
Human Factors in the Design of Parallel Program
Performance Tuning Tools

Anna Honciroudakis

Doctor of Philosophy

The University of Edinburgh

1997 	 (

Ero Aapirpo tcat anj Nucij:

aA,\ij tua çbopa ?a Aoyta avat civrwxa

Declaration

This thesis was composed by myself and the work reported herein is my own except

where indicated.

Anna Hondroudakis

Acknowledgements

I would like to thank my supervisor Dr. Rob Procter for his encouragement and

the benefit of his scientific experience.

I would also like to thank all the people who contributed to this research by

sharing with me information about the ways they develop parallel programs. I am

grateful to Edinburgh Parallel Computing Centre (EPCC) for providing me with

opportunities to collaborate and speak with "real world" parallel programmers.

Thanks to the Engineering and Physical Sciences Research Council for providing

financial support during the project.

Thanks to all my friends who have made the bad times bearable and the good

times great fun.

Special thanks to my husband Pavlo for his constant encouragement throughout

the last years.

This work is dedicated to my parents Lambro and Niki.

Abstract

Parallel program design and development is inherently more difficult than its se-

quential counterpart. People who have traditionally programmed on sequential

machines are now called upon to deal with new and complex issues when trying to

control a number of entities executing concurrently. In the quest to produce ap-

plication programs that take advantage of the power of the underlying hardware,

usable and efficient tools are required to assist with the task of performance ana-

lysis and tuning. A large number of tools are described in the literature, but the

results of tool use are disappointing. The problem can be attributed to the fact

that tool design is not informed about users and their tasks. This thesis presents

an investigation of tuners' practices and analyses its implications for tool support.

An initial investigation by means of interviews and questionnaires provided the

basis of a framework for the analysis of tuning. A number of problems with existing

tuning tools were recorded and tuner requirements were captured. Some of these

requirements were investigated further with a smaller number of local tuners who

participated in the design of VISPAT, a tool for visualising the performance of

parallel programs running on clusters of workstations.

Tuning was also examined in the wider context of requirements and work practices

within multi-people development projects. An environment is proposed - the

Tuner's Workbench - which addresses issues which arise from the repetitive nature

of tuning, namely, its management and documentation in the context of real world

parallel code development.

Table of Contents

Introduction 	 1

Parallel Program Performance Analysis Tools 	 5

	

2.1 	Performance data collection7

2.1.1 	Implementation level7

2.1.2 	Triggering mechanism8

2.1.3 	Instrumentation techniques 9

2.2 Performance data analysis and filtering12

2.2.1 	Data analysis13

2.2.2 	Selection13

2.2.3 	Source code reference15

	

2.3 	Performance visualisation 17

2.3.1 	Animation of communications19

2.3.2 	Program displays21

2.3.3 	Aggregated metrics23

2.3.4 	Animated system views24

2.3.5 	Alternative representations26

Table of Contents
	

ii

2.4 Automatic performance diagnosis27

	

2.5 	Tool integration29

	

2.6 	A Design Agenda30

A framework for studying tuning
	

34

	

3.1 	Studies of programming 36

Tuning in the small 	 42

	

4.1 	Difficulties of tuning 43

	

4.2 	Cause/effect chasm49

	

4.3 	Faulty assumption /model52

	

4.4 	Inadequate tools 56

4.4.1 	Tool requirements61

4.4.2 	Case study I: tool evaluation62

	

4.5 	Change66

	

4.6 	Training in Tuning68

	

4.7 	Conclusions 69

Tuning in the large 	 77

	

5.1 	Model of tuning in the large80

	

5.2 	Tuning problem solving84

5.2.1 	Experimentation techniques85

5.2.2 	Duration of tuning88

5.2.3 	Size of the parameter set89

Table of Contents 	 -In

5.2.4 Case study I: ad-hoc tuning management90

	

5.3 	Documentation methods92

5.3.1 Case study III: tuning notes of informant 1797

5.3.2 Reasons for documenting tuning100

5.4 Case study IV: porting a program across many different machines . 101

5.5 Tool requirements104

	

5.6 	Conclusions 105

Tuning across machines, people and organisations. 	 110

6.1 Different attitudes to tuning111

6.2 Case study I: the LIBRA project113

6.3 Case study II: development in X115

6.4 Tuning within the group119

6.4.1 Somebody else's code122

6.5 Case study III: EPCC User Support Service124

6.6 Conclusions130

VISPAT: a VlSualisation and Performance Analysis Tool 	134

	

7.1 	Overview of VISPAT135

	

7.2 	The concept of phases 136

	

7.3 	Trace data format138

	

7.4 	Data filtering 141

	

7.5 	Visualisation145

7.5.1 	Navigation display 146

Table of Contents
	

iv

7.5.2 	Communication display150

7.5.3 	Membership Matrix Display153

7.5.4 	Statistics display 154

7.5.5 Profile display155

7.6 An example of VISPAT use156

7.7 Conclusions160

S. The participative design process of VISPAT 	 162

8.1 Participative design of VISPAT163

8.1.1 	First year meetings' overview164

8.1.2 	Communicating the design168

8.1.3 	The designer's role168

	

8.2 	Evaluation of VISPAT170

8.2.1 	Quantitative and qualitative findings172

8.2.2 	Evaluation tasks 174

	

8.3 	Summary and conclusions178

8.3.1 	Future plans for VISPAT179

8.3.2 	Summary 179

9. The Tuner's Workbench
	

180

9.1 Preliminary specification of TWB182

9.1.1 Tuning record creation and management185

9.1.2 Assessing tuning progress188

9.1.3 	Sharing tuning knowledge189

Table of Contents 	 V

9.2 	Conclusions and future work190

10. Conclusions
	

194

10.1 Future work198

A. Tuning in the small 	 200

A.1 Difficulties of tuning 200

A.2 Cause/effect chasm202

A.3 Faulty assumption/ model202

A.4 Inapplicable tools204

A.4.1 Tool requirements211

A.4.2 Case study I: tool evaluation213

A.5 	Change217

A.6 Training in tuning 220

B. Tuning in the large 	 222

B.1 	Problem solving222

B.1.1 Experimentation techniques225

B.1.2 Case study I: verbal protocol analysis229

B.2 Documentation methods231

B.2.1 Reasons for documenting tuning243

B.3 Tool requirements244

C. Tuning across organisations, people and machines 	 248

C.1 Different attitudes to tuning248

Table of Contents 	 vi

C.2 Case study I: the LIBRA project251

C.3 Case study II: development in X252

C.4 Tuning within the group254

	

C.4.1 	Somebody else's code256

C.5 Case-study III: EPCC User Support Service258

	

D. Findings 	of VISPAT's empirical testing 	 264

D.1 	List of tasks264

D.2 Qualitative and quantitative findings265

	

13.2.1 	Task 1 265

	

D.2.2 	Task 3267

	

D.2.3 	Task 7270

	

D.2.4 	Task 9272

E. Publications 	 275

	

Bibliography 	 276

List of Figures

1-1 Structure of investigation 	 . 3

2-1 Pablo analysis environment14

2-2 Barrier visualisation in Gthreads19

2-3 A collection of Paragraph displays20

2-4 The Source code display of VT21

2-5 The Navigation display in MPP Apprentice24

2-6 Data presentation model of Maritxu 25

4-1 Profile of respondents42

4-2 Tool requirements63

4-3 Tool requirements expressed by participants in the design meetings

of VISPAT (Chapter Seven)64

4-4 Role of tuning tools changes73

4-5 Model and processes of tool development74

5-1 Profile of respondents79

5-2 Resolution of a performance problem81

5-3 Tasks associated with tuning in the large82

vii

List of Figures 	 Viii

5-4 Tuning notes of Informant 46 ([e626])95

5-5 Excerpt from tuning notes99

6-1 What tuners need to know131

7-1 Overview of VISPAT135

7-2 Phase hierarchy in a CHIMP/PUL program137

7-3 	A phase node142

7-4 	A phase tree142

7-5 Communication event list 143

7-6 Navigation display 145

7-7 The central role of the Navigation display146

7-8 Graphical encoding of MPI point-to-point communications152

7-9 Components of the Communication display154

7-10 Membership matrix display155

7-11 Two instances of the Profile display156

7-12 Unfolded phase hierarchy of predator-prey program 157

7-13 Top level phases of predator prey program 158

7-14 Phases Mesh, Land and Comm have been filtered out 158

7-15 Phase Loop has been expanded to its subphases 158

7-16 Phase hierarchy of predator-prey program 159

7-17 Phase hierarchy of predator-prey program (version two)160

8-1 Meeting dates in a period of four months 165

List of Figures 	 a:

8-2 Basic tool functionalities . 167

8-3 A model of system acceptability171

8-4 Animation control buttons174

9-1 Components of TWB183

9-2 Tuning in the large184

9-3 Tuning record creation and management185

9-4 Tuning experiment (as FITA)187

A—i Communication display in Paragraph206

A-2 Length of message queue per node210

A-3 Communication map210

List of Tables

4-1 Sources of difficulties in tuning 	 . 44

4-2 Revised framework49

4-3 Tuning tool use56

4-4 Tuning training and access to documentation69

5-1 Duration of tuning89

5-2 Size of parameter set90

5-3 Documentation methods94

5-4 [Be627] Diary of porting IFS to CS-296

5-5 Informant 45's notes on a series of tuning sessions [e625]97

5-6 Reasons for documenting tuning101

6-1 What tuners ask 128

7-1 MPI collective operations and corresponding labels153

8-1 Ways of interacting with the interface features of the tool 173

8-2 Different kinds of utterances . 173

B-i [Be627] Diary of porting IFS to CS-2247

94

List of Tables 	 xi

D-1 Ways of interacting with the tool . 265

D-2 Different kinds of utterances . 265

D-3 Quantitative findings from Task 1...................266

D-4 Quantitative findings from task 3....................267

D-5 Quantitative findings from task 7....................270

D-6 Quantitative findings from task 9....................273

Chapter 1

Introduction

Parallel programming is inherently more complex than its sequential counterpart.

People who have previously developed sequential codes have now to apply data

and work decomposition techniques, be concerned with synchronisation and com-

munication issues and often know a lot about the operation of parallel machines

in order to produce efficient parallel code. To this end, performance analysis and

tuning is often undertaken to ensure that the power of the underlying hardware is

fully utilised. Self evidently, performance is a key requirement for parallel software.

Crucial to the success of tuning is the availability of adequate support tools and

considerable effort and expense have been devoted to their design. A large number

of performance analysis tools have been developed which claim to assist the tuner

in the tuning task. One common application of performance analysis tools is in the

visualisation of performance data resulting from program execution monitoring,

with the aim of helping the tuner to discover and analyse areas of poor perform-

ance. However, the results of tool use are disappointing. Users complain that

tuning tools are hard to learn and use and do not provide the information they

really need. Pancake reports that 64% of 448 participants of Supercomputing '93

had never used an externally developed tuning tool [133]. The root of the problem

lies in the lack of a systematic study of tuners and of how tuning is performed.

1

Chapter 1. Introduction 	 2

The work described in this thesis is an investigation of tuners and tuning. Ques-

tions that need to be asked are how parallel users tune their codes and what

their requirements of tool support are. Most empirical studies of programmers

leave a huge gap when it comes to observing and recording the practices of real

programmers and more specifically of real parallel programmers. The majority

of these studies have used students as their subjects and examined the cognitive

issues involved in cases of sequential program understanding or debugging. Par-

allel programming introduces a number of new different issues which need to be

investigated. By observing tuners and their work practices, this project attempts

to answer some of the above questions and reveal others.

First, Chapter Two reviews a number of state-of-the-art approaches to tool design

and the issues that tool developers have to address.

Chapter Three draws on some empirical studies of programmers to create a frame

work for studying tuning

An initial, informal investigation was conducted by interviewing local tuners and

by soliciting views of the wider tuning community via the medium of Internet

bulletin boards, the World Wide Web and electronic mail. This highlighted a

number of issues which were later explored more systematically through question-

naires and interviews. These findings are presented and analysed in Chapter Four

and in two subsequent chapters. More specifically, Chapter Four takes a closer

look at how the task is performed currently. The problems in relation to the use

of existing tuning tools along with tuner requirements of current and future tools

were collected and are presented. The impact that hardware and software support

may have on tuning is also discussed.

Discussions with local and non-local tuners revealed an aspect of the tuning task

which until recently was almost completely neglected by tool developers. Most

of the tools were concerned with supporting the tuning unit cycle i.e., the effort

to change the values of performance determining parameters in order to improve

Chapter 1. Introduction 	 3

performance on the basis of an observation of the program behaviour (tuning in

the small). What this work demonstrates is that an equal level of attention should

be paid to the implications that arise from having to repeat the tuning unit cycle a

number of times in order to reach an acceptable performance (tuning in the large).

Current tuning practices in relation to the management of the process and its

results were investigated and are presented in Chapter Five. Chapter Six examines

tuning practices in the context of collaborative work environments. In particular,

the communication and documentation needs of tuners are investigated in the

context of program development and tuning performed by many people within

or even across organisations. Figure 1-1 shows the structure of the investigation

presented in Chapters Four, Five and Six.

Tuning in collaboration with others

Communication and documentation needs of

multi-person parallel software development teams

Tuning in the large

Tuning management and documentation

Tuning in the small

Cognitive aspects of toning

Computer hardware and software support

Figure 1-1: Structure of investigation

Subsequent chapters of the thesis propose two tools for addressing some issues re-

vealed by the investigation. Some of the tuner requirements mentioned in Chapter

Four were re-inforced whilst co-ordinating a project at the local supercomputing

centre (EPCC) to design and build a tuning tool for the analysis of parallel pro-

grams running on a network of workstations. A number of tuners within EPCC

were interested in participating in the tool design process. Their requirements

were realised in the design of VISPAT (VlSualisation for Performance Analysis

Chapter 1. Introduction 	 4

and Tuning) - a tool for supporting tuning in the small - which is presented in

Chapter Seven.

The participative design process of VTSPAT is described in Chapter Eight. Other

local parallel program tuners participated in an informal evaluation of VISPAT.

The evaluation of VISPAT gave those who did not participate in the design process

a chance to voice their requirements and most importantly showed areas where

the tool could be improved in future iterations of the design cycle.

The findings of the investigation described in Chapters Five and Six comprised

the basis on which a preliminary specification of a tool for supporting tuning in

the large is proposed in Chapter Nine.

Finally, Chapter Ten summarises the results of this research and is concerned with

further work.

Chapter 2

Parallel Program Performance

Analysis Tools

This chapter provides an overview of contemporary performance analysis tools.

The next four sections consider four distinct issues in the design of tuning tools:

Performance data collection. There are a number of techniques for gathering

informative data whilst intruding as little as possible into program execu-

tion (probe effect). The first section presents some of the data collection

techniques adopted by current tools.

Performance data analysis and filtering. The amount of performance data

obtained can be very large, particularly in the case of massively parallel

systems. This data has to be filtered and structured in order to convey

intelligible information on the program behaviour. Section two describes

some of the most prevalent analysis and filtering schemes.

Performance data visualisation. Advanced visualisation techniques are em-

ployed to assist in the interpretation of the performance data collected. It

can often be very difficult to relate the low-level account of the program

behaviour to the source code. This problem is aggravated by the tendency

5

Chapter 2. Parallel Program Performance Analysis Tools 	 6

for parallel programming environments to provide progressively higher-level

programming facilities. Whilst this is of great assistance in the design and

coding stages of program implementation, it often makes tuning more dif-

ficult, with users having to relate low-level events to increasingly abstract

program representations. Section three describes several visualisation dis-

plays employed by current tools.

Automatic performance diagnosis. The latest tool research focuses on build-

ing tools which can assist in performance diagnosis by borrowing technology

from other fields such as software engineering, databases and expert sys-

tems. Such tools attempt to undertake the task of finding the reason for a

performance bottleneck and guide users in their effort to improve program

performance. Section four illustrates some of the approaches.

Work on performance analysis tools has still a long way to go to close the gap

between tool functionality and user requirements. Traditionally, tuning tools have

employed advanced graphical techniques for user interface design and trace data

visualisation. In spite of this, however, there is evidence that they are unable to

assist effectively in the task of performance optimisation [133]. Due to the lack of

tool integration and consensus amongst tool developers, a lot of implementation

efforts overlap whereas a lot of issues remain largely neglected. The fifth section

presents some of the first examples of tool integration. The last section discusses

some of the issues that tool design should take into account.

Chapter 2. Parallel Program Performance Analysis Tools 	 7

2.1 Performance data collection

Any attempt to observe the execution of a program changes its behaviour as the

monitoring tool shares the system resources with the program. Existing monit-

oring tools vary in the kind of performance data they collect and the amount of

overhead they introduce. Monitors can be classified according to the way they are

implemented and the way they are activated [81].

2.1.1 Implementation level

Depending on the level at which a monitor is implemented, it is classified as a

hardware, software, or hybrid monitor.

Hardware monitors

Hardware monitors are implemented by additional pieces of hardware that are

embedded within the parallel system. Measures such as MIPS, Milops, program

counter samples, memory and network traffic can be gathered by a hardware

monitor. For instance, a performance chip collects such information for the IBM

Research Parallel Processor Prototype (RP3) [90]. An alternative approach is

described in [1] where the ATUM tracing system modified the microcode on a

VAX to record all instruction and data references in a reserved portion of memory.

Hardware monitors have a low overhead in program execution but higher-level

displays such as algorithm animation or other application specific visualisations

require the specification of higher-level events. This is possible with software or

hybrid monitors.

Chapter 2. Parallel Program Performance Analysis Tools 	 8

Software/hybrid monitors

Software or hybrid monitors insert monitoring instructions at strategic points in

the operating system, in the run-time system, or in the application program (pro-

grain instrumentation) which can generate program related information. These

instructions write performance information into a memory area of the system un-

der study (software monitoring), or to a hardware interface that is accessed by

a hardware monitor (hybrid monitoring) [92]. In case of a software monitoring

tool, performance data can be written to local buffers on every node which are

flushed at regular intervals and share the same interconnection network with the

application program.

2.1.2 Triggering mechanism

Depending on what triggers their activation, monitors can be either time-driven

or event-driven.

Time-driven monitors

Time-driven monitors are activated at fixed time intervals by clock interrupts. The

program counter is sampled periodically on every node of a parallel system in order

to time parts of the code. Sampling is performed by the operating system and

can be used in conjunction with information provided at compile time in order

to give timing estimates at the procedural level [571. The sampling frequency

may not be high enough to provide accurate estimates but the method has a

low implementation cost and exposes the most expensive, i.e. time-consuming,

parts of the program. More sophisticated profilers require that the program is

instrumented. Small pieces of code are inserted in the program source in order

to query the system clock and count the number of times a piece of source code

is called. Alternatively, as in MPP Apprentice [171], the calls are inserted by the

Chapter 2. Parallel Program Performance Analysis Tools 	 9

compiler in the intermediate code. Profiling tools introduce a low overhead and

the volume of data they collect scales well with the number of processors in the

system.

Event-driven monitors

When the monitor is activated by the occurrence of specific events, it is called an

event-driven (or event-based) monitor. This is the most detailed and the most

perturbing technique for collecting performance data. The occurrence of interest-

ing events is recorded during the execution of the parallel program. The program

behaviour can be represented by the sequence of these events. The type of event

information obtained depends on whether hardware or software monitoring is used.

Every event generation instruction introduces a delay in the execution of the par-

allel program. Accumulated delays may change the order of the program events

and result in prolonged execution times.

2.1.3 Instrumentation techniques

The level at which instrumentation is placed (operating system, run-time environ-

ment or application program) determines the information that can be generated.

Instrumentation of the operating system can gather data about events such as

process creation, scheduling, context switching, etc. These events can highlight

the interactions between the system software and the hardware. Instrumentation

of the run-time environment can provide information about the state of various

run-time queues, the acquisition and release of locks, arrival at and departure from

barriers, and procedure calls and returns. This type of data can be used to asso-

ciate performance problems with specific sections of the application code and to

present aspects of the run-time system itself. Instrumentation of the application

program can link particular parts of the program code to the operating and the

run-time system events. At the same time, higher level information about abstract

Chapter 2. Parallel Program Performance Analysis Tools 	 10

events can be gathered. The insertion of instrumentation code is most commonly

automated [102] and users do not have to modify their programs

A common approach is to instrument the communication libraries employed to

provide the communication and synchronisation operations in the parallel pro-

gram. The Portable Instrumented Communication Library (PICL) runs on a

number of message passing systems and produces trace files consisting of send

and receive events as well as communication statistics [54]. The Message Passing

Interface Standard (MPI) [113] specifies a standard profiling interface which al-

lows tool developers to easily attach their instrumentation instructions without

the need to have access to the MPI source code [74,89].

Xab [16] is a monitoring and visualisation tool for programs using the Parallel

Virtual Machine library (PVM) [159]. Trace data is generated by instrumented

versions of the PVM routines. The instrumented routines, apart from performing

the application's message operations, use PVM to send event tracing messages to

a monitoring process. The event tracing messages contain information such as the

event time stamp, the event type and event specific data. PVM also facilitates

the communication and synchronisation among the distributed components of the

monitoring tool [134,168].

Other systems support instrumentation at several levels. For example, in DELTA-

T [130], a tool for programs running on multi-transputer systems, performance

data is gathered in two ways: by instrumenting interesting parts of the program;

and by observing the hardware scheduler. A monitoring process is introduced on

every node of the Intel Paragon system [15,142] for instrumentation purposes. The

monitoring process calls a library that generates trace data which is sent to event

servers. The event servers post-process the trace data and write it to a trace file.

PERFSIM [165] uses an alternative data collection method which combines mod

elling and measuring. PERFSIM executes the sequential part of a CM-Fortran

program and estimates the run-time of all the communication and computation

Chapter 2. Parallel Program Performance Analysis Tools 	 11

operations involving vectors. The estimation is based on an analytical model of

the machine architecture and on compiler information.

Selective instrumentation

The huge volume of data generated during execution necessitates that instrument-

ation is inserted selectively:

Instrumentation can be inserted in the program during its development stages,

and can be removed once the program is implemented. Instrumentation

can be added before compilation, during compilation, after compilation or

during run-time.

It can reside permanently in the code, but can be switched on and off.

It can be inserted dynamically or optimally into interesting parts of the pro-

gram. In VISTOP [13], the user may choose to instrument only a subset

of the program objects, thus, improving the scalability of the visualisation

displays which depict only the events relevant to the objects characterised

as interesting by the user 1 .

Another technique reduces the points where instrumentation code has to be

added by analysing the relations among the blocks of instructions in the

program [7,102]. A different approach is followed by Paradyn [118], a tool

targeting a number of programming models, languages and architectures.

Paradyn inserts minimal instrumentation into the code to identify high-level

problems such as too much synchronisation blocking. Having identified a

particular problem, more detailed instrumentation is inserted to find the

'Further reduction of the amount of performance data can be achieved by switching

the instrumentation on and off during execution.

Chapter 2. Parallel Program Performance Analysis Tools 	 12

cause of the problem. Interesting program behaviour may be missed by

employing dynamic instrumentation. Paradyn is more appropriate for ap-

plications that take hours or even days to complete and is able to capture

information on repeated events that have a large enough accumulated impact

on the program execution.

2.2 Performance data analysis and filtering

This section deals with the analysis and filtering mechanisms adopted by various

performance analysis tools in order to reduce the volume of performance data

the user has to consider and transform it to meaningful information. Part of the

analysis of the data aims at changing it into a suitable form that can be stored as

a relational database or a hierarchical graph. Due to time constraints, extensive

analysis can be performed only by post-mortem systems (see third section). The

following subsections give examples of tools employing three types of analysis and

filtering techniques:

Data analysis. The tool facilitates operations performed on the trace data.

Selection. The tool enables the selection of program or system entities for which

performance data can be displayed.

Source code reference. The tool relates low level performance data to the source

code. This may be done automatically or the user may specify a collection

of interesting events which constitute a phase.

It is during the analysis stage that restoring of the order of the events is attempted.

The lack of a global clock in a parallel machine makes it quite hard to achieve a

total event ordering. In the absence of synchronised clocks running at the same

rate and having sufficient resolution, some other techniques of restoring the order

Chapter 2. Parallel Program Performance Analysis Tools 	 13

of the events are employed such as the "happened before" relation introduced by

Lamport [101]. That is, if an event ci has an effect on an event c2, then the event

ci has to be visualised before e2.

2.2.1 Data analysis

In Pablo [137,138], trace data processing is performed in an analysis environ-

ment consisting of data transformation modules which can be interconnected to

each other in a number of ways (Figure 2-1). Modules can perform semantic-

independent operations on the input trace data such as averaging or histogram-

ming. The output of a module is the processed data and any unused input parts.

Each module consists of a user-defined data transformation function and a system

provided interface which accesses the trace data. The user does not need to have

any knowledge about the format of the trace file, or any data field information

about the event records in the trace file. Via a Graph Editor the user can con-

nect various modules to each other and direct their final output to Pablo's data

presentation displays. The abstraction away from the semantics of the trace file

is achieved through the Self-Defining Data Format. The trace file consists of a

set of record definitions and a stream record of tag/data record pairs. The record

definitions define the format of the types of events and the record tag identifies

the record type before any processing can be applied to the data record [5].

2.2.2 Selection

SIEVE (Spreadsheet based Interactive Event Visualisation Environment) acts es-

sentially like a sieve that provides a means for selecting events generated by pro-

gram execution [147]. A program graph display is a representation of the applic-

ation program source code. The nodes of the graph correspond to function calls

in the program. The user can browse the call graph and by selecting a set of

nodes selects the corresponding temporal regions within the trace file. Trace data

Chapter 2. Parallel Program Performance Analysis Tools 	 14

---.Pormance data

Figure 2-1: Pablo analysis environment

obtained during program execution is highly structured tuple-oriented data. Per-

formance data can be retrieved from the selected regions of the trace file in a way

similar to querying a relational/temporal database. Further filtering of the data

is achieved by built-in data manipulation functions, operating on the spreadsheet

cells. In TATOO [25], the user is presented with a list of performance metrics that

have been preprocessed by the tool. Having selected one or more metrics, the user

can further choose the appropriate visualisation displays to depict those metrics

over time.

In Prism [2], performance data about a processor node is displayed only if this

processor belongs to a selected subset of all the processors in the system. Processor

nodes can form processor sets depending on their state (running or stopped) and on

any other user-defined conditions. In PATOP [63], measurements focus on specific

periods of the program execution and on specific nodes where interesting events

happen. Further filtering is possible by attributing behaviour to performance

metrics such as thresholds of the metric values. The visualisation displays are

driven by user-defined expressions which set the thresholds for various metrics.

Chapter 2. Parallel Program Performance Analysis Tools 	 25

In Projections [154], a performance tool for programs written in the CHARM

language, the execution of the program is divided into equal-length periods of

time called stages. The length of the time period is defined by the user to allow

for coarser or more refined event filtering. The performance views are organised

as a set of overviews and a set of more detailed in-depth views. A performance

metric is a function of the stage s and the processor p and ranges over a stage

set and a processor set. There are two types of overviews: the first visualises the

sum of a performance metric over the whole processor set and the second depicts

the sum of a metric on one processor over all the stages of the program. In-depth

views can be of one of the following kinds:

. A metric as it varies during a particular stage over a selected processor set.

. A metric as it varies on a particular processor for a selected stage set.

• A metric as it aggregates for a particular processor set over all the stages of

the program.

• A metric as it aggregates for a selected stage set over all the processor set.

2.2.3 Source code reference

Existing parallel programming environments provide high-level programming facil-

ities which help the tuner abstract away from the specifics of the parallel machines.

This makes tuning even more difficult since the programmer has to relate low-level

information to program behaviour. Tools address this issue by presenting the large

amount of low-level performance data in terms of the fewer source code structures

(source code reference).

In ParaMap [79], a framework is introduced to map low-level performance data

to language constructs. Within this framework, called Noun-Verb (NV) model, a

parallel program consists of nouns, the structural elements of the program, and of

Chapter 2. Parallel Program Performance Analysis Tools 	 16

verbs which are the actions performed on nouns or by nouns. A set of nouns and

verbs at a particular software or hardware level is called a level of abstraction.

Nouns and verbs at one level of abstraction can be mapped to nouns and verbs at

another level of abstraction. This mapping is possible because high-level language

constructs are implemented by low level hardware and software. The NV model

can be used along with any programming model. ParaMap uses the NV model to

study CM Fortran programs which run on the CM-5. Three levels of abstraction

are identified in the CM-5. The highest level contains the constructs (verbs and

nouns) of the CM Fortran language. The second level is the Run-Time System

level, RTS. RTS level nouns are all the arrays allocated during execution. These

are the arrays of the language level plus all the intermediate arrays created by

the compiler. Verbs at the RTS level include all the operations performed on the

arrays, such as Copy, Shift, Rotate, etc. At the lowest level of abstraction, nouns

are the processor nodes and verbs include Compute, Wait, Broadcast and Point

to Point Communications. The user creates a sentence consisting of a noun and

a verb and requests from ParaMap the performance cost of the specific sentence.

Costs are provided in three forms: as the number of times a sentence is used; as

the total time a sentence took to execute; and as a time-histogram showing the

cost of a sentence varying over time. The cost of a sentence is amortised over the

two lower levels.

The Performance Debugger of EPPP (Environment forPortable Parallel Program-

ming) [41] attempts to provide the user with performance information directly

related to the source program. EPPP supports a high level programming model

based on a data-parallel programming language called High Performance C (HPC)

[40]. HPC is a C based language, which supports data distribution directives sim-

ilar to the ones found in HPF [140]. The user is able to select array objects within a

selected region of the source program. The visualisation displays of the Perform-

ance Debugger will show performance data related to the selected source code

objects. For example, EPPP's communication display depicts statistics about the

Chapter 2. Parallel Program Performance Analysis Tools 	 17

inter-processor communication (message numbers and message volume) involved

in a specific data distribution.

2.3 Performance visualisation

Performance analysis tools fall in four categories according to the visualisation

schemes they provide:

Program specific. These tools show in an application specific way how compu-

tation progresses by animating the data structures of the program and the

operations performed on them... The animated views can assist in debugging

both for correctness and performance [157].

System oriented. These tools focus on the impact the application program has

on the parallel system. For instance, SHMAP [1 visualises the memory

and cache access patterns in hierarchical shared memory systems. The Front

Panel Visualisation tool (FPV) [12] measures and visualises system level per-

formance parameters such as CPU and interconnection network utilisation

on the Paragon machine.

System and application independent. The majority of tuning tools fall into

this class and provide a repertoire of displays that can generally depict per-

formance data for a variety of systems and applications. The visualisations

range from views of the effect the application program has on the system use,

to views that represent the communication or synchronisation behaviour of

the program.

Meta-tools. Tools in this group facilitate the development of custom visualisa-

tion tools. They are more general than the program specific tools mentioned

Chapter 2. Parallel Program Performance Analysis Tools 	 18

above, since the visualisations created by a user are not necessarily pro-

gram specific. PARADISE (PARallel Animated DebuggIng and Simulation

Environment) [961 and IMPROV [95] introduce a framework in which the ap-

plication and/or the system behaviour are modelled as a set of visual objects

having certain functionalities and interacting with each other. The defined

visual objects and their interactions can simulate the events generated by

the system under study. POLKA [158] adopts an object-oriented method-

ology to map program events to visual objects. Object attributes, such as

colour and location and object actions such as motion, colour, and resizing,

change according to rules that map events to objects, attributes and actions.

POLKA was used in the development of two performance visualisation tools,

namely the Gthreads [177] and the PVaniM [58,167] systems.

Tools can also be divided by whether visualisation takes place simultaneously

with the program execution (on-line) or after it (post-mortem). In the latter case,

trace data is gathered in files which can be processed later by a visualisation

tool. On-line visualisation can be intrusive when the parallel program shares the

same interconnection network with the monitoring and visualisation facility. The

volume of information conveyed by the visualisation tool at any time may be too

large to be easily interpreted by the programmer without the assistance of "play-

back" functionalities such as the ones found in off-line tools. However, on-line

visualisation, often used in conjunction with dynamic instrumentation, allows the

user to observe only the interesting parts of the program execution and reduces the

storage requirements of the monitoring tool. VISTOP [13,21] provides two on-line

modes of operation; in the first mode, visualisation is driven by breakpoints set

in a debugger style of interaction; the second mode is less perturbing, enabling

visualisation without breakpoints.

Chapter 2. Parallel Program Performance Analysis Tools 	 19

2.3.1 Animation of communications

Animation has been employed by various tools to assist in program execution re-

play. Communication operations are the most commonly animated events [158].

VISTOP [13,21] (ViSualisation TOol for Parallel systems, is part of the TOPSYS

(TOols for Parallel SYStems) integrated tool environment for programming dis-

tributed memory multiprocessors. TOPSYS supports an object based message-

passing programming model implemented with the parallel programming library

MMK (Multiprocessor Multitasking Kernel) [14]. Three kinds of objects exist

within the MMK model: tasks, mailboxes and semaphores. A parallel program

consists of multiple instances of objects which interact with each other. Tasks

communicate and get synchronised via mailboxes and semaphores respectively.

All interesting MMK objects are displayed by little icons showing the class and

the name of an object. If a task communicates or waits for a niailbox or a sem-

aphore the corresponding task icon moves itself into a queue of tasks waiting at

the communication object.

Barrier synchronisation of N= 16 threads.

xuuuci•ciu•uu
•lEJ•DUUU•DDDEX

Figure 2-2: Barrier visualisation in Gthreads

Gthreads [177] is a monitoring and visualisation tool for C programs using the

pthreads library [7 1- 1 on the KSR machines or other thread based machines. Gthreacls

provides a view of the barrier synchronisations that take place during execution

(Figure 2-2). Each barrier is represented by a 2 x N array of boxes where N is the

number of threads in the program. The first row of boxes in the array represent

the check-in phase of the barrier operation for every thread. If a thread joins in

the barrier, the corresponding box is filled by a small circle. The second row of

chapter 2. Parallel Program Performance Analysis Tools 	 20

boxes depict the check-out phase of the harrier. When a thread checks-out of a

harrier, a circle appears in the corresponding box.

Utilization Gantt Chart 	 J 	J 	Spacotime Diagram
1JTILI2ATEDE EF*ITT CHART 	 SpALETIrE DIACRAII

ii 4
4 1

21 	 N
20

16

OUST 	 OVEPJ.IEAD 	 IDLE 	 i' 	 H

US 005
Utilization Kiplat Diagram 	P1 E 	Communicaliori

MI
	Neiwur6

	

SOILIUNTIRA 616100 010.6011 	 H48 	
H I .

'NJ

	

12 	14 	 D

	

14 	

rU J

Rs0k.o LRIt-to-- ,i060 bit ord.r

Figure 2-3: A collection of Paragraph displays

The Feynman or Space-Time display, first used by ParaGraph [55,65], can be

found in many performance analysis tools [173,56,60] (Figure 2-3). The execution

thread for each processor is represented by a horizontal line, drawn from left to

right, which changes colour to indicate whether a processor is active, idle, or

waiting for a send or receive to complete. Message operations are depicted by

lines which connect the two processors communicating. The points where the

lines meet the processor lines mark the receive or send times. The display reveals

processors idle, waiting for a blocking communication to complete.

The Source display identifies the last communication event processed by VT for

2 V is a proprietary tool which runs on the IBId SP-2 parallel machine. It was not

possible to find a reference for this tool.

Chapter 2. Parallel Program Performance Analysis Tools 	 21

each process. Each line of the source code is segmented in N segments where N is

the number of processes in an SPMD program. When VT processes a communic-

ation event, it highlights the appropriate segment. Colour is used to differentiate

among the segments of different processes (Figure 2-4).

Figure 2-4: The Source code display of VT

2.3.2 Program displays

Program graphs Gantt charts and data access displays fall into this class of dis-

plays.

Program graphs

In PV [91], a static call graph has its nodes coloured according to: the number of

processors active in each node; the number of times a processor has arrived at each

node; or the amount of time spent in each node aggregated across all processors. In

Chapter 2. Parallel Program Performance Analysis Tools 	 22

Prism [2], the call-graph nodes are accompanied by a percentage indication which

shows the time each node spent utilising a specific resource of the system. In

VISTOP [13,21], the program graph is expressed in terms of the objects provided

by the MMIK [14] programming model. The graph is animated in order to depict

dynamically the creation of the communication and synchronisation objects in the

program.

Gantt charts

DELTA-T [130] uses a Gantt chart display to denote the changes in the communic-

ating processes states. In VISPAT [74,73], a gantt chart animates the occurrence

of MPI and user-defined phases in the parallel program.

Critical paths

Critical path analysis [174] is concerned with identifying the program regions

which most contribute to the program execution time. The critical path ana-

lysis constructs a directed acyclic graph which depicts the synchronisation and

communication dependencies among the processes in the program. Dependencies

are message operations, semaphores, barriers or locks. Each edge in the graph is

assigned a weight proportional to the duration of the operation represented by the

edge. The time spent on a edge may be CPU bound or may be the time required

to send a message. The path with the longest weight sum is the critical path.

Data access displays

The Performance Debugger of the EPPP environment [41] employs an animated

two-dimensional display which shows the distribution of arrays on a set of pro-

cessors and their access with respect to computations performed by one processor

over time. Each cell of the two-dimensional display is devoted to an element of the

Chapter 2. Parallel Program Performance Analysis Tools 	 23

array. Different sections of the display correspond to parts of the array distrib-

uted on different processors. The colour of an array cell can distinguish whether

an access is local or remote and whether it is a read or write. The programmer

can analyse the access patterns so that better array distributions can be achieved

in order to reduce inter-processor communication.

2.3.3 Aggregated metrics

Static hargraphs and plots can represent the values of performance metrics as they

accumulate over a period of time. Animated hargrapbs can show how measure-

ments evolve over time.

Histograms and bargraphs

A hierarchy of histograms in Prism [2] show where the program spends its time.

The top-level histogram shows the time taken by a program utilising each resource

of the system. Clicking on a histogram reveals the usage of the corresponding

resource by each subroutine of the program. The last level of the histogram

hierarchy is the source-line histogram. For a particular resource in a particular

subroutine of the program, a source-line can be accompanied by a percentage bar

showing the amount of time the particular source-line contributed to the use of

the specified resource. MPP Apprentice [171] visualises profiling information in

an hierarchical way. At the top level, the Navigation display lists the subroutines

of the program sorted from the most to the least critical. Next to each subroutine

name, a bar indicates the time this routine took to complete (Figure 2-5).

The MasPar profiler [27] provides profiling histograms at the routine and statement

level through the graphical interface of the debugger. The user may stop the

program execution and see the cumulated profile information up to the point

execution has proceeded. In ATExpert [97], a histogram shows the contribution

of the serial and parallel regions of the program to the program speed-up.

Chapter 2. Parallel Program Performance Analysis Tools 	 24

MPP Apprentice El
El Ic 	ljopl.0c 	Nacigate Oat1oo Iolp

1160IGATI000L. DISPLAY

ITleeln coiled obrootirec: 	•ExcludeOlrolode]

Total TIN. 	 Object

1 .52..09 	B110111COST 	I. 1T 	N. 	 T11111111s 5

1.52,.09 	BIJFI III!IIrIII!III 	 II 	iIIF!!!l!II!IIII
9.12.005 	f$,ot

8,27e.04 	PVMFBORRIER

7.11..04 	PVFIFRECV

1.71e.04 	PVIIFGSIZC

5.13..03 	SOFAS

2.55.003 	PVSFSEHO

1.96e003 	56FF

1.52.-03 	pvorugpoci<
730 	PVIIFPOC1<

0 0,.08 1.6.O9

COSTS: 	Olnetractior, OSS.red Menory Overhead 	PVII Overhead I

8.27..04 	PVMFB05RER

121 	PVIIFBCAST

1110 	PVMFCETFE

1.71­04 	PVMF1S I 71

471 	PVIIFINITSCST

226 	PVMFTITTII

730 	PVIIFPOCI<

7.11.004 	FVMFAECV

2.05,003 	PVMFSEI4D 	•
1.02,o03 	PVTIFUNFACN

0 4.15.004 8.3.004
Ti,..

Figure 2-5: The Navigation display in MPP Apprentice

Spreadsheet - XY contour plot

In SIEVE [147] the programmer can create customised performance views by the

combined use of the spreadsheet facility and the XY plots. After having applied

any data manipulation functions on the spreadsheet cells, the programmer may

create XY plots by selecting specific rows and/or columns of the spreadsheet.

2.3.4 Animated system views

A two-dimensional arrangement of processor cells and interconnection network is

commonly found in displays which depict system utilisation. In DELTA-T [130],

all the transputer nodes are arranged in a two-dimensional way. The display is

animated with each node changing colour according to its utilisation. Comrnunic-

ation among links and processes is shown by lines connecting the nodes. Colour is

used to denote variations in the link utilisation. The System Performance Visual-

CPU load

Link utilisation

uulisation

Chapter 2. Parallel Program Performance Analysis Tools 	 25

iser (SPV) is designed to portray the overall system usage [15,142]. An overview

display shows utilisation of all nodes, whereas more detailed ones show the util-

isation of the message-passing processor, the Bus and the Network Interface for

the Intel Paragon.

Data presentation model of Maritxu

Based on vision theory, Maritxu [175,176] proposes an independent visualisation

schema which is a spatial two-dimensional arrangement of processor nodes. In-

stead of confining the visualisation to one metric shown by the colour of the node

cell. Maritxu depicts a number of icons on each cell, each dealing with one per-

formance metric. The attributes of the icons such as colour, shape, orientation

can convey the variations of the performance metrics. Figure 2-6 shows some of

the performance metrics that can be assigned on a processor cell, for a transputer

platform. Animation can show how the performance metrics change over time.

Link utilisation

Link utilisation

Figure 2-6: Data presentation model of Maritxu

Chapter 2. Parallel Program Performance Analysis Tools 	 26

Machine views or processor views

VISTA [145] introduces a version of ParaGraph's [55] Processor views, called Ma-

chine views, for SPMD/MIMD and SIMD programs. The Processor views display

is a two-dimensional array of NxN processors. Each processor is assigned a cell in

the NxN matrix and the colour of the cell denotes whether the processor is busy,

idle or communicating at a particular moment. The animation of the display

provides a series of snapshots of the system over time. VISTA uses Machine-

Views for showing the utilisation of a large array of Processor Elements (4096

PEs) of a MasPar MP-1. The space occupied by each cell is naturally a lot smal-

ler, and differences in shading denote different PE utilisations. The variation of

system utilisation over time is shown either by attaching Machine views together

in a "filmstrip" manner or by adding a third dimension to the two-dimensional

display.

Memory access patterns

SHMAP, the (Shared-Memory Access Pattern) tool, visualises the memory access

patterns of parallel algorithms in a Fortran setting [39]. Memory is represented

two-dimensionally on two separate displays visualising the read and write oper-

ations respectively. On a memory access the corresponding memory element is

illuminated. The illumination fades gradually to identify recently accessed ele-

ments. A similar display is used for visualising cache accesses in a hierarchical

memory environment.

2.3.5 Alternative representations

Scientific visualisation, virtual reality and auralisation are some of the alternatives

proposed to meet the increasing requirements for scalable and meaningful data

representations:

Chapter 2. Parallel Program Performance Analysis Tools 	 27

Scientific data visualisation. With the advance of parallel computing the re-

quirements for performance visualisation become more demanding. Work in

[62] investigates the feasibility of using scientific data visualisation software

to generate new performance visualisations.

Virtual reality. Head-mounted displays are introduced in Pablo [137,138]. A

small head-mounted display conveys stereoscopic three dimensional perform-

ance graphics. When an interesting event requires additional instrumenta-

tion and more thorough visualisation, graphics are conveyed to the high

resolution workstation displays.

Auralisation is proposed in [51,80] as an alternative to visualisation. The scalab-

ility of the combined use of sound and graphics is examined in [52]. Each

processor is mapped to a different note which is played whenever this pro-

cessor sends or receives a message. The send-notes can be played on dif-

ferent stereo channels or with different instruments from the receive-notes.

Massively parallel systems require a more scalable scheme because the gen-

erated sounds can be unpleasant. Scalability is achieved, as processors are

separated into groups, and each group is assigned a note. Inter-group com-

munication is directed to one channel while intra-grbup communication is

directed to another one. The additional information conveyed by sound can

reduce the complexity of the visual displays.

2.4 Automatic performance diagnosis

A number of tools support performance diagnosis in ways described below. AT-

Expert [97] is a performance analysis tool for programs which use the Autotasking

programming model on the Cray Y-MP C90. ATExpert goes further than just

presenting performance data. It attempts to interpret the behaviour of the pro-

Chapter 2. Parallel Program Performance Analysis Tools 	 28

gram on behalf of the user and suggest the appropriate actions which can improve

the program performance. ATExpert uses a rule-based expert system to make ob-

servations. For a given region of code, it gathers data such as the actual speed-up,

the overhead time, the serial time and the number of processors. A subset of rules

are chosen according to what dominates execution. Having selected the set of

rules, patterns in the performance data are used to determine the possible causes

of performance problems. Observations and suggestions are presented through

graphics and text.

Paradyn's [118] Performance Consultant is based on a "why, where, when" (W3)

search model to assist the programmer in locating the causes of bad performance.

The tool tries to answer these questions on behalf of the user. First, the system

makes a number of hypotheses as to what could be the cause of the problem.

Gathered trace data is examined to test and validate these hypotheses. Once a

hypothesis is validated, the tool attempts to identify the location in the program

where the problem appears. Finally, the "when" question is answered by observing

the distinct phases of a program execution.

IPS-2 [78] can work in comparison mode and have its displays show simultaneously

performance data from various runs. In TraceView [114], a tuning session consists

of a set of open trace files, a set of views and a set of displays. A view is defined

as a sub-region of the trace file comprising of interesting events. Unwanted events

are filtered out of the event stream. A session manager enables the user to save

a tuning session for later use. In this way the user is able to compare trace files

from multiple runs of the program.

On-line steering can improve the performance and the functionality of parallel

application programs. On-line steering is defined as the on-line configuration of

programs in order to affect execution behaviour and performance. In Falcon [60],

the user can improve, for example, the load balance by interactively changing

program parameters such as domain boundaries.

Chapter 2. Parallel Program Performance Analysis Tools 	 29

2.5 Tool integration

There have been a number of cases where initial work towards tool integration has

been done. Tool integration can be of three kinds:

• tools can share information (data sharing),

• tools are managed in a common framework (control integration) or

• tools have a common user interface (presentation integration).

The toolkit approach to tool design whereby tuners may extend the system by

providing their own trace data processing and visualisation mechanisms is one

technique for tool integration, but some tools are designed in a way that a great

deal of end-user programming is required to extend their functionality or integrate

them with other tools [65]. The adoption of an "open tool architecture" is the

way to ensure tools from different developers are interchangeable. Alternatively,

the Self-Defining Data Format of Pablo [5,137] abstracts away from the semantics

of the trace events, thus facilitating tool integration and extensibility.

The design technology of existing tools should be improved to allow them to

be successfully integrated with parallel programming environments [9,91]. The

approach of the TAU (Tuning Analysis and Utilities) project is that of integrating

the tuning tool to the pC++ portable parallel programming environment [22,121].

pC++ is an extension of C++ and facilitates the creation of distributed data

objects. TAU interacts with the pC++ compiler in order to access information

about objects in the application program and with the pC++ run-time system

to get profiling and tracing information. TAU's trace data can be converted by

built-in utilities into one of the following data formats: SDDF[5]; ALOG [67];

and TDL/POET [120], allowing TAU to share tracing information with the Pablo

[138], UpShot/ALOG [67] and SIMPLE [119] tools respectively.

Chapter 2. Parallel Program Performance Analysis Tools 	 30

Other tools attempt to enable users to work in their favourite environment of de-

buggers and performance visualisers by employing control integration [103]. For

example, VIZIR [64] consists of a number of Tool Interfaces (TI) that allow inter-

action with each of the integrated tools. VIZIR caters for PVM applications that

run on distributed systems and the tools integrated include: Hewlett Packard's

DDE, IBM's XDE, Matlab, ParaGraph and Onuplot.

Performance visualisation could benefit from the integration with scientific data

visualisation software. So far performance visualisation has been limited to two-

dimensional views. For example, Hackstadt and Malony demonstrate how a data

visualisation tool could provide a rapid prototyping environment for creating and

interacting with multi-dimensional performance views [62]. Raw trace data is

structured so that it can be processed by the visualisation system. Automating and

formalising the interaction between the performance data generation environment

and the visualisation software could be the next step towards integration.

Poirot seeks to pursue integration with performance analysis tools in order to apply

its automated performance diagnosis methods to a number of targets [66]. This

approach relies on research in software development environments and databases

which provide access to tools, programs and data independent of tool command

syntax and data format.

2.6 A Design Agenda

Many performance analysis tools have been described in the literature with ex-

amples of their use. These typically illustrate indicative situations and codes with

regular, easy to understand behaviour which does not correspond to large, real

world application programs. In practice, the problems that programmers have to

face may be more complex and the amount of data they have to consider very

large.

Chapter 2. Parallel Program Performance Analysis Tools 	 31

Tool developers have a somewhat restricted understanding of the requirement for

ease of use. For example, the developers of DELTA-T consider that the require-

ment for ease of use is met by simply allowing users to monitor the execution of

their programs without having to insert any extra statements in the source code

[130]. Tool designers are motivated by technological challenges and design systems

according to their own personal requirements and their intuitions about what will

be good for the users. As we have seen, graphical user interfaces and sophistic-

ated visualisation means have been widely employed to facilitate user interaction

and interpretation of performance data. Mere use of visualisation and graphical

interaction should not be regarded as a panacea and there are a number of issues

which should be part of the developer's agenda:

• Knowing the users and their tasks.

Designers should not make assumptions about users and their tasks. Users

beyond the immediate tool development context should play some part in

design since local users may be more knowledgeable and may have been

exposed to the design too much to be representative of the user community

and their needs. Design should cater for the experienced as well as for the

novice user. Experienced users may need to conduct more detailed analysis

and this can be supported by allowing them to customise the tool and provide

application specific visualisations 3 . Novice users may require more assistance

in finding and eliminating a performance bottleneck.

• Providing meaningful visualisations of program behaviour.

Visualisation is a powerful tool for data presentation but it should be used

with care. For example, Miller gives some guidelines for meaningful and us-

3 With the advent of programming environments for structured parallel programming,

application specific visualisations could be applied to program templates.

Chapter 2. Parallel Program Performance Analysis Tools 	 32

able performance visualisation [117]. Usability issues should be considered,

for example, program visualisations should scale well with the amount of

information that a program run produces. Tools may provide zooming in

and filtering facilities [136], but these methods should be used carefully as

they are likely to disorient the user from the task in hand if, for instance, too

many zooming operations in combination with filtering operations (isolating

particular metrics for examination) are performed. Some of the responsibil-

ity of identifying performance bottlenecks could be undertaken by the tool,

thus reducing the search space that the user has to investigate.

A number of software engineering and performance issues arise as well. Tool

response time and space requirements should scale well with the amount of per-

formance data that monitoring generates. Apart from reducing the amount of

data and the level of detail that the user has to consider, abstraction and filtering

mechanisms should be designed to cater for reducing tool response time as well.

The overwhelming variety of programming, architecture and machine models has

resulted in a large number of diverse tools which often fail to meet user require-

ments and thus, become unusable. Almost (46%) of the parallel programmers

who participated in the investigation of the tuning task described in Chapter Four

did not use any tool at all. The vast majority of tool development has been ad-hoc

without complying with any standards or with accepted user-centred design meth-

odologies. This has raised the development cost of the tools and has decreased

their life-span since new machines and new programming languages keep emer-

ging. With the hardware platform and programming environment scene changing

so fast, portability and extensibility become major issues. Due to the lack of tool

integration and consensus amongst tool developers, a lot of implementation ef-

forts overlap whereas a lot of issues remain largely neglected. The following are

prerequisites for tool integration to occur [144]:

• the traditional approach of building tools should change,

Chapter 2. Parallel Program Performance Analysis Tools 	 33

• there has to be greater consensus about what kinds of tools are useful,

• standardisation in data formats and interfaces is a necessary step,

• an infrastructure is needed so that tool development need not start from

scratch for each new machine and

• vendors should realise that good and usable tools are as important as high

performance parallel hardware.

The agenda of this work has been to seek an understanding of how tuning is

performed and to use this understanding in informing the design of tuning tools.

An initial investigation by means of interviews and questionnaires provided the

basis of a framework for the analysis of tuning. This analysis pointed to the

difficulties that tuners encounter with tools and in performing tuning. The results

of the investigation are described in Chapter Four. For example, an issue which

has so far been neglected by tool developers is the fact that most of the tools have

been data driven i.e., the emphasis of tool design has been on the analysis and

visualisation of performance data stemming from one instrumented program run.

However, a performance problem is rarely solved by a single tuning cycle. Support

is missing for facilitating the process of experimentation and repetition. Chapters

Five and Six identify and analyse the requirements for supporting tuning in the

large.

Chapter 3

A framework for studying tuning

Parallel computing enjoys significant interest in the scientific community because

of the increasing demand for computational speed and the decreasing cost perform-

ance ratio of parallel computers. The scientific community is now able to model

and solve more accurately larger compute intensive problems. In the quest to pro-

duce functionally correct application programs that take advantage of the power

of the underlying hardware, usable and efficient software tools and environments

are required to assist with parallel program development.

Whenever possible, the development of parallel programming techniques and tools

has sought to take advantage of advances in sequential programming. The exist-

ence of large "dusty deck" sequential programs motivated the advance of compiler

technology [20] in order to identify potential parallel regions in the sequential

program and transform them into parallel code (implicit parallelism). However,

research in automatic parallelising compilers is far from complete, so much of the

work of parallelism has still to be explicitly performed by the programmer. Apart

from a few languages designed with constructs (e.g. [6]), the rest are based on

existing sequential languages. Languages such as C or Fortran are extended or

host libraries to allow for explicit parallelism. Current research in parallel program

debugging has allowed the leverage of techniques used in debugging of sequential

programs.

34

Chapter 3. A framework for studying tuning 	 35

In contrast, performance optimisation of parallel programs is dominated by dif-

ferent and more complex problems than its sequential counterpart. In sequential

programming the choice of algorithm is the main performance determining decision

as the execution time of the program is the sum of the instructions executed whose

number can be expressed in terms of the problem size n. In addition, sequential

compilers are sophisticated enough to perform code optimisations in order for the

code to perform well on the target machine. Thus, it is relatively straightfor-

ward to analyse the performance of a sequential program. On the other hand, in

parallel programming the choice of algorithm is only one of many considerations.

The algorithm should be chosen to map well onto the underlying parallel machine

and further performance tuning has to be performed as parallel compilers are not

often sophisticated enough to perform extensive code optimisation. Additionally,

the execution time of a parallel program is no longer the sum of the instructions,

but the critical path [104].

The large diversity of parallel architectures makes it difficult to try to abstract

parallel machines for analysis. The PRAM model [88] has been used extensively

in the analysis of parallel algorithms but is of little use to the parallel developer

as it does not correspond to any real machine. Whereas there are more realistic

analytical models [115] being developed, successful analysis of parallel applica-

tions is still highly machine specific [99]. As a result, analytical methods are

not well suited to cater for all the performance issues implicated in the immense

variety of architecture and programming models. Analytical techniques are also

very hard to learn and use so as a result, parallel programmers cannot generally

start developing their application by forming a theoretical analysis of their al-

gorithm nor can they start from a known optimal algorithm. The most common

approach to developing a parallel code is to look for opportunities for parallel-

ism in existing sequential codes. After the program is developed, its performance

must be measured and analysed to pinpoint to sources of poor performance and

to determine how to modify it to remove them. Performance evaluation, perform-

Chapter 3. A framework for studying tuning 	 36

ance analysis, performance debugging and performance tuning are all terms which

describe the process of measuring and analysing program performance with the

purpose of improving it. Tuning is a difficult task and tuning tools are crucial

aids in the development and performance optimisation stage of parallel programs.

The work presented in this thesis argues that an in-depth investigation of parallel

program development and specifically of the tuning task itself is needed, before

any assumptions can be made about the design of tuning tools.

3.1 Studies of programming

In the absence of studies of parallel programmers, work on empirical studies of se-

quential programmers must serve as a starting point for the specification of usable

and useful parallel programming environments. As early as in the mid-eighties,

however, the relevance of the up-to-then largely laboratory-based studies of pro-

grammers to real world software development problems was questioned. Curtis,

for example, stressed that a great body of research concentrated on expert-novice

differences in programming using students as subjects and small size programs

(e.g. [23,61,69,86,143,156]) [35]. Apart from some notable exceptions e.g. [151],

this research failed to observe processes that occur in real world large projects

with experienced programmers.

Curtis's observations are even more valid when the relevance of these studies to

parallel programming is considered. Computer science students and professional

programmers are not representative of parallel programmers dealing with large

scientific codes. Parallel programmers may have been using sequential machines

for years in academic or industrial organisations so they cannot be compared

to first and second year computer science students. In addition, they may be

infrequent programmers without the characteristics of full-time programmers.

Chapter 3. A framework for studying tuning 	 37

Studies have considered only fragments of sequential programs and focus mainly

on issues of understandability. The inherent complexities of parallel programming

introduce a number of other issues: having to learn a lot about e.g., how the hard-

ware operates; having to keep up with fast changing programming environments;

and having to produce faster solutions, to name but a few.

The investigation described in this thesis is among the first examples of research

to focus on practices of "real" parallel programmers [35,132,133]. Pancake et al.

[133] asked 448 participants of Supercomputing '93 whether they had used any

computer based tool during the stages of parallel program development, namely:

fixing a serial program; writing a parallel program; improving the basic model;

debugging; tuning performance and setting up program runs. Among other res-

ults, it was reported that almost 35% of the parallel developers asked used an

internally developed tool for performance tuning, while 29% had used no tool at

all. The remaining respondents were using an externally developed tool. Pan-

cake admits that the results of the survey set optimistic upper bounds regarding

the use of current tools, since the people attending the conference were probably

more computer science oriented than those who would attend a purely scientific

meeting. Past results of a smaller survey among more conservative Fortran users

showed that almost 90% relied exclusively on PRINT statements instead of using

a debugging or a performance tuning tool [132]. These results demonstrate that

the large number of tuning tools described in the literature (Chapter Two) are

not used by real parallel programmers.

The investigation described in the following chapters draws upon the experiences

of a much smaller number of parallel computing users, but focuses entirely and

in more detail, on performance tuning and spans across a wider range of issues.

Whereas Pancake's survey investigated the use of parallel programming tools,

this work studied and analysed tuners' work practices as they are formed within

the context of current tool support and collaborative program development. One

starting point for this research has been one of the few studies of real program-

Chapter 3. A framework for studying tuning
	

38

mers i.e., Eisenstadt's study of the phenomenology of sequential code debugging

i.e., how debugging is performed by real world programmers [44]. Eisenstadt eli-

cited debugging anecdotes, descriptions of bugs and of bug-fixing strategies from

developers of academic and commercial software. His analysis focused on the reas-

ons bugs are difficult to find; how the bugs were found; and what were the causes

of the bugs. He identified four categories of reasons that bugs are hard to find

(in order of frequency of occurrence):

Cause/effect chasm. Often the manifestation of the bug is far removed in space

and/or time from its cause. It may not be easy to find the root of the prob-

lem when the evidence of the bug cannot be related to the program source

code. Among bugs classified in this category are timing and synchronisation

problems which can be intermittent, inconsistent or infrequent. Too many

degrees of freedom exacerbate the difficulty of the task e.g., when a piece of

software works perfectly in one environment, yet fails to work in another.

If many environment parameters have changed then there are too many de-

grees of freedom to conduct controlled experiments especially under time or

resource constraints.

Inapplicable tools. The bug disappears when the tool is switched on (probe

effect). The program may have to run for too long in order to replicate the

mistake. Tools may not be usable for various reasons, for example, memory

constraints.

Faulty assumption/model. Possession of a conceptual model that explains the

operation of a system software or hardware component reduces significantly

Actually, Eisenstadt identified five categories but for the purposes of this study that

fifth category has been merged with another one.

Chapter 3. A framework for studying tuning
	

39

the search space for the cause of a bug; equally it can exacerbate the dif-

ficulties if it is faulty. Examples are faulty assumptions about how stacks

grow or what is the correct behaviour of a function. Eisenstadt asked pro-

grammers to report on extremely difficult to find bugs. According to the

answers to his third question - what was the root cause of the bug - most

of the problems were related to memory allocation, or to conceptual errors.

Spaghetti code Eisenstadt found that there was a 100% correlation between

complaints that a code was too messy to debug and that it was written by

another person.

Eisenstadt recognised four main ways in which bugs are found. These are (again

in order of frequency of occurrence):

Gather data; This category encompasses experimentation techniques such as

use of printfs and inserting breakpoints in the program execution.

Controlled experiments. Controlled experiments are conducted which attempt

to investigate what the cause of a bug may be. Controlled experiments

begin with a hypothesis which is based on a conceptual model of a system

component (software or hardware). If this model is good it is expected that

the programmer will find quickly the cause of the hug and eliminate it. If

the model is wrong then more experimentation is needed to find the bug and

the model gets updated or extended.

Speculation. This class includes cases where programmers speculate about what

has caused a bug. A number of techniques were reported for example, in-

spection, meditation, simulation, articulation and others.

Expert help. Alternatively, help is sought when a problem exceeds the expertise

of the programmers.

Chapter 3. A framework for studying tuning 	 40

Eisenstadt's categories were used by this work as the basis of a framework for the

analysis of tuning which was subsequently expanded in the light of the investig-

ation to reflect the differences between debugging and tuning. Whereas Eisen-

stadt's research was based on responses received through electronic mail and news

bulletin boards, the research described in this thesis employed a large number of

methodologies such as interviews, questionnaires, in situ observations and others 2.

Investigating the difficulties in tuning and how tuners discover and eliminate the

performance bottlenecks in their programs is the theme of the next chapter of this

thesis.

Whereas Eisenstadt focused on the cognitive issues involved in debugging, a con-

sideration for this work has been to investigate parallel program development and

tuning as a repetitive and collaborative activity. Once again, only a few studies

of sequential programming have investigated the issues involved in team program-

ming. For example, Flor examined cooperation in a small programming team

consisting of two people [48]. It was shown how goals and plans were shared and

how people collaborated through sharing artifacts which were external represent-

ations of the problem in hand. That investigation focused on a very small group

'Curtis has suggested that empirical studies of programming will need new tech-

niques for gathering data such as videotaping programming in real world contexts [35]3.

Soloway focused on the need for alternative research methodologies in order to study

programming in the large, and questioned the effectiveness of controlled experimental

studies for studying large projects [155]. For example, the diary of an experienced pro-

grammer was studied where the programmer recorded argumentation about the program

design and some results of test runs [125]. At the same time, system designers started

facing the need to incorporate the work setting's social and organisational knowledge

into the systems design [59]. Part of the motivation for this emphasis on the soclo-

technical can be attributed to an increased interest in usability issues. These include

supporting co-operation in working environments and relating design to informal - as

well as formal - work practices.

Chapter 3. A framework for studying tuning
	

41

and could not obviously capture the ways that artifacts are shared within larger

groups, among groups or even among organisations. Chapter Four extends Eisen-

stadt's framework to take into account the issues involved in performing tuning in

a collaborative environment and the extended framework is used in the investiga-

tion of tuning in the large presented in Chapters Five and Six.

Chapter 4

Tuning in the small

The first section of this chapter investigates the issues which contribute to the

difficulty and complexity of parallel program performance tuning. Fifty two tuners

participated in this study. Twenty six tuners responded to questionnaires posted

to relevant news bulletin boards and made available through the World Wide

Web. In addition, and to enable issues raised by questionnaire respondents to be

explored in depth, twenty six tuners working for a number of UK and European

organisations and institutions were interviewed. In total, eighteen respondents

worked for university establishments and thirty four for companies. A profile of

the respondents is shown in Figure 4-1.

Number of
26

tuners

16

4

Numbcr of

easels 	26

16

P1' Physics

Ma Maths

En Engineering

Cs Computer Science

(0-3) 	(4-6) 	(7-11) 	Years of 	 ph 	Ma 	Es 	Cs 	Tuners'

experience 	 background

D University 	03 company

Figure 4-1: Profile of respondents

42

Chapter 4. Tuning in the small 	 43

Their answers, summarised in the first section, drew attention to the need to

extend Eisenstadt's framework to cater for the new issues introduced by parallel

program performance. From an analysis of the experiences reported, an adapted

framework is proposed and its validity examined.

Tuners talked also about the shortcomings of the tools they used, and gave sug-

gestions on how these tools can be improved or what functioualities they would

like their ideal tool to provide. The sixth section is concerned with issues such

as access to tuning training and documentation. The final section discusses the

implications that the results of this study have for tool design.

4.1 Difficulties of tuning

Fifty two tuners were asked to nominate the most difficult aspects of tuning. Their

answers were analysed and classified in a number of categories which are presented

in Table 4-1 in order of frequency of appearance'. Some answers are reproduced

here by way of illustration; a more complete record can be found in Appendix A

(e.g. [Ae41], [Ae43], [Ae44], [Ae45], [Ae46], [Ae47], [Ae50], [Ae51], [Ae52], [Ae55]

and [Ae54] 2).

Finding and fixing. All entries in this class emphasised that although it is

relatively easy to spot the symptoms of poor performance, it is very difficult

to find the cause of the performance problem and fix it. Some answers

'Eighteen, fourteen, nine, two and one respondents mentioned one, two, three, four

and six answers respectively. The total number of answers are eighty six. Some responses

were included in two categories, hence the numbers 10.5 and 19.5.

2 A denotes that the excerpt can be found in appendix A.

Chapter 4. Tuning in the small
	

44

Category Occurrences

Finding and fixing 19.5

Keep track of changes 17

Know specifics of machines 13

Interrelated parameters 13

Inadequate tools 10.5

Somebody else's code 5

Change 4

Time constraints 4

Table 4-1: Sources of difficulties in tuning

indicated that part of the difficulty is attributed to misleading information

given by tuning tools.

Keeping track of the changes. The tuners whose responses are included

in this category were all concerned with how to organise controlled tuning

experiments and compare the different program runs.

Specifics of (often different) machines. Having to know the specifics of the

underlying machine and system software is not something that the average

tuner finds easy to do. Not surprisingly therefore, porting the program to

another machine with a different architecture is regarded extremely difficult

as well.

Interrelated parameters. One of the problems in tuning is that the paramet-

ers which have an impact on the program performance are often many and

interrelated. Thus, the optimum value for one parameter may not belong to

the set of optimum values for all the parameters that affect performance. The

lack of conceptual models of parameter inter-relationships results into tuners

employing trial and error in order to specify a model of interactions between

Chapter 4. Tuning in the small
	

45

the parameters. These interactions are then verified through a number of

edit-compile-run cycles which limit the implementation of program changes.

As it is not easy to try all the possible combinations, tuners try to predict

what changes will work together. Responses of the form "lack of under-

standing of the basic issues" were included in this category, as they imply a

difficulty in understanding the interactions among the various performance

determining parameters.

Inadequate tools. Answers in this category included cases where it was difficult

to interpret correctly the information provided by the performance analysis

tool or tuning tools were simply unavailable.

Other people's code. Programs written by other people are extremely difficult

to understand and optimise. Answers indicated that codes with very complex

data structures are extremely difficult to parallelise efficiently.

Change. Parallel computing is a particularly dynamic area which changes con-

stantly. Compilers that have bugs or keep changing, hardware which is not

configured fully, working with prototype parallel machines or newly imple-

mented languages exacerbate the difficulty of the task.

Time constraints. Two informants were concerned with tuning taking place

under conditions of time pressure. Tuning can prolong parallel programming

because programmers have to develop code which is not only functionally

correct but performs well at the same time. Progress is limited by the

edit-compile-run cycle which can take a considerable amount of time. Time

constraints can be imposed by project deadlines and by the available time

tuners have on parallel machines.

At this point, Eisenstadt's classes can be revisited to examine their relevance to

parallel program performance tuning. The responses show that parallel program-

Chapter 4. Tuning in the small
	

1.1

ming introduces issues which are not present in sequential program development

so new classes emerge and existing ones need to be augmented.

• "Cause/effect chasm"

In tuning, the "cause/effect chasm" is instantiated in the gap between find-

ing where performance is lost and knowing the reason for the performance

degradation in order to fix it (finding and fixing). It is very difficult for tuners

to try to find in large volumes of performance data and tuning information

where performance is degraded in the program and establish the reasons for

the performance bottlenecks. Porting the program to a new parallel ma-

chine is very common and this introduces many more degrees of freedom in

the search for bottlenecks. Due to the complexity of programming models,

there are many interrelated parameters whose model of interaction has to

be investigated before any assumptions can he made about the cause of a

performance problem.

• "Faulty assumption /model"

Eisenstadt in his "faulty assumption /model" class included cases where a

bug was exceptionally difficult to find because of a wrong assumption the

programmer had made about a model of the system software or the machine

operation. In tuning, a lot of knowledge about the specifics of the underlying

machine is required in most of the cases and not only in particular difficult

ones. The challenge of tuning is not unlike that of sequential programming

at assembly level, where the programmer has to know how a large number

of low level entities operate. In addition, whilst there is only one model of

sequential programming, there are many models of parallel programming.

Models are more complex and often involve a large number of interrelated

parameters. Porting the program to different machines increases the likeli-

hood that details of models may get confused or forgotten.

Chapter 4. Tuning in the small
	

47

• "Inadequate tools"

The impact that "inadequate tools" have on the development process is

larger in parallel than in sequential programming, especially when the im-

maturity of system software is considered as well (see next category). Tuning

tools are often unavailable. Enabling the tuning tool alters the behaviour

of the executing program. Tools may mislead tuners by the way in which

performance information is presented.

• "Change"

This is a new category as tuning is often performed when hardware and

system software are still unstable and immature. It is almost impossible

to overcome hardware inefficiencies. Programming environments are not

mature enough and tuning of programs, written in a new language without

advanced compiler and run-time support, is common. Tuning is made harder

by the fact that optimising compilers are not sophisticated enough and often

affect the correctness of the program.

Eisenstadt focused on the cognitive aspects of debugging and dealt only with the

difficulty of bug finding without examining debugging in the context of require-

ments and work practices found in large project development teams. Eisenstadt's

findings refer to exceptional bugs which were very difficult to find. His respond-

ents did not talk about cases where debugging was routinely performed during

program development. Thus, the picture of debugging that emerges from Eisen-

stadt's study is that of a task aiming at eliminating a bug in one instance of time.

Hence, the categories described above are pertinent to tuning in the small and can

be used to investigate how the unit tuning cycle is performed and how it can be

affected by parallel software and hardware.

On the other hand, a number of issues stem from the fact that tuning is repetitive

and can occur in the context of collaboration with others. The two categories

Chapter 4. Tuning in the small 	 48

described below are relevant to tuning in the large as they can be used to examine

tuning in a wider context than that of tuning in the small.

• "Repetitive nature"

Tuners must consider many reasons for performance loss and many loca-

tions in the program where bottlenecks may occur. In cases where tuners

attempt to establish a model of the interaction of the many interrelated

parameters, experimentation is prolonged and results in tuners having to

manage the tuning process. Whereas debugging is successful when bugs are

found, performance tuning does not have a discrete result. Performance

can be improved to different degrees. Tuning can be repeated until specific

performance goals are met. A tuning project may take considerable time,

during which it may be stopped and resumed numerous times. Tuning may

be performed under conditions of time pressure due to deadlines or to the

finite time available on a parallel machine. Time constraints have an impact

on the way tuning is performed and are an additional source of difficulty.

Tuning may involve many changes to the program and tuners have to check

for correctness after every substantial change. Keeping track of changes is

difficult especially in the context of large development projects. Moreover,

when programs are ported performance issues are reopened.

• "Somebody else's code"

Eisenstadt's category "spaghetti code" has been renamed here somebody

else's code because tuning code for others is a very common pattern in

parallel programming. There are many implications for the way tuning is

performed when the code is written by someone else or it is written in the

context of multi-people development projects. Lack of documentation makes

the task harder.

Chapter 4. Tuning in the small
	

49

Category Occurrences

Cause/effect chasm 25.3

Repetitive nature 23.8

Faulty assumption /model 17.3

Inadequate tools 10.5

Other people's code 5

Change 4

Table 4-2: Revised framework

Under the new extended framework the category finding and fixing corresponds to

the category "cause/effect chasm"; the class specifics of machines corresponds to

the "faulty assumption /model" category of the analysis framework. The keeping

track class is relevant to the "repetitive nature" category. The answers in the

category interrelated parameters were shared among the above three classes. The

time constraints answers were included in the "repetitive nature" class. It is

interesting to see in Table 4-2 that the "repetitive nature" category whereas it is

not mentioned in Eisenstadt's study, is ranked as the second most difficult aspect

of tuning

The following sections present evidence of the kind of problems tuners face in four

of the above categories. Issues in relation to the repetitive nature and somebody

else's code categories (tuning in the large) are examined in the next two chapters.

4.2 Cause/effect chasm

As programmers get more exposed to parallel computing their experience in per-

formance tuning is enriched in the form of heuristics or cliches. These heuristics

can vary from being general e.g., "remote memory accesses are more expensive

than local memory accesses, so they should be avoided" to being specific to the

Chapter 4. Tuning in the small 	 50

features of the underlying compiler and hardware e.g., "given that the size of

the T31) cache is small, loop unrolling could make cache accesses more effective".

When such rules are applied the programmer expects the performance of the pro-

gram to improve. There are cases, however, where other factors contribute in such

a way that the impact of applying a well known rule is not positive. Although

such unexpected outcomes can be explained 3, the explanation may often be far

away from the context of the rule itself. Thus, there are many degrees of free-

dom which determine the effect of a performance optimisation and the impact

of a performance improving design decision cannot generally be known a priori

without experimentation. Experimentation, however, may produce huge amounts

of performance data and this makes even identifying the manifestation of poor

performance (effect) a difficult task.

For example, in [Ae25] the tuner knew that next neighbour communications in

the array, of processing elements of the Maspar data parallel machine were almost

as fast as local memory access and that performance could improve if they were

preferred instead of communications through the global router. When this type

of communication was used the tuner discovered that, in fact, the performance of

the program worsened:

[Ae25] . . . because the processors are so small, this neighbour communication
is nearly as fast as a local memory access. But, on the other hand, if you
go too far by that neighbour communication, you worsen the performance
and also there's a chance that too many processors try to send a message
through the same route 4... Informant 42

3Actually, studies of programming have shown that while the knowledge of the less

experienced programmers is fragmented consisting of heuristics and cliches existing in-

dependently of one another, more experienced programmers integrate these heuristics

in the context of global conceptual models.

4 Novice programmers may not know how routing mechanisms can actually affect the
communications of their programs.

Chapter 4. Tuning in the small 	 51

Sometimes, tuners have to deduce the value of a particular performance metric

from other ones that are available within the tuning tool. In [Ae108], the tuner was

given an estimate of the load imbalance problem of the program. He had, however,

to determine the degree of load imbalance as that estimate was made on a different

machine. The information that the tuner had had about the performance problem

compensated for the poor support the tuning tool provided for load balancing

investigation. The tuner tried to verify the load imbalance problem indirectly by

looking at a second level metric such as the time spent waiting for messages.

In the following case, the manifestation of the problem was that some CM Fortran

statements took too much time to execute. Informant 55 was an experienced tuner,

and knew that statements in a CM Fortran program are split into blocks, which

are communicated from the front end of the machine to the array of processing

elements. The communication of each block of code has a startup cost related to it

so it is better if program statements are ordered in a way that as many instructions

as possible are placed within a block. Informant 55 looked at assembly code to

find out how best to re-order the statements in the program. A novice parallel

programmer would not know what caused specific statements to be very expensive.

For less experienced tuners, who may not be able to work at such a low level, the

informant suggested that they should try random combinations of the order of the

source code statements:

[e16] The fact is, that I have a lot of experience with the lower level assembly
language and I look at that and I can see it is splitting the code into many
blocks which is inefficient. The most efficient thing is to have everything in
a single block. If you write the program so that it is split into many blocks,
the execution time is increasing, because there is a startup time for each
block. You don't have to go right down to the assembly code; you can use
a profiling tool and if you see three statements having the same number
next to each other, then you add this number three times and this is the
completion time for this block which has been averaged. Whereas if you see
statements next to each other with a different number, that means that they
belong to different blocks. So maybe, you can try different combinations
of the order of the three statements. It may be the second one that stops
the first andthe third to be put into one statement. So maybe, you could
re-order them. Informant 55

Chapter 4. Tuning in the small 	 52

4.3 Faulty assumption/model

There are a large variety of high performance parallel computer architectures. One

way in which they can be classified is by memory access:

• Shared memory. Each processor has direct access to memory by use of a

shared bus or network.

• Virtual shared memory. Each processor has local memory but may access

remote memory by use of global addresses. This access is accomplished by

low-latency messages sent over an interconnection network.

• Distributed memory. Each processor has access to local memory via a

local address space. The processors are connected by some network. Access

to remote memories is only available via some message-passing system.

Another distinction can be made between Multiple Instruction Multiple Data

(MIMD) and Single Instruction Multiple Data (SIMD) hardware. In the former

there are typically n complex processors executing up to n distinct instruction

streams independently. An SIMD machine has each (simple) processor operating

synchronously and obeying instructions from a single, central controller. For a

machine to be used efficiently, the processing of data has to be distributed onto

the machine such that each processor can be kept busy on part of the problem.

It is also desirable that as little data as possible is moved between processors

since communication tends to be very time consuming compared to computation.

It is important that any programming environment gives adequate control over

the distribution and communication of data. Two programming paradigms have

emerged and gained wide acceptance by the user community:

Chapter 4. Tuning in the small
	

53

Message passing. In this paradigm, individual programs written in a serial pro-

gramming language are executed on each processor having access to its own

local memory. A number of message passing environments exist. To trans-

fer data between nodes the programmer can use send and receive routines

provided by the system library. Often more complex collective operations

are also available.

Data parallel. In this paradigm, a single program controls the distribution of,

and operations on, data distributed across all processors. A data parallel

language will typically support array operations and allow whole arrays to

be used in expressions. The compiler is responsible for producing code to

distribute the array elements on the available processors. Each processor

is "responsible" for the subset of the array elements which are stored in its

local memory.

The architecture of the target machine, together with the available compilers de-

termine the options the programmer has for writing the parallel program. Once

the programming model is selected, the programmer then has to consider how

data and control can be best distributed in the program. The programmer has to

be aware of low level details which affect the performance of the program. Some

aspects of some programming models can be too complex for the inexperienced

programmer to use (e.g. [Ae101]). The need to know low level details about the

operation of the machine can be a problem ([Ae12], [Ae20]) when different kinds

of optimisations are needed each time:

[Ae12] . . . and the latest architectures are RISC which I am not familiar
with, for example, with vector architectures you know what to do, you
know with the inner loops and things. In terms of cache use, I am little bit
lost. Informant 47

Chapter 4. Tuning in the small 	 54

[e700] 5 I started using Occam and I got so much used in using it that I
didn't want to start using a different language. For my thesis work I kept
on using Occam all the time.

Informant 57

The tuners in [Ae20] knew how to apply the standard optimisation techniques for

the kind of architecture they were considering, but these did not bring the expected

results. The code was developed twenty years ago for vector supercomputers and

drastic changes were needed if more performance gains were to be achieved [Ae38].

The problem can be exacerbated when changing a machine means that the per-

formance problem is re-defined from the beginning (e.g. [Ae4la]). Inexperienced

programmers usually start from a parallelisation scheme which is easy to imple-

ment correctly:

[Ae21] The strategy for parallelisation we adopted wasn't the only one. But
the other options we had would make the code so complicated that it would
be unmaintainable, so we had to put up with less performance but with
a more maintainable code. Parallel programming is difficult anyway. So, I
tried to implement the simplest approach I could think of, to section data in
a regular manner. I didn't actually at that time envisage that things could
be so computationally heavy. In respect to the actual core code. So many
processors were sitting idle. Because experience with parallel programming
is so little, most of the people have a sequential background. And so if you
get a non regular decomposition that increases the design so much that it is
not worth it. And that was were most of the mistakes with the TLM code
were made. For every design decision, we asked what is easier to switch
to this path or to the other path. We took always the easiest option. The
overhead of going another way was just too much. Any problems with the
code, the project leader was not there, the learning curve to understand the
code was too large. Informant 47

Novice programmers who do not have a conceptual model of how parameters which

affect performance relate to each other may make wrong performance determining

design decisions whose correction may require substantial re-organisation of the

5 e denotes an excerpt that is not continued in the appendix.

Chapter 4. Tuning in the small 	 55

source code. In [Ae7], the tuners' inability to predict where the performance of

the program would be degraded meant that the data decomposition scheme and

the communication patterns were altered in order to increase the efficiency of

the code. Performance mistakes may escape even the most experienced tuners

during the design and the implementation phases of the parallel program. These

mistakes, however, are simple and are not likely to require major changes of the

control structure of the code as experienced tuners have a correct model of the

performance determining factors:

[e23] In my experience you know, you always make a stupid mistake, while
designing your parallel code, which will result in performance degradation,
so tuning simply means to find it and remove it. 	 Informant 42

Hoc reported that novice programmers find it difficult to grasp the implications

of the machine model for program design [69]. In parallel programming, however,

even the most expert tuners may fail to appreciate the implications of machine

specific models for performance. In the following case, not understanding the

degree to which performance depended on the machine load resulted in tuners

rejecting this as a reason for performance degradation and experimenting instead

with all the other possible factors:

[e42] On the KSR we had a really hard time because they had a multi-
tasking, multi-user operating system and I knew it would change the results,
but I didn't realise it would be that bad, so we were for a week or something
thinking that the code was wrong; it was actually that there were people
on the machine and the speed up would totally change. Yes, we made some
measurements using printf and timing routines and then we started using
pmon, it is some monitoring stuff from the machine, which is not bad, and
we ruled out everything else and then we said that must be it, and we tried
measuring without people on the machine and it was fine. Informant 42

Chapter 4. Tuning in the small
	

56

4.4 Inadequate tools

To investigate in what way inadequate tools can affect program development and

tuning and to validate the corresponding class of the analysis framework, fifty

two informants were asked whether they had ever used any performance analysis

tool with their parallel code. Eight of them had ported their code to a second

machine, four to a third machine and one to a fourth machine. This increased

the answers to seventy one. Table 4-3 illustrates the answers received; despite the

large number of tuning tools reported in the literature (Chapter Two), in thirty

three (46.4%) out of seventy one cases, there was no tool available. In eight

cases (11.2%), tuners built their own performance visualisation tool. In the

remaining thirty cases, informants had used an externally developed performance

tool which accounted for the 42.2%.

Tuning tool? Occurrences

Yes 30

No 33

Own tool 8

Table 4-3: Tuning tool use

The performance tuning support that the machine vendor provided in [Ae21] was

a number of flashing lights on the parallel machine indicating when the processors

were busy. In the absence of tools, tuners may develop their own which are

sometimes too closely oriented to the problem in hand. This means that the same

tools may be inapplicable to other situations:

[e35] Yes, I use a tool I developed myself. One which is tuned very closely
to the problem I am solving and the approach I have taken to solve it.

Informant 16

Chapter 4. Tuning in the small 	 57

Lack of an adequate tuning tool means that parallel programmers may be unable

to gather performance data [Ae53]:

[e14] Taking a program written in CS-tools from the Transputer or i860 box
to a cluster of workstations led to very poor performance. The performance
degradation was much worse that it would have been expected due to the
slower communication medium and lower bandwidth of that medium. It
wasn't until I tried using PVM that I could convince people that it wasn't
my program that was at fault, but Meiko's workstation implementation
instead. The two worst aspects of the whole trial were the inability to
see what was going on in the parallel message passing library itself and
the ability to get a good measure of what my program was doing on each
processor without having to write my own tools. Informant 16

Users want performance analysis tools to be flexible in the amount of information

they show: they dislike tools which do not have any mechanisms for data filtering

(i.e. mechanisms for reducing the amount and the level of detail of performance

data). Also, they would like to be able to set themselves the level of filtering

([Ae74], [Ae75], [Ae76]), instead of being presented with information which is

either too condensed or not summarisable at all [Ae90], [Ae891, [AelOO]:

[Ae85] ... Apprentice always shows this global view, it shows statistics.
You have the total time spent in one subroutine, but you cannot see how
much time was spent in this subroutine over the processors. So you can't
have a histogram of this subroutine over all the processors to see where the
time is spent ... Informant 51

Tools may be successful in assisting the tuner to spot the performance problem, but

this meets only a minimal requirement, as users need assistance with discovering

the root of the problem and eliminating it i.e., bridging the cause/effect chasm

[Ae78]. The gap that tools are called upon to bridge can be attributed to users'

non-computer science background and to lack of knowledge regarding the specifics

of the hardware and the system software the application program uses (faulty

assumption/model). Moreover, tools are designed by computer scientists who

cannot imagine what tool users know or do not know. The few tools that provide

advice in the form of "observations" may sometimes convey this information in

inefficient, incomprehensible or even misleading ways [Ael02], [Ae84]:

Chapter 4. Tuning in the small
	

58

[e77] . . . Apprentice is not very good suggesting how to improve perform-
ance.

Informant 41

[elil] The problem with apprentice is that if you have a particular routine
it will tell you how much time you waste on memory access. Now, the better
the routine, the more time you waste in memory access. Well, if the routine
is very inefficient in its numerical operations, memory access time loss gets
hidden by the inefficiency of the routine. If you rewrite the routine to
optimise it, so that if you optimise the use of the CPU, the bottleneck shifts
to memory access, which will result in apprentice telling you "your routine
is wasting 60% of its time in memory accesses, now it is wasting 80% of
its time". The total time of the routine has gone down because, obviously,
when memory becomes bottleneck, you are running at optimal speed. So,
apprentice can be misleading, if you use it for one routine, you might get
the wrong idea. Informant 44

In [Ae84], Informant 45 (a computer scientist) admitted that he was helped by a

course on performance optimisation to really understand the information provided

by the tool. The course was also valuable because it focused on the attributes of the

parallel machine that really make a program susceptible to memory bottlenecks.

This case demonstrates that even an averagely experienced computer scientist may

have difficulties in understanding the information provided by the tuning tool.

Evidence is lacking regarding the usefulness or the usability of tuning tools [Ae82],

[Ae79]:

[e36] I find it difficult with the CM to match the timings, because if you have
a large piece of code running on the CM and a large piece of code running on
the front end, you cannot actually profile them together. You have to profile
a piece of code on the front end with a piece of code on the back end which
is empty. And reversely. And you have to get these times together and see
what they mean. Another difficult thing about the profiling is accepting
that you have actually done wrong. Sometimes it is not easy to see, when
you have the information, to understand what is wrong. Informant 64

Tool documentation may cover issues such as the user interface, but does not often

address how the tool can be used to tune real programs. The study of an email-

based user support service (described in Chapter Six) has shown that a number

Chapter 4. Tuning in the small 	 59

of users embark on parallel program tuning without having any strategy for it.

Tools are sometimes unreliable and industrial users express doubts about tools

which are developed in the context of academic projects, as they may not meet

the requirements of large projects. Often, tuners find out too late that a tuning

tool cannot actually work with traces from their machine [Ae83], [Ae76]. Once

confidence in a tool is destroyed, it will not be used again:

[Ae88] . . .1 wanted to produce a profile of the code, a very simple thing, you
know I am not asking for a lot of things. Just a profile on where the time
is spent, I had one vector node so I used prof, grpof and the . . . profiler.
All failed, for three different reasons. It is great to have a utility, but it
must be robust. Because if it fails for whatever reason, it is of no use to
you. And the users will never use it again. And profilers are the most basic
tools. You couldn't even consider them as tools necessarily. Informant 50

Performance analysis tools may have bugs themselves, which may be easy to detect

if the manifestation of a bug is obvious ([Ae9l]), so the impact on the programmer's

work is minimal. In more severe cases, however, the bug could bring the system

down ([Ae99]) or even mislead the tuner by presenting an inaccurate picture of

program performance.

Instrumentation perturbs program execution and this affects how and when tools

are used [Ae92], [Ae97]. Tools are used to verify that the program works as the

programmer thinks it should work [Ae107].

[e105] We used Paragraph mostly later. When we had something that
worked in parallel, when the message passing worked, we looked to really
to see if we communicated in a way we really wanted to do. Informant 51

A problem mostly met in early examples of tools was that performance metrics

were isolated from the program source code, thus contributing to the cause/effect

chasm [Ae104], [Ae103]:

[Ae104] . . . So, my tool gave hundreds of different performance metrics about
the processors but we would not see where these metrics applied.

Informant 59

Chapter 4. Tuning in the small 	 60

The performance of some programs is not reflected in the performance metrics that

a tool may provide. Application specific visualisations are sometimes necessary:

[Ae106] . . While Gecko would say that if everything is busy, everything is
red, so everything is ok. But this doesn't apply in the case of this simulator
because there are many cases that the simulator can be working really
hard. Everything working red hard. But the simulation doesn't progress.
It progresses in very tiny steps. It is like busy waiting times. Informant 43

The repetitive nature of the tuning task has been ignored and existing tools do not

support tuning experimentation. Storing each version of the application program

along with tuning products in different directories is perhaps the most common

practice for differentiating among program versions. Programmers typically copy

the code to a new directory when a substantial change in the code's modules is

made which is expected to bring substantial performance gain. Fast assessments

of performance using a tuning tool are hindered when performance information is

stored in trace files whose name depends on the executable program's name or is

always the same:

[e500] In principle, if you had actually two different programs from two
different runs, you could actually keep the source code and the tif files
(compile-time information files) and the rif file (run-time information file)
go to another directory, compile the other code again and keep the other
rif and hf files and . . . you could start apprentice more than once. The
problem with apprentice is that you can not actually give apprentice a
different rif file. The problem is that you need your old code and your old
tif files otherwise apprentice will not know what it is doing 7 .

Informant 44

6 The simulator was the application program.

TA compiler information file is generated for each source file. It is named after the
name of the source file and has the suffix ".T". Thus, a second compilation in the same
directory would overwrite all the information from the previous compilation.

Chapter 4. Tuning in the small
	

61

4.4.1 Tool requirements

Fifty two tuners were asked to specify their requirements with respect to either

the tool they use currently or their ideal tool. The requirements were edited,

summarised and are presented in Figures 4-2 and 4_35 (selected requirements are

also presented in Appendix A as [Ae66], [Ae67], [Ae68], [Ae69], [Ae70], [Ae71],

[Ae72] and [Ae731). Thirty nine tuners answered this question, and there were

in total 246 requirements recorded. From those, 133 (54%) were concerned

with specific features which tuners would want their tools to have; 75 (30%)

were concerned with abstractions that would reduce the information displayed; 15

(6%) were requirements for tuning management mechanisms; 13 (5%) and

10 (4%) were requirements for friendlier and more reliable tools, respectively.

Due to the different programming models that respondents were using it is not

easy to comment on the specific tool features required. On the other hand the

requirement for meaningful abstractions is independent of the programming model.

In summary, users do not want to be swamped with information ([Ae94]) but they

want to have the means to select only the relevant performance data and be able

to eliminate the rest. The requirements revealed a number of ways in which this

can be achieved and reflected the way tuners go about the task. For example,

the selection mechanisms (summarised in Figures 4-2 and 4-3 under the heading

abstractions) could support: the creation of user defined events that are aggregates

of other lower level events; the selection and display of a number of metrics that are

of interest; the display of information when a performance metric is below or above

a threshold; the display of information only for processes that are representatives

or outliers of a class of processes; and others (Figures 4-2 and 4-3). Tools should

'The numbers close to a requirement denote the participants who expressed that

requirement.

Chapter 4. Tuning in the small 	 62

be easy to use and should be able to handle the requirements of large development

projects by handling large trace files, and by facilitating tuning management.

4.4.2 Case study I: tool evaluation

Informal tool evaluation sessions with a small number of tuners revealed a number

of usability problems.

Informant 44 was observed while using MPP Apprentice. The user was almost

at the end of optimising a large fluid dynamics code. He had tuned all of the

most critical routines in his program and he attempted to fine-tune some of the

less critical ones. His program contained a large number of routines which took

little time. He decided to deal with one of the most expensive routines of this list.

This was the MPLBarrier function. He invoked the display which showed where

MPLBarrier was called from: a routine called MPltime. The tuner's immediate

reaction was to try to click on the MPltime function hoping that the navigation

display (Figure 2-5) of apprentice would find the specific function so that he

could have a look at the code. Instead, the user had to go back to the navigation

display of the tool and scroll the list of routines until he found the routine MPltime

which he then expanded to examine [Aell2].

Paragraph+ was evaluated by Informants 53 and 50. The informal evaluation

revealed a number of bugs and inefficiencies in the design of the tool. Amongst

other things, the tuners suggested how certain features could be improved and

stated a number of requirements. The discussion has been modified slightly to be

more intelligible, and summarised for brevity's shake. Modifications include the

separation of the transdribed conversation into parts each addressing a different

issue 9.

9 The corresponding excerpts can be found in Appendix A.

'-5
CD

It

t

01
C

-5 a

-5
ft

E
ft

CD

profiling output for each processor (4,45.47,59.64,65)

show idle and busy times on processors
and show the reasons for them 	(10,55,58,64,61.67)

see what is going on in message
passing library 	 (16)

have profiling for an incomplete code (14. 53. 67)

play the run back and forth 	(7. IS, 53. 67)

measure what program is doing on
each processor 	 (16,43)

statistics cg. minimums and
maximums 	 (51.59)

communication graphs in apprentice (SI. 59, 64, 65)

gantt chart with arrows to show
communications 	 (55, 61, 67)

ratio of computation/communication (55,61)

frequency of function calls (64)

communication statistics (61,68)

call graph (61,64)

a 2-d map of what is processor is doing (51)

User interface

graphical interface to the profiler (6,68)

better graphics to show overal performance (II)

easy to use tools 	(15, 53)

graphs for statistics 	(43)

better help in apprentice 	(54)

easy to understand displays 	(53)

better suggestions 	 (67.41,43.45,64)

Tuning management

managing versions in multi-people
project development 	(17,45. 51,48, 52,6!)

scalability analysis 	(68)

compare different runs (42.45.48)

- 	
zoom in and out (55)

Abstractions

visualise user-defined and higher level events 	(12,51,50,55,61,68,65)

print only the revelant profiling info (not getting thousands of lines) (13)

info about outliers and representative processors 	(51,64,68,65)

Po

1-3

0c

b
C.

a
C))

Reliable tools

minimum possible perturbation (8)

link with compiler to predict performance (It)

handle big have files (15, 53)

reliable profiling info (18.41.42, 50)

reliable better quality tools (51. 53)

filter out unimportant time (55. 59)

select processor or subset of processors
to display performance data 	(51.55)

make current tool less cryptic (42)

select and display a subset of performance metrics (59)

see a number of the quitest or the busiest processors 	(55,59)

show behaviour according to behaviour threshold 	(55, 59, 64)

present information for only one
communication context 	(55, 65, 67)

cut down the information (55,67) 	 easy to use UI to define goals and monitoring

levels without having to recompile (5. 53, 61)

Abstractions

allow analyst to relate different views of the data (IS)

source code reference 	(55,64.68.65.67)

look at summaries and then look
at things in more detail 	(55)

click on a communication and see the line of code
that invokes the communication 	(59)

—
LID

CD

C

t C
Cs' —
CD 	- 5

(ID
CD <
CD 	CD

CD

CL

CD

t
-a
ft
C's
CL
ft
12..

St
P

C,

St .
PO

5+
CL

ft

0-
ft
CL

CD
CD
Cs'

01:1
CL

Tool features Abstractions

Utilisation display: how much dead time vanes over time 	(63, 56, 60, 62) Relation of displays: pick a point on one display and we what else there is on other displays 	(63,64)
Which processes finished last 	(56)

Animation of communications 	(63. 56, 5) Sec behaviour of PUL and CHIMP groups separately 	(63)

and structure of saggroupa 	(62)
Visualise perrfonnance data separately for different sapgroupa 	(63, 64, 62)

Structure of communications 	(63,56)
Statistics only for the workers of the task farm 	(63,64)

Gantt chats with green for computation and red for communication 	(63) Consider a group as one entity 	(60)
Communications to a specific sapgmup 	(6), 64)

Zoom in visualisation displays 	(63) See communications within a sp&iftc group and outside a group 	(56)
Phases for complex PUL and CHIMP events and user defined events 	 (63,64,56,62)

Measure how much you have gained by doing a non-blacking call 	(63,56) User should be able to combine events together to define states 	(64)

Visualise only under certain conditions (threshold) 	(63. 64. 62)
Profiling 	(64. 60)

see time spent in aphase 	(56.62)
frequency of functions calls 	 (60) Filter in and out processes from the displays 	(63,62)

Replay of events 	(56)
Visualise processes and processors 	(63,62)

Colour processes in terms of having executed a phase 	(56)

Reduce scope of monitoring 	(63)
 Computation to communication ratio 	(56)

Selection mechanisms 	 (63)
Call graph 	(56)

Visualise data for representatives and outliers of sapgroups 	(64. 56. 62)
How long you have been blocked in a message 	(60.62)

Zoom in a group and see what each process is doing 	WE

Encode each send with a Filename and line number 	(6), M. 56, 60, 62)

Click on a send in the source code and have the display 	(63) Ignore data of no interest 	64)

show the first instance of this evens
Average data across processors 	(64)

Measure things between the arrival and reception of messages 	(63,56)
See information as various levels of abstraction 	(60)

Frequency of lengths of messages 	(63) Compare a processor with the rest of the group 	(62)

Show how many messages are outstanding to be received 	(63. 56. 62)

Tuning management Message type to be distinguished (control and data) 	(64)

Graphs of lengths and sizes and completion times for messages 	(56,62)
Relate performance results to changes 	(56)

Compare different runs 	 (56, 60)
Contents of messages 	(56) Keep statistics about the runs 	(56)

Scalability of put utility 	(62)
After execution static map of messages 	(56)

'I

CD
CL

s's

Chapter 4. Tuning in the small 	 65

Informant 53 complained that Paragraph+ could not cope with the generation

of large trace files, and that meant that he could run Paragraph+ only with a

scaled down version of the program solving a small problem. Even if a subset

of processors was selected, for which Paragraph+ could show performance data,

a full trace file would be generated [Aell4]. Selective monitoring would alleviate

this problem. Informant 53 stated that sometimes he was not interested in the full

code, but he would like to isolate and work on a small section of it. At the time of

the evaluation, Paragraph+ did not support selective monitoring apart from the

ability to instrument user-defined events [Ae117].

Next, informant 53 focused his attention on a load balancing display which in his

opinion did not depict information he would need in order to examine the load

balance of the program [e115]. He went on to suggest a display that would really

help with load balancing [Ael16]. On the other hand, the statistics display was

considered redundant since it provided information the tuner had already known

[Ae125].

[e115] . . .So this is a display with user defined events which are very strange.
I have difficulty in understanding them, for example, this display will give
you the first time on any processor that this user defined event was started
and then gives you the last time when it was finished. Well, I understand
what the display means but I have problems relating this to some inform-
ation I would be after ... like did it take longer on processor one? Than it
did on processor 28 or something? And you can't tell since this is a kind of
strange summation of time. And maybe you interested, some times, in one
instance of this event. Informant 53

A number of bugs were revealed when the tuner tried to "zoom in" a specific

period of time [Ae123]. The way to zoom in was very complicated and required

the tuner setting the values of a number of fields.

A series of excerpts ([Ael24], [Ael26], [Ael27], [Ael28], [AellO], [Ae118], [Ae120],

[Ael2l], [Ael22]) demonstrate that a consequence of poor design was that tools

were used mainly for demonstration purposes during presentations and for reas-

suring developers that programs ran according to how they expected them to run

Chapter 4. Tuning in the small 	 66

rather than for tuning itself. An issue raised was that tuning tools should be able

to work with incomplete programs [Ae113].

4.5 Change

Discussions with informants revealed that tuning can be affected by inadequate

system software. Tuners have to be aware of compiler changes which can make

performance related design decisions obsolete after some period of time. For ex-

ample, in [Be628], remnants of old code which were necessary under the old version

of the compiler had to be erased from the source code files as the compiler changed

in the middle of the tuning efforts. At the same time, the tuner knew that some of

the performance improvements could be introduced only when the future version

of the compiler would be installed. These changes were postponed until the new

version of the compiler appeared.

System software may arrive in an inconsistent state when different software com-

ponents get improved at different points in time as in the following case. The ap-

plication program (ARPS) used CMAX a parallelising pre-processor which trans-

forms Fortran 77 programs to CM Fortran programs:

[Ae15] . . . ARPS had been performing a nearest neighbour computation in
one part of the code, which CMAX translated into an expression containing
a number of EOSHIFTs (End Off Shift). Unfortunately, the latest version
of CSHIFT (Circular Shift) in the CM Fortran run time library is currently
more optimised than EOSHIFT. Informant 17

Insufficient support from compilers of new languages disrupts the code develop-

ment process ([Ae86]) and may mean that tuning is prolonged in vain only to

prove that the system software needs to be changed [Aell], [Ae22] [Ae48]:

[e10} . . . the biggest effort took two weeks and wound up causing changes to
the Sisal compiler. 	 Informant 20

Chapter 4. Tuning in the small 	 67

Tuning is concerned with minimising the cost of the most expensive parts of the

program. Despite the processing speed of modern parallel machines, I/O is the

source of the largest performance losses. When the execution time is dominated

by I/O operations, which usually are very difficult to improve, any further tuning

may be deferred:

[e6] There are programs that take 45 minutes to read the data in and that
changes your attitude to tuning. 	 Informant 64

In the following case, time constraints and system failures meant that the tuner

had to learn how to switch between different activities. Suspending the tuning

effort under sudden conditions exacerbates the difficulty of the task:

[e9] Yes, it made me learn to do some context switching. So one day I
would work with the transputer and the other day it was down, so I had
to do something else. If one make fails, the whole system fails. And when
the transputer was working, the SUNs' network would go down and then
you had a crash and you could loose everything and then debugging on the
trasputers is really difficult. Informant 43

The problems that the tuners encountered in [Ae17] can be attributed to the lack

of fully configured hardware, the lack of reliable profiling tools and the lack of a

sophisticated enough compiler. The work described in [Ae17] tried to produce an

optimised port of the IFS code for the MeikoCS-2 MPP system''. During that

period, the CS-2 consisted of S scalar nodes and 1 vector node. The tuners had

three months access to the CS-2 which was located in France. As part of a phased

delivery program, the vector nodes on the CS-2 system were initially installed

' °The Integrated Forecast System (IFS) code has been ported to a number of computer

architectures in the past 2 years including Cray C90, Cray T3D, IBM SP1, and Meiko

CS-2. The model is typical of state-of-the-art applications in that it is over 100,000

lines of Fortran 77, consists of 650 subroutines and consumes large amounts of memory

and processing power to perform its calculations. As an example, a 10-day T213L31

resolution forecast takes about 2 hours on a 16 processor Cray C90.

Chapter 4. Tuning in the small 	 68

without memory coherency support between the Sparc processor on-chip cache

and the two mVP processors on the same vector node. Effectively, this required

the Sparc processor on the vector node to run with its on-chip cache disabled if

any part of an executing program was vectorised, with an expected impact on

performance: during the first week, the team experienced an initial degradation of

performance. The tuners concluded that until cache coherency hardware became

available this issue alone was enough to deter users from using the vector node on

the CS-2 for large applications. The team was able to run only a small version

of the application so it was not possible to extrapolate what the performance of

the full model would be on that machine. Due to the fact that the vectorising

compiler was not very sophisticated, some of the loops had to be changed manually

to be vectorisable. The lack of a profiling tool made the tuners profile the same

application on another parallel machine in order to constrain the manual changes

to the most expensive loops. Since the IFS code had to be maintained as portable

as possible it was concluded that a more sophisticated compiler was needed in

order to minimise the manual changes that had to be done in the large loops of

the application.

4.6 Training in Tuning

While it is evident that tuning requires extensive knowledge about the different

programming models and the specifics of the different parallel computers, few

parallel program tuners have access to training and documentation. Thirty three

tuners were asked whether they had attended any appropriate performance op-

timisation course or had had any access to tuning documentation i.e., manuals

describing how to achieve performance optimisations specific to a programming

environment (Table 4-4). Sixteen were working for an academic institution, sev-

enteen for industry. Ten of them (33%) had some training in tuning and all

but three were working for either a company that manufactured supercomputers

Chapter 4. Tuning in the small
	

69

or used them extensively. Only three (9%), on the other hand, had access to

tuning documentation and all of them were working for companies as well.

question Yes No

Training in tuning 10 23

Access to manual 3 30

Table 4-4: Tuning training and access to documentation

Courses are given either by vendors [Ae3l] - their courses are regarded as very

successful [Ae33] - who sometimes work closely with their clients, or by experts

at various High Performance Computing Centres [Ae32]:

[e34] Well, all the projects we work on, include very tight links with the
computer companies since usually they pay us to have our software working
on their machines. Hence, I spent 11 weeks working together with a Maspar
guy (I mean in the same office both in Sunny Valley and France) and he
explained to me almost everything necessary for me about tuning on the
MPP systems. With TMC' 1 , it is the same, I was sent for at least 6 weeks in
Cambridge and some TMC guys came for another 5 weeks to MECALOG.
Hence, it is not really training in the academic way, but it was very efficient.

Informant 13

4.7 Conclusions

At this point a model of tuning in the small can be considered. For a selec-

ted machine and programming model the tuner has to adopt the best data and

control distribution policies. Knowledge is needed about how the machine, the

compiler and the run-time libraries operate in order to drive performance oriented

design decisions or to reason about the performance results. The assessment of

the program performance is done using a tuning tool or timing functions.

"Thinking Machine Corporation.

Chapter 4. Tuning in the small
	

70

Effective tuning is of great importance to the parallel programming user com-

munity and understanding the issues which contribute to the difficulty of the task

may lead to better tool design. First, there are many models of parallel pro-

gramming and despite the fact that they are designed to abstract away from the

underlying machines, tuners still have to know a lot of details about how the par-

allel machine and the system software operate to obtain best results. There are

three levels of tuning expertise:

• The novice tuner who may not know the details of the programming model

and machine specifics that affect program performance. Tuners may try

to overcome poor performance by changing their algorithms in the absence

of appropriate knowledge of how to resolve a performance problem. In fact,

the findings of this study described in Chapter Six verify that novice parallel

programmers may embark on tuning without having any tuning strategy at

all 12 .

• The moderately experienced tuner who knows how underlying machine and

compiler operate. Usually, this tuner has organised tuning knowledge in the

form of heuristics. When these heuristics are applied, a positive outcome is

expected.

• The expert tuner.

The cause/effect chasm issue which emerged in the findings of this work

implies that there is a third level of tuning experience which is accumu-

lated from knowledge derived from the resolution of episodic tuning problems

which cannot be easily explained. The experienced tuner has accumulated

enough experience to recognise how other factors can contribute to program

performance.

121n contrast, the programmers who participated in Eisenstadt's investigation were
not novices (Chapter Three).

Chapter 4. Tuning in the small
	

71

This study revealed a large number of problems regarding computer hardware and

software support:

• Tuning may be performed on incompletely configured machines, and tuners

may be exposed to inefficient system software.

• Apart from system failures, tuning is prolonged in cases where the tuner

relies on the compiler to optimise the code. Such performance gains do not

come for free as tuners have to check thoroughly program correctness after

using an optimisation flag.

• Tuning can be postponed until reliable tools and sophisticated compilers

become available in order to minimise the manual changes done in the large

parallel codes.

• Parallel codes are ported to a number of machines and if tuners experience a

sophisticated programming environment on one system, they expect to have

the same level of support on other machines.

Tuning tool development is very often undertaken by computer scientists in the

context of research projects (as shown in Chapter Two). The emphasis is on

collecting as many performance metrics as possible and on displaying those metrics

using sophisticated visualisation mechanisms. Not surprisingly, tuning tool design

does not meet the needs of tuners who complain that tools are unreliable, difficult

to understand and difficult to use with real world large codes. As a consequence,

whilst it was clear that tuners need tuning tools during the whole process of code

development and tuning, they tend to be used at the end of the development

process for presentations or as a means to verify that everything runs as it is

expected to run. Tuners do not participate in tool design and that results in tools

which do not address important aspects of the tuning task.

Chapter 4. Tuning in the small 	 72

Porting a parallel code across different machines and programming paradigms is

very common and this introduces many more parameters. The program may be

rewritten in a different programming paradigm /language e.g., it maybe converted

from data parallel to message passing and run on the same machine, or it may be

ported to a different machine adopting possibly a different programming model.

Compilers on even the same machine may differ in sophistication and this increases

the tuners' burden of finding which optimisations are needed each time. Program-

mers who have adopted one particular programming model for a long time, show

a certain degree of inertia to change to a new one. This is attributed to the long

learning curve that is needed to be able to switch to a new machine and program-

ming style and produce a parallel program which presents the same if not better

behaviour than the old one. Whereas most of the problems that tuners face are

attributed to cause/effect chasm and faulty assumption/model, almost two thirds

of the tuners asked have never had any training in tuning, while almost 91% have

never had access to tuning documentation. Access to tuning documentation and

training could help in alleviating some of the problems in tuning.

It is easy to hypothesise that the phenomenon of the transfer effect' 3 may occur

during the programming model change. Further work can investigate the validity

of this hypothesis and in particular how the transfer effect can occur and affect

the tuning process. The findings of such an investigation could inform the design

of parallel programming environments as well as provide useful information about

how parallel programming and performance optimisation should be taught. The

existence of many programming models may necessitate a more systematic ap-

proach to teaching performance optimisation which should attempt to see how

13 Programmers who move from one programming model to another bring with them
programming procedures which whilst appropriate to the old model, are not necessarily
suitable to the new [1531.

	

Chapter 4. Tuning in the small
	

73

	

Presenting performance data 	 Providing informationitrair
rformance diagnosis

Figure 4-4: Role of tuning tools changes

the transfer effect - if it exists - should be encouraged for similarities between

programming models and minimised where differences are concerned.

The investigation of the difficulties that tuners face and the current computer

support suggest that the role of tuning tools should change to assist with tuning

where help is needed most. The emphasis should shift from the mere presentation

of performance data to: transforming the data to meaningful visualisations of as-

pects of the program behaviour; education; and performance diagnosis. Figure 4-4

shows this transition in role in relation to the support required for addressing the

problems of faulty assumption/model and cause/effect chasm.

The findings of this study can be used to inform a model for tool development

and also propose the processes which could best serve this model (Figure 4-5).

According to this model tool design should try to consider providing:

Portability and extensibility. Software engineering principles could assist

with building the tool portable and extensible.

Reliable mechanisms to capture program behaviour. Issues that should

be addressed here are the space requirements of trace files produced by large

codes and the reliability of performance measurements. User participation at

this stage could inform design about the requirements of large applications

and the performance metrics that tuners need.

Chapter 4. Tuning in the small
	

74

Usability engineering,

Meaningful vissalisations 	 jj 	ask analysis.
participatory design

Training/Information

- 	Capture tuners' expertise

Diagrtosia

I 	 User Interface
Usability engineering,

task analysis,
Filtering mechanisms, I participatory design

Reliable mechanisms User requirements capture

to capture program behaviour

Portability, Extensibility Software engineering

Figure 4-5: Model and processes of tool development

Meaningful abstractions should be provided to abstract away from large

quantities of low level detailed information to high level information which

can be related to the entities in the source code that affect program per-

formance. These abstractions should be designed based on the ways tuners

perform the tuning task. Task analysis and participatory design could be

employed to inform design at this stage. The repetitive nature of tuning

should he considered to allow for experimentation management and pro-

gram version control"

User interface. Interaction with the tool should he facilitated through a user

interface. Usability engineering in the form of task analysis and tool evalu-

ations could be used to design the user interface so that users can perform

their tasks easily. The terminology adopted by the tool should be under-

standable by novice and experienced users.

"These issues are investigated further in Chapters Five, Six and Eight.

Chapter 4. Tuning in the small
	

75

Tool design and development should be iterative and should be guided by user

feedback and changes in the programming environment. The tool should assist

tuners in a number of ways by providing:

A manageable set of visualisation means. Visualisation mechanisms should

be used carefully and displays should correspond to aspects of the program

behaviour that tuners are interested in. Again user participation could en-

sure that visualisations assist rather than impede tuning.

Information /training. To reduce the impact of the faulty assumption/ model

problem, tools could attempt, wherever possible, to demonstrate possible

relations between performance determining factors and performance results.

Adaptive interfaces could be used to provide background knowledge to novice

tuners, which can be hidden when their expertise increases. Since it was ob-

vious from this investigation that tuners often need to know a lot about the

operation of system software and hardware, this knowledge can be conveyed

by means of detailed documentation or by use of exemplar programs whose

behaviour can demonstrate the factors which affect performance. Exemplar

programs could exist in two forms: before and after the optimisation. Addi-

tionally, tuners could change some of the performance determining paramet-

ers in the exemplar applications and could investigate the results of those

changes using the tuning too1 15 . A more systematic approach is needed to

discover the nature of cause/effect chasm tuning problems. Due to the way

this level of expertise is acquired, it cannot be anticipated by systematic

training. In these cases, making a record of specific tuning experiences and

making it available for others may be more effective. To this end, the ex-

emplar programs could also correspond to exceptions i.e., situations where

15For example, a toy program could demonstrate the effect of varying the granularity
of Regular Domain Decomposition on regular and irregular problems.

Chapter 4. Tuning in the small
	

76

an unsuspected parameter may affect program performance. Background

information should be provided for the cases which are not addressed by the

exemplar applications. Hints of other external factors should also be given

such as e.g., the workload of the machine or changes in the hardware con-

figuration. The tool should also suggest tricks and techniques that tuners

can use. These techniques could also be demonstrated by small example

programs. The help of experienced tuners should be employed to capture

tuning knowledge and expertise in tool design.

Performance diagnosis. Part of the responsibility of identifying performance

bottlenecks should be undertaken by the tool which would narrow the search

space that users have to consider. The tool could identify parts of the

program where certain performance metrics have poor values. Meaningful

observations should be made and the help of experienced tuners should be

employed to ensure that observations are conveyed in meaningful ways to

users.

Finally, a major problem with tuning tools is that they are often unavailable as

their use remains local to the academic institution in which they were developed.

More than half of the tuners asked answered that they have not used any externally

developed tuning tool. Some of them had to develop their own tools which were

tightly coupled with the problem they had to investigate. More communication

is needed among tool developers, tool users and vendors of parallel computers so

that tool development efforts are not isolated. The activities of the Parallel Tool

consortium (PTools), described in detail in [71] are examples of efforts to foster

such communication. The PTools consortium attempts to provide the commu-

nication framework among tool developers, users, and vendors, encourages tool

development which relates as much as possible to parallel programming standards

and promotes reusability, tool integration and portability.

Chapter 5

Tuning in the large

The previous chapter examined tuning by looking at the problems which tuners

have to face in tuning in the small and the state of current tuning tool support

as well as the support from available parallel software and hardware. This ini-

tial investigation pointed to some additional considerations which arise from the

repetitive character of the tuning task and from the fact that parallel program tun-

ing may be part of a software development process involving large programming

teams. In particular, these considerations are pertinent to acting upon managing

and sharing the information produced during tuning.

This chapter deals with work practices that tuners employ in order to manage

tuning information- as they go through a series of tuning efforts. These practices

are studied in a wider context in the next chapter, which focuses on sharing this

information with others.

In order to capture tuning work practices as accurately as possible, several data

gathering techniques were employed: structured and unstructured interviews;

questionnaires; in situ observations and verbal protocol analysis'. Local tuners

1 1n Chapter Seven the participation of tuners in the requirements and design spe-
cification of a tool for performance analysis and tuning is examined. Requirements
engineering and participatory design attempt to put user practices and expertise in the

77

Chapter 5. Tuning in the large 	 78

were observed during tuning and their tuning notes were collected and analysed.

The approach taken by this research has a lot in common with ethnography, a

methodology employed increasingly often as a requirements analysis technique.

The ethnographic approach tries to study the social character of groups and the

activities of their members in their natural settings. Its sociological emphasis

means that it examines activities as socially organised from within their natural

settings by participants of those settings [75]. Of particular importance here is

the drive to uncover the tacit knowledge and implicit practices which are normally

invisible to the casual observer, or are taken for granted, or are unexamined by

task analytic approaches which seek to break down activities into discrete free

standing components, without regard to how they are interwoven into a set of

socially organised work activities. The ethnographic approach is valuable because

it prescribes the need to understand requirements in the organisational context

within which the system will be used and to critique many assumptions which are

taken for granted [172].

The limits that an unobtrusive observational technique would impose on this study

discouraged the use of ethnography as such. For example, the use of video record-

ing [68] could be indicated if tuning practices occurred only in a confined envir-

onment e.g., an office room for a period of time. The combination of more direct

tools such as interviews and questionnaires with occasional observations allowed a

larger number of tuners to respond and provide this study with more information.

In fact, interviews have been used in a number of studies such as: in [123] and

in [122] which reported on the collaborative development of spreadsheets; in [124]

which investigated the use of task-specific vs generic application software; and in

centre of system development. However, although it is clearly beneficial to include users
in the software development process, this itself is not enough. Users are not always
capable of describing work practices (tacit knowledge) and can be unaware of the or-
ganisational and cultural context of their work due to being over familiar with the work
activities.

Chapter 5. Tuning in the large 	 79

[141] where subjects were interviewed about their daily activities recorded in di-

aries. Similarly, an empirical study of software maintenance was described in [851

where the informants were interviewed before and after a maintenance task and

work described in [11] studied the use of paper media for pseudo-code informal

notations which helped with the cognitively complex task of programming.

In total, fifty three tuners contributed to this investigation. Twenty five of them

worked in university establishments and the rest for companies that either manu-

facture or use parallel machines extensively. Their experience with parallel com-

puting varied from one to eleven years (Figure 5-1). Forty two tuners filled in

a questionnaire whereas eleven local and non-local tuners were interviewed. Un-

structured interviews were used in the case of two non-local industrial people whose

views nevertheless are included in this chapter. Seven of the eleven interviewees

worked for companies and the rest for university establishments.

Numbaol
20

tuners
22 	21

16 	 ri
4

(0-3) 	(4-0) 	(7-I1) 	Years of

csperic.sce

Nuxnlnzrof

tnnrr.s 	2(1)
2)

10 	 ri 	Ph Pltysien

lb 	
Ma Manic

17 	
En Engineerir1

4 	
CS Computer Science

4 In4

Ph 	Ma 	En 	C) Thiic

backgrurod

U Ullisensily 	SM Conipany

Figure 5-1: Profile of respondents

The first section of this chapter presents a model of tuning in the large. The second

section examines tuning as a problem solving activity and discusses some of the

ways in which tuners eliminate performance bottlenecks from their application

programs. The third section focuses on how tuners document their efforts and

the last section illustrates how porting parallel programs across different machines

increases tuner requirements for efficient documentation.

Chapter 5. Tuning in the large 	 80

5.1 Model of tuning in the large

The performance of a parallel program depends on a number of parameters which

can be characterised as external or internal: the external parameters consist of

the run-time environment of the parallel application and include the number of

processors, the structure and size of the input problem and the machine. Internal

parameters are the type of parallelism used, for example vector, data parallel or

message passing and how much of the code is parallelised. Depending on the

specific requirements of a project, the performance goal set for the program may

be one of the following:

• For a specific machine, and a specific number of processors, the best paral-

lelisation may be required as the structure or the size of the input problem

data set varies.

• For a specific machine, and a specific problem size or structure, the best

parallelisation may be required as the number of processors varies.

• For a specific problem size and/or structure, the best parallelisation may be

wanted as the program is ported to different machines.

A particular performance goal is accomplished through eliminating all perform-

ance bottlenecks in the program. The resolution of a typical performance problem

consists of a number of iterations of the unit tuning cycle, where each one is guided

by the outcome(s) of its predecessor(s) (Figure 5-2). The program is run and its

performance is assessed. During performance assessment the tuner attempts to

relate the manifestation of poor performance (effect) to the cause of poor perform-

ance (values of performance determining parameters). A hypothesis is made as to

what parameter values could improve performance according to a model (machine

or software specific) that the tuner has. The parameters are set to these values

Chapter 5. Tuning in the large
	

81

and the experiment is iterated. Tuning in the large may therefore be thought of

as a heuristic search within the program's performance space (defined by the set

of performance-determining parameters) which continues until some optimum (or

near optimum) outcome is obtained. Crucial to the efficient conclusion of such

tasks is the availability of appropriate search management information. In the

case of tuning, this information is generated as a by-product of each individual

unit tuning cycle, or tuning experiment. Its importance points to the need to

maintain adequate documentation of the task as it progresses [72].

Relate (model)

parameters (cause)

Assess 	 to performance (effect)

Start experiment 	Run the 	 Make hypothesis
program

et parameters

ntornodel

according to

Iterate 	 hypothesis

experiment

Figure 5-2: Resolution of a performance problem

The tuner may utilise records of tuning experiments in a number of ways. For

example, the tuner may wish to keep for later reference all or part of the records

of several experiments in order to document:

the problem under investigation and its manifestation in the trace data,

the parameter values, and the path through the search space,

performance metrics associated with each set of parameter values, and

the state of the program when tuning was concluded.

Chapter 5. Tuning in the large 	 82

At any time during the course of tuning, the tuner may need to consult tuning

experiment records in order to find out:

the parameter values that produced the best overall performance so far,

the parameter values that produced the best value for one specific perform-

ance metric, and

whether current performance is better than that achieved with a specific set

of parameter values.

Examples of complete tuning problem case histories might be kept to create an

archive which tuners may consult as a source of ideas and strategies for tackling

new problems.

Tuning 	I 	Assess
experiment 	 tuning 	

Sharing tuning

management 	 progress 	 knowledge

Review of
I Best version

tuning 	
I experiments 	 retrieval

Figure 5-3: Tasks associated with tuning in the large

For the tuner, the difficulties associated with tuning in the large stem from the

effort required to manage the tuning process and, in particular, its documenta-

tion - the capture, storage and retrieval of tuning experiment records (see Figure

5-3). Furthermore, in the context of an organisation where parallel program de-

velopment and tuning are done in collaboration with other people, tuning results

and tuning knowledge are shared with colleagues. An issue here is to what extent

Chapter 5. Tuning in the large 	 83

computer-based support may help the tuner to perform such tasks in collaboration

with others.

The benefits of good documentation are widely extolled within the software en-

gineering literature [135]. These can be summarised as follows [30]:

to support reasoning processes during software design,

to facilitate communication amongst the various members of the software

development team, and

to further the accumulation and development of software design knowledge

and experience from project to project.

Some of the many computer-based tools now available to support software docu-

mentation (e.g. [47,50,93,105,1621) might find application within parallel software

development. However, as this investigation makes clear, there are significant

qualitative differences in the documentation requirements of parallel software de-

velopment, which reflect both the experimental, iterative nature of the tuning

phase (as opposed to the more orderly and predictable course of conventional

software development phases) and the large volumes of information that tuning

generates.

To investigate tuning management and sharing of tuning knowledge further, tuners'

practices within a number of organisations engaged in parallel software develop-

ment have been investigated 2.

2 1n particular, tuning knowledge sharing and communication in large projects are
examined in Chapter Six. A large part of this investigation is performed through case
studies. Short case studies are presented in the main text whereas longer ones are
presented summarised as boxed texts and are only commented for convenience.

Chapter 5. Tuning in the large 	 84

5.2 Tuning problem solving

This study shows that a number of experimentation techniques are employed in the

search for better performance [Be158], [Be159], [Be160], [Be161], [Be162], [Be142],

[Be26] 3 . Not all environments encourage experimentation, though. Large parallel

code development is more conservative and extensive changes cannot be afforded.

In these cases, tuning is incorporated within code development as programmers

design the code to be both correct and efficient. Selective time measurement is

then used to verify the correctness of the performance determining design decisions

[Bel3].

This study shows that tuners typically follow a worst case elimination strategy,

where the major performance bottlenecks are eliminated first [Be129] 4 , [Bel3l],

[Bel32]. Some tuners start from a profile of the sequential code and continue with

a gradual parallelisation:

[Be163] I would profile the sequential code to see what improvements should
be made in the parallel version. 	 Informant 61

In the first instance, the sequential algorithm may be altered if this leads to bet-

ter parallelisation [Be140]. In the remaining time, tuners may be occupied with

examining the behaviour of the program in order to form a hypothesis as to what

the parameters that affect the performance of the program are and so enable fur-

ther progress to be achieved more systematically. Also, they may address the less

expensive parts of the code. At this stage, having eliminated all major and minor

bottlenecks, tuning may become an ad-hoc search as tuners may consider what

3 B denotes that the excerpt can be found in appendix B.

'Also in [Be133], [Be135], [Be136], [Be137], [Be138], [Be142] and [Be144].

	

Chapter 5. Tuning in the large
	

85

other alternative code design decisions may yield some additional improvement 5.

As experience increases, tuning tools are used less frequently and only at important

stages of the tuning project:

[Be134 . . . but then I did it more systematically and I made more extensive
changes, as I gained more confidence. The frequency decreased if you like,
initially, I made a lot of small changes and then, when I understood what the
problem was actually, I made more extensive changes. Recently, I stopped
using apprentice and I used time calls, possibly, now that I finished the
load balancing and the tuning I may go back to apprentice to see at a high
level how much the original version without the load balancing varies from
the current one. Because the access to the T31) is limited, it motivated
us against the idea of changing a lot of small things and see what was
happening as quickly as possible. Perhaps, that was one of the reasons that
the frequency of using apprentice decreased, because I realised that it is
not possible, or appropriate. Informant 45

The next section discusses some of the problem solving tactics tuners employ.

5.2.1 Experimentation techniques

A number of runs may be used to establish the model of interactions among the

various parameters that determine the performance of the program [Be26], [Bel 39],

[Be141], [Be145], [Be146], [Be147] and [Be148]:

[Be139] . . . In many ways, you will need to have complete information about
the profile or the task balance or whatever in your problem and therefore
you would make certain assumptions that you will then try to investigate
and you can either go about investigating in more detail the characteristics
of your problem or you can try a strategy whereby you attempt to address
one part of the problem, so you can address the load balance in isolation
from the communication cost and try to observe the effect of the other,
if you can actually measure it correctly. So, in many ways, you are not

5 1n [Be628], as there was no routine that stood out as being more expensive than the

others, the tuner thought that new approaches could be tested, regarding the distribution

of the arrays. The changes introduced at this stage did not improve performance and

were abandoned as sometimes run-time errors were produced.

Chapter 5. Tuning in the large
	

Es'

actually looking for the most optimal solution. It would be nice if you
could get the optimal solution to your problem in terms of load balance and
communication cost, etc. But in general that wouldn't happen, and you look
at . . you identify a problem and you address that problem and along the
way you uncover other problems, so . . . by addressing a problem like load
imbalance, you would discover that the different load balance techniques
would have a communication cost associated with them. And they may
have other costs associated with them as well. Informant 66

Comparison of runs on different numbers of processors is a technique used to

identify whether communications are done efficiently [Be152], or whether the prob-

lem is load balanced [Be151]. The scalability of a performance determining change

may be tried on all sets of processors only if the result of the change depends on

the number of processors. In the remaining cases, a change is tested on a random

set of processors using a random data set [Be150].

After verifying that the control structure of the program is efficient, that there is

no excessive synchronisation for example, an alternative communication harness

may be employed such as lower level communication routines which will decrease

the communication cost [Be149].

Alternative solutions may be compared in small experimental pieces of code before

incorporating the best one in the application program [Be153], [Be1541:

[Be153] ...And the way I solve these problems is that I develop two small
programs, which have these two kinds of communications, and I see which
is the faster one. 	 Informant 42

An application code may be designed in such a way that optimisation can address

separately and simultaneously different parts of it [Be155], which is useful in the

context of multi-person program development efforts. In this context, the need to

test the parallel code for correctness after each person's performance optimisation

change prolongs tuning [Be37].

Chapter 5. Tuning in the large 	 87

The input data size can be decreased in order to allow the tuner to optimise first

the sequential program by mentally executing the program 6 :

[e156] I did a lot of experiments with a small network so that I could check
out the process of routing the messages. From that, I could see where the
modelling approach was wrong and I could change the algorithm. After that,
I could experiment with process mapping and granularity. But someone
should start by optimising the sequential program. Informant 43

Conditions of time pressure may have an impact on the way tuning is performed

e.g., tuning may have higher priority than coding. In [Be628], initial runs attemp-

ted to get an estimate of the program performance before all the intended changes

were put into the code 7 . A specific part of the code, which was not going to be

included in the timings", had produced a run-time error. The tuner decided that

this part of the code could be excluded from the program being tuned and be

debugged later by another colleague. Timings of the program processing a larger

problem size were taken without the program processing the correct input file for

that larger problem size.

Tuning is often done comparing the results of the program on two or more different

machines. In {Be628], the tuner wanted to compare the performance of his program

on machines a and b. Timing results were not available for the current version of

the code on machine 6 so the tuner, who did not have access to machine 6, had

'Eisenstadt has found that a lot of programmers run their programs mentally spec-

ulating about the possible causes of a program bug [44].

7The tuner's notes were written during a period of time that tuning was performed

in somewhat pressurised conditions. The tuner was in a hurry to produce some good

performance results on time for a publication deadline.

8This part of the code performed I/O. Due to the fact that the I/O parts of parallel

codes are very expensive and very difficult to optimise, usually, they are not included in

timing results presented in publications.

Chapter 5. Tuning in the large 	 88

to compare the results on machine a with the results on a third machine c whose

speed was comparable to b's. As the time that the tuner had available on that

machine was finishing, the tuner tried to organise a small series of experiments

on a few sets of processors while timings on the remaining sets were extrapolated

from older results.

In the presence of deadlines a quick and possibly "dirty" implementation may

be pursued. Tuning may be performed conservatively when regression to a non-

working program cannot be tolerated:

[e157] We had to make the thing running for the demo. It changed the way
we worked because when you are working with deadlines, the first thing you
want to do is get the thing to run in a way you are able to live with. And
then, when you do tuning you do it in a very careful way so as not to blow
something really important. Maybe, if there were no deadlines, you would
use more time to tune during development. Informant 42

Extensive experimentation may be expensive in terms of machine time and money.

The time that a single parallel program can run on a parallel machine is finite

when the machine is timesharing. For example, in [Be628] the run of the parallel

program on one node was prohibited because the program had to occupy that

node for sixteen hours.

5.2.2 Duration of tuning

The time taken to complete a particular tuning task (see Table 5-5) is a pointer to

its complexity and to the importance of documentation. The fact that respondents

reported that tuning typically lasted for several days or weeks suggests many

iterations of the unit tuning cycle and the handling of large volumes of associated

data. In such circumstances, the limitations of human memory would necessitate

that the tuner at least document the sequence of changes made to the program to

ensure that changes are not inadvertently repeated. One tuner commented:

[e629] It varies by an infinite amount, depending on how well the original
concept was thought out. Generalisations are impossible. 	Informant 18

Chapter 5. Tuning in the large
	

89

A day to find and fix the first problem, several days or weeks to
continue tuning till I am happy. 	 Informant 17

question less than a day several days several weeks months

duration of tuning 3 21 21 3

Table 5-1: Duration of tuning

5.2.3 Size of the parameter set

The size of the performance-determining parameter set is another indicator of the

complexity of the task. Adopting a faulty assumption /model was reported to be

one of the major sources of difficulties in tuning (Chapter Four). When tuners have

a wrong or incomplete model of the operation of the system software or hardware,

extensive experimentation is needed to tune program performance and establish

a correct model of relations amongst performance determining parameters. If the

number of parameters is large, it will be difficult for the tuner to establish the

relationship between parameter-value pairs and performance without some form

of documentation.

Moderate to large numbers of parameters predominate slightly in this sample

(see Table 5-2). The complexity of the task may be increased by the fact that

parameters are often interdependent. Consequently, the optimum value for each

parameter alone is not always the optimum for the parameter set. One tuner

suggested performance prediction as a solution to this problem:

Because it might be the case to try one change by itself or two changes
together to see if they work well together. So if you have three you have
somehow . . . you can't check everything so you want to predict which are
going to work well together. 	 Informant 55

During tuning one respondent reported on having to think about the following

parameters:

Chapter 5. Tuning in the large 	 90

I had to deal with loop ordering, optimisation flags, debug switches
left on, if statements in do loops, use of hand-coded vs BLAS libraries, work
replication, use of cache. 	 Informant 40

question 1-4 5-10 11-15 16-20

size of parameter set 20 25 2 2

Table 5-2: Size of parameter set

The parameter space may contain parameters such as the version of the compiler

or the version of the program itself as in the following case where the tuner was

assigned to optimise a program which was still under development:

And also the particular version of the program we used. Another
tricky thing about the project was trying to keep track of the changes the
client made to the software. Also something that recently has become ap-
parent . . . it is also the compiler version number because the initial optim-
isations that the compiler did were not very extensive but now the compiler
changed. 	 Informant 45

5.2.4 Case study I: ad-hoc tuning management

This case study examines the impact that the lack of a tuning management tool can

have on the effectiveness of the tuning process. Informant 44 agreed to participate

in a think aloud session whilst tuning his program. The tuner wanted to find

the optimal version of a routine which calculated an inner product. A fast inner

product routine would improve the program performance because more than 50%

of the execution time was spent in this routine. The tuner compiled and linked

to the rest of the program an old version of the routine which he had developed

before [BeGOO]. While the program was being compiled the tuner opened the file

with that version of the inner product routine to make sure that the file contained

the version he intended to time (Case study I, part a).

Chapter 5. Tuning in the large 	 91

The tuner had devised a very simple way of differentiating among the different
implementations of the inner product routine. He had to rely on remember-
ing a correspondence between file name and version in order to retrieve the
version he wanted. The tuner had put all ten files containing a different im-
plementation of the routine in question in a directory. The names of these files
differed only by the last part which was of the form: hf, lx.f, etc. The tuner
looked for the file which contained the version he wanted and linked this file
with the rest of his program. He compiled the file which contained the specific
version without being absolutely sure he had got the right version: Ithink this
is the routine I was working with before. The tuner had to remove from the
file, which contained the call to the inner product routine, some calls to PYM
(Parallel Virtual Machine, [9]) which remained from a previous experiment.
This resulted into several compilation errors which the tuner was trying to
correct. He wanted to run the program on one processor in order to make
sure that the version still worked because it had been a long time since he last
used this version of the inner product. Invoking the tuning tool would really
produce more information than the tuner needed [Be601].

Case study I, part a

Summary: The tuning process was affected by the lack of an effective manage-

ment tool. Informant 44 adopted an ad-hoc mechanism for version control which

was not applied to all the modules of the program. For example, compilation

mistakes were introduced because code changes corresponding to different tuning

experiments were made in the same source code files. Such a way of managing

the program versions proved to be inefficient in the long term since the tuner had

to rely on his memory for differentiating between the versions. Rapid changes in

the programming environment affected the tuning process since the tuner had to

repeat old experiments in order to make sure that he compared versions under the

same conditions. For this reason he did not use the timings of the old version,

which were written in an on-line file, but instead ran that version once again (Case

study I, part b). It was obvious from this study that the tuner postponed invest-

igating a new alternative because it was difficult for him to obtain the necessary

information from documentation available on-line. The search for the optimal

solution stopped only temporarily, and he would come back to the specific routine

at a later point in time.

Chapter 5. Tuning in the large 	 92

The tuner had tried before the specific version of the inner product routine.
For this routine, he had timing results in a on-line file. The tuner was not
willing to use these results. Instead, he repeated the experiment once more
because as he said he would like to make sure that the specific version still
worked. Due to frequent changes in the programming environment, the tuner
thought he had to test again the specific version before he experimented with
an alternative one [Be602]. The decision to use a certain processor set for the
execution of the program was based on the available resources and not on the
best interest of the tuning process. The tuner had to run the program on a
smaller set of processors because he would have to wait a lot of time in order to
get access to a larger processor set. The optimal version of the inner product
routine was found, but it could not guarantee that the program could always
give right results. As the tuner said himself, the performance gain was too
little to justify using a version which had a slight probability of introducing
errors in the calculation. The tuner was not sure whether this conclusion was
correct. He would have to read the man pages more carefully but he decided
he did not want to spend more time on this problem. Provided that time
allowed it, further performance improving options could always be considered
in the future [Be603].

Case study I, part b

5.3 Documentation methods

All but one of the respondents reported that they employed some form of docu-

mentation (see Table 5-3). The totals exceed the number of respondents because

some reported using more than one documentation method 9. "Other" meth-

ods of documentation include: plotting graphs (1); using a versioning system

(2) ([Be612], [13e613]); scripts (2)10; spreadsheets (1); a whiteboard (1); program

output files (1); screen dump of the output of the profiling tool (1); and writing

a report (7). Six of the seven people who answered that they wrote a report have

used some other means of documentation. In fact, two of them used an on-line

file, one used scripts, two used paper notes and one documented the source code.

9 Three, twenty-nine, and eighteen respondents reported using three, two and one

documentation methods, respectively. One respondent did not reply.

' ° In [Be610] and [BeGil].

Chapter 5. Tuning in the large
	

93

This day to day documentation was used later to produce a report, a scientific

paper or part of a thesis. It is interesting to see that eight of the sixteen answers

which belong to the "other" category imply the use of some computer tool. This

added to the number of people who use an on-line file (eighteen) increases the

number of people who use some form of organised documentation to twenty six.

Email responses emphasised the variety of documenting methods and tools:

[e6041 Keeping track of the changes; I don't find it difficult any more because
I keep notes of what I do, because I was caught by that once. Informant 64

Each concept involved in the optimisation process was documented.
Followed by a diff type comparison to indicate actual source code changes
for that concept. 	 Informant 1

If you do your quick and dirty testing it is the back of an envelope. If
it is a serious routine, for example, I have been working on an inner product,
then I document run times. If I want to do more analysis, I would try to
use my timings which are written in a file. But if I have to know whether
something is faster or not then I would just write it in my mind. Because
there are not so many possibilities. Or I would keep the source file to remind
me of the things that did and didn't work. 	 Informant 44

[e605] On pieces of paper. They were not organised. I often had to repeat
the experiments to carry on from where I stopped.

Informant 15

[e6061 The documentation we did was ad-hoc: a file containing notes on the
various configurations we tried, and on the tuning results. These notes were
never written up in any formal way, just kept for informal reference by the
programmers.

Informant 17

I tend to keep sets of timings for each version in a spreadsheet allowing
me to easily compare improvements or degradations between one version
and the next. 	 Informant 13

Informant 44 kept a log file of all the changes he made to his program, the dates

of these changes and whether they were successful or not. He developed these

documentation practices gradually as his expertise in performance optimisation

Chapter 5. Tuning in the large 	 94

question source code on-line file paper notes I other

documentation methods 28 18 23 16

Table 5-3: Documentation methods

increased. Asked whether he used to keep such a file back home", he answered:

"not really, usually it was such a struggle to get things to run . .. ". It seems that

the more the tuner's programming and tuning skills increase, the more the tuner

is able to shift his attention to the management aspects of tuning. At the same

time, the search space gets bigger since the tuner is aware of more parameters,

which can possibly affect the performance of the program ' 2 . Apart from the log

file, informant 44 kept a file containing timings for every version of his program.

This file contained the execution times of his program run on different numbers

of processors and using different input data. When a performance optimisation

change altered substantially the execution time of the program, the runs were

repeated on all sets of processors:

[e621] These timings are for the optimised MPI version, i.e, the latest ver-
sion. Timings for the previous version are in another file. After a code
change, I check to see if it changes the timings; if it does, then a new set of
timings will be needed. I keep the timings of the previous version and all
the versions in a directory in order to have a development log.

Informant 44

In the next case, informant 46 has created a file containing tuning notes by cutting

and pasting some parts of the output of his program. A typical entry of the

"The participant was visiting Edinburgh Parallel Computer Centre.

12 1f sufficient tool support existed so that tuning experiments could be managed with

relative ease, then tuners could perhaps focus on improving their understanding of per-

formance determining parameters, i.e., they could create and improve models of what

determines the performance of their programs.

Chapter 5. Tuning in the large 	 95

programmer's on-line file is shown in Figure 5-4. The first line of this entry

indicates the directory where the executable resides. The path also indicates the

version of the program and the name of the Unix machine where the program was

run. The entry is further identified by stating the value of a parameter in this

case that "profiling" was "on" during that run. The entry includes the output of

the program and the total execution time. The program output is used to record

program correctness and memory usage.

acp/new/new.sentence3.galjas with profiling on

found sentence 36800Uffl!

deleting dictionary ... done

found a total of 36822 derivations

32364.3 real 24492.4 user 49.2 sys

table[8] = 497768, 3982144

total allocated= 11234392

overflow = 1088

zoo50: 18.208 of 36400 trips, 896 Kb free

Figure 5-4: Tuning notes of Informant 46 ([e626])

In [Be627], informants 50 and 53 kept tuning results on a white board. The most

important of these day to day notes were written down in a diary in order to

record the porting and optimisation process. The diary included information such

as the dates on which various activities took place; performance results; parameter

values and program changes. This data formed the basis of an internal technical

report. The report contained among other things a chart which summarised the

performance of the code for every day's effort. Table 5-4 lists some entries of the

tuning diary 13 . A second diary (not shown here) was also generated which logged

a change in one of the parameters that controlled the execution of the program.

13 The diary continues in Appendix B.

Chapter 5. Tuning in the large
	 rim

T21 NSTOP =20 Iephys=.true. lssiag= 	false.

day sees mflops notes

1 272 8.8 vector node, using only sparc processor (-novpu)

6 348 6.9 more work on cuadjtq, vectorised: qpassm, fswr

8 279 8.6 experiment to recompile all routines vectorised so

far using only sparc processor (-novpu)

9 256 9.4 start with changing ifs, more work on vdfexcs

10 256 9.4 experiment noaltcode option, no improvement

11 222 10.8 recompiled with nproma=64 (was previously 32)

12 214 11.2 recompiled with nproma128

13

13

18.1

10.9

132

220

recompiled meiko set of vectorised routines on

recompiled all routines on c90 (nproma64)

only source modification made was to change

sqrthf to sqrt in lwttm and lwtt

Table 5-4: [Be627] Diary of porting IFS to CS-2

Case study II: tuning notes of informant 45

Informant 45 kept his tuning notes in a notebook on a day to day basis. In terms

of the overall project, he had to produce a report which would deal with per-

formance tuning issues and results with respect to the choice of data distribution.

This case is an example of trying to determine the effect of the structure of the

problem on program performance. The large number of factors that affected pro-

gram performance necessitated a more systematic way of documenting the tuning

progress:

[e620] So, I kept results of these timings as well as the level of optimisation
and the compiler version. Another option is whether apprentice is used
because it introduces some perturbation. My documentation should be
more systematic. I guess what I should do is use some short of form to
make the experiments rather than using the book. At the moment, I also
keep the makefiles and executables in different directories. Informant 45

Chapter 5. Tuning in the large
	

WI

His task was to design the best data distribution policy for the input data
the parallel program had to process. The distribution of the data depended
on the relative computational requirements of the different kinds of material
encoded in the data. Each cell in the input matrix could be either metal, air or
carbon fibre. Carbon fibre can be found in many fitnesses i.e., having different
conductivity, and its computational requirement depended on this parameter.
Informant 45 conducted several runs of the program processing only carbon
fibre of different fitnesses and compared the execution time to corresponding
runs which processed only air. In an excerpt from his log book, he wrote down
how much more expensive it is to work on carbon fibre than simply on air:
The first column (Nrings) in Table 5-5 represents the fitness of carbon fibre.
The second column lists the actual time spent working on data consisting only
of carbon fibre and the third lists the corresponding times of working on data
consisting only of air.

Case study II

Nrings Time J Greater than air

2 1.21 10.6

3 1.45 12.5

4 1.54 13.3

Table 5-5: Informant 45's notes on a series of tuning sessions [e6251

5.3.1 Case study III: tuning notes of informant 17

The entries in the on-line tuning notes file 14 of informant 17 were introduced on

a day to day basis. Part of the notes are presented in Figure 5-5. An analysis of

this file revealed that entries could actually be categorised in a number of classes:

Action done. An action such as that the program was compiled or was run was

reported.

To do. The entry of this category mentioned things that the tuner would have

to try to do in the immediate future.

"This file is included in appendix B as excerpt [Be628].

Chapter 5. Tuning in the large 	 c:i

Report on a compile or run-time error (bug). In some cases the tuner

would explain what caused the error, for example, the fact that a specific

directive was not necessary. Usually, such an entry would be accompanied

by the error messages the tuner was getting.

Code inclusion. At some parts of the file, the tuner would include some

piece of code which created a problem or which was different in another

co-developer's source file.

Report on a trick. An entry could describe a trick that improved performance

e.g., a specific combination of compilation flags or setting the size of the

arrays to a power of two. In a specific entry, the tuner said that what he

discovered should be put in training reports.

Code Change. An entry could report on a code change, for example, on the

addition of some special directives. In another case, the tuner would give

justification for the adoption of a change.

Speed of the code. A report on the speed of the code, for example, "the code

ran twice as fast".

Include results. Actual timing results were included, usually accompanied by

the kind of processor. configuration, data sizes and parameter values for the

specific timings.

Comments on timing results. Timing results would be sometimes commen-

ted. For instance, the tuner wondered why the timing results in a specific

case were so bad.

Mail message. A mail message sent from a person who was working on the

same project was included and commented.

Chapter 5. Tuning in the large

April 13

-- After Jonas's changes are in, next thing is to add the axis

permutation stuff and timing stuff (latter with ifdef's).

-- }flDEPENDENCE's in chksymsd.f possibly out of place; possibly

unnecessary.

-- Blew off the I/O changes in dump3d.f.

-- RAN! Gave up fooling with the DIFF's. Found and grabbed Jonan's

sources. Highlights:

hew - kew + D.Stwrho(i,j, 2)*w(i,j, 2 ,tlevel)

hew - key + 0.Stwrho(i,j ,nz-1)*w(i,J ,un-1 ,tlevel)

April 15

-- Recompiled with larger problem size (87 x 67 x 35) but don't have

quite the right input file for it. Results look promising, however.

-- Preliminary numbers (pre-cshift) per iteration:

41'?! 	 321'?! 	 64PN

	

35x35x35: 	 18.2 	 4.5 	 2.8

	

67x67x35: 	 82.6 	 10.6

-- Bug in (II4AX_CSHIFT processing found and fixed.

41'?! 	 321'?!

	

67x87x35: 	 59.6 	 10.6

-- After. bounds trimmed (so no masking in AVG and DIF ops):

41'?! 	 321'?! 	 641'?!

	

32x32x32: 	 11.0 	 2.0 	 1.33

	

35x35x35: 	 17.2 	 3.7

-- Using exact powers of two sure helps.

99

Figure 5-5: Excerpt from tuning notes

Chapter 5. Tuning in the large 	 100

Apart from giving a record of the tuning process, documentation helped the tuner

to coordinate his day to day activities. A closer study of the informant's notes

revealed aspects of the task which are relevant to both tuning in the small and

tuning in the large. The observations refer to the tuning process and how it is

affected by the programming environment and the conditions under which tuning

occurs.

5.3.2 Reasons for documenting tuning

It is interesting that the need to communicate results to colleagues is rated quite

highly by respondents (see Table 5-6' s). This, together with the last three reasons

listed - aiding portability, report generation and consulting a document later 16

- emphasise the collaborative nature of parallel software development, and the

importance - as in conventional software development - of sharing knowledge

amongst project members. Some email respondents pointed to the difficulties en-

suing when projects get interrupted before completion. Respondents also stressed

the value of accumulating tuning case histories across projects: "to use as a learn-

ing aid and for future performance sessions":

[e622] I can see what changes made the biggest differences hopefully to help
me the next time I tune a parallel program. 	 Informant 21

15Eight, thirty and twelve respondents gave three, two and one reasons for document-

ing tuning respectively.

"E.g. see [Be612], [Be613], [Be614], [Be615], [Be616], [Be617], [Be618] and [Be619].

Chapter 5. Tuning in the large
	

101

reasons for documenting tuning occurrences

as a reminder of progress 27

to keep track of changes 37

to aid communication with colleagues 16

to aid portability 3

report generation 5

F consult a document later 8

Table 5-6: Reasons for documenting tuning

5.4 Case study IV: porting a program across

many different machines

It was shown in the previous chapter how program porting across different ma-

chines exacerbates the difficulty of tuning in terms of increasing the volume of

expertise that is required from the tuner. This section examines the documenta-

tion and versioning requirements that program porting induces.

Program versions proliferate in cases where the program is ported to other ma-

chines. Porting programs has almost always been motivated by the extra per-

formance which can be gained by just using a more powerful machine. In some

cases, though, program development has to be transferred to another machine

because of the programming tools available on that machine. Sometimes, version

creation may be automatically facilitated through conditional compilation. This

is very common in the case of sequential programming. In parallel programming

too, conditional compilation may be feasible when the programming model is the

same as, for example, in [e623]. This investigation shows, however, that in cases

where the programming model is changed as well, the changes that the program

undergoes are generally too extensive to be handled by conditional compilation.

Chapter 5. Tuning in the large 	 102

e623] Generally, we keep only one version with conditional compilation
to allow it to run on the machines we have here: Suns and SGIs (good
debugging tools), Ncube-2, Intel iPSC/860, Intel Delta, Intel Paragon; this
helps greatly in the ability to write code since the code can be debugged on
a workstation or the Ncube or iPSC which have debuggers; the Delta has
none and the Paragon one is only minimally working so far. Informant 18

A PVM version of the program was developed for a network of Hewlett
Packard 9000/700 series workstations.

The PVM version was ported to a T3D emulator running remotely on a
Cray C90 in Lausanne. Using the emulator avoided wasting T31) time
while removing possible bugs resulting from switching from 64 bit to 32
bit arithmetic.

The program was ported and optimised on the T3D in Lausanne. This
included inserting some shared arrays in place of the PVM code.

The program was ported to the T3D at EPCC in order to be further
optimised:

• The PVM version was converted to MPI and the solver part of the
program optimised.

The tuner experimented with the use of a number of alternat-
ives for the inner product routine. The tuner had already elim-
inated all sources of large bottlenecks and the inner product
routine was almost optimal. The last alternative did not res-
ult in a major performance gain and endangered the program
correctness. There was one more alternative that the tuner
had to try, but this was postponed for a later time.

- The MPI program used the BLAS routines and Fortran 90
array syntax wherever possible.

- The tuner tried to optimise routines which were not critical
for the program's performance.

- The tuner shifted his attention to the problem of memory use.
The program did not make efficient use of memory. The tuner
was using a process to read in the input data and distribute
it to the remaining processes. This master process ran out of
memory space for larger problems.

- The tuner changed the algorithm of the code on the mas-
ter process by streamlining I/O and distributing/gathering of
data. Another alternative that the tuner considered was to
have two master processes in the program.

- The tuner attempted to optimise further the inner product
routine.

- Finally, the tuner intended to try to experiment with the data
decomposition scheme his program adopted.

Case study IV

Chapter 5. Tuning in the large 	 103

Informant 44, a physicist from the Technical University of Delft had a computa-

tional fluid dynamics code which he brought over to Edinburgh Parallel Computing

Centre in order to take advantage of the large supercomputing facility - a Cray

T31) - available there. This allowed him to solve large fluid dynamics problems

which he was not able to solve before, and also to optimise the performance of his

code with the help of expertise available at the centre. The code development and

tuning process is described below:

Informant 44's code was kept in three main variants, which marked three import-

ant stages in the code development. Version management in this case became more

cumbersome because at a lower level he kept versions of code components which

were created and changed during day to day tuning. In case extensive changes

were required, he could create a different directory. When the code was sufficiently

tested to prove that it enhanced performance, its changes were incorporated in the

current version of the program. The different code versions were kept in case they

were useful for other machines. Not all changes required the creation of a new

directory:

[e624] Well, if I know that I am going to change more than one routine I
go to another directory, essentially, if I am optimising only one routine, I
will optimise this routine separately and put it in my program. If I decide
to change the program structure, for instance, because I want to change
the memory usage, I will go to a different directory because I know that
it will be an operation that will change most routines, so if I stay in the
same directory, I will either have two versions of almost every routine in
that directory, or I will lose my old versions. Informant 44

Program development and tuning would have to be continued possibly on another

parallel machine and after the tuner's return to Delft.

The reconstruction of the development process in case study IV suggests that

tuning may not be homogeneous as it may consist of interleaved stages which vary

in the following ways:

Chapter 5. Tuning in the large
	

104

• They may examine different aspects of the program which have an impact

to performance. For example, one effort could focus on improving commu-

nications whereas the next effort would look at memory use.

• They maybe different in the degree to which performance maybe affected by

them and not necessarily tackled in order of priority. For instance, the tuner

would interrupt the improvement of a major source of performance loss in

the program to investigate the feasibility of introducing minor performance

improvements into other parts of the code (opportunistic tuning).

• They may differ in the tuner's confidence that they will produce a posit-

ive outcome. Some improvements are introduced opportunistically, without

experience or belief suggesting that they may indeed optimise performance.

• They may differ in the extent of changes that the source code will have to

undergo. Minor changes may be interleaved with more extensive ones.

Finally, some aspects of the program are revisited when time allows it or when

the tuner has in the meanwhile acquired some additional knowledge.

5.5 Tool requirements

The typical duration of program optimisation, the large size of the parameter

space, the fast changing programming environments and machines necessitate the

systematic management of tuning. With adequate computer support, tuners could

focus their efforts on improving the performance of their programs instead of

building tools to assist with tuning management. Existing version control systems

may be utilised, but they do not provide support for results capturing and tuning

progress assessment:

Chapter 5. Tuning in the large 	 105

[e528] I suppose a starting point would be something like an RCS. It would
freeze a particular version. It is something that we find difficult in deal-
ing with [company]B because they don't have any support for version con-
trolling. So it is to maintain different versions several times. Yes. Something
like RCS but which could understand what composed an experiment.

Informant 48

Formal documentation may not be able to assist with capturing little tricks that

people do to improve performance resulting into tuning knowledge and rationale

not being disseminated:

[Be522). . . But other problems we find are the continuous documentation of
problems, hints tricks, things that people have found in use and have it up
here (he showed his head) and they never wrote them down so that everyone
else can use. Yes, the biggest problem is with the little tricks and hints,
ways around the problems. Informant 48

The need for a tuning management tool had already been raised in the study

and its requirements discussed in some detail [Be5231, [Be524], [Be526], [Be527],

[Be529J.

[e525] For instance you could use SCCS and apprentice could understand
SCCS and when you want to go back in the source files to pick a previous
version that would be a very nice extension to apprentice.

Informant 44

5.6 Conclusions

The investigation of how tuners solve performance-related problems revealed that

they rely on information provided by a number of program runs. This information

is used to form hypotheses (tuning search) and evaluate their validity (assessing

tuning progress):

Tuning search. Tuning search is heuristic and opportunistic. It may take a

long time and may be suspended and resumed later. Major bottlenecks are

Chapter 5. Tuning in the large 	 106

addressed first, but tuners come back to a specific problem if in the meantime

some more knowledge is acquired or time exists to allocate to it. Changes

are attempted even though there are no indications that they may bring

a performance improvement. Performance bottlenecks are found through a

search which involves a number of controlled experiments:

• Initial runs can help tuners form a model of the interaction of the

various performance determining parameters. A special case in this

class are the runs which verify whether a particular problem e.g., load

balance, exists.

• Runs of small pieces of code which test the effectiveness of alternative

solutions. Before one of the solutions is adopted, it is compared with

the others in a small piece of code in order to allow easy and cheap (in

terms of tuner's and machine's time) experimentation.

Assessment of tuning progress. Tools may be invoked more than once to com-

pare codes but most usually they are used initially when areas of poor per-

formance have to be identified. Timing functions are used later as a flexible

means to determine tuning progress. Three classes of runs could be distin-

guished:

• Runs which check the program correctness and the performance gain

after a change in the code. When the scalability of a change is ex-

amined, runs are repeated on as many available sets of processors as

possible. As the experience in tuning increases, these runs test pro-

gressively more changes at any one time.

• Production runs. After a version "freezes" the program is run on many

processor sets in order to show the behaviour of the program as the

input data changes or as the problem size changes.

Chapter 5. Tuning in the large 	 107

• Runs where two versions of the code are compared under the same

hardware or system software.

Within this framework of experimentation, program versions proliferate. Apart

from the production versions, the code may exist in versions which are only de-

veloped for performance measurements. Input data sets may also be different for

the purposes of tuning. Porting the program to a more powerful machine increases

the number of versions that tuners have to consider. Tuning progress may not be

monotonic; in case of regression the previous version is needed and other versions

may be kept to be used on other machines. A survey of programmers showed that

this is done in an ad-hoc, idiosyncratic way depending on the developers' own

practices. Some case studies showed that ad-hoc ways of version control can only

help in the short term or for small projects.

Documentation may be used to aid tuning management, but the responsibility

of devising a documentation scheme lies solely on the tuner - with the exception

of large software development organisations which may enforce their own docu-

mentation standards. Some tuners go to considerable efforts trying to organise

the development and tuning process. To this end, a lot of time may be spent

trying to utilise a number of tools such as graph drawing packages, scripts, or

even spreadsheets that could support the experimentation process. Despite the

valuable time spent on devising a documentation and/or version control scheme,

such schemes are not completely automated and integrated into the development

process. Hence, they can be inefficient at times. For instance, it is not easy for

tuners to remember to adhere to the methods they themselves have employed. For

example, in one case the tuner had included (see Table 5-5) some timing results

into his logbook but there was not any indication about the other parameters

which determined those program runs. Due to the rapid changes in the program-

ming environment and the lack of adequate computer support, this documentation

Chapter 5. Tuning in the large 	 .108

is sometimes regarded as outdated which results in the repetition of some tuning

experiments.

The findings of this study suggest some of the requirements for a tuning manage-

ment tool:

• Tuning experiment management

The tool should cater for facilitating and recording the experimentation

process and its by-products. It should provide for the storage of program

versions which should be accompanied by a record of the performance de-

termining parameters along with the performance result expressed in terms

of performance metric-value pairs. Successful and unsuccessful efforts with

their causes should be documented to record the program development path

and for use as a learning aid for future efforts. The duration of the task

may be so long that documentation, apart from giving a record of the tun-

ing process, is invaluable as a reminder of the day to day activities and of

the state of the program when tuning was stopped thus helping the tuner

resume tuning at a later point in time. Automation of the experimenta-

tion process should be supported. For example, a number of program runs

varying in some parameters (e.g. number of processors) could be performed

automatically and experiment results could be recorded and correlated.

• Access to experiment information

Tuning experiment management provides a record of the development and

tuning process. The tool should allow the tuner to navigate through the

program development paths in order to have access to the rationale of per-

formance determining design decisions, to assess tuning progress, to keep

track of the program changes and to convey design decisions and expertise

to colleagues.

Chapter 5. Tuning in the large 	 109

Another basic requirement for a tuning management tool is that it does not have

a negative impact on the tuner's productivity. In the long term, the positive

effects of the adoption of such a too1 17 may be easily understood, especially in the

context of large collaborative projects. On the other hand, it is likely that the

introduction of tuning management tools will degrade the developers' performance

in the short term, unless special care is taken to incorporate as much as possible

the management functionalities within the tuners' programming environment.

This chapter validated a model of tuning in the large which can be used to inform

the design of a tuning management tool. Further investigation in the form of

in situ observations is needed to further refine and validate the model. More

studies of tuners' diaries may reveal many of the problems associated with trying

to manage the tuning task as for example in [94]•

Finally, parallel codes cross national borders as scientists in the quest of large

computational speed travel to other countries in order to access new more powerful

machines and take advantage of the expertise available locally. Since employing

the help of an expert within the working environment is a very common way of

solving a performance problem, the way tuning information and expertise is shared

within and across organisations is studied in the following chapter.

17 For example, work in [125] showed that documenting the development process may
lead to error-free programming.

Chapter 6

Tuning across machines, people

and organisations.

Chapter Four has examined tuning in the small i.e., the cognitive aspects of tun-

ing and the available computer hardware and software support. Chapter Five

examined issues which arise from .the repetitive nature of tuning and the need

to manage the information that tuning produces along with the many program

versions. This chapter deals more closely with tuning practices in the context of

large application programs whose development involves the efforts of a number

of people. In particular, the communication and information requirements are

investigated along with the ways in which performance optimisation expertise is

disseminated within and across organisations. The predominant method of invest-

igation used was that of case studies which in particular looked at projects rather

than individual tuning processes.

The first section of this chapter stresses that there is not a single approach to tun-

ing. Whereas performance may be important for one organisation, it may not be

such important an issue for another. The following two sections present two case

studies of software development practices in two large institutions. These institu-

tions have made large investments in purchasing parallel machines and key areas of

their research activities rely on using them efficiently. In the first institution, code

development and tuning was undertaken by many different and dispersed groups of

110

Chapter 6. Tuning across machines, people and organisations. 	 .111

people. The second case study looks more closely at code development undertaken

by several groups within the same organisation. The case study presented in the

fourth section looks at code development within parallel programming teams and

examines how tuners optimise code written by others and how tuning experience

is disseminated informally among group members. The next section presents two

case studies of the ways tuning knowledge is requested and disseminated in an

organisational context. The fifth section describes the case of an on-line query an-

swering service found in Edinburgh Parallel Computing Centre. The final section

summarises the findings of this study and discusses the implications for tuning

tool design.

6.1 Different attitudes to tuning

Different attitudes to tuning can be found in different software development or-

ganisations. In some cases, people are not aware of even the simplest ways to

improve the performance of their applications e.g., they do not know that cer-

tain compiler flags may optimise their codes [Ce30]. The investigation reported in

Chapter Four has already shown that only a very small percentage of tuners have

access to tuning training and documentation. On the other hand, the need to

know a lot of details about the operation of system software and hardware is one

of the most common sources of difficulties in tuning (faulty assumption /model).

Time constraints may necessitate that the emphasis is on getting the functionality

right. In other cases, depending on the developers' experience, performance related

decisions may occur during the initial design of the application [Ce28]. In [CeSJ,

parallelisation was done in a conservative way as the scientists who had developed

the sequential code did not want the code to change a lot. The main objective was

to design for performance rather than relying on trial and error, since this would

endanger the quality of the code.

Chapter 6. Tuning across machines, people and organisations. 	 112

On the other hand, in some other organisations, there may be personal financial

incentives to improve program performance. However, performance optimisation

cannot be pursued to the degree of reducing the maintainability of the code:

[Ce30] . . . If we can get the operational model code run 10% faster, we get
our salary increased. There is a value associated with that, but equally,
we can't go and modify 90% percent of the code to gain this performance
because we will get the code unmaintainable. Informant 53

Extensive optimisation may be unnecessary for certain kind of applications e.g.,

real time systems [Ce29J, or may be postponed until tuners know the target ma-

chine their organisation is going to buy [Cel9] 1 . In [Ce27], performance optimisa-

tion was deferred because of lack of funds. When funds were found, tuning the

application program became less important because the funds were used to buy

time on a more powerful machine.

To illustrate better the different approaches to parallel software development and

tuning, the following two sections deal with work practices in two large organisa-

tions.

1 A large weather forecast code had to be ported from a Cray C90 to a number

of distributed memory machines. The program underwent some partial performance

optimisation in order to have an estimate of how the code would perform across different

machines prior to the organisation purchasing one. Porting was done in a number of

stages.

Chapter 6. Tuning across machines, people and organisations. 	 113

6.2 Case study I: the LIBRA project

The original serial code from which the LIBRA code was derived was developed

by a company called A. The code had 5,000 lines of Fortran implementing the

basic numerical algorithm. The code was bought and parallelised by company B

using the OCCAM language. The parallelised code used to run on a 128 node

T800 Parsytec super-cluster. B soon realised that they could not achieve the

performance targets they set themselves for the software.

B decided to solve this problem by buying new hardware. A decision to move

over to a specific, more powerful machine (which never appeared) left B with no

machine to run their code. Finally, B got a new Parsytec machine which did

not have an OCCAM compiler. That meant that the OCCAM code had to be

converted again back to Fortran using the Parix message passing library to handle

communications. A long time was spent trying to convert the code back to Fortran.

During all this time, the code was augmented by company A with additional

features. The code was used for production runs and all this time performance

optimisation was not a issue due to the lack of funds to implement any optimisation

plans. The funding was found and was used to buy time on a more powerful

machine (Cray T31)).

Despite the fact that optimisation became less important, as the code could run

on a bigger machine, B assigned to a third company C the task of improving the

load balance of the code. Simultaneously with the efforts in C, B assigned to a

fourth company D the optimisation of the numerical algorithm used in the code.

In addition to that, B were also modifying the communications of the code (Case

Study I).

Chapter 6. Tuning across machines, people and organisations. 	 114

The aims of C's assignment were: to analyse the performance of the code; to
determine how performance could be improved on the target architectures; to
modify the code so that it was portable across a number of machines; and to
devise a better load balancing strategy by means of finding a better decom-
position of the input data. The project did not also exclude the possibility of
incorporating any numerical improvements developed by B or any other party.
C assigned two programmers in this project.

It was very difficult for C's tuning experts to track B's development of the
LIBRA code. Initially, they received a parallel version of the code containing
Parix communication calls. The documentation which they got was incorpor-
ated in the source code. The user guide was incomplete and out of date. C's
developers had to convert each Parix call to a corresponding MPI call. It
was intended that the code should run on the T31). Choosing to adopt MPI
allowed the C team to save some of the scarce time allocated on the T31) by
doing some of the development on a network of SUN workstations. Insufficient
documentation impeded the process of understanding the code.

With each new code, the tuning experiments had to be repeated from the
beginning. At that time, the code was using a regular domain decomposition,
which proved to be very inefficient because not all the areas of the data set
required the same amount of processing. The data consisted of three materials
air, metal, and carbon fibre whose computational requirements, according to
B, were rated 1:2:128 respectively. The rate of processing required for each
type of material in the data set was not the same on the T3D". When the
1:2:128 rate was used by C for the decomposition strategy on the T31), the
performance gain decreased. Thus, the computational complexity ratios had
to be recalculated for each new version of the code B sent to C. Even though
the contract between C and B did not cover any further optimisations, C's
developers were able to identify and eliminate other sources of inefficiencies in
the code [Ce24]. In the long term, the code will undergo a lot of changes and
performance optimisation is bound to the development process [Ce506].

Case study I

"The reason was that the processing of the most expensive material i.e.,
the carbon fibre required a lot of floating point operations, which are very fast
on the T31), whereas the processing of the air data points involved a lot of
memory copying, which is relatively expensive on the T3D.

Summary: In this case, code development spanned across different and diverie

organisations. Four companies were involved in the development of the LIBRA

application. Performance optimisation was performed by One company while the

code was simultaneously being changed by two others. The communication and

Chapter 6. Tuning across machines, people and organisations. 	 115

configuration management requirements were increased because all people involved

needed to keep up with the latest changes in the code and the large number of

versions that constant development and optimisation generated.

6.3 Case study II: development in X

The X organisation is concerned with medium weather forecasting. It is funded

by the European Union and is responsible to all member countries. An opera-

tional ten day forecast is done on a nightly basis and is made available to the

member countries. The research department is responsible for all the software for

producing and analysing the forecast. Most of the people in this department are

meteorologists who try to refine the model and the analysis program. The rest

of the team are computer scientists who helped them to port and evaluate the

performance of the program on new platforms (the "migration project") in order

to choose one (Case study II, part a).

Four computer scientists assigned with the migration project contributed to
this study. Their experience in parallel programming varied from two to seven
years. Informant 52, the migration project coordinator, had participated in
the first parallelisation of the serial code in 1985. Informant 50 was a computer
scientist with five years experience in parallel computing and had a contract for
a period of two years to help with the performance optimisation of the forecast
code. Informant 50 had not done parallel programming as such, rather he
had been optimising other people's code mostly on shared memory machines.
Informant 53's role in the team was to evaluate existing parallel programming
tools and investigate their potential use in the project. Informant 51 - with a
background in meteorology as well - was responsible for producing the message
passing versions of the code [Ce8].

Case study II, part a

The migration project necessitated a lot of communication among the group mem-

bers and between the group and the meteorologists, who formed the rest of X's

research department, in order to keep up with further developments of the forecast

model and analysis code. In addition, a great deal of cross-discussion occurred

Chapter 6. Tuning across machines, people and organisations. 	 116

within the group. According to the group coordinator this was a disadvantage in

some cases (Case study II, part b).

One group member with a lot of knowledge in the parallelisation of the forecast
code started to work on an new area of the model. He was continuously being
interrupted by members of the group and by some of the meteorologists to
answer questions and solve problems, which diverted him from his assignments.
Excessive informal communication created a number of problems for him.

Case study II, part b

Additionally, code development took place in collaboration with people working

for other organisations. A German company Z collaborated with X's developers to

help them convert their initial vector code to message passing. Informant 51 had

to cooperate with Z during the porting of the code to PARMACS. Communication

was done through electronic mail and once informant 51 visited Germany to work

closely with his collaborators there:

[e507] The introduction of the PARMACS library was not done automat-
ically. The first version, we have done it with the collaborators from Z; so
they effectively told us how to do it. We talked to them about the applica-
tion and showed them how we wanted the parallelisation to be done. And
they did the real work; they showed us good techniques to follow because
they have a lot of experience. We had to do it safely. As I said earlier they
did the first version with the limited parallelism and then we did the next
step, so we have learned from there, and we incorporated all the experience
and the knowledge. Informant 51

The group had also to work closely with the vendors of parallel machines. Com-

munication with the vendors was conducted mainly by electronic and postal mail.

Every six months, X delivered to the vendors a new version of the code, which

was under continuous development (Case study II, part c).

Chapter 6. Tuning across machines, people and organisations. 	 277

X delivered a short description on how to proceed from the source code files
to the running version. X had tried to make the code flexible so that it could
run on different architectures using switches. Vendors had only to specify
whether the code was to run on a vector or a cache-based machine. Also,
information had to be given as input to a preprocessor which changed the
data distribution in the code. In one case, the forecast code was sent to Y
(one of the vendors) to test it on this vendor's supercomputer. The results of
the runs were delivered in a report, which in the introduction tried to establish
an understanding of the tested code. This was carried out by describing the
set of parameters that affected the run: the dimensions and the sizes of the
input data; a number of parameters, which defined how much physical time
the forecast code simulated; and a number of other parameters [Ce530]. This
created the basis for comparisons with results coming from other vendors. The
introduction continued with a report on the optimisation changes made to the
basic code delivered by X.

Case study II, part c

All vendors ran and optimised a specified reduced version of the model on their

parallel machines and sent the execution times and Mflops rates to X. X com-

pared these execution times with the corresponding execution times on the local

machine. The results were sent by postal or electronic email and were not stored

on-line. People relied on the vendor to clearly specify which version of the code

corresponded to the timing results. Back at X, the management of this information

was not systematic.

Chapter 6. Tuning across machines, people and organisations. 	 118

The programming language used was Fortran. While the computer scientists
tried to introduce more modern languages, the meteorologists, who had always
been using Fortran, did not want to have to learn a new language. Another
reason for which Fortran was established, was the fact that code development
was undertaken by a lot of visiting scientists, who visited the centre for a short
period of time and had to learn bits of the code and write others. It was not
unusual for the visiting scientists to try to make modifications in a matter of
weeks so they did not want to learn a new language. The design of the code
was such that the high level parallel parts of the code were independent from
the numerical algorithm routines. This meant that the scientists, who were
usually interested in that part of the code, had only to familiarise themselves
with the leaves of the calling tree below the level of parallelism. Any code
that did message passing, for example, was invisible to them [Ce39].

[e18] . . . Another nice thing about it is the way we have coded it,
we can split tuning into two tasks. Optimising the communica-
tion and optimising the computation. And they are really totally
independent and two people can do that and that is also what we
have done. Some of us are trying to get serial performance and
some of us are trying to make more clever communication. And
you are only doing calculations on a single node, so the optimisa-
tion is really to try to optimise the code on the single node. So
the people, who don't want to know about the communications
and the parallel code, can optimise the serial part separately.

Informant 51

A white board was used extensively to support the documentation and com-
munication needs of people sharing the same office and collaborating on the
same project.

[e505] It is a scratch pad for us instead of email, where you
can both look at . . . old fashioned scratch pads. When you get
something that is worth of writing up then it is sent through the
mail or it is reported. Informant 50

Case study II, part d

The constant development of the model necessitated that each new version would

be tested for efficiency. It had to be ensured that the new version could vectorise

and did not become significantly slower than the older one. X did not have any

other way to check how much care someone had taken to make sure that their

code could vectorise. Versions also proliferated with porting the program to many

different machines. X's version control system did not live up to the expectations

of the programmers:

Chapter 6. Tuning across machines, people and organisations. 	 119

[e502] The way we are working here today is from this point of view very
haphazard. We have a lot of versions, and this is a significant problem.
Although, we have a version control system, the guys in the parallel world
don't use it because it is installed on a different system from the one they
work on . . .so they are reluctant to use it and we are at the situation where
there are lots of tar files lying there and it is slightly difficult to follow what
you have. Informant 52

The development strategy and the programming language adopted were chosen

to meet the needs of the multidisciplinary character of the research department

(Case study II, part d).

Summary: This second case study illustrated that parallel code development

can be undertaken by a large number of people with different backgrounds and

roles in the organisation. Moreover, the composition of the programming team

may change quite frequently, thus increasing the requirements for adequate doc-

umentation and efficient communication. At the same time, important parts of

the development process may occur outside the organisation. Economic interests

drive the involvement of vendors in the optimisation process since it is to their

benefit when parallel application codes perform well on their hardware [Ce5lO]. In

addition, part of the parallelisation and optimisation may also be sub-contracted

to other organisations.

6.4 Tuning within the group

This study shows that less experienced programmers turn to more experienced

tuners or consultants for help [Ce5ll], [Ce513], [Ce517], [Ce800]. Reassurance

about the effectiveness of a solution may be sought before the programmer at-

tempts to validate a hypothesis, especially if there is a lot of work involved in in-

troducing a prospective performance optimisation change [Ce514]. Help is sought

when the solution to the performance problem is not known:

Chapter 6. Tuning across machines, people and organisations. 	 120

[e512] And you think how could I improve that. So basically, you speak
to Malcolm and he says look there is a wonderful routine that TMC has
written, why don't you use this? 	 Informant 68

Parallel programming experience and tuning knowledge are shared within the

context of the organisation the individual developer works in [Ce515], [e18]

[e516] I share my notes with other people, but mostly in an informal way:
whenever I talk to somebody about parallel programs, I may end up telling
them about my experiences. I have also at times made reference to these
experiences in actual seminars that I've given. Informant 16

The experience of the people who had first to deal with advanced performance op-

timisation issues is shared informally and will remain within the organisation as

long as the experts work for it [Ce520]. When people were asked how they would

introduce another person in the project, they almost all answered that this would

require an expert sitting together with the new team member in front of the work-

station. On the other hand, even an expert, after being away from the project for

a while, would need special pointers which reflect the current state of the project

[Ce521]. Documentation could serve the purpose of communicating performance

design decisions and results so that members could build on experiences of their

colleagues. This study shows, however, that the time overhead involved in main-

taining documentation in order to share techniques and experiences with others

may put off the realisation of such a scheme [Ce504]. Instead, low sophistication

media may be used [Ce503].

In a few cases, performance tuning knowledge is concentrated within a course in

order to disseminate tuning techniques within an organisation

[e519] There is ultimately no substitute for native cunning. I have, for
example, encapsulated the general principles of optimisation in a parallel
environment that everyone should know into an 1 hour seminar which I
give in an introductory CM-5 course. I usually follow this with taking a
real life example (hopefully one of the class members' pet problem) and
offering approaches that may be tried to optimise it. Unfortunately, time
constraints mean that people can't actually try out the approaches there
and then. Informant 1

Chapter 6. Tuning across machines, people and organisations. 	 121

In [Be628], the tuner tried to incorporate the changes that a colleague had made

into the program. Initially, he tried to isolate the different parts of the code using

the Unix diff command, but he did not succeed in distinguishing the differences.

Instead, he used all the code his colleague had written. Moreover, he wasted time

comparing timings of two different versions of the program on two different ma-

chines before he actually realised that he was comparing different versions. Not all

versions of the code were ported to all machines available. This particular porting

was the responsibility of another programmer who did not inform the tuner that

he had not finished the porting. This illustrates how insufficient communication

and the lack of collaborative programming tools may result in inefficient use of

time.

Facilitating the growth of knowledge within an organisation and its application to

future projects was identified as a critical issue in some early discussions [36] and

other research has pointed to the importance of employing an informal appren-

ticeship model within an organisation [17]. In recognition of this, recent research

has proposed systems for capturing programming knowledge and organisational

memory [33,161]. For example, Terveen et al. in [1601 have identified the exist-

ence of an important type of software design knowledge that they call community

specific folklore and have focused on the problems associated with trying to man-

age it in large software development organisations. More specifically, they have

noticed that much of the design knowledge required to be a successful developer is

community specific in that it concerns the application domain, the existing soft-

ware base, and local programming conventions. Knowledge is informally main-

tained and disseminated by experienced developers. This process is ineffective:

not everyone gets the knowledge they require; inefficient communication of know-

ledge takes more and more time (e.g. see [Ce800]). The process is also fragile:

loss of key personnel can mean loss of design knowledge. Terveen et al. propose a

system for capturing and disseminating design knowledge throughout the software

Chapter 6. Tuning across machines, people and organisations. 	 122

development organisation. The major consideration, though, in the development

and adoption of such a knowledge base is the cost-benefit trade off.

6.4.1 Somebody else's code

When the tasks of porting the code to a parallel machine and optimising the par-

allel code are considered to be difficult, they are assigned to an "expert" who is, in

most cases, either a computer scientist or a scientist long exposed to parallel com-

puting. Sometimes the tuning expert may have an interdisciplinary background.

These experts are recruited to be members of the scientific team developing the

code or work for companies which act as consultants or undertake themselves the

tasks of parallelising and tuning. For instance, informant 47's group cooperated

with a company in Lyon in order to reduce the risk involved in porting the code

to a parallel machine. The code was first parallelised locally and then was sent to

Lyon. The experts in this company produced a report on the best ways to improve

the code performance.

In some cases, the extent of the optimisations performed may be affected:

[el] Optimising code for others is problem repeating work, which discourages
any large scale optimisations. 	 Informant 49

During the early stages of the introduction of parallel computing in an organisa-

tion, not everybody will be exposed to parallel programming and this may affect

the code development and documentation processes. For example, in [Ce501],

the documentation had to be less technical in order to reach as many people as

possible. In the early stages, the sequential code may also pre-exist its parallel

counterpart. In cases where the development of the sequential code is an on-going

process, the parallel code has to anticipate this development. This may require

additional communication amongst the people responsible for the sequential and

parallel development respectively. For example, informant 44 worked on the paral-

lelisation of a sequential program which was still under development. The program

Chapter 6. Tuning across machines, people and organisations. 	 123

was written by a large number of people and each was responsible for a part of

it. Informant 44 tried to keep up with the changes in the sequential program but

this was a onerous task:

[e5081 I go mad. I tried to keep up with the updates of everyone. I got three
updates every day. I tried to keep as many common routines - the matrix
construction, or the time integration, or the boundary value determination
routines - as possible but daily changes in the serial program structure and
parameter lists made this impossible. Everything each of them are doing
affects me. If I change something, it affects only a very small part in every-
one. Now, I quited from trying to keep up with them. Because it was too
difficult. At that point in time (i.e. at the beginning of the parallelisation
process), I was changing all the program. And I was not allowed to do my
changes to their program because, still, parallel programming in Delft was
considered unproven technology. Informant 44

Working with application programs written by someone else is difficult in cases

where there is insufficient documentation. While most tuners emphasise the need

to understand the structure of the code, other more experienced tuners (provided

that the programming model allows it) may work at a higher level, dealing only

with specific parts of program which are candidates for parallelisation [Ce2], [Ce3].

In every case, it is crucial to be able to communicate with the original developers of

the code. Communication with developers or access to documentation can provide

experts with the rationale of design decisions so that they can establish more

easily the link between program performance and its cause (cause/effect chasm) or

identify the model of relations between performance determining parameters upon

which code development was based. For example, due to lack of documentation,

it was really important for informant 51, who was assigned the parallelisation of

a particular code, to be able to communicate face-to-face with the scientists who

wrote it. Communication with the sequential programmers provided him with

an understanding of the data structures and the data dependencies within the

program. This understanding was far more crucial for the parallelisation process

than any course in parallel computing could be. Informant 51 was fortunate

because his assignment coincided with the presence of two visiting scientists, who

had investigated a number of parallelisation techniques for the program. The work

Chapter 6. Tuning across machines, people and organisations. 	 124

of these scientists was not documented in any formal way and, instead, informant

51 had to work closely with them for a period of time [Ce5091.

Finally, as was identified in Chapter Four, optimising codes for others can be very

difficult when these codes are not well written and special support is needed to

cater for the increased communication and documentation requirements emerging

in these cases. Old, messy codes are difficult to parallelise [Ce4]. In the following

case, attempting to understand or structure the serial program prolonged the task

of parallelisation:

[e5] Structuring the code and modularising it, which if it were a decent piece
of code in the first instance, we wouldn't have to do this. I had to tidy up
the serial code before actually I could parallelise it. I think the sequential
core of the program was very easy to parallelise. Informant 47

6.5 Case study III: EPCC User Support Service

In cases where organisations do not own parallel computing facilities, parallel

programmers access remotely machines available elsewhere. Similarly, access to

tuning advice may be facilitated through user support services available at these

sites.

EPCC has long established an on-line, electronic mail based user support service.

Users can send an e-mail to a specific address, stating what the problem is and

expect an answer within the next one or two days. The queries and their an-

swers are kept on-line. Seventy-five performance related queries were studied with

EPCC's permission. Four queries were two-fold and five were three-fold so they

were treated as different queries. This raised the number of queries to eighty nine.

Queries were analysed and classified in seven categories and Table 6-1 lists the

frequencies of the occurrences of the different classes:

Chapter 6. Tuning across machines, people and organisations. 	 125

Specific advice. This category included queries which questioned the necessity

and impact of old techniques in the light of a recent compiler change; asked

what performance optimising flag options could be used with the current

compiler; asked for reassurance that a technique could bring a performance

gain 2. Other queries in the class were concerned with how to realise a solu-

tion to a perfcrmance problem. For example, one tuner wanted to know what

synclironisations a very low-level communication harness required or where

to look for information on the most relevant optimisation techniques. Other

parallel programmers wanted to know how to measure the performance of

their programs or stated that they did not understand how a particular com-

piler directive works. In a number of queries, programmers asked how I/O

in their codes could be improved.

The impact of compiler changes on tuning can be large. Code optimisation

techniques have to be reviewed in the light of new compiler versions. Even

when documentation is readily available and up to date - which may not be

the case (e.g. [Ce64]) - it is difficult to know to which extent old techniques

are still necessary or even harmless. The situation is further complicated if

part of the system software is not optimised for the changes introduced by

the new version of the compiler [Ce63]. The problems of this class verify that

Change identified in Chapter Four is indeed the reason for many problems

in tuning.

Why is that happening. Queries of this class sought an explanation for pro-

gram behaviour which tuners could not understand on their own. One of

the most interesting questions was concerned with a parallel code whose tim-

ings were drastically different from one day to another [Ce65]. In this case, a

compiler upgrade and some hardware changes worsened the performance. It

'Often the technique programmers were intending to use was not correct.

Chapter 6. Tuning across machines, people and organisations. 	 126

was suggested to the user to experiment with the old version of the compiler

in order to verify that the cause of the problem was indeed the compiler up-

grade. Tuners are quite vulnerable to software or hardware changes since it

is difficult for them to know what impact they can have on the performance

of their programs.

Also, programmers may not be aware of the way instrumentation may af-

fect their codes. Extra instrumentation code may affect cache coherency as

in [Ce58], where the tuner complained that the program produced different

results when the code was compiled with the apprentice flag enabled. Ques-

tions in this class demonstrate the impact of the cause/effect chasm identified

as the most common source of difficulties in tuning (Chapter Four). Cases

where changes in the programming environment led to degradation of pro-

gram performance can also be identified as instances of cause/effect chasm

problems as tuners cannot know when these changes occur or what their

impact is on the performance of their programs.

Look at my code. In this class a code was submitted along with the query. Two

kinds of queries were identified: those in which the tuner asked generally for

suggestions on further optimisations and those in which the tuner asked the

expert to focus particularly on specific parts of the code. Again queries of

this class reveal an absence of knowledge about a model which explains the

relations amongst performance determining parameters and performance.

This is my code. It only achieves 6.6 Mflops could you suggest ways to
improve it? Q5

I am trying to write some good global sums. Could you look at my
code and see if there is a better way of doing it? Q41

Figures. A large number of tuners asked for typical values of various metrics

which could have an impact to their code, such as e.g the bandwidth and

latency rates of various communication calls:

Chapter 6. Tuning across machines, people and organisations. 	 127

What are the typical maximum Mflops rates that one can achieve on
the T3D? 	 Q24a

What is the clock speed of the front end? 	 Q23

Run-time error. This is an interesting category as users asked for help about a

particular bug or run-time error that they were encountering. They were not

aware, though, that the poor performance of their codes was the reason for

these problems. Experts answered all these questions with advice on how a

performance improving technique would remove the problem. For example,

in one case a user was asking how to do check-pointing because the execution

time of his program was longer than the maximum allowable run time. It

was estimated that the program could run for a day with a large part of

the execution time being spent in doing I/O. The expert made a number

of performance improving suggestions which alleviated the need for check-

pointing. In [Ce6l], a run-time error revealed that the performance of the

output phase should be looked at. Even though the manifestation of the

problems in this category is not directly related to performance, queries of

this class can be regarded as cause/effect chasm or faulty assumption/model

problems.

General advice. The queries in this class were looking for general information

on efficient parallel programming. Some programmers asked for information

about efficient data and work distribution techniques. Tuners who did not

have any hardware or software specific performance model asked for inform-

ation about such models. Performance expectations may be too high as, for

example, in [Ce60] where the user thought that the peak performance of the

machine can actually be achieved and sustained.

We would appreciate any information on efficient data and work dis-
tribution techniques for large arrays. 	 Q7

Could you give us some example codes that managed to perform up to
130 Mflops per second on the T31)? 	 Q32

Chapter 6. Tuning across machines, people and organisations. 	 128

Tools. Complaints about not being able to understand the suggestions of the

performance analysis tool or some critiques about the correctness of the

on-line documentation of the tool were included here.

Often tuners are not familiar with the terminology adopted by the perform-

ance analysis tool. Novice users without a computer science background,

find it very difficult to understand the information provided by the tool.

In [Ce56] and [Ce57], the tuners could not make use of the performance

observations the tool provided because they could not understand them.

[Ce57] Q: I have a question concerned with the Apprentice tool. In
the COSTS window, the bar chart always shows that Integer Adds is
the dominant operation in the code. However, I expect that the code
should perform floating point operations most of the time. Is there a
conversion from floating point operation to integer operation inside the
T31)? This will affect my judgement about how fast the code runs. In
the OBSERVATIONS, two measures are printed:

floating point operations per second.
integer operations per second.

Usually, measure 2 is twice as large as measure 1. Only when I know
which type of operation is dominant in the code, can I determine how
fast the code actually runs. I noticed that after the new c177 compiler
was installed, the ratio of measure 2 and measure 1 has decreased for
the same calculation.

fl Category [_Occurrences

Specific advice 41

Why is that happening 13

Look at my code 10

Figures 9

Run-time error 8

General advice 4

Tools 3

Table 6-1: What tuners ask

Summary: The questions that tuners ask verify the validity of the framework

for studying tuning (Chapter Four). Indeed, inadequate tools, having to know the

Chapter 6. Tuning across machines, people and organisations. 	 129

specifics of the underlying machines and programming environments that keep

changing are major sources of difficulties for tuners. Approximately, 39%3 of

tuners did not know what affected the performance of their program. This implies

that programmers may embark on parallel programming without first having an

understanding of the basic issues that affect performance. This problem can be

addressed by adequate training. On the other hand, almost half of the queries

examined (46%) were asking for advice about the use of a specific performance

determining parameter or about improving a particular part of code. This sug-

gests that programmers may know what could improve the performance of their

program, but they do not have enough information to implement it. For example,

users can be occasional tuners, while the programming environments change far

too quickly for them to keep up with the changes. Thus, changes in the pro-

gramming environment can even lead to faulty assumption/model or cause/effect

problems: the models that tuners have are made obsolete and novice tuners cannot

explain easily changes in the program performance.

A lot of the information that tuners lacked was included in documentation avail-

able on-line. Studies have shown, however, that users are reluctant to consult

manuals, which may be re-inforced here by the fact that tuning information may

be difficult to extract from within lengthy documents whose contents span a num-

ber of issues. Tuning information will have to be better organised and conveyed

before tuners start using it extensively.

Typically, queries were answered within a period of one or two days. More complex

queries took more time to be answered as experts dealt with them by looking more

closely at the users' code or having a meeting with the users. Selected queries

'The occurrences of the categories "Why is that happening", "Look at my code",

"Run-time error" and "General advice" were added together.

Chapter 6. Tuning across machines, people and organisations. 	 130

(Figure 6-1) were summarised in a way to reflect what are the issues with which

users need expert help.

6.6 Conclusions

This chapter examined tuning in the context of large application programs whose

development involved the efforts of many people working for more than one or-

ganisations. Three levels of communications were identified:

. Within the programming team

Large application programs can be developed by a number of people who

usually work on parts of the code which have some distinct functionality

and depend on other parts in terms of their input or output data. Com-

munication needs in large projects are increased. Performance optimisation

poses more requirements for documenting, conveying and justifying design

decisions for the different parts of the program which separately and com-

bined affect the program performance.

• Between groups of the same organisation

The difficulty of parallelising efficiently sequential codes has resulted in "tun-

ing experts" undertaking this task on behalf of scientists, who are typically

sequential programmers. Programming teams are extended with these ex-

perts who may have a computer science background. In some cases, the

experts may form a separate group responsible for the parallelisation and

optimisation of the application program.

• Between organisations

Alternatively, experts working for consultancy companies undertake optim-

isation tasks. Parts of the program development itself can also be under-

Chapter 6. Tuning across machines, people and organisations. 	 131

ID Context Knows Does not know

Information sought on how Array sizes affect performance In the tight of the new compiler how much and in what way
Q1

compiler works after compiler ray sizes affect performance. Some of the system libraries

change are optimised for the old compiler

Q2 Advice on general optimisation Which pan of the code needs Anything about how 10 is performed and what arc the factors

techniques for improving 10 improvement that can affect performance

Q3 Documentation on alternative Existence of libraries with How to access information on the optimised library

communication library optimised maths functions

Q5 Code is sent to he optimised Anything about options within the performance model that

have a different impact on performance, how the compiler

distributes arrays and executes directives. Techniques that

can he used to optimise performance

Q8 Problem with opening too many Knows the problem has to do The mason that the files cannot be opened simultaneously,

files with the large number of files how tO is done, technique to sequentialise the opening of the

files

QlOa Apprentice distorts timings Reason apprentice distoris timings, how instrumentation is

done. What is the impact on performance

Q12 Tool showed where time was Where time is spent Basic issues such as what affects performance and what

spent techniques could he applied in that particular case

Q14 Picking wrong documentation Optimisation flags exist That two compilers exist one for the front end and another

on compiler which can be used to improve for the mpp system. How to invoke information

performance on the one for the mpp system

Q19 Timings of the same code were Suspects a hardware or When the compiler changes, how much and whys compiler

longer after a specific date compiler problem change can affect the code, how much a hardware upgrade

or a hardware error can affect the program

Q20 Mathematical functions perform Knows that they perform The design of the processor chip is the mason for the

poorly compared to their badly poor performance of the maths functions

performance on other machines

Q23 Bow much code performance Speed of the FE machine Relation between the front end and the actual CM, what

depends on the speed of the affects performance affects the speed of the code and how the front end

front end interacts with the CM

Q36 Poor performing code compared Knows where the problem is Too high expectations from machine based on peak

to the same code running on performance advertised by vendors. What aspects of the

other machines machine design affect performance

Figure 6-1: What tuners need to know

Chapter 6. Tuning across machines, people and organisations. 	 132

taken by other companies. In all cases, it is essential to communicate with

the people who wrote the sequential code. Vendors are also getting involved

in the development process as they attempt to increase their competitive

advantages.

Program design and tuning knowledge are shared informally within groups and

organisations.

The extensive porting of parallel programs across different machines and program-

ming paradigms results in increased communications between all parties involved

in the process. At the same time, the number of program versions proliferates and

this increases both the documentation and communication requirements for effi-

cient management of the development process. Clearly, the design of technology

to support tuning should take into account the accomplishment of the tuning task

as part of the software development process and within a context of collaboration

with colleagues and clients. In building such a technology it would be critical

to examine the ways in which tuners work and participate in activities of their

colleagues and the tacit procedures through which work is systematically accom-

plished. For example, different tools may be needed to support program design

communication and documentation requirements within the team and among or-

ganisations. Conventional HCI and requirements engineering techniques tend to

be insufficient in recognising and catering for collaborative tasks [lOT]. Rather,

methodologies which are adopted by the social sciences (e.g. ethnography) would

be more suitable for revealing hidden work practices and guiding the system design.

Part of the communication within and across organisations occurs when tuning

knowledge is disseminated. Parallel programmers seek advice from more experi-

enced colleagues; tuners discuss with each other their experiences; advice is even

sought and exchanged through news bulletin boards. The study of environments,

where tuning expert advice is offered to users of parallel computers, revealed the

problems that tuners encounter and how help is provided to them.

Chapter 6. Tuning across machines, people and organisations. 	 133

In particular, two reasons were identified for these problems: lack of training and

lack of information with respect to fast changing programming environments. The

availability of public domain parallel programming environments such as PVM or

MPI, which can run on clusters of workstations has brought parallelism within

the reach of many people who often embark on parallel programming, without the

necessary understanding of the basic issues due to lack of training (Chapter Four).

Moreover, tuners need fast access to information about changes in programming

environments.

The inefficiencies of sharing tuning knowledge informally and the drawbacks of

the consultancy mechanisms imply that there is clearly a need for the creation

of a project/organisation tuning repository for sharing tuning knowledge within

and outside an organisation. Eisenstadt in [44] proposed a similar repository of

debugging knowledge. Observation of performance optimisation courses may shed

light on how performance knowledge can be encapsulated and presented within a

constrained medium such as a minimum on-line document.

Chapter 7

VISPAT: a VlSualisation and

Performance Analysis Tool

A series of design meetings with local tuners defined the requirements and design

specification which were used as the basis for the initial version of VISPAT, which

targeted programs that run on clusters of workstations using CHIMP (Common

High level Interface to Message Passing) [45] and PUL (Parallel Utilities Librar-

ies) [32]. In addition, results from the observational study of tuning (Chapter

Four) contributed to the specification of the requirements for VISPAT. A sub-

sequent cycle of requirements capture, design and evaluation resulted in changes

to VISPAT in order to cater for SPMD programs using the MPI (Message Passing

Interface) standard which had already started being used by local programmers

[116]. Several requirements which had been identified in the first series of meet-

ings, were finally addressed by the third version of VISPAT. This chapter presents

VISPAT whereas Chapter Eight describes its participative design process.

The outputs of the requirements capture process were eventually categorised into

one of four fundamental design issues: trace data format; filtering mechanisms;

display options; and the management of tuning over time. The first three are

concerned with tuning in the small whereas the last issue is relevant to tuning in

the large and is discussed in Chapter Nine.

134

Chapter 7. VISPAT: a ViSualisation and Performance Analysis Tool 	135

The first section of this chapter presents a brief overview of VISPAT. The second

section discusses the concept of hierarchical phases which can be used to reduce

the volume of data the user has to consider and to relate program behaviour to the

source code. Reducing the volume of performance data and relating the program

behaviour to the source code can assist tuners to establish links between the cause

and the effect of poor performance in the program (Chapter Four). The following

three sections discuss the ways information about program execution is gathered,

processed and visualised by the graphical front end of the tool. The sixth section

presents an example of using VISPAT to demonstrate some of its human-computer

interaction features. The final section is concerned with future work.

7.1 Overview of VISPAT

Instrumented MPI library

and user annotation

Parallel
application

FEE

I PmCeSS3I

Trace files

: 	 r 	Trace Processing Engine

Visualisation component

and Graphical User

Interface

Figure 7-1: Overview of VISPAT

VISPAT conforms to the structure identified in most port-mortem tuning tools.

The structure of VISPAT is shown in Figure 7-1. It consists of:

an instrumentation component which instruments the program so that when

it is run, information describing the program's performance behaviour can

be recorded in trace files,

Chapter 7. VISPAT: a ViSualisation and Performance Analysis Tool 	136

a trace processing component which analyses the information contained in

the trace files and

a visualisation component' which depicts the analysed and filtered informa-

tion.

7.2 The concept of phases

A phase is an abstraction representing part of the total program execution time and

can correspond to a library function or a programmer-defined logical part of the

source code. Phases can be defined hierarchically as aggregations of other phases,

thereby providing the tuner with multiple layers of abstractions. Their function

is to provide the bridge between the cause and effect of poor performance. The

most abstract layer may be concerned with logical stages evident in the execution

of parallel programs such as initialisation, computation and closing. Each of these

top level phases may consist of a series of sub-phases, which can have sub-phases

of their own and so on.

As the investigation described in Chapter Four has shown, one of the problems in

current performance visualisation tools is that a large volume of data is displayed

without allowing tuners to determine the level of detail of data presentation or

relate it to the source code. Viewing the application program as a hierarchy of

phases allows tuners to focus only on the interesting parts of the program, thus

reducing the amount of performance data they have to consider and also relate

this data back to the source code. Source-code reference is provided by a number

of tuning environments [2,79,118,171], which map low level events to higher level

'The instrumentation and trace processing components and part of the visualisation

component of VISPAT were implemented by EPCC Summer Scholarship Students.

Chapter 7. VISPAT: a ViSualisation and Performance Analysis Tool 	137

C
0

C-,
Ca

C-
0

>
Ca

ones [8]. In the initial design of VISPAT for CHIMP and PUL programs, event

abstraction was more extensive because the phase hierarchy was imposed only

partially by user-defined events which included lower-level library functions. More

complex phase structures were created because a parallel program could use a

combination of parallel programming libraries built on top of CHIMP, the basic

message passing harness. Figure 7-2 depicts the structure of a parallel program

which uses CHIMP for point to point communications, PUL_EM for collective

communications and PUL_RD for regular domain decomposition. It can be easily

seen in this figure that the function rd-operate, for example, consists of a number of

simpler PUL_RD functions and of a user-supplied code. It was a user requirement

that a tuner can isolate views of such a parallel program which could consist of

one class of phases e.g., CHIMP, or of a combination of classes e.g., CHIMP and

PUL_EM phases, at various levels of the phase hierarchy.

INITIALISE
	

COMPUTE
	

CLOSE

I CHPGRPNUM
COMMINIT 	RDOPEN I I 	EMISUM 	CALCULATE

I
COLLATE RDCLOSE CHPEXIT

jCHPINIT 	 I I 	I 	 I
I 	 I

II
IRDINIT 	I I 	I 	 iii

I 	CHPJOIN 	I
I

I 	I 	 I 	 i
I 	I 	CI 	RDOPERA113 	C2 	EMIMAX 	I I 	I

— 	—

MIXED CHIMP 	1 RDSTARTSWAP 	I 	I MIXED CHIMP

COMMS AND APPLY
COMMS AND

CHPEXPORT
CALCULATION RDENDSWA 	 I CALCULATION

H k.:i CHPMEMBER
MIXED CHIMP

ti.rri.cm 	COMMS AND
KEY

CALCULATION
CHPTEST

CompCEion RDGROUPNUM

Applicalion phase
MIXED CHIMP
COMMS AND

r 	PUL phase CALCULATION

- 	CHIMP phase

Time

Figure 7-2: Phase hierarchy in a CHIMP/PUL program

Chapter 7. VISPAT: a ViSualisation and Performance Analysis Tool 	138

7.3 Trace data format

The trace data format requirements were largely determined by the programming

environment and the requirement for source code reference 2 . Currently, MPI is

the standard message passing interface for parallel application and library pro-

gramming [116]. It caters for point to point communication between pairs of

processes and collective operations among groups of processes. Its more advanced

features provide, amongst other things, for the manipulation of process groups

and their topological structure. A local implementation of the MPI standard has

been developed at Edinburgh Parallel Computing Centre based on CHIMP [26,

45].

Information about the program execution is generated by instrumenting the MPI

library. MPI comes with a name-shifting interface to enable profiling of the MPI

routines. The advantage of the name-shifting mechanism is that there is no need

to change the source code in order to use the instrumented version of MPI. MPI

programs have only to be linked with the instrumented version of the MPI library

[152] 3 . The resulting executable generates trace files that can be processed by

VISPAT's Trace Processing Engine (TPE). Each process in the program creates

one binary trace file containing all the information relevant to that process'. The

processed information can then be visualised by the visualisation component of

the tool (Figure 7-1).

2 IJser requirements are shown in Chapter Four.

3The instrumented version of the MPI library was implemented by EPCC [152].

'The binary format drastically reduces the space requirements of trace files corres-

ponding to long program runs.

Chapter 7. VISPAT: a VlSualisation and Performance Analysis Too] 	139

Each instrumented MPI function corresponds to a phase in the execution of the

process calling this function. A phase is identified by the name of the function,

together with a number which distinguishes each unique occurrence of it within

the trace file. It is also characterised by its class which can be either MPI or Ap-

plication (if the phase is programmer-defined). The instrumented MPI functions

record information such as the begin and end time stamps of the phase along with

other information. In addition, the instrumented MPT library records a phase that

begins and ends when MPUnit and MPLFinaiize are called respectively. Thus,

the life time of a process is recorded as a single phase that in turn contains vari-

ous phases corresponding to MPI function calls and other interesting parts of the

program. The format of the trace file is described more thoroughly in [166].

User requirements in relation to the instrumentation of MPI were concerned among

others with three issues: recording information about the communication phases;

recording the end of MPI non-blocking communications; and introducing a unique

communicator name scheme 5.

Apart from phase time stamps the instrumented functions record information such

as: the number and the type of elements sent or received; the tag used for the

communication; the communicator; the rank of the sending or receiving process;

the request handle for the non-blocking communications 6; and the rank of the root

process in a collective call, e.g. MPLBcast 7 .

5A communicator defines a group of processes and a context of communication

between them. A message sent in one context cannot be received in another context

[116]. For the same group of processes there may be defined more than one communic-

ation context i.e., communicators.

'Data which identifies the non-blocking communication [116].

TIVIPLBca.st performs a broadcast communication.

Chapter 7. VISPAT: a ViSualisation and Performance Analysis Tool 	140

The actual completion time of a non-blocking communication initiated by a non-

blocking MPI send or receive is not known. A non-blocking communication ends

when an MPLWait or MPI_Test call succeeds. To match the beginnings and end-

ings of non-blocking communications, the MPI instrumentation library stores the

request handles returned by these function calls. Instrumented versions of the

MPLWait and MPLTest calls record the end of these non-blocking communica-

tions by recording their corresponding handles. Further processing of the trace

file matches the request handles returned by the non-blocking function calls with

the request handles returned by the MPJ_Wait and MPI_Test calls.

Although communication in MPI occurs in well defined communication contexts

i.e., the communicators, these are identified by handles which are local to each

process. This is inconvenient for the users who want to consider a point to point

communication, for example, as happens within a communicator with a global

name. The instrumentation library provides a unique naming scheme for commu-

nicators which helps tuners understand their communications better [152].

In order to reduce the amount of trace data produced and to enable tuners control

the parts of the program for which instrumentation is applied, instrumentation

can be selective. Special library calls can be inserted in the program source code

that can switch on and off instrumentation around parts of the program which

the user is interested in investigating.

There is a one-to-one relationship between the structure of phases in a program and

the structure of the trace files. This is carried through into VISPAT's visualisation

facilities which are described further on in this chapter.

Chapter 7. VISPAT: a ViSualisation and Performance Analysis Tool 	141

7.4 Data filtering

A means to analyse and filter the trace data was identified as a requirement by

both local users who took part in VISPAT's design meetings and by many parti-

cipants of the investigation described in Chapter Four. This requirement is realised

through the Trace Processing Engine (TPE) 8 . Each process in the application pro-

gram generates its own trace file. TPE reads in and processes all the trace files.

Processing involves analysing traces and storing them in flexible and efficient data

structures. Along with the data structures, the Trace Processing Engine provides

a set of analysis functions which can perform a large number of filtering operations

on the data structures.

For each process and for each trace file, TPE generates a tree of all the phases that

occurred in that process. Each node consists of phase data such as: the starting

and ending times; phase name; phase class (MPI or user-defined); and five pointers

to other nodes namely the parent, left and right sibling and leftmost and rightmost

child. Additionally, for each node there are two fields which determine whether the

phase is visible or selected. Phases which have the selected field set can participate

in a number of operations. A phase node and a complete phase tree are shown in

Figure 7-3 and Figure 7-4 respectively.

In addition to the phase tree, a list of all the communication events of a process is

constructed which is later merged in chronological order with the communication

event lists of all the other processes. The communication event list is a doubly

linked list. As shown in Figure 7-5, each node of the linked list represents either a

BEG-COMM or an END-COMM event and contains the time that the communic-

ation phase started or finished respectively. The node contains also a pointer to

8 TPE was implemented by EPCC.

Chapter 7. VISPAT: a ViSualisation and Performance Analysis Tool 	142

parent

phase data

left sibling 	

/ 	

right sibling

leftmost // 	 rightmost
child 	 child

Figure 7-3: A phase node

more information about the communication such as: the type of communication

(blocking or non-blocking); the source and destination processes; and a unique

integer number which relates the send and receive messages among different pro-

cesses.

Figure 7-4: A phase tree

A number of functions provide an interface to the data stored in the communica-

tion event lists by:

checking whether an event is a BEG-COMM or an END-COMM event,

• checking whether an event is a point-to-point or a collective communication,

Chapter 7. VISPAT: a VlSualisation and Performance Analysis Tool 	143

. getting the event type (blocking or non-blocking),

• getting the name of the event and

determining the communicator within which communication has happened.

oacaen&Y1

	 E 	E
BEG-COMM 	 BEG-COMM i 	 END-COMM

1234$ 	 12345 	 2345
I 	 -

Figure 7-5: Communication event list

Other data structures that TPE creates include a join event list. The instrumented

MPI library records all the communicator creation events. Whenever a process

creates a communicator with other processes, it is said to join that communicator.

The ranks processes assume when they join a communicator, are local to this

communicator. TPE is able through a simple mechanism, to translate the local

ranks of processes participating in communications to their global process identity

in the MPLCOMMWORLD communicator 10. This join event list is merged with

the join lists of all the other processes and is used by an animated display which

shows the processes joining the communicators over time. In addition, TPE creates

a list of all the communicators in the program with information about the member

processes and their ranks in the communicator. Apart from the mechanism which

9 Rank is the "local" identity of a process member of the set of processes that com-

municate within a communicator context.

"That is the set of all the processes in the program.

Chapter 7. VISPAT: a ViSualisation and Performance Analysis Tool 	144

translates local process ranks in a communicator to their global process identity,

TPE contains a number of functions which can:

• locate a communicator with a particular identity,

• check if a communicator is an intra-communicator or an inter-communicator 11 ,

• check if a process is a member of a particular communicator,

• find out the rank of a process in a communicator (using this process's global

identity) and

• find out the identities of the two intra-communicators which form an inter-

communicator.

In summary, the TPE analysis functions act as a query mechanism on the created

data structures and can provide information that can be used by the front end

of the tool either as data to be presented to the user or as the means to perform

further filterings and abstractions on performance data. Providing meaningful

abstractions has been recognised as a key requirement for tuning tools in order

to help users investigate more effectively causes of poor performance and thus,

alleviate the problems associated with the cause/effect chasm (Chapter Four).

The role of TPE is evident in the following section.

"Communication that takes place within a group of processes, occurs within the

context of an intra-communicator whereas communication between processes that belong

to separate process groups occurs within the context of an inter-communicator.

Chapter 7. VISPAT: a. VlSualisation and Performance Analysis Tool 	145)

7.5 Visualisation

The design of the visualisation component of the tool was to a large extent driven

by the requirement for source code reference. This requirement was mainly realised

by depicting the phase hierarchy of each process in the application program. In

this hierarchical presentation of events and phases, a mechanism to help the tuner

identify events of interest is important and addresses a second requirement for

reducing the amount of data and making the data meaningful. Data navigation

provides the tuner with a means of determining what data will be subsequently

visualised by the performance displays. The tuner should he able to determine

interactively: a region of the trace file (pan over the data); the time grain (zoom

in or out of the chosen region); which events will be visible (filter out unwanted

events); and, finally, control the level of abstraction (fold or unfold phases).

Li le Displays 	 Phase qptiori

718262

MPI_Isend (#0)
	

I HPI-Recv (#0) 	 II]
ID
	

IMPI_Isserid (#1)

(#1)

MPI_Wait (#0)

717238 	 774454

Figure 7-6: Navigation display

These requirements were realised through a. single user interface mechanism - the

Navigation display - a form of Gantt chart (see Figure 7-6). The Navigation

Chapter 7. VISPAT: a. ViSualisation and Performance Analysis TOol 	146

display determines the context of data visualisation because it has a central role

in accordance with another design requirement. VISPAT's other displays should

render data only over the time period and parts of the program that are currently

visible within it, Figure 7_712• Apart frorn the Navigation Display the current set

of VISPAT's displays includes the Communication, the Statistics, the Membership

Matrix and the Profile displays.

Coinm/tion
display

I Navigation
display

II

Trace File

Statistics
display 	"

: 1 .

Prole
display

\

Trace File

Figure 7-7: The central role of the Navigation display

7.5.1 Navigation display

The Navigation display renders the parallel event histories of the processes in the

program. It is a Gantt chart where the time line is depicted on the horizontal axis

and the set of processes on the vertical axis. Each process occupies a horizontal

strip of the display where all the interesting events of that process are depicted

as they take place over time. The Navigation display provides the context for

12 This feature has not yet been implemented fully.

Chapter 7. VISPAT: a ViSualisation and Performance Analysis Tool 	147

the visualisation of trace and performance data. When used in combination with

VISPAT's phase abstraction mechanisms, this context also provides the means

for achieving source code reference. The Navigation display enables the tuner to

browse or systematically move around within the space of program phases. Navig-

ation can be performed in both a horizontal fashion, i.e., forwards and backwards

over time, or in a vertical fashion i.e., up and down the phase hierarchy. Traversing

the various levels of the phase hierarchy is achieved through unfolding and folding,

with the additional option of filtering. This not only allows for the transfer of the

focus of visualisation to a higher or lower level of abstraction, but also for the view

to be limited to specified phases. The other data visualisation displays can show

events only for those phases visible on the Navigation display after all filterings

and abstractions are applied. In this way tuners can relate trace data to specific

parts of the program. Providing visualisations of meaningful abstractions, allows

for looking for the effect of poor performance at a higher level of abstraction in-

stead of examining the large space of the program's low level trace data. Apart

from finding out faster where the program botttleuecks are, filterings assist tuners

to establish easier the cause of these problems by controlling the amount of detail

in which performance data is presented.

The function of the current version of the Navigation display was cooperatively

designed with users during VISPAT's design meetings and can be categorised into

two distinct groups: operations on phases and operations on processes.

The first group consists of the Selection, Unfolding/Folding and Filtering

mechanisms:

Selection - when phases are chosen for expansion or filtering. A selection can be

global or local. Global phase selection ensures that the current instance and

all subsequent instances of a phase will be selected. Local selection means

that only the current instance of a phase is selected. The view of selected

phases can then be either enhanced or removed. Selection is possible through

Chapter 7. VISPAT: a ViSualisation and Performance Analysis Tool 	148

the support mechanism of TPE which provides functions which traverse the

phase trees and mark a phase as either selected or unselected. An Unselect

All option makes all the selected phases unselected.

Unfolding/Folding - where selected phases can be unfolded into their sub-

phases (or sub-phases folded into their parent phases). There are two ways

of unfolding a phase. Unfolding is either simple or it is specific. In the

former, a phase can he unfolded into all its sub-phases independently of

the class to which they belong. In the latter, the parent phase is unfolded

only into instances of a nominated phase. This phase may be either an

MPI or a programmer-defined phase. For example, the user may want to

examine all the MPLSend phases included in a user-defined phase which

contains other types of MPI function calls as well. By unfolding specifically

the parent user-defined phase into its MPI_Send children only, a view of

the program is displayed containing only these MPI_Send phases. In terms

of TPE operations, this involves making a phase invisible and its children

visible. If p is a phase which is unfolded, p s sub-phases can be obtained

by following p s leftmost child pointer and then following a chain of right

sibling pointers.

On the other hand, folding a number of phases into their parent phase can

serve as a means of controlling the amount of information displayed on the

Navigation display. After a number of phases are examined by the tuner

they can be folded into their parent phases and removed from the current

view using the filtering mechanism which is described below.

Filtering - which realises a more immediate abstraction mechanism by enabling

the user to keep in the Navigation display only specific phases. For example,

the user may choose to expand to the lower level of abstraction and then

have a look at all the instances of an MPI_Send extracting from the current

Chapter 7. VISPAT: a VlSualisation and Performance Analysis Tool 	149

view all the phases which are not MPLSends' 3 . In this manner, the trace

data can be abstracted in two orthogonal directions and the phase hierarchy

traversed horizontally and vertically. The TPE operation which supports

this mechanism traverses the phase trees and marks as visible only the phases

whose type is MPLSend.

GoTop level. After a number of expansions and filterings the user may want to

return back to the top level of the phase hierarchy.

Undo dismisses the result of the last operation.

The second category of Navigation display operations focuses on process abstrac-

tions. Process abstraction makes user interaction with the tool more flexible. At

the same time, the scalability of the Navigation display is increased 14 :

Elimination - whereby those processes whose behaviour is not currently of

interest can be removed from the screen.

Re-ordering - whereby processes whose combined behaviour is of interest to

the tuner can be moved to occupy subsequent lines in the Navigation display.

One of the requirements identified during design meetings was for a means to

hide uninteresting periods of time or periods of time where the behaviour of the

13The filtering and folding/unfolding functionalities address major user requirements

as the original programming environment for which VISPAT was designed included

a number of parallel programming libraries which could all co-exist within a single

program. It was thus necessary to provide ways in which tuners could create views of

the program corresponding to the different kinds of library functions used.

' 4 VISPAT targets programs running on clusters of workstations where usually the

number of processes is small.

Chapter 7. VISPAT: a VlSualisation and Performance Analysis Tool 	150

program has already been analysed. For this, a mechanism for marking periods

of the execution time was designed 15 . A set of n markers divide time in n+1

periods. The user can assign names to the markers and characterise the periods

within them as interesting or uninteresting. An uninterrupted animation of the

trace files will skip all the periods marked as uninteresting. When the animation is

stopped (interrupted), the Fast Forward and Rewind buttons move animation

time forwards and backwards stopping at the nearest markers.

7.5.2 Communication display

The Communication display presents an animated graphical representation of the

communication events in a parallel program. The numerous communication events

in a parallel program necessitate filterings that reduce the complexity of the com-

munication space. MPI communicators provide the means of separating the com-

munication space since each communicator specifies a communication context for

a given set of communication operations. Communications that happen within

one communication context do not interfere with communications in a different

context.

Viewing the communications as belonging to separate contexts led to their spatial

separation by assigning one instance of the communication display to communica-

tions relevant to one communicator. The abstraction achieved has been extended

to allow for filtering over the processes that participate in the communications

of a particular communicator. Hence, each time a new instance of the display is

opened the user is presented with a list of all the processes and a list of all the

communicators in the program. From these lists, the user is then able to select

any two sets of processes and communicators which define a (possibly empty)

subset of communication events to be visualised in the newly created instance.

15 This mechanism has not yet been implemented.

Chapter 7. VISPAT: a ViSualisation and Performance Analysis Tool 	151

As the animation proceeds, the next communication which satisfies both a pro-

cess set and a communicator gets displayed on the corresponding instance of the

Communication display.

The animation of the many instances of the Communication display can be driven

by the animation of the Navigation display or alternatively the user can step the

animation. The latter allows the user to browse through the sequence of the

communication events on all the instances of the Communication display. The

necessary control interface is provided in a separate window called the communic-

ation browser. Step-by-step browsing is suitable for the close examination of the

ordering of communication events in time. When the user steps the animation for

the Communication display instances, the Navigation display is updated as well.

A list of single line textual descriptions of each communication event (Communic-

ation event description display) is also provided along with every instance of the

Communication display. The textual description aims at:

• resolving any ambiguities that might be present in the graphical represent-

ation,

• providing timing information about the beginning and completion times of

events and

• supplying the user with a history list of communication events, so that the

current state of the display can be related to previous ones.

Participants in VISPAT's design meetings determined the graphical encoding

scheme used for point-to-point operations is illustrated in Figure 7-8. The vari-

ous components of the MPI Communication display are shown in Figure 7-9.

Processes are represented as spheres and communication operations (sends and

receives) as arrow heads attached to the peripheries of the spheres. For the pur-

pose of visualisation, each point-to-point operation is assumed to have a source

Chapter 7. VISPAT: a ViSualisation and Performance Analysis Tool 	152

Blocking Send

Non-Blocking Send

Blocking Receive

Non-Blocking Receive

a

Oj__

Figure 7-8: Graphical encoding of MPI point-to-point communications

and a destination which map onto spheres on the display. As long as any of the

two processes corresponding to the source and destination spheres is engaged in

communication with the other, a line is drawn between the spheres to identify

them on the display. Additionally, spheres are coloured as either empty or filled

to indicate whether the corresponding processes are currently being blocked by

a blocking communication event or not. Collective operations are represented as

symbolic labels drawn within spheres. For those collective operations which dis-

tinguish a particular process as being the root of the operation, the label in the

sphere corresponding to the root process is coloured differently. Table 7-1 lists all

the instrumented collective functions and their corresponding symbolic labels.

For animation, each instance of the display maintains information about the vari-

ous processes and the set of communication events associated with them. At ini-

tialisation time, each instance obtains a copy of the single communication event

list supplied by the TPE and which contains all the communication events re-

corded in the trace files. When the user finishes the selection of processes and

communicators for this instance, TPE functions are called to mark the appropri-

Chapter 7. VISPAT: a ViSualisation and Performance Analysis Tool 	153

Barrier X

Broadcast B

Gather C

Gatherv GV

AilGather AG

AIIGatherV AGV

Scatter S

ScatterV SV

A1IToAII AA

A11ToA1IV AAV

Reduce R

AliReduce AR

ReduceScatter RS

Scan SC

Table 7-1: MPI collective operations and corresponding labels

ate events in the list as selected. Animation skips unselected events and updates

all the instances in such a way that all appear to be synchronised by a common

clock whose value at each step equals the time stamp of the most recently displayed

communication event.

7.5.3 Membership Matrix Display

The Membership Matrix display shows process memberships in the communicators

of the program. Process numbers are displayed along the top of the matrix,

whereas communicator names are listed vertically on the left hand side. If process j

is a member of communicator i, then a circle is drawn in position (i,j) of the matrix.

Within each circle, the rank of the corresponding process in that communicator is

shown. Figure 7-10 shows an example of the membership matrix display. When

the display is initialised, the list of all communicators in the program is traversed

END 	 7RC(3roa t 2 tat time 72Q 	f
86(4 frot2Ctt71g:

* 3: 58 3653 to 	* 4 (at t e 719
* j: 86(4 from * S (t tte 713,
i4 	6: 86(4 From * 7 (at tite '191

4: 86(4 From * 5 <at. te 7131
It 	1: NI SEND to 	II u cat. trne 718
* 2: NB 3658 to 	2 c*t ttoe 713:

6: NB 16142 to 	It 7 tat tleo 717
It 	4: NB 36112 to 	It I tat time 717 1

2: IECV from * 3 (at time 3811

2: NB SEND to 	It S (at time 580:

I 	MPI Communicator e 1
	

III

..o .

'4

6
	

2

Chapter 7. VISPAT: a VlSualisation and Performance Analysis Tool 	154

Figure 7-9: Components of the Communication display

by the TPE functions in order to obtain all communicators of which each process is

a member. These memberships are initially drawn as described above. This is the

static representation of the memberships. Animation is performed by progressively

filling in the circles with colour as the animation clock goes past cacti of the join

events.

7.5.4 Statistics display

The Statistics display provides a list of metrics for cacti process. These metrics

are communication specific quantities.

The list of metrics supported in the current version include amongst others:

• the time spent in collective and point to point communications,

• the number of messages sent and received by each process and

Chapter 7. VISPAT: a VlSualisation and Performance Analysis Too] 	155

Membership Matrix Display JIMMIE= P]

0123456

	

i 	,' 2 	,' 4 	I' S

	

ch i 	(4\
0.1'__. ,

iss

Figure 7-10: Membership matrix display

• the minimum average and maximum times spent by each process on blocking

communication and calls to MPI_Wait and MPT_Test functions

The above nietrics may be used in performance analysis to reveal communication

bottlenecks and can he presented graphically by using a graph plotting tool 16 . The

graphical representation of the statistical information indicates at a glance which

processes are engaged in heavy communication.

7.5.5 Profile display

The Profile display presents quantitative information about the various execution

phases in a parallel program. The information provided is mainly concerned with

the execution time of a particular instance of a phase in the program or the total

time spent in all instances of a particular phase. In addition to absolute numeric

values, a bar-graph scheme is also employed to clearly indicate the most time

' 6 The current version of VISPAT uses Gnuplot.

Chapter 7. VISPAT: a VlSualisation and Performance Analysis Tool 	156

consuming phases and facilitate comparisons between groups of different phases.

Figure 7-11 shows two instances of the Profile display.

Figure 7-11: Two instances of the Profile display

7.6 An example of VISPAT use

A simple application program can he used to demonstrate some of the interaction

features of VISPAT. The example program solves a simple predator-prey model.

The two animal populations modelled are rabbits and foxes which live on a piece

of land. The animal populations are represented by two two-dimensional arrays

which are decomposed regularly across an array of processes. The program con-

sists of a number of phases whose hierarchy is depicted in Figure 7-12. A number

of initial phases - Mesh, Land, Comm - are responsible for defining the process

topology, the geometric partitioning of the problem and the MPI data types for

exchanging rows and columns of the arrays among nearest neighbour processes.

Chapter 7. VISPAT: a. VLSua]isation and Performance Analysis Tool 	157

The next generation of foxes and rabbits are computed according to some pre-

defined parameters of the model during a phase called Evolve. The population of

one animal species within a stretch of land depends on the population of the other

animal species in the same stretch of land.

predator-prey

	

Mesh 	Land 	Comm 	Loop

Evolve 	 Pop 	Pop

MPI Reduce 	MPI_Reduce

Border 	 B irder
I I

ShiftN 	ShiftE 	ShiftN
	

ShiftE

MPI_Isend MPI_tsend MPI_Isend MPIIsend

MPI_Recv MPI_Recv MPI_Recv 	MPI_Recv

Figure 7-12: Unfolded phase hierarchy of predator-prey program.

Information about the land boundaries needs to be swapped among nearest neigh-

bour processes. These communications are performed during the phase Border

which takes place within the phase Evolve. The eight processes, which ill the

program are arranged in a Cartesian topology, exchange data to eastern, western,

southern and northern neighbours. After the model is solved in each iteration, a

phase called Pop summs up the population of the two animals across all processes.

Initially, the phase tree of the program looks like the one presented in Figure 7-13.

Figure 7-14 shows the phase hierarchy after phases Mesh, Land and Comm have

been filtered out.

	

In Figure 7-15 . 	Loop phase has been unfolded to its sub-phases; the Navigation

display (Figure 7-16) shows some instances of the user-defined phases Evolve and

Pop for the first four processes of an eight processes run. When phases Evolve

Chapter 7. VISPAT: a VlSualisation and Performance Analysis Tool 	158

predator-prey

Mesh 	Land 	Comm 	Loop

Figure 7-13: Top level phases of predator prey program.

predator-prey

Loop

Figure 7-14: Phases Mesh, Land and Comm have been filtered out.

predator-prey

Loop

Evolve 	 Pop 	Pop

Figure 7-15: Phase Loop has been expanded to its subphases.

Chapter 7. VISPAT: a VlSualisation and Performance Analysis Tool 	159

and P01) are expanded to their subphases, the phase hierarchy is the one shown

in Figure 7-12.

LI 	O9S Fe 	 I
4080252
.

0 Evolve <#4) 	Pop (#8) 	 I 	lEvolve 05) 	 IPop (#10)

1 	Evolve 	(94) 	I 	IlEvolve 	(#5) 	 I 	I I
2 	Evolve 	(#4) 	 I IlEvolve 	(#5) 	 I 	11
3 	Evolve (#4) 	IllEvolve 	05) 	 III

F
4070012 	 EE0332

1 	44 	II 	 II 	 iF 	* 	1fl *i 	i]

Figure 7-16: Phase hierarchy of predator-prey program.

A glance at the Profile display in Figure 7-11 reveals that Evolve and Pop are the

most expensive phases in the program. Evolve's sub-phase Border (Figure 7-15),

which exchanges the populations in the borders, and Pop, which calculates the

total population at the end of each iteration, are called twice, once for each of

the two kinds of animals. Foxes and rabbits live in the same piece of land, so

the arrays that hold their populations have the same number of dimensions and

shapes. It was thought that the phases Border and Pop could be called only once,

halving the number of communications if both the populations were communicated

in one message. In this second version, the creation of two new data-types for

the communication of the data, at the boundaries (ill the first version a number

of non-contiguous and contiguous data elements were organised in the form of

columns and rows) was omitted. The data, was packed before the communication

and unpacked after the communication was completed in order to support the

combined transfer of the fox and rabbit data. The corresponding phase tree is

depicted in Figure 7-17.

Chapter T. VISPAT: a ViSualisation and Performance Analysis Too] 	160

predator-prey

Mesh 	Land 	Comm 	Loop

Evolve 	 Pop

Border 	
MPI_Reduce

ShiftN 	ShiftE

MP]_Isend MPI_isend

MPi_Recv MPI_Recv

Figure 7-17: Phase hierarchy of predator-prey program (version two)

7.7 Conclusions

A prototype tuning tool has been implemented which through the principle of

hierarchical phases, allows tuners to relate low-level events in trace data to pro-

gram source code and reduces the amount of information they have to consider.

The latter is achieved through an interface which enables the traversal of the phase

hierarchy and the creation of different views of the program for which perform-

ance data is displayed. The hierarchical grouping of events in VISPAT reflects

the hierarchical grouping of the library functions in the program and in this way

provides the abstractions necessary to limit the focus to the areas of interest whilst

maintaining a close link to the structure of the source code. Moreover, the per-

formance data query mechanisms of TPE can be used to query the performance

data and in conjunction with the source code reference that the concept of phases

provides can assist in eliminating the impact of the cause/effect chasm which has

been identified as one of the major sources of difficulties in tuning (Chapter Four).

The current implementation of VISPAT addresses only a small part of the user

Chapter 7. VISPAT: a VISuaiisa.tion and Performance Analysis Tool 	161

requirements and the ideas raised during design meetings and informal conversa-

tions with local tuners over the last three years. Further work will have to focus

on:

• instrumenting more MPI functions,

reducing the intrusiveness of the instrumentation,

• introducing more advanced data structures in order to speed up the trace

analysis performed by TPE,

• enriching TPE with other filtering mechanisms,

• investigating ways in which to improve the scalability of the tool.

• and making VISPAT extensible by providing a well defined interface to the

output of the TPE functions in order to drive other displays or tools.

Further development of VISPAT should he guided by constant feedback from

tuners. As an example of the benefit that user involvement can incur, an informal

evaluation of the second version of VISPAT was attempted. Some results of this

evaluation are presented in Chapter Eight which describes user participation in

the design process of VISPAT.

Chapter 8

The participative design process

of VISPAT

User involvement in the design and evolution of computer systems has enjoyed

growing interest within the human factors and the systems engineering communit-

ies in recent years. The term user-centred design has been used to refer to a number

of methodologies and practices which aim to make the end-user participate actively

in the design process of computer systems. Such techniques include: contextualist

design [70]; joint application design; [29]; participative design [49]; cooperative

requirements capture [108]; usability engineering; iterative design; and others.

Among the most widely established techniques, participative design is a term

attributed to design approaches first employed in a pioneering project in Scand-

inavia, which succeeded in acquiring knowledge about the users' work practices

by allowing users to participate in the system design process [19,18,146,100,49].

There are various definitions of participative design, but they all have in common

a number of basic principles, found in [42]:

• The focus is on the users' work. The design of the system aims to im-

prove the quality of the work life of the people who will use the system. This

goal is shared by users and developers who take part in the design process.

Technology design is only a secondary objective of the design process.

162

Chapter 8. The participative design process of VISPAT 	 163

• Design should not be done "for" or "by" users. When design is done

for the users, knowledge about the users' tasks may be missing from the

design. On the other hand, design by the users excludes developers from the

design group; most often, though, users lack the technical skills necessary

for technology design . Clearly, design with the users implies a framework

of collaboration and mutual learning, where designers are willing to learn

about users' work practices and users are willing to become familiar with

technology.

• Design is iterative. The design process should be based on tools and

techniques simulating the system and its use under real work conditions as

users should be able to evaluate and determine future enhancements

Local tuners were invited to actively determine the design of \TISPAT. This parti-

cipative approach aimed at acquiring additional knowledge about the tuning task

and at building a tuning tool, which would address to a large extent tuner require-

ments. The first part of this chapter describes how users participated in VISPAT's

design. When a working prototype of VISPAT was developed user participation

was carried on through an evaluation of the tool which in turn guided the design

of a subsequent version of VISPAT. The second part of the chapter describes how

VISPAT's evaluation was conducted and presents some of the evaluation results.

8.1 Participative design of VISPAT

environment using very limited resources. The volunteered to take part in the

design meetings and were motivated by a genuine interest in performance analysis

tools. No group member had any authority over any other member. People were

not accountable to anybody for the meetings' progress and the project's success.

They had not been taught any formal design methods. They had three to five years

Chapter 8. The participative design process of VISPAT 	 164

of experience in parallel program development. The initial meetings focused on

requirements specification while the subsequent ones were concerned with design

issues. The design meetings occurred within a period of three years with a version

of the tool being the outcome of each year's meetings. During the initial meetings

of the first year, the participants started from a very general description of the

tool and the meetings were a mixture of requirements specification and high-level

design. During the subsequent years' meetings, the design was altered. The num-

ber of participants ranged in size from three to eight and the meetings typically

lasted approximately 90 minutes. The participants were sitting around the table

with minimal tools such as pencils, paper mock-ups of the design and a drawing

board. The paper mock-ups were necessary for the users to be able to envision

the design and contribute to it. Paper prototyping fosters an atmosphere of ex-

ploration and experimentation'. Solutions and variations can be tried easily and

quickly. The design sessions of VISPAT were recorded and transcribed.

8.1.1 First year meetings' overview

The design sessions started on February 19 in 1994 and were scheduled to be

finished by June 26 of the same year, when the tool development would start.

Figure 8-1 shows when the meetings took place. The initial intention of the

participants was to have a meeting each week. Instead, the team met almost

consistently during the initial period of the first seven weeks, but the frequency of

meetings dropped after the sixth meeting.

tm one of the many techniques which can help users acquire knowledge about the pro-

posed system. Card games, computer prototypes [112], think-aloud experiments [82],

working analysis walls [43], [169]. Users are offered an equal opportunity for particip-

ation since they are not intimidated by the use of computer technology. The design

sessions can be video-recorded, so that design can be implementors.

Chapter 8. The participative design process of VISPAT 	 165

Meeting Dates

	

\ rs \ r4r\t ' 	fln, 	$r 	
b\ b

	

I. 	I 	ISS 	I 	 •I 	I 	I 	P 	p

Figure 8-1: Meeting dates in a period of four months.

The first two meetings were brainstorming sessions, where people shared domain

knowledge and expressed ideas, random requirements and alternatives. Many of

these requirements were materialised in the form of paper mock-ups produced

by the designer and discussed during the next four meetings. This second series

of meetings elaborated on the requirements and were centred around the paper

prototypes, which became quickly more and more detailed. A number of new

functionalities and displays were introduced at the same time and people could

criticise them. The discussion gradually focused on lower level design issues. The

seventh meeting attempted to summarise the proposed displays and also tried to

prioritise them. The eighth meeting had purely a management purpose. The

activities of the people who would undertake the development of VISPAT were

outlined and scheduled in time. The ninth meeting concentrated on low level user

interface issues.

The first meeting focused almost entirely on identifying the knowledge and require-

ments necessary to lead to the design specification. Almost half of the meeting's

twenty nine technical issues raised were concerned with articulating new require-

ments and half with new domain knowledge.

The second meeting overlapped significantly with the first. The discussion focused

on old and new requirements and domain knowledge.

During the third meeting, twenty two issues were discussed of which three were

concerned with meeting and project management issues. Six of the remaining

issues were about design approaches, which addressed previously mentioned user

requirements. Four issues were design approaches contributed by the designer.

Chapter 8. The participative design process of VISPAT 	 166

Five issues revisited design approaches proposed previously in the current meet-

ing with the purpose of altering it. Sometimes, a design approach would be partly

inspired by a previously mentioned user requirement and partly devised by the de-

signer.. Three issues were concerned with identifying a new requirement. During

the remaining issues, knowledge and requirements were articulated in the context

of a design approach. These statistics indicate that during the third meeting atten-

tion shifted to design. People were very critical to the design solutions presented

by the designer. Five issues discussed variations of the current design. In one case,

the design solution offered by the designer was rejected and substituted by a new

one proposed by one of the users.

During the fourth meeting, eight out of twenty one issues were concerned with

design approaches targeting previously defined requirements. Four issues were

variations of the current design and were presented by the designer. Participants

tried to change several design alternatives proposed by the designer and discussed

about them in the context of knowledge they had about the implementation of the

PUL and CHIMP libraries. Four issues repeated some old knowledge and require-

ments which had been articulated in the past. This was considered necessary for

decision making: old knowledge and requirements were used during the process of

evaluating the proposed each time design solution.

During the fifth meeting, only one issue introduced and examined a new require-

ment. The rest of the issues introduced design options which attempted to address

previously expressed requirements.

During the sixth meeting, nineteen issues were discussed of which one was con-

cerned with project management. Only three issues dealt with identifying new

requirements or knowledge. The remaining sixteen issues evaluated the design

solutions presented in the mock-up. During the discussion about an issue, group

members would occasionally share some knowledge which was relevant to the way

people go about tuning or to the specifics of the PUL or CHIMP implementation.

Again, these requirements or knowledge were oriented towards the context of the

Chapter 8. The participative design process of VISPAT 	 167

current each time design approach, in order to prove the appropriateness of the

design solution in hand. Only once were previous design approaches questioned by

participants and discussions were minor clarifications when the mockup did not

successfully convey the right impression.

The seventh meeting tried to prioritise the displays so as to cut down the number

of the displays that would have to be implemented. Two issues were concerned

with altering a previous design implementation and three issues dealt with new

requirements.

During the ninth meeting, a large number of issues attempted to introduce some

minor changes and improvements to previous design approaches. Five issues were

concerned with new requirements which were not elaborated further since it was

thought they involved a great deal of implementation effort

19.193 	GenII Chant is pr@posed.by user.

M

E 	26, 193 	Gantt Chun is refined

B

T

3,3,93 	Membership Matrix Display is proposed by uscsl.Gansts Chart and operations in mock-up /Animation at the PUL EM level.

N 	 Message queues/ Initial version of Profile display.

C

12.3.93 - 	Membership Matrix mock-up is approved /Minor additions to Gnats Chart/Stop animation under conditions
Statistics for PUL EM and PUL TB. Blocking Times and Testing Times displays.

D

A 	19. 193 - 	Have a library view of the progranilPoint to Point conms animaliont/Visualinarion of the PUL TF / Statistict

T 	 A

E

S 	2.4.93 - 	Expand ba specific etass/PUL RD animation

23.4. 93.

B

30. 4. 93

29. 5.93 1 	Matrix becomes dynamic.! Various improvements to the UI of the Navigation Display(Gantt Charfi/Each process will

I 	generate its own trace file.

26. 6. 93

Figure 8-2: Basic tool functionalities.

Most of the tool's basic functionalities were determined during the third and fourth

meetings as is shown in Figure 8-2. The 26th of June was the deadline by which

the design specification of the tool should have been completed. The line marked

Chapter 8. The participative design process of VISPAT 	 168

as A in Figure 8-2 denotes the middle meeting, whereas the line marked as B

represents the middle point in the period of four months that the project lasted.

8.1.2 Communicating the design

Participants were peers in the academic establishment they worked for. Generally,

discussions tended not to be detailed due to the limited time people were able to

spend in the meetings. Occasionally, a conversation would be very short or very

long according to the spontaneous interest of the interlocutors. Discussions fell into

a general pattern in that, first, the displays and functionalities of the tool would

be established, and then the information requirements of these aspects would be

considered. There were no formal meeting agenda and meeting minutes. Only

the designer did any preparation before the meetings. The remaining members

participated in the formulation of design options in an opportunistic way. The

above described loose cooperation was the context of a number of remarkable

phenomena such as the richness and the free expression of ideas; communication

problems, e.g. misunderstandings; compromises; etc.

8.1.3 The designer's role

Among the observations of this study was that as users were given more con-

trol in determining the design, the designer assumed a more supportive and less

dominating role:

At each meeting the designer would prepare and present to the team paper mock-

ups which were based on previous design results. The paper prototype would

organise and elaborate the ideas expressed in the previous meetings and

would introduce some new issues. As it has been shown in [131] potential

users are unlikely to co-operate in the development if they feel their views

Chapter 8. The participative design process of VISPA4T 	 169

have not been taken into account. Providing a paper prototype, which in-

cluded the participants' views, guaranteed that users would continue to par-

ticipate as they felt that their participation had an impact on the system

design and that progress was made. Also, it provided the framework for

further discussions. The designer was solely responsible for the preparation

of the mock-ups. In between two meetings, the designer had to transcribe

the conversations, distinguish the different viewpoints and integrate them in

a design solution. Many times the issues were interleaved with each other,

or they were very implicitly introduced. Often, the discussion about an issue

would not conclude to a decision, so the designer had to identify within argu-

mentative conversations what were the winning alternatives and incorporate

them in the mock-ups.

In cases where there was not a clear winning alternative within the discussion

of an issue, the designer had to arbitrate and formulate the design solution

herself. The design solution would be presented to the team at the next

meeting in order to be approved by the group.

The designer determined the theme of a large part of the discussions by rais-

ing the largeet number of issues during the nine design sessions. During

the first two meetings, the designer would raise an issue in order to elicit

information from the group. Later in the process, the meeting flow was

determined by the paper mock-ups, which served as the agenda for each

meeting. An issue raised by the designer would be either about a design

solution corresponding to the group's requirements of a previous meeting

or a new design solution devised by the designer. In the former case, the

designer sought some feedback from the team about the degree to which the

design addressed the members' requirements. In the latter case, the designer

attempted to prompt participants to articulate new requirements.

Chapter 8. The participative design process of VISPAT 	 170

During the subsequent years of the tool's development, the designer was the only

person to participate in all design meetings and to supervise the tool's devel-

opment. The designer acquired a deep knowledge of the application domain

and the design process and this made her a valuable source of information

for the subsequent development teams.

8.2 Evaluation of VISPAT

A major concern for the development of any system is whether it is acceptable

i.e., whether the system satisfies most user requirements and needs. A model of

system acceptability is outlined in (Figure 8-3) [1281. In particular, usability is

concerned with how well users can employ the system's functionality. This can be

summarised in a number of attributes such as:

• Learnability: the system should be easy to learn to use.

• Efficiency: the system should be efficient to use so that once the user has

learned how to use it, a high level of productivity can be demonstrated.

• Memorability: casual users should be able to return to the system after some

period of time without having to learn everything from the beginning.

• Errors: the system should not allow users to make errors.

• Satisfaction: the system should be pleasant to use.

VISPAT was evaluated co-operatively with the help of nine users. The aim of

VISPAT's usability evaluation was twofold: first, to discover major usability prob-

lems; and second, to give local users - who did not participate in the tool's design

stage - an opportunity to voice requirements which could be taken into account

Chapter 8. The participative design process of VISPAT
	

171

Social
Utility

accePtabili>.. 	
Usefulness

System Easy to lea
acceptability <N 	

/" Cost Efficient to
Practical
acceptability

 Compatibility 	Easy to rem

Reliability 	 Few errors

Subjectivel)
Etc.

Figure 8-3: A model of system acceptability

in subsequent iterations of the design process. The evaluation was particularly

concerned with guessability and the information needs of users [84].

The reason for setting the focus of the evaluation to guessability was that the

system's main functionalities had already been evaluated through the previous

year's iterative design process. On the other hand, the observational studies of

the use of performance tools reported in Chapters Four and Five indicated that

most tuners do not consult any documentation so it is vital to make VISPAT's

functionality and operation self-evident. The approach to evaluation employed

was based upon the Coaching Method [109]. The Coaching Method is a simplified

thinking aloud study which can be used in discount usability evaluations'. While

2 Nielsen's discount usability testing is based on the use of scenarios, simplified think-

ing aloud studies and heuristic evaluation [126,127,129]. A scenario combines the limit-

ations of a vertical prototype (the user cannot access all aspects of the system) and of a

horizontal prototype (the user cannot interact with real data). Nielsen gives a taxonomy

of the various forms of scenarios and reports on the results of a comparative study of

Chapter 8. The participative design process of VISPAT 	 172

most of the think aloud methods attempt to interfere as little as possible with

users, the Coaching Method tries to direct the user while using the system and

the experimenter is allowed to answer any of the user's questions. Coaching is

aimed at discovering users' information needs in order to make the user interface

self-explanatory and improve the quality of training and documentation. By giving

users the information which they need at some point of their interaction with the

system, they rapidly become expert users and are able to judge the system both

in terms of its functionality and its usability.

VISPAT's evaluation was based on a vertical prototype. Some aspects of the

system could not be used because they had not been implemented yet. The nine

evaluators who participated in the study had a moderate experience with parallel

programming and had not used VISPAT before; all but one did not take part

in VISPAT's design sessions. All had used some message passing programming

environment before and most of them were already exposed to programming with

MPI. A toy MPJ program was used in the evaluation sessions apart from two

cases where the evaluators requested to use their own program with the tool. The

sessions were videotaped.

The evaluation revealed a number of problems and requirements which were re

corded to inform the design of future versions of VISPAT.

8.2.1 Quantitative and qualitative findings

The choice of usability measurements for VISPAT was oriented towards one of

the aims of the evaluation which was to discover how guessable the tool's user

interface was. For each of the thirteen tasks, it was measured how many evaluators

the effectiveness of paper versus computer based mockups in heuristic evaluation [127].

A collection of fundamental usability heuristics can be found in [128].

Chapter 8. The participative design process of VISPAT 	 173

performed a task correctly without any help from the experimenter; by using an

alternative strategy; with some assistance from the experimenter; or were helped

so much that the task was actually carried out by the experimenter. Additionally,

for each user interface feature which the evaluators had to use while performing a

task, it was recorded how, if at all, this feature was used by the evaluators. Table

8-1 lists the possible ways an evaluator could interact with a user interface feature.

uc 	used feature correctly

uw used feature wrongly

nt 	did not think to use feature at all

hu 	helped to use feature

eu 	experimented with using feature

go 	guessed correctly

Table 8-1: Ways of interacting with the interface features of the tool.

ne negative comment

po positive comment

un unexpected user action

re 	requirement

or 	old requirement

Table 8-2: Different kinds of utterances.

Apart from these measurements, the evaluation was concerned with revealing new

user requirements. Occasionally, requirements would arise after the completion

of a task, when the evaluators were asked to express their opinion about specific

aspects of the tool revealed during the task. At the end of the session, the eval-

uators were asked to evaluate the tool in general and this gave them the chance

to utter any additional general requirements (re) or old requirements which had

been expressed in the design meetings but not implemented (or). The videotapes

were examined for unexpected evaluator actions (un) as it was thought that they

could hint areas where the interface and the functionality could be improved. The

evaluators' comments, which were positive (po) or negative (ne) about the sys-

Chapter 8. The participative design process of VISPAT 	 17-1

tern, were recorded. Table 8-2 lists the coding of the different kinds of utterances

recorded during the evaluation sessions. Appendix D describes in detail the evalu-

ators' utterances. The following subsections correspond to evaluation results from

a subset of the tasks users were asked to performed during the evaluation sessions.

8.2.2 Evaluation tasks

Task 1

The evaluators were asked to replay the program execution and guess the function

of the buttons (Figure 8-4) which control the animation of the Navigation display

in a way similar to the control panel of a. sound system (hi-fl metaphor).

VISPAT
XX

[File Displays Phases 	Phase Options

1024

o 	 78848

[t 	1 ii II 	1 flu I fli1 • T flWTI

go to 	
rewind 	play 	stop 	step 	1. forward 	go to

beginning 	 end

Figure 8-4: Animation control buttons

Two evaluators were not able to guess the function of the go to the beginning

button while four evaluators failed to guess the meaning of the step button. All

evaluators were able to make the tool start the animation. Table D-3 shows the

contributions of the evaluators in terms of negative and positive comments and

also in terms of additional requirements. It also lists the ways in which evaluators

interacted with the hi-fl buttons and depicts how many evaluators managed to

perform Task 1 on their own.

Chapter 8. The participative design process of VISPAT 	 175

There were instances where the tool did not give enough feedback to the evaluators.

In one case, animation was too slow for evaluator 4 to realise that animation time

was indeed advancing. For a while, evaluator 4 could see nothing on the screen

because of the very small initial value set to the time unit field. He said: "I am

surprised. I was expecting things to happen. Instead, I have an empty display."

Evaluator 4 was not helped by the continuously changing time indications in the

bottom left and right corners of the Navigation display. Instead, he asked the

experimenter how he could understand that animation proceeded slowly. The slow

feedback of the tool was the reason that two evaluators commented on the difficulty

to handle the display's horizontal scrollbar. Upon each movement of the scroilbar,

the tool re-calculated the new animation time and drew the corresponding phases

in the Navigation display. Re-calculating and drawing took considerable time while

the evaluators perceived the delay as an inefficiency of the system and retried to

move the scrollbar which increased further the delay.

Half of the evaluator requirements during this task were already implemented or

had been identified during the design of VISPAT.

Task 3

Evaluators were asked to replay the execution at the second level of expansion.

As is shown in Table D-4, only one evaluator needed assistance in order to select

the unfold option from the Phases menu. After the unfold option was selected,

a message box appeared asking: "There are no selected phases, do you wish to

unfold them all?". The evaluators had at this point two options: either to press

OK and to proceed with the operation or to press CANCEL. In three cases, this

message caused some confusion. Evaluator 6 was put off for a while before pressing

OK and evaluator 2 pressed CANCEL and required to know how he could select

all the phases at once. Evaluator 8 cancelled the operation and tried to select

Chapter 8. The participative design process of VISPAT 	 176

some phases first. As it was expressed the message implied that some irreversible

action may happen when the user unfolds all the phases

Six evaluators were confused when the phase expansion resulted in an empty

navigation display as most of the MPT phases took place only after a number of

time frames. For example, evaluator 9 said: "I lost the phases". Evaluator 6

thought that the animation had finished and that the program execution could be

replayed only once. Evaluator 2 expressed his satisfaction when he realised which

phases in the program were responsible for the large execution time 3 . Evaluator

4 said that he liked the filtering mechanism with which only selected phases can

be unfolded.

Among the most important requirements expressed during this task were: the

requirement to see the source code; the requirement that colour should be used to

identify those phases whose duration is too small to allow for their names to be

displayed; and the requirement to he able to navigate to arbitrary points in the

animation time.

Task 7

In order to perform task 7, the evaluators had to make the Navigation display

depict all the user defined phases in the application program. The toy program did

not contain any user defined phases, so when the evaluators invoked the filtering

mechanism to perform the task, the Navigation display did not present any user

defined phases. Five evaluators were confused by this (Table D--5). Evaluator 7

thought that the tool was still processing the user event and found the response

of the tool too slow. Evaluators 7 and 9 did not like having an empty frame on

the display. Evaluator 6 considered going one level up in order to find the user

'Evaluator 2 was using his own program during the evaluation.

Chapter 8. The participative design process of VISPAT 	 177

defined phases. One of the two evaluators, who used their own programs, knew

that his program did not contain any user defined phases, so the response of the

tool did not surprise him. Evaluator 3 thought that the filter operation, which

he invoked, had actually the opposite semantics from what he initially thought

it had, so instead of filtering in the user defined phases, he thought that it filter

them out. For a while, evaluator 2 thought that filter meant filter out.

Although users' knowledge of their own programs may seem to alleviate the need

for a message in this case, the structure of a typical parallel program may contain

a complex hierarchy of phases for which it is vital to provide some feedback on the

user navigation actions. Feedback on navigation actions becomes more important

in cases where parallel programs are tuned by experts who are not the programs'

authors.

Task 9

In order to perform task 9, the evaluators had to set the animation time to zero

and use the "Next" button on the Communication browser window in order to

make the Communication display depict the third communication event (Table

D-6). Finally, the evaluators had to invoke the Communication event description

display and see the start time of the third communication event.

The Communication event description display which accompanies the Commu-

nication display lists the communication events as they happen over time. Eight

evaluators found very confusing the fact that the event list scrolled downwards

instead of upwards and were not able to complete the task without the help of

the experimenter. Four evaluators made critical remarks about the order of the

text presentation. The decision to adopt a downwards scrolling was influenced by

the way the communication events are handled in order to construct the system's

data structures. It was proved, though, that downwards scrolling contrasted with

the traditional way humans read (from top to bottom). One evaluator noticed

Chapter 8. The participative design process of VISPAT 	 178

that having known which way the list goes it was easier for him to use it. This is

because the most current and subsequently the most important event (from the

tuner's point of view) is depicted at the top of the display. This design decision

may have an increased guessability and learnability overhead but it can be more

efficiently used once the user learns how to use it. Three evaluators explicitly said

that they liked the Communication event description display. One evaluator liked

the mechanism of filtering communications according to which communication

context they belong.

8.3 Summary and conclusions

Local users have actively determined the design of VISPAT through a series of

design meetings which occured within a period of three years. Users were highly

interested in critiquing constructively and reformulating when necessary the basic

design options offered by the designer. Very early in the meetings of the first year

the design was determined and after that participants did not examine any new

major requirement. This can be attributed to the limited resources available to

the project. During the meetings of the subsequent years the design changed to

address issues associated with the change in the programming environment.

Whereas the series of participative design meetings constituted a formative evalu-

ation of VISPAT, VISPAT was also evaluated summatively with the help of nine

evaluators. The evaluation revealed many usability errors which violated a number

of usability heuristics such as: providing adequate feedback; natural and simple

dialogue design; good error messages; and speaking the users' language.

A large number of requirements (163/92) have been expressed during the eval-

nation. More than half of these requirements were "old" requirements, that is

they had been considered at some time during the design of the tool. Most of the

Chapter 8. The participative design process of VISPAT 	 179

remaining requirements represent valuable contributions which could be realised

in future versions of the tool.

The ratio of positive versus critical comments was 98/106. This along with the

large number of requirements suggest that there is still a lot of work to be done

to improve the usability of the tool.

8.3.1 Future plans for VISPAT

VISPAT is registered software with Fujitsu and has been installed on the Fujitsu

AP1000 system in Kawasaki, Japan.

Two years ago, VISPAT was used by researchers at ANU (Canberra) to demon-

strate their MPI implementation for Fujitsu AP systems at a Fujitsu workshop

hosted by them.

The software remains installed for use on the EPCC cluster. VISPAT will most

probably he included in a new release of CHIMP/MPI scheduled for this year

(1997).

8.3.2 Summary

This chapter demonstrated how the principles of user-centred design were applied

in the case of designing a parallel program performance analysis tool. User par-

ticipation throughout the whole development cycle of VISPAT created a large

repository of ideas and tuner requirements. It is hoped that these requirements

will be addressed either in future versions of VISPAT or will be taken into account

by designers of tuning tools similar to VISPAT.

Chapter 9

The Tuner's Workbench

The results from the observational study of tuning (Chapters Five and Six) can

be used to drive a preliminary specification of a tuning environment, the Tuner's

WorkBench (TWB), that could address support for tuning in the large. The

requirements for such a system fall into a number of categories:

Ease of use. Ethnographic studies of configuration management and document-

ation practices report that documentation processes if regimentally adhered

to are likely to slow down work processes, threaten people's control over their

work practices and expose them more openly to accountability [38]. Other

studies report that pen and paper technology are preferred during critical

projects over electronic groupware systems for software development [170].

It is, therefore, important that the Tuner's Workbench should be easy to use

and not overly constrain the ways in which tuners document the task. In

this way, documentation will be less likely to be considered as an additional

overhead. The system should fit into tuners' normal working practices and

should not impose undue constraints. Documentation should be contributed

and retrieved easily and quickly.

180

Chapter 9. The Tuner's Workbench
	

181

As tuning is performed interleaved with parallel program development it is

necessary that the Tuner's Workbench' shall not be simply another level of

software and will not introduce another degree of complexity to the process

of producing parallel software. Rather, TWB should be driven by the soft-

ware development process and requirements. It should be usable in a range

of different development contexts and parallel programs from the complex,

large scientific codes which are developed by a group of people, to the toy

parallel codes of the novice programmer.

Policy-free. TWB should be "policy-free" in two important ways: it should not

force the use of specific tuning tools or impose any particular strategy for per-

formance analysis upon the tuner. Rather, it should be intended to provide

an environment in which the tuner's choice of tools can be used more effect-

ively in support of whatever strategy the tuner feels is most appropriate to

the particular problem.

Support distinct aspects of tuning in the large. TWB should support the

management of tuning by-products, the assessment of tuning progress and

the sharing of knowledge within a cooperative development environment.

Some of the proposed functionalities of TWB can be found in many Configur-

ation Management (CM) tools and team programming environments [53,98,139,

149. Use of CM tools is not yet widespread and most users employ local mech-

anisms provided with the operating system because of their ease of use and the

low software cost [37,46]. These mechanisms are also appealing because program-

mers do not have to change to more elaborate work practices. Most CM tools,

however, have general functionalities and do not address tuning in any particu-

lar way. A notable exception is the configuration management tool described in

'Herein after referred to as TWB.

Chapter 9. The Tuner's Workbench 	 182

[31]. Programs whose performance is being tuned may have components which

differ slightly, thus forming a family of instances for the specific component of

the program. Instead of maintaining several instances of the program, each cor-

responding to the different component, this system maintains one instance of the

program containing links to the component family. An important contribution

of that work is that it addresses the requirement for tracking the changes of the

operating system and the compiler, which is a major issue in parallel program

development. However, the attempt to address tuning is incomplete. The gran-

ularity of tuning changes may be even smaller than that of the procedural level.

Two program versions may differ from as little as in the ordering of the indices of

a number of loops or as much as in re-organising whole parts of the code. Also,

the implications of collaborative tuning are not examined. For example, in large

programming teams, a mechanism is needed to check whether the development

efforts of group members do not worsen the performance of the main code when

their individual modules are integrated with the main version. Moreover, it does

not cater for recording any tuning by-products or the rationale of design decisions.

The repetitive nature of tuning is taken into account in [24] by adopting a software

engineering approach for trace file and performance metrics management. This

work does not consider, however, tuners' work practices, nor does it examine how

such a system should fit into the software development process. In contrast, the

requirements for TWB are based upon the results of the observational studies of

tuning described in Chapters Five and Six.

9.1 Preliminary specification of TWB

According to the results of the investigation of tuning in Chapters Five and Six,

TWB should address tuning management and tuning knowledge sharing (Figure

9-1)

Chapter 9. The Tuner's Workbench 	 .183

Tuning management

Tuning record creation 	Assessing tuning

and management 	 progress

iment database

Sharing tuning knowledge

ttt
Figure 9-1: Components of TWB

An experiment, the main entity in the experiment database, is a record that rep-

resents a single unit tuning cycle. It includes a description of: why it was done

(the hypothesis); what was done (the set of parameter-value pairs); and the res-

ults (trace data and set of performance metric-value pairs). Thus, the record of

an experiment conveys both the rationale for a code design decision and the im-

pact the decision has on program performance. According to the investigation of

tuning in Chapter Four, the two major difficulties associated with the task are

the difficulty to find the cause of a performance problem (cause/effect chasm) and

the difficulty to know a lot of details about how the machine operates (faulty as-

sumption/model). An experiment record can contain information about the cause

of a specific program behaviour and its effect. At the same time, it can demon-

strate the relationships among performance determining parameters, helping the

tuner to establish correct models of the program behaviour on a particular parallel

machine.

The implementation of TWB could be based upon existing hypertext, and/or

database technologies. The experiment record should contain information in a

variety of formats, including textual (e.g. lists of variable-value pairs representing

Chapter 9. The Tuner's Workbench 	 184

parameters and performance metrics), static graphical (e.g. snapshots of displays

generated by trace data visualisation tools) and dynamic graphical (e.g. animated

displays from trace visualisation tools)

As program optimisation effort continues a number of experiments can be gener-

ated which should be stored to provide a record of the program tuning process.

The structure of the tuning experiment repository could be hierarchical. Exper-

iment records could be simply nodes (documents) within a larger hypertext doc-

ument that would constitute the complete database. A sequence of experiment

documents should define the path followed to tune a program and they could he

organised as a hierarchical tree structure with branches that would correspond to

experiments that would share a common hypothesis. For any hypothesis, the most

recent experiment could be located at the leaf of the branch corresponding to this

hypothesis.

The experiment documents which can result from documenting tuning should be

handled to cater for tuning tasks documented in Chapters Five and Six (see Figure

9-2).

Tuning 	I 	I 	Assess
experiment 	 tuning 	

Sharing tuning

management 	 progress 	 knowledge

I Review of Best version
I 	tuning 	 I

	

experiments 	 retrieval

Figure 9-2: Tuning in the large

Chapter 9. The Tuner's Workbench 	 185

9.1.1 Tuning record creation and management

TWB's functionality should provide for the creation and management of tuning

experiment records. In order to meet the requirement for ease of use, tuning record

creation should be integrated with the process of program development and tuning

by providing a common interface (through the experiment document) with tools

for program development, performance assessment and tuning record creation and

management. The "policy free" requirement should be met by the ability to use

any tools which can support these activities (Figure 9-3).

Tasks

Tuning record creation and management

Program dcvclopmcn

Record unam
Run 	 Assess 	

lumine.

 ir. ban

by produets Edit

CaQ zCompile,

Interface 	 Tuning experiment document

C 	C
Editors 	 Version control loots

Tools 	 compilers 	 Vismalisalion tools 	 or Database Syslema Run-time system

Figure 9-3: Tuning record creation and management

Figure 94 sketches the practices associated with a unit tuning cycle as they were

identified by the investigation described in Chapter Five. After editing, compiling

and running the code, the tuner may assess its performance based on timing

results provided by a performance analysis tool or by using timer functions at

appropriate points in the program execution. The program performance may be

compared to previous results. After assessing the performance there may be a

2 The notation employed in this figure is borrowed from Hierarchical Task Analysis

[4].

Chapter 9. The Tuner's Workbench 	 186

number of possibilities as to what the tuner's next action may be. For instance,

the scalability of the performance determining changes may be tried by running

the code on different sets of processors. The tuner may need to describe important

aspects of the particular run, the values of performance determining parameters

and the execution times of the program. If the performance is still not what

the tuner expected a few more changes may be attempted. In case the required

changes are too drastic the tuner may decide to work with a separate version

of the source code files. Alternatively, the tuner may decide to investigate the

relations amongst performance determining parameters by a few more runs which

may differ by one or more factors such as the structure of the input data.

The scenario described above should be addressed by functionality attached to the

experiment document: -

Edit - Compile - Run cycle.

Program development tools could be accessed through the experiment doc-

ument.

Performance assessment should be facilitated by calling the appropriate perform-

ance tuning tool.

Evidence of program performance could be gathered by capturing images

from the performance analysis tool and attaching them to the experiment

document. This evidence could later be used in report generation or could

be communicated to colleagues.

Textual information corresponding to hypothesis information should be held

along with information representing an account of results which convey the

performance of the program. Results from runs on different sets of processors

could be added to the document and depicted graphically at a later point in

time. The documentation functionality should be designed to correspond as

much as possible to tuners' own documentation practices.

2.
Compile

Plan 2.
2.1 and/or 2.2 and/or 2.3

2.1 Include
timer

[2.2 	J
Link withi

123
I 	- 	 Choose

functions Lpningjqj] Lpfi/tion

t
•1

It

C,

C,

t
C,

E
C,

0,

S

Plan 0

1. then 2. then 3. then 4. then 5. Cl,

-S

	

Assess
	

Next
per lance

Plan 4.

	

4.1 and/or 4.2
	

Plan 5

one of 5.1 5.2 5.3 5.4
14.1 	 [4.2

Use timer 	Use tuning
[_fpctions L 	tool

	

51 	 52 	 I53 	H Check 	- Record 	I Work witI 	Changel
alability 	mew versioni 	 code1

	

PIanS,1 	 I 	I
5 .l.l and/or s.1.21 	 I 	I

	

5.1.1 	I 	512
I 	Change1 	- - Go 	 15.3.1 	I 	541 	I
p conWtioft L 2. or 31 	 ew version 	_________

Create

LL -t- 1.j

3.
on

Plan 3.

3.1 and/or 3.2

131 Choose 	
13.2 	I
P 	Execute I

L_confi/tion 	program I

Chapter 9. The Tuner's Workbench
	

188

Tuning experiment creation.

The tuner should have the flexibility to determine the granularity of the tun-

ing experiment. For example, a tuning experiment may differ from another

by as little as the number of processors on which the program has been run

or as much as the program's numerical algorithm.

The source files and tuning by-products (textual and graphical information)

should be registered with every instance of a performance experiment. Ver-

sion control could be supported by providing access to a suitable version

control tool e.g., RCS [163,164]. In the process of creating a new experiment

document the tuner could specify an existing experiment on which the new

experiment could be based. The system could extract all the files associated

with the particular instance of the experiment; the tuner could then continue

the program development and finally create a new experiment record.

Multi-people program development should be facilitated.

Tuning experiments should be grouped into projects and operations should

be supported to create and access documented tuning projects. The tool

should support the documentation and communication needs of groups of

people involved in parallel program development.

9.1.2 Assessing tuning progress

Operations to facilitate tuning progress assessment should allow for quickly brows-

ing through the experiments. Within a hierarchical structure of experiment doc-

uments, each experiment could be linked to its predecessor and successor nodes

and these could be immediately accessed by the activation of the appropriate links.

The most successful experiment(s) could be retrieved. Searches could be narrowed

by specifying one or more performance metrics and/or parameters.

Chapter 9. The Tuner's Workbench 	 189

Alternatively, the experiment structure could be directly queried. Users could

retrieve the experiment having the lowest or highest parameter or metric value of

interest; or they could retrieve a listing of values of a certain parameter or metric

over a range of tuning experiment records.

9.1.3 Sharing tuning knowledge

Chapter Five and Six demonstrate that tuners' documentation efforts are motiv-

ated by the need to communicate ideas and design decisions in a collaborative

work context. TWB should attempt to provide tuning documentation and train-

ing for less experienced tuners and a framework within which tuners can share

their tuning knowledge and experiences.

A case history document is an extension of the concept of the tuning experiment

document in that it represents a prototypical and interesting tuning problem made

available for other people to see. These problems may not need complete applic-

ation programs to be demonstrated but could instead be incorporated in small

experimental codes. The technique to test alternative solutions in small pieces of

code has already been identified in Chapter Five [Bel53]. The case history repos-

itory should be organised and accessed by the types of performance problems and

the types of parallel machines, programming environments and tools used. Once

a case history document has been retrieved, the tuning project could be reviewed

by examining its trace files with the appropriate tools.

The availability of tuning knowledge of this type can be extremely useful, not only

to others within a particular organisation, but to the parallel software development

community at large. In this way, tuners could benefit from others' experience and

save time and effort when faced with a similar tuning problem. The investigation

of tuning (Chapter Six) has already shown the advantages of an on-line tuning

repository. It is expected that such a system could improve the effectiveness of

informal knowledge dissemination and electronic mail technical assistance. As the

Chapter 9. The Tuner's Workbench 	 190

investigation of tuning in the small has shown, tuning knowledge is often organised

in the form of heuristics or cliches. A repository of such cliches based on a set of

case histories could help novice tuners who lack tuning strategies. Another positive

outcome of such an organisation of information relevant to tuning problems is

that the impact of cause/effect chasm identified in Chapter Four can be reduced

if tuners record cases of exceptional tuning problems for other tuners to consult.

Similar practices are already commonplace. For example, tuners routinely use

Internet news bulletin boards to seek out advice from others who have solved

similar problems.

9.2 Conclusions and future work

A specification of a tuning environment, TWB, has been proposed which demon-

strates how some of the considerations raised by the observational study of tuning

could be addressed. As was identified in Chapter Four, one of the major difficulties

in tuning stems from tuners performing tuning without having a correct model of

the system software or hardware parameters which can affect program perform-

ance (faulty assumption/model). As a result, experimentation is employed to try

to establish such models and relations among performance determining paramet-

ers. The repetitive nature of this experimentation has led to a number of problems

which were documented in Chapters Five and Six e.g., program versions prolif-

erate and become difficult to manage; tuners have to keep track of the changes

and tuning progress; and documentation and communication needs are increased

when tuning is performed in collaboration with others e.g., results and program

changes have to be communicated to colleagues. TWB should address some of the

above mentioned problems by providing support for:

• managing the large number of program versions that the repetition of tuning

produces,

Chapter 9. The Tuner's Workbench
	

191

• associating each unit tuning cycle with the concept of a tuning experiment

and accompanying it with documentation of the experiment hypothesis and

result i.e., the rationale for the performance determining changes and their

outcome,

• automating the experimentation process and correlating its results,

• accessing information about the design process of the parallel code e.g., the

reasons that lead to design decisions,

• sharing this information within group-based development projects and

• sharing tuning knowledge and experiences resulting from many projects with

other people within and across organisations.

Two issues were regarded as particularly important in the specification of TWB.

First, the system should not impede tuners' work practices. The requirement for

such a tool already exists as parallel programmers spend considerable effort and

time in devising techniques to document and manage the tuning process. The

system should facilitate some of the documentation and experimentation prac-

tices described by the investigation of tuning in Chapters Five and Six. Second,

the system should be designed to be independent of implementation details. The

storage of experiments could be implemented to be file system dependent. Altern-

atively, any Database Management System or any hypertext tool could be used to

store and organise experiment information. In the same way, any version control

software could be used to support management of tuning by-products. Finally,

tuners should be able to choose from a number of available visualisation tools to

use with their programs. In this way, TWB can integrate functionality for ad-

dressing both tuning in the small and tuning in the large: it can include a number

of performance visualisation tools which tuners can use to bridge the cause and

effect of poor performance (cause/effect chasm); it can provide support for tuning

Chapter 9. The Tuner's Workbench 	 192

documentation and management, thus helping tuners to establish correct models

of relations between performance determining parameters through efficient, con-

trolled and well documented experimentation; and finally, it can assist with tuning

knowledge dissemination.

The implementation of TWB should adopt the tool development model and pro-

cesses proposed in Chapter Four. Prospective users should be involved in de-

termining the design of the tool. Further observation of tuners' practices should

attempt to identify patterns of collaboration in managing and documenting tun-

ing in the context of large programming teams [150]. The technology to support

collaborative processes already exists. A number of systems have been proposed

which address issues such as the different kind of collaborations that may exist

within software development projects, for example, collaboration may be loose or

tight, within the group and/or among different groups [76,148]. Capturing the

rationale for design decisions has been investigated by many researchers [30,33,34,

111,106,110]. In [106], a system was described for providing rationale for main-

tenance by implementing a hierarchical annotation mechanism for managing the

changes to a piece of code of varying granularity. In [33,34], a hypertext tool

was proposed to capture design policies and discussions. Such a method is useful

as a means to capture organisational memory, but the system proposed was not

actually integrated with the actual artifacts. Richer and more flexible protocols

for capturing software development processes were presented in [10,87]. A closer

study of these environments combined with input from more observational studies

of tuning can be used as the basis for developing a tool to document the design

process along with the design artifact.

A possible extension of the concept of sharing one's tuning experiences with others

is the idea of using tuning knowledge to provide technical assistance to tuners. The

findings of the observation of the user support service, described in Chapter Six,

showed that a large number of user questions are relevant to the same issues to

the degree that performance experts could reuse some of the answers. Tuning

Chapter 9. The Tuner's Workbench
	

193

knowledge can be organised in a hierarchical way according to the categories of

problems, machines, languages and others 3 . A very efficient search mechanism

can be provided which can direct users to the advice suitable for their problem.

A successful example of Web-based technical assistance can be found in [83,?].

Certainly, there is need to examine how an environment such as TWB could be

used by tuners. Studies have shown that when new technology is implemented

and adopted without a concurrent examination of how processes and coordination

might change and evolve, it has little impact on enhancing the productivity of

the users [28]. TWB's design process should be iterative consisting of cycles of

evaluation and design phases.

3Frequently Asked Questions (FAQs) of various news bulletin boards are another

example of knowledge organisation.

Chapter 10

Conclusions

Despite the large number of tools described in the literature, the results of tool

use are disappointing. Users complain that tuning tools are hard to learn and

use and do not provide the information they really need. These problems can be

attributed to the fact that tuning tool design is often not informed about tuners

and their tasks. This work has conducted an investigation about tuners, their

tasks and their requirements of the tools they use currently.

In the absence of studies of parallel programmers, an initial investigation of tuning

resulted in the adoption of a framework for further studying how tuning is per-

formed. The framework distinguished two main aspects of the tuning task which

were studied further. The first aspect of tuning is relevant to cognitive issues and

the impact that available software and hardware tools have on the tuning process

(tuning in the small). The major difficulties that tuners face are pertinent to

having:

• to know a lot about the operation of the underlying software and hardware

"faulty assumption /model").

In tuning, a lot of knowledge about the specifics of the underlying machine

is required and the programmer has to know how a large number of low

level entities operate. There are many models of parallel programming and

194

Chapter 10. Conclusions 	 195

they often involve a large number of inter-related performance determining

parameters.

• to eliminate performance bottlenecks when the symptoms of the problems

are far away in context from what caused them ("cause/effect chasm").

It is very difficult for tuners to try to find in large volumes of performance

data and tuning information where performance is degraded in the program

and establish the reasons for performance bottlenecks.

• and to use immature system software or not fully configured machines ("in-

adequate tools" and "change")

Tuning is often performed when hardware and system software are still un-

stable. Porting the program to a new parallel machine is very common and

this introduces many more degrees of freedom in the search for bottlenecks.

Tuners informed this study with their requirements of tuning tools. These require-

ments were incorporated in a model for tuning tool development. The model is

concerned with assisting tuners with problems:

• that stem from the cause/effect chasm

Tools should provide reliable mechanisms to capture program behaviour and

meaningful visualisations of aspects of the program behaviour which can be

related to the source code. Abstraction and filtering mechanisms should be

adopted to enable tuners to control the level of detail in the search space

so as to locate easily the manifestation and the reason for a performance

problem.

• that arise from the faulty assumption/model

The role of tuning tools should shift from merely presenting performance

data to performing some of the diagnosis on behalf of the tuner and demon-

strating the relation of inter-related performance determining parameters.

Chapter 10. Conclusions
	

196

The tuning tool should provide training in the form of documentation or in

the form of exemplar codes whose behaviour can demonstrate the factors

that affect program behaviour.

Apart from the model, processes through which tool development should take place

were proposed. User participation in tool design is the fundamental principle

on which tool development should be based. User participation can occur at

two levels: first, it can ensure that tools can assist both the experienced and

the inexperienced tuners with their tasks; and second, it can provide tool design

with information to support the shift of role from presenting performance data to

providing performance diagnosis and tuning training.

VISPAT was designed with the help of local tuners to address the issues revealed

by the investigation of tuning in the small. It attempts to reduce the impact

of the cause/effect chasm by allowing tuners to relate performance data to the

source code and to reduce the volume of information by viewing the application

program as a hierarchy of phases. The design of VISPAT demonstrated the ad-

vantages of user participation in tool design for generating a repository of ideas

and requirements for a tool to support tuning in the small.

Performing tuning without a correct model of the performance determining para-

meters (faulty assumption/model) increases the experimentation needed to tune

program performance. The second aspect of tuning revealed by this investigation

is relevant to issues which arise from the repetitive nature of tuning (tuning in the

large) such as the need to document and manage tuning by-products and tuning

process and outcome (tuning rationale) often in a context of collaboration with

others. Further observational studies of tuning have shown that currently tuning

management is done in an ad-hoc way that can benefit from a system which can

assist tuners in organising the tuning process. Ethnographic techniques were used

for an investigation of tuners' work practices and were analysed to see the implica-

tions for the design of tuning management systems. A preliminary specification of

Chapter 10. Conclusions
	

197

a system (The Tuner's Workbench (TWB)) was proposed to support documenting

the design process of a parallel code by allowing tuners to record the reasons for

any design decisions and their outcome. By supporting integration with a number

of performance visualisation tools, TWB could address both tuning in the small

and tuning in the large:

• it could include a number of performance visualisation tools which tuners

could use to assist them with bridging the cause/effect chasm and with the

other sources of difficulties in tuning.

• it could provide support for tuning documentation and management.

Efficient, controlled and well documented experimentation can help tuners to

establish faster correct models of relations between performance determining

parameters and use this knowledge in future tuning projects or share it

within the context of the organisation where parallel program development

occurs.

• and it could assist with tuning knowledge dissemination.

The investigation of tuning has shown that tuning knowledge is often organ-

ised in the form of heuristics or cliches. A repository of such cliches based

on a set of case histories could help novice tuners who lack tuning strategies

by providing them with examples of correct models of how system software

and hardware operate and of the relations between performance determining

parameters. In this way, TWB could become effectively a tuning training

tool.

One of the most important requirements for such a tool is not to interfere with

the working practices of those who will use it, in other words to be cost-effective

where cost is taken to mean the effort the user will have to put in learning and

using the tool. What is considered to be ad-hoc documentation practices may be

Chapter 10. Conclusions 	 198

a very acceptable way of working for many tuners given the time constraints and

the difficulty of the task in hand. As Anderson says in [3], "Brokenness is in the

eye of the beholder. If you cannot be sure it is broken think twice before setting

out to mend it." For this reason, TWB should be designed to be integrated

with any tuning tool and without imposing any tuning strategy. At the same

time, it should be attempted to tie the system's functionalities with the tuner's

programming environment and work practices.

10.1 Future work

It is believed that this work has shed some light on the barriers which parallel

programmers face in their effort to tune their programs successfully and it is

hoped that the observations made will spur more systematic investigation:

• A number of programming models can be selected in order to study differ-

ences and similarities in the manifestation of difficulties stemming from the

cause/effect chasm and the faulty assumption /model problems.

• Ethnographic techniques could be employed to study more closely the impact

of "change" on cause/effect problems.

• Expert tuners could be observed while performing their tasks and changes

in the skills and tuning knowledge of novice tuners could be analysed over

time. The findings of this investigation could be used to create user models

which in turn could be used to drive the design of tuning tools.

• A more systematic investigation could also refine the model of tuning in the

large and expand it to cater especially for requirements that arise in large

multi-people development projects. Such an investigation would have to use

Chapter 10. Conclusions 	 199

ethnographic techniques and deal closely with a number of organisations

where parallel software development and tuning are performed.

• User participation and a refined model of tuning in the large could be used

to drive the design of TWB.

• TWB could be evaluated by local and non-local tuners and tuning case

histories could be contributed.

The storage and access of exceptional tuning case histories could be made

available for tuners to use as a repository of tuning knowledge and expertise.

Apart from helping tuners to eliminate the impact of the cause/effect chasm

such example cases could be studied further to reveal more aspects of tuning

in the small.

Appendix A

Tuning in the small

Appendix A contains a number of excerpts of discussions with parallel program de-

velopers. Parts of some of these excerpts are included in Chapter Four to support

the arguments presented there. The selection of these excerpts has been based on

their ability to convey briefly and effectively practices which are most representat-

ive of the ways parallel program developers work. Other excerpts included in this

appendix do not appear in the corresponding chapter. They repeat and support

the information given in the representative excerpts and are included here for the

benefit of the reader in case they can be used to drive further research on parallel

program development.

A.1 Difficulties of tuning

[Ae41] I suppose the number of variables. It is difficult to conduct con-
trolled experiments. Even things like the compiler version make a difference

having to know machine specifics, how a T31) is. 	Informant 45

Finding algorithmic methods to overcome causes of poor performance
such as load balancing and data distribution. 	 Informant 9

The domino effect of changes of parameters with respect to perform-
ance is quite challenging.

Informant 5

200

Appendix A. Tuning in the small
	

201

It is difficult to try to keep changes clean and portable. In my pro-
gram, I assumed that the shared variables were implemented by replication.
So, I assumed read operations were fast and write operations involved one
or more messages. As an aside, since the network used was an ethernet,
I also wanted to have different messages sent at different times to avoid
congestion. So, I tried to keep the number of write operations as small as
possible. On a point to point network or without replication, this should
be implemented differently. 	 Informant 6

Tuning is fairly easy with the proper tools. Another hard part is
figuring out exactly what gives the performance improvement when some
optimisations are performed. For example, when you rearrange basic blocks
at compile time based on some heuristics, performance improvement comes
from better cache locality (reduce cache misses) and from better branch
prediction. The hard part is figuring out exactly what percentage of im-
provement came from which change. Knowing where to fix and knowing the
solution for best performance are two separate issues. Knowing the solution
comes from experience and it can take one to many tunings. Informant 69

. .1 find difficult the question of tuning the program from a mac-
roscopic or microscopic perspective. That is, it is difficult for me to know
whether a global big change (algorithm restructuring) might be better than
making many minor changes. 	 Informant 41

The difficulty is to understand the way of thinking of the programmer
who wrote the program. 	 informant 7

The interactions of changes throughout a program can be a problem.
Particularly, if you want to work on vector codes. 	 Informant 11

Usually, we have enough time for tuning, but this time the hardware
became available very late, so the system was developed in one hardware
and will be used with another. 	 Informant 8

[Ae55] Parallel program optimisation is difficult; even with apprentice
you don't know where to look. Getting to optimise the serial program
can be hard enough because you have to know the things about the RISC
architecture that you don't want to know. I know them by reading the
BYTE and listening to colleagues. If your basis is an unoptimised program,
then your measurements of speedup will not be taken seriously by colleagues.

Informant 44

[Ae54] Tuning itself is kind of game, finding strategy, slowly progressing
inside a foreign wild programming world. More you know about the writer,
faster you will find your way. Indeed, good tools are the weapons you need
to survive. Informant 7

Appendix A. Tuning in the small
	

202

A.2 Cause/effect chasm

[Ae25] In the Maspar, you have two types of communication, one of them
is a global router and the other one is a . . . next neighbour communication;
because the processors are so small, this neighbour communication is nearly
as fast as a local memory access. But, on the other hand, if you go too far
by that neighbour communication, you worsen the performance and also
there's a chance that too many processors try to send a message through
the same route . . .so you have to know when to use the global router and
when to do next neighbour communication. There are a lot of degrees of
freedom, sometimes you change the algorithm in order to get performance
and you loose somewhere else. Informant 42

[Ae108] I used it initially, to check that B's perception of the problem was
actually correct. That we could see that there was a load balancing problem.
I mean, Apprentice may not be the ideal tool to investigate load balancing
because it sums up across all nodes. But you can see that a proportional
large amount of time is spent waiting to receive messages. That is basically
what happened. You could see that overall, fifty% of the time, was spent in
PVM receive or MPI receive and then by determining where the PVM was
happening and taking a lot of time, you could see that . . . you could guess
that this was a result of load imbalance. Informant 45

A.3 Faulty assumption/model

[Ae101} Meiko CS-TOOLS offers you all four but the meiko guys are now
actively discouraging the use of asynchronous messages because people just
don't understand; because if you use an asynchronous message, you have to
be able to guarantee that there will be a buffer waiting for it to the other
end. And that can require some kind of sophisticated parallel programming
to ensure that independently of the relative speeds of the processors on
which things are running is always going to be a buffer there. So generally
people screw up. Lock up the machine. Informant 67

[Ae12] Having to work with constantly changing machines . . . Regarding the
latest machines, there are certainly two things I am not familiar with. Some
years ago, I used to work with prof but for parallel codes you don't have
that and in terms of. . . and the latest architectures are RISC, which I am not
familiar with, for example, with vector architectures you know what to do,
you know with the inner loops and things. In terms of cache use, I am little
bit lost. The real problem was the data decomposition, the load balance
problem. You know, you cannot optimise the inner core algorithms. If at a
level prior to the core algorithm a process is waiting idle for other processes

Appendix A. Tuning in the small
	

DJJ

to finish, then we found out that that was where most of the time was held.
Because we did the data decomposition on a memory basis for each process,
we tried to save memory, in fact then we found that once we were modelling
computationally intensive parts of the problem where the bulk of the work
was, we were always waiting for these two or three processes to do most of
the updates, then the rest could continue. We did not suspect this because
we did not have an apriori knowledge of the problem, that the data was
irregular. We suspected that something is wrong because the transputer
has a number of flashing lights, showing when you are busy, when you are
communicating. Informant 47

[Ae20] The T3D's performance is not what it should be. We started trying
to understand what the problem is. We have understood more about the
architecture and IFS's performance on that system. Still we aren't getting
performance much higher. On that machine we are not going to get 15%
higher performance than it is now. Compiler unrolling should theoretically
help, but we 'ye got some data recently, which shows that it may in some
cases do harm. Due to the limited instruction cache on that machine. By
unrolling large loops, you may find that the code runs slower. It depends on
how aggressive the compiler is in unrolling. A large loop should not unroll
anyway. Because it turns not to be a benefit. Informant 50

[Ae38] On the C90, if the code is vectorised properly then you cannot do
much about performance. On cache machines, we have tried to reorganise
the data structures . . . it is much more complicated to get good performance
on the cache machines. The problem, mainly, is that it is too difficult
to optimise for RISC architectures when you have a code that is initially
written for a vector machine. So it is more basic the problem we have. The
code has been written for vector machines since 20 years ago and all the
data structures and the design of all the do layouts were optimised for the
C90 vector machine. Now, we are trying to run it on RISC architectures
and so this is where we spend most of the time. We have tried to optimise
it by rearranging the data structures and by introducing locality, but it
doesn't always work the way you believe it should work. It seems that it
is more a design problem, on the T31) than our design problem. Because
it runs quite well on other machines. We are at the level where it is very
difficult to optimise the code without having to rewrite everything and we
have only tried to rewrite subtrees and substructures and changing all the
loop in index order, things we wouldn't like to do for all the code and it
didn't really improve, on the T3D. Informant 52

[Ae4la] I mean, one of the problems was that B had an idea about what
the costs of the different parts of the model were. For example, we were
modelling the airplane which consists of air, metal and cfc and we had figures
of what the complexities were, but it turned out that these estimates were
completely invalid on the different architecture, because working with air
requires a lot of memory copying and working with cfc means that a lot of
floating point operations are needed. And T3D is very good at the flops.
While memory copying is expensive. Informant 45

Appendix A. Tuning in the small
	

204

[Ae21] The strategy for parallelisation we adopted wasn't the only one. But
the other options we had would make the code so complicated that it would
be unmaintainable, so we had to put up with less performance but with a
more maintainable code. Parallel programming is difficult anyway. So, I
tried to implement the simplest approach I could think of, to section data
in a regular manner. I didn't actually at that time envisage that things
could be so computationally heavy. In respect to the actual core code. And
the transputer has a number of flashing lights, showing when you are busy,
when you are communicating. So many processors were sitting idle. Because
experience with parallel programming is so little, most of the people have a
sequential background. And so if you get a non regular decomposition that
increases the design so much that it is not worth it. And that was were most
of the mistakes with the TLM code were made. For every design decision,
we asked what is easier to switch to this path or to the other path. We
took always the easiest option. The overhead of going another way was just
too much. Any problems with the code, the project leader was not there,
the learning curve to understand the code was too large. The other two
projects were developed in such a hurry, we were trying to parallelise them,
that performance optimisation was never a issue. We just got it operating
in parallel. Informant 47

[Ael] We started with a traditional task farm. The farmer maintained a grid
and the workers had to calculate some values, which were later added to the
grid. The workers would gather the results for a number of tasks and then
they would send everything back to the farmer. But it turned out that the
result phase was taking more than the farming and the calculation phase
because of the congestion at the farmer. So we thought that it would be nice
to do a combination of a regular domain decomposition and a task farm. So
the result solution was decomposed among the workers and because some of
the calculation at the borders required communication with the neighbours,
we had to exchange some data between the workers but still this reduced
the communication a lot. Informant 55

A.4 Inapplicable tools

[Ae21] is mentioned in section A.2

[Ae53] In my first serious attempt to program the Intel Delta, I tried using
a library routine for a global operation. It turns out that this machine has
no performance analysis tools. Which made it very difficult to see what
was taking all of the time. I, finally, arrived at the conclusion that it didn't
scale well. And I wrote a version that outperformed Intel's version by a
large factor. Had I been able to gather reliable profile information up front,
it would have prevented me from a lot of guessing over a period of maybe
two weeks. Informant 18

Appendix A. Tuning in the small
	

205

Paragraph+ is not flexible; you cannot define a set of processors that
you want to have performance data about. On the other hand, apprentice
gives you data only averaged over all processors. 	 Informant 51

Apprentice gives too much condensed information. 	Informant 47

We tried paragraph, but it was very difficult to use and contributed
nothing. Tools were too slow in dealing with megabyte files and they didn't
allow the analyst the freedom to scan the data freely both forward and
backwards and to easily relate different views of the data. 	Informant 15

[Ae90] I think the main thing was a sort of per process specific information,
as opposed to the sums given across all processors. This doesn't give a great
sense of load balancing. 	 - 	 Informant 45

[Ae89] For the other project we are doing now, we rely on another company
serfax to do the profiling of the code, simply because there is nothing avail-
able like, the parallel side of prof on the unix machines. It is something we
keep floating because I don't have the time, or the technology you know I
am going to write the best parallelisation and hand it over to them. Say
you are doing a profiling of your code written in Parmacs and it doesn't
add up to 100%, so you are loosing some information somewhere. But we
have got a tool like paragraph+ and I think in some ways it gives you too
much information, it is showing what is being going but in terms of where
the time is spent it is not clear where the time is spent in. Cray have a tool
that actually shows you where the time is spent, but it is cumulated over
all processors, so in some sense it is too much condensed information. As
what it would be the ideal solution I don't know except that I would like to
have a prof facility for every node in the system. Informant 47

[AelOO] We did try using Parasoft Express and PICL/Paragraph towards
the end of the project but they were very difficult to use and essentially
contributed nothing. 	 Informant 15

[Ae85] Apprentice always shows this global view, it shows statistics. You
have the total time spent in one subroutine, but you cannot see how much
time was spent in this subroutine over the processors. So you can't have a
histogram of this subroutine over all the processors to see where the time
is spent, that would be nice and also the communications; it would be nice
to have it in apprentice as well. Informant 51

[Ae78] If you think about doing a reduction operator on the Connection
Machine, then there is going to be some idle time on the processor. Now,
Prism at the moment doesn't bother to explain that. Prism shows the time
from the moment you start, till you finish the operation and it can apply
the idle time to the execution time of that instruction. Generally, you 'ye

Appendix A. Tuning in the small
	

206

got some sort of communication operation involving lots of processors. So
you think umm ... this is taking a long time and you want to know why
this is actually taking such a long time. And maybe it takes a lot of time
because you have got particularly inefficient communications pattern that
it doesn't map well on the hypercube and sequentialises somewhere. That's
usually the truth. And what you 'ye got to do is sort of fish around some
alternative ways to try to do that more quickly. One of the problems with
Prism is, that knowing how to make things go quicker, is still a bit of a
problem. Because you need to start develop quite a bit of understanding
of the actual execution on the machine rather than the semantics of the
program. I think that's a gap there that Prism still leaves. Informant 67

[Ae102] I could not interpret what apprentice was telling me; I needed better
observations and guidance. 	 Informant 54

[Ae84] I mean, apprentice gives information like the amount of time spent
loading and writing to memory. So you can use that info. But I suppose, I
was helped by the knowledge given in the course. I guess in the beginning,
when I started using it, I would not be able to suspect what the number of
memory accesses really meant. In order to use apprentice fully, you need to
be able understand what it is telling you. Informant 45

[Ae82] I 'ye seen these guys from Southampton running Paragraph. I 'ye
never seen them succeeding explaining how they managed to improve the
performance of their application on the basis of the communication patterns,
the gantt charts and the utilisation terms. Informant 65

Figure A—i: Communication display in Paragraph

[Ae79] This sort of notion of topology (figure A—i) scares me. Having done
quite a lot of teaching of parallel programming to people I came across a lot
of people who are obsessed with things being nearest neighbours because

Appendix A. Tuning in the small
	

207

they are really important for performance. Really really really important.
And I think that I really feel pathionately that there is so much for people
to take on board, in view of writing parallel programs just to get it right
functionally that the topology and the mappings are pure performance issues
that they should be stashed until to get them working. So I am very very
strongly against inheriting a view of machine topology definitely in the early
steps and possibly right the way through. Informant 67

[Ae83] We tried to use Tatoo but it was not good enough, it did not work
with traces from the target machine. 	 Informant 12

[Ae76] is presented in the beginning of this section.

[Ae88] I could tell the problems I had with the Meiko. I wanted to produce
a profile of the code, a very simple thing, you know I am not asking for a lot
of things. Just a profile on where the time is spent, I had one vector node so
I used prof, grpof and the . . . profiler. All failed, for three different reasons.
So what I did ? I could not get a profile on the CS-2. So I took the routines
I vectorised already on the CS-2 and I vectorised the same set on the C90.
And I produced the profile on that. So I could see what routines stood out as
being the ones I should look at next. But that's the problem. It is great to
have a utility, but it must be robust. Because if it fails for whatever reason,
it is of no use to you. And the users will never use it again. And profilers are
the most basic tools. You couldn't even consider them as tools necessarily.
They are basic system utilities. But all of them must work. But you come
across things like those failing or the compiler . . . maybe you can compile
95% of the routines, with the high optimisation on, but one routine gives
you wrong results, if you compile with the highest optimisation. How do
you find that one? Maybe on the Cray there is a facility to do that, but you
try by the old way by creating directories with optimised and unoptimised
objects, you move sets of objects into this and it takes an amount of time,
but it is something it could be automated, especially when it is not the only
routine that creates the problem but several. And maybe it is not that it is
a bug. Maybe it is just an optimisation issue that now your code becomes
insensitive to certain compiler optimisations. You have to understand this
as well. My experience is that computer industry is one that lacks formal

there is not real push for standards. You know manufacturers. You
have to look what has happened to message passing. The average user
just gets confused by how many message passing libraries there are. Why
are there so many? Why hasn't MPI been developed earlier? That is a
major thing. It takes time to develop new languages, new message passing
libraries. I think there should be a greater emphasis in computer industry,
say from a certain day all applications (future) should be written in MPI.
P\TM will be destroyed. With these environments, I think we reached a
situation in parallel computing, that the number of problems that we can
forsee with the usage of the environments have exploded. Because they
are very complex environments that we are working with. Vectorisation is
very much localised, rewriting the code from scratch in order to make it
vectorisable, where it wasn't before is a very complex process. What are

Appendix A. Tuning in the small
	

208

the applications that we can use? It is common phenomenon for example
on the Cray that people find that have often to puzzle themselves with a
peculiar bug in their code only to find that it is a compiler bug which caused
the problem. Informant 50

It isn't that bad. The Maspar tool sometimes had a bug so sometimes
the timing was pretty rubbish, but you could figure that out easily because
it was so far off the mark that you could understand it. 	Informant 42

[Ae99] EXPRESS has got a debugger, but it was completely useless at the
time. I tended to break Express and I used to take the machine down and
still I don't know why. 	 Informant 65

It was easier to use simple timing statements than to try and get the
performance tool to measure very specific regions of the code. Informant 3

[Ae97] You asked about slow down: This is 256x64 grid and it runs at 27
MFlops/s whereas without the tool (apprentice) it runs at 52 MFlops/s. It
runs at 2.7 secs and it runs now at 5.8 wall clock time. That is one of the
reasons I use it when I don't know where things are bad. For fine tuning I
don't really want to use it. Informant 44

[Ae107] When I was using the workstations, I used XPVM but I didn't try
to optimise the communications. I used to see who is communicating with
whom. Getting to run was great enough. XPVM was unreliable, so I used
to get an understanding of the code. informant 44

[Ae104] I built my own tool for a parallel database program. The company
was thinking of building a parallel machine to run programs like this, but
they made the mistake to use a functional language and it was bad because
they could not see where something was wrong or why it was going slowly.
So, my tool gave hundreds of different performance metrics about the pro-
cessors but we would not see where these metrics applied. Informant
59

[Ae103] My own tool gave the load balancing for a set of processors. And
the problem was that we could not relate it back to the source code. The
display was too slow for the rate of the changes at the load balance of the
application. Informant 65

[Ae106] Because we have Transim and Gecko here. The tools are geared to
how you can map data on processors and processes on processors. And it
shows communication levels within the system. And processor utilisation.
So maybe all the processors are busy all the time but still the program
doesn't have any speedup. You cannot simply put the question: Are all the
processors busy? Are all the links busy? While Gecko would say that if

Appendix A. Tuning in the small
	

209

everything is busy, everything is red, so everything is ok. But this doesn't
apply in the case of this simulator. Because there are many cases that the
simulator can be working really hard. Everything working red hard. But
the simulation doesn't progress. It progresses in very tiny steps. It is like
busy waiting times. Informant 43

The remaining excerpts in this section are not commented in Chapter Four.

[Ae80] This is the number of tasks done per processor or the number of
processes on each processor? The problem with the task is that is a tre-
mendously overloaded term. It means many things. I didn't understand
this graph at all. If this is just a number of instances of this task type
you've got a graphics worker or slave then that's a static measure that is
not going to change over time because you have told the system. If it is
maybe the number of tasks that the processor executed for example in the
task farming model . . .1 didn't understand these displays at all as general
models. Ithink that perhaps some of these displays are superfluous. I think
there is a real danger especially for a novice or a less experienced program-
mer to be mislead by which information to use to guide him for the work.
Certainly in the performance optimisation I think there are some real red
herrings like being obsessed with the .. topology is one of them I mentioned
several times. I think there is a bit of a danger. Informant 67

(Informant 67 was then shown the message queue display of Paragraph and
a communication map between sender and receiver nodes. (figure A-2, A-
3)) [Ae81] I don't recognise whether the messages are waiting to be received
or be sent. Maybe it's the number of outstanding communications for which
you have said "start" and you are waiting to complete. What affects these
communications? What prevents them completing? Well other processors
may not have been ready to receive them, ah . . . what affects that? At
that time they are doing compute or other things or there might be other
traffic. So while this is kind of important and eventually you are going to
hit some sort of limit, or you are gonna have to wait for that message to
complete, is really the idle time you are interested in. It's how much time am
I having to sit about waiting for outstanding messages to complete. And
while that might be related to the number of outstanding messages that
you have off going, again its a kind of, sort of, second level metric. I don't
think it' s actually something you can directly act on. It kind of suggests
a model where you have a processor with some sort of fan out through
which all messages are being pushed and you can imagine a battle going on
by the rate which this fan out absorbs the messages, and it's not entirely
clear to me how you would interpret that. I don't have a good feeling of
how this fits in with the other displays. And as I said.......And the
important thing is that this is making some very serious assumptions about
the message passing model. Because if you are only having a synchronous
message passing system and blocking messages so I have to wait for you to
receive then there is no need for this display. So that's getting very specific.

Appendix A. Tuning in the small
	

210

Au .. this notion of mapping of message lengths for sender and receiver
combinations, I have no idea of how I could use it. You see the length of the
message in most of the messaging systems is almost irrelevant. Because the
startup costs are sufficient enough to dominate the communication costs so
the issue is the number of messages rather than the size of messages. And
the usual optimization trick for reducing that we were talking about earlier
is to try to wrap as many messages into one as possible.. Informant 67

Figure A-2: Length of message queue per node

Communication Matrix ==

7

REcalVimic NODE

Figure A-3: Communication map

[Ae93] The problem with TMC timers is you have the cmps command giving
you some timing of the process and within Prism, Clvi elapsed, CM busy,
and so on CM busy is pretty straightforward to understand but CM elapsed
varies from one run to the other if you don't have a dedicated system and
you are interested in this timer since the time spent on the front end is not
included in CM busy. On MasPar it is pretty more easier; you either use
the MPPE profiler or even unix time command and you know where you
are. informant 13

[Ae95] I have tried to use the parasoft tools (ctool and xtool) for evaluating
communication performance and measuring time to complete certain phases

Appendix A. Tuning in the small
	

211

of the computation. I used these on the nCTJBE-2 and the iPSC/860 to
instrument the entire code by just setting some command line switches or
linking ot a library and letting the library dump the information to disk.
The parasoft tools then process this dump to provide a visual indication to
performance. I also used the library routines to instrument various parts
of of a code (marking the time that it got to different points in the code
by calling a library routine) In my opinion the data provided was never
very reliable, but showed me that I was spending too much time in global
communication (no surprise here). Informant 18

A.4.1 Tool requirements

Prints on PRISM, better prints on MPPE ... To print profiling in-
formation, without getting thousands of lines (only the meaningful ones); at
TMC people usually use CM timers they set themselves in the code! This
is not my idea of standard software. 	 Informant 18

Visualisation of user-defined traces would be nice

Informant 12

Profiler is probably a very important tool even though there is a
penalty associating in using it. But there are even nicer tools on the ksr
for example we also have a tool from BBN called profview. It is like gprof
and prof but now you can click on the summary line if you see a particular
routine it stands out and you can click on that line and this pops up the
window with the source. And it's got little graphic at the side showing how
much time has been spent on a per statement basis, of course you have to
recompile this routine for it to make sense. To have that detail. And you
probably have to compile with the debugging flag to get accurate data on
the statement level. Of course, you no longer have exactly the same profile
and it slows down your program. But you can see where the time is being
spent. 	 Informant 50

Where you can define user defined events, so now we can time say
how much time we spend in the grid point bits. So we can say what time
the different processes are spending in that part. Perhaps in the area of load
balance, where we have some special problems with the weather systems,
some weather systems are more expensive, than others so that gives you load
imbalance, between the processes and you would like to understand this load
imbalance. How different is the load balance? Can you do anything about
it? So in that area I would like a 2d picture of the processors and the
different time spent in different parts of the code something like the typical
temperature map. I would like more communications statistics than those
we get now . . . such as statistical variational like minimums and maximums.
Because if you are running your code on 512 processors how are you going

Appendix A. Tuning in the small
	

212

to represent these ? Make tools like paragraph more dynamic for example
to be able to specify a certain amount of processors. Paragraph is very
static in a way. To change to another subset of the processors dynamically.
It could be nice if you could say now I want to look more specifically at

zoom in in a way. Whereas now you have to stop and also you have to
it has to be flexible. Now you have to stop and sometimes it doesn't

stop, . ..where you want to stop it. It would be nicer if you could rewind
and change scales and things like that. When you have 512 processors you
don't want to look at 512 processors. You would like to see a certain subset
of them. And usually the subset would be the outliers of some behaviour.
Like which processors didn't behave as the rest. If you could combine it
with something like a profiler or if you have a very slow process you would
want to look at that process. Why is it that slow? It would be a nice thing
to have it and you can do it on some systems. You can do it on Convex and
the T31). It is nice to have the global view in the beginning to see where
you are spending your time using the profile but when you come to see that
you want to know the load imbalance, the time spent in communication
is also included in the load imbalance. Because all the processors they
come into the communication routine and then they wait until all the other
processors are finished with the calculation so they are waiting, they send
out some data and they stop and they receive. So you see all the time spent
waiting for the other processors inside the communication. And you can't
use apprentice for that, otherwise I could say that the concept of apprentice
is quite nice you have this hierarchical presentation, you can go and see
the subroutines. And you can either have the subtree or you can only have
the subroutines. And it is a nice context to work with. Making the tools
reliable and able to work with all sort of problems I guess this is something
we should in private companies. where better quality control can be done.
But it seems that nobody understands that most of the codes in the real
world are big codes. So when you make your tools you have to consider
that My requirements are simple and modest and most of the vendors can't
give me a debugger a dbx to be able to work on more that one processors.
You can do that in totalview I guess. I should try that. Informant 51

[Ae70] Synchronisation, I think, is actually more important than load bal-
ance. Processes are waiting to get messages and don't do any actual work.
I guess you can see load imbalance, when you 'ye got excessive synchron-
isation. To get rid off the synchronisation you have to look at the sort of
control structure which is more difficult you have to relate the load imbal-
ance to a control structure. The problem you have with load imbalance
and measuring load imbalance is relating to it to actual sequences of in-
structions. So you ask yourself why a particular communication isn't being
received. I mean we 'ye got statistics you can even work out what is it that
you are waiting for. Unless you 'ye got a good understanding of what is
going on with your code. So you need at some point to make a connection
to the actual code. I 'ye never seen that done quite successfully. You need
trace events. So you need to be able to say: You are running a debugger
thing and the monitor system would tell you are waiting an awfully long
time for this message. I 'ye never seen a debugger that would actually trace

Appendix A. Tuning in the small
	

213

you back to the sender of that message and it will sort, of wind the thing
back to the point at which this message was sent. How come I was waiting
for so long to send this message you see what I mean. 	Informant 65

You can only look at profiling data after the code has run completely.
It would be nice to have profiling data for an incomplete code. At a break
point to have profiling info.

Informant 14

I would like better suggestions on how to improve performance. And
also the tool should give quickly accurate profiling info.

Informant 41

I would like graphs to show statistics of my program because cur-
rently the statistics are presented in tables.

Informant 43

[Ae94] To print profiling information not getting thousands of lines (only
the meaningful ones). At TMC people usually use CM timers they set
themselves in their code. This is not my conception of standard software!

Informant 13

A.4.2 Case study I: tool evaluation

[Ae112] ... So you have to have a barrier. This is interesting . .MPltime is
spending relatively a lot of time in a barrier. MPltime is one of the control
routines. That is something I am missing from apprentice. I would like to
tell it show me the routine MPltime (He clicks many times on the name of
the routine to show what he would like to be able to do) because it is not
always trivial to find your routines. Informant 44

[Ae114] Trace based tools like Paragraph tend to be useful only for relative
number of processors. I think we have used Paragraph up to 60 processors
only for a subset of the scaled down version of the code ... and in a limited
way whereas you would like to use it to its full extent. And you can't. On
64 processors we ran our T32 version and we ran out of disk space for the
trace file. All these trace files, I created here, are about 2Mb in size and this
is only a small version and a limited problem and only 16 processors. And
it explodes, if you increase the number of processors but the size becomes
a real issue; this is a major limitation here. With this tool you can select
your processors but I mean you still create a full trace. Informant 53

Appendix A. Tuning in the small
	

214

[Ae117] You should be able to select things that give trace. Because some-
times you are not interested in communication or you would not like to
have everything. It would be helpful to be able to control the part of the
code that gets instrumented. So the way it is now you either instrument
everything or you don't. And the only exception are these user defined
events. But, for example, I would like to focus on one transposition at the
top time, in one particular timestep, and then simply, I would like to say at
the beginning of this section of the code, now, I want to instrument. Which
could be of help since I could work with a small section of the code.

Informant 53

[Ae116] Yeah . . . So we suggested to replace this one with some easier and
more comprehensible displays, like you see event number a started at this
time and the last processor finished at this time. And have a distribution of
these events over processors. Which would be very useful in load balancing
investigation. Which you . . . currently is not easily available . . . you see the
load imbalance in this time displays like gantt charts and you can look at it
at one time step and you get a distribution of the different execution times
of these events on different processors at this time step. But this is only
part of the thing because it could change over the execution and you would
also be interested in the statistics over the whole run. As how it performed.
It could be accidental the times you got from one time step. It may take
twice as long on this processor than on others. So you would be interested
in statistics. Informant 53

(He invoked the statistics display.) [Ae125] This is the statistics. And the
question is do we use it? Not really. And it might be useful but I mean
these are things we have checked in a way before. Well it might be useful as
a reassurance but it is nothing that you need really. Because you have done
these calculations before hand. When you design your communications.
How big a buffer need be, what are the

[Ae123] A . . . yes this is another bug the displays don't get refreshed. And
it is very disappointing because more or less the same problems that exist
in the public version continue to exist here. Because they haven't solved the
underlying problems. Also the refresh here is maybe an IBM problem. We
use IBM workstations and Intel thinks that there may be a problem with
that. I think IBM workstations need special memory and special software
for this refresh. And this isn't a default in IBM systems. I haven't used
Paragraph on SGI. But I think they claim that they have solved it. The
last time I spoke to people in PALLAS they think that now is only an
IBM problem. Which is simple I suppose because we are using only IBM
workstations. and we can't test it. We can't prove it." The tuner experiences
a tool crash trying to invoke the statistics display. Informant 53

[Ae124] The things I mostly used are this colour scan and the feymman
display. You see for demo purposes this is great. You see this is another

Appendix A. Tuning in the small
	

215

problem The scalings are useless. Usually you have messages that are
of a little space here and you have the scaling I don't know how they get
these scalings. I mean these displays are nice to look at you know. And they
make a good demo. Which is also an important use of these tools. Because
it makes sense for people not used to the idea of parallel programming more
understandable what is happening . By giving a presentation and saying
that this process is communicating and here you get some animation on
how the communication really forms and these things so this is also a useful
aspect in some way. But it is not so useful for you who are working on it.
Also I think the load to use them would be quite high because in a sense
you have to relate these displays together." Second tuner: "Yes yes this is
true. I mean the animation here is far too fast if you have not a good idea
of what is going on. ...To comprehend.

(The tuner invokes the communication animation display). [Ae126] Well
this is the most representative from all that I showed you so far. My personal
view is that it is of no use at all. These are indispensable if you want to
explain to somebody what is going on. Even if you know. You know it is
encouraging. You should use it anyway to confirm that everything is ok
that you think it should be. Well I mean it is some kind of reassurance.
Lars is quite happy to look at things. Once in a while. Because I mean he
really knows what is going on there. But it gives reassurance the fact that
its actually happening. like you expected to. And this is also important.
and in PPPE there is some body from ESA a company developing the
crash code and he says that the best use he can make from such tools is in
demonstrating for customers. Because these people don't know about hte
details of these programs. and it is hard for them to understand what is
going on. Which is not the intended use of the tool sin the first place. Well
I think it is a lot. What displays you prefer it is up to your personal taste.
in a way because there is so much redundant information. What I like is
the spacetime display. and these gantt charts. Informant 53

I think these tools would be really widely used if they weren't so
many of them. If there was some acceptance that this is the tool to use
right? The manufacturers would support them and if they were robust they
could go along the way and solve the problem.

You saw this thing today as well. If the tool is not robust it is
not going to be used. You know there should be some industrial strength
applications to be used with these tools for quality assurance. After this
small codes will be run really with no problem. I think people use these tools
when they are desperate. You know if the people, having a big problem,
try to use a tool and during the learning curve the tool crashed then that
is it. They are never going to use it again. It is a big issue.

Informant 50

[Ae119] These tools are useful when you don't know everything about the
code. And you don't know exactly what communication patterns are taking

Appendix A. Tuning in the small
	

216

place . . . that somebody else wrote you know. Some other module, and you
are trying to understand why it doesn't scale to a 1000 processors from 500.
What is the bottleneck. You want to know what do you have to do to make
it scale? You don't want to use the performance tool during the production
runs but you should have a quick way to turn on instrumentation when you
want it.

Informant 50

[Ae118] At this scale now, you can hardly see what's going on here ... You
can zoom in, but it is not very user friendly. You can zoom in, you can
configure and . . . now, here in this tool you have a very difficult way of
zooming in. What you essentially want to do is something like . . . click here
and . . . and mark this time and this time. And it should then be loaded
up to the full scale and . . But here, you specify your start time and the
end time, and the time unit and these all control what is going on. So it
becomes a bit more complicated.

See? It should . . . there is a bug obviously. It didn't start so . . .1
as you can see here . . . ok Here, no, this was probably because I

didn't have the right environment set up for this tool. One difficulty with
this tool is the way you can control it. (laughters) It can (he is trying to
make the tool display events for a particular period of the whole time i.e to
zoom in time)... but let's assume that we want to focus now on one of these
transpositions here and we can get some info about the time of the start
and stop time and then I can set it in this configure menu say stop time is

and start time is and then we want to increase the scale like that.
Now it simulates forward in time until it gets to this start time. (The tool
replayed the trace file while without presenting anything until the execution
time of the events were equal to the start time set by the user. All this time
the tool's windows did not display any information.)

It would also be nice to go backward in time. Which it can't also
do. A lot of things need to be improved in this particular tool. It is also,
I understand it is not so easy to manage the What you really want
to do is not to mess with these strange time units and you want simply
information about how long the run is, and then say I want to go to this
time and also it has a too complicated way to control the simulation speed.
You have these buttons here but the simulation speed also depends on the
choice of these smoothing intervals or stepping command and on all the
other things. So it is a more trial and error approach to get to something
satisfying and I think it could be a bit more straightforward.

But it is not working obviously. I don't know why. And this is a
commercial tool. This is what Intel gives you if you buy a Paragon or what
you can buy from Pallas. (Trying to do it again.) But the way it works is
that it starts reading this trace file and does all the things. So the proper
way to do that is to close these windows, and so that the program thinks
that it has nothing to do on the displays, and then only open these windows

Appendix A. Tuning in the small
	

217

shortly before you go to the start time. But this is not they way you want
it to work is it?

[Ae113] You tend to use these tools as a debugging tool and it doesn't help
you if the program doesn't complete. 	 Informant 53

A.5 Change

[Be628] is presented in Appendix B.

[Ae15] A bug in CMAX was detected preventing vectorisation of certain
reduction loops. Temporaries were inserted to allow vectorisation of these
loops, and the bug has been fixed in CMAX 1.0. 6 CMAX-NODEPENDENCE
directives were inserted to allow vectorisation of 6 dependence-free loops
that CMAX thought contained dependences. CMAX 1.0 vectorises the
loops without the directives At this point, when we executed ARPS on a
problem of size 35x35x35 on a 32 processor CM-5, the code took 9.9 seconds
per iteration of a simulated 6 second time step. The data distribution was
to parallelise along the three spatial dimensions, but not along the time
dimension. This distribution was determined by directives in the input
program, as described above. CMAX obeys user directives, but in other
cases it is not sophisticated enough to optimise the data layout. The serial
time dimension of length 3 (past, present, future) was the rightmost di-
mension. Unfortunately, the current version of CM Fortran, CMF 2.1bl,
is more efficient when non-parallelised dimensions are gathered at the left.
We modified our makefile to call a CMAX utility tool to automatically per-
mute the arrays in ARPS, moving the time dimension to be leftmost. This
reduced the per iteration time to 4.9 second per iteration. ARPS had been
performing a nearest neighbour computation in one part of the code, which
CMAX translated into an expression containing a number of EOSHIFTs
(End Off Shift). Unfortunately, the latest version of CSHIFT (Circular
Shift) in the CM Fortran run time library is currently more optimized than
EOSHIFT. We modified the Fortran 77 code to perform a circular shift, but
made this code conditionally compile only for the CM, since it could slow
down execution on other platforms. We switched to the latest version of
the CM Fortran run time library (which contained the fast CSHIFT) and
the iteration execution time dropped to 4.0 seconds per iteration. Next, we
switched to the latest version of the CM Fortran compiler itself, to try out
the improvements made to its optimiser. We gained about 5% from this
change. We were surprised that the impact of the new compiler's improved
optimiser was so small. We investigated and discovered an explanation:
As mentioned earlier, high level array operations in ARPS (such as differ-
encing) are performed by separate subroutines, each of which loops over
entire arrays. CMAX is able to vectorise the loops in each subroutine, and
CM Fortran then implements the vectorised loops. However, CM Fortran

Appendix A. Tuning in the small
	

218

is unable to fuse the loops between different subroutines, since it does not
operate interprocedu rally. To overcome this problem, we implemented a
simple tool that looked for directives of the form "C-INLINE function from
file" and performed the requested subroutine miming. We added 15 INLINE
directives to the program (placing them based on our profiling results) and
recompiled. This improved execution speed by 12%. Another problem that
profiling pointed out was MAX/MINLOC handling. We found that 3%
of overall execution time was being wasted in a line that looked for the
location of minimum and maximum values in an array section; CMAX cor-
rectly translated these lines to perform MINLOC and MAXLOC on the
array section. However, the CM Fortran compiler currently has a deficiency
that causes it to perform communication to redistribute the array section
across all processors before performing the MINLOC/MAXLOC. The array
section happened to contain most of the array, only leaving out a band 1
element wide along certain edges. We inserted Fortran 77 code to mask
out this band by inserting large positive or negative numbers, respectively,
and then performed MINLOC and MAXLOC on the whole (masked) ar-
ray. As with the CSHIFT change, this change is conditionalized to only
compile for the CM, since it is a pessimization on most platforms. The
MAXLOC/MINLOC line executed each time the status of a run is printed
out, and the frequency of status reports is controlled by the input file, so
this optimization turned out not to be too important for production runs
which do not need to print out status reports after every iteration. The
final change we made was to perform all computations in double precision
rather than single precision. Double precision uses twice as much memory,
and thus reduces the largest solvable problem (and the vector length) for a
fixed size memory by a factor of two, but switching to double precision still
speeded the run up by 15%. The reason is that the CM-5 memory system
is optimized for 64-bit operands, which are the standard in the scientific
computing community.

Informant 17

[Ae86] You know of Vienna Fortran. It is a very complex system, but it is
still a university product in the way that it can't handle real codes, we have
some problems of using it with more than 2000 lines code. And we have
five hundred subroutines. It is not something that you get academic credit
from. Maybe designing tools, but not implementing robust tools. There is
a big gap between a tool that is developed at a university and something
that can be used by us. And that is understandable . When you are at the
university you want to make new developments.

Informant 51

[Aell] For an extremely fine grained application such as the active chart
parsing, it is impossible to have any speedup. Many tricks have to be
applied to get performance as good as possible. During this stage many
problems concerning Orca and Amoeba were uncovered (mainly bugs and

Appendix A. Tuning in the small
	

219

optimisation problems of the Orca implementation). So I avoided using
clean high level but extremely expensive Orca constructs. I used a profiler
to profile the sequential version of the program and discover what were the
expensive Orca statements. Informant 46

[Ae22] The parallel version of the program was slower than the serial Orca
version for the same test case. As explained this was due to the extremely
fine grained nature of the application. First of all, the Orca compiler trans-
lates the Orca code to ANSI C and adds the calls to the Orca run-time
system. It was the ANSI C serial version which was profiled. Using the
profiling information we discovered that Orca does a lot of mallocs and frees
which take up a lot of time. Someone in the group found out that this could
be implemented more efficiently (which was actually done). Furthermore,
we discovered just by trial and error that using the Orca Object construct
(comparable with a Mod ula-2 MODULE) was very slow. We used an Ob-
ject to implement an ADT and then we implemented in the "Modula-2"
like way (using Orca's Module construct) showed that the "Modula-2" was
much faster than the Object construct. (This can be partly explained by the
fact that Objects are atomic entities and that its operations are executed
individually (i.e. all operations on an object are serialized). I didn't use
timing functions to time parts of the code. Just the execution time of the
program to find the solution. The profiler could not be used for the parallel
version. As explained above, mainly the Object construct. Furthermore
the GRAPH construct (comparable with POINTERS in Modula-2) caused
a great deal of pain. As said before, where possible I changed the Object
implementation in a modula-2 like implementation (i.e using no operations)
and sometimes letting the user directly access the data structures of the
ADT. Seen from a software engineering point of view this was a big NO,
but hey it was faster.

Informant 46

[Ae48] The Maspar tools provided most of the relevant information. On
KSR, the tools are somehow too cryptic, they did not really give all the
information, they showed that you had a lot of cache misses, but they
would not really say in which statements.

Informant 42

[Ae17] Recently, we took the last three months to port IFS. Which has
already been running on the Meiko, but what he had to do is to tune it
for the vector node. And we tuned it for the vector node and we found
that there were certain things that run very badly. The compiler wouldn't
vectorise certain things. So we did a certain transformation on the source
code so it did vectorise. Maybe the loops were too big, or there could be
if statements in the loops which don't vectorise so one has to rewrite these
things. These are the techniques that we do use. In fact, this example that
we used here, is a technique that it was used over 10 years ago. And so the

Appendix A. Tuning in the small
	

220

Meiko is maybe 10 years back in terms of the sophistication of its vectorising
compiler. If constructs vectorise on the Cray, the state of the art vectorisers
should do exactly the same. Whatever the architecture it is running on. As
only a single vector node was available on the CS-2, it was only possible to
test the IFS model at the T211,19 resolution, which is two orders of mag-
nitude smaller than the current production T2131,31 resolution problem.
While it was clear that an increase in resolution would improve the Mfiop/s
performance it has not been possible to quantify the improvement. To con-
sider optimal performance of the IFS model on the Meiko CS-2 one has to
investigate the performance on both the Scalar and Vector PEs independ-
ently. This was not done as it was felt that optimal performance should
come from the Vector Pes whose 64 bit peak performance is rated at 200
Mfiops per node as compared with Scalar PEs, which are peak rated at 40
MFlops. In addition, the IFS model had a history of performing efficiently
on vector processor systems so the expectation was that it should do like-
wise on the CS-2. The approach to optimise the IFS model for the Meiko
CS-2 was to use the vectorisation facilities of the pgf77 (Portland Group
Fortran 77) compiler. An initial test to use the -Mvect compiler vectorisa-
tion option for all the 650 routines unfortunately produced wrong results.
This was not surprising given the size and the complexity of the ITS code.
The approach was therefore modified to vectorise routines, one or a few at
a time, checking for both correct results and successful vectorisation. In
total, about one fifth of the routines were vectorised. Further vectorisation
was deferred until the availability of a reliable profiling tool would enable
vectorisation to focus first on significant time consuming routines. Those
loops which could not vectorise had to be manually transformed. A loop
would not vectorise when the VPu program would be too large to fit in the
mVP instruction buffer. Loops containing if then else statements were not
able to get vectorised as well. Certain intrinsics were unvectorisable. Unix
utilities, such as prof, yprof and Portland Group utility pgprof, all failed to
produce a profile for the ITS (these problems were reported to Meiko). The
less satisfactory was to produce a profile on the Cray C90 and use this to
direct the order in which routines were vectorised. Clearly it made sense
to vectorise the most time consuming routines first and not to waste time
with routines which contributed little to the wall time.

Informant 50 and Informant 58

A.6 Training in tuning

[Ae31] You are working for a manufacturer. If you have read the manual
you may have to give a performance optimisation talk.

Informant 50

[Ae33] The best courses are the ones given by vendors.

Appendix A. Tuning in the small
	

221

Informant 51

[Ae32] Being in a small porting group as above, we often discussed tech-
niques among ourselves. For example, I developed the twin debugging tech-
nique that I mentioned, so I presented a seminar on it to our group. Also,
every software package we worked on was fully reported. With reasons and
source code changes and we could read what-had been done with other sim-
ilar software. There is ultimately no substitute for native cunning. I have,
for example, encapsulated the general principles of optimisation in a parallel
environment that everyone should know into an one hour seminar which I
give in an introductory CM-5 course. I usually use one of the participants
programs and I offer approaches which may be tried to optimise. Unfor-
tunately, time constraints mean that people cannot try the optimisations
there and then. Informant 1

[Ce503] C rnp 21/3/95
C rnp removed if statement from do loop
C rnp modified do loop order
C rnp halved work done in do loop and added transpose copy

Informant 40

Appendix B

Tuning in the large

Appendix B contains a number of excerpts of discussions with parallel program

developers and their tuning notes. Parts of some of these excerpts are included

in Chapter Five to support the arguments presented there. The selection of these

excerpts has been based on their ability to convey briefly and effectively practices

which are most representative of the ways parallel program developers work. Other

excerpts included in this appendix do not appear in the corresponding chapter.

They repeat and support the information given in the representative excerpts and

are included here for the benefit of the reader in case they can be used to drive

further research on parallel program development.

B.1 Problem solving

I divided the task in logical sections and attacked each one in turn.

Informant 49

I build a version and tune it, build a version and tune it. We try
different algorithmic solutions to the problem.

Informant 4

222

Appendix B. Tuning in the large
	

223

[BelOO] I would see that the problem is really a problem. And then worry
about what caused it. 	 Informant S

I changed the communication harness and then it ran faster.

Informant 16

I use print statements and comment old ones out.

Informant 39

[Be142] I would try to reduce the communications.

Informant 13

[Be26] Problem size is always important in a parallel run. Some very large
runs will look really bad on one or two processors, thus making the runs on
a larger number of processors look very good. 	 Informant 19

[Be13] During the design phase, the bottlenecks were identified (mainly
due to previous experiences with previous systems). Since the performance
of the hardware was known the system was designed in such a specific
way which should hopefully guarantee the performance required. In our
system the problem is usually the communication, not the performance of
the individual processor. Thus, we have a small code part measuring at a
transputer link how much time the processor waits until a sending/receiving
actually takes place. This gives us a clue as to where to change the code to
use the links more efficiently.

Informant 8

[Be129] I would address the most costly statements.

Informants 41, 44, 45

[Be133] So, maybe somebody would tell you or you could know that the
program should run with a certain Mflop performance. Or, it should run
with a certain elapsed time and you run it on your new machine and it runs
slowly. Maybe twice as slow as what was expected. So, it is really that
feeling that certain codes should be better than they are. So, you do the
obvious thing. You start by running the profiler and you say is there any
routine that it stands out as being abnormal? Typically, you know what
we call architectural bottlenecks. Something that runs well on a vector
machine may nor run well on a RISC machine. And you have to do things
slightly different. One of my early experiences on a RISC machine was to
code a routine which on the KSR was running at 20 Mfiops/s out of a peak

Appendix B. Tuning in the large
	

224

of 40 and we knew, it should be much higher so we rewrote that particular
routine, it became very large, but it ran at 35 Mfiops/s. You know real
peak, because we understood the architecture, we knew what the compiler
could do and we just rewrote it. No case is like any other one. They are all
different but you build up experience and you understand where problems
arrive. Informant 50

I look at the profiler and start from the most time consuming
routines. It really comes down to lots of experience. I use a profiler which
gives an indication of the important routines and then I start on them and
then hopefully you can find something to do there that helps you in increas-
ing performance.

Informant 42

You see whether a routine stands out and you click on that and see
whether it has any statements that could be fixed.

Informant 50

I address the most costly module first and try to tune it. Rearrange
software structure to avoid unnecessary computation and communication.

Informant 12

I would track down the big bottlenecks and try to rewrite these
lines. 	 Informants 14, 18

[Be142] was presented in the beginning of this section.

[Be144] I would like to see how much the program is computing and how
much it is communicating, and also to see the most expensive routines in my
program. First, I would try to see if there was something in my algorithm
that was holding the program. Informant 62

In terms of optimising for the Cray it is possible another week's
time and it could be indefinite, 	 informant 45

See where the bottlenecks are and try to achieve the same results
with less costly means. 	 informant I

[Be1631 I would profile the sequential code to see what improvements should
be made in the parallel version. The first thing I would like to see is the
average number of messages sent by each process. If the averages are dif-
ferent significantly I got the internals of my distribution wrong. The code
complexity is such that I don't have any strategy, the load, for example, is
different in every run. Informant 61

	

Appendix B. Tuning in the large
	 225

[Be140] I optimise costly statements or change the algorithm to get a dif-
ferent method of solution.

Informant 40

[Be628] is presented later on in section B.3

[Be134] One of the main points that became apparent in the tuning course
was that optimisations are not necessarily additive or monotonic. That you
might try one thing and actually it decreases the performance. And then
you try something else and you discover that the first thing you did was
right. And you cannot do it very systematically if you like. So it is an ad
hoc search. But say it is first hierarchical and then it is trial and error. I
suppose you do come with this intention but the tool (apprentice) reinforces
that. I mean because of the way it presents the info. So it is hierarchical. I
ran apprentice after each change . . . to see what the effect of various things
were, but then I did it more systematically and I made more extensive
changes, as I gained more confidence. The frequency decreased if you like,
initially I made a lot of small changes and then, when I understood what the
problem was actually, I made more extensive changes. Recently, I stopped
using apprentice and I used time calls, possibly, now that I finished the
load balancing and the tuning I may go back to apprentice to see at a high
level how much the original version without the load balancing varies from
the current one. Because the access to the T31) is limited, it motivated
us against the idea of changing a lost of small things and see what was
happening as quickly as possible. Perhaps, that was one of the reasons,
that the frequency of using apprentice decreased, because I realised that it
is not possible, or appropriate. Informant 45

B.1.1 Experimentation techniques

[Be26] was presented in the previous section.

[Be139] I do a coarse profiling of the application to see which parts are
the most expensive ones. And then, I look at the load balance, so at that
stage you are more interested in specific detailed characteristics, say, which
particular parts of the routine are the most costly ones and they are costly
because of problems with the load balance or with the general communica-
tions. Or whatever has caused that really and then you are going to figure
where in your program was caused this and what has caused it. Was it
the data or the algorithm. So you are actually tuning load balance against
communication, you would be actually tuning some other parameter and
that would have an effect . . . to the overall characteristics. That's obviously
the one model that comes in mind, I am sure there are other models where
that wouldn't be appropriate. Yeah, you could imagine different processes
doing completely different work in which case the actual size of the task is
undefined you certainly can't determine it beforehand and . . .so your work
is actually determining how tasks vary, how tasks are characterised in terms

Appendix B. Tuning in the large
	

226

of how long they can take, how many they are, what is the typical compu-
tation time of a task. Characterise one task in terms of its communications
and its computation and the distribution of tasks within the application
or within . . . how that varies over time, all these parameters can have an
effect and the actual question is how you actually go about tuning these,
all these divert things are very problem dependent as far as I can see. In
many ways, you will need actually to have complete information about the
profile or the task balance or whatever in your problem and therefore you
would make certain assumptions that you will then try to investigate and
you can either go about investigating in more detail the characteristics of
your problem or you can try a strategy whereby yEw attempt to address
one part of the problem, so you can address the load balance in isolation
from the communication cost and try to observe the effect of the other, if
you can actually measure it exactly and measure it correctly. So, in many
ways you are not actually looking for the most optimal solution. It would
be nice if you could get the optimal solution to your problem in terms of
load balance and communication cost etc.. But in general that wouldn't
happen, and you look at . . . you identify a problem and you address that
problem and along the way you uncover other problems, so . . . by addressing
a problem like load imbalance, you would discover that the different load
balance techniques would have a communication cost associated with them.
And they may have other costs associated with them as well.

Informant 66

[Be141] I will start by looking at the computation/communication ratio and
I would try to increase it by minimising the number of messages sent and the
volume of the messages sent. Or, you make a hypothesis that my program
is going slowly because of this . . . and you try to get rid of this and see if
your hypothesis is true. You also predict which changes are going to work
well together because you cannot try everything. Informant 55

I would like to see Which processors are actually working all the
time and which ones are idle waiting for others to finish. I would like to see
whether all the processors have to communicate with distant processors on
the CM and I would try to fix this. I would try to fix the worst statements
first. 	 Informant 64

I look at the workload of the processors and then I try to redistribute
the tasks if the tool shows me something which is not what I expected.

Informant 58

So the strategy is to start from a high level problem, see the time
line diagram (perhaps a gantt chart utilisation diagram) and then see which
processes are better than others and then you try to see what is happening
to individual messages so I guess you zoom in then. And at that point you
could also be helped by a statement profile. 	 Informant 59

Appendix B. Tuning in the large
	 227

It would be useful to be able to refer that to ... you have some sort
of representation of where processes have been idle ... to refer that to the
source code to find out if there are particular regions of the application that
are causing problems. Well, you could say that it is always that particular
region that the process always seems to be idle. That, given some knowledge
of how synchronisation is done, you can decide, you might be able to decide
whether it is actually necessary for the process to be idle, if it is waiting
for some synchronisation, that it doesn't in fact need, before it can carry
on doing some useful work. And maybe there is some part of useful work
to be done at that point.

Informant 68

[Be139] is presented in the beginning of this section.

[Be152] I parallelise small chunks of code and then I look at the profile of
those and the nice thing about these tools is that they are sorted by their
sizes from the top. Then I look at ... some portions must take a lot of time
obviously because they are the work, and I try to look at those that shouldn't
take that much time. For example, when you have a big group you expect
that communication will take a large time whereas a short communication
would be abnormal to take a lot of time. In order to see why something
is taking so much time, I am trying it on half as many processors and you
know that something is really going wrong if it still takes a lot of time. I
mean tuning is what you do at the end.

Informant 42

[Be151] I look at the speedup and if things are not good I look at the data
distribution. 	 Informant 18

It depends a bit. If you are doing an inner product where the number
of processors is an important parameter, . . . yes, you will run on different
numbers of processors. If you are making a change, where you say well, this
is either going to speed things up or not, then you would just run for one
representative set of data. Because I know how the program behaves. The
number of calculations is not strongly dependent on data sets. And I can
tell how many calculations it is doing and what the pattern of calculations
is. So on then basis of one data set, I can fairly predict what the results
on other data sets will be. In fact, the only meaningful parameters for the
solver is the number of iterations and the restarts. And the data set as long
as it is not all zeroes it is not going to have a major effect. Informant 44

I would first run our code on the highest number of processors and
look at how much time we spend on communication compared to compu-
tation. And then, I would say, ok, I am satisfied with the communication,
then I would look at the lower level Cray puts and gets and see if I could
do things faster than message passing and I would take a single node and I

Appendix B. Tuning in the large
	 228

would look at a profile and try to optimise it as I would optimise any other
program for a workstation. 	 Informant 51

When I started with the parallelisation, I would do some exper-
iments on the machine to get an idea of how I want to do it and get it
efficient then I would just put it in the code and then I would fine tune at
the end. Well, on the Maspar you have a front end and then you have the
back end, which is the machine and on the front end you have one large
processor with the sequential data program and the data parallel program
will be executed by the distributed processing units. For example, some of
the data exchange was done globally, global broadcasts and global gathers
were done by the memory of the front end. It turned out it was faster read-
ing the sequential memory and when you had a total read of the sequential
memory. There was some synchronisation on that but apparently it was
automatically broadcasted and distributed in a form of a tree or something
like that, it was really the fastest way to get there. I mean, the other option
that you would have would be to send something to the sequential processor
and this one would act as the source of the broadcast. So I've worked on
the Maspar before, so I knew, but in the very beginning, I just tried a small
piece of code. And the way I solve these problems is that I develop two
small programs, which have these two kinds of communications, and I see
which is the faster one. 	 Informant 42

I tested ideas on code and then I experiment on real problems.

Informant 11

That is true and another nice thing about it is the way we have
coded the communication declaration we can split tuning into two tasks.
Optimising the communication and optimising the computation. And they
are really totally independent and two people can do that. Some of us are
trying to get serial performance and some of us are trying to make more
clever communication. We usually look at different subtrees. If you look at
a profile, i.e where you spend a lot of your time, and then try to divide it
out and we haven't really spent much time on optimising . . . we are trying
to understand more why certain things that you optimise don't give what
you expect. Usually, we divide it so we can get different subtrees. Try to
see how to optimise those. 	 Informant 51

[Be37] Implementing the optimisations is limited by the edit-compile-run
cycle. For example, in one case, the solution was easy to come with. I had
to move an outer loop into an inner loop. This, though, involved making
simultaneous changes to 30 different subroutines. Running old and new
codes under debuggers side by side on a workstation with X windows was
the only way this was possible. Because the change was so global, one
needed to compare the correct behaviour of the program against the altered
code in order to eliminate bugs introduced in the recoding.

Appendix B. Tuning in the large
	

229

Informant 1

[Be628] is presented in section B.3

B.1.2 Case study I: verbal protocol analysis

I have to see all the routines I have . . . (he is searching for the file
which contains the version of the routine he wants to test). This is just a
wrapper (the source code which contained the call to the specific routine)
for .. . PVM can go out. This is just a wrapper for the sum routine which
is down here (at the end of the file) and I have several versions of that. To
see which one is faster (he removed from the main file some calls to PYM
functions which had been used in previous experiments). I'll just compile
the original routine, this is the main program and I think this is the routine
I was working with before (he linked and ran the program). I run it on
one processor just to see whether everything is still working; compiling and
linking and running as it should do because it has been a time since I
worked with this routine and this is the last version . . . (a lot of time was
spent trying to eliminate the compilation errors and while the program was
being compiled the tuner opened the file which was being linked with the
program). This is actually to make sure that I am running the file I want
to be running.

I would use apprentice, but as you can see, this is just one routine
and it is a fairly trivial routine, it is really, a really small part of the program
so there is not much apprentice could tell me about it. I prefer to take
timings (by inserting timer calls) and check if that is ok, and the one thing
I want to do here is I do want to print sum. This is a sanity check. . . . You
can write beautiful programs but if the results do not compute, then you
are in trouble. So I am now putting a line that gives me the summation in
one direction. And the result I should have got. Because in inner products
timings can be very critical. So the slightest error in timing can give you
very strange results. You could for instance have written a very smart
routine that 99% gives a right result but if it is called twice in succession it
might use an odd result because you forgot to put in a barrier. There are
situations when you want to compute 100 inner products in a row, but with
a little work in between. If there is too little work in between it might catch
one of the old intermediate results instead of doing what it is supposed to
do. I guess, I should not have tried for the 32 processors because I am not
going to get them.

So this is acceptable . . . (he runs the program on 16 processors and
writes down the result on a piece of paper). And now, what I have to do
is change it to something that uses shmem calls to see if this is faster. But
before I do this, I want to see what the results are up to now. Now this
is 16 processors, (looking into the program log file) with one type of tree
- here actually I use an eight way tree for as far as possible - working on

Appendix B. Tuning in the large
	

#rgj

the 16 processors the four tree wins; if you are working on more processors,
the eight way tree will win because you have large overhead because of
synchronisation. Not data transfer. Nevertheless, I want to try the four
way tree with shmem_gets, instead of with shared arrays. In order to do
that I need a common block, otherwise I am not allowed to use shmem_get.

I have these results somewhere in the file, it is just to remind myself what I
was doing and to see if my program is still running. I want to check if it is
still ok. This file is already part of a report. In general, if I take the effort
to write something on a file or a paper it will turn up in a report at some
point else it will be a waste of time.

I run this version here to see if it still works. And I know approximately
what the results will be, so this looks ok, so what I want to do is compare
this one with the new version. And as libraries and compilers are regularly
updated, if you want to compare things it is better to run them one after
the other; on the same date, the same machine, the same circumstances.
The compiler changed and the library changed and it had a min or effect
on my program but it may have a major effect on minor details like this
routine. (He introduced the shmemput calls and he had to compile to see
if they would work.)

[Be603] I am not sure whether this will actually work, there might be a
synchronisation problem. I hate on-line manuals. . . . It is very difficult to
find what I want (he attempted to consult the manual pages for shmemput).
Compiler directives, where should I look for those? (The author suggested
that he should use the search function in he on-line manual.) Now, the last
one I tried was if, this one is lx, and now we get lots of compiler warnings.
Oh yes, I have to declare these variables. Aaaaah yes . . . (He checked the
arguments of the routines.) And I must remember to change all the lines in
the routine. The answer is correct but the routine is slower. That is a bit
depressing. Aaah . . . wait a minute. (He had made a typo mistake.) It was
transporting a lot more data than I wanted it to (he fixed 2 typos). Now
it should not be slower. That would be really disturbing news. It is slower.
I think it is the cache invalidation that is causing the problem. (He unset
the cache invalidation.) Let's see. .. .1 was running on 16 processors. Right
that's it. It is the cache invalidation that slows things down, the problem
is, that if don't invalidate the cache, I cannot guarantee that I get the right
answers. And as there is a difference of 880ps vs 937ps and of 350 Mfiops/s
vs 372 Mfiops/s that is not justifying living dangerously, I will stick to the
shared arrays version. To be sure that this is safe, I would have to go into
the documentation. I do not want to risk it and I do not want to waste
time reading manuals. Actually, I should look at the BLAS routines. BLAS
tends to be very highly optimised. Informant 44

Appendix B. Tuning in the large
	

231

B.2 Documentation methods

After a few experiments, soon I noticed that it is impossible to keep
them in mind. So I have written a suite of Perl scripts for experiment make
log with what binary resident on where, and the compilation condition for
each binary. I make graphs semi-automatically. I have also written a tricky
makefile to pack compilation flags and cpp-definitions into the binary. So
every binary can print out its compilation options when executed with run-
time option. I am trying to use the version control (CVS) but retrieving
old version is still unnecessary (fortunately). Recently, I noticed that keep-
ing the same binary is not enough to compare with other people's result.
Because everybody changes the source code from time to time (including
bug fix) and simply comparing new result to old (some people's conditions)
result leads to incorrect conclusions. Instead of keeping binary, checking
out the latest version, recompiling all the binary with some compile option
(cc -dxxx) and comparing make things better. (But it is also cumbersome
and it takes rather long time).

Informant 36

I had two of these variables against time and you could see what
was going on (in the diagram). What I was doing is having a batch file
taking times for all these runs. I don't see how you could get away from
that. Perhaps if you can build a useful user interface. 	Informant 63

You might make a modification to the code that would have to be
ripped out later. SCCS and RCS can take care of this handily, so the issue
of documentation is not as important as it might seem. 	Informant 18

I try to use RCS. Typically, I maintain only one version that I work
from continuously trying to improve that version for all runs (i.e. single pro-
cessor and parallel execution). It is too much to carry around more than
one version. It's enough to just maintain program integrity (i.e. obtaining
the correct answers when attempting to run via code modifications). This
is probably my weak spot. We are usually too busy to do extensive docu-
mentation. It is really an important area to maintain good documentation
and some of us use RCS to note the changes and then use an online readme
file or notes file to hold the intermediate results.

Informant 19

[Be628] Notes on converting and tuning ARPS 3.1.

April 7, 1993

Appendix B. Tuning in the large 	 232

-- Made Makef lie, based on CMAX example Makef lie.

-- Bus error after:
Starting pass 2-3
Updating primary database
Updating secondary database
Vectorising routine <ARPS31>

April 8

-- Fixed bug that was causing bus error, ran.

April 13

-- Started looking at results of run. Lots of stuff ends up on front
end.

-- Will go through Jonas's changes and integrate them into this
version, but using #ifdef CM so that portability will be maintained.

-- After Jonas's changes are in, next thing is to add the axis
permutation stuff and timing stuff (latter with ifdef's).

-- NODEPENDENCE's in chksym3d.f possibly out of place; possibly
unnecessary.

-- Blew off the I/O changes in duinp3d.f.

-- BAH! Gave up fooling with the DIFF's. Found and grabbed Jonas's
sources. Highlights:

-- Split statements for reductions:

C 	 dkew = 0.5*wrho(i,j, 2)*w(i,j, 2 ,tlevel)
< 	. 	+ 0.6*wrho(a,j,nz 1)*w(i,j,nz 1,tlevel)
< 	kew = kew + dkew
> 	kew = kew + O.S*wrho(i,j, 2)*w(i,j, 2 ,tlevel)
> 	kew = kew + 0.5*wrho(i,j,nz-1)sw(i,j,nz-1,tlevel)

Linear memory sleaze

C 	CALL cpyary_3d(teml,u 	(1,1,1,tim), nx, ny, nz)
> 	CALL cpyary(teml,u 	(1,1,1,tim), nx*ny*nz)

Appendix B. Tuning in the large 	 233

CALL flzero_4d(u, fix, fly, nz, nt)

-- Max of ABS (which shouldn't be needed anymore):

< 	tmp = abs(w(i,j,k,tlevel))
< 	absmax = max(absmax, tmp)
> 	absmax = max(absmax,abs(w(i,j,k,tlevel)))

April 14

-- Commented out Jonas's datavault I/O for now, got things running
again.

-- Next thing to do is put the axis permutation in the F77 source and
add permutation stuff to the makefile.

-- Another thing to do is the tweak the dimensions so that we're
running a bigger problem, and so that we're mapping it onto the
machine better. Currently, each axis has three slop elements in it,
so a 32x32x32 problem uses arrays of dimensions 35x35x35.
Dimensions are in dims.inc:

parameter(nx=35, ny=35, nz35)

When we get around to timing things we should time both as-is and
CM-tuned problem sizes. Be sure to adjust cell size in arps3l.input
when we do this.

-- Trying to run on a 4 PN machine, getting this error:

CMOST: User yellow interrupt.

*** RTS-FATAL-UNIX
Traceback follows:

pc = 0xf78bc12O
pc = 0x28c2d4
pc = 0xf7892c4c
pc = Oxf8Of300c
pc = 0x285190
pc = 0x2725e8
pc = Ox25fad4
pc = 0x251b1c
pc = 0x6c2c4

lOT Trap

7??

_CMI _pani c

_CNNk.bc_sen&.msg
SMCOM_pemy_grid_coordinate
_CMCOM_my.grid_coordinate
_CMRT_my_gri&coordinate
advw, line 1238

Appendix B. Tuning in the large 	 234

PC = Ox5aOOc
PC = 0x37780
pc = OxllcSO
PC = Oxc8a4
pc = 0x8360
PC = 0x24f80c

advuvw, line 190
frcuvw, line 320
tinteg, line 924
cordintg, line 392
...MAIN_, line 688
_main

The indicated line is:

FORALL (k = 2:nz - 2, j = 1:ny - 1, ueblOO(k - 1,j) .GT. 0.0)
& 	wadv(nx - 1,j,k) = ((urho(nx - 1,j,k) + urho(nx - 1,j,k - 1))
& 	* 0.5) * (w(nx - 1,j,k) - w(nx - 2,j,k)) / dx

Will try compiling this file -nonewforall without -O to see if that
helps.

-- Yes, that does the trick, but at some cost in performance. Will try
just -nonewforall Yeah, that works, too.

-- Added timing code conditionalized by *ifdef CM to arps3l.f.

-- Added permutation directives to source files and associated hackery
to Makefile.

-- Screwage can't do the axis permutation before CMAX'ing because then
the axis elision doesn't think the slices are contiguous pieces.
So, rework Nakefile to do it afterwards.

-- Okay, with that done, things run at speed comparable to the
hacked-by-hand CM Fortran.

April 15

-- Added cshift stuff in conditionals, but not in DIFXX, DIFYY, or
DIFZZ, because there was no temp to do this right. Could do it
halfway in those places.

-- Recompiled with larger problem size (67 x 67 x 35) but don't have
quite the right input file for it. Results look promising, however.

-- Preliminary numbers (pre-cshift) per iteration:

4PN 	 32PN 	 64PN

	

35x35x35: 	 18.2 	 4.5 	 2.8

	

67x67x35: 	 62.6 	 10.6

Appendix B. Tuning in the large
	

235

-- Reconverting for cshift in all but DIFXX, DJFYY, DIFZZ.

-- Bug in CMAX_CSHIFT processing found and fixed.

4PN 	 32PN
67x67x35: 	 59.6 	 10.6

-- After bounds trimmed (so no masking in AVG and DIF ops):

4PM 32P11 64PN
32x32x32: 11.0 2.0 1.33
35x35x35: 17.2 3.7
64x64x32: 43.4 6.0 3.36
67x67x35: 87.5 10.1
128x128x32: 22.0 11.42

Using exact powers of two sure helps.

-- We don't know the number of iterations used to get the RS/6000
cluster results. If it's something like 10, we're in good shape.
If it's something like 60, we're in sad shape. Jonas said something
like one processor would do about 90 seconds per iteration, I assume
of the small problem. Looking at Figure 5 in the paper that tells
us that the 900 second figure for the small problem on one processor
represents 10 iterations. Let's go with that. This is the mail
from Jonas where the 90 second figure comes from:

From: Jonas Berlin <berlin@Think.COM >
Date: Non, 22 Mar 93 12:42:45 EST

A little update of what we are doing. Ken lost quite a bit of
interest for a while, but when version 3.1 of ARPS came out I managed
to get it running in 4 days. Most of the problems I encountered were
known CMAX bugs or deficiences. The update time on a 16k cm-2 is 8
seconds, compared to 90 seconds on a slow version RS600. The biggest
problem now is to get the memory usage down. CMAX wastes quite a bit
of temporaries. Next thing will be to get some speedup.

April 16

-- Turns out the above 90 second figure was wrong, or at least doesn't
have much to do with what's in the paper. The graphs in the paper
are from ARPS 2.0, so we're basically comparing apples and oranges
here. Compiling and running on a Sun for some means of comparison.

Compiled -O with f77, run on Ukko (user CPU time):

Appendix B. Tuning in the large 	 236

	

32x32x32: 	 31.2

	

64x64x32: 	 75.6

-- Mail on RS/6000 performance:

Date: Fri, 16 Apr 93 17:14:12 EDT
From: johnson@vaxdad.scri.fsu.edu

I do not have presentative timings at this point for v3.1. Rough timings
on an RS6000 model 320 (20 mHz clock) is about 2.5 hours CPU for
the input file supplied with the ARPS distribution (35x35x35 grid
points, TSTOP=3600 mm). In the coming weeks I should more precise
timings on various models of R56000's, a PVM version on a cluster
of RS6000 1 s, and a Y-MP. I will send them to you when I get them.

-- So, that's 2.5 hours = 150 minutes for 600 iterations, or one per 15
seconds. About twice the speed of a fast Sparc system (Ukko), which
is certainly more than twice the speed of a CM-5 Sparc. Hmrn.

April 19

-- Trying without the VU's, just for kicks.

4PM 	 32PN 	 64PN

	

64x64x32: 	 458.8 	 39.7

Oh, foo, those times were with -cmprof, so not quite comparable

April 20

-- Can't run P77 version on a node because:

Unsupported unix system call (getrusage) called.

From

cmaml_internal_dispatcher() at Oxb5b4O
CMMP_send_block() at 0x8150c
CMMD_request_service() at 0x9a814
cmmd_lseek() at 0x8c2c8
lseek() at Ox8ec5c
.fseek.fseek() at OxecelS
now_acc() at Oxcaae8

Appendix B. Tuning in the large
	 237

t_runc() at Oxc71a8
f_clos() at Oxc6cO8
dtadump_() at 0x77ed8
initout_() at Ox3b3fc
MAIN-0 at 0x30a0
.main.main() at 0xb9704

-- Trying CrlF version.

ON (compiled -node; ,4 copies run on 4PN machine)
32x32x32:, 	 40.2

This is in line with the other CMS numbers, so I'll just add it in.

-- Can't run sparc version when compiled without -cmprof:

CMOST: User segmentation error on PU.

*** RTS-FATAL-UNIX: lOT Trap
Traceback follows:

pc = 0xf782c120 7??
pc = 0x23e13c .CMLpanic
pc = 0xf7802c4c TI?
pc = Ox22f3fc SMCOtpe_mygrid..coordinate
pc = Ox2laac4 _CrlCOtfuncall
pc = 0x2107e0 CMRT_funcall
pc = OxlaS7fO _soundg, line 1048
pc = Oxla4lf8 _zprofil, line 571
pc = 0x199148 inibase, line 282
pc = Oxee9lc _initvar, line 2771
pc = Oxd9a5c initial_, line 380
pc = 0x4284 -MAIN- , line 629
pc = 0x208cd4 main

Tried compiling inibase3d.fcm with -cmprof, and that does the trick.

-- Times:
4PN 	 S2PN

32x32x32: 	 93.0 	 8.8

-- Since the profiling data reveals that no one routine is being a
terrible hog at this point, it seems that new approaches could be
worth looking into. Changing the decomposition to just X and Y or
just X might help a lot -- could take advantage of serial axis
optimizations. Night get tricky. Will try serializing the Z axis
first, then the Y.

-- Looks pretty simple, actually. Also changing the layouts in

Appendix B. Tuning in the large 	 238

inibase3d to :serial, since that seems to be all I/O.

-- Here's a problem with this: the axis elision transformation puts
things in canonical layout, which is not what we want. We want to
preserve the serialness of axes:

SUBROUTINE frcuvw(nx,ny,nz,u,v,w,ptprt,pprt,qv,qc,qr,qi,qs,qh,ubar)

\small
CNF$ LAYOUT u(:NEWS, :NEWS, :SERIAL, :SERIAL)
CNF$ LAYOUT v(:NEWS, :NEWS, :SERIAL, :SERIAL)
CNF$ LAYOUT w(:NEWS, :NEWS, :SERIAL, :SERIAL)

C ...]
CALL mixuvw(nx,ny,nz,u(:,:,:,tlevel),v(:,:,:,tlevel),w(:,:,:,&tlevel))
C ...]
SUBROUTINE rnixuvw(nx,ny,nz ,u,v,w,ptprt ,pprt ,qv,qc,qr,qi ,qs,qh,ubar
C ...]

CMF$ LAYOUT u(:NEWS,:NEWS,:NEWS)
CMF$ LAYOUT v(:NEWS,:NEWS,:NEWS)
CMF$ LAYOUT w(:NEWS,:NEWS,:NEWS)

C ...]

-- Further tuning possible in getting rid of contextualization by
detecting if loop bounds equal to array bounds, then having two
separate loop nests; this is worth putting in training and doc
materials. For ARPS, look at a3dmax, aamult, advcts_vl,

April 21

-- Could try using interface blocks, perhaps? Or have axis elision
transform emit them, and do the right layout propagation?

May 4

-- The CMF compiler won't be up to passing sections without VPMOVE's
until 2.1 Beta 2, so we'll wait until then to push ahead on this
front.

-- Will try 2.1 Beta 1 (have been using 2.1 Beta 0.1) to see if that
helps in any noticable way.

Appendix B. Tuning in the large
	 239

May 5

-- Running a big problem on 64 PM's:

4PN 	 32PN 	 64PN
32x32x32: 	 11.0 	 2.0 	 1.33
64x64x32: 	 43.4 	 6.0 	 3.36
128x128x32: 	 22.0 	 11.42
256x256x32: 	 43.57

May 18

-- With things tuned, some times:

4PM 	 32PN 	 64PN
32x32x32: 	 6.23 	 1.15 	 0.76
64x64x32: 	 4.87 	 2.06
128x128x32: 	 7.07

Unfortunately, we can no longer run 64x64x32 on 4 PNs.

-- Time from Ukko on this serial version for complete run, with
initialization and 600 time steps:

12272.9u 655.3s 3:35:41 997. 0+-4312k 13+17io 116pf+Ow

Which is 20.45 sec/it average. The CM time is not too hot compared
a bare Sparc, although Ukko is perhaps twice as fast as a node
processor, and the node is double double precision math while Ukko
was doing single precision.

-- Can't even run 32x32x32 on 1 PN, which truly sucks.

-- Will move these arrays to :SERIAL layout to try to cut down VU
memory usage:

CM QVBAR(:NEWS, :NEWS, :NEWS)<Directive><Warning: No vector usage>
CM QS(:NEWS, :NEWS, :NEWS, :SERIAL)<Directive><Warning: No vector usage>

CM QV(:NEWS, :NEWS, :NEWS, :SERIAL)<Directive><Warning: No vector usage>

CM QI(:NEWS, :NEWS, :NEWS, :SERIAL)<Directive><Warning: No vector usage>

CM J3(:NEWS, :NEWS, :NEWS)<Directive><Warning: No vector usage>
CM QH(:NEWS, :NEWS, :NEWS, :SERIAL)CDirective><Warning: No vector usage>

CM J2(:NEWS, :NEWS, :NEWS)<Directive><Warning: No vector usage>
CM ZP(:NEWS, :NEWS, :NEWS)<Direbtive><Warning: No vector usage>
CM HTERAIN(:NEWS,:NEWS)<Directive><Warniflg: No vector usage>
CM J1(:NEWS, :NEWS, :NEWS)<Directive><Warning: No vector usage>

Appendix B. Tuning in the large 	 240

CM 	Z(:NEWS)<Directive><Warning: No vector usage>
CM 	Y(:NEWS)<Directive><Warning: No vector usage>
CM X(:NEWS)<Directive><Warning: No vector usage>

-- Nope, the Q guys should still be :NEWS.

Conflicting directives for array QS in ARPS31 [arps3l.f]
Conflicting directives for array QV in ARPS31 Earps3l.fJ
Conflicting directives for array QI in ARPS3I [arps3l.f]
Conflicting directives for array QH in ARPS31 [arps3l.fJ

Must be a bug somewhere in the 'no vector usage detector, Sm?

-- Running short on single and double on ukko:

238.7u 39.4s 5:26 857. 0+8816k 10+7io 117pf+Ow 	single
261.5u 51.7s 8:09 637. 0+8784k 11+7io 162pf+Ow 	double

-- Running short on single and double on smitty-cm5-n3 (cmix):

271.6u 15.7s 5:07 937. 0+7744k 3+5io123pf+Ow 	single
271.2u 15.7s 5:12 917. 0+8052k 3+5io 154pf+Ow 	double

Hmm, is that right? No time difference between single and double?

-- These numbers are not all that impressive. It looks like we'll be
lucky to get 160 MFlops out of a 64 PN machine, which is 2.5% of
peak. That's about a factor of 10 from where we should be. So
where is all the time going? Profiling doesn't help much at this
point; there's some very basic problem, I think.

-- Well, the version with all those arrays serial dies with a bus
error, so I guess we back out those changes.

-- Data for complete runs on a dedicated machine:

32x32x32 on 64 PNs:
CM Elapsed time: 511.029 seconds.
CM busy Time: 451.358 seconds.
FORTRAN STOP

497.Ou 9.5s 9:33 887. 0+2508k 9+13010 318pf+Ow

64x64x32 on 64 PNs:
CM Elapsed time: 1309.239 seconds.
CM busy Time: 1200.621 seconds.
FORTRAN STOP
1260.6u 16.3s 23:51 897. 0+2536k 7+132io 317pf+Ow

Appendix B. Tuning in the large 	 241

May 19

-- Data for complete 32x32x32 run on-a-node:

% time arps31-single < arps3l-bench.input

15916.5u 803.Os 4:39:43 99'/. 0+-3004k 3+7io 166pf+Ow

-- So, CMF on a 64 PN machine is 4:39:43/0:09:33 = 29.29 times faster
than F77 on one PN. The speedup for the larger problem would be
more. Unfortunately, it would take about 16 hours to run the large
problem on one PN, and we might not get that dedicated time. If the
serial time scales exactly by 4.0, then we would come in at 46.9
times faster.

-- Short run of 64x64x32 on-a-node:

'/ time arps31-64x64x32-single < arps3l-short.input

1166.6u 914.2s 2:24:46 23 0+9504k 2+5io 175642pf+Ow

The problem here is that the nodes on Smitty only have 16 Meg, and
so it's is paging (over the network to an SDA). Boo hiss.

May 21

-- Data for short run 64x64x32 in F77 on-a-node with BIG MEMORY:

864.7u 7.5s 20:47 69'h 0+880k 3*9io 53pf+Ow

This looks a little better, eh? So: we'll run the biggest thing we
can on the BIG MEMORY machine.

-- Running short run 128x128x32 on 4 PN BIG MEMORY machine:

CM Elapsed time: 1124.630 seconds.
CM busy Time: 1033.380 seconds.
FORTRAN STOP
940.7u 4.4s 23:32 66% 0+2408k 10+13io 307pf+Ow

That's 103.3 sec/iteration.

-- Rounding out with 64x64x32 time we now have:

4PN 	 32PM 	 64PN
32x32x32: 	 6.23 	 1.15 	 0.76

Appendix B. Tuning in the large 	 242

64x64x32: 	 24.5 	 4.87 	 2.06
128x128x32: 	103.3 	 13.2 	 7.07

There seems to be some degradation here going from 64x64x32 to
128x128x32, perhaps due to the boundary condition handling.
However, whatever the reason, the speedup factor gets better with
larger problems, going from a factor of 8 between 4 and 64 PM on the
small problem to a factor of over 14 on the large problem.

July 8

-- Trying to figure out what runs we can make with a couple of hours of
IX processor time. For full runs, we're probably looking at
something like:

1K PM
256x256x32 	:40
612x512x32 	2:30

1024x1024x32 	(no way)

-- So, we'll get some short times and extrapolate from those. To be
complete about this, we'd need the iteration times for all the other
rims, which we may be able to scrounge up somehow. Or, we can just
count the setup time for a small run and extrapolate. Or something.

-- Times for short (10 iteration) runs, actually measured, in seconds.
"Total" is real time, "10 its" is CM elapsed time for 10 iterations:

256x256x32
512x512x32

1024x1024x32

-- For full run:

128 PM 	 266 PM
Total 	10 its 	Total 	10 its

512 PM

	

Total 	10 its

	

604 	200.2

64x64x32
128x128x32
266x266x32
512x512x32

1024x1024x32

128 PM 	 256 PM
Total 600 its Total 600 its

512 PM
Total 600 its

	

702 	487.7

	

3197 	2694.2
12512 10803.5

-- Also could include memory usage figures:

512 PM

Appendix B. Tuning in the large
	

243

64x64x32 1.11 G
t28x128x32
128x128x32 1.44 G
256x256x32 2.68 G
512x512x32 7.77 G

1024x1024x32

128 P 4G
256 P 8G
512 PN 16 G
1024 PN 32 G

On 32 PN, 32x32x32 uses 94.2M.

-- Need to do short runs, obviously. Might have time for 512x512x32
full run. Set limits at:

1K PN

	

512x512x32 	:10 	(just like 512 P11 run)

	

1024x1024x32 	:20 	(double for good measure)

-- Submit these jobs:

time arps31-512x512x32 C arps3l-short.input limit 10
time arps31-1024x1024x32 < arps3l-short.input limit 20
time arps31-256x256x32 C arps3l-bench.input limit 45
time arps31-512x512x32 C arps3l-bench.input limit 2:30

Informant 17

B.2.1 Reasons for documenting tuning

[Be612] and [Be613] are presented in section

To have a place holder in order to be able to put a project on hold
for a period of time and be able to return to that project at a later time
without having to reinvent the wheel. Wejuggle many projects at a time
and this is a key not to regress.

Informant 19

To remind myself of what I was thinking of and why I did it this
way. 	 Informant 20

I think it is probably worth keeping even the bad cases. I think
they are worth keeping because there might be some particular bad thing

Appendix B. Tuning in the large
	

244

in the configuration which has caused a . . . Identifying where the worst case
is is useful as identifying what the best case is. Worst case avoidance could
be a reasonable way of tuning the program. 	 informant 68

To keep track of changes and maintain the history of the software.
Also to be able to explain why the speed differences.

Informant 7

To use as a learning aid for future performance tuning sessions.

Informant 21

To have an idea of how these tuning changes will be different on
other systems. 	 informant 11

13.3 Tool requirements

Documentation has been a problem in the sense that the formal
documentation, required for the software standards, was imposed half way
through this project. So, it was never originally planned that the documents
that were ultimately required would be required. But other problems we
find are the continuous documentation of problems, hints tricks, things that
people have found in use and have it up here (he showed his head) and they
never wrote them down so that everyone else can use. Yes, the biggest
problem is with the little tricks and hints, ways around the problems, the
formal documentation is not so much of a problem. We do have some means
to trying to document that, but persuading people to write it down to paper
has been difficult. So there is a problem in documenting at that level. But I
would say that this documentation is satisfactory. But other than that, the
problem with the documentation was that the formal documentation was
imposed half way through the project. We have never used any versioning
system. 	 informant 48

We would be interested in having something, that integrates your
kind of environment, where you can query a database of outcomes of ex-
periments. And have a kind of version management included . . . you have
an application and you are going to be running thousands and thousands
of data sets with this, or a large number of data sets, you have to get to
record that, and maybe you have the number of processors as one factor,
maybe the optimisation level of the compiler, etc. And it was exactly the
idea, for example, the system would automatically record what optimisa-
tions you used or when you use a visualisation tool, the trace files would
be linked to makefiles that you used. And it could associate the options
for the compiler and the outcome of the experiment. It was only thought
to keep track of the relationships in your development process, what you

Appendix B. Tuning in the large
	 245

have done, what versions you created. It would certainly be helpful to have
something like that. If you extend it, you can even create a database of case
histories that other people can go and look up, for cases that are similar to
this, and say some one has a problem on one machine and he describes a
bit of the problem and then somebody could access it and benefit from this
experience. You get a lot of that by user groups. Anybody who is using
a new machine architecture would almost certainly want to collaborate or
have some meetings with people doing similar work. Informant 50

[Be524] Well, I think we are going to have to have some kind of configuration
control method mechanised for it because he have a number of upgrades to
do, and things are relatively easy when you are in a prototype stage of a
project. You can have versions proliferated. Once you get into production
mode, things become more strict. You have to record specific versions of
the code. So, I do anticipate that at some point.we will use some form of
computerised control over the versions of the code. Currently, we have a
logbook for that . . . but out of the design procedures every change of the
software or every hacking has to be done through proper documentation
and agreed by the people in the team. So, there shouldn't be any informal
changes to the code.

Informant 48

Right yeah, so some kind of database with versioning control. Yes,
that would be very nice. It reduces the risks, you know, if you change the
code too much that you cannot get back to a previous version. It seems
very difficult to achieve. In terms of things like that we will have to spend
some time in the project. But at the moment, we don't know of anything
that could provide us with this kind of documentation. 	Informant 47

Yes, I think it would probably be useful, the way we are working
here today is from this point of view very much haphazard. So any specific
time connection or even just going and asking people to see if they 'ye done
it, or doing it myself, if you have a central .repository for this. Mots that
is a significant problem, actually keeping track of the version you have on
the various machines, we do have a very good version control tool, which is
Clearcase. In the parallel world so far, the guys have found it restricting or
painful to work with, but partly or even mainly they intend to be developing
on our 6000 workstations and ClearCase runs on the SGI platforms which
are the platforms all the researchers work on and where the fileserver is. So
we bought it only for that platform. The fact remains, if you don't have
an Sc!, it is a little more clumsy to use because the database is somewhere
else. And therefore developing on the R56000, they have to go through
some short of NFS or some sort of network to get a . . . And they find it
a little bit . . . it affects their developing speed. So they are reluctant to
use it and therefore we have the situation where there are lots of tar files
lying there, and it is slightly difficult to follow what you have. There are
comment fields in many places, but they tend to be limited . . . They are
simple character strings appended to the version. It is a very simple level,

Appendix B. Tuning in the large
	 246

you could of course impose your own documentation standards, you could
have in the Clearcase database each change to reflect this information but
it would only be a text file. 	 Informant 52

[Be529} A tuning management tool proposed within the context of the PPPE
project was dropped because of the persistence of most of the users and most
of the vendors to implement it. The argument was from the vendors point
of view, that it is one more software layer and since it is all from different
companies, it comes more messy for them to manage the licence rights and
royalties to pay and it becomes more complicated to market. And most
of the users' point of view was that the tool will degrade the developers'
performance. Saving the result of a tuning experiment in a database has
some cost associated with it, which users with small codes are not prepared
to afford. Informant 53

Appendix B. Tuning in the large
	 247

day secs 	mfiops***l 	 notes

135 * 18.1 132 recompiled ineiko set of vectorised routines on cOO,
performance suggested that more routines need to vectorised

and probably further optimisation of already vectorised
routines, produced profile on cOO and gprof, prof and

pgprof_all fail to work _(for _ifs) on cs-2

15 181 13.2 vectorised: trltog, trgtol, had to work around
compiler bug in trltog and trgtol, bad object

code was produced for identical loop in both routines

16 171 14.0 vectorised: sigam, surgri, sc2fsc,radlsw
radlsw failed to compile, got an internal compiler error

workaround was to use cdir-novector directive

17 157 15.3 vectorised 	vdsfsdrv, no connection to cerfacs possible

22 150 16.0 recompiled with nproma=64, 128 was probably large enough
22 5 * recompiled with nproma=256 run failed with an addressing error

22 11.7 205 recompiled latest meiko set of vectorised routines
on cOO with nproma=64,as 220 mflop was obtained when

all routines were vectorised it looks like we wont get much more
performance on the meiko by vectorising more routines.

24 updated sources to latest cy12 versions

25 133 18.0 more work on :lwu, radact,swu,mainly
changes _x 5 y_to_exp(y]og(x))_to get loops to vectorise

Table B—i: [Be627] Diary of porting IFS to CS-2

Appendix C

Tuning across organisations,

people and machines

Appendix C contains a number of excerpts of discussions with parallel program de-
velopers and material kindly given by EPCC's User Support Service. Parts of some of
these excerpts are included in Chapter Six to support the arguments presented in that
chapter. The selection of these excerpts has been based on their ability to convey briefly
and effectively practices which are most representative of the ways parallel program
developers work. Other excerpts included in this appendix do not appear in the corres-
ponding chapter. They repeat and support the information given in the representative
excerpts and are included here for the benefit of the reader in case they can be used to
drive further research on parallel program development.

C.1 Different attitudes to tuning

[Ce30] Most people don't have to. In terms of optimisations, they rely
mainly on the compiler optimisations and some people don't even exploit
that because they don't know that there are certain flags, you can turn on
For example, a code is running on double precision whereas it can run faster
in simple precision. This is talking in Cray terminology, they forget that
there are a few people out there, that if the code doesn't run long enough
then it doesn't make any difference. Then, there is the other extreme like
here in the weather forecast, where performance is a very important issue.
If we can get the operational model code run 10% faster, we get our salary
increased. There is a value associated with that, but equally, we can't go
and modify 90% percent of the code to gain this performance because we
will get the code unmaintainable. Informant 53

[Ce28] Tuning? We don't do it so much. We are always more interested in
providing functionality than providing performance. We hope that we will

248

Appendix C. Tuning across organisations, people and machines 	 249

have the time to implement a second version of the code, but this never
happens. Having said that, we try to think about performance and no do
anything stupid.

Informant 56

[Ce8] No, that was to take it away from the C90 because it has been running
only on the C90. And people have always coded for the C90. And uses
features like memory management, dynamic arrays and pointers, so first
thing is to make it portable, the first test is to run it on the workstation. And
next to another message passing machine with the same level of parallelism
that you have in the C90. I did that version that runs on the workstation
and then I changed some of the data structures which were not so suitable for
parallelism in a distributed memory; so then I rewrote the data structures
for this version on the workstation, on a distributed memory machine we
had to reorganise all the data structures. Well not all but some of the data
structures. So the parallel part was to put all the PARMACS commands
which send the data between the processors, that is what they wrote in
Germany. We had to make it portable so we only allowed a subset of
Fortran 77 and all the Cray specific features have been removed so it is
quite different. The number of lines that I modified is quite a high number.
The forecast model is around 100,000 lines. The message passing version
is the same plus 5,000 for message passing; the strategy we had was one of
the basic strategies, was to keep the serial code as close as possible to the
parallel code. Because of maintenance reasons, we didn't want everybody
here to start recoding, they don't want to recede the basic code. And we
want to keep it invisible to many people but a few who have to know how the
parallel code is organised. The code is a spectrum model because we have
three different space models. We have three different data and distribution
layouts, so what we do is we move the data around in memory between
those three different data layouts, and then the data is how each processor
want it to be so, so all the computations are done serial, on a subset, so it
is SPMD approach. We are not using any parallel algorithms at all. So for
a Fourier transform we do it serially. Most of the work was also to design
this message passing version so you change as little as possible in the serial
code. No, we are always worried about performance. But what we did
was we estimated how much how the parallelism was for the strategy we
were using. And try it on some simpler models, one level models to see if
this strategy was working ok, and we could tell from these estimates that
it should be very efficient. The most efficient way you could do things. So
it turned out to be correct. We have tried really to design it. Because we
have these 300,000 lines of code, we don't want starting to do it using the
wrong track then you can't afford that. It takes you a year to do the work
so you cannot afford . . .so you have to design your work properly. A way
to improve the parallelisation strategy was to use this simplified done level
model and use the same communications strategy. And also look at what
other people . . . a group in the states did it in another way. We have stuck
to what was proposed here, by those two guys who worked here and then
it turns out to be the best way. The optimisations were not that many.

Appendix C. Tuning across organisations, people and machines 	 250

We have also tried to make the code flexible so that it can run on different
architectures using switches. Yes, you can specify if it is a vector machine or
if it is a cache based machine. And we tried to put that in. For performance
I use Paragraph+ but not very much. I want to see whether things happen
the way I think they should happen. I look at the communication patterns
and not very much for optimisation reasons. And perhaps also to see some
load imbalance, to see if some of the processors are doing more work than
the others. I did use it for presentations. I am also using dbx, in the
initial phase, to understand the code. See what the variables are. There are
some more advanced tools that I am not using on the C90. There is this
Totalview. You can ask about variables where they are used and defined.
I also made some tools myself. Perhaps they should not be called tools
but they are calling trees to see where variables are used. And understand
the data flow in the program. And we have made the code flexible, so you
specify how you want to communicate depending on the architecture, so
everything is available in the communication. You just specify by special
switches what you prefer to do and then that is also what the vendors do.
They try different switches and decide what is the first choice for them.

Informant 51

[Ce29] Real time programming doesn't fit many of the usual assumptions
about parallel programming; for instance, tuning is only necessary until the
program runs fast enough. 	 Informant 15

[Ce19] It would depend on what machine the code was going to target. We
don't want too many optimisations, because we don't know what machine
we are going to buy. We have to make sure, that we are not spoiling the
code for the vector machine, when we do specific things for the cache based
machines. So at that level, we try to make the code flexible, so it can run
well on cache based machines. When we decide which machine we are going
to buy, we are going to optimise specifically for that. Informant 52

[Ce27] We were concerned that in the production run we were going to
have some very long runs. We were anticipating 10 days of run times.
During a length of run, which gets so long, there is a high risk that the
computer itself will go down, so we could not have a single run in a single
go. So, that meant, that we had to store the state of the computation,
periodically in case the machine went down, so we could start from there
rather than from the beginning (check-pointing). Now, we had to make this
ourselves because our computer platform didn't have this built in. Check-
pointing introduced performance problems because it had to cope with all
the program's data structures. For a short run, it is not worth using check-
pointing, but is worth spending 2 hours in every 24 hours for a ten day run.
Performance has been to some degree a problem, because the algorithm was
not as efficient as originally, we hoped, we could make it. Whilst we had an
optimisation plan, there were very few possibilities that we could get the
funds to implement it. We had constraints in time and money. We have
never used a performance optimisation tool. Partly, because we didn't have

Appendix C. Tuning across organisations, people and machines 	 251

a performance evaluation tool on the Parsytec machine. We did evaluate
the performance, in the sense, that we timed some of the processes within
the algorithm. So we had some more information on this algorithm. It
never really became an issue, because we have never been able to do much
about that performance. But now, we have the ability to run the same
code both on the Parsytec Explorer and on the Cray T3D. So we have a
fair amount of power and optimisation is less significant than it was before.
There are some things, that we need to tackle, that are relatively simple
and one of them concerns the formatted or unformatted output of data. At
the moment, this is extremely inefficiently done, but it is expected we are
going to gain a lot of performance by changing the way the data is output.
Another development will be the introduction of a more efficient way to
solve the model. This will have to be included in the operational code.
So the development of the code is an on-going process and performance
optimisation is an on-going process as well.

Informant 48

C.2 Case study I: the LIBRA project

(Within the LIBRA project, two local tuners were involved in designing a
data distribution library for the code of B. A lot of time was spent in try-
ing to design a number of data distribution schemes, which would then be
tested for performance with the parallel code. The data distribution library
would get the input data set and would partition it according to the amount
of work involved at each data point. They had to transform the commu-
nications within the code to be able to use the data distribution proposed
by the data distribution library. After the code was integrated with the
distribution library, they measured the execution time of the program in
order to see how the new distributions performed compared to the regular
decomposition. Apprentice was used heavily in the beginning when they
wanted to understand what was going on with the code.)[Ce24] In the
original code, because of the NSEW communication, there was a certain
way of communicating in the regular domain decomposition. In the original
code, Parix communications were based on the OCCAM model, where com-
munication can take place through four channels. But here, we introduced
more neighbours. The other modification, we did, was that Parix doesn't
support any high level communications support so you do a broadcasting
by explicitly doing a number of messages . . . a loop of messages. So we
introduced the MPI broadcast. One of us was analysing the code that we
were given to decide whether it would be feasible to introduce this sort
of communication scheme or whether we would need to stick to the regular
scheme. And the other side of the work was that we tried to design different
decomposition strategies like these pictures here. One of the extreme things
that we thought of doing was, you typically have like these large amounts
of air with some other material in little places in the middle. So one sug-
gestion was to distribute the work on the air evenly and then you consider

Appendix C. Tuning across organisations, people and machines 	 252

the left bits in isolation to distribute them on a number of processors, but
looking at the code, it was decided that it would be extremely complicated.
If we can get an accurate estimate for the ratios for each material, then
our solution is good because it is guaranteed that each time you split the
work in half. But it depends on how accurate these estimates are, in the
first place. We can find out the accurate ratios by using timers to time
the program on the T31) which operates on a simple data set comprised a
plane of one material. Another slight complication is just that there is not
only one single cost for the cfc. It depends on the fitness and various other
features of the data sets. So we need to determine a range of values for
cfc and then experimentally plug this into the load balancing. One of the
things, that came out of that, was that the way the input has been done on
the T31) it took a lot of time some ten minutes took to read the input file.
So for short problems, it didn't matter how much we improved the code
since the I/O was so pure. At the moment, the performance has improved
2.5 times using a standard problem structure and size. The other thing is
the way memory copying is being done on the T3d and the work involved
a lot of things propagating in the workspace. And the optimisation for this
is to move memory copying expressions out of the loops. And scheduling
things in order to make better use of the cache. And a lot of things that the
compiler should do but it doesn't necessarily do them on the T31). That
became apparent with apprentice that a lot of time was spent by doing
memory copies. So that was one of the improvements. Informant 45

[Ce506] There is a kind of use plan for this code in terms of design and
use. There is also a development plan over the period of the next six years.
So, there will never be a point in time that the code will be finalised. Per-
formance to a degree is bound into that. Many of the issues in the next
versions will be concerned with performance, for example, to have a time
domain filter process that we want to put into it. Which will allow us to
down-sample the data as we generate it so that we don't have to store every
time-step, that is another performance related issue which reduces the time
we spent in outputting data. Informant 48

C.3 Case study II: development in X

[Ce530] T106L19, Nproma320 Full Grid MFL0P5207 Estim Seq Time = 99.34
Nproc Elapsed Speedup Mf lops Cornms MAXCPU NINCPU AVGCPU TOTCPU TOTVU
4 	26.07 	3.81 	1997 	1.10 24.96 24.76 24.86 	99.43 85.63
8 	13.38 	7.44 	3892 	0.76 12.62 12.33 12.45 	99.64 85.63

54 	2.13 	46.73 	24449 	0.17 	1.96 	1.40 	1.89 102.20 85.69
Comment:
The basic vector efficiency has improved by over 307.. Parallel
efficiency continues to improve particularly for the reduced grid case
where on 58 nodes the load imbalance and communications overhead at
0.28 seconds is actually less than in the T41L19 case.

Appendix C. Tuning across organisations, people and machines 	 253

[Ce39] What, I think, is hard is that you really need to know a lot about
what the compiler is doing and about what the hardware is doing. And
these relationships is not what the typical user is primarily interested. And
the scientists, the most they want to do, is ok, I want to run this code with
the optimisation flag set and that is it and I don't want to spend a lot of
time in restructuring the code so that it runs faster. But you might have to
do that, if you want to gain this small percentage of improvement. And it is
becoming a lot harder, I mean, you have these examples of what happened
on the Cray T31), where you can do a typical optimisation with unrolling
and apply that and past experience says you gain something, and then you
suddenly realise you don't gain, Then, you find out that there is a clash in
where the instructions are put into. This is hard to understand, I mean it
is not well ... If you were talking to a typical user about this you would be
talking in a foreign language. It wouldn't mean anything to him. He would
say: what do I have to do in my Fortran program to stop this. Well, you
can't do anything about it sorry. Just carry on doing what you are doing.
Do your best. Their thoughts are to write modular code writing efficient
code from the algorithmic point of view. You know we can tune things and
get things running 20% faster but they can do a lot more with algorithms,
if they decide to use a different solver, maybe there is another way of doing
the same thing. If they could use a BLAS3 routines rather than calling
BLAS2 many times, for example. Look at how solvers have improved in
efficiency over the years. It is not because computer hardware has become
better, it is because scientists have used new solvers.

Informant 50

[Ce510] We also deliver a benchmark to computer companies, so I spent
some time setting up program runs. Essentially, it is a RAPS initiative, it is
called Real Applications and Parallel Systems. Different large parallel codes
are delivered to different computer companies. Yes, this is a benchmark
suite. And the computer companies pay some money not to us but to a
company in Germany which joins together all our codes and they distribute
them to the companies. And then, all these companies can ask us come
and give tutorials how we parallelised it and made it run efficiently on their
machine. And it is one of the reasons we are interested, because we are
going to buy a parallel machine next year. We want to see if our code can
run efficiently on these machines. At the moment, the vendors are quite
interested to learn about our model and they spend a lot of time optimising
it for their architectures. Informants 51

Appendix C. Tuning across organisations, people and machines 	 254

C.4 Tuning within the group

[Ce511] Mostly on documentation, I mean if I have a colleague with a lot
of experience in something I will ask him.

Informant 42

[Ce513] Normally, you look at your code and you see what is using the most
time, in my case initially it was the inner product, and you optimise it as
much as you can and then you start looking at documentation, and you start
asking around about . . .1 need to do this: I need to sum over all processors
one way or another what is the fastest way. And it took me until two days
ago to find a way to do it faster, because shmem has a routine that does a
global sum but it took me several months to find someone who could tell
me which routine is best. Well, I was not going to use shmem with my own
program but it turns out that there is a routine that does what my routine
is doing, and then I am going to see whether this is faster and then I am
going to use that ... it has to be faster. Informant 44

[Ce517] Courses are not the most efficient way to learn about tuning a spe-
cific machine. There are some courses which are really very very advanced
or something like that but then if I just go to talk to someone who is good,
who knows their stuff, just for half an hour will make more difference than
a course.

Informant 42

[Ce800]

(Tuning consultation, first meeting among J (the expert) and T (the tuner)).
T was able to see with the help of apprentice that the square root function
was responsible for a large part of the execution time of the program. T
told J that he was thinking of changing the algorithm so that the use of
square root function could fall to half. J informed T about the existence of
another library with cheaper mathematical functions. T and J discussed the
structure of T's code. During all this time, T was drawing how the program
arrays were distributed. He described how the data distribution affected the
communication patterns in the code. J suggested that T should have a look
at some sample codes using two dimensional domain decomposition. T said
that he would read them and see what parts of them he could use. J ex-
plained the various ways to distribute data in the Craft programming model
and why the order of the loops in a nested loop mattered for performance.
T nodded but it was obvious that he had a problem understanding what J
was telling him.

(Second meeting is joined by a second expert) T reported that the current
version of the MPLAllgather function took too much time. T worked in
the same open office plan as C, one of MPI's developers. C, who happened

Appendix C. Tuning across organisations, people and machines 	 255

to be around when T was experiencing this problem with his code, helped
T by informing him that there was a new version of the MPIAllgather
function which had not yet been released with the official MPI implement-
ation. C told T how to link his program with the new MPI library and the
program performance improved. Also, C suggested to T a less expensive
way of realising the same communications in his program without using
MPIAllgather. According to T, this alternative was too difficult for him
to implement and even if he implemented it, it would be very difficult for
him to maintain it: "In one month's time, I will forget what I did". Since
E, a second expert, was attending that second meeting, T had to repeat
explaining the structure of his program. On the basis of his explanation, J
and E suggested how to best organise the communications. T had with him
a display dump from apprentice in order to convey to the experts the per-
formance of the program. The conversation focused on the most expensive
routines. T complained that he could not find the alternative maths library
in the manual pages. J said that definitely this time he was going to send
the name of the library and the names of the functions to him by electronic
mail. T said that apprentice's observations were too difficult to under-
stand: "apprentice gives too many numbers! What can I do?" After that,
E and J read apprentice's output. J started explaining to T what cache
thrashing is. T asked what to do in order to avoid thrashing. T did not
understand why the number of integer arithmetic operations described by
apprentice was so high. J suggested that T had a look at another person's
web pages to find an optimised routine for performing transpositions.

(Third meeting) The two experts discussed a problem that T was exper-
iencing and could not find a solution immediately. It took them a while
before they were able to suggest something. T said that he understood
their suggestion in principle, but he was not sure whether he could realise
it. Still, until that meeting T had not discovered where the library for the
square root function was. J promised that this time he would send him all
the necessary information. T said that he would like the experts to have a
look at the code in order to discover where cache thrashing was happening.
E explained why the loop order in nested loops mattered.

In the other case, I was aware of the standard BIAS routines, it was
that I was wondering whether the extra copy would be worth it and after
hearing from two people independently that it is worth it, I actually did it
so it is not like . . . normally, when you are optimising, you have a rough idea
of what you want to do. But unfortunately, it is an experimental science so
you have to try it to see if it actually works. Now, if it is something that
will take a lot of time to try then you go to other people and ask if it will
work. 	 Informant 4

When we find something of interest to the "community", we often
announce it in a paper or in email to our local users' groups. Informant 17

[Ce518] Being in a small porting group as above, we often discussed tech-
niques between ourselves. For example, I developed the twin debugging

Appendix C. Tuning across organisations, people and machines 	 256

technique that I mentioned, so I presented a seminar on it to our group.
Also, every software package we worked on was fully reported, with reasons
and source code changes, and we could read what had been done with other
similar software. As for developing a detailed knowledge base, this would
be useful, but one wonders about the cost-benefit trade off. Informant 1

Tuning knowledge is not something found in books or manuals but
something that someone else may tell you. In the TLM code they have made
many mistakes because they didn't know the particulars of the architecture
and these mistakes are not going to be repeated now with the experience
they gained. Parallelisation is not enough to do the job because even then
you cannot get the performance out of that. 	 Informant 47

Maybe somebody else would continue and I would need pointers
to the most recent versions or I would leave them pointers or simply I
would look at the most recent time of creation. I would enumerate all the
parameters to him. The first thing would be to produce the document and
sit down with him and give him a verbal explanation 1 . 	Informant 45

[Ce504] Mostly for our own use. However, we have been talking
about sharing these experiences with others. The main key is
time. It takes a tremendous amount of time to document.

Informant 19

[Ce503] C rnp 21/3/95
C rnp removed if statement from do loop
C rnp modified do loop order
C rnp halved work done in do loop and added transpose copy

Informant 40

{Be628] is presented in Appendix B.

[Ce800] is presented in section C-4.

C.4.1 Somebody else's code

[Ce501] And in terms of documenting that is the design itself as such, be-
cause we are dealing, with people who won't have experience with parallel
programming as such, so the documentation of the actual design is like a
report, because we did write, started documenting in CSP. Which was fine,
but nobody studied it besides Chris (the project leader) and me, so it was

'Ironically, this respondent had to delay moving over to his new job in order to finish
with the implementation and the documentation of the project.

Appendix C. Tuning across organisations, people and machines 	 257

pointless to do it really. So we were back in writing a report of what is
going on. You know do the usual functional mapping and the requirements
mapping that we would do with the sequential code.

Informant 47

(Informant 51 has a interdisciplinary background in Computer Science and
Meteorology. This, made parallelising and porting a large weather forecast
code easier for him since he could understand what the scientific part of
the application was doing. The well structured code and the ability to talk
to colleagues made parallelisation easy, despite the fact that a lot time was
spent initially in understanding the code.) [Ce2] Parallelising the code
was not so difficult even-though there was only 10 pages of documentation
for about 300,000 lines of code. It is quite well structured the program.
The general layout and design have been designed by a few people and it's
only one person who is responsible for the overall design so it is quite well
designed. The project is new; it started in 1988 and it is written according
to new programming standards. I have a master's degree in meteorology
and I have always worked in numerical applications, so it was easy for me
to understand the code. I know all the equations. I've never had any
courses or read any books on parallel programming, so I talked to some of
my colleagues, but I didn't find parallel programming difficult. It is really
down to understanding the data distribution, the data layout and the data
flow. That is what takes most of the time when you have a big code. To
understand the serial code it takes a lot of time, you have to understand the
data layout, what is globally used and what is only used locally. Informant
51

(Respondent 50 is an experienced parallel program tuner. He has not done
parallel programming as such, rather he has been parallelising and optim-
ising other people's code mostly on shared memory machines for the last
five years. He approaches parallelising other people's code as a task where
it is important to be able to isolate the pieces of code, where parallelisation
can be introduced, from the rest of the code. On the other hand, it is vital
to be able to obtain more feedback from the original developers of the code,
when parallelisation depends on how the parallelised code can be integrated
with the serial part of the application. Currently, he is employed by a large
European institution to help them port and optimise their codes on a num-
ber of parallel machines.) [Ce3] The codes that I've come across tend to be
very readable. Of course, there could always be some more documentation.
I tend not to be interested in the whole of the code just the you know . . .20
routines that you end up looking at, but if you want to parallelise code you
probably need to understand a lot more sometimes. It may be located in
three or four routines and then you look at those routines to understand
what is going on. Sometimes, having a feedback, describing what a code
does, helps during an integration problem or something like that. And you
say . . . oh that's good, I could parallelise that. I mean, it really depends
on the application you are porting. For the overhead communication, you
know, a very very simple model is the wall-clock time equals to computation

Appendix C. Tuning across organisations, people and machines 	 258

plus communication. And you have to understand from the application you
are porting, a parallelisation strategy, the cost of the communication, how
many synchronisations you have to do, and you quickly understand if you
are going to be successful in your application. You can start from the serial
version and say I am going to work with the solver and just decide to paral-
lelise that. And ignore the rest of the code. Which it runs still but it runs
serial. You don't have to worry about where data is in some architectures.
Informant 50

[Ce509] I didn't have any courses. I prefer not to follow courses. I prefer to
read about it myself and it is so simple. What has to do with the message
passing. If you are not using HPF or anything like that, if you use message
passing you have only to know about send and receive and you have to know
the syntax of these. Now, I am designing some new code and also when I
did it the first time it was more reading the serial code, how it is organised
and talking to somebody who wrote that code, "is this really independent so
can anyone use it in parallel" and then to make sure that I am not using the
same quantity at both latitudes. It was more design work than anything
to do with message passing. Or 11FF. For me parallel programming is
to understand the dependencies in data and the data structures and the
data flow in the program and when you have understood that you can cut
everything into pieces and the last part is to really write the code that does
the message passing. It is not more than 10% of the time. There were
two people working here before I came and they were looking at different
strategies to parallelise our models and trying it on simple models, 1,000
lines versions. They didn't leave any documentation apart from some papers
they wrote. But they were here while I was here. We worked together here
for a year. So I talked to them and it was more this way. Informant 51

[Ce4] I was working with a very old C program and it was so messy it was
very difficult to find which parts to parallelise.

Informant 42

C.5 Case-study III: EPCC User Support Service

[Ce64] Q: I have just been reading the optimisation section of the CM For-
tran manual (Version 1.0, March 1991). In here, it mentions various tech-
niques one should adopt in writing code for the CM to speed up execution
and which will not be necessary in future releases of the compiler. For
example, unwinding serial loops. What I should like to know is if these
techniques are now necessary - i.e. has the compiler been updated since
1991. If it has been updated, could you tell me where I can find some
information on optimisation techniques for the current compiler version.

A: Since version 1.0 of the CMF compiler there have been a few releases:
CMF 1.1, CMF 1.2, CMF2.1.1-2 and CMF2.2(CM-5 only). The optimisa-
tion notes are very out of date. There is now a complete manual on this

Appendix C. Tuning across organisations, people and machines 	 259

topic "CM-5 CM Fortran Performance Guide", but as its title suggests is
mainly of relevance to the CM-5 compiler and this has much more aggressive
optimisations than the CM-200 compiler 2.

In particular, to comment on the "CM Fortran Optimisation Notes: Slice-
wise Model", which I assume is what you have. For the CM-200 compiler:
it is still true that communication will break a PE code block. The com-
piler is better at eliminating and reusing temporaries. Array sizes should
be large for efficiency. The compiler is now better at serial optimisations
but nowhere near as good as the CM-5 compiler, particularly for FORALL
statements. So it normally pays to unwind this:

integer a(n,m)
cmf layout a(:serial,:news)
s = sum(a,dim=1)

[Ce63] Q: Do we loose a lot of efficiency if we have computation arrays which
have dimensions (x, y, z) which are NOT powers of two? For example, would
an array 1150X900 take a lot more computing time than a 1024x1024 array?
I'm asking because it was the case in some earlier release of the CMF.

A: There may be a loss of efficiency but it is not easy to quantify. The first
release of the CMF compiler had a fieldwise memory model and arrays were
padded up to the next power of two on each dimension. Hence, performance
of an array (300,300,300) would be similar to one of size (512,512,512). With
the introduction of the slice-wise model (now the default) the situation
changed. The array elements are now laid out on the processors (256 or 512
Weiteks) so that there are a multiple of 4 elements per processor. Hence,
the padding is not so dramatic. However, an array that is not padded
(extra garbage elements added) will be operated on more efficiently. You
can tell if an array is padded by examining the output from the command
call cmLdescribe_array(array) which is described in the Utilities Library
reference document. The situation is complicated by the fact that some
communication routines and CMSSL can operate more efficiently on arrays
that are powers of two. To be sure you have to try it for your particular
application. Qi

[Ce65] I have faced recently a quite weird problem on the T3D and wonder
whether somebody else ever noticed the same. I don't want to rise a fuss
upon this case, but I'd be grateful if you can advise me something and
maybe check my runs. I've noticed recently that the time per iteration has
CHANGED for the SAME job, namely, now it is getting slower by a factor
between 2 and 4! For example, this table shows several subsequent runs of
the same problem on 128 PE's and the time spent:

2 CM-200 was the machine used by the particular user.

Appendix C. Tuning across organisations, people and machines 	 260

run time/iteration (s) when
1 55.3 26 Oct. 23:00
2 59.8 1 Nov. 12:30
3 62.05 1 Nov. 17:10
4 58.6 2 Nov. 02:14

but 	???????
5 209.4 S Nov. 12:23

The same happened on 6th of November with this job. Similar behaviour
I have observed with another job which used 64 PE's. In this case, it was
slowed down by a factor of 4-6 for all runs performed after 2nd of Novem-
ber. So, I cannot say whether there is any correlation with the number of
PE's that would mean that this is a communication problem. A special
investigation is probably needed which I cannot accomplish myself at the
moment. The same for a 32 PE's job: 48 sec for 4 iterations some time ago
and 115 sec for only 2 iterations now. In all this cases, the same source code
has been used. But I have RECOMPILED the code after 1st of November
with the same level of optimisation, so that this might be some compilation
problem.

What do you think of that? It is extremely important to understand why
this is happening since it affects the computer time.

A: The C compiler was updated on November 2nd and the Fortran compiler
on September 4th. You might want to try compiling with the old compilers
and see if it makes any difference. If it does, let us know and we will try to
find out what went wrong with the new compiler. This change cannot be
due to the hardware upgrade because this was completed on October 19th
and your performance change occurred on November 2nd. There were some
changes to the YMP made around the beginning of November and the YMP
has been very heavily loaded since then. The load should go down again
when the J90 becomes available. You would have to be very 10 dominated
for YMP changes to make such a large change to your performance. Are
you doing any 10 in this loop? The key limit would be number of 10
transaction rather than number of bytes. The other possibility is that you
are using some other operation that involves the YMP. For example some
of the timing functions operate locally on T31) nodes and others read the
clock on the YMP. The CETEP code is known to require a great deal of
communication so it is also possible that communication plays a part. From
time to time PEs in the T31) show errors and are mapped out and replaced
by spare PEs The communication performance will be slightly changed when
this is in effect because messages have to route out to the spare PEs on the
edge of the machine. If you put the following line in your scripts just before
starting the parallel program you will be able to tell if this happened.
sleep 60; mppstat -a > mppstat.log) &. This command will wait for 60

3a directory was mentioned

Appendix C. Tuning across organisations, people and machines 	 261

seconds (to give the mpp job time to start) then run mppstat. This includes
a report on every mpp job running at the time including information about
redundant nodes. If the job runs slowly this will let you know if it was using
any redundant PE at the time. Q19

[Ce58] A: If you are not using the shmem 4 routines, I cannot say what might
be the problem. However, if you are using shmem_get or _put style routines,
there may be a problem with cache coherency. Apprentice works by putting
subroutine calls into your code at selected points, and if your code has not
been explicitly flushing the cache before your communications, it is possible
that your received data is being overwritten by cache lines before it is used.
There is a shmem library cache flush routine which you should call explicitly
to prevent this. Q33

[Ce61] I now have my code running on 32, 64 and 128 processors on the
T31) but I cannot run on 256. The reason for this is that I use domain
decomposition and run 256 identical copies of my code, each of which opens
and reads input files. This means I need more than 256 file descriptors
(taking into account the essential descriptors for standard I/O). However,
UNICOS only allows me a maximum of 256. Would it be possible for the
maximum number of file descriptors to be increased ?

A: In the next major release of IJNICOS this limit will be under user control
but an upgrade to this version is not scheduled here for a few months. The
main bottleneck in doing I/O however is not the size of the I/O packets
being transferred but the number of packets (ie. latency is a much bigger
concern than bandwidth, due to the nature of initiating a system call on
the YMP from the T31)). By buffering up your input/output data and say
using one master processor to gather/scatter this data you may make your
I/O more efficient. 256 pes all wishing to "talk" through the I/O gateway to
the YMP cripples performance. It is much better/faster to use the internal
communication network. Q44

[Ce60] Q: I and other members of my consortium would be very interested
to know from you if you have any code, in any language (preferably Fortran)
that actually runs at close to 38 Gflops on the whole machine (i.e. runs at
close to 150 Milops on one processor) or runs at 30 to 50 Mflops on one
processor. We really could learn a lot from any chunk of code, however
short, with such performance. Q32

4 Using the optimised low-level communication routines, available on the T3d, is
very difficult since users have to handle explicitly cache coherency and synchronisation
issues. A large number of queries were concerned with how to get these routines work
correctly. The problem is exacerbated because the available documentation is not always
straightforward to understand or complete.

Appendix C. Tuning across organisations, people and machines 	 262

Q: I've used apprentice to see the performance of my code. The
observations for my code are:
Detailed Description: The combined losses due to single instruction issue,
instruction cache and data cache activity are estimated to be 10442550
psec, or 8.33% of the measured time for this program. The combined ex-
penditure of time for output routines is measured to be 711246 tsec, or
0.57% of the measured time for this program. The combined expenditure
of time for input routines is measured to be 235400 psec, or 0.19% of the
measured time for this program. Navigation Information: The current se-
lection may be improved by up to 11389196 psec. The greatest aggregate
improvement (6193874 tsec) may be gained by improving the children of
EVOLUTION -STUDY. The synchronisation or work construct which offers
the greatest potential improvement (3587656 tsec) is STMTS@26. This
construct is a part of EVOLUTION.

With these comments, I don't understand if my program is good or not.
It seems that I loose 8.33% of the time. I suppose it means that 8.33% of
the time only one process works. But what I'd like to know is to how to
improve my code. What is "children of a subroutine"? And what is the
work construct? I've got no subroutines named struts! At the line 26 of
evolution there is a call to a random number generator which is not the one
supplied by cf77. Can in-lining help the problem ? Q45

Q: I have a question concerned with the Apprentice tool. In the
COSTS window, the bar chart always shows that Integer Adds is the dom-
inant operation in the code. However, I expect that the code should perform
floating point operations most of the time. Is there a conversion from float-
ing point operation to integer operation inside the T31)? This will affect
my judgement about how fast the code runs. In the OBSERVATIONS, two
measures are printed:

floating point operations per second.
integer operations per second.

Usually, measure 2 is twice as large as measure 1. Only when I know which
type of operation is dominant in the code, can I determine how fast the code
actually runs. I noticed that after the new cl?7 compiler was installed, the
ratio of measure 2 and measure 1 has decreased for the same calculation.

A: If you have a fragment of code like

a(i,j, k) = b(i,j, Iv) * c(k)

This line contains only a single floating point operation but also contains
instructions to do address calculations and load and store operations. The
address calculations account for the integer instructions. In the worst pos-
sible case, the address calculation for a 3 dimensional array could take 4
integer operations. Integer operations can also occur in IF statements and
DO loops. Floating point operations are not converted to integer opera-
tions. The ratio of iops to flops changes between compiler versions because
as the compiler improves it is able to perform the address calculations using

Appendix C. Tuning across organisations, people and machines 	 263

fewer instructions on average. Compilers still leave a bit to be desired. You
can improve performance by making small changes to the source code like
unrolling loops by hand or introducing scalar temporaries. 	 Q25

In the next case, the programmer was using a particular makefile men-
tioned in some local on-line document, which among other things contained
the performance instrumentation enabling flag. The programmer did not
even know the purpose of the flag:) [Ce59] A: The compilers were up-
graded last Wednesday. The only bug we have reported on them at the
moment are a few source files that crash if compiled with the -Ta flag en-
abled. Nobody else has reported differing results yet, but as we know there
is a problem with -Ta; your problem may be related to this. The easiest
way to check if this might be a compiler bug is to try with the old compiler
which is still available under the name cf776102. The -Ta flag enables the
apprentice performance tool. Unless it is badly broken in the new versions,
it should not change the results. Apprentice inserts extra code that gathers
runtime statistics and so it will have some impact on performance. You
should always turn this flag off unless you are intending to run apprentice.
(The -g flag has a much greater impact on performance because it disables
all compiler optimisation. you should always remove -g unless you are us-
ing the debugger). When first declared, variables contain whatever values
happened to be in memory at the time. Turning the -Ta flag on and off
could change these values and therefore gives rise to your problem.

Q58b

Appendix D

Findings of VISPAT's empirical

testing

D.1 List of tasks

This section reproduces the sheet of paper which listed the tasks which had to be
performed by the evaluators during the empirical testing of VISPAT.

Navigation Display

The Navigation Display presents you with the sequence of phases for every process. Each
process has a unique number which identifies it in the MPI_COMMWORLD commu-
nication context. Execution can be replayed in various ways by using the appropriate
buttons at the bottom of the display.

Every process consists of a single big phase called ring-shift at a first level. This single
phase consists of several other subphases at a second level of expansion.

Start the replay of the program execution.

Find out what is the first subphase of the ring-shift phase of process number 0.

Replay the execution of the program at the second level of phase expansion.

Find out the exact time when the 3rd phase of process 3 started.

Change the time unit and the scale width before you proceed with task number 7.

Find the longest phase in the execution flow of process 3.

Make the display depict only user defined phases.

Communication Display

Animate the communications of 2 and process 3 in a continuous way.

Set the animation time to zero and make the communication display to show the
third communication event of process 3. Which is the start time of this communication
event?

Find the second last communication event of process number 1.

Statistics Display

264

Appendix D. Findings of VISPAT's empirical testing 	 265

Find the maximum waiting time of process 2.

Try to find out the instance number of the MPI_Wait call which corresponds to the
above time.

Profile Display

Find out which process has the longest sum of MPI_Wait calls.

D.2 Qualitative and quantitative findings

This section is concerned with the evaluators utterances. Considered separately for
each task, each evaluator's comments were interpreted and classified as negative or
positive. Additionally, this section describes most of the unexpected evaluator actions
and presents the evaluators requirements.

uc 	used feature correctly
uw used feature wrongly
nt 	did not think to use feature at all
hu 	helped to use feature
eu 	experimented with using feature
gu 	guessed correctly

Table D-1: Ways of interacting with the tool.

ne negative comment
po positive comment
un unexpected user action
re 	requirement
or 	old requirement

Table D-2: Different kinds of utterances.

D.2.1 Task 1

Negative comments

Evaluator i:"I don't see why animation is useful. It is confusing, that although the
tool starts animation, we can see everything a priori by using the scroilbar."

Evaluator 1: "The tool doesn't give a precise idea about the current animation time."

Evaluator 1: "The fact that the current time is on the left is confusing. We are able
to see the future but not the past."

Evaluator 1: "Animation is useless."

Appendix D. Findings of VISPAT's empirical testing 	 266

Evaluators
1 2 3 4 5 6 7 8 9 total

ne 4 2 2 2 0 0 0 0 0 	10

	

O 0 0 1 0 0 0 0 0 0 	1

on 1 0 1 4 0 0 0 0 0 	6

Fe 3 2 0 1 0 0 0 0 0 	6

or 	2 1 0 0 0 0 0 0 0 	3

Evaluators

1 	2 	3 	4 	5 	6 	7 	8 	9

go to the beginning gc gc gc gc gc hu ge hu gc
rewind 	gc gc gc gc gc gc gc gc gc

play 	gC gc gc gc gc gc ge gc gc

stop 	 L1C UC UC UC UC 	IC UC UC UC

step 	or hu uc hu uc hu uc hu uc

fast forward 	gc gc gc gc gc gc gc ge gc

goto the end 	gc gc gc gc ge gc gc ge gc

Evaluators
1 2 3 4 5 6 7 8 9 total

alone 	* * 	 * * * * * 	S 	9

with some help 	 0

helped 	 0

alt.strategy 	 0

Table D-3: Quantitative findings from Task 1.

Evaluator 2: "It moves slowly. It is extremely slow. I would like to speed it up."

Evaluator 2: "I don't like the scrollbar."

Evaluator 3: "The scrollbar is difficult to use."

Evaluator 3: "The scrolibar keeps moving after I click on it."

Evaluator 4: "I don't recognise my program."

Evaluator 4: "I am surprised. I was expecting things to happen. Instead, I have an
empty display."

Positive comments

1. Evaluator 3: "Apart from the way you can control the scrollbar, I can say I like it."

Unexpected user actions

1. Evaluator 1: "In the beginning, it is not clear that the tool does animation'."

'Evaluator 1 discovered the function of the scrollbar before he pressed play.

Appendix D. Findings of VISPAT's empirical testing 	 267

Evaluator 3: "I thought that what has been drawn has happened already."

Evaluator 4: "What is the ring-shift phase?"

Evaluator 4: "All processes start at the same time?!"

Evaluator 4: "I am surprised. I was expecting things to happen. Instead, I have an
empty display. What has happened?"

Evaluator 4: "How can one understand that animation goes slowly? Does one have
to know the maximum number of timesteps?".

Requirements

Evaluator 1: "I would like to have the moveable time cursor."

Evaluator 1: "I would like to have the current time in the middle, the past on the
left and the future on the right."

3.Evaluator 1: "The only functionality I would like to have is to be able to zoom in and
out in the navigation display."

4. Evaluator 2: "I'd like to be able to say what speed I would like it to play."

5.Evaluator 2: "The scrolibar should be able to set a new value for the current animation
time once it is dragged to a new position."

6.Evaluator 4: "It would be nice to have some text above the hi-fl buttons for the people
who don't understand the metaphor immediately."

D.2.2 Task 3

Evaluators
1 2 3 4 5 	6 	7 8 9 total

p0 0 2 1 2 0 	1 	0 0 0 6

ne 0 3 2 1 0 	0 	0 0 1 7

un 0 2 2 2 2 	2 	1 3 1 15

re 0 6 1 1 1 	0 	1 0 0 10

or 0 2 1 1 0 	0 	1 0 0 5

Evaluators

	

1 	2 	3 	4 	5 	6 	7 	8 	9

unfold uc uc hu uc nt+uc uc uc uc uc

Evaluators
1 2 3 4 5 6 7 8 9 total

alone 	* 	 * * * * 	* 	6

	

some help 	* 	 * 	2

helped 	 * 	 1

alt, strategy 	 0

Table D-4: Quantitative findings from task 3.

Appendix D. Findings of VISPAT's empirical testing 	 268

Negative comments

Evaluator 2: "I don't like the fact that the only indication of movement is the little
flickering of the time indications at the bottom corners of the display."
Indeed the time unit has by default a very small value while evaluator 2's program
comprised some very long phases. The default value of the time field should be set
according to the average phase duration.

Evaluator 2: "The numbers and the text on the phase box sometimes get spoiled."

Evaluator 2 : "Everything has disappeared. I don't know where all the info has
gone. I was expecting that as everything was displayed before I would have everything
chopped down.
Evaluator got an empty display because the MPI phases had not happened yet. He did
not seem to understand that. He used the scrollbar and he found the phases.

Evaluator 4: "The ring-shift phase is not so interesting."
At that time, evaluator 4 did not know that he had other lower level phases.

Evaluator 9: "I don't like getting an empty display."

Positive

Evaluator 2: "Ok so you have here the exchanges. Good."'

Evaluator 2: "I like here the way the name of the phase doesn't disappear when the
start of the phases box disappears."

Evaluator 4: "It is very nice the fact that you can unfold only the selected phases if
you want."

Evaluator 4: "That is good !3,,

Evaluator 6: "I like the metaphor for setting animation time to 0."

Unexpected user actions

Evaluator 2. Evaluator 2 thought that unselect all could toggle to select all.

Evaluator 2: "I don't understand what the empty space between the phases are."

2 H liked the fact that he recognised some of the phases in his program.

'Evaluator 4 liked the fact that he could see the expanded phases after he rescaled
the Navigation display.

Appendix D. Findings of VISPAT's empirical testing 	 269

Evaluator 3. Evaluator 3 invoked the phase description box and tried to click on a
subphase there.

Evaluator 3. Having faced an empty display, after a phase expansion, Evaluator 3
slided the scrollbar back to the left to see if there were any phases to the left of the
current time 4.

Evaluator 4: "Something is wrong. 5,,

Evaluator 4. Evaluator 4 was sure whether or not the processes of his program were
on the same processor.

Evaluator 5. Evaluator 5 chose filter and then unfold.

Evaluator 5. Evaluator 5 pressed the play button after animation had reached the
end of file 6 .

Evaluator 6. Evaluator 6 expanded the phases but since nothing was displayed on
the screen she assumed that the execution can be animated only once. Also the message
put her off but finally she completed the task.

Evaluator 6. Evaluator 6 forgot that the go to the beginning button can be used to
set the animation time to 0.

Evaluator 7. Evaluator 7 asked about what the time in between two rectangles was.

Evaluator 8. Evaluator 8 was put off by the message and cancelled the unfold
operation in order to select a phase first.

Evaluator 8: "I feel as nothing has happened. 7 "

Evaluator 8. Evaluator 8 needed help with the scrollbar.

Evaluator 9: "I lost the phases! 8"

Requirements

1. Evaluator 2: "I would like an automatic way to select all."

'This means that there is a need for an indication whether there are phases to the
left or to the right of an empty frame in the Navigation display.

5 Evaluator 4 was confused by the empty Navigation display after he expanded the
upper level phases.

6 An end of animation message is needed.

7When Evaluator 8 expanded the phases, the frame of the Navigation display was
empty because the MPI calls did not appear immediately.

8Evaluator 9 did not see any phases after he expanded.

Appendix D. Findings of VISPAT's empirical testing 	 270

Evaluator 2: "1 would like to have the function select all."

Evaluator 2: "I would like milestones so that animation can go past them and you
can know where you are in the animation time."

Evaluator 2: "I would like to to have the line numbers of the code."

Evaluator 2: "It would be nice to scroll through a source code window. 9,,

Evaluator 2: "I would like the tool to hide the fact that my program consists of four
processes sharing the same processor."

Evaluator 3: "1 would like to select more than one phase at the same time."

Evaluator 4: "Colour would be usefull for the identification of the small phases."

Evaluator 5: "A message that animation has reached the end of file is needed."

Evaluator 7: "I would like to have a look at the source code."

D.2.3 Task 7

Evaluators
1 2 3 4 5 6 7 8 9 total

	

0 0 0 0 0 0 0 0 0 0 	0

	

He 1 0 2 0 0 0 0 0 2 	5

	

nix 	0 	4 	2 	1 	3 	1 	0 	1 	0 	12

	

re 	2 	1 	2 0 3 0 4 0 3 	15

	

or 	2 	1 	2 0 1 	0 4 0 3 	13

Evaluators

	

1 	2 	3 	4 	5 	6 	7 	8 	9

filter uc+hu nt+hu hu uc nt+hu uc ho uc uc

Evaluators
1 2 3 4 5 6 7 8 9 total

	

alone 	 * 	* 	 * 	3

	

some help 	* 	 2

	

helped 	 * * 	* 	* 	 4
alt, strategy 	 0

Table D-5: Quantitative findings from task 7.

Negative comments

1.Evaluator 1: "I didn't like the stop message."

'He had written the program a long time ago and he could not remember it.

Appendix D. Findings of VISPAT's empirical testing 	 271

Evaluator 3: "I haven't got a clue."
This was entered when the stop sign appears.

Evaluator 3: "I don't understand the word filter. Does it mean out or in?"

Evaluator 7: "The feedback of the tool is a bit slow."

5.Evaluator 7: "I didn't like the blank space in the beginning when you unfold for
example."

Evaluator 9. Evaluator 9 spotted the inconsistency between application and user
defined.

Evaluator 9. Evaluator 9 didn't like that everything disappears.

Unexpected user actions

1.The stop message confused evaluator 9 and he tried to select more phases. Evaluator
9

2.Evaluator 4. The stop sign confused evaluator 4.

Evaluator 6. Evaluator 6 saw nothing on the display and thought that she had to go
up one level.
She used the scrollbar to search for phases and finally understood what was happening.

Evaluator 2: "I could filter out to see what happens."

Evaluator 2. The evaluator clicked wrongly on the display menu.

Evaluator 2. Evaluator 2 thought that since there were not any phases on the
Navigation display after the filter operation these phases had not happened yet.

Evaluator 2. Evaluator 2 thought that filter meant filter out.
Finally he found out that it meant filter in because he could select only one option. And
finally he realised that his program did not have any user defined phases.

8.Evaluator 3. Evaluator 3 could not find filter. He tried unfold and even when he was
told to keep the user defined phases he did not understand it. He thought that filter
meant filter out.

9.Evaluator 3. Evaluator 3 tried to click on the empty area on the Navigation display
in order to unselect the selected phases.
He said that he knew that he could do this in idraw and he thought that maybe he could
do the same with VISPAT. He said that he had not liked that feature because in order
to unselect only one phase he had to unselect all the phases at the same time. He did
not discover the unselect all option.

Evaluator 5. Evaluator 5 did not think of pressing filter and said that he had to
quit the tool to go to the upper level phases because these were the only ones that were
user defined.

Evaluator 5. He tried to rescale the display to find the user defined phases

Appendix D. Findings of VISPAT's empirical testing 	 272

Evaluator 8. Evaluator 8 clicked on options and because options had no menu
underneath she got confused and said that she did not have any options. In reality,
options had already been opened.

Evaluator 5. Evaluator 5 unselected manually all the phases.

Requirements

Evaluator 1: "I would like a message explaining more what has happened."

Evaluator 1: "Filter should mean filter in because users should be able to specify what
they want to see."

Evaluator 2: "I would like the word application to be changed to user defined."

Evaluator 3: "I would like to be able to select more than one kind of phases to keep
in."

Evaluator 3: "It would be nice to be able to filter more than one kind of phases."

Application vs user defined confused Evaluator 3 but he selected application because
nothing else was applicable. 	He said that he was helped because he could select only
one phase. After he got an empty display he thought that he had filtered all the phases
out.

Evaluator 5: "It would be nice to be able to filter a phase with a particular name."

Evaluator 5: "Being able to make the tool display automatically the first phases
would be nice."

Evaluator 5: "A message is needed."

Evaluator 9: "It would be nice to have two markers."

Evaluator 7: "It would be nice to use colour for the different phases."

Evaluator 7: "I would like to be able to fold phases up and down."

Evaluator 7: "I would like the line number along with the MPI calls in the popup
window."

Evaluator 9: "1 would like to be able to reverse all the user actions."

Evaluator 9: "I would like to be able to select and create my own collection of
phases."

Evaluator 9: "It would be nice to be able to have an un-filter operation."

13.2.4 Task 9

Appendix D. Findings of VISPAT's empirical testing
	

273

Evaluators
1 2 	3 4 	5 6 	7 8 	9 total

0 0 0 	1 2 	1 1 	1 0 	0 6
ne 1 0 	2 1 	4 0 	0 0 	0 8
on 0 0 	2 0 	1 3 	0 0 	0 6
Fe 1 0 	1 1 	2 0 	0 0 	1 6
or 1 1 2

Evaluators
1 2 3 4 	5 6 7 8 	9

comms uc nt-J-hu hu hu 	uc nt+hu nt+hu nt+hu 	uc
textual order 	uw+hu nt+hu hu hu 	uc ho uw-fhu hu 	hu

next uc nt+hu hu or 	uc nt-f ho uc hu 	uc

1 2 3 4

	

some help 	*

helped 	 * * *

	

alt, strategy 	* 	*

Evaluators
5 6 7 8 9 total
* 	 1

* 	2
* 	* 	* 	6

2

Table D-6: Quantitative findings from task 9.

Negative comments

Evaluator 1: "The order of the text in the display is not intuitive."

Evaluator 3: "I can't move this."

Evaluator 3: "I don't think that the textual order is natural."

Evaluator 4: "1 think you expect that most of the text goes up."

5.Evalvator 5: "I don't think it is easy to handle the textual display in order to move
it away from the Communication display."

Evaluator 5: "The order in the textual display is going to be confusing for the users."

Evaluator 5: "I don't see why time should be on the right. If the time were on the
left the order of the presentation of the text would be more obvious."

Evaluator 5: "There is a lot of wasted space on the left because of the way information
is presented."

Positive

Evaluator 3: "Now that I know about the textual order it is easier."

Evaluator 4: "That is very useful."

He meant the textual description

3.Evaluator 4: "That is a breakdown of what is going on in the communication display.
Good."

Appendix D. Findings of VISPAT's empirical testing 	 274

4. Evaluator 5: "I like the communication event description display. It is very helpful."

5.Evaluator 6: "I like the processes layout because it is the way communication in MPI
happen in contexts."

6. Evaluator 7: "I like that."
He meant the communication event description display.

Unexpected user actions

1. Evaluator 3. Evaluator 3 confused the concepts of event and end of event.

2.Evaluator 3. Evaluator 3 thought that a non-blocking event is always pictured in red.

Evaluator 5. Evaluator 5 thought that time in the communication event description
display was missing.

Evaluator 6. Evaluator 6 confused red and green for blocking and nonbiocking calls
respectively.

Evaluator 6. Evaluator 6 guessed ok about the empty (waiting) and filled (non-
blocking) blobs.

Evaluator 6. Evaluator 6 tried to perform this task using the Navigation display.

Requirements

1.Evaluator 1: " The order of the text presentation in the textual display should be the
other way around."

2. Evaluator 3: "I would like to click on a event on the textual display and make the
Navigation display to go to this event."

3.Evaluator 4: "I would like some relation to the Statistics display to know how much
a process is waiting idle."

4.Evaluator 5: "The time on the textual display should be on the left."

5. Evaluator 5: "The textual display should resize as well."

6. Evaluator 9: "I would like to be able with the next button to go to the first commu-

nication event."

Appendix E

Publications

"Performance Evaluation and Visualisation with VISPAT". In Third International Con-
ference on Parallel Computing Technologies. V. Malynsky et al. (eds). St. Petersburgh
Russia, 1995. Lecture Notes in Computer Science v. 964, pp 180-186. Springer Berlin
London.

"The Tuner's Workbench: A Tool to Support Tuning in the Large". Proceedings of the
Workshop on Parallel Programming and Computation (ZEUS '95). P. Fritzson et al.
(eds). Linkooping Sweden, 1995, pp 212-221. lOS Press.

"The Design of a Tool for Parallel Program Performance Analysis and Tuning". Proceed-
ings of the Working Conference on Programming Environments for Massively Parallel
Distributed Systems. K. M. Decker et al. (eds). Monte Verita Switzerland, 1994, pp
321-332. Springer Verlag.

"Applying Human Factors Techniques to the Design of a Tool for Parallel Program
Performance Analysis and Tuning". Proceedings of the Sixth International PARLE
Conference. C. Halatsis et al. (eds). Athens Greece, 1994, pp 749-752. Springer-Verlag.

"Performance Analysis Tools for Parallel Programs". Training and Education Series
Report. Available from the World Wide Web at the URL: "http://www.epcc.ed.ac.uk ".

"The Parallel Tools Consortium". Training and Education Series Report. Available
from the World Wide Web at the URL: "http://www.epcc.ed.ac.uk ".

"Computer Science Research in High Performance Computing". Training and Education
Series Report. Available at the URL: "http://www.epcc.ed.ac.uk ".

275

Bibliography

A. Agarwal, R. L. Sites, and M. Horwitz. ATUM: A new technique for captur-
ing Address Traces Using Microcode. In 13th Annual International Symposium
Computer Architecture, pages 119-127. IEEE CS Press, 1986.

D. Allen, R. Bowker, K. Jourdaneis, J. Simons, S. Sistare, and R. Title. Data
Visualization and Performance Analysis in the Prism Programming Environment.
In N. Topham et at., editor, Programming Environments for Parallel Computing,
pages 37-52. Elsevier Science, 1992.

R. J. Anderson. Representations and Requirements: The Value of Ethnography
in System Design. Human-Computer Interaction, 9:151-182, 1994.

J. Annett, K. D. Dunkan, R. B. Stammers, and M. J. Gray. Task Analysis.
Training Information, (6), 1971.

R. Aydt. The Pablo Self-Defining Data Format. Department of Computer Sci-
ence, University of Illinois, ftp-able from bugle.cs.uiuc.edu , July 1994.

B. Bacci, M. Danelutto, S. Orlando, S. Pelagatti, and M. Vanneschi. P3L: a
Structured High-level Parallel Language and its Structured Support. Concur-
rency: Practice and Experience, 7(3):225-255, 1995.

T. Ball and J. R. Larus. Optimally Profiling and Tracing Programs. In 19th
Annual ACM Symposium on Principles of Programming Languages, pages 59-69.
ACM Press, 1992.

P. C. Bates and J. C. Wileden. High Level Debugging of Distributed Systems:
The Behavioral Abstraction Approach. The Journal of Systems and Software,
(3):255-264,1983.

A. Beguelin, J. Dongarra, A. Geist, R. Manchek, K. Moore, and V. Sunderam.
PVM and HENCE: Tools for Heterogeneous Network Programming. In J. J. Don-
garra et al., editor, Environments and Tools for Parallel Scientific Computing,
pages 139-153. Elsevier Science, 1993.

N. Belkhatir and W. L. Melo. Towards an Integration of Software Product and
Software Process Modelling. Integrated Software Engineering, 3(l):36-50, 1996.

276

Bibliography
	 277

R. K. Bellamy. What does pseudo-code do - a psychological analysis of the
use of pseudo-code by experienced programmers. Human-Computer Interaction,
9(2):225-246, 1994.

T. Bemmerl. Programming Tools for Massively Parallel Supercomputers. In
J. J. Dongarraet al., editor, Environments and Tools for Parallel Scientific Com-
puting, pages 125-136. Elsevier Science, 1993.

T. Bemmerl and P. Braun. Visualization of Message Passing Parallel Programs
with the TOPSYS Parallel Programming Environment. Journal of Parallel and
Distributed Computing, 18:118-128, 1993.

T. Bemmerl and T. Ludwig. MMK - A Distributed Operating System Kernel
with Integrated Dynamic Load-balancing. In H. Burkhart, editor, CONPAR90,
VAPP IV Lecture Notes in Computer Science, Vol. 457, pages 744-755, Zurich,
1990. Springer-Verlag.

T. Bemmerl and B. Ries. Lecture Notes in Computer Science, volume 794, chapter
Performance Tools on Intel Scalable High Performance Computing Systems, pages
76-88. Springer, May 1994.

A. Bequelin, J. Dongarra, A. Geist, and V. Sunderam. Visualization and Debug-
ging in a Heterogeneous Environment. Computer, 26(6):88-95, 1993.

L. M. Berlin. Beyond Program Understanding: A Aook at Programming Expertise
in Industry. In Empirical Studies of Programmers '93, pages 6-25, 1993.

G. Bjerknes and T. Bratteteig. Computers and Democracy, chapter Florence in
Wonderland: System Development with Nurses. Avebury, 1989.

G. Bjerknes, P. Ehn, and M. Kyng. Computers and Democracy. Avebury, 1989

W. Blume, R. Eigenmann, J. Hoeflinger, D. Padua, P. Petersen, L. Rauchwerger,
and P. Tu. Automatic Detection of Parallelism: A Grand Challenge for High
Performance Computing. CSRD Report 1348, University of Illinois at Urbana-
Champaign, Centre for Supecomputing Research and Development, 1994.

A. Bode and P. Braun. Monitoring and Visualization in TOPSYS. In G. Kotsis
et al., editor, Workshop on Monitoring and Visualization of Parallel Processing
Systems, pages 97-118, Moravanyn, CSFR, October 1993. Amsterdam Elsevier.

F. Bodin, P. Beckman, D. Cannon, S. Yang, S. Kesavan, A. Malony, and B. Mohr.
Implementing a Parallel C++ Runtime System for Scalable Parallel Systems. In
Supercomputing '93, pages 588-597, Portland, Oregon, November 1993.

J. Bonar and E. Soloway. Preprogramming Knowledge: A Major Source of Mis-
conceptions in Novice Programmers. Human-Computer Interaction, 1:133-161,

1985.

Bibliography
	 278

R. Borgeest. Cyclic Performance Analysis for Parallel Systems. In International
Conference on Parallel and Distributed Processing, Techniques and Applications,
PDPTA 95, Georgia USA, 1995.

R. Borgeest and B. Dimke. TATOO User Manual. Technical University of Munich,
ESPRIT Project 6290 edition, June 1994.

R. A. A. Bruce, J. C. Mills, and A. C. Smith. CHIMP/MPI User Guide. EPCC-

KTP-CHIMP-V2-USER 1.2, June 1994.

J. D. Bucher and K. L. Beck. Profiling on a Massively Parallel Computer. In
Second Joint International Conference on Vector and Parallel Processing, Lecture
Notes in Computer Science 634, pages 97-102. Springer-Verlag, September 1992.

C. V. Bullen and J. L. Bennett. Readings in Groupware and Computer-Supported
Cooperative Work: Assisting Human Collaboration, chapter Groupware in Prac-
tice: Interpretation of Work Practices, pages 69-84. 1993.

E. Carmel, R.D. Whitaker, and J.F. George. Pd and Joint Application Design: A
Transatlantic Comparison. Communications of the ACM, 36(6):40-48, 1993.

J. Carroll and T. Moran. Introduction to Special Issue on Design Rationale.
Human-Computer Interaction, 6(3-4):197-200,1991.

T. Chetham. The Configuration Management of Families of Programs. In Al-
gorithms, Software, Architecture, Information Processing '92, Volume I, pages

228-236. Springer-Verlag (North Holland), 1992.

L. J. Clarke, R. A. Fletcher, S. M. Trewin, R. A. A. Bruce, C. Smith, and S. R.
Chapple. Reuse, Portability and Parallel Libraries. Report 94-13, Edinburgh
Parallel Computing Centre, 1994.

E. J. Conklin. Groupware '92, chapter Capturing Organisational Memory, pages
133-137. Morgan Kaufmann, 1992.

J. Conklin and M. L. Begeman. gIBIS: A Tool for All Reasons. Journal of the
American Society for Information Science, 40(3):200-213, 1989.

B. Curtis. By the Way Did Anyone Study Any Real Programmers? In Workshop
on Empirical Studies of Programmers, pages 256-262, 1986.

B. Curtis. Empirical Studies of the Software Design Process. In Human-Computer
Interaction INTERACT '90, pages xxxv—xi, 1990.

S. A. Dart. The Past, Present and Future of Configuration Management. In
Algorithms, Software, Architecture. Information Processing '92 Volume I, pages
244-251. Elsevier-Science Publishers (North-Holland), 1992.

L. Davies and S. Nielsen. The Impact of Computer Supported Technologies on
Information Systems Development, chapter An Ethnographic Study of Configura-
tion Management and Documentation Practices, pages 179-192. Elsevier Science,
1992.

Bibliography
	 279

J. Dongarra, 0. Brewer, J. A. Kohl, and S. Fineberg. A Tool to Aid in the Design,
Implementation and Understanding of Matrix Algorithms for Parallel Processors.
Journal of Parallel and Distributed Computing, 9:185-202, 1990.

V. V. Dongen, C. Bonello, and C. Freehill. High Performance C Language Spe-
cification. Technical Report CRIM-EPPP-94/04-12, Centre de Recherche Inform-
atique de Montreal, Quebec, Canada, April 1994.

V. V. Dongen, G. Hurteau, A. Singh, E. Reiher, and H. Hum. A Performance
Debugger for a Language for Data Distribution Primitives. In Workshop on En-
vironments and Tools for Parallel Scientific Computing, Tennessee, 1994.

P. Ehn and M. Kyng. Computers and Democracy, chapter The Collective Resource
Approach to Systems Design, pages 17-57. Avebury, 1989.

P. Elm, B. Molleryd, and D. Sjogren. Playing in Reality. Scandinavian Journal
of Information Systems, (2):101-120, 1990.

M. Eisenstadt. Tales of Debugging from The Front Lines. In Empirical Studies
of Programmers, pages 86-112, 1993.

EPCC-KTP-CHIMP-CONC 1.2. CHIMP Concepts, June 1991

S. I. Feldman. Software Configuration Management: Past Uses and Future Chal-
lenges. In 3rd European Software Engineering Conference, ESEC '91, LNCS 550,
pages 1-6, Milan Italy, October 1991.

N. Fletton. A Hypertext Approach to Browsing and Documenting Software. In
Hypertext II, 1991.

N. V. Flor and E. L. Hutchins. Readings in Groupware and Computer-Supported
Cooperative Work: Assisting Human Collaboration, chapter Analyzing Distrib-
uted Cognition in Software Teams: A Case Study of Team Programming During
Perfective Software Maintenance, pages 272-286. Morgan Kaufmann, 1993.

C. Floyd. A Process-Oriented Approach to Software Development. In Systems
Architecture, Proceedings of the 6th European ACM Regional Conference, pages

285-294,1981.

J. Foster and M. Munro. A Documentation Method based upon Cross-referencing.
In Conference on Software Maintenance, 1987.

J. M. Francioni, J. A. Jackson, and L. Albright. The Sounds of Parallel Programs.
In 6th Distributed Memory Conference, pages 570-77, Portland, OR, April 1991.

J. M. Francioni and D. T. Rover. Visual-Aural Representations of Performance for
a Scalable Application Program. In Proceedings of the Scalable High Performance
Computing Conference, pages 433-44, Williamsburg, VA, April 1992.

Bibliography
	 280

P. K. Garg, T. Q. Pham, B. Beach, A. Deshpande, A. Ishizaki, K. Wentzel, and
W. Fong. Matisse: A Knowledge-Based Team Programming Environment. Inter-
national Journal of Software Engineering and Knowledge Engineering, 4(l):17-59,

1994.

G. A. Geist, M. T. Heath, B. W. Peyton, and P. H. Worley. PICL: A Portable
Instrumented Communication Library-C Reference Manual. Oak Ridge National
Laboratory Oak Ridge,Tn, Technical Report ORNL/TM 11130 edition, 1990.

I. Glendinning, V. S. Getov, A. Hellberg, R. W. Hockney, and D. J. Pritchard.
Performance Visualisation in a Portable Parallel Programming Environment. In
G. Kotsis et al., editor, Workshop on Monitoring and Visualization of Parallel
Processing Systems, Moravany, CSFR, October 1992. Amsterdam Elsevier.

S. Grabner and D. Kranzlmueller. Lecture Notes in Computer Science, volume
854, chapter Monitoring for Detecting Bugs and Blocking Communication, pages
66-75. Springer-Verlag, 1994.

S. Graham, P. Kessler, and M. McKusick. gprof: A Call Graph Execution Profiler.
In SIGPLAN '82 Symposium on Compiler Construction, pages 120-126. ACM,
1982.

Graphics, Visualisation, and Usability Center. Visualisation, Animation in Cluster
Environments - PVaniM. Available from the World Wide Web at the URL:
http://www.cc.gatech.edu/gvu/softviz/parviz/pvanim/pvanim.html, 1995.

J. Grudin. The Computer Reaches out: the Historical Continuities in Interface
Design. ACM, 1990.

W. Gu, C. Eisenhaner, E. Kraemer, K. Schwan, J. Stasko, and J. Vetter. Falcon:
On-line Monitoring and Steering of Large-Scale Paraillel Programs. Technical
Report GIT-CC-94-21, College of Computing, Georgia Institute of Technology,
Atlanta, GA 30332, 1994. Published in Frontiers '95.

R. Guindon. Designing the Design Process: Exploiting Opportunistic Thoughts.
Human-Computer Interaction, 5:305-344, 1990.

S.T. Hackstadt and A. Malony. Next-Generation Parallel Performance Visualiza-
tion: A Prototyping Environment for Visualization Development. In 6th Interna-
tional PARLE Conference Lecture Notes in Computer Science 817, 1994.

0. Hansen and J. Krammer. A Tool for Optimizing Large Scale Parallel Ap-
plications. In MASCOTS '95: Third International Workshop on Modelling Ana-
lysis and Simulation of Computer and Telecommunication Systems, pages 293-96,

Durham, N.Carolina, January 1995.

M. C. Hao, A. H. Karp, A. Waheed, and M. Jazayeri. VIZIR: An Integrated
Environment for Distributed Program Visualization. In MASCOTS '95: Third
International Workshop on Modelling, Analysis and Simulation of Computer and
Telecommunication Systems, pages 288— 292, Durham N. Carolina, January 1995.

Bibliography
	

281

M. T. Heath and J. A. Etheridge. Visualizing the Performance of Parallel Pro-
grams. IEEE Software, 8(5):29-39, September 1991.

B. R. Helm, A. D. Malony, and S. F. Fickas. Capturing and Automating Perform-
ance Diagnosis: the Poirot Approach. In 9th International Parallel Processing
Symposium, Santa Barbara California, April 1995.

V. Herrarte and E. Lusk. Studying Parallel Program Behavior with Upshot. Tech-
nical Report ANL-91/15, Mathematics and Computer Science Division, Argonne
National Laboratory, August 1991.

B. Hill, J. Long, W. Smith, and A. Whitefield. Planning for Multiple Task Work
- an Analysis of a Medical Reception Worksystem. In INTERCHI '93, 1993.

J. M. Hoc. Psychology of Computer Use, chapter Analysis of Beginners' Problem-
solving Strategies in Programming, pages 143-158. Academic Press Inc., 1983.

K. Holtzblatt and H. Beyer. Making Customer-Centred Design Work for Teams.
Communications of the ACM, 36(10):93-103,1993.

A. Hondroudakis. The Parallel Tools Consortium. Technology Watch Report
1995, Edinburgh Parallel Computing Centre, 1995.

A. Hondroudakis and R. Procter. The Tuner's Workbench: An Environment for
Supporting Tuning in the Large. In ZEUS '95 Workshop on Parallel Programming
and Computation, pages 212-221, Linkooping Sweden, May.

A. Hondroudakis, K. Shanmugam, and R. Procter. The design of a tool for parallel
program performance analysis and tuning. In K. M. Decker et al., editor, Program-
ming Environments for Massively Parallel Distributed Systems, pages 321-332.
Birkhauser, April 1994.

A. Hondroudakis, K. Shanmugam, and R. Procter. Performance Evaluation and
Visualization with VISPAT. In 3rd International Conference on Parallel Comput-
ing Technologies, pages 12-15, St. Petersburgh, 1995.

J. A. Hughes, I. Sommerville, R. Bentley, and D. Randall. Designing with ethno-
graphy: making work visible. Interacting with Computers, 5(2):239-253, 1993.

S. Ichimura, T. Kamita, and Y. Matsushita. A PilotCard-Based Shared Hyper-
media System Supporting Shared and Private Databases. In Conference on Or-
ganisational Computing Systems (COOCS '93), pages 59 —68, 1993.

IEEE. Threads Extension for Portable Operating Systems (P1003.4a), 1990.

R. B. Irvin and B. P. Miller. Multi-Application Support in a Parallel Program
Performance Tool. IEEE Parallel and Distributed Technology, 2(l):40 — 50, Spring
1994.

Bibliography
	

282

R. B. Irvin and B. P. Miller. A Performance Tool for High-Level Parallel Pro-
gramming Languages. In K. M. Decker et al., editor, Programming Environments
for Massively Parallel Distributed Systems, pages 299-313. Birkhauser, April 1994.

J. A. Jackson and J. M. Francioni. Breaking the Silence: Auralization of Parallel
Program Behavior. Journal of Parallel and Distributed Computing, 18:181-194,
1993.

R. Jam. The Art of Computer Systems Performance Analysis: Techniques for
Experimental Design, Measurement, Simulation and Modelling. New York Willey,
1991.

J.Creenbaum and M. Kyng, editors. Design at Work: Cooperative Design of
Computer Systems. Lawrence Erlbaum, 1991.

B. Johnson. OATS: Assisted Technical Support. In Poster Proceedings of the
Fifth International World Wide Web Conference, pages 91-100, 1996.

P. W. Jordan, S. W. Draper, K. K. MacFarlane, and S. McNulty. C4uessability,
Learnibility and Experienced User Performance. In D. Diaper, editor, People and
Computers VI, pages 237-245, 1990.

M. Jorgensen. An Empirical Study of Software Maintenance Tasks. Software
Maintenance: Research and Practice, 7:27-48, 1995.

H. Kahney. Psychology of Computer Use, chapter Problem Solving by Novice
Programmers. Academic Press Inc., 1983.

S. M. Kaplan. Conversation Builder: An Open Architecture for Collaborative
Work. In Human-Computer Interaction, INTERACT '90, pages 917-922, 1990.

R. M. Karp and V. Ramachandran. Handbook of Theoretical Computer Science,
chapter A survey of parallel algorithms for shared-memory machines. North Hol-
land, 1990.

E. Karrels and E. Lusk. Performance Analysis of MPI Programs, 1994. ftp-able
from the URL: ftp://info.mcs.anl.gov/pub/mpi/misc/heath.ps.

D. Kimelman and T. Ngo. Program Visualization for RP3: An Overview. Tech-
nical Report, IBM Research Division, T. J. Watson Research Center, 1990.

D. Kimelman and C. Sang'udi. Program Visualization by Integration of Advanced
Compiler Technology with Configurable Views. In J. Dongarra et al., editor,
Environments and Tools for Parallel Scientific Computing, pages 73-84. North-
Holland, 1993.

R. Klar. Event-Driven Monitoring of Parallel Systems. In C. Kotsis et al., ed-
itor, Proceedings of Monitoring and Visualization of Parallel Processing Systems,
Moravany, CSFR, 1992.

D. Knuth. Literate Programming. Computer Journal, 27(2):97-111, 1984.

Bibliography
	

283

D. E. Knuth. The Errors of TEX. Software Practice and Experience, 19(7):607-
685, July 1989.

J. A. Kohl and T. L. Casavant. The IMPROV Meta-Tool Design Methodology
for Visualization of Parallel Programs. In International Workshop on Modelling
Analysis and Simulation of Computer and Telecommunication Systems, 1993.

J. A. Kohl and T. L. Cesavant. A Software Engineering Visualization Methodology
for Parallel Processing Systems. In Sixteenth Annual International Computer
Software and Applications Conference (COMPSAC), pages 51-56, 1992.

J. Kohn and W. Williams. ATExpert. Journal of Parallel and Distributed Com-
puting, 18:205-222, 1993.

V. A. Kryukov, A. V. Maksimov, A. K. Petrenko, and T. A. Polilova. Hierarchical
Configuration Management. Programming and Computer Software, 20(2):55-68,
1994.

V. Kumar and A. Gupta. Analysis Scalability of Parallel Algorithms and Archi-
tectures. TR-91-18, Department of Computer Science, University of Minessotta,
1991.

M. Kyng. Scandinavian Design: Users in Product Development. In Computer
Human Interaction, 1994.

L. Lampert. Time, Clocks and the Ordering of Events in a Distributed System.
Communications of the ACM, 21(7):558-561, 1978.

J. R. Larus. Efficient Program Tracing. Computer, 26(5):50-61, May 1993.

E. Len and A. Schiper. ParaRex: a Programming Environment Integrating Ex-
ecution Replay and Visualization. In J.J. Dongarra et al. editor, Environments
and Tools for Parallel Scientific Computing, pages 155— 169. Elsevier Science Pub-
lications, 1993.

K. G. Lockyer. Introduction to Critical Path Analysis. Pitman Publishing Co,
1964.

R. Lougher and T. Redden. Group Support for the Recording and Sharing of
Maintenance Rationale. Software Engineering Journal, pages 295-306, November
1993.

R. Lougher and T. Redden. Supporting Long-term Collaboration in Software
Maintenance. In COOC'S 93, page 228 238, 1993.

P. Luff, C. Heath, and D. Greatbatch. Requirements Engineering, chapter Work
interaction and technology: The naturalistic analysis of human conduct and re-
quirements analysis, pages 259-288. Academic Press, 1994.

Bibliography 	 284

L. Macaulay. Cooperative Requirements Capture: Control Room 2000, chapter
Requirements Engineering: Social and Technical Issues, pages 67-85. Computers
and People. Academic Press, 1994.

R. L. Mack and J. M. Burdett. The Cognition of Experts: Empirical Approaches
to Knowledge Elicitation, chapter When novices elicit knowledge: Question-asking
in designing, evaluating and learning to use software. Springer-Verlag, 1991.

A. Maclean, R. Young, V. Bellotti, and T. Moran. Questions, Options and Cri-
teria: Elements of Design Space Analysis. Human Computer Interaction, 6(3 and
4):201-250, 1991.

111] A. MacLean, R. M. Young, and T. P. Moran. Design Rationale: The Argument
behind the Artifact. In CHI'89, pages 247-252. ACM, May 1989.

K.H. Madsen and P.11 Aiken. Experiences Using Cooperative Interactive Story-
board Prototyping. Communications of the ACM, 36(6):57--66, 1993.

J. Malard. MPI: A Message Passing Interface Standard; History, Overview and
Current Status. Technology Watch report, Edinburgh Parallel Computing Centre,
1994.

A. D. Malony, D. H. Hammerslag, and D. J. Jablonowski. Traceview: A Trace
Visualization Tool. IEEE Software, 8(5), 1991.

W. F. McColl. BSP Programming. In G. Blellocj, editor, Proceedings of the
DIMACS Workshop on Specification of Parallel Algorithms, 1994.

Message Passing Interface Forum. MPI: A Message Passing Interface Standard.
July 1994.

B. P. Miller. What to Draw? When to Draw? An Essay on Parallel Program
Visualization. Journal of Parallel and Distributed Computing, 18(265-269), 1993.

B. P. Miller, J. M. Cargille, R. B. Irvin, K. Kunchithapada, M. D. Callaghan,
J. K. Hollingsworth, K. L. Karavanic, and T. Newhall. The Paradyn Parallel
Performance Measurement Tools. available from the World Wide Web at the
URL: http://www.cs.wisc.edu/ paradyn/papers.html, 1995.

B. Mohr. SIMPLE: A Performance Evaluation Tool Environment for Parallel and
Distributed Systems. In Proceedings of the 2nd European Distributed Memory
Computing Conference, EDMCC2 LNCS 487, pages 80-89. Springer, April 1991.

B. Mohr. Standardization of Event Traces Considered Harmful or is Implement-
ation of Object-Independent Event Trace Monitoring and Analysis Systems Pos-
sible? In Proceedings of the CNRS-NSF Workshop on Environments and Tools
for Parallel Scientific Computing, pages 103-24, St. Hillaire du Touvet France,
1993. Elsevier.

Bibliography 	 285

B. Mohr, D. Brown, and A. Malony. Lecture Notes in Computer Science v. 854,
chapter TAU: A Portable Parallel Program Performance Analysis Environment
for pC++, pages 29-40. Springer-Verlag, 1994.

B. Nardi and J. Miller. Twinkling lights and nested loops: distributed prob-
lem solving and spreadsheet development. mt. Journal of Man Machine Studies,
34:161-184, 1991.

B. Nardi and J. R. Miller. The Spreadsheet Interface: A Basis for End User
Programming. In D. Diaper et al., editor, Proceedings of the IFIP TC Third
International Conference on Human-Computer Interaction, pages 977-983. North-
Holland, 27-31 August 1990.

B. A. Nardi and J. A. Johnson. User Preferences for Task-specific vs Generic
Application Software. In Computer Human Interaction, pages 392-398, 1994.

125] P. Naur. Program Development Studies based on Diaries, chapter Phsychology of
Computer Use, pages 159-170. Academic Press Inc., 1983.

J. Nielsen. Designing and Using Human-Computer Interfaces and Knowledge
Based Systems, chapter Usability engineering at a discount, pages 394-401. El-
sevier Science Publishers, 1989.

J. Nielsen. Paper versus Computer Implementations as Mockup Scenarios for
Heuristic Evaluation. In D. Diaper, editor, INTERACT 90, pages 315-320, 1990.

J. Nielsen. Usability Engineering. Academic Press, 1993.

J. Nielsen and R. Molich. Heuristic Evaluation of User Interfaces. In Computer
Human Interaction, pages 249-256, 1990.

W. Obeloeer, H. Willeke, and E. Maehle. Performance Measurement and Visual-
ization of Multi-Transputer Systems with DELTA-T. In G. Haring et al., editor,
Proceedings of the Workshop on Visualization of Parallel Systems, pages 119-144.
North-Holland, 1993.

Zave P. An Operational Approach to Requirements Specification for Embed-
ded Systems. IEEE transactions on Software engineering, SE-8(3):250-269, 1982.
Reprinted in Gehani N and McGettick A.D 1986 Software specification and tech-
niques Addison Wesley.

C. Pancake. Results of user surveys conducted on behalf of Intel Supercomputer
Systems Division, two divisions of IBM Corporation and CONVEX Computer
Corporation. 1989-1993.

Cherri M. Pancake and Curtis Cook. What Users Need in Parallel Tool Support:
Survey Results and Analysis. CSTR 94-80-3, Oregon State University, Depart-
ment of Computer Science, 1994.

Bibliography 	 286

S. Poinson, B. Tourancheau, and X. Vigouroux. Distributed Monitoring for Scal-
able Massively Parallel Machines. In J. J. Dongarra et al., editor, Environments
and Tools for Parallel Scientific Computing, pages 85- 101. Elsevier Science Pub-

lications, 1993.

N. Pressman. Software Engineering: A practitioner's approach. McGraw Hill,

1992.

S. Prestwich and A. Kusalik. Programmer-Oriented Parallel Performance Visual-
isation. TR 96-01, Department of Computer Science, University of Saskatchewan,
Saskatchewan, February 1996.

D. A. Reed. Computer Performance Evaluation, Lecture Notes in Computer Sci-
ence v. 794, chapter Experimental Analysis of Parallel Systems: Techniques and
Open Problems, pages 25-51. Springer Verlag, 1994.

D. A. Reed, R. D. Olson, R. A. Aydt, T. M. Madhyasta, T. Beckett, D. W. Jensen,
B. A. Nazief, and B. K. Totty. Scalable Performance Environments for Parallel
Systems. In 6th Distributed Memory Computing Conference, pages 562-69. IEEE
Computer Society Press, 1991.

C. Reichenberger. Concepts and Techniques for Software Version Control.
Software-Concepts and Tools, 15:97-104, 1994.

H. Richardson. High Performance Fortran: History, Overview and Current Status.
Technology Watch Report 1994, Edinburgh Parallel Computing Centre, 1994.

J. Rieman. The Diary Study: A Workplace-Oriented Research Tool to Guide
Laboratory Efforts. In INTER CHI '93, pages 321-326, 1993.

B. Ries, R. Anderson, W. Auld, D. Breazeal, K. Callagham, E. Richards, and
W. Smith. The Paragon Performance Monitoring Environment. In Supercomput-
ing '93, pages 850-59, Portland, November 1993.

R. S. Rist. Knowledge Creation and Retrieval in Program Design: A Comparison
of Novice and Intermediate Student Programmers. Human-Computer Interaction,
6:1-46, 1991.

D. Rover. Performance Evaluation: Integrating Techniques and Tools into Envir-
onments and Frameworks. In Proceedings of Supercomputing '94, pages 277- 78,

1994.

D. T. Rover and C. T. Wright. Visualizing the Performance of SPMD and Data-
Parallel Programs. Journal of Parallel and Distributed Computing, 18:129-146,

1993.

Bodker S., Ehn P., Kammersgaard J., Kyng M., and Sundblad Y. Computers and
Democracy, chapter A UTOPIAN Experience: On Design of Powerful Computer-
Based Tools for Skilled Graphic Workers, pages 251-278. Avebury Pub. England,
1987.

Bibliography 	 287

S. R. Sarukkai and D. Cannon. SIEVE: A Performance Debugging Environment
for Parallel Programs. Journal of Parallel and Distributed Computing, 18:147-68,

1993.

S. Sato and Tatsuro Murakami. Supporting Collaboration with Loose Relation-
ship. In Conference of Organisational Computing Systems, COOCS '93, pages

52-58,1993.

L. T. Schroath. Configuration Management for Software Tests. Hewlett-Packard
Journal, 44(3):53-59, 1993.

P. Seaton and T. Stewart. Evolving Task Oriented Systems. In Computer Human
Interaction, pages 463-469, 1992.

H.E. Sengler. Psychology of Computer Use, chapter A Model of the Understanding
of a Program and its Impact on the Design of the Programming Language Grade.
Academic Press Inc., 1983.

K. Shanmugan and K. Tourlas. Application Engineering Tools for MPI and PUL.
EPCC-SSP 94-01, EPCC, September 1994.

J. Siddiqi, R. Osborn, C. Roast, and B. Khazaei. The Pitfalls of Changing Pro-
gramming Paradigm. In Empirical Studies of Programmers, pages 219-231, 1996.

A. B. Sinha and L.V. Kale. Projections: A Preliminary Performance Tool for
Charm. In International Parallel Processing Symposium, 1993.

E. Soloway. What to Do Next: Meeting the Challenge of Programming-in-the-
Large. In Workshop on Empirical Studies of Programmers, pages 263-267, 1986.

J. C. Spohrer, E. Soloway, and E. Pope. A Goal/Plan Analysis of Buggy Pascal
Programs. Human-Computer Interaction, 1:163-207, 1985.

J. T. Stasko. Tango: A framework and system for algorithm animation. Computer,
September 1990.

J. T. Stasko. The PARADE Environment for Visualizing Parallel Program Exe-
cutions: A Progress Report. Technical Report, CITGVU-95-03, Graphics, Visu-
alization and Usability Center, 1995.

V. S. Sunderam, C. A. Geist, J. Dongarra, and R. Manchek. The PVM Concurrent
Computing System. Parallel Computing, 20(4):531-45, April 1994.

L. C. Terveen, P. C. Selfridge, and M. D. Long. From Folklore To Living Design
Memory. In INTERCHI '93, pages 15-21, 1993.

L. C. Terveen, P. G. Shelfridge, and M. D. Long. Living Design Memory - Frame-
work, Implementation, Lessons learned. Human-Computer Interaction, 10:1-37,

1995.

Bibliography 	 288

H. Thimbleby. Experiences of Literate Programming using cweb (a variant of
Knuth's PWEB). Computer Journal, 29(2):201-211, 1986.

W. F. Tichy. Design, Implementation and Evaluation of a Revision Control Sys-
tem. In 6th International Conference on Software Engineering, 1982.

W. F. Tichy. RCS - A System for Version Control. Software-Practice and Exper-
ience, 15(7), 1985.

S. Toledo. PERFSIM: A Tool for Automatic Performance Analysis of Data-
Parallel Fortran Programs. In 5th Symposium on the Frontiers of Massively Par-
allel Computation, McLean, Virginia, February 1995. IEEE Computer Society
Press.

N. Tomov and K-J. Wierenga. Application Engineering Tools for MPI and PUL.
EPCC-SSP 93-15, EPCC, September 1993.

B. Topol, J. T. Stasko, and V. Sunderam. The Dual Timestamping Methodology
for Visualizing Distributed Applications. GTI-CC-95/21, Georgia Technology In-
stitute, Atlanta GA, May 1995.

X. Vigouroux. Implementation of a Scalable Trace Analysis Tool. In K. M. Decker
et al., editor, Programming Environments for Massively Parallel Distributed Sys-
tems, pages 315-320. Birkhauser, 1994.

P. Wall and A. Mosher. Representations of Work: Bringing Designers and Users
together. In Participatory Design Conference '94, pages 87-98, 1994.

S. Whittaker and H. Schwarz. Back to the future: pen and paper technology
supports complex group coordination. In Computer-Human Interaction '95, 1995.

W. Williams, T. Hoel, and D. Pase. The MPP Apprentice Performance Tool:
Delivering the Performance of the Cray T31). In K. M. Decker et al. editor, Pro-
gramming Environments for Massively Parallel Distributed Systems, pages 333-45.
Birkhauser Verlag, 1994.

S. Woolgar. Requirements Engineering, Social and Technical Issues, chapter
Rethinking requirements analysis: Some implications of recent research into
producer-consumer relationships in IT development, pages 201-216. Academic
Press, 1994.

J. C. Yan. Performance Tuning with AIMS - An Automated Instrumentation and
Monitoring System for Multicomputers. In 27th Hawaii International Conference
on System Sciences, pages 625-33, Wailea, Hawaii, January 1994.

C. Yang and B. P. Miller. Critical Path Analysis for the Execution of Parallel and
Distributed Programs. In 8th International Conference on Distributed Computing
Systems, San Jose, California, June 1988.

Bibliography
	 289

E. Zabala and R. Taylor. Maritxu: Generic Visualization of Highly Parallel Pro-
cessing. In N. Topham et al., editor, Programming Environments for Parallel
Computing, pages 171-180. Elsevier Science Publishers, 1992.

E. Zabala and R. Taylor. Process and Processor Interaction: Architecture Inde-
pendent Visualisation Schema. In J. Dongarra et al., editor, Environments and
Tools for Parallel Scientific Computing, pages 55-71. North Holland, 1993.

Q. A. Zhao and J. T. Stasko. Visualizing the Execution of Threads-based Parallel
Programs. GIT-GVU-95-01, Graphics Visualization and Usability Center Georgia
Institute of Technology, Atlanta Georgia, 1995.

