THEORETICAL STUDIES IN
 HIGH-PERFORMANCE . LIQUID CHROMATOGRAPHY

by

HUGH P. SCOTT B.Sc.

Thesis submitted for the degree of Doctor of Philosophy

University of Edinburgh.
1983.

DECLARATION

This thesis is the original work of the author, unless otherwise stated, and has not been submitted previously for any other degree. The work in chapter six was begun as an undergraduate project, but was fully revised and significantly extended before inclusion in this thesis.

A list of the postgraduate courses attended during the period of this research is given on piii.

ACKNOWLEDGMENTS

```
    I would like to express my thanks to the following people
for their help during the course of this work:-
Professor J.H. Knox, for his supervision, assistance, enthusiasm
    and friendship.
Mrs. M. Duncan, for typing this thesis.
Dr. A.F. Fell, for his encouragement in the final stages of
        preparation of this thesis, while engaged in further research
        at Heriot-Watt University.
The staff, students and research workers of Edinburgh University,
        Chemistry Department, in particular all those involved in
        research into Chromatography during the course of this work,
        for their help and friendship.
This work was supported by a grant from the Science Research Council.
```


UNIVERSITY OF EDINBURGH ABSTRACT OF THESIS (Reguation 6.9)

Name of Candidate Hugh Purdie Scott

Aduress \qquad
Degree \qquad Doctor of Philosophy

Date
September, 1983
Title of Thesis THEOREIICAL ASPECTS OF HIGH PERFORMANCE LIQUID CHROMATOGRAPHY

The various modes of chromatography, particularly liquid chromatography are discussed. Various theories of band broadening in chromatography are described, and equationssuitable for testing against experimental data are devised.

In order to facilitate the interpretation of experimental data, diffusion coefficients for a number of solute/eluent pairswere measured directly by the chromatographic broadening technique using glass capillary tubing and HPLC detection technology.

Band broadening by axial diffusion was examined by the interrupted flow technique This enabled determination of the obstructive factor for both excluded and retained solutes. The relative rate of diffusion in the stationary phase was also obtained frc these experiments.

Band broadening by slow mass transfer was examined by determining plate heights using large ($50-540 \mu \mathrm{~m}$) particles and high reduced velocities. Although it was not possible to ignore flow effects in this experiment, reasonable assumptions bring the experimental data into the range predicted by the non-equilibrium theory. The retention dependence of the data was also in agreement with this theory.

In a completely different vein, a computer model was developed to investigate the mechanism of size-exclusion chromatography. This model consisted of random-sized touching non-overlapping spheres. Although the model did not adequately fit the results, this was probably due to differences in porosity and pore-size distribution than to any effect of pore shape. Pore shape was not found to be critical in these studies.

An alternative model consisted of cylindrical pores whose radii were determined by the pore-size distribution of the material in question. Initial results were encouraging, and better data may lead to a good model for SEC.

The following courses were attended during the period of postgraduate study.

Detergency and the Design of Surface Active Agents
Dr. W.D. Cooper
(Autumn 1978)

The Neutron in Chemistry
Professor R.A. Cowley and others
(Edinburgh University Physics Department) (December 1978)
High Performance Liquid Chromatography in Clinical and Biomedical
Chemistry
Various Speakers
(Chemical Society Analytical Division/Association of Clinical
Biochemistry)
(February 1979)

Catalysis and Chemical Productivity
Dr. N.J. Sampson and Others
(ICI Petrochemicals Division)
(March 1979)

Advanced Seminar Course in HPLC
Various Speakers
(Chemical Society/Wolfson Liquid Chromatography Unit)
(July 1979)
Mass Spectrometry
Dr. J.H. Beynon
(University College of Swansea) (December 1979)

Computers in Chemistry
Dr. C.N.M. Pounder (Spring 1980)

Advances in Applied HPLC
Various Speakers
(Chemical Society Analytical Division/Association of Clinical
Biochemists)
(February 1980)
Industrial Inorganic Chemistry
Dr. H.L. Roberts
(ICI Mond Division)
(March 1980)

```
Courses attended (contd.)
A New Approach to Teaching Quantum Mechanics to Chemists
Dr. K.P. Lawley
(Autumn 1980)
Chromatography, Equilibria and Kinetics
Various Speakers
(15th Faraday Symposium)
(at University of Sussex)
(December 1980)
Electronics and Microprocessors
Mr. A. King
    (Spring 1981)
Clinical and Biochemical Advances in HPLC
Various Speakers
(Chemical Society Analytical Division/Association of Clinical
Biochemists)
    (February 1981)
Introduction to Management
Various Speakers
(Careers Recruitment and Advisory Service)
(at University of York)
ACKNOWLEDGMENTS ..... p i
ABSTRACT ..... p ii
COURSES ATTENDED ..... p ifi
CONTENTS ..... p v
LIST OF FIGURES ..... p vii
LIST OF TABLES ..... p ix
CHAPTER 1 INTRODUCTION
1.1 Description of Chromatography ..... p 1
1.2 Modes of Chromatography ..... p 1
1.3 High Performance Liquid Chromatography ..... p 2
1.4 Definitions ..... p 5
CHAPTER 2 KINETICS
2.1 Introduction ..... p 12
2.2 Molecular Diffusion ..... P 12
2.3 The Theoretical Plate Model ..... P 14
2.4 The Random Walk Model ..... P 16
2.5 The Stochastic Theory ..... p 31
2.6 The Mass Balance Theory ..... p 32
2.7 The Non-Equilibrium Theory ..... p 33
CHAPTER 3 DIFFUSION
3.1 Introduction ..... P 50
3.2 Estimation of Diffusion Coefficients ..... P 53
in Liquids
3.3 Temperature Dependence of Diffusion ..... p 57 Coefficients
3.4 Measurement of Diffusion Coefficients ..... p 57
3.5 Experimental ..... p 67
CHAPTER 4 BAND BROADENING BY LONGITUDINAL DIFFUSION
4.1 Introduction ..... p 70
4.2 The Obstructive Factor ..... P 70
4.3 Combination of Diffusion Terms ..... P 73
4.4 Experimental ..... P 75
4.5 Discussion ..... P 78

\section*{CHAPTER 5 BAND BROADENING BY SLOW MASS TRANSFER}
5.1 Introduction ..... p 83
5.2 Experimental ..... p 84
5.3 Discussion ..... p 90
CHAPTER 6 THEORETICAL MODELS OF SIZE-EXCLUSION CHROMATOGRAPHY
6.1 Introduction ..... p 93
6.2 The Theory of Size-Exclusion Chromatography ..... p 95
6.3 Computer Modelling ..... p 100
6.4 Conclusion ..... p 109
CHAP TER 7 CONCLUSIONS
7.1 Introduction ..... p 111
7.2 Diffusion ..... p 111
7.3 Band Broadening by Longitudinal Diffusion ..... p 112
7.4 Band Broadening by Slow Mass Transfer ..... p 113
7.5 Size-Exclusion Chromatography ..... p 114
REFERENCES ..... p 116
LIST OF SYMBOLS ..... p 119
APPENDIX 1 List of Compounds ..... p 125
APPENDIX 2 An Expression for the C-term in Liquid Chromatography ..... p 128
Appendix 3 List of Coordinates of Random Touching Spheres ..... p 131

FIGURE
1.4-1 Schematic Diagram of Volumes within a Column ..... 8
2.7-1 Diagram of Uni form Stationary Zone ..... 45
4.2-1 Schematic Diagram of Tortuous and Constricted Pores ..... 71
4.4-1 Schematic Diagram for Data Reduction in B-Term Experiment ..... 77
4.4-2 Typical Results of B-Term Experiment ..... 78
4.5-1 Graph of \(\left(1+k^{\prime}\right) D_{e f f} / D_{m}\) against \(k^{\prime}\) for \(0 x y-\) Aromatic Compounds ..... 80
4.5-2 Graph of \(\left(1+k^{\prime}\right) D_{e f f} / D_{m}\) against \(k^{\prime}\) for Polycyclic Aromatic Hydrocarbons ..... 80
4.5-3 Graph of \(\left(1+k^{\prime \prime}\right) D_{\text {eff }} / D_{m}\) against \(k^{\prime \prime}\) for Sulphanilic Acid ..... 81
4.5-4 Graph of \(\left(1+k^{\prime \prime}\right) D_{e f f} / D_{m}\) against \(k^{\prime \prime}\) for \(0 x y-\) Aromatic Hydrocarbons ..... 82
5.2-1 Typical Set of Results for C-Term Experiment on \(50 \mu \mathrm{~m}\) Material ..... 86
5.2-2 Graph of \(C_{\text {ap }}\) against \(k^{\prime \prime}\) ..... 86
5.2-3 Typical Set of Results for C-Term Experiment on \(540 \mu \mathrm{~m}\) Material ..... 90
5.3-1 Family of Curves \(h=A \nu_{o}^{1 / 3}\) ..... 90
5.3-2 Graph of \(C\) against \(k^{\prime \prime}\) allowing \(A=2\) ..... 91
6.1-1 Exclusion Data of Knox and McLennan ..... 95
6.2-1 Exclusion of a Spherical Molecule from a Cylindrical Pore ..... 96
6.2-2 Exclusion of a Rod-Shaped Molecule from a Cylindrical Pore ..... 96
6.2-3 Inverse Cylindrical Pore ..... 97
FI GURETITLE
AFTER PAGE
6.2-4 Exclusion Curves for Simple Pore Geometries ..... 98
6.2-5 Exclusion Curve for Infinite Cylinder compared with Experimental Data ..... 100
6.3-1 Flow Diagram for Construction of Array of Random Touching Circles ..... 101
6.3-2 Flow Diagram for Construction of Array of Random Touching Spheres ..... 101
6.3-3 Construction Method for Array of Random Touching Circles ..... 102
6.3-4 Construction Method for Array of Random Touching Spheres ..... 103
6.3-5 Array of Random Touching Circles (s.d \(=0.1\) ) ..... 103
6.3-6 Array of Random Touching Circle (s.d. \(=0.3\) ) ..... 103
6.3-7 Sections through Array of Random Touching Spheres ..... 104
6.3-8 Exclusion Curves for Arrays of Random Touching Circles and Spheres ..... 105
6.3-9 Re-Scaling of Experimental Data ..... 105
6.3-10 Exclusion Curve for Modified Infinite Cylinder Model ..... 107
6.3-11 Exclusion Curve based on Pore-Size Distribution for Hypersil ..... 108
6.3-12 Exclusion Curve for 'Shot Spheres' Model ..... 109
A3 - \(1 \quad\) Graph of \(\left(k^{\prime \prime} / 1+k^{\prime \prime}\right)^{2} / 30 C\) against \(k^{\prime \prime}\) ..... 130

\section*{INDEX OF TABLES}
TABLETITLEAFTER PAGE
\(2.4-1\) Mobile Phase Eddy Diffusion Parameters ..... 25
3.5-1 Experimental Caiculation of Diffusion Coefficients ..... 68
3.5-2 Viscosity of Methanol:Water Mixtures at Various Temperatures ..... 69
3.5-3 Diffusion Coefficients at Temperatures of Interest ..... 69
4.4-1 Results of B-Term Experiment for 0xy- Aromatic Hydrocarbons ..... 78
4.4-2 Results of B-Term Experiment for Polycyclic Aromatic Hydrocarbons ..... 78
4.4-3 Results of B-Term Experiment for Sulphanilic Acid ..... 78
4.5-1 Results of B-Term Experiment for Oxy-Aromatic Hydrocarbons Expressed in Terms of Zone Capacity Ratio ..... 82
5.2-1 Results of \(\mathbf{C}\)-Term Experiment ..... 86
5.3-1 Linear Approximation to \(h=A \nu_{o}^{1 / 3}\) ..... 90
6.1-1 Exclusion Data of Knox and McLennan ..... 95
6.3-1 Exclusion Data for Matrices of Random Touching Circles ..... 104
6.3-2 Exclusion Data for Matrix of Random Touching Spheres ..... 105
6.3-3 Mercury Porosimmetry Data for Hypersil ..... 107
6.3-4 Exclusion Curve based on Pore-Size Distribution for Hypersil ..... 108
6.3-5 Exclusion Curve for 'Shot Spheres' Model ..... 109

CHAPTER 1

INTRODUCTION

\subsection*{1.1. DESCRIPTION OF CHROMATOGRAPHY}

Chromatography is the name given to a method of separation of different molecular species. The mechanism of separation is the partitioning of the molecules between two phases or zones in intimate contact, one of which is stationary and the other continuously moving. If two compounds have different distribution coefficients between the two phases, the one which has a greater proportion of its molecules in the mobile phase will be moved further from its starting point than the other in the same time.

The name 'chromatography' was given by Tswett (1), who was working with plant pigments. The name was given because of the coloured bands which appeared in his experiment. From the above description of the process, it is obvious that colour is not a necessary requirement for separation to take place.

\subsection*{1.2. MODES OF CHROMATOGRAPHY}

Various chromatographic techniques are possible, depending on the choice of mobile and stationary phases. The mobile phase may be a gas or a liquid, and the stationary phase may be a liquid (supported on a solid) or a solid. When the mobile phase is a gas, the technique is known as gas chromatography. Gas liquid partition chromatography (2) and gas solid adsorption chromatography (3) are the two main forms of this technique with the different types of stationary phase. The terms 'partition' and 'adsorption' describe the mechanism whereby molecules are held in the stationary phase. With a liquid as the mobile phase, liquid liquid partition
chromatography and liquid solid adsorption chromatography are the corresponding modes, but other modes such as ion exchange, bonded phase and exclusion chromatography are also possible. A more complete analysis of the modes of liquid chromatography is given below.

For most chromatographic techniques, both stationary and mobile phases are held in a column. The stationary phase for liquid chromatography, however, may be in the form of a sheet of paper (paper chromatography) (4) or a thin layer of material deposited on a glass plate (thin-layer chromatography) (5).

This thesis deals primarily with column liquid chromatography. The other techniques described above will be mentioned in passing only.

\subsection*{1.3. HIGH PERFORMANCE LIQUID CHROMATOGRAPHY}

Modern column liquid chromatography is generally known as highperformance liquid chromatography (HPLC), since by using high pressures and sophisticated equipment good separations of compounds can be obtained in much shorter times than with traditional liquid chromatographic techniques using gravity feed. This is achieved by packing small ( \(3-10 \mu \mathrm{~m}\) ) particles into fairly short ( \(100-250 \mathrm{~mm}\) ) columns to form the stationary phase, and pumping the mobile phase through this at high (20-200 bar) pressures. Separations of many mixtures may thus be obtained in times of about \(15-20\) minutes. The pioneering work permitting such high performance was carried out by Lipsky (6), Huber (7) and Kirkland (8).

Various modes of HPLC are possible, depending on the exact nature of the stationary and mobile phases. A brief description
of the most common modes is given below.

The first mode of chromatography used was liquid-solid chromatography (1), more commonly known as adsorption chromatography. In this mode, the solute is partitioned between a non-polar mobile phase and the surface of an adsorbate, such as silica or alumina, which is highly polar. This technique requires careful control of the adsorbent activity. This is achieved by adding a small percentage of polar modifier to the eluent. A detailed treatment of this technique is given by Snyder (9).

Liquid-liquid partition chromatography was invented by Martin and Synge (10). In this mode, the stationary phase is a liquid supported on an inert solid support. Wide pore silica gel is often used as the support. The stationary liquid may be either polar (such as triethylene glycol) or non-polar (such as squalane). In the former case the eluent used would be non-polar and saturated with stationary phase to maintain the surface coating. Polar eluents would be used with non-polar stationary phases. Because of the difficulty of holding the stationary phase in the column, these systems are little used now, having been largely superseded by systems using chemically bonded stationary phases.

Chemi cally bonded stationary phases are prepared by bonding organic molecules to the surface of an adsorbent, normally silica gel. Various types of phase can be prepared, but the most common are hydrophobic phases, polar phases or ion-exchange phases.

Hydrophobic phases are prepared by using groups such as octadecyl \(\left(\mathrm{C}_{18}\right)\), octyl \(\left(\mathrm{C}_{8}\right)\) or other short non-polar chains. Polar phases are prepared by using groups such as aminopropyl and
cyanopropyl, and ion-exchange phases by using groups such as sulphonate and quaternary ammonium. These phases, especially the hydrophobic type, are now very widely used in HPLC. A review of reversed phases is given in reference (11).

When a hydrophobic stationary phase is used with a polar eluent the system is referred to as a reversed-phase system, since the polarity of the phases is reversed with respect to adsorption chromatography. The eluent used in such systems is normally a mixture of water and a water-soluble organic liquid, methanol or acetonitrile being the most common.

Reversed-phase liquid chromatography probably involves some extraction of the less polar component of the eluent onto the stationary phase, thus forming an organic-rich layer at the surface. The solute is partitioned between this layer and the eluent \((12,13)\). Other suggested mechanisms are referred to in reference (11).

In order to separate ionisable compounds, ion exchange chromatography may be used (14). The stationary phase contains fixed ionised groups, such as sulphonic acid groups (for separation of cations), or quaternary ammonium groups (for separation of anions). Counter ions must also be present to preserve electrical neutrality. Solute ions exchange with the counter ions and are thus retained. The eluent must be buffered to control the acid-base equilibria in the column, in order to avoid peak tailing.

An alternative approach is to use either a normal phase or reverse phase system, and to include an ion-pairing agent in the system (15). Typical pairing agents are cetyltrimethyl ammonium bromide and naphthalene sulphonate. The former forms ion pairs with cations; the latter with anions. The charges on the ions in
an ion pair are shielded from the eluent by the large non-polar parts of the molecules. The ion pairs thus behave like large non-polar molecules and are predominately found in the organic phase. Once formed, the ion pairs may be separated by either normal or reverse-phase chromatography; the latter is becoming the more popular.

Large molecules may be separated on the basis of size by a technique known as size-exclusion chromatography (16). In this technique, there is no chemical interaction between the sample and the stationary phase. The separation is determined by the degree to which sample molecules can penetrate the pores of the support. Large molecules cannot enter the pores and thus elute more quickly than smaller molecules which can enter the pores. Control of pore size is thus necessary to achieve good separations.

\subsection*{1.4. DEFINITIONS}

When a solute is eluted from a chromatographic system, having been introduced as a sharp concentration pulse, the eluted band for a sufficiently efficient system will be Gaussian in shape. If two solutes are introduced at the same time, but have different distribution coefficients between the two phases, the maxima of the eluted bands will appear at different times. But since the concentration pulse of each sample broadens as elution proceeds, it is possib?e that the bands will still overlap, and a useful degree of separation will not have been achieved.

The degree of separation may be quantified by the resolution factor \(R_{s}\) :
\[
\begin{array}{ll}
R_{s}=\frac{\Delta z}{4 \sigma} & 1.4 .-1 a \\
R_{s}=\frac{\Delta z / z}{4 \sigma / z} & 1.4 .-1 b
\end{array}
\]
where \(z\) is the distance travelled from injection, \(\Delta z\) is the distance between the two peaks, and \(\sigma\) is the mean standard deviation of the two peaks. All three quantities must be measured in the same units, but any convenient units may be used. The separation of the two peaks may be said to be satisfactory if \(R_{s}>1.5\); this corresponds to nearly baseline separation of the components.

Resolution depends on two parameters, as may be seen from equation (1.4.-1). The first is the separation of the two peaks, which depends on their relative distribution coefficients (see equation \(1.4 .-1 b)\). The second is the relative peak width which depends on the kinetics of the processes occuring during elution.

Since molecules are washed down the column only while in the mobile phase, each molecule spends the same time \(t_{m}\) in this phase, within statistical limits. Under ideal conditions, when no band broadening occurs, all molecules would spend exactly \(t_{m}\) in the mobile phase, but the kinetics of the processes involved under real conditions lead to this being an average time, the statistical limits being set by the kinetics of the processes going on. This time \(t_{m}\) may be measured as the time taken for elution of a substance which is neither retained by the stationary phase nor excluded from the pores of the support. If a solute is retained, it will elute in a time \(t_{r}\), which is the time taken for the mean of the peak to elute. It thus spends a time \(t_{r}{ }^{-t}\) m in stationary phase, again within statistical limits.

The ratio of the time spent in the stationary phase to that spent in the mobile phase is given by the phase capacity ratio \(\mathrm{k}^{\prime}\) :
\[
k^{\prime}=\frac{t_{r}-{ }^{t_{m}}}{{ }^{t_{m}}} \quad 1.4 .-2
\]

This quantity is known as the phase capacity ratio since it may be shown to correspond to the ratio of the amount of solute in the stationary phase to the amount in the mobile phase. It is closely related to the distribution coefficient, and is a useful way of characterising the degree of retention of a solute in a system. Indeed it is readily shown that \(k^{\prime}\) is related to the equilibrium distribution coefficient for the solute between the mobile and stationary phases by equation 1.4. - 3 :
\[
k^{\prime}=D \frac{v_{s}}{v_{m}}
\]
where \(\mathrm{V}_{\mathrm{s}}\) is the volume of the stationary phase, \(\mathrm{V}_{\mathrm{m}}\) is the volume of the mobile phase, and \(D\) is the distribution coefficient.

Sometimes we wish to measure the ratio of the amount of solute actually moving to that which is stationary. This is the case in size-exclusion chromatography, where molecules are retained in stagnant mobile phase which is held in pores of the support material. From a theoretical standpoint, it is also often more useful to distinguish between moving and stationary molecules than between molecules in the mobile and stationary phases, since again some of the mobile phase is stagnant in the pores of the support. In these cases, the zone capacity ratio \(k^{\prime \prime}\) is used. This is defined as -
\[
k^{\prime \prime}=\frac{t_{r}-t_{0}}{t_{0}}
\]
where \(t_{o}\) is the mean time spent in the column by molecules of a solute confined to the mobile zone. This may be measured as the elution time of a solute which is totally excluded from the pores of the material.

The distinction between the phase capacity ratio and the zone capacity ratio is very important in some parts of this thesis. The difference is perhaps best seen by writing equations 1.4. - 4 and 1.4 - 5 in terms of volumes rather than times:
\[
\begin{array}{ll}
k^{\prime}=\frac{v_{r}-v_{m}}{v_{m}} & 1.4 .-6 \\
k^{\prime \prime}=\frac{v_{r}-v_{0}}{v_{0}} & 1.4 .-7
\end{array}
\]

Here \(V_{r}\) is the volume of eluent required to elute the solute. \(V_{m}\) is the volume of mobile phase in the column, and \(V_{0}\) is the volume of mobile phase actually flowing in the column. The distinction between these two is made clear in figure 1.4-1, which schematically shows the important volumes which may be defined in a column.

These capacity ratios are used to express the position of a peak relative to the time taken for elution. Since they are ratios, they are independent of flowrate. The greatest difficulty associated with their use is the measurement of the time spent in the mobile phase or mobile zone.

The peak width is normally taken as being four times the standard deviation of the peak, since if tangents are drawn to the points of inflection of a Gaussian curve, the distance between the points where these tangents cross the baseline is four standard deviation units:

\(V_{s z}\)

FIGURE 1.4. - 1.
Schematic Diagram of Volumes within a Column.
\(V_{0}=\) volume of mobile zone
\(v_{p}=\) volume of pores
\(V_{s p}=\) volume of stationary phase
\(V_{x}=\) volume of inert support
\(V_{m}=\) volume of mobile phase \(=V_{o}+V_{p}\)
\(v_{s z}=\) volume of stationary zone \(=v_{s p}+v_{p}\)
\[
W_{b}=4 \sigma \quad 1.4 .-8
\]

The efficiency of a column is determined by how narrow the peaks are relative to their elution times. To enable useful comparisons to be made, it is necessary again to use ratios. The column efficiency is usually quoted as the number of theoretical plates, \(N\) :
\[
\left.N=\left(\frac{\sigma_{z}^{2}}{L}\right)^{2}=\frac{\sigma_{t}}{t_{r}}\right)^{2} \quad 1.4 .-9
\]
where \(\sigma_{z}\) is the standard deviation of the peak expressed in units of column length, and \(\sigma_{t}\) is the standard deviation in terms of the time it takes the peak to be eluted. \(L\) is the length of the column. In each ratio, the same units must be used for each parameter. The greater the value of \(N\), the more efficient/the column. The use of \(N\) as a measure of column efficiency comes from the plate theory of chromatography (10). This theory will be outlined in the following chapter.

It is useful to characterise columns by the 'height equivalent to a theoretical plate', H :
\[
H=L / N \quad \text { 1.4. - } 10
\]
since this indicates the inherent efficiency of the system. A more efficient separation could be achieved by, for example, increasing the length of the column, but such an increase in \(N\) would not indicate any improvement in the efficiency of the processes involved, whereas if a column is shown to have a lower value of \(H\), the separating potential of the system is increased. Increasing efficiency by increasing
column length is an approach limited by factors such as pumping pressure; if \(H\) can be decreased, better separations can be achieved with the same length of column.

Another useful measure of the column efficiency is the reduced plate height \(h\) :
\[
h=H / d_{p} \quad \text { 1.4. }-11
\]
where \(d_{p}\) is the particle diameter. This is the height equivalent to a theoretical plate expressed in terms of particle diameters. This allows a comparison between systems with different particle sizes, since many of the processes which lead to band broadening can be scaled to the particle size (17).

The efficiency of a column depends on the velocity of the eluent passing through it. The mobile phase velocity \(u\) may be obtained from the equation
\[
\mathrm{u}=\mathrm{L} / \mathrm{t}_{\mathrm{m}}
\]

It is often useful to express this velocity in a reduced form, independent of particle size or the rate of diffusion of solute in the eluent. The reduced velocity, \(v\), is used for this purpose (17):
\[
\nu=u d_{p} / D_{m} \quad \text { 1.4. }-13
\]
where \(D_{m}\) is the diffusion coefficient of the solute in the eluent. If we are interested in the velocity of the mobile zone rather than the mobile phase, the reduced velocity to use is
\[
v_{0}=\frac{u_{0}{ }_{p}^{d_{p}}}{D_{m}}=\frac{L}{t_{0}} \frac{d_{p}}{t_{m}} \quad 1.4 .-14
\]

The most important reason for the introduction of these reduced variables is that they allow the variation of column efficiency with eluent velocity to be expressed in universal equations, independent of particle size, solute type, or even the type of eluent (liquid or gas) used. Such an equation is the Knox equation (18):
\[
h=A v^{1 / 3}+B / v+C v \quad 1.4 .-15
\]

The reasons for the form of this equation will be discussed in the following chapters.

CHAPTER 2
KINETICS

\begin{abstract}
2.1. INTRODUCTION

It is important, for efficient chromatography, that the eluted peaks be as narrow as possible. It is therefore important to understand the causes of band broadening. The width of the eluted band is related to the kinetics of the on-column processes. Several theories have been proposed to explain the relationship between these processes and the observed peak width. There are four main types of theory or model used: the Theoretical Plate model, the Random Walk model, the theory of Mass Balance and the Nonequilibrium Theory. These will be outlined below.
\end{abstract}

\subsection*{2.2. MOLECULAR DIFFUSION}

One cause of band broadening which is not covered by any of the above theories, but which is often included as an additional term, is broadening due to molecular diffusion. Diffusion is discussed in chapter (3) below; only a few relevant details will be mentioned here.

A chromatographic band is a region of increased concentration of solute with respect to the concentration in the remainder of the column. Diffusional spreading will therefore take place about the concentration maximum. If the band is moving, diffusional spreading will take place at the same rate as if the band were stationary, but it will take place about the moving concentration maximum. If a coordinate system is chosen whose origin is at this maximum, the zone profile due to molecular diffusion will be independent of flow-rate.

The variance \(\sigma^{2}\) of the distribution due to longitudinal molecular diffusion may be calculated from the Einstein equation (19):
\[
\sigma^{2}=2 D t \quad 2.2 .-1
\]
where 0 is the effective diffusion coefficient and \(t\) is the time for which diffusion has been taking place.

In the mobile phase, the value of the effective diffusion coefficient is given by
\[
D=\gamma D_{m}
\]
where \(\gamma\) is an obstructive factor introduced to take account of the tortuosity and constriction of the channels in the column \((20,21)\). The value of the time \(t\) in equation \(2 \cdot 2-1\) is the time \(t_{m}\) spent in the mobile phase. This may be obtained from the column length and the eluent velocity by the equations
\[
\begin{array}{ll}
t_{\mathrm{c}}=\mathrm{L} / \mathrm{u} & 2.2 .-3 \mathrm{a} \\
\mathrm{t}_{\mathrm{L}}=\frac{\mathrm{L}}{\nu} \frac{d_{p}}{D_{m}} & 2.2 .-3 \mathrm{~b}
\end{array}
\]

The plate height is given by the equations
\[
\begin{array}{ll}
H=\sigma^{2} / L & 2.2 .-4 a \\
h=\sigma^{2} / L d_{p} & 2.2 .-4 b
\end{array}
\]

When the value of \(\sigma^{2}\) from equation 2.1. is used in this equation, with the values of \(D\) and \(t\) as given in equations 2.2. - 2 and 2.2.-3, the following equations for the plate-height result:
\[
\begin{array}{ll}
H=\frac{2 \gamma D_{m}}{u} & 2.2 .-5 a \\
h=\frac{2 \gamma}{v} & 2.2 .-5 b
\end{array}
\]

For diffusion in the stationary phase, the diffusion coefficient to be used in equation 2.2. - 1 may be written as \(D_{S}\) where \(D_{S}\) is the diffusion coefficient in the stationary phase, which includes the effects of any stationary phase obstructive factor. The time to be used is \(t_{s}\), which is related to \(t_{m}\) by the capacity ratio:
\[
\mathrm{t}_{\mathrm{s}}=\mathrm{k}^{\prime} \mathrm{t}_{\# 1} \quad 2.2 .-6
\]

The plate height is thus given by
\[
\begin{array}{ll}
H=\frac{2 D_{s} k^{\prime}}{u} & 2.2 .-7 a \\
h=\frac{2}{\nu} \frac{D_{s}}{D_{m}} k^{\prime} & 2.2 .-7 b
\end{array}
\]

\subsection*{2.3. THE THEORETICAL PLATE MODEL}

The theoretical plate model was first used to describe distillation processes. Because of the analogy between distillation and chromarography, Martin and Synge (10) used this model to describe what happens to a band of solute as it migrates down the column.

Martin and Synge define a plate as 'the thickness of the layer such that the solution issuing from it is in equilibrium with the mean concentration of solute in the non-mobile phase throughout the
layer', although a better definition would refer to the thickness of the layer such that the concentration of the solution issuing from it is the same as that in the eluent in the plate if the plate were allowed to come to equilibrium, since the original definition does not allow for solutes which do not enter the stationary phase. From the second definition it is obvious that the number of plates in the column is related to the degree of departure from equilibrium. If equi!ibrium were obtained, the plate-height would be infinitesimal.

By considering what happens to the solute as it is washed from plate to plate, and equilibrates within each plate, the concentration within each plate after the passage of a given amount of eluent may be calculated. It is found that a binomial distribution results:
\[
Q_{r+1}=\frac{n!(1-\delta V / V)^{n-r}(\delta V / V)^{r}}{r!(n-r)!}
\]
where \(r\) is the serial number of the plate, and \(n\) is the number of incremental volumes \(\delta V\) of mobile phase which has passed. \(Q_{r+1}\) is the amounc of solute in the \((r+1)^{\text {th }}\) plate, and \(V\) is the volume of a plate. When \(n\) and \(r\) are large (e.g. at the end of a fairly efficient column), the binomial distribution may be approximated by a Gaussian distribution:
\[
Q_{r}=\frac{1}{(2 \pi \sigma)^{\frac{1}{2}}} \quad \exp \left(\frac{-(r-\bar{r})^{2}}{2 \sigma^{2}}\right) \quad 2.3 .-2
\]
where \(\bar{r}\) is the plate containing the maximum amount of solute and \(\sigma\) is obtained from the formula
\[
\sigma^{2}=n(1-\delta V / V)(\delta V / V)
\]

Most peaks obtained in efficient chromatography are practically Gaussian in shape so the plate theory successfully predicts peak shape. It is possible, from the above comments on the degree of non-equilibrium, to see a relationship between plate-height and eluent velocity and particle size, since large velocities and large particles lead to large deviations from equilibrium. These relationships appear more naturally from other theories.

One of the most lasting contributions of plate theory to chromatography is the use of the number of theoretical plates, and the height equivalent to a theoretical plate, as measures of column efficiency.

\subsection*{2.4. THE RANDOM WALK MODEL}

A random walk is a process in which a series of steps are taken, the direction of each step being completely independent of the direction of the previous step. The associated problem is to determine the probability of being a certain distance from the starting point after a given number of steps. Such a problem is posed by Moore (22): 'A sailor leaves a waterfront bar still able to walk but unable to navigate. He is just as likely to take a step east as a step west, i.e. each step has a probability \(\frac{1}{2}\) of being in either direction. After he has taken \(N\) steps, what is the probability that he is \(n\) steps away from his starting point?'.

The above process is analogous to that of a molecule migrating in a gas or liquid, where each step is the distance travelled between
collisions. The analogy breaks down since in this case the length of each step is not constant. Such a process approximates to a random walk where the step length is the root mean square distance between collisions.

Molecular diffusion may also be modelled by a random walk. If a large number of molecules of one species are present at a given position in a sea of molecules of a different species, the probability of a molecule reaching a certain position after a certain time is given by the random walk model, and so the resulting concentration profile may be calculated (23). The same result applies to the diffusion of a concentration pulse as it is washed down a chromatographic column, if the origin of the random walk is taken to move with the mean velocity of the pulse.

The same model may be used to describe the effects on such a pulse of sorption-desorption kinetics (17), since when a molecule is sorbed into the stationary phase, it takes a step back relative to the zone centre, as it is immobile, whereas when it is desorbed it takes a step forward relative to the zone centre, as it then moves at the velocity of the mobile phase which is faster than the velocity of the band as a whole.

Flow phenomena may be described in the same way (17). A step back from the band centre occurs when a molecule moves to a region where the eluent velocity is slower than the mean eluent velocity, and a step forward occurs when the molecule moves to a region where the eluent velocity is above the mean velocity.

The solution to the random walk problem is that the probability of being a distance of \(n\) steps from the origin of the walk after taking a total of \(N\) steps is given by a Gassian distribution (23)
\[
p(n)=\left(\frac{2}{\pi N}\right)^{\frac{1}{2}} \quad \exp \left(\frac{-n^{2}}{2 N}\right) \quad 2.4 .-1
\]

If each step is of length 2, the probability of being a distance \(L\) from the origin is given by
\[
p(L)=\left(\frac{2}{\pi N \ell}\right)^{\frac{1}{2}} \quad \exp \left(\frac{-n^{2}}{2 N \ell}\right) \quad 2.4 .-2
\]
where \(L=n \ell\).

The variance of this distribution is given by
\[
\sigma^{2}=\ell^{2} N \quad \text { 2.4.-3 }
\]
thus the standard deviation is given by
\[
\sigma=\ell N^{\frac{1}{2}} \quad \text { 2.4. - } 4
\]

If two random processes take place independently, either simultaneously or consecutively, the final distribution is still Gaussian with a variance given by
\[
\sigma^{2}=\sigma_{1}{ }^{2}+\sigma_{2}^{2} \quad 2.4 .-5
\]
where \(\sigma_{1}{ }^{2}\) and \(\sigma_{2}{ }^{2}\) are the variances of the distributions due to the two contributing processes. This result may be extended for any number of independent processes. If the processes are not independent this result cannot be applied.

To obtain useful results from the random walk model, it is necessary to find some way of estimating the length of each step and the number of steps executed during the period of interest. Examples of how this may be done in chromatography are given below.

ADSORPTION-DESORPTION KINETICS

For simple one-step adsorption-desorption processes there is a rate constant \(k\) for each process which expresses the rate of adsorption or desorption. This is given by
\[
k=\frac{d \ln x}{d t} \quad 2.4 .-6
\]
where \(x\) is the amount of solute per unit length of column. The value of \(k\) will be different for adsorption and desorption. The rate constant for adsorption will therefore be written as \(k_{a}\), and the constant for desorption will be written as \(k_{d}\). The mean time constant for such processes is the inverse of the rate constant. Thus
\[
\begin{array}{ll}
t_{a}=1 / k_{a} & 2.4 .-7 \\
t_{d}=1 / k_{d} & 2.4 .-8
\end{array}
\]

The phase capacity ratio is related to these quantities by the equation
\[
k^{\prime}=\frac{t_{d}}{t_{a}}=\frac{k_{a}}{k_{d}}
\]

On average a molecule will remain in the mobile phase for a time \(t_{a}\) before being adsorbed. During this time it will move ahead of the main band of eluting solute. It will also travel a distance \& down the column:
\[
\ell=u t_{a} \quad 2.4 .-10
\]
where \(u\) is the eluent velocity. The number of adsorptions experienced is thus given by
\[
n=\mathrm{L} / \ell \quad \text { 2.4. - } 11
\]

While a molecule is adsorbed, on average for a time \(t_{d}\), it will lag behind the main band, so these periods also count as steps in the random walk. The number of adsorption steps is equal to the number of desorption steps, since each period for which the molecule is adsorbed is terminated by a desorption. Thus the number of steps in the random walk is
\[
n=\frac{2 L}{\ell}=\frac{2 L}{u t_{a}} \quad 2.4 \cdot-12
\]

The length of each step is the distance moved relative to the zone centre during that step. The velocity of the zone centre is lower than the eluent velocity because all the molecules of the zone spend a fraction \(k^{\prime} /\left(1+k^{\prime}\right)\) of their time in the column in the stationary phase. The velocity of the zone is given by
\[
u_{z}=\frac{L}{t_{r}}=\frac{L}{\left(1+k^{\prime}\right) t_{m}}=\frac{1}{1+k^{\prime}} u \quad 2.4 .-13
\]

Therefore for a molecule in the mobile phase with move a distance \(\bar{l}\) ahead of the zone centre during its time of residence in that phase, where \(\bar{?}\) is given by
\[
\bar{\imath}=\left(u-u_{z}\right) t_{a}
\]

From equation 2.4. - 13 this may be written as
\[
\bar{\imath}=\frac{k^{\prime}}{1+k^{\prime}} \quad u t_{a}
\]

It may readily be shown that the step length for a molecule in the stationary phase is also given by equation 2.4. - 15. While this molecule is stationary, the zone moves with a velocity \(u_{z}\) as given by equation 2.4. - 13. The distance the zone moves is. therefore given by
\[
\bar{\imath}=\frac{1}{1+k^{\prime}} \text { } u t_{d}=\frac{k^{\prime}}{1+k^{\prime}} u t_{a}
\]
which agrees with equation 2.4. - 15. Equation 2.4. - 9 has been used to relate \(t_{a}\) and \(t_{d}\).

Equation 2.4. - 12 gives an expression for the number of steps taken in the random walk, and equation 2.4. - 15 gives the length of each step. The peak variance can therefore be calculated by using these values in equation 2.4. - 3 as
\[
\sigma^{2}=\left(\frac{k^{\prime}}{1+k^{\prime}}\right)^{2} u^{2} t_{a}^{2} \frac{2 L}{u t_{a}}=\left(\frac{k^{\prime}}{1+k^{\prime}}\right)^{2} \quad 2 L u t_{a} \quad \text { 2.4.-17 }
\]

This may be written in terms of the mean desorption time as
\[
\sigma^{2}=\frac{2 k^{\prime}}{\left(1+k^{\prime}\right)^{2}} L u t_{d}
\]
again us!ng 2.4. - 9 to relate the two time constants. The plate height may thus be written as
\[
\begin{array}{rl}
H=\frac{2 k^{\prime}}{\left(1+k^{\prime}\right)^{2}} u t_{d} & 2.4 .-19 a \\
h=\frac{2 k^{\prime}}{\left(1+k^{\prime}\right)^{2}} \frac{D_{m}}{d_{p}^{2}} t_{d} v & 2.4 .-19 b
\end{array}
\]
by applying equation 2.2. - 4 and introducing the reduced velocity into equation 2.4. - 19b. Equation 2.4. - 19 has been shown to be correct for adsorption-desorption kinetics by the stochastic theory and by the non-equilibrium theory in spite of the approximate nature of some of the assumptions used.

\section*{DIFFUSION CONTROLLED KINETICS}

The above approach can also be used when the stationary phase is a bulk phase, and separation proceeds by a partition mechanism. Equation 2.4. - 19 may still be used, with a suitable value for \(t_{d}\). An approximation to \(t_{d}\) may be obtained in terms of the dimensions of the stationary phase and the diffusion coefficient \(D_{s}\) of the solute in this phase. If the stationary phase is present as spherical particles of diameter \(d_{p}\), we may assume that a molecule must diffuse over a distance \(d_{p} / 2\) to escape from this phase. The time required to diffuse over this distance is given by the Einstein equation as
\[
t_{d}=d_{p}^{2} / 4 D_{s} \quad 2.4 .-20
\]

When this value is substituted into equation 2.4. - 19, we obtain the following equations for plate height:
\[
\begin{array}{ll}
H=\frac{1}{4} \frac{k^{\prime}}{\left(1+k^{\prime}\right)^{2}} \frac{d_{p}^{2}}{D_{s}} u & 2.4 .-21 a \\
h=\frac{1}{4} \frac{k^{\prime}}{\left(1+k^{\prime}\right)^{2}} \frac{D_{m}}{D_{s}} v & 2.4 .-21 b
\end{array}
\]

The form of these equations is correct, but the factor \(1 / 4\) (known as the configuration factor, since it is determined by the configuration of the stationary phase) ought to be \(1 / 30\). This error is due to an overestimation of the distance over which molecules must diffuse to escape from the stationary phase; few molecules will diffuse to the centre of the sphere, thus only a few will need to diffuse over a distance \(d_{p} / 2\) to escape from the mobile phase. The correct value of the configuration factor may be obtained from the non-equilibrium theory.

\section*{MOBILE PHASE MASS TRANSFER}

The mobile phase will flow at different speeds at different position within the column. As molecules of solute alternately and randomly experience velocities greater than and less than the mean band velocity, the band will spread. Band broadening by this mechanism may also be treated by the random walk model. In this case, the steps are between regions of different velocity.

Giddings (17) proposes five types of velocity difference in the mobile phase:
1. The transchannel velocity difference, i.e. the velocity difference between eluent in the centre of a channel formed by the particles of the support and at the walls due to the parabolic flow velocity profile.
2. The transparticle velocity difference, i.e. the velocity difference between stagnant mobile phase within the pores of a particle and the streaming mobile phase outwith the particle.
3. A short-range interchannel velocity difference will exist between smaller and larger channels in fairly close proximity.
4. A long-range interchannel velocity difference similar to 3 will exist over a longer range.
5. A trans-column velocity difference will exist between the central and wall regions of the column, or between opposite walls, due to bending or coiling of the column.

Each of the above differences will make a contribution to the plate height. These contributions may be evaluated by identifying the number of steps taken between the different velocity regions in each effect, and the length of each step relative to the band maximum. The way in which this is done is best illustrated by example.

Consider the transchannel effect described above. The time required for a molecule to diffuse from one velocity region to another is given by
\[
t_{e}=\omega_{\alpha}^{2} d_{p}^{2} / 2 D_{m} \quad 2.4 .-22
\]
where \(\omega_{\alpha}\) is the distance between these regions in units of particle diameter. Since a typical channel has a diameter of about \(d_{p} / 3\), this distance is approximately \(d_{p} / 6\), thus \(\omega_{\alpha}=1 / 6\).

The length of the step for this process is the distance gained by a molecule in the centre of the channel, or lost by a molecule near a channel wall, with respect to the mean velocity. This may be expressed as \(\Delta u t_{e}\), where \(\Delta u\) is the difference between the mean velocity and the velocity at the extremes. \(\Delta u\) will be some fraction \(\omega_{\beta}\) of the mean velocity, i.e. \(\Delta u=\omega_{\beta} u\). Thus the step length is given by
\[
\ell=\omega_{B} u t_{e}
\]

In the present case, \(\omega_{\beta} \simeq 1\), since the mean flow velocity is \(u\), and for a parabolic flow profile the velocity is \(2 u\) at the channel centre and 0 at the walls.

The number of steps taken may be calculated as the number of times a solute molecule spends a time \(t_{e}\) moving at the mean eluent velocity \(u\) in travelling down the column:
\[
n=L / u t_{e} \quad \text { 2.4. - } 24
\]

From equation 2.4. - 3 the variance due to such a process is given by
\[
\sigma^{2}=\ell^{2}{ }_{n}=\frac{\omega_{\beta}^{2} \omega_{\alpha}^{2}}{2} \frac{d_{p}^{2}}{D_{m}} L u
\]
from whence
\[
\begin{array}{ll}
H=\frac{\omega_{\beta}^{2} \omega_{\alpha}^{2}}{2} \frac{d_{p}^{2}}{D_{m}} u=\omega_{i}{ }^{2} \frac{d_{p}^{2}}{D_{m}} u & 2.4 .-26 a \\
h=\frac{\omega_{\beta}^{2} \omega_{\alpha}^{2}}{2} v=\omega_{i}{ }^{2} v & 2.4 .-26 b
\end{array}
\]

Values of \(\omega_{\alpha}\) and \(\omega_{\beta}\) are calculated by Giddings for each of the velocity differences considered by him. These are listed in table (2.4. - 1) .

If a molecule follows a single flow-path throughout the column, rather than diffusing between different paths, it will still experience different flow velocities because of the random nature of the chromatographic bed. This provides a second mechanism for transfer

TABLE 2.4. - 1
```

MOBILE PHASE EDDY DIFFUSION PARAMETERS

```
\begin{tabular}{l|l|c|c|c|c|c} 
i & DESCRIPTION & \(\omega_{\alpha}\) & \(\omega_{\beta}\) & \(\omega_{i}\) & \(\omega_{\lambda}\) & \(\lambda_{i}\) \\
1 & Transchannel & \(1 / 6\) & 1 & 0.01 & 1 & 0.5 \\
2 & Transparticle & \(1 / 2\) & 1 & 0.1 & \(10^{4}\) & \(10^{4}\) \\
3 & Short-range interchannel & 1.25 & 0.8 & 0.5 & 1.5 & 0.5 \\
4 & Long-range interchannel & 10 & 0.2 & 2 & 5 & 0.1 \\
5 & Transcolumn & \(m / 2\) & 0.1 & \(0.001 \mathrm{~m}^{2}\) & \(20 \mathrm{~m}^{2}\) & \(0.02 \mathrm{~m}^{2}\)
\end{tabular}
\(m\) is the number of particles across the column diameter. For the meanings of the various parameters, see text.
between the different types of velocity region listed above.

The velocity difference between the extremes of a flow regime will be the same as outlined above, since only the method of exchange has changed. The number of steps between these extremes will, however, be different. There will be some distance \(S\) over which the velocity of a solute molecule will remain approximately constant. This distance may be written in terms of the particle diameter:
\[
s=\omega_{\lambda} d_{p}
\]
where \(\omega_{\lambda}\) is the number of particle diameters over which the velocity remains constant. For the trans-channel effect considered above, this may be approximated by \(\omega_{\lambda} \cong 1\).

The number of steps to be used in equation 2.4. - 3 is given by the number of such constant flow regimes experienced by a molecule in travelling the length of the column:
\[
n=L / S \quad 2.4 .-28
\]

The time of exchange is the time spent in each constant flow regime:
\[
\mathrm{t}_{\mathrm{e}}=\mathrm{s} / \mathrm{u}
\]

Thus from equation 2.4. - 23 the length of each step is
\[
1=\omega_{\beta} S \quad 2.4 .-30
\]

The contribution to the variance is thus
\[
\sigma^{2}=\omega_{\beta}^{2} \omega_{\lambda} d_{p} L \quad 2.4 .-31
\]
and thus the plate-height contribution is
\[
\begin{array}{ll}
H=\omega_{\beta}^{2} \omega_{\lambda} d_{p} & 2.4 .-32 a \\
h=\omega_{\beta}^{2} \omega_{\lambda}=2 \lambda_{i} & 2.4 .-32 b
\end{array}
\]
where \(\lambda_{i}\) is given by
\[
\lambda_{i}=\omega_{\beta}^{2} \omega_{\lambda} / 2
\]

Values of \(\omega_{\lambda}\) and \(\omega_{i}\) are also given in table 2.4. - 1 .

For many of the processes which lead to band broadening in chromatography, the plate-height contributions are additive. From equation 2.4-5 it is possible to write
\[
h_{\text {tot }}=h_{1 d}+h_{s m}+h_{m m} \quad 2.4 .-34
\]
where \(h_{\text {tot }}\) is the total reduced plate height, \(h_{1 d}\) is the reduced plate height contribution from longitudinal diffusion, as given by equation 2.2. - 5, \(h_{s m}\) is the stationary phase mass transfer term as given by equation 2.4. - 19 or 2.4. - 21 , and \(h_{m m}\) is the mobile phase mass transfer term. This term cannot be obtained from
\[
h_{m m}=h_{d}+h_{f} \quad 2.4 .-35
\]
where \(h_{d}\) is the contribution from the diffusion mechanism of mass transfer between velocity regimes and \(h_{f}\) is the contribution from the flow mechanism described above. Equation 2.4. - 35 does not hold because variances are only additive for independent processes, and the two processes involved are not independent. A molecule's stay in a flow regime may be terminated either by diffusing out of
that flow path, or by the flow path transporting it into a different velocity regime. The two mechanisms are thus said to be coupled. In such a case the random walk theory requires that the number of steps from each cause must be added. Thus the persistence of velocity span \(S\) when both mechanisms operate is given by
\[
S=L /\left(n_{f}+n_{d}\right) \quad 2.4 .-36
\]
where \(n_{f}\) is the number of exchanges due to the flow mechanism of transfer, and \(n_{d}\) the number of exchanges due to the diffusion mechanism of transfer. The value of \(n_{f}\) may be obtained from equation 2.4. - 28 , with the value of S given by equation 2.4.- 27 . Similarly, the value of \(n_{d}\) may be obtained from equation 2.4. - 24, with the value of \(t_{e}\) given by equation 2.4. - 32. The step-length 1 is therefore given by
\[
1=\omega_{B} S \quad 2.4 .-37
\]
where \(S\) is given by equation 2.4. - 36. The resulting equation for the variance when both processes are operating is therefore given by
\[
\sigma^{2}=\frac{\omega_{\beta}^{2} L}{\frac{1}{2 \lambda_{i} d_{p}}+\frac{D_{m}}{\omega_{i} d_{p}^{2} u}} \quad 2.4 .-38
\]

The value of \(h_{m m}\) to be used in equation 2.4. - 34 is thus
\[
h_{m m}=\Sigma_{i} \frac{1}{2 \lambda_{i}+1 / \omega_{i} \nu}=\Sigma_{i} \frac{1}{1 / h_{f i}+1 / h_{d i}} \quad 2.4 .-39
\]
where \(h_{f}\) and \(h_{d}\) are the plate-height contributions from the two transfer mechanisms, and the summation is over the five different types of velocity inequality.

Although the random walk model is imperfect, it leads to an equation of an acceptable form for the variation of reduced plate-neight with eluent velocity. Such an equation may be written as
\[
h=\frac{B}{\nu}+C_{s} \nu+\frac{1}{1 / A+1 / C_{m} \nu} \quad 2.4 .-40
\]

The \(B\) term in this equation comes from longitudinal diffusion. From equations 2.2. - 5 and 2.2. - 7 this may be written as
\[
B=2 \gamma_{m}+2 \gamma_{s} \frac{D_{s}}{D_{m}} k^{\prime} \quad \text { 2.4. }-41
\]

The \(C_{s}\) term comes from slow mass transfer between the mobile and stationary phases. For example, for adsorption-desorption kinetics it may be evaluated as
\[
c_{s}=\frac{2 k^{\prime}}{\left(1+k^{\prime}\right)^{2}} \frac{D_{m}}{d_{p}^{2}} t_{d} \quad 2.4 .-42
\]
as shown in equation 2.4. - 19. The \(C_{m}\) term describes the slow mass transfer in the mobile phase and is given by
\[
c_{m}=\Sigma_{i} \omega_{i} \quad \text { 2.4. - } 43
\]
where the values of \(\omega_{i}\) refer to specific velocity differences. The A term refers to the contribution from structural effects and is given
by
\[
A=\Sigma_{i} \cdot \lambda_{i} \quad 2.4 .-44
\]

The nature of equation 2.4. - 39 is such that for any particular value of \(v\), the flow mechanism or the diffusion mechanism of transfer may dominate the contribution from mobile phase mass transfer. If \(2 \lambda_{i} \ll \omega_{i} v\), the plate-height contribution due to mobile phase mass transfer may be written as
\[
h_{i}=2 \lambda_{i} \quad 2.4 .-45
\]

If \(2 \lambda_{i} \gg \omega_{i} \nu\), this contribution may be written as
\[
h_{i}=\omega_{i} \nu \quad 2.4 .-46
\]

If \(2 \lambda_{i}\) and \(\omega_{i} \nu\) are of the same order of magnitude, then the equation 2.4. - 39 must be used as it stands. Equation 2.4-40 may thus be written as
\[
h=A_{1}+\frac{B}{v}+C_{1} \nu+C_{s} \nu+\varepsilon_{i} \frac{1}{1 / A_{2}+1 / C_{2} \nu} \quad 2.4 .-47
\]
where \(A_{1}\) represents the contribution of the type which may be expressed by equation 2.4. -45 , and \(C_{1}\) represents the contribution which may be expressed by equation 2.4. - 46. \(A_{2}\) and \(C_{2}\) represent the mobile phase terms for which the full coupling expression must be used.

The random walk model gives a valuable insight into the processes which cause band spreading. For adsorption-desorption kinetics it
does yield the same equations as may be derived from more rigorous theories. For diffusion-controlled mass transfer, the equation derived is correct apart from the configuration constant, which can only be roughly estimated. The most serious fault with the model lies in its treatment of mobile phase mass transfer, although no other model does better.

One reason for failure in this area is that there is a continuous change in velocity across a channel so examining only transfer between the centre of the channel and the walls is an oversimplification. A similar criticism of the other velocity inequalities may also be made.

\subsection*{2.5. THE STOCHASTIC THEORY}

A more rigorous approach than the random walk model, still based on ideas of probability, is the stochastic theory (25). This is described by Giddings (17) as follows:-
'Due to the random events there is a certain probability, which can be explicitly written, that after a time t the molecule will have arrived somewhere in the interval from \(z\) to \(z+\delta z\) along the column'.

From the probability described above, it is possible to derive the concentration profile after a given time.

This theory is well suited to the study of adsorption-desorption kinetics, but it is not so suitable for diffusion controlled kinetics, because the probabilities involved in describing the continuous process of diffusion are much less tractable than those used to describe the discrete adsorption-desorption processes. One
advantage of the stochastic theory is that it does not require the assumption of long time periods. This theory has been applied to one, two and multisite adsorption processes \((25,26,27)\) and gives a good explanation of kinetic peak tailing due to different kinds of adsorption sites (26).

\subsection*{2.6. THE MASS BALANCE THEORY}

A similar approach to the stochastic theory is the 'mass balance' approach \((28,29)\). Equations may be developed which describe the concentration of solute at any distance along the column in terms of the processes by which a molecule may enter or leave a part of the column. A molecule may be transported into or out of a segment of mobile phase between \(z=\ell\) and \(z=\ell+\delta \ell\) by three different mechanisms: diffusion, flow or transfer to the stationary phase. The rate of change of concentration in this segment may thus be written as
\[
\frac{\partial c_{m}}{\partial t}=D \frac{\partial^{2} c_{m}}{\partial z^{2}}-u \frac{\partial c_{m}}{\partial z}+k_{a}\left(k c_{s}-c_{m}\right) \text { 2.6.-1 }
\]
where the first term on the right-hand side describes transfer by diffusion, the second describes transfer by flow, and the third describes transfer to the stationary phase. \(c_{m}\) is the concentration in the mobile phase, and \(\mathrm{c}_{\mathrm{s}}\) is the concentration in the stationary phase. The rate constant for transfer to the stationary phase is again \(k_{a} . \quad K\) is the distribution factor, which is given by the ratio of \(c_{m}\) to \(c_{s}\) at equilibrium. This equation is intended to allow the calculation of \(c_{m}\) as a function of \(t\) at the end of the column. To achieve this, the value of \(c_{s}\) must be known. This may be found by
considering the processes which transport solute molecules to and from the stationary phase. Only one-mass transfer from the mobile phase-is normally considered. The value of \(c_{s}\) may be found by solving the differential equation
\[
\frac{\partial c_{s}}{\partial t}=k_{d}\left(c_{m}-k c_{s}\right)
\]
where \(k_{d}\) is the rate constant for transfer to the mobile phase. Since this equation involves \(c_{m}\), equations 2.6-1 and 2.6-2 are said to be coupled. Thus the solution of 2.6. - 1 is possible only after simplifying assumptions have been made. This approach was the basis for the Van Deemter equation (30).

\subsection*{2.7 THE NON-EQUILIBRIUM THEORY}

The most powerful modern theory of band broadening in chromatography is the non-equilibrium theory developed by Giddings (17). According to this theory, band broadening occurs because, due to the relatively slow rate of the mass transfer processes compared to the eluent velocity, equilibrium between solutes in the mobile and stationary zones is never established. The concentration in the stationary zone always lags behind the equilibrium concentration because during the time required to establish equilibrium the solute concentration in the column element under consideration either rises as more solute is transported into that element than is transported out, or falls as there is a net movement of solute out of the element. The first of these cases describes the situation before the band maximum passes through the element, and the second describes the situation after the band maximum has passed. In the same way, the mobile phase concentration
leads the equilibrium concentration because insufficient solute is transported to (or from) the stationary zone to allow equilibrium to be attained. As a result of this, molecules of the solute in the part of the chromatographic band ahead of the band maximum migrate along the column at a slightly higher velocity than the band maximum itself, while molecules behind the band maximum migrate more slowly. This results in band broadening.

Giddings' theory, outlined below, is based on the premise that the departure from equilibrium is small. With this assumption, the solution of equations 2.6. - 1 and 2.6. - 2 may be simplified, and expressions for the degree of band broadening may be found for a variety of mass transfer processes.

A general outline of the procedure for solution of these equations is given below, illustrated by example where appropriate. The theory is then used to derive an expression for band broadening due to diffusional mass transfer in spherical particles.

Let \(c_{m}\) be the mobile zone concentration of solute at any distance along the column, expressed as amount of solute per unit volume of column packing, and let \(c_{s}\) be the corresponding stationary zone concentration. Let the concentrations in these zones if the column element were isolated and allowed to come to equilibrium be denoted by \(c_{m}^{*}\) and \(c_{s}{ }^{*}\). The particular concentration units chosen allow the concentrations in the two zones to be added. Thus the overall concentration at that distance along the column, \(c\) is given by
\[
c=c_{m}+c_{s}=c_{m}^{*}+c_{s}^{*} \quad 2.7 .-1
\]
\(c_{m}\) and \(c_{s}\) may be written in terms of the equilibrium concentrations and equilibrium departure terms \(\varepsilon_{m}\) and \(\varepsilon_{s}\). Thus
\[
\begin{array}{ll}
c_{m}=c_{m}^{*}\left(1+\varepsilon_{m}\right) & 2.7 .-2 a \\
c_{s}=c_{s}^{*}\left(1+\varepsilon_{s}\right) & 2.7 .-2 b
\end{array}
\]

These equations may be taken as defining the equilibrium departure terms. From the above equations, it may readily be seen that
\[
c_{m}^{*} \varepsilon_{m}+c_{s}^{*} \varepsilon_{s}=0
\]

This equation allows either departure term to be written in terms of the other, and a ratio of equilibrium concentrations.

One reason for defining these equilibrium departure terms is that \(\varepsilon_{m}\) may be related to the plate-height by a fairly simple expression. This may be derived as follows:

The solute flux \(J\) across the column is given by
\[
\mathrm{J}=\mathrm{c}_{\mathrm{m}} \mathrm{u}
\]

From equation 2.7. - 2 this may be written as
\[
J=c_{m}^{*} u+c_{m}^{*} \varepsilon_{m} u \quad \text { 2.7. - } 5
\]

The first term on the right-hand side of this equation is an
equilibrium term. Since band broadening would not occur if
equilibrium were found throughout the column, this term contributes
nothing to the plate height. Band broadening is caused by the second term in equation 2.7. - 5 which may be written as a flux \(\Delta \mathrm{J}\) :
\[
\Delta J=c_{m}^{*} \varepsilon_{m} u \quad 2.7 .-6
\]

This flux causes the band to broaden in a way which is analogous to diffusion. \(\Delta J\) may therefore be written in terms of Fick's first law (33)
\[
\Delta J=-D \partial c / \partial z
\]
where \(D\) is an apparent diffusion coefficient. An expression for \(D\) may be obtained by equating expressions 2.7. - 6 and 2.7. - 7:
\[
D=\frac{-c_{m}^{*} \varepsilon_{m} u}{\partial c / \partial z} \quad 2.7 .-8
\]
\(c_{m}^{*}\) may be eliminated from this equation since \(c_{m}^{*}=c / 1+k^{\prime \prime}\). Thus
\[
D=\begin{array}{ll}
\frac{-\varepsilon_{m} u}{\partial \ln c / \partial z} & \frac{1}{1+k^{\prime \prime}} \quad 2.7 .-9
\end{array}
\]
\(D\) is related to the bandwidth by equation 2.2. - 1. Thus
\[
\sigma^{2}=-\frac{2 \varepsilon_{\mathrm{m}} \mathrm{u}}{\partial \ln \mathrm{c} / \partial z} \quad \frac{1}{1+k^{\prime \prime}} \mathrm{t} \quad 2.7 .-10
\]
where \(t\) is the time spent in the column. The speed at which the band moves is \(1 / 1+\mathrm{k}^{\prime 1}\) that of the eluent. From this and the length of the column, equation 2.7. - 9 may be written as
\[
\sigma^{2}=\frac{-2 \varepsilon_{m} L}{\partial \ln c / \partial z}
\]

The plate-height contribution may now be obtained from this and equation 2.2. - 4:
\[
\begin{array}{ll}
H=\frac{-2 \varepsilon_{m}}{\partial \ln c / \partial z} & 2.7 .-12 a \\
h=\frac{-2 \varepsilon_{m}}{\partial \ln c / \partial z} \frac{1}{d_{p}} & 2.7 .-12 b
\end{array}
\]

Thus if \(\varepsilon_{m}\) may be obtained in terms of measurable parameters, the plate -height may be readily calculated.

ADSORPTION-DESORPTION KINETICS

Again, the simplest case is that of single-site adsorptiondesorption kinetics. To find an expression for \(\varepsilon_{m}\), we consider first the rate of mass transfer from the stationary to the mobile zone. This is denoted by \(s_{m}\), and is given by the following equation:
\[
s_{m}=k_{d} c_{s}-k_{a} c_{m} \quad 2.7 .-13
\]
where \(k_{d}\) and \(k_{a}\) are the rate constants for adsorption and desorption as defined above. By equation 2.7. - 2 this may be expanded to
\[
s_{m}=k_{d} c_{s}^{*}-k_{a} c_{m}^{*} \div k_{d} c_{s}^{*} \varepsilon_{s}-k_{a} c_{m}^{*} \varepsilon_{m}
\]

The first two terms in this equation are equilibrium terms. At equilibrium there is no net mass transfer between zones so these terms cancel. Thus
\[
s_{m}=k_{d} c_{s}^{*} \varepsilon_{s}-k_{a} c_{m}^{*} \varepsilon_{m} \quad 2.7 .-15
\]
\(\varepsilon_{s}\) may be written in terms of \(\varepsilon_{m}\) according to equation \(2.7 .-3\) Thus
\[
s_{m}=-c_{m}^{*}\left(k_{d}+k_{a}\right) \varepsilon_{m} \quad 2.7 .-16
\]

This gives \(s_{m}\) in terms of the equilibrium concentration and the equilibrium departure term for the mobile zone. A second equation for \(s_{m}\) may be found from the mass balance equation 2.6. - 1 , which is rewritten here without the diffusion term:
\[
\frac{\partial c_{m}}{\partial t}=-u \frac{\partial c_{m}}{\partial z}+s_{m} \quad 2.7 .-17
\]

The diffusion term has been ignored because at reasonable velocities band broadening due to diffusion is negligible. Although \(s_{m}\) may be obtained directly from equation 2.7. - 17, it is more useful to recast this equation so that the time derivative on the left hand side is replaced by a distance derivative. This may be done in the following manner:

For the overall concentration \(c\), there is no mass transfer term, and equation 2.7. - 17 may be written as
\[
\frac{\partial c}{\partial t}=-u \frac{\partial c_{m}}{\partial z}
\]
\(c_{m}\) appears on the right-hand side since only mobile zone flow can change the overall concentration at any distance along the column.

It is assumed throughout this treatment that, although not at equilibrium, we are close to it. This allows us to make the approximation:
\[
\frac{\partial c_{m}}{\partial z} \cong \frac{\partial c_{m}^{*}}{\partial z}
\]

Thus equation 2.7. - 18 may be written as
\[
\frac{\partial c}{\partial t}=-u \frac{\partial c_{m}^{*}}{\partial z}
\]

We know that \(c_{m}^{*}\) is directly proportional to \(c\) :
\[
c=\left(1+k^{\prime \prime}\right) c_{m}^{*}
\]
\[
2.7 .-21
\]

Thus
\[
\frac{\partial c_{m}^{*}}{\partial t}=\frac{-u}{1+k^{\prime \prime}} \frac{\partial c_{m}^{*}}{\partial z} \quad 2.7 .-22
\]

A further approximation allowed by the near equilibrium approximation is
\[
\frac{\partial c_{m}}{\partial t} \cong \frac{\partial c_{m}^{*}}{\partial t}
\]

From this and equation 2.7 - 19, equation 2.7. - 17 may be written as
\[
\frac{\partial c_{m}^{*}}{\partial t}=-u \frac{\partial c_{m}^{*}}{\partial z}+s_{m} \quad 2.7 .-24
\]
to a good approximation. The left-hand side of this equation may be obtained from equation 2.7. - 22. Thus our equation for \(s_{m}\) may be written as
\[
s_{m}=\frac{k^{\prime \prime}}{1+k^{\prime \prime}} u \frac{\partial c_{m}^{*}}{\partial z} \quad 2.7 .-25
\]
after some rearrangement. Equating this and equation 2.7 - 16 leads to the following equation:
\[
-c_{m}^{*}\left(k_{d}+k_{a}\right) \varepsilon_{m}=\frac{k^{\prime \prime}}{1+k^{\prime \prime}} u \frac{\partial c_{m}^{*}}{\partial z} \quad 2.7 .-26
\]
which may be solved for \(\varepsilon_{m}\) :
\[
\varepsilon_{m}=-\frac{k^{\prime \prime}}{1+k^{\prime \prime}} u \frac{1}{\left(k_{d}+k_{a}\right)} \frac{\partial \ln _{m} c_{m}^{*}}{\partial z} \quad 2.7 .-27
\]

From equation 2.7. - 12 the plate-height is immediately given as
\[
\begin{array}{ll}
H=\frac{2 k^{\prime \prime}}{1+k^{\prime \prime}} \frac{1}{k_{d}+k_{a}} u & 2.7 .-28 a \\
h=\frac{2 k^{\prime \prime}}{1+k^{\prime \prime}} \frac{1}{k_{a}+k_{d}} D_{m} v & 2.7 .-28 b
\end{array}
\]

Since \(k_{a}+k_{d}\) are related by the expression
\[
k^{\prime \prime}=k_{a} / k_{d}
\]
the equation 2.7. - 28 b may be simplified to either
\[
h=\frac{2 k^{\prime \prime}}{\left(1+k^{\prime \prime}\right)^{2}} \quad \frac{1}{k_{d}} D_{m} v
\]
or
\[
h=\frac{2 k^{\prime \prime^{2}}}{\left(1+k^{\prime \prime}\right)^{2}} \frac{1}{k_{a}} D_{m} \nu
\]

The above approach may be extended from simple single-site onestep kinetics to cover cases where there are two or more types of adsorptive sites on the surface \((31,32)\) or where the adsorptive process involves several consecutive steps (17).

DIFFUSION CONTROLLED KINETICS

For partition chromatography, the approach is broadly similar, in that an expression is sought for \(\varepsilon_{m}\), from which the plate height may be calculated by equation 2.7. - 12. However, since diffusion with in the stationary zone is possible, it is necessary to examine what happens in this zone more closely.

At any point in the stationary zone there will be a local concentration of solute, which we denote by \(c_{s}\). It should be noted that whereas \(c, c_{m}, c_{s}\) etc. above are amounts per unit volume of column packing, \(c_{s}{ }^{\prime}\) is given by the amount per unit volume of stationary zone. \(c_{s}{ }^{\prime}\) is related to the equilibrium concentration at that point \(c_{s}{ }^{* \prime}\) by a local equilibrium departure term \(\varepsilon_{s}{ }^{\prime}\) :
\[
c_{s}^{\prime}=c_{s}^{* \prime}\left(1+\varepsilon_{s}^{\prime}\right) \quad \text { 2.7. - } 31
\]

The mean of this local departure term over the column is the same as the overall departure term:
\[
\overline{\varepsilon_{s}}=\varepsilon_{s}
\]

Thus \(\overline{\varepsilon_{s}}\) may be related to \(\varepsilon_{m}\) :
\[
\overline{\varepsilon_{\mathrm{s}}^{\prime}}=\frac{-1}{\mathrm{k}^{\prime \prime}} \varepsilon_{\mathrm{m}} \quad \text { 2.7. - } 33
\]

The approach now adopted is analogous to that in equations 2.7. - 13-2.7. - 27, in that two expressions for \(s_{m}\) are found and equated, and thus an equation for \(\varepsilon_{m}\) is found. Our attention, however, is focussed on the stationary zone.

The rate of solute flux at a given point in this zone is determined by diffusion:
\[
s_{s}^{\prime}=D_{s} \nabla^{2} c_{s}^{\prime} \quad 2.7 .-34
\]
where \(D_{S}\) is the molecular diffusion coefficient in this zone, and \(\nabla^{2}\) is the Laplacian operator. Using equation 2.7. - 31 for \(c_{s}\) this becomes:
\[
s_{s}{ }^{\prime}=D_{s} c_{s}^{* \prime} \nabla^{2} \varepsilon_{s}^{\prime} \quad 2.7 .-35
\]

This is one equation for the solute flux. The mass balance equation for the stationary zone is simply
\[
\frac{\partial c_{s}{ }^{\prime}}{\partial t}=s_{s}{ }^{\prime} \quad 2.7 .-36
\]

The time derivative may again be replaced by a distance derivative. The details are as follows:

Applying the near-equilibrium approximation 2.7. - 23 , equation 2.7. - 36 may be written as:
\[
\frac{\partial c_{s}^{* \prime}}{\partial t}=s_{s}^{\prime}
\]

The left-hand side of this equation may be expressed as:
\[
\frac{\partial c_{s}^{* \prime}}{\partial t}=\frac{c_{s}{ }^{* \prime}}{c} \frac{\partial c}{\partial t} \quad 2.7 .-38
\]
since \(c_{s}^{* 1}\) is directly proportional to the overall concentration \(c\). The second term on the right-hand side may be obtained from equation 2.7. - 20,yielding
\[
\frac{\partial c_{s}^{* 1}}{\partial t}=-u \frac{c_{s}^{* 1}}{c} \frac{\partial c_{m}^{*}}{\partial z} \quad 2.7 .-39
\]

It is preferable to have the same type of concentration variable on both sides of this equation. This is possible because of the proportionality of \(c_{m}^{*}\) and \(c_{s}^{* '}\). Thus
\[
\frac{\partial c_{s}^{* 1}}{\partial t}=-u \frac{c_{s}^{* 1}}{c} \frac{c_{m}^{*}}{c_{s}^{*}}, \frac{\partial c_{s}^{* 1}}{\partial z} \quad 2.7 .-40
\]

This equation may be simplified to:
\[
\frac{\partial c_{s}^{* \prime}}{\partial t}=-u \frac{1}{1+k^{\prime \prime}} \frac{\partial c_{s}^{* 1}}{\partial z} \quad 2.7 .-41
\]

From this and equation 2.7. - 37, the second equation for solute flux is:
\[
s_{s}^{\prime}=-u \frac{1}{1+k^{\prime \prime}} \frac{\partial c_{s}^{* \prime}}{\partial z} \quad 2.7 .-42
\]

From this and equation 2.7. - 35, the following differential equation for \(\varepsilon_{s}{ }^{\prime}\) may be found:
\[
\nabla^{2} \varepsilon_{s}^{\prime}=-\frac{u}{D_{s}} \frac{1}{1+k^{\prime \prime}} \frac{\partial \ln c}{\partial z}
\]

Having obtained this equation, the strategy adopted is to solve it for \(\varepsilon_{s}^{\prime}\) by integrating and applying the appropriate boundary conditions. The average value of \(\varepsilon_{s}{ }^{\prime}\) must then be obtained, and thus \(\varepsilon_{m}\) may be found from equation \(2.7 .-33\). The plate height may then be calculated from equation 2.7 - 12 . This method is best illustrated by example.

The simplest example is when the stationary zone is a uniform layer of depth \(d\) held on an impermeable support. This case is illustrated in Figure 2.7. - 1.

Let \(x\) be the perpendicular distance from the support. Equation 2.7. - 43 may then be written as
\[
\frac{\partial^{2} \varepsilon_{s}^{\prime}}{\partial x^{2}}=\frac{u}{D_{s}} \frac{1}{\left(1+k^{\prime \prime}\right)} \quad \frac{\partial \operatorname{lnc}}{\partial z} \quad 2.7 .-44
\]

Integrating once with respect to \(\times\) yields
\[
\frac{\partial \varepsilon_{s}^{\prime}}{\partial x}=-\frac{u}{D_{s}} \frac{1}{1+k^{\prime \prime}} \frac{\partial \ln c}{\partial z} x+g_{0} \quad 2.7 .-45
\]
where \(g_{0}\) is a constant of integration. A second integration yields
\[
\varepsilon_{s}^{\prime}=-\frac{u}{D_{s}} \frac{1}{1+k^{\prime \prime}} \frac{\partial \ln c}{\partial z} \frac{x^{2}}{2}+g_{o} x+g_{1} \quad 2.7 .-46
\]
where \(g_{1}\) is a second constant of integration. These constants may be evaluated by applying the appropriate boundary conditions. These are that there is no solute flux from the stationary zone to the support, and that there is equilibrium at the interface between the stationary and mobile zones. The first condition may be written as
\[
\frac{\partial \varepsilon_{s}^{\prime}}{\partial x}=0 \text { at } x=0
\]
and the second as
\[
\varepsilon_{s}^{\prime}=\varepsilon_{m} \text { at } x=d \quad 2.7
\]

\section*{Mobile Zone \\ velocity u}


FIGURE 2.7. - 1. Schematic Diagram of Uniform Stationary
Zone. Diffusion over distance \(x\) into and out of stationary zone leads to band broadening by slow mass transfer.

Equation 2.7. - 47 with equation 2.7 . -45 shows that \(g_{0}=0\). At \(x=d\), equation \(2.7 .-46\) becomes
\[
\varepsilon_{s}^{\prime}=\varepsilon_{m}=-\frac{u}{D_{s}} \frac{1}{1+k^{\prime \prime}} \frac{\partial \operatorname{lnc}}{\partial z} \frac{d^{2}}{2}+g_{1} \quad 2.7 .-49
\]

Thus
\[
g_{1}=\varepsilon_{m}-\frac{u}{D_{s}} \quad \frac{1}{1+k^{\prime \prime}} \frac{\partial \operatorname{lnc}}{\partial z} \frac{d^{2}}{2}
\]

Using this value of \(g_{1}\) in equation 2.7 . -46 we obtain
\[
\varepsilon_{s}^{\prime}=\varepsilon_{m}-\left(\frac{u}{D_{s}} \frac{1}{1+k^{\prime \prime}} \frac{\partial \operatorname{lnc}}{\partial z}\right)\left(\frac{x^{2}-d^{2}}{2}\right) \quad 2.7 .-51
\]

The value of \(\overline{\varepsilon_{s}}\) may be obtained by finding the mean value of \(\varepsilon_{s}{ }^{\prime}\). This may be calculated from the equation
\[
\overline{\varepsilon_{s}^{\prime}}=\frac{\int_{0}^{d} \varepsilon_{s}^{\prime} d x}{\int_{0}^{d} d x}
\]

The result of this operation is:
\[
\overline{\varepsilon_{s}}=\varepsilon_{m}+\frac{u}{D_{s}} \frac{1}{1+k^{\prime 1}} \frac{\partial \ln c}{\partial z} \frac{d^{2}}{3}
\]

\footnotetext{
\(\overline{\varepsilon_{s}}\) is also given in terms of \(\varepsilon_{m}\) by equation 2.7. - 33. From these two equations \(\overline{\varepsilon_{s}}\) may be eliminated, yielding the following for \(\varepsilon_{m}\) :
}
\[
\varepsilon_{m}=-\frac{u}{D_{s}} \frac{k^{\prime \prime}}{\left(1+k^{\prime \prime}\right)} \frac{\partial \operatorname{lnc}}{\partial z} \frac{d^{2}}{3}
\]

Thus by equation 2.7. - 12 the plate-height is given by:
\[
\begin{align*}
& H=\frac{2}{3} \frac{k^{\prime \prime}}{\left(1+k^{\prime \prime}\right)^{2}} \frac{d^{2}}{D_{s}} u \\
& h=\frac{2}{3} \frac{k^{\prime \prime}}{\left(1+k^{\prime \prime}\right)^{2}} \frac{D_{m}}{D_{s}} \frac{d^{2}}{d_{p}^{2}}
\end{align*}
\]
by introducing the appropriate particle diameter and diffusion coefficient.

CASE OF STATIONARY ZONE IN SPHERICAL UNITS

The assumption that the stationary zone exists as a layer of uniform depth is reasonable only for pellicular particles covered with a shallow uniform layer of stationary phase. A more realistic model, especially when the column is packed with spherical particles, is that the stationary zone exists in uniform spherical units. Even if the support particles comprise microporous beads, these will be loaded with immobile liquid, and there will exist an effective diffusion coefficient within the bead. This will apply even if the interior of the bead is heterogeneous on a molecular scale due to the presence of stationary phase layers and adsorbed components of eluent, since on a macroscopic scale the bead is still effectively homogeneous.

For spherical units, equation 2.7. - 43 may be written as:
\[
\frac{1}{r^{2}} \frac{\partial}{\partial r}\left(r^{2} \frac{\partial \varepsilon_{s}^{\prime}}{\partial r}\right)=-\frac{u}{D_{s}} \frac{1}{1+k^{\prime \prime}} \frac{\partial \operatorname{lnc}}{\partial z} \quad 2.7 .-56
\]

Angular coordinates are absent because of the spherical symmetry of the particles. When this equation is integrated, the following equation is obtained:
\[
\varepsilon_{s}^{\prime}=-\frac{u}{D_{s}} \frac{1}{1+k^{\prime \prime}} \frac{\partial \ln c}{\partial z} \frac{r^{2}}{6}-\frac{g_{0}}{r}+g_{1} \quad 2.7 .-57
\]
where again \(g_{0}\) and \(g_{1}\) are constants of integration. The boundary conditions used to evaluate these constants are:
\[
\frac{\partial \varepsilon_{s}^{\prime}}{\partial r}=0 \text { at } r=0 \quad 2.7 .-58
\]
and
\[
\varepsilon_{s}^{\prime}=\varepsilon_{m} \text { at } r=r_{p} \quad \text { 2.7. - } 59
\]
where \(r_{p}\) is the radius of the particle. These equations are analogous to equations 2.7. - 47 and 2.7. - 48. Equation 2.7. - 58 yields the constant \(g_{0}=0\). After evaluating \(g_{1}\) by using conditions 2.7. - 59, the following equation for \(\varepsilon_{s}{ }^{\prime}\) is obtained:
\[
\varepsilon_{s}^{\prime}=\varepsilon_{m}+\frac{1}{1+k^{\prime \prime}} \quad \frac{u}{D_{s}} \frac{\partial \ln c}{\partial z}\left(\frac{r^{2}-r^{2}}{6}\right)
\]

The mean value of \(\varepsilon_{s}{ }^{\prime}\) is found from the equation
\[
\bar{\varepsilon}{ }_{s}=\frac{\int_{0}^{r} p}{r_{0}} 4 \pi r^{2} \varepsilon_{s}^{\prime} d r
\]

When the expression for \(\varepsilon_{s}{ }^{\prime}\) is substituted into this equation, the value of \(\overline{\varepsilon_{s}}\) is found to be
\[
\overline{\varepsilon_{s}}=\varepsilon_{m}+\frac{1}{15} \frac{1}{1+k^{\prime \prime}} \frac{u}{D_{s}} \frac{\partial \operatorname{lnc}}{\partial z} r_{p}^{2} \quad 2.7 .-62
\]

From this and equation 2.7. - 33, the following equation for \(\varepsilon_{m}\) is found:
\[
\varepsilon_{m}=-\frac{1}{15} \frac{k^{\prime \prime}}{\left(1+k^{\prime \prime}\right)^{2}} \frac{u}{D_{s}} \frac{\partial 1 n c}{\partial z} r_{p}^{2} \quad 2.7 .-63
\]

Hence by equation 2.7. - 12, the plate-height is
\[
H=\frac{2}{15} \frac{k^{\prime \prime}}{\left(1+k^{\prime \prime}\right)^{2}} \quad r_{p}^{2} \frac{u}{D_{s}}
\]

If particle diameter, rather than particle radius is used, the reduced plate-height may be written as:
\[
h=\frac{1}{30} \frac{k^{\prime \prime}}{\left(1+k^{\prime \prime}\right)^{2}} \quad \frac{D_{m}}{D_{s}} v
\]

This is one of the most important equations in this thesis. It will be examined further in Chapter 5 .

CHAPTER 3
DIFFUSION
3.1. INTRODUCTION

Diffusion is the name given to the process whereby initially separate components intermix, or a concentrated zone of one component spreads out into another, becoming diluted by it, without any external agent being responsible for the mixing. This phenomenon may be explained by the random motion of molecules or ions. In what follows we consider only diffusion in liquids.

All molecules in a liquid are in a state of random motion. If the liquid is at rest there is an equal probability of a molecule moving in any given direction; if the liquid as a whole is in motion, this motion will be superimposed on the above random motion.

Consider two adjacent elements of a liquid, where there is a slightly higher concentration of solute in one element than in the other. In a given time, the same fraction of solute molecules will transfer from the region of high concentration to the region of lower concentration as will transfer in the opposite direction. However, since there were a greater number of solute molecules in the region of high concentration, a greater number will transfer out of this element to the other than will transfer from the low concentration element to that of higher concentration. This explains the overall transfer of solute from regions of high concentration to those of low concentration.

From the above considerations, it is obvious that the rate of transfer of solute depends on the difference in concentration between the two elements, or more generally on the concentration
gradient. This fact is expressed by Fick's first law of diffusion (33).
\[
J=-D \partial c / \partial z \quad 3.1 .-1
\]
where \(J\) is the amount of solute passing across a unit area perpendicular to the z-axis in unit time, \(\partial c / \partial z\) is the concentration gradient along the z-axis, and the proportionality factor \(D\) is known as the diffusion coefficient. D is a positive quantity; the negative sign indicates that the flux is in the opposite direction to concentration gradient, i.e. there is a net transfer of solute to the region of lower concentration.

The above argument is based on diffusion in one dimension only. Equation 3.1. - 1 may be generalised to
\[
\underline{\mathrm{J}}=-\mathrm{D} \nabla \mathrm{c} \quad 3.1 .-2
\]
using the normal notation of vector calculus.

The rate of change of concentration with time may be found from Fick's second law
\[
\begin{array}{ll}
\frac{\partial c}{\partial t}=D \frac{\partial^{2} c}{\partial z^{2}} & 3.1 .-3
\end{array}
\]

This equation assumes that \(D\) is independent of concentration. Otherwise, this equation should be written as
\[
\begin{array}{ll}
\frac{\partial c}{\partial t}=\frac{\partial c}{\partial z} D \frac{\partial c}{\partial z} & 3.1 .-4
\end{array}
\]


These equations may also be generalised to three dimensions as
\[
\frac{\partial c}{\partial t}=D \quad \nabla^{2} c
\]
or
\[
\frac{\partial c}{\partial t}=\nabla \cdot(D \nabla c) \quad 3.1 .-6
\]

For the remainder of this discussion, we will assume that D is independent of concentration, and we will consider diffusion in one dimension only. Thus the relevant equations are 3.1. - 1 and 3.1. - 3 .

The solution of equation 3.1. - 3 depends on the initial conditions chosen. In most of the situations met with in this work the initial concentration profile is assumed to be a sharp spike. In this case, a solution of 3.1. - 3 is
\[
c=\frac{M}{t^{\frac{1}{2}}} \exp \left(\frac{-z^{2}}{40 t}\right) \quad 3.1 .-7
\]
(see ref. (34)). Thus a sharp spike develops into a Gaussian profile. Such a profile is normally written in terms of the peak variance \(\sigma^{2}\) :
\[
c=\frac{M}{t^{\frac{1}{2}}} \exp \left(\frac{-z^{2}}{2 \sigma^{2}}\right) \quad 3 \cdot 1 \cdot-8
\]

A comparison of equations 3.1. - 7 and 3.1. - 8 reveals the relationship
\[
\sigma^{2}=2 D t \quad 3.1 .-9
\]

This equation is known as the Einstein equation (19). It enables the diffusion coefficient to be determined from the width of a Gaussian peak.

\subsection*{3.2. ESTIMATION OF DIFFUSION COEFFICIENTS IN LIQUIDS}

The rate of diffusion in a liquid is obviously related to the viscosity of the liquid since both processes involvetransport of molecules within the liquid. Both processes involve the breaking of bonds within the liquid, and it is found that the activation energy required to break the bonds and so allow diffusion or viscous flow to take place is approximately equal for both processes. Since viscosity data are much more easily obtainable than diffusion data, many equations for estimating the diffusion coefficient in liquids introduce the activation energy by a term \(1 / n\).

The Stokes-Einstein equation (35) for estimating diffusion coefficients in liquids is
\[
\begin{array}{ll}
D=\frac{R T}{6 \pi \eta r N} & \text { 3.2. }-1
\end{array}
\]
where \(R\) is the gas constant, \(T\) is the temperature, \(r\) is the solute radius and \(N\) is Avogadro's number. This equation may be derived by assuming a frictional resistance term given by Stokes law. Since Stokes law assumes the solvent to be continuous, this equation only holds when the solute molecules are much larger than the solvent molecules.

By applying reaction-rate theory to the diffusion process in liquids, modelling the liquid by the 'hole theory', Eyring (36)
derived the equation
\[
0=\lambda^{2} \kappa
\]
where \(\lambda\) is the distance between molecules at equilibrium, and \(x\) is the specific reaction rate for diffusion, given by
\[
x=\frac{(k T)\left(F^{\neq}\right)}{(h)(F)} \quad \exp \left(\frac{-\varepsilon_{o}}{k T}\right) \quad 3.2 .-3
\]
\(F^{\ddagger}\) and \(F\) are partition functions, and \(\varepsilon_{0}\) is the activation energy for diffusion per degree of freedom.

A similar treatment when applied to viscosity yields
\[
\eta=\frac{\lambda_{1}}{\lambda_{2} \lambda_{3}} \frac{k T}{\lambda^{2} k_{\text {visc }}} \quad \text { 3.2.-4 }
\]
where \(\lambda_{1}, \lambda_{2}\) and \(\lambda_{3}\) are intermolecular distances which come from the theory of viscosity. Assuming that the value of \(\lambda\) in equation 3.2. - 4 is the same as that in equation 3.2. - 2 , and that the value of x is the same for diffusion and viscosity, by combining equations 3.2. - 2 and 3.2. - 4 we obtain
\[
D=\frac{\lambda_{1}}{\lambda_{2} \lambda_{3}} \frac{k T}{n} \quad 3.2 .-5
\]

It is difficult to apply this equation because of the need to estimate values for \(\lambda_{1}, \lambda_{2}\) and \(\lambda_{3}\).

Other theoretical equations have been derived from the random walk theory, hydrodynamics, thermodynamics, irreversible process
thermodynamics and absolute rate theory. These are reviewed by Johnson and Babb (37). All suffer from the same drawback as the Eyring theory, namely that it is difficult to assign values to some of the parameters used in the equations, and thus the equations have little predictive value.

To allow the estimation of diffusion coefficients from more readily available data, several empirical (or semi-empirical) formulae have been developed. Typical of these, and perhaps the most widely known, is the Wilke-Chang equation \((38,39)\)
\[
D=\frac{7.4 \times 10^{-15}(\psi M)^{\frac{1}{2}} T}{\eta V_{s}^{0.6}}
\]

Where \(M\) is the molecular weight of the eluent, \(T\) is the absolute temperature in Kelvin, \(V_{s}\) is the molar volume of solute in \(\mathrm{cm}^{3} \mathrm{~mol}^{-1}\) and \(\eta\) is the solvent viscosity in \(N s \mathrm{~m}^{-2} . \psi\) is an association constant, whose value is unity for unassociated liquids. The values of \(\psi\) for some common associated liquids are as follows: water, 2.6 ; methanol, 1.9; ethanol, 1.5. When the above units are used, the diffusion coefficient is given in \(m^{2} s^{-1}\).

This equation was obtained as follows. From equations 3.2. - 1 and 3.2. - 5 it appears that the group \(D \eta / T\) is a constant, independent of temperature. These equations also show that the value of the diffusion coefficient depends in some way on the size of the solute molecule. A correlation of experimental values of \(D\) and solute molal volume gave a best fit when this variation was of the form
\[
\begin{array}{ll}
D \propto V^{-0.6} & 3.2 .-7
\end{array}
\]

Of the various solvent properties examined, the best correlation of experimental values of the diffusion coefficient was the correlation
with molecular weight. The best form of this correlation was found to be
\begin{tabular}{ll}
\(0 \propto M^{\frac{1}{2}}\) & 3.2. -8
\end{tabular}

This worked well for non-polar liquids, but when the constant derived in this way was used with polar liquids, the diffusion coefficient was underestimated. The association constant \(\psi\) was introduced to correct for this. The constant appearing in equation 3.2. - 6 was calculated to give the best correlation between experimental values of the diffusion coefficient and values calculated by an equation of the form of 3.2. - 6 .

For mixed solvents, equation 3.2. - 6 may still be used, if the value of \((\psi M)\) used is the volume average of \((\psi M)\) for the components of the solvent (40). Thus for a solvent consisting of \(60 \%\) methanol and \(40 \%\) water, \((\psi \mathrm{M})\) is calculated as
\[
(\psi M)=(0.6 \times 2.6 \times 18)+(0.4 \times 1.9 \times 32)=52.4 \quad 3.2 .-9
\]

With single-component solvents, the Wilke-Chang equation often gives results differing from the experimental values by up to \(30 \%\) (41). For mixed solvents, there is little experimental data available, but the equation is unlikely to perform better for these than it does for pure solvents.

Other semi-empirical equations for the calculation of \(D\) have been proposed. Some of these are described briefly below; fuller details are given by Reid and Sherwood (41).

Scheibel (42) proposed an equation similar to that of Wilke and Chang which does not include a factor \(\psi\), but which has several
recommendations for the value of the constant depending on the solvents being used.

Othmer and Thakar (43) proposed an equation which includes the heat of vaporisation of the solvent as a parameter. This may be considered as an alternative way of obtaining a factor like ( \(\psi M\) ) in equation 3.2. - 6 .

Sitaraman et al (44) proposed an equation which includes the heats of vaporisation of both solvent and solute. The form of this equation differs considerably from that of Othmer and Thakar.

Over a wide variety of systems there is little to choose in accuracy among the various equations proposed. The Wilke-Chang equation has been singled out since it appears most often in the chromatographic literature, and uses the most readily accessible data.

\subsection*{3.3. TEMPERATURE DEPENDENCE OF DIFFUSION COEFFICIENTS}

To allow values of \(D\) at one temperature to be calculated from values at another temperature for which the experimental data is available, we assume that the group \(D \eta / T\) is constant, as suggested by equations 3.2. - 1 and 3.2.-5. However, this is only an approximation as indicated by Innes and Albright (45). It should be adequate for extrapolation over small ranges of temperature.

\subsection*{3.4. MEASUREMENT OF DIFFUSION COEFFICIENTS}

To obtain values of diffusion coefficients, many different experimental methods have been used. The most popular are summarised below.

One of the most popular experimental methods is the diaphragm cell technique. This was originally used by Northup and Anson (46), and significantly improved by Stokes (47). In the Stokes diffusion cell, the two solutions are separated by a horizontal diaphragm (typically of porous glass), with the more dense solution in the lower part of the cell. Both solutions are stirred so that there is no concentration gradient within either compartment, and the only gradient is across the diaphragm. The apparatus must be thermostatted. Once the compartments are filled with the solutions of interest, diffusion proceeds across the diaphragm. After a certain time (typically several days), the experiment is stopped and the concentration of the two solutions are measured. From a knowledge of the initial and final concentrations, the volumes of the solutions used and the effective path length of the diaphragm, the rate of solute flux and the diffusion coefficient may be calculated. The effective cross-sectional area and path length of the diaphragm must be found the by calibration with a system for whichldiffusion coefficient is known.

The other popular method, for which no calibration is required, is the free diffusion method (48). In this method, the two solutions of interest are placed in direct contact. It is vital that an initial sharp boundary is formed between the two solutions. Again the more dense solution is placed beneath the less dense. The composition of the liquid at any time and at any position within the cell may be determined by measuring the refractive index at that position. Various optical techniques have been used to determine this property. For example, the 'Gouy fringes' produced by shining monochromatic light thraugh a medium containing a refractive index gradient may be
recorded on photographic film. Alternatively, a light beam may be split so that one beam passes through the sample, and the other through a reference cell. When the beams are recombined, the refractive index of the sample may be calculated from the interference pattern produced.

To use this method, the relationship between refractive index and composition must be known. The chief experimental drawbacks are the formation of the initial boundary, and the avoidance of mixing by methods other than diffusion.

Further information on these and other techniques may be found im Tyrell (48) or in Johnson and Babb (37) as well as in the original references.

\section*{THE CHROMATOGRAPHIC BROADENING TECHNIQUE}

A further method to measure diffusion coefficients in liquids is the chromatographic broadening technique. This method is based on the role played by diffusion in the broadening of chromatographic bands as they are eluted from open tubular columns which do not retain the solute. This problem was first analysed by Taylor (49).

For laminar flow, there is a velocity profile across the tube given by
\[
u(r)=u_{0}\left(1-r^{2} / a^{2}\right) \quad \text { 3.4. - } 1
\]
where \(u(r)\) is the fluid velocity at a distance \(r\) from the centre of the tube, \(u_{0}\) is the velocity at the centre of the tube, and \(a\) is the tube radius. This equation is obviously intended to hold within the tube, i.e. \(r \leqslant a\).

In the absence of molecular diffusion, or where the time taken for the solute to diffuse across the tube is long compared to the time for which the flow profile acts on a region of solute, the band will broaden due solely to the action of the flow profile. Thus solute initially at the walls of the tube will not move, and solute at the centre of the tube will move with a velocity \(u_{0}\). If solute transport across the tube by diffusion is significant, the concentration gradient across the tube produced by the action of the flow profile will be smoothed out. This may be analysed as follows:

A coordinate system is definedsuch that the origin moves at the mean fluid velocity \(u_{0} / 2\), and the radial coordinate varies from 0 to 1. Thus
\[
\begin{array}{ll}
z_{1}=z-u_{0} t / 2 & 3.4 .-2 \\
x=r / a & 3.4 .-3
\end{array}
\]

The diffusion equation is
\[
D\left(\frac{\partial^{2} c}{\partial r^{2}}+\frac{1}{r} \frac{\partial c}{\partial r}+\frac{\partial^{2} c}{\partial z^{2}}\right)=\frac{\partial c}{\partial t}+u_{0}\left(1-\frac{r^{2}}{a^{2}}\right) \frac{\partial c}{\partial z_{1}} 3.4 .-4
\]

This may be rewritten as
\[
\frac{\partial^{2} c}{\partial x^{2}}+\frac{1}{x} \frac{\partial c}{\partial x}=\frac{a^{2}}{D} \frac{\partial c}{\partial t}+\frac{a^{2} u_{0}}{D} \frac{1}{2}-x^{2}\left(\frac{\partial c}{\partial z_{1}}\right) \quad 3.4 .-5
\]
in the above-defined coordinates. The term \(\partial^{2} c / \partial_{z}{ }^{2}\) has been omitted, since the rate of diffusion in the \(z\)-direction is negligible compared to the flowrate in cases of interest.

The first term on the right-hand side of 3.4. - 5 may be dropped, since there is no net flux of solute across planes of constant \(z_{1}\).

Thus equation 3.4 . - 5 simplifies to
\[
\frac{\partial^{2} c}{\partial x^{2}}+\frac{1}{x} \frac{\partial c}{\partial x}=\frac{a^{2} u_{0}}{D} \quad\left(\frac{1}{2}-x^{2}\right) \frac{\partial c}{\partial z_{1}} \quad \text { 3.4. }-6
\]

The boundary condition required for the solution of this equation is that there be no transport of solute through the walls of the tube, i.e.
\[
\frac{\partial c}{\partial x}=0 \text { at } z=1 \quad 3.4 .-7
\]

A solution of 3.4 . - 6 which satisfied 3.4. - 7 is
\[
c=c_{0}+A\left(x^{2}-\frac{1}{2} x^{4}\right) \quad \text { 3.4.-8 }
\]
where \(c_{z_{0}}\) is the value of \(c\) at \(z_{1}=0\), and \(A\) is a constant, to be determined from the boundary condition. It may thus be shown
\[
A=\frac{a^{2} u_{0}}{8 D} \frac{\partial c}{\partial z_{1}}
\]

The rate of transfer of \(c\) across the section \(z_{1}\) is
\[
Q=-2 \pi a^{2} \int_{0}^{1} u_{0}\left(\frac{1}{2}-x^{2}\right) c x d x \quad 3.4 \cdot-10
\]

From equations 3.4.-9 and 3.4. - 10 Q may be obtained as
\[
Q=-\frac{\pi a^{4} u_{0}^{2}}{192 D} \frac{\partial c z_{1}}{\partial x_{1}} \quad 3.4 .-11
\]

Since the radial variations in \(c\) are small compared to the axial variations, we may write this as
\[
Q=\frac{-\pi a^{4} u_{0}{ }^{2}}{192 D} \frac{\partial c_{m}}{\partial z_{1}}
\]
where \(c_{m}\) is the mean concentration at position \(z_{1}\).
Equation 3.4. - 12 has the same form as Fick's first law, with an effective diffusion coefficient given by
\[
D_{e f f}=\frac{a^{2} u_{0}^{2}}{192 D}
\]

This may be written in terms of the mean eluent velocity as
\[
D_{\text {eff }}=\frac{a^{2} u^{2}}{48 D} \quad 3.4 .-14
\]

Thus a band of solute moves along the column with a velocity \(u\), and is dispersed by a mechanism analogous to diffusion, with an effective diffusion coefficient given by 3.4. - 14.

In accordance with the theory of diffusion, a delta-function 'spike' of solute will develop into a Gaussian peak as the solute is eluted along the tube. The variance of this peak is given by
\[
\sigma^{2}=2 D_{\text {eff }} t \quad 3.4 .-15
\]

Thus the molecular diffusion coefficient may be found from the peak variance after a given time:
\[
\sigma^{2}=a^{2} u^{2} t / 24 D \quad 3.4 \cdot-16
\]

This may be written in terms of plate-height:
\[
H=a^{2} u / 24 D
\]

There are several conditions which must be met before equations 3.4. - 16 and 3.4. - 17 may be used to calculate the molecular
diffusion from the band width. These are as follows:

The above analysis is based on the assumption of laminar flow. For this assumption to be valid, the following condition must be met:
\[
\underline{2 \text { apu }}<2000 \quad \text { 3.4. }-18
\]

7
where \(\rho\) is the eluent density and \(n\) is the eluent viscosity, in the appropriate units.

A second assumption is that the time required to diffuse across the column is short compared to the time for convective transport to be effective. This condition may be written as (50)
\[
\begin{array}{ll}
\mathrm{t} \geqslant \frac{50 \mathrm{a}^{2}}{3.8^{2} \mathrm{D}} & 3.4 .-19
\end{array}
\]

It is also assumed that the spreading due to axial diffusion may be ignored compared to the spreading due to the above mechanism. Otherwise the following equation must be used in place of 3.4. - 17:
\[
H=\frac{2 D}{u}+\frac{a^{2} u}{24 D} \quad 3.4 .-20
\]

It may thus be shown that if the condition
\[
u>\frac{700}{a} \quad 3.4 .-21
\]
is met, then axial diffusion accounts for less than \(1 \%\) of the bandwidth, and equation 3.4. - 17 may be used. More stringent conditions than 3.4. - 21 have been proposed (51).

This method of measuring diffusion coefficients has been used to obtain values of \(D\) for a wide variety of systems. It was originally
used to measure values of \(D\) for the mutual diffusion of gases (52, 53), and since then has been used to measure diffusion coefficients in dense gases (54) and in gas/liquid (55) and 1 iquid/liquid systems \((56,57)\).

Recently a more precise form of equation 3.4.-20 has been published (51) which makes an allowance for the fact that the concentration pulse is observed in time, rather than in a length of column:
\[
D=\frac{a^{2}}{24 \bar{t}_{i d}}\left(\frac{\left(1+4 \sigma_{i d}^{2} / \bar{t}_{i d}\right)^{\frac{1}{2}}+3}{\left(1+4 \sigma_{i d}^{2} / \bar{t}_{i d}\right)^{\frac{1}{2}}+2\left(\sigma_{i d}^{2} / \bar{t}_{i d}\right)-1}\right)\left(\frac{1}{2}+\frac{1}{2}\left(1-\delta_{a}\right)^{\frac{1}{2}}\right) 3.4 .-22
\]
where
\[
\delta_{a}=0.26666 u^{2} a^{2} / L D
\]
\(\overline{\mathrm{t}}_{i d}\) and \(\sigma_{i d}^{2}\) are the first and second moments or the concentration/ time curve. The value of \(D\) calculated from this equation differs only slightly from that calculated from equation 3.4. - 16.

A set of equations is given with equation 3.4. - 22 which allows corrections to be made for non-idealities in the experiment. Ideally, there would be no effect on the measured diffusion coefficient due to the finite volume of the detector flowcell or the connecting tubing, or due to the finite volume injected. These effects are dealt with as follows:

The values of \(\bar{t}_{i d}\) and \(\sigma_{i d}^{2}\) used in equation 3.4. - 22 may be obtained from the following equations:
\[
\begin{align*}
& \bar{t}_{i d}=\bar{t}+\delta t_{1}+\delta t_{2}+\delta t_{3} \\
& \sigma_{i d}^{2}=\sigma^{2}+\delta \sigma_{1}^{2}+\delta \sigma_{2}^{2}+\delta \sigma_{3}^{2}
\end{align*}
\]
where \(\bar{t}\) and \(\sigma^{2}\) are the experimental values of the moments, and the other terms are correction terms to be added to these values.

These terms are described in detail below.

To correct for the effect of the flow-cell volume, the following terms are used:
\[
\begin{array}{cc}
\delta t_{1}=\left(\frac{L}{u}\right)\left(3 \zeta_{0}-\frac{V_{D}}{\pi a^{2} L}\right) & 3.4 .-25 a \\
\delta \sigma_{1}^{2}=\left(\frac{L}{u}\right)^{2}\left[13 \zeta_{0}^{2}-\left(\frac{V_{D}}{\pi a^{2} L}\right)^{2}-2 \zeta_{0} \frac{V_{D}}{\pi a^{2} L}\right] & 3.4 .-25 b
\end{array}
\]
where
\[
\zeta_{0}^{2}=\frac{u^{2} a^{2}}{48 D L} \quad 3.4 .-26
\]
and \(V_{D}\) is the volume of the detector flow-cell.

The corresponding terms for the effect of the volume of injection are:
\[
\begin{aligned}
\delta t_{2}=-\frac{v_{i}}{2 \pi a^{2} u} & 3.4 .-27 a \\
\delta \sigma_{2}^{2}=-\frac{1}{12} \frac{v_{i}}{\pi a^{2} u} & 3.4 .-27 b
\end{aligned}
\]
where \(V_{i}\) is the volume of the injection.

To correct for the effect of connecting tubing on the moments, the following terms are used:
\[
\begin{gathered}
\delta t_{3}=\left(\frac{L}{u}\right)\left(\frac{a_{c}}{a}\right)^{2}\left[1+\frac{a^{2}}{a_{c}{ }^{2}} \frac{L}{2} \zeta_{0}\left(1+\frac{a_{c}{ }^{2}}{a^{2}}\right)\right] 3.4 .-28 a \\
\delta \sigma_{3}{ }^{2}=\left(\frac{1}{u}\right)^{2}\left(\frac{a}{a}\right)^{4}\left[\frac{2 a}{a_{c}}{ }^{2}\right. \\
\left.\frac{L}{l} \zeta_{0}+\frac{a^{2}}{a_{c}{ }^{2}}\left(\frac{L}{1}\right)^{2} \zeta_{0}{ }^{2}\left(\frac{3 a_{c}{ }^{2}}{a^{2}}+2\right)\right] 3.4 .-28 b
\end{gathered}
\]
where \(\ell\) is the length of the connection tubing and \(a_{c}\) is the radius. \(\zeta_{0}\) is again given by equation 3.4. - 26 .

It is obviously impractical to thermostat a long length of straight tubing. Since temperature control is required, most authors have used coiled tubes. This may lead to the above equations being inaccurate, since the parabolic flow profile may be distorted. This leads to an effect known as secondary flow. An element of eluent at the centre of the colum will be moving faster than an element near the wall. It will therefore have a greater momentum, so it will move to the Outside of the tube (58). This is another mechanism for transfer of solute across the column.

This effect is expected to be negligible if the following conditions are met:
\begin{tabular}{ll}
\(R_{c} / a\) & 3.4. -29
\end{tabular}
\[
\frac{a R_{c} u^{2} \rho}{n D}<5 \quad 3.4 .-30
\]

It is expected that the above effect will cause the calculated values of \(D\) to be velocity dependent. If no such velocity dependence is found, it may be assumed that this effect is absent.

\subsection*{3.5. EXPERIMENTAL}

The chromatographic broadening technique was used to determine the diffusion coefficients of all eluent/solute combinations used. A glass capillary tube was drawn by Shimadzu glass drawing machine GDM1-B (Shimadzu Seisa Kusho Ltd., Kyoto, Japan): the length of this tube was 10.89 m and the internal radius 0.206 mm . The radius was calculated from the weight of the tube when empty and when filled with water, and thus represents a mean value. Inspection showed that the radius was not precisely uniform throughout the column length. The tube was formed into a coll of radius 110 mm . The ends of the tube were straightened to allow sleeving in PTFE tubing. This enabled the tube to be connected to the injector and detector flow-cell by Swagelok \(1 / 16^{\prime \prime}\) unions, with minimal dead volume. The columns was placed in the oven compartment of a Shandon Southern liquid chromatography U.V. detector (Shandon Southern Products Ltd., Runcorn, England). The injector had a \(20 \mu 1\) loop attached. The column was connected to the \(8 \mu 1\) flowcell by a 60 mm length of stainless steel tubing, diameter 0.12 mm . The compartment was thermostatted at a temperature of \(30^{\circ} \mathrm{C}\). Eluent, which had been degassed by refluxing, was fed through the column under gravity. A length of stainlesssteel tubing within the oven ensured that the eluent was at the required temperature before passing through the injector.

Dilute solutions of each solute/eluent combination of interest were prepared. Details of the solutes are given in Appendix 1. The concentration of solute in these samples was less than 0.01 M , except for solutions of acetone, for which a concentration of 0.08 M was required in order to obtain a reasonable detector response.

The detector response was recorded on a Bryans 28000 recorder, (Bryans Southern, Surrey, England) from which the elution time and peak width could be determined. Several samples were eluted down the column at one time, with an interval between each sample and the next to ensure that the peaks did not overlap at the end of the column.

Equation 3.4. - 22 was used, with the correction factors described above, to determine the value of \(D . \overline{\mathrm{t}}\) was measured as the time to the maximum of the peak and \(\sigma^{2}\) was calculated from the peak-width at the baseline found by drawing tangents to the points of inflection, and also by measuring the peak width at half height.

Initial experiments showed no dependence of \(D\) on flowrate. Later experiments were carried out at a single flowrate, since no secondary flow. effect was found. It was also noted that the correction terms led to a change in the value of \(D\) of only about \(2 \%\).

Eight injections of each sample were made, and the mean diffusion coefficient was calculated from this set of results. The experimental error was taken as twice the standard deviation of the set of results. This was of the order of \(10 \%\), which is taken as the experimental error. The main source \({ }^{\text {of }}\). the recorder trace.

The results of this experiment are shown in Table 3.5. - 1 .
Since it was not possible to perform the experiment at lower temperatures, the diffusion coefficients at \(20^{\circ} \mathrm{C}\) and \(26^{\circ} \mathrm{C}\) were calculated from the equation
\[
\frac{D \eta}{T}=\text { constant } \quad 3.5 .-1
\]
```

TABLE 3.5. - 1

```

\section*{EXPERIMENTAL CALCULATION OF DIFFUSION COEFFICIENTS}

Experiment performed at \(30^{\circ} \mathrm{C}\)
a) Methanol/water 60:40
\begin{tabular}{l|l|l|l|l|} 
& & \\
Solute & \(\bar{t} / s\) & \(w_{b} / s\) & \(w_{\frac{1}{2}} / s\) & \(D_{m} / 10^{-9} m^{2} s^{-1}\) \\
Acetone & 2075 & 237 & 139 & \(1.10 \pm 0.03\) \\
Phenol & 2084 & 291 & 172 & \(0.72 \pm 0.02\) \\
p-Cresol & 2098 & 310 & 184 & \(0.62 \pm 0.02\) \\
3 ,4-Xylenol & 2218 & 335 & 197 & \(0.57 \pm 0.01\) \\
Anisole & 2236 & 280 & 166 & \(0.83 \pm 0.03\) \\
Phenetole & 2246 & 291 & 172 & \(0.78 \pm 0.03\)
\end{tabular}
b) Methanol/water 55:45
\begin{tabular}{l|l|l|l|l|} 
Solute & \(\overline{\mathrm{f}}_{\mathrm{s}}\) & \(w_{\mathrm{b}} / \mathrm{s}\) & \(w_{\frac{1}{2}} / \mathrm{s}\) & \(D_{\mathrm{m}} / 10^{-9} \mathrm{~m}^{2} \mathrm{~s}^{-1}\) \\
Acetone & 2282 & 225 & 150 & \(1.03 \pm 0.02\) \\
Phenol & 2234 & 309 & 182 & \(0.68 \pm 0.02\) \\
P-Cresol & 2260 & 330 & 194 & \(0.60 \pm 0.02\) \\
3,4-Xylenol & 2381 & 370 & 217 & \(0.50 \pm 0.01\) \\
Anisole & 2442 & 297 & 174 & \(0.82 \pm 0.02\) \\
Phenetole & 2401 & 308 & 181 & \(0.74 \pm 0.02\)
\end{tabular}
c) Methanol/water 50:50
\begin{tabular}{l|l|l|l|l|} 
Solute & \(\overline{\mathrm{t}} / \mathrm{s}\) & \(w_{\mathrm{b}} / \mathrm{s}\) & \(w_{\frac{1}{2}} / \mathrm{s}\) & \(0_{\mathrm{m}} / 10^{-9} \mathrm{~m}^{2} \mathrm{~s}^{-1}\) \\
& & & & \\
Acetone & 2342 & 263 & 156 & \(0.99 \pm 0.02\) \\
Phenol & 2335 & 319 & 187 & \(0.67 \pm 0.01\) \\
p-Cresol & 2364 & 340 & 199 & \(0.60 \pm 0.02\) \\
3,4 -Xylenol & 2361 & 354 & 208 & \(0.54 \pm 0.02\) \\
Anisole & 2379 & 291 & 173 & \(0.82 \pm 0.03\) \\
Phenetole & 2396 & 320 & 188 & \(0.68 \pm 0.02\)
\end{tabular}
d) Methanol/water 45:55
\begin{tabular}{l|l|l|l|l|} 
Solute & \(\bar{t} / s\) & \(w_{b} / s\) & \(w_{\frac{1}{2}} / s\) & \(D_{m} / 10^{-9} m^{2} s^{-1}\) \\
& & & & \\
Acetone & 2681 & 301 & 179 & \(0.87 \pm 0.04\) \\
Phenol & 2785 & 358 & 211 & \(0.64 \pm 0.02\) \\
P-Cresol & 2860 & 384 & 226 & \(0.56 \pm 0.02\) \\
3,4-Xylenol & 2909 & 408 & 239 & \(0.51 \pm 0.01\) \\
Anisole & 3105 & 354 & 210 & \(0.73 \pm 0.02\) \\
Phenetole & 3127 & 376 & 221 & \(0.65 \pm 0.02\)
\end{tabular}
e) Methanol \(100 \%\)
\begin{tabular}{l|c|c|c|c|} 
Solute & \(\mathrm{t} / \mathrm{s}\) & \(w_{\mathrm{b}} / \mathrm{s}\) & \(w_{\frac{1}{2}} / \mathrm{s}\) & \(0_{\mathrm{m}} / 10^{-9} \mathrm{~m}^{2} \mathrm{~s}^{-1}\) \\
& & & & \\
Naphthalene & 951 & 118 & 71 & \(1.92 \pm 0.05\) \\
Anthracene & 959 & 132 & 78 & \(1.58 \pm 0.06\) \\
\begin{tabular}{l} 
Chrysene
\end{tabular} & 964 & 136 & 80 & \(1.52 \pm 0.04\) \\
\begin{tabular}{l} 
Benzo(L)- \\
fluoranthene
\end{tabular} & 982 & 142 & 84 & \(1.40 \pm 0.04\) \\
\begin{tabular}{l} 
Naphtho (2,3-k)- \\
fluoranthene
\end{tabular} & 977 & 150 & 89 & \(1.28 \pm 0.04\) \\
\begin{tabular}{l} 
Sulphanilic acid
\end{tabular} & 969 & 167 & 99 & \(0.98 \pm 0.04\)
\end{tabular}
f) \(0.005 \mathrm{M} \mathrm{NaNO} 3 / \mathrm{MeOH}\)
\begin{tabular}{l|c|c|c|c|} 
Solute \\
\begin{tabular}{l} 
Sulphanilic \\
acid
\end{tabular} & \begin{tabular}{c}
\(\mathrm{t} / \mathrm{s}\)
\end{tabular} & \(w_{b} / \mathrm{s}\) & \(w_{\frac{1}{2}} / \mathrm{s}\) & \(D_{m} / 10^{-9 \mathrm{~m}^{2} \mathrm{~s}^{-1}}\) \\
& 1033 & 176 & 103 & \(0.97 \pm 0.02\)
\end{tabular}

In order to use this equation, the viscosities of the eluents at the required temperatures must be known. These were measured by the Ubelhode bulb method. This involves measuring the time taken for a given volume of eluent to flow through a length of capillary tubing under gravity. From a knowledge of these times, the viscosity may be calculated as
\[
n=\eta_{\mathrm{H}_{2} \mathrm{O}} \frac{\rho t}{\rho_{\mathrm{H}_{2} \mathrm{O}}{ }^{\mathrm{t}} \mathrm{H}_{2} \mathrm{O}} \quad 3.5 .-2
\]
\(\eta\) is the viscosity of the sample and \(\eta_{H_{2}}\) o is the viscosity of water at the temperature of the experiment. \(\quad \rho\) and \(\rho_{\mathrm{H}_{2}} \mathrm{O}\) are the densities of eluent and water respectively, and \(t\) and \(t_{H_{2}} \mathrm{O}\) are the times of flow through the viscometer. Values of \(\mathrm{n}_{\mathrm{H}_{2} \mathrm{O}}\) and of \(\rho\) and \(\rho_{\mathrm{H}_{2} \mathrm{O}}\) were taken from the International Critical Tables (60), interpolating as necessary. Table (3.5. - 2) shows the viscosities measured by this experiment. Table (3.5. - 3) shows the values of \(D\) calculated from this data at the temperatures of interest.

TABLE 3.5. - 2

\section*{VISCOSITY OF METHANOL:WATER MIXTURES AT VARIOUS TEMPERATURES}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & \multicolumn{4}{|r|}{COMPOSITION METHANOL:WATER} & \multicolumn{2}{|l|}{\(v: v\)} \\
\hline & 100:0 & 60:40 & 55:45 & 50:50 & 45:55 & 0:100 \\
\hline T/ \({ }^{\circ} \mathrm{C}\) & \(\mathrm{n} / \mathrm{mNs} \mathrm{m}^{-2}\) & \(\mathrm{n} / \mathrm{mNsm}^{-2}\) & \(\mathrm{n} / \mathrm{mNs} \mathrm{m}^{-2}\) & \(\mathrm{n} / \mathrm{mNsm}^{-2}\) & \(\mathrm{n} / \mathrm{mNsm}{ }^{-2}\) & \(\mathrm{n} / \mathrm{mNsm}^{-2}\) \\
\hline 20 & 0.60 & 1.70 & 1.76 & 1.79 & 1.81 & 1.00 \\
\hline 25 & 0.54 & 1.40 & 1.46 & 1.51 & 1.49 & 0.89 \\
\hline 30 & 0.52 & 1.28 & 1.32 & 1.33 & 1.33 & 0.80 \\
\hline 26 & 0.54 & 1.38 & 1.48 & 1.47 & 1.47 & 0.88 \\
\hline
\end{tabular}
\(26^{\circ} \mathrm{C}\) Data obtained by interpolation
TABLE 3.5. - 3
DIFFUSION COEFFICIENTS AT TEMPERATURES OF INTEREST
a) \(30^{\circ} \mathrm{C}\)

Solute
Acetone
Phenol
p-Cresol
3,4-Xylenol
Anisole
Phenetole
Naphthalene
Anthracene
Benzo(L)
fluoranthene Naphtho (2,3-k) fluoran thene

P!כe כ!!!ueydins
c) \(20^{\circ} \mathrm{C}\)
Acetone
Phenol
p-Cresol
3,4 -Xylenol
Anisole
Phenetole Naph tha lene Anthracene Chrysene Benzo(L) fluoran thene fluoranthene
Sulphanilic acid

CHAPTER 4
BAND BROADENING BY LONGITUDINAL
DIFFUSION

BAND BROADENING BY LONGITUDINAL DIFFUSION

\subsection*{4.1. INTRODUCTION}

The role of longitudinal diffusion in band broadening has al ready been discussed in section 2.2. In this chapter the subject will be explored in greater depth, and the results of a set of experiments performed to investigate this phenomenon will be presented.

There are two ways in which diffusion within a chromatographic column differs from diffusion in bulk liquid:-
a) The rate of diffusion in the mobile phase is hindered by the presence of the solid support.
b) Diffusion in the stationary phase must be taken into account, as well as mobile phase diffusion.

These topics form the subjects of the following two sections. This is followed by a description of an experimental investigation of diffusion in liquid chromatography.

\subsection*{4.2. THE OBSTRUCTIVE FACTOR}

Diffusion in a porous matrix is found to proceed more slowly than diffusion in bulk solvent, even if there is no interaction between the solute and the solid support. The ratio of the diffusion coefficients for these two cases is normally written as \(\gamma\) :
\[
\gamma=D_{e f f} / D_{m} \quad(4.2 .-1)
\]
where \(D_{\text {eff }}\) is the fective diffusion coefficient of the solute in
the porous matrix, and \(D_{m}\) is the diffusion coefficient in bulk eluent. This ratio is less than unity because of the obstructive nature of the solid support. The paths within the matrix over which the molecules can move are neither straight nor uniform as they would be in bulk eluent, but tortuous and constricted \((20,21)\). This is illustrated in Figure 4.2. - 1.

The effect of tortuosity on \(D_{\text {eff }}\) may be described in terms of the tortuosity factor \(\tau\). This is defined as the ratio of the length of a tortuous path between two points to the direct distance between them:
\[
\begin{equation*}
\tau=\ell_{t} / \ell \tag{4.2.-2}
\end{equation*}
\]
where \(\ell_{t}\) and \(l\) are the tortuous and direct path lengths respectively. These terms are illustrated in Figure 4.2. -1.

From the above definition it follows that, in order to diffuse between the two points, a molecule must travel \(\tau\) times the distance between them, and the diffusion coefficient is correspondingly smaller.

A further consequence of this increase in path length is a decrease in the concentration gradient, since the same change in concentration is spread over a distance \(\tau\) times greater than in the absence of tortuosity. Thus the value of \(\gamma\) due to tortuosity alone is given by
\[
\begin{equation*}
\gamma=\frac{D_{\text {eff }}}{D_{m}}=\left(\frac{1}{\tau}\right)^{2} \tag{4.2.-3}
\end{equation*}
\]

A second factor which slows the rate of diffusion in porous matrices is the constriction of the channels along which diffusion must take place. Fick's first law of diffusion (33) may be used in


FIGURE 4.2. - 1.
Schematic Diagram of Tortuous and Constricted Pores. The length of the pore is indicated by the dashed line in the first two cases.
considering this effect. This law may be written as
\[
\begin{equation*}
\frac{\partial c}{\partial z}=-\frac{J}{D_{m} A} \tag{4.2.-4}
\end{equation*}
\]
when a channel of cross-section \(A\), oriented in the \(z\) direction, is under consideration. \(\partial c / \partial z\) is the concentration gradient, and \(J\) is the solute flux.

Integrating over a length \(\ell\) of the channel, we obtain
\[
\Delta c=-\frac{J}{D_{m}} \int_{0}^{\ell} \frac{d z}{A}=-\frac{J}{D_{m}}\left(\frac{1}{A}\right) \ell \quad(4.2 .-5)
\]
where \((1 / A)\) is the mean value of the inverse of the cross-sectional area over the length of channel under consideration.

The solute flux may be written in terms of the effective diffusion coefficient and the mean channel cross-section simply by using Fick's law again:
\[
\begin{equation*}
J=-D_{\text {eff }} \frac{\Delta c}{\ell} \bar{A} \tag{4.2.-6}
\end{equation*}
\]

In this equation the term \(\Delta c / l\) gives the overall concentration gradient. The value of \(J\) obtained from this equation may be substituted into equation 4.2. - 5, yielding
\[
\begin{equation*}
\Delta c=\frac{D_{\text {eff }}}{D_{m}} \bar{A}\left(\frac{\overline{1}}{A}\right) \Delta c \tag{4.2.-7}
\end{equation*}
\]

Thus the value of \(\gamma\) due to constriction alone is given by
\[
\begin{equation*}
\gamma=\frac{D_{\text {eff }}}{D_{m}}=\left(\bar{A}\left(\frac{1}{A}\right)\right)^{-1} \tag{4.2.-8}
\end{equation*}
\]

For a channel of uniform cross-section this ratio is unity, since \(\bar{A}=(\overline{1 / A})^{-1}\). For constricted channels \(\gamma\) is less than unity.

The effects of tortuosity and constriction are assumed to be independent. For channels which are both tortuous and constricted the total obstructive factor \(y\) is obtained by multiplying together the values obtained for each mechanism. Therefore for 'real' channels the obstructive factor is given by
\[
\gamma=\tau^{-2}\left(\bar{A}\left(\frac{\bar{T}}{A}\right)\right)^{-1} \quad \text { (4.2. -9) }
\]
\(\gamma\) is thus shown to be a constant dependent only on the geometry of the support material. It is assumed to be independent of flow rate or diffusion coefficient, but it will vary from one type of packing material to another. In particular, materials with a high porosity and open structure will have values of \(\gamma\) closer to unity than will. less porous materials, since in the latter both tortuosity and constriction of channels may be assumed to be greater. Values of \(\gamma\) have been calculated for simple models (61) and the agreement with experiment was found to be satisfactory

\subsection*{4.3. COMBINATION OF DIFFUSION TERMS}

It is possible for molecules to diffuse in the stationary phase as well as in the mobile phase. In liquid-liquid and reversed-phase chromatography, where the solute molecules are not bound to specific sites, a concentration gradient will inevitably cause diffusion, and in many cases it is necessary for a molecule to diffuse through a static liquid film before reaching the site of adsorption. This type of diffusion has already been discussed in section 2.2 .

Expressions for the plate-height contributions from mobile and stationary phase diffusion are given in equations 2.2. - 5 and 2.2.-6. These may be combined to give the following expressions for the total contribution to the plate height from longitudinal diffusion processes:
\[
\begin{array}{ll}
H=2\left(\gamma D_{m}+k^{\prime} D_{s}\right) \frac{1}{u} & (4.3 .-1 a) \\
h=2\left(\gamma+k^{\prime} \frac{D_{s}}{D_{m}}\right) \frac{1}{v} & (4.3 .-1 b) \tag{4.3.-1b}
\end{array}
\]
where \(D_{s}\) is the effective stationary phase diffusion coefficient. The phase capacity ratio \(k^{\prime}\) is used rather than the zone capacity ratio \(k^{\prime \prime}\) in these equations because it is more natural to think in terms of diffusion in the eluent (whether stagnant or mobile) as being different from true stationary phase diffusion, rather than considering stationary zone diffusion which includes diffusion in true stationary phase and in stagnant mobile phase. These equations may be written in terms of \(k^{\prime \prime}\) if required since stationary zone diffusion must take place in some form. In this case the value of \(\gamma\) may be slightly different from that in equation 4.3. - 1 , since obstruction in the stationary zone will not be included. The diffusion coefficient \(D_{s}\) will also be different, since this will refer only to true stationary phase diffusion. This point will be returned to at the end of the chapter.

The plate-height contribution from diffusion processes is often referred to as the ' \(B\) term' (21) and may be written as
\[
\begin{equation*}
h=B / \nu \tag{4.3.-2}
\end{equation*}
\]
where \(B\) is a constant. From equation 4.3. - 1 b the value of this constant may be found as
\[
\begin{equation*}
B=2\left(\gamma+k^{\prime} \frac{D_{s}}{D_{m}}\right) \tag{4.3.-3}
\end{equation*}
\]

The object of the experiments described below is to evaluate the various terms of thisequation and to verify its validity.

\subsection*{4.4. EXPERIMENTAL}

Values of the effective diffusion coefficients for a number of solute/eluent systems were obtained by the arrested elution method of Knox and McLaren (21). In this method the solute is eluted part-way down the column, and the eluent flow is halted. After a set time the flow is restarted and the solute is eluted and detected in the usual way. During the period when there is no flow the only dispersive mechanism operating is diffusion. The variance of the peak due to other factors (e.g. slow mass transfer during the time wher the eluent is flowing) may be found by measuring the width of a peak allowed to elute without the flow being interrupted. When this variance is subtracted from the total variance of the arrested peak the residual variance may be related to the effective diffusion coefficient by the Einstein equation
\[
\begin{equation*}
\sigma_{\text {res }}{ }^{2}=2 \mathrm{D}_{\text {eff }} \mathrm{t}_{\text {int }} \tag{4.4.-1}
\end{equation*}
\]
where \(\sigma_{\text {res }}{ }^{2}\) is the residual peak variance as described above, Deff is the effective diffusion coefficient and \(t_{\text {int }}\) is the time for which the flow was halted. In order to apply this equation the
variance must have dimensions of (length) \({ }^{2}\).
A stainless-steel HPLC column ( \(250 \mathrm{~mm} \times 8 \mathrm{~mm}\) ) was slurrypacked with ODS Hypersil (Shandon Southern Products Ltd., Runcorn, England), a reverse-phase packing material with a \(\mathrm{C}_{18}\) coating and a mean particule diameter of 5 um. The column was thermostatted in a water-jacket at a temperature of \(26^{\circ} \mathrm{C}\). The eluent was fed through the column by a suitable pump (DMP 1515 Dosing pump, Orlita, Giessen, Germany) at a flow-rate of about \(1 \mathrm{ml} / \mathrm{min}\). The column effluent was passed through a UV monitor (CE 212, Cecil Instruments, Cambridge, England) and collected in a vessel on an electronic balance (Oertling F22 TD, Liverpool, England.) The outputs from the detector and balance were recorded on a two-pen recorder (Bryans 28200, Bryan Southem Instruments Ltd., Surrey, England).

Samples were introduced onto the column by means of a Valco injection valve (Valco Instrument Co., Houston, Texas).

This method was chosen rather than syringe injection partly for simplicity of operation, and partly because it was felt that radial diffusion subsequent to syringe injection could lead to erroneous results, since the column would be an 'infinite diameter' column when the flow was not interrupted, and thus the solute would not reach the regions near the column walls where the packing structure may be different from the central region, whereas after the flow had been halted the solute would diffuse to these regions. When valve injection is used the solute is introduced over the breadth of the column, and all samples will experience both core and wall regions. The volume of injection was \(20 \mu 1\).

Samples normally contained up to three different solutes, chosen such that even after the longest interruption time the peaks did not overlap. Care was taken that when the flow was halted no solute was either so near the top or so near the bottom of the column that its diffusion would be disturbed by these features.

Three different eluent/solute systems were examined by this system. The eluent in the first system was a mixture of methanol and water ( \(60: 40 \mathrm{v}: \mathrm{v}\) ), and the solutes were \(0 x y\)-aromatic hydrocarbons. The second system consisted of pure methanol as eluent, and a set of polycyclic aromatic hydrocarbons as solutes. Details of these solutes are given in Appendix 1. The third system consisted of sulphanilic acid in a set of eluents consisting of sodium nitrate in methanol.

The experimental parameter required in order to use equation 4.4. - 1 is the peak variance. This was obtained as follows:

The peak width was measured as the distance between the points where tangents drawn to the points of inflection of the peak cross the baseline. The corresponding weight of eluent was then calculated from the balance output. This procedure is demonstrated in Figure 4.4. - 1. The peak variance in the desired units may be calculated from the formula
\[
\begin{equation*}
\sigma^{2}=\left(\frac{W_{b}}{4} \frac{L}{W_{c}} \frac{1}{1+k^{\prime}}\right)^{2} \tag{4.4.-2}
\end{equation*}
\]
where \(W_{b}\) is the weight of eluent in which the peak is eluted, \(W_{c}\) is the total weight of eluent in the coiumn which may be taken as the weight of eluent measured from time of injection to the appearance of the solvent disturbance peak with no interruption to flow, and


\footnotetext{
FIGURE 4.4. - 1. Schematic Diagram for Data Reduction in the B-term Experiment.
}
\(L\) is the column length. The factor 4 is included since the width of the peak as described above is equal to \(4 \sigma\), and the factor \(1 / 1+k^{\prime}\) is required because a volume of eluent \(1+k^{\prime}\) times the dead volume of the column is required to elute a solute of capacity factor \(k^{\prime}\), and this increase in volume will hold during the time for which the peak elutes.

The results of a typical experiment are shown in Figure 4.4. - 2 . The effective diffusion coefficient may be calculated from the gradient of the curve by means of equation 4.4. - 1. Results for oxyaromatic compounds in 60:40 methanol:water are given in Table 4.4. - 1; for polycyclic aromatic hydrocarbons in pure methanol in Table 4.4. - 2; and for sulphanilic acid in various concentrations of sodium nitrate in Table 4.4. - 3. The errors quoted in these Tables are the errors in the gradient of the relevant line, calculated as \(\pm 1\) standard deviation by least-squares linear regression.

\subsection*{4.5. DISCUSSION}

The peak variance due to diffusion processes includes contributions from both mobile and stationary phase diffusion. Thus
\[
\sigma_{e f f}^{2}=\sigma_{\mathrm{m}}^{2}+\sigma_{\mathrm{s}}^{2} \quad 4.5 .-1
\]

Each of these variances may be related to the appropriate diffusion coefficient, yielding the equation
\[
D_{\text {eff }} t_{\text {int }}=\gamma D_{m} t_{m}+D_{s} t_{s} \quad 4.5 .-2
\]
by application of the Einstein equation. The mobile and stationary
Typical set of results for B-term Experiment. Solute: Phenol Solvent: \(\quad 60: 40 \mathrm{MeOH}: \mathrm{H}_{2} \mathrm{O}\)
\(\mathrm{D}_{\text {eff }}=0.54 \times 10^{-9} \mathrm{~m}^{2} \mathrm{~s}^{-1}\)
For other conditions see text.
ext
。

TABLE 4.4. - 1
RESULTS OF B-TERM EXPERIMENTS FOR OXY-AROMATIC COMPOUNDS IN 60:40 MeOH: \(\mathrm{H}_{2} \mathrm{O}\)
\begin{tabular}{|c|c|c|c|c|c|}
\hline Solute & \(k^{\prime}\) & \[
\begin{gathered}
D_{\text {eff }} \\
10^{-9} \mathrm{~m}^{2} \mathrm{~s}^{-1}
\end{gathered}
\] & \[
10^{-9 \mathrm{~m}_{\mathrm{m}}^{2} \mathrm{~s}^{-1}}
\] & \(D_{\text {eff }} / D_{m}\) & \(\left(1+k^{\prime}\right) D_{\text {eff }} / D_{m}\) \\
\hline Acetone & 0.08 & 0.86 & 1.00 & 0.86 & 0.93 \\
\hline Phenol & 0.43 & 0.54 & 0.65 & 0.83 & 1.19 \\
\hline p-Cresol & 0.77 & 0.47 & 0.56 & 0.84 & 1.49 \\
\hline 3,4-Xylenol & 1.25 & 0.37 & 0.52 & 0.71 & 1.60 \\
\hline Anisole & 1.61 & 0.56 & 0.75 & 0.75 & 1.95 \\
\hline Phenetole & 2.84 & 0.45 & 0.65 & 0.69 & 2.66 \\
\hline
\end{tabular}
```

TABLE 4.4. - 2

```

RESULTS OF B-TERM EXPERIMENT FOR POLYCYCLIC AROMATIC HYDROCARBONS IN METHANOL


TABLE 4.4. - 3

RESULTS OF B-TERM EXPERIMENT FOR SULPHANILIC ACID IN METHANOL
+ SODIUM NITRATE

phase residence times \(t_{s}\) and \(t_{m}\) may be related to the interrupt time \(t_{\text {int }}\) by the equations
\[
\begin{array}{ll}
t_{m}=\frac{1}{1+k^{\prime}} t_{\text {int }} & \text { 4.5.3a } \\
t_{s}=\frac{k^{\prime}}{1+k^{\prime}} t_{\text {int }} & \text { 4.5. - }
\end{array}
\]

The diffusion coefficients are therefore related by
\[
D_{e f f}=\frac{\gamma D_{m}}{1+k^{\prime}}+\frac{k^{\prime} D_{s}}{1+k^{\prime}} \quad 4.5 .-4
\]

Since values of \(D_{m}\) vary from solute to solute, it is helpful to scale this equation to the value of \(D_{m}\) :-
\[
\frac{D_{\text {eff }}}{D_{m}}=\left(\gamma+k^{\prime} \frac{D_{s}}{D_{m}}\right) \frac{1}{1+k^{\prime}} \quad \text { 4.5. }-5
\]

This equation may be rewritten as
\[
\left(1+k^{\prime}\right) \frac{D_{\text {eff }}}{D_{m}}=\gamma+k^{\prime} \frac{D_{s}}{D_{m}} \quad 4.5 .-6
\]
which is a more useful form.
If \(D_{s} / D_{m}\) may be assumed to be a constant for a set of solutes in a given eluent/stationary phase system, then a plot of ( \(1+k^{\prime}\) ) \(D_{\text {eff }} / D_{m}\) as a function of \(k^{\prime}\) should have a gradient of \(D_{s} / D_{m}\) and an intercept of \(\gamma\).

Values of \(\left(1+k^{\prime}\right) D_{\text {eff }} / D_{m}\) are included in Tables 4.4. - 1 and 4.4. - 2. Graphs of this as a function of \(k^{\prime}\) are shown in Figures 4.5. - 1 and 4.5. - 2. In both cases the intercept (which should be equal to the obstructive factor, \(\gamma\) ) has a value of 0.9 . Since \(\gamma\) is a structural parameter, it is not expected that changes in eluent or solute should affect its value.

The commonly accepted value of \(\gamma\) is 0.6 . This value was obtained from experiments on glass beads (21), which are impermeable and have a porosity of about \(40 \%\). In silica gel it is possible for molecules to diffuse through the beads as well as around them. This, together with the lower packing density of silica gel columns, should explain the higher values of \(\gamma\) found in this experiment.

For oxy-aromatic compounds in 60:40 methanol:water a value of 0.61 was obtained for the value of \(\left(D_{s} / D_{m}\right)\). Figure 4.5. - 1 indicates the approximate nature of this value, which is the gradient of the curve. Qualitatively this value indicates that stationary phase diffusion is somewhat slower than mobile phase diffusion. This may be due to an increase in the intermolecular forces which hinder diffusion, or to a higher obstructive factor in the stationary phase. It is likely that both factors play a part in producing the slower rate of diffusion.

For the polycyclic aromatic hydrocarbons in methanol the value of \(\left(D_{s} / D_{m}\right)\) is about 0.3 as shown by the gradient in Figure 4.5. - 2 . Since the mobile phase diffusion coefficients for this system are greater than those for the previous system by a factor of 2-3 (see Table 3.5. - 3), this result is consistent with a similar rate of stationary phase diffusion for both systems, the difference in the

\(\left.\omega \square / \nLeftarrow \jmath^{2}\right](, Y+\zeta)\)
Graph of (1+k') \(D_{e f f} / D_{m}\) as a function of \(k^{\prime}\) for Polycyclic Aromatic Hydrocarbons.

value of ( \(D_{s} / D_{m}\) ) being due to mobile phase effects. This result is in accordance with the accepted retention mechanism of reversephase liquid chromatography outlined in chapter 1 .

Figure 4.5. - 3 shows the variation of \(\left(1+k^{\prime \prime}\right) D_{\text {eff }} / D_{m}\) with \(k^{\prime \prime}\) for sulphanilic acid in various concentrations of sodium nitrate in methanol. In this case the zone capacity ratio \(k^{\prime \prime}\) is used rather than the phase capaci ty ratio \(k^{\prime}\), since only two types of environment need be considered: the mobile zone consisting of flowing eluent and the stationary zone consisting of stagnant eluent within the pores of the material. The solute never enters the true stationary phase.

For this system the effective diffusion coefficient is virtually independent of the degree of exclusion. This indicates that the obstructive factor \(\gamma\) is much the same for diffusion within particles as for diffusion around particles. The value of \(\gamma=0.65\) is close to the theoretical value for glass beads. Since the solute is always partially excluded from the pores, it is reasonable to expect behaviour similar to that for non-porous beads in this case. A careful study of the behaviour of the effective diffusion coefficient in the neighbourhood of \(k^{\prime}=0\) (slightly excluded - slightly retained) would be required to determine how diffusion changes between exclusion and retention in chromatography.

Certain equations in the theory of band broadening by slow mass transfer include a term which is the ratio of the diffusion coefficient in mobile and stationary zones (e.g. equation 2.7. - 65). In consider ing slow mass transfer the important consideration is whether the molecule is in the flowing or stationary zone, i.e. whether or not it


is being moved by the flow of eluent. The ratio of diffusion coefficients used should therefore be the ratio of the coefficients in the different zones.

In order to obtain this ratio the data for oxy-aromatic compounds in methanol:water eiuent was treated using zone capacity ratios rather than phase capacity ratios. These results are shown in Table 4.5. - 1. Figure 4.5. - 4 is the same as Figure 4.5. - 1 , but with zone capacity ratios used in place of phase capacity ratios. The value of the ratio of \(D_{s}\) to \(D_{m}\) is still 0.61 : however, the value of \(\gamma\) for the mobile zone is higher than when phase diffusion was considered. In fact a simple least squares procedure yields a value slightly greater than unity. This indicates that for the stationary zone in this case there is little hindrance to diffusion; however, the important result is the value of \(D_{s} / D_{m}\) which will be used in the following chapter.


```

TABLE 4.5. - 1

```

RESULTS OF B-TERM EXPERIMENT FOR OXY-AROMATIC COMPOUNDS IN 60:40 MeOH: \(\mathrm{H}_{2} \mathrm{O}\) EXPRESSED IN TERMS OF THE ZONE CAPACITY RATIO
\begin{tabular}{|l|c|c|c|} 
Solute & \(k^{\prime \prime}\) & \(D_{\text {eff }} / D_{m}\) & \(\left(1+k^{\prime \prime}\right) D_{\text {eff }} / D_{m}\) \\
\hline Acetone & 0.66 & 0.86 & 1.43 \\
Phenol & 1.20 & 0.83 & 1.83 \\
P-Cresol & 1.73 & 0.84 & 2.29 \\
3,4-Xylenol & 2.46 & 0.71 & 2.46 \\
Anisole & 3.02 & 0.75 & 3.01 \\
Phenetole & 4.91 & 0.69 & 4.08
\end{tabular}

CHAPTER 5
band broadening by Slow
MASS TRANSFER

\subsection*{5.1. INTRODUCTION}

One of the major causes of band broadening in chromatography is the slow mass transfer of solute between different environments. This phenomenon has been described in detail in chapter 2 . In this chapter an experimental investigation of this cause of band broadening will be described, and the results discussed.

The relationship between reduced plate-height and reduced velocity in chromatography maybe described by the equation
\[
\begin{equation*}
h=\frac{B}{v_{0}}+C_{s} \nu_{0}+\frac{1}{1 / A+1 / C_{m} v_{0}} \tag{5.1.-1}
\end{equation*}
\]
as shown in section 2.4. This equation does not adequately fit the experimental results (61); various semi-empirical equations have been proposed which perform better in this respect \((18,62-64)\). One of the best of these is the equation
\[
\begin{equation*}
h=A \nu_{0}^{1 / 3}+B / \nu_{0}+C \nu_{0} \tag{5.1.-2}
\end{equation*}
\]
in which the \(A\)-term describes mobile zone flow effects, the B-term describes longitudinal diffusion effects and the C-term describes slow mass transfer effects. Typical values of these parameters in HPLC are: \(A \leq 1, B \simeq 2, C<0.1\) (65).

At high reduced velocities the contribution to band broadening by longitudinal diffusion will be negligible. Since the value of \(A\)
is much greater than the value of \(C\), very high reduced velocities would be required to make the A-term negligible and allow the direc determination of the C -term. At fairly high reduced velocities, ( \(\nu>500\) ) the A-term may be approximated roughly by a term which varies directly with \(v\). These approximations yield the equation
\[
\begin{equation*}
h=\left(A^{\prime}+C\right) v_{0} \tag{5.1.13}
\end{equation*}
\]
where \(A^{\prime}\) is a constant depending on the magnitude of \(A\) and the range of \(v\) under consideration. This equation will only hold for a limited and specified ranges of \(v\).

To obtain the required range of reduced velocities with typical packing materials \(\left(d_{p}=5-10 \mu \mathrm{~m}\right)\), very high pumping pressur would be required. Even if these could be readily realised, thermal effects caused by friction at the high flowrates would make chromatography difficult. The simplest way to achieve the required reduced velocities is to use large particles. If the particle diameter is increased by a factor of 10 , the same linear velocity of eluent will yield a reduced velocity ten times greater, while the pumping pressure required will decrease by a factor of 100 (all other experimental conditions remaining constant.

\subsection*{5.2. EXPERIMENTAL}

The packing material chosen consisted of silica spheres of mean diameter \(50 \mu \mathrm{~m}\), treated to have a reversed-phase ODS coating. These particles were prepared in house. They were packed into a stainless steel column ( \(500 \mathrm{~mm} \times 8 \mathrm{~mm}\) ) by mechanically rotating and bouncing the column as the particles were added. The injector and detector were
as described in chapter 4 , except that for a time a Du Pont 820 single wavelength UV detector (Du Pont, Wilmington, Delaware) was used. Pumping pressure was obtained from a Haskel pressure intensifier (Haskel Energy Systems Ltd., North Hylton Road, Sunderland).

The solutes used in this experiment were the set of oxyaromatic hydrocarbons used in the \(B\)-term experiment described in Appendix \(1 . \quad\) A set of eluents consisting of various proportions of methanol and water was used to obtain a wide range of \(k^{\prime \prime}\) values. The experiment was carried out ambient temperature.

The eluent flow-rate was recorded by means of a balance and recorder, as described in the previous chapter. The mobile phase velocity was calculated from the length of the column and the time taken for the refractive index peak associated with the injection to appear. This method gives the mobile phase residence time \(\mathrm{t}_{\mathrm{m}}\) and the mobile phase reduced velocity \(v\). The theory requires the use of the mobile zone residence time \(t_{o}\) or the mobile zone reduced velocity \(\nu_{0}\). These figures were obtained from the knowledge that \(t_{o}\) is approximately \(0.59 t_{m}\), from observation of the elution time of a totally excluded solute.

The reduced velocities used in this experiment ranged from about 500 to about 5000 . The number of plates (N) ranged from about 150 (at high velocities) to about 600 (at low velocities). The plate number was calculated from the retention time \(t_{r}\) and the peak width at half height \(W_{\frac{1}{2}}\) by the formula
\[
N=5.54\left(\frac{{ }^{t} r}{W_{\frac{1}{2}}}\right)^{2} \quad 5.2 .-1
\]

Even at high velocities the peaks could be adequately approximated by a Gaussian function and thus the use of this equation is justified.

The reduced plate-height \(h\) is obtained from the formula
\[
h=\frac{L}{N d_{p}} \quad 5.2 .-2
\]

A typical plot of \(h\) against \(v_{0}\) is shown in Figure 5.2. - 1 . The experimental data is shown with a least-squares straight line and with a curve of the form
\[
h=A v_{0}^{1 / 3}+C v_{0} \quad 5.2 .-3
\]

The value of \(A\) which gives the best fit to this set of data is 2.5. The quasi-1inear nature of the curve is evident from the graph; the slight departure from linearity gives a slightly better fit to the data than does the least-squares straight line.

By simply measuring the gradient an 'apparent' \(C\)-term, \(C_{a p}\) is obtained. This term includes a contribution from the A-term as suggested in equation \(5.1 .-3\). Thus
\[
C_{a p}=A^{\prime}+C \quad \text { 5.2. }-4
\]

Apparent \(C\)-terms for all eluent/solute combinations are shown in Table 5.2. - 1. This data is displayed as a plot of \(C_{a p}\) against \(k^{\prime \prime}\) in Figure 5.2. - 2. Also shown in this figure is a plot of the theoretical C-term:


\(k^{\prime \prime}\)

TABLE 5.2. - 1

RESULTS OF C-TERM EXPERIMENT
a) \(50 \mu \mathrm{~m}\) Material
\begin{tabular}{|c|c|c|c|c|}
\hline Eluent & Solute & \(k^{\prime \prime}\) & \(c_{\text {ap }}\) & \(C\) (allowing \(A=2\) \\
\hline \multicolumn{5}{|l|}{\(\mathrm{MeOH}: \mathrm{H}_{2} \mathrm{O}\)} \\
\hline \multirow[t]{12}{*}{60:40} & \multirow[t]{2}{*}{Acetone} & 1.11 & 0.015 & 0.011 \\
\hline & & 0.96 & 0.013 & 0.009 \\
\hline & \multirow[t]{2}{*}{Phenol} & 2.04 & 0.015 & 0.011 \\
\hline & & 1.84 & 0.016 & 0.012 \\
\hline & \multirow[t]{2}{*}{p-Cresol} & 3.07 & 0.015 & 0.011 \\
\hline & & 2.67 & 0.016 & 0.012 \\
\hline & \multirow[t]{2}{*}{3,4-Xylenol} & 4.39 & 0.013 & 0.009 \\
\hline & & 4.02 & 0.014 & 0.010 \\
\hline & \multirow[t]{2}{*}{Anisole} & 6.22 & 0.013 & 0.009 \\
\hline & & 5.44 & 0.014 & 0.010 \\
\hline & \multirow[t]{2}{*}{Phenetole} & 10.12 & 0.011 & 0.007 \\
\hline & & 9.26 & 0.011 & 0.007 \\
\hline \multirow[t]{5}{*}{55:45} & Acetone & 1.01 & 0.015 & 0.011 \\
\hline & Phenol & 2.35 & 0.013 & 0.009 \\
\hline & p-Cresol & 3.58 & 0.012 & 0.008 \\
\hline & 3.4-Xy lenol & 5.88 & 0.011 & 0.007 \\
\hline & Anisole & 7.55 & 0.010 & 0.006 \\
\hline \multirow[t]{10}{*}{50:50} & \multirow[t]{2}{*}{Acetone} & 1.13 & 0.015 & 0.011 \\
\hline & & 1.06 & 0.018 & 0.014 \\
\hline & \multirow[t]{2}{*}{Phenol} & 2.84 & 0.012 & 0.008 \\
\hline & & 2.90 & 0.017 & 0.013 \\
\hline & \multirow[t]{2}{*}{p-Cresol} & 5.17 & 0.013 & 0.009 \\
\hline & & 5.17 & 0.011 & 0.007 \\
\hline & \multirow[t]{2}{*}{3,4-Xylenol} & 8.53 & 0.009 & 0.005 \\
\hline & & 8.84 & 0.009 & 0.005 \\
\hline & \multirow[t]{2}{*}{Anisole} & 11.02 & 0.011 & 0.007 \\
\hline & & 11.17 & 0.011 & 0.007 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline Eluent & Solute & \(k^{\prime \prime}\) & \({ }^{\text {ap }}\) & \(C\) (allowing \(A=2\) ) \\
\hline \multirow[t]{3}{*}{\(\mathrm{MeOH}: \mathrm{H}_{2} \mathrm{O}\)} & & & & \\
\hline & Phene tole & 21.05 & 0.007 & 0.003 \\
\hline & & 21.22 & 0.008 & 0.004 \\
\hline \multirow[t]{3}{*}{45:55} & Acetone & 1.15 & 0.013 & 0.009 \\
\hline & p-Cresol & 6.81 & 0.014 & 0.010 \\
\hline & Anisole & 14.95 & 0.009 & 0.005 \\
\hline
\end{tabular}
b) \(540 \mu \mathrm{~m}\) Material
(allowing \(A=4\) )
\begin{tabular}{l|l|c|c|l} 
& & & \\
& Acetone & 1.51 & 0.015 & 0.011 \\
Phenol & 2.47 & 0.014 & 0.010 \\
p-Cresol & 4.05 & 0.015 & 0.011 \\
Anisole & 7.51 & 0.012 & 0.008 \\
Phenetole & 11.9 & 0.012 & 0.008
\end{tabular}
\[
c=\frac{1}{30} \frac{D_{m}}{D_{s}} \frac{k^{\prime \prime}}{\left(1+k^{\prime \prime}\right)^{2}}
\]

The ratio \(D_{m} / D_{s}\) has been taken as 1.67 in accordance with the results of the experiment with similar eluent/solute combinations in Chapter 4. Data reduction will be discussed further in section 5.3.

In order to confirm that the C -term is indeed independent of particle size, the experiment was repeated with particles with a mean diameter of about ten times greater than that of the particles in the experiment described above. These could not be produced by the normal procedure sc a novel method of production was required. After a variety of attempts, the following method was found to produce suitable particles.

The starting material for the preparation of silica spheres is a colloidal suspension of silica. Such suspensions may be obtained commercially. Ludox HS 40 (Du Pont, Wilmington, Delaware) was found to be a suitable starting material. \(25-50 \mathrm{~cm}^{3}\) of this suspension was placed in a stainless-steel bomb and acidified slightly with hydrochloric acid. The bomb was topped up with hexane, and the silica was forced through a short ( \(\sim 2 \mathrm{~cm}\) ) length of stainless-steel tubing (i.d. 0.5 mm ) by pumping hexane into the bomb via the Haskel pressure intensifier. The resulting jet was directed into a beaker of molten wax about 1 m distant. Warm water (about \(70^{\circ} \mathrm{C}\) ) was circulated in plastic tubing around the top of the beaker to keep the wax molten, but the bottom of the beaker was placed in a little cold water. When the spray from the jet reached the beaker
the wax solidified around the spherical droplets. These waxed beads fell to the bottom of the beaker, where the cold water prevented them from re-melting. After all of the silica had been pumped into the beaker in this way the wax was allowed to set, and left overnight. This allowed the silica spheres to harden. The following day the wax was melted and the silica spheres were removed into water. They were then taken out of the water and allowed to dry. Residual water was removed by repeated washing with iso-amyl alcohol. Several separate batches were prepared in this way. These batches were combined into a single batch, and fired overnight at \(500^{\circ} \mathrm{C}\). The beads were then fractionated by sieving. It was decided that the fraction from 420 to \(710 \mu \mathrm{~m}\) was most suitable for the proposed experiment. This fraction was derivatised to yield a batch of large silica spheres with an ODS surface.

Examination under an optical microscope showed that most of the particles were spherical. A small percentage of lumps and chipped or broken spheres was observed, and a few of the particles had surface defects. Apart from the size, the beads looked similar to a typical sample of commercial ODS packing material with mean diameter \(5 \mu \mathrm{~m}\) (ODS Hypersil, Shandon Southern, England).

A representative sample of the large beads were measured under the microscope. A mean particle diameter of \(540 \mu \mathrm{~m}\) was found. This figure has been used as the particle diameter for this material in all subsequent calculations.

These spheres were packed into a \(1000 \times 8 \mathrm{~mm}\) column by the 'rotate and bounce' method described above. The variation of reduced plate-height with reduced velocity was determined for the same set of
solutes as in the previous study. Only a single eluent (60:40 methanol:water) was used. Several modifications to the experimental technique were required.

The column dead volume could not be determined from the position of the solvent disturbance peak, since because of the low efficiency of the column this peak could not be detected. Instead the dead volume was calculated from the weight of the column when filled with methanol and with dichloromethane. The difference in weights and the difference in densities between the two solvents allows the column dead volume to be calculated. It was assumed that the ratio of pore volume to eluent volume was the same as for the previous material.

For the range of eluent velocities used the column efficiency was very low (5-20 theoretical plates). A Gaussian peak shape could not be assumed for this reason. The mean and standard deviation of a peak are better related to physico-chemical parameters than are the peak maximum and width at half height, although for Gaussian peaks the latter parameters are closely related to the former.

Since this assumption could not be made in the current experiment the peak mean and standard deviation were calculated by digitising the peaks. The number of theoretical plates was obtained from the formula
\[
N=\left(\bar{t} / \sigma_{t}\right)^{2} \quad 5.2 .-6
\]
and \(h\) was then calculated from equation 5.2. - 2 .

In this experiment reduced velocities ranged from about 3000 to about 15000. Reduced plate-heights ranged from about 80 to about 400. A typical set of results is shown in Figure 5.2. - 3. The results for all solutes are given in Table 5.2. - 1 and appear on Figure 5.2. - 2. The values of \(C_{a p}\) are in good agreement with the results on the \(50 \mu \mathrm{~m}\) material, confirming that the particle size does not affect the \(C\)-term. This implies that the dispersion processes responsible for band broadening are scaled to the particle size.

\subsection*{5.3 DISCUSSION}

The theoretical curve in Figure 5.2. - 2 shows the same form of variation with \(\mathrm{k}^{\prime \prime}\) as does the experimental data. As explained above, the experimental results plotted in this Figure include a contribution from the A-term, and so are positively displaced from the theoretical curve. The mean vertical displacement of the experimental data with respect to the theoretical curve is 0.004 units. Thus the value of the A'factor in equation 5.2. - 4 is about 0.004 .

The \(A^{\prime}\) factor is the gradient of the best-fit line to a graph of \(A \nu_{0}^{1 / 3}\) as a function of \(\nu_{0}\). A family of curves of this type is shown in Figure 5.3. - 1. The corresponding values of \(A^{\prime}\) for the various values of \(A\) are shown in Table 5.3. - 1. From this table it may be seen that an A-term of about 2 is required to bring the experimental results into line with the theoretical equation 5.2. - 3 . This figure is high compared to the normal value of \(A \leqslant 1\). This would indicate a very poorly packed column.

It is possible that the column is poorly packed, since no previous experience of the 'rotate and bounce' method of column packing had been

\[
\begin{aligned}
& \text { FIGURE 5.3. - } 1 . \\
& \text { Family of curves } h=A \nu_{0}^{1 / 3} \text { for various values of } A \text {. } \\
& \text { The dashed lines indicate the best-fitting straight line to these } \\
& \text { curves for the velocity range } \nu_{0}=500-5000 \text {. }
\end{aligned}
\]

TABLE 5.3. - 1

LINEAR APPROXIMATION TO \(h=A \nu_{0}^{1 / 3}\)
\begin{tabular}{c|c|c|}
\hline A & \multicolumn{2}{|c|}{\(A^{\prime}\)} \\
\hline & \(\nu_{0}=500\) to 5000 & \(\nu_{0}=2000\) to 12000 \\
0.5 & 0.001 & 0.0005 \\
1.0 & 0.002 & 0.001 \\
1.5 & 0.003 & 0.0015 \\
2.0 & 0.004 & 0.002 \\
2.5 & 0.005 & 0.0025 \\
3.0 & 0.006 & 0.003 \\
3.5 & 0.007 & 0.0035 \\
4.0 & 0.008 & 0.004 \\
& & \\
\hline
\end{tabular}
obtained. Experiments involving the measurement of \(h\) as a function of \(\nu_{0}\) at the optimum velocity, or involving re-packing the column, perhaps by slightly different methods, would have thrown more light on this subject. It must also be borne in mind that this experiment was intended to give insight into the C -term, and that a number of assumptions are required to enable a value of the \(A\)-term to be calculated. These include the velocity dependence of the A-term, the linear approximation to this velocity dependence and the accuracy of the theoretical expression for the c-term.

Figure 5.3. - 2 shows the experimental results for the \(50 \mu \mathrm{~m}\) particles with an allowance for an A-term of 2 . The theoretical variation of \(C\) with \(k^{\prime \prime}\) is well borne out. The experimental uncertainty shows that a lower value of A may still give an acceptable fit, though not as good as the fit with \(A=2\).

For the \(540 \mu \mathrm{~m}\) particles, a much higher A-term is required as shown by the figures in the lower part of Table 5.3. - 1. This is because the values of \(\nu_{0}\) used are higher, and so \(v_{0}^{1 / 3}\) increases more slowly with \(v_{0}\). This column may well be very poorly packed, since there are only about 15 particles across the column diameter.

Apart from attributing all of the excess band broadening over equation 5.3. - 2 to mobile zone flow effects, there may be other dispersion mechanisms operating which would account for some of the band broadening. Such a mechanism may be found in the transfer of solute to and from regions of stagnant mobile phase outwith the particles. For example, some mobile phase will be held stagnant in the cusp shaped regions where neighbouring particles touch. These regions will be scaled to the particle diameter, and so will have the
\[
\begin{aligned}
& \text { Values of } C \text { obtained from } C=C_{a p}-A^{\prime} \text { where } \\
& C_{\text {ap }} \text { is the experimental gradient from plots } \\
& \text { of } h \text { vs } v_{0} \text {, and } A^{\prime} \text { the effective gradient of } \\
& \text { the assumed } A \text { term. For } 50 \mu m \text { material } A=2 \\
& \text { was assumed; for } 540 \mu \mathrm{~m} \text { material } A=4 \text { was } \\
& \text { assumed. Other details as Figure } 5.2 .-2 \text {. }
\end{aligned}
\]
\[
10 \underbrace{15}_{0}
\]
same effect on the \(h\) vs \(v\) curves for any particle size. Since band broadening by diffusion into and out of such pockets will depend on the depth of the stationary zone involved, the effect will be smaller than that of the beads themselves, but may still be significant.

Since it has proved to be impossible to separate the \(A\) and \(C\)-terms by using large particles and high reduced velocities, a firm identification of all the factors involved has not beenpossible. However, many useful results and insights have been gained in the process.

CHAPTER 6
THEORETICAL MODELS OF SIZE-EXCLUSION CHROMATOGRAPHY

\subsection*{6.1. INTRODUCTION}

In chromatography, a solute is said to be 'excluded' if it travels down the column more quickly than the eluent. Such behaviour is possible because, whereas the eluent can fully penetrate all the pores of the support, the solute cannot, and so on average it moves more quickly than the eluent, since eluent in the pores does not move. There are several reasons why a solute may not be able to penetrate the pores completely. For example, if molecules of one component of the eluent bind more strongly to the stationary phase than the solute molecules do, the solute molecule will find it more difficult to reach the surface than will these eluent molecules, and so they will be partially excluded (18). A second possibility is that molecules may be hindered from entering the pores by a charge effect similar to the Donnan potential (66). However, only one exclusion mechanism has been exploited so far to provide a separation technique. This is the mechanism of exclusion from pores on the basis of size. The technique based on this phenomenon is known by a variety of names, such as Gel Permeation Chromatography (67) or Gel Filtration Chromatography (68). The most descriptive name, which is generally applicable to all variants of the technique, is size Exclusion Chromatography (SEC) (16).

SEC as a technique was realised before the theory behind it was elucidated. Several theories were postulated to explain this separation of molecules on the basis of size. These included a theory based on differing diffusion rates of solutes of various
sizes (69), and one based on separation by flow, in which separation is the result of the flow profile in the channels of the packing ( 70,71 ). The consensus opinion now is that such separations are adequately explained by steric exclusion (72). This mechanism will be described in detail in section 6.2., but the basis of it is that large molecules cannot fully permeate the pores of the support, whereas small molecules can.

Based on this theory, a simple equation relating retention volume to the volumes within the column as described in figure 1.4. - 1 may be derived. Molecules (such as eluent molecules) which can fully permeate the pores of the support material will be eluted from the column by a volume of eluent \(\mathrm{V}_{\mathrm{m}}\). Molecules which are totally excluded from the pores will elute in a volume \(V_{0}\) equal to the volume of eluent outside the pores. The difference between these volumes is the pore volume \(V_{p}\). Thus
\[
v_{m}=v_{0}+v_{p}
\]
in agreement with figure 1.4. - 1.
In well conditioned SEC the solute does not interact with the surface of the packing material. In this case the retention volume for any molecule must lie somewhere between \(V_{o}\) and \(V_{m}\). This fact may be represented by the equation
\[
v_{r}=v_{0}+K V_{p} \quad 6.1 .-2
\]
in which \(K\) is allowed to vary from 0 to \(1 . K\) is known as the exclusion coefficient.

The relationship of retention volume to molecular size (or molecular weight) is usually demonstrated by a calibration curve, in which the logarithm of the molecular weight is plotted as a function of \(V_{r}\) or \(K\). A typical graph of this type is shown in figure 6.1. - 1. This data, which was taken from the paper by Knox and McLennan (73), is listed in Table 6.1. - 1. Such graphs enable molecular weights to be estimated from retention volumes. From a theoretical point of view, however, the retention volume is a function of the molecular size rather than vice versa. In the remainder of this chapter various models which predict the variation of K with molecular size are examined, and the predictions are compared with experimental results.

\subsection*{6.2. THE THEORY OF SIZE EXCLUSION CHROMATOGRAPHY}

In SEC the elution volume of a solute depends on the size and shape of the solute molecules, and on the sizes and shapes of the pores in the column, as well as on the volume of eluent in the column. Although the separation mechanism is quite different from that of retentive chromatography, the mechanisms which lead to band broadening are the same as those dealt with in the earlier chapters of this thesis, namely axial diffusion, slow mass transfer and flow effects. Since the samples analysed are often artificial polymers, apparent band broadening due to the polydispersity of the polymer is almost always observed in addition (73).

The way in which the degree of exclusion will vary with molecular size is best illustrated by a simple example. The simplest type of molecule to consider is the 'hard sphere' molecule. One of the


TABLE 6.1. - 1

EXPERIMENTAL EXCLUSION DATA OF KNOX AND MCLENNAN (73)
\begin{tabular}{|r|c|c|c|c|c|} 
MW & \(V_{r} / V_{c}\) & \(K\) & \(r / A\) & \(\ln (r / 68 A)\) & \(K(\) modified \()\) \\
78 & 0.780 & 1.000 & 2 & -3.51 & 0.920 \\
2,000 & 0.696 & 0.759 & 11 & -1.83 & 0.698 \\
4,000 & 0.665 & 0.672 & 16 & -1.43 & 0.618 \\
10,000 & 0.593 & 0.465 & 28 & -0.89 & 0.428 \\
20,000 & 0.530 & 0.286 & 42 & -0.48 & 0.263 \\
30,000 & 0.481 & 0.145 & 53 & -0.25 & 0.133 \\
200,000 & 0.442 & 0.034 & 161 & 0.86 & 0.031 \\
500,000 & 0.436 & 0.017 & 276 & 1.40 & 0.016 \\
\(2,500,000\) & 0.430 & 0.000 & 711 & 2.35 & 0.000
\end{tabular}

All volumes are given relative to the volume of the empty column.

For details of calculation of molecule radii and exclusion coefficients, see text.
simplest model pores is the 'infinite cylinder'. This has a uniform circular cross section, and if of sufficient length that end effects may be neglected. This system is the three-dimensional analogue of a circular molecule in a circular pore in two dimensions, since the length element may be cancelled from all equations. This two-dimensional analogue is shown in figure 6.2. - 1. The radius of the pore is denoted by \(R\), and that of the molecule by \(r\).

The centre of mass of the molecule cannot come closer to the wall of the pore than a distance \(r\). If the radius of the molecule is greater than the radius of the pore, the molecule is totally excluded from the pore. The exclusion coefficient \(K\) is defined as the function of the pore volume available to the molecule. Thus
\[
\begin{array}{lll}
K=\frac{\pi(R-r)^{2}}{\pi R^{2}} r<R & 6.2 .-1 a \\
K=0 & r>R & 6.2 .-1 b
\end{array}
\]

These equations illustrate typical variation of exclusion coefficient with molecular radius for a given pore structure.

The above example is a special case of a general equation for spherical molecules which is assumed to give \(K\) as the ratio of the volume of pores accessible to the centre of mass of the molecules \(\left(V_{a}\right)\) to the total volume of the pores \(\left(V_{p}\right)\) :
\[
K=\frac{V_{a}}{V_{p}} \quad \text { 6.2. }-2
\]

This approach ignores problems of access to pores. For non-spherical molecules such a simple approach is not sufficient; for example the closest distance of approach to the pore wall by a rod-shaped


FIGURE 6.2. - 1. Exclusion of a spherical molecule from a cylindrical pore.
The centre of the molecule is excluded from the annular region between the dashed and solid lines.

- FIGURE 6.2. - 2. Exclusion of a rod-shaped molecule from a cylindrical pore. The area from which the centre of the molecule is excluded depends on the orientation of the molecule.
molecule depends not only on the length of the molecule but also on its orientation. This is illustrated in figure 6.2. - 2. In considering the accessible volume all possible orientations and configurations must be taken into account. This may be achieved by the methods of statistical mechanics (74). \(V_{a}\) and \(V_{p}\) may be re-interpreted as the volumes of configuration space available to the molecule in the presence and in the absence of the pore walls. This amounts to the same thing as counting the total number of configurations with and without the walls.

In the remainder of this chapter it will be assumed that we are dealing with spherical molecules. This assumption is made since many polymer molecules, in particular polystyrenes, are random chain polymers (75) which may be approximated as spheres. The effective radius of these spheres may be calculated from the radius of gyration \(r_{g}\) of the molecules by the equation
\[
r=0.886 r_{g} \quad 6.2 .-3
\]
(see reference (76)).
For spherical molecules theoretical exclusion curves may be calculated for a variety of pore shapes (74). The equation for infinite cylindrical pores has been derived above. Equations for various other simple geometries are given in reference (74). The pore shapes considered are: cylindrical pores, spherical pores and inverse cylindrical pores. It is assumed that solute molecules can enter and leave the spherical pores by some unspecified mechanism. The 'inverse cylinder' pores consist of the space between touching cylinders. A diagram of such a pore is shown in figure 6.2. - 3 .


FIGURE 6.2. - 3.
INVERSE CYLINDRICAL PORE.
The pore consists of the space between four touching cylinders of radius \(R\), as shown. By symmetry only the triangle bounded by solid lines in the bottom right-hand corner need be considered. The area of this triangle is \(\frac{1}{2} R^{2}\).

The void area of this part of the pore is the area of the triangle outwith the solid circle. This is equal to \(\left(\frac{1}{2}-\frac{\pi}{8}\right) R^{2}\).

A molecule of radius \(r\) is excluded from all but the small area outside the dashed circle to the centre of the pore. This area is the area of the triangle less the areas of triangle \(A\) and sector \(B\).

The area of triangle \(A\) is \(\frac{1}{2} R^{2} \tan \theta\), where \(\theta\) is given by \(\cos \theta=\) \(R / R+r\).

The area of sector \(B\) is given by \(\left(\frac{\pi}{4}-\theta\right) \frac{(R+r)^{2}}{2}\)
Thus the free area is \(\frac{R^{2}}{2}-\frac{R^{2}}{2} \tan \theta-\left(\frac{\pi}{4}-\theta\right) \frac{(R+r)^{2}}{2}\)
In combination with the void area, \(K\) is given by
\[
k=\frac{1-\tan \theta-\left(\frac{R+r}{R}\right)^{2}\left(\frac{\pi}{4}-\theta\right)}{1-\frac{\pi}{4}} \quad \text { or } k=\frac{1-\tan \theta-\left(\frac{1}{\cos \theta}\right)^{2}\left(\frac{\pi}{4}-\theta\right)}{1-\frac{\pi}{4}}
\]

Exclusion curves for these models are shown in figure 6.2. - 4.
The one curve in this figure for which no equation is given is the curve for exclusion from the space between touching spheres whose centres are at the vertices of a simple cubic matrix. This curve was generated by numerical methods on a computer.

All of the curves shown in figure 6.2. - 4 have a broadly similar shape. The points to be noted are the very small change in exclusion coefficient with molecular radius for very small molecules, the quasi-linear relationship between the exclusion coefficient and the logarithm of molecular weight for molecules of intermediate size, and the breakdown of this linearity as the molecular radius approaches the pore radius. For the simple models considered here this effect is not particularly marked, but may be observed on close inspection of the figure as \(K\) tends to zero. For experimental curves and for models which have a distribution of pore sizes this breakdown of linearity is much more pronounced.

The curves for the inverse cylinders and the simple cubic matrix cut the vertical axis below the origin. For these models total exclusion occurs at a radius smaller than that of the matrix unit. For example, figure 6.2. - 3 shows that for the inverse 4 -cylinder total exclusion occurs at a radius of \((\sqrt{2}-1) R\). If these curves were plotted such that ( \(r / R\) ) is the ratio of the molecular radius to the maximum molecular radius which can enter the pore, then the two inverse cylinder curves would be practically superimposable, and would lie between the curves for the cylinder and sphere models.

Experimental data such as that shown in figure 6.1. - 1 is obtained as a set of values of retention volume and molecular weight. For comparison with theoretical models such as those described above

or to be developed in the remainder of this chapter it is necessary to convert this data into values of exclusion coefficient and molecular radius. This may be done by making the following assumptions:
1) Very large molecules are totally excluded from the pores.
2) Very small molecules can totally permeate all the pores.
3) There is a simple relationship between molecular weight and molecular radius.

The data in figure 6.1. - 1 was obtained by chromatographing samples of polystyrene standards of known molecular weight and low polydispersity under typical SEC conditions (73). Following the above assumptions, the largest molecules (PS 2700 000) are taken to be totally excluded; thus \(\mathrm{V}_{\mathrm{r}}=\mathrm{V}_{0}\) and \(\mathrm{K}=0\). The smallest molecules (benzene) are taken to be fully permeating; thus \(V_{r}=V_{m}\) and \(K=1\). This defines a relationship between \(V_{r}\) and \(K\) from which values of \(K\) may be assigned to all retention volumes.

A generally accepted relationship between molecular weight and molecular radius is
\[
r_{g}=a M^{b} \quad 6.2 .-4
\]
where \(r_{g}\) is the radius of gyration, \(M\) the molecular weight and \(a\) and \(b\) are constants. The relationship between radius of gyration and effective molecular radius for SEC is given in equation 6.2. - 3 . From published values of the constants (77) the following equation may be used to obtain effective molecular radii from molecular weight data:-
\[
=0.123 \mathrm{M}^{0.588}
\]

The experimental data of Knox and McLennan have been processed in this way, and the results are also presented in Table 6.1. - 1. This data with the curve for exclusion from an infinite cylinder is shown in figure 6.2. - 5.

\subsection*{6.3. COMPUTER MODELLING}

The pore models described above are all of regular geometry, and each model consists of pores of a single uniform size. They cannot therefore be very accurate models of real packing materials for SEC. While the nanometre -sized units which make up the particles of the packing material may be spherical, neither they nor the pores which they define will be of a uniform size, nor will they be positioned in a regular array.

One model which overcomes some of these shortcomings is the random sphere model (77) which was used as a model for SEC by van Krefeld and van den Hoed (76). This model consists of spheres of uniform radius positioned at random points throughout the matrix. The spheres are allowed to overlap if necessary. The void volume in such a model may be calculated from simple mathematical equations derived from the statistics of the model. The exclusion of molecules from the matrix is modelled by increasing the radius of the spheres by the molecular radius. The void volume remaining corresponds to the accessible volume for molecules of that radius. In this way a calibration curve may be calculated. Very good agreement with experiment was found in this study.

The model developed in the current work is somewhat different. In keeping with answering the criticisms of the uniform pore models, the sizes of the units are random. A further change from the random sphere model is that the units are not allowed to overlap. This may effect the
exclusion from small pores, since the cusp-like regions where the spheres touch will be sharper than in the random sphere model. Because of these changes statistical methods cannot be used, and numerical methods are required to calculate the exclusion curves.

Computer simulations of random packings of spheres have been carried out by various groups. Adams and Matheson (78) considered packing spheres in a centro-symmetric gravitational field. Visscher and Bolsterli (79) assumed a uni-directional field; their method is similar to packing ball-bearings into a jar. Although the model developed below has features in common with both of the above models, it was developed independently. One of the chief differences is the range of sphere radii considered.

Two similar models were considered. The first consisted of random touching circles (or infinite cylinders), and the second of random touching spheres. In each case it is the space between these units which is under consideration. The 'touching spheres' model may be considered to be a three-dimensional analogue of the 'touching circles' model.

A flow diagram for the 'touching circles' model is shown in figure 6.3. - 1. The corresponding diagram for the 'touching spheres' model is shown in figure 6.3.-2. The construction of the 'circles' model will be outlined first, and the changes required for the 'spheres' program will be described subsequently.

For both models, the radii are produced from a pseudorandom normal distribution with a mean of one unit. In the 'circles' model standard deviations of 0.1 and 0.3 units were used; in the 'spheres' model the standard deviation was 0.1 unit.


Set search direction -re

Get mew random circle radius


FIGURE 6.3. - 1.

Flow diagram for construction of array of random touching circles.
Circle \(B=\) circle closest to circle \(A\) in search direction

Calculate position of new circle

new circle impinge on
any other



FIGURE 6.3. - 2. Flow diagram for construction of array of random touching spheres.

The first step in the 'circles' program is the defining of a base on which future circles will rest. This base consists of a line of touching circles, with centres on the x-axis, whose radii were chosen by the above method. The final circle on this base is taken as the starting circle for the positioning of the next circle.

All subsequent circles are positioned such that they touch the previously positioned circle, and (if possible) the nearest circle to it in a specified direction. The position of the centre of the new circle is at the third vertex of a triangle whose other vertices are at the centres of the two circles being used in the construction, and whose sides are defined by the positions of these vertices and by the radii of the two starting circles and the new circle. This method is illustrated in figure 6.3. - 3 .

There are two possible positions for the centre of the new circle as defined by the above algorithm. If the new circle impinges on any other circle as a result of the first solution, the alternative solution is examined. If neither solution is successful, an alternative choice of the second starting circle is required.

This process is repeated, with changes in the direction of search for the second starting circle programmed such that the array is built up vertically. The program terminates when the array is about as tall as it is long.

In the 'sphere' model the base is replaced by a core of five spheres with radii close to unity. Each subsequent sphere requires three spheres to rest on, and the position of the centre of the new sphere is the fourth vertex of a tetrahedron. The other three


FIGURE 6.3. - 3.
Construction method for array of random touching circles.
The position for the centre of circle \(C\) is found by solving triangle \(A B C\), where \(A B\) is the distance between the centres of circles \(A\) and \(B\), and \(A C\) and \(B C\) are the sums of the radii of the respective circles.

Circle \(D\) is not used, since a circle based on \(A\) and \(D\) would impinge on circle \(B\). The alternative solution of the triangle would result in circle \(C\) impinging on circle \(D\).
vertices are the three spheres on which the new sphere rests, and the remaining edges have lengths defined by the sum of the new sphere radius and the radii of these 'base' spheres. Details of the solution of the tetrahedron are shown in figures 6.3. - 4.

Again two possible solutions are available, and both positioms for the centre of the new sphere are tested to see if this sphere impinges on any other sphere. If neither position is satisfactory then other base spheres are used until a permissible position for the new sphere is found.

In building the 'spheres' model it sometimes happened that no satisfactory solution could be found, or that a 'string' of spheres was produced which reached the intended boundary of the array without filling the space around the string. In these cases a completely fresh starting sphere is required, rather than using the previous sphere. This required operator intervention, and may have taken away from the truly random nature of the array. However, the randomness should not be significantly corrupted by this process, and the array should still be a good model for the purposes for which it was constructed.

The completed arrays of circles contained about 100 circles . The central position only was used for the calculation of exclusion curves, in order to avoid edge effects and the effect of the base line of circles. The portions of the arrays used for further calculations are shown in figures 6.3. \(-5(\mathrm{~s} . \mathrm{d} .=0.1)\) and 6.3. -6 (s.d. \(=0.3\) ). The porosities of these arrays are \(18.7 \%\) and \(21.1 \%\) respectively.

The completed array of spheres contained about 1800 spheres, from which the central portion of about 1600 spheres was used for exclusion coefficient calculations in order to avoid the edges of the


A

\section*{FIGURE 6.3. - 4.}

CONSTRUCTION METHOD FOR ARRAY OF RANDOM TOUCHING SPHERES.

Let \(A, B\) and \(C\) be the centres of the three base spheres, and \(D\) the centre of the new sphere. The lengths of all line segments are known either as distances between sphere centres or sums of sphere radii.

For sake of simplicity let \(A, B\) and \(C\) lie in the \(x-y\) plane, with \(A\) and \(B\) on the \(x\) axis. This may be achieved by a suitable \(t\) ransformation of coordinates.

The \(x\)-coordinate of \(D\) is given by point \(E\), which is the point where a line from \(D\) cuts the line \(A B\) at right angles.

Point \(F\) is obtained by a similar line whicn cuts \(A C\) at right angle. Point \(G\) is the intersection of lines through \(E\) and \(F\) at right angles to \(A B\) and \(A C\) respectively in the \(x-y\) plane. The \(y\)-coordinate of \(D\) is given by the length of EG.

Finally the \(z\)-coordinate of \(D\) may be found by solving either of the right-angled triangles DEG or DFG to find the length GD.

FIGURE 6.3. - 6. Array of Random Circles.

array where the packing is incomplete. The effect of the initial small core was assumed to be negligible. The porosity of the array was calculated to be \(43 \%\). which is close to the experimental value of about \(37 \%\) for arrays of similar spheres. The data for this array is given in appendix 3.

Figure 6.3. - 7 shows two sections through the array. A '+' in the centre of a circle indicates that the centre of the corresponding sphere is above the plane of the section; A '-' indicates that the sphere centre is below this plane. The fact that the circles do not appear to touch is simply due to the nature of the sectional presentation.

In order to calculate the porosity of these arrays, or to calculate the relevant exclusion curves, it is necessary to know the void volume, i.e. the volume not occupied by circles or spheres. In each case the array was examined point by point, the fractional void volume being the ratio of the number of test points outside the circles or spheres to the total number of test points. The distance between neighbouring test points was as small as practicable within the constraints of available computer time (typically 1000 points per unit).

Exclusion curves for the cylinder models were calculated by effectively increasing the radius of each circle by the 'molecular radius' under consideration, and re-calculating the void volume by the above method. The results of these exclusion curve calculations are shown in table 6.3. - 1.

For the array of spheres a more efficient method for obtaining the exclusion curve was required. For each test point in free space in the array the shortest distance to a sphere surface was calculated. Molecules with radii greater than this distance are 'excluded' from

FIGURE 6.3. - 7. Sections through array of Random Spheres.

\section*{EXCLUSION DATA FOR MATRICES OF RANDOM TOUCHING CIRCLES}
\begin{tabular}{|c|c|c|c|}
\hline \multirow[t]{2}{*}{\(r / R\)} & \multirow[t]{2}{*}{\(\ln (r / R)\)} & \multicolumn{2}{|c|}{K} \\
\hline & & s.d. \(=0\) & .d. \(=\) \\
\hline 0.001 & -6.91 & 0.991 & 0.995 \\
\hline 0.003 & -5.81 & 0.972 & 0.982 \\
\hline 0.005 & -5.30 & 0.954 & 0.968 \\
\hline 0.010 & -4.61 & 0.924 & 0.948 \\
\hline 0.020 & -3.91 & 0.846 & 0.896 \\
\hline 0.030 & -3.51 & 0.777 & 0.839 \\
\hline 0.040 & -3.22 & 0.725 & 0.791 \\
\hline 0.050 & -3.00 & 0.667 & 0.743 \\
\hline 0.075 & -2.59 & 0.529 & 0.634 \\
\hline 0.100 & -2.30 & 0.423 & 0.542 \\
\hline 0.150 & -1.90 & 0.264 & 0.400 \\
\hline 0.200 & -1.61 & 0.152 & 0.285 \\
\hline 0.250 & -1.39 & 0.085 & 0.207 \\
\hline 0.300 & -1.20 & 0.045 & 0.139 \\
\hline 0.400 & -0.92 & 0.010 & 0.058 \\
\hline 0.500 & -0.69 & 0.000 & 0.018 \\
\hline 0.600 & -0.51 & 0.000 & 0.002 \\
\hline 0.700 & -0.36 & 0.000 & 0.000 \\
\hline
\end{tabular}
this point; molecules of smaller radius are assumed to be able to reach the point. In this way each test point need only be considered once, yet a full exclusion curve can be built up. The results of this calculation are shown in table 6.3. - 2 .

The three calculated exclusion curves are shown in figure 6.3. - 8. The experimental curve is included in this figure for comparison. These calculated curves have the same general shape as the experimental curve and the curves calculated from simple geometrical pores.

The experimental curve differs from all of the model curves as K tends to unity, in that the model curves all turn sharply downwards in this region, whereas the experimental curve is relatively flat. The reason for this is that in the models values of \(K\) can be calculated for 'molecules' whose radius is practically zero. Because of this the exclusion curves approach total permeation asymptotically. For the experimental data benzene was somewhat arbitrarily assigned an exclusion coefficient of unity, since it was assumed to be totally permeating. However, any molecule with a finite radius must be slightly excluded from any pore.

For this reason the experimental values of \(K\) were re-calculated to give a reasonable exclusion coefficient for benzene. The effective radius of the benzene molecule was calculated from the density of liquid benzene, and from this and the touching sphere model a value of \(K\) for benzene of 0.92 was calculated; the other values of \(K\) were scaled accordingly. Figure 6.3. - 9 demonstrates the improvement in the match between theoretical and experimental curves which this change yields. For the best results, such a scaling should be

\section*{FIGURE 6.3. - 9.}
Exclusion curves for computer models of by random touching spheres or cylinders compared
with modified experimental data.
table 6.3. - 2

EXCLUSION DATA FOR MATRIX OF RANDOM TOUCHING SPHERES
\begin{tabular}{|c|c|c|}
\hline\(r / R\) & \(\ln (r / R)\) & \(k\) \\
0.010 & -4.60 & 0.963 \\
0.030 & -3.51 & 0.888 \\
0.050 & -3.00 & 0.814 \\
0.100 & -2.30 & 0.644 \\
0.160 & -1.83 & 0.472 \\
0.200 & -1.61 & 0.378 \\
0.240 & -1.43 & 0.299 \\
0.300 & -1.20 & 0.205 \\
0.400 & -0.92 & 0.098 \\
0.500 & -0.69 & 0.042 \\
0.600 & -0.51 & 0.015 \\
0.700 & -0.36 & 0.004 \\
0.800 & -0.22 & 0.0005 \\
1.500 & 0.40 & 0 \\
& &
\end{tabular}
performed on each model being tested to obtain the best comparison between model and experimental exclusion curves. Our interest, however, is centred on the sphere model at present, and so only that scaling has been used.

All the curves from the random models show a better fit to the experimental curve at high molecular radius than do those from the simple geometrical models. The reason for this is that with the random models a molecule may be too big to enter the majority of the pores in the packing, and yet not be totally excluded from the largest pores. With pores of regular geometry and uniform size the onset of total exclusion is sharp: a molecule can either enter all of the pores or none of them. The curvature due to the existence of large pores is in addition to the slight curvature at large molecular radius found in the simple geometrical models.

The effect of a small number of large pores on the shape of the exclusion curve may be demonstrated by a simple model. For example, consider a matrix of ten circular pores, nine of which have a radius of unity and the tenth a radius of two. It may readily be shown that the exclusion curve for this matrix is given by
\[
k=\frac{9 K_{1}+K_{2}}{13}
\]
where \(K_{1}\) and \(K_{2}\) are given by
\[
\begin{array}{rlrl}
K_{1} & =(1-r)^{2} & & r<1 \\
& =0 & r \geqslant 1 \\
K_{2} & =(2-r)^{2} & & r<2 \\
& =0 & & r \geqslant 2
\end{array}
\]

The equations for \(K_{1}\) and \(K_{2}\) consist of the numerators of the equations for exclusion from the respective circular pores. The denominators, which refer to the areas of the pores, have been combined as the denominator of equation 6.3. - 1 , which represents the total area of pores in the matrix. The exclusion curve calculated from these equations is shown in figure 6.3. - 10 . Its superiority to the simple equation for cylindrical pores is obvious. The effect of outsize pores on exclusion curves in the region of \(K=0\) is well demonstrated by this curve.

Although this model was derived simply to examine the effects of large pores on the shape of the exclusion curve, it does suggest a possible way of building a model for exclusion chromatography. Such a model would assume a simple geometrical shape for the pores (e.g. circular pore as discussed above), and derive an exclusion curve based on this and the pore size distribution of the material to be modelled. The pore size distribution data may be obtained, for instance, by mercury porosimmetry (80). In this technique the total volume of pores with a radius greater than a given radius may be calculated from the volume of mercuty forced into the pores at a given pressure. The pore size distribution of Hypersil obtained by this method is shown in table 6.3. - 3.

A computer model based on this pore size distribution data was constructed. The pores were assumed to be circular in shape, since this assumption is made in the calculation of pore volumes in mercury porosimmetry. The model consisted of pores of 100 different radii, chosen such that each pore size accounted for \(1 \%\) of the total pore volume. Interpolation of the pore size distribution was required to make this assignment. The equations describing the model were
```

TABLE 6.3. - }
MERCURY POROSIMMETRY DATA FOR HYPERSIL

R/A	Fraction of pores with radius $\geqslant R$	$\overline{\mathrm{R}} / \mathrm{A}^{\circ}$	$\overline{\mathrm{R}} / 68{ }^{\circ}$	Fraction of pores with this \bar{R}
180	0.00	128	1.88	0.05
90	0.05	63	0.92	0.84
44	0.89	36	0.53	0.09
30	0.98	26	0.38	0.02
22.	1.00			

```
analogous to equations 6.3. - 1 and 6.3. - 2, with a set values of radius and volume for each pore size. The model thus consists of a set of 100 equations, each of which uses pore size and volume data obtained from the porosimmetry data. The exclusion curve from this model is shown in figure 6.3. - 11. This data is given in Table 6.3. - 4.

Unfortunately the match between model and experimental curves in this figure is not as good as might be expected for a model with the benefit of additional experimental information in the form of the pore size distribution of the material being modelled. More extensive pore size data (rather than only five unevenly-spaced points), and the use of more appropriate pore shapes may increase the accuracy of this type of model.

One point which is difficult to explain when the porosimmetry and exclusion data are examined together is the divergence of the values for the maximum pore size. According to mercury porosimmetry the maximum pore radius is \(180 \AA\). The elution volumes of large polystyrene molecules in SEC indicate that molecules with an effective radius of \(276{ }^{\circ}\) are not totally excluded. There are various possible explanations for this. For example, there may be batch-to-batch variations in the material; the material for which pore size distribution data is available may be different from that from which the exclusion data was measured. Partial uncoiling of the polymer molecules may allow partial ingress into pores from which full molecules are excluded. Accurate measurement of the relatively small volumes required for calculating the degree of exclusion at high molecular weights is difficult, and experimental errors in this may have occurred. These factors may have had a deleterious effect on
\[
\text { FIGURE 6.3. }-11
\]
\[
\begin{aligned}
& \text { Exclusion curve based on Pore-size } \\
& \text { Distribution for Hypersil. }
\end{aligned}
\]


\section*{TABLE 6.3. - 4}

EXCLUSION DATA BASED ON PORE SIZE DISTRIBUTION FROM MERCURY POROSIMMETRY
\begin{tabular}{|c|c|c|}
\hline \(r / R\) & \(\ln (r-R)\) & K \\
\hline 0.010 & -4.61 & 0.977 \\
\hline 0.030 & -3.51 & 0.931 \\
\hline 0.050 & -3.00 & 0.887 \\
\hline 0.100 & -2.30 & 0.782 \\
\hline 0.160 & -1.83 & 0.665 \\
\hline 0.200 & -1.61 & 0.594 \\
\hline 0.240 & -1.43 & 0.527 \\
\hline 0.300 & -1.20 & 0.436 \\
\hline 0.400 & -0.92 & 0.308 \\
\hline 0.500 & -0.69 & 0.209 \\
\hline 0.600 & -0.51 & 0.136 \\
\hline 0.700 & -0.36 & 0.086 \\
\hline 0.800 & -0.22 & 0.053 \\
\hline 1.500 & 0.41 & 0.004 \\
\hline
\end{tabular}
the fit between model and experiment in this case.
A final demonstration of the effect of pore size distribution on exclusion curves involves manipulation of the array of random spheres. In order to produce large pores, spheres were eliminated from the array at random. The resulting array would possibly be unstable in real life, since floating 'islands' of spheres could be created by this process, but for present purposes the model so produced should be adequate.

The exclusion curve for this new array was calculated in the same way as before. This is shown in figure 6.3. - 12 and in Table 6.3. - 5. An improvement on the original model is apparent, but an adequate match between model and experiment has not yet been produced.

One possible reason for this may lie in the porosities of the various matrices. Hypersil has a porosity of \(61 \%\), whereas the original spheres model has a porosity of only \(43 \%\). The 'shot spheres' model described above has a porosity of \(56 \%\). It may be that if the porosity of the experimental material could be reproduced, an adequate fit between model and experiment may be found.

\subsection*{6.4. CONCLUSION}

The assumed shape of the pores has surprisingly little effect on the shape of the theoretical exclusion curve. This applies especially to the gradient of the linear part of the curve.

The departure from linearity at high molecular weights has been shown to be due mainly to the presence of large pores into which the large molecules can penetrate, although they are excluded from the majority of the pores.
FIGURE 6.3. - 12 .
Exclusion curve from 'shot spheres' model compared with
modified experimental data. 'Shot spheres' model consists
of array of random touching spheres with a percentage of
spheres removed at random.

table 6.3. - 5

EXCLUSION DATA FOR MATRIX OF RANDOM TOUCHING SPHERES WITH A NUMBER OF SPHERES REMOVED.
\begin{tabular}{|c|c|c|}
\hline\(r / R\) & \(\ln (r / R)\) & \(k\) \\
0.010 & -4.60 & 0.980 \\
0.030 & -3.51 & 0.939 \\
0.050 & -3.00 & 0.898 \\
0.100 & -2.30 & 0.799 \\
0.160 & -1.83 & 0.689 \\
0.200 & -1.61 & 0.622 \\
0.240 & -1.43 & 0.560 \\
0.300 & -1.20 & 0.473 \\
0.400 & -0.92 & 0.347 \\
0.500 & -0.69 & 0.246 \\
0.600 & -0.51 & 0.165 \\
0.700 & -0.36 & 0.103 \\
0.800 & -0.22 & 0.060 \\
1.500 & 0.40 & 0.001 \\
& &
\end{tabular}

If a model is to be accurate it must match the experimental material in porosity and pore size distribution. Simple models cannot be expected to achieve this; models where this data can be incorporated from independent measurements should be much more successful.

A simple factor which should be taken into account in any comparison of experimental and model exclusion curves is the small but significant degree of exclusion of small molecules. When an allowance is made for this the match at the low molecular weight end of the exclusion curve is greatly improved.

CHAPTER 7
CONCLUSIONS

\section*{CHAPTER 7}

CONCLUSIONS

\subsection*{7.1. INTRODUCTI ON}

In this chapter the most important conclusions of the thesis will be brought together, and suggestions for further work will be put forward.

\subsection*{7.2. DIFFUSION}

All of the important equations on band broadening include diffusion coefficients of one sort or another, except in the case of slow mass transfer in adsorption chromatography. In a study of band broadening it is vital that mobile phase diffusion coefficients are measured directly for the eluents and solutes of interest, since semi-empirical equations like the Wilke-Chang equation are not sufficiently accurate. The chromatographic technique described in Chapter 3 makes this a relatively straightforward task.

It has been necessary to assume that the ratio of \(D_{m}\) to \(D_{s}\) is constant for a set of solutes in a given mobile/stationary phase combination. Direct measurement of \(D_{s}\) would be of great value in the study of band broadening, but it is difficult to envisage how the experiment could be carried out since it involves the measurement of a diffusion coefficient for an ODS surface at which molecules of organic modifier may be loosely bound, without the presence of a liquid phase which would provide an alternative migration route for the solute molecules.

\subsection*{7.3. BAND BROADENING BY AXIAL DIFFUSION}

The notable conclusions to the study of band broadening by axial diffusion concern the magnitude of the obstructive factor and the magnitude of stationary phase diffusion.

The obstructive factor for totally excluded solutes in ODS Hypersil has been shown to be about 0.6 , in agreement with the value obtained by experiments on impermeable particles. For retained solutes a value of about 0.9 was obtained. This implies that molecules which can fully permeate the particles are not significantly hindered from diffusing through them.

It would be of interest to find how \(\gamma\) varies with the degree of exclusion from fully excluded to fully permeating non retained solutes. The evidence obtained so far suggests that near the limit of total exclusion there is little change of \(\gamma\) with \(k^{\prime \prime}\).

It would also be of interest to investigate any dependence of \(\gamma\) with \(k^{\prime}\) for retained solutes. It seems probable that for a molecule with a high degree of retention \(\gamma\) will be less than for an unretained molecule, since the particle will appear less permeable. This assumes no significent diffusion in the stationary phase, and the effect would most probably be found in adsorption chromatography.

For ODS material it has been shown that stationary phase diffusion is significant and proceeds at rates comparable with mobile phase diffusion. Some evidence has been found to suggest that the rate of stationary phase diffusion is independant of the mobile phase, provided that the adsorbed organic modifier remains the same.

\subsection*{7.4. BAND BROADENING DUE TO SLOW MASS TRANSFER}

The validity of the reduced parameter approach to slow mass transfer has been confirmed by obtaining comparable values of the \(C\) term by this method for \(50 \mu \mathrm{~m}\) and \(540 \mu \mathrm{~m}\) particles.

By making reasonable estimates of the magnitude of the \(A\) term, values of the \(C\) term close to those predicted by the theory have been obtained. The \(C\) term given by the equation
\[
\begin{array}{cl}
C=\frac{1}{30} \frac{k^{\prime \prime}}{\left(1+k^{\prime \prime}\right)^{2}} \frac{D_{m}}{D_{s}} & 7.4 .-1
\end{array}
\]
has been found to fit the experimental data adequately.

After the bulk of this thesis had been written the following equation for \(C\) was derived:-
\[
c=\frac{1}{30}\left(\frac{k^{\prime \prime}}{1+k^{\prime \prime}}\right)^{2} \frac{1-\varnothing}{\emptyset\left(\gamma_{s m}-\frac{D_{s}}{D_{m}}\right)+k^{\prime \prime}(1-\varnothing) \frac{D_{s}}{D_{m}}} \quad \text { 7.4.-2 }
\]
where \(\varnothing\) is the fraction of total eluent which is stagnant and \(\gamma_{\text {sm }}\) is the obstructive factor for the stagnant mobile phase. The obstructive factor for the stationary phase is again included in \(D_{s}\). Full details of the derivation of this equation and of its fit to the experimental data of Chapter 5 are given in reference (81). A brief summary is given in appendix 2 . It may be shown that equation 7.4. - 2 reduced to equation 7.4. -1 when \(D_{s}=D_{m}\).

Further work on band broadening due to slow mass transfer should begin with an increase in experimental accuracy. Close attention to temperature control and eluent composition should yield more
reproducible values of \(k^{\prime \prime}\). The use of a computer to digitise the data and calculate moments of the peaks for use in determining plate heights should also lend to greater accuracy. Well packed columns of large particles to reduce the \(A\) term as far as posible would also be a great advantage.

Since it has proved to be impossible to separate the \(A\) and C terms completely by using high reduced velocities, and since the way in which the A term has been treated in this work is highly approximate, a full investigation of the \(A\) term would be desirable. Such a study could be made by using pellicular materials for which the mass transfer coefficient is very small. It would be of interest to find out how flow effects are altered by retention. Accurate knowledge of the \(A\) term would lead to better values for the C term.

\subsection*{7.5. SIZE-EXCLUSION CHROMATOGRAPHY}

In modelling the process of SEC various insights into the mechanism of exclusion were gained. These include the slight but significant exclusion of small molecules when comparing experimental results with theoretical exclusion curves, and the effect of a few large pores on the exclusion behaviour of large molecules. This latter point emphasises the need for careful control of pore-size distribution to extend the linear range of the material at the high molecular weight end of the exclusion curve.

The possibility of using pore-size distribution data to obtain exclusion curves has been demonstrated. A further investigation of this topic, including the direct measurement of pore size distribution with a large number of data points and measurment of an SEC
calibration curve on the same batch of material, would be of interest.

The inverse process of obtaining pore size data from SEC experiments is not as straightforward as it may appear from the iiterature (82). The development of a suitable way of transforming SEC data to yield the pore size distribution of the material would be of great practical benefit since SEC is a much more straightforward technique than mercury porosimmetry.

The array of random touching spheres could be put to various uses in computer modelling, apart from simply eliminating spheres in an attempt to model the porosity of Hypersil. In chromatography it could be used for Monte-Carlo type investigations of on-column processes such as diffusion (83). It may also be usual for modelling various other processes, such as those of interest in chemical engineering.

\section*{REFERENCES}
1. Tswett, M., Trav. Soc. Nat. Warsowic., 146 (1905).
2. James, A.T. and Martin, A.J.P., Biochem. J., 50679 (1952).
3. Cremer, E. and Muller, R., Z. Elektrochem., 5566 (1951).
4. Consden, R., Gordon, A.H. and Martin, A.J.P., Biochm. J., 38 224 (1944).
5. Kirchner, J.C., Miller, J.M. and Keller, G.J., Anal. Chem., 23 420 (1951).
6. Horvath, C., Preis, B. and Lipsky, S.R., Anal. Chem., 391422 (1967).
7. Huber, J.F.K. and Hulsman, J.A.R.J., Anal. Chim. Acta., 38305 (1967).
8. Kirkland, J.J., J. Chromatogr. Sci., 77 (1969).
9. Snyder, L.R., 'Principles of Adsorption Chromatography', Marcel Dekker, New York (1963).
10. Martin, A.J.P. and Synge, R.L.M., Biochem. J., 351358 (1941).
11. Colin, H. and Guiochon, G., J. Chromatogr., 141289 (1977).
12. Knox, J.H. and Pryde, A., J. Chromatogr., 112171 (1975).
13. Kikta, J.R. Jr., and Grushka, E., Anal. Chem., 481098 (1976).
14. Moore, S. and Stein, W.H., J. Biol. Chem., 192663 (1951).
15. Eksborg, S., Lagerstrom, P-0, Modin, R. and Schill, G., J. Chromatogr., 8399 (1973).
16. Yau, W.W., Kirkland, J.J. and Bly, D.D., 'Modern Size-Exclusion Chromatography', Wiley, New York (1979).
17. Giddings, J.C., 'Dynami cs of Chromatography Part I', Marcel Dekker, New York (1965).
18. Kennedy, G.J.and Knox, J.H., J. Chromatogr. Sci., 10549 (1972).
19. Einstein, A., Ann. der Physik, 17549 (1905).
20. Boyack, J.R. and Giddings, J.C., Arch. Biochem. Biophys., 100 16 (1963).
21. Knox, J.H. and McLaren, L., Anal. Chem., 361477 (1964).
22. Moore, W.J., 'Physical Chemistry', 5th Ed., Longman, London (1972) p165.
23. Chandrashekhar, \(\mathrm{S}_{\mathrm{F}}\), Rev. Mod. Phys., 151 (1943).
24. Knox, J.H., Anal. Chem., 38253 (1966).
25. Giddings, J.C. and Eyring, H., J. Phys. Chem., 59416 (1965).
26. Giddings, J.C., J. Chem. Phys., 26169 (1957).
27. McQuarrie, D.A., J. Chem. Phys., 38437 (1963).
23. Thomas, H.C., J. Am. Chem. Soc., 661664 (1944).
29. Lapidus, L. and Amundsen, N.R., J. Phys. Chem., 56984 (1952)

\section*{References (contd.)}
30. Van Deemter, J.J., Zwiderweg, F.J. and Klinkenberg, A., Chem. Eng. Sci., 5271 (1956).
31. Giddings, J.C., J. Chem. Phys., 311462 (1959).
32. Giddings, J.C., J. Chromatogr., 3443 (1960).
33. Fick, A., Ann. Phys. Lpz., 17059 (1885).
34. Crank, J., 'The Mathematics of Diffusion' O.U.P., London (1956).
35. Daniels, F. and Alberty, R.A., 'Physical Chemistry' 2nd. Ed. Wiley, New York (1961) p582.
36. Glasstone, S., Laidler, K. and Eyring, H., 'The Theory of Rate Processes, McGraw Hill, New York (1941).
37. Johnson, P.A. and Babb, A.L., Chem. Rev., 56387 (1956).
38. Wilke, C.R., Chem. Eng. Progr., 45218 (1949).
39. Wilke, C.R. and Chang, P., A.I. Ch. E.J., 1264 (1955).
40. Bristow, P.A. and Knox, J.H., Chromatographia, 10279 (1977).
41. Reid, R.C. and Sherwood, T.K., 'The Properties of Gases and Liquids', McGraw-Hill, New York (1966).
42. Scheibel, E.G., Ind. Eng. Chem., 501036 (1958).
43. Othmer, D.F. and Thakar, M.S., Ind. Eng. Chem., 45589 (1953).
44. Sitaraman, R., Ibrahim, S.H. and Kuloor, N.R., J. Chem. Eng. Data, \(\mathcal{8}^{198}\) (1963).
45. Innes, K.K. and Albright, L.F., Ind. Eng. Chem., 491793 (1957).
46. Northup, J.N. and Anson, M.L., J. Gen. Physiol., 12543 (1928).
47. Stokes, R.H., J. Am. Chem. Soc., 72763 (1950).
48. Tyrell, H.J.V., 'Diffusion and Heat Flow in Liquids', Butterworth, London (1961).
49. Taylor, G.I., Proc. Roy. Soc. Lond., A219 186 (1957).
50. Pratt, K.C. and Wakeham, W.A., Proc. Roy. Soc. Lond., A336 393 (1974).
51. Wakeham, W.A., Faraday Symp., 15145 (1980).
52. Giddings, J.C. and Seager, H.J., J. Chem. Phys., 331579 (1960).
53. Boheman, J. and Purnell, H.J., J. Chem. Soc., 360, (1961)
54. Balenovic, Z., Myers, M.N. and Giddings, J.C., J. Chem. Phys., 52915 (1970).
55. Pratt, K.C., Slater, O.H. and Wakeham, W.A., Chem. Eng. Sci., 281901 (1973).
56. Ouano, A.C., Ind. Eng. Chem. Fundam., 11268 (1972).
57. Grushka, E. and Kikta, E. J., Jr., J. Phys. Chem., 78 2297 (1974).

\section*{References (contd.)}
58. Tysen, R., Chromatographia, \(\underline{3} 525\) (1970).
59. Murre1, J.N. and Boucher, E.A.,'Properties of Liquids and Solutions', Wiley, Chichester (1982) p241.
60. 'International Critical Tables', McGraw-Hill, New York (1929).
61. Horvath, C. and Lin, H-J., J. Chromatogr. 14943 (1978).
62. Grushka, E., J. Chromatogr. Sci., 13 (1975).
63. Snyder, L.R., J. Chromatogr. Sci., I 352 (1969).
64. Huber, J.F.K., J. Chromatogr. Sci., \(\geq 86\) (1969).
65. Knox, J.H. (Ed) 'High Performance Liquid Chromatography', Edinburgh University Press, Edinburgh (1978).
66. Knox, J.H., Kaliszan, R. and Kennedy, G.J., Faraday Symp., 15113 (1980).
67. Porath, J. and Flodin, P., Nature, 1831657 (1959).
68. Moore, J.C., J. Polym. Sci., A2 835 (1964).
69. Yau, W.W. and Malone, P., J. Polym. Sci., B12 277 (1974).
70. Di Marzio, E.A. and Guttman, C.M., J. Polym. Sci., B7 267 (1969).
71. Guttman, C.M. and Di Marzio, E.A., Macromolecules, \(\underline{3} 681\) (1970).
72. Casassa, E.F., J. Phys. Chem., 753929 (1971).
73. Knox, J.H. and McLennan, F., J. Chromatogr., 185289 (1979).
74. Giddings, J.C., Kucera, E., Russel, C.P. and Myers, M.N., J. Phys. Chem., 724397 (1968).
75. Volkenstein, M.V., 'Configurational Statistics of Polymeric Chains', Interscience, New York (1963).
76. Van Krefeld, M.E. and Van den Hoed, N., J. Chromatogr., 83111 (1973).
77. Haller, W., J. Chem. Phys., 42686 (1965).
78. Adams, D.J. and Matheson, A.J., J. Chem. Phys., 561989 (1972).
79. Vischer, W.M. and Bolsterli, M., Nature, 239504 (1972).
80. De Vries, A.J., Le Page, M., Beau, R. and Guilleman, C.L., Anal. Chem., 39935 (1967).
81. Knox, J.H. and Scott, H.P., J. Chromatogr. (submitted for publication).
82. Halasz, I. and Martin, K., Angew. Chem. Int. Ed. Engl., 17 901 (1978).
83. Fluendy, M.A.D. and Horne, D.S., Separ. Sci., 3203 (1968).

\section*{LIST OF SYMBOLS}

A Mobile zone flow term in plate-height equation
\(A^{\prime} \quad\) Mean gradient of curve \(A \nu_{0}^{1 / 3}\) for a specified range of \(v_{0}\)
\(A_{1}, A_{2}\) Velocity-independent mobile phase mass transfer term
A Pore cross-sectional area
a Tube radius
\(a_{c} \quad\) Radius of connecting tubing
\(a, b \quad\) Constants

B Axial diffusion term in plate-height equation

C Slow mass transfer term in plate-height equation
\(C_{m} \quad\) Slow mass transfer term for mobile zone
\(C_{s} \quad\) Slow mass transfer term for stationary zone
\(C_{a p} \quad\) Apparent \(C\)-term
\(C_{1}, C_{2}\) Velocity-dependent mobile phase mass transfer terms
c Overall concentration
\(c_{m} \quad\) Mobile zone concentration
\(c_{m}^{*} \quad\) Equilibrium mobile zone concentration
\(c_{s} \quad\) Stationary zone concentration
\(c_{s}^{*} \quad\) Equilibrium stationary zone concentration
\(c_{s}^{\prime} \quad\) Local stationary zone concentration

D Distribution coefficient
D General diffusion coefficient
Deff Effective diffusion coefficient

List of Symbols (contd)
\(D_{m} \quad\) Mobile zone diffusion coefficient
\(D_{s} \quad\) Stationary zone diffusion coefficient
d Depth of stationary zone
dp Particle diameter

F, \(F^{\neq}\)Partition Functions
\(G_{0}, G_{1}\) Constants of integration

H Height equivalent to a theoretical plate
h Reduced plate-height
\(h_{d} \quad\) Reduced mobile zone plate-height due to diffusionterminated mobile zone mass transfer
\(h_{f} \quad\) Reduced mobile zone plate-height due to flow-terminated mobile zone mass transfer
\(h_{1 d}\) Reduced plate-height due to longitudinal diffusion
\(h_{m m}\) Reduced plate-height due to mobile zone mass transfer
\(h_{\text {sm }} \quad\) Reduced plate-height due to stationary zone mass transfer
\(h_{\text {tot }}\) Total reduced plate-height

K Distribution coefficient
K Exclusion coefficient
\(K_{1}, K_{2}\) Partial exclusion coefficients
k Boltzmann constant
k Rate constant
\(k_{a} \quad\) Rate constant for adsorption
\(k_{d} \quad\) Rate constant for desorption

List of Symbols (contd)
\begin{tabular}{|c|c|}
\hline L & Column length \\
\hline \(\ell\) & Length of connecting tubing \\
\hline \(\ell\) & Step length \\
\hline \(\ell\) & Straight pore length \\
\hline \({ }^{2} t\) & Tortuous pore length \\
\hline M & Molecular weight \\
\hline M & Mass of solute \\
\hline \(N\) & Avogadro's number \\
\hline \(N\) & Number of theoretical plates \\
\hline N & Number of steps \\
\hline \(n\) & Number of incremental volumes \\
\hline \(n_{d}\) & Number of steps in mobile zone mass transfer due to diffusion \\
\hline \(n_{f}\) & Number of steps in mobile zone mass transfer due to flow \\
\hline P & Probability \\
\hline Q & Quantity of solute \\
\hline R & Gas constant \\
\hline R & Particle radius \\
\hline \(\mathrm{R}_{\mathrm{c}}\) & Radius of coil \\
\hline \(\mathrm{R}_{\text {s }}\) & Degree of resolution \\
\hline r & Serial number of a plate \\
\hline r & Molecular radius \\
\hline \(\mathrm{r}_{\mathrm{g}}\) & Radius of gyration \\
\hline
\end{tabular}

List of Symbols (contd)
\begin{tabular}{ll}
\(t\) & Time \\
\(t_{m}\) & Mobile phase residence time \\
\(t_{o}\) & Mobile zone residence time \\
\({ }^{t_{s}}\) & Stationary zone residence time \\
\({ }^{t_{a}}\) & Mean time for adsorption \\
\({ }^{t_{d}}\) & Mean time for desorption \\
\({ }^{t_{e}}\) & Exchange time between velocity regimes \\
\(\bar{t}\) & Mean time \\
\(t_{i n t}\) & Interrupt time
\end{tabular}
\(u \quad\) Mobile phase velocity
uo Mobile zone velocity
\(\checkmark\) Column volume
\(V_{m} \quad\) Volume of mobile phase
Vo Volume of mobile zone
\(V_{s} \quad\) Volume of stationary zone
\(V_{D}\) Detector flowcell volume
\(V_{i} \quad\) Injector volume
\(V_{s}\) Molar volume of solute
סV Incremental volume

Wb Peak width at baseline
\(W_{b} \quad\) Weight of eluent associated with peak width
\(W_{c} \quad\) Weight of eluent in column

List of Symbols (contd)
\(\times\)
x
z
z
z Reduced radius variable
\(\Delta z \quad\) Distance between peaks
\(\gamma \quad\) Obstructive factor
\(\varepsilon_{m} \quad\) Mobile zone equilibrium departure term
\(\varepsilon_{\mathrm{s}} \quad\) Stationary zone equilibrium departure term
\(\varepsilon_{s}^{\prime} \quad\) Local stationary zone equilibrium departure term
\(\zeta_{0} \quad\) Constant (equation 3.4-26)
\(\eta \quad\) Viscosity
\(k \quad\) Specific reaction rate for diffusion
kisc Specific reaction rate for viscous flow
\(\lambda \quad\) Equilibrium intermolecular distance
\(\lambda_{1}, \lambda_{2}, \lambda_{3}\) Intermolecular distances
\(\lambda_{i} \quad A\)-term parameter
\(\nu \quad\) Reduced mobile phase velocity
\(\nu_{0} \quad\) Reduced mobile zone velocity
- Density
\(\sigma \quad\) Standard deviation
\(\sigma^{2} \quad\) Variance
\begin{tabular}{|c|c|}
\hline & bols (contd) \\
\hline \[
\sigma_{e f f}^{2}
\] & Effective variance \\
\hline \(\sigma_{m}^{2}\) & Mobile zone variance \\
\hline \(\sigma_{s}^{2}\) & Stationary zone variance \\
\hline \[
\sigma_{\text {res }}^{2}
\] & Residual variance \\
\hline \(\sigma_{z}\) & Standard deviation in length units \\
\hline \(\sigma_{t}\) & Standard deviation in time units \\
\hline \(\tau\) & Tortuosity factor \\
\hline \(\psi\) & Association constant \\
\hline \({ }^{\omega}{ }_{\alpha}\) & Distance between velocity regimes \\
\hline \(\omega_{\beta}\) & Fractional velocity change between velocity regimes \\
\hline \[
\omega_{i}^{2}
\] & Combination of \(\omega_{\alpha}\) and \(\omega_{\beta}\) \\
\hline \({ }^{\omega} \lambda\) & Reduced persistence of velocity span \\
\hline \(\nabla^{2}\) & Laplacian operator \\
\hline
\end{tabular}

APPENDIX 1
LIST OF COMPOUNDS


\section*{Phenol}
p-Cresol

3,4-Xylenol.


Anisole


Phenetole


Anthracene

\section*{Chrysene}


\section*{Benzo (1)}

Fluoranthene


Naphtho (2, 3-k)
Fluoranthene


APPENDIX 2
AN EXPRESSION FOR THE C-TERM
IN LIQUID CHROMATOGRAPHY

\section*{APPENDIX 2}

AN EXPRESSION FOR THE C TERM IN LIQUID CHROMATOGRAPHY

In this appendix a brief derivation of equation 7.4. -2
is given. This equation is applied to the experimental data of Chapter 5.

The basic equation for the \(C\) term for stationary zone mass transfer may be written as
\[
c=\frac{1}{30} \frac{k^{\prime \prime}}{\left(1+k^{\prime \prime}\right)^{2}} \frac{D_{m}}{D_{s z}}
\]
where \(D_{m}\) is the diffusion coefficient in bulk eluent and \(D_{s z}\) is the diffusion coefficient in the stationary zone. \(D_{s z}\) may be expressed in terms of the diffusion coefficient and times of residence in the two parts of the stationary zone, namely the stagnant mobile zone and the stationary phase. Thus
\[
D_{s z}=\frac{\gamma_{s m} d_{m} t_{s m}+D_{s} t_{s}}{t_{s m}+t_{s}} \quad A 3-2
\]
where \(\gamma_{s m}\) is the obstructive factor for the stagnant mobile zone, and \(t_{s}\) and \(t_{s m}\) are the residence times in the stationary phase and stagnant mobile zone. The obstructive factor for the stationary zone is included in \(D_{S}\).

The fraction of total eluent which is stagnant, \(\varnothing\), may be expressed in terms of residence times as
\[
\emptyset=\mathrm{t}_{\mathrm{sm}} / \mathrm{t}_{\mathrm{m}}
\]
by equating column volumes and residence times, assuming no exclusion. \(D_{s z}\) may therefore be written as
\[
D_{s z}=\frac{\gamma_{s m} D_{m} D+k^{\prime} D_{s}}{D+k^{\prime}} \quad A 3-4
\]

The ratio of \(D_{s z}\) to \(D_{m}\) is given by
\[
\frac{D_{s z}}{D_{m}}=\frac{\left(\gamma_{s m} \emptyset+k^{\prime} D_{s} / D_{m}\right)}{\emptyset+k^{\prime}} \quad A 3-5
\]
\(k^{\prime}\) appears in this equation in order to substitute for \(t_{s}\). However, equation A3 - 1 is expressed in terms of \(k^{\prime \prime}\). The two capacity ratios are related by the equation
\[
k^{\prime}=k^{\prime \prime}(1-\varnothing)-\varnothing
\]

Thus
\[
\frac{D_{s z}}{D_{m}}=\frac{\gamma_{s m} \varnothing+\left(k^{\prime \prime}(1-\varnothing)-\varnothing\right) D_{s} / D_{m}}{k^{\prime \prime}(1-\varnothing)} \quad \text { A3 }-7
\]

From this and equation \(A 3-1, C\) is obtained as
\[
c=\frac{1}{30}\left(\frac{k^{\prime \prime}}{1+k^{\prime \prime}}\right)^{2} \frac{1-\varnothing}{\varnothing\left(\gamma_{s m}-\frac{D_{s}}{D_{m}}+k^{\prime \prime}(1-\varnothing)\right.} \frac{D_{s}}{D_{m}} \quad A 3-8
\]

This is the required equation. In order to test this equation on
experimental data, it may be rewritten as
\[
\frac{1}{30 C}\left(\frac{k^{\prime \prime}}{1+k^{\prime \prime}}\right)^{2}=\left(\frac{\varnothing}{1-\varnothing}\right)\left(\gamma_{s m}-\frac{D_{s}}{D_{m}}\right)+k^{\prime \prime} \frac{D_{s}}{D_{m}} \quad A 3-9
\]

A plot of \(\left(k^{\prime \prime} / 1+k^{\prime \prime}\right)^{2} / 30 C\) against \(k^{\prime \prime}\) should give a straight line with gradient \(D_{s} / D_{m}\) and intercept \((\phi / 1-\varnothing)\left(\gamma_{s m}-D_{s} / D_{m}\right)\). The experimental data of Chapter 5 is plotted in this way in Figure A3 - 1. The value of \(D_{s} / D_{m}\) is \(0.48 \pm 0.12\), which is in good agreement with the value for the same ratio obtained independently by the interrupted flow experiment.
FIGURE A3. - 1. Graph of \(\left(k^{\prime \prime} / 1+k^{\prime \prime}\right)^{2}\) against \(k^{\prime \prime}\) for

\(k^{\prime \prime}\)

APPENDIX 3
LIST OF COORDINATES OF
RANDOM TOUCHING SPHERES

\begin{tabular}{|c|c|c|c|c|}
\hline & \(X\) & Y & 2 & R \\
\hline 62 & 0. 386 & 2. 526 & 4. 186 & 1. 050 \\
\hline 62 & 1. 075 & 0.798 & 5.010 & 0.903 \\
\hline 53 & 1.435 & -1.016 & 5. 251 & 0. 964 \\
\hline 64 & 0.994 & -2. 657 & 4. 375 & 0.5488 \\
\hline 65 & 0. 550 & -4.162 & 3. 155 & 1.040 \\
\hline 66. & 0. 642 & -4.944 & 1. 178 & 1. 088 \\
\hline 67 & 2. \(\frac{2}{}{ }^{\text {a }}\) & -4. 293 & 1. 455 & 1. 054 \\
\hline 68 & 3. 244 & -3.632 & -0. 260 & 0. 850 \\
\hline 69 & 2. 250 & \(-3.846\) & -1.955 & 1. 127 \\
\hline 70 & 0.346 & -4. 403 & -1. 364 & 0. 942 \\
\hline 71 & -0.848 & -3. 975 & 0. 097 & 0.992 \\
\hline 72 & \(-1.767\) & -3.873 & 1. 876 & 1. 013 \\
\hline 73 & -3.269 & -3.338 & 0. 723 & 0. 954 \\
\hline 74 & -3.136 & \(-3.451\) & -1. 238 & 1. 015 \\
\hline 75 & -2. 697 & -1.821 & -2. 254 & 0. 955 \\
\hline 76 & \(-1.042\) & -1.905 & -3.01日 & 0. 869 \\
\hline 77 & -1.749 & -0.382 & -2. 737 & 0. 834 \\
\hline 78 & -1.831 & 0. 896 & -4.081 & 1. 023 \\
\hline 79 & -2.433 & 2. 985 & \(-3.700\) & 1. 1.090 \\
\hline 80 & -3. 439 & 3. 184 & -1.757 & 1. 119 \\
\hline 81 & -2. 995 & 3. 656 & 0. 204 & 0.946 \\
\hline Q2 & -3. 399 & 3.012 & 1.943 & 0.951 \\
\hline B3 & -4.400 & 1. 334 & 2. 122 & 1. 012 \\
\hline 84 & -4, 390 & -0. 521 & 2. 705 & 0.933 \\
\hline 85 & -4.665 & -1. 269 & 0. 789 & 1. 142 \\
\hline 86 & \(-3.904\) & -0.088 & -0.767 & 0.954 \\
\hline 87 & -4. 359 & \(-1.767\) & -1. 422 & 0. 905 \\
\hline Be & -4.852 & -3. 176 & -0. 322 & 0. 950 \\
\hline 89 & -4. 004 & -4.967 & -0.159 & 1. 039 \\
\hline 90 & -2. 131 & -5. 481 & 0. 626 & 1. 056 \\
\hline 92 & -0.961 & -5.685 & 2. 330 & 1. 022 \\
\hline 92 & 0. 845 & -6. 024 & 2. 806 & 0. 877 \\
\hline 93 & 2. 304 & -5.046 & 3. 207 & 0. 925 \\
\hline 94. & 3. 649 & -3.774 & 3. 889 & 1. 047 \\
\hline 95 & 4. 656 & -2. 237 & 4. 754 & 0. 984 \\
\hline 96 & 3. 835 & -0.488 & 5. 165 & 0. 991 \\
\hline 97 & 2. 916 & -2. 007 & 5. 964 & 0.956 \\
\hline 98 & 1. 105 & -2. 624 & 6. 308 & 0. 989 \\
\hline 99 & -0. 254 & -1. 753 & 5. 362 & 0. 883 \\
\hline 100 & -2.055 & -2.112 & 4. 805 & 1. 037 \\
\hline 101 & -2. 703 & -2. 827 & 3. 177 & Q. 856 \\
\hline 102 & -1. 407 & -3.981 & 3. 864 & 1. 011 \\
\hline 103 & 0. 114 & -4. 195 & 5. 123 & 0.976 \\
\hline 104 & 1. 999 & -3. 965 & 5. 270 & -0.928 \\
\hline 105 & 3. 138 & -5. 499 & 4. 903 & 1. 019 \\
\hline 106 & 3. 889 & -5. 428 & 3. 347 & 0. 711 \\
\hline 107 & 4. 792 & -4. 557 & 1. 916 & 1. 192 \\
\hline 108 & 5. 860 & -2. 670 & 1. 357 & 1. 047 \\
\hline 109 & 6. 181 & -0.630 & 1. 969 & 1. 106 \\
\hline 110 & 6. 267 & 1. 373 & 0. 920 & 1. 156 \\
\hline 111 & 5. 271 & 2. 760 & -0.273 & 0. 928 \\
\hline 112 & 5. 014 & 4. 629 & 0. 590 & 1. 146 \\
\hline 113 & 3.096 & 4. 797 & 1. 419 & 0. 950 \\
\hline 114 & 1. 578 & 4. 334 & 2. 685 & 1. 082 \\
\hline 115 & 2. 707 & 3. 035 & 3. 941 & 1. 04.8 \\
\hline 116 & 2. 646 & 1. 5.56 & 5. 117 & 0. 844 \\
\hline 117 & 4. 389 & 1. 998 & 4. 466 & 1. 049 \\
\hline 118 & 5. 日58 & 0. 586 & 3. 928 & 0. 993 \\
\hline 119 & 6. 207 & 1. 908 & 2. 788 & 0. 787 \\
\hline 20 & 4.972 & 3, 084 & 2. 993 & 0. 930 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline 1 & 3. 509 & 3. 425 & 1. 755 & 1. 072 \\
\hline 122 & 7. 035 & 2. 967 & -0.050 & 6, 日S2 \\
\hline 123 & 4. 561 & 1. 474 & -1. 464 & 1. 248 \\
\hline 124 & 5.220 & 0. 089 & -2. 910 & 1. 162 \\
\hline 125 & 3. 44.1 & -0. 672 & -3.788 & 0. 957 \\
\hline 126 & 2. 41.2 & -2. 199 & -4. 189 & 0.931 \\
\hline 127 & 3. 347 & -3. 489 & -3. 502 & 0. 902 \\
\hline 128 & 4. 214 & -3.539 & -2.079 & 0. 865 \\
\hline 129 & 5. 177 & -2. 248 & \(-3.386\) & 1. 209 \\
\hline 130 & 6.657 & -1. 288 & -2. 037 & 1. 011 \\
\hline 131 & 5. 827 & \(-2.822\) & -1.584 & 0.790 \\
\hline 132 & 4. 999 & -3.869 & -0.492 & 0.935 \\
\hline 133 & 3. 712 & -5.316 & -1.133 & 1. 104 \\
\hline 134 & 2. 296 & -5. 933 & 0. 308 & 0. 9892 \\
\hline 135 & 0. 509 & -6. 173 & -0. 530 & 1. 020 \\
\hline 136 & 1. 330 & -5.842 & -2. 497 & 1. 136 \\
\hline 137 & 0. 538 & \(-3.952\) & -3.350 & 1. 093 \\
\hline 138 & 0. 288 & -2. 125 & -4. 298 & 0. 990 \\
\hline 139 & 1. 477 & -0.593 & -4. 594 & C. 971 \\
\hline 140 & 1. 524 & 1. 376 & -4. 679 & 1. 001 \\
\hline 141 & 1. 065 & 3. 113 & -3.892 & 0. 961 \\
\hline 142 & 0. 403 & 4. 602 & -2. 392 & 1. 2554 \\
\hline 143 & 2. 732 & 4. 051 & -2. 885 & 1.189 \\
\hline 14.4 & 3. 870 & 2. 431 & -3.886 & 1. 029 \\
\hline 145 & 5. 556 & 2. 954 & -2.852 & 1. 017 \\
\hline 146 & 4. 743 & 4. 727 & -2. 143 & 1. 059 \\
\hline 147 & 4. 759 & 6. 382 & -0.773 & 1. 089 \\
\hline 148 & 3. 122 & 6. 683 & 0. 637 & 1. 092 \\
\hline 149 & 1. 865 & 6. 747 & -1. 279 & 1. 201 \\
\hline 150 & -0. 206 & 6. 261 & -0.908 & 0. 959 \\
\hline 151 & -0.321 & 6.310 & 0. 902 & 0. 856 \\
\hline 152 & -1. 845 & 6. 490 & -0.005 & 0. 929 \\
\hline 153 & -2. 694 & 5. 107 & -1. 106 & 1. 032 \\
\hline 154 & -3.005 & 4. 766 & -3. 061 & 0. 977 \\
\hline 155 & -4. 473 & 3. 500 & -3. 627 & 1. 042 \\
\hline 156 & -4.000 & 1. 499 & -3. 267 & 1. 046 \\
\hline 157 & -3.434 & -0. 529 & -3. 669 & 1. 097 \\
\hline 158 & -2. 484 & -2. 347 & -4. 131 & 1.006 \\
\hline 159 & -1. 735 & -3. 710 & -2. 759 & 1. 069 \\
\hline 160 & -1. 433 & -5. 232 & -1. 361 & 1. 020 \\
\hline 161 & -3. 299 & -5. 258 & -1.998 & 0.952 \\
\hline 162 & -4. 796 & -4. 164 & -1. 891 & C. 905 \\
\hline 163 & -4.240 & -2. 748 & -3.092 & 1.027 \\
\hline 164 & -5. 312 & -1.042 & -2. 898 & 0.996 \\
\hline 165 & -5. 807 & -0. 570 & -1.000 & 1.022 \\
\hline 166 & -5.306 & 1. 503 & -0. 359 & 1. 205 \\
\hline 157 & -4. 954 & 3. 635 & -0.281 & 0. 975 \\
\hline 168 & -4.688 & 5.002 & -1. 818 & 1. 088 \\
\hline 169 & -3. 401 & 6. 561 & -2. 336 & 0. 999 \\
\hline 170 & -1. 537 & b. 198 & -2.209 & 0. 904 \\
\hline 171 & -1. 223 & 5. 249 & -3.87日 & 1. 042 \\
\hline 172 & -2. 670 & 4. 457 & -4. 860 & 0. 878 \\
\hline 173 & -3. 652 & 2. 911 & -5. 456 & 1. 048 \\
\hline 174 & -1.633 & 2. 301 & -5. 616 & 1. 067 \\
\hline 175 & -3. 185 & 0. 900 & -5. 615 & 1. 023 \\
\hline 176 & -1.270 & 0.273 & -5.942 & 1. 018 \\
\hline 177 & 0. 255 & -1. 176 & -6. 157 & 1. 097 \\
\hline 178 & 1. 458 & -2. 887 & -5.761 & 1. 032 \\
\hline 179 & 3. 469 & -3.431 & -5. 384 & 1. 084 \\
\hline 180 & 3. 456 & -1. 424 & -5. 517 & 0. 928 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline I & x & Y & \(Z\) & R \\
\hline 181 & 4.878 & -a. 124 & -5.082 & 1.047 \\
\hline 182 & 6. 625 & -0. 832 & -4.276 & 1.002 \\
\hline 183 & 7. 018 & 1. 244 & \(-3.817\) & 1. 160 \\
\hline 184 & 8. 097 & 0.096 & -2. 347 & 0. 996 \\
\hline 185 & 7. 477 & -0.311 & -0.524 & 0.967 \\
\hline 186 & 7. 513 & -1. 289 & 0. 812 & 0. 951 \\
\hline 187 & 7. 263 & -2. 161 & 2. 534 & 0. 852 \\
\hline 188 & 6. 314 & \(-1.427\) & 3. 782 & 0. 877 \\
\hline 189 & 5. 859 & -0.760 & 5. 983 & 1. 094 \\
\hline 190 & 4. 780 & -2. 215 & 6. 855 & 1. 120 \\
\hline 191 & 4. 655 & -4.023 & 5. 672 & 1. 033 \\
\hline 292 & 5. 800 & \(-3.765\) & 3. 905 & 1. 105 \\
\hline 193 & 6. 027 & \(-2.925\) & 5. 524 & 0. 733 \\
\hline 194 & 7. 489 & -2.034 & 5. 146 & 1. OE1 \\
\hline 195 & 7. 555 & -0.230 & 4. 373 & 0. 943 \\
\hline 156 & 8. 292 & -0. 533 & 2. 522 & 1. 069 \\
\hline 197 & 7.963 & 1. 562 & 2. 333 & 1. 059 \\
\hline 198 & 8. 427 & 1. 560 & 0. 191 & 1. 131 \\
\hline 199 & 日. 439 & 3. 509 & 1. 030 & 0. 990 \\
\hline 200 & 7.127 & 4. 601 & 0. 389 & 0. 933 \\
\hline 201 & 6. 511 & 5. 510 & 1. 878 & 1. 017 \\
\hline 202 & 5. 087 & 6. 587 & 1. 179 & 0.901 \\
\hline 203 & 3. 813 & 6. 233 & 2. 619 & 1. 054 \\
\hline 304 & 1. 768 & 6. 391 & 2. 246 & 1.030 \\
\hline 205 & 2. 447 & 5. 64.9 & 3. 913 & 0. 817 \\
\hline 206 & 1. 089 & 4. 505 & 4. 749 & 1. 046 \\
\hline 207 & -0.541 & 4. 860 & 3. 276 & 1. 190 \\
\hline 208 & -1.805 & 5. 370 & 1. 754 & 0.863 \\
\hline 209 & -2. 776 & 4. 451 & 2. 811 & 0. 841 \\
\hline 210 & -2, 246 & 2.904 & 3. 545 & 0. 952 \\
\hline 211 & -1.693 & 1. 133 & 4.381 & 1. 083 \\
\hline 212 & -2. 938 & \(-0.354\) & 5.024 & 0.900 \\
\hline 213 & -4.159 & -1. 597 & 4. 340 & 1. 039 \\
\hline 214 & -5.150 & \(-2,377\) & 2. 645 & 1. 074 \\
\hline 215 & -4. 592 & -4.540 & 2. 011 & 1. 249 \\
\hline 216 & \(-6.073\) & -4.704 & 0. 221 & 1. 081 \\
\hline 217 & -6. 488 & \(-2.622\) & 0. 835 & 1. 428 \\
\hline 218 & -6. 688 & -0.469 & Q. 855 & 1. 034 \\
\hline 217 & -6. 223 & Q. 419 & 2. 771 & 1. 129 \\
\hline 220 & -4.549 & 0. 875 & 4. 191 & 1.113 \\
\hline 221 & -4. 472 & 2. 731 & 3. \(42 \%\) & 0.898 \\
\hline 222 & -5. 456 & 3. 143 & 1. 703 & 1. 125 \\
\hline 223 & -4.052 & 4.805 & 1. 405 & 1. 045 \\
\hline 224 & \(-3.546\) & 6. 422 & 0. 063 & 1. 072 \\
\hline 225 & -2. 789 & 7. 571 & -0.975 & 0. 802 \\
\hline 226 & -1. 110 & 7. 893 & -0.732 & 0. 907 \\
\hline 227 & 0. 120 & 7. 548 & -2. 331 & 0. 988 \\
\hline 228 & 1. 416 & 6. 410 & -3.514 & 1. 103 \\
\hline 229 & 0. 758 & 4. 819 & -4.471 & 0. 867 \\
\hline 230 & 2. 363 & 4. 037 & -5.053 & 1. 010 \\
\hline 231 & Q. 892 & 2. 893 & -5.849 & 1. 016 \\
\hline 232 & 2. 64.5 & 2. 358 & \(-5.726\) & 0. 821 \\
\hline 233 & 1. 609 & 1. 209 & -6. 656 & 0.985 \\
\hline 234 & 2. 723 & 0. 295 & \(-5.548\) & 0.832 \\
\hline 235 & 2. 225 & -0.850 & \(-6.766\) & 1. 058 \\
\hline 236 & 1. 043 & -2. 380 & \(-7.692\) & 1. 007 \\
\hline 237 & -0.525 & \(-3.217\) & -6. 526 & 1. 11日 \\
\hline 238 & 0.470 & -4.526 & -5. 288 & 0.939 \\
\hline 239 & -0.219 & \(-5.798\) & \(-3.982\) & 1. 010 \\
\hline 240 & \(-0.567\) & -6. 829 & -2. 275 & 1. 013 \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|}
\hline & & & & \\
\hline 301 & 5. 189 & \(-6.514\) & -2. 283 & 119 \\
\hline 302 & 6.186 & -5. 938 & -3.993 & 0.972 \\
\hline 303 & 4. 554 & -5. 742 & -5,405 & 1. 188 \\
\hline 304 & 4. 850 & -4.081 & -6.8.84 & 1. 0,32 \\
\hline 305 & 3. 158 & -4.886 & -6.627 & 0. 655 \\
\hline 306 & 1. 351 & -4.497 & -6.982 & O. 990 \\
\hline 307 & 0.034 & -4.045 & -8. 514 & 1. 107 \\
\hline 308 & -0.878 & -2.110 & -E. 344 & 1. 039 \\
\hline 309 & -0.607 & -0,190 & \(-7.771\) & 0. 982 \\
\hline 310 & -0,474 & 1. 631 & -7.129 & 0. 953 \\
\hline 311 & -2. 436 & 1. 564 & -7. 407 & 1. 029 \\
\hline 312 & -2.508 & 3.492 & -6. 993 & 0. 946 \\
\hline 313 & -3. 701 & 4. 653 & -6. 257 & D. 870 \\
\hline 314 & \(-4.352\) & 5. 332 & \(-4.600\) & 1. 036 \\
\hline 21.5 & -6. 317 & 4. 872 & -3. 504 & 1. 260 \\
\hline 31.6 & -5.761 & 3.216 & -2.0156 & 1. 009 \\
\hline 317 & -5.875 & 2. 079 & -3.654 & 0.955 \\
\hline 318 & -5.652 & 3. 164 & -5. 236 & 0.980 \\
\hline 319 & -5.023 & 1. 572 & -6. 356 & 1. 069 \\
\hline 320 & -5.175 & 0.575 & -4. 600 & 0. 955 \\
\hline 321 & -4.990 & \(-1.482\) & -4.766 & 2. 143 \\
\hline 322 & -4.002 & \(-3.596\) & -5. 123 & 1. 196 \\
\hline 327 & -2. 155 & -4. 073 & -4.542 & 0.798 \\
\hline 324 & \(-1.364\) & \(-5.139\) & -5.870 & 1. 077 \\
\hline 325 & -1.904 & -4.318 & \(-7.712\) & 1. 009 \\
\hline 326 & -2.395 & -2. 509 & \(-7.101\) & 0. 963 \\
\hline 327 & -2.436 & -0.599 & \(-7.275\) & 0. 956 \\
\hline 929 & -1. 972 & -0.568 & -9.281 & 1. 045 \\
\hline 329 & 0.033 & -0.752 & -9.557 & 0.996 \\
\hline 330 & 1. 812 & \(-1.073\) & \(-8.857\) & 0. 929 \\
\hline 331 & 2. 514 & Q. 664 & \(-8.361\) & 1. 020 \\
\hline 332 & 2. 875 & 2, 44.4 & -7.514 & 0. 984 \\
\hline 333 & 2. 003 & 4.033 & -6.947 & 0. 717 \\
\hline 334 & 1. 586 & 5. 773 & -5.973 & 1. 111 \\
\hline 335 & -0.119 & 6. 614 & -4.992 & 1.037 \\
\hline 336 & -1.478 & 7. 168 & -3.728 & 0. 899 \\
\hline 337 & -2. 516 & B. 391 & \(-2.616\) & 1. 053 \\
\hline 338 & -4. 214 & 日. 146 & -1. 694 & 0. 895 \\
\hline 339 & \(-5.392\) & 6. 869 & -2. 506 & 1. 023 \\
\hline 340 & -5. 748 & 6.300 & -0.641 & 0. 960 \\
\hline 341 & -5. 944 & 4.915 & Q. 663 & 0. 953 \\
\hline 342 & -6. 700 & 3. 291 & Q. 068 & 0. 935 \\
\hline 343 & \(-6.560\) & 1. 964 & 0. 943 & 0. 660 \\
\hline 344 & \(-7.472\) & 1. 115 & -0.161 & 1. 004 \\
\hline 345 & -6. 689 & 6. 971 & -2.039 & 1. 035 \\
\hline 346 & \(-7.186\) & -0.927 & -2. 370 & 0. 955 \\
\hline 347 & -6. 703 & -2. 336 & \(-3.791\) & 1. 103 \\
\hline 348 & -6. 136 & -2. 498 & \(-1.730\) & 1. 041 \\
\hline 349 & -6. 561 & -4.37E & \(-1.658\) & 0.888 \\
\hline 350 & -5. 672 & -5. 471 & -2.847 & O. 545 \\
\hline 351 & -4.087 & -6.619 & -3.274 & 1. 073 \\
\hline 352 & -3. 973 & -7. 5.48 & -1,761 & 0.945 \\
\hline 353 & -2.512 & -8. 574 & -0.700 & 0. 987 \\
\hline 354 & -0.854 & -8. 511 & -1.484 & 0. 868 \\
\hline 355 & 0. 791 & \(-7.952\) & \(-1.494\) & 1. 060 \\
\hline 356 & 1. 539 & \(-7.514\) & 0. 295 & 0. 862 \\
\hline 357 & Q. 576 & \(-8.774\) & 1. 443 & 1. 096 \\
\hline 358 & -1. 502 & -9.045 & 1.711 & 1. 052 \\
\hline 359 & -3. 490 & \(-8.318\) & 2. 746 & 1. 224 \\
\hline 60 & -5.008 & -6.711 & 2. 455 & 1. 006 \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|}
\hline & \(\times\) & Y & z & R \\
\hline 421 & -6, 857 & -4.046 & 5. 338 & 1. 079 \\
\hline 422 & -6. 736 & -2.194 & 6. 461 & 1. 089 \\
\hline 423 & -6,019 & -0.683 & 5. 390 & 0. 895 \\
\hline 4 C 4 & -6. 539 & 0.974 & 4. 758 & 0. 958 \\
\hline 425 & -7. 854 & -0.372 & 4. 011 & 1.087 \\
\hline 426 & -8. 342 & 0. 342 & 1. 971 & 1. 130 \\
\hline 427 & -7. 351 & 2. 194 & 2. 393 & 1. 008 \\
\hline 428 & -6, 304 & 3. 420 & 3. 722 & 1. 082 \\
\hline 429 & -5. 419 & 2. 403 & 5. 185 & Q. 907 \\
\hline 430 & -4. 627 & 2. 777 & 6. 900 & 1. 019 \\
\hline 431 & \(-2.689\) & 2. 842 & 6. 942 & 0.921 \\
\hline 432 & -3, 553 & 1. 694 & 7. 956 & 0. 837 \\
\hline 433 & -2.322 & Q. 482 & 7. 585 & 0.929 \\
\hline 434 & \(-0.368\) & 0. 580 & 8. 082 & 1. 089 \\
\hline 435 & 1. 620 & 1. 479 & 8. 314 & 1. 096 \\
\hline 436 & 1. 001 & 3.392 & 7. 717 & 0. 543 \\
\hline 4.37 & 0.962 & 4. 899 & b. 695 & 0.934 \\
\hline 438 & 2. 703 & 5. 285 & 5. 826 & 1. 046 \\
\hline 439 & 1. 979 & 7. 025 & 5. 111 & 0.966 \\
\hline 440 & 2. 711 & 7. 897 & 3. 400 & 1. 089 \\
\hline 4.41 & 3.967 & 6. 690 & 4. 707 & 1. 089 \\
\hline 442 & 5. 720 & 6. 605 & 3. 461 & 1063 \\
\hline 443 & 4. 735 & 8. 088 & 2.350 & 1. 035 \\
\hline 44.4 & 3. 876 & 9. 422 & 1. 199 & 0.931 \\
\hline 445 & 5. 680 & 9. 271 & 0. 747 & 0.932 \\
\hline 446 & 6. 805 & 9. 296 & -0.802 & 0. 982 \\
\hline 447 & 7. 970 & 7. 741 & -1. 024 & 0.973 \\
\hline 448 & 7.805 & 8. 599 & 0.629 & 0. 397 \\
\hline 449 & 6. 585 & B. 146 & 1. 825 & 0.870 \\
\hline 450 & 7. 532 & 6. 886 & 1. 235 & 0. 813 \\
\hline 451 & 8. 445 & 5. 411 & 1. 217 & 0. 921 \\
\hline 452 & 8. 033 & 4. 371 & 2. 756 & 0. 982 \\
\hline 453 & 7. 395 & 2. 969 & 2. 660 & 0.975 \\
\hline 454 & 9. 94.4 & 1. 282 & 1. 713 & 1. 036 \\
\hline 455 & 9. 309 & -0.430 & 0.627 & 1. 089 \\
\hline 456 & 9. 889 & -0.157 & -1. 412 & 1. 049 \\
\hline 457 & 9. 539 & -0.0.735 & -3. 232 & 0.893 \\
\hline 458 & 10.387 & -0.161 & -4.941 & 1. 099 \\
\hline 459 & 9. 567 & 1. 777 & -5.742 & 1. 153 \\
\hline 460 & 7. 484 & 1. 839 & -5. 766 & 0. 930 \\
\hline 461 & 5. 651 & 1. 374 & -6. 303 & 1.035 \\
\hline 462 & 4. 607 & -0.344 & -7.320 & 1.218 \\
\hline 463 & 3. 415 & -2.054 & -B. 242 & 1.062 \\
\hline 464 & 2. 231 & -3.728 & -8. 648 & 1.028 \\
\hline 465 & 0.961 & -2.633 & -9. 562 & 0.882 \\
\hline 466 & -0.896 & -3.053 & -10.353 & 1. 180 \\
\hline 467 & -1. 520 & -4.889 & -9. 523 & 0.929 \\
\hline 4.58 & -0.751 & -6.066 & -8. 044 & 1. 112 \\
\hline 469 & 0. 481 & -6. 129 & -6. 350 & 0.984 \\
\hline 470 & 1. 558 & -5.965 & -4. 765 & 0. 939 \\
\hline 471 & 0. 856 & -7. 531 & -3.782 & 1. 039 \\
\hline 472 & -1. 274 & \(-7.643\) & -4. 116 & 1. 120 \\
\hline 473 & -1. 233 & -7. 238 & -6. 257 & 1. 059 \\
\hline 474 & -2.711 & -6.094 & -7.162 & 1. 017 \\
\hline 475 & -2. 686 & -6. 429 & -5.330 & 0. 845 \\
\hline 476 & -2. 171 & -5.809 & -3.714 & 0. 961 \\
\hline 477 & \(-3.226\) & -8. 435 & -3. 912 & 1. 008 \\
\hline 478 & \(-5.115\) & -8,383 & -3. 233 & 0. 969 \\
\hline 479 & -5.899 & -6. 877 & -4.039 & 0.910 \\
\hline 480 & \(-4.476\) & -7. 548 & -5.026 & 0. 948 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline 4851 & －3． 232 & －8． 152 & －4．632 & \\
\hline 482 & －1．591 & －9． 105 & \(-8.201\) & 1． 100 \\
\hline 483 & －1． 567 & －6． 800 & \(-9.863\) & 1． 015 \\
\hline 484 & 0．304 & －5．741 & －10．009 & 1．1．41 \\
\hline 485 & 1． 733 & －5．622 & －8． 507 & 0． 936 \\
\hline 486 & 3． 615 & \(-5.187\) & －8． 397 & 0． 998 \\
\hline \(48 T\) & 5． 307 & －6．031 & \(-7.529\) & 1． 083 \\
\hline 489 & 6． 609 & \(-5.100\) & －6．0812 & 1． 070 \\
\hline 489 & 7．011 & －2．956 & －6． 369 & 1． 101 \\
\hline 490 & 8． 264 & －1．293 & －6．979 & 1． 091 \\
\hline 491 & 9． 138 & \(-1.838\) & \(-5.155\) & 1． 003 \\
\hline 492 & 8． 666 & －3． 249 & －3．975 & 0． 895 \\
\hline 493 & 8． 666 & －4，385 & －2．419 & 1． 033 \\
\hline 484 & 7． 288 & －5． 322 & －1．295 & 0.975 \\
\hline 495 & 8． 554 & \(-4.686\) & －0．033 & 0． 925 \\
\hline 496 & 9． 081 & －2，812 & 0． 289 & 1．048 \\
\hline 497 & 9． 046 & －2．403 & 2．262 & Q． 967 \\
\hline 498 & 10．218 & －0．931 & 2． 342 & 0.916 \\
\hline 499 & 9． 751 & 0． 455 & 3． 527 & 0． 967 \\
\hline 500 & 9． 139 & \(-1.210\) & 4． 194 & 0．929 \\
\hline 501 & 9． 190 & －1．346 & 6． 227 & 1． 109 \\
\hline 502 & Q． 469 & \(-3.372\) & 6． 382 & 1． 047 \\
\hline 503 & 6． 978 & \(-4.275\) & 5． 470 & 0.920 \\
\hline 504 & 7． 797 & \(-3.556\) & 4． 006 & 0．905 \\
\hline 505 & 7． 938 & \(-5,470\) & 4．264 & 1． 030 \\
\hline 506 & 7.200 & －6． 704 & 3． 177 & 0.772 \\
\hline 507 & b． 702 & －6． 767 & 1． 436 & 1． 039 \\
\hline 508 & G． 646 & －6． 126 & 2． 110 & 1． 115 \\
\hline 509 & 9． 042 & －4． 446 & 3． 098 & 0． 874 \\
\hline 510 & 9．927 & \(-4.411\) & 1． 375 & 1． 062 \\
\hline 511 & 10.351 & \(-4.176\) & －0．683 & 1． 053 \\
\hline 512 & 8.916 & －2．日52 & －2． 142 & 0． 964 \\
\hline 513 & 10． 937 & －1．379 & \(-2.417\) & 0． 850 \\
\hline 514 & 10．958 & 0． 248 & －2． 939 & 0． 855 \\
\hline 51.5 & 10． 677 & 2． 120 & －2．661 & 1． 056 \\
\hline 516 & 10． 317 & 2． 54.9 & －0． 551 & 1． 127 \\
\hline 517 & 10．354 & 3． 691 & 1． 16.9 & 0.935 \\
\hline 518 & 9． 442 & 4． 6.56 & －0．199 & 0.968 \\
\hline 519 & 9． 334 & 3．925 & －2． 034 & 1． 011 \\
\hline 520 & 8． 219 & 4． 564 & －3． 642 & 1． 048 \\
\hline 521 & 6． 64.9 & 4． 539 & －4．736 & 0． 987 \\
\hline 522 & 5． 014 & 5．712 & \(-5.364\) & 1． 070 \\
\hline 523 & 4． 688 & 7． 445 & －4． 185 & 1． 051 \\
\hline 524 & 3．172 & 7． 258 & －2， 912 & 0． 938 \\
\hline 525 & 1．7日日 & 日． 432 & －2． 553 & 0.913 \\
\hline 526 & Q． 456 & 9． 322 & \(-1.273\) & 1．112 \\
\hline 527 & \(-1.049\) & 9． 428 & －0．026 & 0． 877 \\
\hline 528 & －2．916 & 日． 948 & 0．299 & 1．078 \\
\hline 529 & －3． 190 & 7． 466 & 1． 730 & 1． 0001 \\
\hline 530 & －2． 589 & 6． 246 & 3． 208 & 1． 007 \\
\hline 531 & －4．191 & 5． 288 & 3． 245 & 0.860 \\
\hline 532 & \(-5.488\) & 4． 814 & 2． 482 & 0．718 \\
\hline 533 & \(-7.009\) & 4． 392 & 2． 095 & 0． 906 \\
\hline 534 & \(-7.716\) & 4． 675 & 0．521 & 0．841 \\
\hline 535 & －7．189 & 6． 466 & 0．732 & 1． 0337 \\
\hline 536 & －5． 430 & 7． 634 & Q． 866 & 1． 078 \\
\hline 537 & －6． 059 & 8． 239 & －1．077 & 1． 052 \\
\hline 538 & \(-5.415\) & 8． 644 & \(-2.729\) & 0． 766 \\
\hline 539 & －4．047 & 9． \(5 \geq 7\) & －2．727 & 0．918 \\
\hline 540 & －4．145 & 8． 062 & －3． 528 & 0．843 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline 1 & \(\chi\) & Y & z & R \\
\hline 54.1 & \(-5.612\) & 7. 212 & -4.721 & 1. 230 \\
\hline 542 & -6.014 & 5. 310 & -5.601 & 0.904 \\
\hline 543 & -5. 394 & 4. 108 & -7.049 & 1. 077 \\
\hline 54.4 & -4.060 & 2. 741 & -日. 026 & 1. 070 \\
\hline 545 & -2.167 & 2. 985 & -8. 831 & 001 \\
\hline 546 & -1. 165 & 1. 436 & -8. 778 & 0. 945 \\
\hline 547 & Q. 496 & 1. 056 & -9. 560 & 0. 860 \\
\hline 548 & 0.015 & 2. 951 & -8. 600 & 1.083 \\
\hline 549 & 0. 033 & 4. 434 & -7.006 & 094 \\
\hline 550 & -1.839 & 5. 27.5 & -6. 393 & 048 \\
\hline 551 & -3. 2.54 & 5. 124 & -8. 179 & 1. 191 \\
\hline 552 & -4. 696 & 6. 037 & -6. 965 & 0.977 \\
\hline 553 & -3. 573 & 6. 935 & -5. 597 & 1. 007 \\
\hline 554 & -2. 750 & 8. 162 & -4. 481 & 0. 841 \\
\hline 555 & -1.120 & 8. 294 & \(-5.115\) & 0. 922 \\
\hline 556 & 0. 537 & 8. 347 & -4. 117 & 012 \\
\hline 557 & 2. 144 & 7. 608 & -5. 092 & 1. 008 \\
\hline 559 & 0. 806 & 7. 507 & \(-6.334\) & 0.821 \\
\hline 559 & 0. 610 & 6. 382 & -7.922 & 1. 135 \\
\hline 560 & 2. 630 & 5. 631 & -7.846 & 1. 021 \\
\hline 561 & 2. 241 & 3. 838 & -8. 972 & 1. 131 \\
\hline 562 & 3. 371 & 2. 131 & \(-9.362\) & 0.953 \\
\hline 563 & 4. 250 & 0. 245 & -9.575 & 1. 139 \\
\hline 564 & 2. 237 & 0. 178 & -10.305 & 1.003 \\
\hline 565 & 0. 500 & 0. 910 & -10.295 & 0. 892 \\
\hline 566 & -1.095 & 0. 171 & -10.878 & 0.970 \\
\hline 567 & -2. 365 & -1. 470 & -11. 154 & 1. 123 \\
\hline 568 & -2. 640 & -2.418 & -9.357 & 0.926 \\
\hline 569 & -3.731 & -3. 533 & -8. 173 & 1.033 \\
\hline 570 & -4.037 & -1.622 & -7.631 & 0.977 \\
\hline 571 & -4. 054 & 0. 377 & \(-7.935\) & 1. 046 \\
\hline 572 & -5.847 & 1. 516 & -8. 392 & 1. 128 \\
\hline 573 & -6. 994 & 2. 475 & -6. 704 & 1. 126 \\
\hline 574 & -7. 596 & 3. 680 & \(-5.003\) & 1. 044 \\
\hline 575 & -7. 431 & 3. 01.9 & -3. 149 & 0.932 \\
\hline 575 & -7. 381 & 4. 201 & -1.732 & 0. 914 \\
\hline 577 & -8. 396 & 4. 544 & -3. 162 & 0. 873 \\
\hline 578 & -8. 154 & 5.743 & -4. 724 & 1. 111 \\
\hline 579 & -7. 882 & 6. 266 & -2. 721 & 0.977 \\
\hline 580 & -6.953 & 7. 912 & -3. 139 & 0. 959 \\
\hline 581 & -6. 844 & 7. 864 & -2. 343 & 1.152 \\
\hline 582 & -7.923 & 8. 293 & -1. 614 & 0.889 \\
\hline 593 & -7.633 & 8. 452 & 0. 292 & 1. 045 \\
\hline 584 & -7.030 & 7. 905 & 2. 175 & 1. 007 \\
\hline 585 & -6.020 & 6. 393 & 2. 162 & 0.811 \\
\hline 586 & -4. 824 & 7. 523 & 2. 802 & 0. 954 \\
\hline 587 & -4. 172 & 9. 266 & 2. 009 & 1. 069 \\
\hline 588 & -2. 079 & 9. 681 & 2. 135 & 1. 070 \\
\hline 589 & -0,262 & 8. 932 & 2. 673 & 0.968 \\
\hline 590 & 0. 188 & 7. 975 & 4. 276 & 0. 953 \\
\hline 591 & -. 313 & 7. 246 & 6. 029 & 0. 949 \\
\hline 592 & -0.597 & 6. 070 & 7. 619 & 1. 228 \\
\hline 593 & -2,010 & 4. 676 & 6. 590 & 1. 007 \\
\hline 594 & -1. 257 & 3. 507 & 8. 041 & 1.002 \\
\hline 595 & -3. 166 & 3. 347 & 8. 793 & 1. 056 \\
\hline 596 & -5.022 & 2. 394 & 8. 876 & 1. 032 \\
\hline 597 & -5. 196 & 0. 931 & 7. 459 & 1. 085 \\
\hline 598 & -3.839 & -0.694 & 8. 195 & 1. 085 \\
\hline 599 & -1.938 & -0.829 & 8. 843 & 0. 728 \\
\hline 600 & -1.612 & -2. 218 & 9.986 & 0. 900 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline 601 & -0. 425 & -3. 601 & 10.004 & 0. 92 \\
\hline 602 & 1.202 & -2, 486 & 9. 877 & 1. 054 \\
\hline 603 & 2. 137 & -4.023 & 8. 943 & 0. \\
\hline 604 & 2. 296 & -5. 575 & 7.871 & 0. \\
\hline 605 & 1. 556 & -7, 173 & 7. 066 & 1. 0 \\
\hline 606 & 0. 195 & -6. 985 & 5. 708 & 0.9 \\
\hline 607 & -0.473 & \(-5.946\) & 7.217 & 0. 96 \\
\hline 60E & -1.258 & -7. 599 & 6. 658 & 0. 94 \\
\hline 609 & 0. 047 & -8. 821 & 5. 849 & 1. \\
\hline 610 & 1. 891 & -9.363 & 5. 911 & 0. \\
\hline 611 & 3. 345 & -8. 446 & 6. 529 & 0.95 \\
\hline 612 & 4. 293 & -7. 023 & 7.048 & 0. \\
\hline 613 & 5. 745 & -6. 025 & 6. 920 & 0.9 \\
\hline 614 & 7. 196 & -4. 943 & E. 003 & 1. 140 \\
\hline 615 & 6. 481 & -3. 171 & 9. 086 & 1. 05 \\
\hline 616 & 5. 8 87 & -1. 337 & 8, 417 & 0.98 \\
\hline 617 & 3. 964 & -0. 975 & 8. 986 & 1. 049 \\
\hline 618 & 2. 063 & -0.694 & 9. 565 & 0. 958 \\
\hline 619 & 0. 169 & -0.802 & 7. 609 & 0. 940 \\
\hline 620 & 0. 298 & 1. 227 & 10. 130 & 1. 159 \\
\hline 621 & -1. 702 & 0.671 & 9. 588 & 0. 943 \\
\hline 622 & -3. 702 & 0. 968 & 9. 656 & 1. 050 \\
\hline 623 & -3.965 & 2. 725 & 10. 660 & 1. 068 \\
\hline 624 & -4. 839 & 4. 336 & 9. 601 & 1. 049 \\
\hline 625 & -4. 26.4 & 4. 72.6 & 7. 588 & 1. 080 \\
\hline 626 & -5.036 & 4. 307 & 5. 806 & 0.906 \\
\hline 627 & -4.015 & 5.972 & 5. 136 & 1. 159 \\
\hline 628 & -2. 224 & 6. 413 & 5. 948 & 0. 856 \\
\hline 629 & -2. 724 & 7. 597 & 4. 648 & 0.965 \\
\hline 630 & -4. 594 & 7.921 & 4. 634 & 0.935 \\
\hline 631 & -6. 457 & 7. 017 & 4. 113 & 1. 200 \\
\hline 632 & -7.679 & 6.038 & 2. 637 & 0.951 \\
\hline 633 & -6. 579 & 5. 124 & 3. 431 & 0.671 \\
\hline 63.4 & -9. 150 & 4. 491 & 3. 797 & 1. 048 \\
\hline 635 & -8. 111 & 2. 441 & 4. 289 & 1. 050 \\
\hline 636 & -8. 250 & 0. 880 & 5. 556 & 0. 967 \\
\hline 637 & -7. 144 & -0.134 & 6. 858 & 1. 039 \\
\hline 639 & -6. 765 & 1. 857 & 6. 510 & 1. 017 \\
\hline 635 & -7.081 & 3. 541 & 5. 578 & 0. 934 \\
\hline 640 & -6. 446 & 3. 709 & 7. 521 & 1. 117 \\
\hline 641 & -6. 525 & 3. 404 & 9. 494 & 0. 881 \\
\hline 642 & -5. 912 & 2. 084 & 10.655 & 0. 792 \\
\hline 643 & -6. 596 & 1. 047 & 9. 055 & 1. 047 \\
\hline 6.44 & -5. 738 & -0.619 & 8. 653 & 0. 870 \\
\hline 545 & -7.321 & -1. 507 & 8. 321 & 0. 975 \\
\hline 646 & -7.4.01 & -3.398 & 7961 & 0. 952 \\
\hline 647 & -7.316 & -5. 201 & 7.090 & 1. 053 \\
\hline 649 & -6. 016 & -5. 119 & 日. 505 & 0. 870 \\
\hline 649 & -4.954 & -6. 455 & E. 162 & 0. 870 \\
\hline 650 & -4.640 & -8. 059 & 7. 472 & 0. 904 \\
\hline 651 & \(-3.676\) & -9.138 & 6. 257 & 0.985 \\
\hline 652 & -4.302 & -9.830 & 4. 358 & 1. 131 \\
\hline 653 & -4.743 & -9.976 & 2. 399 & 0. 983 \\
\hline 654 & \(-2.928\) & -10.425 & 2. 381 & 0. 987 \\
\hline 655 & -3.122 & -5. 289 & 0. 758 & 0. 844 \\
\hline 656 & -1. 731 & \(-5.893\) & a. 243 & 0. 833 \\
\hline 657 & -1.764 & \(-10.247\) & -1. 656 & 1. 099 \\
\hline 658 & \(-3.934\) & -9.960 & -1. 323 & 1. 114 \\
\hline 659 & -5. 777 & -9.645 & -0. 337 & 1. 000 \\
\hline \(6 \in 0\) & 823 & -10.013 & -2. 328 & 1. 02 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline 1 & X & \(Y\) & \(z\) & R \\
\hline 861 & －7．207 & \(-3.364\) & －2． 773 & 177 \\
\hline 662 & －7．274 & \(-6.339\) & －3．044 & Q． 071 \\
\hline 66.9 & －8． 410 & －4． 288 & －2．550 & 1． 171 \\
\hline 664 & －6． 979 & \(-4.913\) & \(-4.096\) & 0． 927 \\
\hline 665 & －日，222 & \(-3.566\) & －4．346 & 0．925 \\
\hline 666 & －8． 598 & －2． 501 & －2． 759 & ． 009 \\
\hline \＄067 & －5． 223 & －1．000 & \(-3.938\) & 0． 926 \\
\hline 669 & \(-7.060\) & －1． 129 & －5． 561 & 1． 026 \\
\hline 669 & －8．607 & Q． 696 & －5．702 & 0． 856 \\
\hline 670 & －5．826 & －0．120 & －7．111 & 0． 750 \\
\hline 674 & －5．432 & －0．884 & －8． 951 & 1． 081 \\
\hline 578 & \(-3.846\) & 0.194 & \(-10.140\) & 1． 177 \\
\hline 673 & －4． 562 & 2，141 & \(-9,855\) & 0．917 \\
\hline 674 & －5， 465 & 3． 956 & －9 305 & 1．186 \\
\hline 675 & \(-6.071\) & 5． 574 & \(-8.163\) & Q． 8979 \\
\hline 676 & －6．749 & 6． 808 & \(-6.720\) & 1． 105 \\
\hline 677 & －5．024 & 7． 907 & －6． 692 & 0． 941 \\
\hline 678 & －6． 570 & 8． 740 & \(-5.972\) & 0． 974 \\
\hline 679 & －5． 522 & 9． 511 & －4．374 & 1． 097 \\
\hline 680 & －5．24日 & 10.964 & －3． 027 & 0． 904 \\
\hline 681 & －5．012 & 10．389 & －1． 095 & 1． 126 \\
\hline 682 & －2．968 & 10．167 & －1．311 & 0.942 \\
\hline 683 & －2．414 & 10．253 & －3．019 & 0． 855 \\
\hline 684 & －1．350 & 9．681 & \(-1.847\) & 0． 835 \\
\hline 685 & －0．647 & 11． 999 & －0．872 & 1． 039 \\
\hline 686 & 0．420 & 10.257 & 0.493 & 0．888 \\
\hline 6日7 & 1．728 & 5． 349 & 1． 360 & 0． 925 \\
\hline 688 & 2． 682 & 10． 570 & 0． 340 & 0．790 \\
\hline 689 & 2． 44.6 & 10．319 & －1．676 & 1． 115 \\
\hline 690 & 4． 224 & 9.954 & －0．623 & 0.977 \\
\hline 691 & 5． 566 & 10． 171 & \(-1.961\) & 0．927 \\
\hline 692 & 6． 694 & 8．日i6 & －2．711 & 0． 989 \\
\hline 693 & 7．972 & 7． 239 & \(-2.973\) & 1． 059 \\
\hline 694 & 6． 474 & 5． 981 & \(-3.416\) & 0.942 \\
\hline 695 & 7． 810 & 6． 212 & －4． 875 & 1． 050 \\
\hline 696 & 8． 617 & 4． 362 & \(-5.825\) & 1． 180 \\
\hline 697 & 8． 347 & 2． 724 & \(-7.305\) & 1． 044 \\
\hline 688 & 10．219 & 3． 424 & －6．942 & 0． 986 \\
\hline 699 & 10．421 & 3． 560 & \(-5.019\) & 0． 952 \\
\hline 700 & 8.984 & 2． 883 & \(-4.190\) & 0.840 \\
\hline 701 & 6． 678 & 4． 045 & －6． 945 & 1． 082 \\
\hline 702 & 4．725 & 3． 214 & \(-6.676\) & 1．05日 \\
\hline 703 & 4．727 & 1． 719 & －8．054 & 0.975 \\
\hline 704 & 6． 600 & 0．671 & －8． 171 & 1． 17.5 \\
\hline 705 & 8． 347 & 0.660 & －7．112 & 0． 869 \\
\hline 700 & 10．095 & 0． 130 & \(-6.963\) & 0．964 \\
\hline 707 & 11． 530 & 1． 089 & －6． 112 & 0．960 \\
\hline 708 & 11．723 & －0．847 & －6． 421 & 1． 009 \\
\hline 705 & 11． 158 & \(-2.173\) & －4．942 & 1． 056 \\
\hline 710 & 11． 280 & \(-1.206\) & －0．107 & 1． 065 \\
\hline 711 & 11． 608 & 0． 077 & 1． 467 & 1．022 \\
\hline 712 & 11.459 & 1．316 & 3． 072 & 0．979 \\
\hline 713 & 10．161 & 2． 171 & 4． 200 & 0．922 \\
\hline 714 & 8． 883 & 3． 6,53 & 4． 506 & 1．059 \\
\hline 715 & 7．184 & 4．116 & 5． 777 & 1． 112 \\
\hline 716 & 5． 405 & 3． 674 & 6． 947 & 1． 062 \\
\hline 717 & 4． 190 & 2． 469 & 7.889 & 0． 892 \\
\hline 718 & 5． 998 & 1． 999 & 7.947 & 0．977 \\
\hline 719 & 4． 651 & 0． 933 & 8． 549 & 0． 843 \\
\hline 720 & 3． 330 & 1． 840 & 9． 442 & 0． 792 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline & 738 & 2. 529 & 9. 9835 & 0. 798 \\
\hline 722 & 0. 177 & 3.243 & 9. 447 & 0.973 \\
\hline 723 & 1.947 & 4,301 & 9. 246 & 1. 078 \\
\hline 724 & 2, 275 & 5.993 & 7.838 & 1.128 \\
\hline 725 & 4, 167 & 6.421 & 6. 928 & 1. 059 \\
\hline 726 & 5. 46.4 & 5. 760 & ( 563 & 0.870 \\
\hline 727 & 5. 782 & 7.614 & 5. 294 & 1. 030 \\
\hline 728 & 4. 374 & B. 583 & 4. 342 & 0. 977 \\
\hline 739 & 2. 577 & 8. 956 & 5. 267 & 1.081 \\
\hline 730 & 3. 08.1 & 10.011 & 3. 497 & 1. 060 \\
\hline 731 & 4. 794 & 9.962 & 2. 630 & 0.861 \\
\hline 732 & 6. 194 & 9. 019 & 3. 452 & 1. 017 \\
\hline 733 & 7. 505 & 7. 545 & 3. 291 & 0. 962 \\
\hline 734 & 7. 265 & 6.313 & 4.802 & 1. 003 \\
\hline 735 & 9. 064 & 5. 709 & 3. 940 & 1. 081 \\
\hline 736 & 9.167 & 7.009 & 2. 204 & 1. 091 \\
\hline 737 & 9. 435 & 7. 729 & 0. 275 & 0. 785 \\
\hline 738 & 8.917 & 9.341 & -0.617 & 0.930 \\
\hline 739 & 7. 785 & 10.432 & 0. 413 & 0. 849 \\
\hline 740 & 6. 115 & 10.768 & -0.039 & 0. 814 \\
\hline 742 & 4. 609 & 11. 213 & 0.915 & 1.023 \\
\hline 742 & 6. 364 & 10.728 & 1884 & 1.035 \\
\hline 743 & 7. 983 & 9. 450 & 2. 419 & 1. 093 \\
\hline 744 & 7.917 & 9.041 & 4. 438 & 0.968 \\
\hline 745 & 6. 2233 & 9. 730 & 5. 488 & 1. 140 \\
\hline 746 & 4. 562 & 8. 795 & 6. 202 & 0. 895 \\
\hline 747 & 5.872 & 7. 720 & 7. 221 & 0. 909 \\
\hline 748 & 6. 033 & 5. 961 & 7. 231 & 0. 904 \\
\hline 745 & 7. 119 & 4. 470 & 7. 926 & 1. O66 \\
\hline 750 & 7.777 & 5. 868 & 6. 654 & 0. 935 \\
\hline 751 & 9. 140 & 4. 602 & 6. 274 & Q. 964 \\
\hline 752 & g. 644 & 2. 760 & 6. 283 & 0. 943 \\
\hline 753 & 9. 466 & 1. 084 & 5. 740 & 1. 001 \\
\hline 754 & 5. 134 & Q. 315 & 7. 627 & 1. 064 \\
\hline 755 & 8. 777 & \(-1.679\) & Q. 361 & 1. 090 \\
\hline 756 & 10.161 & -2. 817 & 7. 337 & 0.973 \\
\hline 757 & 10.145 & -2.953 & 5. 455 & 0.913 \\
\hline 758 & 10.723 & -1.346 & 5. 001 & 0. 854 \\
\hline 759 & 10. 563 & -2. 406 & 3. 500 & 0. 991 \\
\hline 760 & 11.923 & -2.012 & 1. 891 & 1. 152 \\
\hline 761 & 11.998 & -4.000 & 0.753 & 1. 140 \\
\hline 7B2 & 10.779 & -5. 774 & 0. 342 & 0. 947 \\
\hline 763 & 5. 172 & -6. 547 & 0. 065 & 1. 035 \\
\hline 764 & 8.854 & -6. 222 & -1.826 & Q. 906 \\
\hline 765 & 7. 189 & -7.317 & -1.811 & 1. Oe7 \\
\hline 766 & 6. 233 & -7.836 & -3.655 & 1.054 \\
\hline 767 & 5. 586 & -9. 436 & \(-1.943\) & 0. 872 \\
\hline 788 & 3. 700 & -8. 560 & \(-1.722\) & 1. 020 \\
\hline 769 & 3. 957 & -8. 288 & -0.003 & 0. 729 \\
\hline 770 & 2. 815 & \(-9.472\) & 1. 355 & 1. 054 \\
\hline 771 & 4. 289 & -8. 130 & 2. 431 & 0. 802 \\
\hline 772 & 6. 143 & -8. 4.47 & 2. 614 & 1. 088 \\
\hline 773 & 4.941 & -8.088 & 4. 168 & 0. 910 \\
\hline 774 & 6. 278 & -6. 931 & 4. 878 & 0. 996 \\
\hline 775 & 8. 239 & \(-7.574\) & 4. 477 & 1.106 \\
\hline 776 & 7.789 & \(-6.252\) & 3. 897 & 1.011 \\
\hline 777 & 9. 485 & \(-4.689\) & 4. 633 & 0. 741 \\
\hline 778 & 8. 815 & \(-5.364\) & 6. 087 & 0. 996 \\
\hline 779 & 7. 206 & \(-4.550\) & 7. 788 & 0.929 \\
\hline 780 & 9. 684 & -6. 305 & 7.731 & 0. 903 \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|}
\hline Q41 & -10. 205 & 6. 445 & -5. 4339 & 1. 172 \\
\hline 842 & -8. 572 & 7.659 & -5.113 & 0.889 \\
\hline 843 & -8. 233 & 日. 226 & -6. 800 & 0. 951 \\
\hline 844 & -6. 80.4 & 8. 579 & -8.059 & 1. 120 \\
\hline 845 & -4.901 & 7. 204 & -8. 768 & 1. 181 \\
\hline 846 & -3. 243 & 7.097 & -7. 512 & 0.903 \\
\hline 847 & -1.624 & 6. 461 & -7.896 & 0. 878 \\
\hline 849 & -0.912 & 4. 919 & -8.949 & 1.120 \\
\hline 849 & -0. 957 & 3. 338 & -10. 555 & 1. 133 \\
\hline 850 & -2. 745 & 4. 339 & -10.125 & 0. 959 \\
\hline B51 & -2. 316 & 6. 31.3 & -9.897 & 1. 074 \\
\hline 952 & -0. 720 & 7. 579 & -9.217 & 1.074 \\
\hline 853 & 0.339 & 8. 412 & -7.746 & 0. 920 \\
\hline 854 & 0. 157 & 9. 027 & -6. 098 & 0. 849 \\
\hline 185 & -0.383 & 9. 863 & -4.711 & 0. 858 \\
\hline 856 & 0. 751 & 10. 203 & -3. 235 & 1. 059 \\
\hline 957 & 2. 811 & 9. 671 & \(-3.756\) & 1. 094 \\
\hline 858 & 3. 704 & B. 740 & -5. 321 & 0. 933 \\
\hline 859 & 5. 028 & 7.620 & -6. 223 & 1. 022 \\
\hline 860 & 5. 500 & 9. 046 & \(-4.994\) & 0.918 \\
\hline 861 & 6. 233 & 10. 497 & -3. 828 & 1. 082 \\
\hline 862 & 7. 513 & 10.862 & -2,048 & 1. 141 \\
\hline 863 & 4. 161 & 11. 288 & -1. 936 & 0. 868 \\
\hline 864 & 1. 083 & 11.003 & 2. 090 & 0. 995 \\
\hline 855 & 1. 740 & 11. 509 & 3. 892 & 0.789 \\
\hline 866 & 3. 055 & 10.999 & 5. 349 & 1. 039 \\
\hline 867 & 3. 270 & 9. 830 & 6. 867 & 0. 889 \\
\hline 868 & 3. 776 & 8. 232 & 7.988 & 1. 127 \\
\hline 869 & 2. 123 & 7.810 & 6. 8334 & 0. 733 \\
\hline 870 & 0. 539 & 7. 865 & 7.75日 & 0. 901 \\
\hline 871 & 0. 817 & 6. 392 & 7. 270 & 1. 033 \\
\hline 872 & -0.785 & 7. 704 & E. 951 & 0. 888 \\
\hline 873 & -0.846 & 6. 211 & 9. 546 & 0. 720 \\
\hline 874 & -0.091 & 4. 936 & 10. 345 & 0.963 \\
\hline 875 & 1. 154 & 3. 700 & 10.984 & 0. 905 \\
\hline 876 & 1. 704 & 1. 973 & 11.607 & 1. 012 \\
\hline E77 & 0. 893 & -2. 870 & 11. 945 & 0. 979 \\
\hline 878 & -0.010 & -4. 597 & 11. 596 & 1. 001 \\
\hline 879 & -0.314 & -5. 558 & 9.813 & 1. 047 \\
\hline 890 & -1. 435 & -6. 893 & 8. 687 & 1. 028 \\
\hline 8B1 & -2. 478 & -6. 592 & 10.626 & 1. 196 \\
\hline 892 & -4. 541 & -5. 730 & 9. 978 & 1. 127 \\
\hline 883 & -6. 302 & -6. 707 & 9.391 & 0. 971 \\
\hline 884 & -7. 834 & -5. 374 & 9.146 & 1. 074 \\
\hline 885 & -8. 904 & -4. 418 & 7. 837 & 0. 869 \\
\hline 886 & -8. 459 & -3. 426 & 6. 403 & 0. 9330 \\
\hline 887 & \(-8.760\) & -4. 872 & 5. 151 & 1. 005 \\
\hline 888 & -9.617 & \(-5.636\) & 3. 624 & 0. 906 \\
\hline 889 & -4. 712 & -3. 836 & 2. 801 & 1. 075 \\
\hline 890 & -9.123 & -3. 407 & 0. 837 & 1. 020 \\
\hline 891 & -9.310 & -3. 214 & -1.079 & Q. 914 \\
\hline 892 & -9.459 & -5. 102 & -0. 500 & 1. 067 \\
\hline 893 & -9.036 & -7.027 & -0.010 & 0. 964 \\
\hline 894 & -7.776 & -8. 734 & 0. 248 & 1. 174 \\
\hline 895 & -9.152 & -8.066 & 1. 835 & 1. 030 \\
\hline 996 & -9.384 & \(-7.835\) & 3. 706 & Q. 869 \\
\hline 897 & -8. 712 & -9.572 & 3. 241 & 1. 051 \\
\hline E98 & -6. 709 & -10.043 & 3. 607 & 1. 037 \\
\hline 899 & -6. 353 & -10.021 & 1. 747 & 0. 85.4 \\
\hline 900 & 5.066 & -11. 196 & 0. 5 & 4 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline & - \(\times\) & & z & R \\
\hline 901 & -4. 339 & -11.801 & 2. 770 & 023 \\
\hline 902 & -2.854 & -11. 419 & 4. 134 & 1.030 \\
\hline 903 & -1. 335 & -11.433 & 2. 854 & 0.956 \\
\hline 904 & -0.345 & \(-10.649\) & 1. 372 & 0.991 \\
\hline 905 & -0.053 & -9.674 & -0.264 & 0. 934 \\
\hline 706 & 0, 350 & -9.896 & -2.277 & 1. 131 \\
\hline 907 & 1. 904 & -9.721 & -0.719 & 1. 076 \\
\hline 908 & 1.934 & -10.183 & 1. 179 & 0.878 \\
\hline 909 & 2. 779 & -9.923 & 2. 957 & 1. 107 \\
\hline 910 & 2. 921 & -10.505 & 4.872 & 0. 895 \\
\hline 911 & 4. 255 & -9.838 & 5. 762 & 0. 919 \\
\hline 912 & 3.009 & -10.260 & 7. O82 & 0.943 \\
\hline 913 & 1. 598 & -7. 080 & 7. 809 & 1. 034 \\
\hline 91.4 & -0. 479 & -9.004 & 7.833 & 1. 044 \\
\hline 915 & 0. 633 & -7.611 & 8. 758 & 0. 964 \\
\hline 91.6 & 2. 520 & -7. 971 & 7. 386 & 1. 042 \\
\hline 917 & 3. 097 & -10.006 & 9. 184 & 1. 176 \\
\hline 919 & 4. 852 & -10.436 & 7. 867 & 1. 068 \\
\hline 919 & 6. 441 & -9.121 & 8. 368 & 1. 054 \\
\hline 920 & 7. 556 & -8. 402 & 6. 933 & 0.900 \\
\hline 921 & 6. 712 & -8.911 & 5. 238 & 1. 062 \\
\hline 922 & 5. 572 & -9.691 & 3. 951 & 0. 825 \\
\hline 923 & 7. 256 & -9.795 & 3. 569 & 0.904 \\
\hline 924 & 8. 138 & -8. 483 & 2. 682 & 0.909 \\
\hline 925 & 7. 386 & -8. 694 & 0. 842 & 1. 090 \\
\hline 926 & 5.739 & -7. 746 & -0.132 & 1. 046 \\
\hline 927 & 5. 024 & -7. 602 & -0.596 & 0.996 \\
\hline 928 & 4. 827 & -10.071 & -2. 559 & 1. 032 \\
\hline 929 & 6. 826 & -9. 619 & -2. 762 & 1. 027 \\
\hline 930 & g. 010 & -8. 280 & -3.243 & 0. 824 \\
\hline 731 & 7. 968 & -6. 501 & -3.545 & 0.981 \\
\hline 932 & 7. 170 & -6. 933 & -5. 306 & i. 000 \\
\hline 933 & 5. 41.4 & -7.736 & -6. 155 & 1. 110 \\
\hline 934 & 3. 438 & -7.055 & -6. 949 & 1. 126 \\
\hline 935 & 3. 702 & -7. 685 & -4. 957 & 0. 980 \\
\hline 936 & 4.997 & -9.308 & -4. 642 & 1. 113 \\
\hline 937 & 7. 040 & -9.333 & -4. 697 & 0. 941 \\
\hline 938 & 8. 875 & -10.009 & \(-3.709\) & 1. 086 \\
\hline 539 & 8. 545 & -9. 225 & \(-1.801\) & 0.981 \\
\hline 940 & 9. 550 & -7.770 & -2. 550 & 0. 939 \\
\hline 941 & 10. 839 & \(-7.242\) & -1.069 & 1. 054 \\
\hline 942 & 11.981 & -5.392 & -1. 409 & 1. 106 \\
\hline 543 & 11. 719 & -3. 428 & -1.926 & 0.941 \\
\hline 944 & 10. 572 & -4.412 & -3 171 & 1. 016 \\
\hline 945 & 10. 551 & -2. 458 & -6. 937 & 1. 049 \\
\hline 946 & 8.712 & -3.356 & -7. 881 & 1. 205 \\
\hline 447 & 6. 441 & \(-3.906\) & -8.382 & 1. 185 \\
\hline 848 & 5. 273 & -5.380 & -9. 523 & 1. 015 \\
\hline 949 & 4. 231 & -6. 904 & -8. 966 & 0.913 \\
\hline 950 & 2. 860 & -6. 104 & \(-9.943\) & 0. 951 \\
\hline 951 & 2. 015 & -4. 257 & -10.897 & 1. 292 \\
\hline 952 & 2. 507 & -1.952 & -10.573 & 1. 087 \\
\hline 953 & 0. 630 & -1.732 & -11. 205 & 0. 853 \\
\hline 954 & -2. 798 & -3. 685 & -10.572 & 0. 837 \\
\hline 555 & -3. 422 & -5.010 & -9. 501 & 0. 977 \\
\hline 956 & -2. 404 & -5. 547 & \(-10.815\) & 0. 769 \\
\hline 957 & -1.075 & -4. 789 & -11. 550 & 0. 932 \\
\hline 958 & -0.626 & -6. 812 & -11.827 & 1. 164 \\
\hline 959 & 0. 160 & -7. 947 & -10.070 & 1. 070 \\
\hline 960 & 0. 418 & -7.755 & -8. 083 & 0.943 \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|}
\hline 1021 & -5. 126 & -0.155 & 10.808 & 1. 039 \\
\hline 1022 & \(-3.529\) & 1. 020 & 11.578 & 0.873 \\
\hline 1029 & \(-5.094\) & 4. 189 & 11.657 & 1. 927 \\
\hline 1024 & \(-3.310\) & 4. 235 & 10.874 & Q. 962 \\
\hline 1025 & -1. 248 & 3. 136 & 11.838 & 0. 980 \\
\hline 1026 & \(-7.421\) & 0. 687 & 11006 & 1. 104 \\
\hline 1027 & -7. 825 & 2. 825 & 10.840 & 1. 078 \\
\hline 1028 & -7. 904 & 2. 464 & 8. 711 & 0. 897 \\
\hline 1029 & -8.852 & 2. 319 & 7. 067 & 1. 172 \\
\hline 1030 & -9.267 & 3.772 & \%. 415 & 1. 044 \\
\hline 1031 & \(-9.700\) & 3.321 & 3. 577 & 0.901 \\
\hline 1032 & -10.090 & 5. 126 & 4. 099 & 1.019 \\
\hline 1033 & -8. 751 & 6. 776 & 4. 235 & 1. 110 \\
\hline 1034 & -7.917 & 8. 873 & 3.912 & 1. 170 \\
\hline 1035 & -6.054 & 8798 & 3. 366 & 0. 773 \\
\hline 1036 & -6:142 & 9. 605 & 1. 863 & 0. 936 \\
\hline 1037 & -5. 221 & 10.498 & 3. 382 & 1.053 \\
\hline 1038 & \(-4.569\) & 9.834 & 5. 316 & 1. 096 \\
\hline 1039 & -6.056 & Q. 323 & 6. 078 & 1. 1897 \\
\hline 1040 & -4.121 & 7.624 & 6. 419 & 6. 936 \\
\hline 1041 & -5.164 & 6. 219 & 6. 763 & Q. 848 \\
\hline 1042 & -5.930 & 5. 488 & 8. 033 & 0. 805 \\
\hline 1043 & -4.581 & 6. 2770 & 8. 955 & 1. 006 \\
\hline 104.4 & -5.455 & 5.925 & 10.710 & 0. 985 \\
\hline 1045 & -5. 134 & 11.723 & 1. 786 & 0.961 \\
\hline 1046 & \(-6.541\) & 11.019 & 0. 425 & 1. 120 \\
\hline 1047 & \(-7.569\) & 11. 537 & -1. 297 & 0.951 \\
\hline 1048 & -8.45\% & 10.966 & -2.748 & 0. 84.5 \\
\hline 1049 & \(-9.267\) & 9.790 & \(-1.364\) & 1. 151 \\
\hline 1050 & -9.400 & 7.306 & 0.769 & 1. 045 \\
\hline 1.051 & -8. 281 & 7.582 & 1. 596 & 0. 959 \\
\hline 1052 & \(-9.496\) & 6. 029 & 2. 375 & 0. 884 \\
\hline 1053 & \(-10.560\) & 5. 023 & 1. 455 & 0. 8.845 \\
\hline 1054 & -10.990 & 3. 251 & 0. 692 & 1. 132 \\
\hline 1055 & \(-11.043\) & 2. 973 & 2. 604 & 0.817 \\
\hline 1056 & \(-10.321\) & 1.498 & 3. 593 & 1.02.4 \\
\hline 1057 & -9.878 & -0.540 & 3. 313 & 1.020 \\
\hline 1058 & \(-9.934\) & \(-0.773\) & 1. 323 & 0.925 \\
\hline 1059 & \(-10.557\) & -2. 450 & 1. 679 & 0. 899 \\
\hline 1060 & -11.092 & -4.381 & 1.088 & 1. 191 \\
\hline 1061 & -10.531 & -6. 200 & 2. 095 & 0. 962 \\
\hline 1062 & -11,522 & -4.930 & 3. 434 & 1. 133 \\
\hline 1063 & \(-10.643\) & -5, 668 & 5. 283 & 1. 044 \\
\hline 1064 & -10.145 & -3.987 & 6. 072 & 0. 875 \\
\hline 1065 & \(=-9.977\) & -2, 700 & 7.650 & 1. 166 \\
\hline 1066 & -8.666 & \(-1.573\) & 6. 456 & 0.936 \\
\hline 1067 & -8. 017 & -2. 400 & 4. 977 & 0.961 \\
\hline 1068 & -10,090 & \(-1.999\) & 4. 989 & 1. 152 \\
\hline 1068 & \(-10.057\) & -0.0b1 & b. 202 & 1. 134 \\
\hline 1070 & -8. 822 & -0.329 & 7.772 & 0. 982 \\
\hline 107i & -8. 794 & \(-0.907\) & 7. 697 & 1.128 \\
\hline 1072 & -7.94.4 & -2.042 & 11. 341 & 1. 044 \\
\hline 1073 & -6.011 & -2. 607 & 11. 133 & 0.981 \\
\hline 1074 & -4.158 & -2. 727 & 11. 785 & 0. 9897 \\
\hline 1075 & \(-7.516\) & \(-1.870\) & 8. 11.3 & 1.039 \\
\hline 1076 & \(-11.643\) & \(-1.349\) & 7. 024 & 1. 068 \\
\hline 1077 & -11748 & -3.338 & 6. 677 & 0. 954 \\
\hline 1078 & \(-11.172\) & -5.058 & 7. 048 & 0.898 \\
\hline 1079 & \(-10.494\) & -4. 4.54 & B. 588 & 0. 890 \\
\hline 1080 & \(-9.091\) & -3, 968 & 9.476 & 0. 840 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline 81 & \(-9.655\) & －5． 562 & 9．714 & O．E83 \\
\hline 1082 & －9．996 & \(-7.060\) & 8． 533 & 1． 0377 \\
\hline 1083 & －8．712 & －8． 758 & 8．178 & 1．064 \\
\hline 1054 & \(-9.165\) & \(-7.720\) & 6． 262 & 1．162 \\
\hline 1095 & －9．054 & \(-9.704\) & 5． 304 & 1． 044 \\
\hline 1086 & －6．971 & \(-10.035\) & 6． 038 & 1． 189 \\
\hline 1027 & －5． 177 & －9．939 & 7．380 & 1．054 \\
\hline 1089 & －4．114 & －11．015 & 6． 062 & 0． 953 \\
\hline 1089 & －5． 404 & －11．772 & 4． 6228 & 1．119 \\
\hline 1090 & －6． 185 & －11． 645 & 2． 858 & 0.812 \\
\hline 1091 & －7． 987 & －11，473 & 2． 861 & 1． 018 \\
\hline 1092 & －9．4．40 & －11．179 & 4．088 & 0． 906 \\
\hline 1093 & －10．441 & －9．73日 & 4． 014 & 0． 850 \\
\hline 1094 & 11．077 & －8． 336 & 2． 773 & 1． 128 \\
\hline 1095 & 10．053 & \(-7.869\) & 1． 733 & 0． 9888 \\
\hline 1096 & －7． 725 & \(-8.758\) & 0． 115 & 0． 979 \\
\hline 1097 & \(-10,796\) & \(-7.273\) & \(-0.962\) & 1． 052 \\
\hline 1098 & \(-10.710\) & \(-5.576\) & －1． 986 & 0.933 \\
\hline 1099 & \(-10.436\) & －3．706 & －2． 626 & 1． 062 \\
\hline 1100 & \(-9.738\) & －2．782 & －4．092 & 0． 800 \\
\hline 1101 & －9．647 & －3．674 & －5．650 & 1． 007 \\
\hline 1102 & －5．333 & －1． 609 & －5． 503 & 1． 087 \\
\hline 1103 & －9．906 & －0．301 & －4． 114 & 0.905 \\
\hline 1104 & －10．592 & 1．520 & －4．35日 & 1． 064 \\
\hline 1105 & －10．631 & 2． 958 & \(-5.966\) & 1．066 \\
\hline 1102 & －9．118 & 4．OBE & －6． 004 & 0． 823 \\
\hline 1107 & \(-7.596\) & 4． 461 & －6． 842 & 0． 954 \\
\hline 1108 & －8．936 & 3.096 & \(-7.687\) & 1． 139 \\
\hline 1109 & \(-7.984\) & 1． 180 & －8． 144 & 1． 049 \\
\hline 1110 & \(-7.027\) & 0.322 & \(-9.915\) & 1． 139 \\
\hline 1111 & \(-7.323\) & 2． 435 & －9．641 & 1.013 \\
\hline 1112 & \(-5.735\) & 2． 777 & －11．274 & 1． 158 \\
\hline 1113 & －4．028 & 1． 762 & －11．705 & 1． 046 \\
\hline 1114 & －2． 319 & 1． 690 & \(-10.575\) & 1． 004 \\
\hline 11.5 & －0．911 & 1． 770 & －11．934 & 0． 955 \\
\hline 1116 & 1．700 & 1． 653 & －11．40．4 & Q． 713 \\
\hline 1117 & P． 611 & 3．016 & －10． 743 & 0． 856 \\
\hline 2118 & 4．028 & 3． 775 & \(-9.981\) & 0．922 \\
\hline 1119 & 3．269 & 5． 535 & －9．767 & 1．006 \\
\hline 1120 & 2．181 & 7.074 & \(-9.153\) & \(0.97 \%\) \\
\hline 1121 & 2． 383 & 7． 544 & －7．243 & 1． 000 \\
\hline 1122 & 2． 144 & 7． 167 & －6． 236 & 0．925 \\
\hline 1123 & 0． 929 & 10． 125 & －7．292 & 0． 948 \\
\hline 1124 & －0．678 & c． 634 & \(-7.296\) & 0． 733 \\
\hline 1125 & －1．2G1 & b． 148 & －6．935 & 0.911 \\
\hline 1126 & －2．951 & E． 793 & －6． 242 & 1． 044 \\
\hline 1127 & \(-4.125\) & 9，148 & \(-7.975\) & 1． 058 \\
\hline 1128 & －5． 620 & 10．045 & －6．990 & 0．944 \\
\hline 1229 & \(-7.469\) & 10.480 & －6． 444 & 1． 032 \\
\hline 1130 & \(-5.758\) & 11． 560 & －5． 442 & 1． 225 \\
\hline 1131 & －4． 038 & 10．866 & －4． 379 & 0． 913 \\
\hline 1132 & －2． 195 & 40．745 & －4． 780 & 0． 987 \\
\hline 1133 & －0．480 & 11． 677 & －4．645 & 0． 960 \\
\hline 1134 & 1． 202 & 10．768 & －5． 207 & 1． 033 \\
\hline 1135 & －0．396 & 10．72日 & －6． 153 & 0.824 \\
\hline 1136 & －0．583 & 11． 348 & －7．981 & 1． 115 \\
\hline 1137 & 0． 214 & 9．768 & －8． 975 & 0．914 \\
\hline 1138 & \(-1.739\) & 9． 421 & －8．753 & 1．082 \\
\hline 1137 & －3，370 & 8． 492 & －9．915 & 1． 125 \\
\hline 1140 & \(-5.586\) & 7． 044 & \(-10.049\) & 1． 163 \\
\hline
\end{tabular}


1201 1.202 1203 1204 1205 1206 1207 1208 1205 1210 1211 1212 1213 1214 1215 1216 1217 1218 1218 1220 1221 1222 1223 122.4 1225 1226
1227
1228
1229
1230
1231
1232 1233 12.34 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 12.45 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1259 1259 1260
6. 061 7.133 7.926 7.324 B. 463 b. 999 7.717
9.287 9. 550 10.802 11. 498 11. 529 11. 703 4. 968 7. 310 8. 470 9. 774 9.027 Q. 081 7. 705 7.351 b. 891 5. 764 5. 007 3. 739 1.971
0. 955
\(-0.807\) \(-1.253\) \(-3.280\) \(-4.277\) \(-4.301\) 8. 437 11. 501 11. 121
11.060 10. 820 9. 365 7.752 7. 317 5. 889
\[
\text { 4. } 094
\]
-3. 789 \(-5.205\)
\(-10.505 \quad 1.054\)
\(R\) -3. 5 -\(-9.826 \quad 0.877\)
\(-9.648 \quad 0.926\)
\(-8.948 \quad 1.057\)
\(-6.757 \quad 0.962\)
\(-10.147 \quad\) 1. 037
\(-5.653 \quad 0.820\)
-10.210 1. 003
\(-9.926 \quad 0.904\)
\(-8.498 \quad 1.037\)
-6.504 1. 12.6
-8.393 1. 184
\(-8.367 \quad 2.171\)
\(-3.132 \quad 0.802\)
-8.501 1.080
\(-8.086 \quad 1081\)
\(-6.968 \quad 0.998\)
\(-5.472 \quad-1.036\)
\(-4.062 \quad 0.806\)
\(-3.849 \quad 0.934\)
\(-5.501 \quad 0.984\)
\(-6.298 \quad 0.996\)
\(-7.559 \quad 0.798\)
\(-9.178 \quad 0.997\)
\(-10.352 \quad 1.019\)
\(-11.177 \quad 1,138\)
\(-10.262 \quad 0.767\)
\(-10.464 \quad 0.908\)
\(-11.204 \quad 0.985\)
\(-11,716\) 1. 139
\(-10.339 \quad 0.991\)
\(-10.874 \quad 0.777\)
\(-5.596 \quad 0.920\)
\(3.016 \quad 1.239\)
4. 8940.969
6. 5880.971
7. \(140 \quad 0.961\)
\(7.979 \quad 0.965\)
\(\begin{array}{ll}7.925 & 0.824 \\ 0.255 & 1.057\end{array}\)
\(\begin{array}{ll}7.255 & 1.057 \\ 8.764 & 0.783\end{array}\)
e. 4371.018
10.200 0.941
11. 153 1.026
8. 859 1.0.44
8. \(797 \quad 0.934\)
8. \(672 \quad 0.841\)
8.7850 .829
\(7.429 \quad 0.951\)
6. 9750.899
6. 0720.918
4. 775 0.989
\(-5.187 \quad 0.970\)
\(-11.439 \quad 0.931\)
\(-11.139 \quad 0.996\)
\(-11.146 \quad 1.010\)
\(-5.754 \quad 1.053\)
\(-7.014 \quad 0.955\)
\(-7.824 \quad 0.500\)
\(-8.599 \quad 0.806\)
\begin{tabular}{|c|c|c|c|c|}
\hline & x & & \(z\) & \\
\hline 261 & -4. 512 & -5.412 & -9.443 & 027 \\
\hline 1262 & -3. 451 & -9, 360 & -10.931 & 1.031 \\
\hline 1263 & -2. 181 & -10. 848 & -9. 989 & 1. 158 \\
\hline 1264 & -2. 151 & -11.654 & -7. 844 & 3 \\
\hline 1265 & \(-3.663\) & -11. 508 & \(-4,393\) & 0. 988 \\
\hline 1266 & -4. 759 & -11.220 & -4. 779 & 1. 004 \\
\hline 1257 & -3. 812 & -10.251 & -3.371 & 0. 951 \\
\hline 1268 & -3.173 & -11. 804 & -2. 232 & 1.078 \\
\hline 1269 & -1.917 & \(-10.890\) & \(-3.732\) & 1. 079 \\
\hline 1270 & 0.321. & -12.596 & -3. 508 & 0. 968 \\
\hline 1271 & 1. 493 & \(-10.865\) & -4. 778 & 0. 908 \\
\hline 1272 & 3. 504 & -10.986 & -4, 442 & 1. 135 \\
\hline 1273 & 5. 527 & -11.190 & -4. 024 & 0. 941 \\
\hline 1874 & 3. 995 & -11.066 & -1.086 & 0.959 \\
\hline 1275 & -8, 982 & -4.987 & -6. 927 & 0.977 \\
\hline 1276 & -8:350 & -3. 205 & -6. 947 & 0. 879 \\
\hline 1277 & -6, 4 9日 & -2. 665 & -6. 803 & 1. 074 \\
\hline 1278 & \(-5.752\) & -3.974 & -8. 289 & 1. 039 \\
\hline 1279 & -4. 653 & \(-3.732\) & -2. 764 & 0. 816 \\
\hline 1280 & -6. 203 & -2. 582 & -10.197 & 1. 163 \\
\hline 1281 & -7. 320 & -1.423 & -8.937 & 0. 883 \\
\hline 1292 & \(-7.918\) & -1. 342 & -7. 236 & 0. 722 \\
\hline 1283 & \(-9.727\) & -2.012 & -7. 545 & 1. 03.1 \\
\hline 1284 & -11. 140 & -2. 429 & -6. 148 & 1. 000 \\
\hline 1285 & -11.747 & -2. 345 & -3. 974 & 1. 255 \\
\hline 1286 & -10.965 & -0.751 & -2. 656 & 0.751 \\
\hline 1297 & -11. 135 & -2. 209 & -1. 125 & 1. 170 \\
\hline 1288 & -11.011 & 0. 000 & -0. 783 & 1. 068 \\
\hline 1289 & -11.842 & 0. 212 & 3. 054 & 1. 039 \\
\hline 1290 & -11. 956 & 5. 575 & 4. 291 & 0.910 \\
\hline 1291 & 6. 328 & 10.892 & -7, 180 & 0.983 \\
\hline 1292 & 5.459 & 11. 312 & -5. 513 & 0. 946 \\
\hline 1293 & 11.003 & 7. 781 & -5.592 & 0. 938 \\
\hline 1294 & 11. 102 & 7. 608 & -3. 746 & 0. 919 \\
\hline 1295 & 11. 064 & 9. 522 & -3. 164 & 1. 093 \\
\hline 1296 & 10. 776 & 9. 592 & -1. 277 & 0. 827 \\
\hline 1297 & 11. 140 & 8. 035 & -0. 533 & 0. 927 \\
\hline 1298 & 10. 857 & 10. 240 & 2. 686 & 1. 147 \\
\hline 1299 & 10.286 & 11. 837 & 1. 373 & 0. 997 \\
\hline 1300 & 5.151 & 5. 206 & -9.815 & 0.905 \\
\hline 1301 & 4. 211 & 5. 006 & -11.577 & 1. 102 \\
\hline 1302 & -11. 459 & 2. 092 & -1. 162 & 1. 104 \\
\hline 1303 & -11.576 & Q. 855 & 4. 770 & 0. 813 \\
\hline 1304 & -11. 462 & -1. 672 & 3. 059 & d. 883 \\
\hline 1305 & -10. 423 & \(-3.902\) & -7.470 & -. 784 \\
\hline 1306 & -10, 729 & -5. 429 & -6. 085 & 1. 100 \\
\hline 1307 & -10. 431 & -6. 801 & -4. 505 & 1. 013 \\
\hline 1308 & -10.552 & -8. 835 & -4. 201 & 1. 048 \\
\hline 1309 & \(-9.579\) & -10. 224 & -3. 343 & 0. 852 \\
\hline 1310 & -8, 241 & -10. 150 & -2. 040 & 1. 017 \\
\hline 1311 & -6. 822 & -11. 412 & -0.989 & 1. 154 \\
\hline 1312 & -7.081 & -11. 429 & -3. 179 & 1. 052 \\
\hline 1313 & \(-5.374\) & -11.879 & -2. 361 & 0. 894 \\
\hline 1314 & 9. O81 & -6. 876 & -5. 051 & 0. 929 \\
\hline 1315 & 9. 816 & -6. 247 & -3. 517 & 0. 884 \\
\hline 1316 & 10. 818 & -4. 393 & -7.933 & 1. 143 \\
\hline 1317 & 10. 426 & -2. 607 & -8. 903 & 0.927 \\
\hline 1318 & 9. 016 & -2. 068 & -10.022 & 0. 752 \\
\hline 1319 & 7. 384 & -2. 232 & -11. 243 & 1. 092 \\
\hline 20 & 45 & -2 376 & -11, 864 & 95 \\
\hline
\end{tabular}

1321
1322 1323 1324 1326 1326 1327 1329 1329 1330
1331
1332
1333
1334
1335
1336
1337
1938
1399
1340
1341
1342
1343
1344
1343
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1368
1363
1364
1365
1356
1367
1368
1369
1370
1372.

1372
1373
1374
1375
1376
1377
\(1978-10-490\)
\(1379 \quad 10.971\)
\(1380 \quad 11.306\)
\(-7: 561\)
-8. 011
-8. 765
\(-7.316\)
\(-2.691\)
\(-1.468\)
\(-2.134\)
-2. 469
\(-3.251\)
-4. 256
\(-5.875\)
-6. 510
\(-7.300\)
-8. 375
\(-9.181\)
\(-2.197\)
\(-0.698\)
0. 784
4. 202
9. 674
10. 181.
11.019
10.878
10. 600
9. 954
9. 091
8. 316
6. 314
5. 639
7. 037
5. 5.078
3. 290
1. 968
1. 569
10. 555
10. 437
8. 660
B. 547
7. 5.38
7.395
9.425
10.792
8. 571
8. 690
10.984
11.665
5. 229
5. 496
8. 127
Q. 017
7. 406
7. 413
8. 071
6. 695
6. 421
4. 599
1. 041
\(-0.772\)
\(-2.554\)
\(-4.236\)
\(-4.157\)
6. 051
1. Ob8
1. 276
0. 928
1. 061
0. 971
0. 975
1. 112
0.885
0. 897
0. 938
1. 037
- 880
1. 100
1. 039
0. 970
0. 895
1. 010
1. 037
1. 025
1. 001
2. 046
1. 105
1. 131
1. 092
1. 068
\(7.712 \quad 0.810\)
\(7.998 \quad 0.980\)
9.661 1.048
7.756 0.965
10.587 1.100
7.274 1.053
\(6.699 \quad 1.026\)
7. 161 0. 175
8. 055 1.017
8. 727 1.220
7. \(772 \quad 0.953\)
9. 520 1.004
\(10.946 \quad 0.871\)
10. \(920 \quad 1.123\)
9. \(959-1.123\)

日. 3311.026
\(3.464 \quad 0.942\)
4. 1871.070
-0.073 1.17日
\(-2.080 \quad 1.139\)
4. \(851 \quad 0.776\)
6. 705 1.080
b. \(098 \quad 0.545\)
7. \(116 \quad 0.952\)
7. 825 1.087
G. \(241 \quad 1.087\)
7.861 0.764
\(10.463 \quad 1.069\)
\(11.520 \quad 0.737\)
11. \(580 \quad 0.798\)
₹. \(013 \quad 0.972\)
8. \(466 \quad 0.927\)
2. 318 1. 051
8.351 0.950
5. \(416 \quad 1.016\)
\begin{tabular}{|c|c|c|c|c|}
\hline & －\({ }^{\text {x }}\) & －\({ }^{\text {r }}\) & 2 & P \\
\hline 1381 & 7．949 & －5． 803 & 9． 220 & 114 \\
\hline 1382 & 8．0л3 & －5． 116 & 9． 318 & 0． 819 \\
\hline 1383 & 8． 4 90 & －7．929 & 8． 890 & 1． 097 \\
\hline 1394 & 9．349 & －7， 895 & 7． 011 & 0． 964 \\
\hline 1355 & 10． 424 & \(-7.994\) & 5． 123 & 1． 211 \\
\hline 1386 & 7． 225 & －9． 191 & 3． 903 & 0.875 \\
\hline 1387 & 9． 613 & －9．210 & 5． 556 & 0． 889 \\
\hline 1388 & 7． 4.52 & －10． 263 & 6． 598 & 0． 994 \\
\hline 1389 & 5． 673 & －11．431 & 5.972 & 1． 224 \\
\hline 1390 & 3． 519 & －11．763 & 6． 038 & 0． 957 \\
\hline 1391 & 1． 709 & －11． 225 & 6． 133 & 0． 934 \\
\hline 1392 & 10．264 & －5．826 & 7． 137 & 0.852 \\
\hline 1393 & 11． 973 & －5． 587 & 7． 537 & 0． 919 \\
\hline 1394 & 11． 645 & －3．962 & 10．098 & 0.931 \\
\hline 1395 & 11． 352 & －1，043 & 10． 019 & 0.830 \\
\hline 1396 & 10．195 & －1． 977 & 11． 390 & 1． 148 \\
\hline 1397 & 日． 864 & －0．213 & 10． 851 & 1． 0.50 \\
\hline 1378 & 7． 067 & －0，658 & 11． 208 & 0.836 \\
\hline 1399 & 5． 622 & －1． 441 & 11． 931 & 0.959 \\
\hline 1400 & 6． 665 & －7． 120 & 9． 694 & 0.926 \\
\hline 1401 & 4． 799 & －7．509 & 10．310 & 1． 077 \\
\hline 1402 & 5． 033 & －9． 524 & 9． 974 & 0.979 \\
\hline 1403 & 4． 625 & －11． 529 & 9． 704 & 1.078 \\
\hline 1404 & 3． 46.7 & －11．749 & 9． 187 & 0.867 \\
\hline 1405 & 3． 509 & \(-10.673\) & 11． 242 & 1． 029 \\
\hline 1406 & 2． 088 & －9．154 & 11.001 & 1.065 \\
\hline 1407 & 1． 439 & －7． 251 & 10．936 & 0.947 \\
\hline 1408 & －0．401 & －6． 674 & 11． 661 & 1． 113 \\
\hline 1409 & －8．973 & 日． 291 & 5． 876 & 1． 135 \\
\hline 1410 & －9．988 & 8． 962 & 4． 214 & 0． 925 \\
\hline 1411 & －10． 503 & 9.692 & 2． 503 & 1． 007 \\
\hline 1412 & －4． 006 & 11． 164 & 6． 828 & 0.993 \\
\hline 1413 & －5，371 & 11．757 & 5． 504 & 0． 998 \\
\hline 1414 & －5．796 & 7.777 & g． 231 & 1．055 \\
\hline 1415 & －7． 297 & 9． 134 & 7． 754 & 1．023 \\
\hline 1416 & \(-7.732\) & 7． 543 & 9． 020 & 1．059 \\
\hline 1417 & －7． 208 & 6． 926 & 10． 966 & 1． 050 \\
\hline 1418 & －9． 510 & 4． 159 & 11．398 & 1． 142 \\
\hline 1419 & \(-9.735\) & 2． 449 & 10． 149 & 0． 988 \\
\hline 1420 & －9． 129 & 1． 563 & 11． 781 & 0． 966 \\
\hline 1421 & －10．4日1 & 0． 442 & 10． 534 & 1． 188 \\
\hline 1422 & －8． 983 & －0．315 & 11.808 & 0.918 \\
\hline 1423 & 9． 497 & 10．620 & 6． 458 & 0．886 \\
\hline 1424 & 9． 585 & 10.731 & 4． 771 & 0.807 \\
\hline 1425 & 6． 071 & 11． 400 & 3． 521 & 0．755 \\
\hline 1426 & 8． 798 & 11.513 & 8． 053 & 1．032 \\
\hline 1427 & 7． 625 & 10． 406 & 9.073 & 0． 806 \\
\hline 1428 & 5． 975 & 9.870 & 10．006 & 1．073 \\
\hline 1429 & 6． 029 & 11． 783 & 8． 898 & 1． 139 \\
\hline 1430 & －7． 815 & 11． 093 & 7． 268 & 1． 063 \\
\hline 1431 & －5． 166 & 11． 541 & B． 193 & 0.838 \\
\hline 1432 & －5． 288 & 9． 850 & 8． 721 & 0．939 \\
\hline 1433 & －3．766 & 9． 295 & 9． 666 & 0． 936 \\
\hline 1434 & －4．025 & 7． 580 & 10． 186 & 0． 876 \\
\hline 14.35 & －5． 131 & 7． 653 & 11． 802 & 1． 084 \\
\hline 1436 & 10.637 & 10． 468 & 8． 058 & 1． 083 \\
\hline 1437 & 11．050 & 9． 927 & 6． 279 & 0． 822 \\
\hline 1438 & 7． 662 & 8． 081 & 8． 817 & 0． 799 \\
\hline 1439 & 7． 138 & 6． 627 & 9． 969 & 1． 129 \\
\hline 14.40 & 10． 243 & 4． 984 & 5． 424 & 0.925 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline 14.41 & 10. 498 & 3. 216 & 9. 136 & 0. 885 \\
\hline 1442 & 11. 731 & 2. 898 & 7. 788 & 0.958 \\
\hline 1443 & 7. 603 & 3. 472 & 11.192 & 0. 995 \\
\hline 14.4 & 7. 636 & 1. 615 & 10.769 & 0. 707 \\
\hline 1495 & 6. 048 & 1. 386 & 11. 673 & Q. 934 \\
\hline 1446 & 10. 871 & 0. 562 & 10.989 & 1. 106 \\
\hline 1447 & 8. 686 & 0.878 & 9. 356 & Q. 809 \\
\hline 1448 & 9.091 & 2. 414 & 9.742 & 0. 826 \\
\hline 1449 & 9. 74.1 & 3. 737 & 10.713 & 0. 938 \\
\hline 1450 & 10. 667 & 5. 582 & 11. 493 & 1. 270 \\
\hline 1451 & 8. 336 & 5. 425 & 11.627 & 1. 071 \\
\hline 14.52 & 7. 228 & 7. 185 & 11. 597 & 1. 009 \\
\hline 1453 & 7. 218 & 9. 134 & 11. 422 & 0. 948 \\
\hline 1454 & 5. 239 & Q. 914 & 11. 732 & 1. 081 \\
\hline 1455 & 3. 989 & 10. 363 & 10.987 & 1. 04.4 \\
\hline 1456 & 4. 505 & 11. 869 & 10.077 & 0.790 \\
\hline 1457 & -7. 057 & -7, 648 & -9. 011 & 1. 052 \\
\hline 1458 & -7. 800 & -6. 349 & \(-7.764\) & 0. 896 \\
\hline 1459 & -8. 735 & -7.854 & \(-7.634\) & - 8at \\
\hline 1460 & -8. 217 & -9.336 & -6. 565 & 1. 019 \\
\hline 1461 & -7. 209 & -10.308 & \(-5.074\) & 1. 027 \\
\hline 1462 & -8.963 & \(-10.691\) & -4. 791 & 0. 790 \\
\hline 1.463 & -10,736 & -10.817 & -4.653 & 0.993 \\
\hline 1464 & -11.311 & -10.156 & -2. 945 & 0.926 \\
\hline 1465 & \(-10.127\) & -9.990 & -1. 496 & 0. 953 \\
\hline 1466 & -9.002 & -10.44.5 & -0.031 & 0. 949 \\
\hline 1467 & -9,385 & -11. 729 & 1. 406 & 1. 016 \\
\hline 1488 & 2. 44.5 & 9. 303 & -8. 080 & 0. 949 \\
\hline 1469 & 1. 685 & 10.802 & -8. 825 & 0. 890 \\
\hline 1470 & 1. 249 & 11.869 & -7. 532 & 0. B 42 \\
\hline 1471 & 8. 197 & 9. 103 & -7, 671 & 0. 902 \\
\hline 1472 & 9. 562 & 8. 709 & -8. 955 & Q. 947 \\
\hline 1473 & 10. 549 & 7.075 & -8. 336 & 1. 014 \\
\hline 1474 & 10. 100 & 5. 882 & -9. 742 & 0. 896 \\
\hline 1475 & 11. 350 & 4. 617 & -10.496 & 1. 035 \\
\hline 1476 & 10. 131 & 3. 428 & -11. 526 & 0. 955 \\
\hline 1477 & 9. 262 & 3. 747 & -11. 212 & 0.966 \\
\hline 1478 & 7. 252 & 2. 027 & -1.1.333 & 1.033 \\
\hline 1479 & b. 191 & 3. 898 & -11.342 & 1. 114 \\
\hline 1480 & 11.030 & 9. 733 & -6. 104 & 1. 080 \\
\hline 1491 & 9. 728 & 10. 180 & -7.625 & 0.971 \\
\hline 1482 & 9. 271 & 11. 495 & -6. 099 & 1. 095 \\
\hline 1483 & 7. 597 & 11. 269 & -3. 983 & 1. 0.57 \\
\hline 1484 & 9. 002 & -5. 526 & -8. 561 & 1.087 \\
\hline 1485 & 8. 317 & -7. 500 & -8. 952 & 1.039 \\
\hline 1486 & 7. 035 & -9.243 & -8. 33 A & 1. 211 \\
\hline 1487 & 4. 1225 & -9.682 & -8. 322 & 1. 069 \\
\hline 14 BE & 3. 879 & -9.054 & -6. 571 & 0.955 \\
\hline 1489 & 5. 690 & -9.782 & -6. 573 & 0. 896 \\
\hline 1490 & 6. 750 & -11.053 & -5. 497 & 0. 978 \\
\hline 1491 & 8. 296 & -10.183 & -5. 54.5 & 0.797 \\
\hline 1492 & 8. 657 & -8. 626 & -5. 087 & 0. 866 \\
\hline 1493 & 9.939 & -9. 843 & -5. 242 & 0. 908 \\
\hline 1494 & 10. 201 & -11.507 & -4. 154 & 1. 098 \\
\hline 1495 & -0. 603 & 3. 968 & -5. 185 & Q. 890 \\
\hline 1496 & 7.677 & 8. 582 & -9.467 & 1. 035 \\
\hline 1497 & 7. 786 & 10.858 & -8. 936 & 1.300 \\
\hline 1498 & 6. 132 & 9. 806 & -10.36日 & 1. 128 \\
\hline 1499 & 11. \(24 \%\) & 8. 883 & -8. 059 & 0.925 \\
\hline 1500 & 10.367 & 7. 652 & -10. 217 & 0.956 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline at & B. 594 & 6. 915 & \(-10.113\) & 0.988 \\
\hline 1502 & 5. 321 & 6. 270 & -11.793 & - 24.3 \\
\hline 1503 & 9.975 & 10.494 & -9. 566 & 0 \\
\hline 1504 & 11. 394 & 11.345 & \(-7.439\) & 1. 098 \\
\hline 1505 & 9. 173 & 7. 038 & \(-10.659\) & Q. 927 \\
\hline 1506 & 7. 545 & 8.818 & -11.339 & 0. 8551 \\
\hline 1507 & 6. 211 & 7. 632 & -10.641 & 1. 065 \\
\hline 1500 & -8.828 & -3.951 & -8. 529 & 0.931 \\
\hline 1509 & -9.943 & -5. 523 & -8. 502 & 0.796 \\
\hline 1510 & \(-11.741\) & -5, 249 & -7. 844 & 0. 937 \\
\hline 1512 & 0.745 & 4. 263 & -10.306 & 037 \\
\hline 1518 & \(-9.081\) & 8. 440 & 7. 909 & 0. 7.06 \\
\hline 1513 & \(-9.975\) & 7.003 & 7. 163 & 0. 943 \\
\hline 1514 & \(-11.697\) & 6. 003 & 6.712 & 1. 063 \\
\hline 1515 & -6, 860 & 9. 286 & 9. 749 & 1. 02E \\
\hline 1516 & -8. 347 & 10.216 & B. 948 & D. 906 \\
\hline 1547 & \(-9.304\) & E. 730 & 9. 868 & 1. 096 \\
\hline 1518 & -7,003 & 6. 155 & 10.072 & 1.098 \\
\hline 1519 & \(-10.027\) & 5. 061 & 8. 753 & 0. 898 \\
\hline 1590 & -11.231 & 3. 933 & 9. 9332 & 1. 131 \\
\hline 1521 & -11.778 & -2. 5154 & B. 846 & 1. 022 \\
\hline 1522 & \(-10.523\) & -0.041 & B. 170 & 0. 889 \\
\hline 1523 & -11. 119 & 1. 736 & 8. 780 & 1. 084 \\
\hline 1524 & -11.829 & Q. 776 & 7. 065 & 1. 007 \\
\hline 1525 & -8.090 & 0. 184 & \(-6.362\) & 0.845 \\
\hline 1526 & -9,513 & 0.929 & -6. 994 & 0. BEO \\
\hline 1527 & \(-11.478\) & 0. 909 & -6. 356 & 1. 186 \\
\hline 1528 & \(-1.927\) & 11.699 & 7.015 & 0. 906 \\
\hline 1529 & -2, 849 & 11. 093 & 8. 592 & 1. 018 \\
\hline 1530 & \(-1.623\) & 11. 100 & 10.045 & 0. 882 \\
\hline 1531 & B. 741 & \(-7.855\) & -7.091 & 0. 902 \\
\hline 1532 & 10.089 & -5.811 & -6. 557 & 0. 9885 \\
\hline 1533 & 10.913 & \(-6.609\) & -8. 371 & 1. 118 \\
\hline 1534 & -6. 249 & \(-9.160\) & -8.078 & 0. 900 \\
\hline 1535 & -5. 619 & \(-10.983\) & -8.300 & 1.041 \\
\hline 1536 & -6. 912 & \(-10.062\) & -9.730 & 1.056 \\
\hline 1537 & 10.426 & -7. 234 & 1. 582 & 1. 047 \\
\hline 1538 & 11. 462 & -5. 549 & 2. 2.60 & 1. 04.4 \\
\hline 1539 & 10. 492 & -7.683 & B. 541 & 0.958 \\
\hline 1540 & 9. 92.5 & -7.485 & 10. 190 & 0. E®2 \\
\hline 1541 & 8. 792 & -6. 110 & 11.099 & 1.113 \\
\hline 1542 & 8,350 & -10.150 & 8. 528 & 1. 154 \\
\hline 1543 & 6. 685 & -11.414 & B. 057 & 1.018 \\
\hline 15.44 & 6. 665 & \(-10.498\) & 9.781 & 0. 832 \\
\hline 1.545 & -0.802 & -8. 481 & 9. 788 & 1. 005 \\
\hline 1546 & -1. 568 & -9.197 & 11.421 & 0. 821 \\
\hline 1547 & -4.401 & \(-7.484\) & 11. 165 & 0.996 \\
\hline 1548 & -3.134 & -8.647 & 10.077 & 1. 0397 \\
\hline 1548 & -2.004 & -10.091 & 8. 926 & 1. 125 \\
\hline 1550 & -6.321 & \(-8.440\) & 10. 162 & 0.925 \\
\hline 1551 & -4.891 & -9.799 & 9. 818 & 1. 077 \\
\hline 1552 & -6. 528 & \(-10.076\) & 8. 768 & -. 888 \\
\hline 1553 & 0. 469 & -10.029 & -6. 445 & 0.909 \\
\hline 1554 & 2. 064 & -9.417 & -5, 758 & 0. 5131 \\
\hline 1555 & 2. 114 & -10.295 & -7. 526 & 1.133 \\
\hline 1556 & -0.679 & \(-11.254\) & \(-5.375\) & 1. 012 \\
\hline 1557 & 9. 172 & \(-9.166\) & -8.315 & 0, 948 \\
\hline 1558 & 8. 349 & \(-9.096\) & \(-9,818\) & 0.777 \\
\hline 1559 & 7. 703 & -7.803 & \(-10.907\) & 1. 033 \\
\hline 1560 & 10.149 & -8. 119 & -5. 700 & 1. 034 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline 1561 & 9. 275 & -6. 459 & \(-10.354\) & Q. 953 \\
\hline 1562 & 8. 417 & -4.906 & -11. 150 & 0. 951 \\
\hline 1362 & E.434 & \(-10.776\) & \(-9.170\) & 1. 0206 \\
\hline 1564 & 9.394 & -10,477 & -7. 242 & Q. 9 7e5 \\
\hline 1565 & 6. 597 & \(-11.417\) & -7.593 & 1.130 \\
\hline 1566 & 9.817 & -8. 284 & Q. 1.66 & 0.818 \\
\hline 1.567 & 7. 156 & -9.084 & 1. 427 & 0. 815 \\
\hline 1568 & 8. 814 & \(-10.616\) & 2. 564 & 1. 1324 \\
\hline 1569 & 10.989 & -8. 766 & 3. 0Q2 & 1. 104 \\
\hline 1570 & 11. 441 & -7.018 & 3. 651 & 0. 827 \\
\hline 1571 & 11. 386 & -5.913 & 5.209 & 1. 083 \\
\hline 1572 & 10. 156 & 9.855 & 6. 586 & 1. 01.8 \\
\hline 1573 & 10. 673 & \(-10.180\) & 4.669 & 1. 035 \\
\hline 1574 & 3. 088 & -7.053 & 10.836 & 0.717 \\
\hline 1575 & 3. 418 & -5. 583 & 11.388 & 0. 888 \\
\hline 1576 & \(5 \cdot 476\) & -5.749 & 11. 661 & 1. 194 \\
\hline 1577 & -8. E50 & -0. 376 & -9.095 & 0.961 \\
\hline 157 m & -8. 797 & 1. 281 & -9.894 & 0. 874 \\
\hline 1579 & \(-9.186\) & 3. 069 & -9.770 & 0.959 \\
\hline 1580 & \(-7.868\) & \(-1.409\) & -10.660 & 0.925 \\
\hline 1581 & -8. 546 & 0. 245 & -11. 486 & 1.04E \\
\hline 1582 & -6.581 & -0. 511 & -11.957 & 1. 111 \\
\hline 1583 & -9. 429 & 7. 504 & 11. 861 & 1. 146 \\
\hline 1594 & -10. 826 & 5. 728 & 10, 925 & Q. 960 \\
\hline 1595 & -10.461 & 6. 772 & 8. 998 & 0. 1873 \\
\hline 1586 & -11.080 & 日. 457 & E. 079 & 1. 100 \\
\hline 1587 & \(-11.611\) & 7.832 & B. 295 & 0.873 \\
\hline 1598 & \(-10.473\) & \(-3.902\) & \(-9.372\) & Q. 918 \\
\hline 1589 & -11. 583 & -2. 472 & -B. 461 & 1.094 \\
\hline 1590 & -9.880 & -2. 120 & -9.543 & 0. 974 \\
\hline 1551 & \(-10.702\) & -6. 9.56 & \(-7.508\) & 0. 995 \\
\hline 1592 & -8. 516 & -6. 396 & -9.427 & 0. 515 \\
\hline 1593 & -6. 688 & \(-5.591\) & \(-9.450\) & 1. 083 \\
\hline 1594 & -7.398 & -6.961 & -11.114 & 1. 1886 \\
\hline 1595 & -11. 533 & -5. 523 & -9.821 & 1. 069 \\
\hline 1596 & \(-10.415\) & -7. 240 & -9.437 & 1. 015 \\
\hline 1597 & -8.865 & -8. 476 & -9.371 & 0. 969 \\
\hline 1598 & 9.834 & 1. O89 & \(-8.586\) & 0. 939 \\
\hline 1597 & 9. 539 & 0. 308 & \(-10.376\) & 1. 055 \\
\hline 1600 & 9. 193 & -0.377 & -11.800 & 1. 1.007 \\
\hline 1601 & 10.121 & -0.812 & \(-9.045\) & 0. 793 \\
\hline 1602 & 11.571 & -1.420 & \(-9.816\) & 0.798 \\
\hline 1603 & 11. 517 & 0. 354 & \(-10.442\) & Q. 724 \\
\hline 1604 & 0.738 & 11. 085 & 9.563 & 1. 000 \\
\hline
\end{tabular}```

