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ABSTRACT 

High-resolution (3 kyr) stable isotope analyses (6180, 5 13C) have been conducted on late middle 

Eocene planktonic foraminifera from the western North Atlantic (Ocean Drilling Program, Leg 171 B, 

Site 1052). The data indicate significant (>1 %o) and abrupt changes in mixed layer planktonic 

foraminifera 6180.  These variations probably result from large oscillations in sea surface temperatures. 

The variability is greater than that seen in open ocean Pleistocene records and indicates that the middle 

Eocene climatic system was not consistently warm or stable. There were intervals when annual sea 

surface temperatures were up to 5 °C greater than modem mean values. These temperatures are similar 

to those recorded in the early Eocene, suggesting increased carbon dioxide or other greenhouse gases 

may have forced warm intervals. 

New and existing planktonic foraminiferal biostratigraphic events of the late middle Eocene have been 

examined with a sampling resolution of 3 kyr. These have been calibrated to the astronomical time-

scale to accurately defme the timing of key biostratigraphic events, particularly the extinction of 

Morozovella spin ulosa, which is a distinct biomarker for late middle Eocene sediments. 

Fourier analysis reveals Milankovitch frequencies within the stable isotopic record. The long-period 

eccentricity signal (400 kyr) governs the large fluctuations in middle Eocene 6180  and produced 

significant changes in water column stability and thermal stratification. Large oscillations in sea 

surface temperatures occurred with surface water temperatures periodically reduced for 100 kyr. A 

possible explanation is that these abrupt shifts in 6180  represent orbitally forced variations in 

upwelling intensity, which greatly reduced sea surface temperatures. The direct effects of eccentricity 

on insolation are small. Therefore the prominent eccentricity variations were probably generated by 

nonlinear response to precessional forcing within the climatic system, rather than directly from 

eccentricity variations in solar insolation. Feedback effects within the oceanic - atmospheric system, 

possibly related to atmospheric transport, must have been important. The generally reduced surface to 

bottom temperature gradient in the Eocene may have facilitated the upwelling of deep water to the 

surface ocean. 

It is concluded that the oscillations in the stable isotopic profiles in the western North Atlantic are due 

to climatic controls on the intensity of upwelling. The prominence of the eccentricity frequencies in 

middle Eocene climate records indicates that orbital modulation of solar insolation was an important 

parameter of climatic variability at this time. 
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Chapter 1 	 Introduction 

1. INTRODUCTION 

1.1 Background and rationale 

During the Eocene (54.7 to 33.7 million years ago) the climate was extremely 

different from that of today. The early Eocene was a "greenhouse" world, with carbon 

dioxide levels possibly much greater than modern (Pearson and Palmer, 2000). Polar 

temperatures were elevated, with palm trees as far north as the Arctic circle and no 

permanent ice-sheets anywhere on Earth (Zachos et al., 1994). Climatic cooling 

occurred through the middle and late Eocene with large-scale Antarctic glaciation in 

the early Oligocene. The middle and late Eocene can therefore be considered as the 

transitional period between hot-house and ice-house states. But what were the tropics 

like and how stable was the climate at this time? These questions can be addressed by 

analysing the stable isotope composition of microfossils from cored marine 

sediments. Using this method many aspects of the Eocene climate can be deduced, 

such as the temperature of the sea surface and global ice volume. 

Whilst the climatic shifts during the Eocene are understood in general terms, the 

middle Eocene climate has not been adequately documented in terms of its 

variability, timing of cooling and effect on vertical temperature gradients. This is 

because high-resolution Palaeogene records are scarce and most previously acquired 

Eocene records are incomplete, intermittently cored or disturbed by drilling through 

Eocene chert (Stott and Zachos, 1991). Complete records either lack the necessary 

resolution, or their microfossils are not sufficiently well preserved to record the rapid 

palaeoceanographic changes that are associated with the transition period from a non-

glacial to glacial climate. The Ocean Drilling Program (ODP) Leg 171B, drilled five 

sites at the Blake Nose (western North Atlantic) (figure 1.1). The stable isotopic 

composition of planktonic foraminifera at this subtropical site enables the high-

resolution documentation of the oceanic changes in the middle Eocene Atlantic 

Ocean. 
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1.2 Foraminifera and stable isotopes 

Foraminifera are a major group within the marine benthos and zooplankton. They are 

single-celled protists that commonly shield their cytoplasm within a secreted 

calcareous (CaCO3) skeleton (the test) (Banner, 1982). The preservation and 

accumulation of foraminifera tests within marine sediments yields a long and 

valuable fossil record, which micropalaeontologists have extensively exploited to 

infer palaeoceanographical and palaeoclimatological information. 

A well established tool utilised in the study of palaeoclimatology and 

palaeoceanography is the stable isotopic signal recorded in the calcareous tests of 

fossil foraminifera. The ratio between the oxygen isotopes 160  and 180  of the 

ambient seawater is recorded in the tests of foraminifera during the biomineralization 

of calcite (Emiliani, 1954, 1955) and can be revealed by mass spectrometry. The 

ratio, expressed as 8180 %o is dependent on temperature (Urey, 1947; O'Neil et al., 

1969) and on the oxygen isotope ratio of the ambient seawater, which is governed by 

the amount of evaporation, precipitation and global ice volume (Shackleton and 

Kennett, 1975). The 8 notation defines the deviation in parts per thousand (%o) or per 

mil of the sample analysed from the Pee Dee Belemnite (PDB) standard (Craig, 

1965). This is expressed below: 

18O = [(180,160) sample - (180/160) standard] x 1000 

( 180/ 1  60) standard 

At higher temperatures, there is less fractionation of 180  relative to 160  so 

foraminifera inhabiting warmer waters will be depleted in 180  whilst those species 

living in colder waters will be enriched in 180  (Urey, 1947; Shackleton and Opdyke, 

1973). The effect of temperature has been quantified as —O.25%0/1 °C (Epstein et al., 

1953). 

Evaporation and atmospheric vapour transport influence the isotopic composition of 

seawater. During evaporation, the lighter 160  isotope is preferentially removed into 



Chapter 1 	 Introduction 

the atmosphere and is returned to the oceans via precipitation. Therefore areas of 

extensive evaporation will have surface waters that are enriched in 180  in comparison 

to areas of high precipitation. However, during cold climatic periods the 160 becomes 

locked up in ice, making the oceanic water increasingly enriched in 180  as ice volume 

increases. The full glacial to full interglacial shift in the marine oxygen isotope 

composition is approximately 1.2% (Shackleton and Kennett, 1975; Berger, 1979). 

The fluctuations in enrichment can be utilised to indicate global ice volume and the 

temperature Of surface and deep ocean waters through time. 

There are some uncertainties that present limitations to the oxygen isotope approach 

of palaeotemperature calculation. These include the modification of the 5 180 values 

in carbonate fossils by diagenesis, the unknown oxygen isotope composition of 

ancient oceans, salinity related effects (Craig and Gordon, 1965) and the fractionation 

of organically precipitated calcite that is not in equilibrium with the ambient ocean 

water (Shackleton et al., 1973; Pearson et al., 1993). Examination of extant 

foraminifera species, clearly indicate that "vital effects" can alter the environmental 

signal. This is particularly true of carbon isotopes (Shackleton et al., 1973). 

1.3 Geological setting 

Blake Nose, or Blake Spur, is a salient in the western North Atlantic, located due east 

of northern Florida, on the eastern margin of the Blake Plateau (figure 1 1). Blake 

Nose forms a gentle ramp at the Blake Escarpment where water depths reach a 

maximum of 2700 metres. Strata of Cretaceous and Palaeogene age are present at 

shallow burial depths and have never been deeply buried by younger sediments. They 

are thus little affected by diagenesis. A thin veneer of manganese-rich sand and 

nodules shields these sediments from modern day erosional processes (Norris, Kroon 

et al., 1998). Five sites (1049 - 1053) were drilled along a transect of Blake Nose by 

the ODP Leg 171B (figure 1.2). 
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Figure 1.1. Location map of Blake Nose and Blake Plateau, ODP Leg 171B (Norris, Kroon et 

al., 1998). 

The primary objective of ODP Leg 171B was to drill shallow sites in a transect from 

the edge of the Blake Escarpment to the margin of the Blake Plateau. The main 

interest in these sites was to allow the vertical structure of the Palaeogene oceans to 

be interpreted and to provide subtropical sea surface temperatures by utilising 

moderately well preserved calcareous microfossils. These results are necessary to 

document major steps in climate evolution. Documentation of the oceanic changes 

associated with the transition from the warm to cool Eocene world in the subtropical 

Atlantic ocean is enabled by the completeness of the middle and upper Eocene 

section at Blake Nose. The ocean plays a very important part in climate change and 

this study allowed an examination of sea surface temperatures and the thermal 

gradient response at this time. The focus of this study is Site 1052 where middle 

Eocene sediments display rhythmic colour variations and relatively well preserved 

microfossils. 

VN 
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4 



I 
	

Introduction 

77GW 	 76'W 

3025'N 

30°00N 

2925N 

.\ Site 1049 
(DSDP 

Site 	 390) 
Site 1053 	Site 1050 

Site 1052 	 1051 

- 	

5keNo 

ief 
front 

S 

- Z 
Figure 1.2. ODP Leg 171B drill locations, bathymetry (metres) and existing seismic lines 

(Norris, Kroon etal., 1998). 

1.3.1 Site 1052 

Site 1052 is located on the upper part of the Blake Nose and is the shallowest site of 

the depth transect (figure 1.3). The bio-magnetostratigraphy indicates that the record 

spans the late Albian and late Eocene. The site is at present in the depth range of 

modem intermediate waters at 1345 metres below sea level (mbsl). Nuttalides 

truempyi and Aragonia spp. are present but rare indicating a middle bathyal 

palaeodepth (600 - 1000 m) during the middle Bocene. The sediments consist of a 

pale yellow siliceous nannofossil ooze (Norris, Kroon et al., 1998). Diatoms, 

radiolarians and sponge spicules make up the siliceous component. 

5 
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Figure 1.3. Seismic interpretation across Blake Nose showing the drill sites, major reflectors 

and their ages (Norris, Kroon et al., 1998). 

The magnetostratigraphy of Holes I 052B and 1 052F are shown in figures 1.4 and 1.5 

respectively, whilst a composite is shown in figure 1.6. The clear magnetic polarity 

stratigraphy (figures 1.4 and 1.5) and excellent record of cyclic variations in magnetic 

susceptibility and colour (see chapter 2) make this site ideal to study middle Eocene 

climate change at a high temporal resolution. 
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Kroon etal., 1998). 
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Figure 1.6. Composite magnetostratigraphy of Holes 1052B and 1052F (after Norris, Kroon 

et al., 1998). See figure 1.4 for key to polarity column. The time-scale of Berggren et al. 

(1995) is shown on the right. 

1.4 The Eocene climate 

One of the most dramatic climatic changes during the history of the Earth is the 

transition from the hot-house world of the early Eocene to the ice-house world of the 

early Oligocene. Abundant palaeontological and geochemical data indicate that the 

Eocene climate was extremely different from the present. Early Eocene marine and 

terrestrial records indicate that the Earth was warmer than at any other time during 

the last 65 million years, representing a fundamentally different climate state than 

existed at any other interval in the Cenozoic. The early Eocene climate was 

9 
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characterised by a reduced meridional surface temperature gradient, increased global 

mean temperature and the absence of large-scale continental glaciation (Rea et al., 

1990; Zachos et al., 1994). Minor continental ice-sheets may have existed on 

Antarctica, although these did not reach the coastline (Mackensen and Ehrmann, 

1992; Zachos et al., 1993). High-latitude marine temperatures based on oxygen 

isotope data reveal seasonal highs of 18 °C during the early Eocene (Stott et al., 1990) 

with deep-water temperatures greater than 15 °C (e.g. Shackleton and Kennett, 1975; 

Miller et al., 1987; Zachos et al., 1994). 

After the warmth of the early Eocene, deep water and high-latitude temperatures 

began to cool. The global climatic cooling did not occur smoothly during the 

Cenozoic, but was marked by a number of abrupt and distinct shifts from one 

climatic state to another (figure 1.7). The early stages of the Cenozoic cooling trend 

began with a step-like climatic deterioration during the early middle Eocene (-50 to 

48 Ma). The middle Eocene saw two modest increases in the 8' 80 values of 

planktonic foraminifera, at the early to middle Eocene boundary and during the late 

middle Eocene (Shackleton and Boersma, 1981). This heralded the onset of global 

cooling that ultimately led to the Quaternary ice age. These increases in 8180  indicate 

either a reduction in ocean temperature or an expansion of global ice volume. 

Analyses of benthic foraminifera also illustrate a cooling trend at that time, which 

implies a synchronous cooling in both bottom and surface ocean waters in the mid-

and high-latitudes (Kennett and Shackleton, 1976). Floral and faunal records indicate 

a decrease in high-latitude and deep ocean temperatures (e.g., Benson, 1975; Corliss, 

1979; Aubry, 1983; Keller, 1983; Boersma et al., 1987). The increases in 6 180 have 

been explained as reductions in the global ocean temperature either with or without 

ice formation. There may have been seasonal winter ice in the Arctic region and 

continental ice in West Antarctica, though there is no confirmation of a major ice cap 

during the middle Eocene (Zachos et al., 1994). 

10 
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Figure 1.7. Palaeocene and Eocene global oxygen and carbon isotopic records. Palaeocene 

data from Deep Sea Drilling Project (DSDP) Site 384 (northwest Atlantic; Berggren and 

Norris, 1997), late Palaeocene and Eocene data from ODP Site 865 (north central Pacific; 

Bralower etal., 1995). Figure courtesy of Richard Norris. 

The sediments at Blake Nose provide the opportunity for investigating climate 

variability and sediment history during the transition from a hot-house to ice-house 

world. Crucial in investigating the magnitude of change in the climatic system and 

the succession of events are stable isotope records from planktonic foraminifers. The 

advantage of Leg 171 B is that the middle Eocene sediments have never been deeply 

buried and there is a clearly defined biostratigraphy and magnetostratigraphy 

throughout the late middle Eocene. The record from Blake Nose therefore enables the 

examination of high frequency climatic variability and accurate documentation of the 

timing and scale of relatively short-term climatic changes in the middle Eocene 

Atlantic Ocean. The results from the Shipboard Scientific Party (Norris, Kroon et al., 

1998) indicate clear high frequency variability in the colour reflectance data (see 

chapter 2), which are thought to be driven by Milankovitch scale climate oscillations. 

The examination of planktonic foraminifera stable isotopes in association with the 

colour record allows climatic dynamics in the late middle Eocene to be examined 
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much more fully than in previous studies. This thesis explores the effect of orbital 

forcing (Milankovitch cycles) upon the late middle Eocene climate. 

1.5 Mechanisms of Eocene climate change 

The forcing factors accountable for the high-latitude climatic warmth in the early 

Eocene and the subsequent long-term cooling remain undetermined. Various 

hypotheses have been suggested that in general fall into two categories: those that 

call for a redistribution of energy about the Earth's surface and those that demand a 

change in the net amount of energy trapped by the atmosphere (Zachos et al., 1994). 

A multiple of factors were probably responsible for the Cenozoic cooling trend. 

1.5.1 Hypotheses involving the redistribution of energy 

These hypotheses mostly involve changing the capability of global meridional heat 

transport via the atmosphere andlor ocean. This could be achieved by modifications 

in the position of ocean gateways and continents (e.g. Kennett and Shackleton, 1976; 

Kennett, 1977; Berggren and Hollister, 1977; Haq, 1981; Berggren, 1982; Horrell, 

1990; Rind and Chandler, 1991). The redistribution of energy has often been cited as 

the principal mechanism behind high-latitude cooling in the Palaeogene (Zachos et 

al., 1994). For example, comparatively warm global climates are associated with the 

existence of a circumglobal tropical ocean. Marked cooling and the development of 

glaciers in high-latitudes are thought to be related to the closure of low latitude 

oceanic seaways and the opening of high-latitude connections (Keimett, Houtz et al., 

1975; van Andel etal., 1975; Hayes, Frakes et al., 1975; Kennett, 1982). However, 

the exact mechanisms by which tropical oceanographic changes take place have not 

been identified and climatic modeling studies indicate that the high-latitude warmth 

and the Cenozoic cooling trend cannot be explained by changing palaeogeography 

and palaeoceanography alone (Barron and Washington, 1984; Barron, 1985; Sloan 

and Barron, 1990; Sloan et al., 1992; Crowley, 1993; Fawcett and Barron, 1998; Bice 

et al., 2000a). 
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Major tectomcally forced events have produced significant alterations in global 

climate system dynamics during the Eocene (Barron and Peterson, 1991; Berner, 

1994; Sloan and Rea, 1995; Mikolajewicz and Crowley, 1997). Three principal 

features can be distinguished in the palaeoceanographic evolution (Kennett, 1977, 

1982). The first of these is the decreasing role of equatorial and low latitude oceanic 

circulation, as the once virtually unrestricted equatorial seaway became increasingly 

segmented (figure 1.8). This resulted from the closure of the Tethys seaway, the 

bridging of the Central American Seaway, the emergence of the south-east Asian 

region and the related northward migration of Australia. These palaeoceanographic 

changes had major consequences on the equatorial current system intensity, the 

associated nutrient budgets, biological productivity, upwelling and communities of 

fauna and flora (Kennett, 1982). 

Figure 1.8. Reconstructed surface water circulation patterns in the Atlantic during the middle 

Eocene (after Haq, 1981). 
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The second major oceanographic modification was the evolution of the circum-

Antarctica circulation system (Antarctic circumpolar current). This arose chiefly from 

the rifling of Australia and Antarctica and the opening of the Drake Passage (Lawyer 

and Gahagan, 1998), giving rise to unrestricted flow of cold waters around 

Antarctica. The final element was the changing nature of the bottom-water 

circulation with the development of thermally driven North Atlantic Deep Water, in 

response to high-latitude cooling and glacial events. 

1.5.2 Hypotheses involving the net amount of energy 

These hypotheses tend to call for alterations in the quantity of heat trapped in the 

Earth's atmosphere by variations in either the Earth's albedo or the amount of 

greenhouse gases (e.g. Barron, 1985; Berner, 1991; Sloan etal., 1992). Higher 

atmospheric CO2 levels are often involved in interpretations of climate change for the 

Cretaceous and early Cenozoic (Crowley, 1991; Crowley and Zachos, 2000). A 

principal means for modifying the concentration of greenhouse gases in the Earth's 

atmosphere is volcanic degassing, which is governed by rates of seafloor spreading 

and/or subduction (Owen and Rea, 1985; Rea et al., 1990; Berner, 1991). 

Considerable variation has been recorded in atmospheric CO2 during the Eocene 

possibly reflecting the greater instability of Earth system processes during 

greenhouse climates. It is indicated by Pearson and Palmer (2000) that pCO2 

decreased from 3,700 to 500 ppm between the early Eocene and Miocene. A cause 

and effect relationship between atmospheric CO2 and climate change is favoured by 

the approximate correlation between the pCO2 record and Palaeogene marine 

temperature changes in high-latitudes. However, there did not appear to be a simple 

correlation between CO2, deep water temperatures and ice volume (Pearson and 

Palmer, 2000). Large CO2 changes are coincident with the time period investigated 

here and high-resolution climate data are necessary to establish the variability of the 

climatic system during this transitional interval from greenhouse to ice-house states. 
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Another theory for Eocene climatic evolution is that these step-wise transitions 

characterise shifting threshold levels from water to ice in high-latitude regions. The 

climatic shifts were possibly the result of positive feedback upon the attainment of a 

specific phase of snow and ice expansion. As the ice advanced more of the incoming 

radiation was reflected back to space, thus changing the global albedo (Berger et al., 

1981). This gave rise to a feedback mechanism that helped in sustaining a new 

palaeoclimatic state (Kennett, 1982). 

1.6 The debate over tropical sea surface temperatures (SSTs) 

Tropical sea surface temperatures have been shown to be essential in verifying the 

character of forcing and feedback of warm climatic states (Manabe and Bryan 1985; 

Covey and Thompson 1989; Horrell 1990; Crowley 1991; Zachos et al., 1994). 

However, a disparity has previously prevailed between proxy temperature 

interpretations derived from isotopic and other palaeontological indices for the 

Eocene tropics. Remarkably, stable oxygen isotopic data from planktonic 

foraminifera indicate that Eocene tropical SSTs were lower than present (e.g. 

Shackleton and Boersma, 1981; Boersma et al., 1987, Zachos et al., 1994; Bralower 

et al., 1995), whilst other palaeontological proxies record SSTs equal or greater than 

present day temperatures (e.g. Adams et al., 1990; Graham, 1994; Andreasson and 

Schmitz, 1998). This discrepancy in palaeoclimate proxies has significant 

implications for the climatic mechanisms involved in creating polar warmth. 

Hypotheses stating past CO2 levels to be responsible for the Eocene warmth are not 

reinforced by existing calcareous ö 80  records which show tropical and subtropical 

SSTs no warmer than present (figure 1.9). If elevated high-latitude temperatures are 

due to increased greenhouse gases such as CO2 and methane, then climatic models 

suggest that temperatures will be elevated at all latitudes (Crowley, 1991). To date, 

model simulations with higher atmospheric levels of CO2 have all produced higher 

tropical SSTs (Manabe and Bryan, 1985; Manabe and Stouffer, 1994; Cubasch etal., 

1995). This disparity suggests that tropical SSTs must have been moderated by 

feedback processes if Eocene high-latitude warmth was greenhouse gas generated. 
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Difficulties exist in explaining why Eocene subtropical SSTs were cooler than today 

whilst high-latitude temperatures were elevated. 
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Figure 1.9. Eocene and Holocene surface water temperatures.• Eocene; 0 = Holocene 

(after Barron, 1987). 

The warm early Cenozoic polar temperatures and cool tropical surface waters are 

often explained by increased ocean heat transport from the low- to high-latitudes 

(Barron, 1987; Covey and Barron, 1988; Covey and Thompson, 1989; Horrell, 1990; 

Rind and Chandler, 1991; Barron etal., 1993; Sloan and Rea, 1995). Climatic 

modeling experiments suggest that the amount of Eocene high-latitude warming and 

the cool tropics may be achieved by amplifying the ocean poleward heat conveyor 

(Barron, 1987; Rind and Chandler, 1991). This is thought to warm polar regions 

whilst reducing equatorial SSTs (Covey and Thompson, 1989; Horrell, 1990; Zachos 

et al., 1994). The cooler tropical SSTs observed from calcareous oxygen isotopic 

evidence would suggest that amplified poleward oceanic heat transport was 

responsible for the high-latitude warmth. However, oceanic transport 15 to 30 per 

cent greater than present is reported to be necessary for such changes (Honell, 1990; 

Rind and Chandler, 1991) and during intervals when meridonial and vertical thermal 

gradients were apparently modest compared to present day (such as the Eocene) no 

known physical mechanism exists to support this (Sloan et al., 1995; Bice and 

16 



Chapter 1 	 Introduction 

Marotzke, 2000). Therefore the forcing mechanism responsible continues to be 

problematic. Further potential feedbacks of abating tropical SSTs include amplified 

cloud cover which may elevate albedo and thus induce cooling (Ramanathan et al., 

1989; Horrell, 1990; Zachos et al., 1994). 

There is a possibility however, that foraminifera 8 180 may not always record true 

SST variability. Greater temperatures have been suggested by other fossil groups 

(e.g. Andreasson and Schmitz, 1998). The discrepancy in palaeoclimate proxies may 

result from the diagenetic alteration of planktonic foraminifera, foraminifer 

palaeoecology or errors in estimating the 8 180 of Eocene seawater. The conclusion 

needs to be examined more fully, particularly in light of feedback mechanisms and 

oceanic heat transport. It is clear that to test the CO 2  theory of climate change, further 

data are required from tropical and subtropical areas. 

The results from ODP Leg 171B contribute to the debate on mechanisms of climate 

change by establishing subtropical SSTs from reasonably preserved material. This 

high-resolution study allows the middle Eocene climatic changes to be examined 

much more fully and leads to new insights into forcing mechanisms of the oceanic-

climatic system during this period. 

1.7 Milankovitch climate cycles and calibration of middle 

Eocene biostratigraphy to an orbital time-scale 

Recent legs from the ODP provide the opportunity to study Palaeogene climate 

change at a high temporal resolution in the Milankovitch frequency band. The middle 

and upper Eocene section at Site 1052 has high sedimentation rates (-3 cm / kyr), a 

clearly defined magnetostratigraphy and abundant calcareous microfossils. The 

measurements of colour reflectance and magnetic susceptibility indicate cyclic 

variations in lithology. These sediments are ideal to document orbital cyclicity 

patterns in colour and stable isotope records to better understand Eocene climate 

dynamics. In this study, these data are used to tune to Milankovitch cycles to improve 
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the traditional middle Eocene chronology that is provided by foraminiferal and 

nannofossil events. The cyclostratigraphy established at Site 1052 is used to 

accurately reconstruct the timing of middle Eocene biostratigraphic events (chapter 

2), particularly the extinction of Morozovella spinulosa, which is a distinct biomarker 

for late middle Eocene sediments. Spectral analysis is then used to identify the 

influence of climatic variation in response to orbital forcing (Milankovitch 

periodicities) on foraminiferal 8 180 and 8 13C records (chapter 4). 

1.8 Objectives 

By high-resolution stable isotope data from middle Eocene planktonic foraminifera, 

the following objectives are addressed: 

Astronomical calibration of the colour record at Site 1052 by Pälike et al. (2001) 

is used torefine the late middle Eocene biochronology. A number of 

biostratigraphic datums are refined and tuned to the orbital chronology. 

Insights are gained into the instability of transitional climate dynamics in the 

middle Eocene by documenting the fluctuations in surface water isotopic values 

and their relationship to orbital cyclicity (Milankovitch Cycles). This is 

accomplished by stable isotope analysis of the late middle Eocene sediments at 

Site 1052 from 75 - 135 metres composite depth (mcd), which represents a time 

span of approximately 2.3 million years. By determining orbital variability in the 

stable isotope records an assessment of the timing and abruptness of large climatic 

oscillations is made. 

Subtropical sea surface temperatures in the middle Eocene are constrained to 

document if these were really cooler than modem day temperatures. This is 

accomplished from oxygen isotope analysis of reasonably well preserved 

planktonic foraminifera. The results provide information on the mechanisms that 

drove Eocene climatic oscillations. 

The vertical water column temperature gradient over Blake Nose during part of 

the middle Eocene is reconstructed. Measurements from both planktonic and 

benthic foraminifera provide information on Eocene oceanic stratification, mixing 

/ upwelling intensities and their relationship to solar insolation distributions. 

18 



Chapter 1 
	

Introduction 

5) The faunal response to climatic coo!ing is assessed, particularly in terms of the 

timing and abruptness of key extinction events. 

The objectives are addressed by stab!e isotopic and spectral analysis of foraminifer 

and sedimentary cycles from ODP Leg 171B Site 1052. The long-term isotopic 

records of Eocene surface and deep-water are well documented (Zachos et al., 1994 

and references therein), however middle Eocene climate variability has not 

previously been examined at a high-resolution. The high-resolution study of these 

Eocene sediments will constrain climatic forcing mechanisms under transitional 

climate conditions. The stable isotope record is needed to assess the scale and timing 

of short-term changes in SSTs and major steps in global climatic evolution as the 

cryosphere develops. The results from Leg 171B will document how rapidly these 

changes took place and examine the stability of warm climate phases. The analysis of 

planktonic foraminifera permits the measurement of Eocene surface water conditions 

at an orbital resolution. This has never been examined at such a high-resolution in the 

Palaeogene and provides significant insights into climate dynamics and how these 

differed from those of the present day. These records hold essential information on 

transitional climate change and palaeoceanography that is required to interpret 

climate forcing and feedback mechanisms in the ocean-atmosphere system. The 

sediments from Site 1052 allow documentation of middle Eocene climatic variability 

and its relationship to biotic turnovers. The influence of Milankovitch forcing upon 

middle Eocene ocean dynamics is examined to understand the nature of climatic 

forcing mechanisms at this time. 
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2. ORBITAL CYCLICITY IN THE LATE MIDDLE EOCENE 

SEDIMENT RECORD AT BLAKE NOSE AND RECALIBRATION 

OF THE BIOSTRATIGRAPHY TO THE ASTRONOMICAL TIME-

SCALE 

2.1 Orbital forcing in Palaeogene records 

It is well established that climatic variance is driven in some way by insolation 

changes caused by orbital forcing (Milankovitch cyclicity) (e.g. Imbrie et al., 1984; 

Genthon et al., 1987). The amount of solar radiation received and its geographical 

distribution are influenced by three variable elements of the Earth's orbit (figure 2.1). 

Periodic variations in the insolation patterns of the Earth are produced by the cycles 

of equinox precession (19-23 kyr), obliquity of the Earth's rotation axis (41-54 kyr), 

and eccentricity of the orbit around the sun (97-123 kyr for short-term and -'413 kyr 

for long-term components) (Milankovitch, 1941). 

Over approximately a 100, 000 year cycle, the Earth's orbit changes from being 

circular to an elliptical shape. This eccentricity of orbit causes seasonal variations in 

the amount of solar insolation, by modulating the precessional cycles. Every 41, 000 

years, the tilt of the Earth's axis changes between 24.5°  and 22.1 0, the greater the tilt 

the more marked the seasons, particularly at high latitudes. The time of year at which 

the Earth is nearest the sun (perihelion) also varies, this alternates with an average 21, 

000 year cycle. This enhances the seasonal difference between the two hemispheres, 

with the greatest influence at low latitudes. It is these changes which appear to be 

responsible for remarkable variations in the complex oceanic and atmospheric 

systems. Changes in orbital parameters give rise to altered seasonal distributions and 

intensities of solar insolation that are thought to lead to changes in marine 

productivity, carbonate rain rates, terrestrial runoff; sediment erosion and transport 

among other things. How the relatively minor variations in solar insolation cause 

these changes is not well understood. The question addressed here is how variations 
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in insolation as a function of orbital cycles propagated in the climate system during 

the late middle Eocene. 

Orbital eccentricity 

Circular orbit 

Axial tilt 

J. 

I Minimum tilt ,I 

Earth 
Elliptical orbit 

97-123 kaforshort - and 

Sun 	 j 413 ka for long-term components 

obliquity of the Earth's rotation axis (41-54 ka) 
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of 
on 

equinox precession (19-23 ka) 

Figure 2.1. Simplified illustration of the variable elements in the Earth's orbit (after Elsom, 

1992). 
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Evidence for orbital forcing in the Palaeogene has been provided by spectral analysis 

of climatic records, which has recognised orbital frequencies in foraminiferal 

assemblages, stable isotope data and physical property records. For example, Herbert 

and D'Hondt (1990) recognised precessional climate cyclicity in the South Atlantic 

during the Danian. Bradley (1929) and Fischer and Roberts (1991) identified 

oscillations with a periodicity of 19.5 and 100 kyr from the Eocene Green River 

Formation (Wyoming, USA). Low frequency ( 400 kyr) oscillations in climate and 

carbon cycles were found by Zahn and Diester-Haass (1995) at ODP Site 689 

(Weddell Sea, Antarctica) through the Eocene and Oligocene. Norris and Röhl 

(1999) recognised precessional frequencies in the late Palaeocene record at Site 1051 

and Röhl et al. (2001) found both obliquity and precessional cycles in upper Danian 

sequences at Site 1050. Wade et al. (2001) documented orbital signals in colour and 

stable isotopic data from the middle Eocene at Site 1051. 

2.2 Core to core integration 

Digital reflectance data and magnetic susceptibility were measured every 5 cm at 

Blake Nose by the Shipboard Scientific Party (1998). These parameters indicated 

cyclicity that can be attributed to orbital forcing (Milankovitch cyclicity) (Norris, 

Kroon et al., 1998). The climatically controlled lithological and colour cycles are 

more pronounced at Site 1052 than elsewhere on the Blake Nose due to its more 

proximal location and thus increased terrigenous sediment input compared with 

deeper water sites. The mechanisms controlling the colour signal are discussed in 

section 2.7. The multiple coring strategy and sediment cyclicity at Site 1052 allowed 

the Shipboard Scientific Party to generate a composite depth scale by splicing 

intervals from adjacent holes to produce a continuous sedimentary record. This 

prevents problems of core breaks and disturbances in the sedimentary record. The tie 

points used in construction of the splice were determined by the Shipboard Scientific 

Party (1998) and are shown in table 2.1. The metres composite depth (mcd) scale is 

used hereafter. This study focuses on the interval from 1052B 1OH-1 83.00 cm to 

1052F 14H-6 137.00 cm, equivalent to 77.26 to 131.33 mcd. Figure 2.2 illustrates the 
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execution of tie points from table 2.1. The composite depth scale (table 2.1) is used 

throughout this thesis including stable isotope examination (chapter 3). 

Hole Core, Interval Depth Depth Tied Hole Core, Interval Depth Depth 

section (cm) (mbst) (mcd) section (cm) (mbsf) (mcd) 

F 81-1-7 41.00 75.91 77.26 Tie to B 101-1-1 83.00 72.83 77.26 

B 1OH-6 119.00 80.69 85.12 Tieto F 1OH-2 84.50 83.36 85.12 

F IOH-5 77.00 87.77 89.53 Tie to B 11H-2 91.00 83.91 89.53 

B 11H-5 107.00 88.57 94.19 Tie to F I1H-1 121.00 91.71 94.19 

F IIH-7 21.00 99.71 102.19 Tieto B 12H-4 2.50 95.49 102.19 

B 121-1-6 11.00 98.56 105.26 Tie to F 12H-2 85.00 102.35 105.26 
F 121-1-7 5.00 109.05 111.96 Tie to B 13H-3 140.00 104.91 111.96 

B 13H-4 103.00 106.03 113.08 Tieto F 13H-1 66.00 110.17 113.08 

F 13H-6 73.00 117.73 120.64 Tieto B 14H-3 108.00 114.09 120.64 

B 14H-6 115.00 118.65 125.20 Tieto F 141-1-2 123.50 121.74 125.20 

F 141-1-6 137.00 127.87 131.33 Tieto A 14H-6 11.00 125.31 131.33 

Table 2.1. Core to core integration at Site 1052 (Norris, Kroon etal., 1998). 

The spliced section allows a composite of the physical property records to be 

constructed. Figures 2.3 and 2.4 show the spliced Munsell hue colour record and 

magnetic susceptibility from Site 1052 plotted against mcd. A clear cyclicity is 

evident, particularly from 103 - 133 mcd with an average wavelength of-0.7 m. 
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Figure 2.2. Munsell hue record from 75 - 135 mcd at Site 1052 (Holes 1 052B and 1 052F) 

after Norris, Kroon etal. (1998). Data from Hole 1052F has been offset by a value of +4 to 

distinguish data from Hole 1052B. The tie points of table 2.1 are indicated by the horizontal 

lines whilst the interval included in the splice is illustrated by the vertical lines. 
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Figure 2.3. Munsell hue colour record from 75 to 135 metres composite depth at Site 1052. 

Magnetostratigraphy and core numbers are shown on the right. Biostratigraphic datums are 

also indicated (discussed in section 2.5.2). LAD = last appearance datum. C. = 

Chiasmolithus; A. = Acarinina; R. = Reticulofenestra. This interval corresponds to planktonic 

foraminifera Zones P14/P15, late middle Eocene. 
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Figure 2.4. Magnetic susceptibility (left) and Munsell hue (right) record from 75 - 135 metres 

composite depth at Site 1052. 
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2.3 Age model 

The combination of abundant microfossils and nannofossils, with the clear 

magnetostratigraphy, provided a Shipboard chronostratigraphic framework for Site 

1052 that was later improved by using cyclostratigraphy. Table 2.2 lists the initial 

magneto- and biostratigraphic datums from Site 1052 as per the Shipboard Scientific 

Party (1998). 

Datum Age (Ma) Minimum 

depth (mcd) 

Maximum 

depth (mcd) 

Mean depth 

(mcd) 

T C17n.2n 37.604 78.46 80.00 79.23 

B C17n.2n 37.848 85.56 87.56 86.56 

T C17n.3n 37.920 88.00 89.22 88.61 

B C17n.3n 38.113 94.02 97.64 95.83 

T C18n.ln 38.426 105.26 107.80 106.53 

B C18n.ln 39.552 127.30 127.96 127.63 

T C18n.2n 39.631 128.40 129.44 128.92 

B C18n.2n 40.130 137.10 140.14 138.62 

B C. oamaruensis 37.000 82.19 83.59 82.89 

T C.grandis 37.100 82.19 83.65 82.92 

B R. bisecta 38.000 123.53 133.62 128.58 

T M. spinulosa 38.100 87.37 93.36 90.37 

B G. semiinvoluta 38.400 83.61 87.37 85.49 

T 0. beck,nanni 40.100 135.36 135.69 135.53 

T C.solitus 40.400 133.62 135.92 134.77 

Table 2.2. Magnetostratigraphic and biostratigraphic age datum levels for Site 1052. B, base; 

T, top. All biostratigraphic datums from Hole 1 052A (Norris, Kroon et al., 1998) and ages 

from Berggren et al. (1995). Compare to refined magnetostratigraphic and biostratigraphic 

datums, tables 2.3, 2.5 and 2.6. 
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2.3.1 Sedimentation rates 

Figure 2.5 shows the age model and sedimentation rates calibrated for Site 1052 

based on the magnetostratigraphy and the age scale of Berggren et al. (1995) (table 

2.2), assuming a constant sedimentation rate between tie points. There is 

considerable scatter in the biostratigraphic datums that are thought to be due to 

inaccuracies in the current calibration or diachronous bio-events. The age model 

suggests that this record is approximately 2.6 million years (myr) in duration. 

sedimentation rate = 3 cm I kyr 

0 

sedimentation rate = 1.9 cm I kyr 

s D 0 
sedimentation rate = 2.4 cm I kyr 

36.5 37.0 37.5 38.0 38.5 39.0 39.5 40.0 40.5 

Age (Ma) 

Figure 2.5. Biostratigraphic and magnetostratigraphic datums at Site 1052 plotted against 
the time-scale of Berggren etal. (1995). Age model for Site 1052 as listed in table 2.2. This is 
based on the bio-magnetostratigraphy from the Shipboard Scientific Party (1998), assuming 
a constant sedimentation rate between tie points. Points represent the mean metres 

composite depth (mcd) of each datum. •= magnetostratigraphic datums; L= nannofossil 

datums; 0 = foraminifera datums. 

The biostratigraphy and magnetostratigraphy allows an estimate of the sedimentation 

rate at Site 1052. Using the age scale of Berggren et al. (1995) this varied between 

1.9 cm / kyr and 3 cm / kyr (figure 2.5). The magnetochronology implies a significant 

decrease in the sediment accumulation rate during chron C18n.ln (106.53 - 127.63 

mcd). Alternatively, this magnetochron could be truncated by one or more 

unconformities (evidence for which is discussed in section 2.5.1). 
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2.4 Spectral analysis of the sedimentary record 

Spectral analysis was conducted on the digitised sediment colour records from Site 

1052 using the Blackman-Tukey method in the Analyseries software package 

(Paillard et al., 1996). The Munsell hue record was detrended with a 21-point moving 

average. To document the frequency of significant cycles in the Munsell hue record, 

spectral analysis was performed on a series of overlapping 10 m sliding windows 

(figure 2.6). Performing spectral analysis in this way allows the change in short-term 

recessional) cycle frequencies over time to be isolated and identified. The 

overlapping windows document variations in sediment accumulation rate and 

constancy of the spectral peaks. As the data has been detrended to remove the long-

term periods other Milankovitch frequencies such as the eccentricity cycle (-400 and 

100 kyr) are not seen. 

The Munsell hue colour record from 75 to 135 mcd shows pronounced cyclicity at a 

wavelength of 1.4± 0.2 cycles / metre (figure 2.6) throughout the record, suggesting 

a recurrent variation in the depositional environment. This is visually apparent in 

both the evolving spectral analysis (figure 2.6) and within the raw data (figures 2.2, 

2.3 and 2.4). The sediment accumulation rates obtained by the bio and 

magnetostratigraphic age model (figure 2.5) provide an estimate of the periodicity in 

the Munsell hue record. The sedimentation rate averages 3 cm / kyr during Chron 

C17n.2n and C17n.3n (75 - 105 mcd) suggesting that the -'0.7 metre oscillations are 

attributed to the 21 kyr precessional periodicity. There are a number of 

magnetostratigraphic and biostratigraphic datums for this interval and therefore the 

sedimentation rate for this section is better constrained than further downhole. The 

estimated sediment accumulation rate of magnetochrons C17n.2n, C17n.3n and C17r 

are consistent with the -0.7 metre cycles assigned to the precessional period. 
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cycles I metre 

Figure 2.6a. Power spectra of 10 m intervals of the Munsell hue record at Site 1052. Note 

changes in scale on the y-axis. The dotted line indicates the main cycle frequency 

corresponding to precession (-21 kyr). 
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cycles I metre 

Figure 2.6b. Power spectra of 10 m intervals of the Munsell hue record at Site 1052. Note 

changes in scale on the y-axis. The dotted line indicates the main cycle frequency 

corresponding to precession (-21 kyr). 
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There is a shift in the dominant cycle from 1.2 to 1.8 cycles / metre at 105 - 115 mcd. 

This reflects a change in mean sedimentation rate from 3.8 cm / kyr to 3.0 cm / kyr 

over this interval. There is also a secondary frequency at 2.3 ± 0.38 cycles / metre. 

This may relate to smaller maxima of precession and has been recorded in previous 

studies (e.g. Herbert and D'Hondt, 1990; Crowley etal., 1992; Hagelberg et al., 

1994; Olago et al., 2000; Wade et al., 2001). Alternatively, the subsidiary cycles may 

relate to secondary harmonics, which are frequent in time series against depth 

(Weedon, 1989; Weedon et al., 1997). Small fluctuations in sedimentation rate 

account for the variations in the orbital peaks with depth. 

2.5 Astronomical calibration of the middle Eocene time-scale 

As demonstrated for Pleistocene palaeoclimatology, orbital cyclicity provides an 

effective means to gauge time. It therefore has the capacity to significantly improve 

the temporal resolution of geomagnetic polarity time-scales (e.g. Cande and Kent, 

1992, 1995; Berggren et al., 1995). The recognition of Milankovitch cyclicities in 

stable isotope, colour, magnetic susceptibility and other geochemical data has 

allowed astronomical calibration of parts of the Palaeogene time-scale (Herbert and 

D'Hondt, 1990; Norris and Röhl, 1999; Shackleton etal., 1999, 2000; Pälike etal., 

2001). 

The expanded sediments from the Eocene at Site 1052 contain abundant calcareous 

and siliceous microfossils and a good magnetostratigraphic record that reveal 

pronounced Milankovitch-related cyclicity in the colour and magnetic susceptibility 

data (section 2.4; figures 2.3, 2.4 and 2.6). Elemental concentrations from Site 1052 

sediment cores were obtained by Pälike et al. (2001) through X-ray fluorescence 

(XRF) scanning. Pälike et al. (2001) have calibrated the cyclic record in calcium - 

iron ratios (Ca/Fe) and colour data at Site 1052 to astronomical frequencies in order 

to retune the time-scale of the middle and late Eocene and thus refine the late and 

middle Eocene magnetochronology. 
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The true character of precessional and obliquity cycles are only reliably calculated for 

the last 10 - 20 Ma (Laskar et al., 1993). Therefore for astronomical tuning of 

sediments older than 20 Ma a different method needs to be employed. As Eocene 

astronomical calculations cannot be determined, present day values for dynamical 

ellipticity and tidal dissipation from Laskar et al. (1993) were used by Pälike et al. 

(2001) to fine-tune the lithological record. The tuning methodology was similar to 

that described in Shackleton et al. (1999) and Lourens et al. (2001). Precession, 

obliquity and eccentricity values were normalised and used to create an artificial 

curve. The precessional signal was reversed to account for Northern Hemisphere 

insolation. These values are then added together to construct an "eccentricity-tilt-

precession" curve (ETP). The most constant feature of orbital climatic cycles is that 

of the 400 kyr cycle modulation (Laskar, 1990; Berger et al., 1992; Laskar, 1999). 

Pälike et al. (2001) used the amplitude modulation of the precessional signal by the 

long-period eccentricity cycle (400 kyr) in these sediments as the primary tuning 

target. 

Palike et al. (2001) concluded that the dominant lithological cycle during the middle 

Eocene was precession. This was determined by studying the amplitude of 

modulation over longer time series and comparisons to the present-day astronomical 

calculations of Laskar et al. (1993) (figure 2.7). The results are consistent with those 

from Site 1051 where a dominant orbital cyclicity of precession (1.0 to 1.4 cycles / 

metre) is seen in the colour records (Wade et al., 2001). Pälike et al. (2001) further 

verified their time-scale by time-series analysis and studying the modulation pattern 

in the data. This is discussed further in section 2.6. 

Whilst the long-period eccentricity signal may be stable over time, an absolute age 

datum is required to tie the record to. The presence of an ash layer at 101.39 - 101.47 

mcd provides an Ar/Ar age of 37.81 ± 0.91 Ma (Smit, pers. comm.). It was therefore 

possible for Pälike et al. (2001) to correlate the maximum eccentricity of Laskar et 

al. (1993) to amplitude maxima in the lithological records. 
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XRF Ca/Fe filters 
sed. rate 	Ca/Fe 	tilt 	preC.  100k 400k 	tilt 
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Figure 2.7. Spliced lithological data and astronomical time-scale at Site 1052 from Pälike et 

al. (2001). The revised sedimentation rate in cm / kyr is shown on the left with the 

magnetochronology (Cande and Kent, 1995) and revised magnetochronology. Bandpass 

filters are displayed for the main orbital frequencies within the XRF and colour data. The 

orbital target curve is shown on the right. 
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The time-scale generated by Pälike et al. (2001) is used here to refine the middle late 

Eocene biostratigraphy and establish the precise timing of rapid fluctuations in 

planktonic foraminiferal stable isotope records (chapter 4). Tables 2.3 and 2.4 

indicate the revised ages and durations of the middle Eocene magnetochronology as 

per Pälike et al. (2001). The duration of polarity chrons do not significantly deviate 

from those of Berggren et al. (1995), suggesting that the tuned time-scale of Pälike et 

al. (2001) is largely correct. The biostratigraphic implications for the revised time-

scale are discussed in section 2.5.2. 

Datum 	 mcd Age (Ma)* 	Revised Age (Ma) 5  

T C17n.2n 79.23 37.604 37.399 

B C17n.2n 86.56 37.848 37.618 

T C17n.3n 88.61 37.920 37.692 

B C17n.3n 95.83 38.113 37.897 

T C18n.ln 106.53 38.426 38.186 

B C18n.ln 127.63 39.552 39.441 

T C18n.2n 128.92 39.631 39.486 

B C18n.2n 138.62 40.130 39.828 

Table 2.3. Revised late middle Eocene magnetochronology. * = time-scale of Berggren et al. 

(1995); $ = Pälike etal. (2001). B = base; T = top; mcd = metres composite depth. 

Chron Duration (kyr)*  Revised duration (kyr) 5  Difference (kyr) 

C17n.2n 244 219 -25 

C17n.3n 193 205 +12 

C17r 313 289 -24 

C18n.ln 1126 1255 +129 

C18n.2n 499 342 -157 

Table 2.4. Revision of chron duration. * = time-scale of Berggren et al. (1995); $ = Pälike et 

al. (2001). 
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2.5.1 Revised sedimentation rates 

Sedimentation rates generally range between 2 - 5 cm / kyr (figure 2.7) with a mean 

of 3 cm / kyr. There is a hiatus of 613 kyr duration within chron C18n.ln. Pälike et 

al. (2001) have implicated a hiatus at 113 mcd based on cycle duration and loss in 

magnetic susceptibility, XRF signal and reflectance (figure 2.8). This is confirmed by 

the oxygen isotope record (chapter 3) which shows an abrupt short-term shift to 

negative values at 113 mcd. Detailed XRF analysis and studies of the colour record 

exclude errors in the composite depth scale. 

Cycle counts reveal approximately 24 cycles within C18n.ln (figure 2.8). Based on a 

precessional period this accounts for a duration of 504 kyr. This would suggest that 

approximately 30 precessional cycles are missing (630 kyr). An alternative 

explanation is that there is not a hiatus and that these cycles reflect the obliquity 

period. However, this explanation would require a shift in the dominant orbital 

periodicity and is not supported by the consistency of the Munsell hue power spectra 

(figure 2.6). 
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Figure 2.8. Cycle count of the Munsell hue record for chron C18n.1n. There is a loss in the 

cyclic signal at -113 mcd probably due to a hiatus (discussed in text). 
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The presence and length of the hiatus is also constrained by the amplitude 

modulation of the precessional cycles within the colour record. The absence of a 

hiatus within C18n.ln would suggest large variations in the total duration of C18n.ln 

and thus significant fluctuations in sea-floor spreading rate. The hiatus is consistent 

with assignment of 0.7 metre cycles to the precessional period and that little change 

in sediment accumulation rate occurred pre or post hiatus (figure 2.9). The revised 

sediment accumulation rates with the bio- and magnetostratigraphic datums are 

shown in figure 2.9. 
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Figure 2.9. Recalibrated biostratigraphic and magnetostratigraphic datums at Site 1052 as 

listed in tables 2.3; 2.5 and 2.6. Points represent the mean metres composite depth (mcd) of 

each datum. • = magnetostratigraphic datums; A = nannofossil datums; o = foraminifera 

datums. Small changes in sedimentation rate occur through this interval. 

2.5.2 New and revised biostratigraphic events and calibration to the 

orbital time-scale 

The astronomical time-scale and the high-resolution analysis applied here has 

allowed a number of new and existing biostratigraphic datums to be revised to the 

orbital chronology (tables 2.5 and 2.6). Samples were analysed for planktonic 

40 
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foraminifera biostratigraphic purposes every 10 cm, permitting datums to be 

constrained to within 3 kyr (based on average sedimentation rates). Planktonic 

foraminifera species of biostratigraphic significance are shown in Plate 1. The 

preservation of foraminifera is discussed in chapter 3. 

Datum Hole Interval 

(cms) 

Depth 

(mbsf) 

Depth 

(mcd) 

Age 

(Ma)* 

Revised age 

t 

I S. linaperta 10H-1 73-76 72.75 77.18 37.7 <37.341 

T M spinulosa 11H-4 93-96 86.95 92.57 38.1 37.802 

T M crassata 11H-4 93-96 86.95 92.57 - 3.7.802 

T A.praetopilensis 11H-4 133-136 87.25 92.87 - 37.810 

B G. semiinvoluta 11H-4 3-6 86.05 91.67 38.4 37.778 

T Planorotalitesspp. 10H-1 73-76 72.75 77.18 38.5* <37.341 

T 0. beckinanni 15H-CC 14-16 129.67 135.69 40.1 39.723 

Table 2.5. New and revised planktonic foraminifera datums. * = time-scale of Berggren et al. 
(1995); t  = this study; § = Nocchi etal. (1986); - = no previous age assignment; <= younger 

than; T = top; B = base. All biostratigraphic datums from Hole 1052B except top 0. 
beckmannifrom Hole 1052A (Norris, Kroon etal., 1998). 

The first occurrence (FO) of Globigerinatheka semiinvoluta was determined at 91.67 

mcd within chron C17n.3n. This is younger than that of Berggren et al. (1995), where 

theFO of G. semiinvoluta is close to the base of Cl 7r and is older than the last 

occurrence (LO) of Morozovella spinulosa. This discrepancy was also found by 

several other workers (e.g. Benjamini, 1980; Nocchi et al., 1986; Pearson and 

Chiasson, 1997; Norris, Kroon et al., 1998) suggesting that the diachronism of the 

FO of G. semiinvoluta should be investigated further. Specimens here intergraded 

from Globigerinatheka spp. making the actual P0 difficult to determine. G. 

semiinvoluta is usually very rare at its FO (Pearson pers. comm.) and this discrepancy 

stresses the importance of examining all size fractions at a high-resolution. The 

extinction of Morozovella spp. and Acarinina praetopilensis are discussed in detail in 

chapter 6. 
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Plate 1. Late middle Eocene planktonic foraminifera of biostratigraphic significance. Scale 

bars represent 50im in (a) — (c) where specimens from the 63 to 125 tm size fraction. Scale 

bars represent 100 larn in (d) — (h) where specimens are from the 250 to 355 tm size 

fraction. Specimens (a)to (c)from sample 171B, 1052F, IOH-4, 73-76cm (88.01 mcd). 

Specimens (e)—(h) from sample 171B, 1052B, 11H 4,143— 146 cm (93.07 mcd). 

Pianorotalites pseudoscitula umbilical view; 

Planorotalites pseudoscitula spiral view; 

Planorotalites pseudoscitula side view; 

Subbotina linaperta side view, from sample 171 B 105213, I OH-i, 83-86 cm (77.28 mcd); 

and (f) Morozovella spinulosa umbilical view; 

Morozovella crassata umbilical view; 

Globigerinatheka semllnvo!uta ?. Specimen does not show strong thickening around the 

apertures. 
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The LO of Subbotina linaperta was reported by Berggren et al. (1995) to be within 

C17n.2n (37.7 Ma), based on the calibration of datums from Maud Rise (Weddell 

Sea, Antarctica). Here the LO of S. linaperta was found at Site 1052 to be younger 

than 37.341 Ma. This species was present at the top of the studied section (77.18 

mcd) and therefore its LO is younger than identified here. Jenkins (1971) and Blow 

(1979) reported that S. linaperta persisted into the late Eocene Zone P16. Although 

this study does not continue into P16, the duration of S. linaperta does extend beyond 

that of Berggren etal. (1995). Planorotalities spp. are also present to the top of the 

section studied. This disagrees with previous work that has suggested an extinction of 

Planorotalities spp. within P14 (Schmidt and Raju, 1973; Toumarkine and 

Luterbacher, 1985; Nocchi et al., 1986). 

Several foraminiferal datums published in previous chronologies such as Berggren et 

al. (1995) have not been revised. These are the last occurrences of Acarinina 

collactea, A. primitiva and Subbotinafrontosa. This was because A. collactea and A. 

primitiva were rare within the samples studied, whilst S. frontosa graduated to 

Turborotalia spp. which prevented the last occurrence being defined. 

A number of calcareous nannofossil datums can also be revised to the astronomical 

time-scale (table 2.6). There is a major revision in the base of Reticulofenestra 

bisecta from 38.0 Ma to 39.330 - 39.650 Ma. However, the event horizons of 

calcareous nannofossil datums are relatively less well constrained compared to the 

planktonic foraminifera datums (10 cms) in this study due to the lower resolution 

employed by the Shipboard Scientific Party (1998) (1.5 metres). These dates are 

likely to be revised by more detailed biostratigraphic work in the future. 
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Datum Hole Mm. Max. Age Mm. age Max. 

depth depth (Ma)*  (Ma)5  age (Ma) 5  

B C. oamaruensjs A 82.19 83.59 37.0 37.474 37.568 

T C. grandis A 82.19 83.65 37.1 37.474 37.570 

B R. bisecta A 123.53 133.62 38.0 39.330 39.650 

T C. solitus A 133.62 135.92 40.4 39.650 39.731 

Table 2.6. Revised calcareous nannofossil datums. * = time-scale of Berggren etal. (1995); $ 

= datums provided by the Shipboard Scientific Party (1998) and tuned to the time-scale of 

Pälike et al. (2001). 

2.6 Orbital variations in the lithological record 

The astronomical time-scale of Pälike et al. (2001) has been used to investigate the 

downcore physical properties of Site 1052 (figure 2.10). Spectral analysis of the 

Munsell hue versus the astronomical time-scale reveals strong spectral power at 

0.0023, 0.0430 and 0.0458 cycles / kyr (figure 2.11) These represent the single peak 

of the long-term eccentricity cycle (427.5 kyr) and the characteristic double 

precessional peaks (23.2 and 21.8 kyr) respectively. The double precessional peak 

was also seen in the colour record at Site 1051 (Wade et al., 2001). Pälike et al. 

(2001) found significant power at the additional orbital frequencies of short-term 

eccentricity (126 and 98 kyr), obliquity (54 and 41 kyr) and short-term precession (19 

kyr) within the Ca/Fe data from the late and middle Eocene at Site 1052. 
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Figure 2.10. Munsell hue record at Site 1052 against the astronomical chronology of Pälike 

et al. (2001). Revised biostratigraphic datums and magnetochronology are shown on the 

right. 
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Figure 2.11. Power spectra of the Munsell hue colour record at Site 1052. 

The long-term eccentricity cycle within the raw data is indicated in figure 2.12. The 

400 kyr cycle results from the modulation by Venus and Jupiter of the Earth's 

precession and is the most invariable orbital period over geological time (Laskar, 

1990; Berger et al., 1992; Laskar, 1999). Precessional variations modify the amount 

of seasonal and annual insolation received at the Earth's surface. The effects are 

particularly strong in tropical and subtropical regions (Ruddiman et al., 1989; Imbrie 

et al., 1992). The strong power at the precessional period indicates that the colour 

record is primarily controlled by low-latitude changes in solar insolation. The 

variations in the colour record most probably represent fluctuations in the relative 

proportions of biogenic and lithic sediment components. These could derive from 

modifications in factors such as biogenic productivity, wind strength, weathering 

rates and runoff (see section 2.7). The strong precession period in the Munsell hue 

data suggests that the record here is primarily influenced by low and mid latitude 

variations in solar insolation. 
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Figure 2.12. Munsell hue colour record at Site 1052 (raw data = blue line). Data has been 

filtered to indicate the long period eccentricity cycle (red line). Visually apparent in the colour 

record are precessional cycles and their amplitude modulation by the long-term eccentricity 

signal (-400 kyr). 

To isolate the precessional period, a band-pass gaussian filter was applied to the 

Munsell hue colour record with a filter central frequency and bandwidth of 0.05 ± 

0.02 respectively. Figure 2.13 shows the filtered Munsell hue record against the 

calculated precessional frequency of Berger (1978). Both the calculated precession 

and the filtered Munsell hue colour record clearly show the modulation of the 

precessional period by the long-term eccentricity cycle. The relationship between the 

calculated precession and the filtered Munsell hue record confirms that the time-scale 

of Pälike et al. (2001) is consistent with calculated orbital variations. 
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Figure 2.13. Filtered Munsell hue colour record (upper blue line) from Site 1052 and the 

calculated precessional frequency (lower red line) of Berger (1978). 

2.7 Origin of the Munsell hue signal 

The sediment properties at Site 1052 are clearly influenced by orbital frequencies. 

The relationship between the magnetic susceptibility and the Munsell hue record is 

demonstrated in figure 2.14, where positive magnetic susceptibility values are 

associated with increased Munsell hue (darker sediments). Magnetic susceptibility 

and sediment colour can be used as an indirect proxy for climatic - 

palaeoceanographic changes in terrigenous input and relative carbonate abundance. 

The increases in magnetic susceptibility are generally associated with darker 

coloration and increased Fe values, which can be inferred to reflect additional 

terrigenous input relative to carbonate content. Increases in the relative carbonate 

abundance is indicated by lower magnetic susceptibility, lighter sediments and 

decreased Fe. This is confirmed by CaJFe data from Pälike et al. (2001) over part of 

this interval. 
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Figure 2.14. Magnetic susceptibility (10 SI) (lower line) and Munsell hue record (upper line) 

from 115 - 125 mcd at Site 1052. Strong cyclic oscillations at an interval of -0.7 metres are 

present in both the Munsell hue colour record and the downhole log of magnetic 

susceptibility, reflecting precessional cycles. 

The sediment cyclicity can be attributed to variations in terrestrial input and/or 

surface water productivity. There is also the possibility that cyclic dissolution by 

deep water caused periodic decreases in carbonate content. However, at a depth of 

only 1200 mbsl (Shipboard Scientific Party, 1998) dissolution cycles are less likely 

and the cyclicity is more developed in the shallower rather than deeper sites. The 

variability in the colour and magnetic susceptibility records are therefore consistent 

with alterations between terrigenous and carbonate rich horizons. These variations 

are ascribed to periodic alterations in the amount of terrigenous material supplied by 

atmospheric transport and/or runoff from the North American continent versus local 

carbonate productivity. The influence of precessional forcing was therefore clearly 

significant in controlling the relative fluxes of carbonate and clay at Blake Nose. 

The results of all spectral analysis show that orbital forcing clearly propagates 

through the climatic system and that orbital forcing was an important short-term and 

long-term component of late middle Eocene climate change at Blake Nose. 
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Developing a tuned time-scale is critical for examining the timing and abruptness of 

palaeoceanographic and biological events and this can only be assessed by utilising a 

high-resolution record, such as that from ODP Leg 171 B. Astronomical calibration of 

the time-scale is used to establish the timing of abrupt shifts in palaeoceanographic 

events in the Atlantic Ocean (chapter 4). 

2.8 Summary 

High-resolution physical property data from Site 1052 illustrate regular 

oscillations in Munsell hue and magnetic susceptibility. 

Lithological oscillations have a precessional cyclicity, which is modulated by the 

long-term eccentricity cycle ('-400 kyr). 

Cyclicity in the colour and magnetic susceptibility records can be attributed to 

precessionally forced variations in wind blown terrigenous input or runoff from 

the North American continent versus surface water productivity. 

Selected planktonic foraminiferal biostratigraphic events have been examined 

with a sampling resolution of 10 cm from Site 1052. The new and revised 

biostratigraphic datums of the middle Eocene have been orbitally calibrated to the 

astronomical time-scale of Pälike et al. (2001). 
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3. HIGH-RESOLUTION STABLE ISOTOPE VARIATIONS AT SITE 

1052 

3.1. Introduction 

Whilst recent research has concentrated on understanding past greenhouse worlds, 

little is known about transitional climate dynamics and their stability. This thesis 

presents the first high-resolution planktonic foraminiferal stable isotope record in the 

late middle Eocene and provides a unique analysis of the palaeoceanographic 

changes and their possible origins. The ability to understand Eocene climate change 

has been previously hindered by sampling resolutions. The high-resolution record 

from Site 1052 enables the examination of high frequency climatic variability and 

accurate documentation of the timing and scale of relatively short-term climatic 

changes. 

Site 1052 (29057'N, 76037'W) is the shallowest site of the depth transect and is 

located at a water depth of —1 345 m. This site comprises an expanded Eocene section 

consisting predominantly of a siliceous nannofossil ooze (Norris, Kroon et al., 1998). 

High-resolution stable isotopic investigations I 8 	
3C) were conducted on late 

middle Eocene foraminifera from 75 to 135 mcd from a composite of Holes 1052B 

and 1052F. Samples have been analysed every 10 cm with an average sampling 

resolution of approximately 3,000 years. High frequency variability is seen in the 

colour reflectance data and magnetic susceptibility data (chapter 2), which are 

thought to be driven by Milankovitch scale climate oscillations. The aim of this work 

was to examine the stability of subtropical surface water conditions at a high 

temporal resolution in the Milankovitch frequency band. The effect of orbital forcing 

upon the late middle Eocene climate is explored in chapter 4. The results reveal large 

and abrupt shifts in 6180  that are greater than those seen during the Pleistocene. 
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3.2. Methods and procedures 

3.2.1. Sample preparation 

For isotopic analyses, 20cc samples from a composite of Holes 1052B and 1052F 

were examined at 10 cm intervals. All samples were dried and wet sieved on a 63 p.m 

mesh. For planktonic foraminiferal analyses the >63 p.m fraction was dry sieved into 

three different size fractions: >355 p.m, 250 - 355 p.m and <250 p.m. Isotopic 

measurements were conducted on planktonic foraminifera from the 250 - 355 p.m 

size fraction. A narrow size fraction was selected to constrain vital and ontogenetic 

effects on stable isotopic interpretation (Shackleton et al., 1985; Corfield and 

Cartlidge, 1991; Pearson et ~ l., 1993; Norris, 1998). 

3.2.2. Isotopic examination 

The applications and restrictions of stable isotopic analyses have been introduced in 

chapter 1. To generate a 8 180 record multiple species of mixed layer planktonic 

foraminifera are required. In this study stable isotopic measurements from the species 

Morozovella crassata, M spinulosa, Acarinina praetopilensis and Globigerinatheka 
mexicana have been used. In addition to these species, measurements have been 

made from Turborotalia cocoaensis, Subbotina utilisindex, Hantkenina alabamensjs, 

Chiloguembelina cubensis, bulk carbonate and the benthic foraminifer Nuttalides 

truempyi in selected intervals. A selection of species used in stable isotopic 

examination is shown in Plate 2. 
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Plate 2. Middle Eocene planktonic foraminifera used in isotopic investigation. All specimens 

are from the 250 - 355 tm size fraction. Scale bar represents 100 tm. 

Morozovella crassata umbilical view, from sample 171B, 105213, 141-1-4, 23-26cm 

(121.30 mcd). 

Morozovella crassata spiral view, from sample 171B, 1052F, ii H-5, 33 —36 cm (99.33 

mcd). 

Morozovella crassata side view, from sample 171 B, 105213, 141-1-4, 23 —26 cm (121.30 

mcd). 

Morozovella spinulosa umbilical view, from sample 171 B, 1 052F, 11 H-5, 33 —36 cm 

(99.33 mcd). 

and (f) Globigerinatheka mexicana, from sample 171 B, 105213, 1 OH-i, 83 —86 cm 

(77.28 mcd). 

Subbotina utilisindex umbilical view, from sample 171 B, I 052B, 11 H-4, 103 - 106 cm 

(92.67 mcd). 

Subbotina utiisindex spiral view, from sample 171B, 105213, 11H-4, 103-106cm (92.67 

mcd). 



;_. 	-,-, 

46 
;•' 

• 	'' 	 .': ?• 
• 

IL •• 	- -,..... 

r 	 - 

-•'•: 

50 



Chapter 3 	 High-resolution stable isotope variations 

For isotopic investigation between 2 and 23 monospecific tests of mixed layer 

planktonic foraminifera were picked for each sample studied. The analysis of 

multiple specimens provides results that are nearer to the species mean stable 

isotopic value than analyses conducted on singular specimens, however, using this 

method, data on intraspecific deviation is lost (Pearson and Shackleton, 1995). The 

species M crassata was preferentially selected for analysis due to its surface 

dwelling habitat, ease of identification and abundance within the samples, although 

this species was not present in all samples. When M crassata was unavailable, M 

spinulosa, A. praetopilensis or G. mexicana were selected as alternatives due to their 

mixed layer habitat (Pearson et al., 1993; Norris, 1998). 

Sample weights were typically 0.17 ± 0.03 mg. Prior to analysis, specimens were 

sonicated in methanol to dislodge attached fine calcite particles. Ultrasonic cleaning 

was repeated when visual examination proved this to be required. All planktonic 

foraminiferal samples were analysed isotopically using a VG Isogas Prism ifi mass 

spectrometer at the University of Edinburgh, Scotland. Normal corrections were 

employed and results of stable isotope measurements are expressed in %o relative to 

the Pee Dee Belemnite (PDB) standard reference carbonate of zero (Craig, 1957). 

Silver Mine (SM) calcite powdered standard was measured concurrently (mean = 

0.20 mg) to record analytical precision and instrument calibration. Replicate analyses 

of standards yields standard deviations of 0.09%0 for 6180  and 0.05%o for 6' 3C. In 

total 772 measurements were taken from Holes 1052B and 1052F (cores 1OH-14H). 

All isotopic data are listed in Appendix 1. Low sample weights (<0.06 mg) 

commonly resulted in anomalous values for 6180  These results were rejected from 

the data set. The criteria for data rejection are discussed in the Appendices. 

3.2.3. Age model and sedimentation rates 

The record at Site 1052 is the highest resolution record currently available for the late 

middle Eocene, with clearly defined cyclostratigraphic and magnetostratigraphic 

control. This study focuses on approximately 2.3 million years in the late middle 

Eocene, equivalent to planktonic foraminiferal biozones P14 and P15 and 
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magnetochrons C17n.2n to C18n. 2n. During this interval the sediment accumulation 

rate averages 34 m / m.y. This is moderately high for an open-ocean pelagic 

environment and is due to the high siliceous and calcareous plankton productivity. 

Sampling was at 10 cm intervals and therefore the time span between each sample is 

approximately 3, 000 years. Bioturbation will undoubtedly have smoothed the results 

to some extent. Each sample covers over 2 cms of core and therefore represents a 

period of approximately 600 years. However, the large cyclic fluctuations in the 

colour (chapter 2) and isotopic records (section 3.5) suggest that the smoothing effect 

of bioturbation is minimal. Mixed layer dwellers are identified to yield surface water 

temperatures at this subtropical site. Spectral analysis was conducted on the 6180  and 
61 3C records to obtain information on orbital cyclicity in the middle Eocene (chapter 

4). 

3.2.4. Planktonic foraminiferal assemblages 

All of the samples analysed contained abundant planktonic foraminifera. The fauna 

present at Blake Nose, Site 1052 is distinctive of subtropical environments of the 

middle Eocene. The samples are typically characterised by Morozovella spinulosa, 

M crassata, Acarinina praetopilensis, Subbotina utilisindex, Globigerinatheka 

mexicana, Turborotalia cerroazulenis and Catapsydrax unicavus, indicating 

planktonic foraminiferal Zones P14 and P15 (upper middle Eocene). A late middle 

Eocene age is also indicated by radiolarian assemblages characteristic of the 

Podocyrtis geotheana Zone (Zone Ri 1) (Norris, Kroon et al., 1998). 

3.3. Foraminifera preservation 

Foraminifer preservation is generally moderate to good under visual examination. 

Despite the shallow burial of middle Eocene sediments at Blake Nose, the 

preservation of planktonic foraminifera cannot be described as excellent. All 

specimens showed evidence of recrystallisation (e.g. Plate 3). Carbonate infilling was 

evident in some specimens, this usually consisted of amorphous calcite. Minor 

amounts of fine carbonate debris, mainly coccoliths, are seen attached to the test 

surfaces, however ultrasonic cleaning removed a large majority of this material. 
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Specimens have been examined under the scanning electron microscope (SEM) from 

intervals where both light (-1.9%o) and heavy (-0.5%o) results were recorded. These 

showed no obvious preservational differences (Plate 3). As diagenetic overprint may 

have affected some intervals, the recorded stable isotopic values (particularly those of 

oxygen) should not be considered as absolute. The effects of recrystallisation upon 

the stable isotopic results and reconstructed sea surface temperatures are discussed in 

chapter 5. 

3.3.1. Size variations in the tests of Globigerinatheka mexicana. 

For isotopic investigation between 77.18 and 91.97 mcd, 15 specimens of G. 

mexicana were picked and weighed per sample from the 250 - 355 .tm size fraction. 

Large variations in the size and weight of G. mexicana occurred over time, with 

mean values ranging from 0.008 to 0.028 mg for individual specimens (figure 3.1). 

However, when test weight is compared with oxygen and carbon isotopic data (figure 

3.2), these factors do not appear to be related. Test weight is therefore not obviously 

controlled by factors that influence 8180 or 813C such as temperature, salinity, ice 

volume and productivity. Calcite infilling, recrystallisation or dissolution may also 

influence test weight. However, the variations in weight recorded here are thought to 

be a primary signal as visual examination suggested a direct correlation between test 

size and test weight. Even if this is a diagenetic signal, the absence of a relationship 

between test weight and isotopic variation (figure 3.2) indicates that the stable 

isotope results are robust, although the actual values should not be considered 

unequivocal. 
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Plate 3. Preservation of middle Eocene planktonic foraminifera at Blake Nose. Note changes 

in scale bar. Specimens on the left are all from samples where heavy oxygen isotope values 

were recorded (-0.5%o). Specimens on the right are all from intervals where light oxygen 

isotope values were recorded (around -1 .9%o). Preservation of foraminifera is variable 

however, no obvious differences were identified between light and heavy 880 intervals. 

Morozovella crassata from sample 171B, 1052F, 121-1-5, 53-56cm (109.46 mcd). A 

large amount of calcite debris and coccoliths are seen attached to the test surface. 

Test surface of M. crassata from sample 171 B, 1 052B, I 4H-4, 23 —26 cm (121.30 mcd). 

Test surface of M. spinulosa from sample 171 B, 1 052F, 1 3H-2, 123 - 126 cm (115.16 

mcd). 

Test surface of M. spinulosa from sample 171 B, 1 052B, 1 4H-4, 23 —26 cm (121.30 

mcd). 

Test surface of M. crassata from sample 171 B, 1 052F, I 3H-2, 123— 126 cm (115.60 

mcd). 

Test surface of M. crassata from sample 171B, 1052B, 13H-4, 103— 106 cm (113.10 
mcd). 

Acarinina praetopilensis from sample 171B, 1052F, 121-1-5, 53-56 cm (109.46 mcd). 

Globigerinatheka semiinvoluta from sample 171 B, 1 052B, 1 OH-5, 3 —6 cm (82.48 mcd). 
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0.030 

0.005 - 	- 

7 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 
mcd 

Figure 3.1. Weight variations in the tests of Globigerinatheka mexicaria. 

3.0 i 	 T 0.050 

-5.0 	 - 	 0.005 

77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 

mcd 

Figure 3.2. Stable isotope and weight variations of G. mexicana. 0 = mean weight of 15 tests 

of G. mexicana; • = carbon isotopes; A = oxygen isotopes. The isotopic results are 

discussed in section 3.5. 
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3.4. Stable isotope results 

All oxygen and carbon isotope results using various species from Site 1052 are 

shown against depth in figures 3.3 and 3.4 respectively. Offsets in 6' 80 and 813C  can 

be seen between species. These are attributed to interspecific variation such as depth 

habitat or season of reproduction. The implications of these offsets are explored here, 

prior to the reconstruction of a continuous time-series for both 8' 80 and 8 13C. The 

isotopic results are described in section 3.5. 

3.4.1. Depth stratification of planktonic foraminifera 

The depth of calcification is reflected in both the oxygen and carbon isotopic ratios of 

foraminiferal tests and is a well-established method in determining forarniniferal 

palaeoecology and depth habitat (e.g. Boersma and Premoli Silva, 1986; Pearson et 

al., 1993; Pearson, 1998; Spero, 1998; Coxall et al., 2000). Planktonic foraminifera 

inhabiting the uppermost mixed layer (surface dwellers) will have the most depleted 
8180 values as they encounter the warmest water temperatures (Emiliani, 1954). 

However, notable variations in modern surface water temperatures occur on an 

annual cycle, which result in seasonal variation in the oxygen isotope record of 

planktonic foraminifera (Erez and Honjo, 1981; Williams et al., 1981). This is seen 

in the Sargasso Sea, where seasonal temperature variations result in 8180  changes of 

approximately 1 %o in surface water foraminiferal calcite (Deuser et aL, 1981; Deuser, 

1987; Deuser and Ross, 1989). 
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18O PDB 
1.5 	1 	0.5 	0 	-0.5 	-1 	-1.5 	-2 	-2.5 

75 1 	1 	 1 I 	 I 	 I 	 I 	 I 	 I 

. oamaruensis 
& C. grandis 

NILAD

FAD  
G. semiinvoluta 

 
Morozovella spp. 
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Figure 3.3. All oxygen isotope data from Site 1052. . = Morozovella crassata; = 

Morozovella spinulosa; > = Morozovella spp.; = Acarinina praetopilensis; = Turborotalia 

cocoaensis; = Globigerinatheka mexicana; + = Subbotina utilisindex -  - = Hantkenina 

alabamensis; and• = Bulk carbonate; = Chioguembelina cubensis; . = Nuttalides 

truempyr, lo. = mixed benthic species. 
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Figure 3.4. All carbon isotope data from Site 1052. . = Morozovella crassata; = 

Morozovella spinulosa; > = Morozovella spp.; = Acarinina praetopilensis; = Turborotalia 

cocoaensis; o = Globigerinatheka mexicana; + = Subbotina utilisindex - = Hantkenina 

alabamensis; and. = Bulk carbonate; = Chioguembelina cubensis; . = Nuttalides 

truempyr, lo. = mixed benthic species. 
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Independent evidence for planktonic foraminiferal palaeodepth habitat relative to 

other planktonic species can be derived from their characteristic carbon isotope 

value. Surface waters are enriched in 8 13C by the preferential extraction of 12C by 

algal productivity. The sinking of isotopically depleted organic carbon through the 

water column from the ocean surface to depth causes sea surface bicarbonate to be 

enriched in ' 3C relative to 12C. This declines quickly with depth and hence a gradient 

in 813C  from surface to deep waters is established (Kroopnick, 1974, 1985). Carbon 

isotopic values of near-surface dwelling planktonic foraminifera should consequently 

be more enriched than those living in deeper depths. Therefore the heaviest5 1 3 C and 

lightest 8 180 values should be recorded by foraminifera living in the uppermost 

mixed layer. Other factors can also affect surface water oxygen and carbon isotopic 

values, including primary productivity, strength and depth of thethermocline, 

freshwater input and light penetration (Pearson et al., 1993). 

3.4.2. Intertaxa variation 

Oxygen and carbon isotopic results are plotted for all species analysed in figure 3.5. 

This shows results similar to those of previous studies of these genera (e.g. Boersma 

and Premoli Silva, 1986; Boersma et al., 1987; Pearson et al., 1993). Photosymbionts 

preferentially uptake 12C and therefore photosymbiotic species theoretically have a 

more positive 8 13C signal than asymbiotic taxa (Spero et al., 1991). Lighter 180 and 

heavier 8 13C are displayed by the taxa Morozovella and Acarinina in comparison 

with other species, supporting their mixed layer symbiotic habitat. 

A greater degree of variability is seen in the mixed layer group than the thermocline 

group (figure 3.5). Seasonal variations in SST or habitat depth are probably 

responsible for small differences in oxygen isotope values between co-existing taxa. 

This is comparable with previous work (e.g. Pearson etal., 1993) and is probably due 

to seasonal temperature variations that affect the surface, but not the deep waters. 

There are also a greater amount of analyses in the mixed layer dwellers compared to 

thermocline dwellers, allowing a greater range of values to be recorded. 
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Figure 3.5. Oxygen vs. carbon isotopic results for all data at Site 1052. x = Morozovella 

crassata; 	Morozovella spinulosa;• = Acarinina praetopilensis; = Globigerinatheka 

mexicana; = Subbotina utilisindex • = Catapsydrax unicavus; . = Turborotalia 

cocoaensis; A = Hantkenina alabamensis; + = Nuttalides truempyr - = Chiloguembelina 

cubensis. All isotopic data from Site 1052 except Catapsydrax unicavus data from Site 1051 

hole A. 

3.5. The construction of a continuous time series of 8 180 

and ö13C 

To reconstruct sea surface temperatures and examine penodicities within the isotopic 

data, a composite time series of planktonic foraminifera oxygen and carbon isotope 

values is required. This calls for the oxygen and carbon isotopic results to be 

corrected to uniform mixed layer values. The isotopic values of G. mexicana and A. 

praetopilensis are offset from those of Morozovella species due to habitat preferences 

and/or vital effects (figures 3.3, 3.4 and 3.5). These results are similar to previous 

works (e.g. Boersma etal., 1987; Pearson etal., 1993), where acarininids record 6 180 

values heavier than those of Morozovella. The isotopic values were therefore 

corrected for these species to provide a continuous mixed layer planktonic 
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foraminifera record for palaeo SSTs to be reconstructed. Correction values were 

calculated from the mean isotopic difference between species within the same 

samples. Correction factors of-O.28%o and -0.50%o were applied to oxygen isotope 

values of G. mexicana and A. praetopilensis respectively based on deviations from 

the mean values of Morozovella spp. For carbon isotopic values a correction factor of 

+0.77% was applied to G. mexicana. No correction factor was applied to the carbon 

isotopic values of A. praetopilensis, as these did not significantly deviate from 

Morozovella spp. 

This method for reconstructing surface water conditions is the most appropriate in 

this case. Ideally, the same planktonic foraminiferal species would be analysed 

throughout, although this is rarely possible due to changes in species abundance and 

evolution. The correction factors applied here are first order approximations, as the 

offsets probably deviate both spatially and temporally. However, the correction 

factors are unlikely to change the conclusions drawn from the data. Figures 3.6 and 

3.7 show the composite planktonic foraminifera 6180  and 6 13C record for Site 1052. 

Both the oxygen and carbon isotopic results are shown in figure 3.8. The continuous 

and corrected stable isotopic data are tabulated in Appendix 2. 

3.5.1. The composite oxygen isotope record 

Large and rapid shifts are recorded in the surface dwelling planktonic foraminifera 

oxygen isotope record (figure 3.6). Between 129 and 132 mcd 6180  values fluctuate 

between -1.65% and -0.20%. Similar values are recorded between 113 and 118 mcd 

and between 109 and 112 mcd. In the interval between 118 and 129 mcd, oxygen 

isotope values vary between -0.79% and -1 .94%. Although this is a 1 . 1 5%o variance, 

the 6180  values are commonly less variable than those seen in other parts of the 

record. There is a steady decrease in values from 128 to 121 mcd, followed by a rise 

between 120 and 118 mcd. For a short interval, between 113 and 112 mcd 6180 

values decrease rapidly from -0.60% to -2.42%. This shift of almost 2%o occurs in a 

stepwise fashion, before crashing to values of -0.1 7%o at 111.7 mcd. From 108 to 92 

mcd 6180  values increase from -2.23% to -0.43%. From 92 to 85 mcd 6180  values 
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decline from -0.71 to -2.03%o. There is then a sharp increase at 85 mcd from -2.03%o 

to —0.33%. Above 85 mcd oxygen isotope values become lighter to a maximum of 

-2.28%o at 83 mcd. Oxygen isotope values then become heavier at the top of the 

measured interval with maximum values of 0.1 8%o at 79 mcd. 

3.5.2. The composite carbon isotope record 

Like the oxygen isotope record, the 6 13C record at Site 1052 reveals pronounced 

variation between 1.3%o and 4.0% (figure 3.7). There is a general decrease in 8 13C 

from 3.5%o at the base of the analysed section at 130 mcd, to 2.8%o at 113.5 mcd. 

Carbon isotope values then increase to 3.7%o at 98.5 mcd. After 98.5 mcd, 8 13C 

values fall once more to approximately 2.8%o at 92 mcd. From 92 to 77 mcd 6 13C 

values fluctuate between 3.55%o and 1 .3%o. The carbon isotope record appears to 

have a long-term cycle, where values go from highs at 128 mcd and 98 mcd with a 

low at 112 mcd. 
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Figure 3.6. Composite oxygen isotope record at Site 1052 
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Figure 3.7. Composite carbon isotope record from Site 1052 
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Figure 3.8. Oxygen and carbon isotopic results at Site 1052 against metres composite depth 
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3.6. High amplitude and abrupt isotopic shifts 

The planktonic foraminiferal isotope record at Site 1052 represents the highest 

resolution study of the middle Eocene and therefore provides a new understanding of 

climate dynamics during this transitional climate interval. The record shows 

outstanding and rapid oscillations in mixed layer planktonic foraminifera 6180  and 

6 13C between +0.2 and —2.4%o and 4.0 and 1.3%o respectively (figure 3.8), at a time 

interval when climate was previously accepted to be relatively stable. The isotopic 

results from Blake Nose reveal substantial shifts in planktonic foraminifera 6180, 

which are commonly greater than I %o PDB (figure 3.6). This is particularly evident 

at 85 and 112 mcd when 6180  values shift from less than -1.5%o to 0.0%o. This 

magnitude of variation is greater than shifts during the glacial / interglacial events of 

the Pleistocene (e.g. Berger and Gardner, 1975; Chapell and Shackleton, 1986; 

Fairbanks, 1989). Large and abrupt variations are also seen in the 8 13C record from 

Blake Nose (figure 3.7). These fluctuations are particularly apparent in the record 

from 80 to 90 mcd when shifts of >1%0 are recorded. The large and abrupt stable 

isotope variations suggest that unstable climatic conditions prevailed in the western 

North Atlantic during the middle Eocene. 

3.7. Long-term trends in the isotope records 

Long-term trends are also evident in the isotopic records with periodically heavy 

6180 values recorded at 130, 116, 109, 93 and 77 mcd. Cyclic variation is also seen in 

the carbon isotope record with heavy 6 13C values recorded at 130 mcd and again at 

100 mcd (figure 3.7). These trends may reflect orbital variability. Whilst both the 

6180 and 613C indicate high amplitude variability, the long-term trends in the isotopic 

data do not closely covary (figure 3.8). The periodicity of the cycle length appears to 

be longer in the 6 13C record. The relationship and periodicity of this apparent 

cyclicity is discussed in chapter 4. 
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3.8. Comparison with other records 

The main focus for this study was to reconstruct surface water conditions by utilising 

moderately well preserved calcareous microfossils at ODP Site 1052. Despite 

observing only -'2 million years of sediment history during the late middle Eocene, 

the high-resolution study of Site 1052 reveals many significant attributes which were 

not determined in low-resolution studies and presents a significant new 

understanding of subtropical palaeoceanography in the western North Atlantic. 

The short-term, high amplitude (-1%o) variability in planktonic foraminifera 6' 80 

and 6 13C values at Blake Nose (figure 3.8) are remarkable and have not been seen 

elsewhere. Several reasons may account for this; the record here is at a much higher 

resolution than in many other Eocene studies, with approximately 2, 000 to 4, 000 

years between data points, allowing the high amplitude oscillations at this site to be 

documented. There may also be large changes in the oceanography at Blake Nose 

such as upwelling, productivity or salinity changes which may also account for the 

greater 5 180 and 513C  variability at this locality compared to previous studies. 

Whilst the large amplitude fluctuations have not previously been recorded, the mean 

carbon isotopic values recorded are typical of planktonic foraminifera bearing algal 

symbionts and inhabiting surface waters. These values compare well with previous 

studies of the Eocene (e.g. Keigwin and Corliss, 1986; Boersma et al., 1987; Pearson 

et al., 1993; Bralower et al., 1995). The oxygen isotope results recorded here are 

periodically far lighter than those recorded in earlier investigations. Typical 8180 

values from the middle Eocene are -0.5% PDB (e.g. Keigwin and Corliss, 1986; 

Boersma et al., 1987; Zachos et al., 1994; Bralower et al., 1995; Coxall et al., 2000). 

Oxygen isotopic results less than -1 .5%o are lighter than those recorded in the early 

Eocene tropics (Bralower et al., 1995). The mean oxygen isotope values recorded 

here are thus 0.6%o to 1.4%o lighter than other studies. There are several possible 

reasons why these values are not recorded in other studies of the late middle Eocene. 

A first explanation is that previous low-resolution investigations missed the negative 
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180 shifts recorded in this study. By virtue of sampling the record at a resolution of 

less than 4, 000 years between data points, I have identified short-term events in the 

isotopic record. Previous studies (e.g. Keigwin and Corliss, 1986; Bralower etal., 

1995) may have been aliased with average sampling spacing of approximately 175, 

000 years or greater, sufficient to document the long-term trends but not the short-

term fluctuations. A second explanation is that recrystallisation or dissolution caused 

a more serious preservational effect in previous studies. This could potentially bias 

planktonic 5 180 estimates towards heavier oxygen isotope values (Paull et al., 1988; 

Wu et al., 1990). A third explanation is that the palaeoceanography of Blake Nose is. 

in some way unique and perhaps the results here do not reflect temperature effects, 

but instead decreases in surface water salinity that gave rise to isotopically light 180 

values. 

3.9. Summary 

The examination of planktonic foraminifer stable isotopes at an orbital scale (3 kyr) 

sampling resolution allows climatic dynamics in the late middle Eocene to be 

examined in much greater detail than in previous studies. Milankovitch cyclicity 

within the planktonic foraminifera isotopic records is discussed in chapter 4. 

Reconstructed sea surface temperatures and the implications of these large isotopic 

variations are presented in chapter 5 and 7 respectively. 

High-resolution stable isotopic investigations (8180, 
13C) were conducted on late 

middle Eocene foraminifera to examine the stability of subtropical surface waters 

at a high temporal resolution. 

Isotopic results record variations of-2.4 to +0.2%o in 180 and 1.3 to 4.0% in 
8

13C. These shifts in 8 180 are abrupt and are greater than those seen during the 

Pleistocene. 

The 8 180 results are periodically lighter than those recorded in previous studies of 

the middle Eocene. 

Long-term trends can be identified in both the oxygen and carbon isotope records 

that may reflect orbital cycles. 
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4. ORBITALLY FORCED MIDDLE EOCENE CLIMATE 

OSCILLATIONS 

Previous work and the application of astronomical time-series have been discussed in 

chapter 2. The tuned chronology and the high-resolution (-3 kyr) stable isotopic 

records at Blake Nose provide the opportunity to identify the full suite of orbital 

climate signatures and allow the influence of Milankovitch cyclicity on surface water 

characteristics to be identified. The composite planktonic foraminifera stable isotope 

data set (chapter 3) is here plotted versus the tuned chronology of Pälike et al. 

(2001), discussed in chapter 2 (figures 4.1 and 4.2). This enables the pace and timing 

of the 6180  and 8 13C events to be determined and high temporal climate fluctuations 

within the Milankovitch frequency band to be investigated. Here the effects of orbital 

forcing upon Eocene climate are examined with the aim of understanding the 

character of transitional Eocene palaeoceanography. The composite isotopic data is 

tabulated against time in Appendix 2. 

4.1. Spectral analysis on middle Eocene stable isotopic time-

series 

The visually apparent cycles (see section 3.7) suggest that orbital periodicities are 

recorded in the stable isotopic time series. Spectral analyses were conducted on the 

composite planktonic foraminifera stable isotopic record from Site 1052 using the 

Blackman-Tukey method (Analyseries software) to determine the frequency of both 

the short- and long-term oscillations. To enhance the visual cyclicity, frequencies at 

21, 41, 100 and 400 kyr were isolated in the composite isotopic records by applying 

band-pass gaussian filters. Filter central frequencies and bandwidths were 0.05 ± 

0.02, 0.0244 ± 0.01, 0.01 ± 0.004, and 0.0025 ± 0.001 respectively. 
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Figure 4.1. Composite oxygen isotope record at Site 1052 plotted against the astronomical 

time-scale. 
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4.2. Modulation of surface waters by the eccentricity cycle 

(400 and 100 kyr) 

4.2.1. Eccentricity forced variations in 5 180 

The oxygen isotope record displays long-term trends and high-frequency variability 

that are thought to be influenced by orbital forcing. When examining the oxygen 

isotope record (figure 4.1) it can be seen that heavy 8180  values are periodically 

recorded at 39.5, 39.1, 38.3, 37.8 and 37.4 Ma. All these intervals are —400 kyr apart 

(accounting for the hiatus) suggesting that the long-term trends in the oxygen isotope 

record have a strong long-term eccentricity influence. This is shown in figure 4.3, 

where the data was filtered to reveal the 400 kyr eccentricity cycle. 
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Figure 4.3. Oxygen isotope record at Site 1052 (blue line) against the astronomical time-

scale. Data has been filtered to reveal the long-term eccentricity cycle (400 kyr) (red line). 

Spectral analysis of the middle Eocene 8 180 record (figure 4.4) confirms the 

presence of a notable —400 kyr periodicity and reveals strong power at 0.00235 

cycles per kyr, corresponding to a cycle frequency of 425 kyr. There are also low 

power spectral peaks at 0.0127, 0.0282 and 0.0513 cycles per kyr. These concur to 

cycle frequencies of 82, 37 and 19.5 kyr and may represent the short-term 
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eccentricity component, obliquity and the precessional peaks respectively. However 

power at these periods is not strong and it is difficult to recognise these frequencies 

in the entire data set. 
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Figure 4.4. Power spectra of the oxygen isotope record determined using the Blackman-

Tukey method. 

Whilst there is a prominent 400 kyr cycle from 37.6 to 39.6 Ma, the long-term 

eccentricity signal is less apparent in the record from 37.3 to 37.6 Ma (figure 4.3). 

Filtering the data indicates that the short-period eccentricity signal is more prominent 

here (figure 4.5). The shift in the dominant frequency from long- to short-term 

eccentricity in the oxygen isotope record at —37.6 Ma could be a bias caused by the 

termination of the record at 37.3 Ma. Alternatively this could reflect a real change in 

climate modulation in response to surface water cooling and the expansion of the 

cryosphere. Only the analysis of longer time-series data or high-resolution coeval 

sections will be able to address this. 
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Figure 4.5. Oxygen isotope record at Site 1052 (blue line) against the astronomical time-

scale. Data has been filtered to reveal the short-term eccentricity cycle (100 kyr) (red line). 

The vertical lines indicate regular cycles that may correspond to precession. 

4.2.2. Eccentricity forced variations in 8 13C 

Power spectra of the carbon isotopic record suggests the presence of a dominant 

frequency at 0.0084 cycles / kyr (figure 4.6). This corresponds to a cycle period of 

120 kyr and is thought to represent the short-term eccentricity cycle. Spectral 

analysis also indicates a cycle of 19 kyr wavelength (0.0516 cycles / kyr) that may be 

the precessional signal. 

Unlike the oxygen isotope record, the 6 13C record does not show a prominent 400 

kyr signal. This is indicated in figure 4.7, where the 6 13 C record has been filtered to a 

400 kyr period. What appears to be more influential in the 6 3 C signal is the short-

term eccentricity period (100 kyr) which is particularly strong in the upper 15 metres 

of the record (figure 4.8). 
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Figure 4.6. Power spectra of the carbon isotope record at Site 1052 determined using the 

Blackman-Tukey method. 
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Figure 4.7. Carbon isotope record at Site 1052 (blue line), plotted against the astronomical 

time-scale. Data has been filtered to a 400 kyr period (red line). 
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Figure 4.8. Carbon isotope record at Site 1052 (blue line), plotted against the astronomical 

time-scale. Data has been filtered to reveal the short-term eccentricity cycle (-100 kyr) (red 

line). 

4.3. Isotopic variations at the obliquity period 

The obliquity period causes changes in the latitude of the polar circle, which 

influences the mendonial distribution of solar energy. This has a large climatic 

influence in the high latitude regions due to variations in seasonality (Imbrie et al., 

1992, 1993), although this may also effect the balance of evaporation and 

precipitation in the tropics and subtropics (Park and Oglesby, 1990). Whilst there is a 

pronounced eccentricity signal in the stable isotopic records at Site 1052 there is little 

indication of the influence of the obliquity period (41 kyr). This is in accordance with 

local forcing of subtropical climate. Figures 4.9 and 4.10 indicate the possible 

influence of the obliquity period on the oxygen and carbon isotope records, though 

this is not as clear as the eccentricity cycles and the signal is weak. 
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Figure 4.9. Oxygen isotope record at Site 1052 (blue line) against the astronomical time-

scale. Data has been filtered to reveal possible obliquity cycles (red line). 
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Figure 4.10. Carbon isotope record at Site 1052 (blue line) against the astronomical time-

scale. Vertical hashed lines indicate the possible obliquity cycles. 
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The obliquity period is not a strong influence on the record, suggesting that high 

latitude water masses did not significantly affect the Blake Nose area. This confirms 

dinoflagellate faunal results (e.g. van Mourik et al., 2001) that do not record high 

latitude fauna in the samples from Blake Nose. The lack of obliquity signal in the 

middle Eocene 6180  record also confirms the absence of large scale ice-sheets on 

Antarctica at this time. 

4.4. Isotopic variations at the precessional period 

4.4.1. Evidence of the precessional period in the stable isotopic record 

There are several lines of evidence that point to the presence of a precessional 

periodicity in the stable isotopic records. The power spectrum indicates weak power 

at 0.0513 and 0.0516 cycles per kyr in the oxygen and carbon isotopic records 

respectively. These correspond to cycle frequencies of 19 kyr that may represent the 

short-term component of precession. The 19 kyr frequency does not match the power 

spectra of the Munsell hue record (figure 2.11) which indicated power at 23 and 21 

kyr. However, cross-spectral analysis by Pälike et al. (2001) showed coherency at all 

the precessional frequencies (23, 21 and 19 kyr) in the Ca / Fe record at Site 1052. 

There is also a visual co-variation between the precessional forced Munsell hue 

record and the 6 13C record (figure 4.13). 

The eccentricity component of orbital frequencies is due to the amplitude modulation 

of the precessional period. The presence of a significant 400 kyr signal in the 6180 

record (figure 4.4) and the clear precessional frequencies in the lithological record 

(figure 2.6) suggest that the precessional period was an important component of 

subtropical Eocene climate. 

The precessional period is not easily recognised within the stable isotopic data. This 

is probably due to unknown offsets in the data. The exact season of reproduction and 

position of Morozovella crassata and Globigerinatheka mexicana within the middle 

Eocene water colunm in unknown. Temporal shifts in depth habitat may obscure the 

precessional periodicities within the data set. It is also more difficult to recognise 
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these short period orbital frequencies as the data points involved in a full cycle are 

much fewer than longer orbital periods (e.g. precession = 7 data points, long-term 

eccentricity = 140 data points, based on mean sedimentation rates). Further statistical 

analyses or higher sampling frequencies are probably necessary to significantly show 

the precessional period within Palaeogene planktonic foraminifera data. 

4.4.2. Precessionally forced climate variability 

The amount of seasonal and annual insolation at a given latitude is modified by 

precessional variations, particularly in the tropics and subtropics (Ruddiman et al., 

1989; Imbrie et al., 1992). Positive feedback increases the effects of these small 

variations in solar insolation through non-linear response (Herbert, 1997). The 

precessional frequencies in the Munsell hue record indicate a strong influence of low 

latitude insolation on the subtropical climate. The primary feature of eccentricity is to 

regulate the magnitude of the precessional influence. The modulation of the 

precessional signal by the 400 kyr cycle is apparent in the 5 180 record (figure 4.11). 

It can be seen that mixed layer planktonic foraminifera 8180  fluctuations are greater 

from 39.49 to 39.60 Ma and again 400 kyr later at 39.04 to 39.15 Ma. The 

precessional period may be responsible for the low amplitude oscillations in the 

planktonic foraminifera stable isotopic record. This probably reflects temperature 

and productivity changes associated with changes in subtropical insolation. 
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Figure 4.11. Oxygen isotope record at Site 1052 (blue line) plotted against the astronomical 

time-scale. Data has been filtered to reveal the possible precessional signal (red line). 

4.4.3. Precessionally forced variations in productivity 

As with the 6 180 record, short-term frequencies in the 8 13C record are probably 

influenced by precession (figure 4.12). Factors that may have enhanced the effects of 

precessional insolation changes include modifications in heat transport, pCO2, carbon 

cycling and precipitation (Ruddiman and McIntyre, 1981; Pisias et al., 1990; 

Crowley et al., 1992; Herbert, 1997). However, the modulation of precession by the 

400 kyr cycle within the 813C  is less obvious. Flower et al. (1997) attributed the 400 

kyr cycle in Oligocene - Miocene isotopic records from Ceara Rise to variations in 

the East Antarctic ice sheet and rates of bunal / oxidation of organic matter. The lack 

of a prominent 400 kyr cyclicity in the 6 13C record here suggest that the systems 

controlling 8 13C and 6 180 on long time-scales were not coupled during the middle 

Eocene. The uncoupled climate and carbon systems are discussed further in chapter 

7. 
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Figure 4.12. Carbon isotope record at Site 1052 (blue line) plotted against the astronomical 

time-scale. Data has been filtered to reveal the possible precessional period (red line). 

4.5. Non-Milankovitch climate variability 

Whilst eccentricity frequencies are clearly represented in the stable isotopic records 

at Blake Nose, some variability cannot be explained by this means. There are 

intervals when isotopic variability is irregular. This could be attributed to planktonic 

foraminiferal vital effects, non-Milankovitch variability, or alternatively that the 

orbital signals of precession, sub-precession and obliquity are superimposed, thus 

making cycles difficult to determine. 

4.6. Comparison of the cyclicity in the lithological and stable 

isotopic records 

It has already been established in chapter 2 that the middle Eocene lithological 

sequence at Site 1052 has a strong precessional period. In figures 4.13 and 4.14 the 

isotopic results of carbon and oxygen respectively are plotted with the Munsell hue 

record against time. Both records indicate a precessional cyclicity, although this is 
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visually more perceptible in the Munsell hue record, because the colour record was 

sampled at a higher resolution (5 cm). Heavy 8 13C results are associated with lighter 

sediment colour (increased carbonate), suggesting that this could be in response to 

wind blown terrestrial input which provides nutrients to the surface water and 

therefore increases carbonate productivity. 

Whilst the precessionally forced cycles are very prominent within the colour record, 

it is harder to identify individual cycles within the planktonic foraminifera 5 180 

record. Pearson et al. (1997) also noted a lack of association between the stable 

isotopic and colour cycles in sediments from the Ceara Rise. This is probably due in 

part to species vital effects, but also local and global influences. The colour cycles 

are a local signal probably controlled by wind driven terrigenous input (see section 

2.7). The isotopic records are however also influenced by wider scale and global 

changes in the evaporation / precipitation balance, ice volume and global carbon 

flux. These factors will cause changes in the stable isotopic records that may not be 

recorded in the lithological physical properties data. High frequency variability, 

differences in sampling resolution and possible phase leads and lags may also distort 

the visible relationship between lithological and isotopic data. 
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Figure 4.13. The carbon isotope record (red line) and Munsell hue record (blue line) from 

39.0 to 39.6 Ma at Site 1052. 
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Figure 4.14. The oxygen isotope record (red line) and Munsell hue record (blue line) from 

37.85 to 38.05 Ma at Site 1052. 

4.7. Implications of orbital control on the Eocene climate 

Fourier analysis shows the predominance of certain Milankovitch frequencies in the 

isotopic records. The spectral power is particularly significant in the oxygen isotope 

record at the long-term eccentricity period (400 kyr), whilst the short-term 

eccentricity period (100 kyr) dominates the 5 13 C record. The respective significance 

of the short-term and long-term eccentricity components within the oxygen isotope 

record varies through the analysed interval. The long-term eccentricity signal is 

dominant in the interval from 37.6 to 39.6 Ma. The short-term eccentricity becomes a 

significant component in the upper interval from 37.3 to 37.6 Ma. 

Precessional variations in solar insolation are most probably acting on Eocene 

subtropical surface waters, although the precessional period within the 5 180 and 813C 

records is not clear throughout the analysed interval. Long-term orbital effects, 

perhaps due to shifts in wind systems, then modulate this precessional forcing to give 

rise to a strong 400 kyr signal where periodically heavy 818  are recorded. 

Eccentricity forcing indicates that the subtropical climate is responding to the 

modulation of regional variations in solar insolation. 
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It has been indicated that certain climatic factors are sensitive to orbital forcing. The 

weak precessional variations in the 8 180 and 8 13C record could reflect Ekman driven 

upwelling, changes in the strength of the thermocline or variations in continental 

runoff or evaporation / precipitation which are sensitive to precessional forcing. 

Climatic modeling studies of the Eocene have forecast sensitivity to precessional 

forcing in the western North Atlantic that gave rise to Ekman driven upwelling and 

changes in wind systems (e.g. Bice et al., 2000b; Sloan and Huber, 2001a, 2001b). 

This is discussed further in chapter 7. 

Long-period eccentricity variation has been recognised in Palaeogene sediments 

from both high and low latitudes (e.g. Zahn and Diester-Haass, 1995; Zachos et al., 

1996; Zachos et al., 1997; Zachos et al., 2001b). However, sampling resolutions and 

sediment accumulation rates have been insufficient to significantly resolve the full 

spectra of orbital frequencies in Palaeogene studies. The persistence of the 

eccentricity period within climatic records signifies a firm association between 

climatic variance and insolation forcing (Zachos et al., 2001b). Herbert (1997) 

showed that the 400 kyr eccentricity period was a particularly important component 

of climate change prior to extensive glaciation on Antarctica. The strong 400 and 100 

kyr cycles in the isotopic records provide further confirmation of the importance of 

the eccentricity frequencies within past climatic regimes. 

The carbon isotopic record indicates power in the short-term eccentricity band. 

However, the long-term trends in oxygen and carbon isotope are not the same (figure 

3.8). There is a longer-term periodicity in the 8 13C record with heavy carbon isotope 

values recorded at 38.0 and 39.4 Ma. The carbon record does not exhibit the 400 kyr 

eccentricity cycle and the precessional 813C  variations are not clearly modulated in 

this way. Zachos et al. (2001b) suggest that the strong long-term eccentricity cycle in 

sediments of Miocene age and older is related to atmospheric pCO2 and the global 

carbon cycle. However, if this theory is correct, why does the carbon isotopic record 

of Blake Nose not show a strong 400 kyr modulation? The long-term amplitude 

modulation within the 6 13C is probably controlled by non-orbital variations in the 
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carbon cycle flux such as changes in the carbon reservoir, geochemical cycling of 

carbon orpCO2 with a periodicity greater than 400 kyr. 

It is unknown how the relative changes in the Earth's solar insolation give rise to the 

significant climate variability recorded in the lithological and stable isotope cycles. 

The eccentricity signal cannot be caused directly by variations in solar insolation, as 

the eccentricity influence on insolation is small. The strong eccentricity periodicities 

suggest both short- and long-term feedbacks that amplify the modulation of 

precession. The mechanisms responsible for the sensitivity and increase in the 400 

kyr forcing are not known, but shifts in wind fields and atmospheric circulation 

patterns are suspected (discussed in chapter 7). Changes in SST, surface water 

chemistry and thermal gradient are probably involved, either directly or indirectly via 

feedback mechanisms. 

The evidence of orbitally induced climate change in the middle Eocene adds support 

to the fact that Milankovitch variations were important during all modes of past 

climate. These results provide further evidence for the sensitivity of climate to orbital 

variations in pre-Pleistocene times. Orbitally induced variations in solar insolation 

have a direct correspondence with variations in surface water properties, although it 

is not yet fully understood exactly how. Orbital periodicities in the stable oxygen 

isotope record indicate an oceanic - climatic system that is extremely dynamic. Both 

short- and long-term variations resulted within the Eocene climatic system, induced 

either directly or indirectly by external variations in solar insolation. 

4.8. Summary 

Stable isotopic results have been plotted against the astronomical chronology 

established in chapter 2. 

Power spectra of the late middle Eocene planktonic foraminifera stable isotopic 

time series indicates periodicities that may reflect obliquity, precession and 

eccentricity cycles. 
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The oxygen isotope record indicates that the long-term eccentricity cycle 

periodically gave rise to heavy 8180  values. 

The 100 kyr eccentricity cycle is more prominent in the 8 180 record from 37.6 to 

37.3 Ma. 

The carbon isotopic record does not indicate the long-period eccentricity cycle 

(400 kyr), and the short-period eccentricity cycle (100 kyr) dominates this 

isotopic record. 

The positive relationship between increased carbonate and increased 8 13C 

suggests precessional forced variations in productivity attributed to wind blown 

terrigenous material from the North American continent. 

The results confirm the importance of orbitally induced climate change within 

pre-Pleistocene sediments and indicate a highly dynamic climate system in the 

middle Eocene. 
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5. LATE MIDDLE EOCENE SEA SURFACE TEMPERATURES AND 

MECHANISMS CONTROLLING THE LARGE AND RAPID 

OXYGEN ISOTOPE SHIFTS 

High-resolution stable isotope investigations allow the variability of the climate 

system during the late middle Eocene to be quantified. During 2.3 million years in 

the late middle Eocene the planktonic 8180  record at Blake Nose ranges from +0.2 to 

—2.4%, with values generally between 0.0 and —2.0%. If the isotopic shifts in 8180 

are wholly attributed to temperature, then SSTs fluctuated more than 10 °C 

(-.0.25%o/1 °C, Epstein et al., 1953). These temperature shifts are massive and exceed 

the magnitude recorded in the tropical Pacific Ocean during El Niflo events (e.g. 

Elliott et al., 2001). It is difficult to account for such large temperature shifts in the 

subtropics. To understand what caused the rapid and high amplitude oxygen isotopic 

shifts it is important to quantify the effects of ice volume, temperature, atmospheric 

vapour transport and oceanic circulation on the 8180  signal. 

5.1. Ice volume effect 

The early Eocene was a greenhouse world in comparison to the modern, with 

elevated CO2 levels (Pearson and Palmer, 2000), increased temperatures at high 

latitudes and insignificant global ice volume compared to today (Zachos et al., 1994 

and references therein). The earliest accepted evidence of ice on the Antarctic 

continent is the early middle Eocene (Hambrey et al., 1991; Wise et al., 1991; 

Browning et al., 1996; Abreu and Anderson, 1998). Glacio-marine deposits are found 

in Prydz Bay from -43 Ma, however, little is known quantitatively about early ice-

sheet development on Antarctica and ice may have existed on high regions of East 

Antarctica millions of years before advancing to the coastline. Large scale continental 

glaciation did not occur until the earliest Oligocene (Miller et al., 1987, 1991; Zachos 

et al., 1992, 1993, 1999; Lear etal., 2000). 

87 



Chapter 5 	 Middle Eocene sea surface temperatures 

Whilst ice volume can be quantified to some extent, it is unclear what the isotopic 

composition of early Antarctic ice was. The Antarctic ice sheet is formed from high-

latitude precipitation. The isotopic formation of precipitation is related to the mean 

surface air temperature, water saturation vapour pressure and airmass transport 

distance (Robin, 1988). It is likely that during intervals of high-latitude warmth there 

would have been less fractionation of oxygen and therefore less depleted 6180  in 

precipitation. However, this has not yet been quantified. 

Lear et al. (2000) estimated the ice volume effect in the late middle Eocene 6180  to 

be —0.5%o Standard Mean Ocean Water (SMOW). Results of Lear et al. (2000) are 

comparable with benthic foraminifer stable isotope data from Blake Nose. Benthic 

foraminifer oxygen isotope values fluctuate by 0.7%o in the middle Eocene at Site 

1051 (Wade etal., 2001) and are consistent with variations recorded at Site 1052 

(Appendix 1 and Pälike, pers. comm.). The low amplitude oscillations (-0.7%o PDB) 

in deep sea 6180  reflect small changes in Antarctic ice volume, deep sea temperature 

or both. It cannot be assumed that all ice will be advancing and retreating and 

therefore a maximum ice volume effect on middle. Eocene 6180  was probably 0.5% 

PDB or less. This is a minor fraction of the isotopic shifts seen recorded in 

planktonic foraminifera 6180  at Site 1052 and ice volume cannot account for the 

high-amplitude shifts of >1%0 PDB. Further mechanisms must therefore be sought to 

explain the planktonic foraminifera 6180  shifts of 1 to 2%o PDB. 

5.2. Atmospheric vapour transport, freshwater and seawater 

3180 

A strong relationship exists between surface ocean salinity and the local oxygen 

isotope composition of seawater (6 180), as they are both controlled by the same 

processes (figure 5.1). A number of factors may influence 8180  including 

atmospheric vapour transport, ocean circulation, runoff and the magnitude and 

location of precipitation and evaporation. 
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Figure 5.1. The relationship between surface water salinity and 5 180 in the modern Atlantic 

Ocean (Ganssen and Kroon, 2000). 

A possible explanation is that the oxygen isotope signal of planktonic foraminifera 

reflects decreases in surface water salinity that caused isotopic depletion of the mixed 

layer and gave rise to isotopically light 6180  values. It may be that the amount of 

freshwater required is not substantial especially if this water is very isotopically light. 

Perhaps at periodic intervals large amounts of water enriched in 160  (warm, low 

salinity water), possibly from the ancestral Mississippi outflow entrained in the proto 

Gulf Stream, were transported from the Gulf of Mexico, north over Blake Nose. 

Seismic evidence suggests that the position of the Gulf Stream periodically shifted 

across the Blake Plateau during the Cenozoic (Pinet and Popenoe, 1985). The 

temporal, climatically forced variations in the strength and location of the Gulf 

Stream, associated with freshwater input could result in the fluctuations in planktonic 

foraminiferal 6180  observed at Blake Nose. This would also explain the shifts in 

as ICO2  in freshwater tends to be depleted in 13C relative to marine water, 

although interpretation of the carbon isotope record is complicated by vital effects. 

However, significant changes in local 8 180,w  are required for the isotopic fluctuations 
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recorded at Blake Nose. If a constant temperature is invoked, the ö' 8O must have 

changed by 1 - 2%, equivalent to a 49 ,66o shift in salinity (see figure 5.1 and also 

Broecker, 1989). 

Modem flooding of the Mississippi Valley has given rise to a decrease in salinity of 

up to 4%o in the Florida Current, Florida Straits and Gulf of Mexico by providing 

massive inputs of freshwater (Gilbert etal., 1996). If recent flooding of the 

Mississippi valley is comparable to dramatic climatic changes in the middle Eocene 

that featured regular and intense precipitation events then this is a potential way to 

lower 8 18Oby 2%o. However, annual variations in salinity at Blake Nose are 

currently small (0.27%o) (Levitus et al., 1994) and planktonic foraminifera are 

normally not tolerant of low salinity environments. This change is considered too 

large to be consistent with the open ocean setting for Site 1052. 

Neither ice volume nor salinity alone can account for the high amplitude planktonic 

foraminifera 8180  shifts and temperature must play a significant role. It is unlikely 

that temperature shifts occurred without variations in salinity due to evaporation and 

precipitation. Therefore the shifts in 8 180 probably occur as a result of a combination 

of temperature, ice volume and salinity changes. 

5.3. Temperature 

Even after ice volume effects have been taken into account (0.5%o SMOW, Lear et 

al., 2000), there still remains isotopic shifts of 1 .S%o to be accounted for and the 

amplitude of the temperature shifts are still a minimum of 6 °C. 

Glacial - interglacial shifts of 2.8%o were recorded in the tropical western Atlantic at 

Site 1006 on the Great Bahama Bank (24&N)  by Kroon et al. (2000) (figure 5.2). 

Such a magnitude of variation is slightly easier to explain during the Pleistocene as 

ice volume / sea-level effects can account for 1.2%o of the signal (Berger and 

Gardner, 1975; Chapell and Shackleton, 1986; Fairbanks, 1989). During glacial- 

90 



Chapter 5 	 Middle Eocene sea surface temperatures 

interglacial intervals tropical SSTs can change by 4 to 5°C (Guilderson etal., 1994, 

2001; Cortijo etal., 1999; Keigwin and Boyle, 1999; Pelejero etal., 1999), thus 

accounting for a further 0.9 to 1. I%o PDB of the isotopic variation. The remaining 

0.5%o can be attributed to local variation in surface water 8 180,such as upwelling, 

runoff or atmospheric moisture transport. However, during the middle Eocene the 

magnitude of the ice volume effect was smaller. This means that the temperature or 
8 180s,fluctuations needed to account for the oxygen isotope shifts are significantly 

greater than those during the glacial / interglacial shifts of the Pleistocene. 
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Figure 5.2. Oxygen isotope records from Site 1006 (tropical western Atlantic) and Site 806 

(western Pacific), from Kroon et al. (2000). MPR = Mid-Pleistocene Revolution. 
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The high amplitude (2%o) negative oxygen isotope shifts recorded at Blake Nose 

cannot be explained by a single forcing mechanism. They are probably caused by a 

combination of ice volume decrease, subtropical warming, freshwater input and 

ocean circulation. The possible magnitude of the ice volume, salinity and temperature 

effects is illustrated in figure 5.3. A dramatic fall in 6180  of almost 2%o PDB is 

evident at 85.2 mcd (figure 5.3). This cannot represent ice volume alone, as this is 

nearly two times greater than the glacial-interglacial differences of the Pleistocene. If 

this shift reflects temperature, then this is a 7 °C crash in surface water temperatures 

over approximately 2,000 years (-0.25%o/1 °C, Epstein et al., 1953). For this to be 

due to changes in salinity it would require a salinity shift of 4% (Broecker, 1989) to 

10% (Fairbanks et al., 1992). This is considered too large for an open ocean 

environment. It is likely that the 8180  shifts reflect a mixture of temperature, salinity 

and ice volume fluctuations but without an independent temperature proxy these 

effects cannot be separated. It is thought to primarily reflect temperature, although ice 

volume and salinity will also have an influence. 

I 
ii  I 

80 	81 	82 	83 	84 	85 	86 	87 	88 	89 	90 

metres composite depth 

Figure 5.3. Planktonic foraminifer oxygen isotope record from Site 1052 from 80 to 90 mcd. 

Arrows indicate the maximum amount of 5 180 variation that can be attributed to salinity, ice 

volume and temperature. Salinity variation is kept at modern day values (0.27%o). 

92 

-2.4 

-2.2 

-2.0 

-1.8 

-1.6 

a. -1.4 
0 -  
to 

-1.0 

-0.8 

-0.6 

-0.4 



Chapter 5 	 Middle Eocene sea surface temperatures 

5.4. Middle Eocene subtropical sea surface temperatures 

5.4.1. Palaeotemperature reconstruction 

In order to determine the forcing mechanisms that produced past climatic states it is 

critical to ascertain marine palaeotemperatures. Sea surface temperatures (SSTs) 

were calculated using the calcite-water 6180  temperature equation of Erez and Luz 

(1983): 

T°C = 16.998 - 4.52 (6 180 - 6180) + 0.028 (6180cc  6180)2 	(1) 

where 6 1 80 is the oxygen isotope composition of the sample calcite relative to PDB, 

and 6180  is the oxygen isotope composition of the ambient seawater relative to 

SMOW. 

5.4.2. Atmospheric vapour transport, 6 8O and salinity 

It is imperative that the mean oxygen isotope composition of the seawater in which 

the calcite was precipitated (6180)  is constrained in the calculation of 

palaeotemperatures from equation 1. This is influenced by ice volume, runoff, 

precipitation and fractionation by freezing and evaporation. During the Eocene, in the 

absence of significant continental ice, the estimated mean composition of seawater is 

-0.5%o SMOW (Lear et al., 2000), based on magnesium / calcium data from benthic 

foraminifera. Instead of applying a mean 8180  value for the entire ocean when 

calculating SSTs from plariktonic foraminifera, it is desirable to account for local 

variations in sea surface 6180  as a function of latitude. This value is dependent on 

evaporation, precipitation and atmospheric vapour transport in the open ocean. There 

is presently no direct measure of palaeoseawater 6 180.  

Zachos et al. (1994) introduced an equation to calculate the influence of atmospheric 

moisture transport and evaporation on regional 6180: 

y0.576+0.041 x0.0017x2 +1.35*10 5 x3 	 (2) 

93 



Chapter 5 	 Middle Eocene sea surface temperatures 

where y is the oxygen isotopic composition of the seawater (6 180, SMOW) and x is 

the absolute latitude in the range of 00  to 700. This equation is applied to decrease the 

effect of the surface water 8180,w  gradient on palaeotemperature reconstruction. The 

equation infers that the zonally averaged meridional surface water 8 180 gradient was 

similar to that of the present day. Although it is conceivable that the latitudinal E' 80 

gradient was different in the middle Eocene, there is no indication that the amplitude 

or direction of this gradient was significantly dissimilar to the present (Crowley and 

Zachos, 2000). Eocene model simulations (e.g. Manabe and Bryan, 1985; Rind, 

1986; Sloan and Rea, 1995) indicate that the balance of precipitation / evaporation 

which establish the salinity patterns of the ocean are comparable in the Eocene to 

today (Crowley and Zachos, 2000). 

Errors in estimating surface ocean salinity may cause serious biases in calculations of 

past SSTs. As the actual isotopic composition of the middle Eocene seawater cannot 

be determined, two constant values of 8
180 were considered in the calculation of 

sea surface temperatures. These were: i) -0.5% (SMOW) where the net evaporation 

effect on 8180,w  is not considered and ii) +0.14% (SMOW) where the 

palaeolatitudinal dependant effect on 6180sw  was determined from equation 2 (Zachos 

et al., 1994) and the resulting value reduced by -0.5%o to account for global 

conditions (Lear et al., 2000). The palaeolatitude of Site 1052 is comparable to today 

-29°N (Ogg and Bardot, 2001). The 8 180sw value of +0. 14%o translates to a 

palaeosalinity of 35 .5%o (using the equation of Broecker, 1989). 

Palaeotemperatures were reconstructed using the assumption that local salinity did 

not severely fluctuate and thus temperature was the primary influence on the stable 

oxygen isotope record. Variations in ice volume and 8
180 will have also influenced 

180 to some extent. Future work on these specimens will involve the quantification 

of the 80  influence that accompanied changes in foraminiferal 6180  (see section 

7.5.1). It is possible that the assumption of constant salinity is incorrect but there is 

no direct means of quantifying the salinity effect on surface water 8180  at this stage. 
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5.5. Sea surface temperatures at Site 1052 

Modern species of planktonic foraminifera vary their depth habitat and season of 

reproduction. It is not known in which season Morozovella lived but it is likely that 

they were similar to the modern species Globigerinoides ruber and lived year-round. 

The SSTs calculated here are therefore considered to be mean annual temperatures. It 

should be noted that isotopic palaeotemperatures have a ±2 °C degree of uncertainty 

(see Crowley and Zachos, 2000 for discussion). All following palaeotemperatures 

should thus be considered as minimal values and not absolute. 

The calculated sea surface temperatures at Site 1052 are shown in figure 5.4. When 

applying a 6180  value of-0.5%o (SMOW), temperatures range between 13.9 °C and 

25.8°C. These values are increased by 3 °C when the equation of Zachos et al. (1994) 

(equation 2) is employed to estimate palaeotemperatures between 16.8 °C and 28.8°C. 

Previously, the general consensus of palaeoceanographers seems to have been that 

the middle Eocene was a time of stable, equable climate. However, results indicate 

large fluctuations in surface water temperatures with shifts as great as 12 °C, 

assuming no change in ice volume and 818  Osw. This suggests a very unstable climatic 

/ oceanographic system that experienced abrupt changes in temperature. 

The vertical line of figure 5.4 indicates modern mean temperatures at Blake Nose 

(from Bottomley et al., 1990). Maximum recorded SSTs of 29 °C are comparable to 

today's summer maxima. It is evident that if indeed the SSTs reconstructed for the 

Eocene reflect annual temperatures then there are intervals (yellow shaded areas) 

when annual temperatures were up to 5°C warmer than modern mean annual 

temperatures, using the equation of Zachos etal. (1994). These may reflect periods of 

abrupt warming when the greenhouse conditions that are characteristic of the early 

Eocene were restored. There are also intervals when SSTs were 7 °C cooler than 

modern mean temperatures (blue shaded areas). The forcing factors accountable for 

these heavy 6180  intervals are discussed in sections 5.8 and 5.9. 
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Figure 5.4. Surface water palaeotemperatures at Site 1052 using 6 80 values of —0.5%0 

(SMOW) (blue line) and +0.14% (SMOW) (red line). Vertical line indicates the modern mean 

annual temperature. Blue shaded areas are intervals where surface waters record heavy 

6180 and yellow shaded areas are intervals where surface waters record light 6180. 
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Figure 5.4 indicates how sensitive the palaeotemperature calculations are to changes 

in seawater 6180  Temperatures can be shifted by 3 °C simply by changing the local 

8 18O,. The relationship between seawater 8 180 and temperature for varying isotopic 

values are shown in figure 5.5. At 29°N, Blake Nose is situated in a zone of net 

evaporation, leading to high 8 18O and salinity. The modem 8 180sw  at Blake Nose is 

high compared to the open ocean, 1.2%o SMOW (Fairbanks etal., 1992), with a 

salinity of 36.5% (Levitus etal., 1994). If these modem values are applied to the 

palaeotemperature equation then sea surface temperatures are increased further and 

vary between 19 and 31 °C (figure 5.5). 

PRIM 

26 
0 
0 

24 

c22 

CL 
I.. a) 
E 20  
I- 

18 

16 

14 

............... 	............ 

..1 

-0.6 	-0.4 	-0.2 	0 	0.2 	0.4 	0.6 	0.8 

18O (SMOW) 

Figure 5.5. The relationship between temperature and differing 6180.  The lower line and 

upper line represent 8180  values of 0 and -2%o PDB respectively. Shaded area represents the 

common range of sea surface temperatures. Vertical lines indicate the varying 5 180s, values 

applied in the palaeotemperature calculations. 
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It is probable that the palaeotemperatures deduced using the latitudinal adjustment of 

Zachos et al. (1994) are the most reliable. During the middle Eocene, with limited ice 

volume in comparison to modem, the surface water salinity was probably slightly 

less than today. Oceanic circulation will also influence the 6180  at Blake Nose. 

During the Eocene the central American seaway was open, which probably resulted 

in more uniform 6 180 values between the Atlantic and Pacific Oceans. 

5.5.1. Recrystallisation 

There is the possibility that the reconstructed SSTs at Blake Nose are considerably 

lower than actual temperatures. Recrystallisation of foraminifer calcite at low 

temperatures is likely to have produced heavier 6180  values (Killingley, 1983; Schrag 

et al., 1995) and thus could potentially reduce estimates of SSTs at low latitudes by 

several degrees. Pristine foraminifera from Tanzanian clays record middle Eocene 

6180 values 2%o lighter than those from marine oozes and chalks (Pearson, 2001). If 

indeed the Blake Nose samples have been affected by a 2%o recrystallisation effect, 

this would give rise to 6180  values of—i .8 to —4.4%o PDB corresponding to SSTs of 

26 to 38°C (assuming the degree of recrystallisation is constant). These SSTs are 

greater than those recorded in the mid Cretaceous by Norris and Wilson (1998). 

Surface water temperatures between 10 and 14 °C greater than today have not been 

documented in any part of the geological record. The recrystallisation effect is 

therefore probably <2%o PDB. It is also possible that differing degrees of diagenesis 

have also affected the record. However, the SEM images appear consistently 

recrystallised between intervals of both light and heavy 6180  and there is no means 

for documenting the affects of diagenesis on the isotopic record for each sample. 

Despite not being able to quantify the effects of recrystallisation, the 8180  shifts and 

thus comparable shifts in temperatures are believed to be a true record of Eocene 

climate variability. 
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5.6. Comparison with modern conditions at Blake Nose 

Present day temperatures at Blake Nose range between 20 °C and 28.5°C, with a mean 

value of 24°C (Bottomley etal., 1990). Existing palaeotemperature equations reveal 

late middle Eocene SSTs to range between 16.8 and 28.8 °C, with mean SSTs of 23 °C 

(figure 5.4) when palaeolatitudinal dependent effects on 8 18Ow are considered and 

ice volume taken into account. The temperatures reconstructed at Blake Nose are 

therefore, in parts of the record comparable to, or slightly cooler than present, by no 

more than 1 to 4 °C depending on the 8 180s,value used. 

Other palaeontological data support that SSTs at Blake Nose were comparable to 

today. Dinocyst assemblages from Site 1053 (van Mourik et al., 2001) reveal middle 

Eocene conditions typical of warm to temperate surface waters. Cold-water species 

were absent suggesting that subtropical conditions continued in the middle Eocene 

and that northern water masses did not influence Blake Nose. Middle and late Eocene 

palynofloras from the Caribbean basin also indicate palaeotemperatures within the 

range of modern values (Graham, 2000). These temperatures are also comparable to 

the results of Tripati and Zachos (2000) and Andreasson and Schmitz (1996, 2000), 

who recorded middle Eocene SSTs between 14 and 28 °C from tropical and temperate 

molluscan stable isotope profiles. 

Whilst the SSTs reconstructed for the late middle Eocene at Blake Nose are 

comparable to modern day values at this site, SSTs are periodically significantly 

higher and substantially more variable than those recorded in previous planktonic 

foraminiferal studies from the middle Eocene (e.g. Keigwin and Corliss, 1986; 

Boersma et al., 1987; Zachos etal., 1994; Bralower et al., 1995). Minimal planktonic 

foraminifera 8180  values are regularly less than -1 %o PDB. These values are more 

typical in the early Eocene (e.g. Barrera and Huber, 1991; Zachos etal., 1994; 

Bralower et al., 1995), a period of pronounced warming. Blake Nose planktonic 

foraminiferal oxygen isotopic values lighter than -I %o PDB suggest that there may 

have been several wanning intervals during the middle Eocene. 
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5.7. Bottom water temperatures 

The isotopic measurement of benthic foraminifera to reconstruct the surface to 

benthos isotopic gradient at Site 1052 is beyond the scope of this study. However, 

measurements of the benthic foraminifera Nuttalides truempyi were made from 77.48 

to 89.57 mcd by Pälike et al. (unpublished data), which help to constrain the surface 

to benthos thermal gradient. 

In modern benthic foraminifera it has been demonstrated that in certain species the 

stable isotopic composition is not in equilibrium with the surrounding seawater 

(Duplessy etal., 1970; Shackleton, 1974; Woodruff et al., 1980; Belanger et al., 

1981; Graham etal., 1981; Shackleton etal., 1984; Keigwin and Corliss, 1986; 

Zachos etal., 1992). The recorded stable isotopic values of oxygen are reduced 

compared to the forecast equilibrium values (Boersma et al., 1979). In many studies 

the measured oxygen isotope values are adjusted to account for this disparity. The 

proposed "correction factors" range from +0.35%o to +0.6%o (Shackleton etal., 1984; 

Keigwin and Corliss, 1986; Kennett and Stott, 1990; Barrera and Huber, 1991; 

Zachos etal., 1992, 1994). I have applied an adjustment of +0.4% (Shackleton et al., 

1984) to the measured 8180  values of Nuttalides to account for the suspected species-

specific non-equilibrium fractionation, and allow comparison with previous work. 

The corrected benthic foraminifera values are used in figure 5.6. 

The results of Pälike et al. (unpublished data) are comparable to those at Site 1051 

(Wade et al., 2001) and fluctuate between 0.98 and 1.70%, corresponding to 

palaeotemperatures of 7 to 11 °C. These deep intermediate water temperatures are 

significantly higher than modern temperatures and are similar to intermediate and 

bottom water temperatures recorded in previous Palaeogene and Late Cretaceous 

studies (e.g. Boersma etal., 1987; Barrera and Huber, 1991; Corfield and Norris 

1996, 1998 and references therein; Lear et al., 2000; Zachos et al., 2001a). 
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5.8. Surface to benthos 5180  and thermal gradient 

The low amplitude oscillation in benthic foraminiferal 6180  at sites 1051 and 1052 

suggest that the large variations in surface water ö 80  are purely a surface water 

phenomenon and did not affect deep waters. Limited measurements of the 

thermocline dwelling S. utilisindex have been made (Appendix 1) and indicate that 

oxygen isotope results vary between —0.37 and +0.39%o (figure 3.3). If the limited 

benthic and thermocline foraminifer isotope values are applied to the whole data set, 

this implies massive fluctuations in the 6180  gradient. This is indicated in figure 5.6, 

which shows the composite oxygen isotope record against the astronomical time-

scale. The mean thermocline values are shown as a dotted line, whilst benthic values 

are indicated by the blue shaded area. 

The isotopic gradient between surface and deep-water periodically shifts from a 

minimum of 1.2%o to a maximum of-4.0%o, equal to thermal gradients of 4.8 to 

16°C. There are periods when very light isotopic values are recorded and SSTs are up 

to 5°C warmer than today at 37.5, 37.65, 38.2, 38.4 and 39.3 Ma (figure 5.6). Here 

the 6180  gradient is expanded (3%o), stratification is strong and thermal gradients are 

equivalent to 12 °C. However, the vertical gradient is dramatically reduced to only 

6°C (1.5%o) at 39.5, 39.1, 38.3 and 37.75 Ma. The periodic breakdown of the isotopic 

gradient from surface to deep waters is in response to variations in vertical 

stratification, reducing SSTs to 17 °C. 
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Figure 5.6. Middle Eocene oxygen isotope variability at Site 1052. Blue shaded area 

indicates the range of benthic foraminifer values. Hashed line = therm ocline depth. Horizontal 

shaded areas indicate periods of intense upwelling where the vertical 8 180 gradient is 

reduced to 1.5 - 2.5% PDB. These events periodically occur every 400 kyr and last -100 kyr. 
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5.9. Orbital cyclicity in thermal stratification 

Fluctuation in sea surface 6180  and the periods of weak thermal gradient, where 

mean SSTs were much cooler than today recurred with a 400 kyr cyclicity, (indicated 

by the shaded areas in figure 5.6) attributed to the long-term eccentricity cycle. 

During these intervals sea surface temperatures were periodically reduced by 2 to 6°C 

and the vertical temperature gradient over Blake Nose almost collapsed. The periods 

of inferred upwelling when heavy 6180  are recorded are all 109 ± 8 kyr in duration. 

This 100 kyr period of cold SSTs suggest that the modulation of precessional 

insolation by the short-term eccentricity cycle is also important. This regularity 

suggests that there is a periodic shift in the dominant climate signal, probably related 

to the modulation of solar insolation by the short-term eccentricity cycle. 

5.9.1. Causes of thermal stratification breakdown 

Water colunm stratification fluctuates every 400 kyr indicating that western North 

Atlantic oceanography was forced by the long-term eccentricity cycle. A possible 

explanation is that these abrupt shifts in surface water 6180  and the collapse of the 

6180 gradient may represent an unstable water column, in response to orbitally forced 

intense upwelling that drives cold deep water to the ocean surface. Changes in 

temperature gradient or enhanced North American zonal wind stress forced by orbital 

variations in insolation may have given rise to periodic intense upwelling events and 

'-'400 kyr cyclic collapse of water column stratification. The generally reduced 

surface to benthos temperature gradient in the Eocene compared to the present day 

may have facilitated the upwelling of deep water to the surface ocean. The upwelling 

hypothesis is favoured as it can account for the large variations in 6180,  the reduction 

of the thermal gradient and the high abundance of siliceous microfossils in the 

samples. By investigating longer time-series it may be possible to ascertain whether 

this 400 kyr variability was continuous or if this feature effectively was turned on and 

off. This will lead to significant further understanding of the climate system during 

warm climatic phases. 
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There is a disparity in the relationship between oxygen and carbon isotopic values 

within the planktonic foraminifer record. Whilst the fluctuations in the oxygen 

isotope record are consistent with an upwelling system, this contradicts the isotopic 

shifts seen in the carbon data. If the variations in surface water 6' 80  reflected 

variations in upwelling, then one would expect to see positive shifts in 6180  to be 

associated with negative shifts in 6 13C, as deep water was upwelled to the surface. 

However, in this record the long-term trends in 6180  and 6 13C are not controlled in 

the same way (chapter 4). This would suggest that upwelling is not the obvious cause 

of the 8180  fluctuations and that some other factor could be held responsible. 

Variations in SST may also be caused by shifts in the subtropical gyre or inter-

tropical convergence zone. These are discussed further in chapter 7. 

One way to test the upwelling hypothesis is to use a secondary temperature proxy to 

document the magnitude of temperature change. Samples from Site 1052 12H have 

been analysed for alkenones by Tim Herbert (Brown University). Unfortunately no 

alkenones were found in the samples. Future work could involve the use of other 

geochemical proxies such as biogenic silica, where, in theory the biosiliceous content 

of the samples should increase during periods of enhanced upwelling as nutrient rich 

waters are brought to the surface ocean. 

5.10. Summary 

It is clear that the climate system in the late middle Eocene was highly fluctuating 

and dynamic, where modulation of solar insolation patterns by the long period 

eccentricity cycle can induce massive changes in vertical stratification and SSTs. The 

variations in insolation alone are too small to induce these large oceanographic shifts 

and feedback effects to climatic modulation must have been an important forcing 

factor. 

1) The possible causes of the large oxygen isotope shifts are discussed. The required 

changes in ice volume or surface water 6180  are considered too large to cause the 

recorded shifts in planktonic foraminifer 6180 
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It is concluded that temperature has the dominant role here and the dataset 

represents unstable SSTs during the middle Eocene. 

SSTs have been reconstructed at Blake Nose using two different 8180,w  values. 

SSTs range between 17 and 29°C when latitudinal changes in 618O  are 

considered. 

Rapid and abrupt fluctuations in SSTs are evident of up to 12°C. 

There are periodic intervals when SSTs were up to 5°C greater than modem 

suggesting greenhouse conditions returned to the subtropics. 

Heavy 6 180 values periodically occurred with a 400 kyr cyclicity. These intervals 

are all -400 kyr in duration and caused SSTs to cool by 2 - 6 °C. 

The collapse of the vertical temperature gradient is attributed to periodically 

intense upwelling events. 
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6. THE EXTINCTION OF MURICATE PLANKTONIC 

FORAMINIFERA AND CAUSES OF THE LATE MIDDLE EOCENE 

BIOTIC TURNOVER 

6.1. Introduction and previous work 

The muricatet  genera Morozovella and Acarinina are abundant and diverse within 

Palaeocene and Eocene sediments. The diversity of the muricate group decreased 

throughout the middle Eocene and all muricate forms were extinct by the Eocene / 

Oligocene boundary. A major faunal turnover in planktonic foraminifera occurred 

during the late middle Eocene (magnetochron C17n.3n) which saw the extinction of 

the Morozovella lineage and a major decline in the Acarinina lineage. The final 

extant members of the Morozovella genus were M spinulosa and M. crassata. Other 

marine and terrestrial faunal and floral groups also indicate a biotic turnover around 

this time (Prothero, 1994). Extinctions at the Bartonian / Priabonian boundary have 

been found in land mammals, terrestrial po!!en and whales. The majority of species 

becoming extinct around this time were highly diversified tropical species (Berggren 

and Prothero, 1992), suggesting a causal link between climatic deterioration and 

biotic turnover. 

Whilst research has established that the muricate forms were the dominant surface 

dwelling group during the middle Eocene with probable alga! symbionts (Pearson et 

al., 1993; D'Hondt et al., 1994; Norris, 1998), the reason for the extinction of the 

muricate planktonic foraminifera genus Morozovella has not previously been studied 

at a high-resolution. Previous workers (e.g. Toumarkine and Luterbacher, 1985) have 

noted that the extinction was abrupt though the exact timing of events was not 

known. The excellent recovery and chronostratigraphic framework for Site 1052 

present the opportunity to investigate whether the extinction of the Morozovella 

genus was in response to Eocene climatic deterioration and allows the rate and 

Type of planktomc foraminifera wall structure, consisting of short multiple projections from the test 
surface (Blow, 1979). 
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timing of planktonic foraminifera extinction to be documented. The stable isotopic 

analysis of several species of planktonic foraminifera permits the structure of the 

Eocene ocean to be determined. This work details the middle Eocene extinction of 

morozovellids at a high temporal resolution (3 kyr sampling) and thus enables the 

rate and timing of biotic turnover to be defined and an understanding of climatic / 

oceanographic change at this time. 

6.2. Methods and procedures 

Stable isotope analyses have been conducted on six species of planktonic 

foraminifera, before, during and after the extinction events. These were the mixed 

layer dwellers Morozovella crassata, Morozovella spinulosa, Acarinina 

praetopilensis and Globigerinatheka mexicana and the thermocline dwellers 

Turborotalia cocoaensis and Subbotina utilisindex. This was to investigate the 

timing and origin of the extinction in response to palaeoceanographic history and 

climatic change. Other acarininids such as A. rohri were present within the samples 

at Site 1052, but these were too rare to be considered for isotopic and biostratigraphic 

examination. 

6.3. Objectives 

• Examine if biotic changes occur gradually or in a step-wise fashion through this 

interval. 

• Document SST variation, palaeoceanographic state and sedimentation regimes 

during the decline and extinction of Morozovella, to assist its interpretation. 
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6.4. Isotopic results across the extinction events 

6.4.1. Oxygen isotope results 

The results of isotopic analyses are illustrated in figure 6.1. There is a large scatter in 

the Morozovella spinulosa, M crassata and Acarinina praetopilensis oxygen isotope 

record close to the last occurrence of these species (figure 6.1a). Morozovella oxygen 

isotope values vary between —0.7 and —1 .4%o, whilst Acarinina values are generally 

heavier and range from 0.0 to —1.7%. The 6180  values of G. mexicana are lighter 

than A. praetopilensis in most samples and range between —0.4 and A.M. Oxygen 

isotope values of Turborotalia cocoaensis vary between —0.1 and —0. 5%o and 

Subbotina oxygen isotope values range from —0.4 to +0.4%. There is a general 

increase in the Subbotina 8 180 values over time, although the time series here is not 

of great enough length to determine if this was along-term climatic trend in the 

structure of thermocline. Bulk carbonate oxygen isotope values fluctuate between 0.5 

and 0.9%. 

6.4.2. Carbon isotope results 

Carbon isotope results from Morozovella and Acarinina, like those of oxygen, show 

a large variability (-4 .2%o) close to the extinction event (figure 6. ib) and range from 

2.2 to 3.4%. G. mexicana 813C  values are lighter than those of Morozovella and 

Acarinina but heavier than the thermocline dwellers and range from 1.9 to 2.4%o. 

The 513C  values recorded by Subbotina utilisindex and Turborotalia cocoaensis are 

very similar to each other and vary between 1.0 and 1 .7%o PDB. 
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Figure 6.1. Stable isotope results of various species over the extinction of Morozovella and 

Acarinina. (a) Oxygen isotope results; (b) Carbon isotope results. • = Morozovella crassata; 

= Morozovella spinulosa; • = Acarinina praetopllensis; 0 = Globigerinatheka mexicana; 

A = Subbotina utilisindex 	= Turborotalia cocoaensis; open and filled circles = bulk 
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6.5. Origin of the extinction events 

6.5.1. Timing of events and qualitative observations 

The timing of the extinction events is listed in table 2.5 (chapter 2). Acarinina 

praetopilensis does not terminate at the same horizon as Morozovella spp. The 

temporal difference between the last occurrence (LO) of A. praetopilensis (37.8 10 

Ma) and Morozovella spp. (37.802 Ma) is only 8 kyr (30 cms), therefore only 

localities with a high sedimentation rate and high sampling intervals will exhibit this 

elsewhere. 

The extinction of Acarinina praetopilensis does not represent the LO of the 

acarininid genera. Qualitative observations also reveal dwarfing of Acarinina spp. 

and small acarininid forms (Plate 4) continue in the <125 p.m size fraction to the top 

of the studied interval (77.18 mcd). This process of dwarfing, referred to as terminal 

progenesis (sensu Glenister and Furnish, 1988), is probably related to environmental 

stress and was also documented with the extinction of M. velascoensis (Kelly etal., 

2000) in the late Palaeocene. Large acarininids were not seen in the >250 p.m size 

fraction beyond 92.87 mcd. The LO of the large A. praetopilensis therefore 

represents a significant change in the biota that should be correlative elsewhere. 

There are two types of acarininid present in the 63 - 125 p.m size fraction beyond 

92.87 mcd, those with four and those with five chambers. Further work could 

investigate if these forms propagated in middle Eocene sediments before the 

extinction events at 92.87 mcd. 

Qualitative observations indicated a decline in the abundance of Morozovella spp. 

from 110 mcd (38.30 Ma), 500 kyr before the extinction at 37.802 Ma. This suggests 

a period of increased ecological stress for the morozovellids. However, qualitative 

observations did not indicate a decline in the abundance of Acarinina spp. suggesting 

that the extinction of the larger Acarinina praetopilensis was abrupt. Future 

quantitative analysis could examine this more fully. 
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Plate 4. Middle Eocene specimens of Morozovella and Acarinina. Specimens (a) - (e) are 

from the 250 - 355 pm size fraction and scale bar represents 100 tim; Specimens (f) - (h) 

are from the 63 - 125 .tm size fraction and scale bar represents 50 .xm. 

(a) (b) and (c) Morozovellaspinulosa umbilical views, from samples 171B, 1052B, 11H-4, 

103 — 106 (92.67 mcd); 1718, 105213, 131-1-4, 103-106(113.10mcd)and 171B, 1052F, 

141-1-6, 103— 106 (131.01 mcd) respectively. 

Acarinina praetopilensis umbilical view, from sample 171B, 1052B, 141-1-4, 23-26 

(121.30 mcd). 

Acarinina praetopilensis spiral view, from sample 171B, 105213, 141-1-4, 23-26 (121.30 

mcd). 

Dwarfed acarininid umbilical view, from sample 171B, 1052F, 1OH-4, 73-76 (88.01 

mcd). 

Dwarfed acarininid umbilical view, from sample 171B, 1052F, 1OH-4, 73-76 (88.01 

mcd). 

Dwarfed acarininid spiral view, from sample 171B, 1052F, 1OH-4, 73-76(88.01 mcd). 
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6.5.2. Temperature 

The morozovellids typically record the lightest 6180  values and' heaviest 6 13C values 

compared to other Eocene planktonic foraminifera (figure 3.5). Surface dwelling 

warm water adapted species were the primary ecological group that declined or 

terminated in the latest middle Eocene (Keller et al., 1992). The extinction of the 

muricate genera has therefore often been linked with decreasing SSTs and global 

cooling (Keller, 1983; Boersma and Premoli Silva, 1991; Keller et al., 1992; 

Pearson, 1996). 

The extinction of the surface water group without a decline in forms that inhabited 

deeper waters does suggest that either surface water cooling or nutrification were a 

dominant forcing factor. The highly fluctuating 6180  values of surface dwelling 

planktonic foraminifera indicates considerable variation in SSTs and middle Eocene 

subtropical climate. Although both Morozovella and Acarinina go extinct during a 

cooling trend and within an SST low (inferred from the increasingly heavy 6180) 

(figure 3.3), there is no major cooling or climatic shift associated with the extinction 

events and the oxygen isotope values are not heavier than those 471 kyr earlier at 109 

mcd (figure 3.3). This suggests that surface water cooling was not the primary 

forcing factor for the extinction of these species. The data here do not support ideas 

that decreases in SST caused the extinction events and surface water cooling alone 

therefore cannot account for the extinction of the morozovellids and the demise of 

the acarininids. 

The extinction of the morozovellids may have been due to the reduced thermal 

stratification, as suggested by Cifelli (1969). The extinction of Morozovella and the 

large acarininids at Blake Nose corresponds with an interval of reduced SSTs and 

thermal gradient related to the 400 kyr cycle (figures 5.4 and 5.6). The periodic 

reduction of the vertical thermal gradient will have caused the repeated disturbance 

of marine habitats. Perhaps heightened upwelling attributed to the 400 kyr 

eccentricity cycle resulted in disruption of the water column that removed the niche 

occupied by the morozovellids. However, this reduction in SSTs was no more severe 

than former SST minima at 110, 115 and 130 mcd (figure 5.4) and the question still 
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remains of why morozovellids did not go extinct earlier during the inferred strong 

upwelling events at 38.3, 39.1 and 39.5 Ma (figure 5.6). It is also difficult to apply 

this hypothesis on a global scale. Further detailed work investigating stratification in 

the Pacific Ocean is required. 

The restriction of marine habitats may have been a contributing / causal factor to the 

extinction events. The decrease in water colunm stratification is primarily caused 

through the reduction in surface water temperatures. This will have diminished 

planktonic habitats in the depth domain. At 83 mcd a period thought to reflect strong 

stratification, the isotopic gradient between G. mexicana and S. utilisindex is 1 .4%o 

(figure 3.3). However, the upwelling of deep water to the surface ocean causes the 

entire fauna to occupy the same cooled water mass (Kroon and Ganssen, 1989) and 

the isotopic gradient is compacted to 0.5%o at 93 mcd, a period thought to have 

experienced intense upwelling. The increased environmental stress caused by the 

periodic reduction of habitat may have led to their demise. Future work on these 

specimens may involve the reconstruction of a thermocline record to investigate this 

further. Global cooling also decreased morozovellids habitat by the reduction of 

tropical and subtropical biogeographical provinces. High-resolution data from 

tropical regions of the Atlantic may reveal that morozovellids migrated to low-

latitudes and continued beyond 37.8 Ma. 

Like modern day Globigerinoides ruber, Morozovella spp. may have lived all year 

round. There is growing evidence of increased seasonality during the Eocene (e.g. 

Kobashi et al., 2001). The greater mean annual temperature range would create a 

harsher climatic environment with greater extremes between summer and winter. 

Evidence of extreme seasonality, with seasonal temperature variations of up to 

11.7°C, have been recorded in isotopic and palaeobotanical data from the Bighom 

Basin (early Eocene) by Wing et al. (2000) and in the Gulf of Mexico by Kobashi et 

al. (2001). If seasonality were enhanced at this time it would require species to be 

more tolerant of temperature extremes and this may have contributed to the 

extinction events. 
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6.5.3. Habitat destruction, productivity and nutrification 

The termination of the Morozovella lineage may have been in response to habitat 

destruction (Hallock et al., 1991; Keller et al., 1992), interspecies competition or 

environmental modifications (Pearson, 1996). This could have been due to upwelling 

or changes in the latitudinal thermal gradients. Ailmon (2001) concluded that 

nutrient conditions were a prominent forcing factor in patterns of extinction in the 

western North Atlantic during the late Cenozoic. There is evidence of eutrophication 

of surface waters in the latest middle and late Eocene, with a greater range of 

upwelling provinces (Boersma etal., 1987) and abundant biosiliceous sediments 

throughout the Gulf of Mexico and equatorial and subtropical Atlantic (Berger and 

Von Rad, 1972; McCoy and Zimmerman, 1977; Tucholke and Vogt, 1979; Premoli 

Silva and Boersma, 1986; Ehrmann and Thiede, 1986). If upwelling occurred at 

Blake Nose, this would require species to have adapted to varying temperatures and 

nutrient levels. Both Morozovella and Acarinina probably possessed algal symbionts 

(Pearson et al., 1993; D'Hondt etal., 1994; Norris, 1998) and were therefore more 

likely to thrive in oligotrophic conditions. Their demise may have been in response 

to increased nutrification that allowed other asymbiotic taxa, such as Subbotina and 

Hantkenina to occupy the mixed layer and thrive (Coxall et al., 2000), and possibly 

outcompete Morozovella. Long-term variations in trophic resources caused by the 

initiation of the cryosphere may be a strong contributing factor. The loss of 

oligotrophic habitats will have affected competition and trophic resources for many 

marine organisms. 

The reason for the extinction of these species therefore remains enigmatic. It is 

probably the result of a number of environmental and genetic factors and it is not 

possible to identify the driving force for the extinction events from isotopic data 

alone. Previous work (e.g. Cifelli, 1969; Lipps, 1970, 1986; Keller et al., 1992) has 

suggested that the biotic turnover was attributed to global cooling and habitat 

destruction. The data obtained from Site 1052 indicate that habitat destruction caused 

by increased upwelling and surface water eutrophication may have been a primary 

forcing factor. Further work could involve the examination of the photo symbiotic 

relationships in Morozovella and Acarinina spp. to see if this changed over time or 
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deteriorated towards the extinction events. Quantitative abundance variations, 

particularly during the 400 kyr prior to the extinction, will enhance the understanding 

of diversity changes associated with ecological stress. A longer record of the 

thermocline or other mixed layer species is required to determine whether the 

structure of the water colunm changed significantly at this time. The examination of 

the extinction events at one location cannot explain the global extinction of 

Morozovella and the large acarininids. Further high-resolution work is required to 

constrain the timing of extinction events elsewhere (e.g. high-latitudes and the 

equatorial Pacific) and to investigate oceanic stratification at this time. 

6.6. Summary 

Stable isotopic examination was conducted on six species of planktonic 

foraminifera around the extinction events. 

Morozovella crassata and Morozovella spinulosa terminate at the same horizon 

whilst Acarinina praetopilensis terminates 8 kyr before Morozovella spp. 

Qualitative observations indicated a decline in the abundance of Morozovella 

spp. from 500 kyr before the extinction. 

Dwarfed acarininid forms are present in the smaller size fractions after the 

extinction events. 

Isotopic investigations could not reveal the cause of the extinction events but 

environmental stress caused by increased nutrification, habitat destruction and / 

or upwelling are suspected. 
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7. IMPLICATIONS AND MECHANISMS OF EOCENE CLIMATE 

CHANGE 

7.1. Eocene climate instability 

High-resolution (3 kyr) stable isotopic records were generated for a 2.3 myr interval 

spanning the latest middle Eocene from Site 1052. This data is necessary to understand 

the character and dynamics of the Eocene climate system and its response to orbital 

forcing. Most Palaeogene records do not have the required resolution to fully determine 

the short-term climatic signals and events. The consequence of inadequate sampling 

resolutions is that little is known about climatic variations in the Eocene and the stability 

of the climate system during intervals significantly different from the present day. 

This study provides the first detailed chronology of climatic and oceanographic change 

during the latest middle Eocene. The main findings are the high amplitude shifts seen in 

8 180 and 8 13C records of middle Eocene surface waters. The amplitude of isotopic 

variation is massive, suggesting a highly changeable and unstable climatic - 

oceanographic system. This variability is greater than that seen in open ocean 

Pleistocene records and has significant implications for climate system of the middle 

Eocene. 

The forcing mechanisms behind these large and rapid shifts in 8180  in a greenhouse 

world are not presently understood. Recent work by Lear et al. (2000) has constrained 

long-term ice volume changes in the Eocene, but this cannot account for the large 

variations seen in the planktonic foraminifera 8180  record. As ice volume effects in the 

middle Eocene are generally believed to be modest, the changes in 8180  in the tests of 

planktonic foraminifera are thought to primarily reflect temperature variations with some 

salinity effects on the ambient seawater (81 8O w). Feedback effects and threshold 

boundaries in the oceanic-atmosphere system that can abruptly shift ocean temperature 

or circulation are suggested by the large and rapid shifts in 8180  There are several 
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hypotheses that could account of large amplitude temperature shifts at Blake Nose. 

These include changes in oceanic circulation, atmospheric transport, upwelling intensity 

and nonlinear responses to orbital insolation (discussed below). 

7.2. Mechanisms to induce the high amplitude isotopic 

variations 

7.2.1. Atmospheric transport 

There is strong evidence that atmospheric and oceanic circulation were quite different 

during the Eocene from today (Rea et al., 2000) and that the inter-tropical convergence 

zone may have been more than 20 0  north of the equator (Rea, 1994). General circulation 

model (GCM) experiments (e.g. Sloan and Morrill, 1998; Bice etal., 2000b; Sloan and 

Huber, 2001b) predict large changes in atmospheric transport over Blake Nose and 

indicate that during the early and middle Eocene, Northern Hemisphere atmospheric 

thermal transport may have been more vigorous than today (if tropical SSTs were high). 

This may have caused large changes in wind-driven upwelling due to wind stress curl. 

The location and strength of the Atlantic storm track and the Hadley cell may also have 

implications at this site. The increased role of atmospheric heat transport would also 

supply heat to the high latitudes and provide a mechanism for Eocene high-latitude 

warming and the reduced meridonial thermal gradient. Figure 7.1 shows the possible 

changes in Eocene atmospheric transport. There are large variations in both the strength 

and direction of wind vectors in the Blake Nose region. 
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Figure 7.1. Changes in the strength and direction of atmospheric transport during the Eocene as 

predicted by Sloan and Morrill (1998). (a) summer; (b) winter. Orbital parameters were set to 

maximum Northern Hemisphere summer solar radiation. 
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7.2.2. Monsoonal climate variability 

There is increasing evidence of the importance of heat and vapour transport in climate 

fluctuations. Modeling results by Crowley et al. (1992) suggested that the origin of 

eccentricity fluctuations in pre-Pleistocene sediments may be due to low-latitude 

monsoonal fluctuations. Monsoonal climatic variability could cause the large 

temperature changes in the Eocene ocean. This is invoked by variations in the location 

and distribution of maximum solar heating and wind convergence. Sloan and Morrill 

(1998) showed that seasonal insolation forcing had a large thermal response on the North 

American continent during the early Eocene. If large temperature variations took place 

on the North American continent in response to orbital forcing, in combination with 

increased zonal wind stress, this may have given rise to a more monsoonal type of 

climatic regime and thus enhanced upwelling events on the eastern American margin. 

The modulation of this monsoonal system by precessional and eccentricity forced 

variations in solar insolation could have given rise to the fluctuations recorded in 6 180 

and 6 13 C at Blake Nose. The orbitally controlled monsoonal wind systems may have 

altered the upwelling patterns and/or freshwater input, which are recorded in the marine 

record. 

7.2.3. The hydrological cycle and continental runoff 

It is possible that the importance of changes in the hydrological cycle have previously 

been downplayed. During a greenhouse period, such as the Eocene the higher sea level 

would have given rise to a greater availability of moisture supply (Barron et al., 1989). 

This, combined with greater latent heat transport via the atmosphere, could effectively 

change 618O.  The hydrological cycle is likely to be influenced by orbital variations in 

solar insolation, perhaps particularly so during ice-free periods. Water vapour is an 

important greenhouse gas that is sensitive to variations in SSTs and could enhance 

orbitally forced temperature changes (Herbert, 1997). The Eocene climatic simulation of 

Sloan and Huber (2001b) indicates a large (32%) change in precessionally forced 
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continental runoff from the eastern North American coast. The large changes in the 

magnitude of runoff variability may have influenced the isotopic records by providing 

periodically large amounts of freshwater and nutrient flux into the marine environment. 

7.2.4. Fluctuations in oceanic circulation 

Another possible cause of the isotopic shifts is orbital changes in gyre circulation. If 

there were large variations in the 6 1 80 of differing water masses, then periodic shifts in 

the dominant water mass over Blake Nose could account for the variations in 

foraminifera 8180.  Figure 7.2 indicates possible surface water circulation patterns in the 

western North Atlantic. It is the specific salinities and temperatures of these surface 

currents that could give rise to the fluctuations recorded by the planktonic foraminifera at 

Blake Nose. Periodic shifts in the dominant surface current over Site 1052 would 

therefore be reflected in the 8180  signatures of planktonic foraminifera. This hypothesis 

would also help to explain the differing signals in 6180  and 6 13C. The reason that 6 13C 

does not indicate the 400 kyr long period eccentricity signal, which strongly controls the 

6180 record (chapter 4), could be due to differing water masses which although having 

distinct 6180  signals, having similar 6 13C signatures. 

However, for this mechanism to achieve the large variations recorded in 6180,  significant 

differences are required between the properties of these surface currents. The magnitude 

of variation required is large and one current would either need to be some 6 °C cooler, or 

have a salinity difference of 4%. This variation is large and within an open ocean setting 

it is therefore difficult to account for isotopic variations by this means. 
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Figure 7.2. Modern SSTs in the western North Atlantic - May 2001 (modified from Rosenstiel 

School of Marine and Atmospheric Sciences). * = location of Blake Nose. Arrows indicate the 

possible positions of palaeocurrents that influenced Site 1052. 9 = Gulf Steam; 4 = gyre 

current. Note, this is present day geography, not Eocene palaeogeography. 

7.2.5. Upwe!Iing 

A shift in the location and intensity of the mid latitude atmospheric pressure system with 

a strong south-westerly airflow could have resulted in Ekman driven or monsoonal 

upwelling and induced stratification break down. Climatic modeling results for the early 

Eocene (e.g. Bice etal., 2000b; Huber and Sloan, 2000; Sloan and Huber, 2001a, 2001b) 

predict intense Ekman driven upwelling along the eastern North American margin, 

which was highly sensitive to precessional forcing of solar insolation (figure 7.3). The 

eccentricity cycles may then modulate and periodically intensify this upwelling system. 

If the 5 180 profile of planktonic foraminifera reflects temperature alone, then the orbital 

variations in stable isotopic data may be the result of upwelling variability. Dramatic 
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intensification of this upwelling every 400 kyr causes complete water column 

stratification breakdown and the advection of deep water to the surface ocean. Less 

upwelling would have occurred when wind directions were north-easterly (like today) 

resulting in prominent stratification. The upwelling hypothesis is supported by periodic 

decreases in the thermal gradient (figure 5.5), which was also seen at Site 1051A (Wade 

et al., 2000). Future climatic modeling work could investigate the eccentricity 

modulation and its effects on atmospheric and oceanic circulation. 

Several other lines of evidence also point to large changes in temperature andlor nutrient 

levels in the Eocene Blake Nose region. The high abundance of radiolarians at this site is 

characteristic of a productive environment. The coccolith assemblage data (Mita, 2001; 

Belcher pers. comm.) are also indicative of a eutrophic and rapidly fluctuating 

environment. Oscillations in the percentage of the coccolith genus Discoaster (a warm 

and oligotrophic genus) and Reticulofenestra (a cold and eutrophic genus) confirm the 

large variability in SSTs andlor nutrient levels (figure 7.4). 

Oceanic overturning is also a means by which surface waters could be cooled. However, 

to induce large scale overturning, density changes in the surface waters by either cooling 

or salinity are required. Although the density of surface and deep waters is unknown, the 

magnitude of temperature and salinity variation required was probably large. It is more 

likely that upwelling caused stratification to break down and resulted in overturning, 

rather than overturning being a causal mechanism. 
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Figure 7.3. Areas of wind-driven upwelling as predicted by climatic modeling studies of the 

Eocene. (a) Winter simulation (b) Summer simulation (Sloan and Huber, 2001b). 
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Figure 7.4. Percentage of the coccolith genera Discoaster and Reticulofenestra at Site 1052. 

Data from Mita, 2001. 

7.3. Orbitally forced climate dynamics 

Fourier analysis shows the presence of Milankovitch frequencies in the stable isotopic 

and Munsell hue records from Blake Nose. Power is concentrated in the eccentricity 

(-.400 and 100 kyr) bands within the stable isotope records (chapter 4), whilst the 

precessional period (19-23 kyr) dominates the Munsell hue record (chapter 2). The 

results suggest that orbital variations in solar insolation are a large part of climatic 

variability during the Eocene transition period. 

7.3.1. Precessional forcing of the sedimentary record 

Precessional forcing of the colour record indicates that variations in low-latitude solar 

insolation were particularly important in the middle Eocene subtropical Atlantic. Sloan 

and Huber (2001 b) indicated that SSTs, upwelling, marine productivity, continental 
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runoff and moisture balance were all sensitive to precessional variations in solar 

insolation in the western North Atlantic. The precessional frequencies in the colour 

record at Site 1051 (Wade etal., 2001) and Site 1052 (chapter 2; Pälike et al. 2001), may 

be related to precessionally forced variations in carbonate productivity, continental 

runoff or atmospheric transport. 

7.3.2. Eccentricity forced climate variations 

The long-period eccentricity signal governs the large-scale fluctuations in middle Eocene 

SSTs and facilitates significant changes oceanic stability (chapter 5). The water column 

appears to have an increased response to the long-term modulation of insolation by the 

Earth's orbit at this time. The 400 kyr cycle is not common in Pliocene and Pleistocene 

records but has been recognised in many proxy records from the geological record, 

ranging from Triassic to Miocene age (e.g. Pisias etal., 1985; Woodruff and Savin, 

1991; Flower and Kennett, 1993; Zahn and Diester-Haass, 1995; Olsen and Kent, 1996; 

Zachos et al., 1996; Shackleton and Crowhurst, 1997; Shackleton and Hall, 1997; Paul 

et al., 2000; Zachos et al., 2001b). This indicates that the long-term eccentricity cycle 

has been very pervasive in modulating the climatic system of the past. Why is this long-

term eccentricity signal so common in older sediments but not in more recent records? 

Paul et al. (2000) have suggested that oceanic gateways at high and low latitudes may 

have been responsible. The lack of association between 6180  and 6' 3C at this periodicity 

(discussed in section 7.3.3) suggests that the enhanced 400 kyr signal in older sediments 

is not a response to high levels of atmospheric CO2, as suggested by Zachos et al. 

(2001b). 

The modulation of the climate system by eccentricity is significant. The cause of the 

prominent 100 kyr cycle in Pleistocene records is unknown and most theories involve 

internal feedbacks to ice volume (e.g. Imbrie et al., 1993), which cannot be applied to 

the greenhouse conditions of the Eocene. The changes in solar insolation caused by the 
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eccentricity of the Earth's orbit are small (Berger et al., 1992). However, eccentricity 

modulates the precessional variations in insolation and through this means can produce 

significant impacts on the climate system. These effects are probably generated from 

nonlinearities within the climatic system to precessional forcing, which amplify the 

eccentricity signal, rather than directly from eccentricity variations in solar insolation. 

7.3.3. The uncoupled climate and carbon systems 

Whilst the 8 180 record has significant 400 kyr oscillations, the long period eccentricity 

cycle was not evident in the planktonic foraminifera carbon isotopic record. The 

differences in the cyclicity of the 8180  and 6 13C records are illustrated in figure 7.5. 

Here, oxygen and carbon isotopic results are plotted against the astronomical time-scale. 

As in figure 5.6, the horizontal shaded areas indicate the periodically heavy 8 180 values. 

Whilst the shifts in 5 180 are dramatic during these events, no obvious changes occur 

within the 6 13 C record. 

These findings are in contrast to results from the Oligocene / Miocene (Zachos et al., 

1997, 2001b; Paul et al., 2000) where the long-term eccentricity cycle was found in both 

6180 and 6 13C deep sea signatures. The lack of the 400 kyr signal in the carbon isotopic 

record suggests that the climatic and carbon systems were uncoupled during the middle 

Eocene. The forcing mechanisms and feedback effects that dominate the climatic signal 

were not influencing carbon cycling and indicate that it is not simple atmospheric 

warming and cooling that caused the variations in SSTs. 
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Figure 7.5. Oxygen (right) and carbon (left) isotopic results. The blue shaded areas indicate the 

400 kyr cycles within the 8 180 record. 
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The 6180  record is dominated by the 400 kyr cycle, whilst the 6 13C record indicates a 

short-term eccentricity (100 kyr) influence. It is the modulation of the precessional 

cycles by eccentricity that results in the different signals within the climate and carbon 

systems. The cause of this disparity and the lack of coherence between 6180  and 8 13C 

may result from the way in which the signal is amplified in the climate record and from 

local versus global influences on the isotopic signals. The abrupt variations within the 

6180 record are probably a locally derived signal caused by variations in the wind 

systems, monsoonal activity and induced upwelling intensity. The long-term eccentricity 

cycle then modulates this variation to cause periodically intense upwelling events. The 

6 13C record like the 6180  signal is also influenced by short-term variations in wind-

systems and associated productivity changes. However, the long-term variations in 6 13C 

are probably caused by global changes in the carbon reservoir, such as the flux and 

composition of organic and inorganic carbon within the oceanic / atmospheric system. 

This may be.influenced by tectonic events and river systems, which do not have an 

orbital control. The 6 13 C signal may also be affected by water masses, as suggested in 

section 7.2.4. Vital effects produced by the planktonic foraminifera also complicate the 

carbon isotopic record. 

7.4. Carbon dioxide and feedbacks effects within the Eocene 

climate system 

Whilst the orbital changes within the climate system were not related to the carbon cycle, 

increased CO2 levels may have been responsible for higher global temperatures during 

the Eocene. Climatic models(e.g. Manabe and Bryan, 1985; Saravanan and 

McWilliams, 1995; Bush and Philander, 1997) suggest that tropical and subtropical 

SSTs should have been at least 2 °C greater than modem if global warming was caused 

by elevated CO2. Previous 6180  data from surface dwelling foraminifera (e.g. Zachos et 

al., 1994; Bralower etal., 1995) indicate that Eocene tropical SSTs were significantly 
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lower than present. The difficulties in estimating palaeoseawater 8 180  and the ±2°C error 

in palaeotemperature equations prevent actual SSTs being calculated. Assuming the 

record reflects mean annual temperatures, the results from Blake Nose indicate that there 

were intervals when SSTs were 4 to 5°C greater than today. 

The effects of insolation forcing alone cannot account for SSTs higher than modern 

therefore warmer intervals must have been forced by increases in atmospheric 

greenhouse gases. Results from Pearson and Palmer (2000) showed Eocene CO2 levels 

to be greater than today, though highly variable. Amplified atmospheric CO2 was 

probably the cause of SSTs greater than modern. Intense upwelling and the collapse of 

the water column then periodically lowered SSTs and prevented true subtropical SST 

maxima being calculated. Increased upwelling in the middle Eocene was probably due to 

the reorganisation of the oceanic system as the cryosphere developed. The enhanced 

aerial range of oceanic upwelling, providing cold, nutrient rich water to the ocean 

surface may have been a major mechanism in the eutrophication and cooling of tropical 

and subtropical surface waters. Eocene climatic warmth could have been caused by 

increased atmospheric CO2 and that feedback effects within the ocean-climatic system 

were important in modulating subtropical temperatures. The postulation of greater 

thermal transport by the ocean to explain the cool tropical SSTs is probably incorrect. 

Other possible feedback mechanisms include increased tropical and subtropical cloud 

cover which caused notable negative cloud feedback in this area and brought about 

cooler subtropical SSTs (Crowley and Zachos, 2000). Modem day climatic events in the 

North Atlantic may be linked to increased SSTs in the Pacific and Indian Oceans (e.g. 

Hoerling et al., 2001). Whilst present day global temperatures have increased over the 

last fifty years, a slow cooling (0.1 0C/1 0 years) appears to be occurring on the eastern 

North American continent. Climatic modeling by Robinson et al. (2001) suggests that 

this could be due to greater cloud cover, preventing maximum solar insolation reaching 

and heating the western North Atlantic. Periodic variations in latent heat fluxes and 
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cloud cover may act to moderate SSTs and vice versa, when the omission of cloud cover 

gives rise to clear skies and maximum SSTs (e.g. Hoerling et al., 2001). This process 

may also have been important in the Eocene and acted to moderate tropical and 

subtropical SSTs. 

7.5. Future work 

7.5.1. Secondary SS T proxies and refining palaeotemperature equations 

Future work will include generation of secondary temperature proxies for Eocene 

climate. Palaeo SSTs can also be derived from magnesium - calcium ratios (Mg/Ca) in 

planktonic foraminifera, as laboratory studies indicate that the uptake of magnesium in 

marine biogenic calcite is temperature dependent (Dwyer et al., 1995; Mitsuguchi et al., 

1996; NUmberg et al., 1996). Palaeotemperatures could be derived from planktonic 

foraminiferal Mg/Ca data from the same samples as those already measured for stable 

isotopes. In conjunction with benthic foraminiferal 8180  this will allow the 61 80 

component to be separated from the isotopic temperature signal and thus be used to 

refine existing palaeotemperature equations. This will provide significant insights into 

the climatic forcing mechanisms responsible for increased polar temperatures in the 

Eocene and into what is controlling the planktonic foraminifera 6180  in the middle 

Bocene. These results will contribute to the debate on mechanisms of climate change by 

establishing an independent record of SSTs, which are essential to constrain Eocene 

ocean and climate models. 

7.5.2. Late Eocene climate variability 

Whilst the large shifts in planktonic foraminifera 6180  in the middle Eocene are a very 

significant finding, much remains to be understood about the nature and wider 

implications of the forcing mechanisms and their development through the late Eocene. 

It now appears that during the middle Eocene, which was previously accepted to be a 
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comparatively stable warm period, complex climatic variability took place that forced 

the climate at Milarikovitch cyclicities. Although this study was extensive, covering 2.3 

million years with an average sampling resolution of— 3, 000 years between samples, 

many questions remain unanswered. The upper 75 metres at Site 1052 are available, and 

a stable isotope record from this interval is necessary to document the climate stability in 

the late Eocene. This longer-term record is required to examine the nature of orbital 

forcing as the climate cools and the cryosphere develops. 

7.5.3. Regional vs. global record 

Future ODP Legs may also allow the direct comparison between Pacific and Atlantic 

sites. A coeval sequence from the Pacific would allow the separation of global and 

regional differences on the marine stable isotope record. This would provide insights 

into ocean and atmospheric dynamics and allow further examination of the biotic 

response to the Eocene climatic and oceanic changes. This could include the abundance 

and diversity of certain key taxa, as well as an examination of the depth of the 

thermocline, mixing intensity, productivity and upwelling. This will enable insights into 

the extent of such climatic changes and their effects on other parts of the oceanic-

climatic system. The Pacific equatorial results from upcoming ODP Leg 198 (Shatsky 

Rise) and Leg 199 (Palaeogene Equatorial Pacific) will allow direct comparison between 

the Atlantic and Pacific and be used to separate regional and global influences on surface 

water 8180. 

7.5.4. Latitudinal thermal gradients 

It would also be useful to compare these results with those attained at a high latitude site. 

This would allow, the latitudinal temperature gradient to be examined through time. This 

may provide an indication of the controlling climatic factors. Cooling may not occur 

simultaneously at low and high latitudes, therefore the timing of events may be critical in 
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determining forcing mechanisms. At present the temporal resolution of high-latitude 

sites hinders this idea. 

7.6. Summary 

The orbital frequencies within the Munsell hue and planktonic foraminifera stable 

isotopic data indicates that Milankovitch forcing was a significant component of climate 

change during the Eocene. There are several possible hypotheses to explain the high 

amplitude 6180  and 6 13C variability recorded in Eocene planktonic foraminifera at Blake 

Nose. The eccentricity forced variations in 6180  are interpreted as variations in the 

intensity of Ekman driven upwelling of deep water to the ocean surface. The upwelling 

hypothesis is favoured here as it can account for the periodically cool SSTs and the 

reduction of the surface to benthos thermal gradient. These results are consistent with 

climatic modeling studies (e.g. Bice et al., 2000b; Huber and Sloan, 2000; Sloan and 

Huber, 2001a, 2001b), which indicate an increased magnitude of temperature, runoff and 

upwelling variations in the Eocene western Atlantic. The large fluctuations in 6180  are 

probably produced by indirect feedback to solar insolation changes, possibly via 

atmospheric transport, which induced intense upwelling events. Future work will 

investigate the upwelling hypothesis further and examine climate variability in the late 

Eocene. High-resolution coeval sections are required to better understand the feedback 

effects within the climate system and to separate regional and global influences on the 

stable isotopic records. 
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Conclusions 

8. CoNcLusioNs 
The middle Eocene represents a transitional climatic interval between hot-house and ice-

house states. Stable isotopic examinations conducted on planktonic foraminifera of late 

middle Eocene age from Blake Nose indicate large variability in SSTs of up to 12 °C. 

Evidence that upwelling occurred at Blake Nose during the late middle Eocene comes 

from the large oscillations in subtropical SSTs, with surface water temperatures 

periodically approaching deep water temperatures and the high abundance of 

radiolarians. It is concluded that the oscillation in the stable isotopic profiles at Site 1052 

is due to climatic control on the intensity of upwelling of deep water to the surface 

ocean. 

Warm climatic intervals were previously thought to be times of relative stability. 

However, the stable isotopic results suggest a highly unstable climate with variability 

comparable to that seen in the Plio-Pleistocene. There are intervals where recorded SSTs 

are up to 5°C greater than modem. These temperatures are similar to those recorded in 

the early Eocene suggesting increased CO2 or other greenhouse gases may have forced 

warm intervals. 

Spectral analyses of the composite isotopic records of the middle Eocene reveal 

Milankovitch cyclicity consistent with the wavelengths of both long- and short-term 

eccentricity in the planktonic foraminiferal stable isotope records. There is a prominent 

400 kyr variability recorded in the middle Eocene 8180  record. This is attributed to the 

long-term eccentricity cycle, which caused periodic reduction of SSTs and thermal 

stratification. These fluctuations cannot be caused by solar insolation alone and therefore 

feedback effects within the oceanic - climate system, possibly related to atmospheric 

transport and induced upwelling intensity must have had an important influence. The 

prominence of Milankovitch frequencies in middle Eocene climate and sedimentary 

records indicates that orbital forcing of solar insolation was an important parameter of 

climatic change at this time. 
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APPENDICES 

The following pages list the stable isotopic results from Site 1052. The right hand 

column (n) in Appendix 1 lists the number of specimens of foraminifera analysed for 

each sample. Duplicate samples were occasionally analysed for further details on 

analytical precision and the initial "D" indicates these. A number of values shown in 

the Appendix 1 have been rejected and thus removed from the figures in this thesis. 

These results are highlighted in grey. This was because the recorded values were 

significantly different from the surrounding results. Many of these samples were re-

analysed using alternative species (e.g. Morozovella spinulosa or Acarinina 

praetopilensis) and are indicated by the initial "R". The anomalous values are 

probably the result of low sample weights. 

To reconstruct the composite stable isotopic time series (Appendix 2) the corrected 

planktonic foraminifera values were used, as discussed in section 3.5. When 

Morozovella crassata values were unavailable for a particular sample (normally due 

to low species abundance) alternative species were used in the composite record. 

Morozovella spinulosa was normally selected, however when this species was also 

unavailable stable isotopic values from Acarinina praetopilensis were utilised. 

There are a number of intervals within the carbon isotope record (e.g. 91, 86 and 83 

mcd) where negative 813C  values are recorded (Appendix 1). These results are unusual 

and have been removed from the figures in this thesis. Raw results from the mass 

spectrometer did not suggest instrumentation or calibration problems although these 

cannot be ruled out. These results were investigated further by the additional analysis 

of thermocline, benthic foraminifera and bulk carbonate over these intervals. These 

light 6' 3C values were not recorded in bulk carbonate, benthic (Nuttalides truempyi) 

or thermocline (Subbotina utilisindex) foraminiferal results, and are therefore only 

seen in the mixed layer. 

A probable causal mechanism for these changes could be periodic influxes of 

freshwater. However, the amount of freshwater required would demand substantial 

changes in the hydrological cycle (discussed in section 5.2). If the decrease in 6 13C of 
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G. mexicana reflected changes in seawater chemistry or productivity, then the light 

values should also be recorded in the 8 13C of the thermocline dwelling S. utilisindex. 

These shifts cannot therefore be explained at present, although it is unlikely that they 

reflect large changes in global carbon cycling. 

There were other intervals when unusually light or heavy isotopic values were 

recorded. However, when sample weights were high (>15 specimens) and no 

problems occurred with the mass spectrometer, there was no reason to believe that 

these results did not reflect a true record of Bocene climate variability and these were 

therefore not rejected from the data set. 
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Appendix 1. Stable Isotope Results at Site 1052 

Hole 	Core Section Interval Depth 	MCD 	6180 	8 13C 	n 
(cm) (mbsf) 

Globiqerinatheka mexicana 
1052B IOH 1 73-76 72.75 77.18 -0.17 1.58 15 
1052B IOH 1 83-86 72.85 77.28 0.07 1.92 15 
1052B IOH 1 93-96 72.95 77.38 -0.57 1.58 15 
1052B IOH 1 103-106 73.05 77.48 -0.12 1.91 15 
1052B 10H 1 113-116 73.15 77.58 0.27 1.51 15 
1052B 10H 1 123-126 73.25 77.68 0.05 1.63 15 
1052B 10H 1 133-136 73.35 77.78 -0.85 1.68 15 
1052B 10H 1 143-146 73.45 77.88 -0.80 1.70 15 
1052B 10H 2 3-6 73.55 77.98 -0.62 1.83 15 
1052B IOH 2 13-16 73.65 78.08 -0.57 1.75 15 
1052B IOH 2 23-26 73.75 78.18 -0.14 1.62 15 
1052B IOH 2 33-36 73.85 78.28 -0.33 1.81 15 
1052B IOH 2 43-46 73.95 78.38 -0.64 1.79 15 
1052B IOH 2 53-56 74.05 78.48 -0.46 1.96 15 
1052B 10H 2 63-66 74.15 78.58 -0.33 2.12 15 
1052B 10H 2 73-76 74.25 78.68 -0.54 2.08 15 
1052B IOH 2 83-86 74.35 78.78 -0.66 2.08 15 
1052B 10H 2 93-96 74.45 78.88 0.46 1.52 15 
1052B 10H 2 103-106 74.55 78.98 -0.52 1.73 15 
1052B 10H 2 113-116 74.65 79.08 -0.55 1.81 15 
1052B IOH 2 123-126 74.75 79.18 -0.35 1.85 15 
1052B IOH 2 133-136 74.85 79.28 -0.40 1.75 15 
1052B IOH 2 143-146 74.95 79.38 -0.59 1.86 15 
1052B IOH 3 3-6 75.05 79.48 -0.42 1.97 15 
1052B 10H 3 13-16 75.15 79.58 -0.61 1.82 15 
1052B IOH 3 23-26 75.25 79.68 -0.82 1.65 15 
1052B 10H 3 33-36 75.35 79.78 -0.59 1.62 15 
1052B IOH 3 43-46 75.45 79.88 -1.12 1.75 15 
1052B 10H 3 53-56 75.55 79.98 -0.78 1.68 D 15 
1052B 10H 3 53-56 75.55 79.98 -0.71 1.88 D 15 
1052B 10H 3 63-66 75.65 80.08 -0.14 1.94 15 
1052B IOH 3 73-76 75.75 80.18 -1.02 1.40 15 
1052B 10H 3 83-86 75.85 80.28 -0.54 1.69 15 
1052B 10H 3 93-96 75.95 80.38 -0.43 1.83 15 
1052B 10H 3 103-106 76.05 80.48 -0.56 1.68 15 
1052B IOH 3 113-116 76.15 80.58 -0.54 2.09 15 
1052B 10H 3 123-126 76.25 80.68 -1.20 2.10 15 
1052B IOH 3 133-136 76.35 80.78 -0.91 2.31 15 
1052B 10H 3 143-146 76.45 80.88 -0.58 2.52 15 
1052B 10H 4 3-6 76.55 80.98 -0.76 2.32 15 
1052B 10H 4 13-16 76.65 81.08 -0.47 2.13 15 
1052B IOH 4 23-26 76.75 81.18 -0.72 2.08 15 
1052B IOH 4 33-36 76.85 81.28 -0.78 1.23 15 
1052B IOH 4 43-46 76.95 81.38 -0.56 1.97 15 
1052B 10H 4 53-56 77.05 81.48 -0.69 2.08 15 
10528 10H 4 63-66 77.15 81.58 -0.74 2.60 15 
1052B 10H 4 73-76 77.25 81.68 -0.58 2.77 15 
1052B IOH 4 83-86 77.35 81.78 -0.70 2.45 15 
1052B IOH 4 93-96 77.45 81.88 -0.56 2.51 15 
1052B IOH 4 103-106 77.55 81.98 -0.95 1.83 15 
1052B 10H 4 113-116 77.65 82.08 -0.92 2.14 15 
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Appendix 1. Stable Isotope Results at Site 1052 

Hole Core Section Interval Depth MCD 8180 313 

(cm) (mbsf) 
Globigerinatheka mexicana (continued) 

1052B 10H 4 123-126 77.75 82.18 -1.26 2.24 
1052B IOH 4 133-136 77.85 82.28 -1.55 1.51 
1052B 10H 4 143-146 77.95 82.38 -1.13 2.23 
1052B 101-1 5 3-6 78.05 82.48 -1.86 1.39 
1052B 10H 5 13-16 78.15 82.58 -1.46 1.51 
1052B 10H 5 23-26 78.25 82.68 -1.12 1.34 
1052B 10H 5 33-36 78.35 82.78 -1.63 0.86 
1052B IOH 5 43-46 78.45 82.88 -2.00 0.95 
1052B 10H 5 53-56 78.55 82.98 -1.14 1.09 
1052B IOH 5 63-66 78.65 83.08 -0.69 1.93 
1052B IOH 5 73-76 78.75 83.18 -1.45-cLO51 
1052B IOH 5 83-86 78.85 83.28 -1.46 -0.23 
1052B IOH 5 93-96 78.95 83.38 -0.98 2.36 
1052B 10H 5 103-106 79.05 83.48 -0.85 2.08 
1052B IOH 5 113-116 79.15 83.58 -0.74 2.04 
1052B 10H 5 123-126 79.25 83.68 -0.80 1.82 
1052B IOH 5 133-136 79.35 83.78 -0.67 2.29 
1052B IOH 5 143-146 79.45 83.88 -0.79 2.66 
1052B 10H 6 3-6 79.55 83.98 -1.18 2.22 
1052B 10H 6 13-16 79.65 84.08 -0.67 2.63 
1052B 10H 6 23-26 79.75 84.18 -0.57 2.62 
1052B 10H 6 33-36 79.85 84.28 -0.64 2.22 
1052B IOH 6 43-46 79.95 84.38 -0.83 2.34 
1052B 10H 6 53-56 80.05 84.48 -1.02 2.10 
1052B 10H 6 63-66 80.15 84.58 -0.66 2.69 
1052B 10H 6 73-76 80.25 84.68 -0.58 2.24 
1052B 10H 6 83-86 80.35 84.78 -0.76 2.00 
1052B 10H 6 93-96 80.45 84.88 -0.33 2.43 
1052B 10H 6 103-106 80.55 84.98 -0.78 2.51 
1052B IOH 6 113-116 80.65 85.08 -0.44 2.38 
1052B IOH 6 123-126 80.75 85.18 -0.80 2.26 
1052F IOH 2 83-86 83.35 85.11 -0.40 2.37 
1052F 10H 2 93-96 83.45 85.21 -0.05 2.37 
1052F IOH 2 103-106 83.55 85.31 -0.27 2.43 
1052F 10H 2 113-116 83.65 85.41 -1.75 0.52 
1052F IOH 2 123-126 83.75 85.51 -1.38 1.78 
1052F 10H 2 133-136 83.85 85.61 -1.19 2.25 
1052F 10H 2 143-146 83.95 85.71 -1.14 2.10 
1052F 10H 3 3-6 84.05 85.81 -1.50 1.29 
1052F IOH 3 13-16 84.15 85.91 -1.45 2.16 
1052F IOH 3 23-26 8425 8601 1 33 007 
1052F 10H 3 33-36 84.35 86.11 -1.02 1.34 
1052F 10H 3 43-46 84.45 86.21 -1.06 1.42 
1052F IOH 3 53-56 84.55 86.31 -0.90 2.39 
1052F 10H 3 63-66 84.65 86.41 -0.91 1.51 
1052F IOH 3 73-76 84.75 86.51 -1.16 1.59 
1052F 10H 3 83-86 84.85 86.61 -1.30 1.30 
1052F 10H 3 93-96 84.95 86.71 -1.18 1.32 
1052F 10H 3 103-106 85.05 86.81 -1.37 1.00 
1052F IOH 3 113-116 85.15 86.91 -1.25 1.73 
1052F 10H 3 123-126 85.25 87.01 -0.91 1.84 

n 

15 
15 
15 
15 
15 
15 
15 
15 
15 
15 
15 
15 
15 
15 
15 
15 
15 
15 
15 
15 
15 
15 
15 
15 
15 
15 
15 
15 
15 
15 
15 
15 
15 
15 
15 
15 
15 
15 
15 
15 
15 
15 
15 
15 
15 
15 
15 
15 
15 
15 
15 
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Appendix I. Stable Isotope Results at Site 1052 

Hole 	Core Section Interval Depth 	MCD 	8180 	813C 	n 
(cm) (mbsf) 

GIob,gerinatheka mexicana (continued) 
1052F 10H 3 133-136 85.35 87.11 -1.09 1.71 15 
1052F IOH 3 143-146 85.45 87.21 -1.02 1.98 15 
1052F 10H 4 3-6 85.55 87.31 -1.33 1.81 15 
1052F IOH 4 13-16 85.65 87.41 -1.28 1.98 15 
1052F IOH 4 23-26 85.75 87.51 -0.87 2.26 15 
1052F IOH 4 33-36 85.85 87.61 -0.94 2.25 15 
1052F IOH 4 43-46 85.95 87.71 -1.09 2.20 15 
1052F 10H 4 53-56 86.05 87.81 -0.91 2.14 15 
1052F IOH 4 63-66 86.15 87.91 -0.98 1.96 15 
1052F 10H 4 73-76 86.25 88.01 -0.98 2.25 15 
1052F 10H 4 83-86 86.35 88.11 -0.97 2.29 15 
1052F IOH 4 93-96 86.45 88.21 -0.96 1.88 15 
1052F 10H 4 103-106 86.55 88.31 -0.89 2.28 15 
1052F IOH 4 113-116 86.65 88.41 -0.74 2.40 15 
1052F IOH 4 123-126 86.75 88.51 -0.68 2.15 15 
1052F 10H 4 133-136 86.85 88.61 -1.45 1.75 15 
1052F 10H 4 143-146 86.95 88.71 -0.58 2.53 15 
1052F 10H 5 3-6 87.05 88.81 -0.62 2.50 15 
1052F 10H 5 13-16 87.15 88.91 -0.74 1.75 15 
1052F IOH 5 23-26 87.25 89.01 -0.60 2.21 15 
1052F 10H 5 33-36 87.35 89.11 -0.93 2.05 15 
1052F IOH 5 43-46 87.45 89.21 -0.84 1.99 15 
1052F 10H 5 53-56 87.55 89.31 -1.10 1.98 15 
1052B IIH 2 73-76 83.75 89.37 -0.37 2.52 15 
1052F 10H 5 63-66 87.65 89.41 -0.51 2.30 15 
1052B IIH 2 83-86 83.85 89.47 -0.86 1.69 15 
1052F IOH 5 73-76 87.75 89.51 -0.67 2.53 15 
1052B 11H 2 93-96 83.95 89.57 -0.64 2.49 15 
1052F 10H 5 83-86 87.85 89.61 -0.70 2.29 15 
1052B 11H 2 103-106 84.05 89.67 -1.13 1.22 15 
1052B IIH 2 113-116 84.15 89.77 -0.45 2.44 15 
1052B 11H 2 123-126 84.25 89.87 -0.97 1.49 15 
1052B 11H 2 133-136 84.35 89.97 -0.92 1.73 15 
10526 IIH 2 143-146 84.45 90.07 -0.67 2.29 15 
1052B 11H 3 3-6 84.55 90.17 -1.05 2.20 15 
1052B IIH 3 13-16 84.65 90.27 -0.77 2.59 15 
1052B 11H 3 23-26 84.75 90.37 -0.87 2.60 15 
1052B 11H 3 43-46 84.95 90.57 -1.07 1.63 15 
1052B 11H 3 53-56 85.05 90.67 -0.49 2.27 15 
1052B IIH 3 63-66 85.15 90.77 -0.54 2.53 15 
1052B 11H 3 73-76 85.25 90.87 -0.57 2.47 D 15 
1052B 11H 3 73-76 85.25 90.87 -0.61 2.52 D 15 
10526 11H 3 83-86 85.35 90.97 -0.77 1.79 15 
1052B IIH 3 93-96 85.45 91.07 -0.51 2.56 15 
1052B 11H 3 103-106 85.55 91.17 -0.81 1.68 15 
1052B 11H 3 113-116 85.65 91.27 -0.56 2.45 15 
1052B 11H 3 123-126 85.75 91.37 -114 008 15 
1052B 11H 3 133-136 85.85 91.47 -0.77 1.69 15 
1052B 11H 3 143-146 85.95 91.57 -0.50 2.08 15 
1052B 11H 4 3-6 86.05 91.67 -0.66 2.41 15 
1052B 11H 4 13-16 86.15 91.77 -0.76 1.87 15 
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Appendix 1. Stable Isotope Results at Site 1052 

Hole Core Section Interval Depth MCD 3180 613C n 
(cm) (mbsf) 

GIob,gerinatheka mexicana (continued) 
1052B 11H 4 23-26 86.25 91.87 -0.79 1.56 15 
1052B IIH 4 33-36 86.35 91.97 -0.62 2.43 15 
1052B IIH 4 43-46 86.45 92.07 -0.53 2.03 15 
1052B IIH 4 53-56 86.55 92.17 -0.44 1.97 15 
1052B 11H 4 63-66 86.65 92.27 -0.47 2.10 15 
1052B 11H 4 73-76 86.75 92.37 -0.40 1.92 15 
1052B IIH 4 83-86 86.85 92.47 -0.45 2.28 15 
1052B 11H 4 93-96 86.95 92.57 -0.46 2.38 15 
1052B 11H 4 103-106 87.05 92.67 -0.56 2.10 15 
1052B 11H 4 113-116 87.15 92.77 -0.69 2.26 15 
1052B 11H 4 123-126 87.25 92.87 -0.48 2.33 15 
1052B 11H 4 133-136 87.35 92.97 -0.47 2.37 15 
1052B 11H 4 143-146 87.45 93.07 -0.61 2.24 15 
1052B 11H 5 3-6 87.55 93.17 -0.77 2.12 15 
1052B 11H 5 13-16 87.65 93.27 -0.69 2.25 15 
1052B IIH 5 23-26 87.75 93.37 -0.80 2.15 15 
1052F 14H 6 93-96 127.55 130.91 -0.20 2.13 20 

Morozovella crassata 
1052B 11H 4 93-96 86.95 92.57 -0.76 3.27 20 
1052B 11H 4 103-106 87.05 92.67 -0.71 3.28 20 
1052B 11H 4 113-116 87.15 92.77 -0.70 3.19 20 
1052B 11H 4 123-126 87.25 92.87 -0.73 3.33 20 
1052B 11H 4 133-136 87.35 92.97 -0.77 2.91 16 
1052B 11H 4 143-146 87.45 93.07 -1.21 2.35 10 
1052B 11H 5 63-66 88.15 93.77 -0.88 3.21 17 
1052B 11H 5 73-76 88.25 93.87 -1.18 2.86 19 
1052B IIH 5 83-86 88.35 93.97 -1.22 2.87 19 
1052B 11H 5 93-96 88.45 94.07 -1.12 3.15 19 
1052F 11H 1 113-116 9165 9413L 095 - 5 
1052B IIH 5 103-106 88.55 94.17 -0.94 3.08 19 
1052F 11H 1 123-126 91.75 94.23 -1.36 2.80 15 
1052F 11H 1 143-146 9195 9443r 217 .031 4 
1052F IIH 2 33-36 92.35 94.83 -1.06 3.02 20 
1052F IIH 2 43-46 92.45 94.93 -1.07 3.12 16 
1052F IIH 2 73-76 92.75 95.23 -0.63 3.26 15 
1052F IIH 2 83-86 9285 9533 263 1.93 6 
1052F 11H 2 93-96 92.95 95.43 -1.07 3.13 18 
1052F IIH 2 103-106 93.05 95.53 -0.96 3.49 20 
1052F 11H 2 113-116 93.15 95.63 -0.96 3.34 20 
1052F IIH 2 123-126 93.25 95.73 -1.09 3.45 20 
1052F 11H 2 133-136 93.35 95.83 -1.33 3.07 20 
1052F 11H 2 143-146 93.45 95.93 -1.04 3.40 20 
1052F IIH 3 3-6 93.55 96.03 -1.85 2.55 20 
1052F 11H 3 13-16 93.65 96.13 -1.24 3.43 20 
1052F 11H 3 23-26 93.75 96.23 -0.94 3.41 20 
1052F IIH 3 63-66 94.15 96.63 -0.84 3.03 15 
1052F 11H 3 93-96 94.45 96.93 -2.112.51 5 
1052F 11H 3 103-106 94.55 97.03 -1.96 1.65 5 
1052F 11H 3 113-116 94.65 97.13 -124 - 2.89 20 
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Appendix 1. Stable Isotope Results at Site 1052 

Hole Core Section Interval Depth MCD 8180 613C n 
(cm) (mbsf) 

Morozovella crassata (continued) 
1052F 11H 3 123-126 94.75 97.23 -0.91 3.49 20 

1052F 11H 3 133-136 94.85 97.33 -1.04 3.18 20 

1052F 11H 3 143-146 94.95 97.43 -1.45 2.39 15 

1052F 11H 4 3-6 95.05 97.53 -0.60 3.52 19 

1052F 11H 4 33-36 95.35 97.83 -0.99 3.16 15 

1052F 11H 4 43-46 95.45 97.93 -1.28 3.33 18 

1052F 11H 4 53-56 95.55 98.03 -0.40 3.39 20 

1052F 11H 4 63-66 95.65 98.13 -0.84 3.45 20 

1052F 11H 4 73-76 95.75 98.23 -0.58 3.56 20 

1052F 11H 4 83-86 95.85 98.33 -0.85 3.61 20 

1052F IIH 4 93-96 95.95 98.43 -0.79 3.59 20 

1052F IIH 4 113-116 96.15 98.63 -0.98 3.63 21 

1052F IIH 4 123-126 96.25 98.73 -0.76 3.63 20 

1052F IIH 4 133-136 96.35 98.83 -1.60 3.15 20 

1052F IIH 4 143-146 96.45 98.93 -1.35 3.14 15 

1052F 11H 5 3-6 96.55 99.03 -1.56 3.17 18 

1052F 11H 5 13-16 96.65 99.13 -1.68 3.28 17 

1052F 11H 5 23-26 96.75 99.23 -1.43 3.49 18 

1052F IIH 5 33-36 96.85 99.33 -1.49 3.54 20 

1052F 11H 5 43-46 96.95 99.43 -1.55 3.48 20 

1052F 11H 5 53-56 97.05 99.53 -1.30 3.54 19 

1052F IIH 5 63-66 97.15 99.63 -1.34 3.59 20 

1052F 11H 5 73-76 97.25 99.73 -1.26 3.56 20 

1052F IIH 5 83-86 97.35 99.83 -1.14 3.63 18 

1052F IIH 5 93-96 97.45 99.93 -1.13 3.53 20 

1052F 11H 5 103-106 97.55 100.03 -1.61 3.33 20 

1052F 11H 5 113-116 97.65 100.13 -1.23 3.58 15 

1052F 11H 5 123-126 97.75 100.23 -1.80 3.26 18 

1052F IIH 5 133-136 97.85 100.33 -1.02 3.49 19 
1052F 11H 5 143-146 97.95 100.43 -1.28 3.07 16 

1052F 11H 6 3-6 98.05 100.53 -1.05 3.58 20 

1052F 11H 6 13-16 98.15 100.63 -1.40 3.45 20 

1052F IIH 6 23-26 98.25 100.73 -1.22 3.29 15 

1052F IIH 6 33-36 9835 10083 214 1.90 7 

1052F IIH 6 53-56 98.55 101.03 -1.72 2.51 18 

1052F 11H 6 63-66 98.65 101.13 -1.23 3.28 15 
1052F IIH 6 73-76 98.75 101.23 -1.48 3.04 18 
1052F 11H 6 83-86 98.85 101.33 -0.97 3.40 17 
1052F IIH 6 93-96 98.95 101.43 -1.70 2.83 15 

1052F 11H 6 103-106 99.05 101.53 -1.61 2.16 19 
1052F 11H 6 113-116 9915 10163 -109 076 5 
1052F 11H 6 123-126 99.25 101.73 -1.21 3.11 18 
1052F IIH 6 133-136 9935 10183 233 199 6 
1052F IIH 6 143-146 99.45 101.93 -1.34 2.87 19 
1052F 11H 7 3-6 99.55 102.03 -1.35 3.08 19 
1052B 12H 3 133-136 95.35 102.05 -1.55 3.04 15 
1052F IIH 7 13-16 99.65 102.13 -0.97 3.32 15 
1052B 12H 3 143-146 95.45 102.15 -1.62 2.95 20 
1052F 11H 7 23-26 99.75 102.23 -1.09 3.31 18 
1052B 12H 4 3-6 95.55 102.25 -1.70 2.90 20 
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Appendix 1. Stable Isotope Results at Site 1052 

Hole Core Section Interval Depth MCD 8180 813 C n 
(cm) (mbsf) 

Morozovella crassata (continued) 
1052B 12H 4 13-16 95.65 102.35 -1.21 3.15 15 
1052B 12H 4 73-76 96.25 102.95 -1.69 3.27 15 
1052B 12H 4 103-106 96.55 103.25 -1.90 3.04 19 
1052B 12H 4 123-126 9675 103451 273 196 8 
1052B 12H 4 133-136 96.85 103.55 -1.75 3.25 15 
1052B 12H 4 143-146 96.95 103.65 -1.44 3.01 15 
1052B 12H 5 3-6 97.05 103.75 -1.70 3.13 15 
1052B 12H 5 13-16 97.15 103.85 -1.35 3.21 18 
1052B 12H 5 23-26 97.25 103.95 -1.20 3.14 19 
1052B 12H 5 3336 9735 10405 372 208 4 
1052B 12H 5 43-46 97.45 104.15 -4.41 0.44 4 
1052B 12H 5 53-56 97.55 104.25 -1.97 2.15 16 
1052B 12H 5 63-66 97.65 104.35 -1.81 2.62 19 
1052B 12H 5 73-76 97.75 104.45 -2.04 2.81 20 
1052B 12H 5 83-86 97.85 104.55 -1.86 2.51 17 
1052B 12H 5 93-96 97.95 104.65 -1.82 2.67 20 
1052B 12H 5 103-106 98.05 104.75 -1.01 3.30 20 
1052B 12H 5 113-116 98.15 104.85 -1.68 2.71 20 
1052B 12H 5 123-126 98.25 104.95 -1.52 2.75 20 
1052B 12H 5 133-136 98.35 105.05 -1.64 2.75 16 
1052B 12H 5 143-146 98.45 105.15 -1.53 2.91 20 
1052F 12H 2 73-76 102.25 105.16 -1.56 2.88 19 
1052B 12H 6 3-6 9855 10525 422 -014 4 
1052B 12H 6 13-16 98.65 105.35 -1.57 3.22 15 
1052F 12H 2 93-96 102.45 105.36 -1.63 3.17 18 
1052B 12H 6 23-26 98.75 105.45 -1.68 3.09 20 
1052F 12H 2 103-106 102.55 105.46 -1.70 3.04 20 
1052F 12H 2 113-116 102.65 105.56 -1.37 2.97 18 
1052F 12H 2 123-126 102.75 105.66 -1.20 3.97 20 
1052F 12H 2 133-136 102.85 105.76 -1.51 2.39 18 
1052F 12H 2 143-146 102.95 105.86 -2.34 1.86 9 
1052F 12H 3 3-6 103.05 105.96 -1.66 2.69 15 
1052F 12H 3 13-16 103.15 106.06 -1.56 3.01 18 
1052F 12H 3 23-26 103.25 106.16 -1.59 2.85 14 
1052F 12H 3 33-36 103.35 106.26 -1.40 3.13 20 
1052F 12H 3 43-46 103.45 106.36 -1.29 2.90 17 
1052F 12H 3 53-56 103.55 106.46 -1.53 2.94 15 
1052F 12H 3 63-66 103.65 106.56 -1.51 3.14 15 
1052F 12H 3 73-76 103.75 106.66 -1.41 2.74 15 
1052F 12H 3 103-106 10405 10696 256 248 4 
1052F 12H 3 113-116 104.15 107.06 -1.48 3.00 15 
1052F 12H 4 3336 10485 10776 261 228 4 
1052F 12H 4 63-66 105.15 108.06 -1.78 3.08 15 
1052F 12H 4 83-86 10535 10826 200 -008 9 
1052F 12H 4 93-96 105.45 108.36 -2.05 2.23 15 
1052F 12H 4 113-116 10565 10856 106 1.99 6 
1052F 12H 5 3-6 106.05 108960.81 2.56. 6 
1052F 12H 5 13-16 106.15 109.06 -1.03 2.80 20 
1052F 12H 5 23-26 10625 10916 005 271 5 
1052F 12H 5 33-36 106.35 109.26 0.63 2.58 7 
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Appendix 1. Stable Isotope Results at Site 1052 

Hole Core Section Interval Depth MCD 5180 813C n 
(cm) (mbsf) 

Morozovella crassata (continued) 
1052F 12H 5 43-46 106.45 109.36 -0.07 2.47 15 
1052F 12H 5 53-56 106.55 109.46 -0.77 2.92 17 
1052F 12H 5 63-66 106.65 109.56 -0.77 2.89 20 
1052F 12H 5 73-76 106.75 109.66 -1.01 2.87 20 
1052F 12H 5 83-86 106.85 109.76 -0.24 2.71 15 
1052F 12H 5 93-96 106.95 109.86 -1.20 2.85 15 
1052F 12H 5 103-106 107.05 109.961 	0.80 2.141 4 
1052F 12H 5 113-116 107.15 110.06 -1.02 2.79 20 
1052F 12H 5 123-126 107.25 110.16 -1.20 3.07 20 
1052F 12H 5 133-136 107.35 110.26 -0.56 2.81 20 
1052F 12H 5 143-146 107.45 110.36 -0.71 2.88 20 
1052F 12H 6 3-6 107.55 110.46 -1.41 2.67 20 
1052F 12H 6 13-16 107.65 110.56 -1.02 2.78 20 
1052F 12H 6 23-26 107.75 110.66 -1.02 2.90 20 
1052F 12H 6 33-36 107.85 110.76 -1.01 2.73 20 
1052F 12H 6 43-46 107.95 110.86 -1.16 2.61 20 
1052F 12H 6 53-56 108.05 110.96 -0.84 2.74 20 
1052F 12H 6 63-66 108.15 111.06 -0.88 2.75 20 
1052F 12H 6 73-76 108.25 111.16 -0.94 3.15 20 
1052F 12H 6 83-86 108.35 111.26 -1.08 3.01 20 
1052F 12H 6 93-96 108.45 111.36 -0.61 2.68 20 
1052F 12H 6 113-116 108.65 111.56 -0.89 2.76 15 
1052F 12H 6 123-126 108.75 111.66 -0.17 2.83 18 
1052F 12H 6 133-136 108.85 111.76 -1.27 1.59 18 
1052B 13H 3 123-126 104.75 111.80[ 	-7.07 -i81 2 
1052F 12H 6 143-146 108.95 111.86 -1.26 2.84 19 
1052B 13H 3 133-136 104.85 111.90 -1.74 2.54 15 
1052F 12H 7 3-6 109.05 111.96 -0.78 2.92 20 
1052B 13H 3 143-146 104.95 112.00 -1.81 2.80 15 
1052F 12H 7 13-16 109.15 112.06 -0.34 2.73 15 
1052B 13H 4 3-6 105.05 112.10 -2.42 2.50 15 
1052F 12H 7 23-26 109.25 112.161 1.13 2.23 5 
1052B 13H 4 13-16 105.15 112.20 -2.92 1.61 20 
1052F 12H 7 33-36 109.35 112.26 2.44 2.39 4 
1052B 13H 4 23-26 105.25 112.301 -5.08 -0.78 3 
1052F 12H 7 43-46 109.45 112.36 -0.77 2.93 15 
1052B 13H 4 33-36 105.35 112.40 -2.15 2.47 20 
1052B 13H 4 43-46 105.45 112.50 -1.98 3.15 20 
10528 13H 4 53-56 105.55 112.60 -1.46 3.30 20 
1052B 13H 4 63-66 105.65 112.70 -1.86 2.51 15 
10528 13H 4 73-76 105.75 112.80 -1.35 3.34 20 
1052B 13H 4 83-86 105.85 112.90 -2.20 2.79 15 
1052F 13H 1 53-56 110.05 112.96 -1.26 2.36 20 
1052B 13H 4 93-96 105.95 113.00 -1.98 2.82 16 
1052F 13H 1 63-66 110.15 113.06 -1.23 2.68 20 
1052B 13H 4 103-106 106.05 113.10 -1.87 3.24 19 
1052F 13H 1 73-76 110.25 113.16 -1.30 2.76 20 
1052B 13H 4 113-116 106.15 113.20 -2.04 2.52 15 
1052F 13H 1 83-86 110.35 113.26 -1.12 2.78 20 
1052F 13H 1 93-96 110.45 113.36 -0.90 2.93 20 
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Appendix 1. Stable Isotope Results at Site 1052 

Hole Core Section Interval Depth MCD 8180 813C n 
(cm) (mbsf) 

Morozovella crassata (continued) 
1052F 13H 1 103-106 110.55 113.46 -0.60 2.88 20 
1052F 13H 1 113-116 110.65 113.56 -1.02 2.08 20 
1052F 13H 1 123-126 110.75 113.66 -0.35 2.85 20 
1052F 13H 1 133-136 110.85 113.76 -1.15 2.84 20 
1052F 13H 1 143-146 110.95 113.86 -1.27 2.45 20 
1052F 13H 2 3-6 111.05 113.96 -1.26 2.82 20 
1052F 13H 2 13-16 111.15 114.06 -1.00 2.80 20 
1052F 13H 2 23-26 111.25 114.16 -0.94 2.79 20 
1052F 13H 2 33-36 111.35 114.26 -1.13 2.76 20 
1052F 13H 2 43-46 111.45 114.36 -0.43 2.75 20 
1052F 13H 2 53-56 111.55 114.46 -0.87 2.86 20 
1052F 13H 2 63-66 111.65 114.56 -0.81 2.95 20 
1052F 13H 2 73-76 111.75 114.66 -1.16 3.05 20 
1052F 13H 2 83-86 111.85 114.76 -1.05 2.34 20 
1052F 13H 2 93-96 111.95 114.86 -0.87 3.10 18 
1052F 13H 2 103-106 112.05 114.96 -1.60 2.81 18 
1052F 13H 2 113-116 112.15 115.06 -0.54 2.85 20 
1052F 13H 2 123-126 112.25 115.16 -0.27 3.08 20 
1052F 13H 2 133-136 112.35 115.26 -0.27 2.74 20 
1052F 13H 2 143-146 112.45 115.36 -0.83 3.03 20 
1052F 13H 3 3-6 112.55 115.46 -1.34 3.32 20 
1052F 13H 3 13-16 112.65 115.56 -0.82 2.81 20 
1052F 13H 3 23-26 112.75 115.66 -0.69 2.80 20 
1052F 13H 3 33-36 112.85 115.76 -0.73 2.94 20 
1052F 13H 3 43-46 112.95 115.86 -0.78 2.88 20 
1052F 13H 3 53-56 113.05 115.96 -0.19 2.59 20 
1052F 13H 3 63-66 113.15 116.06 -1.07 3.04 20 
1052F 13H 3 73-76 113.25 116.16 -0.56 2.90 15 
1052F 13H 3 83-86 113.35 116.26 -1.05 2.84 20 
1052F 13H 3 93-96 113.45 116.36 -1.05 2.93 20 
1052F 13H 3 103-106 113.55 116.46 -1.12 2.77 20 
1052F 13H 3 113-116 113.65 116.56 -1.14 2.93 20 
1052F 13H 3 123-126 113.75 116.66 -0.66 3.00 20 
1052F 13H 3 133-136 113.85 116.76 -1.08 2.92 20 
1052F 13H 3 143-146 113.95 116.86 -0.61 2.73 20 
1052F 13H 4 3-6 114.05 116.96 -1.22 2.73 15 
1052F 13H 4 13-16 114.15 117.06 -0.22 2.36 15 
1052F 13H 4 23-26 114.25 117.16 -0.73 2.37 18 
1052F 13H 4 33-36 114.35 117.26 -0.73 2.63 20 
1052F 13H 4 43-46 114.45 117.36 -1.05 2.74 20 
1052F 13H 4 53-56 114.55 117.46 -1.17 2.96 20 
1052F 13H 4 63-66 114.65 117.56 -0.61 2.62 20 
1052F 13H 4 73-76 114.75 117.66 -1.22 2.75 20 
1052F 13H 4 83-86 114.85 117.76 -0.93 2.66 20 
1052F 13H 4 93-96 114.95 117.86 -1.34 2.75 20 
1052F 13H 4 103-106 115.05 117.96 -0.58 2.52 20 
1052F 13H 4 113-116 115.15 118.06 -1.12 2.62 20 
1052F 13H 4 123-126 115.25 118.16 -0.13 3.85 20 
1052F 13H 4 133-136 115.35 118.26 -0.97 2.88 20 
1052F 13H 4 143-146 115.45 118.36 -1.06 2.58 20 
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Appendix 1. Stable Isotope Results at Site 1052 

Hole 	Core Section Interval Depth 	MCD 	3180 	813C 	n 
(cm) (mbsf) 

Morozovella crassata (continued) 
1052F 13H 5 3-6 115.55 118.46 -0.92 2.88 20 
1052F 13H 5 13-16 115.65 118.56 -0.89 2.89 20 
1052F 13H 5 23-26 115.75 118.66 -1.15 3.14 20 
1052F 13H 5 33-36 115.85 118.76 -1.05 3.02 20 
1052F 13H 5 43-46 115.95 118.86 -1.27 3.11 20 
1052F 13H 5 53-56 116.05 118.96 -1.25 3.17 20 
1052F 13H 5 63-66 116.15 119.06 -1.13 3.09 20 
1052F 13H 5 73-76 116.25 119.16 -1.23 3.23 20 
1052F 13H 5 83-86 116.35 119.26 -1.14 3.22 20 
1052F 13H 5 93-96 116.45 119.36 -1.25 3.17 20 
1052F 13H 5 103-106 116.55 119.46 -1.26 3.27 15 
1052F 13H 5 113-116 116.65 119.56 -1.22 3.18 20 
1052F 13H 5 123-126 116.75 119.66 -1.04 2.78 20 
1052F 13H 5 133-136 116.85 119.76 -1.30 3.02 20 
1052F 13H 5 143-146 116.95 119.86 -1.13 2.91 20 
1052F 13H 6 3-6 117.05 119.96 -1.46 3.09 16 
1052F 13H 6 13-16 117.15 120.06 -1.29 2.85 20 
1052F 13H 6 23-26 117.25 120.16 -1.08 2.75 20 
1052F 13H 6 33-36 117.35 120.26 -1.33 3.34 20 
1052F 13H 6 43-46 117.45 120.36 -1.15 3.02 20 
1052F 13H 6 53-56 117.55 120.46 -1.42 3.15 20 
1052B 14H 3 93-96 113.95 120.50 -1.61 3.53 16 
1052F 13H 6 63-66 117.65 120.56 -1.29 3.04 21 
1052B 14H 3 103-106 114.05 120.60 -1.46 2.98 19 
1052F 13H 6 73-76 117.75 120.66 -1.39 3.16 15 
1052B 14H 3 113-116 114.15 120.70 -1.88 2.53 19 
1052B 14H 3 123-126 114.25 120.80 -1.29 3.15 20 
1052B 14H 3 133-136 114.35 120.90 -1.53 3.24 20 
1052B 14H 3 143-146 114.45 121.00 -1.55 3.62 20 
1052B 14H 4 3-6 114.55 121.10 -1.32 3.38 20 
1052B 14H 4 13-16 114.65 121.20 -2.04 2.88 D15 
1052B 14H 4 13-16 114.65 121.20 -1.94 2.90 D 16 
1052B 14H 4 23-26 114.75 121.30 -1.90 2.98 20 
1052B 14H 4 33-36 114.85 121.40 -1.50 3.41 20 
1052B 14H 4 43-46 114.95 121.50 -1.68 3.13 20 
1052B 14H 4 53-56 115.05 121.60 -1.68 3.00 20 
1052B 14H 4 63-66 115.15 121.70 -1.68 2.98 15 
1052B 14H 4 63-66 115.15 121.70 -1.65 3.17 22 
1052B 14H 4 73-76 115.25 121.80 -1.70 3.35 21 
1052B 14H 4 83-86 115.35 121.90 -1.26 3.35 20 
1052B 14H 4 93-96 115.45 122.00 -1.44 3.38 20 
1052B 14H 4 93-96 115.45 122.00 -1.52 3.54 15 
1052B 14H 4 103-106 115.55 122.10 -1.61 3.26 20 
1052B 14H 4 113-116 115.65 122.20 -1.52 3.19 20 
1052B 14H 4 123-126 115.75 122.30 -1.05 3.02 20 
1052B 14H 4 133-136 115.85 122.40 -1.33 3.29 20 
1052B 14H 4 143-146 115.95 122.50 -1.46 3.34 20 
1052B 14H 5 3-6 116.05 122.60 -1.29 3.21 20 
1052B 14H 5 13-16 116.15 122.70 -1.31 3.37 20 
1052B 14H 5 23-26 116.25 122.80 -1.14 3.37 D20 
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Appendix 1. Stable Isotope Results at Site 1052 

Hole Core Section Interval Depth MCD 6180 8 13C n 
(cm) (mbsf) 

Morozovella crassata (continued) 
1052B 14H 5 23-26 116.25 122.80 -1.17 3.39 D20 
1052B 14H 5 33-36 116.35 122.90 -1.40 3.37 20 
1052B 14H 5 43-46 116.45 123.00 -1.22 3.28 15 
1052B 14H 5 53-56 116.55 123.10 -1.62 3.07 20 
1052B 14H 5 63-66 116.65 123.20 -1.37 3.12 20 
1052B 14H 5 73-76 116.75 123.30 -1.42 3.32 20 
1052B 14H 5 83-86 116.85 123.40 -1.45 3.34 20 
1052B 14H 5 93-96 116.95 123.50 -1.16 3.38 20 
1052B 14H 5 103-106 117.05 123.60 -1.31 3.35 20 
1052B 14H 5 113-116 117.15 123.70 -1.50 3.30 20 
1052B 14H 5 123-126 117.25 123.80 -1.33 3.19 20 
1052B 14H 5 133-136 117.35 123.90 -1.48 3.07 20 
1052B 14H 5 143-146 117.45 124.00 -1.56 3.15 20 
1052B 14H 6 3-6 117.55 124.10 -1.62 3.48 20 
1052B 14H 6 13-16 117.65 124.20 -1.34 3.26 20 
1052B 14H 6 23-26 117.75 124.30 -1.24 3.34 20 
1052B 14H 6 33-36 117.85 124.40 -1.41 3.12 20 
1052B 14H 6 43-46 117.95 124.50 -1.45 3.16 20 
1052B 14H 6 53-56 118.05 124.60 -1.18 3.28 21 
1052B 14H 6 63-66 118.15 124.70 -1.36 3.12 16 
1052B 14H 6 73-76 118.25 124.80 -1.44 3.15 20 
1052B 14H 6 83-86 118.35 124.90 -1.35 3.10 20 
1052B 14H 6 93-96 118.45 125.00 -1.28 3.35 20 
1052F 14H 2 103-106 121.55 125.01 -1.21 3.26 20 
1052B 14H 6 103-106 118.55 125.10 -1.35 3.28 20 
1052F 14H 2 113-116 121.65 125.11 -1.26 2.86 20 
1052B 14H 6 113-116 118.65 125.20 -1.52 3.00 20 
1052F 14H 2 123-126 121.75 125.21 -1.36 3.15 20 
1052B 14H 6 123-126 11875 12530 235 294 5 
1052F 14H 2 133-136 121.85 125.31 -1.40 3.05 20 
1052F 14H 2 143-146 121.95 125.41 -1.39 3.21 20 
1052F 14H 3 3-6 122.05 125.51 -1.54 3.34 20 
1052F 14H 3 13-16 122.15 125.61 -1.21 3.35 20 
1052F 14H 3 23-26 122.25 125.71 -1.23 3.24 20 
1052F 14H 3 33-36 122.35 125.81 -1.18 3.45 20 
1052F 14H 3 43-46 122.45 125.91 -1.10 3.27 20 
1052F 14H 3 53-56 122.55 126.01 -1.11 3.33 20 
1052F 14H 3 63-66 122.65 126.11 -0.96 3.41 20 
1052F 14H 3 73-76 122.75 126.21 -1.08 3.45 20 
1052F 14H 3 83-86 12285 12631 020 3.12 1  5 
1052F 14H 3 93-96 122.95 126.41 -1.14 3.62 20 
1052F 14H 3 103-106 123.05 126.51 -1.09 3.52 20 
1052F 14H 3 113-116 123.15 126.61 -1.18 3.58 20 
1052F 14H 3 123-126 123.25 126.71 -1.25 3.50 20 
1052F 14H 3 133-136 123.35 126.81 -1.20 3.65 20 
1052F 14H 4 3-6 123.55 127.01 -0.79 3.67 19 
1052F 14H 4 13-16 123.65 127.11 -1.17 3.42 19 
1052F 14H 4 23-26 123.75 127.21 -1.27 3.34 20 
1052F 14H 4 33-36 123.85 127.31 -1.14 3.47 20 
1052F 14H 4 43-46 123.95 127.41 -1.17 3.39 19 
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Appendix 1. Stable Isotope Results at Site 1052 

Hole 	Core Section Interval Depth 	MCD 	8180 	813C 
(cm) 	(mbsf) 

Morozovella crassata (continued) 
1052F 14H 4 53-56 124.05 127.51 -1.13 3.32 
1052F 14H 4 63-66 124.15 127.61 -1.38 3.47 
1052F 14H 4 83-86 124.35 127.81 -1.08 3.21 
1052F 14H 4 93-96 124.45 127.91 -1.20 3.28 
1052F 14H 4 103-106 124.55 128.01 -1.29 3.47 
1052F 14H 4 113-116 124.65 128.11 -1.24 3.46 
1052F 14H 4 123-126 124.75 128.21 -1.29 3.45 
1052F 14H 4 133-136 124.85 128.31 -1.00 3.41 
1052F 14H 4 143-146 124.95 128.41 -1.18 3.30 
1052F 14H 5 3-6 125.05 128.51 -1.27 3.30 
1052F 14H 5 13-16 125.15 128.61 -1.03 3.17 
1052F 14H 5 23-26 125.25 128.71 -1.21 3.43 
1052F 14H 5 33-36 125.35 128.81 -1.12 4.21 
1052F 14H 5 43-46 125.45 128.91 -0.36 3.10 
1052F 14H 5 53-56 12555 12901 058 308 
1052F 14H 5 63-66 125.65 129.11 -1.39 3.22 
1052F 14H 5 73-76 125.75 129.21 -1.23 3.60 
1052F 14H 5 83-86 125.85 129.31 -1.43 3.60 
1052F 14H 5 93-96 125.95 129.41 -0.37 3.13 
1052F 14H 5 103-106 126.05 129.51 -1.52 3.43 
1052F 14H 5 113-116 126.15 129.61 -1.54 3.58 
1052F 14H 5 123-126 126.25 129.71 -1.44 3.22 
1052F 14H 5 133-136 126.35 129.81 -1.31 3.49 
1052F 14H 5 143-146 126.45 129.91 -0.22 3.02 
1052F 14H 6 3-6 126.55 130.01 -0.81 2.88 
1052F 14H 6 13-16 126.65 130.11 -1.52 3.57 
1052F 14H 6 2326 12675 13021 042 293 
1052F 14H 6 53-56 127.05 130.51 -0.89 2.85 
1052F 14H 6 63-66 12725 13061 038 257 
1052F 14H 6 73-76 127.35 130.71 -1.48 3.26 
1052F 14H 6 83-86 12745 13081 019 291 
1052F 14H 6 93-96 127.55 130.91 -1.32 3.33 
1052F 14H 6 103-106 127.65 131.01 -1.32 3.38 
1052F 14H 6 113-116 127.75 131.11 -1.05 3.24 
1052F 14H 6 113-116 127.85 131.11 -1.26 3.20 
1052F 14H 6 123-126 127.95 131.21 -0.20 2.88 
1052F 14H 6 133-136 128.05 131.31 -0.31 2.66 
1052F 14H 6 143-146 128.15 131.41 -1.19 3.49 

Hantkenina alabamensis 
1052B IOH 3 113-116 76.15 80.58 -0.36 1.32 
1052F 14H 6 13-16 126.65 130.11 0.05 1.35 

Chiloguembelina cubensis 
1052F 14H 4 63-66 124.15 127.61 0.60 2.14 
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Appendix 1. Stable Isotope Results at Site 1052 

Hole Core Section Interval Depth MCD 8180 613C n 
(cm) (mbsf) 

Morozovella spinulosa 
1052B 11H 5 3-6 87.55 93.17 -1.04 2.77 22 
1052B 11H 5 23-26 87.75 93.37 -1.16 2.63 19 
1052B IIH 5 33-36 87.85 93.47 -0.86 3.15 20 
1052B IIH 5 43-46 87.95 93.57 -0.78 3.13 18 
1052B 11H 5 53-56 88.05 93.67 -1.23 2.49 22 
1052B 11H 5 63-66 88.15 93.77 -0.73 3.13 17 
1052B 11H 5 93-96 88.45 94.07 -1.28 2.98 21 
1052F IIH 1 113-116 91.65 94.13 -1.41 2.38 R22 
1052B IIH 5 103-106 88.55 94.17 -1.07 3.04 22 
1052B 11H 5 113-116 88.65 94.27 -0.84 3.25 15 
1052F 11H 1 133-136 91.85 94.33 -1.29 2.86 16 
1052B 11H 5 123-126 88.75 94.37 -0.99 3.09 15 
1052F 11H 2 23-26 92.25 94.73 -1.16 2.63 20 
1052F 11H 2 53-56 92.55 95.03 -0.88 3.09 20 
1052F IIH 2 63-66 92.65 95.13 -0.94 3.31 20 
1052F 11H 3 33-36 93.85 96.33 -0.94 3.23 20 
1052F IIH 3 43-46 93.95 96.43 -0.97 2.85 19 
1052F IIH 3 63-66 94.15 96.63 -0.49 3.03 22 
1052F 11H 3 83-86 94.35 96.83 -0.73 3.51 20 
1052F IIH 4 3-6 95.05 97.53 -1.32 3.14 19 
1052F IIH 4 83-86 95.85 98.33 -0.78 3.51 20 
1052F IIH 4 103-106 96.05 98.53 -0.90 3.74 20 
1052F 11H 4 143-146 96.45 98.93 -0.93 3.57 20 
1052F 11H 5 123-126 97.75 100.23 -1.84 2.92 20 
1052F IIH 5 133-136 97.85 100.33 -1.16 3.62 20 
1052F IIH 5 143-146 97.95 100.43 -1.40 3.33 20 
1052F 11H 6 3-6 98.05 100.53 -1.22 3.45 20 
1052F 11H 6 23-26 98.25 100.73 -1.13 3.49 20 
1052F IIH 6 33-36 98.35 100.83 -1.17 3.54 R20 
1052F 11H 6 43-46 98.45 100.93 -1.57 3.18 20 
1052F IIH 6 53-56 98.55 101.03 -1.17 3.27 20 
1052F 11H 6 63-66 98.65 101.13 -1.14 3.51 20 
1052F IIH 6 73-76 98.75 101.23 -1.10 3.53 20 
1052F 11H 6 83-86 98.85 101.33 -0.98 3.31 20 
1052F IIH 6 93-96 98.95 101.43 -1.19 3.48 20 
1052F IIH 6 103-106 99.05 101.53 -1.06 3.57 20 
1052F IIH 6 113-116 99.15 101.63 -1.21 3.49 R20 
1052F 11H 6 123-126 99.25 101.73 -1.09 3.21 20 
1052F 11H 6 133-136 99.35 101.83 -1.28 3.39 R20 
1052F 11H 6 143-146 99.45 101.93 -1.09 3.33 20 
1052F 11H 7 3-6 99.55 102.03 -1.11 3.47 20 
1052F 11H 7 13-16 99.65 102.13 -1.22 3.41 20 
1052B 12H 3 143-146 95.45 102.15 -1.40 3.27 20 
1052F 11H 7 23-26 99.75 102.23 -1.21 3.30 20 
1052B 12H 4 13-16 95.65 102.35 -1.49 3.27 20 
1052B 12H 4 83-86 96.35 103.05 -1.24 3.23 19 
1052B 12H 4 103-106 96.55 103.25 -1.57 3.18 20 
1052B 12H 4 123-126 96.75 103.45 -1.18 3.34 R20 
1052B 12H 4 143-146 96.95 103.65 -1.30 3.37 20 
1052B 12H 5 13-16 97.15 103.85 -1.26 3.51 20 
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Appendix 1. Stable Isotope Results at Site 1052 

Hole Core Section Interval Depth MCD 8180 813C n 
(cm) (mbsf) 

Morozovella spinulosa (continued) 
1052F 12H 2 83-86 102.35 105.26 -1.98 2.34 15 

1052F 12H 3 13-16 103.15 106.06 -1.49 2.97 20 

1052F 12H 3 23-26 103.25 106.16 -1.50 2.94 20 

1052F 12H 3 53-56 103.55 106.46 -1.50 2.80 20 

1052F 12H 3 83-86 103.85 106.76 -2.09 2.86 15 

1052F 12H 3 93-96 103.95 106.86 -1.91 3.08 16 

1052F 12H 3 113-116 104.15 107.06 -1.57 2.78 20 

1052F 12H 4 33-36 104.85 107.76 -2.09 2.56 R20 

1052F 12H 5 103-106 10705 10996[ 080 201 R4 

1052F 14H 3 83-86 122.85 126.31! 0.20 R4 

1052F 14H 5 53-56 125.55 129.01 -0.52 3.24 R 15 

1052F 14H 5 73-76 125.75 129.21 -1.21 3.49 20 

Acarinina praetopilensis 
1052B IIH 4 133-136 87.35 92.97 -0.91 2.47 20 

1052B 11H 4 143-146 87.45 93.07 -0.34 2.75 20 

1052B 11H 5 3-6 87.55 93.17 -0.44 2.89 20 

1052B 11H 5 13-16 87.65 93.27 -0.47 2.88 19 

1052B 11H 5 23-26 87.75 93.37 -0.47 2.86 20 

1052B 11H 5 33-36 87.85 93.47 -0.25 2.86 20 

1052B 11H 5 43-46 87.95 93.57 -0.65 2.99 20 

1052B IIH 5 53-56 88.05 93.67 -0.43 2.95 20 

1052B IIH 5 63-66 88.15 93.77 -0.74 3.03 20 

1052B 11H 5 73-76 88.25 93.87 -0.60 2.96 20 

1052B 11H 5 83-86 88.35 93.97 -1.69 2.17 20 

1052B 11H 5 93-96 88.45 94.07 -0.30 2.91 20 

1052F IIH 1 113-116 91.65 94.13 -0.74 2.74 R20 

1052B 11H 5 103-106 88.55 94.17 -0.57 3.01 20 

1052F 11H 1 123-126 91.75 94.23 -0.40 3.03 20 
1052B IIH 5 113-116 88.65 94.27 -0.34 3.03 20 

1052F 11H 1 133-136 91.85 94.33 -0.56 3.24 20 
1052B IIH 5 123-126 88.75 94.37 -0.35 3.36 20 

1052F 11H 1 143-146 91.95 94.43 -0.72 2.83 R20 

1052B 11H 5 133-136 88.85 94.47 0.00 3.15 20 

1052F 11H 2 3-6 92.05 94.53 -0.79 2.86 20 
1052B 11H 5 143-146 88.95 94.57 -0.43 3.05 20 

1052F IIH 2 13-16 92.15 94.63 -0.50 2.91 20 

1052F 11H 2 83-86 92.85 95.33 -0.80 2.82 R20 
1052F 11H 3 53-56 94.05 96.53 -1.08 2.83 20 
1052F 11H 3 73-76 9425 9673E 	-133 10 
1052F 11H 3 83-86 94.35 96.83 -1.27 2.86 21 
1052F IIH 3 93-96 94.45 96.93 -0.47 3.40 R20 
1052F 11H 4 13-16 95.15 97.63 -0.46 3.15 20 
1052F 11H 4 23-26 95.25 97.73 -0.72 3.27 20 
1052B 12H 3 143-146 95.45 102.15 -1.31 2.93 20 
1052B 12H 4 13-16 95.65 102.35 -1.03 3.16 20 
1052B 12H 4 23-26 95.75 102.45 -0.92 3.25 20 
1052B 12H 4 33-36 95.85 102.55 -0.88 3.28 20 
1052B 12H 4 43-46 95.95 102.65 -1.00 3.24 20 
1052B 12H 4 53-56 96.05 102.75 -0.97 3.28 20 
1052B 12H 4 63-66 96.15 102.85 -1.29 3.44 20 
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Appendix 1. Stable Isotope Results at Site 1052 

Hole 	Core Section Interval Depth 	MCD 	8180 	813C 	n 
(cm) (mbsf) 

Acarinina praetopilensis (continued) 
1052B 12H 4 73-76 96.25 102.95 -1.11 3.39 20 
1052B 12H 4 83-86 96.35 103.05 -0.66 3.74 20 
1052B 12H 4 93-96 96.45 103.15 -0.96 3.71 20 
1052B 12H 4 103-106 96.55 103.25 -1.22 3.41 20 
1052B 12H 4 113-116 96.65 103.35 -1.14 3.14 20 
1052B 12H 5 33-36 97.35 104.05 -0.73 3.23 R20 
1052B 12H 5 43-46 97.45 104.15 -0.74 3.01 R20 
1052B 12H 6 3-6 98.55 105.25 -0.91 2.94 R20 
1052F 12H 3 133-136 104.35 107.26 -1.64 3.05 20 
1052F 12H 3 143-146 104.45 107.36 -1.33 2.97 20 
1052F 12H 4 3-6 104.55 107.46 -1.68 2.90 20 
1052F 12H 4 13-16 104.65 107.56 -1.25 3.14 20 
1052F 12H 4 33-36 104.85 107.76 -1.85 2.66 R20 
1052F 12H 4 53-56 105.05 107.96 -1.55 2.98 20 
1052F 12H 4 73-76 105.25 108.16 -1.32 3.03 20 
1052F 12H 4 103-106 105.55 108.46 -0.89 2.86 20 
1052F 12H 4 113-116 105.65 108.56 -1.09 3.35 R20 
1052F 12H 4 123-126 105.75 108.66 -0.76 3.02 20 
1052F 12H 4 133-136 105.85 108.76 -0.67 3.08 20 
1052F 12H 4 143-146 105.95 108.86 -1.58 3.07 20 
1052F 12H 5 23-26 106.25 109.16 -0.82 2.90 R20 
1052F 12H 5 33-36 106.35 109.26 -1.52 2.89 R20 
1052F 12H 5 103-106 107.05 109.96 -0.69 3.22 R20 
1052F 12H 6 103-106 108.55 111.46 -0.54 2.74 20 
1052F 12H 7 23-26 109.25 112.16 -1.11 3.12 R20 
1052F 12H 7 33-36 109.35 112.26 -0.48 2.84 R20 
1052B 13H 4 23-26 105.25 112.30 -0.75 3.23 R20 
1052F 14H 3 143-146 123.45 126.91 -0.86 3.34 20 
1052F 14H 4 63-66 124.15 127.61 -1.03 3.38 20 
1052F 14H 4 73-76 124.25 127.71 -1.06 3.29 20 
1052F 14H 6 13-16 126.65 130.11 -0.60 3.39 20 
1052F 14H 6 23-26 126.75 130.21 -1.55 3.07 R20 
1052F 14H 6 33-36 126.85 130.31 -1.13 3.50 20 
1052F 14H 6 43-46 126.95 130.41 -1.15 3.57 20 
1052F 14H 6 63-66 127.15 130.61 -0.79 3.10 R20 
1052F 14H 6 83-86 127.45 130.81 -0.96 3.04 R20 
1052F 14H 6 133-136 128.05 131.31 -1.16 3.50 20 
1052F 14H 6 143-146 128.15 131.41 -1.62 3.18 20 

Nuttalides truempyi 
1052B 10H 5 63-66 78.65 83.08 0.20 1.01 15 
1052B IOH 5 73-76 78.75 83.18 0.51 0.96 15 
1052B IOH 5 83-86 78.85 83.28 0.60 0.85 D 15 
1052B IOH 5 83-86 78.85 83.28 0.45 0.99 D 15 
1052B 10H 5 93-96 78.95 83.38 0.59 0.95 15 
1052B 11H 3 113-116 85.65 91.27 0.35 0.90 15 
1052B 11H 3 123-126 85.75 91.37 0.51 0.95 15 
1052B 11H 3 133-136 85.85 91.47 0.46 0.95 15 
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Appendix 1. Stable Isotope Results at Site 1052 

Hole 	Core Section Interval Depth 	MCD 	8180 	8 13C 	n 
(cm) (mbsf) 

Mixed morozovellids 
1052B 12H 4 43-46 95.95 102.65 -1.65 2.95 19 
1052B 12H 4 113-116 96.65 103.35 -1.46 3.10 18 
1052F 12H 3 123-126 104.25 107.16 -1.87 2.91 19 
1052F 12H 3 143-146 104.45 107.36 -1.62 2.87 16 
1052F 12H 4 3-6 104.55 107.46 -1.78 2.62 16 
1052F 12H 4 13-16 104.65 107.56 -2.23 2.58 16 
1052F 12H 4 23-26 104.75 107.66 -1.71 2.95 18 
1052F 12H 4 43-46 104.95 107.86 -1.31 2.76 23 
1052F 12H 4 53-56 105.05 107.96 -2.16 2.82 15 
1052F 12H 4 73-76 105.25 108.16 -1.32 3.06 21 
1052F 12H 4 133-136 105.85 108.76 1.21 2 . 121  5 
1052F 12H 4 143-146 105.95 108.86 -1.71 2.97 17 
1052F 12H 6 103-106 108.55 111.46 -0.28 2.54 20 

Turborotalia cocoaensis 
1052B 11H 4 43-46 86.45 92.07 -0.31 1.21 15 
1052B IIH 4 53-56 86.55 92.17 -0.30 1.41 15 
1052B 11H 4 63-66 86.65 92.27 -0.26 1.42 15 
1052B 11H 4 73-76 86.75 92.37 -0.38 1.39 15 
1052B IIH 4 83-86 86.85 92.47 -0.46 1.30 15 
1052B IIH 4 93-96 86.95 92.57 -0.10 1.62 15 
1052B IIH 4 103-106 87.05 92.67 -0.41 1.58 15 
1052B 11H 4 113-116 87.15 92.77 -0.21 1.65 15 
1052B 11H 4 123-126 87.25 92.87 -0.49 1.50 15 
1052B IIH 4 133-136 87.35 92.97 -0.25 1.38 15 
1052B 11H 4 143-146 87.45 93.07 -0.51 1.11 15 
1052B 11H 5 3-6 87.55 93.17 -0.43 1.03 15 
1052B IIH 5 13-16 87.65 93.27 -0.47 1.33 15 
1052B 11H 5 23-26 87.75 93.37 -0.42 1.34 15 

Mixed benthic foraminifer 
1052B IOH 5 63-66 78.65 83.08 0.78 0.45 15 

Bulk carbonate 
10528 IOH 1 73-76 72.75 77.18 0.74 1.66 D 
1052B 10H 1 73-76 72.75 77.18 0.82 1.79 D 
1052B 10H 1 83-86 72.85 77.28 0.90 1.83 D 
1052B IOH 1 83-86 72.85 77.28 0.97 1.91 D 
1052B 10H 1 93-96 72.95 77.38 0.98 1.82 
1052B IOH 1 103-106 73.05 77.48 0.40 1.48 D 
1052B 10H 1 103-106 73.05 77.48 0.94 1.84 D 
1052B 10H 1 113-116 73.15 77.58 0.72 1.61 
1052B 10H 1 123-126 73.25 77.68 0.58 1.51 D 
1052B IOH 1 123-126 73.25 77.68 0.50 1.46 
1052B 10H 1 133-136 73.35 77.78 0.87 1.60 D 
1052B 10H 1 133-136 73.35 77.78 1.20 1.88 D 
1052B 10H 1 143-146 73.45 77.88 0.57 .1.46 D 
1052B 10H 5 63-66 78.65 83.08 0.64 1.86 D 
1052B 10H 5 63-66 78.65 83.08 0.49 1.79 D 
1052B 10H 5 73-76 78.75 83.18 0.60 1.87 D 
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Appendix 1. Stable Isotope Results at Site 1052 

Hole 	Core Section Interval Depth 	MCD 	8180 
	

813C 	n 
(cm) 	(mbsf) 

Bulk carbonate (continued 
1052B 10H 5 73-76 78.75 83.18 0.71 1.99 D 
1052B 10H 5 83-86 78.85 83.28 0.62 1.89 D 
1052B 10H 5 83-86 78.85 83.28 0.58 1.85 D 
1052B 10H 5 93-96 78.95 83.38 0.72 1.91 D 
1052B IOH 5 93-96 78.95 83.38 0.67 1.86 D 
1052B IIH 4 83-86 86.85 92.47 0.50 1.61 D 
1052B IIH 4 83-86 86.85 92.47 0.53 1.77 D 
1052B 11H 4 93-96 86.95 92.57 0.88 1.98 D 
1052B 11H 4 93-96 86.95 92.57 0.80 1.98 D 
1052B 11H 4 103-106 87.05 92.67 0.88 1.97 D 
1052B IIH 4 103-106 87.05 92.67 0.62 1.89 D 
1052B 13H 4 3-6 105.05 112.10 0.50 1.69 D 
1052B 13H 4 3-6 105.05 112.10 0.48 1.71 D 
1052F 12H 7 23-26 109.25 112.16 0.72 1.83 D 
1052F 12H 7 23-26 109.25 112.16 0.42 1.60 D 
1052B 13H 4 13-16 105.15 112.20 0.54 1.68 D 
1052B 13H 4 13-16 105.15 112.20 0.50 1.74 D 
1052F 12H 7 33-36 109.35 112.26 0.60 1.67 D 
1052F 12H 7 33-36 109.35 112.26 0.51 1.81 D 
1052B 13H 4 23-26 105.25 112.30 0.51 1.72 D 
1052B 13H 4 23-26 105.25 112.30 0.60 1.75 D 

Subbotina utilisindex 
1052B 10H 5 63-66 78.65 83.08 -0.15 1.51 15 
1052B IOH 5 73-76 78.75 83.18 -0.10 1.35 15 
1052B 10H 5 83-86 78.85 83.28 -0.03 1.47 15 
1052B IOH 5 93-96 78.95 83.38 -0.08 1.38 15 
1052B IIH 3 113-116 85.65 91.27 -0.20 1.41 15 
1052B 11H 3 123-126 85.75 91.37 -0.33 1.32 15 
1052B 11H 3 133-136 85.85 91.47 -0.34 1.28 15 
1052B IIH 4 43-46 86.45 92.07 0.08 1.30 15 
1052B 11H 4 53-56 86.55 92.17 0.39 1.34 15 
1052B 11H 4 63-66 86.65 92.27 0.13 1.31 15 
1052B 11H 4 73-76 86.75 92.37 0.06 1.46 15 
1052B 11H 4 83-86 86.85 92.47 -0.12 1.23 15 
1052B 11H 4 93-96 86.95 92.57 -0.18 1.37 15 
1052B IIH 4 103-106 87.05 92.67 0.15 1.50 15 
1052B 11H 4 113-116 87.15 92.77 -0.17 1.73 15 
10528 11H 4 123-126 87.25 92.87 -0.12 1.59 15 
1052B 11H 4 133-136 87.35 92.97 -0.22 1.46 15 
1052B IIH 4 143-146 87.45 93.07 -0.31 1.17 15 
1052B 11H 5 3-6 87.55 93.17 -0.28 1.27 15 
1052B IIH 5 13-16 87.65 93.27 -0.37 1.28 15 
1052B 11H 5 23-26 87.75 93.37 0.05 1.42 15 

175 



Appendix 2. Continuous stable isotopic time series 

Hole Core Section Interval MCD Age 	Oxygen Carbon 
(cm) (Ma) 

1052B 10H 1 73-76 77.18 37.341 -0.45 2.36 
1052B 10H 1 83-86 77.28 37.344 -0.21 2.69 
1052B 10H 1 93-96 77.38 37.346 -0.85 2.35 
1052B 10H 1 103-106 77.48 37.349 -0.40 2.68 
1052B 10H 1 113-116 77.58 37.352 -0.01 2.29 
1052B 10H 1 123-126 77.68 37.355 -0.23 2.40 
1052B 10H 1 133-136 77.78 37.358 -1.13 2.45 
1052B IOH 1 143-146 77.88 37.361 -1.08 2.47 
1052B IOH 2 3-6 77.98 37.364 -0.90 2.60 
1052B 10H 2 13-16 78.08 37.367 -0.85 2.53 
1052B 10H 2 23-26 78.18 37.370 -0.42 2.40 
1052B 10H 2 33-36 78.28 37.373 -0.61 2.59 
1052B 10H 2 43-46 78.38 37.376 -0.92 2.56 
1052B IOH 2 53-56 78.48 37.379 -0.74 2.74 
1052B IOH 2 63-66 78.58 37.381 -0.61 2.90 
1052B IOH 2 73-76 78.68 37.384 -0.82 2.86 
1052B IOH 2 83-86 78.78 37.387 -0.94 2.85 
1052B 10H 2 93-96 78.88 37.390 0.18 2.30 
1052B IOH 2 103-106 78.98 37.392 -0.80 2.51 
1052B 10H 2 113-116 79.08 37.395 -0.83 2.58 
1052B IOH 2 123-126 79.18 37.398 -0.63 2.63 
1052B 10H 2 133-136 79.28 37.400 -0.68 2.52 
1052B IOH 2 143-146 79.38 37.403 -0.87 2.64 
1052B 10H 3 3-6 79.48 37.405 -0.70 2.74 
1052B 10H 3 13-16 79.58 37.408 -0.89 2.60 
1052B 10H 3 23-26 79.68 37.411 -1.10 2.42 
1052B 10H 3 33-36 79.78 37.413 -0.87 2.39 
1052B IOH 3 43-46 79.88 37.415 -1.40 2.52 
1052B IOH 3 53-56 79.98 37.418 -1.06 2.56 
1052B 10H 3 63-66 80.08 37.420 -0.42 2.72 
1052B 10H 3 73-76 80.18 37.423 -1.30 2.17 
1052B 10H 3 83-86 80.28 37.425 -0.82 2.46 
10528 10H 3 93-96 80.38 37.428 -0.71 2.60 
1052B 10H 3 103-1 06 80.48 37.430 -0.84 2.45 
1052B 10H 3 113-116 80.58 37.433 -0.82 2.87 
1052B 10H 3 123-126 80.68 37.435 -1.48 2.88 
1052B IOH 3 133-136 80.78 37.438 -1.19 3.09 
1052B IOH 3 143-146 80.88 37.440 -0.86 3.30 
1052B IOH 4 3-6 80.98 37.443 -1.04 3.09 
1052B 10H 4 13-16 81.08 37.445 -0.75 2.90 
1052B IOH 4 23-26 81.18 37.447 -1.00 2.85 
1052B 10H 4 33-36 81.28 37.450 -1.06 2.00 
1052B IOH 4 43-46 81.38 37.453 -0.84 2.74 
1052B 10H 4 53-56 81.48 37.455 -0.97 2.85 
1052B IOH 4 63-66 81.58 37.458 -1.02 3.38 
1052B 10H 4 73-76 81.68 37.461 -0.86 3.55 
1052B 10H 4 83-86 81.78 37.464 -0.98 3.23 
1052B IOH 4 93-96 81.88 37.467 -0.84 3.28 
1052B 10H 4 103-106 81.98 37.470 -1.23 2.61 
1052B 10H 4 113-116 82.08 37.472 -1.20 2.92 
1052B 10H 4 123-126 82.18 37.475 -1.54 3.01 
1052B 10H 4 133-136 82.28 37.478 -1.83 2.28 
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Appendix 2. Continuous stable isotopic time series 

Hole Core Section Interval MCD Age 	Oxygen Carbon 
(cm) (Ma) 

1052B 10H 4 143-146 82.38 37.481 -1.41 3.00 
1052B 10H 5 3-6 82.48 37.485 -2.14 2.16 
1052B 10H 5 13-16 82.58 37.489 -1.74 2.28 
1052B 10H 5 23-26 82.68 37.493 -1.40 2.11 
1052B 10H 5 33-36 82.78 37.497 -1.91 1.63 
1052B 10H 5 43-46 82.88 37.501 -2.28 1.73 
1052B 10H 5 53-56 82.98 37.505 -1.42 1.87 
1052B 10H 5 63-66 83.08 37.509 -0.97 2.70 
1052B IOH 5 73-76 83.18 37.513 -1.73 -0.05 
1052B 10H 5 83-86 83.28 37.517 -1.74 -0.23 
1052B 10H 5 93-96 83.38 37.521 -1.26 3.13 
1052B IOH 5 103-106 83.48 37.525 -1.13 2.85 
1052B IOH 5 113-116 83.58 37.529 -1.02 2.81 
1052B IOH 5 123-126 83.68 37.533 -1.08 2.60 
1052B IOH 5 133-136 83.78 37.537 -0.95 3.06 
1052B 10H 5 143-146 83.88 37.541 -1.07 3.43 
1052B 10H 6 3-6 83.98 37.545 -1.46 2.99 
1052B IOH 6 13-16 84.08 37.549 -0.95 3.40 
1052B 10H 6 23-26 84.18 37.553 -0.85 3.39 
1052B 10H 6 33-36 84.28 37.557 -0.92 2.99 
1052B 10H 6 43-46 84.38 37.561 -1.11 3.11 
1052B 10H 6 53-56 84.48 37.565 -1.30 2.87 
1052B 10H 6 63-66 84.58 37.568 -0.94 3.46 
1052B 10H 6 73-76 84.68 37.571 -0.86 3.01 
1052B 10H 6 83-86 84.78 37.574 -1.04 2.77 
1052B IOH 6 93-96 84.88 37.577 -0.61 3.21 
1052B 10H 6 103-106 84.98 37.579 -1.08 3.14 
1052B 10H 6 113-116 85.08 37.580 -1.06 3.29 
1052F IOH 2 83-86 85.11 37.582 -0.72 3.15 
1052B 10H 6 123-126 85.18 37.583 -0.33 3.15 
1052F 10H 2 93-96 85.21 37.585 -0.55 3.21 
1052F IOH 2 103-106 85.31 37.587 -0.68 3.04 
1052F 10H 2 113-116 85.41 37.587 -2.03 1.30 
1052F 10H 2 123-126 85.51 37.590 -1.66 2.55 
1052F 10H 2 133-136 85.61 37.592 -1.47 3.03 
1052F IOH 2 143-146 85.71 37.595 -1.42 2.88 
1052F 10H 3 3-6 85.81 37.598 -1.78 2.07 
1052F 10H 3 13-16 85.91 37.600 -1.73 2.93 
1052F IOH 3 23-26 86.01 37.603 -1.61 -0.07 
1052F 10H 3 33-36 86.11 37.606 -1.30 2.12 
1052F 10H 3 43-46 86.21 37.608 -1.34 2.19 
1052F IOH 3 53-56 86.31 37.611 -1.18 3.17 
1052F 10H 3 63-66 86.41 37.614 -1.19 2.29 
1052F 10H 3 73-76 86.51 37.617 -1.44 2.36 
1052F 10H 3 83-86 86.61 37.619 -1.58 2.08 
1052F IOH 3 93-96 86.71 37.623 -1.46 2.10 
1052F 10H 3 103-106 86.81 37.627 -1.65 1.77 
1052F 10H 3 113-116 86.91 37.631 -1.53 2.51 
1052F 10H 3 123-126 87.01 37.634 -1.19 2.62 
1052F 10H 3 133-136 87.11 37.638 -1.37 2.48 
1052F 10H 3 143-146 87.21 37.642 -1.30 2.76 
1052F IOH 4 3-6 87.31 37.646 -1.61 2.58 
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Appendix 2. Continuous stable isotopic time series 

Hole Core Section Interval MCD Age 	Oxygen Carbon 
(cm) (Ma) 

1052F IOH 4 13-16 87.41 37.649 -1.56 2.76 
1052F 10H 4 23-26 87.51 37.653 -1.15 3.04 
1052F IOH 4 33-36 87.61 37.656 -1.22 3.03 
1052F 10H 4 43-46 87.71 37.660 -1.37 2.97 
1052F 10H 4 53-56 87.81 37.663 -1.19 2.91 
1052F 10H 4 63-66 87.91 37.667 -1.26 2.74 
1052F 10H 4 73-76 88.01 37.671 -1.26 3.03 
1052F 10H 4 83-86 88.11 37.675 -1.25 3.06 
1052F 10H 4 93-96 88.21 37.679 -1.24 2.66 
1052F 10H 4 103-106 88.31 37.683 -1.17 3.05 
1052F 10H 4 113-116 88.41 37.687 -1.02 3.17 
1052F 10H 4 123-126 88.51 37.690 -0.96 2.93 
1052F IOH 4 133-136 88.61 37.693 -1.73 2.52 
1052F 10H 4 143-146 88.71 37.695 -0.86 3.31 
1052F 10H 5 3-6 88.81 37.698 -0.90 3.28 
1052F IOH 5 13-16 88.91 37.700 -1.02 2.52 
1052F 10H 5 23-26 89.01 37.703 -0.88 2.98 
1052F IOH 5 33-36 89.11 37.705 -1.21 2.82 
1052F 10H 5 43-46 89.21 37.707 -1.12 2.77 
1052F 10H 5 53-56 89.31 37.710 -1.38 2.76 
1052B 11H 2 73-76 89.37 37.711 -0.65 3.30 
1052F 10H 5 63-66 89.41 37.712 -0.79 3.08 
1052B 11H 2 83-86 89.47 37.713 -1.14 2.47 
1052F IOH 5 73-76 89.51 37.715 -0.95 3.31 
1052B 11H 2 93-96 89.57 37.716 -0.92 3.26 
1052F IOH 5 83-86 89.61 37.719 -0.98 3.06 
1052B 11H 2 103-106 89.67 37.719 -1.41 1.99 
1052B IIH 2 113-116 89.77 37.722 -0.73 3.21 
1052B 11H 2 123-126 89.87 37.726 -1.25 2.26 
1052B IIH 2 133-136 89.97 37.729 -1.20 2.50 
1052B 11H 2 143-146 90.07 37.732 -0.95 3.07 
1052B IIH 3 3-6 90.17 37.735 -1.33 2.97 
1052B 11H 3 13-16 90.27 37.738 -1.05 3.37 
1052B 11H 3 23-26 90.37 37.741 -1.15 3.37 
1052B 11H 3 43-46 90.57 37.748 -1.35 2.40 
1052B 11H 3 53-56 90.67 37.751 -0.77 3.04 
1052B 11H 3 63-66 90.77 37.755 -0.82 3.30 
1052B 11H 3 73-76 90.87 37.758 -0.85 3.30 
1052B 11H 3 83-86 90.97 37.761 -1.05 2.56 
1052B 11H 3 93-96 91.07 37.764 -0.79 3.33 
1052B 11H 3 103-106 91.17 37.766 -1.09 2.46 
1052B 11H 3 113-116 91.27 37.768 -0.84 3.23 
1052B 11H 3 133-136 91.47 37.773 -1.05 2.46 
1052B IIH 3 143-146 91.57 37.775 -0.78 2.85 
1052B 11H 4 3-6 91.67 37.778 -0.94 3.19 
1052B 11H 4 13-16 91.77 37.780 -1.04 2.64 
1052B 11H 4 23-26 91.87 37.783 -1.07 2.33 
1052B 11H 4 33-36 91.97 37.786 -0.90 3.21 
1052B 11H 4 43-46 92.07 37.789 -0.81 2.80 
1052B 11H 4 53-56 92.17 37.791 -0.72 2.75 
1052B 11H 4 63-66 92.27 37.794 -0.75 2.88 
1052B 11H 4 73-76 92.37 37.797 -0.68 2.69 
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Appendix 2. Continuous stable isotopic time series 

Hole Core Section Interval MCD Age 	Oxygen Carbon 
(cm) (Ma) 

1052B IIH 4 83-86 92.47 37.799 -0.73 3.05 
1052B 11H 4 93-96 92.57 37.802 -0.76 3.27 
1052B 11H 4 103-106 92.67 37.805 -0.71 2.87 
1052B 11H 4 113-116 92.77 37.807 -0.70 3.19 
1052B 11H 4 123-126 92.87 37.810 -0.73 3.33 
1052B 11H 4 133-136 92.97 37.813 -0.77 2.91 
1052B IIH 4 143-146 93.07 37.815 -1.21 2.75 
1052B IIH 5 3-6 93.17 37.818 -1.04 2.77 
1052B IIH 5 13-16 93.27 37.821 -0.69 2.88 
1052B 11H 5 23-26 93.37 37.824 -1.16 2.63 
1052B 11H 5 33-36 93.47 37.827 -0.86 3.15 
1052B 11H 5 43-46 93.57 37.830 -0.78 3.13 
1052B IIH 5 53-56 93.67 37.833 -1.23 2.95 
1052B. 11H 5 63-66 93.77 37.836 -0.73 3.21 
1052B IIH 5 73-76 93.87 37.839 -1.18 2.86 
1052B 11H 5 83-86 93.97 37.842 -1.22 2.87 
1052B 11H 5 93-96 94.07 37.845 -1.12 3.15 
1052F 11H 1 113-116 94.13 37.846 -1.41 2.38 
1052B 11H 5 103-106 94.17 37.847 -0.94 3.08 
1052F 11H 1 123-126 94.23 37.849 -1.36 2.80 
1052B 11H 5 113-116 94.27 37.850 -0.84 3.25 
1052F 11H 1 133-136 94.33 37.852 -1.29 2.86 
1052B 11H 5 123-126 94.37 37.853 -0.99 3.09 
1052F IIH 1 143-146 94.43 37.856 -1.22 2.83 
1052B 11H 5 133-136 94.47 37.856 -0.50 3.15 
1052F 11H 2 3-6 94.53 37.859 -0.79 2.86 
1052B 11H 5 143-146 94.57 37.859 -0.43 3.05 
1052F 11H 2 13-16 94.63 37.862 -0.50 2.91 
1052F IIH 2 23-26 94.73 37.865 -1.16 2.63 
1052F IIH 2 33-36 94.83 37.868 -1.06 3.02 
1052F 11H 2 43-46 94.93 37.870 -1.07 3.12 
1052F 11H 2 53-56 95.03 37.873 -0.88 3.09 
1052F 11H 2 63-66 95.13 37.876 -0.94 3.31 
1052F 11H 2 73-76 95.23 37.879 -0.63 3.26 
1052F 11H 2 83-86 95.33 37.882 -1.30 2.82 
1052F IIH 2 93-96 95.43 37.885 -1.07 3.13 
1052F 11H 2 103-106 95.53 37.888 -0.96 3.49 
1052F IIH 2 113-116 95.63 37.891 -0.96 3.34 
1052F 11H 2 123-126 95.73 37.894 -1.09 3.45 
1052F 11H 2 133-136 95.83 37.897 -1.33 3.07 
1052F 11H 2 143-146 95.93 37.901 -1.04 3.40 
1052F 11H 3 3-6 96.03 37.905 -1.85 2.55 
1052F 11H 3 13-16 96.13 37.908 -1.24 3.43 
1052F 11H 3 23-26 96.23 37.912 -0.94 3.41 
1052F 11H 3 33-36 96.33 37.917 -0.94 3.23 
1052F 11H 3 43-46 96.43 37.921 -0.97 2.85 
1052F 11H 3 53-56 96.53 37.925 -1.08 2.83 
1052F 11H 3 63-66 96.63 37.927 -0.84 3.03 
1052F IIH 3 83-86 96.83 37.930 -1.27 3.51 
1052F 11H 3 93-96 96.93 37.931 -0.97 3.40 
1052F IIH 3 113-116 97.13 37.933 -1.24 2.89 
1052F 11H 3 123-126 97.23 37.934 -0.91 3.49 
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Appendix 2. Continuous stable isotopic time series 

Hole Core Section Interval MCD Age 	Oxygen Carbon 
(cm) (Ma) 

1052F 11H 3 133-136 97.33 37.935 -1.04 3.18 
1052F 11H 3 143-146 97.43 37.936 -1.45 2.39 
1052F 11H 4 3-6 97.53 37.937 -0.60 3.52 
1052F 11H 4 13-16 97.63 37.939 -0.46 3.15 
1052F 11H 4 23-26 97.73 37.942 -0.72 3.27 
1052F 11H 4 33-36 97.83 37.944 -0.99 3.16 
1052F 11H 4 43-46 97.93 37.946 -1.28 3.33 
1052F 11H 4 53-56 98.03 37.949 -0.40 3.39 
1052F 11H 4 63-66 98.13 37.951 -0.84 3.45 
1052F 11H 4 73-76 98.23 37.954 -0.58 3.56 
1052F 11H 4 83-86 98.33 37.956 -0.85 3.61 
1052F 11H 4 93-96 98.43 37.958 -0.79 3.59 
1052F 11H 4 103-106 98.53 37.961 -0.90 3.74 
1052F 11H 4 113-116 98.63 37.963 -0.98 3.63 
1052F 11H 4 123-126 98.73 37.966 -0.76 3.63 
1052F 11H 4 133-136 98.83 37.968 -1.60 3.15 
1052F 11H 4 143-146 98.93 37.970 -1.35 3.14 
1052F 11H 5 3-6 99.03 37.973 -1.56 3.17 
1052F 11H 5 13-16 99.13 37.975 -1.68 3.28 
1052F 11H 5 23-26 99.23 37.977 -1.43 3.49 
1052F 11H 5 33-36 99.33 37.980 -1.49 3.54 
1052F 11H 5 43-46 99.43 37.982 -1.55 3.48 
1052F 11H 5 53-56 99.53 37.984 -1.30 3.54 
1052F IIH 5 63-66 99.63 37.986 -1.34 3.59 
1052F 11H 5 73-76 99.73 37.988 -1.26 3.56 
1052F 11H 5 83-86 99.83 37.991 -1.14 3.63 
1052F 11H 5 93-96 99.93 37.993 -1.13 3.53 
1052F 11H 5 103-106 100.03 37.995 -1.61 3.33 
1052F 11H 5 113-116 100.13 37.997 -1.23 3.58 
1052F IIH 5 123-126 100.23 37.999 -1.80 3.26 
1052F 11H 5 133-136 100.33 38.002 -1.02 3.49 

1052F IIH 5 143-146 100.43 38.006 -1.28 3.07 
1052F 11H 6 3-6 100.53 38.010 -1.05 3.58 
1052F 11H 6 13-16 100.63 38.014 -1.40 3.45 
1052F 11H 6 23-26 100.73 38.018 -1.22 3.29 
1052F 11H 6 33-36 100.83 38.022 -1.17 3.54 

1052F 11H 6 43-46 100.93 38.027 -1.72 3.18 

1052F 11H 6 53-56 101.03 38.031 -1.72 3.27 
1052F IIH 6 63-66 101.13 38.033 -1.23 3.28 
1052F 11H 6 73-76 101.23 38.036 -1.48 3.04 

1052F 11H 6 83-86 101.33 38.039 -0.97 3.40 
1052F IIH 6 93-96 101.43 38.041 -1.70 3.48 
1052F 11H 6 103-106 101.53 38.044 -1.61 3.57 
1052F 11H 6 113-116 101.63 38.047 -1.21 3.49 
1052F IIH 6 123-126 101.73 38.050 -1.21 3.11 
1052F 11H 6 133-136 101.83 38.053 -1.28 3.39 
1052F IIH 6 143-146 101.93 38.057 -1.34 2.87 
1052F IIH 7 3-6 102.03 38.058 -1.35 3.08 
1052B 12H 3 133-136 102.05 38.060 -1.55 3.04 
1052F 11H 7 13-16 102.13 38.061 -0.97 3.32 
1052B 12H 3 143-146 102.15 38.062 -1.62 2.95 
1052F 11H 7 23-26 102.23 38.064 -1.09 3.30 
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Appendix 2. Continuous stable isotopic time series 

Hole Core Section Interval MCD Age 	Oxygen Carbon 
(cm) (Ma) 

1052B 12H 4 3-6 102.25 38.064 -1.70 2.90 
1052B 12H 4 13-16 102.35 38.067 -1.21 3.15 
1052B 12H 4 23-26 102.45 38.070 -0.92 3.25 
1052B 12H 4 33-36 102.55 38.073 -0.88 3.28 
1052B 12H 4 43-46 102.65 38.076 -1.00 3.03 
1052B 12H 4 53-56 102.75 38.078 -0.97 3.28 
1052B 12H 4 63-66 102.85 38.081 -1.29 3.44 
1052B 12H 4 73-76 102.95 38.084 -1.69 3.27 
1052B 12H 4 83-86 103.05 38.087 -1.24 3.23 
1052B 12H 4 93-96 103.15 38.091 -1.46 3.71 
1052B 12H 4 103-106 103.25 38.094 -1.90 3.04 
1052B 12H 4 113-116 103.35 38.097 -1.46 3.10 
1052B 12H 4 123-126 103.45 38.101 -1.18 3.34 
1052B 12H 4 133-136 103.55 38.104 -1.75 3.25 
1052B 12H 4 143-146 103.65 38.107 -1.44 3.01 
1052B 12H 5 3-6 103.75 38.111 -1.70 3.13 
1052B 12H 5 13-16 103.85 38.113 -1.35 3.21 
1052B 12H 5 23-26 103.95 38.116 -1.20 3.14 
1052B 12H 5 33-36 104.05 38.119 -1.23 3.23 
1052B 12H 5 43-46 104.15 38.121 -1.24 3.01 
1052B 12H 5 53-56 104.25 38.124 -1.97 2.15 
1052B 12H 5 63-66 104.35 38.127 -1.81 2.62 
1052B 12H 5 73-76 104.45 38.129 -2.04 2.81 
1052B 12H 5 83-86 104.55 38.132 -1.86 2.51 
1052B 12H 5 93-96 104.65 38.135 -1.82 2.67 
1052B 12H 5 103-106 104.75 38.137 -1.01 3.30 
1052B 12H 5 113-116 104.85 38.140 -1.68 2.71 
1052B 12H 5 123-126 104.95 38.142 -1.52 2.75 
1052B 12H 5 133-136 105.05 38.145 -1.64 2.75 
1052B 12H 5 143-146 105.15 38.148 -1.53 2.91 
1052F 12H 2 73-76 105.16 38.148 -1.56 2.88 
1052B 12H 6 3-6 105.25 38.150 -1.41 2.94 
1052F 12H 2 83-86 105.26 38.150 -1.98 2.34 
1052B 12H 6 13-16 105.35 38.153 -1.57 3.22 
1052F 12H 2 93-96 105.36 38.153 -1.63 3.17 
1052B 12H 6 23-26 105.45 38.156 -1.70 3.04 
1052F 12H 2 103-106 105.46 38.156 -1.68 3.09 
1052F 12H 2 113-116 105.56 38.158 -1.37 2.97 
1052F 12H 2 123-126 105.66 38.161 -1.20 3.97 
1052F 12H 2 133-136 105.76 38.164 -1.51 2.39 
1052F 12H 3 3-6 105.96 38.169 -1.66 2.69 
1052F 12H 3 13-16 106.06 38.172 -1.56 3.01 
1052F 12H 3 23-26 106.16 38.175 -1.59 2.85 
1052F 12H 3 33-36 106.26 38.178 -1.40 3.13 
1052F 12H 3 43-46 106.36 38.181 -1.29 2.90 
1052F 12H 3 53-56 106.46 38.184 -1.53 2.94 
1052F 12H 3 63-66 106.56 38.187 -1.51 3.14 
1052F 12H 3 73-76 106.66 38.190 -1.41 2.74 
1052F 12H 3 83-86 106.76 38.192 -2.09 2.86 
1052F 12H 3 93-96 106.86 38.195 -1.91 3.08 
1052F 12H 3 113-116 107.06 38.200 -1.48 3.00 
1052F 12H 3 123-126 107.16 38.204 -1.87 2.91 
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Appendix 2. Continuous stable isotopic time series 

Hole Core Section Interval MCD Age Oxygen Carbon 
(cm) (Ma) 

1052F 12H 3 133-136 107.26 38.207 -2.14 3.05 
1052F 12H 3 143-146 107.36 38.211 -1.62 2.87 
1052F 12H 4 3-6 107.46 38.215 -1.78 2.62 
1052F 12H 4 13-16 107.56 38.218 -2.23 2.58 
1052F 12H 4 23-26 107.66 38.221 -1.71 2.95 
1052F 12H 4 33-36 107.76 38.224 -2.09 2.56 
1052F 12H 4 43-46 107.86 38.227 -1.31 2.76 
1052F 12H 4 53-56 107.96 38.230 -2.16 2.82 
1052F 12H 4 63-66 108.06 38.233 -1.78 3.08 
1052F 12H 4 73-76 108.16 38.236 -1.32 3.06 
1052F 12H 4 93-96 108.36 38.242 -2.05 2.23 
1052F 12H 4 103-106 108.46 38.245 -1.39 2.86 .  
1052F 12H 4 113-116 108.56 38.248 -1.59 3.35 
1052F 12H 4 123-126 108.66 38.253 -1.26 3.02 
1052F 12H 4 133-136 108.76 38.259 -1.17 3.08 
1052F 12H 4 143-146 108.86 38.265 -2.08 3.07 
1052F 12H 5 13-16 109.06 38.273 -1.03 2.80 
1052F 12H 5 23-26 109.16 38.277 -1.32 2.90 
1052F 12H 5 33-36 109.26 38.280 -2.02 2.89 
1052F 12H 5 43-46 109.36 38.283 -0.07 2.47 
1052F 12H 5 53-56 109.46 38.286 -0.77 2.92 
1052F 12H 5 63-66 109.56 38.290 -0.77 2.89 
1052F 12H 5 73-76 109.66 38.293 -1.01 2.87 
1052F 12H 5 83-86 109.76 38.296 -0.24 2.71 
1052F 12H 5 93-96 109.86 38.300 -1.20 2.85 
1052F 12H 5 103-106 109.96 38.303 -1.19 3.22 
1052F 12H 5 113-116 110.06 38.306 -1.02 2.79 
1052F 12H 5 123-126 110.16 38.309 -1.20 3.07 
1052F 12H 5 133-136 110.26 38.313 -0.56 2.81 
1052F 12H 5 143-146 110.36 38.316 -0.71 2.88 
1052F 12H 6 3-6 110.46 38.319 -1.41 2.67 
1052F 12H 6 13-16 110.56 38.324 -1.02 2.78 
1052F 12H 6 23-26 110.66 38.330 -1.02 2.90 
1052F 12H 6 33-36 110.76 38.335 -1.01 2.73 
1052F 12H 6 43-46 110.86 38.339 -1.16 2.61 
1052F 12H 6 53-56 110.96 38.341 -0.84 2.74 
1052F 12H 6 63-66 111.06 38.343 -0.88 2.75 
1052F 12H 6 73-76 111.16 38.346 -0.94 3.15 
1052F 12H 6 83-86 111.26 38.348 -1.08 3.01 
1052F 12H 6 93-96 111.36 38.351 -0.61 2.68 
1052F 12H 6 103-106 111.46 38.353 -1.04 2.74 
1052F 12H 6 113-116 111.56 38.355 -0.89 2.76 
1052F 12H 6 123-126 111.66 38.358 -0.17 2.83 
1052F 12H 6 133-136 111.76 38.360 -1.27 1.59 
1052F 12H 6 143-146 111.86 38.362 -1.26 2.84 
1052B 13H 3 133-136 111.90 38.363 -1.74 2.54 
1052F 12H 7 3-6 111.96 38.365 -0.78 2.92 
1052B 13H 3 143-146 112.00 38.366 -1.81 2.80 
1052F 12H 7 13-16 112.06 38.368 -0.34 2.73 
1052B 13H 4 3-6 112.10 38.369 -2.42 2.50 
1052F 12H 7 23-26 112.16 38.371 -1.61 3.12 
1052F 12H 7 33-36 112.26 38.374 -0.98 2.84 
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Appendix 2. Continuous stable isotopic time series 

Hole Core Section Interval MCD Age 	Oxygen Carbon 
(cm) (Ma) 

1052B 13H 4 23-26 112.30 38.375 -1.25 3.23 
1052F 12H 7 43-46 112.36 38.377 -0.77 2.93 
1052B 13H 4 33-36 112.40 38.379 -2.15 2.47 
1052B 13H 4 43-46 112.50 38.383 -1.98 3.15 
1052B 13H 4 53-56 112.60 38.388 -1.46 3.30 
1052B 13H 4 63-66 112.70 38.393 -1.86 2.51 
1052B 13H 4 73-76 112.80 38.398 -1.35 3.34 
1052B 13H 4 83-86 112.90 38.403 -2.20 2.79 
1052F 13H 1 53-56 112.96 38.408 -1.26 2.36 
1052B 13H 4 93-96 113.00 38.408 -1.98 2.82 
1052F 13H 1 63-66 113.06 38.412 -1.23 2.68 
1052B 13H 4 103-106 113.10 38.414 -1.87 3.24 
1052F 13H 1 73-76 113.16 38.416 -1.30 2.76 
1052B 13H 4 113-116 113.20 38.419 -2.04 2.52 
1052F 13H 1 83-86 113.26 38.419 -1.12 2.78 
1052F 13H 1 93-96 113.36 38.422 -0.90 2.93 
1052F 13H 1 103-106 113.46 38.424 -0.60 2.88 
1052F 13H 1 113-116 113.56 38.426 -1.02 2.08 
1052F 13H 1 123-126 113.66 38.868 -0.35 2.85 
1052F 13H 1 133-136 113.76 39.032 -1.15 2.84 
1052F 13H 1 143-146 113.86 39.034 -1.27 2.45 
1052F 13H 2 3-6 113.96 39.036 -1.26 2.82 
1052F 13H 2 13-16 114.06 39.039 -1.00 2.80 
1052F 13H 2 23-26 114.16 39.041 -0.94 2.79 
1052F 13H 2 33-36 114.26 39.044 -1.13 2.76 
1052F 13H 2 43-46 114.36 39.047 -0.43 2.75 
1052F 13H 2 53-56 114.46 39.049 -0.87 2.86 
1052F 13H 2 63-66 114.56 39.052 -0.81 2.95 
1052F 13H 2 73-76 114.66 39.055 -1.16 3.05 
1052F 13H 2 83-86 114.76 39.058 -1.05 2.34 
1052F 13H 2 93-96 114.86 39.061 -0.87 3.10 
1052F 13H 2 103-106 114.96 39.064 -1.60 2.81 
1052F 13H 2 113-116 115.06 39.067 -0.54 2.85 
1052F 13H 2 123-126 115.16 39.070 -0.27 3.08 
1052F 13H 2 133-136 115.26 39.072 -0.27 2.74 
1052F 13H 2 143-146 115.36 39.074 -0.83 3.03 
1052F 13H 3 3-6 115.46 39.076 -1.34 3.32 
1052F 13H 3 13-16 115.56 39.077 -0.82 2.81 
1052F 13H 3 23-26 115.66 39.079 -0.69 2.80 
1052F 13H 3 33-36 115.76 39.082 -0.73 2.94 
1052F 13H 3 43-46 115.86 39.084 -0.78 2.88 
1052F 13H 3 53-56 115.96 39.087 -0.19 2.59 
1052F 13H 3 63-66 116.06 39.089 -1.07 3.04 
1052F 13H 3 73-76 116.16 39.092 -0.56 2.90 
1052F 13H 3 83-86 116.26 39.094 -1.05 2.84 
1052F 13H 3 93-96 116.36 39.096 -1.05 2.93 
1052F 13H 3 103-106 116.46 39.099 -1.12 2.77 
1052F 13H 3 113-116 116.56 39.101 -1.14 2.93 
1052F 13H 3 123-126 116.66 39.104 -0.66 3.00 
1052F 13H 3 133-136 116.76 39.106 -1.08 2.92 
1052F 13H 3 143-146 116.86 39.108 -0.61 2.73 
1052F 13H 4 3-6 116.96 39.109 -1.22 2.73 
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Appendix 2. Continuous stable isotopic time series 

Hole Core Section Interval MCD Age 	Oxygen Carbon 
(cm) (Ma) 

1052F 13H 4 13-16 117.06 39.111 -0.22 2.36 
1052F 13H 4 23-26 117.16 39.112 -0.73 3.00 
1052F 13H 4 33-36 117.26 39.115 -0.73 2.63 
1052F 13H 4 43-46 117.36 39.118 -1.05 2.74 
1052F 13H 4 53-56 117.46 39.121 -1.17 2.96 
1052F 13H 4 63-66 117.56 39.124 -0.61 2.62 
1052F 13H 4 73-76 117.66 39.127 -1.22 2.75 
1052F 13H 4 83-86 117.76 39.130 -0.93 2.66 
1052F 13H 4 93-96 117.86 39.133 -1.34 2.75 
1052F 13H 4 103-106 117.96 39.137 -0.58 2.52 
1052F 13H 4 113-116 118.06 39.141 -1.12 2.62 
1052F 13H 4 123-126 118.16 39.146 -0.13 3.85 
1052F 13H 4 133-136 118.26 39.151 -0.97 2.88 
1052F 13H 4 143-146 118.36 39.156 -1.06 2.58 
1052F 13H 5 3-6 118.46 39.159 -0.92 2.88 
1052F 13H 5 13-16 118.56 39.163 -0.89 2.89 
1052F 13H 5 23-26 118.66 39.166 -1.15 3.14 
1052F 13H 5 33-36 118.76 39.169 -1.05 3.02 
1052F 13H 5 43-46 118.86 39.172 -1.27 3.11 
1052F 13H 5 53-56 118.96 39.175 -1.25 3.17 
1052F 13H 5 63-66 119.06 39.178 -1.13 3.09 
1052F 13H 5 73-76 119.16 39.182 -1.23 3.23 
1052F 13H 5 83-86 119.26 39.185 -1.14 3.22 
1052F 13H 5 93-96 119.36 39.188 -1.25 3.17 
1052F 13H 5 103-106 119.46 39.191 -1.26 3.27 
1052F 13H 5 113-116 119.56 39.194 -1.22 3.18 
1052F 13H 5 123-126 119.66 39.197 -1.04 2.78 
1052F 13H 5 133-136 119.76 39.200 -1.30 3.02 
1052F 13H 5 143-146 119.86 39.204 -1.13 2.91 
1052F 13H 6 3-6 119.96 39.207 -1.46 3.09 
1052F 13H 6 13-16 120.06 39.211 -1.29 2.85 
1052F 13H 6 23-26 120.16 39.216 -1.08 2.75 
1052F 13H 6 33-36 120.26 39.221 -1.33 3.34 
1052F 13H 6 43-46 120.36 39.226 -1.15 3.02 
1052F 13H 6 53-56 120.46 39.232 -1.42 3.15 
1052B 14H 3 93-96 120.50 39.237 -1.29 3.04 
1052F 13H 6 63-66 120.56 39.238 -1.61 3.53 
1052B 14H 3 103-106 120.60 39.242 -1.39 3.16 
1052F 13H 6 73-76 120.66 39.243 -1.46 2.98 
1052B 14H 3 113-116 120.70 39.248 -1.88 2.53 
1052B 14H 3 123-126 120.80 39.250 -1.29 3.15 
1052B 14H 3 133-136 120.90 39.253 -1.53 3.24 
1052B 14H 3 143-146 121.00 39.256 -1.55 3.62 
1052B 14H 4 3-6 121.10 39.258 -1.32 3.38 
1052B 14H 4 13-16 121.20 39.261 -1.94 2.89 
1052B 14H 4 23-26 121.30 39.263 -1.90 2.98 
1052B 14H 4 33-36 121.40 39.266 -1.50 3.41 
1052B 14H 4 43-46 121.50 39.269 -1.68 3.13 
1052B 14H 4 53-56 121.60 39.271 -1.68 3.00 
1052B 14H 4 63-66 121.70 39.274 -1.65 3.08 
1052B 14H 4 73-76 121.80 39.276 -1.70 3.35 
1052B 14H 4 83-86 121.90 39.279 -1.26 3.35 
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Appendix 2. Continuous stable isotopic time series 

Hole Core Section Interval MCD Age 	Oxygen Carbon 
(cm) (Ma) 

1052B 14H 4 93-96 122.00 39.281 -1.52 3.46 
10528 14H 4 103-106 122.10 39.284 -1.61 3.26 
1052B 14H 4 113-116 122.20 39.287 -1.52 3.19 
1052B 14H 4 123-126 122.30 39.290 -1.05 3.02 
1052B 14H 4 133-136 122.40 39.293 -1.33 3.29 
1052B 14H 4 143-146 122.50 39.296 -1.46 3.34 
1052B 14H 5 3-6 122.60 39.299 -1.29 3.21 
1052B 14H 5 13-16 122.70 39.303 -1.31 3.37 
1052B 14H 5 23-26 122.80 39.306 -1.14 3.38 
1052B 14H 5 33-36 122.90 39.309 -1.40 3.37 
1052B 14H 5 43-46 123.00 39.312 -1.22 3.28 
1052B 14H 5 53-56 123.10 39.316 -1.62 3.07 
1052B 14H 5 63-66 123.20 39.319 -1.37 3.12 
1052B 14H 5 73-76 123.30 39.322 -1.42 3.32 
1052B 14H 5 83-86 123.40 39.325 -1.45 3.34 
1052B 14H 5 93-96 123.50 39.329 -1.16 3.38 
1052B 14H 5 103-106 123.60 39.332 -1.31 3.35 
1052B 14H 5 113-116 123.70 39.335 -1.50 3.30 
1052B 14H 5 123-126 123.80 39.338 -1.33 3.19 
1052B 14H 5 133-136 123.90 39.341 -1.48 3.07 
1052B 14H 5 143-146 124.00 39.343 -1.56 3.15 
1052B 14H 6 3-6 124.10 39.346 -1.62 3.48 
1052B 14H 6 13-16 124.20 39.349 -1.34 3.26 
1052B 14H 6 23-26 124.30 39.351 -1.24 3.34 
1052B 14H 6 33-36 124.40 39.354 -1.41 3.12 
1052B 14H 6 43-46 124.50 39.356 -1.45 3.16 
1052B 14H 6 53-56 124.60 39.359 -1.18 3.28 
1052B 14H 6 63-66 124.70 39.362 -1.36 3.12 
1052B 14H 6 73-76 124.80 39.365 -1.44 3.15 
1052B 14H 6 83-86 124.90 39.367 -1.35 3.10 
1052B 14H 6 93-96 125.00 39.371 -1.28 3.35 
1052F 14H 2 103-106 125.01 39.371 -1.21 3.26 
1052B 14H 6 103-106 125.10 39.374 -1.35 3.28 
1052F 14H 2 113-116 125.11 39.374 -1.26 2.86 
1052B 14H 6 113-116 125.20 39.377 -1.52 3.00 
1052F 14H 2 123-126 125.21 39.377 -1.36 3.15 
1052F 14H 2 133-136 125.31 39.379 -1.40 3.05 
1052F 14H 2 143-146 125.41 39.381 -1.39 3.21 
1052F 14H 3 3-6 125.51 39.382 -1.54 3.34 
1052F 14H 3 13-16 125.61 39.384 -1.21 3.35 
1052F 14H 3 23-26 125.71 39.386 -1.23 3.24 
1052F 14H 3 33-36 125.81 39.388 -1.18 3.45 
1052F 14H 3 43-46 125.91 39.390 -1.10 3.27 
1052F 14H 3 53-56 126.01 39.391 -1.11 3.33 
1052F 14H 3 63-66 126.11 39.393 -0.96 3.41 
1052F 14H 3 73-76 126.21 39.394 -1.08 3.45 
1052F 14H 3 93-96 126.41 39.397 -1.14 3.62 
1052F 14H 3 103-106 126.51 39.398 -1.09 3.52 
1052F 14H 3 113-116 126.61 39.399 -1.18 3.58 
1052F 14H 3 123-126 126.71 39.402 -1.25 3.50 
1052F 14H 3 133-136 126.81 39.405 -1.20 3.65 
1052F 14H 3 143-146 126.91 39.408 -1.36 3.34 
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Appendix 2. Continuous stable isotopic time series 

Hole Core Section Interval MCD Age Oxygen Carbon 
(cm) (Ma) 

1052F 14H 4 3-6 127.01 39.411 -0.79 3.67 
1052F 14H 4 13-16 127.11 39.414 -1.17 3.42 
1052F 14H 4 23-26 127.21 39.417 -1.27 3.34 
1052F 14H 4 33-36 127.31 39.421 -1.14 3.47 
1052F 14H 4 43-46 127.41 39.427 -1.17 3.39 
1052F 14H 4 53-56 127.51 39.434 -1.13 3.32 
1052F 14H 4 63-66 127.61 39.440 -1.38 3.47 
1052F 14H 4 73-76 127.71 39.447 -1.56 3.29 
1052F 14H 4 83-86 127.81 39.453 -1.08 3.21 
1052F 14H 4 93-96 127.91 39.456 -1.20 3.28 
1052F 14H 4 103-106 128.01 39.458 -1.29 3.47 
1052F 14H 4 113-116 128.11 39.460 -1.24 3.46 
1052F 14H 4 123-126 128.21 39.463 -1.29 3.45 
1052F 14H 4 133-136 128.31 39.465 -1.00 3.41 
1052F 14H 4 143-146 128.41 39.468 -1.18 3.30 
1052F 14H 5 3-6 128.51 39.470 -1.27 3.30 
1052F 14H 5 13-16 128.61 39.474 -1.03 3.17 
1052F 14H 5 23-26 128.71 39.478 -1.21 3.43 
1052F 14H 5 33-36 128.81 39.482 -1.12 4.21 
1052F 14H 5 43-46 128.91 39.486 -0.36 3.10 
1052F 14H 5 53-56 129.01 39.490 -0.52 3.24 
1052F 14H 5 63-66 129.11 39.494 -1.39 3.22 
1052F 14H 5 73-76 129.21 39.498 -1.23 3.60 
1052F 14H 5 83-86 129.31 39.502 -1.43 3.60 
1052F 14H 5 93-96 129.41 39.506 -0.37 3.13 
1052F 14H 5 103-106 129.51 39.509 -1.52 3.43 
1052F 14H 5 113-116 129.61 39.513 -1.54 3.58 
1052F 14H 5 123-126 129.71 39.517 -1.44 3.22 
1052F 14H 5 133-136 129.81 39.521 -1.31 3.49 
1052F 14H 5 143-146 129.91 39.525 -0.22 3.02 
1052F 14H 6 3-6 130.01 39.529 -0.81 2.88 
1052F 14H 6 13-16 130.11 39.535 -1.52 3.57 
1052F 14H 6 23-26 130.21 39.542 -1.55 3.07 
1052F 14H 6 33-36 130.31 39.548 -1.63 3.50 
1052F 14H 6 43-46 130.41 39.555 -1.65 3.57 
1052F 14H 6 53-56 130.51 39.561 -0.89 2.85 
1052F 14H 6 63-66 130.61 39.568 -1.29 3.10 
1052F 14H 6 73-76 130.71 39.574 -1.48 3.26 
1052F 14H 6 83-86 130.81 39.577 -1.46 3.04 
1052F 14H 6 93-96 130.91 39.580 -1.32 3.33 
1052F 14H 6 103-106 131.01 39.584 -1.32 3.38 
1052F 14H 6 113-116 131.11 39.588 -1.26 3.24 
1052F 14H 6 123-126 131.21 39.593 -0.20 2.88 
1052F 14H 6 133-136 131.31 39.596 -0.31 2.66 
1052F 14H 6 143-146 131.41 39.598 -1.19 3.18 
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