ‐5.100  0.309  ‐16.5           

1‐10 ticks  0.601  0.250  2.4  0.02  1.82  2.98  1.12  * 
11‐50 ticks  0.969  0.345  2.81  0.01  2.64  5.18  1.34  * 

Boophilus spp 

>50 ticks  0.689  0.993  0.69  0.49  1.99  13.96  0.28  NS 

(Intercept) No ticks  ‐4.526  0.305  ‐14.86           

1‐10 ticks  ‐0.482  0.273  ‐1.76  0.08  0.62  1.05  0.36  NS 

11‐50 ticks  ‐0.042  0.304  ‐0.14  0.89  0.96  1.74  0.53  NS 
Amblyomma spp 

>50 ticks  1.143  0.593  1.93  0.05  3.14  10.03  0.98  NS 

(Intercept) No ticks  ‐0.996  0.067  0           

1‐10 ticks  ‐0.106  0.060  0  0.87  0.90  1.01  0.80  NS 

11‐50 ticks  ‐0.009  0.067  0  0.65  0.99  1.13  0.87  NS 
Rhipicephalus spp. 

>50 ticks  0.252  0.131  0  0.78  1.29  1.66  1.00  NS 

Table 4-4:- Result of multiple, univariate analyse of  clinical and 
laboratory variables against trypanosome prevalences from ITS-PCR 
screening *=significant, NS= not significan
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4.8 Generalised linear model with binomial errors 

Univariate analysis of signalment variables (Table 4-3) and clinical parameters (Table 4-4) 

suggest that as many of the factors are not significant they could be left out of further models. 

Nonetheless, initially a full model was fitted and compared with a model only containing 

variables significant at the 95% confidence level in the univariate analysis (Section 4.7). The 

model was fitted to all data collected during the interventions, i.e. after day 0.  

model1<‐glm(PCR ~all variables, family="binomial") 

model2<‐glm(PCR ~Group*Sex*Boophilus burden*Anaplasma status , 
family="binomial") 

 

Comparing the two models using anova  showed no significant difference ( 2 =0.178) 

between the two models. Inspection of the models showed no significant interactions so the 

simpler model2 was selected for further analysis. Term deletion of model2 resulted in the 

final model, model3, which only contained the group variable. All other factors could be 

removed from the model as they were not significant.  

model3<‐glm(PCR~Group, family="binomial") 
 

 Estimate Std.Error p-value Signif? 

         

(Intercept) Control  ‐1.695  0.263  <0.001   

Isometamidium treatment  ‐0.005  0.367  0.9883   

Pour‐on treatment  ‐1.550  0.526  0.0032  * 

Spray treatment  ‐2.597  0.759  0.0006  * 

Table 4-5:- Output from minimum model of PCR result 
against intervention group 
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Table 4-5 shows the output of model3. Initial inspection suggests there is a significant 

difference between both the pour-on and spray groups and the control.  However, this 

analysis is potentially unsound. Figure 4.3 shows the prevalences listed in Table 4-5, plotted 

by individual village. It can be seen that there is a significant variation between villages 

allocated to a treatment group. This indicates there may be a significant effect of village. 

Model4 is a variation on model3 but with village as a fixed effect. Comparing the two models 

with anova allows for an assessment of the residuals, hence the fit of the model: 

model 3: PCRYN ~ Group  

model 4: PCRYN ~ Group + Village Name  

anova(model 3,model 4, test=”Chi”) 
 

 
Resid. 
Df 

Resid. Dev Df Deviance P(>|Chi|) Signif? 

Model 3  494  249.53         

Model 4  487  226.59  7  22. 95  0.002  * 

Table 4-6 shows that model4 is significantly better at explaining the data than model3, strong 

evidence for a significant village effect.  However when the model4 was examined,  none of 

the variables remained significant (data not shown)  It is difficult to separate the effect of 

village from the effect of the interventions when village is fitted as a fixed effect. Models 

fitted to this data will have to account for the variation in villages within intervention groups 

to effectively analyse the treatment effects. 

Table 4-6:- Anova result of comparing model3, with no 
village effect, to model4, including village as a fixed effect 
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Figure 4.3:-Trypanosome prevalences in individual study villages over time. Error bars 
represent exact binomial 95% confidence intervals 
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4.9 Demonstration of heterogeneity between villages 

It is useful to quantify the variation in villages highlighted in Figure 4.3 in order to show why 

a more complex model is needed than outlined in section 4.8  Table 4-7 shows the output 

when village is fitted as a fixed effect, the coefficients relate to the difference of the names 

village and the village of Budimo as explained in section 3.15. Villages showing a significant 

difference in trypanosome prevalences are highlighted in yellow. Whilst the prevalence in 

particular villages is not of interest per se, it does highlight the need for models able to 

account for the significant heterogeneity between villages. For example, in this case animals 

in Buwumba village have a 2.34x higher chance of having a trypanosome infection than those 

in the comparison village of  Budimo (95% CI 1.09-5.03). The important point here is that 

these twelve villages were selected from a pool of potentially several thousand villages, and 

as such there is little point in estimating the means of a particular village, and no point at all 

in comparing individual means for two villages. Instead, they need to be recognised for what 

they are; random samples from a much larger population. It is the additional variation caused 

by differences between the villages that we are interested in and hence the use of generalised 

linear mixed effect models for the rest of the data analysis. 
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(Intercept)      (Budimo)  ‐1.64  0.31  934  <0.001       

Buduma  ‐0.43  0.47  934  0.36  0.65  1.64  0.26 

Budunyi  ‐0.87  0.52  934  0.10  0.42  1.17  0.15 

                        Bukhunya  0.97  0.39  934  0.01  2.63  5.60  1.23 

Bunyadeti  ‐0.20  0.45  934  0.66  0.82  1.97  0.34 

Butangasi  ‐0.11  0.44  934  0.80  0.90  2.12  0.38 

Buwumba  0.85  0.39  934  0.03  2.34  5.03  1.09 

Lwangosia  ‐0.80  0.53  934  0.13  0.45  1.26  0.16 

Madwa  0.42  0.42  934  0.31  1.53  3.47  0.67 

Magale  ‐0.56  0.48  934  0.25  0.57  1.48  0.22 

Muwayo  ‐0.31  0.46  934  0.50  0.74  1.80  0.30 

Nsango  0.91  0.39  934  0.02  2.48  5.31  1.16 

 

4.10 Generalised linear mixed effect models (GLMM) 

The use of generalized mixed effect models with binomial errors (GLMM) allows the village 

variation to be accounted for by fitting village as a random effect. As before, PCR status is 

fitted as a binary outcome variable (PCRresult) and treatment group as a fixed effect (Group). 

Village is fitted as a random effect.  In this section, the analysis considers each timepoint 

separately, the question of interest the difference between the different treatment groups at 

several snapshots through the study. The inclusion of time as a random effect is investigated 

later. 

 

Table 4-7:- Output from a glm model relating trypanosome 
prevalence to village during intervention period. 
Significant differences are highlighted in yellow. 
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The random terms in the model are important as they allow for uncontrollable influences due 

to the temporal and spatial autocorrelation. Adjusting for these sources of variability allows 

any true effects of intervention to be disentangled from otherwise ‘noisy’ data, and are 

described in section 3.8.1. 

 

Models were fitted using the glmmPQL directive as described in section 3.14. All models 

used in this section have the structure of binary infection status as the response variable,  

intervention group fitted as a fixed effect and village as a random effect: 

glmmPQL(PCRresult~Group, random=~1|Village.Name, data=Visitx, 
family="binomial") 

4.10.1 Comparison of treatment groups at the baseline 

Selection and allocation of the villages to a group is outlined in section 2.5. Groups were 

randomly allocated a treatment protocol. Village allocation was made on the basis of 

preliminary screening analyses, however it is important however to assess any variation in 

trypanosome prevalence which might suggest inequality in village allocation and potentially 

bias the rest of the study. 

 

 Coeff Std.Error DF t-value p-value OR Upper CI Lower CI
(Intercept) Control  ‐1.43  0.28 933 ‐5.02 <0.001 0.24     

Spray group  ‐0.11  0.45 9 ‐0.24 0.82 0.90  2.49  0.33

Iso.group  ‐0.40  0.37 9 ‐1.09 0.28 0.67  1.55  0.29

Pour‐on group  ‐0.26  0.45 9 ‐0.58 0.58 0.77  2.15  0.28

Table 4-8 shows the model for the baseline sampling point (Day -42). There is no significant 

difference between groups in the prevalence of trypanosomiasis at the start of the study, 

Table 4-8:- GLMM output comparing PCR prevalence to 
future intervention group  at the baseline. 
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indicating that although heterogeneity exists between the villages, these differences cancel 

out at the group level. Consequently, it has been assumed that there is no bias towards a 

particular group in terms of the risk of trypanosomiasis and analysis can continue 

accordingly. 

4.10.2 Comparison of treatment groups at start of the 
interventions:‐ effect of two doses of diminazene aceturate  

The effect of two doses of the trypanocidal drug diminazene aceturate (Berenil®, Intervet) 

was assessed.  All animals were treated 42 and 14 days prior to the start of the interventions 

as described in section 2.9.  At day 0, the trypanosome prevalence was zero for all animals 

screened (Table 4-1) With zero prevalence, it is not possible to fit a model to this time point 

however it is fair to conclude that two doses of the drug effectively lowered the parasitaemias 

to below the detection threshold of PCR. Although the absence of a comparison group, i.e, 

one that did not receive the diminazene treatments, strictly prevents any causal conclusions 

about the drug effect, it is very likely that the diminazene was responsible for the decrease in 

trypanosome prevalences. It is assumed therefore that the effect is real and that there is no 

evidence of to suggest drug resistance is a problem in the study villages of south east Uganda.  

4.10.3 Reinfection, recrudescence or retest? 

The sensitivity threshold of detection of trypanosome infection is of the range 1-20 

parasites/ml of blood, the ITS protocol able to detect DNA concentrations as low as 55pg/ml;  

less than a single trypanosome. (Cox et al., 2005). Assuming procedural safeguards 

minimised laboratory error, a positive result is fairly clearly interpreted: trypanosomal DNA 

was detected in the blood thus indicating an active infection at the point of sampling. A 

negative result is more ambiguous however. Trypanosome parasitaemia show immense 

fluctuation over 9 orders of magnitude, from more than 106 parasites per ml to less than 1 

parasite per litre of blood. (Desquesnes & Dávila, 2002). It is thus still possible that  PCR 

techniques fail to detect low parasitaemias, simply because there is no DNA in the analysed 

sample. In the context of this study, it is being assumed that the study animals were clear of 
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trypanosome parasites at day 0 and any animals emerging as positive after this point are 

being taken to be new infections. It is however important to consider that the technique may 

have failed to identify parasitaemic animals or that infections are recrudescing from animals 

which were aparasitaemic at the point of sampling.   

4.10.4 Comparison of treatment groups 8 weeks into the 
interventions.  

Day 56 corresponds to the second visit after the group interventions began on day 0. The 

interventions up to this point were as follows: 

 Control group:- No interventions 
 Isometamidium group:-  a single dose of isometamidium chloride 8 weeks 

earlier. 
 Insecticide groups:-  Treatment  with their respective protocols 8, and again 4, 

weeks previously. 
 

 Value Std.Error DF t-value p-value OR Upper CI Lower CI

(Intercept) Control  ‐2.80  0.44  669  ‐6.43  <0.001  0.06     

Spray  ‐1.05  0.75  9  ‐1.39  0.20  0.35  1.93  0.06 

Isometamidium  ‐0.48  0.64  9  ‐0.75  0.45  0.62  2.65  0.14 

Pour‐on  ‐0.75  0.72  9  ‐1.04  0.32  0.47  2.41  0.09 

By 8 weeks into the study, at day 56, all groups are showing some trypanosome infections by 

ITS-PCR (Table 4-1) Table 4-9 shows an output from a GLMM showed no significant 

difference between the trypanosome prevalences (p>0.05) of the four intervention groups. 

There is a suggestion that the interventions are protective in comparison to the control (Odds 

ratio <1), however this is not significant.  

Table 4-9:- GLMM output comparing PCR prevalence to 
intervention group on  day 56. 
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4.10.5 Comparison of treatment groups at 21 weeks into the 
interventions.  

Day 147 corresponds to the final visit of the study, 21 weeks after the interventions began. 

The interventions up to this point were as follows: 

 Control villages:- No interventions 
 Isometamidium villages:-  a single dose of isometamidium chloride 21 weeks 

earlier. 
 Insecticide villages:-  Treatment  with their respective protocols every 4 weeks 

from day 0, last treatment 5 weeks previously. 
 

Twenty-one weeks into the study there are clear differences emerging between the groups in 

terms of trypanosome prevalences. Table 4-10 shows the model output.  There are significant 

differences between the control group and the insecticide treated groups (p<0.01), however 

no significant difference exists between the between the control and the isometamidium 

treated groups (p=0.96). 

 

 Value Std.Error DF t-value p-value OR Upper CI Lower CI

(Intercept) Control  ‐7.368  0.55  498  ‐13.35  0.000       

Spray  ‐4.853  0.73  8  ‐6.67  <0.001  0.01  0.03  0.00 

Isometamidium  ‐0.032  0.77  8  ‐0.04  0.968  0.97  4.37  0.21 

Pour‐on  ‐3.582  0.74  8  ‐4.81  0.002  0.03  0.12  0.01 

From this it is possible to conclude that the insecticide treated animals have significantly 

lower trypanosome prevalence than either the control villages or the isometamidium treated 

villages. 

Table 4-10:- GLMM output comparing PCR prevalence to 
intervention group  day 147. Groups significantly different 
to the control are highlighted in yellow. 
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4.10.6 Quantification of the difference in treatment effects 
between groups 

It is possible from the model output to calculate the odds ratios for the different treatment 

options. The antilog of the coefficient in the column marked ‘Value’ gives odds ratio relative 

to the first coefficient, as explained in section 3.16. By default comparisons are made with 

control group, however by re-specifying the factor levels other comparisons are possible. The 

following directive reorders the levels of the group variable so coefficients now relate to the 

‘spray’ group: 

Visit1$GroupS <‐ factor(Visit1$Group, levels=c('Spray','Iso','Pour‐on','Control')) 
 

Rerunning the GLMM model for day 147 with the appropriate factor structures allowed for 

the calculation of all the pair-wise odds ratios given in Table 4-11.  

 

 Control Pour-on Spray Iso 

Control  ‐ 
5.88 

 (1.34‐25.8) 
13.61  

(2.44‐75.78) 

1.15 
(0.32‐4.20) 
 Not Sig. 

Pour‐On 
0.17  

(0.04‐0.75) 
‐ 

2.31 
 (0.56‐15.05) 
 Not Sig. 

0.20 
 (0.04‐0.87) 

Spray 
0.07 

(0.01‐0.41) 

0.43 
(0.07‐2.81) 
 Not Sig. 

‐ 
0.08 

 (0.02‐0.48) 

Iso 
0.87 

 (0.04‐3.16)  
Not Sig. 

5.10 
 (1.3‐22.7) 

11.80  
(2.10‐66.39) 

‐ 

Table 4-11: Odds-ratios for interventions at day 147. 
Bracketed numbers refer to the 95% confidence intervals. 
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Table 4-11 shows the odds ratios for the different groups 28 weeks after the commencing the 

different interventions. The numbers in brackets refer to the 95% confidence intervals.  

Confidence intervals that cross 1 are not significant, consequently numbers in bold indicate 

significance. Odds ratios less than 1 confer a protective effect, greater than 1 a risk. Animals 

in the control group have 5.88 (1.34-25.8) and 13.6 (2.44-75.78) higher odds of being 

positive for trypanosomes by PCR than animals in the pour-on or spray groups respectively. 

Similarly, animals in the isometamidium group have 5.10 (1.3-22.8) and 11.8 (2.10-66.39) 

higher odds of being positive for trypanosomes by PCR than animals in the pour-on or spray 

groups respectively. There is however no significant difference between control and 

isometamidium groups or between pour on and spray treated groups. 

4.10.7 Summary of treatment effect at 8 and 21 week time‐
points. 

There are indications 8 weeks into the study that all three interventions are offering different 

levels of protection compared with the control group, however none of these are significant.  

As the study progresses however, by day 147, there are significant differences in the detected 

parasitaemias between control villages and pour-on villages (p=0.002) and between control 

villages and restricted spray villages (p=<0.001). There is no difference between control and 

isometamidium treated villages (p=0.83), or between pour-on and spray villages (p=0.23).  

The control and isometamidium groups show no significant difference between the 

prevalence of trypanosomiasis at day 147 compared with the baseline (p=0.46), suggesting 

the disease prevalence has returned to pre-study levels. In contrast, both the pour-on and 

spray villages show a significant (p<0.01) decrease in trypanosome prevalences compared 

with baseline values throughout the study, suggesting the insecticides are having a protective 

effect on the transmission of trypanosomiasis. 
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4.11  Overall effect of treatments over time. 

So far, analysis has concentrated on discreet time points. Whilst this these temporal snapshots 

imply a differential rate of disease incidence between the treatment groups, they do not 

explicitly quantify it. Generalised linear mixed effect models allow for investigation of the 

overall effect of the interventions by inclusion of different time slopes into the model. 

A GLMM model is fitted with time as an additional random effect with the structure 

random=~Time|Village/Animal. This allows for the villages, and animals within villages to 

have different time slopes, i.e. the rate of change of infection prevalence can differ between 

villages 

 

To reiterate the study design, the study is essentially has two parts; 

  Establishing a baseline prevalences and clearing all animals of trypanosome 
infection trypanocidal drug. 

 Investigating the incident infections in a cleared population exposed to different 
interventions  

 

In this section of analysis, it is only the incidence of infection which is of interest.  For the 

purpose of this analysis therefore only data from Day 0 was modelled. Including the baseline 

data values gives a ‘V’ shaped response curve (Figure 4.4), which is both awkward to model 

and clinically not important because the decrease to zero prevalence in response to the 

diminazene is a different question. Figure 4.4 shows the individual village prevalences over 

time, a best-fit line showing the change over time. 
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The following model structure was fitted to all a dataset containing all values from day 0 

onwards.  

glmmPQL(PCRresult~Group, random=~Day|Village.Name/Animal ID, family="binomial" 

 

Figure 4.4:-Dotplot showing point prevalences for all 
trypanosome species over time. Coloured dots represent 
villages, line represent mean prevalences for group.  
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 Table 4-12 shows the output from the model, Table 4-13 displays the odds ratio calculated 

for the contrasts in the model. The use of a larger dataset has reduced the variance of the odds 

ratios in comparison with Table 4-11. There remains a significant effect difference between 

the control and the spray and pour on groups, suggesting a protective effect of 0.22 (0.08-

0.60) and 0.30 (0.12-0.74) respectively. Although isometamidium has a protective effect, it is 

not significant 0.48 (0.21-1.10). 

 

 

 Value Std.Error DF t-value p-value OR Upper CI Lower CI

(Intercept)  ‐3.262  0.24  1950  ‐13.63  <0.001       

Group:Spray  ‐1.512  0.51  9  ‐2.98  0.016  0.22  0.60  0.08 

Group:Iso  ‐0.738  0.43  9  ‐1.73  0.083   0.48  1.10  0.21 

Group:Pour‐on  ‐1.208  0.47  9  ‐2.60  0.029  0.30  0.74  0.12 

 

 

Table 4-12:- GLMM output comparing PCR prevalence with 
intervention group  for all intervention timepoints. Groups 
significantly different to the control are highlighted in 
yellow 
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 Control Pour-on Spray Iso 

Control  ‐ 
3.35 

(1.35‐8.33) 
4.54 

 (1.68‐12.27) 

2.09  
(0.91‐4.82) 
 Not Sig. 

Pour‐On  0.30 
 (0.12‐0.74) 

‐ 
1.36 

(0.42‐4.39) 
Not Sig. 

0.62  
(0.22‐1.78) 
 Not Sig. 

Spray  0.22  
(0.08‐0.60) 

0.74  
(0.23‐2.39)  

Not Sig. 
‐ 

0.46  
(0.15‐1.42) 
 Not Sig. 

Iso 
0.48  

(0.21‐1.10) 
 Not Sig. 

1.60  
(0.56‐4.57)  

Not Sig. 

2.17 (0.71‐6.67) 
 Not Sig. 

‐ 

Table 4-13:-Odds ratio of different interventions for the 
whole intervention period   
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4.11.1 Predicted models of trypanosome prevalence for 
different groups 

The output of GLMM models can be back-transformed to prevalences and plotted for each 

group and village. The following graphs show the predicted best-fit lines calculated from the 

data and can be used to illustrate the effect of the different interventions. Figure 4.5 shows the 

predicted values for the prevalence over time in the different villages. Each panel represents a 

intervention group, each line the trypanosome incidence for each village. Lines representing 

pour-on and spray villages overlap, hence only two lines are visible. Two out of the three 

insecticide treated villages do not register an increase in trypanosome prevalence from after 

day 0, whereas all of the villages in the control and pour on group show an increase. 
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Predicted trypanosome prevalence by treatment group
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Figure 4.5:- Predicted values from GLMM, showing the 
change in trypanosome infection over time. Each panel 
represents a intervention group, each line the 
trypanosome incidence for each village.  
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4.11.2 Predicted duration of isometamidium prophylaxis 

Figure 4.6 shows the same model predictions as Figure 4.5 but averaged out per group. If it is 

assumed that the control and isometamidium groups have a similar disease challenge, and 

hence share a similar incidence curve, then it is possible to estimate the prophylactic effect of 

the isometamidium. Taking a point prevalence, such as 10%, it can be seen that 

isometamidium villages take approximately 25 days longer that control villages to reach this 

threshold. (red dotted line, Figure 4.6).  

It should be emphasised that these calculations rest on many assumptions, such as the rate at 

which the two groups acquire infections, and are based on the mean predicted values from a 

model fitted to a small number of time points. With that in mind however, it could be 

suggested that the prophylactic period for isometamidium chloride is of the order of 3-4 

weeks in the sample villages. Work done in neighbouring Kenya concluded the duration of 

prophylaxis of 7-10 weeks and attributed demonstrable parasitaemias within 28 days as 

evidence of resistance. (Stevenson et al., 2000). Earlier work done under a very similar 

protocol to this study demonstrated an average time to a 10% incidence of 7.5+/- 1.9 weeks. 

(Stevenson et al., 1995). These earlier studies used phase contrast microscopy to detect 

infections so it is very possible that the more sensitive PCR detecting lower emerging 

parasitaemias, rather than resistant infections. Strain-typing could be employed to investigate 

this further (Hide & Tilley, 2001; Tilley et al., 2003), however for the purposes of assessing 

the interventions this result would be consistent  with the absence of any noticeable effect of 

the isometamidium at the end of the study. 

 



Chapter 4:- Impact of interventions on trypanosome prevalence 

125 

 

 

 

Figure 4.6:- Predicted values from GLMM showing change 
in trypanosome infection over time per group. Red dotted 
line shows predicted time for control and isometamidium 
villages to reattain a 10% prevalence. 
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4.11.3   Overall effect of study treatments 

Finally, a model was fitted to assess the impact of both the common diminazene treatments 

and specific interventions. Figure 4.7 shows the predicted values for the entire study, and 

shows the overall effect of the common treatments of diminazene, in addition to the group 

specific interventions. With one exception in the isometamidium group, there is an overall 

decrease in prevalence for all villages, however this effect is more profound in insecticide 

treated villages. 

 The use of multiple drug treatments offers a plausible way of implementing disease control 

programmes. An example from S.E. Uganda is the recent EU funded FITCA (Farming in 

Tsetse Controlled Areas) initiative (FITCA, 2005). Cattle were block-treated with an 

injectable trypanocide (either diminazene and isometamidium) and farmers were left a 

quantity of deltamethrin insecticide for subsequent treatment Figure 4.7 could be interpreted 

as the overall effect of a typical control programme where twice yearly animals are given a 

block treatment with a trypanocide by a central agency, and interim treatments are provided 

by farmers groups. Furthermore, as an approximation, the area under each curve can be 

interpreted as the burden of infection for the village in question, and potentially as an 

indication of the transmission risk. It has to be emphasised that such interpretation assumes 

many things about the disease transmission, and in specific the epidemiological significance 

of PCR positive animals, but it provides an indication of the level of protection conferred by 

each intervention protocol. 
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Trend in trypanosome prevalences
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Figure 4.7: Predicted values from GLMM, showing the 
change in trypanosome infection over the whole study. 
Each line represents a village. 
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4.12  Tree models 

 

There was an abundance of data generated in the study and the choice of analysis method was 

dependent on the hypothesis under scrutiny. GLMMs were employed as a way of accounting 

for the heterogeneity of individuals and pseudoreplication implicit in longitudinal studies. In 

contrast, when it comes to investigating the relationship between an response and a list of 

potentially significant factors, GLMM models did not prove amenable to multiple 

explanatory variables. In addition, the algorithms used by the function glmmPQL to fit the 

mixed effect models to binary data have to approximate the fit, and as such models cannot be 

directly compared, for example by the anova function (B.Ripley, per comm.) As a result the 

comparison of different models with different fixed effects is not possible. Without robust 

methods of model comparison and simplification, it is difficult to coherently take these 

models forward. Additionally, penalised quasi-likelihood estimation techniques have been 

shown to produce biased estimates for multi-factorial models, especially so when the fitted 

probabilities are close to 0 or 1. (Lin & Breslow, 1996). Methods of resolving are a matter of 

active debate in the statistical literature, (Ng et al., 2006) however for the purpose of 

analysing this dataset, other avenues were required. 
 

Tree models offer an alternative way of analysing the data generated from molecular analysis, 

and are particularly well suited to large, multi-factorial and unbalanced datasets typical of 

longitudinal studies. A classification tree can readily be grown with a binary response 

variable and numerous explanatory variables, either categorical or continuous. The tree 

algorithms examine each variable and the initial bifurcation is made at the level of the 

variable that best partitions the dataset to minimise the deviance. This is recursed until no 

remaining variance can be explained. In comparison with the generalised linear models used 

above, no interactions between variables are considered and thus the order of the variables 

are put in the in the model is not significant. Tree models are used in this chapter to explore 

the broad patterns of variation between the groups and highlight any associations not readily 
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apparent from a linear modelling perspective. A more detailed explanation of tree models is 

given in section 3.17 

 

4.12.1 Growing a tree model of all the data 

 

Figure 4.8:- Tree model fitted to all variables in entire dataset 
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Figure 4.8 shows the output from a tree model relating the ITS-PCR screening result for 

trypanosomiasis against all the geographical, individual, clinical and diagnostic independent 

variables, in specific;  

 

PCR~Visit.Number+Village.Code + Treatment group + Age + Weight + Sex+ Condition 
Score + Hemoglobin level+ Faecal consistency+ T.parva status + Anaplasma status+ 
Lymph node size+ Skin condition + Coat condition + Faecal egg count + Faecal coccidia 
status + Fluke egg status + Tick count, Rhipicephalus species + Tick count, Amblyomma 
species + Tick count, Boophilus species + Tick‐borne disease status (by microscopy) 
+Trypanosome status (by microscopy). 

 

Despite the inclusion of all these variables in the model, it can be seen from the output in 

Figure 4.8 that not all variables are displayed. If an explanatory variable does not provide a 

way of partitioning the variance in the response variable, it will not be included. 

 The first partition is the visit number; this is not surprising given that the intervention of 

double dose trypanocide prior to day 0 which reduced the observed prevalence to zero. The 

prevalence of animals at the baseline is 18% compared with 4% thereafter. Continuing down 

the right hand branch, the next split is between visits prior to day 53, where the prevalence as 

seen is zero, and 53-end of study, where the incidence of trypanosomiasis was increasing. 

Given the variation due to time, village accounts for the next biggest split in variation. This 

serves to justify the use mixed effect models, allowing for random variation between villages, 

but also suggests that variation at the village level, rather than the intervention group, is the 

significant division. 

Considering the left branch, after time and village variations, haemoglobin partitions the 

remaining variance at a threshold of 8.55g/dl. Cattle with a haemoglobin level below 8.55g/dl 
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have a trypanosome prevalence of 27%, compared with 9% for those less anaemic animals 

above the threshold.  

The right branch has no haemoglobin split, but given time and village, the microscopy status 

of the animal for T.congolense spp. is significant. 

 Although none of the above results is particularly surprising, it is interesting to note the 

position trypanosome prevalence by microscopy has in relation to all the other variables. 

Although more significant than any other clinical variable, trypanosome prevalences by 

microscopy do not appear strong indicators of  trypanosome prevalences by PCR. This is as 

expected and found by other comparisons(Picozzi et al., 2002)  

4.12.2 In search of subtlety 

For the next section, tree models are being used to look for associations that are not as strong 

as the known effects of visit number or village. By removing variables from the model, 

variance attributable to those variables is returned to the model. This confounds the data, but 

can be useful for highlighting associations that otherwise would be ignored by the model. 

Figure 4.9 shows the output for an identical model to Figure 4.8 however with the village 

effect removed. Visit number is still the most important partition, however for samples taken 

after day 0 (Visit 3) it can be seen that insecticide groups have a trypanosome prevalence of 

3% compared with 10% for the non insecticide groups 10%.  

 

On both sides of the tree, lower haemoglobin levels are associated with higher trypanosome 

prevalence which is consistent with expectations. The area highlighted A shows a potentially 

clinically incongruous result however. Animals with a haemoglobin of over 8.05 g/dl and a 

condition score of >4.5 have a 17% prevalence of trypanosomes, compared with 7% for those 

with a condition score of <4.5. Chi-sqared tests found this to be significant ( 2  = 11.26, df = 

1, p-value = <0.001). If the effect is genuine, it may reflect either the clandestine treatment of 

thin animals by farmers or indicate the degree of subclinical infections in the population. 
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Figure 4.9:- Tree model fitted to all variables in entire dataset excluding 

village. Area highlighted ‘A’ indicate 2 comparisons indicated in the text.  
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4.12.3 What factors best explain the incidence of 
trypanosomiasis? 

 

Figure 4.10:- Tree model fitted to all clinical variables from day 0, excluding time 

and village. Highlighted area ‘B’ refers to 2 comparisons indicated in the text
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The purpose of this section is to investigate if any of the study variables can explain the 

differences in trypanosome incidence during the intervention period. Figure 4.10 shows a 

model fitted to data from Day 0 excluding time and village as variables. The most significant 

variation is between treatment groups, with the division between insecticide and non-

insecticide treated villages. Haemoglobin also remains a significant variable, again indicating 

that that anaemia and trypanosome prevalences are positively correlated. 

 

 

There is an indication that anaplasmosis (diagnosed by microscopy) and trypanosomiasis are 

also positively correlated. For animals in the non-insecticide treated groups and with a blood 

haemoglobin over 9.25g/dl, anaplasma positive animals have a trypanosome prevalence of 

8%, compared with 3% for their uninfected counterparts.(highlighted B on Figure 4.10) This 

is a significant association ( 2 = 9.55, df = 1, p-value = 0.002), similar to the result of the  

univariate analysis covered in section 4.7 above suggests.  

 

4.12.4 Summary of tree models results 

Table 4-14 summarised the relative positions of the variables fitted to the tree models. A ‘+’ 

indicated the variable was included in the model; a number shows the position the variable 

came in the tree, and a ‘–‘ indicates the variable did not explain any of the variance so was 

not included in the tree. Included in the table are the outcomes for two further tree models 

fitted to timepoints 53 and 147 respectively.  

 

Tree models offer some insight into the relative importance of explanatory factors. Table 

4-14 shows temporal and spatial variables to be the best way of partitioning the trypanosome 

prevalences. This is consistent with the findings from the generalised linear mixed effect 

modelling earlier in the chapter.   
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The importance of haemoglobin as a significant indicator of trypanosome infection  (Sekoni 

et al., 1990; Taylor & Authié, 2004) is supported by this data analysis. The correlation 

between anaplasmosis and trypanosomiasis also appears significant. This supports the 

findings from generalised linear mixed effect modelling, and the previous findings as 

discussed by (Fox et al., 1993; Magona & Mayende, 2002). 
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 Figure 4.8  Figure 4.9 Figure 4.10 Not shown Not shown 

  All time points  All time points  Day 0 onwards  Day 56  Day 147 

Temporal and spatial factors 

Village  +  2  ‐  NA  ‐  NA  ‐  NA  ‐  NA 

Visit number  +  1  +  1  ‐  NA  ‐  NA  ‐  NA 

Intervention group  +  ‐  +  4  +  1  +  ‐  +  1 

Animal factors 

Sex  +  ‐  +  ‐  +  ‐  +  ‐  +  ‐ 

Breed  +  ‐  +  ‐  +  ‐  +  ‐  +  ‐ 

Age  +  ‐  +  ‐  +  ‐  +  ‐  +  ‐ 

Colour  +  ‐  +  ‐  +  ‐  +  ‐  +  ‐ 

Weight  +  ‐  +  5  +  3  +  ‐  +  4 

Clinical factors 

Condition Score  +  ‐  +  3  +  ‐  +  ‐  +  ‐ 

Staring Coat  +  ‐  +    +  ‐  +  ‐  +  ‐ 

Lumpy skin  +  ‐  +    +  ‐  +  ‐  +  ‐ 

Lymph node size  +  ‐  +    +  ‐  +  ‐  +  ‐ 

Tick count:‐Rhipicephalus spp  +  ‐  +    +  ‐  +  4  +  5 

Tick count:‐Amblyomma spp  +  ‐  +    +  5  +  ‐  +  ‐ 

Tick count:‐Boophilus spp  +  ‐  +    +    +  3  +  ‐ 

Laboratory factors 

Haemoglobin level  +  4  +  2  +  2  +  1  +  2 

Positive for T.parva by micro.  +  ‐  +  ‐  +  4  +  ‐  +  ‐ 

Positive for Anaplasma by micro.  +  ‐  +  ‐  +  3  +  2  +  3 

Faecal WEC count  +  ‐  +  ‐  +  ‐  +  ‐  +  ‐ 

Positive for Tc/Tv/Tb by micro.  +  ‐  +  ‐  +  ‐  +  ‐  +  ‐ 

Table 4-14:- Explanatory variables fitted to tree models. ‘+’ = factor included in model. Numbers 
represent position in tree ‘-‘= variable not significant.
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It is necessary to remember when interpreting the nodes that tree models do not directly 

consider correlations between variables, and do not allow for an interpretation of causality. 

For example, weight appears as a partitioning variable in three of the models, where 

increased size is associated with lower trypanosome prevalences. This could be explained in 

several ways; heavier animals could plausibly have lower trypanosome prevalences due to 

preferential treatment by farmers of their heavier, more valuable, traction animals. Probably 

much more likely is the correlation between weight and clinical indicators of disease, 

trypanosomiasis causing weight loss for example, and the chance that a continuous variable, 

such a weight, offers more ways to partition the variance than a variable with a small number 

of factors or a binary split. 

 

It is also of interest to see what variables do not appear as a node in tree diagrams.  For 

example, none of the ‘signalment’ variables, (age, sex, breed, and colour) appears at any level 

of the tree models. This is broadly in line with the result from the univariate analysis in 

section 4.7, although that analysis suggested the sex of the animal was significant. Just 

because a factor doesn’t form a partitioning node does not necessarily indicate it is not 

important or significant; it may be for example that it’s effect is more comprehensively 

explained by another variable. It is useful as an indication however, and in this case there are 

no indications that there is a particular signalment demographic that is at a higher risk of 

testing positive for trypanosomiasis. 

 

 To illustrate this, Figure 4.11 shows a barplot of trypanosome prevalences for different age 

groups over the course of the study. Error bars represent 95% confidence intervals and as 

they overlap it can be seen there is no significance difference between the different age 

groups in terms of trypanosome prevalence by ITS-PCR. 
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4.13  Tree models: ‐ So why branch out? 

Tree models offer a graphical way of by highlighting interesting patterns in the data. They 

offer a complementary perspective on the data to the mixed effect models and show broad 

patterns and highlight interaction mixed effect models cannot. For example, a full mixed 

Figure 4.11: Bargraph showing trypanosme prevalences 
by age grouping over time. A=Calf (0-8 months) 
B=Juvenile (8-28 months) C=Adult (>32 months). Error 
bars show exact 95% confidence intervals. 
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effect models with more than 5 interaction terms fails to converge, mixed effect models are 

order specific and interaction terms with 3 or more interaction terms provide reams of output 

which are difficult to interpret. Tree models however do not directly assess the significance 

of the associations, or consider interactions, and as such can over interpret the data. 

 

4.14  General summary and conclusions  

Generalised mixed effects model have been used in this study to model the effect of group on 

the trypanosome prevalences obtained from PCR analysis of whole blood samples using an 

ITS-protocol. Village and individual animals within village were fitted as a random effect to 

account for the spatial heterogeneity of village and autocorrelation from repeated 

measurement of a single individual. The following conclusions may be drawn: 

Although significant variation existed between villages at the baseline, taken on a group level 

there were no significant difference between the treatment groups at the start of the study. 

The grouping of villages appears to have been adequate at averaging out individual village 

variations, to the extent that no statistical difference existed between groups at the start of the 

study. The heterogeneity of individual villages however necessitated the use of mixed effect 

models for subsequent analysis.  

Treatment of all cattle with two doses of diminazene aceturate at a dose of 7.0mg/kg prior to 

commencing the interventions at day 0 reduced the prevalence in all the villages to zero. 

Subsequent prevalences were attributed to new infections and used as an indication of the 

degree of protection to incident infections offered by allocated treatment.  

Separate analysis of the individual time points shows no significant difference between the 

prevalences 56 days into the study, and although there was a suggestion that the control group 

has higher prevalence of trypanosomiasis than the other groups (8.15% compared with 

3.15%)  this is not statistically significant (p=0.56). By day 147 however, there is a 

significant difference between intervention groups. Trypanosome prevalence in the control 
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and isometamidium treated groups is 15.5% and 15.4% whereas the prevalence of the pour-

on and spray groups is 3.7% and 1.4% respectively. There is a highly significant difference 

between the control and pour on groups and the control and spray groups (p<0.001). 

Incorporating time into a generalised linear mixed effect models model and fitted to all the 

intervention timepoints still maintains a significance difference between the insecticide and 

non-insecticide treated groups (0.01<p<0.05). No significant difference exists between the 

control and isometamidium groups or between the pour-on and spray groups. 

In conclusion therefore, once temporal and spatial  clustering are accounted for by fitting a 

generalised linear mixed effect model with binomial error structure, there is a significant 

protective effect of both insecticide treatments compared with either the control or the 

isometamidium treated animals. Animals in the pour-on and spray groups have 3.4 and 4.5 

respectively lower odds of becoming infected with trypanosomiasis than those in the control 

group (Table 4-13) There is no significant difference between the two insecticide treatments, 

suggesting that, on the basis of trypanosome prevalence elucidated by molecular techniques 

able to identify parasite DNA, either treatment protocol is protective and statistically 

indistinguishable. 
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 Chapter 5 :‐ Use of a pen‐side test 
for haemoglobin to assess the impact 
of the intervention protocols
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5.1  Introduction 
This chapter explores the change in cattle health during the longitudinal study carried out in 

south east Uganda, using one of the tools available for pen-side diagnosis; a portable 

haemoglobinometer. The measurement of an animal’s haemoglobin offers a method of 

clinically quantifying the health of the animal, using a tool that could potentially be available 

to rural livestock keepers or animal health workers. In this chapter, changes in an animal’s 

haemoglobin will be assessed in relation to its intervention protocol, with the aim of 

quantifying the impact of the interventions on this important determinant of animal health. 

 

The data collection methods and study design are outlined in chapter 3. For the purposes of 

analysis in this chapter the dataset can be effectively split into two time periods. From the 

first baseline visit (day -42) up to and including visit 3 (day 0), the data can be used to assess 

the impact of two diminazene treatments on a population of 947 animals roughly equally 

spread between 12 villages. After day 0, the data can be used to assess if there is a significant 

difference between the different intervention protocols tested in this study. 

 

5.2  Anaemia as an indicator of disease 

The normal range of haemoglobin in healthy cattle is 8-15g/dl (Schalm et al., 1980). 

Anaemia can be defined as a pathological state in which the quantity or quality of the 

circulating red blood cells is below normal levels. This state has multiple aetiologies, broadly 

classified into three causal categories: increased destruction of red blood cells (haemolytic 

anaemia), decreased production of red blood cells or haemoglobin (non, or inadequate, 

regenerative anaemia) or simply from extra vascular loss (haemorrhage) (Eddy et al., 2003). 

Anaemia is a major clinical sign of many parasitological infections, and its assessment 

remains an essential indicator in the diagnosis and monitoring of many endemic African 

diseases. Common examples of diseases with anaemia as a clinical symptom, in both humans 

and animals,  include malaria (Pasvol, 2005), schistosomiasis (King et al., 2006), 

malnutrition (Perry et al., 2002), intestinal helminthiasis (Brown, 2005), tick infestation 
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(Perry et al., 2002), anaplasmosis (Gale et al., 1996), babesiosis (Vial & Gorenflot, 2006) and 

trypanosomiasis (Maudlin et al., 2004).  

Studies comparing cattle populations with and without an anaemia causing disease (gastric 

ulceration) found healthy animals had a haemoglobin level of 10.4g/dl compared with 7.2g/dl 

for diseased animals (Ok et al., 2001). In samples investigated by microscopy for tick-borne 

diseases, it was found that animals positive for Babesia spp. had haematological parameters 

(haemoglobin 5.9 ± 1.54 g/dl) significantly lower (P< 0.05) than in those with Theileria spp. 

(haemoglobin 9.7 ± 0.79 g/dl) or negative (erythrocyte haemoglobin 10.4 ± 1.78 g/dl) 

(Garcia-Sanmartin et al., 2006). Of all the above diseases, trypanosomiasis is considered to 

induce the most severe anaemia, (Taylor & Authié, 2004), and anaemia is widely used as a 

primary indicator of the degree of pathology of this disease (Trail et al., 1990a; D'Ieteren et 

al., 1998; Taylor, 1998). It is the control of anaemia, more than control of parasitaemia, that 

allows trypanotolerant cattle to remain productive in areas of high trypanosome challenge 

(Naessens, 2006). In field conditions, cattle are exposed to multiple disease challenges that 

can exacerbate anaemia, for example concurrent trypanosome and helminth infections 

(Dwinger et al., 1994) or trypanosome and anaplasmosis (Fox et al., 1993) infections can 

exacerbate the susceptibility of animals. The severity of anaemia in bovine trypanosomiasis is 

also associated  by nutritional status, with animals on a poor plane of nutrition experiencing  a 

more acute and profound anaemia (Agyemang et al., 1990; Osaer et al., 2000). 

5.3 Pathogenesis of anaemia in bovine trypanosomiasis 

Although anaemia is a clinical indication of a number of livestock diseases, its marked 

severity in trypanosomiasis makes it a particularly important indicator. The onset of anaemia 

is correlated to the first appearance of trypanosomes in the blood, although the magnitude and 

severity of the pathology is contingent upon such factors as the species of trypanosome, the 

innate and acquired resistance of the host animal, the nutritional status of the animal, and 

presence or absence of other concurrent infections (Murray, 1988). The initial infection 

period is also characterised by pyrexia and an activated and expanded population of 

mononuclear phagocytes. It is currently believed that erythrocyte destruction as a result of 
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opsonisation and removal by monocytes causes haemolytic anaemia to be seen in the early 

phases of infection, whereas in chronic infections (>1 month) animals tend to suffer a non 

regenerative anaemia from ineffective erythropoiesis (Taylor & Authié, 2004). Chronic 

anaemia hugely undermines an animal’s productive capacity and resistance to other diseases, 

as well as negatively affecting its ability to cope with concurrent stressors, such as 

parturition, lactation or exhaustion, for example that caused by extensively foraging or by 

being used for traction. As such, mortalities due to trypanosomiasis can be as attributable to 

immunocompromised animals succumbing to infections they could otherwise resist as to 

direct trypanosomal induced pathology, such as heart failure (Taylor & Authié, 2004). 

5.3.1 Finding the pale cow 

Measuring anaemia has traditionally involved assessing the animal’s packed cell volume 

(PCV) by centrifuging a blood-filled microhaematocrit tube at 12000rpm for 3 minutes and 

measuring the proportion of blood volume occupied by red blood cells (Uilenberg, 1998). 

This technique is reliable and cheap to run, but requires a power source and costly equipment 

to set up. Low technology systems have been developed to assess anaemia in the field 

context. The WHO colour scale provides a standardised colour chart against which blood 

samples can be compared by eye (Lewis et al., 1998; Critchley & Bates, 2005). From a 

clinical perspective, assessment of the pallor of mucous membranes allows for the subjective 

assessment of anaemia, jaundice and hydration status of the animal as well as signs of 

disease, such as Foot and Mouth disease or rinderpest. The FAMACHA© chart (Bath et al., 

1996) was developed to quantify the burden of Haemonchus contortus in small ruminants by 

comparing the pallor of mucous membranes to a 5 point colour scale, and has recently been 

used as an objective measurement of anaemia in these species (Sissay et al., 2007). A recent 

review compared three existing technologies for measuring haemoglobin in the field, a visual 

colour scale and two instruments capable of quantifying haemoglobin concentration from the 

optical density of the sample (Magona et al., 2004b). Although all techniques were advocated 

as acceptable for application in the field, each technique suffered in terms of either accuracy, 

cost, or ease of use. For the purposes of this study, the most simple and accurate (hence also 
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the most expensive) technology was chosen, a HemoCue digital haemoglobinometer system 

(Angeholm, Sweden). The use of this system and a description of the sampling methodology 

is given in section 3.2.5. 

5.4 Do the drugs still work?  

As explained in section 2.9, all cattle in the study received two doses of diminazene aceturate 

at 7mg/kg on the first and second visits (Day -42 and -14 respectively). The two doses were 

administered with the aim of clearing all existing trypanosome infections by Day 0. 

Assessing the impact of the diminazene treatments themselves is however worthwhile for 

several reasons. Assessment of the homogeneity of the cattle population at the start of the 

interventions on day 0 is necessary to contextualise differences in treatment effects. As a 

treatment in its own right, diminazene aceturate represents a mainstay of the therapeutic 

options available to livestock keepers (Machila et al., 2003; Magona et al., 2004a). A study, 

conducted in the same area of south east Uganda as the research discussed in this thesis, 

found 48% of cattle owners knew about and used diminazene aceturate as a treatment option, 

comparable to 55% for isometamidium chloride. Farmers were significantly more aware of 

these treatment options than of the alternative options presented, such as pour-on insecticide 

(1%) or fly trapping technologies (8%) (Magona et al., 2004d).  

5.4.1 Drug resistance to diminazene aceturate 

Although there is no evidence of resistance to diminazene aceturate in south east Uganda, the 

widespread use of the drug as described above makes resistance a possibility (Geerts & 

Holmes, 1998). Aside from the obvious implications resistance development would have on 

the control of animal disease, there have been concerns raised about cross resistance with the 

human trypanocide melarsoprol. Both drugs rely on the same P2 aminopurine transporter in 

the trypanosome membrane for uptake of drug by the parasite. Trypanosome strains lacking 

the P2 transporter exhibit reduced uptake and increased resistance to the trypanocidal agent 

(Carter & Fairlamb, 1993; Barrett, 2001; Geerts et al., 2001). In light of the increasing 

awareness of the role of cattle in the spread of human sleeping sickness (Fèvre et al., 2001), 
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and the desire to reduce the prevalence of human-infective trypanosomes in the cattle 

reservoir host (Welburn et al., 2001a), any nascent indicators of resistance are vital. Although 

in vitro work has demonstrated the presence of a diminazene and isometamidium resistant 

isolate of T. b. rhodesiense in SE Uganda (Matovu et al., 1997), the status of resistance 

among T.congolense and T.vivax is not clear. The assessment of the twin doses of diminazene 

on the prevalence of trypanosomes was covered in the previous chapter. In this chapter the 

effectiveness of diminazene treatments is assessed in terms of haemoglobin.  

In addition to its trypanocidal effect, diminazene aceturate is a viable treatment for babesiosis 

caused by Babesia bigemina or Babesia bovis endemic to SE Uganda (Okello-Onen et al., 

1998b; Vial & Gorenflot, 2006). However, it is worth noting that in the areas of south east 

Uganda, trypanosomiasis is considered to be a significantly more prevalent and important 

pathogen (Okello-Onen et al., 1998b; Magona & Mayende, 2002). 

 

5.5 Methodology of data collection and visualisation 

The structure of the longitudinal study is described in section 2.1, but to briefly summarise 

here: 945 cattle were selected and tagged from 12 villages in south east Uganda and sampled 

monthly for 8 months. Villages were allocated into four equal groups and each group 

randomly given an intervention protocol for the duration of the study. Interventions are 

detailed in Table 2-4, each representing a method of controlling trypanosomiasis. At each 

sampling point, a number of clinical and laboratory variables were collected from each 

animal. Analysis in this chapter focuses on the haemoglobin values measured for each animal 

at each sampling point. Values range between 3-16 g/dl, and for the purposes of analysis are 

considered as a continuous variable. There are two sources of pseudoreplication to be 

considered; a temporal source from repeated samples on the same animal and a spatial source 

from clustering animals within villages. Aside from normal line graphs, the following plots 

have been used to visualise and describe the data. 
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5.5.1 Box and whisker plots 

Box and whisker plots provide a condensed way of visualising continuous data for multiple 

categories. Each vertical plot represents the haemoglobin distribution for the grouping 

variable in question. The horizontal line shows the median response for each group, the top 

and bottom of the box delineate the 25 and 75 percentiles respectively, i.e. the middle 50% of 

the data. The horizontal line at the end of the dotted ‘whisker’ shows 1.5 times the 

interquartile range of the data; points beyond this are drawn individually as open circles. 

These plots are useful for showing the spread of the data and any asymmetry in the data 

(different sizes of the two halves of the box). In addition, the box width is proportional to the 

sample size for each group to indicate the amount of data contribution to each plot.  

5.5.2 Multiple comparisons 

The purpose of initial data exploration is to highlight interesting comparisons for further 

investigation, more precisely, significant differences between villages or treatment protocols. 

The problem with making multiple significance tests of every potential combination is that 

the probability of finding a "significant" difference just by chance increases. Comparing the 

means for all the different villages using t-tests will inflate the probability of declaring a 

significant difference when it is not actually present (Type I error) (Crawley, 2005). 

Confidence intervals are calculated with a given coverage probability for each interval, but 

the interpretation of the coverage is usually with respect to the entire family of intervals 

(Miller, 1981; Venables & Ripley, 2002).  John Tukey introduced intervals based on the 

range of the sample means rather than the individual differences and these can be used to 

more accurately create a set of confidence intervals on the differences between the means of 

the levels of a factor. The multicomp function in the R statistical package has been used to 

generate the subsequent outputs and provides more information in a set of simultaneous 

confidence intervals than achieved from a set of individual significant tests of differences 

(Crawley, 2005). 
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5.6 Overview of analysis and results 

The analysis of haemoglobin in this chapter is structured as follows. Initial comparisons are 

made between the different grouping structures of the data (groups and villages within 

groups) with the aim to quantify any heterogeneity that may bias the interpretation of the 

treatment effects. The effect of diminazene is then investigated which leads to an assessment 

of the anaemia status of the groups at the beginning of the interventions. Quantification of the 

effect of the interventions is made by linear mixed effect modelling and the evolution of the 

model that best fits the data is described. Assessment of the mean haemoglobin and the 

change of haemoglobin over time are made with respect to the intervention administered. 

Interpretation of the haemoglobin values is then considered in relation to absolute thresholds 

of anaemia for each intervention group. Finally, analysis investigates a specific question 

asked by the livestock keepers enrolled in the study, namely the improvement seen in their 

animals compared with the previous visit.  

5.7  Differences between villages at baseline 

The techniques described in above can be illustrated by comparing the differences between 

villages at the baseline. Villages, and animals within villages, were recruited with as much 

care as possible to ensure treatment groups were as homogenous as possible (Chapter 2). 

How successful this attempt was can be assessed by comparing the haemoglobin levels 

between villages. Figure 5-1 is a box and whisker plot of the haemoglobin values at the 

baseline sampling point. It can be seen that there is some variation in the mean haemoglobin 

value in different villages. Figure 5-2 is the output from the multiple comparison analysis. 

Each row shows the 95% confidence limits of the comparison of two village’s mean 

haemoglobin. Significantly different comparisons are those that do not intersect the zero line. 

Figure 5-2 shows that most villages are not significantly different, with the exception of the 

village of Bukhunya which has a significantly lower mean value. Figure 5-3 is a similar plot 

for the haemoglobin values at day 0 after two diminazene treatments. Rather than normalise 

the villages, the diminazene treatments appear to have exacerbated the differences between 

the villages, with 17 out of 66 comparisons proving significantly different. 
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5.8  Differences between groups at baseline 

Figure 5-4 shows multiple comparisons made between the intervention groupings, rather than 

the villages themselves. At the baseline there is a significant difference between villages 

allocated into the control and restricted spray groups. However, by day -14 all significant 

Figure 5-1:- Box and whisker plot of haemoglobin values 
by village at baseline sampling point. 74>n>80 for each 
village. 
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differences have disappeared and, at day 0 when the interventions begin, there is no 

significant difference between any of the groupings. 
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Figure 5-2: Multiple comparisons of average haemoglobin in study villages between villages at 
baseline. Significant comparisons do not intersect the zero line. 

Figure 5-3: Multiple comparisons of average haemoglobin in study villages between villages at 
day 0 
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Figure 5-4:-Multiple comparisons for intervention groups for each 
sampling visit.
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5.9  Change in haemoglobin during diminazene treatments 

Figure 5-5 shows a series of plots of blood haemoglobin over time for the first three 

sampling visits for each village. The fitted lines show the change in the blood 

haemoglobin per village from Baseline to Day 0 and represent the change from baseline 

up to the start of the interventions. Between Day -42 and Day 0 there is the suggestion of 

an increase in average haemoglobin which can be investigated by modelling. 

A linear mixed effect model was used to assess the variation of haemoglobin between 

Figure 5-5:-Trellis plot of haemoglobin against time, 
plotted for each individual village. Solid red line 
represents a linear regression, dotted green line a non-
parametric smoothed line 
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day-42 and day 0. Haemoglobin was fitted as the response variable Hemocue with time as 

a fixed effect. Random effects are Day|Village.Name/Tag.No 

 lme(fixed=Hemocue~Day, random = ~ Day|Village.Name/Tag.No) 
 

 Value Std.Error DF t-value p-value 
(Intercept)  10.5202 0.1647 1682 63.858 

Day  0.01588 0.0027 1682 5.843  <0.001
 

Table 5-1 shows that there is a highly significant positive change in haemoglobin with 

time between the baseline and the start of the interventions across all villages. 

 

 Value Std.Error DF t-value p-value 
Baseline (Intercept)  9.8514  0.13311  1681  74.007   

Visit 2, Day‐14  0.4501  0.08189  1681  5.496  <0.001 

Visit 3, Day 0  0.6658  0.11437  1681  5.821  <0.001 

Table 5-2 shows day fitted as a factor for the same time points and it can be concluded 

that there was a significant positive difference between both Day -14 and Day 0 sampling 

points and the baseline at day -42. Figure 5-6 shows the predicted values from this model 

plotted for village. It can be seen that all villages show an improvement. In some cases 

(e.g. Muwayo) this is clinically considerable, in others (e.g. Buduma) the impact is less 

noticeable. The degree of improvement does not seem to be related to initial values - 

Bukhunya village, for example, with a low mean haemoglobin, does not show 

disproportionally more improvement than villages with higher mean starting values. 

Table 5-1:- Linear mixed effect model of haemoglobin fitted 
against day of study for timepoints up to Day 0 

Table 5-2:- Linear mixed effect model of haemoglobin fitted 
against day of study as a factor for timepoints up to Day 0 
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5.9.1 Summary of haemoglobin up to day 0 

It is not strictly possible to attribute the change in haemoglobin to diminazene treatments 

because we have no animals that were not treated for comparison. However, it is possible 

to say that between the baseline and day 0, all villages showed a highly significant 

increase in blood haemoglobin and it is very probable that this was caused by the 

treatments of diminazene aceturate. 

Assuming that the improvement of haemoglobin is largely due to the trypanocidal activity 

of diminazene aceturate clearing pre-existing infections, would suggest that there is no 

evidence of resistance to diminazene aceturate in the pathogenic trypanosome population 

circulating in the south east Uganda. This result would agree with findings of the ITS-

PCR analysis in the previous chapter. 
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Figure 5-6:-Plot of mean haemoglobin values by village up to Day 
0, showing the change in haemoglobin by village up to the start 
of the interventions 
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Haemoglobin values over time from a random subset of dataset
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5.10  Change of haemoglobin during the study 

This section is concerned with displaying and quantifying changes in haemoglobin 

occurring over the duration of the study and relating these to the treatment protocols 

applied to the groups of villages. The haemoglobin values for each animal over time 

arranged by village and intervention group are plotted in graphs 9.1 to 9.4 in the 

appendix. Although not very concise, these plots are useful not only for initial data 

inspection and to identify possibly anomalous values, but also to highlight possible 

patterns in the data. 

After the increase in haemoglobin at the start of the study haemoglobin values follow a 

less obvious trend. From first inspection, between animal variability appears to be 

between 8-13g/dl. Figure 5-7 demonstrates the within animal variability in haemoglobin 

values from a randomly selected subset of the study animals. It can be seen that some 

animals fluctuate around a mean haemoglobin value of 7g/dl, others at over 12g/dl. It may 

be difficult to separate variation attributable to pathology from the normal variation in 

cattle.  

 

Figure 5-7: Haemoglobin values over time for a randomly 
selected subset of animals 
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Figure 5-8:- Boxplots of haemoglobin by village over time. 
Coloured themed plots represent intervention groups; 
grey=control, orange=isometamidiuim, blue=pour-on and 
green=spray 
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Figure 5-8 shows box plots for each village over the duration of the study. Each 

individual panel contains three box plots representing the haemoglobin values for each 

village in an intervention group at single time points. Rows of panels show the change 

over time. The variation between villages is apparent, particularly for the spray group. 

Trends in haemoglobin are less obvious, although there is a suggestion that the lower 

interquartile range of pour-on villages increases over time. There is an obvious 

heterogeneity between villages however, particularly in the restricted spray group where 

the village of Bukhunya shows little change over time compared with the other villages in 

the group. This suggests that modelling this data will have to account for village 

heterogeneity. 

5.11  Multiple comparisons over study 

Figure 5-4 shows multiple comparisons for the intervention groupings and Figure 5-9 and 

Figure 5-10 show multiple comparison plots of the mean haemoglobin for each visit, 

plotted by intervention. These plots are useful to identify significant patterns in the data. 

Pairs of numbers on the y-axis represent the two time points compared in that row. 

Confidence intervals not crossing the zero line are significant (p=0.05). 

Consider Figure 5-9 and Figure 5-10. As demonstrated in section 5.9, all villages show a 

significant difference between day -42 (Visit1) and day 0 (Visit3). From day 0 onwards, 

the control group shows no significant differences between haemoglobin levels over time. 

The pattern in the other treatment groups is slightly different - with the exception of the 

Visit1-Visit8 comparison for isometamidium villages, all groups show a significant 

improvement between the baseline and subsequent visits. The isometamidium group 

shows a significant decrease between visits 3 and 4 and the final visit. If this decrease in 

haemoglobin is due to the re-emergence of trypanosomiasis then it indicates the 

prophylactic period of isometamidium is shorter than the usual duration of 4-6 months 

(Eisler et al., 1994; Magona et al., 2004a).  

Pour-on groups in contrast show significant improvements over the study. Considering 

Figure 5-10 there is a very obvious trend showing improved haemoglobin values over 

time. This trend is not seen in the spray villages suggesting that the pour-on confers a 
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protective effect against diseases contributing to anaemia that is not provided by the spray 

protocol. Referring back to Figure 5-4, the pour-on group has significantly higher 

haemoglobin levels than the control group from day 84 onwards and at day 147, the mean 

haemoglobin of the study animals is significantly higher than all other treatment groups. 

In contrast, with the exception of day 84, the restricted spray group shows no difference 

from the control during the intervention periods. 
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Simultaneous 95% confidence limits, Tukey method. 

Response variable: Hemocue  

 

 

 

Figure 5-9:- Multiple comparisons of mean haemoglobin between 
sampling visits for control and isometamidium groups.  
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Figure 5-10:- Multiple comparisons of mean haemoglobin 
between sampling visits for insecticide treated  groups 
Dotted blue arrows highlight the trend of improving 
haemoglobin values over time.  

Simultaneous 95% confidence limits, Tukey method. 

Response variable: Hemocue. 
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5.12  Modelling the change in haemoglobin over time 

5.12.1 Considerations of data analysis 

It appears there are significant differences in the haemoglobin values some of the 

intervention groups, and this section aims to quantify these differences. The modelling 

algorithms have the capacity to cope with missing data points so the models could be 

fitted to the full dataset, including animals that did not attend some sampling visits. There 

is an argument to exclude animals that failed to attend all the visits because, for the 

insecticide groups, that may mean they missed a re-treatment. Conversely however, this 

subset would be biased against the animals that did not attend due to disease. Figure 5-11 

shows the mean haemoglobin levels for the entire dataset next to the mean haemoglobin 

levels for a dataset of animals that attended all visits. In general the shape of the curves 

are similar and pairwise comparisons showed differences to be non-significant at p>0.05 

(data not shown). On balance therefore it was felt that analysis of the full dataset 

containing the missing values was justified. 

Figure 5-11: Comparison of haemoglobin change over time 
between entire dataset and a full attendance subset 
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Correct analysis of the haemoglobin data collected from the longitudinal study requires 

temporal pseudoreplication to be taken into account, i.e. repeated measurements taken 

from the same animal over time. Failure to consider pseudoreplication results in too many 

degrees of freedom for the error variance and thus risks incorrectly rejecting the null 

hypothesis (Type 1 error) (Crawley, 2005). 

5.13  ANOVA models of haemoglobin data 

The purpose of this section is to model the differences in the haemoglobin levels among 

treatment groups. Traditionally, temporal pseudoreplication can be eliminated by only 

analysing data for a single time point. This can be done with a simple analysis of variance 

model 

aov(Hemocue~Group,subset=(Visit.Number==x)) where x= Visit number 
 

 Df Sum Sq
Mean 
Sq 

F 
value 

Pr(>F) Signif.? 

Baseline       

Group  3  23.78 7.93 2.5721 0.052  Not significant 

Residuals  942  2902.79 3.08      

Day 0             

Group  3  12.41 4.14 1.7311 0.159  Not significant 

Residuals  825  1971.48 2.39      

Day 56             

Group  3  14.84 4.95 2.1961 0.087  Not significant 

Residuals  728  1639.92 2.25      

Day 147             

Group  3  73.46 24.49 11.164 <0.001  Significant 

Residuals  571  1252.41 2.19      

Table 5-3 shows the output from an analysis of variance calculation run for four different 

time points. It suggests that there is a close to significant difference between the groups at 

Table 5-3:- Analysis of variance tables showing difference 
in haemoglobin levels between intervention groups for 
four timepoints throughout the study. 
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the baseline (p=0.053), however that disappears by Day 0 and only reappears again by the 

final visit. 

Day Control 
Isometa
midium 

Pour-on Spray 

‐42  10.41 9.85 9.87  9.90

‐14  10.38 9.96 10.50  10.48

0  10.73 10.44 10.71  10.50

28  10.31 10.39 10.57  10.23

56  10.31 10.32 10.61  10.50

84  10.27 10.20 10.80  10.87

112  10.38 10.17 10.78  10.53

147  10.42 9.72 10.76  10.45
 

Table 5-4 tabulates mean haemoglobin values by group and time point and demonstrates 

that mean haemoglobin levels differ by very little, especially given the normal range 

highlighted in Figure 5-7. 

 

Although analysis of covariance (ANCOVA) models can be used to fit regression lines to 

describe haemoglobin change over time for each intervention group. Investigation of the 

output from Table 5-3 indicates too many degrees of freedom for the nested structure of 

the dataset. In addition, the heterogeneity at the village level needs to be accounted for, as 

apparent from Figure 5-8. Further analysis will therefore necessitate the use mixed effect 

models, as described in 3.13. 

 

5.14  Fitting a linear mixed effect model (lme) to the 
haemoglobin data 

This section seeks to fit a linear mixed effect model to the haemoglobin data collected 

from day 0 onwards to assess to see if there is any difference in the haemoglobin values 

between the intervention groups. To account for the nested structure of the data, the 

following structure was specified: 

Table 5-4: Mean haemoglobin values by time and 
treatment group 
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 Fixed effects (Haemoglobin ~Intervention group) 
 Temporal random effect (random =  ~Visit.Number) 
 Spatial random effects (Village.Name) 
 Nesting structure for the repeated measures  

(Visit.Number|Village.Name/Group 
 

Initially this creates an object which shows the haemoglobin over time, accounting for the 

grouped and nested structure of the data; animals are repeatedly sampled and belong to 

villages themselves belonging to a treatment group.  

groupedData(Hemocue~Visit.Number|Group, 
outer=~Visit.Number|Village.Name/Tag. No 

 
Figure 5-12 shows the separate linear regressions for haemoglobin against visit number 

for each group from day 0 (Visit 3). The coefficients (obtained by the function lmList) of 

haemoglobin against visit are shown in Table 5-5. The intercept represents the mean 

haemoglobin value on day 0 and the visit column contains the slope of the regression line, 

thus representing change over time. As can be seen from the almost horizontal lines, even 

accounting for the nested structure of the dataset, there are not big changes in mean 

haemoglobin over time for any of the groups. 
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 (Intercept) Visit 
Spray  10.30 0.012

Pour‐on  10.11 0.100

Isometamidium  11.09 ‐0.116

Control  10.37 ‐0.010

 

Figure 5-12:- Plot of haemoglobin over time, blue line representing 
regression fit random effects Visit.Number|Village.Name/Tag.No 

Table 5-5: Coefficients for Figure 5-12 showing the mean 
baseline haemoglobin for each group (Intercept) and the 
change over time per visit (g/dl/visit) 
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Table 5-5 shows a positive time slope for the insecticide treated animals, indicating 

improvement in haemoglobin as the study progresses, and a negative time slope for the 

control and isometamidium villages. The rate in the pour-on group is an order of 

magnitude more than the restricted spray (0.1 g/dl/visit compared with 0.01 g/dl/visit for 

pour-on and spray groups respectively). In comparison, the isometamidium and control 

groupings show a similar pattern, control villages showing a change of -0.01g/dl/visit 

compared with -0.11g/dl for the isometamidium villages. 

Further analysis of the data by linear mixed effect models using the same grouped data 

structure as outputted in Figure 5-12 showed no significant difference (p values>0.05) 

between the intervention groups.  

 

It is possible that there is an interaction effect between groups and time, as suggested by 

the multiple comparison plot Figure 5-9.  This model allowed for different slopes of 

haemoglobin change for each intervention group. This interaction term was specified by 

the directive Visit.Number*Intervention: 

Model1<‐lme(fixed=Hemocue~Visit.Number*Group, random = ~ 
Visit.number|Village.Name/Tag.No 

 

Random effects 
Formula: ~Visit.number | Village.Name 

  StdDev  Correlation  Variance 

Intercept (i)  (a)   0.4537 (Intr)  0.2059

Visit.Number  (b)   0.0340 0.746  0.0011

Formula: ~Visit.number | Tag.No in Village.Name 

  StdDev  Correlation   

Intercept (ii)  1.4445 (Intr)  2.0868

Visit.Number  0.1887 ‐0.615  0.0356

Residual  0.9543   0.9107
 

Table 5-6: Random effects output for linear mixed effect 
model model1 Random effects show which components 
of the random structure explain the most variance of the 
data  
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Table 5-6 summarises the random effects of the model. The random effects refer to the 

variance attributable to different parts of the model and can be used to see which terms 

are contributing most of the explanatory power to the model. Variance is calculated as the 

square of standard deviation (StdDev). Output row (i) shows the differences between 

intercepts of different villages, row (ii) shows difference between intercepts of animals 

within villages. The differences introduced by the different time slopes are in the row 

coded Visit.Number. Output (i) shows that the variation attributable to differences in 

slope (b) (s.d.=0.034), is small compared with the variance attributable to differences in 

village (a) (s.d =0.45). This is the same case in (ii) where variance attributable to 

differences in slope (s.d=0.189) is small compared with the variation between animals 

nested within villages (s.d =1.44). 

 

Table 5-6 table can simply be interpreted as showing that the variance attributable to 

different villages or different animals within different villages has much more bearing on 

the model than the variance attributable to fitting a different slope for each time point. 

Consequently, it was investigated to see if the model could be simplified by investigated 

by fitting a common time slope  

Model1<‐lme(fixed=Hemocue~Visit.Number*Group, random = ~ 
Visit.number|Village.Name/Tag.No 

 

Model2<‐ lme(fixed=Hemocue~ Visit.Number*Group, random = ~ 
1|Village.Name/Tag.No…) 

 

 df AIC BIC logLik 
L.Rati
o 

p-value 

Model1, with random effects 
Visit.Number|Village.Name/Tag.No 

16 13347 13581 ‐6657  18.82   

Model2, with random effects 
1|Village.Name/Tag.No 

12 13358 13434 ‐6667    <0.001 

Table 5-7: Comparison model1 and model2. Lower  Akaike 
information criteria (AIC, see section 3.12.1) indicates 
better fit of the model 
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Comparing model1 and model2 using anova showed there was a significant difference 

between them, and a lower Akaike information criteria (AIC) than in the current model. 

Simplifying the model further by removal of the animal effect gave much larger AIC 

values and hence model1 is considered the best fit. 

 

Fixed effects: Hemocue ~ Visit.Number * Intervention  
  Value  Std.Error  DF  t‐value  p‐value  Sig?

(Intercept)  10.177 0.2839 5091 35.83  <0.001  

Time  0.0129 0.0265 5091 0.48  0.62  

Isometamidium  0.0864 0.4040 933 0.21  0.831  

Pour‐On  ‐0.2051 0.4011 9 ‐0.51  0.621  

Spray  ‐0.2695 0.4008 9 ‐0.67  0.518  

Time: Isometamidium  0.0363 0.0378 5091 0.96  0.337  

Time: Pour‐On  0.1038 0.0371 5091 2.79  0.005 ** 

Time: Spray  0.0606 0.0370 5091 1.63  0.102  

Table 5-8 lists the fixed outputs from model1. Main effects of group are not significant. 

However the Time:Pour‐On interaction indicates that the pour-on group has a significantly 

different timeslope. In other words, although there is no difference in the mean 

haemoglobin levels of the different intervention groups, there is a significant difference in 

the improvement of haemoglobin shown over time by animals in the pour-on group.  

 

5.14.1 Refining the model: accounting for the correlation 
structure of the data 

It is reasonable to believe that individual animal haemoglobin values are autocorrelated 

throughout time. That is to say, the value obtained at time t is likely to be correlated to the 

reading at t-1, and to a lesser extent by t-2, t-3…t0. This can be investigated for the 

haemoglobin values 

Table 5-8: Fixed effects from model1 
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Figure 5-13 shows the autocorrelation between different time points. The histograms on 

the diagonal indicate the time points graphed on the bisecting horizontal and vertical 

panels. For example, the panel marked A shows an individual’s haemoglobin value at 

visit 1 plotted against those for visit 2, taken 28 days later. As can be seen from the slope 

of the fitted line, there is evidence of correlation between these two values. Panel B shows 

the correlation between Visit 1 and Visit 8 taken over six months later. The regression 

slope for this panel is much flatter, indicating a much weaker correlation for values taken 

six months apart. This pattern is consistent for all time points, although, for ease of 

Figure 5-13:- Correlation structure of haemoglobin data, 
showing association between four timepoints ( on 
diagonal) Steeper lines indicate stronger correlation 
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interpretation only four are shown here.  
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The model can be updated to take account of temporal autocorrelation. The function 

corAR1 fits an autocorrelation of lag 1, i.e. correlation between a value and its immediate 

temporal predecessor. The new model can be compared with model 2 using ANOVA: 

Model2<‐update(model1, corr=corAR1()) 

anova(model1, model2) 
 

 Model df AIC BIC logLik L.Ratio p-value
Model1  1  16  13473 13581    

Model2  2  18  13360 13474 ‐6662 114.82  <.0001 

Model2 is significantly different with a lower AIC and BIC. Thus, there is strong 

evidence of autocorrelation in this data, and models have to take this correlation structure 

into account. 

5.14.2  Final model 

The most parsimonious model to be fitted is as follows. Day has been substituted for visit 

number to give the rate of change on a daily basis. 

Model3<‐lme(fixed=Hemocue~Day*Group, random = ~ Day|Village.Name/Tag.No, 
na.action=na.omit, data = OBnot1,corr=corAR1()) 

 

Table 5-9: Comparison of models with and without 
correlation structure 
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 Value Std.Error DF t-value p-value
(Intercept)  10.368 0.233 3326 44.428 

Day  ‐0.001 0.001 3326 ‐1.129  0.259

Isometamidium  0.414 0.239 899 1.735  0.083

Pour‐On  0.076 0.375 9 0.204  0.843

Spray  ‐0.009 0.374 9 ‐0.023  0.982

Time: Isometamidium  ‐0.002 0.002 3326 ‐1.344  0.179

Time: Pour‐On  0.005 0.002 3326 2.297  0.022

Time: Spray  0.001 0.002 3326 0.624  0.533

 

Figure 5-14 shows diagnostic plots for the model3 and proves that, largely speaking, it is 

properly specified. 

 

 

 

 

 

 

 

 

 

 

 

 

Table 5-10:- Final model fixed effects, indicating there is a 
significant effect of pour-on compared with control in 
terms of change over time. 

Figure 5-14: Diagnostic plots for model3 
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5.14.3 Summary on haemoglobin change during the 
interventions 

Table 5-10 shows fixed effect output from the most parsimonious mixed effect model that 

described haemoglobin values over time, taking into account temporal and spatial 

pseudoreplication, and allowing for temporal autocorrelation of values. There was no 

significant difference between the intervention groups in terms of mean haemoglobin 

values. Accounting for the effect of time showed a significant difference in the rate of 

change of haemoglobin values between the pour-on group and the control. Animals in the 

pour-on villages show on average a 0.005 g/dl/day (or 0.13g/dl/visit) improvement in 

haemoglobin. There is no significant difference between either the mean, or the rate of 

change, of haemoglobin between the control group and the isometamidium villages, or the 

control and restricted spray villages.  

5.15  Haemoglobin change during the entire study 

The analysis described in section 5.14 was repeated for all the time points, including the 

diminazene treatments prior to day 0. Model specification and simplification was carried 

out in exactly the same way. For the sake of brevity the intermediate stages are not 

shown. The most parsimonious model reduced to the same structure: 

Model4<‐lme(fixed=Hemocue~Day*Intervention, random = ~ 
Day|Village.Name/Tag.No, na.action=na.omit, corr=corAR1()) 

 

 Table 5-11 shows the output of the model4 fitted to all time points in the dataset. 

Similarly to model3, there is no significant difference in the mean haemoglobin values 

among interventions. In contrast to the above section however, the pour-on and spray 

groups show an improvement over time which is significantly different to the control 

group. Both insecticide groups show a positive change in haemoglobin compared with the 

control villages. Animals in the pour-on group show an average rate of improvement of 

0.004g/dl/day, twice that of the spray group’s 0.002g/dl/day. There is no significant effect 

of isometamidium compared with the control. 
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 Value Std.Error DF t-value p-value 
(Intercept)  10.21 0.34 5091 30.27  0.00

Day  0.000 0.001 5091 0.64  0.52

Isometamidium  0.134 0.478 933 0.28  0.78

Pour‐On  0.055 0.477 9 0.12  0.91

Spray  ‐0.151 0.477 9 ‐0.32  0.76

Time: Iso.  0.001 0.001 5091 0.88  0.38

Time: Pour‐On  0.004 0.001 5091 5.13  <0.001

Time: Spray  0.002 0.001 5091 2.74  0.01

  

5.16  Overall summary of haemoglobin change 

 Model3 and model4 characterised the change of haemoglobin values over time for the 

intervention period and entire study period respectively. Figure 5-16 to Figure 5-17 show 

panel plots of these models. The mean haemoglobin value at each timepoint was 

calculated using the predict directive, and plotted against time to show the rate of change. 

Lines show either mean response per group or per village. Figure 5-16 and Figure 5-15 

show model outputs for changes since Day 0, Figure 5-17 and Figure 5-18 show the 

outputs for the whole study, including the diminazene treatments. 

5.16.1 Haemoglobin change during intervention period 

Figure 5-16 and Figure 5-15 suggest that, from day 0, animals in isometamidium treated 

villages show a decrease in haemoglobin over time, although not significantly different 

from the control. All villages in the control and isometamidium groups exhibit similar 

slopes, indicating a generally consistent response over time. In contrast, insecticide treated 

villages show quite variable effects from day 0. For example, the pour-on group exhibits a 

steep increase in haemoglobin in two of its villages yet the third showing a slight 

decrease. As discussed above, this is statistically significant. Spray villages show much 

Table 5-11:- Final model output on all time points. 
Considering the change from baseline, rather than from 
day 0 (above), indicated a significant change over time for 
both insecticide treated groups 
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greater variation in the intercepts (day 0 values) and slopes, with one village exhibiting an 

increase, one showing no change and one displaying a decrease. Overall, the spray groups 

are not statistically significant from the control. 

5.16.2 Haemoglobin change during entire study period 

Figure 5-17 shows the overall change in haemoglobin values, including the period of 

diminazene treatments. All villages show an increase in haemoglobin values, although 

this is only statistically different from the control in the pour-on and spray villages. The 

heterogeneity of the spray villages is pronounced, showing that one of the spray villages, 

Bukhunya, began with and remained with low haemoglobin values that were not 

responsive to diminazene treatments. 
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Figure 5-15:- Model output showing change in 
haemoglobin over time from day 0. Panels are arranged 
by group and show predicted lines for each village   

Figure 5-16:- Model output showing change in 
haemoglobin over time from day 0. Panels show mean 
response by group   
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Figure 5-17:-Model output 
showing change in haemoglobin 
over time from baseline. Panels 
show mean response by group 

Figure 5-18:Model output showing change in haemoglobin over time from baseline. Panels are 
arranged by group and show predicted lines for each village 
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5.17  Improvement thresholds 

So far this chapter has discussed the change in haemoglobin levels over time and 

attempted to relate differences to intervention groups. This has involved models which 

can characterise the change in haemoglobin values over time for each individual animal. 

However, there is a different way of looking at haemoglobin values, embedded in the 

models of the first section but not made explicit. On a herd level, it is interesting to 

identify the number of animals above a particular haemoglobin threshold and to measure 

the degree to which they improve from one visit to the next. The degree of improvement 

of individual herd members within a treatment group was of greatest interest to the 

farmers participating in the study, and investigation of this is worthwhile as it displays 

some interesting patterns in the data.  

5.18  Number of animals above a specific haemoglobin 
threshold 

A good indicator of the health of a herd would be an assessment of the percentage of 

animals over a minimum level of haemoglobin. This was assessed by building a 

generalised mixed effect model for proportion data. Methodologies for modelling count 

data is given in section 3.9.1. The response object, Counts were formed by binding 

together two vectors containing the count of animals above and the count of animals 

below a nominated threshold. Modelling using a generalised linear modelling function 

allowed for specifying a binomial error structure. The final model fitted included 

intervention grouping and the visit number. The threshold of haemoglobin was fitted as a 

random effect: 

Model6<‐lme(fixed=Counts~Intervention*Visit.Number, random = ~ 1|Threshold, 
family=binomial….) 

 

Interactions were significant and the model was over dispersed, residual deviance is much 

greater than residual degrees of freedom. Predicted values were back transformed to 

proportions and plotted in Figure 5-20 and Figure 5-20.  
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Proportion of animals above threshold by visit number

Minimum haemoglobin concentration threshold, g/dl
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Figure 5-19: Proportion of animals above haemoglobin 
thresholds, arranged by by visit number (1-8). Each panel 
shows the proportion of animals over the minimum level 
of haemoglobin displayed on the x axis. 
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Proportion of animals above haemoglobin threshold over time

Visit.Number
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Figure 5-20: Proportion of animals above particular 
haemoglobin thresholds over the duration of the study. 
Each panel shows the change in the proportion of 
animals above the stated minimum threshold of 
haemoglobin over time (visit number).
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5.18.1 Outcome of threshold analysis 

Figure 5-19 and Figure 5-20 show the predicted values for model6. Figure 5-19 shows the 

proportion of animals over the minimum level of haemoglobin displayed on the x axis. 

Panels are arranged by visit number (1-8). It can be seen that at the start of the study the 

lines mainly overlapped, indicating the structure of the groups was very similar. After 

visit 5 however, the pour-on group shows increasingly higher haemoglobin values 

through the whole range of threshold values, and by visit 8 this is highly significant 

(p<0.01). 

   

 Figure 5-20 shows the model visualised differently, with the proportion of animals above 

particular haemoglobin thresholds over the duration of the study. Each panel shows the 

change in the proportion of animals above a particular minimum threshold. Table 5-12 

shows the output for the model6 and there are significant differences in the proportion of 

animals in the pour-on and isometamidium groups. The overall pattern during the study is 

that the pour-on groups show progressive, significant improvement in haemoglobin over 

the study whereas the isometamidium villages show a decrease. Table 5-12 shows the 

trends for the pour-on and isometamidium villages are significantly different to the 

control (p<0.001). There is no difference between the control and spray groups. 

 

 Estimate Std. Error z value Pr(>|z|)  

(Intercept)  0.816  0.063  12.990  < 2e‐16  *** 

Isometamidium  0.415  0.091  4.580  <0.001  *** 

Pour‐On  ‐0.159  0.088  ‐1.799  0.072  . 

Spray  ‐0.016  0.086  ‐0.188  0.851   

Visit.number  ‐0.004  0.011  ‐0.335  0.737   

Time: Isometamidium  ‐0.068  0.016  ‐4.161  <0.001  *** 

Time: Pour‐On  0.071  0.016  4.439  <0.001  *** 

Time: Spray  0.004  0.016  0.229  0.819   

 

Table 5-12: Model output for proportion data. 



 Chapter 5:- Impact of interventions on haemoglobin 

 184

 

5.19  Improvement of individual animals over time 

Finally, a slightly different way to look at the data is an assessment of how much an 

animal has improved since the last visit. The broad interpretation of this is a rising plane 

of haemoglobin that is indicative of improving health and absence of, or recovery from, 

many of the anaemia causing diseases. In contrast to the previous analysis, this method 

looks at the difference in haemoglobin between subsequent sampling times and provides 

no information about the absolute values. This is arguably as clinically relevant as 

absolute values, especially considering the range in which animals appear to maintain 

their haemoglobin (Figure 5-7). There are obvious issues with interpretation in this 

analysis; a moribund animal increasing its haemoglobin from 5 to 7 g/dl will show huge 

improvement but the animal is still arguably worse off than an animal in haemoglobin 

homeostasis around 11 g/dl.  

Nonetheless, the visit by visit improvement of the study cattle was considered an 

important indicator by the livestock keepers who took part in the study, and although 

simplistic and clinically inaccurate, the ‘more is better’ approach to haemoglobin 

represented a fundamental aspect of how the technology was interpreted by livestock 

keepers. 

Figure 5-21 contains three plots showing the proportion of animals presenting with 

haemoglobin values improved from the previous visit. In sequential order the minimum 

level of haemoglobin improvement is 0, 1 and 2 g/dl on the previous visit. 

The most improvement is seen at day 0, and as highlighted in previous sections, following 

day 0, the trends become less clear, although there are indications that animals receiving 

pour-on treatments show the most improvement. There are indications that the 

isometamidium group is deteriorating towards the end of the study, with 32% of  animals 

showing any improvement at all on the previous visit, (compared with over 45% for the 

other groups). However, without further timepoints it is difficult to attach clinical 

significance to this finding. 
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Figure 5-21: Percentage of animals showing increases in 
haemoglobin over time 
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% of animals above threshold

Day of studyThreshold of 
improvement g/dl

5.19.1 Visualising thresholds 

The thresholds chosen in Figure 5-21 are arbitrary ‘slices’ through a three dimensional 

plane with proportion of animals on the y axis, time on the x axis and the minimum 

threshold of haemoglobin on the z axis. An example of a 3D surface plot is shown below 

in, and surface plots for each intervention group are shown in the appendix. The 3D plots 

are fitted using the scatter3d directive in R and provide an excellent way of visualising 

data on screen as the function allows for the user to freely move around and zoom into the 

object. Such facilities translate less well to printed diagrams but are possible nonetheless 

and are useful to get a feel of graphs fitted with two explanatory variables. The surfaces 

are fitted with a non-parametric smoothed loess curve (Chambers & Hastie, 1992; 

Crawley, 2005). A non-parametric smooth method was chosen as the best way of 

exploring the landscape of y values. Error! Reference source not found. shows the 

relative positions of the four surfaces fitted with the proportion of animals above the 

threshold value on the grey y axis, bounded from 0 to 1, time fitted along the purple x axis 

ranging from day -14 to day 147 and the threshold of improvement on the light blue axis 

with values from 0 to 2 g/dl. A threshold value of 0, at the origin, shows the proportion of 

animals that did not deteriorate their haemoglobin values between this and the previous 

visit. A threshold value of 2 shows animals that improved by at least 2 g/dl between this 

and the 

previous visit. 
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Figure 5-22:- Example of a 3D plot 
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Figure 5-23:- Individual surface plots showing the relative positions of treatment group surfaces. Y axis (grey) shows the percentage 
of animals improving, x-axis (purple) indicates time (day of the study) and the z axis (light blue) shows the amount of improvement, 
in haemoglobin,  between visits, range 0-2 g/dl. Surfaces are coloued for each group; red=control, orange=isometamidium, blue= 
pour-on, green = restricted spray. 
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5.20  Interpretation of surface plots 

So what do the surface plots tell us that is not shown Figure 5-21? Overall, the percentage of 

animals showing an improvement in haemoglobin is higher in the pour-on group (blue 

surface), particularly during the latter part of the study (RHS of diagram in this view). The 

surface plots also show how the other three surfaces are interwoven and do not present a clear 

difference. The significance of these differences can be can be assessed by adding the 

model.summary=TRUE command to the plot function, with the output displayed in Table 

5-13:- Difference in groups represented by 3D surface plots 

which shows that in terms of visit to visit improvement of haemoglobin, the pour-on is the 

only intervention significantly different from the control. 

Group Estimate 
Std. 
Error 

z value Pr(>|z|) Sig?

(Intercept) Control  0.7482  0.0157  47.621     

Isometamidium  0.0256  0.0227  1.128  0.254  NS 

Pour‐On  0.1521  0.0221  6.879  <0.001  Sig 

Spray  ‐0.0214  0.0216  ‐0.988  0.323  NS 

5.21  Overall conclusion 

The purpose of this chapter was to investigate the impact of the interventions in terms of an 

animal’s blood haemoglobin, measured every 28 days for 8 months. Whilst anaemia is a 

clinical indicator of a number of endemic cattle diseases, namely parasitic nematode 

infections (Parkins & Holmes, 1989) and anaplasmosis (Ristic et al., 1972; Richey, 1992), it 

is the main characteristic of trypanosomiasis (Murray, 1988) as it begins with the first wave 

of infection and is progressive thereafter. With the privatisation of veterinary services and 

associated decline in the use of veterinary diagnostic laboratories (de Haan, 2004), the 

responsibility for disease diagnosis and treatment is devolving to the individual farmers, 

Table 5-13:- Difference in groups represented by 3D 
surface plots 
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animal health assistants, community animal health workers and veterinary drug vendors (Van 

den Bossche et al., 2000; Machila, 2004). Field based diagnostic techniques that provide 

support to these resource- and information-deprived groups are thankfully being developed, 

examples ranging from decision support aids for disease diagnosis (Cockcroft, 1999; Eisler et 

al., 2007) to diagnostic tools robust enough to be used in the field.  Such tools provide 

information can be used to differentiate infected animals and monitor treatment success and 

include the  portable haemoglobinometer reviewed in (Magona et al., 2004b) and the 

FAMANCA system for  identifying anaemic animals suffering from gastrointestinal 

nematode parasites (Bath et al., 1996). The assessment of haemoglobin is thus important for 

two reasons in this study, primarily it provided an quantification of overall animal health that 

was an indication not of infection, but of disease. Given the endemic nature of disease and 

continual challenge and re-challenge nature of disease in south east Uganda, the populations 

of disease resistant livestock, the significance of interactions and co-infections and the carrier 

status associated with many of these diseases, a overall indicator of pathology is arguable 

more useful than demonstration of infection. Anaemia is a good indicator of this, especially 

in the case of monitoring trypanosomiasis. For example, productivity in trypanotolerance is 

attributable mainly to a ability to control anaemia rather than a parasitaemia (Naessens, 

2006). 

Discussion has focussed on quantifying the changes in haemoglobin that were seen in a 

population of 947 cattle recruited to a longitudinal study in south east Uganda, and roughly 

equally spread between 12 villages. The study aimed to assess three animal health 

interventions that are in use, or potentially available for use, by cattle keepers in this area as 

methods of controlling endemic tick and tsetse borne diseases, in comparison to a control 

group of animals that did not receive any intervention treatment. 

 

The entire study population was given two doses of a trypanocide diminazene aceturate 42 

and 14 days prior to beginning the interventions. Interventions consisted of either a) a single 

trypanoprophylactic dose of isometamidium chloride at day 0; b) monthly (q.28 days) 

application of a  pour-on formulation of deltamethrin; c) monthly (q.28 days) application of a 
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spray formulation of deltamethrin to the front legs, ears and belly of the animal, and d) a 

control, which received no further intervention. 

 

For the purposes of analysis the dataset can effectively be split into two time periods. From 

the first baseline visit (day -42) up to and including visit 3 (day 0), the data can be used to 

assess the impact of two diminazene treatments on the cattle population recruited for the 

study. After day 0 the data can be used to assess if there is a significant difference between 

the different intervention protocols tested in this study. 

 

Initial pairwise comparisons were made between the different grouping structures of the data 

(groups and villages within groups) to quantify any heterogeneity that may bias the 

interpretation of the treatment effects. At baseline (day -42), comparing the mean 

haemoglobin value of villages at the 95% confidence level showed that villages were not 

significantly different, with the exception of the village of Bukhunya which had a 

significantly lower mean value. Haemoglobin values of the study population were therefore 

considered to be acceptably homogenous. 

 

Multiple comparisons between intervention groups, rather than the villages themselves 

showed that at the baseline there was a significant difference between villages allocated into 

the control and restricted spray groups. However, by day -14 all significant differences had 

disappeared and, at day 0 when the interventions began, there was no significant difference 

between any of the groups. 

 

Analysis of the haemoglobin values largely used linear mixed effect modelling to account for 

the nested and pseudoreplicated structure of the dataset. Between the baseline (day -42) and 

the start of the interventions (day 0) there was a highly significant (p<0.001) improvement in 

the mean haemoglobin of all twelve villages recruited to the study. Due to the nature of the 

study design it is strictly not possible to attribute this to the administration of diminazene, 

although this was considered to be highly probable. 
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During the interventions significant differences between the treatment groups become 

apparent. Insecticide treated villages showed a range of different responses during the 

interventions. Pairwise analysis shows that the pour-on group had a significantly higher mean 

haemoglobin value than the control group from day 84 onwards. Additionally, by the end of 

the study (day 147), the pour-on group had a significantly higher mean haemoglobin value 

than both of the other treatment groups. In contrast, with the exception of day 84, the 

restricted spray group was not statistically significantly different from the control group 

during the intervention periods. The isometamidium group showed a significant decrease in 

mean haemoglobin levels which may indicate that the prophylactic period of isometamidium 

was shorter than the anticipated 4-6 months, allowing the re-emergence of trypanosomiasis 

infection at a clinical level. The decrease in haemoglobin levels was not statistically 

significantly different from the control group. All villages in the control and isometamidium 

groups exhibit similar slopes, indicating a generally consistent response over time. From day 

0 onwards, the control group displayed no significant change in haemoglobin levels, despite a 

slight decrease in the mean value. 

Evidence of significant within animal as well as between animal variations in haemoglobin 

values was seen in the linear mixed effect models after the start of the interventions on day 0. 

Modelling required a linear mixed effect model with village and animal within village fitted 

as random effects and accounting for the temporal autocorrelation between samples. No 

significant differences in mean haemoglobin values between the intervention groups were 

identified in the models. However, the output of these models showed a significant difference 

in the rate of improvement of haemoglobin in the pour-on group compared with the control. 

When the model was fitted to data from the whole study, and therefore included the 

diminazene treatment period, the pour-on and spray groups both demonstrated a significantly 

higher rate of improvement compared with the control. There was no significant effect of 

isometamidium compared with the control. 
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Analysis of the percentage of animals over a particular haemoglobin threshold indicates that 

cattle in the pour-on groups show a consistent, progressive and highly significant 

improvement throughout the intervention period. Animals in isometamidium villages showed 

a highly significant decrease. No significant difference was evident between the control and 

spray groups. 

In summary, over the intervention period, pour-on villages had a significantly higher rate of 

mean haemoglobin value improvement compared with the control. Although the spray groups 

also displayed a significantly higher rate of improvement than the control, the mean 

haemoglobin value was not significantly different to that of the control. In contrast, the 

isometamidium villages showed a significant decrease in mean haemoglobin values 

compared with the control, although the rate of change is not significantly different to that of 

the control group. 
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 Chapter 6 :‐ Seen to be working: 
Impact of the interventions on clinical 
parameters 



Chapter 6:- Impact  of interventions on clinical parameters 

 195

 

6.1 Introduction 

The current trend in controlling livestock diseases in Africa of leaving the  farmer to “go it 

alone” (Eisler, 2003) profoundly influences the way diseases should be managed. Moving the 

provision of veterinary healthcare from a public service to private choice alters fundamental 

aspects of health care. The choice of the individual, presented as one of the benefits of  

privatisation of healthcare (Sen & Chander, 2003), fragments the delivery of healthcare to the 

level of an individual farmer choosing to treat an individual animal. This has obvious 

implications in the management of infectious diseases where the scale of health management 

needs to be at the herd or the regional level. Fragmentation also impacts the type of 

healthcare options sought, and successful treatments are those that quickly confer an obvious, 

and preferably exclusive, benefit to the farmer (Umali et al., 1994). In economic terms, 

successful health options are private goods with a minimum free rider principle. An example 

of healthcare as a private good could be seen as the small foil packet containing a single dose 

of trypanocide, of which 35 million are administered annually throughout Africa (Holmes et 

al., 2004). Interventions such as these are simple, require no communal or governmental 

input and have a rapid, obvious benefit of immediate and important significance only to the 

implementer. 

Over the past 15 years the scale of livestock health provision in Africa has devolved to the 

level where most of the health decisions are made by individual farmers on almost entirely 

short term economic grounds (Leonard, 2004). Although large, centrally funded, equipped 

and managed projects are continually in circulation they exist in tandem with this 

groundswell of private veterinary provision. The treatment options explored in this study can 

be treated as private goods available to the individual livestock keeper. Although many ‘top-

down’ control programmes employ both insecticide spraying and trypanocidal drugs, for 

example the EU funded Farming in Tsetse Controlled Areas  (FITCA, 2005) or the Regional 

Tsetse and Trypanosomiasis Control Programmes (Food and Agriculture Organization of the 
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United Nations, 1993), the technologies on trial function primarily as private goods at the 

level of the livestock keeper. 

Synthetic pyrethroid insecticides are becoming important in the control of vector borne 

diseases in Africa (Vale & Torr, 2004). As patents expire and generic formulations appear on 

the market (Torr et al., 2005) unit costs are decreasing. They have flexible methods of 

application, and the legacy of crop spraying and governmental spraying regimes make it a 

technology familiar to many rural farmers (Okoth, 1999). From an epidemiological 

standpoint, insecticide treated cattle are of particular interest because, despite individuals 

choosing to treat their animals as an entirely private good, the impact on the tsetse population 

of an insecticide treated cow confers a public benefit (Vale et al., 1999).  

The overall aim of this study is to investigate treatment options available to rural livestock 

keepers. Given the current state of veterinary provision in rural Africa, a successful treatment 

has to be efficient at providing a ‘private good’. The current paradigm of health provision 

relies on individual farmers choosing to spend a proportion of their income on a treatment, 

and for that treatment to be adopted it needs to be demonstrably and reliably effective. SE 

Uganda has a suppressed tsetse population (Magona et al., 2004a) and as such the presence of 

tsetse is probably not perceived by the livestock keepers as an obvious hazard. Coupled with 

an endemic disease state in the predominantly zebu population, cattle infected with 

trypanosomiasis are more likely to suffer chronic signs and incur long-term production losses 

than exhibit acute signs of the illness (Waiswa & Katunguka-Rwakishaya, 2004). As a result, 

farmers often do not understand the link between tsetse and trypanosomiasis (Kamara et al., 

1995; Machila et al., 2003) making it difficult to persuade livestock keepers that it is 

worthwhile investing in technologies that only target the tsetse flies. 

Synthetic pyrethroids offer a good way of controlling tsetse as a ‘side effect’ of controlling 

the very visible ticks on cattle. The tick burden carried by cattle can be immense and the 

presence of such parasites are widely disliked by farmers, as much for aesthetic reasons as 

their associated pathologies. The impact of the interventions on the visual appearance of the 
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study animals is an important factor in the long term sustainability of these treatment 

methods, in specific the restricted spray methodology. This chapter will assess the impact of 

the study on the visual parameters available to rural livestock keepers, although some 

outcomes are further quantified with reference to ancillary diagnostic techniques. Specific 

clinical variables to be assessed are tick counts, condition scores, lymph node enlargement 

and weight. 

6.2 Methods of data visualisation and exploration 

The clinical data under analysis is ordinal. Half body tick counts and condition score 

methodologies are described in section 3.2. Analysis of the data will involve the use of log-

linear modelling incorporated within mosaic plots. Analysis of deviance on the proportional 

tick counts offers an alternative method of analysis, however mosaic plots have been chosen 

because they provide a visual method of interpreting the differences. A detailed explanation 

of mosaic plots is given in section 3.18.2. To summarise they are graphical representations of 

a 2x2 contingency table, and are essentially grouped bar charts where the width and height of 

the bars show the relative frequencies of the two variables. The tiles in a mosaic plot are 

proportional to the observed cell frequencies. The panels presented in this chapter are 

arranged in two panels; the upper panel shows a mosaic plot for each timepoint, plotting the 

clinical variable of interest against treatment group. The lower panel is a mirror of the upper 

but the cells are shaded to represent significant differences between the treatment groups. 

Comparisons are made by row, hence a shaded cell indicates a group that has a significantly 

different proportion of animals with a level of clinical variable compared with the other three 

groups.  Cells shaded red indicates that a cell is significantly lower, blue indicates 

significantly higher. The key indicates values for the standardised Pearson residuals of 2-4 

and >4 of a Chi-squared statistic and correspond to p <0.05 and p<0.001 for residuals 2-4 

(lighter colour, broken border line) and >4 (deeper colour, solid border line) 



Chapter 6:- Impact  of interventions on clinical parameters 

 198

  
Number of animals sampled at each timepoint

0 

50 

100 

150 

200 

250 

300 

-42 -14 0 28 56 84 112 147

Day of study

N
u

m
b

er
 o

f 
an

im
al

s 

Pour-on

Spray

Control

Isometamidium

6.2.1 Full or restricted dataset? 

Mosaic plots do not provide information about the number of samples. If the number of 

animals in each group at a particular time point is significantly different to that in another 

group this may introduce bias. Figure 6.1 shows the number of animals sampled in each 

group over time. Sample size of each group was not considered different enough to introduce 

bias in this study.  

 

6.3 Impact of interventions on tick burden 

Figure 6.1 to Figure 6.6 show mosaic plots for the three species of ticks commonly found 

parasitizing cattle in the study; Amblyomma variegatum, Rhipicephalus appendiculatus, and 

Boophilus decoloratus. Tick burden is coded as follows: 0= no ticks, 1=1-10 ticks, 2=11-50 
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ticks, 3 >50 ticks. All figures refer to half body tick counts made from a laterally recumbent 

animal as described in section 3.2.3. The upper row on each page shows a solid filled mosaic 

plot of intervention groups plotted against tick burden. Cells highlighted in the lower row 

identify which plots are significantly different when compared with others in the same row. 
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Figure 6.1:- Mosaic plot showing burden of Amblyomma spp for visits 1-4. Upper row shows proportions of each 
category, lower row highlights significant differences among treatment groups. Tick burden is coded as follows: 0= 
no ticks, 1=1-10 ticks, 2=11-50 ticks, 3 >50 ticks. 
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Figure 6.2:- Mosaic plot showing burden of Amblyomma spp for visits 5-8. Upper row shows proportions of each 
category, lower row highlights significant differences among treatment groups. Tick burden is coded as follows: 0= 
no ticks, 1=1-10 ticks, 2=11-50 ticks, 3 >50 ticks. 



Chapter 6:- Impact  of interventions on clinical parameters 

 202

Visit1

Group

T
ic

k 
bu

rd
en

, B
oo

ph
ilu

s 
sp

p.

Control Iso Pour-on Spray

0

1

23

Visit2

Group

T
ic

k 
bu

rd
en

, B
oo

ph
ilu

s 
sp

p.

Control Iso Pour-on Spray

0

1

2
3

Visit3

Group

T
ic

k 
bu

rd
en

, B
oo

ph
ilu

s 
sp

p.

Control Iso Pour-on Spray

0

1

23

Visit4

Group

T
ic

k 
bu

rd
en

, B
oo

ph
ilu

s 
sp

p.

Control Iso Pour-on Spray

0

1

2
3

S
ta

nd
ar

di
ze

d
R

es
id

ua
ls

:
<

-4
-4

:-
2

-2
:0

0:
2

2:
4

>
4

Visit1

Group

T
ic

k 
bu

rd
en

, B
oo

ph
ilu

s 
sp

p.

Control Iso Pour-on Spray

0

1

23 S
ta

nd
ar

di
ze

d
R

es
id

ua
ls

:
<

-4
-4

:-
2

-2
:0

0:
2

2:
4

>
4

Visit2

Group

T
ic

k 
bu

rd
en

, B
oo

ph
ilu

s 
sp

p.

Control Iso Pour-on Spray

0

1

2
3 S

ta
nd

ar
di

ze
d

R
es

id
ua

ls
:

<
-4

-4
:-

2
-2

:0
0:

2
2:

4
>

4

Visit3

Group

T
ic

k 
bu

rd
en

, B
oo

ph
ilu

s 
sp

p.

Control Iso Pour-on Spray

0

1

23 S
ta

nd
ar

di
ze

d
R

es
id

ua
ls

:
<

-4
-4

:-
2

-2
:0

0:
2

2:
4

>
4

Visit4

Group

T
ic

k 
bu

rd
en

, B
oo

ph
ilu

s 
sp

p.

Control Iso Pour-on Spray

0

1

2
3

 

 

 

 

 

 

 

 

 

 

 

Figure 6.3:- Mosaic plot showing burden of Boophilus spp for visits 1-4. Upper row shows proportions of each 
category, lower row highlights significant differences among treatment groups. Tick burden is coded as follows: 0= 
no ticks, 1=1-10 ticks, 2=11-50 ticks, 3 >50 ticks. 
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Figure 6.4:- Mosaic plot showing burden of Boophilus spp for visits 5-8. Upper row shows proportions of each 
category, lower row highlights significant differences among treatment groups. Tick burden is coded as follows: 0= 
no ticks, 1=1-10 ticks, 2=11-50 ticks, 3 >50 ticks. 
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Figure 6.5:- Mosaic plot showing burden of Rhipicephalus spp for visits 1-4. Upper row shows proportions of each 
category, lower row highlights significant differences among treatment groups. Tick burden is coded as follows: 0= 
no ticks, 1=1-10 ticks, 2=11-50 ticks, 3 >50 ticks. 
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Figure 6.6:- Mosaic plot showing burden of Rhipicephalus spp for visits 5-8. Upper row shows proportions of each 
category, lower row highlights significant differences among treatment groups. Tick burden is coded as follows: 0= 
no ticks, 1=1-10 ticks, 2=11-50 ticks, 3 >50 ticks. 
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6.4 Tick burden of Amblyomma tick species 

Figure 6.1 and Figure 6.2 show the differing burden of Amblyomma ticks throughout the 

study. At the baseline there are significantly more ticks on the control group than the other 

three and by visit 3 when the interventions began this pattern is more pronounced 

(Control groups have a significantly (p<0.05) smaller proportion in the ‘no ticks’ 

category, shaded red, and significantly more in the 10-50 category, shaded blue). This 

suggests significant differences in the environmental challenge which must be borne in 

mind when interpreting subsequent analysis. Considering time points 5-8, there are 

indications that a lower proportion of animals present with >50 ticks (coded 3) in both 

pour-on and spray insecticide categories compared with the non-insecticide groups. Of the 

two insecticide treatments, the effect is more pronounced in the pour-on group. Given the 

possible differing challenge, however, this result ought to be interpreted with some 

caution. As a possible explanation, Amblyomma ticks localise on the ventrum, axilla 

udder and perineal regions of the animal and consequently the direct effect of the 

restricted spray, which avoided the caudal predilection sites, could be expected to be 

lower than the pour-on. 

6.5 Tick burden of Boophilus tick species 

Figure 6.3 and Figure 6.4 show the differing burden of Boophilus ticks throughout the 

study. They show an overall increase in Boophilus tick counts throughout the study, for 

example, fewer animals have a tick burden of 2 at visits 1 & 2, compared with visits 7 & 

8. This is most likely due to an increase in tick challenge with seasonal change over the 

eight months of the study. There is a strong indication that the pour-on group has 

significantly lower Boophilus tick counts for visits 4, 5 and 6 compared with the other 

groupings, although this difference is not apparent over the last two sampling points. 

Conversely, the spray group has a proportionally higher number of animals with high 

Boophilus tick counts compared with the other treatments. For this species, the acaracidal 

effect of the restricted spray is not particularly apparent, although this could partially be 

explained by the spray protocol avoiding some of the predilection sites of attachment such 

as flank and dewlap. 
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6.6 Tick burden of Rhipicephalus tick species 

Figure 6.5 and Figure 6.6 show the differing burden of Rhipicephalus ticks throughout the 

study. Similarly to Boophilus, there appears to be strong indication that tick challenge 

increases over time. The pour-on villages have a significantly (p<0.001) lower number of 

animals carrying heavy Rhipicephalus tick burdens from visit 5 onwards, suggesting a 

protective effect from the pour-on. There appears to be no significant difference between 

spray and non insecticide treated groups, suggesting that in terms of this species there 

appears to be no effect from the restricted application. This is despite the restricted spray 

protocol targeting the predilection sites of the ear and axilla. 

6.7 Proportion of animals with a heavy tick burden 

An animal was coded as having a heavy tick burden if it had more than 50 ticks of any 

species or more than 10 of all three tick species. Although arbitrary, such coding 

represents what seemed to be a ‘noticeably heavy’ tick burden to the cattle owners. The 

proportion of animals with a heavy tick burden by intervention group is given in Table 

6-1. Figure 6.7 highlights the difference between the pour-on and spray groupings. The 

control and isometamidium groups are amalgamated to simplify the graph. As described 

in section 2.10, the intervention effect applies after day 0, and differences between the 

groups prior to this are therefore due to intrinsic variation between the groups. As can be 

inferred from Figure 1-8, there is a highly significant difference between the spray group 

and the pour-on (  -squared = 39.77, df = 1, p-value = <0.001) and no significant 

difference between the restricted spray group and groups that received no insecticide 

treatments (  -squared = 0.0019, df = 1, p-value = 0.9656). 
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6.8 Investigation of the residual efficacy of the restricted 
application spray 

The restricted application protocol involves a spray application of a 1:1000 aqueous 

solution of deltamethrin every 28 days. The concentration is the same as the 

manufacturer’s recommendation, however the total volume applied is reduced by 80% as 

the spray is only applied to the legs, ears and belly of cattle.  

 In order to investigate the residual efficacy of the restricted application protocol at 

controlling tick burdens, a study was run on a separate population of zebu cattle whereby 

tick counts were made at 72 hour intervals for the duration of 30 days. 

6.8.1 Residual efficacy study design and methodology 

Twenty cattle from a site known to have similar cattle demographics and management 

systems as the study villages were recruited to this study. A site was chosen close to the 

Ugandan Livestock Research Institute in Tororo for logistical reasons. Twenty cattle were 

selected at random (by random number allocation) out of a herd of 97 animals for 

inclusion in the study. Selected cattle were identified by ear tags for subsequent follow-

up. 

Cattle were examined on day 0 and the tick burden counted for each species as described 

in Chapter 2. All cattle were sprayed once with a 1:1000 solution of 5% deltamethrin 

(Vectocid™, Ceva Sante Animale) using the same protocol employed in the longitudinal 

study. Cattle were returned to the herd, and for the duration of the study were managed by 

daytime extensive grazing and tethered or corralled around homesteads at night. The aim 

was to emulate the conditions of the longitudinal study animals as much as possible.  

48 hours later the 20 tagged cattle were examined. None was found to have live, attached 

ticks, although in some cases dead ticks were found entrained in the animal’s coat. These 

were not counted. Cattle were then re-examined every 72 hours to assess the incident tick 

burden. Absolute half-body tick counts were made for each species.  The results are 

graphed in Figure 1-9 and Figure 6.9. 

The study ran for 35 days. 
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Figure 6.8: Burden of individual tick species following restricted spraying 
with deltamethrin on day 0. Each line represents a study animal.  
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Incident tick burden following treatment with restricted application protocol 
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6.8.2  Results of residual efficacy study 

Figure 6.9 shows the burden of ticks for each study animal by tick species. The amalgamated 

data is presented in Figure 6.8. The dotted red line represents 28 days after the application of 

spray, which coincides with the sampling interval in the longitudinal study. Following the 

application of insecticide, the tick prevalences dropped to zero. The reestablishment of 

parasite load was dependent upon tick species, Rhipicephalus demonstrating an almost linear 

recovery pattern to pre-treatment levels approximately 30 days later. Amblyomma burdens are 

lower, but also demonstrated a similar recovery pattern. On average, however, Amblyomma 

tick populations did not recover to pre-treatment levels by the end of the study.  Boophilus 

ticks, in contrast do not seem to have a high prevalence. The maximum baseline level of 

Boophilus ticks is 5. Recovery to a pre-treatment level of prevalence is very prolonged, all 

cattle remaining free of Boophilus ticks for 29 days. 

Figure 6.9: Tick burden following treatment with restricted application 
spray 
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6.8.3  Interpretation  

The tick burden patterns shown in Figure 1-9 and Figure 1-10 could usefully explain the tick 

counts measured in the longitudinal study. Animals in the longitudinal study were sampled 

every 28 days and, for animals in the spray group, re-treated with insecticide at the same 

time. It can be seen that re-spraying at an interval of 28 days allows considerable recovery of 

tick burdens, particularly with the Rhipicephalus species. As the tick burden fell to zero 

immediately after the application of spray there is little evidence of tick resistance to 

deltamethrin. Whilst it is possible that the re-establishment of ticks to almost pre-treatment 

levels of prevalence 28 days after each spraying is attributable to resistant populations, 

discussions with farmers did not suggest this was the case, and it is more likely that a similar 

pattern of prevalence recovery to that seen in Figure 6.8 is occurring in the longitudinal study. 

Assessment at a 28 day interval will therefore not show an impact of the spray insecticide. In 

contrast, the tick counts observed with the pour-on formulation suggest residual activity 

against ticks in excess of 28 days. This is in line with other studies in this area and the 

manufacturer’s claims (Fox et al., 1993; Okiria et al., 2002a). 

6.9  Tick burden reduction 

It is possible to gain a crude assessment of the reduction in tick burden. The area under the 

curve for a given time interval represents the tick burden for that interval, and was calculated 

using the trapezoidal rule (Burden & Faires, 2000). If it is assumed that the tick populations 

would continue at their baseline levels in the absence of treatment, the area under the 

observed curves can be expressed as a percentage of the theoretical tick burden had the 

intervention not occurred. Tick burden is expressed as the cumulative number of ticks 

attached per day for a 28 day period following a spray event on day 0. Theoretical tick burden 

is simply the number of ticks observed at baseline multiplied by the number of days. Table 

6-2 shows the percentage reduction over a 28 day period. 
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Tick species 

Observed 
cumulative 
tick 
burden 
(Obs) 

Theoretical 
cumulative 
tick burden 
(Th) 

Percentage 
Obs/Th 

Percentage 
reduction 
1-(Obs/Th) 

Rhipicephalus spp.  989.5  1886.5  52.40%  47.60% 

Boophilus spp.  1.5  75  1.40%  98.60% 

Amblyomma spp.  75.3  430  17.51%  82.49% 

Total tick burden  1066.3  2391.5  44.59%  55.41% 

These predications rely on assumptions made about the tick burden had no intervention 

occurred, but go some way to quantify the effect of the restricted spray over the administered 

time interval. Given the small numbers involved, predictions about Boophilus species should 

probably be treated with caution. In general, however, spraying at a 28 interval reduces the 

burden of Rhipicephalus ticks by almost half and the burden from the other two species by 

over 80%.  In terms of the impact on endemic stability of tick borne diseases, the restricted 

application protocol satisfies the criteria of minimising but not removing exposure to ticks 

(Coleman et al., 2001). Additionally, such a protocol could be beneficial in terms of slowing 

the development of resistance by maintaining a larger population of ticks with a broader 

range of susceptibilities to the insecticide (Dolan, 1999). The effects these treatments have 

had on the pathogens the ticks transmit is also of interest, and is discussed below. 

6.10  Impact of intervention on tick‐borne diseases 

Given the endemic nature of tick-borne diseases in SE Uganda (Perry et al., 1991), the short 

duration of the study and the diagnostic technique employed, it is difficult to accurately 

assess the impact of the treatments on tick-borne diseases. Identification of parasites from 

thin film blood smears may merely indicate that the animal is a carrier rather than diseased 

(Norval et al., 1992). Nonetheless, the microscopic and clinical indicators of infection are 

presented in the following section, but should be interpreted with this caveat in mind. 

Table 6-2: Theoretical reduction in tick burden as a result 
of a 28 day spray interval. 
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Figure 6.10:- Mosaic plot showing lymph node sizes for visits 1-4. Upper row shows proportions of each category, 
lower row highlights significant differences among treatment groups. Lymph node size coding: 1= normal, 2= mild 
enlargement, 3= profound enlargement 
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Figure 6.11:- Mosaic plot showing lymph node sizes for visits 5-8. Upper row shows proportions of each category, 
lower row highlights significant differences among treatment groups. Lymph node size coding: 1= normal, 2= mild 
enlargement, 3= profound enlargement 
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6.11  Assessment of lymphadenopathy 

Enlarged lymph nodes are an indication that an animal is mounting an immune response to 

infection. In the early stages of East Coast Fever, T.parva schizonts proliferate in the 

lymphocytes, often causing  profound enlargement of lymph nodes (Norval et al., 1992). This 

is also an indication of acute trypanosomiasis (OIE, 2006). Assessment of the degree of 

lymphadenopathy was a routine part of the clinical examination of each animal as described 

in chapter 2. Lymph nodes were scored and coded to a four-point scale; 0 indicated the lymph 

node wasn’t palpable, with 1, 2 and 3 for mild, moderate and severe enlargements 

respectively. Although clinically subjective, this coding system proved to have good 

repeatability within and between examiners and a previous study considered it to be as 

reliable as assessment using callipers (Tosas-Auguet, 2006). 

Mosaic plots were used to highlight differences between treatment groups. Figure 6.10 and 

Figure 6.11 show the variation in lymph node enlargement over time. Indications of 

differences between the groups at baseline were not apparent by Visit 3. Visit 5 and 6 show a 

significantly lower degree of lymphadenopathy (p<0.05) in the pour-on group compared with 

the other groups, although this significance is not apparent in the final two sampling visits. 

There appears to be no difference between spray on and control villages in terms of this 

assessment of lymphadenopathy.  

6.12  Microscopic prevalence of tick‐borne diseases 

It is worth reiterating that, used in isolation, thin whole blood smears are a relatively 

insensitive technique for assessing endemic tick-borne diseases because of their inability to 

differentiate diseased and carrier animals (Garcia-Sanmartin et al., 2006). Additionally, in the 

case of T.parva, piroplasmic parasitaemias can be  intermittent or below detection thresholds 

(Norval et al., 1992). Assuming, however, that these constraints remained constant 

throughout the study, the microscopy results do give some indication of the burden of tick-

borne diseases, and this can be compared between intervention groups. 
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6.13  Modelling tick‐borne diseases 

Results from the microscopy were coded as a binary variable for presence or absence of 

infection. A generalized linear mixed effect model was fitted following the same procedure as 

described in chapter 3. The error structure allowed for different intercepts and timeslope of 

village and animal within village. Outputs are odds ratios and the resultant models were 

plotted. 

6.14  Anaplasma spp.  prevalences 

Figure 6.12 shows a barplot of Anaplasma prevalences for each timepoint of the study. 

Whilst there is no clear trend, it appears as if the prevalence in control villages is increasing 

over time, whereas the other intervention groups appear to remain more constant. 

Investigation proceeded by fitting the following models to the data:  

model1<‐glmmPQL(Anaplasma~Group ,random=~Day|Village.Name/Tag.No, 
family="binomial", dataset= Full data) 

model2<‐glmmPQL(Anaplasma~Group ,random=~Day|Village.Name/Tag.No, 
family="binomial", dataset= Intervention period)  

Model1 and model2 share the same structure but are fitted to different datasets. Model1 is 

fitted to the whole dataset, model2 only to values from the start of the interventions. 

 Value Std.Error DF t-value p-value OR Upper 95% CI Lower 95% CI
(Intercept)  ‐0.667  0.107  5096  ‐6.24         

Isometamidium  ‐0.408  0.154  933  ‐2.65  0.01  0.66  0.90  0.49 

Pour‐on  ‐0.281  0.150  9  ‐1.87  0.09  0.75  1.01  0.56 

Spray  0.050  0.149  9  0.33  0.75  1.05  1.41  0.78 

 Value Std.Error DF t-value p-value OR Upper 95% CI Lower 95% CI
(Intercept)  ‐0.316  0.108  3330  ‐2.00         

Isometamidium  ‐0.772  0.157  898  ‐4.92  <0.001  0.46  0.63  0.34 

Pour‐on  ‐0.685  0.152  9  ‐4.51  <0.001  0.50  0.68  0.37 

Spray  ‐0.283  0.150  9  ‐1.89  0.09  0.75  1.01  0.56 

Table 6-3:- Output of model1:- Full dataset 

Table 6-4:- Output from model2:- Intervention period only 
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Table 6-3 shows the output from model1. There is a significant protective effect of 

isometamidium compared with the control (p=0.01). Although there are indications that 

animals in the pour-on group have lower odds of being positive, this is not significant. Table 

6-4 shows the output from model2. Considering only the time from the beginning of the 

interventions, there is a significant effect protective of both pour-on and isometamidium 

(p<0.001). 

Figure 6.13 and Figure 6.14 show the predicted values from model1 and model2 

respectively. Figure 6.13 shows curves for all timepoints of the study. Whilst there is some 

evidence of variation between villages this is small compared with the overall trends. 

Comparing treatment options, it appears that for the control group the disease odds increase 

over the study, a trend which is reflected to a lesser extent in the spray group and resisted by 

the pour-on and isometamidium groups. Figure 6.14 shows the predicted curves for only the 

intervention timepoints. In contrast to the generalised increase in the odds of infection with 

time shown in Figure 6.13, Figure 6.14 clearly shows different trends between villages. Two 

villages in the pour-on group and one in the spray group show a decrease over time. Overall 

the effect of both the insecticide groups is fairly stationary, although the upward trend in the 

pour-on group is very pronounced. 
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Figure 6.12:-Prevalence of anaplasmosis diagnosed by microscopy, by group, over time. Each panel 
represents a visit number reading from top left. Error bars represent exact binomial 95% confidence 
intervals 
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Figure 6.13: Predicted values from model1 
showing change in Anaplasma infections 
over time by group and village 

Figure 6.14: Predicted values from model2 
showing change in Anaplasma infections 
over time by group and village from day 0. 
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6.15  Theileria parva prevalences 

Figure 6.15 show bar plots of Theileria parva prevalences for each timepoint of the study. As 

with the prevalence of Anaplasma spp, there appears to be no obvious trend. There are some 

indications that isometamidium and pour-on groups have lower level of infection at the end 

of the study, although these differences are not pronounced. 

The response to treatment was modelled as before, with two identical models run on full and 

intervention period only datasets. 

Model3<‐glmmPQL(TparvaYN~Intervention,random=~Day|Village.Name/Tag.No, 
data=full dataset,family="binomial") 

Model4<‐glmmPQL(TparvaYN~Intervention,random=~Day|Village.Name/Tag.No, 
data=Intervention period only, family="binomial") 

 

 Value Std.Error DF t-value p-value OR Upper 95% CI Lower 95% CI
(Intercept)  ‐0.479  0.163  5096  ‐2.95  0.003       

Isometamidium  ‐0.079  0.231  933  ‐0.34  0.732  0.92  1.45  0.59 

Pour‐on  ‐0.282  0.230  9  ‐1.22  0.252  0.75  1.18  0.48 

Spray  ‐0.221  0.230  9  ‐0.96  0.361  0.80  1.26  0.51 

 Value Std.Error DF t-value p-value OR Upper 95% CI Lower 95% CI
(Intercept)  ‐0.372  0.157  3330  ‐2.09  0.027       

Isometamidium  ‐0.421  0.224  898  ‐1.88  0.060  0.66  1.02  0.42 

Pour‐on  ‐0.558  0.222  9  ‐2.51  0.033  0.57  0.88  0.37 

Spray  ‐0.524  0.222  9  ‐2.36  0.042  0.59  0.91  0.38 

Table 6-5:- Output from model3:- Full dataset 

Table 6-6:-Output from model4:- Intervention period only 
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Table 6-5 shows the output from model3 fitted to the whole dataset. There is no significant 

difference between the groups in terms of prevalence of Theileria pathogens (p>0.05). 

Table 6-6 shows the output from model4 fitted to the intervention period only. There is a 

significant difference between the pour-on and spray groups and the controls (p<0.05). There 

is no significant difference between the isometamidium treated group and the control. 

Figure 6.16 and Figure 6.17 show the predicted values from model3 and model4 respectively. 

Figure 6.16 shows the output curves for all timepoints in the study. The response varies 

between groups and between villages within groups. There is not a general trend and 

therefore at this level there is no significant difference. Figure 6.17 shows the output for only 

the intervention period, and again there is large variation between villages, especially within 

the control and isometamidium groups. The spray and pour-on groups are slightly more 

consistent in response, and show little change over time. 
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Figure 6.15:-Prevalence of T.parva as diagnosed by microscopy, by group, over time. Each panel 
represents a visit number reading from top left. Error bars represent exact binomial 95% confidence 
intervals. 



Chapter 6:- Impact  of interventions on clinical parameters 

 224

Theileria prevalence over time

Day

O
d

d
s 

ra
tio

0.2

0.3

0.4

0.5

0.6

-42 -14 0 28 56 84 112 147

Control Iso-1

Pour-on

-42 -14 0 28 56 84 112 147

0.2

0.3

0.4

0.5

0.6

Spray

Theileria prevalence over time

Intervention period

Day

O
dd

s 
ra

tio

0.2

0.3

0.4

0.5

0.6

0 50 100 150

Control Iso-1

Pour-on

0 50 100 150

0.2

0.3

0.4

0.5

0.6

Spray

P
re

va
le

nc
e 

P
re

va
le

nc
e 

 

 

Figure 6.16: Predicted values from model3 
showing change in Theileria infections over 
time by group and village 

Figure 6.17: Predicted values from model4 
showing change in Theileria infections over 
time by group and village from day 0 
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6.16  Weight change 

One of the most insidious impacts of chronic trypanosomiasis is a loss of weight and 

condition, and a reduction in productivity (Agyemang et al., 1991; Kristjanson et al., 1999; 

Taylor & Authié, 2004). Weight, and specifically weight change, are also visible signs that 

are readily apparent to the livestock keeper. In a study examining the opinions of cattle 

owners,  run in the same geographical area to this study, weight loss was ranked as the third 

most common sign of trypanosomiasis after inappetence and poor coat (Machila et al., 2003).  

6.16.1 Weight change over the study 

For the purpose of the analysis of weight during the study, the dataset has been restricted to 

animals that were fully grown at the start of the study, i.e. had two permanent incisors and 

were therefore in age category C (see Table 2-3). This was done to minimise the effect of 

natural, age-related growth on any possible change in weight due to pathology. Weight was 

only recorded for all animals at the beginning and end of the study, so the measure of change 

includes the diminazene treatments in addition to the intervention periods. Weight difference 

was calculated as  

Weight difference= Weight, kg at Visit 8 (Day 147)/Weight, kg at Baseline, (Day ‐42) 

 

Figure 6.19 shows the absolute weight of animals at the baseline and Figure 6.19 the 

difference in weight between the beginning and end of the study. 

 



Chapter 6:- Impact  of interventions on clinical parameters 

 226

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.18:-Weights of adult cattle at baseline, 
by village 

Figure 6.19:- Weight difference in cattle during study, 
by village. Red dotted line indicates zero line, 
indicating no change in weight over study. 
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6.16.2 Modelling weight over time 

Weight was modelled using a linear mixed effect model with intervention group as a fixed 

effect and random effects as for earlier models. The outcome variable, weight, was fitted as a 

continuous variable so the model was fitted using the lme directive  

Model5<‐lme(fixed=Weight~Group, random = ~ Day|Village.Name/Tag.No, 
na.action=na.omit, data = OB, subset=Age.42=='C')) 

 

 Value Std.Error DF t-value p-value 
(Intercept)  281.4935  8.571825  1145  32.83939  0 

Isometamidium  ‐6.80918  10.03759  649  ‐0.67837  0.4978 

Pour‐on  38.98973  13.4894  9  2.8904  0.0179 

Spray  9.91383  13.2923  9  0.74583  0.4748 

Table 6-7 shows the output for model5. There is a significant difference in the mean weight 

of the pour-on group, although, referring to Figure 6.18, this is probably attributable to a 

difference in the baseline values. Consequently, an assessment of the rate of weight change is 

required, involving the interaction of weight with time: 

Model6<‐lme(fixed=Weight~Group*Day, random = ~ Day|Village.Name/Tag.No, 
na.action=na.omit, data = OB, subset=Age.42=='C')) 

 

Table 6-7: Output of model5 
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 Value Std.Error DF t-value p-value 
(Intercept)  246.45  13.61  1104  18.11  <0.001 

Isometamidium  16.87  14.48  587  1.17  0.24 

Pour‐on  33.73  21.80  9  1.55  0.16 

Spray  15.68  21.64  9  0.72  0.49 

Day  5.25  1.60  1104  3.29  <0.001 

Isometamidium:Day  ‐3.29  1.83  1104  ‐1.79  0.07 

Pour‐on:Day  1.13  2.49  1104  0.45  0.65 

Spray:Day  ‐0.57  2.47  1104  ‐0.23  0.82 

Table 6-8: Output of model6 showing the change in weight 
over time 
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Weight change by intervention group
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Table 6-8 shows the output from model6 showing the predicted values of weight change over 

time.  Figure 6.21 is a diagnostic plot of the model residuals, which are normal, suggesting 

the model is adequately specified. Although there is a significant positive effect of time, i.e. 

animals increase in weight throughout the study, there is no significant difference in this rate 

between the groups. Although not significant, Figure 6.20 suggests an improvement for 

insecticide treated groups, and a decrease in the isometamidium treated groups. 

Figure 6.20:- Plot of model6 showing change in weight over 
time, arranged by group and villages 
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6.16.3 Change in weight over study 

Analysing weight change gives a slightly different result. Here each animal’s weight between 

the beginning and end of the study is modelled with respect to group.  

Model7<‐lme(fixed=Weightdiff~Group, random = ~ 1|Village.Name, 
na.action=na.omit, subset= Age.42=='C') 

Figure 6.21: Plot of residuals of model5 

 Value Std.Error DF t-value p-value 
(Intercept)  40.521  8.219  561  4.93  0.000 

Isometamidium  ‐18.774  9.947  561  ‐1.89  0.060 

Pour‐on  5.852  12.809  9  0.46  0.659 

Spray  ‐5.177  12.797  9  ‐0.40  0.695 

Table 6-9:-Weight change during study 
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Table 6-9 shows the outcome of model7. The pour-on shows the greatest mean increase of 

46.4 kg (40.5+5.9), 5kg more than the control. The spray performs 5kg worse than the control 

(not significant, p>0.05), and the isometamidium groups gain 18.8kg less weight than the 

control, although this just fails to be significant (p=0.06). 

6.17  Condition score 

As described in section 3.2.4, assessment of an animal’s condition score is a well established 

indication of production performance. It is a visual assessment of the amount of fat and the 

musculature covering the bones of the animal, and can be assessed independently of weight , 

hydration, gut fill, or pregnancy status (Bartholomew et al., 1994; Moran, 2005). Condition 

scoring was carried out as described in chapter 2 in accordance with (Nicholson & 

Butterworth, 1986). 

Condition scores are integers from 1 to 9; animals in this study all scored between 2 and 8. 

Analysis can proceed with condition score as either an ordinal factor, or as an approximation 

to a continuous distribution. Although valid conclusions could be made from either method, it 

was decided to show both analyses here for comparison.   Mosaic plots have been fitted to 

condition scores as discreet ordinal variables and a mixed effect model is fitted to values as a 

continuous variable. 

6.17.1 Condition score mosaic plots  

Figure 6.22  shows a mosaic plot of condition scores for visits1-4. At the beginning of the 

interventions, there are significantly higher condition animals in the isometamidium group 

compared with the others. However, by the subsequent visit the pour-on group shows a 

significantly higher proportion of high condition animals. Figure 6.23 shows a mosaic plot of 
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condition scores for visits 5-8. Overall, there are no obvious significant differences that 

maintain over time, although there are indications that the pour-on group gives higher and the 

control group lower condition scores compared with the other groups (dotted, but not shaded 

cells hence significance p>0.05). Subtleties in any patterns of temporal effects may be made 

evident by modelling the response of condition score as a continuous variable. 
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Figure 6.22: Mosaic plot showing condition scores for visits 1-4. Upper row shows proportions of each category, 
lower row highlights significant differences among treatment groups 
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Figure 6.23:- Mosaic plot showing condition scores for visits 5-8. Upper row shows proportions of each category, 
lower row highlights significant differences among treatment groups 
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6.17.2 Condition score as a continuous variable 

The initial model was fitted to condition score. Data was fitted only to the intervention 

period:- 

Model8<‐lme(fixed=Cond.Score.Number~Group, random = ~ 
Day|Village.Name/Tag.No, data = Intervention period)) 

 

Table 6-10 shows the output from model8. There is no significant difference among the mean 

condition score of the different intervention groups.  

 Value Std.Error DF t-value p-value 
(Intercept)  4.750  0.071  3330  66.11  0 

Isometamidium  ‐0.068  0.090  899  ‐0.75  0.451 

Pour‐on  0.013  0.110  9  0.12  0.903 

Spray  ‐0.005  0.109  9  ‐0.04  0.963 

Model9<‐lme(fixed=Cond.Score.Number~Group*Day, random = ~ 
Day|Village.Name/Tag.No, na.action=na.omit, data = Intervention period)) 

Considering time as a fixed effect, the rate of change of condition score can be assessed, 

giving different slopes for change in condition score. 

  Value Std.Error DF t-value p-value 
(Intercept)  4.700  0.073  3326  64.279  <0.001 

Isometamidium  ‐0.033  0.096  899  ‐0.346  0.729 

Pour‐on  ‐0.010  0.110  9  ‐0.087  0.932 

Spray  ‐0.023  0.110  9  ‐0.212  0.837 

Day  0.030  0.001  3326  4.063  <0.001 

Isometamidium:Day  0.001  0.001  3326  ‐0.808  0.420 

Pour‐on:Day  0.003  0.001  3326  2.805  0.005 

Spray:Day  0.002  0.001  3326  2.385  0.017 

Table 6-10:Output from model8 showing mean condition 
score between treatment groups. 

Table 6-11:-Output from model9 showing change in 
condition score between treatment groups over time. 
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Table 6-11 shows the output from model9. The effect of time is significant, with all animals 

showing an improvement in condition score over time. However, the rate of change is 

significantly steeper for the pour-on (p>0.01) and the spray village (p=0.02) villages than the 

control villages. Figure 6.24 shows the predicted values for model9, and shows the difference 

in slopes between the villages within each intervention group.   

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.24:- Output of model showing the change in condition 
score by group and village 
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6.17.3 Quantification of thin animals in each intervention group 

A final way of assessing the difference between the intervention groups may be the 

proportion of thin animals present in each group. A thin animal was coded as having a 

condition score of 3 or less, so each animal received a binary coding of their status of thin or 

not thin at each visit. This threshold was chosen as it most closely corresponded to the 

classifications of the livestock keepers (personal observation). 

Figure 6.26 shows the prevalence of thin animals over the study. Overall, the proportion of 

thin animals decreases throughout the study, although overlapping 95% binomial confidence 

intervals indicate non-significant differences. There does appear to be a separation between 

insecticide and non-insecticide treated groups evident throughout the intervention period. 

A generalised linear mixed effect model with binomial errors was fitted as follows: 

Model10<‐glmmPQL(Thin~Intervention*Day , random=~Day|Village.Name/Tag.No, 
data=OB, family="binomial") 

 

 Value Std.Error DF t-value p-value OR Upper 95% CI Lower 95% CI

(Intercept)  ‐0.729  0.193  5091  ‐3.78  0.000       

isometamidium  0.010  0.280  933  0.03  0.973  1.01  1.75  0.58 

Pour‐on  0.452  0.273  9  1.65  0.133  1.57  2.69  0.92 

Spray  0.187  0.273  9  0.69  0.510  1.21  2.06  0.71 

Day  ‐0.094  0.041  5091  ‐2.27  0.023  0.91  0.99  0.84 

Isometamidium:Day  0.002  0.059  5091  0.04  0.967  1.00  1.13  0.89 

Pour‐on:Day  ‐0.185  0.059  5091  ‐3.13  0.002  0.83  0.93  0.74 

Spray:Day  ‐0.154  0.059  5091  ‐2.59  0.010  0.86  0.96  0.76 

Table 6-12:-Output of model10 showing the proportion of 
thin animals (condition score ≤ 3) throughout the study. 
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Table 6-12 shows the output of model10. There is no significant difference in the proportion 

of thin animals among the intervention groups, although there is a significant decrease in the 

number of thin animals in all groups over time (p=0.02) Both pour-on and spray groups show 

a significant reduction in the number of thin animal over time (p<0.01) compared with the 

control. Figure 6.25 shows the predicted values of model10. There is a reduction of the 

proportion of thin animals over time for all villages except one of the isometamidium villages 

which shows a small increase. The reduction in the number of thin animals in the spray and 

pour-on villages can be seen to be much more pronounced than in the non-insecticide treated 

villages. 

 

 

 

 

 

 

 

Figure 6.25: Fitted values for model10 showing the change in 
the number of thin animals during the study. 
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Figure 6.26: Proportion of animals deemed to be thin (condition score ≤3) during study. Error bars show exact 95% 
confidence intervals. 

Prevalence of thin animals throughout the study 
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6.18  Summary and discussion 

This chapter has concentrated on two ways of assessing the impact of the interventions; 

firstly the impact of the interventions on ticks and tick-borne diseases and, secondly,  the 

effect on some of the general indicators of animal health that can be assessed in the field 

as part of a clinical examination. Analysis of the ordinal data was made by a log-linear 

model fitted to a two-way contingency table, hence essentially a chi-squared test, and 

displayed using mosaic plots that graphically indicate cells that are statistically different 

from others in the same category. Assessment of binary or continuous data was made 

using linear mixed effect models or generalised linear mixed effect models to account for 

the grouped structure of the data. 

6.18.1 Summary of changes in tick burden  

Analysis of the tick burdens for each intervention group showed significantly lower tick 

burdens in the pour-on insecticide groups, and this was particularly prominent with the 

brown ear tick Rhipicephalus appendiculatus. In contrast, the restricted spray protocol 

was not consistently significantly different from either the control or isometamidium 

treated villages. The isometamidium group did not show any significant differences 

compared with the control for any of the tick species throughout the duration of the 

interventions. Any anecdotal effect of the drug causing ticks to detach is not evident. 

6.18.2 Tick burden summary 

The mosaic plots for individual tick species suggest that the tick challenge increases over 

the duration of the study. This is consistent with the seasonal rise in tick burden in this 

region, coinciding with a less arid climate (Randolph, 1994). In this context, the pour-on 

group tends to show a significantly lower tick burden than the other treatment groups. 

This is particularly apparent in the counts of Rhipicephalus ticks. The groups receiving 

the spray treatments show no reduction in tick burden compared with the control. The 

isometamidium group also shows no difference from the control groups.  
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The difference in application sites and dose probably account for the difference between 

the pour-on and spray groups. Pour-on insecticide formulations of synthetic pyrethroids 

are designed to rapidly disperse from the point of application through the sebum layer to 

cover the entire skin surface, and hair clipping analysis has shown this to take in the order 

of 48 hours (Allan et al., 1998). However, studies found concentrations on the back to be 

six times higher than on the belly and 39 times higher than on the legs (Stendel et al., 

1992; Vale et al., 1999), demonstrating that redistribution was not uniform. Although the 

same redistribution occurs with the spray formulations, the total amount of active 

ingredient applied in the restricted application protocol is an order of magnitude lower 

and is applied in an aqueous rather than a lipophillic vehicle.  Redistribution to other sites 

is thus reduced and the local effect is probably more important. 

A subsidiary study was also run to investigate the residual effect of insecticide. A 

population of 20 cattle were treated with the same spray protocol as applied in the 

longitudinal study and monitored every 72 hours to assess the residual effect of the 

insecticide at preventing tick attachment. Conditions of tick challenge were selected to 

emulate the tick challenge experienced by cattle in the longitudinal study as much as 

possible. The study showed that the insecticide spray reduced the tick burden of all 

species to zero. However, attached populations began to recover after 3 days and for 

Rhipicephalus appendiculatus were back to pre-treatment levels 30 days later. 

Amblyomma variegatum and Boophilus decoloratus did not recover to pre-treatment 

levels by the time the study was ended 35 days after spraying. Calculation of the 

cumulative tick attachment days during a 28 day interval was compared with a theoretical 

burden had no intervention occurred, and showed the restricted application protocol 

reduced the burden of Rhipicephalus. spp by 48%, Boophilus by 99% and Amblyomma by 

82%. Overall, there was a 55% reduction in tick burden using the restricted application 

method. 

6.18.3 Summary of Anaplasma spp. prevalences 

It appears that there is a significant difference between the isometamidium villages and 

the control for both models, with isometamidium treated animals showing lower odds of a 

positive diagnosis for anaplasmosis by microscopy than control animals. This is unusual, 
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for isometamidium is not considered to have any direct effect on anaplasmosis. There are 

anecdotal reports of ticks dying or detaching from animals shortly after administration of 

isometamidium, hence a reduction in the transmission of the disease. An alternative 

interpretation however is an interaction between trypanosomiasis and anaplasmosis. 

Animals carrying a mixed infection of  T.congolense and Anaplasma spp. were found to 

have significantly higher parasitaemias and clinical syndromes than expected if the 

pathological effect was simply additive (Tosas-Auguet, 2006) Consequently, prevention 

of the immunosuppressant effect of trypanosomiasis (Scott et al., 1977) by 

isometamidium prophylaxis would allow for the anaplasmosis to be kept at a low level, 

both clinically and parasitologically. This hypothesis is similar to the effect observed in an 

outbreak of anaplasmosis in Switzerland. Forty-seven percent of cattle in a herd were 

found to be positive for the Anaplasma marginale by microscopy. However, it was 

concurrent infection with up to five other vector borne agents, detected in 90% of the 

clinically sick animals, which exacerbated the morbidity of the outbreak (Hofmann-

Lehmann et al., 2004). The observation that pour-on is significantly protective compared 

with the control could also be due also to the interaction hypothesis given above. By 

control of the vector, hence controlling incident trypanosome infections, the clinical 

impact of anaplasmosis is minimised. This result could also be attributable simply to the 

direct effect of the insecticide, reducing the tick populations and biting flies that vector 

Anaplasma spp. 

6.18.4  Summary of Theileria parva prevalences 

There are no major differences in Theileria prevalence between the groups, although the 

insecticide groups have a protective effect compared with the control significant at the 

95% confidence limit. Given the issues with this diagnostic technique raised in Section 

6.12 these results should be treated with a degree of caution. From a clinical perspective, 

given the ecology of the parasite and the time period of this study, it is probably unlikely 

the interventions would have had a direct noticeable effect. If it is assumed that a state of 

endemic stability to tick borne diseases exists in this area (Deem et al., 1993; Rubaire-

Akiiki et al., 2004), a hypothesis reinforced by the high prevalence of the vector, 

Rhipicephalus appendiculatus, then diagnosis by microscopy is unlikely to be able to 

quantify any reduction in vectoral challenge due to the confounding effect of carrier 
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status.  It is possible that a reduction in overall disease burden resulting, for example, 

from the impact of the interventions on trypanosome populations or TBD transmission, 

are having a significant effect. A more general assessment of cattle health may be of use, 

and this is covered in the following section 

6.18.5 Summary of clinical signs 

Comparison of the clinical signs indicated a lower level of lymphadenopathy in the pour-

on group, although this was not consistent across time.  

Analysis of the change in weight of the cattle in the study also did not reveal any 

significant differences between groups. On a group level, there was a general increase in 

weight over the study. This may be because the age of some animals was mis-catagorised, 

and hence this change therefore represents natural age-related growth. Alternatively, the 

increased weight could be the result of management factors common to all sites, such as 

improved nutrition due to improved seasonal grazing. Analysis of the weight change of 

each animal indicated that the isometamidium group had approximately half the weight 

increase of the other groups, although this difference was not significant (p=0.06). 

 

Assessment of condition scores indicated pour-on and spray groups had a significantly 

higher rate of improvement over time than control villages (p>0.01 and p>0.02 for pour-

on and spray groups respectively). There was no difference between the isometamidium 

and control villages in terms of condition score. 

 

Overall, this indicates that there are significant positive animal health benefits that can be 

attributable to the monthly application of a pour-on formulation of deltamethrin. These 

changes are not as apparent for the restricted spray, at least not at a resolution of a 28 day 

sampling frame. Closer investigation of the residual activity of the restricted application 

protocol indicated the method had a significant effect on the tick populations, although 

the persistence was not sufficient to keep animals clear of ticks for the four week interval. 

Halving the spraying interval would probably be possible and still afford some tick 

challenge to maintain endemic stability. 
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7.1 The problem in context 

Endemic diseases, especially tick and tsetse transmitted pathogens are severe constraints 

to animal productivity in Africa. Control of these diseases has in the past been the 

responsibility of government departments, involving specialist personnel funded and 

resourced centrally, often with a wide geographical sphere of operation. Following 

structural changes in the 1980’s and 1990’s, the capacity of government veterinary 

departments to deliver veterinary services declined (de Haan, 1991; Umali et al., 1994), 

and donor policy shifted to a demand-driven cost recovery approach of veterinary service 

delivery (Leonard, 1998). The main policy document that catalysed the restructuring of 

health services, the Berg Report (World Bank, 1981), put faith in the economic principles 

of the market and had a minimalist view of the state. The philosophy that animal health 

was an economic service, therefore ought to be privatised, whereas human health was a 

welfare service that necessitated continual state support underpinned many of the changes 

made to health provision (Jeppsson & Okuonzi, 2000; Leonard, 2004). The recognition, 

however,  that animal health was in many ways inexorably tied to human health, both in 

terms of a pathway out of poverty (Perry et al., 2002; Kristjanson et al., 2004), and in 

terms of zoonotic disease (Meslin, 1997; World Health Organization, 2005)  took a 

further 20 years to influence policy. In the meantime, emphasis shifted from top-down 

approaches to market driven health provision (Chilonda & Van Huylenbroeck, 2001), 

putting the financial and logistical responsibility for healthcare into the hands of  poor 

rural livestock keeper. Consequently factors such as the cost of treatment and proximity to 

vendors were found to be the two most important influences on the accessibility of animal 

healthcare in the new system (Heffernan & Misturelli, 2000). Furthermore, sustainability 

of programmes designed to improve animal health suffered due to the lack of long term 

commitment from the community (Barrett & Okali, 1998; Kamuanga et al., 2001) and the 

perception that livestock health problems remained the responsibility of the state (Catley 

& Leyland, 2001; Kamuanga, 2003). In this economic paradigm, curative medications 

replaced prophylactic treatments, on the basic principle that not paying for a preventative 
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good entailed the risk of loss, whereas not paying for curative goods came with a certainty 

of loss (Grace, 2006). 

The current state of a market driven veterinary service thus demands that successful 

animal health interventions are economically viable. Successful interventions are 

therefore those that are cheap, easy to acquire and rapidly effective at demonstrably 

providing a benefit to the individual that made the investment (Torr et al., 2005). To 

control trypanosomiasis, the options are to treat the cattle with a trypanocide, or to control 

the tsetse vector. Although tsetse control options have been the understandable obsession 

of scientists and policy-makers for over a century, large scale tsetse eradication 

campaigns have only cleared 2% of tsetse-infested land since the 1970’s (Budd, 1999) 

and only 1% of Africa’s tsetse infested areas were under any vector control in the late 

1990’s (Allsopp, 1998).  

In order for vector control options to functional, they have to be deployed over a large 

area, often hundreds or thousands of square kilometres (Hargrove, 2003). In order to this 

degree of coverage to be attained in the current veterinary service paradigm, the chosen 

method has to provide an obvious benefit to each one of the individual livestock keepers 

who are being relied upon to invest in it. The only vector control option that is likely to 

offer sustainability in this context is the use of insecticide treated cattle (Hargrove et al., 

2000; Brightwell et al., 2001) however current application methods still make insecticide 

more expensive than the use of trypanocidal drugs (Shaw, 2004). It has been estimated 

that 70% of cattle at risk from trypanosomiasis are treated with trypanocidal drugs 

(Allsopp, 1998), and the 35 million doses estimated to be used each year (Geerts et al., 

1997) indicate this is overwhelmingly the most common option of managing the disease. 

This is not sustainable in the long term however due to emerging resistance (Holmes et 

al., 2004), livestock are still less productive than cattle raised in areas free of 

trypanosomiasis (Kristjanson et al., 1999) and the proportion of household income spent 

on the drugs can be large; a study in the Central African Republic found that 80% of cash 

expenses went on trypanocides (Blanc et al cited in Shaw, (2004)). Coupled with the 

tendency of livestock keepers to only invest treatment in their most valuable animals 

(Doran, 2000),  there is little prospect that allowing the farmer to ‘go it alone’ (Eisler, 
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2003) is going to make any enduring difference to the burden trypanosomiasis in African 

livestock.. Additionally, due to the role of cattle as asymptomatic carriers of  zoonotic 

T.b.rhodesiense  parasites in east Africa, the benefits of mass treating cattle with 

trypanocides to remove the reservoirs of sleeping sickness (Fevre, 2002; Wendo, 2002) 

would be greatly augmented if the cattle could be kept free of reinfection. Consequently, 

there was a desire to investigate ways of making the use of insecticides cheaper and easier 

to use and thus more likely to be adopted. 

7.2 What we did 

This thesis has explored the outputs from a longitudinal study conducted in Uganda in 

2003-2004 whereby existing trypanocidal and insecticidal treatment options were 

compared with a novel technique that reduced the amount of insecticide by 80% by only 

treating the areas of the animal shown to be preferential feeding sites for tsetse. Work 

done in Zimbabwe showed that G.pallidipes and G.m.morsitans fed mainly on the legs 

and belly of the cattle. By spraying insecticide only onto these areas, the amount of drug 

used could be reduced by 80%. If this conferred the same protection against tsetse then 

the technique could have three advantages. It would be cheaper, it could reduce the 

detrimental effect to seen in invertebrate dung fauna associated with high residues in the 

dung following ingestion of insecticide during allogrooming (Wardhaugh et al., 1998; 

Vale & Grant, 2002), and it may provide less of a detrimental impact on the endemic 

stability to tick and tick borne diseases (Eisler et al., 2003). 

To briefly summarise the study design, 945 cattle were recruited from 12 villages in Busia 

and Bugiri administrative districts of south east Uganda. The entire study population were 

given two doses of a trypanocide diminazene aceturate at 42 and 14 days prior to 

beginning the interventions. Interventions were allocated to groups of three villages at 

random and consisted of one of the following four options: 

1. A single trypanoprophylactic dose of isometamidium chloride at day 0; 

2. A monthly (q.28 days) application of a commercially available pour-on formulation of 

deltamethrin; 
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3. A monthly (q.28 days) application of a spray formulation of deltamethrin, mixed to   

manufacturer’s standard concentration but only applied to the front legs, ears and 

belly of the animal; 

4. A control group, which received no further interventions. 

The cattle were sampled over a period of 147 days after the interventions began on day 0. 

Sampling intervals were every 4 weeks apart from the last visit which had a 5 week 

interval due to staff availability. A variety of clinical and laboratory parameters were 

collected for each animal, with the aim of quantifying the impact of the interventions 

using a variety of indications of infection and disease.   

7.3 What it means 

Assessments of the efficacy of the interventions have been made on a number of levels. 

The output of an assessment is largely defined by the criteria used to quantify its success 

combined with the information available to validate those criteria. It was decided that it 

would be useful to look at the results of the study in terms of the levels of information 

available to different groups of people that are likely to be involved with this technology. 

The impacts of the different interventions were therefore assessed using techniques 

available to, and applicable for, the various stakeholders; namely external 

researchers/policy makers, local animal health workers and rural farmers. Although there 

is usually a decreasing gradient of resources between those three named groups, it is not a 

hierarchical system. For example, more information may be available to external 

researchers due to them being better resourced, however local survey teams are likely to 

have better knowledge about recent disease incidents and only the livestock keeper have 

experience of the husbandry and production history of their animals.  
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Livestock 
keeper 

Animal 
health 
worker 

Local 
surveillance 
team 

External 
research 
groups 

Appetite  ++ + - - 

Lactation status  ++ + - - 

Calving interval  ++ - - - 

Calf mortality  ++ + - - 

Change in milk yield  ++ - - - 

Interaction with herd  ++ - - - 

Herd disease history  ++ + + - 

H
is
to
ry
 

Shade seeking behaviour  ++ - - - 

Abnormal behaviour  ++ + + - 

Loss of tail hair  ++ - - - 

Lethargy or weakness  ++ + - - 

Weight loss  ++ + - - 

Diarrhoea/Constipation  ++ ++ - - 

Coat condition  ++ ++ + - 

Dehydration status  + ++ ++ - 

Ectoparasite burden  ++ ++ ++ - 

Mucous membrane colour  - + ++ - 

Oedema  + + - - 

Discharge  + ++ ++ - 

Staring coat  + ++ ++ - 

Lymphadenopathy  + ++ ++ - 

Rectal temperature  - ++ ++ - 

Condition Score  - ++ ++ - 

Fi
el
d
 o
b
se
rv
at
io
n
s 

Haemoglobin  - + ++ + 

PCV  -  ++ + 

Gross pathology (Post Mortem)  + + ++ - 

Faecal egg analysis  - - ++ - 

Dry thick and thin blood smears  - - ++ + 

HCT Microscopy  - - ++ + La
b
o
ra
to
ry
 

te
ch
n
iq
u
es
 

BCT Microscopy  - - ++ + 

Antigen ELISA  - - + ++ 

Antibody ELISA/IFAT  - - + ++ 

Mouse inoculation  - - - ++ 

PCR  - - - ++ 

Real‐time PCR  - - - ++ 

GIS Disease Risk map  - - - ++ 

Sp
ec
ia
lis
t 

te
ch
n
iq
u
es
 

Epidemiological bulletins  - - + ++ 

Table 7-1:- Observations relevant to different stakeholders. ‘-‘ :- Test unlikely to 
be used; ‘+’;- Test available but probably of restricted use. ‘++’ :- Test available 
and likely to be used 



Chapter 7:- Discussion 

 250

Table 7-1 shows some of the observations that can be used to quantify disease and the 

stakeholders who are likely to access and interpret information on that level. The likely 

use of a variable is assessed on grounds of both knowledge and resource availability, a ‘-‘ 

indicates information at that level is unlikely to be available to that group, a ‘+’ indicates 

it is of limited availability and a  ‘++’ indicates that information derived from that 

variable could form a significant part of the diagnosis. The purpose of the table is to 

highlight the differences in information that are available to different groups. For a 

treatment to be adopted it has to be seen as a success by all these groups. 

7.4 Farmer level assessment 

Analysis of the data from a clinical point of view, using visible signs that require no 

specialist equipment, is the most basic, but arguable the most important output of this 

study. In order for technologies to be adopted they not only have to work, they have to be 

seen to work, hence unless the end user, i.e. the livestock keeper, sees a difference in his 

or her animals as a result of an intervention, it is unlikely to succeed. In the case of the 

interventions trialled in this study, visually assessable criteria were tick burden, condition 

score and weight change.  

7.4.1  Tick burden reduction 

In terms of tick attachment, the pour-on applications kept tick burdens at a significantly 

lower level for the four-week interval between applications. Spray formulations reduced 

the tick burden by 55%, but were not persistent enough to show any difference at four 

week intervals.  These results were consistent with an investigation in the Gambia on the 

use of flumethrin insecticide applied only to the tick attachment areas. Compared with 

untreated controls,  the restricted application gave a 61% reduction in tick burden 

compared with a 75% reduction for the whole body treatment, however used 14 times less 

insecticide and was 25 times cheaper (Mattioli et al., 1999).  

 

Researchers in West Africa have recently also looked at the use of restricted application 

techniques to control ticks and tsetse. Initially designed as a low-cost control method for 

the tick Amblyomma variegatum, it was discovered that just treating the feet of cows 
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conferred a significant beneficial effect on tick and tsetse burdens. Cattle walked through 

a 46x25 cm footbath, containing a normal concentration of synthetic pyrethroid 

insecticide, had a significantly reduced burden of Amblyomma variegatum. Previous work 

had found that this species of ticks initially attached to the interdigital areas and only 

moved to their preferential sites of attachment in the udder and belly when the animal lay 

down in the evening (Stachurski, 2006). By footbath-treating cattle every 3 days after 

returning from grazing, newly acquired tick burdens were prevented from attaching to 

their preferential sites (Stachurski & Lancelot, 2006). Although tick burdens were not 

removed entirely, they were reduced by over 80%. This technique used around 200ml of 

solution per animal treatment and was well received by farmers due to its ease of use.  

These results are also consistent with the results displayed in section 6.9 covering the re-

attachment of ticks following restricted application of deltamethrin.  

7.4.2 Healthier cows? 

Assessment of production factors such as weight and condition score showed a general 

increase over the whole study for all groups, and a significant improvement in condition 

score for both insecticide treatments. Although this was more pronounced for the pour-on 

group, it was arguably a sufficient enough difference to be noticed by the farmers. This is 

supported from personal conversations held with the farmers receiving the spray 

application, who stated condition gain and tick control as the most noticeable outcomes of 

the study. It should also be noted however that when, at the close of the study farmers 

were gifted a choice of treatment, pour-on insecticide was the most requested item. 

 

7.5 Animal health worker assessment 

Chapter 5 looked at the impact of the interventions in terms of the effects potentially 

visible to local animal health workers. One of the diagnostic tools emerging as potentially 

cheap, robust and simple enough for field use are those able to quantify the anaemia status 

of the animal (Magona et al., 2004b). Assessing the anaemia status of an animal provide 

an indication, not of infection status, but of how the individual is coping with any present 

infection. Of the endemic diseases afflicting cattle in East Africa, anaplasmosis, 

schistosomiasis, helminthiasis and, particularly, trypanosomiasis cause anaemia. 
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Consequently, an assessment of the effect of the interventions using this parameter was 

considered important as it provided a broad indication of health. Additionally, given the 

current paucity of laboratory services to most rural areas of Africa (Machila et al., 2003), 

these tools are likely to be one of few resources that could be made available to the groups 

of people actually making treatment decisions (Magona et al., 2003; Eisler et al., 2007). 

 

The most significantly noticeable positive effect of the interventions was attributed to the 

twin diminazene doses at the start of the study. After two doses of trypanocide the mean 

haemoglobin had increased by 0.7g/dl, with over 60% of cattle registering an 

improvement in haemoglobin after the first diminazene injection and 65% continuing to 

show an improvement after the second. During the intervention period there was a further 

significant increase in the rate of haemoglobin improvement of the animals treated with 

pour-on insecticide, however this was not seen with the group receiving the restricted 

spray protocol. 

7.5.1 Effect of isometamidium 

The isometamidium villages in contrast showed deterioration on haemoglobin both during 

the interventions and over the whole study. Explanations for this are open to speculation; 

however a possible hypothesis could be related to the toxic side effects of the drug. 

Isometamidium chloride is far from a benign drug, injection causes a sterile lesion which 

acts as a depot from which the drug diffuses over time (Hill & McFadzean, 1963; Dowler 

et al., 1989). Side-effects to this lesion include infection of the depot site, often attributed 

to poor injection technique, lowered lactation rate, anorexia weight loss and decreased 

condition score (Mdachi, 1999). These effects has been attributed to the increased toxicity 

of the drug in areas of low trypanosome challenge (Mdachi, 1999); basically if there are 

insufficient circulating trypanosomes to actively take up the drug the side effects are more 

pronounced. This would fit with the evidence from the ITS-PCR analysis which showed 

trypanosome challenge, as interpreted by the rate of re-infection of the control groups, 

was relatively low and the evidence that cattle were clear of existing infections prior to 

the isometamidium treatment. 
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An alternative hypothesis involves the assumption that cattle in endemic areas become 

adapted to a particular strain of trypanosomes, which prevents establishment of further 

infections from different, possibly more pathogenic strains (Morrison et al., 1982; 

Dwinger et al., 1989; Sones et al., 1989). Removal of this pathogen population allows for 

re-infection with a different strain to which the host could be less adapted, hence suffers 

greater pathology.  If this is the case, then the policy of one-off block treatments of cattle 

(Wendo, 2002; FITCA, 2005) would perversely leave cattle more susceptible to 

trypanosomiasis in the long term.  

7.5.2 Overall impression of anaemia status 

From the point of view of a field clinician using a haemoglobinometer, the pour-on 

insecticide progressively makes animals less anaemic, the spray and control groups are 

generally equivocal, and the isometamidium treated animals slightly deteriorate. From 

personal observations in the field, animals did not respond well to the isometamidium, 

many farmers complained of a reduction in lactation, and swelling around the injection 

site to the extent that in one village several negotiations were required to maintain 

continued attendance in the study. 

 

7.6 Epidemiological assessment 

Samples collected from the cattle were screened using an ITS-PCR protocol to identify 

any trypanosomal DNA circulating in the animal’s bloodstream at the point of sampling. 

PCR is a highly specific technique and is 2-3 times more sensitive than microscopy 

(Solano et al., 1999; Picozzi et al., 2002) however the results indicate an active infection 

but do not give a quantification of the level of parasitaemia. These results have been used 

to assess the effect of the treatments on the prevalence of pathogenic trypanosome 

infections in the bloodstream of study animals. 

 

Chapter 4 analysed the ITS-PCR data using generalised linear mixed effect models to 

account for the grouping structure of the data. Initial baseline prevalences were 17.8% 

which was consistent with prevalences found by contemporaneous studies in the  same 



Chapter 7:- Discussion 

 254

area (Tosas-Auguet, 2006). After two treatments with diminazene aceturate the 

prevalence had dropped to zero which was attributed to the effect of the diminazene. 

7.6.1 Effect of diminazene aceturate 

Several authors (Barrett & Fairlamb, 1999; Maser et al., 2003) have commented on the 

potential for cross resistance to develop between diminazene aceturate and melarsoprol, a 

significant drug for the treatment of late stage T.b rhodesiense sleeping sickness, and thus 

questioned the advisability of block treatment of cattle (Barrett, 2001). This highlights a 

particular need for integrating control techniques in order to minimise reliance on any one 

methodology. Although the wisdom of widespread block treatment of cattle is questioned 

by some authors, on the basis that it may propagate drug resistance,  in actuality the 

biggest risk of  developing resistance comes from the widespread, deregulated use of 

trypanocidal drugs by livestock keepers who may not possess the knowledge or resources 

to correctly dose their animals (Welburn et al., 2006).  However,  from the evidence of 

the PCR screening and, assuming the decrease in observed prevalences was attributed to 

the effect of the diminazene, there is no indication therefore that trypanosome resistance 

to diminazene aceturate is yet a problem in S.E. Uganda. This agrees with a similar study 

by (Magona et al., 2004a) 

7.6.2 Prophylactic period of isometamidium 

There was no difference between the control and isometamidium groups at day 56 or day 

147, however modelling the incident rate of infection suggested that the isometamidium 

conferred a prophylactic period of 3-4 weeks in the study villages. The reported duration 

of isometamidium prophylaxis ranges considerably in the literature from 36 weeks 

(Fairclough, 1963), 24 weeks (Eisler et al., 1994), 16 weeks (Toro et al., 1983), 8 weeks 

(Eisler et al., 1997) or 3 weeks (Dolan et al., 1992), dependent on the degree drug 

resistance exhibited by the challenging strain of trypanosomes. It should be emphasised 

that monitoring in these cases was in the main by phase contrast microscopy, thus the 

improved sensitivity of the PCR techniques do not make this result directly comparable. 

Nonetheless, the return to baseline levels of infection in the isometamidium group by day 
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147 suggests that use of the drug to reduce transmission would require retreatment at 

intervals of every 8-10 weeks. 

7.6.3 Impact of insecticide protocols 

7.6.3.1 South‐east Uganda study 

Incident evidence of parasitaemias emerging in the cleared population during the course 

of the interventions were assumed to come from new infections and have been used to 

assess the degree of protection conferred by the respective treatments. This indicated a 

significant difference between the insecticide and non-insecticide treated groups which 

became more apparent over time. By the end of the study the prevalence of 

trypanosomiasis in the control and isometamidium groups had returned to baseline levels 

of approximately 15%. In contrast, the pour-on and restricted spray interventions kept 

below 4% for the whole duration of the study. There was no significant difference 

between the pour on or restricted spray groups indicating that they were both equally 

effective at reducing transmission of trypanosomiasis. 

7.6.3.2 West Africa study 

Following on from the work described above on the use of footbaths to control ticks 

(Stachurski & Lancelot, 2006), the same technology was assessed as a control method for 

tsetse. A similar treatment interval of footbath dipping at 3 day intervals was found to 

give comparable knockdown rates as spraying the entire animal  once a week, only using 

75% less insecticide (Bouyer et al., 2007) Additional work showed that 82% of the blood 

meals for G. tachinoides and 95% for G. p. gambiensis were from the legs of the animal. 

Investigation of the effect of treating 70% of a the herd (total n=96) with a restricted 

application of pyrethroid using a footbath showed a significant increase in the daily 

mortality rates of both marked and released reared flies and a closed population of wild 

flies, as inferred from a sharp decrease of their apparent density (Bouyer et al., 2007). 

There was also evidence that the incidence of animal trypanosomiasis in these herds 

dropped from 20% to zero following this protocol (Jérémy Bouyer per comm.) 
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So in terms of the incidence of new infections, the results from the south east Uganda 

study explored in this thesis concur with similar studies that quantify the impact of the 

restricted applications in terms of  the impact on the vector. Although neither of the 

studies explicitly assess the impact on the G.f. fuscipes vector predominant in south east 

Uganda, there are strong indications that insecticidal treatment of the legs and belly of 

cattle exposed to this subspecies offers protection against disease transmission.  

 

7.6.4 Why it should not work 

The study discussed in this thesis makes no direct assessment of the impact on tsetse flies; 

the indication of transmission reduction is inferred from lower trypanosome prevalences. 

There is however an interesting paradox here about the mechanism of control. The 

number of cattle treated in each site was small (n≈80) and was surrounded by an area 

specifically chosen to be devoid of other control operations. Work done modelling the 

dynamics of tsetse populations however suggests this area and number of cattle is far too 

small to have any effect on the overall tsetse population, on account of fly re-invasion 

(Hargrove et al., 2000; Vale & Torr, 2005). There is a significant decrease in the 

incidence of trypanosome infections in cattle treated with insecticide, inferring that the 

insecticide is having an impact on aspects of trypanosomiasis transmission. These are 

discussed below 

7.6.5 Persistence of insecticide 

 This above effect could be explained if the insecticide achieved a consistent knockdown 

rate able to incapacitate the fly before it had chance to feed and transmit infections. 

Recent work done in Zimbabwe on a G pallidipies tsetse population found that both pour-

on and spray formulations had a persistence period (whereby knockdown was >50% of 

landing tsetse) of between 9-20 days for whole body treatments with insecticide. 

Increasing temperature and rainfall both contributed to a decrease in the persistence 

period of the insecticide, as did restricting the application to smaller areas of the animal 

(Torr et al., in press): The restricted application on the legs and belly persisted from 

between 15 days during the cool (20OC) dry season to 8 days in the warmer (>26 OC). 
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wetter season Results were the same regardless of the formulation used (spray or pour-on) 

(Torr et al., in press). Data from the trial in south-east Uganda indicate there was not 

complete knockdown during the treatment period, given all groups have some incident 

infections, but suggest that the degree of knockdown offered a significant reduction in 

challenge. These results do counter the findings from Burkina Faso that suggested (pour-

on) insecticide treatments were effective for ~75 days (Bauer et al., 1992b). 

7.6.6 Local depletion in tsetse population? 

The alternative explanation to the effect of the insecticide is a local depletion in tsetse 

populations (Baylis & Stevenson, 1998a). This would be explicable given the slow 

mobility rate of G.fuscipes fuscipes, the predominant tsetse species in south east Uganda 

(Okiria et al., 2002b; Magona et al., 2005) and hence a low re-invasion rate. In terms of 

the study in south east Uganda, it would have been informative to sample non-treated 

cattle from the same herd as sprayed animals to see if these animals were similarly 

protected.  Due however to the social implications of such an exercise it was decided not 

to adopt that type of study design. Other work in the same area however demonstrated 

that treating only 10% of the cattle population in an already suppressed tsetse area did not 

keep emerging infections an acceptable level (Okiria et al., 2002b). 

7.6.7  Repellent effect of synthetic pyrethroids 

One of the ways now considered unlikely that deltamethrin works is as a repellent. The 

potential repellent or feeding inhibitory effect of deltamethrin (Bauer et al., 1992b) has 

not been noted in extensive studies of fly behaviour comparing treated and non treated 

cattle (Baylis et al., 1994; Vale et al., 1999), nor does insecticide sprayed on a restricted 

area of the animal cause flies to alight on a non treated area (Torr et al., in press). 

7.6.8 Disease interactions 

Although this study did not directly investigate interactions between diseases, there were 

several indications of their importance. There was a significant association between 

anaplasma positive animals and those positive by ITS-PCR. Additionally, there was 

evidence to suggest that animals that were protected from re-infection with 
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trypanosomiasis showed a lower prevalence of anaplasmosis. Due to the limitations of the 

diagnostic techniques used, such associations would benefit from more specific 

investigation, however analysis of  a previous longitudinal study in south east Uganda 

investigated pathogen associations in more detail. It was shown that mixed parasite 

infections were the norm and interactions were often more than simply additive, in 

addition to highlighting the importance of considering the parasite community as a whole 

when exploring the pathogenicity of any of its individual components (Tosas-Auguet, 

2006). It is known that good nutrition plays a significant role in the ability of an animal to 

manage morbidity associated with trypanosome infection (Holmes et al., 2000) and the 

ability to manage helminth infections (Parkins & Holmes, 1989). In terms of improving 

animal health and production in indigenous livestock in areas of endemic disease, the 

emphasis is not on prevention of infection but on management of disease. The benefits of 

insecticide treatment on lowering overall disease challenge, the effect of this on 

interactions between different pathogens within a host, and the overarching role of 

nutrition and husbandry could all be influential in explaining the results. 

7.6.9  Impact on environmental contamination 

Work investigating dung residues for a variety of treatment options concluded that spray 

formulations gave significantly lower dung contamination than pour-on formulations. 

Additionally, this contamination was not due to systemic absorption of deltamethrin as 

both milk and blood samples were at negligible or sub-detection levels (<10-10 

g/ml)(Bourne et al., 2005). 

 

7.7  Constraints of the study design, analysis or interpretation.  

7.7.1 A lack of control 

Investigating the change in clinical signs specifically highlighted a constraint of the 

chosen study design. Because all animals were given a twin dose of diminazene, the 

control group is not the same as a completely untreated group. Statistical analyses have 

thus made differential rather than absolute comparisons to an untreated population of 

cattle. Whilst this does not invalidate any of the findings, it makes identifying 
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significances harder. It is  possible  that the beneficial effect of the diminazene lasted for 

most of the duration of the study, which would be consistent with similar work that 

followed cattle in the same area of south east Uganda for 12 months following either 

isometamidium or diminazene treatments, and found no significant difference between 

the two treatments in terms of prophylaxis of new infections (Magona et al., 2004a) 

7.7.2 Length of study 

Another criticism of the study is that at 8 months it was comparatively short. If resources 

had been available to continue the study for longer than potentially important information 

about seasonal changes in parasite burden could be investigated, for example the 

persistent effect of the insecticide in a hotter, wetter climate and the impact of seasonally 

burgeoning tick challenge. In addition, a longer timeframe would allow for an adequate 

assessment of the impact of this strategy on endemic stability in tick-borne diseases, for, 

although there were no negative indications from this study, requires a longer period of 

time to effectively assess.    

7.7.3 Missing values 

In terms of data analysis, the use of linear and generalised linear models was necessary to 

account for the clustered structure of the dataset. This also offered the advantage that 

modelling algorithms can analyse datasets with missing values, an almost inevitable 

consequence of this type of study design. As with all longitudinal studies however, the 

issue of whether drop out is random or due to some aspect of the treatment could be 

important. In this study full datasets were compared with subsets including only animals 

that had attended all samplings and found not to be significantly different, however more 

robust methods of interpolating missing data points are emerging (Carpenter et al., 2002; 

Diggle & Heagerty, 2002; Fitzmaurice et al., 2004) which could be of benefit to apply to 

future studies structured in this way.  

7.8 Costs of control options 

Calculating the actual costs of interventions is not straightforward due to disparities in 

published data as to the precise components that are included in the equation, such as 
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training, administration, initial research, monitoring and evaluation (Shaw, 2004). 

Nonetheless, Table 7-2 shows an estimate of the costs associated with different control 

options. It can be seen that by the cheapest option is the use of trypanocidal drugs, 

however as discussed above, this is not ideal. Traps offer a potentially economically 

feasible control method but also have disadvantages in terms of maintenance and 

sustainability (Holmes, 1997) 

Technique 
Costs per km2 
$USD 

Linear km of barrier using targets 
‐ barrier establishment 
‐ annual barrier maintenance 
 

 
2 000 
1 600 
 

Ground spraying  265‐390 

Aerial spraying (Sequential Aerial Technique)  435‐535 

Sterile insect technique (SIT)  250‐800 

Low‐density mono‐pyramidal traps  26 

Cattle insecticide treatment using pour‐on  (assuming 44 cattle per km2 

retreated every 30 days) 
60‐440 

Prophylactic trypanocides, assuming 15 cattle and 3 treatments/yr  135 

Curative trypanocides, assuming 15 cattle, 10% prevalence and eight 
week duration of disease 

6.5 

7.9  Less is more 

This thesis has compared different control options mainly directed at the control of 

trypanosomiasis in endemic cattle. The restricted application of insecticide was 

indistinguishable from pour-on formulations in terms of protecting cattle from the 

incidence of new trypanosome infections, and manifested some benefits on levels of 

animal health and production that are likely to be apparent to rural livestock keepers and 

animal health workers. It has to be emphasised however that the pour-on insecticide gives 

the most beneficial results, at least over the timescale of this study. The chief advantage of 

the restricted spray protocol is its reduced cost. Table 7-3 shows the cost of each of the 

Table 7-2:- Estimated costs of different control options for trypanosomiasis 
control, adapted from Shaw (2004).  
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interventions trialled in this study, calculated on a per dose basis, and additionally in 

terms of cost per animal per year. The restricted spray protocol (RSP) is approximately 18 

times cheaper than pour-on, and 5 times cheaper than whole body spray application. At 

approximately $0.60 per animal per year, the RSP represents the only economically viable 

alternative to the current option of curative drug use. Due to the apparent persistence of 

the RSP, it is probably advisable to halve the treatment interval to 14 days. This promises 

to provide additional protection from both ticks and tsetse, whilst protecting endemic 

stability and minimising drug, labour and environmental costs. If cost is not an constraint 

however, or if the pour-on can be made available cheaper to the end user, the use of pour-

on insecticide appears to be the best option of those investigated in this study.   
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Interval 
(days) 

Cost 
(USD) 

Cost of curative trypanocide 
Cost of diminazene aceturate (Veriben™, Ceva Sante‐Animale (10x 
1.05g sachets)) 

  $5.21 

Cost of diminazene aceturate  (per treatment for a 240kg animal @ 
7mg/kg) 

  $0.83 

Cost of prophylactic trypanocide 
Cost of isometamidium chloride (Veridium™, Ceva Sante‐Animale) 
(10x1g sachet) 

  $41.14 

Cost of 240mg isometamidium chloride ( Treatment for 240kg 
animal @ 1mg/kg) 

  $0.98 

Treatment interval (days)  56   

Cost per animal per year    $6.38 
Cost of pour‐on insecticide applications 

Cost of pour‐on deltamethrin (Spot‐On™ Coopers) per 200ml pack    $6.86 

Cost of pour‐on (per treatment)    $0.86 

Treatment interval (days)  30   

Cost per animal per year    $10.43 
Cost of whole body insecticide application 
Cost of spray formulation of deltamethrin (Decatix™ Coopers) cattle 
dip/spray 1 litre 

  $45.11 

Cost of whole body treatment, (assuming using 2.5ml of 
concentrate diluted 1:1000)) 

  $0.10 

Treatment interval (days)  14   

Cost per animal per year    $2.95 
Cost of restricted insecticide application (front legs, belly and ears) 
Cost of spray formulation of deltamethrin (Decatix™ Coopers) cattle 
dip/spray 1 litre 

  $45.11 

Cost of restricted application per treatment, (assuming using 0.5ml 
of concentrate diluted 1:1000)) 

  $0.02 

Treatment interval (days)  14   

Cost per animal per year    $0.59 

Table 7-3: Cost of individually treating an animal using the control options 
covered in this study. Costs calculated from wholesale market prices of 
drugs, Kampala, Uganda Sept. 2006 
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The use of insecticide by rural livestock owners needs to evolve into a ‘little and often’ 

approach. In order to initiate this change, it is almost certain that the control of ticks, 

rather than the control of tsetse will be the driving force. In south-east Uganda, tsetse are 

not a particularly visible problem, and a study in western Uganda with similar challenge 

found that livestock keepers did not associate the fly with trypanosomiasis (Mugisha et 

al., 2005). However, using the reappearance of tick populations as an indication that cattle 

need to be re-treated, it is possible that a consistent effect on the mortality of tsetse can be 

achieved. 

 

7.10  Current and future work  

“Prior to World War II, western medicine in Africa was either compulsory or 

unobtainable” was a comment made of the colonial approach to healthcare. (Austen & 

Headrick, 1983). The situation is now quite different, however the rural availability of 

drugs remains a serious constraint to healthcare delivery.(Heffernan & Misturelli, 2000). 

In order for insecticide use to be widely adopted, it has to be made available in 

appropriate volumes, with adequate information pertaining to its use. The hugely 

successful single dose trypanocide sachet has attributes of being well known, easy to use, 

cheap, small enough to be widely distributed, has a long shelf life and tamper-evident 

packaging. Competing technologies have to emulate this. In late 2006, an intervention 

trial was set up in by a consortium of Ugandan and UK based academic institutions, a 

drug company and a private equity firm to  mass-treat cattle in northern Uganda in an 

attempt to reduce the reservoir of human infective trypanosomiasis.(Welburn et al., 2006) 

By January 2007, approximately 111,000 cattle had been treated with diminazene 

aceturate and sprayed three times at 2 week intervals with deltamethrin using the 

restricted application protocol described above. Analyses of much of this trial is still 

pending, however it is apparent that sustainability of the technique will be highly 

dependant on the availability of the insecticide to rural communities.  The health of 

African livestock has been placed in the hands of the market economy. Now it has to be 

seen how the market will respond. 
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Figure 8-1:- Panel plot for each animal within control villages 
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 Blood haemoglobin over time per individual
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Figure 8-2:- Panel plot for each animal within Isometamidium villages 
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Figure 8-3:- Panel plot for each animal within pour-on insecticide villages 
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Figure 8-4:- Panel plot for each animal within restricted spray 
insecticide villages 
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Legend

x axis:- Day of study (time)

y axis:- Percentage of animals above threshold

z axis:- Minimum threshold of improvement 
for haemoglobin g/dl

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8-5: Control group: 3D surface plot showing the change in the percentage of  animals showing an 
improvement in blood haemoglobin from the previous visit, plotted over time. Y axis (grey) shows the 
percentage of animals improving, x-axis (purple) indicates time (day of the study) and the z axis shows the 
amount of improvement, in haemoglobin,  between visits, range 0-2 g/dl. 
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Legend

x axis:- Day of study (time)

y axis:- Percentage of animals above threshold

z axis:- Minimum threshold of improvement 
for haemoglobin g/dl

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8-6: Isometamidium group: 3D surface plot showing the change in the percentage of  animals showing 
an improvement in blood haemoglobin from the previous visit, plotted over time. Y axis (grey) shows the 
percentage of animals improving, x-axis (purple) indicates time (day of the study) and the z axis shows the 
amount of improvement, in haemoglobin,  between visits, range 0-2 g/dl. 
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Legend

x axis:- Day of study (time)

y axis:- Percentage of animals above threshold

z axis:- Minimum threshold of improvement 
for haemoglobin g/dl

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8-7: Pour-on group: 3D surface plot showing the change in the percentage of  animals showing an 
improvement in blood haemoglobin from the previous visit, plotted over time. Y axis (grey) shows the 
percentage of animals improving, x-axis (purple) indicates time (day of the study) and the z axis shows the 
amount of improvement, in haemoglobin,  between visits, range 0-2 g/dl. 
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Legend

x axis:- Day of study (time)

y axis:- Percentage of animals above threshold

z axis:- Minimum threshold of improvement 
for haemoglobin g/dl

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8-8: Spray group: 3D surface plot showing the change in the percentage of  animals showing an 
improvement in blood haemoglobin from the previous visit, plotted over time. Y axis (grey) shows the 
percentage of animals improving, x-axis (purple) indicates time (day of the study) and the z axis 
shows the amount of improvement, in haemoglobin,  between visits, range 0-2 g/dl. 
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Figure 8-9:- Map showing tick-borne disease prevalences for 
each study village at baseline (top) and day 147 (bottom) 
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Figure 8-11:- Map showing tick-borne disease prevalences for 
each study village at baseline (top) and day 147 (bottom) 
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