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frequencies of non -uniform cylinders with various relat- 

ive values of length of sections and their thicknesses, 

and (ii) investigation'of the actual anv litude distri- 

bution function existing in a cylinder of variable 

thickness. Sets of representative results are included 

in the work. 

In this thesis the theoretical and experimental 

work is concerned with cylinders consisting of two 

sections of different thickness. It is claimed, how- 

ever, that the method of solution developed is perfectly 

generally applicable to c:linders with any number of 

sections. 

The nature of the method permits it to be con- 

sidered as nothing more than a good approximation, but 

the experimental findings illustrate how nearly accurate 

the calculated results are. It yet has the merit of 

both simplicity and brevity, and as such is of no small 

value in practical engineering calculations. Due to 

the presence of the sudden change of thickness of the 

cylinder, an exact mathematical solution of the problem 

would be most difficult and cumbersome, and as a work- 

ing method would present no real value. 
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where the deformations were purely inextensional or 

flexural; the -problem under such conditions reduces 

to one of two dimensions only. Love, in his "Theory 

of Elasticity" (3), investigated the problem of the 

extensional vibrations of such a cylinder, and also 

derived the com' -lete general equations of vibration of 

cylindrical shells, on which the theory .)resented in 

this work is based. 

A condition of ends other than free was first 

examined in more detail by Fltigge (4); he considered 

the ends to be freely -supported and in fact deduced the 

frequency equation for this case. Immediately, of 

course, a restraint is Lnposel %Ae en,Th of the 

shell, it is impossible to take the deformation as 

being purely flexural, as some extension must neces- 

sarily take place. 

Fltigge's frequency enuation was a cubic in 

p2 * Where the displacements are proportional to a 

harmonic function of time cos pt, giving the fre- 

quency as p /y; no experimental investivstion wri^ 

carried out, although to illustrate his theory Fligge 

included a numerical example. 

The present work originated directly in the 

* A list of symbols used is to be found in Appendix I. 
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recent researches of Arnold and 'Jarburton (1), who 

examined in detail the vibrations of thin cylindrical 

shells with freely -supported ends.. They confirmed the 

fact that for any particular nodal configuration the 

frequency equation is a sextic, or strictly speaking, 

a cubic in p2, for no odd powers of p are present; thus 

three natural frequencies correspond to any one arrange- 

ment of nodes, depending on the relative magnitudes of 

the displacements in the three component directions. 

However, only one of these - when the prevalent motion 

is in the radial direction - is of immediate practical 

interest, the remaining two lying well beyond the aural 

range. 

Among many practical applications of this theory 

one that readily assumes a position of first importance 

is that to the cutting of engineering components which 

have the form of cylindrical shells. In this connexion 

it must be realized that more often than not the cylinder 

will not be uniform but will have a change of thickness 

at some point along its length. It was from this 

practical point of view that the problem was tackled, 

and the emphasis placed on the rievelopraent of a method 

whereby a natural frequency of a cylindrical shell of 

variable thickness might be calculated with the minimum 



of complication and maximum accuracy. 

It would be vain for this purpose to attempt an 

exact analytical solution of the probleri: this would 

involve the handling of some clnnbersome matilematical 

expressions and the precise statement of boundary con- 

ditions (including those at the change of thickness) is 

not simple; the !,resence of a series solution which is 

necessitated by the discontinuity in the cylinder section 

profile would lead to a frequency equation too complicated 

to be of value in practical computations. Consequently 

the mathematical treatment of the problem is far from 

rigorous, but insofar as it represents n justification 

for the method of solution itself - which is necessarily 

of an approximate nature - the author judges it to be 

adequate. 
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. GEN'ERA.L THEORY. 

It must be emphasised at the very outset that 

it is not the intention of this work to present a. 

rigorous mathematical solution of the problem. The 

primary difficulty of such an undertaking lies in the 

statement of the function of x in the expressions for 

the displacements. Due to the presence of the sudden 

change of section it is impossible to obtain this 

function from the general equations of vibration. The 

only available procedure would be to employ the energy 

method in obtaining the frequency equation for the non- 

uniform shell, and that entails the assumption of the 

vibration form. 

The required function could then be expressed 

as a Fourier series, but the solution obtained in this 

way would not lend itself to numerical calculations, 

and in any case some approximatioh would eventually 

become unavoidable, as only a limited small number of 

terms of the series would be taken into account. Thus 

now a method of calculating the natural frequencies of 

non -uniform shells is derived on the basis of some 
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considerations of the physical aspect of the theory 

of vibrations of thin cylinders. 

Some assumptions -have been made in devising 

such a method, and the author does not claim more than 

to have endeavoured to provide some mathematical justi- 

fication for these. Thus the complete proof of the 

method of solution consists of the analytical treatment 

of its basic assumptions together with the evidence in 

support of the general results obtained by the theory, - 

as supplied in the course of the extensive experimental 

investigations carried out. 

The mathematical operations involved in the 

construction of the method are recorded in detail in 

Appendix II; here we shall confine ourselves simply 

to quoting the relevant results. 

Let us first briefly consider the general 

equations of vibration of a thin cylindrical shell, 

as derived by Love (Theory of Elasticity,. p. 543 et 

sea.). The general solution of these, apart from 

simple harmonic functions of 4 and t , gives the 

form of the component displacements as:- 

4 s ¡ ek'x i' 
r 

e-kTx 1 
l L l 

r r i 
= r e 

k,x n1 krx l tn. 
r / 

s 
W =L ( \re kfX + 7 e_k,xl J r 

r.i 

(I) 
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'(here the Greek letters represent arbitrary 

constants and k is a root of a determinantal equation 

of the eighth degree, or really a nuartic in k', for 

it contains no odd powers of k. 

Depending then on its coefficients, the roots 

of the ryuartic can be real, imaginary or complex. 

Boundary conditions will deterAuine the exact shape 

of the displacement function in the axial direction 

of the cylinder; generally we shall expect it to con- 

tain both hyperbolic (or exponential) and harmonic 

functions, except in some simPle symmetrical cases, 

- e.g. for a uniform cylinder with freely -supported 

ends the displacements are proportional to sines or 

cosines of x. It is unfortunately irnnracticable to 

state the conditions for the existence of real and 

imaginary roots of the nuartic; when the discriminant 

is finally formed, it is so complicated that only 

extreely laborious numerical calculations for par- 

ticular cases can be performed. 

Apart from the geometric and elastic constants 

of the cylinder, the coefficients of the quartic will 

contain powers of p2 up to the third power. Thus the 

discriminant may be regarded as giving k2 as a function 

of p2. The significance of this dependence of the form 
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of the displacement function in the x - direction on 

the frequency of natural vibration is of fundamental 

interest in the treatment' of the present problem and 

will be made clear in the later part of this chapter. 

In the case of a uniform thin cylindrical shell, 

as considered by Arnold and Warburton, it is most con- 

venient to obtain the frequency enuation not from the 

general equations of vibration but by enuating the limit- 

ing values of strain and kinetic energies. The con- 

dition of freely- sup)orted ends is obtained by imposing 

no additional restraint beyond maintaining the circu- 

larity of the supported section. 

We take:- 

u = U cos n4, cos Lx , 

v = V sin n40 sin Lx , 

w = W cos ne sin mx , 

(2) 

where U, V and W are functions of time only, propor- 

tional to cos pt ; n and 2m represent the number of 

circumferential and axial wavelengths respectively. 

These expressions satisfy the boundary conditions and 

the general equations of vibration. 

The manner in which the cylinder vibrates under 

these conditions is sho- n in fig. I. 
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The strain and kinetic energies can be stated 

in terms of the component displacements; applying the 

Lagrange equations the frequency equation is eventually 

obtained in the form:- 

where 

o3-K2+K,0-Ko =0, 

eu2 --(1-1) p1 
- 

(3) 

The coefficients K2, Yi and K0 depend on the 

dimensions of the cylinder and its elastic constants; 

J1 the thickness appears everywhere as á ( =a) or 
1 

(43), 

and it is therefore the ratio of the thickness of a 

cylindrical shell to its mean radius that becomes the 

discriminating factor, and not the thickness itself. 

Hence it is seen that with any one nodal con- 

figuration there are associated three natural frequen- 

cies, corresponding to the three roots of the cubic. 

They depend on. the relative magnitudes of the ampli- 

tudes in the three component directions; we shall be 

concerned with the lowest of these, at which the pre- 

dominant motion is radial, the remaining two lie 

well beyond the aural range: they are of small imme- 

diate practical interest, and are as yet to be inves- 

tigated experimentally, as such work would necessitate 

special and elaborate equipment. 
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Thus, for any particular thickness ratio of a 

cylinder oc = 
á 

, we can calculate its complete frequency 

spectrum, knowing its length L and elastic constants E 

and Q. If we plot frequency to a base of A = mAa , the 
L 

resultant curve is as shown in fig. 2; there are drawn 

here two curves for some given value of n and for two 

' different ratios a,,. and ors, say, or, if we keep the mean 

radius constant, for two different thicknesses hl, and 

h2, where hi hn. Natural frequencies correspond to 

values of X for which m is an integer, and the frequency 

for A= 0 is calculated from Lord Rayleigh's formula for 

a cylinder of infinite length: - 

T 
Eh2 [rCnh_I)2 (4) 

1R'2n lfZea4(I -v2) n2 +I 

For any particular frequency there are 2n cir- 

cumferential and m + 1 axial nodes (including two at 

the freely- supported ends); The latter are disposed 

symmetrically along the len ?th of the cylinder, the 

distance between them being m 
units. 

Obviously the frequencies corresponding to in- 

tegral values of m other than unity will also be natural 

frequeincies of cylinders of the same thickness ratio and 

length vibrating with nodes at the two ends - or the 

fundamental mode for the particular value of n con- 

sidered. 
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Alternately, if 7,e choose an arbitrary fre- 

auency on such a curve, w can find a value of L which 

will supply the necessaryX with an integral m value; 

a cylinder of that length will have the frequency chosen 

as its fundamental frequency of natural vibration with 

2n circumferential nodes. 

Thus, if we consider the f /,â curve to be dram 

for a cylinder of a given length L, points other than 

those corresponding to integral values of m appear to 

be meaningless, as it is impossible for the end conditions 

to be satisfied if the vibration entails fractions of 

half -wavelengths. It is the examination of the behaviour 

of a cylindrical shell of constant mean radius, but con- 

sisting of two sections of different thickness, that 

shows the significance of the intermediate portions of 

the curve. 

Let us take for a beginning a special simple 

case of a cylinder of variable thickness which will il- 

lustrate the trend of the argument to follow. In the 

shell of fig. 3 suppose Ll = (fig. 2), and L _2 
Then, if both portions existed independently, they 

would, for the value of n for which the curves are 

drawn, and m = 1, have a natural frequency fb, as shown. 

/ere they both of the same thickness (in which case 

Li = L2), Then joined together, they would form a cyl- 
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inder for which fb would represent the natural frequency 

for m = 2. Although they are not of the same thickness, 

they will still together form a shell whose natural fre- 

quency for m = 2 is fb. It must be carefully noted that 

in such an event in supplies merely the number of axial 

wavelengths; since these are Rio longer equal, m itself 

does not provide any indication of the position of nodes. 

It is legitimate - if not absolutely accurate - 

to assume that the mechanism of vibration of a non-uni- 

form shell will be as described above, even when the 

node is not at the change of thickness; when there are 

more than one node apart from the two at the ends; and 

when the cylinder is vibrating in one of its fundamental 

modes. 

Take, for instance, a cylinder of thickness hl 

and some given length L; then for particular values 

of n and m its natural frequency fl for that mode may 

be given by the point A on fig. 2; an exactly similar 

cylinder of thickness h2 will have for the same mode 

a frequency f2 represented by point 0 *. If we now con- 

sider a cylinder still of the same length L but of a 

section drawn in fig. 3, the natural frequency of its 

free vibrations in the mode under examination must 

* Here, and further below, unless otherwise 
stated, the mean radius is assumed to remain unchanged. 
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necessarily lie in the intermediate region; let that 

frequency be fb such that fl) fb> f2 - it will corres- 

pond to B1 on curve 1 and to B2 on curve 2. The ampli- 

tude distribution in each portion will be sinusoidal - 

or very nearly so in practice - of the form sin 

where 21. is the wavelength and is given by: 

na lta 
AI 

Thus complete half -wavelengths in either portion 

of the cylinder will be sinusoidal, while the curve 

which includes.the change of section Will be composed 

of two sine- curves which have the same amplitude and 

slope at the point where the thickness changes. This 

is merely a graphical representation of the form of vib- 

ration in keeping with the character of the proposed 

method of solution; more precisely, the stresses and 

bending moments existing at the change of thickness are 

of fundamental importance (they depend on the displace- 

ments and changes of curvature), and they may entail 

a slight deviation from sinusoidal form at that point; 

yet the assumption of purely sinusoidal deformation in 

each portion of the cylinder is a sufficiently close 

approximation for the practical purpose of calculating 

the natural frequencies of vibration: such an approach 

is not out of keeping with Rayleigh's principle for 

approximately calculating frequencies of free vibration. 
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We thus let the radial displacement in portion 

1 vary as follows: - 

w1 = W1 sin, 

giving at the change of thickness a displacement 

w = Wi 

and a slope 

du 
dx = Fil cos- L. 

Let us consider for the other portion the ori- 

gin of co- ordinates to be at its supported end. If we 

take for its displacement form 

w2 = W2 sin 

we can equate the slopes and deflections at the change 

of thickness, and on eliminating W1 and W2 between the 

two equations, obtain 

tan _ 
(5) 1, 

[Appendix II, (1.14)1 

Values of 1, and 1,, are best chosen by trial and 

error, the criterion being that they must supply values 

of A, and )K corresponding to the same frequency; the 

fundamental mode of vibration has the frequency for 

which 1, and t satisfy the above equation so that the 

values of the tangents are in the first and second 

quadrants respectively. For further modes, with a higher 

number of axial nodes, these values will lie in success- 

ive quadrants compatible with the satisfaction of the 
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equation. 

In the trial or error method of determining 

4 and 12 little difficulty or time is involved, and 

a solution can be obtained rapidly and without much 

computation. Specimen applications of the method are 

to be found in Appendix III. 

There are cases, however, when the above 

equation cannot be solved for a particular mode. It 

will be found then that the required frequency is below 

the Rayleigh frequency fR for portion 1 (i.e. that 

given by expression (4),. corresponding to an infinite 

wavelength), and consequently a value of 1 is available 

for portion 2 (the thinner portion) only. 

Mathematically, the significance of this becomes 

clear when we consider the general expressions for dis- 

placements (1) and recall what has been said about the 

values of the constant kr on p. 9. At a certain value 

of frequency p2, the value of kr changes from a pure 

imaginary (which gave a simple sinusoidal waveform) 

to a complex or real number, introducing into the dis- 

placement function hyperbolic or, possibly, exponential 

terms. 

In order to apply the "slope and deflection" 

method to this case, we must obtain an approximate 

expression for the waveform in the thicker portion. 
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It will by now be realized that the method is equivalent 

in its primary considerations to approximating the be- 

haviour of a cylindrical shell to that of a beam; it 

is only after solving equation (5), that the values of 

64 and lgintroduce the physical and dynamical character- 

istics of a shell. Thus now, to obtain an indication 

of the displacement function in the direction of theco- 

ordinate x, we consider a beam, consisting of two sec- 

tions of flexural rigidity EI1 and EI2, of length L1 

and L2 respectively,. the total length of this beam being 

L; the ends of the beam are freely supported, i.e. 

displacements and moments vanish there. Such a beam is 

shown in Appendix II, fig. Al. 

Let us assume that the displacement in portion 

2 (the thinner portion) is still sinusoidal, of the form 

w2 = F sin Vii, 

but in portion 1 the displacement will be given by 

w1= Asiny +C sinhy, 

which is the exact function for the beam, being obtained 

from the general solution by applying the two boundary 

conditions at the freely- supported end. 1, is real, 

but unknown, and has to be determined together with 

A, O and F from the remaining four conditions at the 

point of change of section; these are supplied by con- 

sidering at that point the expressions for the equality 
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of displacement, slope, bending moment and shear force. 

Having. applied these conditions, as described 

in Appendix II, we find that L is given by 

t n 
t,L' 

_ tanh t, (6) 

i.e. L= 5' 9' 13' 17 
4, etc., (7) 

and tan _ 1. (a) 

The frequency equation is obtained in the form 

tanxLi= _t (9) 

It is sewn immediately that it can be derived 

from equation (5) by applying condition (8). 

Thus, for a fundamental mode, :a solution for LL 

is obtained by taking t1= g Li, and 1 in the second quad 

rant. For three axial nodes, t, = L1, and L i is in 
1 

the fourth quadrant; and so forth for higher modes. 

Two very interesting features become apparent 

from the inspection of equation (9), viz.:- (i) since 

the determination of frequency is in this case reduced 

to solving the equation for Lt only, values of frequency 

for different numbers of circumferential nodes will be 

obtained by simply applying to the relevant curves the 

same value of A. (in fig. 2 -As); e.g. if there is 

an instance of the insolubility of equation (5) in 

the case of, say, n = 3, m = 1, for some particular 

cylinder, then, having found E (and hence XI.) from 

equation (9), frequencies can be obtained for m = 1 
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and all values of n from 3 uuwards; this is due to the 

fact that for n = 4, 5, etc. the two frequency /X curves 

will be relatively further, from each other, and XL will 

always give a frequency below the Rayleigh frequency 

for portion 1; if we apply Al to the curve for n = 2, 

we shall find that the frequency obtained lies above 

fR for portion 1, indicating the applicability of 

equation (5); (ii) in the cases where equation (9) is 

to be applied, the natural frequency of a stepped cyl- 

inder is independent of the thickness of its thicker 

portion. 

The latter point particularly was somewhat 

unexpected, and, in order to examine more closely these 

aspects of the problem, a comprehensive experimental 

investigation was designed and carried out. We shall 

proceed in the next chapter to the description of the 

experimental work, and the tabulation of its results. 



- 21 - 

3. E X P E R I N E N ' A L I N V E S T I G A T I O N S 

NOTATION FOR EXPERIMENTAL CYLINDERS. 

A11 the experimental cylinders used were of 

the same mean radius and the same freely- supported 

length. Three different wall thicknesses were in- 

volved: - 0. 25 in., 0. 1875 in. and 0. 125in. , and to 

these the suffices 1, 2 and 3 respectively apply 

throughout this thesis. 

The actual non -variable dimensions were: - 

Freely- supported length (L) 17.5625 in. 

Mean radius (a) 2.0725 in. 

The numbers alone are employed to denote 

uniform cylinders of length L, mean radius a, and 

thickness 0.25 in., 0.1875 in. or 0.125 in., thus: - 

"cylinder 1 ", "cylinder 2 ", "cylinder 3 ". 

In all cylinders which are not uniform, the 

ratio of the thinner portion to the freely- supported 

length L is always a multiple of , and is denoted 

by successive letters of the alphabet A - G, thus:- 



Ratio Code 
L thin,'L letter 

A 8 

3 

i 

3 
4 

7 8 

B 

c 

D 

E 

F 

G 

Hence "cylinder 1E3 ", for instance, refers to 

a cylinder with the following dimensions: - 

Freely- supported length (L) 17.5625 in. 

Iriean radius (a) 2.0725 in. 

Thickness (h1) 0.250 in. 
over 3L (= L1) 

Thic:ness (h3) 0.125 in. 
over L (= L3) 

Further, in general "cylinder 1 - 2 ", "2 - 

"1 - 3" will denote cylinders consisting of sections 

of thickness to which the numbers refer (cf. -Tbove). 
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PART A. MEASUREMENT OF FREQUENJIES. 

(i) General remarks: - An extensive experi- 

mental investigation formed part of the treatment of 

the present problem, and representative sets of results 

are included in this portion of the work. 

It must be remembered that the theory devel- 

oped is valid for what are termed thin shells, i.e. 

those whose thickness ratio does not exceed 0.1. This 

limitation, inherent in certain fundamental assumptions 

(in the expressions for stresses and strains), implies 

further in the case of shells of variable thickness 

that the relative ratios of the different thicknesses 

do not become dis.rroportionately large or small; that, 

in fct, the vibration is perfectly continuous along 

the whole length of the shell. 

Bearing this in mind, it was aimed in the pre- 

paration of experimental cylinders to obtain various 

ratios of lengths of sections rather than investigate 

specifically various relative ratios of the thicknesses 

themselves. Values of natural frequencies have, how - 

ever, been calculated for cylinders -!hose thicknesses 
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varied in different proportions, and experimental re- 

sults for such cylinders have been obtained and are 

tabulated for purposes of comparison. 

The condition of freely -supported ends was 

satisfied in a manner precisely similar to that adop- 

ted by Arnold and 1arburton. Discs of the shape shown 

in fig. 4 were accurately machined and fitted in the 

ends of the cylinder. Such an arrangement effectively 

maintains the circularity of the shell at the section 

of support, yet does not otherwise constrain the motion. 

Tests -ere carried out designed to discover the effect 

of removing and replacing the end- pieces, but it was 

found that freauencies elicited in a series of experi- 

ments could always be repeated after the end- pieces had 

been disturbed. It must be pointed out, however, that 

after machining and first fitting the end -pieces into 

the cylinder a mark was scribed across the line of 

contact, and great care was taken to replace the end - 

pieces after each subsequent removal in exactly the 

same position. 

The mean radius of the shell was kept constant 

throughout; hence in machining portions of the cylinder 

to a different thickness eaual thicknesses of metal were 

taken off the outside and the inside of the wall. A 
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sectional view of an experimental cÿlinder ha, already 

been given in fig. 3. 

When investigation of the uniform cylinder was 

completed, it was machined to the new thickness over 

an eighth of its length, and one new end -piece made to 

fit the larger bore. Experiments were then carried 

out on the cylinder with i, 4, ', ',, , , and 3 of its 

length reduced in thickness, and finally the uniform 

cylinder of the reduced thickness was investigated*. 

(ii) Experimental apparatus:- All cylinders 

were made of steel so that :.ia; ;vatic means of frequency 

excitation could be employed. 

The general lay -out of the apparatus can be 

seen from plate I. The cylinder was set into vibratory 

motion through an earphone magnet, the source of fre- 

quency being a variable beat frequency oscillator. 

The output of the oscillator was first passed through 

a valve amplifier and a matching transformer; polar- 

ization of the exciting magnet was effected using a 

50 volt D.3. supply in order to avoid frequency doub- 

ling. The gap between the magnet and the cylinder 

wall was ":eat as small as was possible -without contact 

* The notation adopted to denote different experim- 
ental ylind rs has already been described on p. Z1. 
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occurring during vibration. 

Although the oscillator was equipped with two 

dials (high and low frequency range - differential 

reading) which were graduated to indicate the output 

frequency, this method of obtaining the values of 

natural frequencies was deemed inadequate; the dials 

were not calibrated in sufficiently small intervals to 

give results for the present type of investigation, 

where often small changes in frequency (due to the 

reduction in thickness of a portion of the cylinder) 

had to be measured. 

Consequently an electronic counter (Aimee 

Type No. 704) was employed and the input frequency 

from the oscillator computed over an accurately 

measured time interval. This involved the use of an 

automatic switch mechanism which would not only main- 

tain the counter in the oscillator circuit for a 

definite known period, but also effect both the "make" 

and the "break" instantaneously. 

The arrangement adopted included a clock 

mechanism in conjunction with a remote contactor; the 

latter had an indicator arm rotating at one revolution 

per minute over a circular dial of which nearly one 

quadrant was coloured red. As the indicator arm 
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passed out of that pua 1rn t the circuit gras "made" 

and the counter then registered bents from the oscil- 

lator for a -period of 46 secoc_ds, after thich, as the 

indicator was entering the red nuadrant, the circuit 

was "broken "; it remained, so for the next 14 seconds, 

during which the reading on the counter could be noted 

and the counter reset in readiness for the next "make ". 

It may be added that, were it so desired., it wns a 

simple matter to utilize the 14 second period os the 

counting time. 

Once wound, the motivating clock mechanism 

operated for some seven hours; the contactor itself 

could be switched off independently at any moment: for 

instance, when the "break" had been effected, the con- 

tactor could be stopped to enable any necessary adjust- 

ments to be 'rade, and set in motion again (the "make" 

occurring at the usual place.) Finally, the counter 

had provision on its control panel for disconnecting it 

from the oscillator circuit (with this ¶witch in the 

"off" position the instrument received no pulses whether 

the contactor had made or broken the circuit). 



(iii) Experimental procedure:- The sound emitted 

by the cylinder at all frequencies which did not con- 

stitute its natural modes 'of vibration was of fairly 

small intensity. Consequently, as the oscillator leas 

set at, or near, a frequency of the s pectrum, the increase 

in amplitude was always noticeable, and by adjusting 

the value of the frequency so that the sound reached 

the peak of its intensity, it was possible to obtain 

the exact point of resonance. Although this method - 

i.e. a purely aural location of resonance frequencies - 

was for most cases perfectly satisfactory, constant use 

was made of the vibration pick -up system (described in 

detail in part B of this section) for that purpose. 

The point at which the amplitude of vibration rose to 

a maximum could be clearly seen on the screen of the 

cathode ray oscillograph; this was particularly useful 

at some of the more complex modes of vibration when the 

resonance response was not so violent, ^nd the increase 

of amplitude of the sound emitted not so pronounced. 

The position of the exciting magnet along the 

length of the cylinder did not in any way affect the 

point of resonance; it was occasionally changed, how- 

ever, since, if it happened that the magnet was situated 
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at a noie corresponding to a certain natural mode of 

vibration, that mode could not then be elicited. 

Similarly, if two different modes had frequencies dif- 

fering but slightly in magnitude, by setting the magnet 

at a node corresponding to one of them, the other could 

be obtained free from interference. 

For the purpose of determining the nodal pat- 

tern a medical stethoscope was found convenient and 

nuite satisfactory. 

Once the required mode of vibration had been 

elicited, several 46 second counts were taken and their 

average noted. After the first two or three the oscil- 

lator was readjusted in an atte_a t to eliminate a 

possible error in obtaining the exact peat of resonance 

and consequently the accurate value of natural fre- 

quency; another few counts were then taken. It was 

found in general that the discrepancy between two such 

sets of results was extremely small, in fact, not ex- 

ceeding the variation in readings which was always 

present due to the slight drift of the oscillator and 

possible minute changes in the contactor; this devia- 

tion was of the order of 1 in 14,000 over a period of 

46 seconds. 
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To uaiatain a close --itch on the operation of 

the contactor '-Those accuracy in tuning the counting 

period "-Tas ever of na ramaimt importance, a tuning 

fork -as set up as a frequency standard. The fork 

used had a specified frernienc;r of 523. 5 c. p. s. ; it 

was mounted rigidly in a vice arrangement and set into 

vibratory motion by a separate but exactly similar ear - 

phone magnet to that used on the cylinder. Every pre- 

caution was taken to guard the fork against possible 

disturbances and appreciable changes in temperature, 

and under these conditions its frequency could be said 

to remain constant. Before, during and after each 

series of experiments on the cylinder, the contactor 

was checked against the fork vibrating in its natural 

frequency; it was found on that basis to ;produce the 

interval of 46 seconds 'Tith an accuracy to -Within ± 0.2% 

this again includes the small possible drift of the 

oscillator for which no provision can be made. 

(iv) ÿyperi_nental res nits:- In the course of 

the investigation a very lane number of natural fre- 

quencies had to be found, and corresponding theoretical 

values calculated. It was consequently decided to limit 

the range of modes considered to those with n = 2 to 5, 

and m = 1 to 4. 



- 31 - 

All the experimental results are tabulated in 

the following pages side by side -rith the calculated 

values; asterisks denote modes whose frequencies are 

below the Rayleigh frequency of the thicker portion, 

and were, therefore, calculated by means of the modi- 

fied beam analogy method. There is also included a 

series of frequency curves for all the modes under 

consideration, drawn from calculs ed values with cor- 

responding experimental points shown on them. They 

illustrate the variation of frequency from a uniform 

cylinder of thickness h2 (see note on notation, p.21) 

to one of thickness h3 as the lengths of the two sections 

are progressively varied relative to each other in eight 

successive steps. 
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TABLE 1. 

Frequencies for cylinder 1 - cycles per second. 

Axial 
nodes 
(m+ 1) 

Circumferential nodes ( :3n ) 

. 6 8 10 

Expt. 1,700 4,560 3,130 12,725 
Theory 1,626 4,353 8,297 13,367 

Expt. 2,430 4,615 8,335 12,930 
Theory ;,390 4,611 3,541 13,583 

Expt. 3,810 5,170 
Theory 3,833 5,167 8,973 13,957 

Expt. 5,430 6,040 9',280 13,685 
Theory 5,545 6,072 9,612 14,495 

TABLE 2. 

Freauencies for cylinder 1A3 - cycles per second. 

Axial 
nodes 
(m + 1) 

Circumferential nodes (`?n) 

4 5 3 10 

2 Expt. 1,635 4,300 7,550 
Theory 1,.630 4,346 7,850e 11,310* 

Expt. ;, 360 4,500 8,165 12,870 
Theory 2,350 4,555 9,335 13,350 

Expt. 3,730 5,040 8,500 13,105 
Theory 3,800 5,040 8,725 13,600 

Expt. 5,385 5,890 9,065 13,565 
Theory 5,520 5,927 9,335 14,000 
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TABLE 3. 

Frequencies for cylinder 1B2 - cycles per second. 

Axial 
nodes 

(1n +1) 

Oircumferenti al nodes (2n) 

4 6 8 10 

Expt. 1,590 3,953 
Theory 1,600 3,880 6,655* 10,380* 

Expt. 2,300 4,385 8,095 
Theory 3,295 4,440 8,317 12,700* 

Expt. 3,680 4,905 8,365 12,880 
Theory 3,755 4,920 8,635 13,450 

Expt. 5,310 5,735 8,810 13,230 
Theory 5,470 5,840 9,105 13,700 

TABLE 4. 

Frequencies for cylinder 102 - cycles per second. 

Axial 
nodes 
On + 1) 

Circumferential nodes (2n) 

4 6 8 10 

Expt. 1,525 3,595 6,410 
Theory 1,550 3,510°" 6,420* 10,185* 

Expt. 2,255 4,360 7,540 
Theory 2,275 4,430 7,720* 11,220* 

Expt. 4,780 8,180 12,62u 
Theory 3,740 4,940 8,340 13,000* 

Expt. 5,240 5,6'.)3 8,625 1,2,, 30 
Theory 5,425 5,618 8,960 13,400 



TABLE 5. 

Frequencies for cylinder 1D2 - cycles -per second. 

Axial 
nodes 

(rn +1) 

Circumferential nodes (2n) 

r 6 8 10 

2 Expt. 1,450 3,435 6,270 9,865 
Theory 1,520 3,55* 6,330* 10,100* 

3 Expt. 2,240 4t205 6,955 10,500 
Theory 2,255 4,310 7,070* 10,700* 

4 Expt. 3,650 4,690 7,965 11,550 
Theory 3,693 4,670 8,510° 11,855* 

5 Expt. 5,275 5,515 8,380 12,750 
Theory 5,395 5,555 8,595 13,200* 

TABLE 6. 

Frequencies for cylinder 1E2 - cycles per second. 

Axial 
nodes 
On + 1) 

Circumferential nodes (2n) 

4 6 8 10 

2 i - t. 1,370 3,343 6,198 9,808 
1,470 3,320* 6,285* 10,070* 

3 Expt. :3,205 3,895 6,615 10',.:43 

f'heoTy 2,230 4,050* 6,660* 10,470' 

4 Expt. 3,593. 4,555 7,385 10,915 
Theory 5,646 4,640 7,715* 11,220* 

5 Expt. 5,195 5,343 8,205 11,850 
Theory 5,360 5,711-5 8,470 12,340* 
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TABLE 7. 

Frequencies for cylinder 1F2 - cycles per second. 

Axial 
nodes 

+ 1) 

Circumferential nodes (can) 

6 8 10 

Expt. 1,300 3,285 6,153 9,770 
Theory 1,350* 3,295* 6,258* 10,050* 

Expt. 2,150 3,665 6,455 10,080 
Theory 2,185 3,800* 6,600* 10,335* 

Expt. 3,540 4,363 6,978 10,533 
Theory 3,630 4,407 7,245* 10,855* 

Expt. 5,218 7,725 11,195 
Theory 5,325 5,288 8,210* 11,610* 

TABLE 8. 

Frequencies for cylinder 1G2 - cycles per second. 

Axial 
nodes 
(::1+ 1) 

Circumferential nodes (2n) 

4 6 8 10 

Expt. 1,215 3,205 6,100 9,720 
Theory 1,280* 3,280* 6,260* 10,045* 

Expt. 2,050 3,493 6,305 9,923 
Theory 2,128 3,625* 6,490* 10,250* 

Expt. 4,088 6,675 10,285 
Theory 3,600 4,455* 6,690* 10,620* 

Expt. 5,000 7,273 10,765 
Theory 5,300 5,050 7,680* 11,190* 
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TABLE 9. 

Frequencies for cylinder 2 - cycles per second. 

Axial 
nodes 

(_n +1) 

Circumferential nodes (2n) 

4 6 8 10 

-;xpt. 1,276 3,275 6,175 9,825 
Theory 1,259 3,271 6,229 10,027 

3 Expt. 2,094 3,515 6,345 9,987 
Theory 2,104 3,507 6,419 10,196 

4 Expt. 3,520 4,058 6,663 10,258 
Theory 3,593 4,058 6,-772. 10,484 

5 Expt. 5,117 4,943 7,159 10,665 
Theory 5,293 4,941 7,314 10,907 

TABLE 10. 

Frequencies for cylinder 2A3 - cycles per second. 

Axial 
nodes 
(z +1) 

Circumferential nodes ('3n) 

4 6 8 10 

2 Expt. 1,271 3,253 5,638 
Theory 1,267 3,260 5,525* 7,640* 

3 Expt. 2,070 3,489 6,217 9,848 
Theory 2,100 3,447 6,262 9,985 

4 Expt. 3,491 3,964 6,485 10,056 
Theory 3,545 3,955 6,549 10,253 

Expt. 5,148 4,826 3,957 10,390 
Theory 5,205 4,819 7,055 10,620 
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TABLE 11. 

Frequencies for cylinder 2B3 - cycles per second. 

Axial 
nodes 
(m + 1) 

Circumferential nodes (2n) 

4 6 8 10 

o 2 Expt. 1,243 2,960 4,608 7,146 
Theory 1,"250 2,810* 4,475* 6,950e 

xpt. 2,037 3,356 6,161 
Theory 2,.085 3,330 6,160 8,715* 

Expt. 3,503 3,853 6,355 9,879 
Theory 3,507 3,871 6,393 9,990 

Txpt. 5,096 4,709 6,747 10,147 
Theory 5,185 4,727 6,927 10,375 

TABLE 12. 

2renuencies for cylinder 203 - cycles per second. 

Axial 
nodes 

(rn +1) 

circumferential nodes (2n) 

4 6 8 10 

3xpt, 1,193 2,304 
Theory 1,240 2,430* 4,290* 6,805* 

Expt. 2,016 3,326 5,539 
Theory 2,045 3,300 5,425* 7,565* 

Expt. 3,436 3,752 6,245 
Theory 3,500 3,780 6,290 9,205* 

Expt. 5,088 4,568 6,585 9,919 
Theory 5,160 4,570 6,630 10,085 
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TABLE 13. 

Frequencies for cylinder 2D3 - cycles per second. 

Axial 
nodes 
(m + 1) 

Circumferential nodes (2n) 

4 6 8 10 

8xpt. 1,121 2,409 4,283 6,750 
Theory 1,190 2,280* 4,225* 6,750* 

Expt. 1,993 3,169 4,900 7,271 
Theor: 2,005 3,175 4,840* 7,185* 

:]xpt. 3,421 3,64 5,909 8,145 
Theory 3,475 3,607 6,135* 8,075* 

Expt. 5,041 4,453 6,372 9,292 
Theory 5,140 4,492 6,386 9,440°' 

TABLE 14. 

Frequencies for cylinder 2E3 - cycles per second. 

Axial 
nodes 
(m+ 7.) 

Circumferential nodes (2n) 

4 6 8 10 

Expt. 1,0'Ì:B 2,307 4,214 6,673 
Theory 1,175 2,220 4,200* 6,725* 

Expt. 1,958 2,897 4,605 7,038 
Theory 1,980 2,990* 4,575* 7,010* 

Expt. 3,309 3,423 5,314 7,586 
Theory 3,430 3,525 5,415* 7,560* 

Expt. 4,981 4,332 6,164 3,397 
Theory 5,120 4,325 6,225 8,445* 
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TABLE 15. 

Frequencies for cylinder 223 - cycles per second. 

Axial 
nodes 
(m +1) 

Circumferential nodes (2n) 

4 6 8 10 

2 Expt. 983 2,250 4,173 6,652 
Theory 1,065* 2,200* 4,180* 6,712* 

Expt. 1,925 2,666 4,428 6,830. 

Theory 1,925 2,720* 4,428* 6,908* 

4 Expt. 3,305 3,369 4,922 7,264 
Theory 3,420 3,350 4;970* 7,280* 

5 E)Cpt. 4,981 4,211 5,628 7,821 
Theory 5,110 4,250 5,875* 7,88(Y 

TABLE 16 

Frequencies for cylinder 21a3 - cycles per second. 

Axial 
nodes 
(m +1) 

Circumferential nodes (an) 

4 6 8 1u 

2,xpt. 939 2,199 4,126 6,593 
"theory 985* 2,187* 4,170* ,700 

Txpt. 1,891 2,498 4,301 6,732 
Theory 1,880 2,540* 4,340* 6,850* 

Expt. 3,303 3,138 4,657 7,057 
2heory 3,410 3,140 4,740* 7,120* 

Expt. 4,911 4,051 5,204 7,443 
Theory 5,10' 4,045 5,395* 7,545 
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TABLE 17. 

Frequencies for cylinder 3 - cycles per second. 

Axial 
nodes 
On + 1) 

Circumferential nodes (2n) I 

4 6 8 10 

2 

3 

3xpt. 
Theory 

Expt. 
'Theory 

Expt. 
'Theory 

]xpt. 
Theory 

900 
906 

1,865 
1,870 

3,290 
3,407 

4,898 
5,098 

2,190 
2,187 

2,426 
2,422 

3,000 
3,011 

3,951 
3,932 

4,104 
4,154 

4,244 
4,296 

4,571 
4',587 

5,012 
5,060 

6,550 
6,688 

6,704 
6,803 

6,982 
7, 01.0 

7,280 
7,331 

TABLE 18. 

Frequencies for cylinder 1A3 - cycles Der second. 

Axial 
nodes 
(m + 1) 

Circumferential nodes (2n) 

4 6 8 10 

Expt. 1,618 4,213 5,670 7,700 
Theory 1,625 4,300 5,525* 7,640* 

Expt. 2,305 4,433 8,115 12,759 
Theory 2,350 4,455 8,315 13,370 

Expt. 3,643 4,938 8,390 
Theory 3,7f0 4,910 8,630 13,600 

- 3xpt. 5,307 5,800 8,867 
'theory 5,480 5,800 9,140 13,9'x..) 
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TABLE 19. 

rreauencies for cylinder 1B3 - cycles per second. 

Axial 
nodes 
(m + 1) 

Oircunferentil nodes (2n) 

8 10 

" --]xpt. 1,575 3,153 4,600 7,200 
Theory 1,580 ,810* 4,475* 6,950* 

xpt. 3,254 4,357 7,300 8,850 
'heor .r 2,245 4,415 7, 050* ^, 715°` 

:]x t. 3,699 4,770 3,153 ;,319 
Theory 3,700 4,830. 9,345 12,125* 

1]xpt. 5,255 5,518 8,513 12,865 
2heor3,r 5,415 5,630 3,725 13,415 

TABLE 20. 

Frequencies for cylinder 103 - cycles per second. 

Axial 
nodes 

(:1 + 1) 

Circumferential nodes ( "n ) 

4 6 8 10 

::::pt. 1,474 2,767 4,486 6,871 
2heory l,52 , 2,430* 4,290* 6,805* 

Expt. ;J,211 4,173 5,764 7,935 
Th(-Jory 2,195 4,295 5,425* 7,3G5* 

. t. 4565 4,354 7,581 9, 62, 
2neory 3,670 4,555 7,665* 9,205* 

, Expt. 5,204 5,316 9,215 11,670 
2heory 5,350 5,348 8,405 11,600* 
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1 A3 -, 
21. 

3reauencies for cylinder 1D3 - cycles per second. 

Axial 
nodes 

(r + 1) 

Circumferential nodes (2n) 

4 6 8 10 

Mt. 1,324 2, 460 4,294 6,764 
Theory 1,410* 2,280* 4,225 ̀ 6,750* 

?xpt. .3,140 3,561 5,008 7,344 
Theory 2,160 3,505* 1,840* 7,185* 

xpt. 3,.451 :, '_41 3,291 8,300 
Theory 3,61u :,007 6,135- 8,075* 

711xpt. 5,124 5,085 7,705 9,657 
Theory 5,305 5,105 8,000x= 9,440* 

TABLE 22. 

2reauencies for cylinder 1E3 - cycles per second. 

Axial 
nodes 
(m + 1) 

Circumferential nodes (2n) 

4 6 8 10 

Expt. 1,168 2,319 4,225 6,6K 
Theory 1,200* 2,220* 4,200* 6,725* 

3xpt. 2,070 3,072 4,603 7,040 
Theory 2,100 2,990* 4,575* 7,010* 

Expt. 4,132 5, 41D 7,614 
Theory 3,545 4,295 5,415- 7,560* 

?rcpt. 5,060 ,I,,867 6,594 8,493 
Theory 5,245 4,890 6,675* 8,445* 
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TABLE 23 

FreQuencies for c linder 1F3 - e cles .er second.. 

Axial 
nodes 
(m + 1) 

CirctimferentinT nodes ( ) 

4 6 3 10 

Expt. 1,048 .) 259 4,167 6,633 
Theory 1,06 2,200* 4,1905° 6,712* 

Lxpt. ..,0J5 2,158 , 467 6,836 
Theory 1,990 2,720* 4,428* 6,908* 

Lxpt. 3,6K7 ,987 7,288 
Theory 3,520 3,800* 4,970* 7,280* 

Expt. 5,089 4,593 5,797 7,879 
Theory 5,190 4,615 5,875* 7,880* 

TABLE 24. 

Freouencies for cylinder 1G3 - cycles per second. 

Axial 
nodes 

(-.,_ + 1_) 

Circumferential nodes (`?n) 

4 6 8 10 

?apt. 967 2,217 4,140 6,607 
Theory 985* 2,187* 4,170* 6,700* 

Expt. 1,900 2,560 4,31b 5,750 
Theory 1,895 2,540* 4,340* 5,850* 

Expt. 3,390 3,257 4,724 7,100 
Theory 3,435 3,330* 4,740* 7,120* 

5 Expt. 5,050 4,280 5,320 7,517 
Theory 5,130 4,295 5,395* 7,545* 
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PART B. z,flAsUiEME NT OF AEPzITuT3J. 

(i) General remarks:- The most important single 

fact that has emerged from the investigation of the natural 

or free vibrations of cylindrical shells of variable 

thickness is the variation in shape into which the thicker 

portion of the cylinder is deformed during vibration. 

It has been shewn that, while in most instances such a 

cylinder behaves in a manner similar to one of uniform 

thickness, with the function representing the variation 

of the radial displacement along the length of the shell 

approximating very closely to a simple harmonic function 

of x whose wavelength is different in each portion, there 

are cases when the thicker portion is forced to vibrate 

at a frequency below the lowest (Rayleigh) frequency 

corresponding to its thickness ratio (at which the wave- 

length becomes infinite), and is deformed solely in 

virtue of the small forces and moments acting at the 

change of thickness due to the thinner part vibrating 

sinusoidally. 

It was, therefore, important to design and carry 

out a series of experiments which would supply the evid- 

ence necessary to support this contention. The measure- 
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ment of the amplitude of vibration presented certain 

difficulties which had to be surmounted - or circum- 

vented - by choosing suitable experimental eruipment 

and techninue. Of these two have to be pointed out as 

the most important; (a) the small order of magnitude 

of the displacement to be measured,. and (b) the diffic- 

ulty of maintaining absolutely constant conditions of 

vibration (e.g. the input frequency) for any but a very 

short period of time. 

(ii) Experimental apparatus:- The method em- 

ployed in measuring displacements involved a capacitance 

pick -up in conjunction with a Southern Instruments Ltd. 

pre -amplifier and gauge oscillator unit, the output 

being fed simultaneously into Cossor D.C. and A.C. cath- 

ode ray oscillographs. 

As ectional drawing of the pick -up head is 

shown in fig. 5, and a photograph of the complete set- 

up is included (plate II). 

An amplitude distribution function such as had 

to be dealt with in the present case, - namely, involv- 

ing point nodes along the length of the shell - would 

naturally have been best investigated with a point probe 

type pick -up; due, however, to the very small order 

of magnitude of the displacements a surface pick -up 
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was necessary to provide the requisite degree of sensit- 

ivity. The area and dimensions of the pick -up surface 

were designed to effect a most .efficient compromise be- 

tween these two consideration. The pick -up face was 

curved concavely with a radius of curvature eaual to the 

mean radius of the experimental cylinders, so that at 

all times, for all thicknesses considered, two approx- 

imately parallel capacitance surfaces were obtained. 

The oscillator and amplifier system employed 

are standard items of equipment developed by Southern 

Instruments Ltd. to measure rapidly varying pressure, 

force and vibration quantities using either variable 

capacity or variable inductance gauges. It consists of 

a radio frequency oscillator contained in a box (A)* 

located close to the pick -up head (B), and an amplifier 

(C) placed near the oscillograph recorders and the A.C. 

power supply; in this case two oscillographe were used: 

(a) the B.C. instrument to adjust the system initially, 

set the zero point and control the sati ̂ factory operation 

of the system throughout, and CO the A.C. instrument, 

which has a larger amplification, to indicate and measure 

the displacements recorded by the pick -up. 

The pick -up and the oscillator were connected 

* See plate II. 
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by a comparatively short coaxial cable, anf the oscil- 

lator and the amplifier were connected by a longer cable 

carrying H.T. and L.T. supplies to the former and the 

return H.P. signal to the latter. The amplifier was 

supplied from a valve stabilised power supply panel 

operated from A.C. mains and located in the amplifier 

box (C). 

(iii) Experimental procedure: - The cylinder 

was set into vibratory motion as described in Part A 

of this chapter. After eliciting resonance in the mode 

to be investigated, the pick -up was set at an antinode, 

and the gap, exciting force and amplification of the A.C. 

oscillograph adjusted for best operation. It is desir- 

able from the point of view of linearity of pick -up 

response and of elimination of any possible errors which 

might arise due to a small variation in the magnitude 

of the gap as the pick -up is moved along the cylinder, 

to make that gap as large as is consistent with the 

degree of sensitivity required. 

Not all natural .,lodes of vibration could be 

elicited with equal loudness, and the magnitude of the 

displacements which occurred in each varied within wide 

limits. In fact, only a proportion of modes which 

could be satisfactorily identified involved displace- 

ments large enough to be recorded by means of the 
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equipment available. In many of those, to make investi- 

ation possible, the input power to the exciting magnet 

had to be considerably increased (higher power amplifier 

output - see part A), or the amplification of the cathode 

ray oscillograph made greater, or both these applied 

at once. The decrease in the size of the pick -up gap 

also, of course, made for higher sensitivity. 

It must be borne in mind that excessive power 

input to the exciting magnet, if it did not actually 

affect the response of the magnet itself, could lead to 

the responding in more than one mode, and even to 

a certain amount of non- linear vibratión. Too great an 

in involved the presence 

of some considerable "hum" which rendered accurate measure- 

ment almost impossible. These considerations, together 

with the limitations imposed upon the size of pick -up 

gap - i.e., in fact, the intrinsic sensitivity of the 

apparatus, - all played a part in the initial setting -up. 

As can be seen in plate II, the pick -up head was 

constructed to move along the cylinda;r on a key -way in 

a circular section bar running parallel to the axis 

of the shell; it could be moved in the radial direction 

- to vary the gap - by means of a fine thread adjusting 

screw bearing on the bar of spring steel which supported 

the head (a coarse adjustment for the gap was available 

di 

4 

1 
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by sliding the complete head in its holder). 

When the initial setting -up was complete, the 

trace on the D.C. oscillograph screen was brought to the 

centre of the screen by operating the tuning adjustment 

of the discriminator circuit in the pre -amplifier unit. 

This position now fixed the gap size. 

The procedure now was to take readings at regu- 

lar, say 2 inch or less, intervals along the shell by 

moving the pick -up along the shell. The intervals were 

sometimes reduced, as, for instance, in the vicinity 

of nodal or antinodal points, in order to locate these 

with greater accuracy. 

Once the initiál setting -up had been carried 

out as described, the gauge oscillator, pre -amplifier 

and cathode ray oscillograph controls remained unchanged. 

At each position of the pick -up, a small adjustment of 

the gap was usually required to bring the trace on the 

screen to its original position, thus ensuring that the 

gap was identical for each reading. 

As there was always a slight risk of some "drift" 

in the audio frequency oscillator, at each position of 

the pick -up it was ascertained that the input frequency 

did in fact produce maximum amplitude of vibration in 

the cylinder, i.e. that there was resonance; if neces- 

sary, the input frequency was slightly adjusted. 
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Rather than measure the height of the trace on 

the screen, it was found much more convenient and indeed 

more accurate to measure the voltage between the plates 

of the C.R. oscillograph on an AVO-meter or other ex- 

ternal voltmeter. For purposes of illustration, how- 

ever, photographs were taken of the C.R.O. record with 

the Cossor attachment camera. The technique was to 

s,,:ritch off the time -base, move the beam the same small 

distance horizontally along the screen for each reading 

along the cylinder,'and take a series of exposures on 

the same frame of the 35 mm. film. Three representa- 

tive photographs are shown in figs. 34, 35 and 36; they 

were obtained for the following cases:- fig. 34 for 

mode n =2, m =1, of cylinder 3 (uniform); fig. 35 for 

mode n =3, m =1, of cylinder 1D3; fig. 36 for mode n =2, 

m=1, of cylinder 2E3. 

Voltmeter readings are plotted in the form of 

displacement curves in figures 22 - 33. No attempt 

waa made to measure absolute magnitudes of the displace- 

ments, and the vertical scales are therefore arbitrary, 

chosen to give in all cases a clear picture of (1) the 

characteristic features of the curves, and (2) the 

wavelength and nodal points. 

By no means all the modes whose frequencies had 

been elicited could be investigated from the point of 
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view of their amplitude distribution. In many, par- 

ticularly the more complex, of them the displacement 

was too small to enable a significant record to be ob- 

tained. On the other hand,. no useful purpose would be 

served by including here all the records which the author 

was able to obtain in the course of this part of his 

investigation. Figures 22 to 33 serve to illustrate 

in the fullest possible way the manner in which thin 

cylindrical shells of variable thickness deform during 

vibration; they are. arranged as follows: - 

Fig. 22 shows the mode n. = 2, m = 1, for cylin- 

der 2B3 (L, = 4L, L3 = 4L); here the deflection form 

is composed of two sine- waves, whose wavelengths are 

measured and compared with the theoretical value. 

Fig. 23, for the same cylinder, shows the form of vib- 

ration for m = 1, and n = 3, 4 or 5; this form is the 

same for all three modes,. and illustrates the case of 

the complete cylinder vibrating at a frequency below fR 

of its thicker portion. 

Figures 24 and 25 respectively refer in a similar 

fashion to cylinder 2D3 (L:) = L3 = 'L), and fig. 26 and 

27 to cylinder ?23 (L2 = çL, L, = W. 
Figures 28 and 29 illustrate some higher modes 

of vibration with sinusoidal wave -form. 

Finally, fig. 30 31, 32 and 33 show modes with 

.. 
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m = It 2, 3 and 4 respectively for cylinders 1D3 and 2D3, 

and various numbers of circumferential nodes. 
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4. D I S C U S S I O N . 

At the end of parts A and B of Chapter 3 there 

are collected experimental values of natural frequencies 

and records of axial vibration forms respectively. 

Tables of natural frequencies were given priority of 

place, because the calculation of these was the object 

of this research; at this stage, however, it will be 

of benefit to the logical and orderly discussion of the 

results of this investigation to consider first the im- 

plidati)ns of the theory with regard to the manner of 

vibration of shells of variable thickness, and the extent 

to :which the experimental findings agree with theoretical 

predictions. 

In its simple fundamental aspect, the theory re- 

duces, firstly, to the simplification of the complex 

three -dimensional problem of a shell to the analogous 

one -dimensional case of a beam (in the modes of vibration 

considered in this work radial displacements are strongly 

predominant (1) over those in the axial and tangential 

directions), and, secondly, to applying to the simplified 

problem Rayleigh's principle of assuming an approximate 
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vibration form. 

Thus, to begin with, a simple harmonic vibration 

form 

w =Wsinl 
is assumed for each portion of the cylinder. It gives 

the frequency equation (5) of Chapter 2:- 

tan L1 
tan I' 

tt It ti 

Although the assumed function is simple (remem- 

bering that the exact expression would be a series), 

very accurate values of natural frequencies are obtained; 

since, in solving the above equation, both L, and L. are 

determined, the physical and dynamic characteristics of 

the shell (as opposed to those of a beam) are allowed for 

in the fullest possible way. The manner in which the 

cylinder vibrates under these conditions is illustrated 

in figures 22, 24, 26, 28 and 29, where theoretical values 

of l (obtained from equation (5) of Chapter 2) are given 

for comparison. 

When a mode of vibration cannot be calculated 

from this equation, due to the fact that only the value 

of it (for the thinner portion) is available, - the fre- 

quency being below the Rayleigh frequency fR for the 

thicker portion, - a more general vibration form must 

be assumed. As explained in Chapter 2 and Appendix II, 

this is achieved by taking for the thicker portion 

7- 



- 55 - 

wl= Asinti` +C sink , 

where L, is real and unknown, and is determined together 

with the other unknown constants from the conditions at 

the point of change of thickness. This leads to the fre- 

quency equation ( 9 ) of Chapter 2: - 

tan ILL = -L . 
t, 

In this case no reference can be made to the f /X. 

curve for the thicker portion (portion 1), and the approx- 

imation to a beam is, therefore, even more complete. 

Consequently, since the vibration form in the thicker 

portion is now independent of the number of circumferen- 

tial nodes, the sine -wave in the thinner portion will 

have the sarcle vravelen: th (determined by L2 , as obtained 

from equation (9) of Chapter 2), irrespective of n. In 

fig. 23 such a vibration form is shown; only one curve 

is drawn for n. = 3, 4 and 5, since experimental records 

for all these modes were congruent. Further illustrations 

are supplied by figures 25,. 27, 30, 31, 32, and 33; the 

last two of these strikingly demonstrate the confinement 

of the axial nodal pattern to the thinner portion. 

Figures 30 to 33 are not only drawn for more than 

one value of n; each of them represents in addition 

two curves - one for cylinder 1D3 and the other for cyl- 

inder 2D3 - which for the modes under consideration were 

found to be exactly similar. This confirms that, as 
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stated in equation (9) of Chapter 2, the form and fre- 

nuency of vibration of the shell are independent of the 

thickness of its thicker portion, provided, of course, 

the natural frequency falls below fR for the thicker por- 

tion. 

If we have a cylinder consisting of two portions 

of different thickness,, and its vibration form for some 

value of n and m = 1 is, sayt as shown in fig. 30, then 

by gradually decreasing the larger thickness while keep- 

ing the thinner portion unaltered, we should bé able to 

observe the transition of the vibration form to that 

shown in fig. 22,. say, where there is a sinusoidal amp- 

litude distribution in each portion. 

A series of experiments designed to show this 

progressive variation in the vibration form were carried 

out on a special cylinder of the following dimensions:- 

L = 7.770 in., hl = 0.1010 in., 

h2 = 0.0505 in., 

a = 1.9245 in. 

Keeping all other dimensions constant, thickness 

hl [(i)1 was altered to (ii) 0.088 in., (iii) 0.0'76 in., 

(iv) 0.067 in., (v) 0.059 in., and finally (vi) 0.0505 in., 

- giving a uniform cylinder. Records of amplitude dis- 

tribution obtained for these successive 
cylinders, for 

the mode n = 4, m = 1, are shown in fig. 37. In order 

L1 = L2 = ' L, 
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to show more clearly the result of varying the ratio of 

thicknesses, all the curves are plotted in the sane fig- 

ure. In the first three curves the wavelength of the 

sinusoidal part of the curve is clearly seen to remain 

unchanged; the frequencies corresponding to these cases 

were in fact practically constant, being foumd to be 

2,750, 2,730,. and 2,700 cycles per second respectively; 

the waveform in the thicker portion is gradually becoming 

less curved. By a suitable choice of hl in curve (iv) 

the crucial point of transition from one waveform to the 

other is almost exactly hit upon; the frequency has 

come down to 2,560 c. p. s. , the wavelength in the thinner 

portion has correspondingly increased, and the waveform 

in the thicker portion is not much different from a 

straight line (in fact,. the form is sinusoidal with a 

large wavelength); on calculating fR for h1 = 0.067 in., 

and a = 1.9245 in., it is found to be 2,533 c.p. s. Curve 

(v) . shows the waveform to consist of two near sine - waves, 

and curve (vi) was obtained for the final uniform cylin- 

der and is purely sinusoidal. 

It will be appreciated that the -point of tran- 

sition,. viz. the ratio of thicknesses which allows the 

cylinder to have as one of its natural frenuencies a 

value very close to that of fR of its thicker portion, 
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will not occur simultaneously for all values of n. 

This is due to the fact that the Rayleigh frequency 

for the thicker portion for different values of n will 

not correspond in all cases to the same value of T. 

on the f/x curve for the thinner bortien: this has 

already been mentioned in Chapter 2, p. 20. 

Considering the physical interpretation of the 

behaviour of a shell of variable thickness in instances 

where its natural freuency lies below fR for its thicker 

portion, the deformation to which that portion is subjec- 

ted must be viewed as resulting from a forced vibration 

into which it is set by the small forces and moments 

acting at the change of thickness by virtue of the free 

vibrations of the thinner portion. We might be tempted 

to study such cases from the point of view of the thinner 

portion only,, by considering it to have an end condition 

intermediate between free and fixed at the change of 

thickness. The danger in such reasoning lies in the 

extreme conditions which would logically have to be taken 

into account: by putting the thickness of the thicker 

portion equal to zero, a free end is obtained - this pre- 

sents no difficulty; the other extreme, however, i.e. 

that of a large thickness, giving complete 
fixing to 

that end of the thinner portion, is incompatible with 
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the assumed characteristics of a thin sh 11, as already 

stated in Chapter 3, D. 23. 

The inspection of figs. 22 to 33 will show that 

the assumptions concerning the waveform, and the values 

of wavelength obtained from frequency equations are fully 

corroborated by the experimental findings. 

Finally, as regards the values of natural fre- 

quencies themselves, the agreement between experimental 

and calculated results is complete and universal. The 

accuracy is not of the same high degree in all cases, 

end some comment must be made on the subject of sources 

of discrepancy. 

In general it may be said thrt, although every- 

where góod, there is an improvement in the accuracy of 

calculated values when the ratio of the length of the 

thinner portion to the total length of the cylinder be- 

comes at least 3, and there is hardly any discrepancy 

between experimental and calculated frequencies when 

that ratio is ë or more. Further, frequencies obtained 

using the modified beam analogy method are on the whole 

slightly less accurate than those for which a value of 

could be determined in each portion; comment has already 

been made on this on p. 54. 

More particularly, the greatest inaccuracies are 
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to be observed in results for n = 5 of cylinders 1 - 

and 1 - 3; for that, however, there is good reason. If 

we look first at Table 1, p. 32,. in which natural fre- 

quencies of cylinder 1 are listed, discrepancies between 

experimental and theoretical results (which, in this 

case, are calculated from the exact frequency equation, 

as derived by Arnold and Warburton) for n = 5 are fairly 

large, of the order of 5.5 per cent. The method devel- 

oped in this work, by its nature and basic assumptions, 

cannot at any time be in better agreement with experiment 

than the underlying exact theory. From the examination 

of Tables 2, 3 and 4 (p. 33 et seq.) especially, and, 

similarly, Tables 18 and 19 (p. 40 and 41), it will be 

seen that the corresponding discrepancies do not in fact 

exceed 5.5 per cent. in the modes considered, and follow 

exactly the pattern of the discrepancies in the uniform 

cylinder. Further, wherever for n = 5 in those cases 

the modified beam analogy method has to be used, it is 

then found to be nearer the experimental results than 

the full method: it will be remembered that those values 

are obtained without reference to the fA curve for 

thickness 1. 

Cylinder 1 was made of thickness 0.250 
in. (p. 21) 

in order to make available a suitable range 
of smaller 
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thicknesses to be investigated; this gives a thickness 

ratio « = 0.120, which is somewhat higher than 0.10, 

usually accepted as the upper limit of shells termed 

thin. This must account for the relative inaccuracy of 

experimental results for that cylinder. By comparison, 

a marked improvement is seen in results for cylinder 2, 

and for cylinder 3 a nearly perfect agreement of exper- 

iment with theory is reached. 

Considering finally various numbers of circum- 

ferential nodes, n = 3 appears to provide experimental 

values closest to those obtained by cale 1ation; even 

when the ratio of the length of the thinner portion to L 

is small,. very good agreement exists - cf. here Tables 

2, 10 and 18 (p. 32, 36 and 40 respectively); mention 

has already been made above of some instances of n = 5, 

and it remains now only to remark on some variation occa- 

sionally discernible in modes with n = 2: once more re- 

ference must be made to the paper of Arnold and Warbur- 

ton, who encountered in their experimental work the fact 

of a certain amount of divergence for that particular 

value of n. 

The overall average agreement between experimental 

and calculated values of natural frequencies 
is to within 

about 2 per cent., but in most cases 
it is even closer. 
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It is proposed in the next future to extend the 

present method of solution to cover the general case of 

a cylindrical shell consisting of any number of portions 

of different thickness; special consideration will have 

to be given to the modified beam analogy part of the me- 

thod: already the natural frequencies of such a shell, 

which are higher than the Rayleigh frequency of its thick- 

est portion, can be obtained by the process of "fitting 

together" successive sine -waves with wavelengths corres- 

ponding to the same frequency but different thickness 

ratios, starting from w = 0 at one end, in such a way as 

to obtain w = 0 at the other end. In addition to evol- 

ving the general method of solution, a comprehensive 

experimental investigation will have to be carried out. 

: 
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APP T'';DIX I. 

List of Frequently nployed Symbols. 

a mean radius of cylinder. 

A, B, C,.:D constants in beam analogy theory. 

E Young's modulus. 

f = /2 frequency. 

fR frequency of cylinder of infinite length (p. 12). 

?,G,H,K constants in beam analogy theory. 

g acceleration due to gravity. 

h thickness of cylinder. 

K coefficients in frequency equation for uniform 

thin shells. 

half the axial wavelength, when w = '.J sin !`25 

L length of cylinder. 

L1 etc. lengths of portions of cylinder. 

m number of axial half -waves, or number of axial 

nodes minus one. 

n number of circuaferential waves. 

p = 2rtf circular frequency. 

t time. 

u, v,1`ß, componenet displacements of a point on the 

middle surface of the shell. 

U, V,W functions of time, proportional to cos pt. 
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1 constants in "slope and deflection" method. 

co-ordinate direction along the axis of the 

cylinder. 

thickness ratio of cylinder. 

axial wavelength factor. 

density. 

Poisson's ratio. 

angular co- ordinate. 

Q 
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APPENDIX II. 

Mathematics of Solution. 

1. Cylinder "slope and deflection" method. 

It will be profitable first of all to go over 

briefly the theory of free vibrations of thin cylindrical 

shells with freely- supported ends. The analysis has been 

carried out in detail in the paper by Arnold and Warbur- 

ton (1), and here only the more important steps and re- 

sults will be quoted. 

The authors derive the frequency equation using 

the energy method. First, stresses acting on a small 

element of the shell are expressed in terms of the three 

componenet displacements u,. v, and w, and their deriv- 

atives (Love, p. 529 et seq.). These displacements are 

taken as:- 

u = U cos n$ cos mLx 

v = V sin n4) sin , 

w = W cos n4 sin LX 
, 

where defines the angular position of the 
point con- 

sidered, n andin are respectively the number of 
circum- 

ferential and axial wavelengths, U, V and 1 are functions 

of time only, and L is the length of 
the cylinder. 

;. 



-66 - 

The above expressions satisfy the conditions at the 

ends of the shell and the general equations of vibration. 

The strain energy S of the deformed cylinder 

and the kinetic energy T at any instant can now be 

expressed,. and. since U, V and W are independent vari- 

ables, the Lagrange equation is applicable. This gives 

d ¡arj ar __as 
di, 

ll au 
11 
- 0w au 

and two similar equations in V and W. 

We can write 

'J= A cos pt. 

V = B cos pt,. 

W = C cos pt,. 

(1.3) 

where A,. B and O are constants, and 13/2x the natural 

frequency of vibration. Eliminating At B and O from 

the three Lagrangian equations, the frequency equation 

is obtained. This is of the form 

where 

2 - KzOz + K, L\ - K0 = O , (1.4) 

0 Pß2(ß -G2) 
Eck 

and the coefficients K;, K1 
and Kp are given by:- 

2 
(1.5) 
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K0 = 2(1-Q)2(I+0 Î14 + (I -a-) 

xf(À2+n2) 4 -Z(4-v2)4n2-82n4-Zn6 

`+4(1-a-2)%4+4%n2 +n41 , 

= 2(I-Q)(k+n2)2 + 1(3-c-2Q2)g + 2(I- n2 

+p[ 2 (3 - +n1Y + _ ( 2 _q2))611 

-1(3+cr)(14+2(1-c)); +n21 

_ + 2(3-Q)(X+n2) 
+ß[02:+n1)2+ 2(1-a-) + n2 

I'1 

Y2 

in which 

hR 

P =12a2 

(1.6) 

(1.7) 

(1.9) 

Equation (1.4) is a cubic in A, and gives 

three values of frequency for e ̂ ch nodal arrangement. 

In this thesis only the lowest of these was considered, 

the two remaining lying beyond the aural range. 

Consider now a cylindrical shell such as is 

shown in fig. 3. 

Referring to expressions (1.1), let the radial 

displacement in portion 1 be given, apart from factors 

depending on 4 and t., by 

w1 = W1 sin l 
and in portion 2 by 

tT? = sin125, 
4 

(i.n) 
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where L with the appropriate suffix is half the wave- 
length and gives,, from expression (1.9) X = na 

I 

Now, taking for each portion the origin of co- 
ordinates at its supported end, we have at the change 
of section 

and 

Tiente 

and 

wl = 
W2 Y 

dur, 

dx dx 

Wl sinxlL' = ,Y2 sinn 1, 2 
- cOs Ri 

= - ̀̀  coSL1 1 2' 
12 

f 

giving, after eliminating 'i and W2 

tan,LZ_ -L'tan ' 

l2 1.1 t, 

(1.12) 

(1.13) 

(1.14) 

which is our frequency equation. t, and 1Z must satisfy 

this equation by being chosen so that they give XI and 

X2 corres-ponding to the same frequency (obtained from 

frequency" curves for the value of n required). For 

any one value of n frequencies for successive modes - 

with an increasing number of axial nodes - will be ob- 

tained by taking solutions with the values of the tan- 

gents located in successive quadrants. 

For the limiting case, i.e. when, say, L1 = 0, 
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and consequently L = L2, we have from eouation (1.14) 

tan il 2 = 0, 

1.e. 2 = l 2 3, 4... etc., 

which is the case of a uniform cylinder (similarly, 

of course, when L2 = 0). 

2. Bean ana l og ,* theory. 

In the theory of lateral vibr tions of bars or 

beams (5) we have the general differential equation of 

motion 

ó2 32y Ì YA a1y 
ax2[I 8x2 j - - 9 a-t1 

, (3.1) 

where EI is the flexural rigidity of the beam, 

A the cross -sectional area, 

y the weight of material per unit volume. 

when the flexural rigidity does not 
change 

along the length of the beam, we may ,.rite the equation 

as:- 

LIa 4+ 9 
a{z 

= 0, 

Or 
Q2 á + âx2 = 09 

2 Elg 
where a-' = 

Ay 

All particular solutions 
of equation (2.2) 
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will consist of a function of the co- ordinate x and a 

harmonic function of time cos pt or sin pt, where p 

determines the frequency of vibration. 

Using the notation 

132_ p2AY = k`i 
a2 - El9 

the general solution of equation (2.2) apart from the 

function of time multiplying it, is seen to be 
ry.n- 

X = A sin kx + B cos kx + 0 sinh kx + D cosh kx, (2.3) 

in which A, B,. 0 and D are constants determined from 

boundary conditions for each particular case. 

Let us now consider a beam as shown in fig. Al. 

E Iz E I, 

p 

Lz 

S 
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It consists of two sections of different flexural 

rigidity, and is freely- supported at the ends P and R. 

The change of section occurs at S. 

Let us orrice more for the purpose of this analysis 

treat each portion from an origin of co- ordinates situ- 

ated at its supported end. 

Then we shall have for portion 1 

(X)1 = A sin klx + B cos k-ix + C sinh k1x + D cosh klx, 

and for portion 2 

(X)9= P sin kx+Gcos k.7x + H sinhkJx+K coshk2x. 
^ 

Por the condition of freely- supported ends we 

have at P and R 

(i) X = 0, 
2 

(ii ) áX - 0, 

and hence immediately 

(X)1 = A sin klx + C sinh 

(X)< = i sin k:-,x + ii sinh k 9 x. 
J J 

(2.4) 

(2.5) 

Now in applying this method to the case of 

cylindrical shells, let us for the sake of simplicity 

assume that the displacement function 
in the thinner 
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portion is sinusoidal (as in the previous case), and 

we thus take 

w2 = F sin its 
t2 

(2.6) 

where tit, as before, is half the wavelength and supplies 

the value of X2, since \z= . 

For the thicker portion we thus have 

w1 = A sin 1 + C Binh nx , 
t, t, (2.7) 

where t, is unknown and has to be determined together 

with A, C and F from the remaining four boundary con- 

ditions, i.e. those at S. They are concerned with the 

displacement, slope, bending moment and shear force at . 

the change of section, and can be expressed as follows:- 

(i) (Wl) _ (w2) 

(( 

dur fdurtl 
(11) Ldx x=L, - -Ldx 

1w, 
ll 

tl (iii) EIltdxtJx=L; EI2 
Ldyd1 K1Jx=L2 

(j 
a l á3t02 (iv) Jlltriz 

1 
=-EI2 

X3 LdJx=L2 

Hence we have:- 

AL2 
A sin`i + C sink l = i' sin l , (2.12) 

,tL1 
[Ai_cos 

1, 
+ C cosh ' = 1 

cos 
ßl2 

, (2.13) 
nLi 1tLL, 

i F1 -r1=1. ,. 

l [-A sin 
b, 

+ C sinh _ - 
l2 

sin It (2.14) 

L A cos i + C cosh -171- tip cos nie , (2.15 ) 
1, 
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From equations (2.12) and (2.14) we obtain 
2 

I' 
12 

`-l. sin 117-, ' + sinh'l = -(A sin /I-172 + C sinh' 
LL 

1 L ' 
2 

or, putting I' l2 - c, ' 

(c + 1) C sinh = (c - i) A sin- '. (2.15) 

From equations (2.13) and (2.15) we obtain 

c [-A cos ¿ + C co shnl ,l 

Hence 

cos - + C cosh`L'1 
t, t, 

(c + 1) C cosh- ' _ (c - 1) A cos-. 

C (c - 1) sin i' (C- I) cos nL 

A (c+ i) Sínk ' (c+ I)cosh nl' 

and 11 is given at the same time by 

(2.17) 

(2.18) 

tan n '' = t anh ti , (2.19) 

i.e. - 5, 4 
5" etc., (2.2o) 

from which follows that tan l'= 1. (2.21) 

Anally consider equations (2.12) and (2.13) :- 

c nL n ,CL2 

l 
+ Á si A[ sin nh l = l sin 

l2 
, 

A( n C "IL F nL2 cos l + csh - l2cos l2 l,L 

from T.rhich,. by division:- 



where 

- `7,1 - 

tan ILI. Li 
sin L + ;Cat Sinh 

t 
' 

12 l2\. cosnL, + ç co51,11=' 
1, A t, 

n` 

- 
lzd 

d sìn 

c4r, 
¿, 

L, 

But from (2.20) 

and, therefore,. 

d = 1 + 
c 

I 

c+I 

sin ILL = cos L' 
ti i ' 

tan -L2= - t. 

1, t1 
(2.22) 

This is the frequency equation, since, when 

solved for 1,2,. the required frequency can be obtained 

from the appropriate f/X curve, taking X2 =r2 

and 

and 

For the mode m = 1, 

l,. 

=SL . 

For the mode m =' 2, 

2n 
1L22 

12 

t, =gL1 , 

and so forth for higher modes. 

It will be observed that equation (2.22) is 
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consistent with equation (1.14) for the case of sinus- 

oidal amplitude distribution in the whole shell. 

The latter states 

tan 2 = - 
l, RL 

l2 l2 
l 

and when the condition determining t, for the present 

case (where the wavelength in portion 1 is no longer 

real) is taken,. i.e. tan/ki= 1 (2.21), we see that 

equation (2.22) is obtained. 

As L1, and hence 1, , decreases, the frequencies 

approach those for a uniform cylinder of thickness 10, 

until, when L1 = 0, and hence t, = 0, and L = L2, 

0, 

L2 = 1, 2, 3, 4 ... etc., 
l2 

i. e. 

which is the case of a uniform cylinder. 

No significant answer is forthcoming from putting 

L2 = 0, because any displacement in portion 1 is possible 

solely in virtue of the motion of portion 2. 
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APPENDIX III. 

Specimen Calculations. 

Although the method developed for the calcul- 

ation of natural frequencies of vibration of the type 

of cylindrical shell considered in this thesis has been 

explained in detail in Chapter 2, it is desirable to 

illustrate the technique of its application by actually 

working out numerically some typical examples. 

Let us, for instance, take cylinder 2A3, in 

which, according to our notation:- 

L = 17. 5625 in., h2 = 0.1875 in., 
J 

L 
2 

= 15. 3672 in., h3 = 0. 1250 on., 

L3 = 2.1953 in., a = 2.0725 in., 

and hence 

al= 0.0905, m5= 0.0603. 

71e must have previously calculated natural fre- 

quencies for each of the two uniform shells of thickness 

ratio 0,2 and a3 respectively, with, for convenience, L = 

= 17.5625 in., from equation (1.4) of Appendix II. These 

are plotted against N (=I ) for n = 2,. 3, 4 and 5, say, 

and for an adequate range of m, say m = 1 to 6. These 

curves are shown to a small scale in figs. A2, A3, A4 

and A5. L 
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Suppose we wish the frequency of cylinder 2A3 

for n = 3, m = 1 (where m now represents simply the 

number of nodes minus one), which is the fundamental 

mode of vibration of the shell with six circumferential 

nodes. We know that the frequency must lie between 

3,271 c.p.s. (frequency for cylinder 2) and 2,187 c.p.s. 

(frequency for cylinder 3), and be fairly near the for- - 

mer. 

The frequency equation (1.14) of Appendix II 

for this case becomes 

tan 
1.3 ,3 t2 

395.154° _ _ tit tan 2760 078 

We remember that 

l =l`O' 

Assume the required frequency to be 3,250 c.p.s. 

Then from fig. A3 we obtain:- 

Xi = 0.275, l2 = 23.676, 
giving and 

L3 
= 4.431. 

X3 = 1. 2185, L3 = 5.343, 

and lut = 6.5109. 

Hence 

L.H.S. = 3.487, R.H.S. = 8.770. 

`Te see that the frequency is too low. Try, 

therefore, f = 3,260 c.p.s. Then, as before, 

ñ,q = 0. 325, 

X3 = 1. 223, 

l2 = 20.034, 

1.3= 5.324, 

t2 
= 3.763. 

1,3 
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Hence 

L.H.S. = 3.534, R.H.S. = 3.388. 

By interpolation we obtain f = 3, 259.8, or, 

practically, f = 3,260 c.p.s. 

It will be seen that a guess of frequency which 

is considerably remote from the required value will be 

detected very readily. If the frequency is too high, 

the values of t2 and l3 obtained will indicate the presence 

of one or more axial nodes in the length of the cylinder; 

if it is too low, the frequency equation will not be 

satisfied. 

The way in which nodal points are immediately 

indicated by the values of l2 and 13 will be illustrated 

by the following calculation, which will be carried out 

without further explanation. 

Still with reference to cylinder 2A3 and n = 3, 

suppose the frequency of 3,450 c.p.s. is assumed; then 

we have 

X2= 0.690, 

X3= 1.300, 

L.H.S. = 5.097, 

t2 = 9.436, 

1.5= 5.008, 
= 1.884. 

L, 

R. H. S . = 4.417. 

Assume then f = 3,425, which gives 

X2= 0.670, 

X3= 1.285, 

L.H.S. = 4.705, 

t2 = 9.718, 

13 = 5.067, 

l2 
= 1.918. 

t3 

R.H.S. - 7.363. 
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By interpolation we have f = 3,447 c.p.s. as 

a natural frequency of vibration of the cylinder, and 

the values of 1, and 13 show that the mode is one with three 

axial nodes, i.e. m = 2. 

Consider now cylinder 2E3, in which 

L2 = 6. 5859 in., and L3 = 10.9766 in. 

Suppose, once again, the frequency required is 

for n = 3,. m = 1. The frequency equation is for this 

case 

tan 1975.770° 
lY tan 1165.462° 

13 13 12 

We find, however, that the first solution gives 

f = 1.980 c.p.s., which corresponds to m = 2. This 

signifies that the modified beam analogy method must 

be used. Accordingly, we put. 12= 5 L2, and we have our 

frequency equation 

t.an 
(975770° = 5.2.6672 

13 12 

which yields as the solution 15 = 12.570. This gives 

X3 = 0.518, which then, 
from fig. A3, supplies the fre- 

quency for n = 3, m = 1, as 2,220 c.p.s. Applying this 

value of X3 to fig. A4 and A5, we can obtain at the same 

time frequencies of 4,200 c.p.s. for n = 4, and 6,725 

c.p.s. for n = 5, respectively; applied to fig. A2, 

X3 = 0.518 gives f = 1,200, which is above 
fR for cylin- 
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der 2: in fact, for n = 2, the original equation sup - 

plies a 8ólution for m.= 1, giving a frequency of 1,175 

c.p.s. 

We find that for n = 3, m = 2, as well, the mod- 

ified beam analogy must be used. This time l2 = g L2, 

and the value of the tangent. is in the fourth ouadrant. 

We have 

tan 1975.770' Z927O(0 , 
13 1.3 

which gives for n = 3,, f = 2,990 c.p.s.: for n = 4,. 

f = 4,575 c.p.s.; and for n = 5, f = 7,010 c.p.s. 
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