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Abstract 

Parallel program design and development is inherently more difficult than its se-

quential counterpart. People who have traditionally programmed on sequential 

machines are now called upon to deal with new and complex issues when trying to 

control a number of entities executing concurrently. In the quest to produce ap-

plication programs that take advantage of the power of the underlying hardware, 

usable and efficient tools are required to assist with the task of performance ana-

lysis and tuning. A large number of tools are described in the literature, but the 

results of tool use are disappointing. The problem can be attributed to the fact 

that tool design is not informed about users and their tasks. This thesis presents 

an investigation of tuners' practices and analyses its implications for tool support. 

An initial investigation by means of interviews and questionnaires provided the 

basis of a framework for the analysis of tuning. A number of problems with existing 

tuning tools were recorded and tuner requirements were captured. Some of these 

requirements were investigated further with a smaller number of local tuners who 

participated in the design of VISPAT, a tool for visualising the performance of 

parallel programs running on clusters of workstations. 

Tuning was also examined in the wider context of requirements and work practices 

within multi-people development projects. An environment is proposed - the 

Tuner's Workbench - which addresses issues which arise from the repetitive nature 

of tuning, namely, its management and documentation in the context of real world 

parallel code development. 
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Chapter 1 

Introduction 

Parallel programming is inherently more complex than its sequential counterpart. 

People who have previously developed sequential codes have now to apply data 

and work decomposition techniques, be concerned with synchronisation and com-

munication issues and often know a lot about the operation of parallel machines 

in order to produce efficient parallel code. To this end, performance analysis and 

tuning is often undertaken to ensure that the power of the underlying hardware is 

fully utilised. Self evidently, performance is a key requirement for parallel software. 

Crucial to the success of tuning is the availability of adequate support tools and 

considerable effort and expense have been devoted to their design. A large number 

of performance analysis tools have been developed which claim to assist the tuner 

in the tuning task. One common application of performance analysis tools is in the 

visualisation of performance data resulting from program execution monitoring, 

with the aim of helping the tuner to discover and analyse areas of poor perform-

ance. However, the results of tool use are disappointing. Users complain that 

tuning tools are hard to learn and use and do not provide the information they 

really need. Pancake reports that 64% of 448 participants of Supercomputing '93 

had never used an externally developed tuning tool [133]. The root of the problem 

lies in the lack of a systematic study of tuners and of how tuning is performed. 

1 
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The work described in this thesis is an investigation of tuners and tuning. Ques-

tions that need to be asked are how parallel users tune their codes and what 

their requirements of tool support are. Most empirical studies of programmers 

leave a huge gap when it comes to observing and recording the practices of real 

programmers and more specifically of real parallel programmers. The majority 

of these studies have used students as their subjects and examined the cognitive 

issues involved in cases of sequential program understanding or debugging. Par-

allel programming introduces a number of new different issues which need to be 

investigated. By observing tuners and their work practices, this project attempts 

to answer some of the above questions and reveal others. 

First, Chapter Two reviews a number of state-of-the-art approaches to tool design 

and the issues that tool developers have to address. 

Chapter Three draws on some empirical studies of programmers to create a frame 

work for studying tuning 

An initial, informal investigation was conducted by interviewing local tuners and 

by soliciting views of the wider tuning community via the medium of Internet 

bulletin boards, the World Wide Web and electronic mail. This highlighted a 

number of issues which were later explored more systematically through question-

naires and interviews. These findings are presented and analysed in Chapter Four 

and in two subsequent chapters. More specifically, Chapter Four takes a closer 

look at how the task is performed currently. The problems in relation to the use 

of existing tuning tools along with tuner requirements of current and future tools 

were collected and are presented. The impact that hardware and software support 

may have on tuning is also discussed. 

Discussions with local and non-local tuners revealed an aspect of the tuning task 

which until recently was almost completely neglected by tool developers. Most 

of the tools were concerned with supporting the tuning unit cycle i.e., the effort 

to change the values of performance determining parameters in order to improve 
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performance on the basis of an observation of the program behaviour (tuning in 

the small). What this work demonstrates is that an equal level of attention should 

be paid to the implications that arise from having to repeat the tuning unit cycle a 

number of times in order to reach an acceptable performance (tuning in the large). 

Current tuning practices in relation to the management of the process and its 

results were investigated and are presented in Chapter Five. Chapter Six examines 

tuning practices in the context of collaborative work environments. In particular, 

the communication and documentation needs of tuners are investigated in the 

context of program development and tuning performed by many people within 

or even across organisations. Figure 1-1 shows the structure of the investigation 

presented in Chapters Four, Five and Six. 

Tuning in collaboration with others 

Communication and documentation needs of 

multi-person parallel software development teams 

Tuning in the large 

Tuning management and documentation 

Tuning in the small 

Cognitive aspects of toning 

Computer hardware and software support 

Figure 1-1: Structure of investigation 

Subsequent chapters of the thesis propose two tools for addressing some issues re-

vealed by the investigation. Some of the tuner requirements mentioned in Chapter 

Four were re-inforced whilst co-ordinating a project at the local supercomputing 

centre (EPCC) to design and build a tuning tool for the analysis of parallel pro-

grams running on a network of workstations. A number of tuners within EPCC 

were interested in participating in the tool design process. Their requirements 

were realised in the design of VISPAT (VlSualisation for Performance Analysis 
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and Tuning) - a tool for supporting tuning in the small - which is presented in 

Chapter Seven. 

The participative design process of VTSPAT is described in Chapter Eight. Other 

local parallel program tuners participated in an informal evaluation of VISPAT. 

The evaluation of VISPAT gave those who did not participate in the design process 

a chance to voice their requirements and most importantly showed areas where 

the tool could be improved in future iterations of the design cycle. 

The findings of the investigation described in Chapters Five and Six comprised 

the basis on which a preliminary specification of a tool for supporting tuning in 

the large is proposed in Chapter Nine. 

Finally, Chapter Ten summarises the results of this research and is concerned with 

further work. 



Chapter 2 

Parallel Program Performance 

Analysis Tools 

This chapter provides an overview of contemporary performance analysis tools. 

The next four sections consider four distinct issues in the design of tuning tools: 

Performance data collection. There are a number of techniques for gathering 

informative data whilst intruding as little as possible into program execu-

tion (probe effect). The first section presents some of the data collection 

techniques adopted by current tools. 

Performance data analysis and filtering. The amount of performance data 

obtained can be very large, particularly in the case of massively parallel 

systems. This data has to be filtered and structured in order to convey 

intelligible information on the program behaviour. Section two describes 

some of the most prevalent analysis and filtering schemes. 

Performance data visualisation. Advanced visualisation techniques are em-

ployed to assist in the interpretation of the performance data collected. It 

can often be very difficult to relate the low-level account of the program 

behaviour to the source code. This problem is aggravated by the tendency 

5 
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for parallel programming environments to provide progressively higher-level 

programming facilities. Whilst this is of great assistance in the design and 

coding stages of program implementation, it often makes tuning more dif-

ficult, with users having to relate low-level events to increasingly abstract 

program representations. Section three describes several visualisation dis-

plays employed by current tools. 

Automatic performance diagnosis. The latest tool research focuses on build-

ing tools which can assist in performance diagnosis by borrowing technology 

from other fields such as software engineering, databases and expert sys-

tems. Such tools attempt to undertake the task of finding the reason for a 

performance bottleneck and guide users in their effort to improve program 

performance. Section four illustrates some of the approaches. 

Work on performance analysis tools has still a long way to go to close the gap 

between tool functionality and user requirements. Traditionally, tuning tools have 

employed advanced graphical techniques for user interface design and trace data 

visualisation. In spite of this, however, there is evidence that they are unable to 

assist effectively in the task of performance optimisation [133]. Due to the lack of 

tool integration and consensus amongst tool developers, a lot of implementation 

efforts overlap whereas a lot of issues remain largely neglected. The fifth section 

presents some of the first examples of tool integration. The last section discusses 

some of the issues that tool design should take into account. 
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2.1 Performance data collection 

Any attempt to observe the execution of a program changes its behaviour as the 

monitoring tool shares the system resources with the program. Existing monit-

oring tools vary in the kind of performance data they collect and the amount of 

overhead they introduce. Monitors can be classified according to the way they are 

implemented and the way they are activated [81]. 

2.1.1 Implementation level 

Depending on the level at which a monitor is implemented, it is classified as a 

hardware, software, or hybrid monitor. 

Hardware monitors 

Hardware monitors are implemented by additional pieces of hardware that are 

embedded within the parallel system. Measures such as MIPS, Milops, program 

counter samples, memory and network traffic can be gathered by a hardware 

monitor. For instance, a performance chip collects such information for the IBM 

Research Parallel Processor Prototype (RP3) [90]. An alternative approach is 

described in [1] where the ATUM tracing system modified the microcode on a 

VAX to record all instruction and data references in a reserved portion of memory. 

Hardware monitors have a low overhead in program execution but higher-level 

displays such as algorithm animation or other application specific visualisations 

require the specification of higher-level events. This is possible with software or 

hybrid monitors. 
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Software/hybrid monitors 

Software or hybrid monitors insert monitoring instructions at strategic points in 

the operating system, in the run-time system, or in the application program (pro-

grain instrumentation) which can generate program related information. These 

instructions write performance information into a memory area of the system un-

der study (software monitoring), or to a hardware interface that is accessed by 

a hardware monitor (hybrid monitoring) [92]. In case of a software monitoring 

tool, performance data can be written to local buffers on every node which are 

flushed at regular intervals and share the same interconnection network with the 

application program. 

2.1.2 Triggering mechanism 

Depending on what triggers their activation, monitors can be either time-driven 

or event-driven. 

Time-driven monitors 

Time-driven monitors are activated at fixed time intervals by clock interrupts. The 

program counter is sampled periodically on every node of a parallel system in order 

to time parts of the code. Sampling is performed by the operating system and 

can be used in conjunction with information provided at compile time in order 

to give timing estimates at the procedural level [571. The sampling frequency 

may not be high enough to provide accurate estimates but the method has a 

low implementation cost and exposes the most expensive, i.e. time-consuming, 

parts of the program. More sophisticated profilers require that the program is 

instrumented. Small pieces of code are inserted in the program source in order 

to query the system clock and count the number of times a piece of source code 

is called. Alternatively, as in MPP Apprentice [171], the calls are inserted by the 
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compiler in the intermediate code. Profiling tools introduce a low overhead and 

the volume of data they collect scales well with the number of processors in the 

system. 

Event-driven monitors 

When the monitor is activated by the occurrence of specific events, it is called an 

event-driven (or event-based) monitor. This is the most detailed and the most 

perturbing technique for collecting performance data. The occurrence of interest-

ing events is recorded during the execution of the parallel program. The program 

behaviour can be represented by the sequence of these events. The type of event 

information obtained depends on whether hardware or software monitoring is used. 

Every event generation instruction introduces a delay in the execution of the par-

allel program. Accumulated delays may change the order of the program events 

and result in prolonged execution times. 

2.1.3 Instrumentation techniques 

The level at which instrumentation is placed (operating system, run-time environ-

ment or application program) determines the information that can be generated. 

Instrumentation of the operating system can gather data about events such as 

process creation, scheduling, context switching, etc. These events can highlight 

the interactions between the system software and the hardware. Instrumentation 

of the run-time environment can provide information about the state of various 

run-time queues, the acquisition and release of locks, arrival at and departure from 

barriers, and procedure calls and returns. This type of data can be used to asso-

ciate performance problems with specific sections of the application code and to 

present aspects of the run-time system itself. Instrumentation of the application 

program can link particular parts of the program code to the operating and the 

run-time system events. At the same time, higher level information about abstract 
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events can be gathered. The insertion of instrumentation code is most commonly 

automated [102] and users do not have to modify their programs 

A common approach is to instrument the communication libraries employed to 

provide the communication and synchronisation operations in the parallel pro-

gram. The Portable Instrumented Communication Library (PICL) runs on a 

number of message passing systems and produces trace files consisting of send 

and receive events as well as communication statistics [54]. The Message Passing 

Interface Standard (MPI) [113] specifies a standard profiling interface which al-

lows tool developers to easily attach their instrumentation instructions without 

the need to have access to the MPI source code [74,89]. 

Xab [16] is a monitoring and visualisation tool for programs using the Parallel 

Virtual Machine library (PVM) [159]. Trace data is generated by instrumented 

versions of the PVM routines. The instrumented routines, apart from performing 

the application's message operations, use PVM to send event tracing messages to 

a monitoring process. The event tracing messages contain information such as the 

event time stamp, the event type and event specific data. PVM also facilitates 

the communication and synchronisation among the distributed components of the 

monitoring tool [134,168]. 

Other systems support instrumentation at several levels. For example, in DELTA-

T [130], a tool for programs running on multi-transputer systems, performance 

data is gathered in two ways: by instrumenting interesting parts of the program; 

and by observing the hardware scheduler. A monitoring process is introduced on 

every node of the Intel Paragon system [15,142] for instrumentation purposes. The 

monitoring process calls a library that generates trace data which is sent to event 

servers. The event servers post-process the trace data and write it to a trace file. 

PERFSIM [165] uses an alternative data collection method which combines mod 

elling and measuring. PERFSIM executes the sequential part of a CM-Fortran 

program and estimates the run-time of all the communication and computation 
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operations involving vectors. The estimation is based on an analytical model of 

the machine architecture and on compiler information. 

Selective instrumentation 

The huge volume of data generated during execution necessitates that instrument-

ation is inserted selectively: 

Instrumentation can be inserted in the program during its development stages, 

and can be removed once the program is implemented. Instrumentation 

can be added before compilation, during compilation, after compilation or 

during run-time. 

It can reside permanently in the code, but can be switched on and off. 

It can be inserted dynamically or optimally into interesting parts of the pro-

gram. In VISTOP [13], the user may choose to instrument only a subset 

of the program objects, thus, improving the scalability of the visualisation 

displays which depict only the events relevant to the objects characterised 

as interesting by the user 1 . 

Another technique reduces the points where instrumentation code has to be 

added by analysing the relations among the blocks of instructions in the 

program [7,102]. A different approach is followed by Paradyn [118], a tool 

targeting a number of programming models, languages and architectures. 

Paradyn inserts minimal instrumentation into the code to identify high-level 

problems such as too much synchronisation blocking. Having identified a 

particular problem, more detailed instrumentation is inserted to find the 

'Further reduction of the amount of performance data can be achieved by switching 

the instrumentation on and off during execution. 
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cause of the problem. Interesting program behaviour may be missed by 

employing dynamic instrumentation. Paradyn is more appropriate for ap-

plications that take hours or even days to complete and is able to capture 

information on repeated events that have a large enough accumulated impact 

on the program execution. 

2.2 Performance data analysis and filtering 

This section deals with the analysis and filtering mechanisms adopted by various 

performance analysis tools in order to reduce the volume of performance data 

the user has to consider and transform it to meaningful information. Part of the 

analysis of the data aims at changing it into a suitable form that can be stored as 

a relational database or a hierarchical graph. Due to time constraints, extensive 

analysis can be performed only by post-mortem systems (see third section). The 

following subsections give examples of tools employing three types of analysis and 

filtering techniques: 

Data analysis. The tool facilitates operations performed on the trace data. 

Selection. The tool enables the selection of program or system entities for which 

performance data can be displayed. 

Source code reference. The tool relates low level performance data to the source 

code. This may be done automatically or the user may specify a collection 

of interesting events which constitute a phase. 

It is during the analysis stage that restoring of the order of the events is attempted. 

The lack of a global clock in a parallel machine makes it quite hard to achieve a 

total event ordering. In the absence of synchronised clocks running at the same 

rate and having sufficient resolution, some other techniques of restoring the order 
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of the events are employed such as the "happened before" relation introduced by 

Lamport [101]. That is, if an event ci has an effect on an event c2, then the event 

ci has to be visualised before e2. 

2.2.1 Data analysis 

In Pablo [137,138], trace data processing is performed in an analysis environ-

ment consisting of data transformation modules which can be interconnected to 

each other in a number of ways (Figure 2-1). Modules can perform semantic-

independent operations on the input trace data such as averaging or histogram-

ming. The output of a module is the processed data and any unused input parts. 

Each module consists of a user-defined data transformation function and a system 

provided interface which accesses the trace data. The user does not need to have 

any knowledge about the format of the trace file, or any data field information 

about the event records in the trace file. Via a Graph Editor the user can con-

nect various modules to each other and direct their final output to Pablo's data 

presentation displays. The abstraction away from the semantics of the trace file 

is achieved through the Self-Defining Data Format. The trace file consists of a 

set of record definitions and a stream record of tag/data record pairs. The record 

definitions define the format of the types of events and the record tag identifies 

the record type before any processing can be applied to the data record [5]. 

2.2.2 Selection 

SIEVE (Spreadsheet based Interactive Event Visualisation Environment) acts es-

sentially like a sieve that provides a means for selecting events generated by pro-

gram execution [147]. A program graph display is a representation of the applic-

ation program source code. The nodes of the graph correspond to function calls 

in the program. The user can browse the call graph and by selecting a set of 

nodes selects the corresponding temporal regions within the trace file. Trace data 
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---.Pormance data 

Figure 2-1: Pablo analysis environment 

obtained during program execution is highly structured tuple-oriented data. Per-

formance data can be retrieved from the selected regions of the trace file in a way 

similar to querying a relational/temporal database. Further filtering of the data 

is achieved by built-in data manipulation functions, operating on the spreadsheet 

cells. In TATOO [25], the user is presented with a list of performance metrics that 

have been preprocessed by the tool. Having selected one or more metrics, the user 

can further choose the appropriate visualisation displays to depict those metrics 

over time. 

In Prism [2], performance data about a processor node is displayed only if this 

processor belongs to a selected subset of all the processors in the system. Processor 

nodes can form processor sets depending on their state (running or stopped) and on 

any other user-defined conditions. In PATOP [63], measurements focus on specific 

periods of the program execution and on specific nodes where interesting events 

happen. Further filtering is possible by attributing behaviour to performance 

metrics such as thresholds of the metric values. The visualisation displays are 

driven by user-defined expressions which set the thresholds for various metrics. 
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In Projections [154], a performance tool for programs written in the CHARM 

language, the execution of the program is divided into equal-length periods of 

time called stages. The length of the time period is defined by the user to allow 

for coarser or more refined event filtering. The performance views are organised 

as a set of overviews and a set of more detailed in-depth views. A performance 

metric is a function of the stage s and the processor p and ranges over a stage 

set and a processor set. There are two types of overviews: the first visualises the 

sum of a performance metric over the whole processor set and the second depicts 

the sum of a metric on one processor over all the stages of the program. In-depth 

views can be of one of the following kinds: 

. A metric as it varies during a particular stage over a selected processor set. 

. A metric as it varies on a particular processor for a selected stage set. 

• A metric as it aggregates for a particular processor set over all the stages of 

the program. 

• A metric as it aggregates for a selected stage set over all the processor set. 

2.2.3 Source code reference 

Existing parallel programming environments provide high-level programming facil-

ities which help the tuner abstract away from the specifics of the parallel machines. 

This makes tuning even more difficult since the programmer has to relate low-level 

information to program behaviour. Tools address this issue by presenting the large 

amount of low-level performance data in terms of the fewer source code structures 

(source code reference). 

In ParaMap [79], a framework is introduced to map low-level performance data 

to language constructs. Within this framework, called Noun-Verb (NV) model, a 

parallel program consists of nouns, the structural elements of the program, and of 
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verbs which are the actions performed on nouns or by nouns. A set of nouns and 

verbs at a particular software or hardware level is called a level of abstraction. 

Nouns and verbs at one level of abstraction can be mapped to nouns and verbs at 

another level of abstraction. This mapping is possible because high-level language 

constructs are implemented by low level hardware and software. The NV model 

can be used along with any programming model. ParaMap uses the NV model to 

study CM Fortran programs which run on the CM-5. Three levels of abstraction 

are identified in the CM-5. The highest level contains the constructs (verbs and 

nouns) of the CM Fortran language. The second level is the Run-Time System 

level, RTS. RTS level nouns are all the arrays allocated during execution. These 

are the arrays of the language level plus all the intermediate arrays created by 

the compiler. Verbs at the RTS level include all the operations performed on the 

arrays, such as Copy, Shift, Rotate, etc. At the lowest level of abstraction, nouns 

are the processor nodes and verbs include Compute, Wait, Broadcast and Point 

to Point Communications. The user creates a sentence consisting of a noun and 

a verb and requests from ParaMap the performance cost of the specific sentence. 

Costs are provided in three forms: as the number of times a sentence is used; as 

the total time a sentence took to execute; and as a time-histogram showing the 

cost of a sentence varying over time. The cost of a sentence is amortised over the 

two lower levels. 

The Performance Debugger of EPPP (Environment forPortable Parallel Program-

ming) [41] attempts to provide the user with performance information directly 

related to the source program. EPPP supports a high level programming model 

based on a data-parallel programming language called High Performance C (HPC) 

[40]. HPC is a C based language, which supports data distribution directives sim-

ilar to the ones found in HPF [140]. The user is able to select array objects within a 

selected region of the source program. The visualisation displays of the Perform-

ance Debugger will show performance data related to the selected source code 

objects. For example, EPPP's communication display depicts statistics about the 



Chapter 2. Parallel Program Performance Analysis Tools 	 17 

inter-processor communication (message numbers and message volume) involved 

in a specific data distribution. 

2.3 Performance visualisation 

Performance analysis tools fall in four categories according to the visualisation 

schemes they provide: 

Program specific. These tools show in an application specific way how compu-

tation progresses by animating the data structures of the program and the 

operations performed on them... The animated views can assist in debugging 

both for correctness and performance [157]. 

System oriented. These tools focus on the impact the application program has 

on the parallel system. For instance, SHMAP [1 visualises the memory 

and cache access patterns in hierarchical shared memory systems. The Front 

Panel Visualisation tool (FPV) [12] measures and visualises system level per-

formance parameters such as CPU and interconnection network utilisation 

on the Paragon machine. 

System and application independent. The majority of tuning tools fall into 

this class and provide a repertoire of displays that can generally depict per-

formance data for a variety of systems and applications. The visualisations 

range from views of the effect the application program has on the system use, 

to views that represent the communication or synchronisation behaviour of 

the program. 

Meta-tools. Tools in this group facilitate the development of custom visualisa- 

tion tools. They are more general than the program specific tools mentioned 
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above, since the visualisations created by a user are not necessarily pro-

gram specific. PARADISE (PARallel Animated DebuggIng and Simulation 

Environment) [961 and IMPROV [95] introduce a framework in which the ap-

plication and/or the system behaviour are modelled as a set of visual objects 

having certain functionalities and interacting with each other. The defined 

visual objects and their interactions can simulate the events generated by 

the system under study. POLKA [158] adopts an object-oriented method-

ology to map program events to visual objects. Object attributes, such as 

colour and location and object actions such as motion, colour, and resizing, 

change according to rules that map events to objects, attributes and actions. 

POLKA was used in the development of two performance visualisation tools, 

namely the Gthreads [177] and the PVaniM [58,167] systems. 

Tools can also be divided by whether visualisation takes place simultaneously 

with the program execution (on-line) or after it (post-mortem). In the latter case, 

trace data is gathered in files which can be processed later by a visualisation 

tool. On-line visualisation can be intrusive when the parallel program shares the 

same interconnection network with the monitoring and visualisation facility. The 

volume of information conveyed by the visualisation tool at any time may be too 

large to be easily interpreted by the programmer without the assistance of "play-

back" functionalities such as the ones found in off-line tools. However, on-line 

visualisation, often used in conjunction with dynamic instrumentation, allows the 

user to observe only the interesting parts of the program execution and reduces the 

storage requirements of the monitoring tool. VISTOP [13,21] provides two on-line 

modes of operation; in the first mode, visualisation is driven by breakpoints set 

in a debugger style of interaction; the second mode is less perturbing, enabling 

visualisation without breakpoints. 
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2.3.1 Animation of communications 

Animation has been employed by various tools to assist in program execution re-

play. Communication operations are the most commonly animated events [158]. 

VISTOP [13,21] (ViSualisation TOol for Parallel systems, is part of the TOPSYS 

(TOols for Parallel SYStems) integrated tool environment for programming dis-

tributed memory multiprocessors. TOPSYS supports an object based message-

passing programming model implemented with the parallel programming library 

MMK (Multiprocessor Multitasking Kernel) [14]. Three kinds of objects exist 

within the MMK model: tasks, mailboxes and semaphores. A parallel program 

consists of multiple instances of objects which interact with each other. Tasks 

communicate and get synchronised via mailboxes and semaphores respectively. 

All interesting MMK objects are displayed by little icons showing the class and 

the name of an object. If a task communicates or waits for a niailbox or a sem-

aphore the corresponding task icon moves itself into a queue of tasks waiting at 

the communication object. 

Barrier synchronisation of N= 16 threads. 

xuuuci•ciu•uu 
•lEJ•DUUU•DDDEX 

Figure 2-2: Barrier visualisation in Gthreads 

Gthreads [177] is a monitoring and visualisation tool for C programs using the 

pthreads library [7 1- 1 on the KSR machines or other thread based machines. Gthreacls 

provides a view of the barrier synchronisations that take place during execution 

(Figure 2-2). Each barrier is represented by a 2 x N array of boxes where N is the 

number of threads in the program. The first row of boxes in the array represent 

the check-in phase of the barrier operation for every thread. If a thread joins in 

the barrier, the corresponding box is filled by a small circle. The second row of 
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boxes depict the check-out phase of the harrier. When a thread checks-out of a 

harrier, a circle appears in the corresponding box. 
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Figure 2-3: A collection of Paragraph displays 

The Feynman or Space-Time display, first used by ParaGraph [55,65], can be 

found in many performance analysis tools [173,56,60] (Figure 2-3). The execution 

thread for each processor is represented by a horizontal line, drawn from left to 

right, which changes colour to indicate whether a processor is active, idle, or 

waiting for a send or receive to complete. Message operations are depicted by 

lines which connect the two processors communicating. The points where the 

lines meet the processor lines mark the receive or send times. The display reveals 

processors idle, waiting for a blocking communication to complete. 

The Source display identifies the last communication event processed by VT  for 

2  V is a proprietary tool which runs on the IBId SP-2 parallel machine. It was not 

possible to find a reference for this tool. 
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each process. Each line of the source code is segmented in N segments where N is 

the number of processes in an SPMD program. When VT processes a communic-

ation event, it highlights the appropriate segment. Colour is used to differentiate 

among the segments of different processes (Figure 2-4). 

Figure 2-4: The Source code display of VT 

2.3.2 Program displays 

Program graphs Gantt charts and data access displays fall into this class of dis-

plays. 

Program graphs 

In PV [91], a static call graph has its nodes coloured according to: the number of 

processors active in each node; the number of times a processor has arrived at each 

node; or the amount of time spent in each node aggregated across all processors. In 
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Prism [2], the call-graph nodes are accompanied by a percentage indication which 

shows the time each node spent utilising a specific resource of the system. In 

VISTOP [13,21], the program graph is expressed in terms of the objects provided 

by the MMIK [14] programming model. The graph is animated in order to depict 

dynamically the creation of the communication and synchronisation objects in the 

program. 

Gantt charts 

DELTA-T [130] uses a Gantt chart display to denote the changes in the communic-

ating processes states. In VISPAT [74,73], a gantt chart animates the occurrence 

of MPI and user-defined phases in the parallel program. 

Critical paths 

Critical path analysis [174] is concerned with identifying the program regions 

which most contribute to the program execution time. The critical path ana-

lysis constructs a directed acyclic graph which depicts the synchronisation and 

communication dependencies among the processes in the program. Dependencies 

are message operations, semaphores, barriers or locks. Each edge in the graph is 

assigned a weight proportional to the duration of the operation represented by the 

edge. The time spent on a edge may be CPU bound or may be the time required 

to send a message. The path with the longest weight sum is the critical path. 

Data access displays 

The Performance Debugger of the EPPP environment [41] employs an animated 

two-dimensional display which shows the distribution of arrays on a set of pro- 

cessors and their access with respect to computations performed by one processor 

over time. Each cell of the two-dimensional display is devoted to an element of the 
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array. Different sections of the display correspond to parts of the array distrib-

uted on different processors. The colour of an array cell can distinguish whether 

an access is local or remote and whether it is a read or write. The programmer 

can analyse the access patterns so that better array distributions can be achieved 

in order to reduce inter-processor communication. 

2.3.3 Aggregated metrics 

Static hargraphs and plots can represent the values of performance metrics as they 

accumulate over a period of time. Animated hargrapbs can show how measure-

ments evolve over time. 

Histograms and bargraphs 

A hierarchy of histograms in Prism [2] show where the program spends its time. 

The top-level histogram shows the time taken by a program utilising each resource 

of the system. Clicking on a histogram reveals the usage of the corresponding 

resource by each subroutine of the program. The last level of the histogram 

hierarchy is the source-line histogram. For a particular resource in a particular 

subroutine of the program, a source-line can be accompanied by a percentage bar 

showing the amount of time the particular source-line contributed to the use of 

the specified resource. MPP Apprentice [171] visualises profiling information in 

an hierarchical way. At the top level, the Navigation display lists the subroutines 

of the program sorted from the most to the least critical. Next to each subroutine 

name, a bar indicates the time this routine took to complete (Figure 2-5). 

The MasPar profiler [27] provides profiling histograms at the routine and statement 

level through the graphical interface of the debugger. The user may stop the 

program execution and see the cumulated profile information up to the point 

execution has proceeded. In ATExpert [97], a histogram shows the contribution 

of the serial and parallel regions of the program to the program speed-up. 
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Figure 2-5: The Navigation display in MPP Apprentice 

Spreadsheet - XY contour plot 

In SIEVE [147] the programmer can create customised performance views by the 

combined use of the spreadsheet facility and the XY plots. After having applied 

any data manipulation functions on the spreadsheet cells, the programmer may 

create XY plots by selecting specific rows and/or columns of the spreadsheet. 

2.3.4 Animated system views 

A two-dimensional arrangement of processor cells and interconnection network is 

commonly found in displays which depict system utilisation. In DELTA-T [130], 

all the transputer nodes are arranged in a two-dimensional way. The display is 

animated with each node changing colour according to its utilisation. Comrnunic-

ation among links and processes is shown by lines connecting the nodes. Colour is 

used to denote variations in the link utilisation. The System Performance Visual- 



CPU load 

Link utilisation 

uulisation 

Chapter 2. Parallel Program Performance Analysis Tools 	 25 

iser (SPV) is designed to portray the overall system usage [15,142]. An overview 

display shows utilisation of all nodes, whereas more detailed ones show the util-

isation of the message-passing processor, the Bus and the Network Interface for 

the Intel Paragon. 

Data presentation model of Maritxu 

Based on vision theory, Maritxu [175,176] proposes an independent visualisation 

schema which is a spatial two-dimensional arrangement of processor nodes. In-

stead of confining the visualisation to one metric shown by the colour of the node 

cell. Maritxu depicts a number of icons on each cell, each dealing with one per-

formance metric. The attributes of the icons such as colour, shape, orientation 

can convey the variations of the performance metrics. Figure 2-6 shows some of 

the performance metrics that can be assigned on a processor cell, for a transputer 

platform. Animation can show how the performance metrics change over time. 

Link utilisation 

Link utilisation 

Figure 2-6: Data presentation model of Maritxu 
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Machine views or processor views 

VISTA [145] introduces a version of ParaGraph's [55] Processor views, called Ma-

chine views, for SPMD/MIMD and SIMD programs. The Processor views display 

is a two-dimensional array of NxN processors. Each processor is assigned a cell in 

the NxN matrix and the colour of the cell denotes whether the processor is busy, 

idle or communicating at a particular moment. The animation of the display 

provides a series of snapshots of the system over time. VISTA uses Machine-

Views for showing the utilisation of a large array of Processor Elements (4096 

PEs) of a MasPar MP-1. The space occupied by each cell is naturally a lot smal-

ler, and differences in shading denote different PE utilisations. The variation of 

system utilisation over time is shown either by attaching Machine views together 

in a "filmstrip" manner or by adding a third dimension to the two-dimensional 

display. 

Memory access patterns 

SHMAP, the (Shared-Memory Access Pattern) tool, visualises the memory access 

patterns of parallel algorithms in a Fortran setting [39]. Memory is represented 

two-dimensionally on two separate displays visualising the read and write oper-

ations respectively. On a memory access the corresponding memory element is 

illuminated. The illumination fades gradually to identify recently accessed ele-

ments. A similar display is used for visualising cache accesses in a hierarchical 

memory environment. 

2.3.5 Alternative representations 

Scientific visualisation, virtual reality and auralisation are some of the alternatives 

proposed to meet the increasing requirements for scalable and meaningful data 

representations: 
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Scientific data visualisation. With the advance of parallel computing the re-

quirements for performance visualisation become more demanding. Work in 

[62] investigates the feasibility of using scientific data visualisation software 

to generate new performance visualisations. 

Virtual reality. Head-mounted displays are introduced in Pablo [137,138]. A 

small head-mounted display conveys stereoscopic three dimensional perform-

ance graphics. When an interesting event requires additional instrumenta-

tion and more thorough visualisation, graphics are conveyed to the high 

resolution workstation displays. 

Auralisation is proposed in [51,80] as an alternative to visualisation. The scalab-

ility of the combined use of sound and graphics is examined in [52]. Each 

processor is mapped to a different note which is played whenever this pro-

cessor sends or receives a message. The send-notes can be played on dif-

ferent stereo channels or with different instruments from the receive-notes. 

Massively parallel systems require a more scalable scheme because the gen-

erated sounds can be unpleasant. Scalability is achieved, as processors are 

separated into groups, and each group is assigned a note. Inter-group com-

munication is directed to one channel while intra-grbup communication is 

directed to another one. The additional information conveyed by sound can 

reduce the complexity of the visual displays. 

2.4 Automatic performance diagnosis 

A number of tools support performance diagnosis in ways described below. AT-

Expert [97] is a performance analysis tool for programs which use the Autotasking 

programming model on the Cray Y-MP C90. ATExpert goes further than just 

presenting performance data. It attempts to interpret the behaviour of the pro- 
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gram on behalf of the user and suggest the appropriate actions which can improve 

the program performance. ATExpert uses a rule-based expert system to make ob-

servations. For a given region of code, it gathers data such as the actual speed-up, 

the overhead time, the serial time and the number of processors. A subset of rules 

are chosen according to what dominates execution. Having selected the set of 

rules, patterns in the performance data are used to determine the possible causes 

of performance problems. Observations and suggestions are presented through 

graphics and text. 

Paradyn's [118] Performance Consultant is based on a "why, where, when" (W3) 

search model to assist the programmer in locating the causes of bad performance. 

The tool tries to answer these questions on behalf of the user. First, the system 

makes a number of hypotheses as to what could be the cause of the problem. 

Gathered trace data is examined to test and validate these hypotheses. Once a 

hypothesis is validated, the tool attempts to identify the location in the program 

where the problem appears. Finally, the "when" question is answered by observing 

the distinct phases of a program execution. 

IPS-2 [78] can work in comparison mode and have its displays show simultaneously 

performance data from various runs. In TraceView [114], a tuning session consists 

of a set of open trace files, a set of views and a set of displays. A view is defined 

as a sub-region of the trace file comprising of interesting events. Unwanted events 

are filtered out of the event stream. A session manager enables the user to save 

a tuning session for later use. In this way the user is able to compare trace files 

from multiple runs of the program. 

On-line steering can improve the performance and the functionality of parallel 

application programs. On-line steering is defined as the on-line configuration of 

programs in order to affect execution behaviour and performance. In Falcon [60], 

the user can improve, for example, the load balance by interactively changing 

program parameters such as domain boundaries. 
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2.5 Tool integration 

There have been a number of cases where initial work towards tool integration has 

been done. Tool integration can be of three kinds: 

• tools can share information (data sharing), 

• tools are managed in a common framework (control integration) or 

• tools have a common user interface (presentation integration). 

The toolkit approach to tool design whereby tuners may extend the system by 

providing their own trace data processing and visualisation mechanisms is one 

technique for tool integration, but some tools are designed in a way that a great 

deal of end-user programming is required to extend their functionality or integrate 

them with other tools [65]. The adoption of an "open tool architecture" is the 

way to ensure tools from different developers are interchangeable. Alternatively, 

the Self-Defining Data Format of Pablo [5,137] abstracts away from the semantics 

of the trace events, thus facilitating tool integration and extensibility. 

The design technology of existing tools should be improved to allow them to 

be successfully integrated with parallel programming environments [9,91]. The 

approach of the TAU (Tuning Analysis and Utilities) project is that of integrating 

the tuning tool to the pC++ portable parallel programming environment [22,121]. 

pC++ is an extension of C++ and facilitates the creation of distributed data 

objects. TAU interacts with the pC++ compiler in order to access information 

about objects in the application program and with the pC++ run-time system 

to get profiling and tracing information. TAU's trace data can be converted by 

built-in utilities into one of the following data formats: SDDF[5]; ALOG [67]; 

and TDL/POET [120], allowing TAU to share tracing information with the Pablo 

[138], UpShot/ALOG [67] and SIMPLE [119] tools respectively. 
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Other tools attempt to enable users to work in their favourite environment of de-

buggers and performance visualisers by employing control integration [103]. For 

example, VIZIR [64] consists of a number of Tool Interfaces (TI) that allow inter-

action with each of the integrated tools. VIZIR caters for PVM applications that 

run on distributed systems and the tools integrated include: Hewlett Packard's 

DDE, IBM's XDE, Matlab, ParaGraph and Onuplot. 

Performance visualisation could benefit from the integration with scientific data 

visualisation software. So far performance visualisation has been limited to two-

dimensional views. For example, Hackstadt and Malony demonstrate how a data 

visualisation tool could provide a rapid prototyping environment for creating and 

interacting with multi-dimensional performance views [62]. Raw trace data is 

structured so that it can be processed by the visualisation system. Automating and 

formalising the interaction between the performance data generation environment 

and the visualisation software could be the next step towards integration. 

Poirot seeks to pursue integration with performance analysis tools in order to apply 

its automated performance diagnosis methods to a number of targets [66]. This 

approach relies on research in software development environments and databases 

which provide access to tools, programs and data independent of tool command 

syntax and data format. 

2.6 A Design Agenda 

Many performance analysis tools have been described in the literature with ex-

amples of their use. These typically illustrate indicative situations and codes with 

regular, easy to understand behaviour which does not correspond to large, real 

world application programs. In practice, the problems that programmers have to 

face may be more complex and the amount of data they have to consider very 

large. 
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Tool developers have a somewhat restricted understanding of the requirement for 

ease of use. For example, the developers of DELTA-T consider that the require-

ment for ease of use is met by simply allowing users to monitor the execution of 

their programs without having to insert any extra statements in the source code 

[130]. Tool designers are motivated by technological challenges and design systems 

according to their own personal requirements and their intuitions about what will 

be good for the users. As we have seen, graphical user interfaces and sophistic-

ated visualisation means have been widely employed to facilitate user interaction 

and interpretation of performance data. Mere use of visualisation and graphical 

interaction should not be regarded as a panacea and there are a number of issues 

which should be part of the developer's agenda: 

• Knowing the users and their tasks. 

Designers should not make assumptions about users and their tasks. Users 

beyond the immediate tool development context should play some part in 

design since local users may be more knowledgeable and may have been 

exposed to the design too much to be representative of the user community 

and their needs. Design should cater for the experienced as well as for the 

novice user. Experienced users may need to conduct more detailed analysis 

and this can be supported by allowing them to customise the tool and provide 

application specific visualisations 3 . Novice users may require more assistance 

in finding and eliminating a performance bottleneck. 

• Providing meaningful visualisations of program behaviour. 

Visualisation is a powerful tool for data presentation but it should be used 

with care. For example, Miller gives some guidelines for meaningful and us- 

3 With the advent of programming environments for structured parallel programming, 

application specific visualisations could be applied to program templates. 
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able performance visualisation [117]. Usability issues should be considered, 

for example, program visualisations should scale well with the amount of 

information that a program run produces. Tools may provide zooming in 

and filtering facilities [136], but these methods should be used carefully as 

they are likely to disorient the user from the task in hand if, for instance, too 

many zooming operations in combination with filtering operations (isolating 

particular metrics for examination) are performed. Some of the responsibil-

ity of identifying performance bottlenecks could be undertaken by the tool, 

thus reducing the search space that the user has to investigate. 

A number of software engineering and performance issues arise as well. Tool 

response time and space requirements should scale well with the amount of per-

formance data that monitoring generates. Apart from reducing the amount of 

data and the level of detail that the user has to consider, abstraction and filtering 

mechanisms should be designed to cater for reducing tool response time as well. 

The overwhelming variety of programming, architecture and machine models has 

resulted in a large number of diverse tools which often fail to meet user require-

ments and thus, become unusable. Almost ( 46%) of the parallel programmers 

who participated in the investigation of the tuning task described in Chapter Four 

did not use any tool at all. The vast majority of tool development has been ad-hoc 

without complying with any standards or with accepted user-centred design meth-

odologies. This has raised the development cost of the tools and has decreased 

their life-span since new machines and new programming languages keep emer-

ging. With the hardware platform and programming environment scene changing 

so fast, portability and extensibility become major issues. Due to the lack of tool 

integration and consensus amongst tool developers, a lot of implementation ef-

forts overlap whereas a lot of issues remain largely neglected. The following are 

prerequisites for tool integration to occur [144]: 

• the traditional approach of building tools should change, 
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• there has to be greater consensus about what kinds of tools are useful, 

• standardisation in data formats and interfaces is a necessary step, 

• an infrastructure is needed so that tool development need not start from 

scratch for each new machine and 

• vendors should realise that good and usable tools are as important as high 

performance parallel hardware. 

The agenda of this work has been to seek an understanding of how tuning is 

performed and to use this understanding in informing the design of tuning tools. 

An initial investigation by means of interviews and questionnaires provided the 

basis of a framework for the analysis of tuning. This analysis pointed to the 

difficulties that tuners encounter with tools and in performing tuning. The results 

of the investigation are described in Chapter Four. For example, an issue which 

has so far been neglected by tool developers is the fact that most of the tools have 

been data driven i.e., the emphasis of tool design has been on the analysis and 

visualisation of performance data stemming from one instrumented program run. 

However, a performance problem is rarely solved by a single tuning cycle. Support 

is missing for facilitating the process of experimentation and repetition. Chapters 

Five and Six identify and analyse the requirements for supporting tuning in the 

large. 



Chapter 3 

A framework for studying tuning 

Parallel computing enjoys significant interest in the scientific community because 

of the increasing demand for computational speed and the decreasing cost perform-

ance ratio of parallel computers. The scientific community is now able to model 

and solve more accurately larger compute intensive problems. In the quest to pro-

duce functionally correct application programs that take advantage of the power 

of the underlying hardware, usable and efficient software tools and environments 

are required to assist with parallel program development. 

Whenever possible, the development of parallel programming techniques and tools 

has sought to take advantage of advances in sequential programming. The exist-

ence of large "dusty deck" sequential programs motivated the advance of compiler 

technology [20] in order to identify potential parallel regions in the sequential 

program and transform them into parallel code (implicit parallelism). However, 

research in automatic parallelising compilers is far from complete, so much of the 

work of parallelism has still to be explicitly performed by the programmer. Apart 

from a few languages designed with constructs (e.g. [6]), the rest are based on 

existing sequential languages. Languages such as C or Fortran are extended or 

host libraries to allow for explicit parallelism. Current research in parallel program 

debugging has allowed the leverage of techniques used in debugging of sequential 

programs. 

34 
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In contrast, performance optimisation of parallel programs is dominated by dif-

ferent and more complex problems than its sequential counterpart. In sequential 

programming the choice of algorithm is the main performance determining decision 

as the execution time of the program is the sum of the instructions executed whose 

number can be expressed in terms of the problem size n. In addition, sequential 

compilers are sophisticated enough to perform code optimisations in order for the 

code to perform well on the target machine. Thus, it is relatively straightfor-

ward to analyse the performance of a sequential program. On the other hand, in 

parallel programming the choice of algorithm is only one of many considerations. 

The algorithm should be chosen to map well onto the underlying parallel machine 

and further performance tuning has to be performed as parallel compilers are not 

often sophisticated enough to perform extensive code optimisation. Additionally, 

the execution time of a parallel program is no longer the sum of the instructions, 

but the critical path [104]. 

The large diversity of parallel architectures makes it difficult to try to abstract 

parallel machines for analysis. The PRAM model [88] has been used extensively 

in the analysis of parallel algorithms but is of little use to the parallel developer 

as it does not correspond to any real machine. Whereas there are more realistic 

analytical models [115] being developed, successful analysis of parallel applica-

tions is still highly machine specific [99]. As a result, analytical methods are 

not well suited to cater for all the performance issues implicated in the immense 

variety of architecture and programming models. Analytical techniques are also 

very hard to learn and use so as a result, parallel programmers cannot generally 

start developing their application by forming a theoretical analysis of their al-

gorithm nor can they start from a known optimal algorithm. The most common 

approach to developing a parallel code is to look for opportunities for parallel-

ism in existing sequential codes. After the program is developed, its performance 

must be measured and analysed to pinpoint to sources of poor performance and 

to determine how to modify it to remove them. Performance evaluation, perform- 
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ance analysis, performance debugging and performance tuning are all terms which 

describe the process of measuring and analysing program performance with the 

purpose of improving it. Tuning is a difficult task and tuning tools are crucial 

aids in the development and performance optimisation stage of parallel programs. 

The work presented in this thesis argues that an in-depth investigation of parallel 

program development and specifically of the tuning task itself is needed, before 

any assumptions can be made about the design of tuning tools. 

3.1 Studies of programming 

In the absence of studies of parallel programmers, work on empirical studies of se-

quential programmers must serve as a starting point for the specification of usable 

and useful parallel programming environments. As early as in the mid-eighties, 

however, the relevance of the up-to-then largely laboratory-based studies of pro-

grammers to real world software development problems was questioned. Curtis, 

for example, stressed that a great body of research concentrated on expert-novice 

differences in programming using students as subjects and small size programs 

(e.g. [23,61,69,86,143,156]) [35]. Apart from some notable exceptions e.g. [151], 

this research failed to observe processes that occur in real world large projects 

with experienced programmers. 

Curtis's observations are even more valid when the relevance of these studies to 

parallel programming is considered. Computer science students and professional 

programmers are not representative of parallel programmers dealing with large 

scientific codes. Parallel programmers may have been using sequential machines 

for years in academic or industrial organisations so they cannot be compared 

to first and second year computer science students. In addition, they may be 

infrequent programmers without the characteristics of full-time programmers. 
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Studies have considered only fragments of sequential programs and focus mainly 

on issues of understandability. The inherent complexities of parallel programming 

introduce a number of other issues: having to learn a lot about e.g., how the hard-

ware operates; having to keep up with fast changing programming environments; 

and having to produce faster solutions, to name but a few. 

The investigation described in this thesis is among the first examples of research 

to focus on practices of "real" parallel programmers [35,132,133]. Pancake et al. 

[133] asked 448 participants of Supercomputing '93 whether they had used any 

computer based tool during the stages of parallel program development, namely: 

fixing a serial program; writing a parallel program; improving the basic model; 

debugging; tuning performance and setting up program runs. Among other res-

ults, it was reported that almost 35% of the parallel developers asked used an 

internally developed tool for performance tuning, while 29% had used no tool at 

all. The remaining respondents were using an externally developed tool. Pan-

cake admits that the results of the survey set optimistic upper bounds regarding 

the use of current tools, since the people attending the conference were probably 

more computer science oriented than those who would attend a purely scientific 

meeting. Past results of a smaller survey among more conservative Fortran users 

showed that almost 90% relied exclusively on PRINT statements instead of using 

a debugging or a performance tuning tool [132]. These results demonstrate that 

the large number of tuning tools described in the literature (Chapter Two) are 

not used by real parallel programmers. 

The investigation described in the following chapters draws upon the experiences 

of a much smaller number of parallel computing users, but focuses entirely and 

in more detail, on performance tuning and spans across a wider range of issues. 

Whereas Pancake's survey investigated the use of parallel programming tools, 

this work studied and analysed tuners' work practices as they are formed within 

the context of current tool support and collaborative program development. One 

starting point for this research has been one of the few studies of real program- 
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mers i.e., Eisenstadt's study of the phenomenology of sequential code debugging 

i.e., how debugging is performed by real world programmers [44]. Eisenstadt eli-

cited debugging anecdotes, descriptions of bugs and of bug-fixing strategies from 

developers of academic and commercial software. His analysis focused on the reas-

ons bugs are difficult to find; how the bugs were found; and what were the causes 

of the bugs. He identified four  categories of reasons that bugs are hard to find 

(in order of frequency of occurrence): 

Cause/effect chasm. Often the manifestation of the bug is far removed in space 

and/or time from its cause. It may not be easy to find the root of the prob-

lem when the evidence of the bug cannot be related to the program source 

code. Among bugs classified in this category are timing and synchronisation 

problems which can be intermittent, inconsistent or infrequent. Too many 

degrees of freedom exacerbate the difficulty of the task e.g., when a piece of 

software works perfectly in one environment, yet fails to work in another. 

If many environment parameters have changed then there are too many de-

grees of freedom to conduct controlled experiments especially under time or 

resource constraints. 

Inapplicable tools. The bug disappears when the tool is switched on (probe 

effect). The program may have to run for too long in order to replicate the 

mistake. Tools may not be usable for various reasons, for example, memory 

constraints. 

Faulty assumption/model. Possession of a conceptual model that explains the 

operation of a system software or hardware component reduces significantly 

Actually, Eisenstadt identified five categories but for the purposes of this study that 

fifth category has been merged with another one. 
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the search space for the cause of a bug; equally it can exacerbate the dif-

ficulties if it is faulty. Examples are faulty assumptions about how stacks 

grow or what is the correct behaviour of a function. Eisenstadt asked pro-

grammers to report on extremely difficult to find bugs. According to the 

answers to his third question - what was the root cause of the bug - most 

of the problems were related to memory allocation, or to conceptual errors. 

Spaghetti code Eisenstadt found that there was a 100% correlation between 

complaints that a code was too messy to debug and that it was written by 

another person. 

Eisenstadt recognised four main ways in which bugs are found. These are (again 

in order of frequency of occurrence): 

Gather data; This category encompasses experimentation techniques such as 

use of printfs and inserting breakpoints in the program execution. 

Controlled experiments. Controlled experiments are conducted which attempt 

to investigate what the cause of a bug may be. Controlled experiments 

begin with a hypothesis which is based on a conceptual model of a system 

component (software or hardware). If this model is good it is expected that 

the programmer will find quickly the cause of the hug and eliminate it. If 

the model is wrong then more experimentation is needed to find the bug and 

the model gets updated or extended. 

Speculation. This class includes cases where programmers speculate about what 

has caused a bug. A number of techniques were reported for example, in-

spection, meditation, simulation, articulation and others. 

Expert help. Alternatively, help is sought when a problem exceeds the expertise 

of the programmers. 
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Eisenstadt's categories were used by this work as the basis of a framework for the 

analysis of tuning which was subsequently expanded in the light of the investig-

ation to reflect the differences between debugging and tuning. Whereas Eisen-

stadt's research was based on responses received through electronic mail and news 

bulletin boards, the research described in this thesis employed a large number of 

methodologies such as interviews, questionnaires, in situ observations and others 2. 

Investigating the difficulties in tuning and how tuners discover and eliminate the 

performance bottlenecks in their programs is the theme of the next chapter of this 

thesis. 

Whereas Eisenstadt focused on the cognitive issues involved in debugging, a con-

sideration for this work has been to investigate parallel program development and 

tuning as a repetitive and collaborative activity. Once again, only a few studies 

of sequential programming have investigated the issues involved in team program-

ming. For example, Flor examined cooperation in a small programming team 

consisting of two people [48]. It was shown how goals and plans were shared and 

how people collaborated through sharing artifacts which were external represent-

ations of the problem in hand. That investigation focused on a very small group 

'Curtis has suggested that empirical studies of programming will need new tech-

niques for gathering data such as videotaping programming in real world contexts [35]3. 

Soloway focused on the need for alternative research methodologies in order to study 

programming in the large, and questioned the effectiveness of controlled experimental 

studies for studying large projects [155]. For example, the diary of an experienced pro-

grammer was studied where the programmer recorded argumentation about the program 

design and some results of test runs [125]. At the same time, system designers started 

facing the need to incorporate the work setting's social and organisational knowledge 

into the systems design [59]. Part of the motivation for this emphasis on the soclo-

technical can be attributed to an increased interest in usability issues. These include 

supporting co-operation in working environments and relating design to informal - as 

well as formal - work practices. 



Chapter 3. A framework for studying tuning 
	

41 

and could not obviously capture the ways that artifacts are shared within larger 

groups, among groups or even among organisations. Chapter Four extends Eisen-

stadt's framework to take into account the issues involved in performing tuning in 

a collaborative environment and the extended framework is used in the investiga-

tion of tuning in the large presented in Chapters Five and Six. 



Chapter 4 

Tuning in the small 

The first section of this chapter investigates the issues which contribute to the 

difficulty and complexity of parallel program performance tuning. Fifty two tuners 

participated in this study. Twenty six tuners responded to questionnaires posted 

to relevant news bulletin boards and made available through the World Wide 

Web. In addition, and to enable issues raised by questionnaire respondents to be 

explored in depth, twenty six tuners working for a number of UK and European 

organisations and institutions were interviewed. In total, eighteen respondents 

worked for university establishments and thirty four for companies. A profile of 

the respondents is shown in Figure 4-1. 
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Figure 4-1: Profile of respondents 
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Their answers, summarised in the first section, drew attention to the need to 

extend Eisenstadt's framework to cater for the new issues introduced by parallel 

program performance. From an analysis of the experiences reported, an adapted 

framework is proposed and its validity examined. 

Tuners talked also about the shortcomings of the tools they used, and gave sug-

gestions on how these tools can be improved or what functioualities they would 

like their ideal tool to provide. The sixth section is concerned with issues such 

as access to tuning training and documentation. The final section discusses the 

implications that the results of this study have for tool design. 

4.1 Difficulties of tuning 

Fifty two tuners were asked to nominate the most difficult aspects of tuning. Their 

answers were analysed and classified in a number of categories which are presented 

in Table 4-1 in order of frequency of appearance'. Some answers are reproduced 

here by way of illustration; a more complete record can be found in Appendix A 

(e.g. [Ae41], [Ae43], [Ae44], [Ae45], [Ae46], [Ae47], [Ae50], [Ae51], [Ae52], [Ae55] 

and [Ae54] 2 ). 

Finding and fixing. All entries in this class emphasised that although it is 

relatively easy to spot the symptoms of poor performance, it is very difficult 

to find the cause of the performance problem and fix it. Some answers 

'Eighteen, fourteen, nine, two and one respondents mentioned one, two, three, four 

and six answers respectively. The total number of answers are eighty six. Some responses 

were included in two categories, hence the numbers 10.5 and 19.5. 

2  A denotes that the excerpt can be found in appendix A. 
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Category Occurrences 

Finding and fixing 19.5 

Keep track of changes 17 

Know specifics of machines 13 

Interrelated parameters 13 

Inadequate tools 10.5 

Somebody else's code 5 

Change 4 

Time constraints 4 

Table 4-1: Sources of difficulties in tuning 

indicated that part of the difficulty is attributed to misleading information 

given by tuning tools. 

Keeping track of the changes. The tuners whose responses are included 

in this category were all concerned with how to organise controlled tuning 

experiments and compare the different program runs. 

Specifics of (often different) machines. Having to know the specifics of the 

underlying machine and system software is not something that the average 

tuner finds easy to do. Not surprisingly therefore, porting the program to 

another machine with a different architecture is regarded extremely difficult 

as well. 

Interrelated parameters. One of the problems in tuning is that the paramet-

ers which have an impact on the program performance are often many and 

interrelated. Thus, the optimum value for one parameter may not belong to 

the set of optimum values for all the parameters that affect performance. The 

lack of conceptual models of parameter inter-relationships results into tuners 

employing trial and error in order to specify a model of interactions between 
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the parameters. These interactions are then verified through a number of 

edit-compile-run cycles which limit the implementation of program changes. 

As it is not easy to try all the possible combinations, tuners try to predict 

what changes will work together. Responses of the form "lack of under-

standing of the basic issues" were included in this category, as they imply a 

difficulty in understanding the interactions among the various performance 

determining parameters. 

Inadequate tools. Answers in this category included cases where it was difficult 

to interpret correctly the information provided by the performance analysis 

tool or tuning tools were simply unavailable. 

Other people's code. Programs written by other people are extremely difficult 

to understand and optimise. Answers indicated that codes with very complex 

data structures are extremely difficult to parallelise efficiently. 

Change. Parallel computing is a particularly dynamic area which changes con-

stantly. Compilers that have bugs or keep changing, hardware which is not 

configured fully, working with prototype parallel machines or newly imple-

mented languages exacerbate the difficulty of the task. 

Time constraints. Two informants were concerned with tuning taking place 

under conditions of time pressure. Tuning can prolong parallel programming 

because programmers have to develop code which is not only functionally 

correct but performs well at the same time. Progress is limited by the 

edit-compile-run cycle which can take a considerable amount of time. Time 

constraints can be imposed by project deadlines and by the available time 

tuners have on parallel machines. 

At this point, Eisenstadt's classes can be revisited to examine their relevance to 

parallel program performance tuning. The responses show that parallel program- 
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ming introduces issues which are not present in sequential program development 

so new classes emerge and existing ones need to be augmented. 

• "Cause/effect chasm" 

In tuning, the "cause/effect chasm" is instantiated in the gap between find-

ing where performance is lost and knowing the reason for the performance 

degradation in order to fix it (finding and fixing). It is very difficult for tuners 

to try to find in large volumes of performance data and tuning information 

where performance is degraded in the program and establish the reasons for 

the performance bottlenecks. Porting the program to a new parallel ma-

chine is very common and this introduces many more degrees of freedom in 

the search for bottlenecks. Due to the complexity of programming models, 

there are many interrelated parameters whose model of interaction has to 

be investigated before any assumptions can he made about the cause of a 

performance problem. 

• "Faulty assumption /model" 

Eisenstadt in his "faulty assumption /model" class included cases where a 

bug was exceptionally difficult to find because of a wrong assumption the 

programmer had made about a model of the system software or the machine 

operation. In tuning, a lot of knowledge about the specifics of the underlying 

machine is required in most of the cases and not only in particular difficult 

ones. The challenge of tuning is not unlike that of sequential programming 

at assembly level, where the programmer has to know how a large number 

of low level entities operate. In addition, whilst there is only one model of 

sequential programming, there are many models of parallel programming. 

Models are more complex and often involve a large number of interrelated 

parameters. Porting the program to different machines increases the likeli-

hood that details of models may get confused or forgotten. 
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• "Inadequate tools" 

The impact that "inadequate tools" have on the development process is 

larger in parallel than in sequential programming, especially when the im-

maturity of system software is considered as well (see next category). Tuning 

tools are often unavailable. Enabling the tuning tool alters the behaviour 

of the executing program. Tools may mislead tuners by the way in which 

performance information is presented. 

• "Change" 

This is a new category as tuning is often performed when hardware and 

system software are still unstable and immature. It is almost impossible 

to overcome hardware inefficiencies. Programming environments are not 

mature enough and tuning of programs, written in a new language without 

advanced compiler and run-time support, is common. Tuning is made harder 

by the fact that optimising compilers are not sophisticated enough and often 

affect the correctness of the program. 

Eisenstadt focused on the cognitive aspects of debugging and dealt only with the 

difficulty of bug finding without examining debugging in the context of require-

ments and work practices found in large project development teams. Eisenstadt's 

findings refer to exceptional bugs which were very difficult to find. His respond-

ents did not talk about cases where debugging was routinely performed during 

program development. Thus, the picture of debugging that emerges from Eisen-

stadt's study is that of a task aiming at eliminating a bug in one instance of time. 

Hence, the categories described above are pertinent to tuning in the small and can 

be used to investigate how the unit tuning cycle is performed and how it can be 

affected by parallel software and hardware. 

On the other hand, a number of issues stem from the fact that tuning is repetitive 

and can occur in the context of collaboration with others. The two categories 
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described below are relevant to tuning in the large as they can be used to examine 

tuning in a wider context than that of tuning in the small. 

• "Repetitive nature" 

Tuners must consider many reasons for performance loss and many loca-

tions in the program where bottlenecks may occur. In cases where tuners 

attempt to establish a model of the interaction of the many interrelated 

parameters, experimentation is prolonged and results in tuners having to 

manage the tuning process. Whereas debugging is successful when bugs are 

found, performance tuning does not have a discrete result. Performance 

can be improved to different degrees. Tuning can be repeated until specific 

performance goals are met. A tuning project may take considerable time, 

during which it may be stopped and resumed numerous times. Tuning may 

be performed under conditions of time pressure due to deadlines or to the 

finite time available on a parallel machine. Time constraints have an impact 

on the way tuning is performed and are an additional source of difficulty. 

Tuning may involve many changes to the program and tuners have to check 

for correctness after every substantial change. Keeping track of changes is 

difficult especially in the context of large development projects. Moreover, 

when programs are ported performance issues are reopened. 

• "Somebody else's code" 

Eisenstadt's category "spaghetti code" has been renamed here somebody 

else's code because tuning code for others is a very common pattern in 

parallel programming. There are many implications for the way tuning is 

performed when the code is written by someone else or it is written in the 

context of multi-people development projects. Lack of documentation makes 

the task harder. 
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Category Occurrences 

Cause/effect chasm 25.3 

Repetitive nature 23.8 

Faulty assumption /model 17.3 

Inadequate tools 10.5 

Other people's code 5 

Change 4 

Table 4-2: Revised framework 

Under the new extended framework the category finding and fixing corresponds to 

the category "cause/effect chasm"; the class specifics of machines corresponds to 

the "faulty assumption /model" category of the analysis framework. The keeping 

track class is relevant to the "repetitive nature" category. The answers in the 

category interrelated parameters were shared among the above three classes. The 

time constraints answers were included in the "repetitive nature" class. It is 

interesting to see in Table 4-2 that the "repetitive nature" category whereas it is 

not mentioned in Eisenstadt's study, is ranked as the second most difficult aspect 

of tuning 

The following sections present evidence of the kind of problems tuners face in four 

of the above categories. Issues in relation to the repetitive nature and somebody 

else's code categories (tuning in the large) are examined in the next two chapters. 

4.2 Cause/effect chasm 

As programmers get more exposed to parallel computing their experience in per- 

formance tuning is enriched in the form of heuristics or cliches. These heuristics 

can vary from being general e.g., "remote memory accesses are more expensive 

than local memory accesses, so they should be avoided" to being specific to the 
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features of the underlying compiler and hardware e.g., "given that the size of 

the T31) cache is small, loop unrolling could make cache accesses more effective". 

When such rules are applied the programmer expects the performance of the pro-

gram to improve. There are cases, however, where other factors contribute in such 

a way that the impact of applying a well known rule is not positive. Although 

such unexpected outcomes can be explained 3,  the explanation may often be far 

away from the context of the rule itself. Thus, there are many degrees of free-

dom which determine the effect of a performance optimisation and the impact 

of a performance improving design decision cannot generally be known a priori 

without experimentation. Experimentation, however, may produce huge amounts 

of performance data and this makes even identifying the manifestation of poor 

performance (effect) a difficult task. 

For example, in [Ae25] the tuner knew that next neighbour communications in 

the array, of processing elements of the Maspar data parallel machine were almost 

as fast as local memory access and that performance could improve if they were 

preferred instead of communications through the global router. When this type 

of communication was used the tuner discovered that, in fact, the performance of 

the program worsened: 

[Ae25] . . . because the processors are so small, this neighbour communication 
is nearly as fast as a local memory access. But, on the other hand, if you 
go too far by that neighbour communication, you worsen the performance 
and also there's a chance that too many processors try to send a message 
through the same route 4... Informant 42 

3Actually, studies of programming have shown that while the knowledge of the less 

experienced programmers is fragmented consisting of heuristics and cliches existing in-

dependently of one another, more experienced programmers integrate these heuristics 

in the context of global conceptual models. 

4 Novice programmers may not know how routing mechanisms can actually affect the 
communications of their programs. 



Chapter 4. Tuning in the small 	 51 

Sometimes, tuners have to deduce the value of a particular performance metric 

from other ones that are available within the tuning tool. In [Ae108], the tuner was 

given an estimate of the load imbalance problem of the program. He had, however, 

to determine the degree of load imbalance as that estimate was made on a different 

machine. The information that the tuner had had about the performance problem 

compensated for the poor support the tuning tool provided for load balancing 

investigation. The tuner tried to verify the load imbalance problem indirectly by 

looking at a second level metric such as the time spent waiting for messages. 

In the following case, the manifestation of the problem was that some CM Fortran 

statements took too much time to execute. Informant 55 was an experienced tuner, 

and knew that statements in a CM Fortran program are split into blocks, which 

are communicated from the front end of the machine to the array of processing 

elements. The communication of each block of code has a startup cost related to it 

so it is better if program statements are ordered in a way that as many instructions 

as possible are placed within a block. Informant 55 looked at assembly code to 

find out how best to re-order the statements in the program. A novice parallel 

programmer would not know what caused specific statements to be very expensive. 

For less experienced tuners, who may not be able to work at such a low level, the 

informant suggested that they should try random combinations of the order of the 

source code statements: 

[e16] The fact is, that I have a lot of experience with the lower level assembly 
language and I look at that and I can see it is splitting the code into many 
blocks which is inefficient. The most efficient thing is to have everything in 
a single block. If you write the program so that it is split into many blocks, 
the execution time is increasing, because there is a startup time for each 
block. You don't have to go right down to the assembly code; you can use 
a profiling tool and if you see three statements having the same number 
next to each other, then you add this number three times and this is the 
completion time for this block which has been averaged. Whereas if you see 
statements next to each other with a different number, that means that they 
belong to different blocks. So maybe, you can try different combinations 
of the order of the three statements. It may be the second one that stops 
the first andthe third to be put into one statement. So maybe, you could 
re-order them. Informant 55 
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4.3 Faulty assumption/model 

There are a large variety of high performance parallel computer architectures. One 

way in which they can be classified is by memory access: 

• Shared memory. Each processor has direct access to memory by use of a 

shared bus or network. 

• Virtual shared memory. Each processor has local memory but may access 

remote memory by use of global addresses. This access is accomplished by 

low-latency messages sent over an interconnection network. 

• Distributed memory. Each processor has access to local memory via a 

local address space. The processors are connected by some network. Access 

to remote memories is only available via some message-passing system. 

Another distinction can be made between Multiple Instruction Multiple Data 

(MIMD) and Single Instruction Multiple Data (SIMD) hardware. In the former 

there are typically n complex processors executing up to n distinct instruction 

streams independently. An SIMD machine has each (simple) processor operating 

synchronously and obeying instructions from a single, central controller. For a 

machine to be used efficiently, the processing of data has to be distributed onto 

the machine such that each processor can be kept busy on part of the problem. 

It is also desirable that as little data as possible is moved between processors 

since communication tends to be very time consuming compared to computation. 

It is important that any programming environment gives adequate control over 

the distribution and communication of data. Two programming paradigms have 

emerged and gained wide acceptance by the user community: 
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Message passing. In this paradigm, individual programs written in a serial pro-

gramming language are executed on each processor having access to its own 

local memory. A number of message passing environments exist. To trans-

fer data between nodes the programmer can use send and receive routines 

provided by the system library. Often more complex collective operations 

are also available. 

Data parallel. In this paradigm, a single program controls the distribution of, 

and operations on, data distributed across all processors. A data parallel 

language will typically support array operations and allow whole arrays to 

be used in expressions. The compiler is responsible for producing code to 

distribute the array elements on the available processors. Each processor 

is "responsible" for the subset of the array elements which are stored in its 

local memory. 

The architecture of the target machine, together with the available compilers de-

termine the options the programmer has for writing the parallel program. Once 

the programming model is selected, the programmer then has to consider how 

data and control can be best distributed in the program. The programmer has to 

be aware of low level details which affect the performance of the program. Some 

aspects of some programming models can be too complex for the inexperienced 

programmer to use (e.g. [Ae101]). The need to know low level details about the 

operation of the machine can be a problem ([Ae12], [Ae20]) when different kinds 

of optimisations are needed each time: 

[Ae12] . . . and the latest architectures are RISC which I am not familiar 
with, for example, with vector architectures you know what to do, you 
know with the inner loops and things. In terms of cache use, I am little bit 
lost. Informant 47 
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[e700] 5  I started using Occam and I got so much used in using it that I 
didn't want to start using a different language. For my thesis work I kept 
on using Occam all the time. 

Informant 57 

The tuners in [Ae20] knew how to apply the standard optimisation techniques for 

the kind of architecture they were considering, but these did not bring the expected 

results. The code was developed twenty years ago for vector supercomputers and 

drastic changes were needed if more performance gains were to be achieved [Ae38]. 

The problem can be exacerbated when changing a machine means that the per-

formance problem is re-defined from the beginning (e.g. [Ae4la]). Inexperienced 

programmers usually start from a parallelisation scheme which is easy to imple-

ment correctly: 

[Ae21] The strategy for parallelisation we adopted wasn't the only one. But 
the other options we had would make the code so complicated that it would 
be unmaintainable, so we had to put up with less performance but with 
a more maintainable code. Parallel programming is difficult anyway. So, I 
tried to implement the simplest approach I could think of, to section data in 
a regular manner. I didn't actually at that time envisage that things could 
be so computationally heavy. In respect to the actual core code. So many 
processors were sitting idle. Because experience with parallel programming 
is so little, most of the people have a sequential background. And so if you 
get a non regular decomposition that increases the design so much that it is 
not worth it. And that was were most of the mistakes with the TLM code 
were made. For every design decision, we asked what is easier to switch 
to this path or to the other path. We took always the easiest option. The 
overhead of going another way was just too much. Any problems with the 
code, the project leader was not there, the learning curve to understand the 
code was too large. Informant 47 

Novice programmers who do not have a conceptual model of how parameters which 

affect performance relate to each other may make wrong performance determining 

design decisions whose correction may require substantial re-organisation of the 

5 e denotes an excerpt that is not continued in the appendix. 



Chapter 4. Tuning in the small 	 55 

source code. In [Ae7], the tuners' inability to predict where the performance of 

the program would be degraded meant that the data decomposition scheme and 

the communication patterns were altered in order to increase the efficiency of 

the code. Performance mistakes may escape even the most experienced tuners 

during the design and the implementation phases of the parallel program. These 

mistakes, however, are simple and are not likely to require major changes of the 

control structure of the code as experienced tuners have a correct model of the 

performance determining factors: 

[e23] In my experience you know, you always make a stupid mistake, while 
designing your parallel code, which will result in performance degradation, 
so tuning simply means to find it and remove it. 	 Informant 42 

Hoc reported that novice programmers find it difficult to grasp the implications 

of the machine model for program design [69]. In parallel programming, however, 

even the most expert tuners may fail to appreciate the implications of machine 

specific models for performance. In the following case, not understanding the 

degree to which performance depended on the machine load resulted in tuners 

rejecting this as a reason for performance degradation and experimenting instead 

with all the other possible factors: 

[e42] On the KSR we had a really hard time because they had a multi-
tasking, multi-user operating system and I knew it would change the results, 
but I didn't realise it would be that bad, so we were for a week or something 
thinking that the code was wrong; it was actually that there were people 
on the machine and the speed up would totally change. Yes, we made some 
measurements using printf and timing routines and then we started using 
pmon, it is some monitoring stuff from the machine, which is not bad, and 
we ruled out everything else and then we said that must be it, and we tried 
measuring without people on the machine and it was fine. Informant 42 
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4.4 Inadequate tools 

To investigate in what way inadequate tools can affect program development and 

tuning and to validate the corresponding class of the analysis framework, fifty 

two informants were asked whether they had ever used any performance analysis 

tool with their parallel code. Eight of them had ported their code to a second 

machine, four to a third machine and one to a fourth machine. This increased 

the answers to seventy one. Table 4-3 illustrates the answers received; despite the 

large number of tuning tools reported in the literature (Chapter Two), in thirty 

three ( 46.4%) out of seventy one cases, there was no tool available. In eight 

cases ( 11.2%), tuners built their own performance visualisation tool. In the 

remaining thirty cases, informants had used an externally developed performance 

tool which accounted for the 42.2%. 

Tuning tool? Occurrences 

Yes 30 

No 33 

Own tool 8 

Table 4-3: Tuning tool use 

The performance tuning support that the machine vendor provided in [Ae21] was 

a number of flashing lights on the parallel machine indicating when the processors 

were busy. In the absence of tools, tuners may develop their own which are 

sometimes too closely oriented to the problem in hand. This means that the same 

tools may be inapplicable to other situations: 

[e35] Yes, I use a tool I developed myself. One which is tuned very closely 
to the problem I am solving and the approach I have taken to solve it. 

Informant 16 



Chapter 4. Tuning in the small 	 57 

Lack of an adequate tuning tool means that parallel programmers may be unable 

to gather performance data [Ae53]: 

[e14] Taking a program written in CS-tools from the Transputer or i860 box 
to a cluster of workstations led to very poor performance. The performance 
degradation was much worse that it would have been expected due to the 
slower communication medium and lower bandwidth of that medium. It 
wasn't until I tried using PVM that I could convince people that it wasn't 
my program that was at fault, but Meiko's workstation implementation 
instead. The two worst aspects of the whole trial were the inability to 
see what was going on in the parallel message passing library itself and 
the ability to get a good measure of what my program was doing on each 
processor without having to write my own tools. Informant 16 

Users want performance analysis tools to be flexible in the amount of information 

they show: they dislike tools which do not have any mechanisms for data filtering 

(i.e. mechanisms for reducing the amount and the level of detail of performance 

data). Also, they would like to be able to set themselves the level of filtering 

([Ae74], [Ae75], [Ae76]), instead of being presented with information which is 

either too condensed or not summarisable at all [Ae90], [Ae891, [AelOO]: 

[Ae85] ... Apprentice always shows this global view, it shows statistics. 
You have the total time spent in one subroutine, but you cannot see how 
much time was spent in this subroutine over the processors. So you can't 
have a histogram of this subroutine over all the processors to see where the 
time is spent ... Informant 51 

Tools may be successful in assisting the tuner to spot the performance problem, but 

this meets only a minimal requirement, as users need assistance with discovering 

the root of the problem and eliminating it i.e., bridging the cause/effect chasm 

[Ae78]. The gap that tools are called upon to bridge can be attributed to users' 

non-computer science background and to lack of knowledge regarding the specifics 

of the hardware and the system software the application program uses (faulty 

assumption/model). Moreover, tools are designed by computer scientists who 

cannot imagine what tool users know or do not know. The few tools that provide 

advice in the form of "observations" may sometimes convey this information in 

inefficient, incomprehensible or even misleading ways [Ael02], [Ae84]: 
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[e77] . . . Apprentice is not very good suggesting how to improve perform-
ance. 

Informant 41 

[elil] The problem with apprentice is that if you have a particular routine 
it will tell you how much time you waste on memory access. Now, the better 
the routine, the more time you waste in memory access. Well, if the routine 
is very inefficient in its numerical operations, memory access time loss gets 
hidden by the inefficiency of the routine. If you rewrite the routine to 
optimise it, so that if you optimise the use of the CPU, the bottleneck shifts 
to memory access, which will result in apprentice telling you "your routine 
is wasting 60% of its time in memory accesses, now it is wasting 80% of 
its time". The total time of the routine has gone down because, obviously, 
when memory becomes bottleneck, you are running at optimal speed. So, 
apprentice can be misleading, if you use it for one routine, you might get 
the wrong idea. Informant 44 

In [Ae84], Informant 45 (a computer scientist) admitted that he was helped by a 

course on performance optimisation to really understand the information provided 

by the tool. The course was also valuable because it focused on the attributes of the 

parallel machine that really make a program susceptible to memory bottlenecks. 

This case demonstrates that even an averagely experienced computer scientist may 

have difficulties in understanding the information provided by the tuning tool. 

Evidence is lacking regarding the usefulness or the usability of tuning tools [Ae82], 

[Ae79]: 

[e36] I find it difficult with the CM to match the timings, because if you have 
a large piece of code running on the CM and a large piece of code running on 
the front end, you cannot actually profile them together. You have to profile 
a piece of code on the front end with a piece of code on the back end which 
is empty. And reversely. And you have to get these times together and see 
what they mean. Another difficult thing about the profiling is accepting 
that you have actually done wrong. Sometimes it is not easy to see, when 
you have the information, to understand what is wrong. Informant 64 

Tool documentation may cover issues such as the user interface, but does not often 

address how the tool can be used to tune real programs. The study of an email- 

based user support service (described in Chapter Six) has shown that a number 
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of users embark on parallel program tuning without having any strategy for it. 

Tools are sometimes unreliable and industrial users express doubts about tools 

which are developed in the context of academic projects, as they may not meet 

the requirements of large projects. Often, tuners find out too late that a tuning 

tool cannot actually work with traces from their machine [Ae83], [Ae76]. Once 

confidence in a tool is destroyed, it will not be used again: 

[Ae88] . . .1 wanted to produce a profile of the code, a very simple thing, you 
know I am not asking for a lot of things. Just a profile on where the time 
is spent, I had one vector node so I used prof, grpof and the . . . profiler. 
All failed, for three different reasons. It is great to have a utility, but it 
must be robust. Because if it fails for whatever reason, it is of no use to 
you. And the users will never use it again. And profilers are the most basic 
tools. You couldn't even consider them as tools necessarily. Informant 50 

Performance analysis tools may have bugs themselves, which may be easy to detect 

if the manifestation of a bug is obvious ([Ae9l]), so the impact on the programmer's 

work is minimal. In more severe cases, however, the bug could bring the system 

down ([Ae99]) or even mislead the tuner by presenting an inaccurate picture of 

program performance. 

Instrumentation perturbs program execution and this affects how and when tools 

are used [Ae92], [Ae97]. Tools are used to verify that the program works as the 

programmer thinks it should work [Ae107]. 

[e105] We used Paragraph mostly later. When we had something that 
worked in parallel, when the message passing worked, we looked to really 
to see if we communicated in a way we really wanted to do. Informant 51 

A problem mostly met in early examples of tools was that performance metrics 

were isolated from the program source code, thus contributing to the cause/effect 

chasm [Ae104], [Ae103]: 

[Ae104] . . . So, my tool gave hundreds of different performance metrics about 
the processors but we would not see where these metrics applied. 

Informant 59 
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The performance of some programs is not reflected in the performance metrics that 

a tool may provide. Application specific visualisations are sometimes necessary: 

[Ae106] . . While Gecko would say that if everything is busy, everything is 
red, so everything is ok. But this doesn't apply in the case of this simulator  
because there are many cases that the simulator can be working really 
hard. Everything working red hard. But the simulation doesn't progress. 
It progresses in very tiny steps. It is like busy waiting times. Informant 43 

The repetitive nature of the tuning task has been ignored and existing tools do not 

support tuning experimentation. Storing each version of the application program 

along with tuning products in different directories is perhaps the most common 

practice for differentiating among program versions. Programmers typically copy 

the code to a new directory when a substantial change in the code's modules is 

made which is expected to bring substantial performance gain. Fast assessments 

of performance using a tuning tool are hindered when performance information is 

stored in trace files whose name depends on the executable program's name or is 

always the same: 

[e500] In principle, if you had actually two different programs from two 
different runs, you could actually keep the source code and the tif files 
(compile-time information files) and the rif file (run-time information file) 
go to another directory, compile the other code again and keep the other 
rif and hf files and . . . you could start apprentice more than once. The 
problem with apprentice is that you can not actually give apprentice a 
different rif file. The problem is that you need your old code and your old 
tif files otherwise apprentice will not know what it is doing 7 . 

Informant 44 

6 The simulator was the application program. 

TA compiler information file is generated for each source file. It is named after the 
name of the source file and has the suffix ".T". Thus, a second compilation in the same 
directory would overwrite all the information from the previous compilation. 
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4.4.1 Tool requirements 

Fifty two tuners were asked to specify their requirements with respect to either 

the tool they use currently or their ideal tool. The requirements were edited, 

summarised and are presented in Figures 4-2 and 4_35  (selected requirements are 

also presented in Appendix A as [Ae66],  [Ae67], [Ae68], [Ae69], [Ae70], [Ae71], 

[Ae72] and [Ae731). Thirty nine tuners answered this question, and there were 

in total 246 requirements recorded. From those, 133 ( 54%) were concerned 

with specific features which tuners would want their tools to have; 75 ( 30%) 

were concerned with abstractions that would reduce the information displayed; 15 

( 6%) were requirements for tuning management mechanisms; 13 ( 5%) and 

10 ( 4%) were requirements for friendlier and more reliable tools, respectively. 

Due to the different programming models that respondents were using it is not 

easy to comment on the specific tool features required. On the other hand the 

requirement for meaningful abstractions is independent of the programming model. 

In summary, users do not want to be swamped with information ([Ae94]) but they 

want to have the means to select only the relevant performance data and be able 

to eliminate the rest. The requirements revealed a number of ways in which this 

can be achieved and reflected the way tuners go about the task. For example, 

the selection mechanisms (summarised in Figures 4-2 and 4-3 under the heading 

abstractions) could support: the creation of user defined events that are aggregates 

of other lower level events; the selection and display of a number of metrics that are 

of interest; the display of information when a performance metric is below or above 

a threshold; the display of information only for processes that are representatives 

or outliers of a class of processes; and others (Figures 4-2 and 4-3). Tools should 

'The numbers close to a requirement denote the participants who expressed that 

requirement. 
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be easy to use and should be able to handle the requirements of large development 

projects by handling large trace files, and by facilitating tuning management. 

4.4.2 Case study I: tool evaluation 

Informal tool evaluation sessions with a small number of tuners revealed a number 

of usability problems. 

Informant 44 was observed while using MPP Apprentice. The user was almost 

at the end of optimising a large fluid dynamics code. He had tuned all of the 

most critical routines in his program and he attempted to fine-tune some of the 

less critical ones. His program contained a large number of routines which took 

little time. He decided to deal with one of the most expensive routines of this list. 

This was the MPLBarrier function. He invoked the display which showed where 

MPLBarrier was called from: a routine called MPltime. The tuner's immediate 

reaction was to try to click on the MPltime function hoping that the navigation 

display (Figure 2-5) of apprentice would find the specific function so that he 

could have a look at the code. Instead, the user had to go back to the navigation 

display of the tool and scroll the list of routines until he found the routine MPltime 

which he then expanded to examine [Aell2]. 

Paragraph+ was evaluated by Informants 53 and 50. The informal evaluation 

revealed a number of bugs and inefficiencies in the design of the tool. Amongst 

other things, the tuners suggested how certain features could be improved and 

stated a number of requirements. The discussion has been modified slightly to be 

more intelligible, and summarised for brevity's shake. Modifications include the 

separation of the transdribed conversation into parts each addressing a different 

issue 9. 

9 The corresponding excerpts can be found in Appendix A. 
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Informant 53 complained that Paragraph+ could not cope with the generation 

of large trace files, and that meant that he could run Paragraph+ only with a 

scaled down version of the program solving a small problem. Even if a subset 

of processors was selected, for which Paragraph+ could show performance data, 

a full trace file would be generated [Aell4]. Selective monitoring would alleviate 

this problem. Informant 53 stated that sometimes he was not interested in the full 

code, but he would like to isolate and work on a small section of it. At the time of 

the evaluation, Paragraph+ did not support selective monitoring apart from the 

ability to instrument user-defined events [Ae117]. 

Next, informant 53 focused his attention on a load balancing display which in his 

opinion did not depict information he would need in order to examine the load 

balance of the program [e115]. He went on to suggest a display that would really 

help with load balancing [Ael16]. On the other hand, the statistics display was 

considered redundant since it provided information the tuner had already known 

[Ae125]. 

[e115] . . .So this is a display with user defined events which are very strange. 
I have difficulty in understanding them, for example, this display will give 
you the first time on any processor that this user defined event was started 
and then gives you the last time when it was finished. Well, I understand 
what the display means but I have problems relating this to some inform-
ation I would be after ... like did it take longer on processor one? Than it 
did on processor 28 or something? And you can't tell since this is a kind of 
strange summation of time. And maybe you interested, some times, in one 
instance of this event. Informant 53 

A number of bugs were revealed when the tuner tried to "zoom in" a specific 

period of time [Ae123]. The way to zoom in was very complicated and required 

the tuner setting the values of a number of fields. 

A series of excerpts ([Ael24], [Ael26], [Ael27],  [Ael28], [AellO], [Ae118], [Ae120], 

[Ael2l], [Ael22]) demonstrate that a consequence of poor design was that tools 

were used mainly for demonstration purposes during presentations and for reas-

suring developers that programs ran according to how they expected them to run 
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rather than for tuning itself. An issue raised was that tuning tools should be able 

to work with incomplete programs [Ae113]. 

4.5 Change 

Discussions with informants revealed that tuning can be affected by inadequate 

system software. Tuners have to be aware of compiler changes which can make 

performance related design decisions obsolete after some period of time. For ex-

ample, in [Be628], remnants of old code which were necessary under the old version 

of the compiler had to be erased from the source code files as the compiler changed 

in the middle of the tuning efforts. At the same time, the tuner knew that some of 

the performance improvements could be introduced only when the future version 

of the compiler would be installed. These changes were postponed until the new 

version of the compiler appeared. 

System software may arrive in an inconsistent state when different software com-

ponents get improved at different points in time as in the following case. The ap-

plication program (ARPS) used CMAX a parallelising pre-processor which trans-

forms Fortran 77 programs to CM Fortran programs: 

[Ae15] . . . ARPS had been performing a nearest neighbour computation in 
one part of the code, which CMAX translated into an expression containing 
a number of EOSHIFTs (End Off Shift). Unfortunately, the latest version 
of CSHIFT (Circular Shift) in the CM Fortran run time library is currently 
more optimised than EOSHIFT. Informant 17 

Insufficient support from compilers of new languages disrupts the code develop-

ment process ([Ae86]) and may mean that tuning is prolonged in vain only to 

prove that the system software needs to be changed [Aell], [Ae22] [Ae48]: 

[e10} . . . the biggest effort took two weeks and wound up causing changes to 
the Sisal compiler. 	 Informant 20 
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Tuning is concerned with minimising the cost of the most expensive parts of the 

program. Despite the processing speed of modern parallel machines, I/O is the 

source of the largest performance losses. When the execution time is dominated 

by I/O operations, which usually are very difficult to improve, any further tuning 

may be deferred: 

[e6] There are programs that take 45 minutes to read the data in and that 
changes your attitude to tuning. 	 Informant 64 

In the following case, time constraints and system failures meant that the tuner 

had to learn how to switch between different activities. Suspending the tuning 

effort under sudden conditions exacerbates the difficulty of the task: 

[e9] Yes, it made me learn to do some context switching. So one day I 
would work with the transputer and the other day it was down, so I had 
to do something else. If one make fails, the whole system fails. And when 
the transputer was working, the SUNs' network would go down and then 
you had a crash and you could loose everything and then debugging on the 
trasputers is really difficult. Informant 43 

The problems that the tuners encountered in [Ae17]  can be attributed to the lack 

of fully configured hardware, the lack of reliable profiling tools and the lack of a 

sophisticated enough compiler. The work described in [Ae17] tried to produce an 

optimised port of the IFS code for the MeikoCS-2 MPP system''. During that 

period, the CS-2 consisted of S scalar nodes and 1 vector node. The tuners had 

three months access to the CS-2 which was located in France. As part of a phased 

delivery program, the vector nodes on the CS-2 system were initially installed 

' °The Integrated Forecast System (IFS) code has been ported to a number of computer 

architectures in the past 2 years including Cray C90, Cray T3D, IBM SP1, and Meiko 

CS-2. The model is typical of state-of-the-art applications in that it is over 100,000 

lines of Fortran 77, consists of 650 subroutines and consumes large amounts of memory 

and processing power to perform its calculations. As an example, a 10-day T213L31 

resolution forecast takes about 2 hours on a 16 processor Cray C90. 
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without memory coherency support between the Sparc processor on-chip cache 

and the two mVP processors on the same vector node. Effectively, this required 

the Sparc processor on the vector node to run with its on-chip cache disabled if 

any part of an executing program was vectorised, with an expected impact on 

performance: during the first week, the team experienced an initial degradation of 

performance. The tuners concluded that until cache coherency hardware became 

available this issue alone was enough to deter users from using the vector node on 

the CS-2 for large applications. The team was able to run only a small version 

of the application so it was not possible to extrapolate what the performance of 

the full model would be on that machine. Due to the fact that the vectorising 

compiler was not very sophisticated, some of the loops had to be changed manually 

to be vectorisable. The lack of a profiling tool made the tuners profile the same 

application on another parallel machine in order to constrain the manual changes 

to the most expensive loops. Since the IFS code had to be maintained as portable 

as possible it was concluded that a more sophisticated compiler was needed in 

order to minimise the manual changes that had to be done in the large loops of 

the application. 

4.6 Training in Tuning 

While it is evident that tuning requires extensive knowledge about the different 

programming models and the specifics of the different parallel computers, few 

parallel program tuners have access to training and documentation. Thirty three 

tuners were asked whether they had attended any appropriate performance op-

timisation course or had had any access to tuning documentation i.e., manuals 

describing how to achieve performance optimisations specific to a programming 

environment (Table 4-4). Sixteen were working for an academic institution, sev-

enteen for industry. Ten of them ( 33%) had some training in tuning and all 

but three were working for either a company that manufactured supercomputers 
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or used them extensively. Only three ( 9%), on the other hand, had access to 

tuning documentation and all of them were working for companies as well. 

question Yes No 

Training in tuning 10 23 

Access to manual 3 30 

Table 4-4: Tuning training and access to documentation 

Courses are given either by vendors [Ae3l] - their courses are regarded as very 

successful [Ae33] - who sometimes work closely with their clients, or by experts 

at various High Performance Computing Centres [Ae32]: 

[e34] Well, all the projects we work on, include very tight links with the 
computer companies since usually they pay us to have our software working 
on their machines. Hence, I spent 11 weeks working together with a Maspar 
guy (I mean in the same office both in Sunny Valley and France) and he 
explained to me almost everything necessary for me about tuning on the 
MPP systems. With TMC' 1 , it is the same, I was sent for at least 6 weeks in 
Cambridge and some TMC guys came for another 5 weeks to MECALOG. 
Hence, it is not really training in the academic way, but it was very efficient. 

Informant 13 

4.7 Conclusions 

At this point a model of tuning in the small can be considered. For a selec-

ted machine and programming model the tuner has to adopt the best data and 

control distribution policies. Knowledge is needed about how the machine, the 

compiler and the run-time libraries operate in order to drive performance oriented 

design decisions or to reason about the performance results. The assessment of 

the program performance is done using a tuning tool or timing functions. 

"Thinking Machine Corporation. 
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Effective tuning is of great importance to the parallel programming user com-

munity and understanding the issues which contribute to the difficulty of the task 

may lead to better tool design. First, there are many models of parallel pro-

gramming and despite the fact that they are designed to abstract away from the 

underlying machines, tuners still have to know a lot of details about how the par-

allel machine and the system software operate to obtain best results. There are 

three levels of tuning expertise: 

• The novice tuner who may not know the details of the programming model 

and machine specifics that affect program performance. Tuners may try 

to overcome poor performance by changing their algorithms in the absence 

of appropriate knowledge of how to resolve a performance problem. In fact, 

the findings of this study described in Chapter Six verify that novice parallel 

programmers may embark on tuning without having any tuning strategy at 

all 12 . 

• The moderately experienced tuner who knows how underlying machine and 

compiler operate. Usually, this tuner has organised tuning knowledge in the 

form of heuristics. When these heuristics are applied, a positive outcome is 

expected. 

• The expert tuner. 

The cause/effect chasm issue which emerged in the findings of this work 

implies that there is a third level of tuning experience which is accumu-

lated from knowledge derived from the resolution of episodic tuning problems 

which cannot be easily explained. The experienced tuner has accumulated 

enough experience to recognise how other factors can contribute to program 

performance. 

121n contrast, the programmers who participated in Eisenstadt's investigation were 
not novices (Chapter Three). 
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This study revealed a large number of problems regarding computer hardware and 

software support: 

• Tuning may be performed on incompletely configured machines, and tuners 

may be exposed to inefficient system software. 

• Apart from system failures, tuning is prolonged in cases where the tuner 

relies on the compiler to optimise the code. Such performance gains do not 

come for free as tuners have to check thoroughly program correctness after 

using an optimisation flag. 

• Tuning can be postponed until reliable tools and sophisticated compilers 

become available in order to minimise the manual changes done in the large 

parallel codes. 

• Parallel codes are ported to a number of machines and if tuners experience a 

sophisticated programming environment on one system, they expect to have 

the same level of support on other machines. 

Tuning tool development is very often undertaken by computer scientists in the 

context of research projects (as shown in Chapter Two). The emphasis is on 

collecting as many performance metrics as possible and on displaying those metrics 

using sophisticated visualisation mechanisms. Not surprisingly, tuning tool design 

does not meet the needs of tuners who complain that tools are unreliable, difficult 

to understand and difficult to use with real world large codes. As a consequence, 

whilst it was clear that tuners need tuning tools during the whole process of code 

development and tuning, they tend to be used at the end of the development 

process for presentations or as a means to verify that everything runs as it is 

expected to run. Tuners do not participate in tool design and that results in tools 

which do not address important aspects of the tuning task. 
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Porting a parallel code across different machines and programming paradigms is 

very common and this introduces many more parameters. The program may be 

rewritten in a different programming paradigm /language e.g., it maybe converted 

from data parallel to message passing and run on the same machine, or it may be 

ported to a different machine adopting possibly a different programming model. 

Compilers on even the same machine may differ in sophistication and this increases 

the tuners' burden of finding which optimisations are needed each time. Program-

mers who have adopted one particular programming model for a long time, show 

a certain degree of inertia to change to a new one. This is attributed to the long 

learning curve that is needed to be able to switch to a new machine and program-

ming style and produce a parallel program which presents the same if not better 

behaviour than the old one. Whereas most of the problems that tuners face are 

attributed to cause/effect chasm and faulty assumption/model, almost two thirds 

of the tuners asked have never had any training in tuning, while almost 91% have 

never had access to tuning documentation. Access to tuning documentation and 

training could help in alleviating some of the problems in tuning. 

It is easy to hypothesise that the phenomenon of the transfer effect' 3  may occur 

during the programming model change. Further work can investigate the validity 

of this hypothesis and in particular how the transfer effect can occur and affect 

the tuning process. The findings of such an investigation could inform the design 

of parallel programming environments as well as provide useful information about 

how parallel programming and performance optimisation should be taught. The 

existence of many programming models may necessitate a more systematic ap-

proach to teaching performance optimisation which should attempt to see how 

13 Programmers who move from one programming model to another bring with them 
programming procedures which whilst appropriate to the old model, are not necessarily 
suitable to the new [1531. 
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Presenting performance data 	 Providing informationitrair 
rformance diagnosis 

Figure 4-4: Role of tuning tools changes 

the transfer effect - if it exists - should be encouraged for similarities between 

programming models and minimised where differences are concerned. 

The investigation of the difficulties that tuners face and the current computer 

support suggest that the role of tuning tools should change to assist with tuning 

where help is needed most. The emphasis should shift from the mere presentation 

of performance data to: transforming the data to meaningful visualisations of as-

pects of the program behaviour; education; and performance diagnosis. Figure 4-4 

shows this transition in role in relation to the support required for addressing the 

problems of faulty assumption/model and cause/effect chasm. 

The findings of this study can be used to inform a model for tool development 

and also propose the processes which could best serve this model (Figure 4-5). 

According to this model tool design should try to consider providing: 

Portability and extensibility. Software engineering principles could assist 

with building the tool portable and extensible. 

Reliable mechanisms to capture program behaviour. Issues that should 

be addressed here are the space requirements of trace files produced by large 

codes and the reliability of performance measurements. User participation at 

this stage could inform design about the requirements of large applications 

and the performance metrics that tuners need. 
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Figure 4-5: Model and processes of tool development 

Meaningful abstractions should be provided to abstract away from large 

quantities of low level detailed information to high level information which 

can be related to the entities in the source code that affect program per-

formance. These abstractions should be designed based on the ways tuners 

perform the tuning task. Task analysis and participatory design could be 

employed to inform design at this stage. The repetitive nature of tuning 

should he considered to allow for experimentation management and pro-

gram version control" 

User interface. Interaction with the tool should he facilitated through a user 

interface. Usability engineering in the form of task analysis and tool evalu-

ations could be used to design the user interface so that users can perform 

their tasks easily. The terminology adopted by the tool should be under-

standable by novice and experienced users. 

"These issues are investigated further in Chapters Five, Six and Eight. 
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Tool design and development should be iterative and should be guided by user 

feedback and changes in the programming environment. The tool should assist 

tuners in a number of ways by providing: 

A manageable set of visualisation means. Visualisation mechanisms should 

be used carefully and displays should correspond to aspects of the program 

behaviour that tuners are interested in. Again user participation could en-

sure that visualisations assist rather than impede tuning. 

Information /training. To reduce the impact of the faulty assumption/ model 

problem, tools could attempt, wherever possible, to demonstrate possible 

relations between performance determining factors and performance results. 

Adaptive interfaces could be used to provide background knowledge to novice 

tuners, which can be hidden when their expertise increases. Since it was ob-

vious from this investigation that tuners often need to know a lot about the 

operation of system software and hardware, this knowledge can be conveyed 

by means of detailed documentation or by use of exemplar programs whose 

behaviour can demonstrate the factors which affect performance. Exemplar 

programs could exist in two forms: before and after the optimisation. Addi-

tionally, tuners could change some of the performance determining paramet-

ers in the exemplar applications and could investigate the results of those 

changes using the tuning too1 15 . A more systematic approach is needed to 

discover the nature of cause/effect chasm tuning problems. Due to the way 

this level of expertise is acquired, it cannot be anticipated by systematic 

training. In these cases, making a record of specific tuning experiences and 

making it available for others may be more effective. To this end, the ex-

emplar programs could also correspond to exceptions i.e., situations where 

15For example, a toy program could demonstrate the effect of varying the granularity 
of Regular Domain Decomposition on regular and irregular problems. 
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an unsuspected parameter may affect program performance. Background 

information should be provided for the cases which are not addressed by the 

exemplar applications. Hints of other external factors should also be given 

such as e.g., the workload of the machine or changes in the hardware con-

figuration. The tool should also suggest tricks and techniques that tuners 

can use. These techniques could also be demonstrated by small example 

programs. The help of experienced tuners should be employed to capture 

tuning knowledge and expertise in tool design. 

Performance diagnosis. Part of the responsibility of identifying performance 

bottlenecks should be undertaken by the tool which would narrow the search 

space that users have to consider. The tool could identify parts of the 

program where certain performance metrics have poor values. Meaningful 

observations should be made and the help of experienced tuners should be 

employed to ensure that observations are conveyed in meaningful ways to 

users. 

Finally, a major problem with tuning tools is that they are often unavailable as 

their use remains local to the academic institution in which they were developed. 

More than half of the tuners asked answered that they have not used any externally 

developed tuning tool. Some of them had to develop their own tools which were 

tightly coupled with the problem they had to investigate. More communication 

is needed among tool developers, tool users and vendors of parallel computers so 

that tool development efforts are not isolated. The activities of the Parallel Tool 

consortium (PTools), described in detail in [71] are examples of efforts to foster 

such communication. The PTools consortium attempts to provide the commu-

nication framework among tool developers, users, and vendors, encourages tool 

development which relates as much as possible to parallel programming standards 

and promotes reusability, tool integration and portability. 



Chapter 5 

Tuning in the large 

The previous chapter examined tuning by looking at the problems which tuners 

have to face in tuning in the small and the state of current tuning tool support 

as well as the support from available parallel software and hardware. This ini-

tial investigation pointed to some additional considerations which arise from the 

repetitive character of the tuning task and from the fact that parallel program tun-

ing may be part of a software development process involving large programming 

teams. In particular, these considerations are pertinent to acting upon managing 

and sharing the information produced during tuning. 

This chapter deals with work practices that tuners employ in order to manage 

tuning information- as they go through a series of tuning efforts. These practices 

are studied in a wider context in the next chapter, which focuses on sharing this 

information with others. 

In order to capture tuning work practices as accurately as possible, several data 

gathering techniques were employed: structured and unstructured interviews; 

questionnaires; in situ observations and verbal protocol analysis'. Local tuners 

1 1n Chapter Seven the participation of tuners in the requirements and design spe-
cification of a tool for performance analysis and tuning is examined. Requirements 
engineering and participatory design attempt to put user practices and expertise in the 

77 
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were observed during tuning and their tuning notes were collected and analysed. 

The approach taken by this research has a lot in common with ethnography, a 

methodology employed increasingly often as a requirements analysis technique. 

The ethnographic approach tries to study the social character of groups and the 

activities of their members in their natural settings. Its sociological emphasis 

means that it examines activities as socially organised from within their natural 

settings by participants of those settings [75]. Of particular importance here is 

the drive to uncover the tacit knowledge and implicit practices which are normally 

invisible to the casual observer, or are taken for granted, or are unexamined by 

task analytic approaches which seek to break down activities into discrete free 

standing components, without regard to how they are interwoven into a set of 

socially organised work activities. The ethnographic approach is valuable because 

it prescribes the need to understand requirements in the organisational context 

within which the system will be used and to critique many assumptions which are 

taken for granted [172]. 

The limits that an unobtrusive observational technique would impose on this study 

discouraged the use of ethnography as such. For example, the use of video record-

ing [68] could be indicated if tuning practices occurred only in a confined envir-

onment e.g., an office room for a period of time. The combination of more direct 

tools such as interviews and questionnaires with occasional observations allowed a 

larger number of tuners to respond and provide this study with more information. 

In fact, interviews have been used in a number of studies such as: in [123] and 

in [122] which reported on the collaborative development of spreadsheets; in [124] 

which investigated the use of task-specific vs generic application software; and in 

centre of system development. However, although it is clearly beneficial to include users 
in the software development process, this itself is not enough. Users are not always 
capable of describing work practices (tacit knowledge) and can be unaware of the or- 
ganisational and cultural context of their work due to being over familiar with the work 
activities. 
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[141] where subjects were interviewed about their daily activities recorded in di-

aries. Similarly, an empirical study of software maintenance was described in [851 

where the informants were interviewed before and after a maintenance task and 

work described in [11] studied the use of paper media for pseudo-code informal 

notations which helped with the cognitively complex task of programming. 

In total, fifty three tuners contributed to this investigation. Twenty five of them 

worked in university establishments and the rest for companies that either manu-

facture or use parallel machines extensively. Their experience with parallel com-

puting varied from one to eleven years (Figure 5-1). Forty two tuners filled in 

a questionnaire whereas eleven local and non-local tuners were interviewed. Un-

structured interviews were used in the case of two non-local industrial people whose 

views nevertheless are included in this chapter. Seven of the eleven interviewees 

worked for companies and the rest for university establishments. 
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Figure 5-1: Profile of respondents 

The first section of this chapter presents a model of tuning in the large. The second 

section examines tuning as a problem solving activity and discusses some of the 

ways in which tuners eliminate performance bottlenecks from their application 

programs. The third section focuses on how tuners document their efforts and 

the last section illustrates how porting parallel programs across different machines 

increases tuner requirements for efficient documentation. 
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5.1 Model of tuning in the large 

The performance of a parallel program depends on a number of parameters which 

can be characterised as external or internal: the external parameters consist of 

the run-time environment of the parallel application and include the number of 

processors, the structure and size of the input problem and the machine. Internal 

parameters are the type of parallelism used, for example vector, data parallel or 

message passing and how much of the code is parallelised. Depending on the 

specific requirements of a project, the performance goal set for the program may 

be one of the following: 

• For a specific machine, and a specific number of processors, the best paral-

lelisation may be required as the structure or the size of the input problem 

data set varies. 

• For a specific machine, and a specific problem size or structure, the best 

parallelisation may be required as the number of processors varies. 

• For a specific problem size and/or structure, the best parallelisation may be 

wanted as the program is ported to different machines. 

A particular performance goal is accomplished through eliminating all perform-

ance bottlenecks in the program. The resolution of a typical performance problem 

consists of a number of iterations of the unit tuning cycle, where each one is guided 

by the outcome(s) of its predecessor(s) (Figure 5-2). The program is run and its 

performance is assessed. During performance assessment the tuner attempts to 

relate the manifestation of poor performance (effect) to the cause of poor perform-

ance (values of performance determining parameters). A hypothesis is made as to 

what parameter values could improve performance according to a model (machine 

or software specific) that the tuner has. The parameters are set to these values 
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and the experiment is iterated. Tuning in the large may therefore be thought of 

as a heuristic search within the program's performance space (defined by the set 

of performance-determining parameters) which continues until some optimum (or 

near optimum) outcome is obtained. Crucial to the efficient conclusion of such 

tasks is the availability of appropriate search management information. In the 

case of tuning, this information is generated as a by-product of each individual 

unit tuning cycle, or tuning experiment. Its importance points to the need to 

maintain adequate documentation of the task as it progresses [72]. 

Relate (model) 

parameters (cause) 

Assess 	 to performance (effect) 

Start experiment 	Run the 	 Make hypothesis  
program 

et parameters 

ntornodel 

according to 

Iterate 	 hypothesis 

experiment 

Figure 5-2: Resolution of a performance problem 

The tuner may utilise records of tuning experiments in a number of ways. For 

example, the tuner may wish to keep for later reference all or part of the records 

of several experiments in order to document: 

the problem under investigation and its manifestation in the trace data, 

the parameter values, and the path through the search space, 

performance metrics associated with each set of parameter values, and 

the state of the program when tuning was concluded. 
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At any time during the course of tuning, the tuner may need to consult tuning 

experiment records in order to find out: 

the parameter values that produced the best overall performance so far, 

the parameter values that produced the best value for one specific perform-

ance metric, and 

whether current performance is better than that achieved with a specific set 

of parameter values. 

Examples of complete tuning problem case histories might be kept to create an 

archive which tuners may consult as a source of ideas and strategies for tackling 

new problems. 

Tuning 	I 	Assess 
experiment 	 tuning 	

Sharing tuning 

management 	 progress 	 knowledge 

Review of 
I Best version 

tuning 	
I experiments 	 retrieval 

Figure 5-3: Tasks associated with tuning in the large 

For the tuner, the difficulties associated with tuning in the large stem from the 

effort required to manage the tuning process and, in particular, its documenta-

tion - the capture, storage and retrieval of tuning experiment records (see Figure 

5-3). Furthermore, in the context of an organisation where parallel program de-

velopment and tuning are done in collaboration with other people, tuning results 

and tuning knowledge are shared with colleagues. An issue here is to what extent 
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computer-based support may help the tuner to perform such tasks in collaboration 

with others. 

The benefits of good documentation are widely extolled within the software en-

gineering literature [135]. These can be summarised as follows [30]: 

to support reasoning processes during software design, 

to facilitate communication amongst the various members of the software 

development team, and 

to further the accumulation and development of software design knowledge 

and experience from project to project. 

Some of the many computer-based tools now available to support software docu-

mentation (e.g. [47,50,93,105,1621) might find application within parallel software 

development. However, as this investigation makes clear, there are significant 

qualitative differences in the documentation requirements of parallel software de-

velopment, which reflect both the experimental, iterative nature of the tuning 

phase (as opposed to the more orderly and predictable course of conventional 

software development phases) and the large volumes of information that tuning 

generates. 

To investigate tuning management and sharing of tuning knowledge further, tuners' 

practices within a number of organisations engaged in parallel software develop-

ment have been investigated 2. 

2 1n particular, tuning knowledge sharing and communication in large projects are 
examined in Chapter Six. A large part of this investigation is performed through case 
studies. Short case studies are presented in the main text whereas longer ones are 
presented summarised as boxed texts and are only commented for convenience. 
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5.2 Tuning problem solving 

This study shows that a number of experimentation techniques are employed in the 

search for better performance [Be158], [Be159], [Be160], [Be161], [Be162], [Be142], 

[Be26] 3 . Not all environments encourage experimentation, though. Large parallel 

code development is more conservative and extensive changes cannot be afforded. 

In these cases, tuning is incorporated within code development as programmers 

design the code to be both correct and efficient. Selective time measurement is 

then used to verify the correctness of the performance determining design decisions 

[Bel3]. 

This study shows that tuners typically follow a worst case elimination strategy, 

where the major performance bottlenecks are eliminated first [Be129] 4 , [Bel3l], 

[Bel32]. Some tuners start from a profile of the sequential code and continue with 

a gradual parallelisation: 

[Be163] I would profile the sequential code to see what improvements should 
be made in the parallel version. 	 Informant 61 

In the first instance, the sequential algorithm may be altered if this leads to bet-

ter parallelisation [Be140]. In the remaining time, tuners may be occupied with 

examining the behaviour of the program in order to form a hypothesis as to what 

the parameters that affect the performance of the program are and so enable fur-

ther progress to be achieved more systematically. Also, they may address the less 

expensive parts of the code. At this stage, having eliminated all major and minor 

bottlenecks, tuning may become an ad-hoc search as tuners may consider what 

3  B denotes that the excerpt can be found in appendix B. 

'Also in [Be133], [Be135], [Be136], [Be137], [Be138], [Be142] and [Be144]. 
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other alternative code design decisions may yield some additional improvement 5. 

As experience increases, tuning tools are used less frequently and only at important 

stages of the tuning project: 

[Be134 . . . but then I did it more systematically and I made more extensive 
changes, as I gained more confidence. The frequency decreased if you like, 
initially, I made a lot of small changes and then, when I understood what the 
problem was actually, I made more extensive changes. Recently, I stopped 
using apprentice and I used time calls, possibly, now that I finished the 
load balancing and the tuning I may go back to apprentice to see at a high 
level how much the original version without the load balancing varies from 
the current one. Because the access to the T31) is limited, it motivated 
us against the idea of changing a lot of small things and see what was 
happening as quickly as possible. Perhaps, that was one of the reasons that 
the frequency of using apprentice decreased, because I realised that it is 
not possible, or appropriate. Informant 45 

The next section discusses some of the problem solving tactics tuners employ. 

5.2.1 Experimentation techniques 

A number of runs may be used to establish the model of interactions among the 

various parameters that determine the performance of the program [Be26], [Bel 39], 

[Be141], [Be145], [Be146], [Be147] and [Be148]: 

[Be139] . . . In many ways, you will need to have complete information about 
the profile or the task balance or whatever in your problem and therefore 
you would make certain assumptions that you will then try to investigate 
and you can either go about investigating in more detail the characteristics 
of your problem or you can try a strategy whereby you attempt to address 
one part of the problem, so you can address the load balance in isolation 
from the communication cost and try to observe the effect of the other, 
if you can actually measure it correctly. So, in many ways, you are not 

5 1n [Be628], as there was no routine that stood out as being more expensive than the 

others, the tuner thought that new approaches could be tested, regarding the distribution 

of the arrays. The changes introduced at this stage did not improve performance and 

were abandoned as sometimes run-time errors were produced. 
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actually looking for the most optimal solution. It would be nice if you 
could get the optimal solution to your problem in terms of load balance and 
communication cost, etc. But in general that wouldn't happen, and you look 
at . . you identify a problem and you address that problem and along the 
way you uncover other problems, so . . . by addressing a problem like load 
imbalance, you would discover that the different load balance techniques 
would have a communication cost associated with them. And they may 
have other costs associated with them as well. Informant 66 

Comparison of runs on different numbers of processors is a technique used to 

identify whether communications are done efficiently [Be152], or whether the prob-

lem is load balanced [Be151]. The scalability of a performance determining change 

may be tried on all sets of processors only if the result of the change depends on 

the number of processors. In the remaining cases, a change is tested on a random 

set of processors using a random data set [Be150]. 

After verifying that the control structure of the program is efficient, that there is 

no excessive synchronisation for example, an alternative communication harness 

may be employed such as lower level communication routines which will decrease 

the communication cost [Be149]. 

Alternative solutions may be compared in small experimental pieces of code before 

incorporating the best one in the application program [Be153], [Be1541: 

[Be153] ...And the way I solve these problems is that I develop two small 
programs, which have these two kinds of communications, and I see which 
is the faster one. 	 Informant 42 

An application code may be designed in such a way that optimisation can address 

separately and simultaneously different parts of it [Be155], which is useful in the 

context of multi-person program development efforts. In this context, the need to 

test the parallel code for correctness after each person's performance optimisation 

change prolongs tuning [Be37]. 
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The input data size can be decreased in order to allow the tuner to optimise first 

the sequential program by mentally executing the program 6 : 

[e156] I did a lot of experiments with a small network so that I could check 
out the process of routing the messages. From that, I could see where the 
modelling approach was wrong and I could change the algorithm. After that, 
I could experiment with process mapping and granularity. But someone 
should start by optimising the sequential program. Informant 43 

Conditions of time pressure may have an impact on the way tuning is performed 

e.g., tuning may have higher priority than coding. In [Be628], initial runs attemp-

ted to get an estimate of the program performance before all the intended changes 

were put into the code 7 . A specific part of the code, which was not going to be 

included in the timings", had produced a run-time error. The tuner decided that 

this part of the code could be excluded from the program being tuned and be 

debugged later by another colleague. Timings of the program processing a larger 

problem size were taken without the program processing the correct input file for 

that larger problem size. 

Tuning is often done comparing the results of the program on two or more different 

machines. In {Be628], the tuner wanted to compare the performance of his program 

on machines a and b. Timing results were not available for the current version of 

the code on machine 6 so the tuner, who did not have access to machine 6, had 

'Eisenstadt has found that a lot of programmers run their programs mentally spec-

ulating about the possible causes of a program bug [44]. 

7The tuner's notes were written during a period of time that tuning was performed 

in somewhat pressurised conditions. The tuner was in a hurry to produce some good 

performance results on time for a publication deadline. 

8This part of the code performed I/O. Due to the fact that the I/O parts of parallel 

codes are very expensive and very difficult to optimise, usually, they are not included in 

timing results presented in publications. 
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to compare the results on machine a with the results on a third machine c whose 

speed was comparable to b's. As the time that the tuner had available on that 

machine was finishing, the tuner tried to organise a small series of experiments 

on a few sets of processors while timings on the remaining sets were extrapolated 

from older results. 

In the presence of deadlines a quick and possibly "dirty" implementation may 

be pursued. Tuning may be performed conservatively when regression to a non-

working program cannot be tolerated: 

[e157] We had to make the thing running for the demo. It changed the way 
we worked because when you are working with deadlines, the first thing you 
want to do is get the thing to run in a way you are able to live with. And 
then, when you do tuning you do it in a very careful way so as not to blow 
something really important. Maybe, if there were no deadlines, you would 
use more time to tune during development. Informant 42 

Extensive experimentation may be expensive in terms of machine time and money. 

The time that a single parallel program can run on a parallel machine is finite 

when the machine is timesharing. For example, in [Be628] the run of the parallel 

program on one node was prohibited because the program had to occupy that 

node for sixteen hours. 

5.2.2 Duration of tuning 

The time taken to complete a particular tuning task (see Table 5-5) is a pointer to 

its complexity and to the importance of documentation. The fact that respondents 

reported that tuning typically lasted for several days or weeks suggests many 

iterations of the unit tuning cycle and the handling of large volumes of associated 

data. In such circumstances, the limitations of human memory would necessitate 

that the tuner at least document the sequence of changes made to the program to 

ensure that changes are not inadvertently repeated. One tuner commented: 

[e629] It varies by an infinite amount, depending on how well the original 
concept was thought out. Generalisations are impossible. 	Informant 18 
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A day to find and fix the first problem, several days or weeks to 
continue tuning till I am happy. 	 Informant 17 

question less than a day several days several weeks months 

duration of tuning 3 21 21 3 

Table 5-1: Duration of tuning 

5.2.3 Size of the parameter set 

The size of the performance-determining parameter set is another indicator of the 

complexity of the task. Adopting a faulty assumption /model was reported to be 

one of the major sources of difficulties in tuning (Chapter Four). When tuners have 

a wrong or incomplete model of the operation of the system software or hardware, 

extensive experimentation is needed to tune program performance and establish 

a correct model of relations amongst performance determining parameters. If the 

number of parameters is large, it will be difficult for the tuner to establish the 

relationship between parameter-value pairs and performance without some form 

of documentation. 

Moderate to large numbers of parameters predominate slightly in this sample 

(see Table 5-2). The complexity of the task may be increased by the fact that 

parameters are often interdependent. Consequently, the optimum value for each 

parameter alone is not always the optimum for the parameter set. One tuner 

suggested performance prediction as a solution to this problem: 

Because it might be the case to try one change by itself or two changes 
together to see if they work well together. So if you have three you have 
somehow . . . you can't check everything so you want to predict which are 
going to work well together. 	 Informant 55 

During tuning one respondent reported on having to think about the following 

parameters: 
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I had to deal with loop ordering, optimisation flags, debug switches 
left on, if statements in do loops, use of hand-coded vs BLAS libraries, work 
replication, use of cache. 	 Informant 40 

question 1-4 5-10 11-15 16-20 

size of parameter set 20 25 2 2 

Table 5-2: Size of parameter set 

The parameter space may contain parameters such as the version of the compiler 

or the version of the program itself as in the following case where the tuner was 

assigned to optimise a program which was still under development: 

And also the particular version of the program we used. Another 
tricky thing about the project was trying to keep track of the changes the 
client made to the software. Also something that recently has become ap-
parent . . . it is also the compiler version number because the initial optim-
isations that the compiler did were not very extensive but now the compiler 
changed. 	 Informant 45 

5.2.4 Case study I: ad-hoc tuning management 

This case study examines the impact that the lack of a tuning management tool can 

have on the effectiveness of the tuning process. Informant 44 agreed to participate 

in a think aloud session whilst tuning his program. The tuner wanted to find 

the optimal version of a routine which calculated an inner product. A fast inner 

product routine would improve the program performance because more than 50% 

of the execution time was spent in this routine. The tuner compiled and linked 

to the rest of the program an old version of the routine which he had developed 

before [BeGOO]. While the program was being compiled the tuner opened the file 

with that version of the inner product routine to make sure that the file contained 

the version he intended to time (Case study I, part a). 
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The tuner had devised a very simple way of differentiating among the different 
implementations of the inner product routine. He had to rely on remember-
ing a correspondence between file name and version in order to retrieve the 
version he wanted. The tuner had put all ten files containing a different im-
plementation of the routine in question in a directory. The names of these files 
differed only by the last part which was of the form: hf, lx.f, etc. The tuner 
looked for the file which contained the version he wanted and linked this file 
with the rest of his program. He compiled the file which contained the specific 
version without being absolutely sure he had got the right version: Ithink this 
is the routine I was working with before. The tuner had to remove from the 
file, which contained the call to the inner product routine, some calls to PYM 
(Parallel Virtual Machine, [9]) which remained from a previous experiment. 
This resulted into several compilation errors which the tuner was trying to 
correct. He wanted to run the program on one processor in order to make 
sure that the version still worked because it had been a long time since he last 
used this version of the inner product. Invoking the tuning tool would really 
produce more information than the tuner needed [Be601]. 

Case study I, part a 

Summary: The tuning process was affected by the lack of an effective manage-

ment tool. Informant 44 adopted an ad-hoc mechanism for version control which 

was not applied to all the modules of the program. For example, compilation 

mistakes were introduced because code changes corresponding to different tuning 

experiments were made in the same source code files. Such a way of managing 

the program versions proved to be inefficient in the long term since the tuner had 

to rely on his memory for differentiating between the versions. Rapid changes in 

the programming environment affected the tuning process since the tuner had to 

repeat old experiments in order to make sure that he compared versions under the 

same conditions. For this reason he did not use the timings of the old version, 

which were written in an on-line file, but instead ran that version once again (Case 

study I, part b). It was obvious from this study that the tuner postponed invest-

igating a new alternative because it was difficult for him to obtain the necessary 

information from documentation available on-line. The search for the optimal 

solution stopped only temporarily, and he would come back to the specific routine 

at a later point in time. 
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The tuner had tried before the specific version of the inner product routine. 
For this routine, he had timing results in a on-line file. The tuner was not 
willing to use these results. Instead, he repeated the experiment once more 
because as he said he would like to make sure that the specific version still 
worked. Due to frequent changes in the programming environment, the tuner 
thought he had to test again the specific version before he experimented with 
an alternative one [Be602]. The decision to use a certain processor set for the 
execution of the program was based on the available resources and not on the 
best interest of the tuning process. The tuner had to run the program on a 
smaller set of processors because he would have to wait a lot of time in order to 
get access to a larger processor set. The optimal version of the inner product 
routine was found, but it could not guarantee that the program could always 
give right results. As the tuner said himself, the performance gain was too 
little to justify using a version which had a slight probability of introducing 
errors in the calculation. The tuner was not sure whether this conclusion was 
correct. He would have to read the man pages more carefully but he decided 
he did not want to spend more time on this problem. Provided that time 
allowed it, further performance improving options could always be considered 
in the future [Be603]. 

Case study I, part b 

5.3 Documentation methods 

All but one of the respondents reported that they employed some form of docu-

mentation (see Table 5-3). The totals exceed the number of respondents because 

some reported using more than one documentation method 9. "Other" meth-

ods of documentation include: plotting graphs (1); using a versioning system 

(2) ([Be612], [13e613]); scripts (2)10;  spreadsheets (1); a whiteboard (1); program 

output files (1); screen dump of the output of the profiling tool (1); and writing 

a report (7). Six of the seven people who answered that they wrote a report have 

used some other means of documentation. In fact, two of them used an on-line 

file, one used scripts, two used paper notes and one documented the source code. 

9 Three, twenty-nine, and eighteen respondents reported using three, two and one 

documentation methods, respectively. One respondent did not reply. 

' ° In [Be610] and [BeGil]. 
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This day to day documentation was used later to produce a report, a scientific 

paper or part of a thesis. It is interesting to see that eight of the sixteen answers 

which belong to the "other" category imply the use of some computer tool. This 

added to the number of people who use an on-line file (eighteen) increases the 

number of people who use some form of organised documentation to twenty six. 

Email responses emphasised the variety of documenting methods and tools: 

[e6041 Keeping track of the changes; I don't find it difficult any more because 
I keep notes of what I do, because I was caught by that once. Informant 64 

Each concept involved in the optimisation process was documented. 
Followed by a diff type comparison to indicate actual source code changes 
for that concept. 	 Informant 1 

If you do your quick and dirty testing it is the back of an envelope. If 
it is a serious routine, for example, I have been working on an inner product, 
then I document run times. If I want to do more analysis, I would try to 
use my timings which are written in a file. But if I have to know whether 
something is faster or not then I would just write it in my mind. Because 
there are not so many possibilities. Or I would keep the source file to remind 
me of the things that did and didn't work. 	 Informant 44 

[e605] On pieces of paper. They were not organised. I often had to repeat 
the experiments to carry on from where I stopped. 

Informant 15 

[e6061 The documentation we did was ad-hoc: a file containing notes on the 
various configurations we tried, and on the tuning results. These notes were 
never written up in any formal way, just kept for informal reference by the 
programmers. 

Informant 17 

I tend to keep sets of timings for each version in a spreadsheet allowing 
me to easily compare improvements or degradations between one version 
and the next. 	 Informant 13 

Informant 44 kept a log file of all the changes he made to his program, the dates 

of these changes and whether they were successful or not. He developed these 

documentation practices gradually as his expertise in performance optimisation 
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question source code on-line file paper notes I  other 

documentation methods 28 18 23 16 

Table 5-3: Documentation methods 

increased. Asked whether he used to keep such a file back home", he answered: 

"not really, usually it was such a struggle to get things to run . .. ". It seems that 

the more the tuner's programming and tuning skills increase, the more the tuner 

is able to shift his attention to the management aspects of tuning. At the same 

time, the search space gets bigger since the tuner is aware of more parameters, 

which can possibly affect the performance of the program ' 2 . Apart from the log 

file, informant 44 kept a file containing timings for every version of his program. 

This file contained the execution times of his program run on different numbers 

of processors and using different input data. When a performance optimisation 

change altered substantially the execution time of the program, the runs were 

repeated on all sets of processors: 

[e621] These timings are for the optimised MPI version, i.e, the latest ver-
sion. Timings for the previous version are in another file. After a code 
change, I check to see if it changes the timings; if it does, then a new set of 
timings will be needed. I keep the timings of the previous version and all 
the versions in a directory in order to have a development log. 

Informant 44 

In the next case, informant 46 has created a file containing tuning notes by cutting 

and pasting some parts of the output of his program. A typical entry of the 

"The participant was visiting Edinburgh Parallel Computer Centre. 

12 1f sufficient tool support existed so that tuning experiments could be managed with 

relative ease, then tuners could perhaps focus on improving their understanding of per-

formance determining parameters, i.e., they could create and improve models of what 

determines the performance of their programs. 
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programmer's on-line file is shown in Figure 5-4. The first line of this entry 

indicates the directory where the executable resides. The path also indicates the 

version of the program and the name of the Unix machine where the program was 

run. The entry is further identified by stating the value of a parameter in this 

case that "profiling" was "on" during that run. The entry includes the output of 

the program and the total execution time. The program output is used to record 

program correctness and memory usage. 

acp/new/new.sentence3.galjas with profiling on 

found sentence 36800Uffl! 

deleting dictionary ... done 

found a total of 36822 derivations 

32364.3 real 24492.4 user 49.2 sys 

table[8] = 497768, 3982144 

total allocated= 11234392 

overflow = 1088 

zoo50: 18.208 of 36400 trips, 896 Kb free 

Figure 5-4: Tuning notes of Informant 46 ([e626]) 

In [Be627], informants 50 and 53 kept tuning results on a white board. The most 

important of these day to day notes were written down in a diary in order to 

record the porting and optimisation process. The diary included information such 

as the dates on which various activities took place; performance results; parameter 

values and program changes. This data formed the basis of an internal technical 

report. The report contained among other things a chart which summarised the 

performance of the code for every day's effort. Table 5-4 lists some entries of the 

tuning diary 13 . A second diary (not shown here) was also generated which logged 

a change in one of the parameters that controlled the execution of the program. 

13 The diary continues in Appendix B. 
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T21 NSTOP =20 Iephys=.true. lssiag= 	false. 

day sees mflops notes 

1 272 8.8 vector node, using only sparc processor (-novpu) 

6 348 6.9 more work on cuadjtq, vectorised: qpassm, fswr 

8 279 8.6 experiment to recompile all routines vectorised so 

far using only sparc processor (-novpu) 

9 256 9.4 start with changing ifs, more work on vdfexcs 

10 256 9.4 experiment noaltcode option, no improvement 

11 222 10.8 recompiled with nproma=64 (was previously 32) 

12 214 11.2 recompiled with nproma128 

13 

13 

18.1 

10.9 

132 

220 

recompiled meiko set of vectorised routines on 

recompiled all routines on c90 (nproma64) 

only source modification made was to change 

sqrthf to sqrt in lwttm and lwtt 

Table 5-4: [Be627] Diary of porting IFS to CS-2 

Case study II: tuning notes of informant 45 

Informant 45 kept his tuning notes in a notebook on a day to day basis. In terms 

of the overall project, he had to produce a report which would deal with per-

formance tuning issues and results with respect to the choice of data distribution. 

This case is an example of trying to determine the effect of the structure of the 

problem on program performance. The large number of factors that affected pro-

gram performance necessitated a more systematic way of documenting the tuning 

progress: 

[e620] So, I kept results of these timings as well as the level of optimisation 
and the compiler version. Another option is whether apprentice is used 
because it introduces some perturbation. My documentation should be 
more systematic. I guess what I should do is use some short of form to 
make the experiments rather than using the book. At the moment, I also 
keep the makefiles and executables in different directories. Informant 45 
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His task was to design the best data distribution policy for the input data 
the parallel program had to process. The distribution of the data depended 
on the relative computational requirements of the different kinds of material 
encoded in the data. Each cell in the input matrix could be either metal, air or 
carbon fibre. Carbon fibre can be found in many fitnesses i.e., having different 
conductivity, and its computational requirement depended on this parameter. 
Informant 45 conducted several runs of the program processing only carbon 
fibre of different fitnesses and compared the execution time to corresponding 
runs which processed only air. In an excerpt from his log book, he wrote down 
how much more expensive it is to work on carbon fibre than simply on air: 
The first column (Nrings) in Table 5-5 represents the fitness of carbon fibre. 
The second column lists the actual time spent working on data consisting only 
of carbon fibre and the third lists the corresponding times of working on data 
consisting only of air. 

Case study II 

Nrings Time J Greater than air 

2 1.21 10.6 

3 1.45 12.5 

4 1.54 13.3 

Table 5-5: Informant 45's notes on a series of tuning sessions [e6251 

5.3.1 Case study III: tuning notes of informant 17 

The entries in the on-line tuning notes file 14  of informant 17 were introduced on 

a day to day basis. Part of the notes are presented in Figure 5-5. An analysis of 

this file revealed that entries could actually be categorised in a number of classes: 

Action done. An action such as that the program was compiled or was run was 

reported. 

To do. The entry of this category mentioned things that the tuner would have 

to try to do in the immediate future. 

"This file is included in appendix B as excerpt [Be628]. 
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Report on a compile or run-time error (bug). In some cases the tuner 

would explain what caused the error, for example, the fact that a specific 

directive was not necessary. Usually, such an entry would be accompanied 

by the error messages the tuner was getting. 

Code inclusion. At some parts of the file, the tuner would include some 

piece of code which created a problem or which was different in another 

co-developer's source file. 

Report on a trick. An entry could describe a trick that improved performance 

e.g., a specific combination of compilation flags or setting the size of the 

arrays to a power of two. In a specific entry, the tuner said that what he 

discovered should be put in training reports. 

Code Change. An entry could report on a code change, for example, on the 

addition of some special directives. In another case, the tuner would give 

justification for the adoption of a change. 

Speed of the code. A report on the speed of the code, for example, "the code 

ran twice as fast". 

Include results. Actual timing results were included, usually accompanied by 

the kind of processor. configuration, data sizes and parameter values for the 

specific timings. 

Comments on timing results. Timing results would be sometimes commen-

ted. For instance, the tuner wondered why the timing results in a specific 

case were so bad. 

Mail message. A mail message sent from a person who was working on the 

same project was included and commented. 
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April 13 

-- After Jonas's changes are in, next thing is to add the axis 

permutation stuff and timing stuff (latter with ifdef's). 

-- }flDEPENDENCE's in chksymsd.f possibly out of place; possibly 

unnecessary. 

-- Blew off the I/O changes in dump3d.f. 

-- RAN! Gave up fooling with the DIFF's. Found and grabbed Jonan's 

sources. Highlights: 

hew - kew + D.Stwrho(i,j, 2 )*w(i,j, 2 ,tlevel) 

hew - key + 0.Stwrho(i,j ,nz-1)*w(i,J ,un-1 ,tlevel) 

April 15 

-- Recompiled with larger problem size (87 x 67 x 35) but don't have 

quite the right input file for it. Results look promising, however. 

-- Preliminary numbers (pre-cshift) per iteration: 

41'?! 	 321'?! 	 64PN 

	

35x35x35: 	 18.2 	 4.5 	 2.8 

	

67x67x35: 	 82.6 	 10.6 

-- Bug in (II4AX_CSHIFT processing found and fixed. 

41'?! 	 321'?! 

	

67x87x35: 	 59.6 	 10.6 

-- After. bounds trimmed (so no masking in AVG and DIF ops): 

41'?! 	 321'?! 	 641'?! 

	

32x32x32: 	 11.0 	 2.0 	 1.33 

	

35x35x35: 	 17.2 	 3.7 

-- Using exact powers of two sure helps. 

99 

Figure 5-5: Excerpt from tuning notes 
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Apart from giving a record of the tuning process, documentation helped the tuner 

to coordinate his day to day activities. A closer study of the informant's notes 

revealed aspects of the task which are relevant to both tuning in the small and 

tuning in the large. The observations refer to the tuning process and how it is 

affected by the programming environment and the conditions under which tuning 

occurs. 

5.3.2 Reasons for documenting tuning 

It is interesting that the need to communicate results to colleagues is rated quite 

highly by respondents (see Table 5-6' s ). This, together with the last three reasons 

listed - aiding portability, report generation and consulting a document later 16 

- emphasise the collaborative nature of parallel software development, and the 

importance - as in conventional software development - of sharing knowledge 

amongst project members. Some email respondents pointed to the difficulties en-

suing when projects get interrupted before completion. Respondents also stressed 

the value of accumulating tuning case histories across projects: "to use as a learn-

ing aid and for future performance sessions": 

[e622] I can see what changes made the biggest differences hopefully to help 
me the next time I tune a parallel program. 	 Informant 21 

15Eight, thirty and twelve respondents gave three, two and one reasons for document-

ing tuning respectively. 

"E.g. see [Be612], [Be613], [Be614], [Be615], [Be616],  [Be617], [Be618] and [Be619]. 
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reasons for documenting tuning occurrences 

as a reminder of progress 27 

to keep track of changes 37 

to aid communication with colleagues 16 

to aid portability 3 

report generation 5 

F consult a document later 8 

Table 5-6: Reasons for documenting tuning 

5.4 Case study IV: porting a program across 

many different machines 

It was shown in the previous chapter how program porting across different ma-

chines exacerbates the difficulty of tuning in terms of increasing the volume of 

expertise that is required from the tuner. This section examines the documenta-

tion and versioning requirements that program porting induces. 

Program versions proliferate in cases where the program is ported to other ma-

chines. Porting programs has almost always been motivated by the extra per-

formance which can be gained by just using a more powerful machine. In some 

cases, though, program development has to be transferred to another machine 

because of the programming tools available on that machine. Sometimes, version 

creation may be automatically facilitated through conditional compilation. This 

is very common in the case of sequential programming. In parallel programming 

too, conditional compilation may be feasible when the programming model is the 

same as, for example, in [e623]. This investigation shows, however, that in cases 

where the programming model is changed as well, the changes that the program 

undergoes are generally too extensive to be handled by conditional compilation. 
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e623] Generally, we keep only one version with conditional compilation 
to allow it to run on the machines we have here: Suns and SGIs (good 
debugging tools), Ncube-2, Intel iPSC/860, Intel Delta, Intel Paragon; this 
helps greatly in the ability to write code since the code can be debugged on 
a workstation or the Ncube or iPSC which have debuggers; the Delta has 
none and the Paragon one is only minimally working so far. Informant 18 

A PVM version of the program was developed for a network of Hewlett 
Packard 9000/700 series workstations. 

The PVM version was ported to a T3D emulator running remotely on a 
Cray C90 in Lausanne. Using the emulator avoided wasting T31) time 
while removing possible bugs resulting from switching from 64 bit to 32 
bit arithmetic. 

The program was ported and optimised on the T3D in Lausanne. This 
included inserting some shared arrays in place of the PVM code. 

The program was ported to the T3D at EPCC in order to be further 
optimised: 

• The PVM version was converted to MPI and the solver part of the 
program optimised. 

The tuner experimented with the use of a number of alternat-
ives for the inner product routine. The tuner had already elim-
inated all sources of large bottlenecks and the inner product 
routine was almost optimal. The last alternative did not res-
ult in a major performance gain and endangered the program 
correctness. There was one more alternative that the tuner 
had to try, but this was postponed for a later time. 

- The MPI program used the BLAS routines and Fortran 90 
array syntax wherever possible. 

- The tuner tried to optimise routines which were not critical 
for the program's performance. 

- The tuner shifted his attention to the problem of memory use. 
The program did not make efficient use of memory. The tuner 
was using a process to read in the input data and distribute 
it to the remaining processes. This master process ran out of 
memory space for larger problems. 

- The tuner changed the algorithm of the code on the mas-
ter process by streamlining I/O and distributing/gathering of 
data. Another alternative that the tuner considered was to 
have two master processes in the program. 

- The tuner attempted to optimise further the inner product 
routine. 

- Finally, the tuner intended to try to experiment with the data 
decomposition scheme his program adopted. 

Case study IV 
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Informant 44, a physicist from the Technical University of Delft had a computa-

tional fluid dynamics code which he brought over to Edinburgh Parallel Computing 

Centre in order to take advantage of the large supercomputing facility - a Cray 

T31) - available there. This allowed him to solve large fluid dynamics problems 

which he was not able to solve before, and also to optimise the performance of his 

code with the help of expertise available at the centre. The code development and 

tuning process is described below: 

Informant 44's code was kept in three main variants, which marked three import-

ant stages in the code development. Version management in this case became more 

cumbersome because at a lower level he kept versions of code components which 

were created and changed during day to day tuning. In case extensive changes 

were required, he could create a different directory. When the code was sufficiently 

tested to prove that it enhanced performance, its changes were incorporated in the 

current version of the program. The different code versions were kept in case they 

were useful for other machines. Not all changes required the creation of a new 

directory: 

[e624] Well, if I know that I am going to change more than one routine I 
go to another directory, essentially, if I am optimising only one routine, I 
will optimise this routine separately and put it in my program. If I decide 
to change the program structure, for instance, because I want to change 
the memory usage, I will go to a different directory because I know that 
it will be an operation that will change most routines, so if I stay in the 
same directory, I will either have two versions of almost every routine in 
that directory, or I will lose my old versions. Informant 44 

Program development and tuning would have to be continued possibly on another 

parallel machine and after the tuner's return to Delft. 

The reconstruction of the development process in case study IV suggests that 

tuning may not be homogeneous as it may consist of interleaved stages which vary 

in the following ways: 
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• They may examine different aspects of the program which have an impact 

to performance. For example, one effort could focus on improving commu-

nications whereas the next effort would look at memory use. 

• They maybe different in the degree to which performance maybe affected by 

them and not necessarily tackled in order of priority. For instance, the tuner 

would interrupt the improvement of a major source of performance loss in 

the program to investigate the feasibility of introducing minor performance 

improvements into other parts of the code (opportunistic tuning). 

• They may differ in the tuner's confidence that they will produce a posit-

ive outcome. Some improvements are introduced opportunistically, without 

experience or belief suggesting that they may indeed optimise performance. 

• They may differ in the extent of changes that the source code will have to 

undergo. Minor changes may be interleaved with more extensive ones. 

Finally, some aspects of the program are revisited when time allows it or when 

the tuner has in the meanwhile acquired some additional knowledge. 

5.5 Tool requirements 

The typical duration of program optimisation, the large size of the parameter 

space, the fast changing programming environments and machines necessitate the 

systematic management of tuning. With adequate computer support, tuners could 

focus their efforts on improving the performance of their programs instead of 

building tools to assist with tuning management. Existing version control systems 

may be utilised, but they do not provide support for results capturing and tuning 

progress assessment: 
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[e528] I suppose a starting point would be something like an RCS. It would 
freeze a particular version. It is something that we find difficult in deal-
ing with [company]B because they don't have any support for version con-
trolling. So it is to maintain different versions several times. Yes. Something 
like RCS but which could understand what composed an experiment. 

Informant 48 

Formal documentation may not be able to assist with capturing little tricks that 

people do to improve performance resulting into tuning knowledge and rationale 

not being disseminated: 

[Be522). . . But other problems we find are the continuous documentation of 
problems, hints tricks, things that people have found in use and have it up 
here (he showed his head) and they never wrote them down so that everyone 
else can use. Yes, the biggest problem is with the little tricks and hints, 
ways around the problems. Informant 48 

The need for a tuning management tool had already been raised in the study 

and its requirements discussed in some detail [Be5231, [Be524], [Be526],  [Be527], 

[Be529J. 

[e525] For instance you could use SCCS and apprentice could understand 
SCCS and when you want to go back in the source files to pick a previous 
version that would be a very nice extension to apprentice. 

Informant 44 

5.6 Conclusions 

The investigation of how tuners solve performance-related problems revealed that 

they rely on information provided by a number of program runs. This information 

is used to form hypotheses (tuning search) and evaluate their validity (assessing 

tuning progress): 

Tuning search. Tuning search is heuristic and opportunistic. It may take a 

long time and may be suspended and resumed later. Major bottlenecks are 
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addressed first, but tuners come back to a specific problem if in the meantime 

some more knowledge is acquired or time exists to allocate to it. Changes 

are attempted even though there are no indications that they may bring 

a performance improvement. Performance bottlenecks are found through a 

search which involves a number of controlled experiments: 

• Initial runs can help tuners form a model of the interaction of the 

various performance determining parameters. A special case in this 

class are the runs which verify whether a particular problem e.g., load 

balance, exists. 

• Runs of small pieces of code which test the effectiveness of alternative 

solutions. Before one of the solutions is adopted, it is compared with 

the others in a small piece of code in order to allow easy and cheap (in 

terms of tuner's and machine's time) experimentation. 

Assessment of tuning progress. Tools may be invoked more than once to com-

pare codes but most usually they are used initially when areas of poor per-

formance have to be identified. Timing functions are used later as a flexible 

means to determine tuning progress. Three classes of runs could be distin-

guished: 

• Runs which check the program correctness and the performance gain 

after a change in the code. When the scalability of a change is ex-

amined, runs are repeated on as many available sets of processors as 

possible. As the experience in tuning increases, these runs test pro-

gressively more changes at any one time. 

• Production runs. After a version "freezes" the program is run on many 

processor sets in order to show the behaviour of the program as the 

input data changes or as the problem size changes. 
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• Runs where two versions of the code are compared under the same 

hardware or system software. 

Within this framework of experimentation, program versions proliferate. Apart 

from the production versions, the code may exist in versions which are only de-

veloped for performance measurements. Input data sets may also be different for 

the purposes of tuning. Porting the program to a more powerful machine increases 

the number of versions that tuners have to consider. Tuning progress may not be 

monotonic; in case of regression the previous version is needed and other versions 

may be kept to be used on other machines. A survey of programmers showed that 

this is done in an ad-hoc, idiosyncratic way depending on the developers' own 

practices. Some case studies showed that ad-hoc ways of version control can only 

help in the short term or for small projects. 

Documentation may be used to aid tuning management, but the responsibility 

of devising a documentation scheme lies solely on the tuner - with the exception 

of large software development organisations which may enforce their own docu-

mentation standards. Some tuners go to considerable efforts trying to organise 

the development and tuning process. To this end, a lot of time may be spent 

trying to utilise a number of tools such as graph drawing packages, scripts, or 

even spreadsheets that could support the experimentation process. Despite the 

valuable time spent on devising a documentation and/or version control scheme, 

such schemes are not completely automated and integrated into the development 

process. Hence, they can be inefficient at times. For instance, it is not easy for 

tuners to remember to adhere to the methods they themselves have employed. For 

example, in one case the tuner had included (see Table 5-5) some timing results 

into his logbook but there was not any indication about the other parameters 

which determined those program runs. Due to the rapid changes in the program-

ming environment and the lack of adequate computer support, this documentation 
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is sometimes regarded as outdated which results in the repetition of some tuning 

experiments. 

The findings of this study suggest some of the requirements for a tuning manage-

ment tool: 

• Tuning experiment management 

The tool should cater for facilitating and recording the experimentation 

process and its by-products. It should provide for the storage of program 

versions which should be accompanied by a record of the performance de-

termining parameters along with the performance result expressed in terms 

of performance metric-value pairs. Successful and unsuccessful efforts with 

their causes should be documented to record the program development path 

and for use as a learning aid for future efforts. The duration of the task 

may be so long that documentation, apart from giving a record of the tun-

ing process, is invaluable as a reminder of the day to day activities and of 

the state of the program when tuning was stopped thus helping the tuner 

resume tuning at a later point in time. Automation of the experimenta-

tion process should be supported. For example, a number of program runs 

varying in some parameters (e.g. number of processors) could be performed 

automatically and experiment results could be recorded and correlated. 

• Access to experiment information 

Tuning experiment management provides a record of the development and 

tuning process. The tool should allow the tuner to navigate through the 

program development paths in order to have access to the rationale of per-

formance determining design decisions, to assess tuning progress, to keep 

track of the program changes and to convey design decisions and expertise 

to colleagues. 
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Another basic requirement for a tuning management tool is that it does not have 

a negative impact on the tuner's productivity. In the long term, the positive 

effects of the adoption of such a too1 17  may be easily understood, especially in the 

context of large collaborative projects. On the other hand, it is likely that the 

introduction of tuning management tools will degrade the developers' performance 

in the short term, unless special care is taken to incorporate as much as possible 

the management functionalities within the tuners' programming environment. 

This chapter validated a model of tuning in the large which can be used to inform 

the design of a tuning management tool. Further investigation in the form of 

in situ observations is needed to further refine and validate the model. More 

studies of tuners' diaries may reveal many of the problems associated with trying 

to manage the tuning task as for example in [94]• 

Finally, parallel codes cross national borders as scientists in the quest of large 

computational speed travel to other countries in order to access new more powerful 

machines and take advantage of the expertise available locally. Since employing 

the help of an expert within the working environment is a very common way of 

solving a performance problem, the way tuning information and expertise is shared 

within and across organisations is studied in the following chapter. 

17 For example, work in [125] showed that documenting the development process may 
lead to error-free programming. 



Chapter 6 

Tuning across machines, people 

and organisations. 

Chapter Four has examined tuning in the small i.e., the cognitive aspects of tun-

ing and the available computer hardware and software support. Chapter Five 

examined issues which arise from .the repetitive nature of tuning and the need 

to manage the information that tuning produces along with the many program 

versions. This chapter deals more closely with tuning practices in the context of 

large application programs whose development involves the efforts of a number 

of people. In particular, the communication and information requirements are 

investigated along with the ways in which performance optimisation expertise is 

disseminated within and across organisations. The predominant method of invest-

igation used was that of case studies which in particular looked at projects rather 

than individual tuning processes. 

The first section of this chapter stresses that there is not a single approach to tun-

ing. Whereas performance may be important for one organisation, it may not be 

such important an issue for another. The following two sections present two case 

studies of software development practices in two large institutions. These institu-

tions have made large investments in purchasing parallel machines and key areas of 

their research activities rely on using them efficiently. In the first institution, code 

development and tuning was undertaken by many different and dispersed groups of 
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people. The second case study looks more closely at code development undertaken 

by several groups within the same organisation. The case study presented in the 

fourth section looks at code development within parallel programming teams and 

examines how tuners optimise code written by others and how tuning experience 

is disseminated informally among group members. The next section presents two 

case studies of the ways tuning knowledge is requested and disseminated in an 

organisational context. The fifth section describes the case of an on-line query an-

swering service found in Edinburgh Parallel Computing Centre. The final section 

summarises the findings of this study and discusses the implications for tuning 

tool design. 

6.1 Different attitudes to tuning 

Different attitudes to tuning can be found in different software development or-

ganisations. In some cases, people are not aware of even the simplest ways to 

improve the performance of their applications e.g., they do not know that cer-

tain compiler flags may optimise their codes [Ce30]. The investigation reported in 

Chapter Four has already shown that only a very small percentage of tuners have 

access to tuning training and documentation. On the other hand, the need to 

know a lot of details about the operation of system software and hardware is one 

of the most common sources of difficulties in tuning (faulty assumption /model). 

Time constraints may necessitate that the emphasis is on getting the functionality 

right. In other cases, depending on the developers' experience, performance related 

decisions may occur during the initial design of the application [Ce28]. In [CeSJ, 

parallelisation was done in a conservative way as the scientists who had developed 

the sequential code did not want the code to change a lot. The main objective was 

to design for performance rather than relying on trial and error, since this would 

endanger the quality of the code. 
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On the other hand, in some other organisations, there may be personal financial 

incentives to improve program performance. However, performance optimisation 

cannot be pursued to the degree of reducing the maintainability of the code: 

[Ce30] . . . If we can get the operational model code run 10% faster, we get 
our salary increased. There is a value associated with that, but equally, 
we can't go and modify 90% percent of the code to gain this performance 
because we will get the code unmaintainable. Informant 53 

Extensive optimisation may be unnecessary for certain kind of applications e.g., 

real time systems [Ce29J, or may be postponed until tuners know the target ma-

chine their organisation is going to buy [Cel9] 1 . In [Ce27], performance optimisa-

tion was deferred because of lack of funds. When funds were found, tuning the 

application program became less important because the funds were used to buy 

time on a more powerful machine. 

To illustrate better the different approaches to parallel software development and 

tuning, the following two sections deal with work practices in two large organisa-

tions. 

1 A large weather forecast code had to be ported from a Cray C90 to a number 

of distributed memory machines. The program underwent some partial performance 

optimisation in order to have an estimate of how the code would perform across different 

machines prior to the organisation purchasing one. Porting was done in a number of 

stages. 
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6.2 Case study I: the LIBRA project 

The original serial code from which the LIBRA code was derived was developed 

by a company called A. The code had 5,000 lines of Fortran implementing the 

basic numerical algorithm. The code was bought and parallelised by company B 

using the OCCAM language. The parallelised code used to run on a 128 node 

T800 Parsytec super-cluster. B soon realised that they could not achieve the 

performance targets they set themselves for the software. 

B decided to solve this problem by buying new hardware. A decision to move 

over to a specific, more powerful machine (which never appeared) left B with no 

machine to run their code. Finally, B got a new Parsytec machine which did 

not have an OCCAM compiler. That meant that the OCCAM code had to be 

converted again back to Fortran using the Parix message passing library to handle 

communications. A long time was spent trying to convert the code back to Fortran. 

During all this time, the code was augmented by company A with additional 

features. The code was used for production runs and all this time performance 

optimisation was not a issue due to the lack of funds to implement any optimisation 

plans. The funding was found and was used to buy time on a more powerful 

machine (Cray T31)). 

Despite the fact that optimisation became less important, as the code could run 

on a bigger machine, B assigned to a third company C the task of improving the 

load balance of the code. Simultaneously with the efforts in C, B assigned to a 

fourth company D the optimisation of the numerical algorithm used in the code. 

In addition to that, B were also modifying the communications of the code (Case 

Study I). 
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The aims of C's assignment were: to analyse the performance of the code; to 
determine how performance could be improved on the target architectures; to 
modify the code so that it was portable across a number of machines; and to 
devise a better load balancing strategy by means of finding a better decom-
position of the input data. The project did not also exclude the possibility of 
incorporating any numerical improvements developed by B or any other party. 
C assigned two programmers in this project. 

It was very difficult for C's tuning experts to track B's development of the 
LIBRA code. Initially, they received a parallel version of the code containing 
Parix communication calls. The documentation which they got was incorpor-
ated in the source code. The user guide was incomplete and out of date. C's 
developers had to convert each Parix call to a corresponding MPI call. It 
was intended that the code should run on the T31). Choosing to adopt MPI 
allowed the C team to save some of the scarce time allocated on the T31) by 
doing some of the development on a network of SUN workstations. Insufficient 
documentation impeded the process of understanding the code. 

With each new code, the tuning experiments had to be repeated from the 
beginning. At that time, the code was using a regular domain decomposition, 
which proved to be very inefficient because not all the areas of the data set 
required the same amount of processing. The data consisted of three materials 
air, metal, and carbon fibre whose computational requirements, according to 
B, were rated 1:2:128 respectively. The rate of processing required for each 
type of material in the data set was not the same on the T3D". When the 
1:2:128 rate was used by C for the decomposition strategy on the T31), the 
performance gain decreased. Thus, the computational complexity ratios had 
to be recalculated for each new version of the code B sent to C. Even though 
the contract between C and B did not cover any further optimisations, C's 
developers were able to identify and eliminate other sources of inefficiencies in 
the code [Ce24]. In the long term, the code will undergo a lot of changes and 
performance optimisation is bound to the development process [Ce506]. 

Case study I 

"The reason was that the processing of the most expensive material i.e., 
the carbon fibre required a lot of floating point operations, which are very fast 
on the T31), whereas the processing of the air data points involved a lot of 
memory copying, which is relatively expensive on the T3D. 

Summary: In this case, code development spanned across different and diverie 

organisations. Four companies were involved in the development of the LIBRA 

application. Performance optimisation was performed by One company while the 

code was simultaneously being changed by two others. The communication and 
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configuration management requirements were increased because all people involved 

needed to keep up with the latest changes in the code and the large number of 

versions that constant development and optimisation generated. 

6.3 Case study II: development in X 

The X organisation is concerned with medium weather forecasting. It is funded 

by the European Union and is responsible to all member countries. An opera-

tional ten day forecast is done on a nightly basis and is made available to the 

member countries. The research department is responsible for all the software for 

producing and analysing the forecast. Most of the people in this department are 

meteorologists who try to refine the model and the analysis program. The rest 

of the team are computer scientists who helped them to port and evaluate the 

performance of the program on new platforms (the "migration project") in order 

to choose one (Case study II, part a). 

Four computer scientists assigned with the migration project contributed to 
this study. Their experience in parallel programming varied from two to seven 
years. Informant 52, the migration project coordinator, had participated in 
the first parallelisation of the serial code in 1985. Informant 50 was a computer 
scientist with five years experience in parallel computing and had a contract for 
a period of two years to help with the performance optimisation of the forecast 
code. Informant 50 had not done parallel programming as such, rather he 
had been optimising other people's code mostly on shared memory machines. 
Informant 53's role in the team was to evaluate existing parallel programming 
tools and investigate their potential use in the project. Informant 51 - with a 
background in meteorology as well - was responsible for producing the message 
passing versions of the code [Ce8]. 

Case study II, part a 

The migration project necessitated a lot of communication among the group mem-

bers and between the group and the meteorologists, who formed the rest of X's 

research department, in order to keep up with further developments of the forecast 

model and analysis code. In addition, a great deal of cross-discussion occurred 
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within the group. According to the group coordinator this was a disadvantage in 

some cases (Case study II, part b). 

One group member with a lot of knowledge in the parallelisation of the forecast 
code started to work on an new area of the model. He was continuously being 
interrupted by members of the group and by some of the meteorologists to 
answer questions and solve problems, which diverted him from his assignments. 
Excessive informal communication created a number of problems for him. 

Case study II, part b 

Additionally, code development took place in collaboration with people working 

for other organisations. A German company Z collaborated with X's developers to 

help them convert their initial vector code to message passing. Informant 51 had 

to cooperate with Z during the porting of the code to PARMACS. Communication 

was done through electronic mail and once informant 51 visited Germany to work 

closely with his collaborators there: 

[e507] The introduction of the PARMACS library was not done automat-
ically. The first version, we have done it with the collaborators from Z; so 
they effectively told us how to do it. We talked to them about the applica-
tion and showed them how we wanted the parallelisation to be done. And 
they did the real work; they showed us good techniques to follow because 
they have a lot of experience. We had to do it safely. As I said earlier they 
did the first version with the limited parallelism and then we did the next 
step, so we have learned from there, and we incorporated all the experience 
and the knowledge. Informant 51 

The group had also to work closely with the vendors of parallel machines. Com-

munication with the vendors was conducted mainly by electronic and postal mail. 

Every six months, X delivered to the vendors a new version of the code, which 

was under continuous development (Case study II, part c). 
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X delivered a short description on how to proceed from the source code files 
to the running version. X had tried to make the code flexible so that it could 
run on different architectures using switches. Vendors had only to specify 
whether the code was to run on a vector or a cache-based machine. Also, 
information had to be given as input to a preprocessor which changed the 
data distribution in the code. In one case, the forecast code was sent to Y 
(one of the vendors) to test it on this vendor's supercomputer. The results of 
the runs were delivered in a report, which in the introduction tried to establish 
an understanding of the tested code. This was carried out by describing the 
set of parameters that affected the run: the dimensions and the sizes of the 
input data; a number of parameters, which defined how much physical time 
the forecast code simulated; and a number of other parameters [Ce530]. This 
created the basis for comparisons with results coming from other vendors. The 
introduction continued with a report on the optimisation changes made to the 
basic code delivered by X. 

Case study II, part c 

All vendors ran and optimised a specified reduced version of the model on their 

parallel machines and sent the execution times and Mflops rates to X. X com-

pared these execution times with the corresponding execution times on the local 

machine. The results were sent by postal or electronic email and were not stored 

on-line. People relied on the vendor to clearly specify which version of the code 

corresponded to the timing results. Back at X, the management of this information 

was not systematic. 
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The programming language used was Fortran. While the computer scientists 
tried to introduce more modern languages, the meteorologists, who had always 
been using Fortran, did not want to have to learn a new language. Another 
reason for which Fortran was established, was the fact that code development 
was undertaken by a lot of visiting scientists, who visited the centre for a short 
period of time and had to learn bits of the code and write others. It was not 
unusual for the visiting scientists to try to make modifications in a matter of 
weeks so they did not want to learn a new language. The design of the code 
was such that the high level parallel parts of the code were independent from 
the numerical algorithm routines. This meant that the scientists, who were 
usually interested in that part of the code, had only to familiarise themselves 
with the leaves of the calling tree below the level of parallelism. Any code 
that did message passing, for example, was invisible to them [Ce39]. 

[e18] . . . Another nice thing about it is the way we have coded it, 
we can split tuning into two tasks. Optimising the communica-
tion and optimising the computation. And they are really totally 
independent and two people can do that and that is also what we 
have done. Some of us are trying to get serial performance and 
some of us are trying to make more clever communication. And 
you are only doing calculations on a single node, so the optimisa-
tion is really to try to optimise the code on the single node. So 
the people, who don't want to know about the communications 
and the parallel code, can optimise the serial part separately. 

Informant 51 

A white board was used extensively to support the documentation and com-
munication needs of people sharing the same office and collaborating on the 
same project. 

[e505] It is a scratch pad for us instead of email, where you 
can both look at . . . old fashioned scratch pads. When you get 
something that is worth of writing up then it is sent through the 
mail or it is reported. Informant 50 

Case study II, part d 

The constant development of the model necessitated that each new version would 

be tested for efficiency. It had to be ensured that the new version could vectorise 

and did not become significantly slower than the older one. X did not have any 

other way to check how much care someone had taken to make sure that their 

code could vectorise. Versions also proliferated with porting the program to many 

different machines. X's version control system did not live up to the expectations 

of the programmers: 
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[e502] The way we are working here today is from this point of view very 
haphazard. We have a lot of versions, and this is a significant problem. 
Although, we have a version control system, the guys in the parallel world 
don't use it because it is installed on a different system from the one they 
work on . . .so they are reluctant to use it and we are at the situation where 
there are lots of tar files lying there and it is slightly difficult to follow what 
you have. Informant 52 

The development strategy and the programming language adopted were chosen 

to meet the needs of the multidisciplinary character of the research department 

(Case study II, part d). 

Summary: This second case study illustrated that parallel code development 

can be undertaken by a large number of people with different backgrounds and 

roles in the organisation. Moreover, the composition of the programming team 

may change quite frequently, thus increasing the requirements for adequate doc-

umentation and efficient communication. At the same time, important parts of 

the development process may occur outside the organisation. Economic interests 

drive the involvement of vendors in the optimisation process since it is to their 

benefit when parallel application codes perform well on their hardware [Ce5lO]. In 

addition, part of the parallelisation and optimisation may also be sub-contracted 

to other organisations. 

6.4 Tuning within the group 

This study shows that less experienced programmers turn to more experienced 

tuners or consultants for help [Ce5ll], [Ce513], [Ce517], [Ce800]. Reassurance 

about the effectiveness of a solution may be sought before the programmer at-

tempts to validate a hypothesis, especially if there is a lot of work involved in in-

troducing a prospective performance optimisation change [Ce514]. Help is sought 

when the solution to the performance problem is not known: 
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[e512] And you think how could I improve that. So basically, you speak 
to Malcolm and he says look there is a wonderful routine that TMC has 
written, why don't you use this? 	 Informant 68 

Parallel programming experience and tuning knowledge are shared within the 

context of the organisation the individual developer works in [Ce515], [e18] 

[e516] I share my notes with other people, but mostly in an informal way: 
whenever I talk to somebody about parallel programs, I may end up telling 
them about my experiences. I have also at times made reference to these 
experiences in actual seminars that I've given. Informant 16 

The experience of the people who had first to deal with advanced performance op-

timisation issues is shared informally and will remain within the organisation as 

long as the experts work for it [Ce520]. When people were asked how they would 

introduce another person in the project, they almost all answered that this would 

require an expert sitting together with the new team member in front of the work-

station. On the other hand, even an expert, after being away from the project for 

a while, would need special pointers which reflect the current state of the project 

[Ce521]. Documentation could serve the purpose of communicating performance 

design decisions and results so that members could build on experiences of their 

colleagues. This study shows, however, that the time overhead involved in main-

taining documentation in order to share techniques and experiences with others 

may put off the realisation of such a scheme [Ce504]. Instead, low sophistication 

media may be used [Ce503]. 

In a few cases, performance tuning knowledge is concentrated within a course in 

order to disseminate tuning techniques within an organisation 

[e519] There is ultimately no substitute for native cunning. I have, for 
example, encapsulated the general principles of optimisation in a parallel 
environment that everyone should know into an 1 hour seminar which I 
give in an introductory CM-5 course. I usually follow this with taking a 
real life example (hopefully one of the class members' pet problem) and 
offering approaches that may be tried to optimise it. Unfortunately, time 
constraints mean that people can't actually try out the approaches there 
and then. Informant 1 
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In [Be628], the tuner tried to incorporate the changes that a colleague had made 

into the program. Initially, he tried to isolate the different parts of the code using 

the Unix diff command, but he did not succeed in distinguishing the differences. 

Instead, he used all the code his colleague had written. Moreover, he wasted time 

comparing timings of two different versions of the program on two different ma-

chines before he actually realised that he was comparing different versions. Not all 

versions of the code were ported to all machines available. This particular porting 

was the responsibility of another programmer who did not inform the tuner that 

he had not finished the porting. This illustrates how insufficient communication 

and the lack of collaborative programming tools may result in inefficient use of 

time. 

Facilitating the growth of knowledge within an organisation and its application to 

future projects was identified as a critical issue in some early discussions [36] and 

other research has pointed to the importance of employing an informal appren-

ticeship model within an organisation [17]. In recognition of this, recent research 

has proposed systems for capturing programming knowledge and organisational 

memory [33,161]. For example, Terveen et al. in [1601 have identified the exist-

ence of an important type of software design knowledge that they call community 

specific folklore and have focused on the problems associated with trying to man-

age it in large software development organisations. More specifically, they have 

noticed that much of the design knowledge required to be a successful developer is 

community specific in that it concerns the application domain, the existing soft-

ware base, and local programming conventions. Knowledge is informally main-

tained and disseminated by experienced developers. This process is ineffective: 

not everyone gets the knowledge they require; inefficient communication of know-

ledge takes more and more time (e.g. see [Ce800]). The process is also fragile: 

loss of key personnel can mean loss of design knowledge. Terveen et al. propose a 

system for capturing and disseminating design knowledge throughout the software 
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development organisation. The major consideration, though, in the development 

and adoption of such a knowledge base is the cost-benefit trade off. 

6.4.1 Somebody else's code 

When the tasks of porting the code to a parallel machine and optimising the par-

allel code are considered to be difficult, they are assigned to an "expert" who is, in 

most cases, either a computer scientist or a scientist long exposed to parallel com-

puting. Sometimes the tuning expert may have an interdisciplinary background. 

These experts are recruited to be members of the scientific team developing the 

code or work for companies which act as consultants or undertake themselves the 

tasks of parallelising and tuning. For instance, informant 47's group cooperated 

with a company in Lyon in order to reduce the risk involved in porting the code 

to a parallel machine. The code was first parallelised locally and then was sent to 

Lyon. The experts in this company produced a report on the best ways to improve 

the code performance. 

In some cases, the extent of the optimisations performed may be affected: 

[el] Optimising code for others is problem repeating work, which discourages 
any large scale optimisations. 	 Informant 49 

During the early stages of the introduction of parallel computing in an organisa-

tion, not everybody will be exposed to parallel programming and this may affect 

the code development and documentation processes. For example, in [Ce501], 

the documentation had to be less technical in order to reach as many people as 

possible. In the early stages, the sequential code may also pre-exist its parallel 

counterpart. In cases where the development of the sequential code is an on-going 

process, the parallel code has to anticipate this development. This may require 

additional communication amongst the people responsible for the sequential and 

parallel development respectively. For example, informant 44 worked on the paral-

lelisation of a sequential program which was still under development. The program 
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was written by a large number of people and each was responsible for a part of 

it. Informant 44 tried to keep up with the changes in the sequential program but 

this was a onerous task: 

[e5081 I go mad. I tried to keep up with the updates of everyone. I got three 
updates every day. I tried to keep as many common routines - the matrix 
construction, or the time integration, or the boundary value determination 
routines - as possible but daily changes in the serial program structure and 
parameter lists made this impossible. Everything each of them are doing 
affects me. If I change something, it affects only a very small part in every-
one. Now, I quited from trying to keep up with them. Because it was too 
difficult. At that point in time (i.e. at the beginning of the parallelisation 
process), I was changing all the program. And I was not allowed to do my 
changes to their program because, still, parallel programming in Delft was 
considered unproven technology. Informant 44 

Working with application programs written by someone else is difficult in cases 

where there is insufficient documentation. While most tuners emphasise the need 

to understand the structure of the code, other more experienced tuners (provided 

that the programming model allows it) may work at a higher level, dealing only 

with specific parts of program which are candidates for parallelisation [Ce2], [Ce3]. 

In every case, it is crucial to be able to communicate with the original developers of 

the code. Communication with developers or access to documentation can provide 

experts with the rationale of design decisions so that they can establish more 

easily the link between program performance and its cause (cause/effect chasm) or 

identify the model of relations between performance determining parameters upon 

which code development was based. For example, due to lack of documentation, 

it was really important for informant 51, who was assigned the parallelisation of 

a particular code, to be able to communicate face-to-face with the scientists who 

wrote it. Communication with the sequential programmers provided him with 

an understanding of the data structures and the data dependencies within the 

program. This understanding was far more crucial for the parallelisation process 

than any course in parallel computing could be. Informant 51 was fortunate 

because his assignment coincided with the presence of two visiting scientists, who 

had investigated a number of parallelisation techniques for the program. The work 
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of these scientists was not documented in any formal way and, instead, informant 

51 had to work closely with them for a period of time [Ce5091. 

Finally, as was identified in Chapter Four, optimising codes for others can be very 

difficult when these codes are not well written and special support is needed to 

cater for the increased communication and documentation requirements emerging 

in these cases. Old, messy codes are difficult to parallelise [Ce4]. In the following 

case, attempting to understand or structure the serial program prolonged the task 

of parallelisation: 

[e5] Structuring the code and modularising it, which if it were a decent piece 
of code in the first instance, we wouldn't have to do this. I had to tidy up 
the serial code before actually I could parallelise it. I think the sequential 
core of the program was very easy to parallelise. Informant 47 

6.5 Case study III: EPCC User Support Service 

In cases where organisations do not own parallel computing facilities, parallel 

programmers access remotely machines available elsewhere. Similarly, access to 

tuning advice may be facilitated through user support services available at these 

sites. 

EPCC has long established an on-line, electronic mail based user support service. 

Users can send an e-mail to a specific address, stating what the problem is and 

expect an answer within the next one or two days. The queries and their an-

swers are kept on-line. Seventy-five performance related queries were studied with 

EPCC's permission. Four queries were two-fold and five were three-fold so they 

were treated as different queries. This raised the number of queries to eighty nine. 

Queries were analysed and classified in seven categories and Table 6-1 lists the 

frequencies of the occurrences of the different classes: 
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Specific advice. This category included queries which questioned the necessity 

and impact of old techniques in the light of a recent compiler change; asked 

what performance optimising flag options could be used with the current 

compiler; asked for reassurance that a technique could bring a performance 

gain 2.  Other queries in the class were concerned with how to realise a solu-

tion to a perfcrmance problem. For example, one tuner wanted to know what 

synclironisations a very low-level communication harness required or where 

to look for information on the most relevant optimisation techniques. Other 

parallel programmers wanted to know how to measure the performance of 

their programs or stated that they did not understand how a particular com-

piler directive works. In a number of queries, programmers asked how I/O 

in their codes could be improved. 

The impact of compiler changes on tuning can be large. Code optimisation 

techniques have to be reviewed in the light of new compiler versions. Even 

when documentation is readily available and up to date - which may not be 

the case (e.g. [Ce64]) - it is difficult to know to which extent old techniques 

are still necessary or even harmless. The situation is further complicated if 

part of the system software is not optimised for the changes introduced by 

the new version of the compiler [Ce63]. The problems of this class verify that 

Change identified in Chapter Four is indeed the reason for many problems 

in tuning. 

Why is that happening. Queries of this class sought an explanation for pro-

gram behaviour which tuners could not understand on their own. One of 

the most interesting questions was concerned with a parallel code whose tim-

ings were drastically different from one day to another [Ce65]. In this case, a 

compiler upgrade and some hardware changes worsened the performance. It 

'Often the technique programmers were intending to use was not correct. 
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was suggested to the user to experiment with the old version of the compiler 

in order to verify that the cause of the problem was indeed the compiler up-

grade. Tuners are quite vulnerable to software or hardware changes since it 

is difficult for them to know what impact they can have on the performance 

of their programs. 

Also, programmers may not be aware of the way instrumentation may af-

fect their codes. Extra instrumentation code may affect cache coherency as 

in [Ce58], where the tuner complained that the program produced different 

results when the code was compiled with the apprentice flag enabled. Ques-

tions in this class demonstrate the impact of the cause/effect chasm identified 

as the most common source of difficulties in tuning (Chapter Four). Cases 

where changes in the programming environment led to degradation of pro-

gram performance can also be identified as instances of cause/effect chasm 

problems as tuners cannot know when these changes occur or what their 

impact is on the performance of their programs. 

Look at my code. In this class a code was submitted along with the query. Two 

kinds of queries were identified: those in which the tuner asked generally for 

suggestions on further optimisations and those in which the tuner asked the 

expert to focus particularly on specific parts of the code. Again queries of 

this class reveal an absence of knowledge about a model which explains the 

relations amongst performance determining parameters and performance. 

This is my code. It only achieves 6.6 Mflops could you suggest ways to 
improve it? Q5 

I am trying to write some good global sums. Could you look at my 
code and see if there is a better way of doing it? Q41 

Figures. A large number of tuners asked for typical values of various metrics 

which could have an impact to their code, such as e.g the bandwidth and 

latency rates of various communication calls: 
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What are the typical maximum Mflops rates that one can achieve on 
the T3D? 	 Q24a 

What is the clock speed of the front end? 	 Q23 

Run-time error. This is an interesting category as users asked for help about a 

particular bug or run-time error that they were encountering. They were not 

aware, though, that the poor performance of their codes was the reason for 

these problems. Experts answered all these questions with advice on how a 

performance improving technique would remove the problem. For example, 

in one case a user was asking how to do check-pointing because the execution 

time of his program was longer than the maximum allowable run time. It 

was estimated that the program could run for a day with a large part of 

the execution time being spent in doing I/O. The expert made a number 

of performance improving suggestions which alleviated the need for check-

pointing. In [Ce6l], a run-time error revealed that the performance of the 

output phase should be looked at. Even though the manifestation of the 

problems in this category is not directly related to performance, queries of 

this class can be regarded as cause/effect chasm or faulty assumption/model 

problems. 

General advice. The queries in this class were looking for general information 

on efficient parallel programming. Some programmers asked for information 

about efficient data and work distribution techniques. Tuners who did not 

have any hardware or software specific performance model asked for inform-

ation about such models. Performance expectations may be too high as, for 

example, in [Ce60] where the user thought that the peak performance of the 

machine can actually be achieved and sustained. 

We would appreciate any information on efficient data and work dis- 
tribution techniques for large arrays. 	 Q7 

Could you give us some example codes that managed to perform up to 
130 Mflops per second on the T31)? 	 Q32 
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Tools. Complaints about not being able to understand the suggestions of the 

performance analysis tool or some critiques about the correctness of the 

on-line documentation of the tool were included here. 

Often tuners are not familiar with the terminology adopted by the perform-

ance analysis tool. Novice users without a computer science background, 

find it very difficult to understand the information provided by the tool. 

In [Ce56] and [Ce57], the tuners could not make use of the performance 

observations the tool provided because they could not understand them. 

[Ce57] Q: I have a question concerned with the Apprentice tool. In 
the COSTS window, the bar chart always shows that Integer Adds is 
the dominant operation in the code. However, I expect that the code 
should perform floating point operations most of the time. Is there a 
conversion from floating point operation to integer operation inside the 
T31)? This will affect my judgement about how fast the code runs. In 
the OBSERVATIONS, two measures are printed: 

floating point operations per second. 
integer operations per second. 

Usually, measure 2 is twice as large as measure 1. Only when I know 
which type of operation is dominant in the code, can I determine how 
fast the code actually runs. I noticed that after the new c177 compiler 
was installed, the ratio of measure 2 and measure 1 has decreased for 
the same calculation. 

fl Category [_Occurrences 

Specific advice 41 

Why is that happening 13 

Look at my code 10 

Figures 9 

Run-time error 8 

General advice 4 

Tools 3 

Table 6-1: What tuners ask 

Summary: The questions that tuners ask verify the validity of the framework 

for studying tuning (Chapter Four). Indeed, inadequate tools, having to know the 
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specifics of the underlying machines and programming environments that keep 

changing are major sources of difficulties for tuners. Approximately, 39%3  of 

tuners did not know what affected the performance of their program. This implies 

that programmers may embark on parallel programming without first having an 

understanding of the basic issues that affect performance. This problem can be 

addressed by adequate training. On the other hand, almost half of the queries 

examined ( 46%) were asking for advice about the use of a specific performance 

determining parameter or about improving a particular part of code. This sug-

gests that programmers may know what could improve the performance of their 

program, but they do not have enough information to implement it. For example, 

users can be occasional tuners, while the programming environments change far 

too quickly for them to keep up with the changes. Thus, changes in the pro-

gramming environment can even lead to faulty assumption/model or cause/effect 

problems: the models that tuners have are made obsolete and novice tuners cannot 

explain easily changes in the program performance. 

A lot of the information that tuners lacked was included in documentation avail-

able on-line. Studies have shown, however, that users are reluctant to consult 

manuals, which may be re-inforced here by the fact that tuning information may 

be difficult to extract from within lengthy documents whose contents span a num-

ber of issues. Tuning information will have to be better organised and conveyed 

before tuners start using it extensively. 

Typically, queries were answered within a period of one or two days. More complex 

queries took more time to be answered as experts dealt with them by looking more 

closely at the users' code or having a meeting with the users. Selected queries 

'The occurrences of the categories "Why is that happening", "Look at my code", 

"Run-time error" and "General advice" were added together. 
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(Figure 6-1) were summarised in a way to reflect what are the issues with which 

users need expert help. 

6.6 Conclusions 

This chapter examined tuning in the context of large application programs whose 

development involved the efforts of many people working for more than one or-

ganisations. Three levels of communications were identified: 

. Within the programming team 

Large application programs can be developed by a number of people who 

usually work on parts of the code which have some distinct functionality 

and depend on other parts in terms of their input or output data. Com-

munication needs in large projects are increased. Performance optimisation 

poses more requirements for documenting, conveying and justifying design 

decisions for the different parts of the program which separately and com-

bined affect the program performance. 

• Between groups of the same organisation 

The difficulty of parallelising efficiently sequential codes has resulted in "tun-

ing experts" undertaking this task on behalf of scientists, who are typically 

sequential programmers. Programming teams are extended with these ex-

perts who may have a computer science background. In some cases, the 

experts may form a separate group responsible for the parallelisation and 

optimisation of the application program. 

• Between organisations 

Alternatively, experts working for consultancy companies undertake optim- 

isation tasks. Parts of the program development itself can also be under- 
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ID Context Knows Does not know 

Information sought on how Array sizes affect performance In the tight of the new compiler how much and in what way 
Q1 

compiler works after compiler ray sizes affect performance. Some of the system libraries 

change are optimised for the old compiler 

Q2 Advice on general optimisation Which pan of the code needs Anything about how 10 is performed and what arc the factors 

techniques for improving 10 improvement that can affect performance 

Q3 Documentation on alternative Existence of libraries with How to access information on the optimised library 

communication library optimised maths functions 

Q5 Code is sent to he optimised Anything about options within the performance model that 

have a different impact on performance, how the compiler 

distributes arrays and executes directives. Techniques that 

can he used to optimise performance 

Q8 Problem with opening too many Knows the problem has to do The mason that the files cannot be opened simultaneously, 

files with the large number of files how tO is done, technique to sequentialise the opening of the 

files 

QlOa Apprentice distorts timings Reason apprentice distoris timings, how instrumentation is 

done. What is the impact on performance 

Q12 Tool showed where time was Where time is spent Basic issues such as what affects performance and what 

spent techniques could he applied in that particular case 

Q14 Picking wrong documentation Optimisation flags exist That two compilers exist one for the front end and another 

on compiler which can be used to improve for the mpp system. How to invoke information 

performance on the one for the mpp system 

Q19 Timings of the same code were Suspects a hardware or When the compiler changes, how much and whys compiler 

longer after a specific date compiler problem change can affect the code, how much a hardware upgrade 

or a hardware error can affect the program 

Q20 Mathematical functions perform Knows that they perform The design of the processor chip is the mason for the 

poorly compared to their badly poor performance of the maths functions 

performance on other machines 

Q23 Bow much code performance Speed of the FE machine Relation between the front end and the actual CM, what 

depends on the speed of the affects performance affects the speed of the code and how the front end 

front end interacts with the CM 

Q36 Poor performing code compared Knows where the problem is Too high expectations from machine based on peak 

to the same code running on performance advertised by vendors. What aspects of the 

other machines machine design affect performance 

Figure 6-1: What tuners need to know 
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taken by other companies. In all cases, it is essential to communicate with 

the people who wrote the sequential code. Vendors are also getting involved 

in the development process as they attempt to increase their competitive 

advantages. 

Program design and tuning knowledge are shared informally within groups and 

organisations. 

The extensive porting of parallel programs across different machines and program-

ming paradigms results in increased communications between all parties involved 

in the process. At the same time, the number of program versions proliferates and 

this increases both the documentation and communication requirements for effi-

cient management of the development process. Clearly, the design of technology 

to support tuning should take into account the accomplishment of the tuning task 

as part of the software development process and within a context of collaboration 

with colleagues and clients. In building such a technology it would be critical 

to examine the ways in which tuners work and participate in activities of their 

colleagues and the tacit procedures through which work is systematically accom-

plished. For example, different tools may be needed to support program design 

communication and documentation requirements within the team and among or-

ganisations. Conventional HCI and requirements engineering techniques tend to 

be insufficient in recognising and catering for collaborative tasks [lOT]. Rather, 

methodologies which are adopted by the social sciences (e.g. ethnography) would 

be more suitable for revealing hidden work practices and guiding the system design. 

Part of the communication within and across organisations occurs when tuning 

knowledge is disseminated. Parallel programmers seek advice from more experi-

enced colleagues; tuners discuss with each other their experiences; advice is even 

sought and exchanged through news bulletin boards. The study of environments, 

where tuning expert advice is offered to users of parallel computers, revealed the 

problems that tuners encounter and how help is provided to them. 
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In particular, two reasons were identified for these problems: lack of training and 

lack of information with respect to fast changing programming environments. The 

availability of public domain parallel programming environments such as PVM or 

MPI, which can run on clusters of workstations has brought parallelism within 

the reach of many people who often embark on parallel programming, without the 

necessary understanding of the basic issues due to lack of training (Chapter Four). 

Moreover, tuners need fast access to information about changes in programming 

environments. 

The inefficiencies of sharing tuning knowledge informally and the drawbacks of 

the consultancy mechanisms imply that there is clearly a need for the creation 

of a project/organisation tuning repository for sharing tuning knowledge within 

and outside an organisation. Eisenstadt in [44] proposed a similar repository of 

debugging knowledge. Observation of performance optimisation courses may shed 

light on how performance knowledge can be encapsulated and presented within a 

constrained medium such as a minimum on-line document. 



Chapter 7 

VISPAT: a VlSualisation and 

Performance Analysis Tool 

A series of design meetings with local tuners defined the requirements and design 

specification which were used as the basis for the initial version of VISPAT, which 

targeted programs that run on clusters of workstations using CHIMP (Common 

High level Interface to Message Passing) [45] and PUL (Parallel Utilities Librar-

ies) [32]. In addition, results from the observational study of tuning (Chapter 

Four) contributed to the specification of the requirements for VISPAT. A sub-

sequent cycle of requirements capture, design and evaluation resulted in changes 

to VISPAT in order to cater for SPMD programs using the MPI (Message Passing 

Interface) standard which had already started being used by local programmers 

[116]. Several requirements which had been identified in the first series of meet-

ings, were finally addressed by the third version of VISPAT. This chapter presents 

VISPAT whereas Chapter Eight describes its participative design process. 

The outputs of the requirements capture process were eventually categorised into 

one of four fundamental design issues: trace data format; filtering mechanisms; 

display options; and the management of tuning over time. The first three are 

concerned with tuning in the small whereas the last issue is relevant to tuning in 

the large and is discussed in Chapter Nine. 

134 
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The first section of this chapter presents a brief overview of VISPAT. The second 

section discusses the concept of hierarchical phases which can be used to reduce 

the volume of data the user has to consider and to relate program behaviour to the 

source code. Reducing the volume of performance data and relating the program 

behaviour to the source code can assist tuners to establish links between the cause 

and the effect of poor performance in the program (Chapter Four). The following 

three sections discuss the ways information about program execution is gathered, 

processed and visualised by the graphical front end of the tool. The sixth section 

presents an example of using VISPAT to demonstrate some of its human-computer 

interaction features. The final section is concerned with future work. 

7.1 Overview of VISPAT 

Instrumented MPI library 

and user annotation 

Parallel 
application 

FEE 

I PmCeSS3I 

Trace files 

: 	 r 	Trace Processing Engine 

Visualisation component 

and Graphical User 

Interface 

__________ 

______ 

Figure 7-1: Overview of VISPAT 

VISPAT conforms to the structure identified in most port-mortem tuning tools. 

The structure of VISPAT is shown in Figure 7-1. It consists of: 

an instrumentation component which instruments the program so that when 

it is run, information describing the program's performance behaviour can 

be recorded in trace files, 
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a trace processing component which analyses the information contained in 

the trace files and 

a visualisation component' which depicts the analysed and filtered informa-

tion. 

7.2 The concept of phases 

A phase is an abstraction representing part of the total program execution time and 

can correspond to a library function or a programmer-defined logical part of the 

source code. Phases can be defined hierarchically as aggregations of other phases, 

thereby providing the tuner with multiple layers of abstractions. Their function 

is to provide the bridge between the cause and effect of poor performance. The 

most abstract layer may be concerned with logical stages evident in the execution 

of parallel programs such as initialisation, computation and closing. Each of these 

top level phases may consist of a series of sub-phases, which can have sub-phases 

of their own and so on. 

As the investigation described in Chapter Four has shown, one of the problems in 

current performance visualisation tools is that a large volume of data is displayed 

without allowing tuners to determine the level of detail of data presentation or 

relate it to the source code. Viewing the application program as a hierarchy of 

phases allows tuners to focus only on the interesting parts of the program, thus 

reducing the amount of performance data they have to consider and also relate 

this data back to the source code. Source-code reference is provided by a number 

of tuning environments [2,79,118,171], which map low level events to higher level 

'The instrumentation and trace processing components and part of the visualisation 

component of VISPAT were implemented by EPCC Summer Scholarship Students. 
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ones [8]. In the initial design of VISPAT for CHIMP and PUL programs, event 

abstraction was more extensive because the phase hierarchy was imposed only 

partially by user-defined events which included lower-level library functions. More 

complex phase structures were created because a parallel program could use a 

combination of parallel programming libraries built on top of CHIMP, the basic 

message passing harness. Figure 7-2 depicts the structure of a parallel program 

which uses CHIMP for point to point communications, PUL_EM for collective 

communications and PUL_RD for regular domain decomposition. It can be easily 

seen in this figure that the function rd-operate, for example, consists of a number of 

simpler PUL_RD functions and of a user-supplied code. It was a user requirement 

that a tuner can isolate views of such a parallel program which could consist of 

one class of phases e.g., CHIMP, or of a combination of classes e.g., CHIMP and 

PUL_EM phases, at various levels of the phase hierarchy. 
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Figure 7-2: Phase hierarchy in a CHIMP/PUL program 
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7.3 Trace data format 

The trace data format requirements were largely determined by the programming 

environment and the requirement for source code reference 2 . Currently, MPI is 

the standard message passing interface for parallel application and library pro-

gramming [116]. It caters for point to point communication between pairs of 

processes and collective operations among groups of processes. Its more advanced 

features provide, amongst other things, for the manipulation of process groups 

and their topological structure. A local implementation of the MPI standard has 

been developed at Edinburgh Parallel Computing Centre based on CHIMP [26, 

45]. 

Information about the program execution is generated by instrumenting the MPI 

library. MPI comes with a name-shifting interface to enable profiling of the MPI 

routines. The advantage of the name-shifting mechanism is that there is no need 

to change the source code in order to use the instrumented version of MPI. MPI 

programs have only to be linked with the instrumented version of the MPI library 

[152] 3  . The resulting executable generates trace files that can be processed by 

VISPAT's Trace Processing Engine (TPE). Each process in the program creates 

one binary trace file containing all the information relevant to that process'. The 

processed information can then be visualised by the visualisation component of 

the tool (Figure 7-1). 

2 IJser requirements are shown in Chapter Four. 

3The instrumented version of the MPI library was implemented by EPCC [152]. 

'The binary format drastically reduces the space requirements of trace files corres-

ponding to long program runs. 
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Each instrumented MPI function corresponds to a phase in the execution of the 

process calling this function. A phase is identified by the name of the function, 

together with a number which distinguishes each unique occurrence of it within 

the trace file. It is also characterised by its class which can be either MPI or Ap-

plication (if the phase is programmer-defined). The instrumented MPI functions 

record information such as the begin and end time stamps of the phase along with 

other information. In addition, the instrumented MPT library records a phase that 

begins and ends when MPUnit and MPLFinaiize are called respectively. Thus, 

the life time of a process is recorded as a single phase that in turn contains vari-

ous phases corresponding to MPI function calls and other interesting parts of the 

program. The format of the trace file is described more thoroughly in [166]. 

User requirements in relation to the instrumentation of MPI were concerned among 

others with three issues: recording information about the communication phases; 

recording the end of MPI non-blocking communications; and introducing a unique 

communicator name scheme 5. 

Apart from phase time stamps the instrumented functions record information such 

as: the number and the type of elements sent or received; the tag used for the 

communication; the communicator; the rank of the sending or receiving process; 

the request handle for the non-blocking communications 6; and the rank of the root 

process in a collective call, e.g. MPLBcast 7 . 

5A communicator defines a group of processes and a context of communication 

between them. A message sent in one context cannot be received in another context 

[116]. For the same group of processes there may be defined more than one communic-

ation context i.e., communicators. 

'Data which identifies the non-blocking communication [116]. 

TIVIPLBca.st performs a broadcast communication. 
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The actual completion time of a non-blocking communication initiated by a non-

blocking MPI send or receive is not known. A non-blocking communication ends 

when an MPLWait or MPI_Test call succeeds. To match the beginnings and end-

ings of non-blocking communications, the MPI instrumentation library stores the 

request handles returned by these function calls. Instrumented versions of the 

MPLWait and MPLTest calls record the end of these non-blocking communica-

tions by recording their corresponding handles. Further processing of the trace 

file matches the request handles returned by the non-blocking function calls with 

the request handles returned by the MPJ_Wait and MPI_Test calls. 

Although communication in MPI occurs in well defined communication contexts 

i.e., the communicators, these are identified by handles which are local to each 

process. This is inconvenient for the users who want to consider a point to point 

communication, for example, as happens within a communicator with a global 

name. The instrumentation library provides a unique naming scheme for commu-

nicators which helps tuners understand their communications better [152]. 

In order to reduce the amount of trace data produced and to enable tuners control 

the parts of the program for which instrumentation is applied, instrumentation 

can be selective. Special library calls can be inserted in the program source code 

that can switch on and off instrumentation around parts of the program which 

the user is interested in investigating. 

There is a one-to-one relationship between the structure of phases in a program and 

the structure of the trace files. This is carried through into VISPAT's visualisation 

facilities which are described further on in this chapter. 
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7.4 Data filtering 

A means to analyse and filter the trace data was identified as a requirement by 

both local users who took part in VISPAT's design meetings and by many parti-

cipants of the investigation described in Chapter Four. This requirement is realised 

through the Trace Processing Engine (TPE) 8 . Each process in the application pro-

gram generates its own trace file. TPE reads in and processes all the trace files. 

Processing involves analysing traces and storing them in flexible and efficient data 

structures. Along with the data structures, the Trace Processing Engine provides 

a set of analysis functions which can perform a large number of filtering operations 

on the data structures. 

For each process and for each trace file, TPE generates a tree of all the phases that 

occurred in that process. Each node consists of phase data such as: the starting 

and ending times; phase name; phase class (MPI or user-defined); and five pointers 

to other nodes namely the parent, left and right sibling and leftmost and rightmost 

child. Additionally, for each node there are two fields which determine whether the 

phase is visible or selected. Phases which have the selected field set can participate 

in a number of operations. A phase node and a complete phase tree are shown in 

Figure 7-3 and Figure 7-4 respectively. 

In addition to the phase tree, a list of all the communication events of a process is 

constructed which is later merged in chronological order with the communication 

event lists of all the other processes. The communication event list is a doubly 

linked list. As shown in Figure 7-5, each node of the linked list represents either a 

BEG-COMM or an END-COMM event and contains the time that the communic-

ation phase started or finished respectively. The node contains also a pointer to 

8 TPE was implemented by EPCC. 
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parent 

phase data 

left sibling 	

/ 	

right sibling 
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Figure 7-3: A phase node 

more information about the communication such as: the type of communication 

(blocking or non-blocking); the source and destination processes; and a unique 

integer number which relates the send and receive messages among different pro-

cesses. 

Figure 7-4: A phase tree 

A number of functions provide an interface to the data stored in the communica-

tion event lists by: 

checking whether an event is a BEG-COMM or an END-COMM event, 

• checking whether an event is a point-to-point or a collective communication, 
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. getting the event type (blocking or non-blocking), 

• getting the name of the event and 

determining the communicator within which communication has happened. 

oacaen&Y1 

	 E 	E 
BEG-COMM 	 BEG-COMM i 	 END-COMM 

1234$ 	 12345 	 2345 
I 	 - 

Figure 7-5: Communication event list 

Other data structures that TPE creates include a join event list. The instrumented 

MPI library records all the communicator creation events. Whenever a process 

creates a communicator with other processes, it is said to join that communicator. 

The ranks  processes assume when they join a communicator, are local to this 

communicator. TPE is able through a simple mechanism, to translate the local 

ranks of processes participating in communications to their global process identity 

in the MPLCOMMWORLD communicator 10. This join event list is merged with 

the join lists of all the other processes and is used by an animated display which 

shows the processes joining the communicators over time. In addition, TPE creates 

a list of all the communicators in the program with information about the member 

processes and their ranks in the communicator. Apart from the mechanism which 

9 Rank is the "local" identity of a process member of the set of processes that com-

municate within a communicator context. 

"That is the set of all the processes in the program. 
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translates local process ranks in a communicator to their global process identity, 

TPE contains a number of functions which can: 

• locate a communicator with a particular identity, 

• check if a communicator is an intra-communicator or an inter-communicator 11 , 

• check if a process is a member of a particular communicator, 

• find out the rank of a process in a communicator (using this process's global 

identity) and 

• find out the identities of the two intra-communicators which form an inter-

communicator. 

In summary, the TPE analysis functions act as a query mechanism on the created 

data structures and can provide information that can be used by the front end 

of the tool either as data to be presented to the user or as the means to perform 

further filterings and abstractions on performance data. Providing meaningful 

abstractions has been recognised as a key requirement for tuning tools in order 

to help users investigate more effectively causes of poor performance and thus, 

alleviate the problems associated with the cause/effect chasm (Chapter Four). 

The role of TPE is evident in the following section. 

"Communication that takes place within a group of processes, occurs within the 

context of an intra-communicator whereas communication between processes that belong 

to separate process groups occurs within the context of an inter-communicator. 
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7.5 Visualisation 

The design of the visualisation component of the tool was to a large extent driven 

by the requirement for source code reference. This requirement was mainly realised 

by depicting the phase hierarchy of each process in the application program. In 

this hierarchical presentation of events and phases, a mechanism to help the tuner 

identify events of interest is important and addresses a second requirement for 

reducing the amount of data and making the data meaningful. Data navigation 

provides the tuner with a means of determining what data will be subsequently 

visualised by the performance displays. The tuner should he able to determine 

interactively: a region of the trace file (pan over the data); the time grain (zoom 

in or out of the chosen region); which events will be visible (filter out unwanted 

events); and, finally, control the level of abstraction (fold or unfold phases). 

Li le Displays 	 Phase qptiori 

718262 

MPI_Isend (#0) 
	

I HPI-Recv (#0) 	 II] 
ID 
	

IMPI_Isserid (#1) 

(#1) 

MPI_Wait (#0) 

717238 	 774454 

Figure 7-6: Navigation display 

These requirements were realised through a. single user interface mechanism - the 

Navigation display - a form of Gantt chart (see Figure 7-6). The Navigation 



Chapter 7. VISPAT: a. ViSualisation and Performance Analysis TOol 	146 

display determines the context of data visualisation because it has a central role 

in accordance with another design requirement. VISPAT's other displays should 

render data only over the time period and parts of the program that are currently 

visible within it, Figure 7_712•  Apart frorn the Navigation Display the current set 

of VISPAT's displays includes the Communication, the Statistics, the Membership 

Matrix and the Profile displays. 

Coinm/tion 
display 

I Navigation 
display 

II 

Trace File 

Statistics 
display 	" 

: 1 . 

Prole 
display  

\ 

Trace File 

Figure 7-7: The central role of the Navigation display 

7.5.1 Navigation display 

The Navigation display renders the parallel event histories of the processes in the 

program. It is a Gantt chart where the time line is depicted on the horizontal axis 

and the set of processes on the vertical axis. Each process occupies a horizontal 

strip of the display where all the interesting events of that process are depicted 

as they take place over time. The Navigation display provides the context for 

12 This feature has not yet been implemented fully. 
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the visualisation of trace and performance data. When used in combination with 

VISPAT's phase abstraction mechanisms, this context also provides the means 

for achieving source code reference. The Navigation display enables the tuner to 

browse or systematically move around within the space of program phases. Navig-

ation can be performed in both a horizontal fashion, i.e., forwards and backwards 

over time, or in a vertical fashion i.e., up and down the phase hierarchy. Traversing 

the various levels of the phase hierarchy is achieved through unfolding and folding, 

with the additional option of filtering. This not only allows for the transfer of the 

focus of visualisation to a higher or lower level of abstraction, but also for the view 

to be limited to specified phases. The other data visualisation displays can show 

events only for those phases visible on the Navigation display after all filterings 

and abstractions are applied. In this way tuners can relate trace data to specific 

parts of the program. Providing visualisations of meaningful abstractions, allows 

for looking for the effect of poor performance at a higher level of abstraction in-

stead of examining the large space of the program's low level trace data. Apart 

from finding out faster where the program botttleuecks are, filterings assist tuners 

to establish easier the cause of these problems by controlling the amount of detail 

in which performance data is presented. 

The function of the current version of the Navigation display was cooperatively 

designed with users during VISPAT's design meetings and can be categorised into 

two distinct groups: operations on phases and operations on processes. 

The first group consists of the Selection, Unfolding/Folding and Filtering 

mechanisms: 

Selection - when phases are chosen for expansion or filtering. A selection can be 

global or local. Global phase selection ensures that the current instance and 

all subsequent instances of a phase will be selected. Local selection means 

that only the current instance of a phase is selected. The view of selected 

phases can then be either enhanced or removed. Selection is possible through 
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the support mechanism of TPE which provides functions which traverse the 

phase trees and mark a phase as either selected or unselected. An Unselect 

All option makes all the selected phases unselected. 

Unfolding/Folding - where selected phases can be unfolded into their sub-

phases (or sub-phases folded into their parent phases). There are two ways 

of unfolding a phase. Unfolding is either simple or it is specific. In the 

former, a phase can he unfolded into all its sub-phases independently of 

the class to which they belong. In the latter, the parent phase is unfolded 

only into instances of a nominated phase. This phase may be either an 

MPI or a programmer-defined phase. For example, the user may want to 

examine all the MPLSend phases included in a user-defined phase which 

contains other types of MPI function calls as well. By unfolding specifically 

the parent user-defined phase into its MPI_Send children only, a view of 

the program is displayed containing only these MPI_Send phases. In terms 

of TPE operations, this involves making a phase invisible and its children 

visible. If p is a phase which is unfolded, p s sub-phases can be obtained 

by following p s leftmost child pointer and then following a chain of right 

sibling pointers. 

On the other hand, folding a number of phases into their parent phase can 

serve as a means of controlling the amount of information displayed on the 

Navigation display. After a number of phases are examined by the tuner 

they can be folded into their parent phases and removed from the current 

view using the filtering mechanism which is described below. 

Filtering - which realises a more immediate abstraction mechanism by enabling 

the user to keep in the Navigation display only specific phases. For example, 

the user may choose to expand to the lower level of abstraction and then 

have a look at all the instances of an MPI_Send extracting from the current 



Chapter 7. VISPAT: a VlSualisation and Performance Analysis Tool 	149 

view all the phases which are not MPLSends' 3 . In this manner, the trace 

data can be abstracted in two orthogonal directions and the phase hierarchy 

traversed horizontally and vertically. The TPE operation which supports 

this mechanism traverses the phase trees and marks as visible only the phases 

whose type is MPLSend. 

GoTop level. After a number of expansions and filterings the user may want to 

return back to the top level of the phase hierarchy. 

Undo dismisses the result of the last operation. 

The second category of Navigation display operations focuses on process abstrac-

tions. Process abstraction makes user interaction with the tool more flexible. At 

the same time, the scalability of the Navigation display is increased 14 : 

Elimination - whereby those processes whose behaviour is not currently of 

interest can be removed from the screen. 

Re-ordering - whereby processes whose combined behaviour is of interest to 

the tuner can be moved to occupy subsequent lines in the Navigation display. 

One of the requirements identified during design meetings was for a means to 

hide uninteresting periods of time or periods of time where the behaviour of the 

13The filtering and folding/unfolding functionalities address major user requirements 

as the original programming environment for which VISPAT was designed included 

a number of parallel programming libraries which could all co-exist within a single 

program. It was thus necessary to provide ways in which tuners could create views of 

the program corresponding to the different kinds of library functions used. 

' 4 VISPAT targets programs running on clusters of workstations where usually the 

number of processes is small. 
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program has already been analysed. For this, a mechanism for marking periods 

of the execution time was designed 15 . A set of n markers divide time in n+1 

periods. The user can assign names to the markers and characterise the periods 

within them as interesting or uninteresting. An uninterrupted animation of the 

trace files will skip all the periods marked as uninteresting. When the animation is 

stopped (interrupted), the Fast Forward and Rewind buttons move animation 

time forwards and backwards stopping at the nearest markers. 

7.5.2 Communication display 

The Communication display presents an animated graphical representation of the 

communication events in a parallel program. The numerous communication events 

in a parallel program necessitate filterings that reduce the complexity of the com-

munication space. MPI communicators provide the means of separating the com-

munication space since each communicator specifies a communication context for 

a given set of communication operations. Communications that happen within 

one communication context do not interfere with communications in a different 

context. 

Viewing the communications as belonging to separate contexts led to their spatial 

separation by assigning one instance of the communication display to communica-

tions relevant to one communicator. The abstraction achieved has been extended 

to allow for filtering over the processes that participate in the communications 

of a particular communicator. Hence, each time a new instance of the display is 

opened the user is presented with a list of all the processes and a list of all the 

communicators in the program. From these lists, the user is then able to select 

any two sets of processes and communicators which define a (possibly empty) 

subset of communication events to be visualised in the newly created instance. 

15 This mechanism has not yet been implemented. 
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As the animation proceeds, the next communication which satisfies both a pro-

cess set and a communicator gets displayed on the corresponding instance of the 

Communication display. 

The animation of the many instances of the Communication display can be driven 

by the animation of the Navigation display or alternatively the user can step the 

animation. The latter allows the user to browse through the sequence of the 

communication events on all the instances of the Communication display. The 

necessary control interface is provided in a separate window called the communic-

ation browser. Step-by-step browsing is suitable for the close examination of the 

ordering of communication events in time. When the user steps the animation for 

the Communication display instances, the Navigation display is updated as well. 

A list of single line textual descriptions of each communication event (Communic-

ation event description display) is also provided along with every instance of the 

Communication display. The textual description aims at: 

• resolving any ambiguities that might be present in the graphical represent-

ation, 

• providing timing information about the beginning and completion times of 

events and 

• supplying the user with a history list of communication events, so that the 

current state of the display can be related to previous ones. 

Participants in VISPAT's design meetings determined the graphical encoding 

scheme used for point-to-point operations is illustrated in Figure 7-8. The vari-

ous components of the MPI Communication display are shown in Figure 7-9. 

Processes are represented as spheres and communication operations (sends and 

receives) as arrow heads attached to the peripheries of the spheres. For the pur-

pose of visualisation, each point-to-point operation is assumed to have a source 
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Figure 7-8: Graphical encoding of MPI point-to-point communications 

and a destination which map onto spheres on the display. As long as any of the 

two processes corresponding to the source and destination spheres is engaged in 

communication with the other, a line is drawn between the spheres to identify 

them on the display. Additionally, spheres are coloured as either empty or filled 

to indicate whether the corresponding processes are currently being blocked by 

a blocking communication event or not. Collective operations are represented as 

symbolic labels drawn within spheres. For those collective operations which dis-

tinguish a particular process as being the root of the operation, the label in the 

sphere corresponding to the root process is coloured differently. Table 7-1 lists all 

the instrumented collective functions and their corresponding symbolic labels. 

For animation, each instance of the display maintains information about the vari-

ous processes and the set of communication events associated with them. At ini-

tialisation time, each instance obtains a copy of the single communication event 

list supplied by the TPE and which contains all the communication events re-

corded in the trace files. When the user finishes the selection of processes and 

communicators for this instance, TPE functions are called to mark the appropri- 
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Barrier X 

Broadcast B 

Gather C 

Gatherv GV 

AilGather AG 

AIIGatherV AGV 

Scatter S 

ScatterV SV 

A1IToAII AA 

A11ToA1IV AAV 

Reduce R 

AliReduce AR 

ReduceScatter RS 

Scan SC 

Table 7-1: MPI collective operations and corresponding labels 

ate events in the list as selected. Animation skips unselected events and updates 

all the instances in such a way that all appear to be synchronised by a common 

clock whose value at each step equals the time stamp of the most recently displayed 

communication event. 

7.5.3 Membership Matrix Display 

The Membership Matrix display shows process memberships in the communicators 

of the program. Process numbers are displayed along the top of the matrix, 

whereas communicator names are listed vertically on the left hand side. If process j 

is a member of communicator i, then a circle is drawn in position (i,j) of the matrix. 

Within each circle, the rank of the corresponding process in that communicator is 

shown. Figure 7-10 shows an example of the membership matrix display. When 

the display is initialised, the list of all communicators in the program is traversed 
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Figure 7-9: Components of the Communication display 

by the TPE functions in order to obtain all communicators of which each process is 

a member. These  memberships are initially drawn as described above. This is the 

static representation of the memberships. Animation is performed by progressively 

filling in the circles with colour as the animation clock goes past cacti of the join 

events. 

7.5.4 Statistics display 

The Statistics display provides a list of metrics for cacti process. These metrics 

are communication specific quantities. 

The list of metrics supported in the current version include amongst others: 

• the time spent in collective and point to point communications, 

• the number of messages sent and received by each process and 
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Figure 7-10: Membership matrix display 

• the minimum average and maximum times spent by each process on blocking 

communication and calls to MPI_Wait and MPT_Test functions 

The above nietrics may be used in performance analysis to reveal communication 

bottlenecks and can he presented graphically by using a graph plotting tool 16 . The 

graphical representation of the statistical information indicates at a glance which 

processes are engaged in heavy communication. 

7.5.5 Profile display 

The Profile display presents quantitative information about the various execution 

phases in a parallel program. The information provided is mainly concerned with 

the execution time of a particular instance of a phase in the program or the total 

time spent in all instances of a particular phase. In addition to absolute numeric 

values, a bar-graph scheme is also employed to clearly indicate the most time 

' 6 The current version of VISPAT uses Gnuplot. 
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consuming phases and facilitate comparisons between groups of different phases. 

Figure 7-11 shows two instances of the Profile display. 

Figure 7-11: Two instances of the Profile display 

7.6 An example of VISPAT use 

A simple application program can he used to demonstrate some of the interaction 

features of VISPAT. The example program solves a simple predator-prey model. 

The two animal populations modelled are rabbits and foxes which live on a piece 

of land. The animal populations are represented by two two-dimensional arrays 

which are decomposed regularly across an array of processes. The program con-

sists of a number of phases whose hierarchy is depicted in Figure 7-12. A number 

of initial phases - Mesh, Land, Comm - are responsible for defining the process 

topology, the geometric partitioning of the problem and the MPI data types for 

exchanging rows and columns of the arrays among nearest neighbour processes. 
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The next generation of foxes and rabbits are computed according to some pre-

defined parameters of the model during a phase called Evolve. The population of 

one animal species within a stretch of land depends on the population of the other 

animal species in the same stretch of land. 

predator-prey 

	

Mesh 	Land 	Comm 	Loop 

Evolve 	 Pop 	Pop 

MPI Reduce 	MPI_Reduce 

Border 	 B irder 
I I  

ShiftN 	ShiftE 	ShiftN 
	

ShiftE 

MPI_Isend MPI_tsend MPI_Isend MPIIsend 

MPI_Recv MPI_Recv MPI_Recv 	MPI_Recv 

Figure 7-12: Unfolded phase hierarchy of predator-prey program. 

Information about the land boundaries needs to be swapped among nearest neigh-

bour processes. These communications are performed during the phase Border 

which takes place within the phase Evolve. The eight processes, which ill the 

program are arranged in a Cartesian topology, exchange data to eastern, western, 

southern and northern neighbours. After the model is solved in each iteration, a 

phase called Pop summs up the population of the two animals across all processes. 

Initially, the phase tree of the program looks like the one presented in Figure 7-13. 

Figure 7-14 shows the phase hierarchy after phases Mesh, Land and Comm have 

been filtered out. 

	

In Figure 7-15 . 	Loop phase has been unfolded to its sub-phases; the Navigation 

display (Figure 7-16) shows some instances of the user-defined phases Evolve and 

Pop for the first four processes of an eight processes run. When phases Evolve 
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predator-prey 

Mesh 	Land 	Comm 	Loop 

Figure 7-13: Top level phases of predator prey program. 

predator-prey 

Loop 

Figure 7-14: Phases Mesh, Land and Comm have been filtered out. 

predator-prey 

Loop 

Evolve 	 Pop 	Pop 

Figure 7-15: Phase Loop has been expanded to its subphases. 
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and P01) are expanded to their subphases, the phase hierarchy is the one shown 

in Figure 7-12. 
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Figure 7-16: Phase hierarchy of predator-prey program. 

A glance at the Profile display in Figure 7-11 reveals that Evolve and Pop are the 

most expensive phases in the program. Evolve's sub-phase Border (Figure 7-15), 

which exchanges the populations in the borders, and Pop, which calculates the 

total population at the end of each iteration, are called twice, once for each of 

the two kinds of animals. Foxes and rabbits live in the same piece of land, so 

the arrays that hold their populations have the same number of dimensions and 

shapes. It was thought that the phases Border and Pop could be called only once, 

halving the number of communications if both the populations were communicated 

in one message. In this second version, the creation of two new data-types for 

the communication of the data, at the boundaries (ill the first version a number 

of non-contiguous and contiguous data elements were organised in the form of 

columns and rows) was omitted. The data, was packed before the communication 

and unpacked after the communication was completed in order to support the 

combined transfer of the fox and rabbit data. The corresponding phase tree is 

depicted in Figure 7-17. 
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Figure 7-17: Phase hierarchy of predator-prey program (version two) 

7.7 Conclusions 

A prototype tuning tool has been implemented which through the principle of 

hierarchical phases, allows tuners to relate low-level events in trace data to pro-

gram source code and reduces the amount of information they have to consider. 

The latter is achieved through an interface which enables the traversal of the phase 

hierarchy and the creation of different views of the program for which perform-

ance data is displayed. The hierarchical grouping of events in VISPAT reflects 

the hierarchical grouping of the library functions in the program and in this way 

provides the abstractions necessary to limit the focus to the areas of interest whilst 

maintaining a close link to the structure of the source code. Moreover, the per-

formance data query mechanisms of TPE can be used to query the performance 

data and in conjunction with the source code reference that the concept of phases 

provides can assist in eliminating the impact of the cause/effect chasm which has 

been identified as one of the major sources of difficulties in tuning (Chapter Four). 

The current implementation of VISPAT addresses only a small part of the user 
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requirements and the ideas raised during design meetings and informal conversa-

tions with local tuners over the last three years. Further work will have to focus 

on: 

• instrumenting more MPI functions, 

reducing the intrusiveness of the instrumentation, 

• introducing more advanced data structures in order to speed up the trace 

analysis performed by TPE, 

• enriching TPE with other filtering mechanisms, 

• investigating ways in which to improve the scalability of the tool. 

• and making VISPAT extensible by providing a well defined interface to the 

output of the TPE functions in order to drive other displays or tools. 

Further development of VISPAT should he guided by constant feedback from 

tuners. As an example of the benefit that user involvement can incur, an informal 

evaluation of the second version of VISPAT was attempted. Some results of this 

evaluation are presented in Chapter Eight which describes user participation in 

the design process of VISPAT. 



Chapter 8 

The participative design process 

of VISPAT 

User involvement in the design and evolution of computer systems has enjoyed 

growing interest within the human factors and the systems engineering communit-

ies in recent years. The term user-centred design has been used to refer to a number 

of methodologies and practices which aim to make the end-user participate actively 

in the design process of computer systems. Such techniques include: contextualist 

design [70]; joint application design; [29]; participative design [49]; cooperative 

requirements capture [108]; usability engineering; iterative design; and others. 

Among the most widely established techniques, participative design is a term 

attributed to design approaches first employed in a pioneering project in Scand-

inavia, which succeeded in acquiring knowledge about the users' work practices 

by allowing users to participate in the system design process [19,18,146,100,49]. 

There are various definitions of participative design, but they all have in common 

a number of basic principles, found in [42]: 

• The focus is on the users' work. The design of the system aims to im-

prove the quality of the work life of the people who will use the system. This 

goal is shared by users and developers who take part in the design process. 

Technology design is only a secondary objective of the design process. 

162 
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• Design should not be done "for" or "by" users. When design is done 

for the users, knowledge about the users' tasks may be missing from the 

design. On the other hand, design by the users excludes developers from the 

design group; most often, though, users lack the technical skills necessary 

for technology design . Clearly, design with the users implies a framework 

of collaboration and mutual learning, where designers are willing to learn 

about users' work practices and users are willing to become familiar with 

technology. 

• Design is iterative. The design process should be based on tools and 

techniques simulating the system and its use under real work conditions as 

users should be able to evaluate and determine future enhancements 

Local tuners were invited to actively determine the design of \TISPAT. This parti-

cipative approach aimed at acquiring additional knowledge about the tuning task 

and at building a tuning tool, which would address to a large extent tuner require-

ments. The first part of this chapter describes how users participated in VISPAT's 

design. When a working prototype of VISPAT was developed user participation 

was carried on through an evaluation of the tool which in turn guided the design 

of a subsequent version of VISPAT. The second part of the chapter describes how 

VISPAT's evaluation was conducted and presents some of the evaluation results. 

8.1 Participative design of VISPAT 

environment using very limited resources. The volunteered to take part in the 

design meetings and were motivated by a genuine interest in performance analysis 

tools. No group member had any authority over any other member. People were 

not accountable to anybody for the meetings' progress and the project's success. 

They had not been taught any formal design methods. They had three to five years 
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of experience in parallel program development. The initial meetings focused on 

requirements specification while the subsequent ones were concerned with design 

issues. The design meetings occurred within a period of three years with a version 

of the tool being the outcome of each year's meetings. During the initial meetings 

of the first year, the participants started from a very general description of the 

tool and the meetings were a mixture of requirements specification and high-level 

design. During the subsequent years' meetings, the design was altered. The num-

ber of participants ranged in size from three to eight and the meetings typically 

lasted approximately 90 minutes. The participants were sitting around the table 

with minimal tools such as pencils, paper mock-ups of the design and a drawing 

board. The paper mock-ups were necessary for the users to be able to envision 

the design and contribute to it. Paper prototyping fosters an atmosphere of ex-

ploration and experimentation'. Solutions and variations can be tried easily and 

quickly. The design sessions of VISPAT were recorded and transcribed. 

8.1.1 First year meetings' overview 

The design sessions started on February 19 in 1994 and were scheduled to be 

finished by June 26 of the same year, when the tool development would start. 

Figure 8-1 shows when the meetings took place. The initial intention of the 

participants was to have a meeting each week. Instead, the team met almost 

consistently during the initial period of the first seven weeks, but the frequency of 

meetings dropped after the sixth meeting. 

tm one of the many techniques which can help users acquire knowledge about the pro-

posed system. Card games, computer prototypes [112], think-aloud experiments [82], 

working analysis walls [43], [169]. Users are offered an equal opportunity for particip-

ation since they are not intimidated by the use of computer technology. The design 

sessions can be video-recorded, so that design can be implementors. 
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Figure 8-1: Meeting dates in a period of four months. 

The first two meetings were brainstorming sessions, where people shared domain 

knowledge and expressed ideas, random requirements and alternatives. Many of 

these requirements were materialised in the form of paper mock-ups produced 

by the designer and discussed during the next four meetings. This second series 

of meetings elaborated on the requirements and were centred around the paper 

prototypes, which became quickly more and more detailed. A number of new 

functionalities and displays were introduced at the same time and people could 

criticise them. The discussion gradually focused on lower level design issues. The 

seventh meeting attempted to summarise the proposed displays and also tried to 

prioritise them. The eighth meeting had purely a management purpose. The 

activities of the people who would undertake the development of VISPAT were 

outlined and scheduled in time. The ninth meeting concentrated on low level user 

interface issues. 

The first meeting focused almost entirely on identifying the knowledge and require-

ments necessary to lead to the design specification. Almost half of the meeting's 

twenty nine technical issues raised were concerned with articulating new require-

ments and half with new domain knowledge. 

The second meeting overlapped significantly with the first. The discussion focused 

on old and new requirements and domain knowledge. 

During the third meeting, twenty two issues were discussed of which three were 

concerned with meeting and project management issues. Six of the remaining 

issues were about design approaches, which addressed previously mentioned user 

requirements. Four issues were design approaches contributed by the designer. 
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Five issues revisited design approaches proposed previously in the current meet-

ing with the purpose of altering it. Sometimes, a design approach would be partly 

inspired by a previously mentioned user requirement and partly devised by the de-

signer.. Three issues were concerned with identifying a new requirement. During 

the remaining issues, knowledge and requirements were articulated in the context 

of a design approach. These statistics indicate that during the third meeting atten-

tion shifted to design. People were very critical to the design solutions presented 

by the designer. Five issues discussed variations of the current design. In one case, 

the design solution offered by the designer was rejected and substituted by a new 

one proposed by one of the users. 

During the fourth meeting, eight out of twenty one issues were concerned with 

design approaches targeting previously defined requirements. Four issues were 

variations of the current design and were presented by the designer. Participants 

tried to change several design alternatives proposed by the designer and discussed 

about them in the context of knowledge they had about the implementation of the 

PUL and CHIMP libraries. Four issues repeated some old knowledge and require-

ments which had been articulated in the past. This was considered necessary for 

decision making: old knowledge and requirements were used during the process of 

evaluating the proposed each time design solution. 

During the fifth meeting, only one issue introduced and examined a new require-

ment. The rest of the issues introduced design options which attempted to address 

previously expressed requirements. 

During the sixth meeting, nineteen issues were discussed of which one was con-

cerned with project management. Only three issues dealt with identifying new 

requirements or knowledge. The remaining sixteen issues evaluated the design 

solutions presented in the mock-up. During the discussion about an issue, group 

members would occasionally share some knowledge which was relevant to the way 

people go about tuning or to the specifics of the PUL or CHIMP implementation. 

Again, these requirements or knowledge were oriented towards the context of the 
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current each time design approach, in order to prove the appropriateness of the 

design solution in hand. Only once were previous design approaches questioned by 

participants and discussions were minor clarifications when the mockup did not 

successfully convey the right impression. 

The seventh meeting tried to prioritise the displays so as to cut down the number 

of the displays that would have to be implemented. Two issues were concerned 

with altering a previous design implementation and three issues dealt with new 

requirements. 

During the ninth meeting, a large number of issues attempted to introduce some 

minor changes and improvements to previous design approaches. Five issues were 

concerned with new requirements which were not elaborated further since it was 

thought they involved a great deal of implementation effort 
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Figure 8-2: Basic tool functionalities. 

Most of the tool's basic functionalities were determined during the third and fourth 

meetings as is shown in Figure 8-2. The 26th of June was the deadline by which 

the design specification of the tool should have been completed. The line marked 
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as A in Figure 8-2 denotes the middle meeting, whereas the line marked as B 

represents the middle point in the period of four months that the project lasted. 

8.1.2 Communicating the design 

Participants were peers in the academic establishment they worked for. Generally, 

discussions tended not to be detailed due to the limited time people were able to 

spend in the meetings. Occasionally, a conversation would be very short or very 

long according to the spontaneous interest of the interlocutors. Discussions fell into 

a general pattern in that, first, the displays and functionalities of the tool would 

be established, and then the information requirements of these aspects would be 

considered. There were no formal meeting agenda and meeting minutes. Only 

the designer did any preparation before the meetings. The remaining members 

participated in the formulation of design options in an opportunistic way. The 

above described loose cooperation was the context of a number of remarkable 

phenomena such as the richness and the free expression of ideas; communication 

problems, e.g. misunderstandings; compromises; etc. 

8.1.3 The designer's role 

Among the observations of this study was that as users were given more con-

trol in determining the design, the designer assumed a more supportive and less 

dominating role: 

At each meeting the designer would prepare and present to the team paper mock-

ups which were based on previous design results. The paper prototype would 

organise and elaborate the ideas expressed in the previous meetings and 

would introduce some new issues. As it has been shown in [131] potential 

users are unlikely to co-operate in the development if they feel their views 
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have not been taken into account. Providing a paper prototype, which in-

cluded the participants' views, guaranteed that users would continue to par-

ticipate as they felt that their participation had an impact on the system 

design and that progress was made. Also, it provided the framework for 

further discussions. The designer was solely responsible for the preparation 

of the mock-ups. In between two meetings, the designer had to transcribe 

the conversations, distinguish the different viewpoints and integrate them in 

a design solution. Many times the issues were interleaved with each other, 

or they were very implicitly introduced. Often, the discussion about an issue 

would not conclude to a decision, so the designer had to identify within argu-

mentative conversations what were the winning alternatives and incorporate 

them in the mock-ups. 

In cases where there was not a clear winning alternative within the discussion 

of an issue, the designer had to arbitrate and formulate the design solution 

herself. The design solution would be presented to the team at the next 

meeting in order to be approved by the group. 

The designer determined the theme of a large part of the discussions by rais-

ing the largeet number of issues during the nine design sessions. During 

the first two meetings, the designer would raise an issue in order to elicit 

information from the group. Later in the process, the meeting flow was 

determined by the paper mock-ups, which served as the agenda for each 

meeting. An issue raised by the designer would be either about a design 

solution corresponding to the group's requirements of a previous meeting 

or a new design solution devised by the designer. In the former case, the 

designer sought some feedback from the team about the degree to which the 

design addressed the members' requirements. In the latter case, the designer 

attempted to prompt participants to articulate new requirements. 



Chapter 8. The participative design process of VISPAT 	 170 

During the subsequent years of the tool's development, the designer was the only 

person to participate in all design meetings and to supervise the tool's devel-

opment. The designer acquired a deep knowledge of the application domain 

and the design process and this made her a valuable source of information 

for the subsequent development teams. 

8.2 Evaluation of VISPAT 

A major concern for the development of any system is whether it is acceptable 

i.e., whether the system satisfies most user requirements and needs. A model of 

system acceptability is outlined in (Figure 8-3) [1281. In particular, usability is 

concerned with how well users can employ the system's functionality. This can be 

summarised in a number of attributes such as: 

• Learnability: the system should be easy to learn to use. 

• Efficiency: the system should be efficient to use so that once the user has 

learned how to use it, a high level of productivity can be demonstrated. 

• Memorability: casual users should be able to return to the system after some 

period of time without having to learn everything from the beginning. 

• Errors: the system should not allow users to make errors. 

• Satisfaction: the system should be pleasant to use. 

VISPAT was evaluated co-operatively with the help of nine users. The aim of 

VISPAT's usability evaluation was twofold: first, to discover major usability prob-

lems; and second, to give local users - who did not participate in the tool's design 

stage - an opportunity to voice requirements which could be taken into account 
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Figure 8-3: A model of system acceptability 

in subsequent iterations of the design process. The evaluation was particularly 

concerned with guessability and the information needs of users [84]. 

The reason for setting the focus of the evaluation to guessability was that the 

system's main functionalities had already been evaluated through the previous 

year's iterative design process. On the other hand, the observational studies of 

the use of performance tools reported in Chapters Four and Five indicated that 

most tuners do not consult any documentation so it is vital to make VISPAT's 

functionality and operation self-evident. The approach to evaluation employed 

was based upon the Coaching Method [109]. The Coaching Method is a simplified 

thinking aloud study which can be used in discount usability evaluations'. While 

2 Nielsen's discount usability testing is based on the use of scenarios, simplified think-

ing aloud studies and heuristic evaluation [126,127,129]. A scenario combines the limit-

ations of a vertical prototype (the user cannot access all aspects of the system) and of a 

horizontal prototype (the user cannot interact with real data). Nielsen gives a taxonomy 

of the various forms of scenarios and reports on the results of a comparative study of 
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most of the think aloud methods attempt to interfere as little as possible with 

users, the Coaching Method tries to direct the user while using the system and 

the experimenter is allowed to answer any of the user's questions. Coaching is 

aimed at discovering users' information needs in order to make the user interface 

self-explanatory and improve the quality of training and documentation. By giving 

users the information which they need at some point of their interaction with the 

system, they rapidly become expert users and are able to judge the system both 

in terms of its functionality and its usability. 

VISPAT's evaluation was based on a vertical prototype. Some aspects of the 

system could not be used because they had not been implemented yet. The nine 

evaluators who participated in the study had a moderate experience with parallel 

programming and had not used VISPAT before; all but one did not take part 

in VISPAT's design sessions. All had used some message passing programming 

environment before and most of them were already exposed to programming with 

MPI. A toy MPJ program was used in the evaluation sessions apart from two 

cases where the evaluators requested to use their own program with the tool. The 

sessions were videotaped. 

The evaluation revealed a number of problems and requirements which were re 

corded to inform the design of future versions of VISPAT. 

8.2.1 Quantitative and qualitative findings 

The choice of usability measurements for VISPAT was oriented towards one of 

the aims of the evaluation which was to discover how guessable the tool's user 

interface was. For each of the thirteen tasks, it was measured how many evaluators 

the effectiveness of paper versus computer based mockups in heuristic evaluation [127]. 

A collection of fundamental usability heuristics can be found in [128]. 
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performed a task correctly without any help from the experimenter; by using an 

alternative strategy; with some assistance from the experimenter; or were helped 

so much that the task was actually carried out by the experimenter. Additionally, 

for each user interface feature which the evaluators had to use while performing a 

task, it was recorded how, if at all, this feature was used by the evaluators. Table 

8-1 lists the possible ways an evaluator could interact with a user interface feature. 

uc 	used feature correctly 

uw used feature wrongly 

nt 	did not think to use feature at all 

hu 	helped to use feature 

eu 	experimented with using feature 

go 	guessed correctly 

Table 8-1: Ways of interacting with the interface features of the tool. 

ne negative comment 

po positive comment 

un unexpected user action 

re 	requirement 

or 	old requirement 

Table 8-2: Different kinds of utterances. 

Apart from these measurements, the evaluation was concerned with revealing new 

user requirements. Occasionally, requirements would arise after the completion 

of a task, when the evaluators were asked to express their opinion about specific 

aspects of the tool revealed during the task. At the end of the session, the eval-

uators were asked to evaluate the tool in general and this gave them the chance 

to utter any additional general requirements (re) or old requirements which had 

been expressed in the design meetings but not implemented (or). The videotapes 

were examined for unexpected evaluator actions (un) as it was thought that they 

could hint areas where the interface and the functionality could be improved. The 

evaluators' comments, which were positive (po) or negative (ne) about the sys- 



Chapter 8. The participative design process of VISPAT 	 17-1 

tern, were recorded. Table 8-2 lists the coding of the different kinds of utterances 

recorded during the evaluation sessions. Appendix D describes in detail the evalu-

ators' utterances. The following subsections correspond to evaluation results from 

a subset of the tasks users were asked to performed during the evaluation sessions. 

8.2.2 Evaluation tasks 

Task 1 

The evaluators were asked to replay the program execution and guess the function 

of the buttons (Figure 8-4) which control the animation of the Navigation display 

in a way similar to the control panel of a. sound system (hi-fl metaphor). 

VISPAT 
XX 

[ File Displays Phases 	Phase Options 

1024 

o 	 78848 

[t 	1 ii II 	1 flu I fli1 • T flWTI 

go to 	
rewind 	play 	stop 	step 	1. forward 	go to 

beginning 	 end 

Figure 8-4: Animation control buttons 

Two evaluators were not able to guess the function of the go to the beginning 

button while four evaluators failed to guess the meaning of the step button. All 

evaluators were able to make the tool start the animation. Table D-3 shows the 

contributions of the evaluators in terms of negative and positive comments and 

also in terms of additional requirements. It also lists the ways in which evaluators 

interacted with the hi-fl buttons and depicts how many evaluators managed to 

perform Task 1 on their own. 
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There were instances where the tool did not give enough feedback to the evaluators. 

In one case, animation was too slow for evaluator 4 to realise that animation time 

was indeed advancing. For a while, evaluator 4 could see nothing on the screen 

because of the very small initial value set to the time unit field. He said: "I am 

surprised. I was expecting things to happen. Instead, I have an empty display." 

Evaluator 4 was not helped by the continuously changing time indications in the 

bottom left and right corners of the Navigation display. Instead, he asked the 

experimenter how he could understand that animation proceeded slowly. The slow 

feedback of the tool was the reason that two evaluators commented on the difficulty 

to handle the display's horizontal scrollbar. Upon each movement of the scroilbar, 

the tool re-calculated the new animation time and drew the corresponding phases 

in the Navigation display. Re-calculating and drawing took considerable time while 

the evaluators perceived the delay as an inefficiency of the system and retried to 

move the scrollbar which increased further the delay. 

Half of the evaluator requirements during this task were already implemented or 

had been identified during the design of VISPAT. 

Task 3 

Evaluators were asked to replay the execution at the second level of expansion. 

As is shown in Table D-4, only one evaluator needed assistance in order to select 

the unfold option from the Phases menu. After the unfold option was selected, 

a message box appeared asking: "There are no selected phases, do you wish to 

unfold them all?". The evaluators had at this point two options: either to press 

OK and to proceed with the operation or to press CANCEL. In three cases, this 

message caused some confusion. Evaluator 6 was put off for a while before pressing 

OK and evaluator 2 pressed CANCEL and required to know how he could select 

all the phases at once. Evaluator 8 cancelled the operation and tried to select 
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some phases first. As it was expressed the message implied that some irreversible 

action may happen when the user unfolds all the phases 

Six evaluators were confused when the phase expansion resulted in an empty 

navigation display as most of the MPT phases took place only after a number of 

time frames. For example, evaluator 9 said: "I lost the phases". Evaluator 6 

thought that the animation had finished and that the program execution could be 

replayed only once. Evaluator 2 expressed his satisfaction when he realised which 

phases in the program were responsible for the large execution time 3 . Evaluator 

4 said that he liked the filtering mechanism with which only selected phases can 

be unfolded. 

Among the most important requirements expressed during this task were: the 

requirement to see the source code; the requirement that colour should be used to 

identify those phases whose duration is too small to allow for their names to be 

displayed; and the requirement to he able to navigate to arbitrary points in the 

animation time. 

Task 7 

In order to perform task 7, the evaluators had to make the Navigation display 

depict all the user defined phases in the application program. The toy program did 

not contain any user defined phases, so when the evaluators invoked the filtering 

mechanism to perform the task, the Navigation display did not present any user 

defined phases. Five evaluators were confused by this (Table D--5). Evaluator 7 

thought that the tool was still processing the user event and found the response 

of the tool too slow. Evaluators 7 and 9 did not like having an empty frame on 

the display. Evaluator 6 considered going one level up in order to find the user 

'Evaluator 2 was using his own program during the evaluation. 
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defined phases. One of the two evaluators, who used their own programs, knew 

that his program did not contain any user defined phases, so the response of the 

tool did not surprise him. Evaluator 3 thought that the filter operation, which 

he invoked, had actually the opposite semantics from what he initially thought 

it had, so instead of filtering in the user defined phases, he thought that it filter 

them out. For a while, evaluator 2 thought that filter meant filter out. 

Although users' knowledge of their own programs may seem to alleviate the need 

for a message in this case, the structure of a typical parallel program may contain 

a complex hierarchy of phases for which it is vital to provide some feedback on the 

user navigation actions. Feedback on navigation actions becomes more important 

in cases where parallel programs are tuned by experts who are not the programs' 

authors. 

Task 9 

In order to perform task 9, the evaluators had to set the animation time to zero 

and use the "Next" button on the Communication browser window in order to 

make the Communication display depict the third communication event (Table 

D-6). Finally, the evaluators had to invoke the Communication event description 

display and see the start time of the third communication event. 

The Communication event description display which accompanies the Commu-

nication display lists the communication events as they happen over time. Eight 

evaluators found very confusing the fact that the event list scrolled downwards 

instead of upwards and were not able to complete the task without the help of 

the experimenter. Four evaluators made critical remarks about the order of the 

text presentation. The decision to adopt a downwards scrolling was influenced by 

the way the communication events are handled in order to construct the system's 

data structures. It was proved, though, that downwards scrolling contrasted with 

the traditional way humans read (from top to bottom). One evaluator noticed 
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that having known which way the list goes it was easier for him to use it. This is 

because the most current and subsequently the most important event (from the 

tuner's point of view) is depicted at the top of the display. This design decision 

may have an increased guessability and learnability overhead but it can be more 

efficiently used once the user learns how to use it. Three evaluators explicitly said 

that they liked the Communication event description display. One evaluator liked 

the mechanism of filtering communications according to which communication 

context they belong. 

8.3 Summary and conclusions 

Local users have actively determined the design of VISPAT through a series of 

design meetings which occured within a period of three years. Users were highly 

interested in critiquing constructively and reformulating when necessary the basic 

design options offered by the designer. Very early in the meetings of the first year 

the design was determined and after that participants did not examine any new 

major requirement. This can be attributed to the limited resources available to 

the project. During the meetings of the subsequent years the design changed to 

address issues associated with the change in the programming environment. 

Whereas the series of participative design meetings constituted a formative evalu-

ation of VISPAT, VISPAT was also evaluated summatively with the help of nine 

evaluators. The evaluation revealed many usability errors which violated a number 

of usability heuristics such as: providing adequate feedback; natural and simple 

dialogue design; good error messages; and speaking the users' language. 

A large number of requirements (163/92) have been expressed during the eval- 

nation. More than half of these requirements were "old" requirements, that is 

they had been considered at some time during the design of the tool. Most of the 



Chapter 8. The participative design process of VISPAT 	 179 

remaining requirements represent valuable contributions which could be realised 

in future versions of the tool. 

The ratio of positive versus critical comments was 98/106. This along with the 

large number of requirements suggest that there is still a lot of work to be done 

to improve the usability of the tool. 

8.3.1 Future plans for VISPAT 

VISPAT is registered software with Fujitsu and has been installed on the Fujitsu 

AP1000 system in Kawasaki, Japan. 

Two years ago, VISPAT was used by researchers at ANU (Canberra) to demon-

strate their MPI implementation for Fujitsu AP systems at a Fujitsu workshop 

hosted by them. 

The software remains installed for use on the EPCC cluster. VISPAT will most 

probably he included in a new release of CHIMP/MPI scheduled for this year 

(1997). 

8.3.2 Summary 

This chapter demonstrated how the principles of user-centred design were applied 

in the case of designing a parallel program performance analysis tool. User par-

ticipation throughout the whole development cycle of VISPAT created a large 

repository of ideas and tuner requirements. It is hoped that these requirements 

will be addressed either in future versions of VISPAT or will be taken into account 

by designers of tuning tools similar to VISPAT. 



Chapter 9 

The Tuner's Workbench 

The results from the observational study of tuning (Chapters Five and Six) can 

be used to drive a preliminary specification of a tuning environment, the Tuner's 

WorkBench (TWB), that could address support for tuning in the large. The 

requirements for such a system fall into a number of categories: 

Ease of use. Ethnographic studies of configuration management and document-

ation practices report that documentation processes if regimentally adhered 

to are likely to slow down work processes, threaten people's control over their 

work practices and expose them more openly to accountability [38]. Other 

studies report that pen and paper technology are preferred during critical 

projects over electronic groupware systems for software development [170]. 

It is, therefore, important that the Tuner's Workbench should be easy to use 

and not overly constrain the ways in which tuners document the task. In 

this way, documentation will be less likely to be considered as an additional 

overhead. The system should fit into tuners' normal working practices and 

should not impose undue constraints. Documentation should be contributed 

and retrieved easily and quickly. 

180 
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As tuning is performed interleaved with parallel program development it is 

necessary that the Tuner's Workbench' shall not be simply another level of 

software and will not introduce another degree of complexity to the process 

of producing parallel software. Rather, TWB should be driven by the soft-

ware development process and requirements. It should be usable in a range 

of different development contexts and parallel programs from the complex, 

large scientific codes which are developed by a group of people, to the toy 

parallel codes of the novice programmer. 

Policy-free. TWB should be "policy-free" in two important ways: it should not 

force the use of specific tuning tools or impose any particular strategy for per-

formance analysis upon the tuner. Rather, it should be intended to provide 

an environment in which the tuner's choice of tools can be used more effect-

ively in support of whatever strategy the tuner feels is most appropriate to 

the particular problem. 

Support distinct aspects of tuning in the large. TWB should support the 

management of tuning by-products, the assessment of tuning progress and 

the sharing of knowledge within a cooperative development environment. 

Some of the proposed functionalities of TWB can be found in many Configur-

ation Management (CM) tools and team programming environments [53,98,139, 

149. Use of CM tools is not yet widespread and most users employ local mech-

anisms provided with the operating system because of their ease of use and the 

low software cost [37,46]. These mechanisms are also appealing because program-

mers do not have to change to more elaborate work practices. Most CM tools, 

however, have general functionalities and do not address tuning in any particu-

lar way. A notable exception is the configuration management tool described in 

'Herein after referred to as TWB. 
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[31]. Programs whose performance is being tuned may have components which 

differ slightly, thus forming a family of instances for the specific component of 

the program. Instead of maintaining several instances of the program, each cor-

responding to the different component, this system maintains one instance of the 

program containing links to the component family. An important contribution 

of that work is that it addresses the requirement for tracking the changes of the 

operating system and the compiler, which is a major issue in parallel program 

development. However, the attempt to address tuning is incomplete. The gran-

ularity of tuning changes may be even smaller than that of the procedural level. 

Two program versions may differ from as little as in the ordering of the indices of 

a number of loops or as much as in re-organising whole parts of the code. Also, 

the implications of collaborative tuning are not examined. For example, in large 

programming teams, a mechanism is needed to check whether the development 

efforts of group members do not worsen the performance of the main code when 

their individual modules are integrated with the main version. Moreover, it does 

not cater for recording any tuning by-products or the rationale of design decisions. 

The repetitive nature of tuning is taken into account in [24] by adopting a software 

engineering approach for trace file and performance metrics management. This 

work does not consider, however, tuners' work practices, nor does it examine how 

such a system should fit into the software development process. In contrast, the 

requirements for TWB are based upon the results of the observational studies of 

tuning described in Chapters Five and Six. 

9.1 Preliminary specification of TWB 

According to the results of the investigation of tuning in Chapters Five and Six, 

TWB should address tuning management and tuning knowledge sharing (Figure 

9-1) 
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Tuning management 

Tuning record creation 	Assessing tuning 

and management 	 progress 

iment database 

Sharing tuning knowledge 

ttt 
Figure 9-1: Components of TWB 

An experiment, the main entity in the experiment database, is a record that rep-

resents a single unit tuning cycle. It includes a description of: why it was done 

(the hypothesis); what was done (the set of parameter-value pairs); and the res-

ults (trace data and set of performance metric-value pairs). Thus, the record of 

an experiment conveys both the rationale for a code design decision and the im-

pact the decision has on program performance. According to the investigation of 

tuning in Chapter Four, the two major difficulties associated with the task are 

the difficulty to find the cause of a performance problem (cause/effect chasm) and 

the difficulty to know a lot of details about how the machine operates (faulty as-

sumption/model). An experiment record can contain information about the cause 

of a specific program behaviour and its effect. At the same time, it can demon-

strate the relationships among performance determining parameters, helping the 

tuner to establish correct models of the program behaviour on a particular parallel 

machine. 

The implementation of TWB could be based upon existing hypertext, and/or 

database technologies. The experiment record should contain information in a 

variety of formats, including textual (e.g. lists of variable-value pairs representing 
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parameters and performance metrics), static graphical  (e.g. snapshots of displays 

generated by trace data visualisation tools) and dynamic graphical (e.g. animated 

displays from trace visualisation tools) 

As program optimisation effort continues a number of experiments can be gener-

ated which should be stored to provide a record of the program tuning process. 

The structure of the tuning experiment repository could be hierarchical. Exper-

iment records could be simply nodes (documents) within a larger hypertext doc-

ument that would constitute the complete database. A sequence of experiment 

documents should define the path followed to tune a program and they could he 

organised as a hierarchical tree structure with branches that would correspond to 

experiments that would share a common hypothesis. For any hypothesis, the most 

recent experiment could be located at the leaf of the branch corresponding to this 

hypothesis. 

The experiment documents which can result from documenting tuning should be 

handled to cater for tuning tasks documented in Chapters Five and Six (see Figure 

9-2). 

Tuning 	I 	I 	Assess 
experiment 	 tuning 	

Sharing tuning 

management 	 progress 	 knowledge 

I Review of Best version 
I 	tuning 	 I 

	

experiments 	 retrieval 

Figure 9-2: Tuning in the large 
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9.1.1 Tuning record creation and management 

TWB's functionality should provide for the creation and management of tuning 

experiment records. In order to meet the requirement for ease of use, tuning record 

creation should be integrated with the process of program development and tuning 

by providing a common interface (through the experiment document) with tools 

for program development, performance assessment and tuning record creation and 

management. The "policy free" requirement should be met by the ability to use 

any tools which can support these activities (Figure 9-3). 

Tasks 

Tuning record creation and management 

Program dcvclopmcn 

Record unam 
Run 	 Assess 	

lumine. 

 ir. ban 

by produets Edit 

CaQ  zCompile, 

Interface 	 Tuning experiment document 

C 	C 
Editors 	 Version control loots 

Tools 	 compilers 	 Vismalisalion tools 	 or Database Syslema Run-time system 

Figure 9-3: Tuning record creation and management 

Figure 94 sketches the practices associated with a unit tuning cycle  as they were 

identified by the investigation described in Chapter Five. After editing, compiling 

and running the code, the tuner may assess its performance based on timing 

results provided by a performance analysis tool or by using timer functions at 

appropriate points in the program execution. The program performance may be 

compared to previous results. After assessing the performance there may be a 

2 The notation employed in this figure is borrowed from Hierarchical Task Analysis 

[4]. 
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number of possibilities as to what the tuner's next action may be. For instance, 

the scalability of the performance determining changes may be tried by running 

the code on different sets of processors. The tuner may need to describe important 

aspects of the particular run, the values of performance determining parameters 

and the execution times of the program. If the performance is still not what 

the tuner expected a few more changes may be attempted. In case the required 

changes are too drastic the tuner may decide to work with a separate version 

of the source code files. Alternatively, the tuner may decide to investigate the 

relations amongst performance determining parameters by a few more runs which 

may differ by one or more factors such as the structure of the input data. 

The scenario described above should be addressed by functionality attached to the 

experiment document: - 

Edit - Compile - Run cycle. 

Program development tools could be accessed through the experiment doc-

ument. 

Performance assessment should be facilitated by calling the appropriate perform-

ance tuning tool. 

Evidence of program performance could be gathered by capturing images 

from the performance analysis tool and attaching them to the experiment 

document. This evidence could later be used in report generation or could 

be communicated to colleagues. 

Textual information corresponding to hypothesis information should be held 

along with information representing an account of results which convey the 

performance of the program. Results from runs on different sets of processors 

could be added to the document and depicted graphically at a later point in 

time. The documentation functionality should be designed to correspond as 

much as possible to tuners' own documentation practices. 
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Tuning experiment creation. 

The tuner should have the flexibility to determine the granularity of the tun-

ing experiment. For example, a tuning experiment may differ from another 

by as little as the number of processors on which the program has been run 

or as much as the program's numerical algorithm. 

The source files and tuning by-products (textual and graphical information) 

should be registered with every instance of a performance experiment. Ver-

sion control could be supported by providing access to a suitable version 

control tool e.g., RCS [163,164]. In the process of creating a new experiment 

document the tuner could specify an existing experiment on which the new 

experiment could be based. The system could extract all the files associated 

with the particular instance of the experiment; the tuner could then continue 

the program development and finally create a new experiment record. 

Multi-people program development should be facilitated. 

Tuning experiments should be grouped into projects and operations should 

be supported to create and access documented tuning projects. The tool 

should support the documentation and communication needs of groups of 

people involved in parallel program development. 

9.1.2 Assessing tuning progress 

Operations to facilitate tuning progress assessment should allow for quickly brows-

ing through the experiments. Within a hierarchical structure of experiment doc-

uments, each experiment could be linked to its predecessor and successor nodes 

and these could be immediately accessed by the activation of the appropriate links. 

The most successful experiment(s) could be retrieved. Searches could be narrowed 

by specifying one or more performance metrics and/or parameters. 
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Alternatively, the experiment structure could be directly queried. Users could 

retrieve the experiment having the lowest or highest parameter or metric value of 

interest; or they could retrieve a listing of values of a certain parameter or metric 

over a range of tuning experiment records. 

9.1.3 Sharing tuning knowledge 

Chapter Five and Six demonstrate that tuners' documentation efforts are motiv-

ated by the need to communicate ideas and design decisions in a collaborative 

work context. TWB should attempt to provide tuning documentation and train-

ing for less experienced tuners and a framework within which tuners can share 

their tuning knowledge and experiences. 

A case history document is an extension of the concept of the tuning experiment 

document in that it represents a prototypical and interesting tuning problem made 

available for other people to see. These problems may not need complete applic-

ation programs to be demonstrated but could instead be incorporated in small 

experimental codes. The technique to test alternative solutions in small pieces of 

code has already been identified in Chapter Five [Bel53]. The case history repos-

itory should be organised and accessed by the types of performance problems and 

the types of parallel machines, programming environments and tools used. Once 

a case history document has been retrieved, the tuning project could be reviewed 

by examining its trace files with the appropriate tools. 

The availability of tuning knowledge of this type can be extremely useful, not only 

to others within a particular organisation, but to the parallel software development 

community at large. In this way, tuners could benefit from others' experience and 

save time and effort when faced with a similar tuning problem. The investigation 

of tuning (Chapter Six) has already shown the advantages of an on-line tuning 

repository. It is expected that such a system could improve the effectiveness of 

informal knowledge dissemination and electronic mail technical assistance. As the 
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investigation of tuning in the small has shown, tuning knowledge is often organised 

in the form of heuristics or cliches. A repository of such cliches based on a set of 

case histories could help novice tuners who lack tuning strategies. Another positive 

outcome of such an organisation of information relevant to tuning problems is 

that the impact of cause/effect chasm identified in Chapter Four can be reduced 

if tuners record cases of exceptional tuning problems for other tuners to consult. 

Similar practices are already commonplace. For example, tuners routinely use 

Internet news bulletin boards to seek out advice from others who have solved 

similar problems. 

9.2 Conclusions and future work 

A specification of a tuning environment, TWB, has been proposed which demon-

strates how some of the considerations raised by the observational study of tuning 

could be addressed. As was identified in Chapter Four, one of the major difficulties 

in tuning stems from tuners performing tuning without having a correct model of 

the system software or hardware parameters which can affect program perform-

ance (faulty assumption/model). As a result, experimentation is employed to try 

to establish such models and relations among performance determining paramet-

ers. The repetitive nature of this experimentation has led to a number of problems 

which were documented in Chapters Five and Six e.g., program versions prolif-

erate and become difficult to manage; tuners have to keep track of the changes 

and tuning progress; and documentation and communication needs are increased 

when tuning is performed in collaboration with others e.g., results and program 

changes have to be communicated to colleagues. TWB should address some of the 

above mentioned problems by providing support for: 

• managing the large number of program versions that the repetition of tuning 

produces, 
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• associating each unit tuning cycle with the concept of a tuning experiment 

and accompanying it with documentation of the experiment hypothesis and 

result i.e., the rationale for the performance determining changes and their 

outcome, 

• automating the experimentation process and correlating its results, 

• accessing information about the design process of the parallel code e.g., the 

reasons that lead to design decisions, 

• sharing this information within group-based development projects and 

• sharing tuning knowledge and experiences resulting from many projects with 

other people within and across organisations. 

Two issues were regarded as particularly important in the specification of TWB. 

First, the system should not impede tuners' work practices. The requirement for 

such a tool already exists as parallel programmers spend considerable effort and 

time in devising techniques to document and manage the tuning process. The 

system should facilitate some of the documentation and experimentation prac-

tices described by the investigation of tuning in Chapters Five and Six. Second, 

the system should be designed to be independent of implementation details. The 

storage of experiments could be implemented to be file system dependent. Altern-

atively, any Database Management System or any hypertext tool could be used to 

store and organise experiment information. In the same way, any version control 

software could be used to support management of tuning by-products. Finally, 

tuners should be able to choose from a number of available visualisation tools to 

use with their programs. In this way, TWB can integrate functionality for ad-

dressing both tuning in the small and tuning in the large: it can include a number 

of performance visualisation tools which tuners can use to bridge the cause and 

effect of poor performance (cause/effect chasm); it can provide support for tuning 
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documentation and management, thus helping tuners to establish correct models 

of relations between performance determining parameters through efficient, con-

trolled and well documented experimentation; and finally, it can assist with tuning 

knowledge dissemination. 

The implementation of TWB should adopt the tool development model and pro-

cesses proposed in Chapter Four. Prospective users should be involved in de-

termining the design of the tool. Further observation of tuners' practices should 

attempt to identify patterns of collaboration in managing and documenting tun-

ing in the context of large programming teams [150]. The technology to support 

collaborative processes already exists. A number of systems have been proposed 

which address issues such as the different kind of collaborations that may exist 

within software development projects, for example, collaboration may be loose or 

tight, within the group and/or among different groups [76,148]. Capturing the 

rationale for design decisions has been investigated by many researchers [30,33,34, 

111,106,110]. In [106], a system was described for providing rationale for main-

tenance by implementing a hierarchical annotation mechanism for managing the 

changes to a piece of code of varying granularity. In [33,34], a hypertext tool 

was proposed to capture design policies and discussions. Such a method is useful 

as a means to capture organisational memory, but the system proposed was not 

actually integrated with the actual artifacts. Richer and more flexible protocols 

for capturing software development processes were presented in [10,87]. A closer 

study of these environments combined with input from more observational studies 

of tuning can be used as the basis for developing a tool to document the design 

process along with the design artifact. 

A possible extension of the concept of sharing one's tuning experiences with others 

is the idea of using tuning knowledge to provide technical assistance to tuners. The 

findings of the observation of the user support service, described in Chapter Six, 

showed that a large number of user questions are relevant to the same issues to 

the degree that performance experts could reuse some of the answers. Tuning 
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knowledge can be organised in a hierarchical way according to the categories of 

problems, machines, languages and others 3 . A very efficient search mechanism 

can be provided which can direct users to the advice suitable for their problem. 

A successful example of Web-based technical assistance can be found in [83,?]. 

Certainly, there is need to examine how an environment such as TWB could be 

used by tuners. Studies have shown that when new technology is implemented 

and adopted without a concurrent examination of how processes and coordination 

might change and evolve, it has little impact on enhancing the productivity of 

the users [28]. TWB's design process should be iterative consisting of cycles of 

evaluation and design phases. 

3Frequently Asked Questions (FAQs) of various news bulletin boards are another 

example of knowledge organisation. 



Chapter 10 

Conclusions 

Despite the large number of tools described in the literature, the results of tool 

use are disappointing. Users complain that tuning tools are hard to learn and 

use and do not provide the information they really need. These problems can be 

attributed to the fact that tuning tool design is often not informed about tuners 

and their tasks. This work has conducted an investigation about tuners, their 

tasks and their requirements of the tools they use currently. 

In the absence of studies of parallel programmers, an initial investigation of tuning 

resulted in the adoption of a framework for further studying how tuning is per-

formed. The framework distinguished two main aspects of the tuning task which 

were studied further. The first aspect of tuning is relevant to cognitive issues and 

the impact that available software and hardware tools have on the tuning process 

(tuning in the small). The major difficulties that tuners face are pertinent to 

having: 

• to know a lot about the operation of the underlying software and hardware 

"faulty assumption /model"). 

In tuning, a lot of knowledge about the specifics of the underlying machine 

is required and the programmer has to know how a large number of low 

level entities operate. There are many models of parallel programming and 

194 
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they often involve a large number of inter-related performance determining 

parameters. 

• to eliminate performance bottlenecks when the symptoms of the problems 

are far away in context from what caused them ("cause/effect chasm"). 

It is very difficult for tuners to try to find in large volumes of performance 

data and tuning information where performance is degraded in the program 

and establish the reasons for performance bottlenecks. 

• and to use immature system software or not fully configured machines ("in-

adequate tools" and "change") 

Tuning is often performed when hardware and system software are still un- 

stable. Porting the program to a new parallel machine is very common and 

this introduces many more degrees of freedom in the search for bottlenecks. 

Tuners informed this study with their requirements of tuning tools. These require-

ments were incorporated in a model for tuning tool development. The model is 

concerned with assisting tuners with problems: 

• that stem from the cause/effect chasm 

Tools should provide reliable mechanisms to capture program behaviour and 

meaningful visualisations of aspects of the program behaviour which can be 

related to the source code. Abstraction and filtering mechanisms should be 

adopted to enable tuners to control the level of detail in the search space 

so as to locate easily the manifestation and the reason for a performance 

problem. 

• that arise from the faulty assumption/model 

The role of tuning tools should shift from merely presenting performance 

data to performing some of the diagnosis on behalf of the tuner and demon- 

strating the relation of inter-related performance determining parameters. 



Chapter 10. Conclusions 
	

196 

The tuning tool should provide training in the form of documentation or in 

the form of exemplar codes whose behaviour can demonstrate the factors 

that affect program behaviour. 

Apart from the model, processes through which tool development should take place 

were proposed. User participation in tool design is the fundamental principle 

on which tool development should be based. User participation can occur at 

two levels: first, it can ensure that tools can assist both the experienced and 

the inexperienced tuners with their tasks; and second, it can provide tool design 

with information to support the shift of role from presenting performance data to 

providing performance diagnosis and tuning training. 

VISPAT was designed with the help of local tuners to address the issues revealed 

by the investigation of tuning in the small. It attempts to reduce the impact 

of the cause/effect chasm by allowing tuners to relate performance data to the 

source code and to reduce the volume of information by viewing the application 

program as a hierarchy of phases. The design of VISPAT demonstrated the ad-

vantages of user participation in tool design for generating a repository of ideas 

and requirements for a tool to support tuning in the small. 

Performing tuning without a correct model of the performance determining para-

meters (faulty assumption/model) increases the experimentation needed to tune 

program performance. The second aspect of tuning revealed by this investigation 

is relevant to issues which arise from the repetitive nature of tuning (tuning in the 

large) such as the need to document and manage tuning by-products and tuning 

process and outcome (tuning rationale) often in a context of collaboration with 

others. Further observational studies of tuning have shown that currently tuning 

management is done in an ad-hoc way that can benefit from a system which can 

assist tuners in organising the tuning process. Ethnographic techniques were used 

for an investigation of tuners' work practices and were analysed to see the implica-

tions for the design of tuning management systems. A preliminary specification of 
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a system (The Tuner's Workbench (TWB)) was proposed to support documenting 

the design process of a parallel code by allowing tuners to record the reasons for 

any design decisions and their outcome. By supporting integration with a number 

of performance visualisation tools, TWB could address both tuning in the small 

and tuning in the large: 

• it could include a number of performance visualisation tools which tuners 

could use to assist them with bridging the cause/effect chasm and with the 

other sources of difficulties in tuning. 

• it could provide support for tuning documentation and management. 

Efficient, controlled and well documented experimentation can help tuners to 

establish faster correct models of relations between performance determining 

parameters and use this knowledge in future tuning projects or share it 

within the context of the organisation where parallel program development 

occurs. 

• and it could assist with tuning knowledge dissemination. 

The investigation of tuning has shown that tuning knowledge is often organ-

ised in the form of heuristics or cliches. A repository of such cliches based 

on a set of case histories could help novice tuners who lack tuning strategies 

by providing them with examples of correct models of how system software 

and hardware operate and of the relations between performance determining 

parameters. In this way, TWB could become effectively a tuning training 

tool. 

One of the most important requirements for such a tool is not to interfere with 

the working practices of those who will use it, in other words to be cost-effective 

where cost is taken to mean the effort the user will have to put in learning and 

using the tool. What is considered to be ad-hoc documentation practices may be 
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a very acceptable way of working for many tuners given the time constraints and 

the difficulty of the task in hand. As Anderson says in [3], "Brokenness is in the 

eye of the beholder. If you cannot be sure it is broken think twice before setting 

out to mend it." For this reason, TWB should be designed to be integrated 

with any tuning tool and without imposing any tuning strategy. At the same 

time, it should be attempted to tie the system's functionalities with the tuner's 

programming environment and work practices. 

10.1 Future work 

It is believed that this work has shed some light on the barriers which parallel 

programmers face in their effort to tune their programs successfully and it is 

hoped that the observations made will spur more systematic investigation: 

• A number of programming models can be selected in order to study differ-

ences and similarities in the manifestation of difficulties stemming from the 

cause/effect chasm and the faulty assumption /model problems. 

• Ethnographic techniques could be employed to study more closely the impact 

of "change" on cause/effect problems. 

• Expert tuners could be observed while performing their tasks and changes 

in the skills and tuning knowledge of novice tuners could be analysed over 

time. The findings of this investigation could be used to create user models 

which in turn could be used to drive the design of tuning tools. 

• A more systematic investigation could also refine the model of tuning in the 

large and expand it to cater especially for requirements that arise in large 

multi-people development projects. Such an investigation would have to use 
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ethnographic techniques and deal closely with a number of organisations 

where parallel software development and tuning are performed. 

• User participation and a refined model of tuning in the large could be used 

to drive the design of TWB. 

• TWB could be evaluated by local and non-local tuners and tuning case 

histories could be contributed. 

The storage and access of exceptional tuning case histories could be made 

available for tuners to use as a repository of tuning knowledge and expertise. 

Apart from helping tuners to eliminate the impact of the cause/effect chasm 

such example cases could be studied further to reveal more aspects of tuning 

in the small. 



Appendix A 

Tuning in the small 

Appendix A contains a number of excerpts of discussions with parallel program de-

velopers. Parts of some of these excerpts are included in Chapter Four to support 

the arguments presented there. The selection of these excerpts has been based on 

their ability to convey briefly and effectively practices which are most representat-

ive of the ways parallel program developers work. Other excerpts included in this 

appendix do not appear in the corresponding chapter. They repeat and support 

the information given in the representative excerpts and are included here for the 

benefit of the reader in case they can be used to drive further research on parallel 

program development. 

A.1 Difficulties of tuning 

[Ae41] I suppose the number of variables. It is difficult to conduct con-
trolled experiments. Even things like the compiler version make a difference 

having to know machine specifics, how a T31) is. 	Informant 45 

Finding algorithmic methods to overcome causes of poor performance 
such as load balancing and data distribution. 	 Informant 9 

The domino effect of changes of parameters with respect to perform-
ance is quite challenging. 

Informant 5 
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It is difficult to try to keep changes clean and portable. In my pro-
gram, I assumed that the shared variables were implemented by replication. 
So, I assumed read operations were fast and write operations involved one 
or more messages. As an aside, since the network used was an ethernet, 
I also wanted to have different messages sent at different times to avoid 
congestion. So, I tried to keep the number of write operations as small as 
possible. On a point to point network or without replication, this should 
be implemented differently. 	 Informant 6 

Tuning is fairly easy with the proper tools. Another hard part is 
figuring out exactly what gives the performance improvement when some 
optimisations are performed. For example, when you rearrange basic blocks 
at compile time based on some heuristics, performance improvement comes 
from better cache locality (reduce cache misses) and from better branch 
prediction. The hard part is figuring out exactly what percentage of im-
provement came from which change. Knowing where to fix and knowing the 
solution for best performance are two separate issues. Knowing the solution 
comes from experience and it can take one to many tunings. Informant 69 

. .1 find difficult the question of tuning the program from a mac-
roscopic or microscopic perspective. That is, it is difficult for me to know 
whether a global big change (algorithm restructuring) might be better than 
making many minor changes. 	 Informant 41 

The difficulty is to understand the way of thinking of the programmer 
who wrote the program. 	 informant 7 

The interactions of changes throughout a program can be a problem. 
Particularly, if you want to work on vector codes. 	 Informant 11 

Usually, we have enough time for tuning, but this time the hardware 
became available very late, so the system was developed in one hardware 
and will be used with another. 	 Informant 8 

[Ae55] Parallel program optimisation is difficult; even with apprentice 
you don't know where to look. Getting to optimise the serial program 
can be hard enough because you have to know the things about the RISC 
architecture that you don't want to know. I know them by reading the 
BYTE and listening to colleagues. If your basis is an unoptimised program, 
then your measurements of speedup will not be taken seriously by colleagues. 

Informant 44 

[Ae54] Tuning itself is kind of game, finding strategy, slowly progressing 
inside a foreign wild programming world. More you know about the writer, 
faster you will find your way. Indeed, good tools are the weapons you need 
to survive. Informant 7 
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A.2 Cause/effect chasm 

[Ae25] In the Maspar, you have two types of communication, one of them 
is a global router and the other one is a . . . next neighbour communication; 
because the processors are so small, this neighbour communication is nearly 
as fast as a local memory access. But, on the other hand, if you go too far 
by that neighbour communication, you worsen the performance and also 
there's a chance that too many processors try to send a message through 
the same route . . .so you have to know when to use the global router and 
when to do next neighbour communication. There are a lot of degrees of 
freedom, sometimes you change the algorithm in order to get performance 
and you loose somewhere else. Informant 42 

[Ae108] I used it initially, to check that B's perception of the problem was 
actually correct. That we could see that there was a load balancing problem. 
I mean, Apprentice may not be the ideal tool to investigate load balancing 
because it sums up across all nodes. But you can see that a proportional 
large amount of time is spent waiting to receive messages. That is basically 
what happened. You could see that overall, fifty% of the time, was spent in 
PVM receive or MPI receive and then by determining where the PVM was 
happening and taking a lot of time, you could see that . . . you could guess 
that this was a result of load imbalance. Informant 45 

A.3 Faulty assumption/model 

[Ae101} Meiko CS-TOOLS offers you all four but the meiko guys are now 
actively discouraging the use of asynchronous messages because people just 
don't understand; because if you use an asynchronous message, you have to 
be able to guarantee that there will be a buffer waiting for it to the other 
end. And that can require some kind of sophisticated parallel programming 
to ensure that independently of the relative speeds of the processors on 
which things are running is always going to be a buffer there. So generally 
people screw up. Lock up the machine. Informant 67 

[Ae12] Having to work with constantly changing machines . . . Regarding the 
latest machines, there are certainly two things I am not familiar with. Some 
years ago, I used to work with prof but for parallel codes you don't have 
that and in terms of. . . and the latest architectures are RISC, which I am not 
familiar with, for example, with vector architectures you know what to do, 
you know with the inner loops and things. In terms of cache use, I am little 
bit lost. The real problem was the data decomposition, the load balance 
problem. You know, you cannot optimise the inner core algorithms. If at a 
level prior to the core algorithm a process is waiting idle for other processes 
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to finish, then we found out that that was where most of the time was held. 
Because we did the data decomposition on a memory basis for each process, 
we tried to save memory, in fact then we found that once we were modelling 
computationally intensive parts of the problem where the bulk of the work 
was, we were always waiting for these two or three processes to do most of 
the updates, then the rest could continue. We did not suspect this because 
we did not have an apriori knowledge of the problem, that the data was 
irregular. We suspected that something is wrong because the transputer 
has a number of flashing lights, showing when you are busy, when you are 
communicating. Informant 47 

[Ae20] The T3D's performance is not what it should be. We started trying 
to understand what the problem is. We have understood more about the 
architecture and IFS's performance on that system. Still we aren't getting 
performance much higher. On that machine we are not going to get 15% 
higher performance than it is now. Compiler unrolling should theoretically 
help, but we 'ye got some data recently, which shows that it may in some 
cases do harm. Due to the limited instruction cache on that machine. By 
unrolling large loops, you may find that the code runs slower. It depends on 
how aggressive the compiler is in unrolling. A large loop should not unroll 
anyway. Because it turns not to be a benefit. Informant 50 

[Ae38] On the C90, if the code is vectorised properly then you cannot do 
much about performance. On cache machines, we have tried to reorganise 
the data structures . . . it is much more complicated to get good performance 
on the cache machines. The problem, mainly, is that it is too difficult 
to optimise for RISC architectures when you have a code that is initially 
written for a vector machine. So it is more basic the problem we have. The 
code has been written for vector machines since 20 years ago and all the 
data structures and the design of all the do layouts were optimised for the 
C90 vector machine. Now, we are trying to run it on RISC architectures 
and so this is where we spend most of the time. We have tried to optimise 
it by rearranging the data structures and by introducing locality, but it 
doesn't always work the way you believe it should work. It seems that it 
is more a design problem, on the T31) than our design problem. Because 
it runs quite well on other machines. We are at the level where it is very 
difficult to optimise the code without having to rewrite everything and we 
have only tried to rewrite subtrees and substructures and changing all the 
loop in index order, things we wouldn't like to do for all the code and it 
didn't really improve, on the T3D. Informant 52 

[Ae4la] I mean, one of the problems was that B had an idea about what 
the costs of the different parts of the model were. For example, we were 
modelling the airplane which consists of air, metal and cfc and we had figures 
of what the complexities were, but it turned out that these estimates were 
completely invalid on the different architecture, because working with air 
requires a lot of memory copying and working with cfc means that a lot of 
floating point operations are needed. And T3D is very good at the flops. 
While memory copying is expensive. Informant 45 
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[Ae21] The strategy for parallelisation we adopted wasn't the only one. But 
the other options we had would make the code so complicated that it would 
be unmaintainable, so we had to put up with less performance but with a 
more maintainable code. Parallel programming is difficult anyway. So, I 
tried to implement the simplest approach I could think of, to section data 
in a regular manner. I didn't actually at that time envisage that things 
could be so computationally heavy. In respect to the actual core code. And 
the transputer has a number of flashing lights, showing when you are busy, 
when you are communicating. So many processors were sitting idle. Because 
experience with parallel programming is so little, most of the people have a 
sequential background. And so if you get a non regular decomposition that 
increases the design so much that it is not worth it. And that was were most 
of the mistakes with the TLM code were made. For every design decision, 
we asked what is easier to switch to this path or to the other path. We 
took always the easiest option. The overhead of going another way was just 
too much. Any problems with the code, the project leader was not there, 
the learning curve to understand the code was too large. The other two 
projects were developed in such a hurry, we were trying to parallelise them, 
that performance optimisation was never a issue. We just got it operating 
in parallel. Informant 47 

[Ael] We started with a traditional task farm. The farmer maintained a grid 
and the workers had to calculate some values, which were later added to the 
grid. The workers would gather the results for a number of tasks and then 
they would send everything back to the farmer. But it turned out that the 
result phase was taking more than the farming and the calculation phase 
because of the congestion at the farmer. So we thought that it would be nice 
to do a combination of a regular domain decomposition and a task farm. So 
the result solution was decomposed among the workers and because some of 
the calculation at the borders required communication with the neighbours, 
we had to exchange some data between the workers but still this reduced 
the communication a lot. Informant 55 

A.4 Inapplicable tools 

[Ae21] is mentioned in section A.2 

[Ae53] In my first serious attempt to program the Intel Delta, I tried using 
a library routine for a global operation. It turns out that this machine has 
no performance analysis tools. Which made it very difficult to see what 
was taking all of the time. I, finally, arrived at the conclusion that it didn't 
scale well. And I wrote a version that outperformed Intel's version by a 
large factor. Had I been able to gather reliable profile information up front, 
it would have prevented me from a lot of guessing over a period of maybe 
two weeks. Informant 18 
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Paragraph+ is not flexible; you cannot define a set of processors that 
you want to have performance data about. On the other hand, apprentice 
gives you data only averaged over all processors. 	 Informant 51 

Apprentice gives too much condensed information. 	Informant 47 

We tried paragraph, but it was very difficult to use and contributed 
nothing. Tools were too slow in dealing with megabyte files and they didn't 
allow the analyst the freedom to scan the data freely both forward and 
backwards and to easily relate different views of the data. 	Informant 15 

[Ae90] I think the main thing was a sort of per process specific information, 
as opposed to the sums given across all processors. This doesn't give a great 
sense of load balancing. 	 - 	 Informant 45 

[Ae89] For the other project we are doing now, we rely on another company 
serfax to do the profiling of the code, simply because there is nothing avail-
able like, the parallel side of prof on the unix machines. It is something we 
keep floating because I don't have the time, or the technology you know I 
am going to write the best parallelisation and hand it over to them. Say 
you are doing a profiling of your code written in Parmacs and it doesn't 
add up to 100%, so you are loosing some information somewhere. But we 
have got a tool like paragraph+ and I think in some ways it gives you too 
much information, it is showing what is being going but in terms of where 
the time is spent it is not clear where the time is spent in. Cray have a tool 
that actually shows you where the time is spent, but it is cumulated over 
all processors, so in some sense it is too much condensed information. As 
what it would be the ideal solution I don't know except that I would like to 
have a prof facility for every node in the system. Informant 47 

[AelOO] We did try using Parasoft Express and PICL/Paragraph towards 
the end of the project but they were very difficult to use and essentially 
contributed nothing. 	 Informant 15 

[Ae85] Apprentice always shows this global view, it shows statistics. You 
have the total time spent in one subroutine, but you cannot see how much 
time was spent in this subroutine over the processors. So you can't have a 
histogram of this subroutine over all the processors to see where the time 
is spent, that would be nice and also the communications; it would be nice 
to have it in apprentice as well. Informant 51 

[Ae78] If you think about doing a reduction operator on the Connection 
Machine, then there is going to be some idle time on the processor. Now, 
Prism at the moment doesn't bother to explain that. Prism shows the time 
from the moment you start, till you finish the operation and it can apply 
the idle time to the execution time of that instruction. Generally, you 'ye 
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got some sort of communication operation involving lots of processors. So 
you think umm ... this is taking a long time and you want to know why 
this is actually taking such a long time. And maybe it takes a lot of time 
because you have got particularly inefficient communications pattern that 
it doesn't map well on the hypercube and sequentialises somewhere. That's 
usually the truth. And what you 'ye got to do is sort of fish around some 
alternative ways to try to do that more quickly. One of the problems with 
Prism is, that knowing how to make things go quicker, is still a bit of a 
problem. Because you need to start develop quite a bit of understanding 
of the actual execution on the machine rather than the semantics of the 
program. I think that's a gap there that Prism still leaves. Informant 67 

[Ae102] I could not interpret what apprentice was telling me; I needed better 
observations and guidance. 	 Informant 54 

[Ae84] I mean, apprentice gives information like the amount of time spent 
loading and writing to memory. So you can use that info. But I suppose, I 
was helped by the knowledge given in the course. I guess in the beginning, 
when I started using it, I would not be able to suspect what the number of 
memory accesses really meant. In order to use apprentice fully, you need to 
be able understand what it is telling you. Informant 45 

[Ae82] I 'ye seen these guys from Southampton running Paragraph. I 'ye 
never seen them succeeding explaining how they managed to improve the 
performance of their application on the basis of the communication patterns, 
the gantt charts and the utilisation terms. Informant 65 

Figure A—i: Communication display in Paragraph 

[Ae79] This sort of notion of topology (figure A—i) scares me. Having done 
quite a lot of teaching of parallel programming to people I came across a lot 
of people who are obsessed with things being nearest neighbours because 
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they are really important for performance. Really really really important. 
And I think that I really feel pathionately that there is so much for people 
to take on board, in view of writing parallel programs just to get it right 
functionally that the topology and the mappings are pure performance issues 
that they should be stashed until to get them working. So I am very very 
strongly against inheriting a view of machine topology definitely in the early 
steps and possibly right the way through. Informant 67 

[Ae83] We tried to use Tatoo but it was not good enough, it did not work 
with traces from the target machine. 	 Informant 12 

[Ae76] is presented in the beginning of this section. 

[Ae88] I could tell the problems I had with the Meiko. I wanted to produce 
a profile of the code, a very simple thing, you know I am not asking for a lot 
of things. Just a profile on where the time is spent, I had one vector node so 
I used prof, grpof and the . . . profiler. All failed, for three different reasons. 
So what I did ? I could not get a profile on the CS-2. So I took the routines 
I vectorised already on the CS-2 and I vectorised the same set on the C90. 
And I produced the profile on that. So I could see what routines stood out as 
being the ones I should look at next. But that's the problem. It is great to 
have a utility, but it must be robust. Because if it fails for whatever reason, 
it is of no use to you. And the users will never use it again. And profilers are 
the most basic tools. You couldn't even consider them as tools necessarily. 
They are basic system utilities. But all of them must work. But you come 
across things like those failing or the compiler . . . maybe you can compile 
95% of the routines, with the high optimisation on, but one routine gives 
you wrong results, if you compile with the highest optimisation. How do 
you find that one? Maybe on the Cray there is a facility to do that, but you 
try by the old way by creating directories with optimised and unoptimised 
objects, you move sets of objects into this and it takes an amount of time, 
but it is something it could be automated, especially when it is not the only 
routine that creates the problem but several. And maybe it is not that it is 
a bug. Maybe it is just an optimisation issue that now your code becomes 
insensitive to certain compiler optimisations. You have to understand this 
as well. My experience is that computer industry is one that lacks formal 

there is not real push for standards. You know manufacturers. You 
have to look what has happened to message passing. The average user 
just gets confused by how many message passing libraries there are. Why 
are there so many? Why hasn't MPI been developed earlier? That is a 
major thing. It takes time to develop new languages, new message passing 
libraries. I think there should be a greater emphasis in computer industry, 
say from a certain day all applications (future) should be written in MPI. 
P\TM will be destroyed. With these environments, I think we reached a 
situation in parallel computing, that the number of problems that we can 
forsee with the usage of the environments have exploded. Because they 
are very complex environments that we are working with. Vectorisation is 
very much localised, rewriting the code from scratch in order to make it 
vectorisable, where it wasn't before is a very complex process. What are 
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the applications that we can use? It is common phenomenon for example 
on the Cray that people find that have often to puzzle themselves with a 
peculiar bug in their code only to find that it is a compiler bug which caused 
the problem. Informant 50 

It isn't that bad. The Maspar tool sometimes had a bug so sometimes 
the timing was pretty rubbish, but you could figure that out easily because 
it was so far off the mark that you could understand it. 	Informant 42 

[Ae99] EXPRESS has got a debugger, but it was completely useless at the 
time. I tended to break Express and I used to take the machine down and 
still I don't know why. 	 Informant 65 

It was easier to use simple timing statements than to try and get the 
performance tool to measure very specific regions of the code. Informant 3 

[Ae97] You asked about slow down: This is 256x64 grid and it runs at 27 
MFlops/s whereas without the tool (apprentice) it runs at 52 MFlops/s. It 
runs at 2.7 secs and it runs now at 5.8 wall clock time. That is one of the 
reasons I use it when I don't know where things are bad. For fine tuning I 
don't really want to use it. Informant 44 

[Ae107] When I was using the workstations, I used XPVM but I didn't try 
to optimise the communications. I used to see who is communicating with 
whom. Getting to run was great enough. XPVM was unreliable, so I used 
to get an understanding of the code. informant 44 

[Ae104] I built my own tool for a parallel database program. The company 
was thinking of building a parallel machine to run programs like this, but 
they made the mistake to use a functional language and it was bad because 
they could not see where something was wrong or why it was going slowly. 
So, my tool gave hundreds of different performance metrics about the pro-
cessors but we would not see where these metrics applied. Informant 
59 

[Ae103] My own tool gave the load balancing for a set of processors. And 
the problem was that we could not relate it back to the source code. The 
display was too slow for the rate of the changes at the load balance of the 
application. Informant 65 

[Ae106] Because we have Transim and Gecko here. The tools are geared to 
how you can map data on processors and processes on processors. And it 
shows communication levels within the system. And processor utilisation. 
So maybe all the processors are busy all the time but still the program 
doesn't have any speedup. You cannot simply put the question: Are all the 
processors busy? Are all the links busy? While Gecko would say that if 
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everything is busy, everything is red, so everything is ok. But this doesn't 
apply in the case of this simulator. Because there are many cases that the 
simulator can be working really hard. Everything working red hard. But 
the simulation doesn't progress. It progresses in very tiny steps. It is like 
busy waiting times. Informant 43 

The remaining excerpts in this section are not commented in Chapter Four. 

[Ae80] This is the number of tasks done per processor or the number of 
processes on each processor? The problem with the task is that is a tre-
mendously overloaded term. It means many things. I didn't understand 
this graph at all. If this is just a number of instances of this task type 
you've got a graphics worker or slave then that's a static measure that is 
not going to change over time because you have told the system. If it is 
maybe the number of tasks that the processor executed for example in the 
task farming model . . .1 didn't understand these displays at all as general 
models. Ithink that perhaps some of these displays are superfluous. I think 
there is a real danger especially for a novice or a less experienced program-
mer to be mislead by which information to use to guide him for the work. 
Certainly in the performance optimisation I think there are some real red 
herrings like being obsessed with the .. topology is one of them I mentioned 
several times. I think there is a bit of a danger. Informant 67 

(Informant 67 was then shown the message queue display of Paragraph and 
a communication map between sender and receiver nodes. (figure A-2, A-
3)) [Ae81] I don't recognise whether the messages are waiting to be received 
or be sent. Maybe it's the number of outstanding communications for which 
you have said "start" and you are waiting to complete. What affects these 
communications? What prevents them completing? Well other processors 
may not have been ready to receive them, ah . . . what affects that? At 
that time they are doing compute or other things or there might be other 
traffic. So while this is kind of important and eventually you are going to 
hit some sort of limit, or you are gonna have to wait for that message to 
complete, is really the idle time you are interested in. It's how much time am 
I having to sit about waiting for outstanding messages to complete. And 
while that might be related to the number of outstanding messages that 
you have off going, again its a kind of, sort of, second level metric. I don't 
think it' s actually something you can directly act on. It kind of suggests 
a model where you have a processor with some sort of fan out through 
which all messages are being pushed and you can imagine a battle going on 
by the rate which this fan out absorbs the messages, and it's not entirely 
clear to me how you would interpret that. I don't have a good feeling of 
how this fits in with the other displays. And as I said.......And the 
important thing is that this is making some very serious assumptions about 
the message passing model. Because if you are only having a synchronous 
message passing system and blocking messages so I have to wait for you to 
receive then there is no need for this display. So that's getting very specific. 
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Au .. this notion of mapping of message lengths for sender and receiver 
combinations, I have no idea of how I could use it. You see the length of the 
message in most of the messaging systems is almost irrelevant. Because the 
startup costs are sufficient enough to dominate the communication costs so 
the issue is the number of messages rather than the size of messages. And 
the usual optimization trick for reducing that we were talking about earlier 
is to try to wrap as many messages into one as possible.. Informant 67 

Figure A-2: Length of message queue per node 
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Figure A-3: Communication map 

[Ae93] The problem with TMC timers is you have the cmps command giving 
you some timing of the process and within Prism, Clvi elapsed, CM busy, 
and so on CM busy is pretty straightforward to understand but CM elapsed 
varies from one run to the other if you don't have a dedicated system and 
you are interested in this timer since the time spent on the front end is not 
included in CM busy. On MasPar it is pretty more easier; you either use 
the MPPE profiler or even unix time command and you know where you 
are. informant 13 

[Ae95] I have tried to use the parasoft tools (ctool and xtool) for evaluating 
communication performance and measuring time to complete certain phases 
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of the computation. I used these on the nCTJBE-2 and the iPSC/860 to 
instrument the entire code by just setting some command line switches or 
linking ot a library and letting the library dump the information to disk. 
The parasoft tools then process this dump to provide a visual indication to 
performance. I also used the library routines to instrument various parts 
of of a code (marking the time that it got to different points in the code 
by calling a library routine) In my opinion the data provided was never 
very reliable, but showed me that I was spending too much time in global 
communication (no surprise here). Informant 18 

A.4.1 Tool requirements 

Prints on PRISM, better prints on MPPE ... To print profiling in-
formation, without getting thousands of lines (only the meaningful ones); at 
TMC people usually use CM timers they set themselves in the code! This 
is not my idea of standard software. 	 Informant 18 

Visualisation of user-defined traces would be nice 

Informant 12 

Profiler is probably a very important tool even though there is a 
penalty associating in using it. But there are even nicer tools on the ksr 
for example we also have a tool from BBN called profview. It is like gprof 
and prof but now you can click on the summary line if you see a particular 
routine it stands out and you can click on that line and this pops up the 
window with the source. And it's got little graphic at the side showing how 
much time has been spent on a per statement basis, of course you have to 
recompile this routine for it to make sense. To have that detail. And you 
probably have to compile with the debugging flag to get accurate data on 
the statement level. Of course, you no longer have exactly the same profile 
and it slows down your program. But you can see where the time is being 
spent. 	 Informant 50 

Where you can define user defined events, so now we can time say 
how much time we spend in the grid point bits. So we can say what time 
the different processes are spending in that part. Perhaps in the area of load 
balance, where we have some special problems with the weather systems, 
some weather systems are more expensive, than others so that gives you load 
imbalance, between the processes and you would like to understand this load 
imbalance. How different is the load balance? Can you do anything about 
it? So in that area I would like a 2d picture of the processors and the 
different time spent in different parts of the code something like the typical 
temperature map. I would like more communications statistics than those 
we get now . . . such as statistical variational like minimums and maximums. 
Because if you are running your code on 512 processors how are you going 
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to represent these ? Make tools like paragraph more dynamic for example 
to be able to specify a certain amount of processors. Paragraph is very 
static in a way. To change to another subset of the processors dynamically. 
It could be nice if you could say now I want to look more specifically at 

zoom in in a way. Whereas now you have to stop and also you have to 
it has to be flexible. Now you have to stop and sometimes it doesn't 

stop, . ..where  you want to stop it. It would be nicer if you could rewind 
and change scales and things like that. When you have 512 processors you 
don't want to look at 512 processors. You would like to see a certain subset 
of them. And usually the subset would be the outliers of some behaviour. 
Like which processors didn't behave as the rest. If you could combine it 
with something like a profiler or if you have a very slow process you would 
want to look at that process. Why is it that slow? It would be a nice thing 
to have it and you can do it on some systems. You can do it on Convex and 
the T31). It is nice to have the global view in the beginning to see where 
you are spending your time using the profile but when you come to see that 
you want to know the load imbalance, the time spent in communication 
is also included in the load imbalance. Because all the processors they 
come into the communication routine and then they wait until all the other 
processors are finished with the calculation so they are waiting, they send 
out some data and they stop and they receive. So you see all the time spent 
waiting for the other processors inside the communication. And you can't 
use apprentice for that, otherwise I could say that the concept of apprentice 
is quite nice you have this hierarchical presentation, you can go and see 
the subroutines. And you can either have the subtree or you can only have 
the subroutines. And it is a nice context to work with. Making the tools 
reliable and able to work with all sort of problems I guess this is something 
we should in private companies. where better quality control can be done. 
But it seems that nobody understands that most of the codes in the real 
world are big codes. So when you make your tools you have to consider 
that My requirements are simple and modest and most of the vendors can't 
give me a debugger a dbx to be able to work on more that one processors. 
You can do that in totalview I guess. I should try that. Informant 51 

[Ae70] Synchronisation, I think, is actually more important than load bal-
ance. Processes are waiting to get messages and don't do any actual work. 
I guess you can see load imbalance, when you 'ye got excessive synchron-
isation. To get rid off the synchronisation you have to look at the sort of 
control structure which is more difficult you have to relate the load imbal-
ance to a control structure. The problem you have with load imbalance 
and measuring load imbalance is relating to it to actual sequences of in-
structions. So you ask yourself why a particular communication isn't being 
received. I mean we 'ye got statistics you can even work out what is it that 
you are waiting for. Unless you 'ye got a good understanding of what is 
going on with your code. So you need at some point to make a connection 
to the actual code. I 'ye never seen that done quite successfully. You need 
trace events. So you need to be able to say: You are running a debugger 
thing and the monitor system would tell you are waiting an awfully long 
time for this message. I 'ye never seen a debugger that would actually trace 
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you back to the sender of that message and it will sort, of wind the thing 
back to the point at which this message was sent. How come I was waiting 
for so long to send this message you see what I mean. 	Informant 65 

You can only look at profiling data after the code has run completely. 
It would be nice to have profiling data for an incomplete code. At a break 
point to have profiling info. 

Informant 14 

I would like better suggestions on how to improve performance. And 
also the tool should give quickly accurate profiling info. 

Informant 41 

I would like graphs to show statistics of my program because cur-
rently the statistics are presented in tables. 

Informant 43 

[Ae94] To print profiling information not getting thousands of lines (only 
the meaningful ones). At TMC people usually use CM timers they set 
themselves in their code. This is not my conception of standard software! 

Informant 13 

A.4.2 Case study I: tool evaluation 

[Ae112] ... So you have to have a barrier. This is interesting . .MPltime is 
spending relatively a lot of time in a barrier. MPltime is one of the control 
routines. That is something I am missing from apprentice. I would like to 
tell it show me the routine MPltime (He clicks many times on the name of 
the routine to show what he would like to be able to do) because it is not 
always trivial to find your routines. Informant 44 

[Ae114] Trace based tools like Paragraph tend to be useful only for relative 
number of processors. I think we have used Paragraph up to 60 processors 
only for a subset of the scaled down version of the code ... and in a limited 
way whereas you would like to use it to its full extent. And you can't. On 
64 processors we ran our T32 version and we ran out of disk space for the 
trace file. All these trace files, I created here, are about 2Mb in size and this 
is only a small version and a limited problem and only 16 processors. And 
it explodes, if you increase the number of processors but the size becomes 
a real issue; this is a major limitation here. With this tool you can select 
your processors but I mean you still create a full trace. Informant 53 
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[Ae117] You should be able to select things that give trace. Because some-
times you are not interested in communication or you would not like to 
have everything. It would be helpful to be able to control the part of the 
code that gets instrumented. So the way it is now you either instrument 
everything or you don't. And the only exception are these user defined 
events. But, for example, I would like to focus on one transposition at the 
top time, in one particular timestep, and then simply, I would like to say at 
the beginning of this section of the code, now, I want to instrument. Which 
could be of help since I could work with a small section of the code. 

Informant 53 

[Ae116] Yeah . . . So we suggested to replace this one with some easier and 
more comprehensible displays, like you see event number a started at this 
time and the last processor finished at this time. And have a distribution of 
these events over processors. Which would be very useful in load balancing 
investigation. Which you . . . currently is not easily available . . . you see the 
load imbalance in this time displays like gantt charts and you can look at it 
at one time step and you get a distribution of the different execution times 
of these events on different processors at this time step. But this is only 
part of the thing because it could change over the execution and you would 
also be interested in the statistics over the whole run. As how it performed. 
It could be accidental the times you got from one time step. It may take 
twice as long on this processor than on others. So you would be interested 
in statistics. Informant 53 

(He invoked the statistics display.) [Ae125] This is the statistics. And the 
question is do we use it? Not really. And it might be useful but I mean 
these are things we have checked in a way before. Well it might be useful as 
a reassurance but it is nothing that you need really. Because you have done 
these calculations before hand. When you design your communications. 
How big a buffer need be, what are the 

[Ae123] A . . . yes this is another bug the displays don't get refreshed. And 
it is very disappointing because more or less the same problems that exist 
in the public version continue to exist here. Because they haven't solved the 
underlying problems. Also the refresh here is maybe an IBM problem. We 
use IBM workstations and Intel thinks that there may be a problem with 
that. I think IBM workstations need special memory and special software 
for this refresh. And this isn't a default in IBM systems. I haven't used 
Paragraph on SGI. But I think they claim that they have solved it. The 
last time I spoke to people in PALLAS they think that now is only an 
IBM problem. Which is simple I suppose because we are using only IBM 
workstations. and we can't test it. We can't prove it." The tuner experiences 
a tool crash trying to invoke the statistics display. Informant 53 

[Ae124] The things I mostly used are this colour scan and the feymman 
display. You see for demo purposes this is great. You see this is another 
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problem .... The scalings are useless. Usually you have messages that are 
of a little space here and you have the scaling .... I don't know how they get 
these scalings. I mean these displays are nice to look at you know. And they 
make a good demo. Which is also an important use of these tools. Because 
it makes sense for people not used to the idea of parallel programming more 
understandable what is happening . By giving a presentation and saying 
that this process is communicating and here you get some animation on 
how the communication really forms and these things so this is also a useful 
aspect in some way. But it is not so useful for you who are working on it. 
Also I think the load to use them would be quite high because in a sense 
you have to relate these displays together." Second tuner: "Yes yes this is 
true. I mean the animation here is far too fast if you have not a good idea 
of what is going on. ...To comprehend. 

(The tuner invokes the communication animation display). [Ae126] Well 
this is the most representative from all that I showed you so far. My personal 
view is that it is of no use at all. These are indispensable if you want to 
explain to somebody what is going on. Even if you know. You know it is 
encouraging. You should use it anyway to confirm that everything is ok 
that you think it should be. Well I mean it is some kind of reassurance. 
Lars is quite happy to look at things. Once in a while. Because I mean he 
really knows what is going on there. But it gives reassurance the fact that 
its actually happening. like you expected to. And this is also important. 
and in PPPE there is some body from ESA a company developing the 
crash code and he says that the best use he can make from such tools is in 
demonstrating for customers. Because these people don't know about hte 
details of these programs. and it is hard for them to understand what is 
going on. Which is not the intended use of the tool sin the first place. Well 
I think it is a lot. What displays you prefer it is up to your personal taste. 
in a way because there is so much redundant information. What I like is 
the spacetime display. and these gantt charts. Informant 53 

I think these tools would be really widely used if they weren't so 
many of them. If there was some acceptance that this is the tool to use 
right? The manufacturers would support them and if they were robust they 
could go along the way and solve the problem. 

You saw this thing today as well. If the tool is not robust it is 
not going to be used. You know there should be some industrial strength 
applications to be used with these tools for quality assurance. After this 
small codes will be run really with no problem. I think people use these tools 
when they are desperate. You know if the people, having a big problem, 
try to use a tool and during the learning curve the tool crashed then that 
is it. They are never going to use it again. It is a big issue. 

Informant 50 

[Ae119] These tools are useful when you don't know everything about the 
code. And you don't know exactly what communication patterns are taking 
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place . . . that somebody else wrote you know. Some other module, and you 
are trying to understand why it doesn't scale to a 1000 processors from 500. 
What is the bottleneck. You want to know what do you have to do to make 
it scale? You don't want to use the performance tool during the production 
runs but you should have a quick way to turn on instrumentation when you 
want it. 

Informant 50 

[Ae118] At this scale now, you can hardly see what's going on here ... You 
can zoom in, but it is not very user friendly. You can zoom in, you can 
configure and . . . now, here in this tool you have a very difficult way of 
zooming in. What you essentially want to do is something like . . . click here 
and . . . and mark this time and this time. And it should then be loaded 
up to the full scale and . . But here, you specify your start time and the 
end time, and the time unit and these all control what is going on. So it 
becomes a bit more complicated. 

See? It should . . . there is a bug obviously. It didn't start so . . .1 
as you can see here . . . ok .... Here, no, this was probably because I 

didn't have the right environment set up for this tool. One difficulty with 
this tool is the way you can control it. (laughters) It can (he is trying to 
make the tool display events for a particular period of the whole time i.e to 
zoom in time)... but let's assume that we want to focus now on one of these 
transpositions here and we can get some info about the time of the start 
and stop time and then I can set it in this configure menu say stop time is 

and start time is .... and then we want to increase the scale like that. 
Now it simulates forward in time until it gets to this start time. (The tool 
replayed the trace file while without presenting anything until the execution 
time of the events were equal to the start time set by the user. All this time 
the tool's windows did not display any information.) 

It would also be nice to go backward in time. Which it can't also 
do. A lot of things need to be improved in this particular tool. It is also, 
I understand it is not so easy to manage the .... What you really want 
to do is not to mess with these strange time units and you want simply 
information about how long the run is, and then say I want to go to this 
time and also it has a too complicated way to control the simulation speed. 
You have these buttons here but the simulation speed also depends on the 
choice of these smoothing intervals or stepping command and on all the 
other things. So it is a more trial and error approach to get to something 
satisfying and I think it could be a bit more straightforward. 

But it is not working obviously. I don't know why. And this is a 
commercial tool. This is what Intel gives you if you buy a Paragon or what 
you can buy from Pallas. (Trying to do it again.) But the way it works is 
that it starts reading this trace file and does all the things. So the proper 
way to do that is to close these windows, and so that the program thinks 
that it has nothing to do on the displays, and then only open these windows 



Appendix A. Tuning in the small 
	

217 

shortly before you go to the start time. But this is not they way you want 
it to work is it? 

[Ae113] You tend to use these tools as a debugging tool and it doesn't help 
you if the program doesn't complete. 	 Informant 53 

A.5 Change 

[Be628] is presented in Appendix B. 

[Ae15] A bug in CMAX was detected preventing vectorisation of certain 
reduction loops. Temporaries were inserted to allow vectorisation of these 
loops, and the bug has been fixed in CMAX 1.0. 6 CMAX-NODEPENDENCE 
directives were inserted to allow vectorisation of 6 dependence-free loops 
that CMAX thought contained dependences. CMAX 1.0 vectorises the 
loops without the directives At this point, when we executed ARPS on a 
problem of size 35x35x35 on a 32 processor CM-5, the code took 9.9 seconds 
per iteration of a simulated 6 second time step. The data distribution was 
to parallelise along the three spatial dimensions, but not along the time 
dimension. This distribution was determined by directives in the input 
program, as described above. CMAX obeys user directives, but in other 
cases it is not sophisticated enough to optimise the data layout. The serial 
time dimension of length 3 (past, present, future) was the rightmost di-
mension. Unfortunately, the current version of CM Fortran, CMF 2.1bl, 
is more efficient when non-parallelised dimensions are gathered at the left. 
We modified our makefile to call a CMAX utility tool to automatically per-
mute the arrays in ARPS, moving the time dimension to be leftmost. This 
reduced the per iteration time to 4.9 second per iteration. ARPS had been 
performing a nearest neighbour computation in one part of the code, which 
CMAX translated into an expression containing a number of EOSHIFTs 
(End Off Shift). Unfortunately, the latest version of CSHIFT (Circular 
Shift) in the CM Fortran run time library is currently more optimized than 
EOSHIFT. We modified the Fortran 77 code to perform a circular shift, but 
made this code conditionally compile only for the CM, since it could slow 
down execution on other platforms. We switched to the latest version of 
the CM Fortran run time library (which contained the fast CSHIFT) and 
the iteration execution time dropped to 4.0 seconds per iteration. Next, we 
switched to the latest version of the CM Fortran compiler itself, to try out 
the improvements made to its optimiser. We gained about 5% from this 
change. We were surprised that the impact of the new compiler's improved 
optimiser was so small. We investigated and discovered an explanation: 
As mentioned earlier, high level array operations in ARPS (such as differ-
encing) are performed by separate subroutines, each of which loops over 
entire arrays. CMAX is able to vectorise the loops in each subroutine, and 
CM Fortran then implements the vectorised loops. However, CM Fortran 
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is unable to fuse the loops between different subroutines, since it does not 
operate interprocedu rally. To overcome this problem, we implemented a 
simple tool that looked for directives of the form "C-INLINE function from 
file" and performed the requested subroutine miming. We added 15 INLINE 
directives to the program (placing them based on our profiling results) and 
recompiled. This improved execution speed by 12%. Another problem that 
profiling pointed out was MAX/MINLOC handling. We found that 3% 
of overall execution time was being wasted in a line that looked for the 
location of minimum and maximum values in an array section; CMAX cor-
rectly translated these lines to perform MINLOC and MAXLOC on the 
array section. However, the CM Fortran compiler currently has a deficiency 
that causes it to perform communication to redistribute the array section 
across all processors before performing the MINLOC/MAXLOC. The array 
section happened to contain most of the array, only leaving out a band 1 
element wide along certain edges. We inserted Fortran 77 code to mask 
out this band by inserting large positive or negative numbers, respectively, 
and then performed MINLOC and MAXLOC on the whole (masked) ar-
ray. As with the CSHIFT change, this change is conditionalized to only 
compile for the CM, since it is a pessimization on most platforms. The 
MAXLOC/MINLOC line executed each time the status of a run is printed 
out, and the frequency of status reports is controlled by the input file, so 
this optimization turned out not to be too important for production runs 
which do not need to print out status reports after every iteration. The 
final change we made was to perform all computations in double precision 
rather than single precision. Double precision uses twice as much memory, 
and thus reduces the largest solvable problem (and the vector length) for a 
fixed size memory by a factor of two, but switching to double precision still 
speeded the run up by 15%. The reason is that the CM-5 memory system 
is optimized for 64-bit operands, which are the standard in the scientific 
computing community. 

Informant 17 

[Ae86] You know of Vienna Fortran. It is a very complex system, but it is 
still a university product in the way that it can't handle real codes, we have 
some problems of using it with more than 2000 lines code. And we have 
five hundred subroutines. It is not something that you get academic credit 
from. Maybe designing tools, but not implementing robust tools. There is 
a big gap between a tool that is developed at a university and something 
that can be used by us. And that is understandable . When you are at the 
university you want to make new developments. 

Informant 51 

[Aell] For an extremely fine grained application such as the active chart 
parsing, it is impossible to have any speedup. Many tricks have to be 
applied to get performance as good as possible. During this stage many 
problems concerning Orca and Amoeba were uncovered (mainly bugs and 
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optimisation problems of the Orca implementation). So I avoided using 
clean high level but extremely expensive Orca constructs. I used a profiler 
to profile the sequential version of the program and discover what were the 
expensive Orca statements. Informant 46 

[Ae22] The parallel version of the program was slower than the serial Orca 
version for the same test case. As explained this was due to the extremely 
fine grained nature of the application. First of all, the Orca compiler trans-
lates the Orca code to ANSI C and adds the calls to the Orca run-time 
system. It was the ANSI C serial version which was profiled. Using the 
profiling information we discovered that Orca does a lot of mallocs and frees 
which take up a lot of time. Someone in the group found out that this could 
be implemented more efficiently (which was actually done). Furthermore, 
we discovered just by trial and error that using the Orca Object construct 
(comparable with a Mod ula-2 MODULE) was very slow. We used an Ob-
ject to implement an ADT and then we implemented in the "Modula-2" 
like way (using Orca's Module construct) showed that the "Modula-2" was 
much faster than the Object construct. (This can be partly explained by the 
fact that Objects are atomic entities and that its operations are executed 
individually (i.e. all operations on an object are serialized). I didn't use 
timing functions to time parts of the code. Just the execution time of the 
program to find the solution. The profiler could not be used for the parallel 
version. As explained above, mainly the Object construct. Furthermore 
the GRAPH construct (comparable with POINTERS in Modula-2) caused 
a great deal of pain. As said before, where possible I changed the Object 
implementation in a modula-2 like implementation (i.e using no operations) 
and sometimes letting the user directly access the data structures of the 
ADT. Seen from a software engineering point of view this was a big NO, 
but hey it was faster. 

Informant 46 

[Ae48] The Maspar tools provided most of the relevant information. On 
KSR, the tools are somehow too cryptic, they did not really give all the 
information, they showed that you had a lot of cache misses, but they 
would not really say in which statements. 

Informant 42 

[Ae17] Recently, we took the last three months to port IFS. Which has 
already been running on the Meiko, but what he had to do is to tune it 
for the vector node. And we tuned it for the vector node and we found 
that there were certain things that run very badly. The compiler wouldn't 
vectorise certain things. So we did a certain transformation on the source 
code so it did vectorise. Maybe the loops were too big, or there could be 
if statements in the loops which don't vectorise so one has to rewrite these 
things. These are the techniques that we do use. In fact, this example that 
we used here, is a technique that it was used over 10 years ago. And so the 
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Meiko is maybe 10 years back in terms of the sophistication of its vectorising 
compiler. If constructs vectorise on the Cray, the state of the art vectorisers 
should do exactly the same. Whatever the architecture it is running on. As 
only a single vector node was available on the CS-2, it was only possible to 
test the IFS model at the T211,19 resolution, which is two orders of mag-
nitude smaller than the current production T2131,31 resolution problem. 
While it was clear that an increase in resolution would improve the Mfiop/s 
performance it has not been possible to quantify the improvement. To con-
sider optimal performance of the IFS model on the Meiko CS-2 one has to 
investigate the performance on both the Scalar and Vector PEs independ-
ently. This was not done as it was felt that optimal performance should 
come from the Vector Pes whose 64 bit peak performance is rated at 200 
Mfiops per node as compared with Scalar PEs, which are peak rated at 40 
MFlops. In addition, the IFS model had a history of performing efficiently 
on vector processor systems so the expectation was that it should do like-
wise on the CS-2. The approach to optimise the IFS model for the Meiko 
CS-2 was to use the vectorisation facilities of the pgf77 (Portland Group 
Fortran 77) compiler. An initial test to use the -Mvect compiler vectorisa-
tion option for all the 650 routines unfortunately produced wrong results. 
This was not surprising given the size and the complexity of the ITS code. 
The approach was therefore modified to vectorise routines, one or a few at 
a time, checking for both correct results and successful vectorisation. In 
total, about one fifth of the routines were vectorised. Further vectorisation 
was deferred until the availability of a reliable profiling tool would enable 
vectorisation to focus first on significant time consuming routines. Those 
loops which could not vectorise had to be manually transformed. A loop 
would not vectorise when the VPu program would be too large to fit in the 
mVP instruction buffer. Loops containing if then else statements were not 
able to get vectorised as well. Certain intrinsics were unvectorisable. Unix 
utilities, such as prof, yprof and Portland Group utility pgprof, all failed to 
produce a profile for the ITS (these problems were reported to Meiko). The 
less satisfactory was to produce a profile on the Cray C90 and use this to 
direct the order in which routines were vectorised. Clearly it made sense 
to vectorise the most time consuming routines first and not to waste time 
with routines which contributed little to the wall time. 

Informant 50 and Informant 58 

A.6 Training in tuning 

[Ae31] You are working for a manufacturer. If you have read the manual 
you may have to give a performance optimisation talk. 

Informant 50 

[Ae33] The best courses are the ones given by vendors. 



Appendix A. Tuning in the small 
	

221 

Informant 51 

[Ae32] Being in a small porting group as above, we often discussed tech-
niques among ourselves. For example, I developed the twin debugging tech-
nique that I mentioned, so I presented a seminar on it to our group. Also, 
every software package we worked on was fully reported. With reasons and 
source code changes and we could read what-had been done with other sim-
ilar software. There is ultimately no substitute for native cunning. I have, 
for example, encapsulated the general principles of optimisation in a parallel 
environment that everyone should know into an one hour seminar which I 
give in an introductory CM-5 course. I usually use one of the participants 
programs and I offer approaches which may be tried to optimise. Unfor-
tunately, time constraints mean that people cannot try the optimisations 
there and then. Informant 1 

[Ce503] C rnp 21/3/95 
C rnp removed if statement from do loop 
C rnp modified do loop order 
C rnp halved work done in do loop and added transpose copy 

Informant 40 
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Tuning in the large 

Appendix B contains a number of excerpts of discussions with parallel program 

developers and their tuning notes. Parts of some of these excerpts are included 

in Chapter Five to support the arguments presented there. The selection of these 

excerpts has been based on their ability to convey briefly and effectively practices 

which are most representative of the ways parallel program developers work. Other 

excerpts included in this appendix do not appear in the corresponding chapter. 

They repeat and support the information given in the representative excerpts and 

are included here for the benefit of the reader in case they can be used to drive 

further research on parallel program development. 

B.1 Problem solving 

I divided the task in logical sections and attacked each one in turn. 

Informant 49 

I build a version and tune it, build a version and tune it. We try 
different algorithmic solutions to the problem. 

Informant 4 

222 
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[BelOO] I would see that the problem is really a problem. And then worry 
about what caused it. 	 Informant S 

I changed the communication harness and then it ran faster. 

Informant 16 

I use print statements and comment old ones out. 

Informant 39 

[Be142] I would try to reduce the communications. 

Informant 13 

[Be26] Problem size is always important in a parallel run. Some very large 
runs will look really bad on one or two processors, thus making the runs on 
a larger number of processors look very good. 	 Informant 19 

[Be13] During the design phase, the bottlenecks were identified (mainly 
due to previous experiences with previous systems). Since the performance 
of the hardware was known the system was designed in such a specific 
way which should hopefully guarantee the performance required. In our 
system the problem is usually the communication, not the performance of 
the individual processor. Thus, we have a small code part measuring at a 
transputer link how much time the processor waits until a sending/receiving 
actually takes place. This gives us a clue as to where to change the code to 
use the links more efficiently. 

Informant 8 

[Be129] I would address the most costly statements. 

Informants 41, 44, 45 

[Be133] So, maybe somebody would tell you or you could know that the 
program should run with a certain Mflop performance. Or, it should run 
with a certain elapsed time and you run it on your new machine and it runs 
slowly. Maybe twice as slow as what was expected. So, it is really that 
feeling that certain codes should be better than they are. So, you do the 
obvious thing. You start by running the profiler and you say is there any 
routine that it stands out as being abnormal? Typically, you know what 
we call architectural bottlenecks. Something that runs well on a vector 
machine may nor run well on a RISC machine. And you have to do things 
slightly different. One of my early experiences on a RISC machine was to 
code a routine which on the KSR was running at 20 Mfiops/s out of a peak 
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of 40 and we knew, it should be much higher so we rewrote that particular 
routine, it became very large, but it ran at 35 Mfiops/s. You know real 
peak, because we understood the architecture, we knew what the compiler 
could do and we just rewrote it. No case is like any other one. They are all 
different but you build up experience and you understand where problems 
arrive. Informant 50 

I look at the profiler and start from the most time consuming 
routines. It really comes down to lots of experience. I use a profiler which 
gives an indication of the important routines and then I start on them and 
then hopefully you can find something to do there that helps you in increas-
ing performance. 

Informant 42 

You see whether a routine stands out and you click on that and see 
whether it has any statements that could be fixed. 

Informant 50 

I address the most costly module first and try to tune it. Rearrange 
software structure to avoid unnecessary computation and communication. 

Informant 12 

I would track down the big bottlenecks and try to rewrite these 
lines. 	 Informants 14, 18 

[Be142] was presented in the beginning of this section. 

[Be144] I would like to see how much the program is computing and how 
much it is communicating, and also to see the most expensive routines in my 
program. First, I would try to see if there was something in my algorithm 
that was holding the program. Informant 62 

In terms of optimising for the Cray it is possible another week's 
time and it could be indefinite, 	 informant 45 

See where the bottlenecks are and try to achieve the same results 
with less costly means. 	 informant I 

[Be1631 I would profile the sequential code to see what improvements should 
be made in the parallel version. The first thing I would like to see is the 
average number of messages sent by each process. If the averages are dif-
ferent significantly I got the internals of my distribution wrong. The code 
complexity is such that I don't have any strategy, the load, for example, is 
different in every run. Informant 61 
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[Be140] I optimise costly statements or change the algorithm to get a dif-
ferent method of solution. 

Informant 40 

[Be628] is presented later on in section B.3 

[Be134] One of the main points that became apparent in the tuning course 
was that optimisations are not necessarily additive or monotonic. That you 
might try one thing and actually it decreases the performance. And then 
you try something else and you discover that the first thing you did was 
right. And you cannot do it very systematically if you like. So it is an ad 
hoc search. But say it is first hierarchical and then it is trial and error. I 
suppose you do come with this intention but the tool (apprentice) reinforces 
that. I mean because of the way it presents the info. So it is hierarchical. I 
ran apprentice after each change . . . to see what the effect of various things 
were, but then I did it more systematically and I made more extensive 
changes, as I gained more confidence. The frequency decreased if you like, 
initially I made a lot of small changes and then, when I understood what the 
problem was actually, I made more extensive changes. Recently, I stopped 
using apprentice and I used time calls, possibly, now that I finished the 
load balancing and the tuning I may go back to apprentice to see at a high 
level how much the original version without the load balancing varies from 
the current one. Because the access to the T31) is limited, it motivated 
us against the idea of changing a lost of small things and see what was 
happening as quickly as possible. Perhaps, that was one of the reasons, 
that the frequency of using apprentice decreased, because I realised that it 
is not possible, or appropriate. Informant 45 

B.1.1 Experimentation techniques 

[Be26] was presented in the previous section. 

[Be139] I do a coarse profiling of the application to see which parts are 
the most expensive ones. And then, I look at the load balance, so at that 
stage you are more interested in specific detailed characteristics, say, which 
particular parts of the routine are the most costly ones and they are costly 
because of problems with the load balance or with the general communica-
tions. Or whatever has caused that really and then you are going to figure 
where in your program was caused this and what has caused it. Was it 
the data or the algorithm. So you are actually tuning load balance against 
communication, you would be actually tuning some other parameter and 
that would have an effect . . . to the overall characteristics. That's obviously 
the one model that comes in mind, I am sure there are other models where 
that wouldn't be appropriate. Yeah, you could imagine different processes 
doing completely different work in which case the actual size of the task is 
undefined you certainly can't determine it beforehand and . . .so your work 
is actually determining how tasks vary, how tasks are characterised in terms 
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of how long they can take, how many they are, what is the typical compu-
tation time of a task. Characterise one task in terms of its communications 
and its computation and the distribution of tasks within the application 
or within . . . how that varies over time, all these parameters can have an 
effect and the actual question is how you actually go about tuning these, 
all these divert things are very problem dependent as far as I can see. In 
many ways, you will need actually to have complete information about the 
profile or the task balance or whatever in your problem and therefore you 
would make certain assumptions that you will then try to investigate and 
you can either go about investigating in more detail the characteristics of 
your problem or you can try a strategy whereby yEw attempt to address 
one part of the problem, so you can address the load balance in isolation 
from the communication cost and try to observe the effect of the other, if 
you can actually measure it exactly and measure it correctly. So, in many 
ways you are not actually looking for the most optimal solution. It would 
be nice if you could get the optimal solution to your problem in terms of 
load balance and communication cost etc.. But in general that wouldn't 
happen, and you look at . . . you identify a problem and you address that 
problem and along the way you uncover other problems, so . . . by addressing 
a problem like load imbalance, you would discover that the different load 
balance techniques would have a communication cost associated with them. 
And they may have other costs associated with them as well. 

Informant 66 

[Be141] I will start by looking at the computation/communication ratio and 
I would try to increase it by minimising the number of messages sent and the 
volume of the messages sent. Or, you make a hypothesis that my program 
is going slowly because of this . . . and you try to get rid of this and see if 
your hypothesis is true. You also predict which changes are going to work 
well together because you cannot try everything. Informant 55 

I would like to see Which processors are actually working all the 
time and which ones are idle waiting for others to finish. I would like to see 
whether all the processors have to communicate with distant processors on 
the CM and I would try to fix this. I would try to fix the worst statements 
first. 	 Informant 64 

I look at the workload of the processors and then I try to redistribute 
the tasks if the tool shows me something which is not what I expected. 

Informant 58 

So the strategy is to start from a high level problem, see the time 
line diagram (perhaps a gantt chart utilisation diagram) and then see which 
processes are better than others and then you try to see what is happening 
to individual messages so I guess you zoom in then. And at that point you 
could also be helped by a statement profile. 	 Informant 59 
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It would be useful to be able to refer that to ... you have some sort 
of representation of where processes have been idle ... to refer that to the 
source code to find out if there are particular regions of the application that 
are causing problems. Well, you could say that it is always that particular 
region that the process always seems to be idle. That, given some knowledge 
of how synchronisation is done, you can decide, you might be able to decide 
whether it is actually necessary for the process to be idle, if it is waiting 
for some synchronisation, that it doesn't in fact need, before it can carry 
on doing some useful work. And maybe there is some part of useful work 
to be done at that point. 

Informant 68 

[Be139] is presented in the beginning of this section. 

[Be152] I parallelise small chunks of code and then I look at the profile of 
those and the nice thing about these tools is that they are sorted by their 
sizes from the top. Then I look at ... some portions must take a lot of time 
obviously because they are the work, and I try to look at those that shouldn't 
take that much time. For example, when you have a big group you expect 
that communication will take a large time whereas a short communication 
would be abnormal to take a lot of time. In order to see why something 
is taking so much time, I am trying it on half as many processors and you 
know that something is really going wrong if it still takes a lot of time. I 
mean tuning is what you do at the end. 

Informant 42 

[Be151] I look at the speedup and if things are not good I look at the data 
distribution. 	 Informant 18 

It depends a bit. If you are doing an inner product where the number 
of processors is an important parameter, . . . yes, you will run on different 
numbers of processors. If you are making a change, where you say well, this 
is either going to speed things up or not, then you would just run for one 
representative set of data. Because I know how the program behaves. The 
number of calculations is not strongly dependent on data sets. And I can 
tell how many calculations it is doing and what the pattern of calculations 
is. So on then basis of one data set, I can fairly predict what the results 
on other data sets will be. In fact, the only meaningful parameters for the 
solver is the number of iterations and the restarts. And the data set as long 
as it is not all zeroes it is not going to have a major effect. Informant 44 

I would first run our code on the highest number of processors and 
look at how much time we spend on communication compared to compu-
tation. And then, I would say, ok, I am satisfied with the communication, 
then I would look at the lower level Cray puts and gets and see if I could 
do things faster than message passing and I would take a single node and I 
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would look at a profile and try to optimise it as I would optimise any other 
program for a workstation. 	 Informant 51 

When I started with the parallelisation, I would do some exper-
iments on the machine to get an idea of how I want to do it and get it 
efficient then I would just put it in the code and then I would fine tune at 
the end. Well, on the Maspar you have a front end and then you have the 
back end, which is the machine and on the front end you have one large 
processor with the sequential data program and the data parallel program 
will be executed by the distributed processing units. For example, some of 
the data exchange was done globally, global broadcasts and global gathers 
were done by the memory of the front end. It turned out it was faster read-
ing the sequential memory and when you had a total read of the sequential 
memory. There was some synchronisation on that but apparently it was 
automatically broadcasted and distributed in a form of a tree or something 
like that, it was really the fastest way to get there. I mean, the other option 
that you would have would be to send something to the sequential processor 
and this one would act as the source of the broadcast. So I've worked on 
the Maspar before, so I knew, but in the very beginning, I just tried a small 
piece of code. And the way I solve these problems is that I develop two 
small programs, which have these two kinds of communications, and I see 
which is the faster one. 	 Informant 42 

I tested ideas on code and then I experiment on real problems. 

Informant 11 

That is true and another nice thing about it is the way we have 
coded the communication declaration we can split tuning into two tasks. 
Optimising the communication and optimising the computation. And they 
are really totally independent and two people can do that. Some of us are 
trying to get serial performance and some of us are trying to make more 
clever communication. We usually look at different subtrees. If you look at 
a profile, i.e where you spend a lot of your time, and then try to divide it 
out and we haven't really spent much time on optimising . . . we are trying 
to understand more why certain things that you optimise don't give what 
you expect. Usually, we divide it so we can get different subtrees. Try to 
see how to optimise those. 	 Informant 51 

[Be37] Implementing the optimisations is limited by the edit-compile-run 
cycle. For example, in one case, the solution was easy to come with. I had 
to move an outer loop into an inner loop. This, though, involved making 
simultaneous changes to 30 different subroutines. Running old and new 
codes under debuggers side by side on a workstation with X windows was 
the only way this was possible. Because the change was so global, one 
needed to compare the correct behaviour of the program against the altered 
code in order to eliminate bugs introduced in the recoding. 
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Informant 1 

[Be628] is presented in section B.3 

B.1.2 Case study I: verbal protocol analysis 

I have to see all the routines I have . . . (he is searching for the file 
which contains the version of the routine he wants to test). This is just a 
wrapper (the source code which contained the call to the specific routine) 
for .. . PVM can go out. This is just a wrapper for the sum routine which 
is down here (at the end of the file) and I have several versions of that. To 
see which one is faster (he removed from the main file some calls to PYM 
functions which had been used in previous experiments). I'll just compile 
the original routine, this is the main program and I think this is the routine 
I was working with before (he linked and ran the program). I run it on 
one processor just to see whether everything is still working; compiling and 
linking and running as it should do because it has been a time since I 
worked with this routine and this is the last version . . . (a lot of time was 
spent trying to eliminate the compilation errors and while the program was 
being compiled the tuner opened the file which was being linked with the 
program). This is actually to make sure that I am running the file I want 
to be running. 

I would use apprentice, but as you can see, this is just one routine 
and it is a fairly trivial routine, it is really, a really small part of the program 
so there is not much apprentice could tell me about it. I prefer to take 
timings (by inserting timer calls) and check if that is ok, and the one thing 
I want to do here is I do want to print sum. This is a sanity check. . . . You 
can write beautiful programs but if the results do not compute, then you 
are in trouble. So I am now putting a line that gives me the summation in 
one direction. And the result I should have got. Because in inner products 
timings can be very critical. So the slightest error in timing can give you 
very strange results. You could for instance have written a very smart 
routine that 99% gives a right result but if it is called twice in succession it 
might use an odd result because you forgot to put in a barrier. There are 
situations when you want to compute 100 inner products in a row, but with 
a little work in between. If there is too little work in between it might catch 
one of the old intermediate results instead of doing what it is supposed to 
do. I guess, I should not have tried for the 32 processors because I am not 
going to get them. 

So this is acceptable . . . (he runs the program on 16 processors and 
writes down the result on a piece of paper). And now, what I have to do 
is change it to something that uses shmem calls to see if this is faster. But 
before I do this, I want to see what the results are up to now. Now this 
is 16 processors, (looking into the program log file) with one type of tree 
- here actually I use an eight way tree for as far as possible - working on 
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the 16 processors the four tree wins; if you are working on more processors, 
the eight way tree will win because you have large overhead because of 
synchronisation. Not data transfer. Nevertheless, I want to try the four 
way tree with shmem_gets, instead of with shared arrays. In order to do 
that I need a common block, otherwise I am not allowed to use shmem_get. 

I have these results somewhere in the file, it is just to remind myself what I 
was doing and to see if my program is still running. I want to check if it is 
still ok. This file is already part of a report. In general, if I take the effort 
to write something on a file or a paper it will turn up in a report at some 
point else it will be a waste of time. 

I run this version here to see if it still works. And I know approximately 
what the results will be, so this looks ok, so what I want to do is compare 
this one with the new version. And as libraries and compilers are regularly 
updated, if you want to compare things it is better to run them one after 
the other; on the same date, the same machine, the same circumstances. 
The compiler changed and the library changed and it had a min or effect 
on my program but it may have a major effect on minor details like this 
routine. (He introduced the shmemput calls and he had to compile to see 
if they would work.) 

[Be603] I am not sure whether this will actually work, there might be a 
synchronisation problem. I hate on-line manuals. . . . It is very difficult to 
find what I want (he attempted to consult the manual pages for shmemput). 
Compiler directives, where should I look for those? (The author suggested 
that he should use the search function in he on-line manual.) Now, the last 
one I tried was if, this one is lx, and now we get lots of compiler warnings. 
Oh yes, I have to declare these variables. Aaaaah yes . . . (He checked the 
arguments of the routines.) And I must remember to change all the lines in 
the routine. The answer is correct but the routine is slower. That is a bit 
depressing. Aaah . . . wait a minute. (He had made a typo mistake.) It was 
transporting a lot more data than I wanted it to (he fixed 2 typos). Now 
it should not be slower. That would be really disturbing news. It is slower. 
I think it is the cache invalidation that is causing the problem. (He unset 
the cache invalidation.) Let's see. .. .1 was running on 16 processors. Right 
that's it. It is the cache invalidation that slows things down, the problem 
is, that if don't invalidate the cache, I cannot guarantee that I get the right 
answers. And as there is a difference of 880ps vs 937ps and of 350 Mfiops/s 
vs 372 Mfiops/s that is not justifying living dangerously, I will stick to the 
shared arrays version. To be sure that this is safe, I would have to go into 
the documentation. I do not want to risk it and I do not want to waste 
time reading manuals. Actually, I should look at the BLAS routines. BLAS 
tends to be very highly optimised. Informant 44 
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B.2 Documentation methods 

After a few experiments, soon I noticed that it is impossible to keep 
them in mind. So I have written a suite of Perl scripts for experiment make 
log with what binary resident on where, and the compilation condition for 
each binary. I make graphs semi-automatically. I have also written a tricky 
makefile to pack compilation flags and cpp-definitions into the binary. So 
every binary can print out its compilation options when executed with run-
time option. I am trying to use the version control (CVS) but retrieving 
old version is still unnecessary (fortunately). Recently, I noticed that keep-
ing the same binary is not enough to compare with other people's result. 
Because everybody changes the source code from time to time (including 
bug fix) and simply comparing new result to old (some people's conditions) 
result leads to incorrect conclusions. Instead of keeping binary, checking 
out the latest version, recompiling all the binary with some compile option 
(cc -dxxx) and comparing make things better. (But it is also cumbersome 
and it takes rather long time). 

Informant 36 

I had two of these variables against time and you could see what 
was going on (in the diagram). What I was doing is having a batch file 
taking times for all these runs. I don't see how you could get away from 
that. Perhaps if you can build a useful user interface. 	Informant 63 

You might make a modification to the code that would have to be 
ripped out later. SCCS and RCS can take care of this handily, so the issue 
of documentation is not as important as it might seem. 	Informant 18 

I try to use RCS. Typically, I maintain only one version that I work 
from continuously trying to improve that version for all runs (i.e. single pro-
cessor and parallel execution). It is too much to carry around more than 
one version. It's enough to just maintain program integrity (i.e. obtaining 
the correct answers when attempting to run via code modifications). This 
is probably my weak spot. We are usually too busy to do extensive docu-
mentation. It is really an important area to maintain good documentation 
and some of us use RCS to note the changes and then use an online readme 
file or notes file to hold the intermediate results. 

Informant 19 

[Be628] Notes on converting and tuning ARPS 3.1. 

April 7, 1993 
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-- Made Makef lie, based on CMAX example Makef lie. 

-- Bus error after: 
Starting pass 2-3 
Updating primary database 
Updating secondary database 
Vectorising routine <ARPS31> 

April 8 

-- Fixed bug that was causing bus error, ran. 

April 13 

-- Started looking at results of run. Lots of stuff ends up on front 
end. 

-- Will go through Jonas's changes and integrate them into this 
version, but using #ifdef CM so that portability will be maintained. 

-- After Jonas's changes are in, next thing is to add the axis 
permutation stuff and timing stuff (latter with ifdef's). 

-- NODEPENDENCE's in chksym3d.f possibly out of place; possibly 
unnecessary. 

-- Blew off the I/O changes in duinp3d.f. 

-- BAH! Gave up fooling with the DIFF's. Found and grabbed Jonas's 
sources. Highlights: 

-- Split statements for reductions: 

C 	 dkew = 0.5*wrho(i,j, 2 )*w(i,j, 2 ,tlevel) 
< 	. 	+ 0.6*wrho(a,j,nz 1)*w(i,j,nz 1,tlevel) 
< 	kew = kew + dkew 
> 	kew = kew + O.S*wrho(i,j, 2 )*w(i,j, 2 ,tlevel) 
> 	kew = kew + 0.5*wrho(i,j,nz-1)sw(i,j,nz-1,tlevel) 

Linear memory sleaze 

C 	CALL cpyary_3d(teml,u 	(1,1,1,tim), nx, ny, nz) 
> 	CALL cpyary(teml,u 	(1,1,1,tim), nx*ny*nz) 
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CALL flzero_4d(u, fix, fly, nz, nt) 

-- Max of ABS (which shouldn't be needed anymore): 

< 	tmp = abs(w(i,j,k,tlevel)) 
< 	absmax = max(absmax, tmp) 
> 	absmax = max(absmax,abs(w(i,j,k,tlevel))) 

April 14 

-- Commented out Jonas's datavault I/O for now, got things running 
again. 

-- Next thing to do is put the axis permutation in the F77 source and 
add permutation stuff to the makefile. 

-- Another thing to do is the tweak the dimensions so that we're 
running a bigger problem, and so that we're mapping it onto the 
machine better. Currently, each axis has three slop elements in it, 
so a 32x32x32 problem uses arrays of dimensions 35x35x35. 
Dimensions are in dims.inc: 

parameter(nx=35, ny=35, nz35) 

When we get around to timing things we should time both as-is and 
CM-tuned problem sizes. Be sure to adjust cell size in arps3l.input 
when we do this. 

-- Trying to run on a 4 PN machine, getting this error: 

CMOST: User yellow interrupt. 

*** RTS-FATAL-UNIX  
Traceback follows: 

pc = 0xf78bc12O 
pc = 0x28c2d4 
pc = 0xf7892c4c 
pc = Oxf8Of300c 
pc = 0x285190 
pc = 0x2725e8 
pc = Ox25fad4 
pc = 0x251b1c 
pc = 0x6c2c4 

lOT Trap 

7?? 

_CMI _pani c 

_CNNk.bc_sen&.msg 
SMCOM_pemy_grid_coordinate 
_CMCOM_my.grid_coordinate 
_CMRT_my_gri&coordinate 
advw, line 1238 
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PC = Ox5aOOc 
PC = 0x37780 
pc = OxllcSO 
PC = Oxc8a4 
pc = 0x8360 
PC = 0x24f80c 

_advuvw_, line 190 
_frcuvw_, line 320 
_tinteg_, line 924 
_cordintg_, line 392 
...MAIN_, line 688 
_main 

The indicated line is: 

FORALL (k = 2:nz - 2, j = 1:ny - 1, ueblOO(k - 1,j) .GT. 0.0) 
& 	wadv(nx - 1,j,k) = ((urho(nx - 1,j,k) + urho(nx - 1,j,k - 1)) 
& 	* 0.5) * (w(nx - 1,j,k) - w(nx - 2,j,k)) / dx 

Will try compiling this file -nonewforall without -O to see if that 
helps. 

-- Yes, that does the trick, but at some cost in performance. Will try 
just -nonewforall .... Yeah, that works, too. 

-- Added timing code conditionalized by *ifdef CM to arps3l.f. 

-- Added permutation directives to source files and associated hackery 
to Makefile. 

-- Screwage can't do the axis permutation before CMAX'ing because then 
the axis elision doesn't think the slices are contiguous pieces. 
So, rework Nakefile to do it afterwards. 

-- Okay, with that done, things run at speed comparable to the 
hacked-by-hand CM Fortran. 

April 15 

-- Added cshift stuff in conditionals, but not in DIFXX, DIFYY, or 
DIFZZ, because there was no temp to do this right. Could do it 
halfway in those places. 

-- Recompiled with larger problem size (67 x 67 x 35) but don't have 
quite the right input file for it. Results look promising, however. 

-- Preliminary numbers (pre-cshift) per iteration: 

4PN 	 32PN 	 64PN 

	

35x35x35: 	 18.2 	 4.5 	 2.8 

	

67x67x35: 	 62.6 	 10.6 
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-- Reconverting for cshift in all but DIFXX, DJFYY, DIFZZ. 

-- Bug in CMAX_CSHIFT processing found and fixed. 

4PN 	 32PN 
67x67x35: 	 59.6 	 10.6 

-- After bounds trimmed (so no masking in AVG and DIF ops): 

4PM 32P11 64PN 
32x32x32: 11.0 2.0 1.33 
35x35x35: 17.2 3.7 
64x64x32: 43.4 6.0 3.36 
67x67x35: 87.5 10.1 
128x128x32: 22.0 11.42 

Using exact powers of two sure helps. 

-- We don't know the number of iterations used to get the RS/6000 
cluster results. If it's something like 10, we're in good shape. 
If it's something like 60, we're in sad shape. Jonas said something 
like one processor would do about 90 seconds per iteration, I assume 
of the small problem. Looking at Figure 5 in the paper that tells 
us that the 900 second figure for the small problem on one processor 
represents 10 iterations. Let's go with that. This is the mail 
from Jonas where the 90 second figure comes from: 

From: Jonas Berlin <berlin@Think.COM > 
Date: Non, 22 Mar 93 12:42:45 EST 

A little update of what we are doing. Ken lost quite a bit of 
interest for a while, but when version 3.1 of ARPS came out I managed 
to get it running in 4 days. Most of the problems I encountered were 
known CMAX bugs or deficiences. The update time on a 16k cm-2 is 8 
seconds, compared to 90 seconds on a slow version RS600. The biggest 
problem now is to get the memory usage down. CMAX wastes quite a bit 
of temporaries. Next thing will be to get some speedup. 

April 16 

-- Turns out the above 90 second figure was wrong, or at least doesn't 
have much to do with what's in the paper. The graphs in the paper 
are from ARPS 2.0, so we're basically comparing apples and oranges 
here. Compiling and running on a Sun for some means of comparison. 

Compiled -O with f77, run on Ukko (user CPU time): 
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32x32x32: 	 31.2 

	

64x64x32: 	 75.6 

-- Mail on RS/6000 performance: 

Date: Fri, 16 Apr 93 17:14:12 EDT 
From: johnson@vaxdad.scri.fsu.edu  

I do not have presentative timings at this point for v3.1. Rough timings 
on an RS6000 model 320 (20 mHz clock) is about 2.5 hours CPU for 
the input file supplied with the ARPS distribution (35x35x35 grid 
points, TSTOP=3600 mm). In the coming weeks I should more precise 
timings on various models of R56000's, a PVM version on a cluster 
of RS6000 1 s, and a Y-MP. I will send them to you when I get them. 

-- So, that's 2.5 hours = 150 minutes for 600 iterations, or one per 15 
seconds. About twice the speed of a fast Sparc system (Ukko), which 
is certainly more than twice the speed of a CM-5 Sparc. Hmrn. 

April 19 

-- Trying without the VU's, just for kicks. 

4PM 	 32PN 	 64PN 

	

64x64x32: 	 458.8 	 39.7 

Oh, foo, those times were with -cmprof, so not quite comparable 

April 20 

-- Can't run P77 version on a node because: 

Unsupported unix system call (getrusage) called. 

From 

cmaml_internal_dispatcher() at Oxb5b4O 
CMMP_send_block() at 0x8150c 
CMMD_request_service() at 0x9a814 
cmmd_lseek() at 0x8c2c8 
lseek() at Ox8ec5c 
.fseek.fseek() at OxecelS 
now_acc() at Oxcaae8 
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t_runc() at Oxc71a8 
f_clos() at Oxc6cO8 
dtadump_() at 0x77ed8 
initout_() at Ox3b3fc 
MAIN-0 at 0x30a0 
.main.main() at 0xb9704 

-- Trying CrlF version. 

ON (compiled -node; ,4 copies run on 4PN machine) 
32x32x32:, 	 40.2 

This is in line with the other CMS numbers, so I'll just add it in. 

-- Can't run sparc version when compiled without -cmprof: 

CMOST: User segmentation error on PU. 

*** RTS-FATAL-UNIX: lOT Trap 
Traceback follows: 

pc = 0xf782c120 7?? 
pc = 0x23e13c .CMLpanic 
pc = 0xf7802c4c TI? 
pc = Ox22f3fc SMCOtpe_mygrid..coordinate 
pc = Ox2laac4 _CrlCOtfuncall 
pc = 0x2107e0 CMRT_funcall 
pc = OxlaS7fO _soundg, line 1048 
pc = Oxla4lf8 _zprofil, line 571 
pc = 0x199148 inibase, line 282 
pc = Oxee9lc _initvar, line 2771 
pc = Oxd9a5c initial_, line 380 
pc = 0x4284 -MAIN- , line 629 
pc = 0x208cd4 main 

Tried compiling inibase3d.fcm with -cmprof, and that does the trick. 

-- Times: 
4PN 	 S2PN 

32x32x32: 	 93.0 	 8.8 

-- Since the profiling data reveals that no one routine is being a 
terrible hog at this point, it seems that new approaches could be 
worth looking into. Changing the decomposition to just X and Y or 
just X might help a lot -- could take advantage of serial axis 
optimizations. Night get tricky. Will try serializing the Z axis 
first, then the Y. 

-- Looks pretty simple, actually. Also changing the layouts in 
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inibase3d to :serial, since that seems to be all I/O. 

-- Here's a problem with this: the axis elision transformation puts 
things in canonical layout, which is not what we want. We want to 
preserve the serialness of axes: 

SUBROUTINE frcuvw(nx,ny,nz,u,v,w,ptprt,pprt,qv,qc,qr,qi,qs,qh,ubar) 

\small 
CNF$ LAYOUT u(:NEWS, :NEWS, :SERIAL, :SERIAL) 
CNF$ LAYOUT v(:NEWS, :NEWS, :SERIAL, :SERIAL) 
CNF$ LAYOUT w(:NEWS, :NEWS, :SERIAL, :SERIAL) 

C ... ] 
CALL mixuvw(nx,ny,nz,u(:,:,:,tlevel),v(:,:,:,tlevel),w(:,:,:,&tlevel)) 
C ... ] 
SUBROUTINE rnixuvw(nx,ny,nz ,u,v,w,ptprt ,pprt ,qv,qc,qr,qi ,qs,qh,ubar 
C ... ] 

CMF$ LAYOUT u(:NEWS,:NEWS,:NEWS) 
CMF$ LAYOUT v(:NEWS,:NEWS,:NEWS) 
CMF$ LAYOUT w(:NEWS,:NEWS,:NEWS) 

C ... ] 

-- Further tuning possible in getting rid of contextualization by 
detecting if loop bounds equal to array bounds, then having two 
separate loop nests; this is worth putting in training and doc 
materials. For ARPS, look at a3dmax, aamult, advcts_vl, 

April 21 

-- Could try using interface blocks, perhaps? Or have axis elision 
transform emit them, and do the right layout propagation? 

May 4 

-- The CMF compiler won't be up to passing sections without VPMOVE's 
until 2.1 Beta 2, so we'll wait until then to push ahead on this 
front. 

-- Will try 2.1 Beta 1 (have been using 2.1 Beta 0.1) to see if that 
helps in any noticable way. 
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May 5 

-- Running a big problem on 64 PM's: 

4PN 	 32PN 	 64PN 
32x32x32: 	 11.0 	 2.0 	 1.33 
64x64x32: 	 43.4 	 6.0 	 3.36 
128x128x32: 	 22.0 	 11.42 
256x256x32: 	 43.57 

May 18 

-- With things tuned, some times: 

4PM 	 32PN 	 64PN 
32x32x32: 	 6.23 	 1.15 	 0.76 
64x64x32: 	 4.87 	 2.06 
128x128x32: 	 7.07 

Unfortunately, we can no longer run 64x64x32 on 4 PNs. 

-- Time from Ukko on this serial version for complete run, with 
initialization and 600 time steps: 

12272.9u 655.3s 3:35:41 997. 0+-4312k 13+17io 116pf+Ow 

Which is 20.45 sec/it average. The CM time is not too hot compared 
a bare Sparc, although Ukko is perhaps twice as fast as a node 
processor, and the node is double double precision math while Ukko 
was doing single precision. 

-- Can't even run 32x32x32 on 1 PN, which truly sucks. 

-- Will move these arrays to :SERIAL layout to try to cut down VU 
memory usage: 

CM QVBAR(:NEWS, :NEWS, :NEWS)<Directive><Warning: No vector usage> 
CM QS(:NEWS, :NEWS, :NEWS, :SERIAL)<Directive><Warning: No vector usage> 

CM QV(:NEWS, :NEWS, :NEWS, :SERIAL)<Directive><Warning: No vector usage> 

CM QI(:NEWS, :NEWS, :NEWS, :SERIAL)<Directive><Warning: No vector usage> 

CM J3(:NEWS, :NEWS, :NEWS)<Directive><Warning: No vector usage> 
CM QH(:NEWS, :NEWS, :NEWS, :SERIAL)CDirective><Warning: No vector usage> 

CM J2(:NEWS, :NEWS, :NEWS)<Directive><Warning: No vector usage> 
CM ZP( :NEWS, :NEWS, :NEWS)<Direbtive><Warning: No vector usage> 
CM HTERAIN(:NEWS,:NEWS)<Directive><Warniflg: No vector usage> 
CM J1(:NEWS, :NEWS, :NEWS)<Directive><Warning: No vector usage> 
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CM 	Z(:NEWS)<Directive><Warning: No vector usage> 
CM 	Y(:NEWS)<Directive><Warning: No vector usage> 
CM X(:NEWS)<Directive><Warning: No vector usage> 

-- Nope, the Q guys should still be :NEWS. 

Conflicting directives for array QS in ARPS31 [arps3l.f] 
Conflicting directives for array QV in ARPS31 Earps3l.fJ 
Conflicting directives for array QI in ARPS3I [arps3l.f] 
Conflicting directives for array QH in ARPS31 [arps3l.fJ 

Must be a bug somewhere in the 'no vector usage detector, Sm? 

-- Running short on single and double on ukko: 

238.7u 39.4s 5:26 857. 0+8816k 10+7io 117pf+Ow 	single 
261.5u 51.7s 8:09 637. 0+8784k 11+7io 162pf+Ow 	double 

-- Running short on single and double on smitty-cm5-n3 (cmix): 

271.6u 15.7s 5:07 937. 0+7744k 3+5io123pf+Ow 	single 
271.2u 15.7s 5:12 917. 0+8052k 3+5io 154pf+Ow 	double 

Hmm, is that right? No time difference between single and double? 

-- These numbers are not all that impressive. It looks like we'll be 
lucky to get 160 MFlops out of a 64 PN machine, which is 2.5% of 
peak. That's about a factor of 10 from where we should be. So 
where is all the time going? Profiling doesn't help much at this 
point; there's some very basic problem, I think. 

-- Well, the version with all those arrays serial dies with a bus 
error, so I guess we back out those changes. 

-- Data for complete runs on a dedicated machine: 

32x32x32 on 64 PNs: 
CM Elapsed time: 511.029 seconds. 
CM busy Time: 451.358 seconds. 
FORTRAN STOP 

497.Ou 9.5s 9:33 887. 0+2508k 9+13010 318pf+Ow 

64x64x32 on 64 PNs: 
CM Elapsed time: 1309.239 seconds. 
CM busy Time: 1200.621 seconds. 
FORTRAN STOP 
1260.6u 16.3s 23:51 897. 0+2536k 7+132io 317pf+Ow 
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May 19 

-- Data for complete 32x32x32 run on-a-node: 

% time arps31-single < arps3l-bench.input 

15916.5u 803.Os 4:39:43 99'/. 0+-3004k 3+7io 166pf+Ow 

-- So, CMF on a 64 PN machine is 4:39:43/0:09:33 = 29.29 times faster 
than F77 on one PN. The speedup for the larger problem would be 
more. Unfortunately, it would take about 16 hours to run the large 
problem on one PN, and we might not get that dedicated time. If the 
serial time scales exactly by 4.0, then we would come in at 46.9 
times faster. 

-- Short run of 64x64x32 on-a-node: 

'/ time arps31-64x64x32-single < arps3l-short.input 

1166.6u 914.2s 2:24:46 23 0+9504k 2+5io 175642pf+Ow 

The problem here is that the nodes on Smitty only have 16 Meg, and 
so it's is paging (over the network to an SDA). Boo hiss. 

May 21 

-- Data for short run 64x64x32 in F77 on-a-node with BIG MEMORY: 

864.7u 7.5s 20:47 69'h 0+880k 3*9io 53pf+Ow 

This looks a little better, eh? So: we'll run the biggest thing we 
can on the BIG MEMORY machine. 

-- Running short run 128x128x32 on 4 PN BIG MEMORY machine: 

CM Elapsed time: 1124.630 seconds. 
CM busy Time: 1033.380 seconds. 
FORTRAN STOP 
940.7u 4.4s 23:32 66% 0+2408k 10+13io 307pf+Ow 

That's 103.3 sec/iteration. 

-- Rounding out with 64x64x32 time we now have: 

4PN 	 32PM 	 64PN 
32x32x32: 	 6.23 	 1.15 	 0.76 
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64x64x32: 	 24.5 	 4.87 	 2.06 
128x128x32: 	103.3 	 13.2 	 7.07 

There seems to be some degradation here going from 64x64x32 to 
128x128x32, perhaps due to the boundary condition handling. 
However, whatever the reason, the speedup factor gets better with 
larger problems, going from a factor of 8 between 4 and 64 PM on the 
small problem to a factor of over 14 on the large problem. 

July 8 

-- Trying to figure out what runs we can make with a couple of hours of 
IX processor time. For full runs, we're probably looking at 
something like: 

1K PM 
256x256x32 	:40 
612x512x32 	2:30 

1024x1024x32 	(no way) 

-- So, we'll get some short times and extrapolate from those. To be 
complete about this, we'd need the iteration times for all the other 
rims, which we may be able to scrounge up somehow. Or, we can just 
count the setup time for a small run and extrapolate. Or something. 

-- Times for short (10 iteration) runs, actually measured, in seconds. 
"Total" is real time, "10 its" is CM elapsed time for 10 iterations: 

256x256x32 
512x512x32 

1024x1024x32 

-- For full run: 

128 PM 	 266 PM 
Total 	10 its 	Total 	10 its 

512 PM 

	

Total 	10 its 

	

604 	200.2 

64x64x32 
128x128x32 
266x266x32 
512x512x32 

1024x1024x32 

128 PM 	 256 PM 
Total 600 its Total 600 its 

512 PM 
Total 600 its 

	

702 	487.7 

	

3197 	2694.2 
12512 10803.5 

-- Also could include memory usage figures: 

512 PM 
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64x64x32 1.11 G 
t28x128x32 
128x128x32 1.44 G 
256x256x32 2.68 G 
512x512x32 7.77 G 

1024x1024x32 

128 P 4G 
256 P 8G 
512 PN 16 G 
1024 PN 32 G 

On 32 PN, 32x32x32 uses 94.2M. 

-- Need to do short runs, obviously. Might have time for 512x512x32 
full run. Set limits at: 

1K PN 

	

512x512x32 	:10 	(just like 512 P11 run) 

	

1024x1024x32 	:20 	(double for good measure) 

-- Submit these jobs: 

time arps31-512x512x32 C arps3l-short.input limit 10 
time arps31-1024x1024x32 < arps3l-short.input limit 20 
time arps31-256x256x32 C arps3l-bench.input limit 45 
time arps31-512x512x32 C arps3l-bench.input limit 2:30 

Informant 17 

B.2.1 Reasons for documenting tuning 

[Be612] and [Be613] are presented in section 

To have a place holder in order to be able to put a project on hold 
for a period of time and be able to return to that project at a later time 
without having to reinvent the wheel. Wejuggle many projects at a time 
and this is a key not to regress. 

Informant 19 

To remind myself of what I was thinking of and why I did it this 
way. 	 Informant 20 

I think it is probably worth keeping even the bad cases. I think 
they are worth keeping because there might be some particular bad thing 
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in the configuration which has caused a . . . Identifying where the worst case 
is is useful as identifying what the best case is. Worst case avoidance could 
be a reasonable way of tuning the program. 	 informant 68 

To keep track of changes and maintain the history of the software. 
Also to be able to explain why the speed differences. 

Informant 7 

To use as a learning aid for future performance tuning sessions. 

Informant 21 

To have an idea of how these tuning changes will be different on 
other systems. 	 informant 11 

13.3 Tool requirements 

Documentation has been a problem in the sense that the formal 
documentation, required for the software standards, was imposed half way 
through this project. So, it was never originally planned that the documents 
that were ultimately required would be required. But other problems we 
find are the continuous documentation of problems, hints tricks, things that 
people have found in use and have it up here (he showed his head) and they 
never wrote them down so that everyone else can use. Yes, the biggest 
problem is with the little tricks and hints, ways around the problems, the 
formal documentation is not so much of a problem. We do have some means 
to trying to document that, but persuading people to write it down to paper 
has been difficult. So there is a problem in documenting at that level. But I 
would say that this documentation is satisfactory. But other than that, the 
problem with the documentation was that the formal documentation was 
imposed half way through the project. We have never used any versioning 
system. 	 informant 48 

We would be interested in having something, that integrates your 
kind of environment, where you can query a database of outcomes of ex-
periments. And have a kind of version management included . . . you have 
an application and you are going to be running thousands and thousands 
of data sets with this, or a large number of data sets, you have to get to 
record that, and maybe you have the number of processors as one factor, 
maybe the optimisation level of the compiler, etc. And it was exactly the 
idea, for example, the system would automatically record what optimisa-
tions you used or when you use a visualisation tool, the trace files would 
be linked to makefiles that you used. And it could associate the options 
for the compiler and the outcome of the experiment. It was only thought 
to keep track of the relationships in your development process, what you 
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have done, what versions you created. It would certainly be helpful to have 
something like that. If you extend it, you can even create a database of case 
histories that other people can go and look up, for cases that are similar to 
this, and say some one has a problem on one machine and he describes a 
bit of the problem and then somebody could access it and benefit from this 
experience. You get a lot of that by user groups. Anybody who is using 
a new machine architecture would almost certainly want to collaborate or 
have some meetings with people doing similar work. Informant 50 

[Be524] Well, I think we are going to have to have some kind of configuration 
control method mechanised for it because he have a number of upgrades to 
do, and things are relatively easy when you are in a prototype stage of a 
project. You can have versions proliferated. Once you get into production 
mode, things become more strict. You have to record specific versions of 
the code. So, I do anticipate that at some point.we will use some form of 
computerised control over the versions of the code. Currently, we have a 
logbook for that . . . but out of the design procedures every change of the 
software or every hacking has to be done through proper documentation 
and agreed by the people in the team. So, there shouldn't be any informal 
changes to the code. 

Informant 48 

Right yeah, so some kind of database with versioning control. Yes, 
that would be very nice. It reduces the risks, you know, if you change the 
code too much that you cannot get back to a previous version. It seems 
very difficult to achieve. In terms of things like that we will have to spend 
some time in the project. But at the moment, we don't know of anything 
that could provide us with this kind of documentation. 	Informant 47 

Yes, I think it would probably be useful, the way we are working 
here today is from this point of view very much haphazard. So any specific 
time connection or even just going and asking people to see if they 'ye done 
it, or doing it myself, if you have a central .repository for this. Mots that 
is a significant problem, actually keeping track of the version you have on 
the various machines, we do have a very good version control tool, which is 
Clearcase. In the parallel world so far, the guys have found it restricting or 
painful to work with, but partly or even mainly they intend to be developing 
on our 6000 workstations and ClearCase runs on the SGI platforms which 
are the platforms all the researchers work on and where the fileserver is. So 
we bought it only for that platform. The fact remains, if you don't have 
an Sc!, it is a little more clumsy to use because the database is somewhere 
else. And therefore developing on the R56000, they have to go through 
some short of NFS or some sort of network to get a . . . And they find it 
a little bit . . . it affects their developing speed. So they are reluctant to 
use it and therefore we have the situation where there are lots of tar files 
lying there, and it is slightly difficult to follow what you have. There are 
comment fields in many places, but they tend to be limited . . . They are 
simple character strings appended to the version. It is a very simple level, 
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you could of course impose your own documentation standards, you could 
have in the Clearcase database each change to reflect this information but 
it would only be a text file. 	 Informant 52 

[Be529} A tuning management tool proposed within the context of the PPPE 
project was dropped because of the persistence of most of the users and most 
of the vendors to implement it. The argument was from the vendors point 
of view, that it is one more software layer and since it is all from different 
companies, it comes more messy for them to manage the licence rights and 
royalties to pay and it becomes more complicated to market. And most 
of the users' point of view was that the tool will degrade the developers' 
performance. Saving the result of a tuning experiment in a database has 
some cost associated with it, which users with small codes are not prepared 
to afford. Informant 53 
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day secs 	mfiops***l 	 notes 

135 * 18.1 132 recompiled ineiko set of vectorised routines on cOO, 
performance suggested that more routines need to vectorised 

and probably further optimisation of already vectorised 
routines, produced profile on cOO and gprof, prof and 

pgprof_all fail to work _(for _ifs) on cs-2 

15 181 13.2 vectorised: trltog, trgtol, had to work around 
compiler bug in trltog and trgtol, bad object 

code was produced for identical loop in both routines 

16 171 14.0 vectorised: sigam, surgri, sc2fsc,radlsw 
radlsw failed to compile, got an internal compiler error 

workaround was to use cdir-novector directive 

17 157 15.3 vectorised 	vdsfsdrv, no connection to cerfacs possible 

22 150 16.0 recompiled with nproma=64, 128 was probably large enough 
22 5 * recompiled with nproma=256 run failed with an addressing error 

22 11.7 205 recompiled latest meiko set of vectorised routines 
on cOO with nproma=64,as 220 mflop was obtained when 

all routines were vectorised it looks like we wont get much more 
performance on the meiko by vectorising more routines. 

24 updated sources to latest cy12 versions 

25 133 18.0 more work on :lwu, radact,swu,mainly  
changes _x 5 y_to_exp(y]og(x))_to get loops to vectorise 

Table B—i: [Be627] Diary of porting IFS to CS-2 
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Tuning across organisations, 

people and machines 

Appendix C contains a number of excerpts of discussions with parallel program de-
velopers and material kindly given by EPCC's User Support Service. Parts of some of 
these excerpts are included in Chapter Six to support the arguments presented in that 
chapter. The selection of these excerpts has been based on their ability to convey briefly 
and effectively practices which are most representative of the ways parallel program 
developers work. Other excerpts included in this appendix do not appear in the corres-
ponding chapter. They repeat and support the information given in the representative 
excerpts and are included here for the benefit of the reader in case they can be used to 
drive further research on parallel program development. 

C.1 Different attitudes to tuning 

[Ce30] Most people don't have to. In terms of optimisations, they rely 
mainly on the compiler optimisations and some people don't even exploit 
that because they don't know that there are certain flags, you can turn on 
For example, a code is running on double precision whereas it can run faster 
in simple precision. This is talking in Cray terminology, they forget that 
there are a few people out there, that if the code doesn't run long enough 
then it doesn't make any difference. Then, there is the other extreme like 
here in the weather forecast, where performance is a very important issue. 
If we can get the operational model code run 10% faster, we get our salary 
increased. There is a value associated with that, but equally, we can't go 
and modify 90% percent of the code to gain this performance because we 
will get the code unmaintainable. Informant 53 

[Ce28] Tuning? We don't do it so much. We are always more interested in 
providing functionality than providing performance. We hope that we will 

248 
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have the time to implement a second version of the code, but this never 
happens. Having said that, we try to think about performance and no do 
anything stupid. 

Informant 56 

[Ce8] No, that was to take it away from the C90 because it has been running 
only on the C90. And people have always coded for the C90. And uses 
features like memory management, dynamic arrays and pointers, so first 
thing is to make it portable, the first test is to run it on the workstation. And 
next to another message passing machine with the same level of parallelism 
that you have in the C90. I did that version that runs on the workstation 
and then I changed some of the data structures which were not so suitable for 
parallelism in a distributed memory; so then I rewrote the data structures 
for this version on the workstation, on a distributed memory machine we 
had to reorganise all the data structures. Well not all but some of the data 
structures. So the parallel part was to put all the PARMACS commands 
which send the data between the processors, that is what they wrote in 
Germany. We had to make it portable so we only allowed a subset of 
Fortran 77 and all the Cray specific features have been removed so it is 
quite different. The number of lines that I modified is quite a high number. 
The forecast model is around 100,000 lines. The message passing version 
is the same plus 5,000 for message passing; the strategy we had was one of 
the basic strategies, was to keep the serial code as close as possible to the 
parallel code. Because of maintenance reasons, we didn't want everybody 
here to start recoding, they don't want to recede the basic code. And we 
want to keep it invisible to many people but a few who have to know how the 
parallel code is organised. The code is a spectrum model because we have 
three different space models. We have three different data and distribution 
layouts, so what we do is we move the data around in memory between 
those three different data layouts, and then the data is how each processor 
want it to be so, so all the computations are done serial, on a subset, so it 
is SPMD approach. We are not using any parallel algorithms at all. So for 
a Fourier transform we do it serially. Most of the work was also to design 
this message passing version so you change as little as possible in the serial 
code. No, we are always worried about performance. But what we did 
was we estimated how much how the parallelism was for the strategy we 
were using. And try it on some simpler models, one level models to see if 
this strategy was working ok, and we could tell from these estimates that 
it should be very efficient. The most efficient way you could do things. So 
it turned out to be correct. We have tried really to design it. Because we 
have these 300,000 lines of code, we don't want starting to do it using the 
wrong track then you can't afford that. It takes you a year to do the work 
so you cannot afford . . .so you have to design your work properly. A way 
to improve the parallelisation strategy was to use this simplified done level 
model and use the same communications strategy. And also look at what 
other people . . . a group in the states did it in another way. We have stuck 
to what was proposed here, by those two guys who worked here and then 
it turns out to be the best way. The optimisations were not that many. 
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We have also tried to make the code flexible so that it can run on different 
architectures using switches. Yes, you can specify if it is a vector machine or 
if it is a cache based machine. And we tried to put that in. For performance 
I use Paragraph+ but not very much. I want to see whether things happen 
the way I think they should happen. I look at the communication patterns 
and not very much for optimisation reasons. And perhaps also to see some 
load imbalance, to see if some of the processors are doing more work than 
the others. I did use it for presentations. I am also using dbx, in the 
initial phase, to understand the code. See what the variables are. There are 
some more advanced tools that I am not using on the C90. There is this 
Totalview. You can ask about variables where they are used and defined. 
I also made some tools myself. Perhaps they should not be called tools 
but they are calling trees to see where variables are used. And understand 
the data flow in the program. And we have made the code flexible, so you 
specify how you want to communicate depending on the architecture, so 
everything is available in the communication. You just specify by special 
switches what you prefer to do and then that is also what the vendors do. 
They try different switches and decide what is the first choice for them. 

Informant 51 

[Ce29] Real time programming doesn't fit many of the usual assumptions 
about parallel programming; for instance, tuning is only necessary until the 
program runs fast enough. 	 Informant 15 

[Ce19] It would depend on what machine the code was going to target. We 
don't want too many optimisations, because we don't know what machine 
we are going to buy. We have to make sure, that we are not spoiling the 
code for the vector machine, when we do specific things for the cache based 
machines. So at that level, we try to make the code flexible, so it can run 
well on cache based machines. When we decide which machine we are going 
to buy, we are going to optimise specifically for that. Informant 52 

[Ce27] We were concerned that in the production run we were going to 
have some very long runs. We were anticipating 10 days of run times. 
During a length of run, which gets so long, there is a high risk that the 
computer itself will go down, so we could not have a single run in a single 
go. So, that meant, that we had to store the state of the computation, 
periodically in case the machine went down, so we could start from there 
rather than from the beginning (check-pointing). Now, we had to make this 
ourselves because our computer platform didn't have this built in. Check-
pointing introduced performance problems because it had to cope with all 
the program's data structures. For a short run, it is not worth using check-
pointing, but is worth spending 2 hours in every 24 hours for a ten day run. 
Performance has been to some degree a problem, because the algorithm was 
not as efficient as originally, we hoped, we could make it. Whilst we had an 
optimisation plan, there were very few possibilities that we could get the 
funds to implement it. We had constraints in time and money. We have 
never used a performance optimisation tool. Partly, because we didn't have 
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a performance evaluation tool on the Parsytec machine. We did evaluate 
the performance, in the sense, that we timed some of the processes within 
the algorithm. So we had some more information on this algorithm. It 
never really became an issue, because we have never been able to do much 
about that performance. But now, we have the ability to run the same 
code both on the Parsytec Explorer and on the Cray T3D. So we have a 
fair amount of power and optimisation is less significant than it was before. 
There are some things, that we need to tackle, that are relatively simple 
and one of them concerns the formatted or unformatted output of data. At 
the moment, this is extremely inefficiently done, but it is expected we are 
going to gain a lot of performance by changing the way the data is output. 
Another development will be the introduction of a more efficient way to 
solve the model. This will have to be included in the operational code. 
So the development of the code is an on-going process and performance 
optimisation is an on-going process as well. 

Informant 48 

C.2 Case study I: the LIBRA project 

(Within the LIBRA project, two local tuners were involved in designing a 
data distribution library for the code of B. A lot of time was spent in try-
ing to design a number of data distribution schemes, which would then be 
tested for performance with the parallel code. The data distribution library 
would get the input data set and would partition it according to the amount 
of work involved at each data point. They had to transform the commu-
nications within the code to be able to use the data distribution proposed 
by the data distribution library. After the code was integrated with the 
distribution library, they measured the execution time of the program in 
order to see how the new distributions performed compared to the regular 
decomposition. Apprentice was used heavily in the beginning when they 
wanted to understand what was going on with the code. )[Ce24] In the 
original code, because of the NSEW communication, there was a certain 
way of communicating in the regular domain decomposition. In the original 
code, Parix communications were based on the OCCAM model, where com-
munication can take place through four channels. But here, we introduced 
more neighbours. The other modification, we did, was that Parix doesn't 
support any high level communications support so you do a broadcasting 
by explicitly doing a number of messages . . . a loop of messages. So we 
introduced the MPI broadcast. One of us was analysing the code that we 
were given to decide whether it would be feasible to introduce this sort 
of communication scheme or whether we would need to stick to the regular 
scheme. And the other side of the work was that we tried to design different 
decomposition strategies like these pictures here. One of the extreme things 
that we thought of doing was, you typically have like these large amounts 
of air with some other material in little places in the middle. So one sug-
gestion was to distribute the work on the air evenly and then you consider 
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the left bits in isolation to distribute them on a number of processors, but 
looking at the code, it was decided that it would be extremely complicated. 
If we can get an accurate estimate for the ratios for each material, then 
our solution is good because it is guaranteed that each time you split the 
work in half. But it depends on how accurate these estimates are, in the 
first place. We can find out the accurate ratios by using timers to time 
the program on the T31) which operates on a simple data set comprised a 
plane of one material. Another slight complication is just that there is not 
only one single cost for the cfc. It depends on the fitness and various other 
features of the data sets. So we need to determine a range of values for 
cfc and then experimentally plug this into the load balancing. One of the 
things, that came out of that, was that the way the input has been done on 
the T31) it took a lot of time some ten minutes took to read the input file. 
So for short problems, it didn't matter how much we improved the code 
since the I/O was so pure. At the moment, the performance has improved 
2.5 times using a standard problem structure and size. The other thing is 
the way memory copying is being done on the T3d and the work involved 
a lot of things propagating in the workspace. And the optimisation for this 
is to move memory copying expressions out of the loops. And scheduling 
things in order to make better use of the cache. And a lot of things that the 
compiler should do but it doesn't necessarily do them on the T31). That 
became apparent with apprentice that a lot of time was spent by doing 
memory copies. So that was one of the improvements. Informant 45 

[Ce506] There is a kind of use plan for this code in terms of design and 
use. There is also a development plan over the period of the next six years. 
So, there will never be a point in time that the code will be finalised. Per-
formance to a degree is bound into that. Many of the issues in the next 
versions will be concerned with performance, for example, to have a time 
domain filter process that we want to put into it. Which will allow us to 
down-sample the data as we generate it so that we don't have to store every 
time-step, that is another performance related issue which reduces the time 
we spent in outputting data. Informant 48 

C.3 Case study II: development in X 

[Ce530] T106L19, Nproma320 Full Grid MFL0P5207 Estim Seq Time = 99.34 
Nproc Elapsed Speedup Mf lops Cornms MAXCPU NINCPU AVGCPU TOTCPU TOTVU 
4 	26.07 	3.81 	1997 	1.10 24.96 24.76 24.86 	99.43 85.63 
8 	13.38 	7.44 	3892 	0.76 12.62 12.33 12.45 	99.64 85.63 

54 	2.13 	46.73 	24449 	0.17 	1.96 	1.40 	1.89 102.20 85.69 
Comment: 
The basic vector efficiency has improved by over 307.. Parallel 
efficiency continues to improve particularly for the reduced grid case 
where on 58 nodes the load imbalance and communications overhead at 
0.28 seconds is actually less than in the T41L19 case. 
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[Ce39] What, I think, is hard is that you really need to know a lot about 
what the compiler is doing and about what the hardware is doing. And 
these relationships is not what the typical user is primarily interested. And 
the scientists, the most they want to do, is ok, I want to run this code with 
the optimisation flag set and that is it and I don't want to spend a lot of 
time in restructuring the code so that it runs faster. But you might have to 
do that, if you want to gain this small percentage of improvement. And it is 
becoming a lot harder, I mean, you have these examples of what happened 
on the Cray T31), where you can do a typical optimisation with unrolling 
and apply that and past experience says you gain something, and then you 
suddenly realise you don't gain, Then, you find out that there is a clash in 
where the instructions are put into. This is hard to understand, I mean it 
is not well ... If you were talking to a typical user about this you would be 
talking in a foreign language. It wouldn't mean anything to him. He would 
say: what do I have to do in my Fortran program to stop this. Well, you 
can't do anything about it sorry. Just carry on doing what you are doing. 
Do your best. Their thoughts are to write modular code writing efficient 
code from the algorithmic point of view. You know we can tune things and 
get things running 20% faster but they can do a lot more with algorithms, 
if they decide to use a different solver, maybe there is another way of doing 
the same thing. If they could use a BLAS3 routines rather than calling 
BLAS2 many times, for example. Look at how solvers have improved in 
efficiency over the years. It is not because computer hardware has become 
better, it is because scientists have used new solvers. 

Informant 50 

[Ce510] We also deliver a benchmark to computer companies, so I spent 
some time setting up program runs. Essentially, it is a RAPS initiative, it is 
called Real Applications and Parallel Systems. Different large parallel codes 
are delivered to different computer companies. Yes, this is a benchmark 
suite. And the computer companies pay some money not to us but to a 
company in Germany which joins together all our codes and they distribute 
them to the companies. And then, all these companies can ask us come 
and give tutorials how we parallelised it and made it run efficiently on their 
machine. And it is one of the reasons we are interested, because we are 
going to buy a parallel machine next year. We want to see if our code can 
run efficiently on these machines. At the moment, the vendors are quite 
interested to learn about our model and they spend a lot of time optimising 
it for their architectures. Informants 51 
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C.4 Tuning within the group 

[Ce511] Mostly on documentation, I mean if I have a colleague with a lot 
of experience in something I will ask him. 

Informant 42 

[Ce513] Normally, you look at your code and you see what is using the most 
time, in my case initially it was the inner product, and you optimise it as 
much as you can and then you start looking at documentation, and you start 
asking around about . . .1 need to do this: I need to sum over all processors 
one way or another what is the fastest way. And it took me until two days 
ago to find a way to do it faster, because shmem has a routine that does a 
global sum but it took me several months to find someone who could tell 
me which routine is best. Well, I was not going to use shmem with my own 
program but it turns out that there is a routine that does what my routine 
is doing, and then I am going to see whether this is faster and then I am 
going to use that ... it has to be faster. Informant 44 

[Ce517] Courses are not the most efficient way to learn about tuning a spe-
cific machine. There are some courses which are really very very advanced 
or something like that but then if I just go to talk to someone who is good, 
who knows their stuff, just for half an hour will make more difference than 
a course. 

Informant 42 

[Ce800] 

(Tuning consultation, first meeting among J (the expert) and T (the tuner)). 
T was able to see with the help of apprentice that the square root function 
was responsible for a large part of the execution time of the program. T 
told J that he was thinking of changing the algorithm so that the use of 
square root function could fall to half. J informed T about the existence of 
another library with cheaper mathematical functions. T and J discussed the 
structure of T's code. During all this time, T was drawing how the program 
arrays were distributed. He described how the data distribution affected the 
communication patterns in the code. J suggested that T should have a look 
at some sample codes using two dimensional domain decomposition. T said 
that he would read them and see what parts of them he could use. J ex-
plained the various ways to distribute data in the Craft programming model 
and why the order of the loops in a nested loop mattered for performance. 
T nodded but it was obvious that he had a problem understanding what J 
was telling him. 

(Second meeting is joined by a second expert) T reported that the current 
version of the MPLAllgather function took too much time. T worked in 
the same open office plan as C, one of MPI's developers. C, who happened 
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to be around when T was experiencing this problem with his code, helped 
T by informing him that there was a new version of the MPIAllgather 
function which had not yet been released with the official MPI implement-
ation. C told T how to link his program with the new MPI library and the 
program performance improved. Also, C suggested to T a less expensive 
way of realising the same communications in his program without using 
MPIAllgather. According to T, this alternative was too difficult for him 
to implement and even if he implemented it, it would be very difficult for 
him to maintain it: "In one month's time, I will forget what I did". Since 
E, a second expert, was attending that second meeting, T had to repeat 
explaining the structure of his program. On the basis of his explanation, J 
and E suggested how to best organise the communications. T had with him 
a display dump from apprentice in order to convey to the experts the per-
formance of the program. The conversation focused on the most expensive 
routines. T complained that he could not find the alternative maths library 
in the manual pages. J said that definitely this time he was going to send 
the name of the library and the names of the functions to him by electronic 
mail. T said that apprentice's observations were too difficult to under-
stand: "apprentice gives too many numbers! What can I do?" After that, 
E and J read apprentice's output. J started explaining to T what cache 
thrashing is. T asked what to do in order to avoid thrashing. T did not 
understand why the number of integer arithmetic operations described by 
apprentice was so high. J suggested that T had a look at another person's 
web pages to find an optimised routine for performing transpositions. 

(Third meeting) The two experts discussed a problem that T was exper-
iencing and could not find a solution immediately. It took them a while 
before they were able to suggest something. T said that he understood 
their suggestion in principle, but he was not sure whether he could realise 
it. Still, until that meeting T had not discovered where the library for the 
square root function was. J promised that this time he would send him all 
the necessary information. T said that he would like the experts to have a 
look at the code in order to discover where cache thrashing was happening. 
E explained why the loop order in nested loops mattered. 

In the other case, I was aware of the standard BIAS routines, it was 
that I was wondering whether the extra copy would be worth it and after 
hearing from two people independently that it is worth it, I actually did it 
so it is not like . . . normally, when you are optimising, you have a rough idea 
of what you want to do. But unfortunately, it is an experimental science so 
you have to try it to see if it actually works. Now, if it is something that 
will take a lot of time to try then you go to other people and ask if it will 
work. 	 Informant 4 

When we find something of interest to the "community", we often 
announce it in a paper or in email to our local users' groups. Informant 17 

[Ce518] Being in a small porting group as above, we often discussed tech- 
niques between ourselves. For example, I developed the twin debugging 
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technique that I mentioned, so I presented a seminar on it to our group. 
Also, every software package we worked on was fully reported, with reasons 
and source code changes, and we could read what had been done with other 
similar software. As for developing a detailed knowledge base, this would 
be useful, but one wonders about the cost-benefit trade off. Informant 1 

Tuning knowledge is not something found in books or manuals but 
something that someone else may tell you. In the TLM code they have made 
many mistakes because they didn't know the particulars of the architecture 
and these mistakes are not going to be repeated now with the experience 
they gained. Parallelisation is not enough to do the job because even then 
you cannot get the performance out of that. 	 Informant 47 

Maybe somebody else would continue and I would need pointers 
to the most recent versions or I would leave them pointers or simply I 
would look at the most recent time of creation. I would enumerate all the 
parameters to him. The first thing would be to produce the document and 
sit down with him and give him a verbal explanation 1 . 	Informant 45 

[Ce504] Mostly for our own use. However, we have been talking 
about sharing these experiences with others. The main key is 
time. It takes a tremendous amount of time to document. 

Informant 19 

[Ce503] C rnp 21/3/95 
C rnp removed if statement from do loop 
C rnp modified do loop order 
C rnp halved work done in do loop and added transpose copy 

Informant 40 

{Be628] is presented in Appendix B. 

[Ce800] is presented in section C-4. 

C.4.1 Somebody else's code 

[Ce501] And in terms of documenting that is the design itself as such, be-
cause we are dealing, with people who won't have experience with parallel 
programming as such, so the documentation of the actual design is like a 
report, because we did write, started documenting in CSP. Which was fine, 
but nobody studied it besides Chris (the project leader) and me, so it was 

'Ironically, this respondent had to delay moving over to his new job in order to finish 
with the implementation and the documentation of the project. 
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pointless to do it really. So we were back in writing a report of what is 
going on. You know do the usual functional mapping and the requirements 
mapping that we would do with the sequential code. 

Informant 47 

(Informant 51 has a interdisciplinary background in Computer Science and 
Meteorology. This, made parallelising and porting a large weather forecast 
code easier for him since he could understand what the scientific part of 
the application was doing. The well structured code and the ability to talk 
to colleagues made parallelisation easy, despite the fact that a lot time was 
spent initially in understanding the code. ) [Ce2] Parallelising the code 
was not so difficult even-though there was only 10 pages of documentation 
for about 300,000 lines of code. It is quite well structured the program. 
The general layout and design have been designed by a few people and it's 
only one person who is responsible for the overall design so it is quite well 
designed. The project is new; it started in 1988 and it is written according 
to new programming standards. I have a master's degree in meteorology 
and I have always worked in numerical applications, so it was easy for me 
to understand the code. I know all the equations. I've never had any 
courses or read any books on parallel programming, so I talked to some of 
my colleagues, but I didn't find parallel programming difficult. It is really 
down to understanding the data distribution, the data layout and the data 
flow. That is what takes most of the time when you have a big code. To 
understand the serial code it takes a lot of time, you have to understand the 
data layout, what is globally used and what is only used locally. Informant 
51 

(Respondent 50 is an experienced parallel program tuner. He has not done 
parallel programming as such, rather he has been parallelising and optim-
ising other people's code mostly on shared memory machines for the last 
five years. He approaches parallelising other people's code as a task where 
it is important to be able to isolate the pieces of code, where parallelisation 
can be introduced, from the rest of the code. On the other hand, it is vital 
to be able to obtain more feedback from the original developers of the code, 
when parallelisation depends on how the parallelised code can be integrated 
with the serial part of the application. Currently, he is employed by a large 
European institution to help them port and optimise their codes on a num-
ber of parallel machines.) [Ce3] The codes that I've come across tend to be 
very readable. Of course, there could always be some more documentation. 
I tend not to be interested in the whole of the code just the you know . . .20 
routines that you end up looking at, but if you want to parallelise code you 
probably need to understand a lot more sometimes. It may be located in 
three or four routines and then you look at those routines to understand 
what is going on. Sometimes, having a feedback, describing what a code 
does, helps during an integration problem or something like that. And you 
say . . . oh that's good, I could parallelise that. I mean, it really depends 
on the application you are porting. For the overhead communication, you 
know, a very very simple model is the wall-clock time equals to computation 
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plus communication. And you have to understand from the application you 
are porting, a parallelisation strategy, the cost of the communication, how 
many synchronisations you have to do, and you quickly understand if you 
are going to be successful in your application. You can start from the serial 
version and say I am going to work with the solver and just decide to paral-
lelise that. And ignore the rest of the code. Which it runs still but it runs 
serial. You don't have to worry about where data is in some architectures. 
Informant 50 

[Ce509] I didn't have any courses. I prefer not to follow courses. I prefer to 
read about it myself and it is so simple. What has to do with the message 
passing. If you are not using HPF or anything like that, if you use message 
passing you have only to know about send and receive and you have to know 
the syntax of these. Now, I am designing some new code and also when I 
did it the first time it was more reading the serial code, how it is organised 
and talking to somebody who wrote that code, "is this really independent so 
can anyone use it in parallel" and then to make sure that I am not using the 
same quantity at both latitudes. It was more design work than anything 
to do with message passing. Or 11FF. For me parallel programming is 
to understand the dependencies in data and the data structures and the 
data flow in the program and when you have understood that you can cut 
everything into pieces and the last part is to really write the code that does 
the message passing. It is not more than 10% of the time. There were 
two people working here before I came and they were looking at different 
strategies to parallelise our models and trying it on simple models, 1,000 
lines versions. They didn't leave any documentation apart from some papers 
they wrote. But they were here while I was here. We worked together here 
for a year. So I talked to them and it was more this way. Informant 51 

[Ce4] I was working with a very old C program and it was so messy it was 
very difficult to find which parts to parallelise. 

Informant 42 

C.5 Case-study III: EPCC User Support Service 

[Ce64] Q: I have just been reading the optimisation section of the CM For-
tran manual (Version 1.0, March 1991). In here, it mentions various tech-
niques one should adopt in writing code for the CM to speed up execution 
and which will not be necessary in future releases of the compiler. For 
example, unwinding serial loops. What I should like to know is if these 
techniques are now necessary - i.e. has the compiler been updated since 
1991. If it has been updated, could you tell me where I can find some 
information on optimisation techniques for the current compiler version. 

A: Since version 1.0 of the CMF compiler there have been a few releases: 
CMF 1.1, CMF 1.2, CMF2.1.1-2 and CMF2.2(CM-5 only). The optimisa- 
tion notes are very out of date. There is now a complete manual on this 
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topic "CM-5 CM Fortran Performance Guide", but as its title suggests is 
mainly of relevance to the CM-5 compiler and this has much more aggressive 
optimisations than the CM-200 compiler 2. 

In particular, to comment on the "CM Fortran Optimisation Notes: Slice-
wise Model", which I assume is what you have. For the CM-200 compiler: 
it is still true that communication will break a PE code block. The com-
piler is better at eliminating and reusing temporaries. Array sizes should 
be large for efficiency. The compiler is now better at serial optimisations 
but nowhere near as good as the CM-5 compiler, particularly for FORALL 
statements. So it normally pays to unwind this: 

integer a(n,m) 
cmf layout a(:serial,:news) 
s = sum(a,dim=1) 

[Ce63] Q: Do we loose a lot of efficiency if we have computation arrays which 
have dimensions (x, y, z) which are NOT powers of two? For example, would 
an array 1150X900 take a lot more computing time than a 1024x1024 array? 
I'm asking because it was the case in some earlier release of the CMF. 

A: There may be a loss of efficiency but it is not easy to quantify. The first 
release of the CMF compiler had a fieldwise memory model and arrays were 
padded up to the next power of two on each dimension. Hence, performance 
of an array (300,300,300) would be similar to one of size (512,512,512). With 
the introduction of the slice-wise model (now the default) the situation 
changed. The array elements are now laid out on the processors (256 or 512 
Weiteks) so that there are a multiple of 4 elements per processor. Hence, 
the padding is not so dramatic. However, an array that is not padded 
(extra garbage elements added) will be operated on more efficiently. You 
can tell if an array is padded by examining the output from the command 
call cmLdescribe_array(array) which is described in the Utilities Library 
reference document. The situation is complicated by the fact that some 
communication routines and CMSSL can operate more efficiently on arrays 
that are powers of two. To be sure you have to try it for your particular 
application. Qi 

[Ce65] I have faced recently a quite weird problem on the T3D and wonder 
whether somebody else ever noticed the same. I don't want to rise a fuss 
upon this case, but I'd be grateful if you can advise me something and 
maybe check my runs. I've noticed recently that the time per iteration has 
CHANGED for the SAME job, namely, now it is getting slower by a factor 
between 2 and 4! For example, this table shows several subsequent runs of 
the same problem on 128 PE's and the time spent: 

2 CM-200 was the machine used by the particular user. 
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run time/iteration (s) when 
1 55.3 26 Oct. 23:00 
2 59.8 1 Nov. 12:30 
3 62.05 1 Nov. 17:10 
4 58.6 2 Nov. 02:14 

but 	??????? 	............ 
5 209.4 S Nov. 12:23 

The same happened on 6th of November with this job. Similar behaviour 
I have observed with another job which used 64 PE's. In this case, it was 
slowed down by a factor of 4-6 for all runs performed after 2nd of Novem-
ber. So, I cannot say whether there is any correlation with the number of 
PE's that would mean that this is a communication problem. A special 
investigation is probably needed which I cannot accomplish myself at the 
moment. The same for a 32 PE's job: 48 sec for 4 iterations some time ago 
and 115 sec for only 2 iterations now. In all this cases, the same source code 
has been used. But I have RECOMPILED the code after 1st of November 
with the same level of optimisation, so that this might be some compilation 
problem. 

What do you think of that? It is extremely important to understand why 
this is happening since it affects the computer time. 

A: The C compiler was updated on November 2nd and the Fortran compiler 
on September 4th. You might want to try compiling with the old compilers  
and see if it makes any difference. If it does, let us know and we will try to 
find out what went wrong with the new compiler. This change cannot be 
due to the hardware upgrade because this was completed on October 19th 
and your performance change occurred on November 2nd. There were some 
changes to the YMP made around the beginning of November and the YMP 
has been very heavily loaded since then. The load should go down again 
when the J90 becomes available. You would have to be very 10 dominated 
for YMP changes to make such a large change to your performance. Are 
you doing any 10 in this loop? The key limit would be number of 10 
transaction rather than number of bytes. The other possibility is that you 
are using some other operation that involves the YMP. For example some 
of the timing functions operate locally on T31) nodes and others read the 
clock on the YMP. The CETEP code is known to require a great deal of 
communication so it is also possible that communication plays a part. From 
time to time PEs in the T31) show errors and are mapped out and replaced 
by spare PEs The communication performance will be slightly changed when 
this is in effect because messages have to route out to the spare PEs on the 
edge of the machine. If you put the following line in your scripts just before 
starting the parallel program you will be able to tell if this happened. 
sleep 60; mppstat -a > mppstat.log ) &. This command will wait for 60 

3a directory was mentioned 
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seconds (to give the mpp job time to start) then run mppstat. This includes 
a report on every mpp job running at the time including information about 
redundant nodes. If the job runs slowly this will let you know if it was using 
any redundant PE at the time. Q19 

[Ce58] A: If you are not using the shmem 4  routines, I cannot say what might 
be the problem. However, if you are using shmem_get or _put style routines, 
there may be a problem with cache coherency. Apprentice works by putting 
subroutine calls into your code at selected points, and if your code has not 
been explicitly flushing the cache before your communications, it is possible 
that your received data is being overwritten by cache lines before it is used. 
There is a shmem library cache flush routine which you should call explicitly 
to prevent this. Q33 

[Ce61] I now have my code running on 32, 64 and 128 processors on the 
T31) but I cannot run on 256. The reason for this is that I use domain 
decomposition and run 256 identical copies of my code, each of which opens 
and reads input files. This means I need more than 256 file descriptors 
(taking into account the essential descriptors for standard I/O). However, 
UNICOS only allows me a maximum of 256. Would it be possible for the 
maximum number of file descriptors to be increased ? 

A: In the next major release of IJNICOS this limit will be under user control 
but an upgrade to this version is not scheduled here for a few months. The 
main bottleneck in doing I/O however is not the size of the I/O packets 
being transferred but the number of packets ( ie. latency is a much bigger 
concern than bandwidth, due to the nature of initiating a system call on 
the YMP from the T31) ). By buffering up your input/output data and say 
using one master processor to gather/scatter this data you may make your 
I/O more efficient. 256 pes all wishing to "talk" through the I/O gateway to 
the YMP cripples performance. It is much better/faster to use the internal 
communication network. Q44 

[Ce60] Q: I and other members of my consortium would be very interested 
to know from you if you have any code, in any language (preferably Fortran) 
that actually runs at close to 38 Gflops on the whole machine (i.e. runs at 
close to 150 Milops on one processor) or runs at 30 to 50 Mflops on one 
processor. We really could learn a lot from any chunk of code, however 
short, with such performance. Q32 

4 Using the optimised low-level communication routines, available on the T3d, is 
very difficult since users have to handle explicitly cache coherency and synchronisation 
issues. A large number of queries were concerned with how to get these routines work 
correctly. The problem is exacerbated because the available documentation is not always 
straightforward to understand or complete. 
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Q: I've used apprentice to see the performance of my code. The 
observations for my code are: 
Detailed Description: The combined losses due to single instruction issue, 
instruction cache and data cache activity are estimated to be 10442550 
psec, or 8.33% of the measured time for this program. The combined ex-
penditure of time for output routines is measured to be 711246 tsec, or 
0.57% of the measured time for this program. The combined expenditure 
of time for input routines is measured to be 235400 psec, or 0.19% of the 
measured time for this program. Navigation Information: The current se-
lection may be improved by up to 11389196 psec. The greatest aggregate 
improvement (6193874 tsec) may be gained by improving the children of 
EVOLUTION -STUDY. The synchronisation or work construct which offers 
the greatest potential improvement (3587656 tsec) is STMTS@26. This 
construct is a part of EVOLUTION. 

With these comments, I don't understand if my program is good or not. 
It seems that I loose 8.33% of the time. I suppose it means that 8.33% of 
the time only one process works. But what I'd like to know is to how to 
improve my code. What is "children of a subroutine"? And what is the 
work construct? I've got no subroutines named struts! At the line 26 of 
evolution there is a call to a random number generator which is not the one 
supplied by cf77. Can in-lining help the problem ? Q45 

Q: I have a question concerned with the Apprentice tool. In the 
COSTS window, the bar chart always shows that Integer Adds is the dom-
inant operation in the code. However, I expect that the code should perform 
floating point operations most of the time. Is there a conversion from float-
ing point operation to integer operation inside the T31)? This will affect 
my judgement about how fast the code runs. In the OBSERVATIONS, two 
measures are printed: 

floating point operations per second. 
integer operations per second. 

Usually, measure 2 is twice as large as measure 1. Only when I know which 
type of operation is dominant in the code, can I determine how fast the code 
actually runs. I noticed that after the new cl?7 compiler was installed, the 
ratio of measure 2 and measure 1 has decreased for the same calculation. 

A: If you have a fragment of code like 

a(i,j, k) = b(i,j, Iv) * c(k) 

This line contains only a single floating point operation but also contains 
instructions to do address calculations and load and store operations. The 
address calculations account for the integer instructions. In the worst pos-
sible case, the address calculation for a 3 dimensional array could take 4 
integer operations. Integer operations can also occur in IF statements and 
DO loops. Floating point operations are not converted to integer opera-
tions. The ratio of iops to flops changes between compiler versions because 
as the compiler improves it is able to perform the address calculations using 
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fewer instructions on average. Compilers still leave a bit to be desired. You 
can improve performance by making small changes to the source code like 
unrolling loops by hand or introducing scalar temporaries. 	 Q25 

In the next case, the programmer was using a particular makefile men-
tioned in some local on-line document, which among other things contained 
the performance instrumentation enabling flag. The programmer did not 
even know the purpose of the flag: ) [Ce59] A: The compilers were up-
graded last Wednesday. The only bug we have reported on them at the 
moment are a few source files that crash if compiled with the -Ta flag en-
abled. Nobody else has reported differing results yet, but as we know there 
is a problem with -Ta; your problem may be related to this. The easiest 
way to check if this might be a compiler bug is to try with the old compiler 
which is still available under the name cf776102. The -Ta flag enables the 
apprentice performance tool. Unless it is badly broken in the new versions, 
it should not change the results. Apprentice inserts extra code that gathers 
runtime statistics and so it will have some impact on performance. You 
should always turn this flag off unless you are intending to run apprentice. 
(The -g flag has a much greater impact on performance because it disables 
all compiler optimisation. you should always remove -g unless you are us-
ing the debugger). When first declared, variables contain whatever values 
happened to be in memory at the time. Turning the -Ta flag on and off 
could change these values and therefore gives rise to your problem. 

Q58b 



Appendix D 

Findings of VISPAT's empirical 

testing 

D.1 List of tasks 

This section reproduces the sheet of paper which listed the tasks which had to be 
performed by the evaluators during the empirical testing of VISPAT. 

Navigation Display 

The Navigation Display presents you with the sequence of phases for every process. Each 
process has a unique number which identifies it in the MPI_COMMWORLD commu-
nication context. Execution can be replayed in various ways by using the appropriate 
buttons at the bottom of the display. 

Every process consists of a single big phase called ring-shift at a first level. This single 
phase consists of several other subphases at a second level of expansion. 

Start the replay of the program execution. 

Find out what is the first subphase of the ring-shift phase of process number 0. 

Replay the execution of the program at the second level of phase expansion. 

Find out the exact time when the 3rd phase of process 3 started. 

Change the time unit and the scale width before you proceed with task number 7. 

Find the longest phase in the execution flow of process 3. 

Make the display depict only user defined phases. 

Communication Display 

Animate the communications of 2 and process 3 in a continuous way. 

Set the animation time to zero and make the communication display to show the 
third communication event of process 3. Which is the start time of this communication 
event? 

Find the second last communication event of process number 1. 

Statistics Display 

264 



Appendix D. Findings of VISPAT's empirical testing 	 265 

Find the maximum waiting time of process 2. 

Try to find out the instance number of the MPI_Wait call which corresponds to the 
above time. 

Profile Display 

Find out which process has the longest sum of MPI_Wait calls. 

D.2 Qualitative and quantitative findings 

This section is concerned with the evaluators utterances. Considered separately for 
each task, each evaluator's comments were interpreted and classified as negative or 
positive. Additionally, this section describes most of the unexpected evaluator actions 
and presents the evaluators requirements. 

uc 	used feature correctly 
uw used feature wrongly 
nt 	did not think to use feature at all 
hu 	helped to use feature 
eu 	experimented with using feature 
gu 	guessed correctly 

Table D-1: Ways of interacting with the tool. 

ne negative comment 
po positive comment 
un unexpected user action 
re 	requirement 
or 	old requirement 

Table D-2: Different kinds of utterances. 

D.2.1 Task 1 

Negative comments 

Evaluator i:"I don't see why animation is useful. It is confusing, that although the 
tool starts animation, we can see everything a priori by using the scroilbar." 

Evaluator 1: "The tool doesn't give a precise idea about the current animation time." 

Evaluator 1: "The fact that the current time is on the left is confusing. We are able 
to see the future but not the past." 

Evaluator 1: "Animation is useless." 
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Evaluators 
1 2 3 4 5 6 7 8 9 total 

ne 4 2 2 2 0 0 0 0 0 	10 

	

O 0 0 1 0 0 0 0 0 0 	1 

on 1 0 1 4 0 0 0 0 0 	6 

Fe 3 2 0 1 0 0 0 0 0 	6 

or 	2 1 0 0 0 0 0 0 0 	3 

Evaluators 

1 	2 	3 	4 	5 	6 	7 	8 	9 

go to the beginning gc gc gc gc gc hu ge hu gc 
rewind 	gc gc gc gc gc gc gc gc gc 

play 	gC gc gc gc gc gc ge gc gc 

stop 	 L1C UC UC UC UC 	IC UC UC UC 

step 	or hu uc hu uc hu uc hu uc 

fast forward 	gc gc gc gc gc gc gc ge gc 

goto the end 	gc gc gc gc ge gc gc ge gc 

Evaluators 
1 2 3 4 5 6 7 8 9 total 

alone 	* * 	 * * * * * 	S 	9 

with some help 	 0 

helped 	 0 

alt.strategy 	 0 

Table D-3: Quantitative findings from Task 1. 

Evaluator 2: "It moves slowly. It is extremely slow. I would like to speed it up." 

Evaluator 2: "I don't like the scrollbar." 

Evaluator 3: "The scrollbar is difficult to use." 

Evaluator 3: "The scrolibar keeps moving after I click on it." 

Evaluator 4: "I don't recognise my program." 

Evaluator 4: "I am surprised. I was expecting things to happen. Instead, I have an 
empty display." 

Positive comments 

1. Evaluator 3: "Apart from the way you can control the scrollbar, I can say I like it." 

Unexpected user actions 

1. Evaluator 1: "In the beginning, it is not clear that the tool does animation'." 

'Evaluator 1 discovered the function of the scrollbar before he pressed play. 
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Evaluator 3: "I thought that what has been drawn has happened already." 

Evaluator 4: "What is the ring-shift phase?" 

Evaluator 4: "All processes start at the same time?!" 

Evaluator 4: "I am surprised. I was expecting things to happen. Instead, I have an 
empty display. What has happened?" 

Evaluator 4: "How can one understand that animation goes slowly? Does one have 
to know the maximum number of timesteps?". 

Requirements 

Evaluator 1: "I would like to have the moveable time cursor." 

Evaluator 1: "I would like to have the current time in the middle, the past on the 
left and the future on the right." 

3.Evaluator 1: "The only functionality I would like to have is to be able to zoom in and 
out in the navigation display." 

4. Evaluator 2: "I'd like to be able to say what speed I would like it to play." 

5.Evaluator 2: "The scrolibar should be able to set a new value for the current animation 
time once it is dragged to a new position." 

6.Evaluator 4: "It would be nice to have some text above the hi-fl buttons for the people 
who don't understand the metaphor immediately." 

D.2.2 Task 3 

Evaluators 
1 2 3 4 5 	6 	7 8 9 total 

p0 0 2 1 2 0 	1 	0 0 0 6 

ne 0 3 2 1 0 	0 	0 0 1 7 

un 0 2 2 2 2 	2 	1 3 1 15 

re 0 6 1 1 1 	0 	1 0 0 10 

or 0 2 1 1 0 	0 	1 0 0 5 

Evaluators 

	

1 	2 	3 	4 	5 	6 	7 	8 	9 

unfold uc uc hu uc nt+uc uc uc uc uc 

Evaluators 
1 2 3 4 5 6 7 8 9 total 

alone 	* 	 * * * * 	* 	6 

	

some help 	* 	 * 	2 

helped 	 * 	 1 

alt, strategy 	 0 

Table D-4: Quantitative findings from task 3. 
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Negative comments 

Evaluator 2: "I don't like the fact that the only indication of movement is the little 
flickering of the time indications at the bottom corners of the display." 
Indeed the time unit has by default a very small value while evaluator 2's program 
comprised some very long phases. The default value of the time field should be set 
according to the average phase duration. 

Evaluator 2: "The numbers and the text on the phase box sometimes get spoiled." 

Evaluator 2 : "Everything has disappeared. I don't know where all the info has 
gone. I was expecting that as everything was displayed before I would have everything 
chopped down. 
Evaluator got an empty display because the MPI phases had not happened yet. He did 
not seem to understand that. He used the scrollbar and he found the phases. 

Evaluator 4: "The ring-shift phase is not so interesting." 
At that time, evaluator 4 did not know that he had other lower level phases. 

Evaluator 9: "I don't like getting an empty display." 

Positive 

Evaluator 2: "Ok so you have here the exchanges. Good."' 

Evaluator 2: "I like here the way the name of the phase doesn't disappear when the 
start of the phases box disappears." 

Evaluator 4: "It is very nice the fact that you can unfold only the selected phases if 
you want." 

Evaluator 4: "That is good !3,, 

Evaluator 6: "I like the metaphor for setting animation time to 0." 

Unexpected user actions 

Evaluator 2. Evaluator 2 thought that unselect all could toggle to select all. 

Evaluator 2: "I don't understand what the empty space between the phases are." 

2  H liked the fact that he recognised some of the phases in his program. 

'Evaluator 4 liked the fact that he could see the expanded phases after he rescaled 
the Navigation display. 
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Evaluator 3. Evaluator 3 invoked the phase description box and tried to click on a 
subphase there. 

Evaluator 3. Having faced an empty display, after a phase expansion, Evaluator 3 
slided the scrollbar back to the left to see if there were any phases to the left of the 
current time 4. 

Evaluator 4: "Something is wrong. 5,, 

Evaluator 4.  Evaluator 4 was sure whether or not the processes of his program were 
on the same processor. 

Evaluator 5. Evaluator 5 chose filter and then unfold. 

Evaluator 5. Evaluator 5 pressed the play button after animation had reached the 
end of file 6 . 

Evaluator 6. Evaluator 6 expanded the phases but since nothing was displayed on 
the screen she assumed that the execution can be animated only once. Also the message 
put her off but finally she completed the task. 

Evaluator 6. Evaluator 6 forgot that the go to the beginning button can be used to 
set the animation time to 0. 

Evaluator 7. Evaluator 7 asked about what the time in between two rectangles was. 

Evaluator 8. Evaluator 8 was put off by the message and cancelled the unfold 
operation in order to select a phase first. 

Evaluator 8: "I feel as nothing has happened. 7 " 

Evaluator 8. Evaluator 8 needed help with the scrollbar. 

Evaluator 9: "I lost the phases! 8" 

Requirements 

1. Evaluator 2: "I would like an automatic way to select all." 

'This means that there is a need for an indication whether there are phases to the 
left or to the right of an empty frame in the Navigation display. 

5 Evaluator 4 was confused by the empty Navigation display after he expanded the 
upper level phases. 

6 An end of animation message is needed. 

7When Evaluator 8 expanded the phases, the frame of the Navigation display was 
empty because the MPI calls did not appear immediately. 

8Evaluator 9 did not see any phases after he expanded. 



Appendix D. Findings of VISPAT's empirical testing 	 270 

Evaluator 2: "1 would like to have the function select all." 

Evaluator 2: "I would like milestones so that animation can go past them and you 
can know where you are in the animation time." 

Evaluator 2: "I would like to to have the line numbers of the code." 

Evaluator 2: "It would be nice to scroll through a source code window. 9,, 

Evaluator 2: "I would like the tool to hide the fact that my program consists of four 
processes sharing the same processor." 

Evaluator 3: "1 would like to select more than one phase at the same time." 

Evaluator 4: "Colour would be usefull for the identification of the small phases." 

Evaluator 5: "A message that animation has reached the end of file is needed." 

Evaluator 7: "I would like to have a look at the source code." 

D.2.3 Task 7 

Evaluators 
1 2 3 4 5 6 7 8 9 total 

	

0 0 0 0 0 0 0 0 0 0 	0 

	

He 1 0 2 0 0 0 0 0 2 	5 

	

nix 	0 	4 	2 	1 	3 	1 	0 	1 	0 	12 

	

re 	2 	1 	2 0 3 0 4 0 3 	15 

	

or 	2 	1 	2 0 1 	0 4 0 3 	13 

Evaluators 

	

1 	2 	3 	4 	5 	6 	7 	8 	9 

filter uc+hu nt+hu hu uc nt+hu uc ho uc uc 

Evaluators 
1 2 3 4 5 6 7 8 9 total 

	

alone 	 * 	* 	 * 	3 

	

some help 	* 	 2 

	

helped 	 * * 	* 	* 	 4 
alt, strategy 	 0 

Table D-5: Quantitative findings from task 7. 

Negative comments 

1.Evaluator 1: "I didn't like the stop message." 

'He had written the program a long time ago and he could not remember it. 
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Evaluator 3: "I haven't got a clue." 
This was entered when the stop sign appears. 

Evaluator 3: "I don't understand the word filter. Does it mean out or in?" 

Evaluator 7: "The feedback of the tool is a bit slow." 

5.Evaluator 7: "I didn't like the blank space in the beginning when you unfold for 
example." 

Evaluator 9. Evaluator 9 spotted the inconsistency between application and user 
defined. 

Evaluator 9. Evaluator 9 didn't like that everything disappears. 

Unexpected user actions 

1.The stop message confused evaluator 9 and he tried to select more phases. Evaluator 
9 

2.Evaluator 4. The stop sign confused evaluator 4. 

Evaluator 6. Evaluator 6 saw nothing on the display and thought that she had to go 
up one level. 
She used the scrollbar to search for phases and finally understood what was happening. 

Evaluator 2: "I could filter out to see what happens." 

Evaluator 2. The evaluator clicked wrongly on the display menu. 

Evaluator 2. Evaluator 2 thought that since there were not any phases on the 
Navigation display after the filter operation these phases had not happened yet. 

Evaluator 2. Evaluator 2 thought that filter meant filter out. 
Finally he found out that it meant filter in because he could select only one option. And 
finally he realised that his program did not have any user defined phases. 

8.Evaluator 3. Evaluator 3 could not find filter. He tried unfold and even when he was 
told to keep the user defined phases he did not understand it. He thought that filter 
meant filter out. 

9.Evaluator 3. Evaluator 3 tried to click on the empty area on the Navigation display 
in order to unselect the selected phases. 
He said that he knew that he could do this in idraw and he thought that maybe he could 
do the same with VISPAT. He said that he had not liked that feature because in order 
to unselect only one phase he had to unselect all the phases at the same time. He did 
not discover the unselect all option. 

Evaluator 5. Evaluator 5 did not think of pressing filter and said that he had to 
quit the tool to go to the upper level phases because these were the only ones that were 
user defined. 

Evaluator 5. He tried to rescale the display to find the user defined phases 
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Evaluator 8. Evaluator 8 clicked on options and because options had no menu 
underneath she got confused and said that she did not have any options. In reality, 
options had already been opened. 

Evaluator 5. Evaluator 5 unselected manually all the phases. 

Requirements 

Evaluator 1: "I would like a message explaining more what has happened." 

Evaluator 1: "Filter should mean filter in because users should be able to specify what 
they want to see." 

Evaluator 2: "I would like the word application to be changed to user defined." 

Evaluator 3: "I would like to be able to select more than one kind of phases to keep 
in." 

Evaluator 3: "It would be nice to be able to filter more than one kind of phases." 

Application vs user defined confused Evaluator 3 but he selected application because 
nothing else was applicable. 	He said that he was helped because he could select only 
one phase. After he got an empty display he thought that he had filtered all the phases 
out. 

Evaluator 5: "It would be nice to be able to filter a phase with a particular name." 

Evaluator 5: "Being able to make the tool display automatically the first phases 
would be nice." 

Evaluator 5: "A message is needed." 

Evaluator 9: "It would be nice to have two markers." 

Evaluator 7: "It would be nice to use colour for the different phases." 

Evaluator 7: "I would like to be able to fold phases up and down." 

Evaluator 7: "I would like the line number along with the MPI calls in the popup 
window." 

Evaluator 9: "1 would like to be able to reverse all the user actions." 

Evaluator 9: "I would like to be able to select and create my own collection of 
phases." 

Evaluator 9: "It would be nice to be able to have an un-filter operation." 

13.2.4 Task 9 
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Evaluators 
1 2 	3 4 	5 6 	7 8 	9 total 

0 0 0 	1 2 	1 1 	1 0 	0 6 
ne 1 0 	2 1 	4 0 	0 0 	0 8 
on 0 0 	2 0 	1 3 	0 0 	0 6 
Fe 1 0 	1 1 	2 0 	0 0 	1 6 
or 1 1 2 

Evaluators 
1 2 3 4 	5 6 7 8 	9 

comms uc nt-J-hu hu hu 	uc nt+hu nt+hu nt+hu 	uc 
textual order 	uw+hu nt+hu hu hu 	uc ho uw-fhu hu 	hu 

next uc nt+hu hu or 	uc nt-f ho uc hu 	uc 

1 2 3 4 

	

some help 	* 

helped 	 * * * 

	

alt, strategy 	* 	* 

Evaluators 
5 6 7 8 9 total 
* 	 1 

* 	2 
* 	* 	* 	6 

2 

Table D-6: Quantitative findings from task 9. 

Negative comments 

Evaluator 1: "The order of the text in the display is not intuitive." 

Evaluator 3: "I can't move this." 

Evaluator 3: "I don't think that the textual order is natural." 

Evaluator 4: "1 think you expect that most of the text goes up." 

5.Evalvator 5: "I don't think it is easy to handle the textual display in order to move 
it away from the Communication display." 

Evaluator 5: "The order in the textual display is going to be confusing for the users." 

Evaluator 5: "I don't see why time should be on the right. If the time were on the 
left the order of the presentation of the text would be more obvious." 

Evaluator 5: "There is a lot of wasted space on the left because of the way information 
is presented." 

Positive 

Evaluator 3: "Now that I know about the textual order it is easier." 

Evaluator 4: "That is very useful." 

He meant the textual description 

3.Evaluator 4: "That is a breakdown of what is going on in the communication display. 
Good." 
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4. Evaluator 5: "I like the communication event description display. It is very helpful." 

5.Evaluator 6: "I like the processes layout because it is the way communication in MPI 
happen in contexts." 

6. Evaluator 7: "I like that." 
He meant the communication event description display. 

Unexpected user actions 

1. Evaluator 3. Evaluator 3 confused the concepts of event and end of event. 

2.Evaluator 3. Evaluator 3 thought that a non-blocking event is always pictured in red. 

Evaluator 5. Evaluator 5 thought that time in the communication event description 
display was missing. 

Evaluator 6. Evaluator 6 confused red and green for blocking and nonbiocking calls 
respectively. 

Evaluator 6. Evaluator 6 guessed ok about the empty (waiting) and filled (non-
blocking) blobs. 

Evaluator 6. Evaluator 6 tried to perform this task using the Navigation display. 

Requirements 

1.Evaluator 1: " The order of the text presentation in the textual display should be the 
other way around." 

2. Evaluator 3: "I would like to click on a event on the textual display and make the 
Navigation display to go to this event." 

3.Evaluator 4: "I would like some relation to the Statistics display to know how much 
a process is waiting idle." 

4.Evaluator 5: "The time on the textual display should be on the left." 

5. Evaluator 5: "The textual display should resize as well." 

6. Evaluator 9: "I would like to be able with the next button to go to the first commu-

nication event." 
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