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Abstract 

The mechanisms regulating cell-layer organisation in developing plant organs are 

fundamental to plant growth, but remain largely un-investigated. In order to 

understand the signalling pathways potentially involved in this process, the receptor 

kinase-encoding ARABIDOPS1S CRINKLY 4 (ACR4) gene was studied. ACR4 

expression is restricted to the Li/outside cell-layer of most meristems and organ 

primordia, including those of the ovule integuments. Mutant analysis shows that 

ACR4 is required for regulation of cellular organisation during the development of 

sepal margins and ovule integument outgrowth. 

ACR4 encodes a protein that in ovules, and possibly other tissues, is abundant in 

anticlinal and the inner penclinal plasma membrane of "outside" cells. It is proposed 

that ACR4 may be involved in maintaining Li cell-layer integrity in aerial organs by 

receiving and transmitting signals from neighbouring Li cells and/or from 

underlying cell layers. In order to discover additional components involved in this 

process a mutagenesis screen based on the acr4 line was carried out. Potential 

enhancers of the acr4 phenotype were identified and selected for future analysis. 

In order to further investigate the molecular mechanism of ACR4 function a 

comprehensive functional dissection of the ACR4 protein was carried out, based on 

the ability of deletion derivatives to complement the mutant phenotype. This has 

permitted identification of functionally important domains of ACR4 and the 

formulation of a functional model for ACR4 as a partially redundant component of a 

developmentally crucial signalling pathway involved in the maintenance of Li-layer 

integrity throughout Arab idopsis development. 
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1.1. Introduction 

The question here is the way in which the outside cell layer is specified and 

organised in Arabidopsis thaliana. In order to address the question the current field 

of knowledge will be explored. Firstly a general introduction will be given as to the 

layered structure of Arabidopsis to show how this body plan is set up and maintained 

(Section 1.2). Next the outside cell layer will be investigated in more detail, 

highlighting the specifications which must be developed for proper functioning. The 

importance of cell layer specification and maintenance of layer integrity will be 

shown (Section 1.3). Thirdly the mechanisms involved in signalling between cells 

will be addressed. Proper cell-cell communication is important for the specification 

and organisation of cell layers. One important means of signalling in many 

biological systems is through the action of receptor kinases. The characteristics and 

behaviour of these molecules will be presented (Section 1.4). Finally the lessons 

learned above and parallels drawn from other organisms will be applied to the 

specific question of outside layer specification and organisation in Arabidopsis 

(Section 1.5). The focus and questions raised in this thesis will thereby be set out. 
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1.2. The functional importance of a layered structure in the plant body 

1.2.1. Plant cell-layer patterning during development 

Most angiosperm development occurs post-embryonically, however the basic 

patterning elements of the plant body, an apical/basal pattern and a radial layered 

pattern, are set down during embryogenesis (reviewed in Jurgens, 1992; Jurgens, et 

al., 1995; Souter and Lindsey, 2000; Jurgens, 2001; Paquette and Benfey, 2001) 

(Fig.I. 1). In this introduction the development of Arabidopsis thaliana will be the 

focus, although applicable examples and important paradigms from research in other 

species will also be discussed. 

The Arabidopsis embryo develops from a fertilised egg (the zygote) which is 

situated within the embryo sac contained in the ovule (see Chapter III, Fig. 111.3 for a 

schematic of ovule development). Embryogenesis starts with elongation of the 

zygote followed by an asymmetric apical-basal cell division (Mansfield and Briarty, 

1991). The smaller basal cell then divides and develops into the suspensor which 

attaches the developing embryo to the plant. The apical cell divides and develops 

into the embryo proper through a sequence of divisions which is highly reproducible 

in its early stages. This is the first manifestation of the apical/basal patterning of the 

embryo; during mature plant growth this apical/basal axis is also particularly 

important for pattern formation. During the subsequent growth of the embryo a 

radial pattern of organisation is established (Fig.I.2). This pattern first becomes 

evident at the 16 cell stage when cell division generates an embryo with an inside 

cell layer and an outside cell layer. Interestingly, as will be discussed in Section 

1.2.3, differential expression of certain genes can be detected between the inside and 

outside layers at this stage. Prior to this stage these genes were either expressed in 

all eight cells of the embryo or not expressed in any. This inside/outside 

differentiation is thought to be one of the first cell specification events during 

embryogenesis (Jurgens, et al., 1991). The distinction is elaborated on during 

development and thus early events are critical for proper plant patterning. 

3 
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Figure I.I. The major patterning elements in Arabidopsis development are set down during 
embryogenesis. This schematic shows the corresponding patterned regions of the embryo at 
intermittent stages of embryo development and a germinated seedling (denoted by coloured 
sections). The octant (eight cell), globular, heart and torpedo embryo stages are shown. 
Through development during these stages the main regions of the plant are defined. The 
shoot meristem (red) and the root meristem (lilac) are visible at the apex (between the 
cotyledons) and the base respectively in both later stage embryos and the seedling. The 
epidermis, ground tissue and vascular tissue of the embryo are indicated. Schematic taken 
and adapted from Scheres (1993). 
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Figure 1.2. Cell layer specification during Arabidopsis enibryogenesis. The embryo 
develops from a fertilised egg cell (zygote) in a series of well characterised stages. The 
zygote divides asymmetrically to give an apical cell (a) and a basal cell (h) at the I cell 
stage. The apical cell develops into the embryo proper, with the basal cell developing 
into the suspensor ((s) in heart stage embryo). The stages of development up to the 
torpedo stage of embryogenesis are shown here. Cell layer specification occurs early 
during embryo development. At the dermatogen (16 cell) stage of embryo development 
there are two physical cell layers: an 'inside' layer and an 'outside' layer (see coloured 
inset) which have been shown to he defined by differential gene expression. Schematic 
taken and modified from Mayer. et al. (1993). 



Following the early events outlined above the outer layer of the embryo divides 

predominantly anticlinally. This results in contribution of cells to the outside layer 

only. The outer cells make up the protodermal layer, which later gives rise to the 

epidermis of the plant. During the 'globular' stage of development the inner cells of 

the embryo at first divide uniformly along the apical-basal axis. Gradually though, 

through successive rounds of oriented division in the centre of the lower part of the 

embryo, a section of narrower cells is formed. This is a further reflection of the 

apical/basal pattern. This manifestation of cell division also radially subdivides the 

inner cells into central vascular and surrounding ground tissue. The three major 

tissues of epidermis, ground and vasculature are thus specified early in development 

as shown in Fig.I.1. Differential cell division in the embryo through subsequent 

stages gradually alters the shape of the embryo and refines the initial plan. These 

stages are defined sequentially as 'heart', 'torpedo' and then 'bent cotyledon'. 

Meristems, which are regions of undifferentiated cells, subsequently arise as terminal 

elements of the apical/basal pattern along the axis of polarity during embryogenesis. 

At the heart stage of embryo development the apical meristem, located at the apex of 

the embryo, becomes discernable. In the later torpedo and bent cotyledon stages the 

provascular tissues are obvious and the root primordium organisation is completed. 

Menstems generate all differentiated cells and the organs which they compose. The 

layered pattern of shoot and root meristems will now be considered. 

The shoot apical meristem (SAM) of angiosperms consists of two superimposed 

'histogenic' cell compartments which are arranged parallel to the surface of the 

plant: these are periclinal cell layers (Satina, et at., 1940) (Fig.I.3A). The outer 

compartment is termed the tunica. In dicotyledonous species such as Arabidopsis 

there are two tunica layers; there is only one in maize (Zea mays). These layers 

generally divide only anticlinally, resulting in a contribution of cells to the same cell 

layer only. The tunica layers are therefore mono-layers (one cell thick). In 

Arabidopsis the outer tunica layer is designated the Li layer, with the underlying 

layer of cells the L2. The inner compartment or corpus divides randomly, both 

anticlinally and periclinally to increase the bulk of the plant (Tilney-Bassett, 1986; 

11 



A 	 Shoot apical meristem 

em cells 

L3 tunica { :: 

	

stem 

 

C 	Root apical meristem 	
B 	Shoot apical meristem 

10 
	epidermal 	

la L2 \14 

cell file 	 L3 ,PZ 	

CZ 	

* 

epidermal/lrc pz 

RZinitial  

quiescent 
centre 

root 
cap 

Figure 1.3. Schematics showing the layered structure of Arabidopsis meristems. (A) 

There are two tunica layers (LI, 1-2) in the Arabidopsis shoot apical meristem and one 

corpus layer (1-3). The L  and L2 are one cell thick due to a restricted plane of division 

(anticlinal only) whereas the L3 divides both anti- and peri-clinally. The stem cells of 

the shoot apical meristem are shaded in a blue box. (B) The shoot meristem is organised 

into a central zone (CZ) which contains the stem cells (Sc), a peripheral zone (PZ) where 

new cells differentiate and are incorporated into organ primordia, and a rib zone (RZ) 

where vasculature is generated. I, leaf primordium P. meristem periphery. (C) The root 

apical meristem consists of cylindrical periclinal layers. The cells in each layer are 

derived from the quiescent centre of stem cells and the root initials. For example the 

epidermal/lateral root cap (Ire) initial and resultant epidermal cell file are labelled. The 

root apical meristem is covered by root cap cells. See Fig.1II.10 for a more detailed 

version of this diagram. Arrows in A-C without labelling indicate the direction of cell 

division. Schematics taken from (A) taken from Ingram (2004). (B) Berleth and 

Chatfield (2002). (C) Van Den Berg. et al. (1997) originally, and adapted in Ingram 

(2(X)4). 



Wegner, 2003). In Arabidopsis this is designated the L3 layer; it is the L2 layer in 

maize. In accordance with the planes of division, cortical microtubules are 

orientated and arranged anticlinally in the tunica and randomly in the corpus (Traas 

and Vernoux, 2002). The molecular basis for the establishment and maintenance of 

the tunica-corpus structure remains unknown, however it seems that a layered 

organisation is vital for meristem function (see Section 1.2.4). Cells from all three 

layers usually contribute to plant organ formation and the L1/L2/L3 layered structure 

is generally maintained after floral induction. The resulting inflorescence and floral 

meristems tend to derive each layer from the corresponding one in the SAM 

(Vaughan, 1955; Tilney-Bassett, 1986). 

The shoot meristem is also divided into a central zone (CZ), a peripheral zone (PZ) 

and a rib zone (RZ) (Steeves and Sussex, 1989) (Fig.I.313). The CZ and the PZ 

consist of Li, L2 and L3 cells. The CZ of the meristem consists of a population of 

pluripotent slowly dividing cells from which all mature plant organs are generated. 

These cells appear to be generally equivalent to stem cells in animals (Laux, 2003) 

and will be referred to as such. Below the stem cells there is an 'organising centre' 

(OC) which maintains the activity of the overlying stem cells. The stem cells and 

OC are located in the upper and lower region of the CZ respectively. In the PZ cells 

generated from the CZ are incorporated into organ primordia or new meristems. The 

RZ consists of L3 cells only and consists of cell files where the internal regions of 

the stem, including the vasculature, are generated. 

The Arabidopsis root apical meristem (RAM) generates all subterranean parts of 

the plant and is also arranged in a radial pattern. It is a well ordered structure 

composed of cylindrical periclinal layers of cells (Fig.I.3C) (Dolan, et al., 1993). 

These layers are, from outside to inside: the protective root cap, epidermis, cortex, 

endodermis, pericycle and then the stele (vasculature) in the centre. The meristem 

consists of four central cells known as the quiescent centre, surrounded by initial 

cells. The initial cells are mitotically active and act as stem cells from which all root 

cell files (epidermal, cortical etc.) are produced by anticlinal divisions (again 

maintaining single cell thick files). There is no Li/L2/L3 distinction in the root. The 
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number of cells and their position as they are generated during development has been 

extensively studied and is fairly invariant (Dolan, et al., 1993; Scheres, et at., 1994; 

Scheres, et at., 1996). Cell fate in the RAM is controlled by short range signalling 

(van den Berg, et al., 1995; Helariutta, et at., 2000, Nakajima, et at., 2001). From 

the primary root both new root primordia which give rise to lateral roots, and root 

hairs are derived. Lateral root formation is initiated by a well defined sequence of 

periclinal and anticlinal divisions in the primary root pericycle. Subsequent cell 

divisions in a subset of primordial cells result in formation of the lateral root 

meristem; this structure is fairly similar to that of the RAM (Dubrovsky, et at., 2000; 

Dubrovsky, et at., 2001). Root hair development has also been well characterised 

and an elegant model developed for the control of this aspect of cell patterning 

(reviewed in Larkin, et at., 2003). In the epidermal layer, cells either become root 

hairs or non root hairs in a position-dependent fashion. Positional information is 

generated by cells in the underlying cortical layer (Masucci, et at., 1996; Lin and 

Schiefelbein, 2001; Webb, et at., 2002; Bernhardt, et at., 2003). 

1.2.2. 	Cell layer communication is required for proper co-ordinate 

development 

The Li, L2 and L3 shoot apical layers are cytologically and largely clonally distinct 

populations of cells due to the restriction of cell division within each layer (Traas 

and Vernoux, 2002). In leaves of Arabidopsis, division in the Li layer results in 

contribution of cells to the epidermis of the plant (Irish and Sussex, 1992). The L2 

layer contributes cells to the mesophyll and also the plant germ line. The ground 

tissue and vasculature are composed of L3 cells. Although these layers are distinct 

they communicate during organ formation in order to coordinate developmental 

processes. Studies indicate that defects in one cell layer can affect the morphology 

and development of other layers. Therefore cross-talk and signalling between cells is 

critical for correct plant patterning as a whole (Irish and Jenik, 2001). 

on 



The layered structure of the meristem is maintained to some extent in organs, for 

example in leaves. It is possible to examine the contribution of meristematic layers 

to the cell layers of organs such as leaves using periclinal chimeras. Such chimeras, 

either naturally occurring or artificially constructed, comprise cell layers with 

differing expression of markers or differing phenotypic traits. Periclinal chimeras 

have been used for many years in both classical and more recent molecular-based 

studies (Tilney-Bassett, 1963; Stewart and Burk, 1970; Stewart and Dermen, 1970; 

Stewart and Dermen, 1975; Irish and Sussex, 1992; Szymkowiak and Sussex, 1992; 

Jenik and Irish, 2000; Irish and Jenik, 2001). Through such study it was found that 

meristem layer separation is not always absolute, as there are examples of cells 

invading other layers by inappropriate periclinal division. However if an Li cell 

invades the L2 cell layer due to an abnormal cell division, it differentiates as an L2 

cell. Therefore plant cells differentiate according to position rather than lineage. 

This fact has also been shown for cells of the root using clonal analysis (van den 

Berg, et at., 1995; Kidner, et at., 2000) and is one of the key concepts in plant 

development. This indicates that cells continuously receive positional information 

which is fundamental for specification and maintenance of cell identity, organisation 

and patterning. This information is conferred both by cells in adjacent cell layers 

(inter-cell layer communication), and also from cells in the same layer (intra-cell 

layer communication). The molecular basis of cell layer communication has been 

investigated through a multitude of methods (Szymkowiak and Sussex, 1996; Jenik 

and Irish, 2000; reviewed in Ingram, 2004). The cell-cell signalling involved in 

specifying and organising cell layers will be the focus of this thesis. Naturally 

occurring cell layer invasion seems to be fairly frequent in many plants including ivy 

and maize. It appears to be relatively rare in Arabidopsis. This lessened 

complication makes this an ideal plant for the study of cell layer communication. 
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1.2.3. Cell layer specification and organisation: the basic pattern elements 

Plant cells differentiate according to position rather than lineage. The next point to 

be addressed is where the information that specifies position comes from, and how 

plants perceive it. As mentioned in Section 1.2.1. the key patterning elements are set 

up during embryogenesis. In the dermatogen embryo there is already differential 

gene expression between the inside and outside cell layers. This suggests that 

positional information is perceived by cells from the earliest stages. The way in 

which a radial and an apical/basal pattern develop in Arabidopsis has been 

extensively studied (reviewed in Souter and Lindsey, 2000; Jurgens, 2001; Berleth 

and Chatfield, 2002). Here the differentiation between the inside layer and the 

outside layer (Li) which is derived from the protoderm of the developing embryo, 

will be discussed. Research in the last ten years has led to a basic understanding of 

some of the elements of this pattern. The specialisation of the Li layer will be 

covered in more detail in Section 1.3. The initial patterning events will be discussed 

here. 

One particularly important gene which is expressed differentially between the 

inside and outside cell layers is ARABIDOPSIS MERISTEM LAYER] (AtML]). 

AtML] is a member of the plant specific class of HID-Zip GL2 homeobox 

transcription factors (Lu, et al., 1996; Sessions, 1999). Families of homeobox genes 

in both plants and animals are thought to be important in pattern formation and cell 

fate specification of specific layers (Williams, 1998). It is thought that their 

expression is involved in defining morphogenetic boundaries of positional 

information in the embryo and in the shoot apical meristem of plants. AtML] 

expression begins in the apical cell of the embryo after the first division. It is 

expressed in all cells of the embryo proper at the eight-cell stage but becomes 

restricted to the outside cell layer at the dermatogen stage. AtMLJ is then expressed 

in the Li layer of the embryo, in the protoderm and the SAM. AtMLJ expression is 

maintained throughout plant development in the Li layer of shoot, inflorescence and 

floral meristems as well as in the Li of young organ primordia including ovule 

integuments; AtML] is not expressed in root meristems. Another outside-specific 



gene, PROTODERMAL FACTOR2 (PDF2), is closely related and functionally 

redundant with AtMLJ (Abe, et al., 2003). 

AtMLJ/PDF2 play a crucial role in maintaining Li cell identity by regulating the 

transcription of downstream target-gene promoters. Through this they play a critical 

role in pattern formation (Lu, et al., 1996). AtML1IPDF2 have been shown to bind 

specific motifs (Li boxes) present in the promoters of genes expressed in the Li 

(Abe, et al., 2003). For example an Li box in the promoter of the Li-specific 

PROTODERMAL FACTOR 1 (PDFJ) gene has been shown to be bound by AtMIL1 

in vitro (Abe, et al., 2001). PDFJ encodes a putative extracellular proline-rich 

protein (Abe, et at., 2001). The promoters of several genes expressed post-

embryonically in the meristematic or organ Li layer have also been found to contain 

Li boxes. For example the promoter of FIDDLEHEAD (FDI-I, a gene involved in 

cuticle formation (see Section 1.3.3) contains an Li box (Abe, et al., 2001). As well 

as being expressed in the mature plant Li, FDH is expressed strongly in the Li layer 

of the embryo (Gwyneth C. Ingram, The University of Edinburgh, UK, pers. comm.). 

The promoter of PRESSED FLOWER (PRS) which plays a role in the regulation of 

cell recruitment in the Li cell layer also contains an Li box (Pruitt, et al., 2000; 

Matsumoto and Okada, 2001). inside-specific genes are also important in patterning. 

MONOPTEROS (MN) encodes a transcriptional regulator and is expressed in the 

inside cells of the embryo from the dermatogen stage onwards. MN is involved in 

establishing vascular and body patterns in embryonic and post-embryonic 

development, by mediating auxin directional cues along the apical/basal axis 

(Berleth and Jurgens, 1993; Przemeck, et at., 1996; Hardtke and Berleth, 1998; 

Hardtke, et al., 2004). 

During maize embryogenesis, genes related to AtMLJ may play a similar role in 

specifying cell layers. Another HD-Zip homeobox gene Zea mays OUTER CELL 

LAYER] (ZmOCLJ) and related ZmOCL genes are expressed in a cell-layer specific 

fashion (Ingram, et at., 2000). A similar mechanism may also be conserved in rice 

which contains homologous genes (Ito, et al., 2002). 



How the pattern of regulatory genes itself is first set up is not yet fully known. 

Some clues as to genes that may act upstream of AtMLJ1PDF2 to specify and 

organise the Li cell layer will be addressed in Section 1.3.4. The investigation of 

such genes is the subject of this thesis. 

There are suggestions that the hormone auxin might be important in the early 

stages of pattern formation. This is partially due to the fact that MN is an auxin 

response factor (ARF) (reviewed in Ingram, 2004). ARFs respond to auxin by 

binding to auxin response elements (AREs) in the promoters of auxin-regulated 

genes. Auxin is central to the regulation of all aspects of early and later patterning 

and development, and is thought to be involved in the first asymmetric cell division 

of the zygote (Mayer, 1993). It regulates a multitude of developmental processes 

including embryo polarity determination, apical dominance and vascular patterning 

(reviewed in Leyser, 2001). 

Auxin is transported through cells and organs in a polar fashion (Friml and Palme, 

2002). This polar transport is mediated by the asymmetric distribution of a family of 

auxin efflux carriers encoded by the PIN-FORMED (PIN) genes at the basal end of 

cells (Galweiler, et al., 1998; Geldner, et al., 2001). Polar auxin transport facilitates 

the formation of a gradient of auxin through tissue. Auxin signalling is mediated by 

regulated protein degradation via a ubiquitin-mediated proteolysis pathway 

(Kepinski and Leyser, 2004). This auxin-mediated pathway is thought to be 

involved in negatively regulating a group of transcriptional repressors, the Aux/IAA 

family, which usually repress the function of the ARFs. Auxin thereby regulates 

gene transcription and patterning. 

The seemingly static polar localisation of PIN1 protein is in fact the result of rapid 

cycling by an actin-dependent process between the plasma membrane and endosomal 

compartments (Geldner, et al., 2001). This is mediated by GNOM (Steinmann, et 

al., 1999). GNOM encodes a member of the ARF GTP exchange factors (ARF-

GEFs) which regulate vesicle trafficking in a variety of organisms (Geidner, et at., 

2003; Muday, et at., 2003; Geldner, et al., 2004). Mutations in GNOM result in loss 

of proper PIN1 localisation, loss of polar auxin transport, and therefore disrupted 
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auxin-dependent apical/basal patterning (Mayer, 1993; Shevell, et al., 1994, 

Vroemen, et al., 1996; Vroemen, et al., 1996). 

In the Arabidopsis RAM (as in the SAM) the main pattern of cellular organisation 

is apparent in the mature embryo. It is then maintained in the primary root of the 

seedling after germination (Dolan, et al., 1993). There is good evidence for the role 

of auxin in patterning the root apex during embryo development (Grebe, 2004). 

Auxin is transported, mediated by polar PIN localisation, from the tips of the embryo 

cotyledons through the developing vasculature, reaching a maximum at the 

embryonic root pole (Benkova, et al., 2003; Friml, et al., 2003). Perception of this 

maximum results in specification of stem cells and the QC. This specification is 

required for maintenance of the root meristem (van den Berg, et al., 1997). The role 

of auxin is evident if for example, the function of the putative auxin efflux carrier 

PIN4 is lost - the organisation of the root apical meristem is disrupted (Friml, et al., 

2002). Similarly mutations in the MN gene result in loss of the embryo root pole 

(Hardtke and Berleth, 1998; Abe, et al., 2003). 

If differential auxin localisation and differential gene expression are involved in 

early patterning events, this leads to the question of how these elements are 

themselves set up. Some possibilities are reviewed in Section 1.3.2. 

1.2.4. Meristem maintenance 

In order to produce well organised organ cell layers it is important that the activity of 

the root and shoot menstems is properly regulated. The SAM is a dynamic region of 

cell proliferation, cell expansion, and cell differentiation yet displays a stable 

organisation; the stem cells themselves divide slowly (reviewed in Gross-Hardt and 

Laux, 2003). The production of new cells must be balanced with their incorporation 

into organ primordia and subsequent differentiation. In addition the pluripotent fate 

and undifferentiated state of the stem cell population must be maintained (Grandjean, 

et al., 2004). The mechanism of stem cell specification and maintenance in 
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Arabidopsis shoot and root meristems has been the subject of intensive research 

(reviewed in Laux and Mayer, 1998; Lenhard and Laux, 1999; Fletcher, 2002; 

Doerner, 2003). The underlying SAM pattern develops during embryogenesis (Long 

and Barton, 1998). The OC of the SAM is thought to confer stem cell identity on the 

cells above it, while the stem cells restrict the size of the OC below (Mayer, et al., 

1998). The genetic basis of this relationship has now been elucidated. A model has 

been developed in Arabidopsis which consists of antagonistic regulation between 

'stem cell genes' and 'differentiation' genes (Schoof, et al., 2000; Gross-Hardt and 

Laux, 2003). This allows maintenance of the organisation of the shoot meristem 

despite a changing cellular context. The model highlights the importance of cell to 

cell signalling between meristematic cells for proper development (Haecker and 

Laux, 2001). Although many genes are involved in this process, only the central 

genes will be discussed here. 

WUSCHEL (WUS) encodes a homeodomain protein which is expressed in the OC 

and promotes a meristem cell fate of the stem cells above (Laux, et al., 1996; Mayer, 

et al., 1998). Mutations in WUS cause a reduction in SAM size due to a loss of stem 

cell identity and loss of SAM activity (Gallois, et al., 2004). This results in seedlings 

which terminate development after producing a few primordia. Mutations in either 

of the three CLAVATA genes confer an opposite phenotype to that of wus (Clark, et 

al., 1993; Clark, et al., 1996; Jeong, et al., 1999; Jeong, et al., 1999; Rojo, et al., 

2002). Rather than reduction in size, shoot and floral meristems are enlarged and 

disorganised. The three CLV genes are expressed in overlapping domains in the 

SAM, and are thought to form a functional complex which consists of a ligand and a 

receptor hetero-oligomer (Jeong, et al., 1999). CLV3 is a small peptide molecule 

and a stem cell marker which is thought to function as a mobile intercellular signal 

(Fletcher, et al., 1999). The movement of CLV3 is restricted by binding to its 

receptor which is thought to be a complex of CLV1 and CLV2 (Trotochaud, et al., 

1999; Lenhard and Laux, 2003). CLV] encodes a plasma membrane-localised 

receptor-like kinase (Jeong, et al., 1999). Receptor-like kinases have been shown to 

function in a wide variety of cellular processes in the plant (see Section 1.4). CLV2 

encodes a receptor-like protein which is thought to act as a partner for CLV1 (Jeong, 
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et at., 1999). The CLV complex provides a good example of the regulation of 

development by a receptor-ligand pair (Matsubayashi, 2003). 

Expression of WUS in the OC induces stem cell identity and the expression of the 

stem cell marker CLV3. In turn the CLV3 signal is received by the CLV 1/CLV2 

receptor kinase complex. The activity of this complex promotes organ initiation by 

restricting the expression of WUS both in stem cells and their lateral neighbours 

(Brand, et al., 2000; Lenhard and Laux, 2003). Together this interaction between 

WUS and CLV establishes a negative feedback loop between the stem cells and the 

underlying organising centre (Brand, et al., 2000; Schoof, et at., 2000). This 

regulated spread of a secreted signalling molecule (CLV3) therefore enables cell 

differentiation in the meristem periphery, but at the same time maintains the stable 

stem cell niche in the centre. This genetic interaction network has been extensively 

studied and is now being incorporated into a mathematical developmental model 

which is being used to further test and investigate these interactions (Jonsson, et al., 

2003). 

Pattern formation in the Arabidopsis root meristem is also controlled by a balance 

between short-range signals that inhibit differentiation, and signals that reinforce cell 

fate decisions (van den Berg, et al., 1997). One well characterised specification 

pathway involves the SHORTROOT (SHR) and SCARECROW (SCR) genes. SHR 

and SCR both encode Arabidopsis GRAS family transcription factors that are 

important in the regulation of endodermal cell fate (Di Laurenzio, et al., 1996; Pysh, 

et al., 1999; Helariutta, et at., 2000; Heidstra, et al., 2004). SHR is expressed solely 

in cells of the stele and controls a non-cell autonomous response (Nakajima and 

Benfey, 2002). It is able to act in adjacent cells however by means of SHIR protein 

export via the symplast (see Section 1.2.6). There it acts upstream to regulate 

expression of the SCR gene in the endodermal/cortical initials and the endodermal 

layer. Through SCR, SHR mediates specification of the endodermis and the 

longitudinal division of the cortical/endodermal initial daughter cell (a process 

important for cell layer patterning). 
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Patterning of the shoot and root are also controlled by common factors. HALTED 

ROOT (HLR) is a recently cloned gene which is important in maintaining the cellular 

organisation of the RAM and the SAM (Ueda, et al., 2004). Loss of HLR results in 

loss of root quiescent centre identity and disruption of the OC in the shoot meristem. 

HLR encodes a proteasome component, and it is thought that proteasome-dependent 

proteolysis is important for maintenance of both shoot and root meristem integrity. 

1.2.5. Internal layer patterning 

The most internal layers of the plant, consisting of the vasculature, are also patterned 

and organised via a tightly controlled genetic network. The vasculature is a ramified 

network of continuous cell files, each made up of elongated and interconnected cells 

involved in transporting water and nutrients. The vasculature consists of xylem and 

phloem cells, their related loading companion cells and elements as well as 

procambium and vascular cambium. The latter are vascular stem cells from which 

vascular cells are continuously generated. Xylem strands, which are composed of 

tracheary elements and fibres conduct water basipetally from the point of uptake 

(roots) to the shoot of the plant. Phloem fibres which are composed of sieve 

elements and sieve tubes transport sugars from the point of production (source) such 

as mature leaves, to regions of carbon need (sinks) such as roots and developing 

organs (reviewed in Fukuda, 2004). 

In the plant stem, vascular cells are collectively organised into vascular bundles. 

In Arabidopsis collateral vascular bundles are formed in which the arrangement of 

xylem and phloem cells within the bundles is orientated in a radial pattern. Xylem 

develops on the adaxial (internal) pole of the bundle, with phloem on the abaxial 

(peripheral) pole. Patterning of the internal provascular system is thus connected to 

organ polarity in both embryonic and post-embryonic development (Zhong and Ye, 

2004). Shoots and lateral organs are also patterned with an adaxial/abaxial polarity 

which is thought to be connected to vascular patterning (Dinneny and Yanofsky, 

2004). In the root the vasculature is again specified and organised in a radial pattern 
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but rather than collateral bundles there is a central axis of xylem with two phloem 

poles arranged opposite one another at the edge of the stele. Vascular patterning and 

organ morphogenesis are tightly linked. However the vascular pattern must also be 

flexible due to the need for adaptive responses to wounding or abnormal growth 

conditions. 

The vascular pattern is established during embryogenesis when the vascular initials 

are specified. Vascular patterning is thought to depend on signals directing the 

routes of vascular strands as well as the oriented differentiation of each cell within 

the vascular system (into phloem/xylem etc.). Auxin has been implicated in correct 

vasculature development (reviewed in Berleth and Mattsson, 2000). It is thought 

that the polar flow of auxin acts early in development to induce the differentiation of 

continuous tracheary elements and fibres (Fukuda, 2004). As mentioned earlier, 

mutations in the ARF-encoding gene MN interfere with proper formation of the 

vascular strands (Hardtke and Berleth, 1998). Downstream of this, auxin has been 

found to regulate members of a family of homeodomain leucine zipper transcription 

factors that are expressed in vascular tissue, and regulate the differentiation of 

procambial and cambial cells (Baima, et al., 2001). 

There is also thought to be an aspect of patterning that is independent of auxin 

flow, potentially an autonomous pattern formation mechanism (Parker, et al., 2003). 

Cytokinins and bras sinosteroi ds (BR) (which have widespread roles during plant 

growth and development) have also been implicated in vascular formation and 

differentiation. Through characterisation of the CYTOKININ RESISTANT (CRE) 

cytokinin receptor, it was found that cytokinins are important for the formation of 

vascular initials during embryogenesis and for the maintenance of procambial 

activity (Mahonen, et al., 2000). Brassinosteroid application promotes xylem 

formation and suppresses phloem formation. BR is secreted from cells and it is 

thought that there is a vascular-cell-specific BR-perception system (reviewed in 

Fukuda, 2004). This is thought to involve reception of BR by plasma membrane 

bound receptor-like kinases such as that encoded by the recently cloned VASCULAR 

HIGHWAY] which is involved in regulating leaf venation patterns (Clay and Nelson, 

2002). 
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Correct vascular patterning and downstream differentiation events are then 

mediated by members of several families of transcription factors. Some members of 

the MYB-like, HID-ZIP III and KANADI families of transcription factors, which are 

involved in regulating the adaxial/abaxial patterning of lateral organs, have been 

found to be directly involved in vascular patterning in shoots (Emery, et al., 2003). 

Together vascular cell development is controlled and organised primarily by plant 

hormones which act as intercellular signals, and are received by molecules such as 

receptor-like kinases. Downstream events include the direction of cell differentiation 

by regulatory transcription factors. 

1.2.6. Cell-cell communication channels 

The way in which signalling molecules move from cell to cell in the plant is of major 

importance. There are two possible routes for signal movement through the plant: 

through the apoplast or through the symplast. The CLV3 signalling molecule is 

thought to travel via the extracellular matrix, the apoplast (Fletcher, et al., 1999; 

Brand, et al., 2000; Rojo, et al., 2002). Auxin travels through both the apoplast and 

the symplast (Delbarre, et al., 1996). The symplastic pathway consists of 

connections through plasmodesmata between the cytoplasm and endoplasmic 

reticulum of adjacent cells. Recent research has shown that these connections are 

important for the movement of regulatory signalling molecules such as protein and 

RNA (reviewed in Heinlein, 2002). For example the symplastic movement of the 

transcription factor LEAFY is important for its role in the regulation of floral 

development (Sessions, et al., 2000). In the root, movement of the transcription 

factor STIR through the symplastic pathway is critical for the specification of root 

cell types, as mentioned previously (Nakajima and Benfey, 2002). The type of 

plasmodesmata differs between cells depending on their location and can change 

throughout development. The behaviour of plasmodesmata also differs between 

plant species. It is thought that symplastic connections mediate the unification of 

cells into communication compartments. This allows maintenance of morphogenetic 
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gradients which are involved in directing growth (Rinne and van der Schoot, 1998). 

It is thought that the symplastic connections between cells allow a coordinated 

response in a group of cells (Hake, 2001). 

It is clear from the research outlined that cell-cell communication provides the 

basis for proper patterning of plant cell layers and their subsequent development, 

both during embryogenesis and post-embryonically. As the position of a cell - the 

environment which it is in - determines the cellular fate, such signalling is vital for 

co-ordination of developmental processes. Key receptors receive molecular signals 

i.e. hormones or proteinaceous ligands, which are involved both in setting up the 

pattern between and within cell layers, and the later elaboration and specification 

events. In parallel, the movement of molecules between neighbouring cells could 

operate to allow a co-ordinated response and uniform development within cell 

populations. 
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1.3. Li cell layer specification and organisation in Arabidopsis: the 

origin, maintenance and elaboration of the pattern 

1.3.1. Li layer specialisation 

The outside or Li cell layer comprises epidermal cells that cover the aerial and 

subterranean parts of the plant. In addition certain organs are composed entirely of 

Li derived cells, such as the ovule integuments which are formed due to Li 

outgrowth (Fig.1II.3). This epidermal layer is highly specialised and fulfils multiple 

important roles during the development of the plant (reviewed in Lolle and Pruitt, 

1999) (see Fig.I.4 for a basic Arabidopsis leaf schematic). It is responsible for 

contact between the plant and the outside environment. It protects the underlying 

cells of the plant from desiccation and pathogen invasion, while allowing gas 

exchange via stomata and efficient light penetration. In this section Arabidopsis is 

again the focus of attention although some points from study in maize will also be 

addressed. 

The epidermis is able to play these multiple roles due to its differentiation into a 

wide range of cell types. Some form unicellular structures - such as Arabidopsis 

tnchomes or root hairs. Others develop into guard cells in order to form stomata. 

During floral development epidermal cells differentiate into stigmatic papillar cells 

which are involved in contact with pollen grains at pollination. All epidermal cells 

aside from those of the root are covered by a cuticle. The cuticle is located on the 

surface of the external cell wall. The cuticle is a complex mixture of three 

constituents: cutin (esterified fatty acids), polysaccharide microfibrils and waxes. 

The waxes are localised both within the cuticular matrix (intracuticular waxes) and 

on the plant surface (epicuticular waxes). This composition varies between organs 

and through development to allow the cells that it covers to carry out different roles. 

The cuticle fulfils various functions including as a selective barrier against water 

loss, and as a mechanical barrier against damage and invasion. It is a dynamic 

milieu that is involved in the response to internal and environmental factors 
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Figure 1.4. Schematic showing the layered structure of an Arabidopsis leaf. The 

figure shows the outside epidermal layer, the niesophyll below and the underlying 

vasculature cells. In the epidermal layer trichomes (on the adaxial side only) and 

stomata (mainly on the ahaxial side) differentiate. In addition the epidermal cells 

exude a layer of cuticle containing cutin and waxes (not drawn to scale). Schematic 

adapted from figure by Gwyncth C. Ingram 



(Kerstiens, 1996). It is also a developmentally important conduit for regulatory 

signals as shall be shown later (Section 1.3.3). 

Epidermal cells are specialised so that when in contact with other epidermal cells, 

for example during the early stages of leaf development at the shoot apical meristem, 

they remain unresponsive and do not fuse. Loss of, or defects in the cuticle can 

result in organ fusion (see Section 1.3.3). The only exceptions to the unresponsive 

state in Arabidopsis are firstly during floral development when cell-cell fusion 

between carpel primordia (syncarpy) is necessary for proper reproductive 

development, and secondly when the cells of the stigmatic papillae are responsive 

and fuse to pollen grains during pollen hydration and growth. Altogether this shows 

that the epidermal layer must be dynamic and selective in order to allow certain 

interactions but not others (Lolle, et al., 1998). Signals can be exchanged across the 

cuticle and cell wall. The extracellular matrix itself contains a mass of 

developmentally important signalling molecules (Fowler and Quatrano, 1997). For 

example it has been shown that the control of stomata] patterning is regulated by a 

lipid-soluble signal (von Groll and Altmann, 2001) (see Section 1.3.3). 

The epidermis is a well-studied model for cell differentiation and cell patterning in 

plants because it is readily accessible and consists of few cell types. Also due to 

strict controls on cell division it is the most stable lineage in the plant body 

(Szymkowiak and Sussex, 1996). The specifics of the downstream genetic networks 

that regulate the formation of these Li cell types is not the focus here, although some 

of these aspects will be covered in Section 1.3.3. The specification of Li identity, Li 

organisation and maintenance of cell layer continuity and integrity, rather than 

specialisation of cell types, will be discussed. These earlier events, including 

maintenance of cell layer polarity and continuity of signalling channels within the 

cell layer, are vital for specification of positional information and so proper later 

signalling events. Li mediators such as the AtML]/PDF2 homeobox transcription 

factors act to specify Li cell fate. Such genes then mediate the regulation of 

downstream effectors including genes involved in epidermal differentiation, in a cell 

layer specific way. 
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1.3.2. Setting up the pattern 

As mentioned in Section 1.2.2, the outside layer of the plant is specified early during 

embryogenesis. This is reflected by differential expression patterns of genes such as 

AtMLJ and PDF2. However AtMIL1 is unlikely to be the initial signal itself as it is a 

transcription factor (Lu, et al., 1996), and so more likely acts downstream of other 

signalling events. How such specific expression is set up and maintained will now 

be addressed. Here two possible mechanisms that could be involved in separating 

inner and outer cell fate are proposed (reviewed in Berleth and Chatfield, 2002). The 

first is an 'inside-out' model of specification and the second is an 'outside-in' model 

(Fig.I.5). The 'inside-out' model suggests that there is a morphogen gradient across 

the embryo. The concentration maxima is in the centre of the embryo and this 

decreases towards the outside (Fig.I.5A). A certain threshold value of the 

morphogen could therefore direct internal cell fate separately to that of outside cell 

fate. A morphogen that could play this role has not however been identified. The 

second 'outside-in' hypothesis suggests that there is a signal present either in the 

region surrounding the embryo or stored in the outer cell wall (Fig.I.513). A 

diffusible signal prepattern could be provided by the tissue in which the embryo 

develops. Cells in inner cell layers would be physically isolated from such a signal 

whereas outside cells would not. Alternatively storage of a signal in the external cell 

wall could be set up during the course of egg formation, or in the zygote. Such a 

zygotic or maternally inherited signal would remain in the outer cell wall. The outer 

epidermal cell layer would still be in contact with the original outer cell wall but the 

first tangential division (that results in an inner cell layer being formed) would 

separate the inner cells from the signal. Either type of signal could therefore be 

involved in setting up the differential gene expression pattern as mentioned above. 

As will be discussed later the second model seems more likely, however there is as 

yet no definitive evidence for either hypothesis. 

In order for such models to be operational, intact cell boundaries are required. For 

example, mutations in two genes involved in embryo patterning, KNOLLE and 

KEULE result in defective cell division (Waizenegger, et al., 2000). In knolle and 
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Figure 1.5. 	Pattern forniation in the 16-cell stage Arahidopsis embryo. 	Two 
hypothetical mechanisms that could explain the inside/outside differentiation seen at the 
dermatogen stage of embryogenesis are proposed. (A) A stable morphogen gradient 
with the morphogen concentration decreasing from the centre of the embryo to the 
outside. This could lead to concentration-dependent specification of inside and outside 
cell layers. (B) Deposition of a substance in the cell wall (red crosses) or reception of a 
signal from the endosperm (orange arrows) are examples of signals from the outside, 
directing cell fate. Isolation from such a signal results in differential cell fate of inside 
(purple) and outside (yellow) cell layers. Taken from Berleth and Chatfield (2002). 



keule incomplete cell division results in abnormal cytoplasmic continuity, connecting 

cells between which there are normally boundaries. This results in inappropriate 

expression of the outside Li cell layer marker ARABIDOPSIS LIPID TRANSFER 

PROTEIN (AtLTP]) (Assaad, et al., 1996, Lukowitz, et at., 1996; Waizenegger, et 

at., 2000). 

It is probable that several related processes such as those described above act 

concertedly to specify the primary planes of division and early cell fate distinctions. 

Later in development there are likely to be additional signals between cells of the Li 

cell layer, or from underlying cells, that maintain an outside-layer cell fate. 

There are some clues as to early patterning events during embryogenesis from 

studies in maize which suggest the presence of a signal located on the outside of the 

embryo. Although the structure of the environment in which Arabidopsis embryos 

develop differs from maize, these studies could help in the search for such signals in 

Arabidopsis. The endosperm of both develops after the double fertilisation event 

characteristic of angiosperms. However, the endosperm of maize is a more complex 

structure in which four distinct compartments are specified and differentiated 

(reviewed in Olsen, et at., 1999). These regions are the aleurone, starchy endosperm, 

basal transfer cells and the embryo surrounding region (Fig.I.6). The aleurone layer 

is an epidermal-like layer of isodiametric cells. It is important in the mobilisation of 

reserve substances stored in the starchy endosperm cells to provide embryo nutrition. 

The aleurone layer is replaced as the outermost layer at the chalazal pole of the 

endosperm by the basal transfer layer, which is involved in the transfer of nutrients 

from the maternal vasculature to the endosperm. The embryo surrounding region is 

a small region of densely cytoplasmic cells at the base of the suspensor of the 

embryo which could be involved in embryo nutrition; this has not yet been shown. 

The EMBRYO SURROUNDING (ESR) genes are a group of three maize genes 

which are expressed in the embryo surrounding region (Bonello, et at., 2000; 

Bonello, et at., 2002). They are associated with the cell wall in the extracellular 

region (Bonello, et at., 2002). ESRs encode small hydrophilic proteins which are 

thought to play a role either in the nutrition of the developing embryo or in the 
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Figure 1.6. Schematic of a maize cereal grain containing a developing embryo nine days 
after pollination (9DAP). (A) Whole grain view showing the mature endosperm regions: 
the starchy endosperm (Se), the single cell thick aleurone layer (al). the basal endosperm 
transfer layer (heti) and the embryo-surrounding region (esr). cc, embryonic cavern: e. 
embryo. The chalazal and embryo poles of the grain are indicated. (B) Close-up of 
embryo (red box in A). The maize embryo consists of the embryo proper (ep) and 
suspensor (s), as in the Arabidopsi.s embryo. p. pericarp. Taken and adapted from 
Opsahi-Ferstad, et al. (1997). 



establishment of a physical barrier between the embryo and endosperm. They could 

also have a signalling role in embryo-endosperm interactions (Opsahl-Ferstad, et al., 

1997). ESRs resemble CLV3 in size and share a conserved motif with CLV3 which 

gives them the capacity to form protein-protein interactions (Bonello, et al., 2002). 

In Arabidopsis there is a large family of CLV31ESR-like genes (CLEs) which are 

secreted proteins thought to be involved in the regulation of diverse developmental 

processes (Sharma, et al., 2003). As yet no receptors have been characterised for 

these molecules (CLEs), although the evidence so far suggests that they could be 

ligands for receptor-like kinases (see Section 1.4). The existence of these molecules 

in maize suggests one possible mechanism for conferring positional information to 

the embryo. Several Arabidopsis genes which could play similar roles 

embryonically and post-embryonically will be discussed in Section 1.3.4. 

1.3.3. Differentiation and patterning of the Li layer 

The downstream specification events associated with Li cell fate will now be 

addressed. As mentioned the epidermal layer of aerial organs is characterised by 

secretion of a cuticle. Cuticle mutants fall into several categories. Mutations in most 

of the genes described result in reduced levels of cuticular wax deposition and give 

plants a 'glossy' appearance. One large group are encoded by the ECERIFERUM 

(CER) genes of which there are now 24 identified members (Rashotte, et al., 2004). 

CER genes encode various catalytic components of the epicuticular wax biosynthetic 

pathway (Jenks, et al., 1995; Hannoufa, et al., 1996; Negruk, et al., 1996; Fiebig, et 

al., 2000). Mutations in the cer genes affect the composition of epicuticular wax. 

WIN1 is a transcription factor involved in the activation of the biosynthesis of 

epicuticular wax (Broun, et al., 2004). Overexpression of WIN] results in 

upregulation of genes such as CER] and CER2, and increased wax deposition. 

ACYL-CoA BINDING PROTEIN] (ACBP]) encodes a novel membrane localised 

acyl CoA binding protein (ACBP) which is thought to be involved in the regulation 

of cutin formation in the cuticle. It is thought to be involved in intermembrane lipid 
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transport from the ER via vesicles to the plasma membrane (Chye, et at., 1999). 

Normal epicuticular wax deposition also seems to be important for proper trichome 

growth. For example double mutants in the cerl and closely related yore yore genes 

result in abnormal wax formation and trichome deformities (Kurata, et at., 2003). 

AtLTP] is involved in the secretion or deposition of lipophilic substances in the 

cell wall (Thoma, et at., 1994). FIDDLEHEAD (FDI-I) encodes a member of the 

Fatty Acid Elongation protein family which is thought to be involved in regulating 

the permeability barrier of the epidermal cell wall and the cuticle (Yephremov, et at., 

1999). fdh mutants display organ fusion as a result of an abnormal cuticle (Lolle, et 

at., 1992). In addition, the mutant shoot epidermal cells are competent to interact 

with pollen grains - there is an effect on an epidermis-specific developmental 

program that normally only occurs during floral gynoecium development (Lolle and 

Cheung, 1993; Lolle, et at., 1997). Such defects then result in ectopic organ fusion 

and abnormal pollen-stigma interactions due to loss of proper epidermal surface 

functions (Aarts, et at., 1995; Lolle, et al., 1998). There are also deleterious effects 

on trichome differentiation, suggesting that these two processes are connected. 

The Arabidopsis ABNORMAL LEAF SHAPE] (ALE]) gene also plays a role in 

cuticle formation (Tanaka, et al., 2001). ALE] encodes a subtilisin-like serine 

protease (subtilase). In eukaryotes subtilases are thought to be involved in 

processing peptidic signal molecules to generate biologically active ligands (Siezen 

and Leunissen, 1997). ALE] is expressed in endosperm cells adjacent to the 

embryo, and within the young embryo. Mutations in ALE] result in loss of a proper 

cuticle on the embryo and juvenile plants, resulting in associated sensitivity to 

decreasing humidity and organ fusion. The expression pattern of ALE] makes it a 

good candidate for processing of a ligand that affects cuticle development and 

possibly early embryo development such as described in Section 1.3.2. 

Recent work on the SHINE gene highlights the importance of the cuticle in 

providing a conduit for cell-cell signals (Aharoni, et at., 2004). The SHINE gene 

seems to be involved in the transcriptional regulation of genes involved in wax 

biosynthesis. Over-expression of the SHINE gene results in plants with shiny leaves 

due to increased cuticular wax, increased cuticle permeability and a decreased 
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number of trichomes. It is thought that cuticle permeability influences cell-cell 

communication by augmenting or attenuating the movement of signals from cell to 

cell (Pruitt, et al., 2000). It seems that the movement of signals involved in 

regulating trichome density (see later) is affected by the increased SHINE 

expression. Another piece of evidence for the role of the cuticle in providing a 

conduit for the movement of patterning signals comes from work on the Arabidopsis 

cer mutants. Corresponding to a decrease in trichome number with more wax in the 

shine mutants, there is an increase in stomatal density in some cer mutants which 

produce less cuticular material (Gray, et al., 2000). This decrease is thought to allow 

signals which promote stomatal formation to move more freely, and thus the number 

of stomata specified increases. This response is not seen in all cer mutants - it 

depends on the composition of wax produced as well as the amount of it (Bergmann, 

et al., 2004). 

Stomata themselves are specified by a combination of mechanisms, based 

primarily on control of the orientation of cell divisions (Nadeau and Sack, 2002; 

Bergmann, 2004). Both this and the distribution and density of stomata in the 

epidermis is determined by a combination of factors relating to cell lineage, cell-cell 

interactions and long distance signalling. Stomatal density is also regulated by 

exogenous environmental factors (Bergmann, 2004). Another subtilase, encoded by 

STOMA TAL DENSITY AND DISTRIBUTION (SDDJ) is involved in stomatal 

patterning (Berger and Altmann, 2000; Von Groll, et at., 2002). In sdd]-1 mutants 

the establishment of the stomatal pattern is disrupted. This results in increased 

stomatal density and formation of abnormal stomatal clusters. It is thought that 

SDD1 is exported to the apoplast, and there it might process a ligand that controls 

the development of cell lineages that lead to guard cell formation. Downstream of a 

postulated receptor for the SDD-1 processed ligand might be encoded by the recently 

isolated YODA gene (Bergmann, et at., 2004; Lukowitz, et at., 2004). YODA 

encodes a MAPKK kinase and could act as a molecular switch to control 

downstream events. 
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Root hair patterning and trichorne development are controlled by a common 

position-dependent patterning process (reviewed in Ryan, et al., 2001; Larkin, et al., 

2003). This consists of closely related transcription factors which act in similar 

lateral inhibition signalling pathways (Schnittger, et at., 1999; Schellmann, et at., 

2002). Both root hairs and trichomes must be formed at discrete distances between 

one another for correct functioning. The final pattern produced differs due to the 

underlying prepattern that is interpreted. Positioning of root hairs begins early in 

development, just after specification of the protoderm itself (Lin and Schiefelbein, 

2001). Therefore correct protoderm specification at early stages is vital for these 

later processes. There are many genes which are involved in proper root hair 

patterning. These include GLABRA2 (GL2) which is an AtMLJ-related Arabidopsis 

gene involved in specifying the outside cell layer in both the shoot and the root 

(Rerie, et at., 1994). Together with the TRANSPARENT TESTA GLABROUS (TTG) 

gene (and through interactions with other genes) it is thought to inhibit new root hair 

formation (Hung, et at., 1998). 

In order to properly orientate root hairs and trichomes within epidermal cells - to 

make sure that outgrowth is towards the outside of the plant - an axis directing cell 

polarity must be set up and maintained. This specifies the directions to which the 

interior and exterior of the plant lie. It is also required for proper cell patterning i.e. 

the cuticle-secretion components must be located on the external side of the cell 

where the cuticle is secreted. In addition it is required for proper cell-cell 

communication and to maintain both the direction and site of cell division. The 

mechanisms controlling the polarity of organs including that of the adaxial/abaxial 

pattern have been studied in depth (reviewed in Hudson, 2001). There is good 

evidence for the role of auxin in setting up and maintaining an apical/basal axis in 

the plant from early embryogenesis (FrimI, et al., 2003). The question here is how 

the apical/basal polarity of each cell is organised. The linked mechanism of planar 

polarity will be covered later. 

As mentioned in Section 1.2.1, actin microfilaments are arranged perpendicular to 

the surface in line with the plane of normal division (Traas and Vernoux, 2002). 
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Actin microfilaments constitute a three dimensional cytoskeletal network within each 

cell. Actin filaments provide an essential network for the stable positioning and 

orientation of organelles, organ motility and vesicle transport within the cell. Their 

orientation in the cell is a consequence of cell polarity as well as contributing to the 

maintenance of it. The orientation of microtubules and actin microfilaments also 

regulates cell wall deposition which impacts upon cell shape, as well as the location 

of new cell walls (and therefore the direction of cell growth) (Mathur and Hulskamp, 

2002). The delivery of cell wall materials to determined sites also affects signal 

transduction (Vantard and Blanchoin, 2002). Cytoskeletal orientation is thus critical 

for proper cell layer function. 

Due to the complex orientation and shape attained, trichome morphogenesis 

includes a distinct requirement for the microtubule and actin filament network. 

(Szymanski, et al., 1999). For example ATARP31DISTORTEDJ (ARP31DIS]), 

ATARP21WURM (ARP21WRM) and DISTORTED2 (DJS2) encode components of the 

evolutionarily conserved ARP2/3 complex that nucleates actin filament 

polymerization (Le, et al., 2003; El-Din El-Assal, et al., 2004; Saedler, et al., 2004). 

dis], dis2 and wrm mutations cause severe trichome growth deformities. This is due 

to defects in cytoplasmic actin bundle organization and abnormally clustered 

microtubules (which are important in maintaining growth polarity). They also result 

in defects in cell-cell adhesion, with unusual small gaps being visible between 

epidermal pavement cells. Several genes involved in regulating actin polymerisation 

have also been shown to be required to maintain root hair polarity and cell shape. 

For example the deformed root hairs (den) mutant alleles of the ACTIN2 gene 

exhibit defects in root hair morphogenesis (Ringli, et al., 2002). Recently a gene 

which regulates actin polarisation specifically to control epidermal cell 

morphogenesis in maize leaves was isolated. brick] (brk]) mutant epidermal 

pavement cells are unusually shaped and there is also abnormal stomatal formation 

(Frank and Smith, 2002). BRK] is conserved across plants and animals and thus a 

common process could be involved in regulating actin polarisation. 

In order to regulate the cytoskeleton organisation itself, members of the RHO 

family of small GTPases (ROPs) have been postulated to mediate an auxin/ethylene 
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signal (Grebe, 2004). ROPs bind GTP and act as molecular switches which regulate 

diverse cellular activities. Several ROP family members have been shown to be 

expressed in epidermal cells and affect the planar outgrowth of root hairs 

(Molendijk, et al., 2001). 

As mentioned, regulation of the actin cytoskeleton affects the plane of cell 

division. In maize the DISORGANISED ALEURONE1 and 2 (DILl and 2) genes 

have found to be important for maintenance of the division plane of both the maize 

endosperm aleurone layer and also the epidermis (Lid, et al., 2004). Regulation of 

proper aleurone layer division patterns is vital for aleurone function (Mineyuki, 

1999). In dill and dil2 mutants the mitotic division plane is not properly controlled, 

which results in disorganisation of aleurone layers in mature maize grains. It is 

thought that the DIL genes are involved in regulating the dynamics of the actin 

cytoskeleton to control the site of cell division. Due to improper embryo nutrition in 

the maize grain the embryo arrests. Rescued embryos have an irregular leaf 

epidermis, abnormal roots and aberrant root hair morphology. It seems therefore that 

in maize the division plane of the aleurone and the epidermis are regulated by 

common factors (Lid, et al., 2004). This is also evident in the extra cell layerl (xcll) 

mutant which has extra cell layers in both the aleurone and the leaf epidermis 

(Kessler, et al., 2002). Whether or not endosperm and embryo development in 

Arabidopsis are also commonly controlled is yet to be determined. However as there 

is no structure comparable to the maize aleurone layer in Arabidopsis, this does not 

seem likely. Studies of the xcll mutant also highlight the importance of maintenance 

of correct cell division planes in the outside cell layer to maintain correct cellular 

identity (Kessler, et al., 2002). 

In addition to maintaining apical/basal polarity within each cell, the polarity of the 

outside/Li layer as a whole is maintained. Planar polarity is the common polar 

arrangement of cells within the plane of an epithelium. Maintenance of the correct 

orientation of cells within a tissue is vital when cell layers and organs are 

developing. The Arabidopsis root is a useful system for studying the mechanism of 
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planar polarity as the common orientation of root hairs in the root epidermis is a 

visible consequence of its maintenance. 

As mentioned in Section 1.2.3, auxin is transported in a planar fashion, down from 

the shoot to the root tip, through the vasculature. It is then transported back up, 

basipetally, through the epidermal layer due to the polar localisation of auxin efflux 

and influx carriers. This provides a mechanism to orientate the plane of polarity and 

is also important for root gravitropism (Rashotte, et al., 2000; Grebe, 2004). The 

auxin influx carrier AUXIN-RESISTANT1 (AUX1) has been shown to be involved 

in maintaining the planar polarity of root hairs (Grebe, et al., 2002). It is thought 

that AUX1-mediated auxin influx from the auxin maxima at the root tip is important 

in setting up the planar polarity of the root epidermis (Grebe, 2004). A second 

pathway important for planar polarity but independent of AUX] involves sterol 

action. For example a recent study shows that proper PIIN1 localisation and cell 

polarity require the normal synthesis and a balanced composition of membrane 

sterols (Willemsen, et al., 2003). Loss of STEROL METHYLTRANSFERASE] 

function resulted in various cell polarity defects including in the polar initiation of 

root hairs. PIN1 and PIN3 localisation were found to be disrupted in this mutant 

and it seems that the correct recycling of the PIN1 protein, which is vital for auxin 

flow function, might be affected by sterols. There is also some evidence for the role 

of the hormone ethylene in maintaining planar polarity (Masucci and Schiefelbein, 

1994). Downstream of an auxin/ethylene response it seems likely that cytoskeletal 

elements are regulated. 

Complex and interlinked signalling pathways are involved in differentiation of the 

epidermal layer. These pathways are dependent on the continuity of the epidermal 

layer as well as the initial epidermal specification event. Cell differentiation is also 

controlled by an abundance of regulatory transcription factors which are controlled 

by upstream factors such as AtMLJ/PDF2. Recent research points to the existence of 

extracellular signals (such as those processed by ALE] and SDD]) with roles in 

controlling differentiation and patterning. The reception of such signals therefore 

seems key for controlling epidermal development. The examples described above 
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highlight the importance of cell-cell communication for proper cell patterning and 

co-ordinated cell differentiation. 

1.3.4. Epidermal cell layer specification and organisation 

As already mentioned, AtMLJ/PDF2 plays a critical role in Li layer specification 

and in the regulation of the genes and pathways discussed above. The subject of this 

thesis is to investigate epidermal specification and organisation further, and to 

characterise other genes involved in this process. In maize one pathway involved in 

the specification of the epidermal layer has been partially dissected. This will now 

be outlined. 

In maize the CRINKLY4 (CR4) gene seems to be involved in mediating cellular 

differentiation responses in the epidermis, and specification of the aleurone layer 

(Becraft, et al., 1996; Jin, et al., 2000; Becraft, et al., 2001). The CR4 gene was 

originally isolated from a population of Mutator (Mu)-transposable element-

mutagenised maize plants (Becraft, et al., 1996). crinkly4 plants are short in stature, 

late flowering and have small, crinkly leaves of rough texture. Histological analysis 

revealed that defects which occurred were predominantly in the epidermal cell layer. 

There were also some defects during floral development but no effect on roots. The 

mutant epidermal surface functions were found to be compromised, allowing graft-

like fusions to occur between organs. Adherence between leaves therefore resulted 

in contortion of the cr4 plant. There were also abnormal Li-cell division patterns in 

cr4 mutants. The important functions of the epidermis in restricting cell division 

patterns to anticlinal planes, and in preventing surface de-differentiation, were 

severely compromised. 

The internal anatomy of epidermal cells was found to be relatively normal although 

there were various defects in cell morphology including an effect on cell shape, cell 

wall thickness and structure, cuticle formation and vesicle trafficking. Certain cell 

types were also found to be placed in inappropriate positions on cr4 leaves. In 
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addition there were also tumour-like outgrowths on the surface of some cr4 mutant 

leaves. This indicated a partial transformation to bulliform cell fate (specialised 

epidermal cells involved in water storage and regulation of leaf shape) (Jin, et al., 

2000). However the epidermis of cr4 mutant leaves did generally contain normal 

epidermal cell types, which suggested that there was not a specific effect on 

epidermal identity per Se. There were also effects on the underlying cell layer 

although this appeared to be a secondary response due to the physical stress of 

malformed epidermal cells (Becraft, et al., 1996). In summary, mutations in the 

CRINKLY4 gene result in defective epidermal differentiation and organ fusion. The 

latter effect is however the result of disruption of a different mechanism to that 

affected infdh mutants (Lolle, et al., 1998). 

In addition to epidermal defects cr4 seeds were found to have defects in the 

specification of aleurone layer cells (Becraft, et al., 1996). Portions of the 

endosperm failed to differentiate aleurone and instead the cells on the surface of the 

endosperm had attributes of starchy endosperm cells, indicating improper cell 

specification. This suggested that CR4 might function in the perception of positional 

cues that specify aleurone cell fate during endosperm development. 

CR4 therefore seems to be involved in specification of aleurone cell fate and 

epidermal differentiation. As mentioned earlier several genes appear to be involved 

in regulating the development of both the epidermis and the aleurone layer. The 

aleurone layer and the epidermal layer share some similar characteristics. They both 

grow by anticlinal division on the surface of their respective organs and contain 

morphologically similar cells with a cuboidal shape and thick cell walls. It is likely 

that cell-cell interactions are involved in differentiation of both structures. It also 

seems likely that CR4 has such a function, playing a single role that varies with the 

cellular context (Becraft, et al., 1996). 

This array of defects suggested that CR4 regulated a diverse set of cellular 

functions during development, analogous to growth factor receptors in animals (Jin, 

et al., 2000). In animals growth factor receptors are receptor protein kinases 

involved in receiving growth factor signals and transducing them with the result of 

changes in cell activity. For example, the Drosophila epidermal growth factor 
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receptor (EGFR) regulates an extensive range of processes involved in cell fate 

decisions, cell differentiation and patterning during embryo development 

(Schweitzer and Shilo, 1997). 

CR4 was cloned and found to encode a putative membrane-localised receptor-like 

kinase of classical structure (Becraft, et at., 1996). Receptor-like kinases will be 

reviewed in Section 1.4. CR4 has a predicted extracellular region which contains a 

cysteine-rich domain similar to the ligand binding domain in the mammalian 

TUMOUR NECROSIS FACTOR RECEPTOR (TNFR) (Idriss and Naismith, 2000). 

Identification of this extracellular region at the time defined a new class of receptor-

like kinases. In addition, proximal to this, are seven repeats of a novel motif. The 

predicted intracellular region consists of a predicted kinase domain capable of auto-

phosphorylation, and an unusually long C-terminal region (Walker, 1994; Jin, et at., 

2000). 

As will be discussed in Section 1.4, motifs in the extracellular region of receptor-

like kinases are important in ligand binding. What these consist of in the CR4 

protein therefore may provide clues as to the nature of the ligand(s) bound. TNFRs 

are membrane localised proteins which are involved in numerous biological 

processes including mammalian immune responses (Dempsey, et at., 2003). TNIFRs 

possess an extracellular canonical motif of three cysteine-rich repeats. The second 

and third repeats are thought to be involved in binding the TNF small peptide ligand. 

Crystallographic study shows that 80% of the interaction between the TNFR and its 

ligand occurs within the second repeat (Banner, et al., 1993). This is where the 

highest degree of similarity between CR4 and TNFR exists. If this motif functions 

similarly in plants then a CR4 ligand could be a peptide. There is a fascinating 

possibility that CR4 binds TNF-like peptide hormones which are yet to be found in 

plants. The first cysteine-rich repeat is thought to mediate interactions involved in 

forming TNFR trimers (see Section I.4.2.0 for more detail on multimerisation of 

receptor molecules) (Banner, et at., 1993; Idriss and Naismith, 2000). TNIFR 

activation is thought to result in recruitment of various intracellular adaptors to the 

cytoplasmic domain of the protein. These adaptors include the TNFR-associated 
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factors (TRAFs) and are involved in signal transduction (Rothe, et al., 1994). 

Depending on the adaptor recruited there is activation of differential downstream 

signal transduction pathways such as apoptosis, or the activation of transcription 

factors involved in immune and inflammatory responses (Dempsey, et al., 2003). 

An alternative ligand binding site to the TNFR-like repeat domain, is the domain 

containing seven repeats of a novel motif. The putative function of this domain will 

be discussed in Chapter IV of this thesis. 

CR4 is expressed in the outer layer of the embryo and all aerial organs, particularly 

in younger tissues of the shoot and leaves, and is absent from roots (Kang, et al., 

2002). From the work described above it seems that it has two related functions. 

The first is an involvement in the reception of positional cues that are involved in 

regulating the differentiation of the epidermis in the embryo. The second is a role in 

the specification of aleurone cell fate through endosperm development. What the 

ligand(s) for CR4 could be is as yet unknown. Due to the presence of a TNFR-like 

repeat domain it has been hypothesised that CR4 receives a peptide ligand. The fact 

that CR4 is putatively membrane localised, with part of the protein in the 

extracellular domain makes a small peptide ligand (potentially processed by ALE1; 

Tanaka, et al., 2001) located in the apoplast a good candidate. Reception of such a 

ligand could direct the fate of the outside cell layer. It has been shown that CR4 

controls a cell autonomous response (Becraft, et al., 2001). It regulates cell 

differentiation through strict intracellular functions, consistent with its molecular 

identity as a transmembrane receptor. 

Two other maize mutants have similar phenotypes to that of cr4. It has been 

suggested that they act in overlapping pathways. The first is the DEFECTIVE 

KERNEL] (DEKJ) gene (Becraft, et al., 2002; Lid, et al., 2002). Weak deki alleles 

show similar endosperm and vegetative phenotypes to cr4 mutants. Aleurone 

formation is blocked at an early stage and similarly to cr4 mutants the peripheral 

endosperm cells develop as starchy endosperm (Becraft and Asuncion-Crabb, 2000). 

Aleurone cell fate is specified early in maize endosperm development (Morrison, et 

al., 1975; Brown, et al., 1994). The fact that dek] mutants have an altered aleurone 
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cell identity suggests that DEK] plays a role in specifying and maintaining aleurone 

cell fate and differentiation. It was at first thought that DEK1 might be a ligand for 

CR4 (Becraft and Asuncion-Crabb, 2000). Later research however showed that this 

was not the case, and that it was instead involved in early events that direct aleurone 

cell fate in another way (Becraft, et al., 2002). 

Weak deki alleles have defective epidermal layers and increased numbers of 

bulliform cells, similar to cr4. Strong deki alleles however show more pronounced 

epidermal defects in the embryo than cr4 alleles. In addition the defects in strong 

deki mutants are more suggestive of a mi s- specification event, rather than 

differentiation defects as seen in the cr4 mutant epidermal layer. deki has severe 

defects in cell-layer organisation of the developing embryo which fails to form a 

proper embryo axis and instead arrests (Becraft, et al., 2002). DEK1 is therefore 

required for the establishment of an embryonic axial pattern and seems to have a 

more fundamental effect on epidermal specification than CR4 (Becraft, et al., 2002). 

In double mutants of a weak deki and a strong cr4 allele, the embryo phenotype is 

exacerbated (Becraft, et al., 2002). Double mutants show elements of epistasis, 

additivity and synergy. This suggests that the two genes might act in the same 

pathway (Becraft, et al., 2002). Like CR4, DEK] is expressed in most plant tissues 

(Lid, et al., 2002). There are also similar genes in Arabidopsis, rice and loblolly pine 

(a gymnosperm) which suggests that DEK1 plays a conserved role in plant 

development. 

The DEKJ gene was cloned and found to encode a predicted membrane-anchored 

calpain-like cysteine proteinase (Lid, et al., 2002; Wang, et al., 2003). The DEK1 

protein contains 21 predicted membrane spanning domains, a loop region predicted 

to be located in the extracellular region, and a cysteine protease domain inside the 

cell. Cysteine proteases are thought to be involved in selected cleavage of proteins 

to regulate their function. DEK1 defines the only family of calpains in plants 

(Becraft, et al., 2002; Lid, et al., 2002). It seems unlikely that DEK1 is involved in 

cleaving a precursor ligand for reception by CR4 as the protease domain of DEK1 is 

intracellular. However as DEK1 also functions cell autonomously it might instead 

negatively regulate an inhibitor of CR4, as suggested in Becraft, et al. (2002). A 
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model was therefore proposed for the specification and regulation of aleurone cell 

fate and epidermal differentiation, involving an interaction between DEK1 and CR4. 

The third hypothetical member of this pathway is encoded by SUPERNUMARY 

ALEURONE LAYER] (SAL]) and is involved in regulating the aleurone cell layer 

(Shen, et al., 2003). The sal] mutant was isolated from a screen on a Mu-

mutagenised population of maize plants for mutants with multiple aleurone layers. 

sal] mutants carry up to seven layers of aleurone in the endosperm of defective 

kernels (rather than one layer as in wild-type kernels). SAL] encodes a homolog of a 

human Class E vacuolar sorting protein. In animals, similar proteins appear to be 

involved in the vesicle trafficking and turnover of plasma-membrane localised 

receptor proteins. As will be discussed in Section I.4.3.B, this sort of turnover is 

often important for correct signalling or damping down of receptor-kinase activity. 

As CR4 encodes a putative membrane-localised receptor-like kinase, it is possible 

that SAL1 is involved in regulating CR4 turnover or the turnover of CR4-pathway 

elements. In sal] mutant plants there are additional aleurone layers, rather than 

fewer layers as in dek] mutants. This could suggest that loss of turnover of CR4 

signalling results in constitutive signalling of aleurone cell fate, due to CR4 protein 

build-up at the membrane. Alternatively SAL1 might be involved in targeting 

components involved in aleurone cell fate via an independent pathway to 

CR41DEK]. SAL1 has a bipartite nuclear localisation signal and it could be that it 

functions in the control of other cell-fate regulators in the nucleus (Shen, et al., 

2003). However, involvement of SAL] in a pathway with CR4 and DEK] certainly 

seems possible. Whether a similar mechanism is involved in Arabidopsis will be 

discussed in Section 1.5. Firstly though the receptor-like kinase gene family (of 

which CR4 is a member) will be discussed. 
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1.4. Signalling mechanisms in plants: the role of receptor-like kinases 

1.4.1. The plant receptor-like kinase gene family 

The importance of inter-cell communication in order for the plant to properly control 

development has been discussed. But how are cell-cell signals transmitted? A 

common way for cells to convey signals to other cells is through reversible 

phosphorylative activity - phosphorylation of target proteins. Protein kinases 

generally add phosphate ions to a protein, and phosphatases remove them. These 

mechanisms can be used to activate or inactivate target proteins. Receptor kinases 

are membrane-localised proteins that are involved in receiving signals or ligands 

from the exterior of the cell. When activated by ligand-binding, receptor kinases 

phosphorylate themselves and downstream targets, thus mediating and transducing 

extracellular stimuli and developmental signals into the cell. The eventual 

downstream target is usually a change in gene regulation. 

In animals, protein receptor kinases make up a large family, being involved in 

signalling to regulate a wide range of responses (Fantl, et al., 1993). There are two 

catalytic categories of kinases with the distinction based on substrate specificity. 

The first are receptor tyrosine kinases which specifically phosphorylate tyrosine 

residues. These are the more common than the second type, which phosphorylate 

serine or threonine residues. In animals there are many receptor tyrosine kinases 

(RTK5) which are generally receptors for growth factors (Fanti, et al., 1993). They 

have key roles in cellular processes and are involved in co-ordinating the 

development of multicellular organs (van der Geer, et al., 1994). Animal receptor 

kinases have been extensively studied and many of the ligands and downstream 

molecules have been elucidated. The ligands found for receptors include various 

hormones such as the epidermal growth factor (EGF) (Schweitzer and Shilo, 1997). 

Downstream targets include protein phosphatases and the evolutionarily conserved 

MAP kinase phosphorylation cascade (Feng, et al., 1993; Neiman, 1993). 

The idea that similar proteins to RTKs were involved in the recognition of 

polypeptide ligands by transmembrane receptors at the cell surface in order to direct 
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plant development, was at first thought unlikely. It was thought that the cell wall 

that surrounds the plant cell would inhibit such a mechanism of plant cell-cell 

communication. However in recent years similar proteins have in fact been found in 

plants - these are designated plant receptor-like kinases (RLKs). RLKs are now 

widely known with around 615 putative members in Arabidopsis (Shiu and Bleecker, 

2003). Those characterised have been found to play roles in many disparate 

signalling processes (reviewed in Toni and Clark, 2000; Shiu and Bleecker, 2001; 

Morris and Walker, 2003). Transmembrane RLKs constitute 60% of the kinases in 

Arabidopsis and represent a sizeable 2.5% of all protein-coding genes (Shiu and 

Bleecker, 2001; Shiu and Bleecker, 2003). They are involved in the control of a 

wide range of developmental processes including organ patterning (Perez-Perez, et 

al., 2002; Shpak, et al., 2004), cell differentiation (Matsubayashi, et al., 2002; 

Higuchi, et al., 2004) and self incompatibility (Cabnllac, et al., 2001; Murase, et al., 

2004). Many RLKs are important in response to the environment including roles in 

disease resistance (He, et al., 1998), symbiont nodulation (Endre, et al., 2002) and 

response to insect attack (Morris and Walker, 2003). One particularly well 

characterised RLK is CLAVATA1 (CLV1) which is involved in maintaining the 

shoot apical meristem (as mentioned in Section 1.2.4) (Shiu and Bleecker, 2001). 

The diverse range of biological processes that RLKs affect is underpinned by 

common signalling elements. Although performing distinct roles, plant RLKs are 

thought to function in an analogous way to protein kinases in animals. The study of 

plant RLKs is however still in its early stages relative to that of animal receptor 

kinases. 

The dynamics of plant receptor-like kinases including the mechanism of 

localisation, signalling and turnover in the cell will be addressed in this section. 

Parallels and paradigms in the animal protein kinase family will also be discussed. 

The RLK family as a whole will be briefly introduced but the specifics of the roles 

that disparate RLKs play will not be looked at in detail. 
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Plant RLKs have a separate origin to that of animal receptor like kinases. They 

form a distinct monophyletic gene family and are descended from an ancestor similar 

to the animal Pelle/IRAK cytoplasmic kinases (Shiu and Bleecker, 2001). The 

downstream components regulated by RTKs and RLKs are clearly different which 

confirms that they have evolved independently in plants and animals. However 

RTKs and RLKs do share common features and have behavioural similarities, 

suggesting that their evolution has likely been in parallel (Cock, et al., 2002). 

Convergent evolution has also generated similar receptor kinase motifs in both 

families - they share structural similarities (Walker, 1994; Shiu and Bleecker, 2003). 

The characterised RLKs in plants possess all of the structural characteristics of 

receptors. This includes an amino-terminal signal peptide, followed by a predicted 

extracellular region of variable structure where the ligand is predicted to bind. 

Adjacent to this region is a hydrophobic domain of variable length predicted to span 

the plasma membrane. At the carboxy-terminal end of the protein is the kinase 

domain (which is intracellular) and a C-terminal end of variable length; a long C-

terminal region is uncommon in plants. In plants almost all known RLKs are serine-

threonine kinases - this is unlike the situation in animals where most are tyrosine 

specific (van der Geer, et at., 1994). Almost all RLKs phosphorylate either serine or 

threonine residues, although some have been reported that phosphorylate both; 

POLLEN RECEPTOR-LIKE KINASE1 (PRK1) which is a pollen-specific RLK in 

Petunia inflata has been shown to autophosphorylate on both serine and tyrosine 

residues (Mu, et al., 1994). The RLK kinase domain has itself been extensively 

studied in order to define the conserved catalytic residues and to determine residue 

specificity. Despite their structural diversity and differing substrate specificity, the 

primary sequence and secondary structure of the catalytic domains of all eukaryotic 

protein kinases are highly conserved (Hanks, et at., 1988; Hanks and Quinn, 1991). 

This information is particularly useful for characterising putative receptor kinases 

and can also be used for phylogenetic analysis of kinase families (Walker, 1994). 

The kinase domain of many RLKs contains a small structural feature known as the 

activation loop. These RLKs appear to be positively regulated by phosphorylation 

on a key reside in this loop, although it is not known what purpose this plays in RLK 

37 



function (Johnson, et al., 1996). Mutation of residues in the activation loop can 

inactivate a protein kinase. 

The receptor kinase family in plants is a large and diverse one. It includes 

receptor-like kinases (RLKs) and also non-receptor kinases - receptor-like 

cytoplasmic kinases (RLCK). Based on sequence identity between the extracellular 

domain and kinase phylogeny, the receptor kinase family can be divided into 44 

subfamilies (Shiu and Bleecker, 2001). This consists of 12 subfamilies of RLCKs 

and 32 subfamilies of RLKs. The extracellular domains of RLKs share some motifs 

with animal RTKs, some with other animal proteins, and some with plant proteins 

(reviewed in Toni and Clark, 2000). The variety of extracellular motifs probably 

reflects a diverse range of ligands. This, and the wide range of processes regulated, 

suggest that the RLK family is a highly evolved group of signalling proteins 

designed to control multiple processes. 

The majority of RLKs contain leucine-rich repeat (LRR) motifs, which are 

implicated in protein-protein interactions (Kobe and Deisenhofer, 1994). There are 

about 220 LRR-class members grouped into 14 subfamilies that play a wide range of 

roles (reviewed in Dievart and Clark, 2004). They include proteins which are 

receptors for hormones. For example BRASSINOSTEROID INSENSITIVE1 

(BRI1) is a key component of a membrane brassinosteroid/brassinolide receptor. 

BRI1 is involved in growth promotion in response to brassinosteroids (Li and Chory, 

1997; Friedrichsen, et al., 2000). The LRR class also includes ERECTA which is 

involved in the regulation of organ shape, and CLV1 (Toni, et al., 1996; Shpak, et 

al., 2003; Shpak, et al., 2004). The Arabidopsis variant Landsberg erecta has a 

mutation in the ERECTA locus which alters the form of the plant. 

The epidermal growth factor (EGF) class contains proteins with EGF-like repeats. 

These repeats are found in various animal extracellular receptor domains and are 

thought to play a role in protein-protein interactions (Rebay, et al., 1991). EGFR is a 

member of the well characterised EGFR/ErbB family of animal RTKs which bind 

EGF-related peptide growth factors. They are involved in cell differentiation and 

proliferation (Olayioye, et al., 2000). Plant EGF-repeat-containing RLKs consist of 



one subfamily and are represented by the cell wall-associated receptor kinases 

(WAKs) which have been shown to be involved in pathogenic responses (He, et al., 

1998). 

There are three S-locus domain subfamilies of RLKs. S-domain RLKs, including 

S RECEPTOR KINASE (SRK), are involved in the self-incompatibility recognition 

between pollen and stigma, and some play roles in defense signalling (Stein, et al., 

1991; Cabrillac, et al., 2001). The tumour necrosis factor receptor (TNFR)-class of 

RLKs share a TNFR-like motif which consists of three cysteine rich domains. There 

is one TNFR-class subfamily which contains the previously mentioned maize gene 

CRINKLY4 (Section 1.3.4) and its homologs in other plant species. There are two 

subfamilies of lectin-domain RLKs which are thought to be involved in sugar-

mediated signal transduction (Harve, et al., 1996). The pathogenesis-related protein 

5 (PR5) class has one member, PR5-like receptor kinase (PR5K), which is involved 

in the pathogenesis response and in pollen development (Wang, et al., 1996). 

There are also various small subfamilies which contain recently characterised 

RLKs with novel extracellular motifs. For example the PROLINE EXTENSIN-LIKE 

RECEPTOR KINASE] (PERK]) gene encodes a novel plant RLK from Brassica 

napus (Silva and Goring, 2002). It contains a proline-rich extracellular domain 

with sequence similarity to extensins. It is thought to be involved in perception and 

response to wounding. The function of some other identified subfamilies of RLKs 

with novel motifs are as yet unknown (Shiu and Bleecker, 2001). 

Understanding the molecular mechanism of plant RLK action, including defining 

kinase activity, identifying ligands and dissecting the downstream signalling 

pathways, are major challenges which are gradually being solved. This is 

particularly aided by the advent and availability of new techniques and resources 

(Lease, etal., 1998; de Wildt, etal., 2002; Dievart and Clark, 2003). 
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1.4.2. Receptor-like kinases: localisation and ligand binding 

1.4.2.A. Receptor-like ki nase localisation 

Plant RLKs are generally plasma-membrane localised proteins. The mechanism of 

transport to the membrane is often facilitated by an actin-dependent vesicular 

transport system which traffics the protein from the endoplasmic reticulum 

(ER)/golgi. This is directed by the hydrophobic amino terminus of the protein which 

acts as a signal peptide. The transmembrane domain itself is a hydrophobic region 

which is situated within the phospholipid bi-layer. At the carboxy terminal side of 

the transmembrane domain are basic residues such as arginines and lysines which 

stop the protein moving completely through the membrane. This is a typical Type I 

integral membrane protein structure (Singer, 1990). The basic amino acids act as a 

'stop-transfer' signal which situates the amino terminal domain in the extracellular 

region, while the carboxy terminus resides on the cytoplasmic face of the plasma 

membrane (Walker, 1994). 

After the protein arrives in the plasma membrane it must be retained there. In 

some cases this has been shown to involve interaction to subcellular scaffold 

proteins. The animal ErbB2 RTK in the ErbB family interacts with members of the 

PDZ-domain-containing protein family via carboxy-terminal motifs in the kinase 

domain (Carraway and Sweeney, 2001). These PDZ membrane proteins act as 

scaffolds to restrict receptor kinases to certain sites of regions of the cell. For 

example the PDZ-domain-containing protein Erbin binds to ErbB2 to mediate a 

basolateral localisation of the RLK in epidermal cells (Carraway and Sweeney, 

2001). PDZ-domain proteins are also involved in targeted delivery of proteins to the 

membrane. It seems that the location of receptors in the membrane can alter their 

signalling properties. For example, whether the ErbB2 RTK is localised on the 

basolateral surface or on the apical surface of the epidermal cell modulates which 

downstream targets are bound, and so which signals are sent to the cell (Carraway 

and Sweeney, 2001). This provides a mechanism by which the relative location of 
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the ligand bound can be perceived. 	It also suggests that there is 

compartmentalisation of downstream components along an apical-basal axis. 

One structure thought to be important in modulating animal cell signalling is the 

lipid raft. Lipid rafts are subdomains of the plasma membrane which are rich in 

cholesterol and glycosphingolipids (reviewed in Pike, 2003). Lipid rafts vary in the 

proteins and lipids that they contain and appear to involved in partitioning signalling 

components within the cell. In doing this they are involved in regulating signalling 

pathways. For example they may contain incomplete signalling pathways that are 

activated by recruitment of a certain molecule into the lipid raft. Alternatively they 

could physically isolate signalling components to block certain interactions within 

the cell. They also provide an alternative route of endocytosis into the cell. Lipid 

rafts are important in modulating the signalling of receptor tyrosine kinases such as 

members of the EGFR and Ephrin receptor (Eph) families in animals (Gauthier and 

Robbins, 2003; Pike, 2003). For example EGFRs rapidly move out of the lipid rafts 

in which they are situated upon ligand binding (Mineo, et al., 1999). It is thought 

that different classes of the ligands for Eph receptors, ephrins, associate with distinct 

populations of lipid rafts in the cell. This is proposed to allow specificity of ephrin 

signalling (Gauthier and Robbins, 2003). Whether or not similar structures exist in 

plant cells is not yet known. 

I.4.2.B. Ligand binding 

Ligand binding occurs on a specialised receptive domain of the protein, which is 

located in the extracellular region of the cell. The similarity of plant and animal 

extracellular motifs suggests that similar ligands might be bound by both. By 

comparison to the animal equivalents, the LRR, TNFR and EGF-repeat like ligand 

binding domains and similar protein-protein interaction motifs of plant RLKs are 

suggestive of proteinaceous ligands such as peptides or polypeptides (Walker, 1994). 

Whether TNF-like peptides will be found in plants to bind TNFR-motif containing 

proteins such as CR4 is yet to be seen. The TNF family of ligands is large and 
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diverse which would make identifying such molecules difficult (Orlinick and Chao, 

1998). Plant RLK ligands are likely to be secreted rather than membrane-bound, due 

to the presence of the cell wall which separates adjacent cell membranes. The only 

exception to this would be in the case of the RLK and ligand being produced by the 

same cell. 

So far very few ligands have been conclusively proven to bind plant RLKs. Many 

of these are peptides such as CLV3 (Trotochaud, et at., 1999). This is like the 

situation in animals where ligands are mostly polypeptides. One of the best 

characterised ligand molecules is the S locus cysteine-rich protein (SCR) which has 

been shown to interact directly with SRK in vitro (Kachroo, et al., 2001). In tomato 

the small peptide systemin has been found to bind the LRR RLK systemin cell-

surface receptor 5R160 (Scheer, et al., 2003). SR160/systemin is an important 

receptor/ligand pair involved in the wounding response in tomato (Scheer and Ryan, 

2002). The Arabidopsis WAK1 was found to bind a glycine rich extracellular 

peptide, GRP (Park, et at., 2001). In addition modified peptides such as the bacterial 

elicitor flagellin are bound. Flagellin is a glycoprotein which has been shown to be 

bound by the Arabidopsis LRR RLK FLAGELLIN SENSITIVE 2 (FLS2) (Gomez-

Gomez and Boller, 2000; Gomez-Gomez, et al., 2001). As well as peptide ligands, 

plant steroid hormones also act as ligands. For example the steroid 

bras sinolide/brassinosteroid is the ligand for BRI1 (Wang, et at., 2001). The LRR-

domain of BRI1 contains a 'loop-out' island which is postulated to be the ligand 

binding domain for the protein (Li and Chory, 1997). Bacterial Nod factors provide 

another example of this sort of ligand. Lipochitin oligosaccharides, which are 

involved in nodule development in legumes, appear to be sensed by another LRR 

RLK, NODULATION RECEPTOR KINASE (NORK) (Endre, et at., 2002). 

There are also various small peptide growth factors in plants for which no receptor 

has yet been identified (Toni and Clark, 2000). For example there is a large family 

of ligands related to SCR which could turn out to be ligands for the other S-locus 

RLKs (Vanoosthuyse, et at., 2001). There is also a large family of 'orphan' ligands 

related to the CLV3 peptide - the widely expressed CLV3IESR-like (CLE) family 

(Sharma, et at., 2003). It is possible that these proteins will turn out to be ligands for 
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important RLKs involved in regulating development. Improved knowledge of 

receptor-ligand dynamics will be key to understanding RLK signalling. 

I.4.2.C. Oligomerisation: ligand-independent and ligand-induced 

Receptor like kinases commonly form complexes with each other (dimers/trimers) or 

with other similar proteins (di-oligomers/tri-oligomers) (Olayioye, et al., 2000). 

Multimerism is a functionally important process and is a critical event in the 

activation of almost all known receptor protein kinases (Walker, 1994). 

Multimerisation allows transphosphorylation of the kinase domains of two 

monomeric units by bringing them closer together to activate the receptor complex. 

There are some animal RTKs in the epidermal ErbB-family that act as monomers, 

but these are catalytically less active than those that act as dimers (Waterman and 

Yarden, 2001). There are various examples of both homo- and hetero-oligomers in 

plants. For example the BRI1 LRR-RLK interacts with the LRR-RLK BRI1-

ASSOCIATED RECEPTOR KINASE1 (BAK1) forming a ligand-dependent hetero-

oligomer to transduce the bras sinosteroid/brassinolide signal (Li, et al., 2002). 

The kinase catalytic domain itself is absolutely required for function (Hunter and 

Lindberg, 1994). However, a lack of kinase activity can be provided by another 

kinase, even one of divergent sequence. For example the activity of CLV1 can be 

functionally replaced by that of cytoplasmic kinases (Trotochaud, et al., 1999). This 

is also seen in animals where the kinase activity of 'dead' or 'fractured' animal 

RTKs which lack kinase activity can be compensated for by cytoplasmic kinases 

(Kroiher, et al., 2001). So far the kinases found to provide such activity seem to be 

cytoplasmic kinases, however hetero-oligomeric partners could also be proposed to 

provide kinase activity. 

There are two ways by which receptor kinases form multimers and are activated 

(Fig.I.7A-C). The first is via activation-mediated oligomerisation. This means that 

binding of a ligand to one or two closely situated monomers can cause a 

conformational change which results in the formation of a multimeric complex 
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Figure 1.7. Schematics of RLK behaviour. (A) RLK molecules situated in the plasma membrane 
(blue box, ligand-binding domain; white box, transmemhrane domain; orange box, kinase domain). 
Ligand molecules (green) are present in the extracellular matrix. (B) Ligand-dependent 
dimerisation. Two RLK molecules bind one ligand molecule to form a homodimer complex. After 
binding transphosphorylation (P) occurs on the kinase domain. This is followed by downstream 
signalling (arrow). (C) Ligand-independent dimerisation. Two RLK molecules come together in 
the absence of a ligand molecule. Dimerisation brings the two RLK monomers closer together and 
alters their conformation. This 'active' complex conformation is ready to receive a ligand. (D) 
CLVI binds to CLV2 at the plasma membrane to form a hetero-oligomer. Two of these hetero-
oligomers come together to form a hetero-multimer. After binding the CLV3 ligand, 
transphosphorylation occurs between the two CLVI kinase domains. This phosphorylation results 
in the binding of cytoplasmic targets including ROP, which might activate a MAPK kinase cascade. 
The final target of this signal transduction is likely to he repression of the WUS gene. In addition to 
downstream signalling it seems that there is phosphorylation-dependent KAPP binding of CLVI. 
KAPP binding is involved in RLK complex downregulation. (E) Ligand-binding dependent 
endocytosis of the ErhB I dimer. After ligand (green) binding-induced dimerisation of the ErhB I 
receptor (orange). Chl proteins hind to the complex and induce endocytosis. This occurs via 
recruitment of scaffold molecules such as C1N85, and endophilins which are regulatory components 
of clathrin-coated vesicles. In addition Chi binding targets ErhBI for ubiquitylation (Ub) and 
subsequent lysosomal degradation. (F) Ectodomain shedding of the extracellular domain of a 
membrane-localised protein may release part of the protein to act as a ligand. Regulated 
intramembranous cleavage (RIP) processing. which results in cleavage at an intracellular site on the 
protein, can result in release of an active signal into the cell which could regulate transcription in the 
nucleus. (D) Taken from Cock. et al. (2002). (E) Taken from Oved and Yarden. (2002). (F) Taken 
from Arribas and Borroto. (2002). 



(Fig.I.713). This then facilitates transphosphorylation and allows the signal to be 

transmitted downstream. This is a ligand-dependent process. The second is via 

oligomensation which then results in activation of the protein complex. This is the 

formation of multimers in the absence of ligand, which results in an active receptor 

competent to receive a ligand molecule (Fig.I.7C). This is not a ligand-dependent 

process (but the later signalling events themselves are dependent on ligand binding). 

In either case it could be that the multimers are composed of identical units, forming 

dimers or trimers. Alternatively hetero-oligomers can be formed of different units if 

they are functionally competent to form a complex. For example as mentioned in 

Section 1.2.4, CLV1 interacts with CLV2 to form a hetero-oligomer. CLV2 is a 

receptor-like protein, a truncated RLK which lacks a kinase domain (Jeong, et al., 

1999) (Fig. 1.71)). 

Via genetic approaches it might be possible to determine whether certain proteins 

are likely to form multimeric complexes, either with each other or with related 

proteins. It is harder to dissect exactly the mechanism of multimerism, although 

progress towards this is now being made. Some clues come from structural 

observations. As well as containing protein-protein interaction domains for ligand 

binding, receptor kinases also contain putative dimerisation motifs. For example 

many LRR-class RLKs have putative dimerisation modules which consist of closely 

situated pairs of cysteines (Toni and Clark, 2000). These paired cysteines are 

thought to form disulfide bonds involved in intermolecular assembly of hetero-

multimers. Genetic and molecular evidence suggests that the active CLV receptor 

complex consists of two CLV 1/CLV2 hetero-oligomers, which associate together as 

a hetero-multimer (Fig.I.7D) (Clark, et al., 1995; Jeong, et al., 1999; Trotochaud, et 

al., 1999). The S-domain in the plant S-locus RLK consists of an array of ten 

cysteine residues which are thought to be involved in homodimerisation of RLK 

molecules via formation of disulfide bridges. These dimers form in planta. It seems 

that subsequent ligand binding then brings the kinase domains of the proteins closer 

together to allow autophosphorylation and recruitment of intracellular substrates 

(Giranton, et al., 2000). As mentioned in Section 1.3.4, the mammalian TNFR 

receptor contains one cysteine rich domain which is thought to be involved in 



trimerisation (Chan, 2000). Although not a RTK this protein is worthy of discussion 

and shows some parallels to RTKs. Similarly to SRK it seems that receptor 

assembly occurs prior to ligand binding. It had been previously thought that 

trimerisation was induced by binding of a trimeric TNF molecule to three 

monomeric TNFR subunits. However more recently it was found that the TNFR 

protein contains a domain that mediates receptor self-assembly - the pre-ligand 

binding assembly domain (PLAD) (Chan, et al., 2000). Therefore it seems that 

trimerisation begins with interactions between TNFR monomers, allowing the TNFR 

complex to be receptive to ligand binding (Chan, 2000). In contrast the mammalian 

epidermal growth factor receptor (EGFR) undergoes ligand binding-dependent 

dimerisation which is mediated by interactions between specific residues in the 

'dimerisation loop' (Schlessinger, 2002). Within the ErbB family of RTKs there are 

examples of both hetero- and homo-dimerisation. It seems that hetero-dimerisation 

of ErbB RTKs combined with multiple ligand types allows an expansion of ErbB 

signalling potential. This therefore enlarges the number of possible downstream 

outcomes (Olayioye, et al., 2000). Mutation of certain critical residues involved in 

receptor kinase multimerisation can result in altered complex conformation. This 

can then result in ligand-independent dimerisation and autophosphorylation. For 

example insertion of an extra cysteine residue in the extracellular juxta-membrane 

region of EGFR results in a constitutively active dimeric receptor (Sorokin, et al., 

1994). 

In order to understand the mechanism of receptor multimensation various genetic 

approaches can be taken. These include investigation of truncated proteins which 

can have dominant positive or negative effects. In animals co-expression of a 

functional RTK and a mutant RTK lacking the kinase domain has been shown to 

have a dominant negative effect (Kroiher, et al., 2001). This is due to the formation 

of heterodimers which are unable to signal downstream. The ligand for the receptor 

is however still received and retained so that it is effectively sequestered. It is 

generally thought that the supply of ligand in a receptor/ligand pairing is the limiting 

factor for signalling, thus sequestering the ligand will effectively block signalling 

(Freeman and Gurdon, 2002). In plants too such an effect has also been seen. For 
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example recent research shows dominant negative effects were associated with both 

ERECTA which lacked the kinase domain (Shpak, et al., 2003), and CLV1 (Dievart, 

et al., 2003) where the cytoplasmic region of CLV1 was replaced by the cytoplasmic 

region of BRI1. 

In a similar fashion it has been shown that expression of an RTK lacking an 

extracellular region can confer a dominant positive effect (Basler, et al., 1991). Due 

to the mechanistic similarity between plant and animal receptor kinases such an 

outcome might also be expected to occur with plant RLKs. 

1.4.3. Receptor-like kinases: signalling dynamics 

1.4.3.A. Downstream signalling targets 

In animals, binding of a ligand molecule to the extracellular domain of the RTK 

complex usually stimulates receptor autophosphorylation. Autophosphorylation 

occurs at multiple sites and each site functions as a high-affinity binding site for a 

diverse array of downstream targets which contain a src homology-2 domain (SH2) 

(Heldin, 1991). These downstream signalling components mediate the RTK signal 

and include proteins with catalytic activity, and molecular adaptors which have a src 

homology-3 (SH3) domain (Pawson and Gish, 1992). These molecular adaptors 

include molecules that facilitate the reversible formation of protein complexes by 

recognising only active forms of the RTKs. Small GTP binding proteins such as 

Ras, serine/threonine kinases such as Raf and the MAPK kinase phosphorylation 

cascade are all thought to play a downstream role in relaying the signal (Ma, 1993; 

Neiman, 1993; Moodie and Wolfman, 1994). The final targets of this cascade are 

likely to be transcription factors involved in regulating gene expression in order to 

modulate development according to the signal transduced. Activated ErbB family 

receptors can also act as docking sites for other cytoplasmic molecules. Downstream 

signalling pathways such as the MAPK cascade can be activated by catalytically 

inactive receptors, such as cytokine receptors, through ErbB. For example, binding 
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of a ligand to the mammalian growth hormone receptor (GHR) results in binding and 

activation of the Janus tyrosine kinase (Jak) to GHR (Yamauchi, et al., 1997). This 

leads to recruitment and phosphorylation of cytoplasmic signalling molecules which 

bind to ErbBl. This increases the level of ErbBl activation and so increases 

activation of the downstream MAPK cascade. This allows ErbBs to act as signal 

integrators and therefore to expand their roles in development (Hynes, et at., 2001). 

The C-terminal end of the protein can also function in protein-protein interactions 

after kinase activation (Toni and Clark, 2000). The intercellular targets for animal 

serine/threonine receptor kinases - which are 0-transforming growth factor receptors 

(0-TGFRs) - have not been clearly defined although both heterotrimenc 0-proteins 

and the Ras/Raf/MAPK cascade have been implicated (Massague, 1992; 

Kolodziejczyk and Hall, 1996). 

Plants do not seem to have proteins with SH2- and SH3-domains, suggesting that 

the RLK motifs which interact with downstream targets are distinct from animal 

RTKs (Toni and Clark, 2000). In plants there is evidence for downstream 

components that effectively act in a similar fashion, however the interacting 

components themselves are not homologous (reviewed in Cock, et at., 2002). Again 

the fact that there are similar components suggests parallel evolution of plant and 

animal receptor kinases. For example the Rho-type GTPases (ROPs), which are 

similar to Ras proteins are one possible downstream target. ROPs have been shown 

to be involved in polarised plant cell growth (as mentioned in Section 1.3.3). 

Interestingly CLV1 has been found to associate with a ROP through which it could 

activate a MAPK cascade (Fig.I.7D). This then might be involved in targeting 

repression of WUS as described in Section 1.2.4 (Clark, 2001). The eventual 

downstream targets for the BRI] pathway are also being uncovered, although no 

direct substrate for BRI1/BAK1 has yet been found (reviewed in Dievart and Clark, 

2004). Downstream of BRI1/BAK1 binding of BR, the GSK3-like kinase 

BRASSINOSTEROID INSENSITVE2 (BIN2) is inactivated (Li, et al., 2001). This 

allows two novel proteins, BRI1-EMS-SUPRESSOR1 (BES1) and 

BRASSINAZOLE RESISTANT]. (BRZ1), which are normally phosphorylated and 

degraded due to BIN2 interaction, to be translocated the nucleus. There they can 
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activate their specific BR responsive targets (Yin, et al., 2002; Zhao, et al., 2002). 

Whether other plant RLKs activate similar components to those found for CLV 1, and 

how the dynamic array of plant signalling pathways interact is a question yet to be 

answered. 

1.4.3.13. Damping down the signal: endocytosis and protein processing 

After ligand binding and phosphorylation on the kinase domain the receptor-like 

kinase is usually active and can signal to downstream proteins. If signalling gives an 

indication of ligand availability and in some cases ligand position, it is important that 

catalytic activity is only transitory and so truly responsive. Damping down of the 

kinase activity is a vital mechanism to ensure this and to regulate the kinetics of 

response (Waterman and Yarden, 2001). In animals there are examples of both 

transitory and definitive inhibition of signalling (Dikic and Giordano, 2003). 

Transitory inhibition is concerned with fine-tuning RTK signalling. It involves 

reversible dephosphorylation of activation loop sites which inactivate the kinase 

domain, or phosphate removal from docking tyrosines which blocks the activation of 

specific signalling pathways (Hunter, 1995). In plants, constitutive activation of 

SRK in the absence of its ligand is blocked by interaction with the thioredoxin-h-like 

THRL1 protein, which binds to a site on the cytosolic site of the transmembrane 

domain and prevents phosphorylation (Cabrillac, et al., 2001). 

In order to definitively deactivate the protein and inhibit signalling, the most 

common mechanism is (ii gand-binding) activation-dependent protein degradation. 

The major process that regulates the amplitude and kinetics of signal transduction is 

endocytosis. Endocytosis removes ligand-receptor complexes from the plasma 

membrane, which are then sorted for degradation or recycling (Waterman and 

Yarden, 2001). Many steps involved in endocytosis are thought to be regulated by 

ubiquitylation (Hicke, 2001). In animals RTKs are commonly removed from the cell 

surface via clathrin-dependent endocytosis, and are then degraded in lysosomes 

(Oved and Yarden, 2002). 



In order for internalisation to occur there must be interaction with downstream 

signalling components within the cell. Various motifs have found to be involved in 

internalisation. Most of these are in the transmembrane or kinase domains. For 

example there is an adhesion motif in the transmembrane domain of the EGF-

receptor ErbBl; deletions in this domain affect internalisation. ErbBl endocytosis 

itself is a phosphorylation-dependent process which is regulated by Cbl proteins 

(Oved and Yarden, 2002; Soubeyran, et at., 2002) (Fig.I.7E). Cbl is a multi-adaptor 

protein involved in ligand-induced ubiquitylation and down-regulation of RTKs 

(Waterman and Yarden, 2001). Cbl rapidly recruits the scaffold molecule C1N85 

(Cbl-interacting protein) and endophi lins (regulatory components of cI athrin-coated 

vesicles) to form a complex with activated ErbBl receptors (Petrelli, et at., 2002; 

Kowanetz, et al., 2004). These interactions induce actin-dependent endocytosis of 

the complex into the cell. After internalisation Cbl is involved in the targeting of 

receptors for lysosomal degradation (Waterman and Yarden, 2001). Plants do not 

have homologs of these internalisation-regulating genes, although there are some 

proteins which carry out a similar function. These include an arm repeat-containing 

protein (ARC 1) which interacts specifically with the autophosphorylated form of the 

SRK cytoplasmic domain (Gu, et al., 1998). ARC1 has been shown to have 

ubiquitin ligase activity and its binding to SRK is thought to trigger ubiquitin-

degradation of SRK (Stone, et al., 2003). 

In plants one possible pathway leading to endocytosis is through association with 

kinase-associated protein phosphatase (KAPP). Binding of KAPP to active receptor 

kinases results in dephosphorylation. KAPP binding then acts as a target for 

subsequent endocytosis and intracellular vesicle trafficking. It seems to associate in 

vitro with several plant RLKs in a phosphorylation dependent manner, and might be 

involved in their downregulation. For example CLV! activity has been shown to be 

modulated by KAPP in vitro (Braun, et at., 1997; Stone, et at., 1998) (Fig.I.7D). 

KAPP-associating RLKs also include SRK and the Arabidopsis LRR-RLK Somatic 

Embryogenesis Receptor-like Kinase (AtSERK). AtSERK is thought to be involved 

in the switch from somatic to embryogenic development in carrot cell cultures and its 



expression marks embryonic competence (Schmidt, et al., 1997). It was shown that 

when fluorescent protein-tagged AtSERK1 and KAPP were expressed in cowpea 

protoplasts the two proteins co-localised at the membrane and also in intracellular 

vesicles (Shah, et al., 2002). Fluorescence-resonance energy transfer (FRET) 

experiments were carried out in order to examine the interaction between KAPP and 

AtSERK. FRET was observed in intracellular vesicles (Shah, et al., 2002). These 

findings do not however show definitively that ligand-binding mediated endocytosis 

is taking place. Firstly, FRET was only observed in intracellular vesicles. It was not 

actually observed at the membrane where an interaction between ligand-bound 

AtSERK and KAPP would be expected to occur. Secondly, the experiments were 

carried out in cowpea protoplasts and it may be questioned whether the AtSERK 

ligand is actually present in such a system. Further work is therefore required to 

conclusively prove that plant RLKs are subject to ligand-binding mediated turnover. 

Interestingly KAPP has been shown not to associate with CR4 or BRI1 (Braun, et 

al., 1997). 

Research into the mammalian family of low-density lipoprotein receptors (LDLR) 

gives an insight into the possibilities of receptor-ligand dynamics. LDLRs are 

involved in removal of cholesterol-carrying lipoproteins from plasma membrane 

circulation by receptor-mediated endocytosis (Jeon and Blacklow, 2003). The LDL 

ligand associates with the LDLR at the plasma membrane. This association triggers 

endocytosis of the LDLR-LDL complex into clathrin-coated pits which form 

endosomes. This is thought to be mediated by an internalisation motif in the LDLR 

cytoplasmic tail (Kurten, 2003). Inside the endosome the differing pH of the 

environment precipitates a conformational change within the receptor. This causes 

the 3-propeller domain of LDLR to act as an alternative ligand at the ligand binding 

domain. The LDL ligand is then released and degraded whist the receptor is 

recycled to the membrane (Innerarity, 2002; Rudenko, et al., 2002). Recent evidence 

suggests that the released intracellular domain of LDLR-related protein 1 (LRP1) is 

involved directly in signal transduction (May, et al., 2003). Whether similar 

mechanisms are linked to receptor endocytosis in RTKs or RLKs is not yet known. 
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This example is one elegant mechanism for ligand release, and highlights the 

possibility that one part of a protein receptor could act as the ligand for itself in order 

to regulate a developmental mechanism. 

Another mechanism which is involved in regulating the behaviour of receptor 

kinases is cleavage at the membrane. So far all known examples of this occur in 

animal RTKs - there are no known plant RLKs which undergo this mechanism. 

Cleavage comes in two forms: firstly ectodomain shedding where the extracellular 

domain of the receptor kinase is released, and secondly regulated intramembranous 

cleavage (RIP) by which the cytoplasmic end of the receptor kinase is cleaved into 

the cell (Arribas and Borroto, 2002) (Fig.I.7F). These mechanisms are not just 

involved in degradation of the protein however - they are also of great functional 

significance in the regulation of downstream signalling components. Both 

ectodomain shedding and RIP are regulated by an array of proteases (Arribas and 

Borroto, 2002). These proteases are recruited to the protein in what is thought to be 

a ligand-dependent mechanism. Ectodomain shedding results in release of a soluble 

protein which can then travel between cells to act as a ligand and regulate the activity 

of other transmembrane bound proteins (Blobel, 2000). For example in the case of 

TGF-a, shedding releases the soluble growth factor from the cell surface (Fan and 

Derynck, 1999). RIP processing can produce a modified receptor fragment that can 

either act as an intracellular signal or regulate transcription in the nucleus (Carpenter, 

2003). Although not a receptor kinase, the Drosophila plasma membrane-localised 

protein NOTCH provides a good example of signalling via RIP processing. NOTCH 

is an animal receptor that specifies cell fate during embryogenesis (Artavanis-

Tsakonas, et al., 1999). RIP results in release of the Notch-intra-cellular domain 

(NCID). NCID is the activated form of the receptor and it is NCID that is 

translocated to the nucleus where it acts as a transcriptional regulator (Fortini, 2001; 

Schweisguth, 2004). This is an example of cleavage which results in protein 

activation, rather than the more common cleavage resulting from activation. In the 

case of the EGFR-related ErbB-4 receptor, binding of ligand induces cleavage of 

both an ectodomain fragment and then a smaller cytoplasmic fragment containing a 
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tyrosine kinase domain (Vecchi, et at., 1996). This at first appeared to be purely a 

mechanism for protein degradation. However more recent work showed that the 

intracellular fragment was translocated to the nucleus where it could play a role in 

the phosphorylation of nuclear targets. Whether such similar processes to these will 

be found in plants is yet to be seen. 
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1.5. Outside cell layer organisation in Arabidopsis: how is this 

achieved? 

Receptor-like kinases in plants play an important role in the regulation of 

development. As mentioned earlier the inside and outside cell layers in Arabidopsis 

are differentiated very early on during development. The question of how the 

outside layer in Arabidopsis is specified and organised is the focus here. It is known 

that AtMLJ plays an important role in the specification of the outside cell layer. It is 

not however known which genes are upstream of AtMLJ and involved in signalling 

to direct this specification. Here the focus is to identity such potential upstream 

signalling components. 

1.5.1. ACR4 as a candidate regulator of epidermal specification in Arabidopsis 

As discussed earlier the CR4 RLK plays an important role, possibly with DEK1 and 

SAL1 in the control of epidermal specification/differentiation in maize. The 

prospect of a CR4-like gene in Arabidopsis playing a similar role to CR4 in maize 

was investigated in the lab (Gifford, et al., 2003; initial analysis by Gwyneth C. 

Ingram). By homology comparison using the CR4 sequence against the Arabidopsis 

genome it was found that there were five genes showing structural similarity to CR4 

(see Fig.I.8). Only one however showed a high degree of sequence similarity 

(57.5%) at the amino acid level to the predicted maize CR4 gene. This gene was 

named ACR4 (Arabidopsis thaliana CRINKLY4) (gene number At3g59420). ACR4 

was found to have no introns. The predicted proteins of ACR4 and CR4 share the 

classical membrane localised receptor-like kinase structure and have a very high 

degree of similarity between their kinase domains at the amino acid level (81.5%). 

Both ACR4 and CR4 share all of the conserved residues in the kinase domains that 

are necessary for predicted kinase activity for senne-threonine kinases (Hanks, et al., 

1988). ACR4 has been shown to encode an active kinase domain (Gifford, et al., 

2003). ACR4 is the only similar gene which encodes a protein with a long C- 
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Figure 1.8. Phylogenetic tree showing CR4, A CR4, the four other CR4-like genes in 
Arabidopsis and the Nicotiana tabacum CRKJ gene which was included for comparison. 
This tree shows a comparison of the amino acid sequences of the protein kinase domains. 
Alignments were carried out by Gwyneth C. Ingram using T-Coffee (Notredame, et al. 
2000). Unrooted trees were constructed using the MEGA2 minimum evolution algorithm 
(Kumar, et al. 2001). 



terminal region like that of CR4. The C-terminal region shares a high degree of 

similarity (57% at the amino acid level). The extracellular domain is also conserved 

with 52% similarity between the seven 39aa repeats, and 35% between the TNFR-

like repeat domain. The second and third TNFR cysteine-rich repeats however share 

57% similarity. As mentioned in Section 1.3.4. these two TNFR-repeats are thought 

to be the site of TNF ligand binding on the TNFR receptor. 

As mentioned, four other similar genes were also found (Fig.I.9). These shared 

23.6% (AtHOM], At2g39180) 25.2% (AtHOM2, At3g09780), 23.1% (AtHOM3, 

At5g47850) and 23.7% (AtHOM4, At3g55950) similarity at the amino acid level 

with ACR4. AtHOM1 and AtHOM2 were not predicted to have kinase activity, due 

to missing critical resides in the kinase domain known to be important for activation 

(Hanks, et al., 1988). They did however share a high degree of similarity within 

their seven 39aa repeat domains and TNFR-like repeat domains. All of the 

cysteines which were conserved between ACR4 and CR4 were also conserved in 

AtHOM1 and AtHOM2. AtHOM3 and AtHOM4 were instead predicted to have 

kinase activity but the extracellular domains of these genes were less similar to that 

of ACR4. They both shared the seven 39aa repeat domain and the first TNFR-like 

repeat, but were missing the second two TNFR-like repeats. Instead of the third 

TNFR-like repeat, AtHOM4 has a proline-rich domain which could function in 

protein-protein interactions (Kay, et al., 2000). AtHOM3 groups closely to the 

Nicotiana tabacun1 CYTOKININ-REGULATED KINASE1 (CRK1) RLK (Schafer 

and Schmulling, 2002). CRKJ is negatively regulated by cytokinin and might be 

involved in an early step in cytokinin signal transduction. In summary, only ACR4 

conserves all sequence motifs to the maize CR4 gene and so is more likely to be 

functionally analogous. The ACR4 gene was therefore of importance as a candidate 

regulator of epidermal specification in Arabidopsis. The other CR4-like genes are 

however also the subject of investigation in the lab. 

In the lab preliminary in situ hybridisations were carried out in order to determine 

the pattern of ACR4 RNA distribution. In addition preliminary fluorescent marker 

lines were developed. ACR4 was found to be first expressed embryonically at the 8- 
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Figure 1.9. Schematic of the proteins encoded by the ACR4 and ACR4-like genes in 
Arabidopsis. The predicted domains of the ACR4-encoded protein are shown as follows: seven 
39aa repeats (orange). three TNFR-like cysteine rich repeats (yellow), transmemhrane domain 
(green), kinase domain (red) and conserved (to maize CR4) C-ter region (black); see Appendix 
I for more detail. The first (I) cysteine rich TNFR-likc repeat is thought to he involved in 
trimerisation, while the second and third (2,3) are thought to he involved in ligand binding. 
None of the other proteins encoded by CR4-like genes share the conserved C-terminal region. 
The extracellular domains of AtHOMI and AtHOM2 have a high degree of similarity with 
respect to ACR4. All seven 39aa repeats and all three TNFR-like repeats are present, including 
the conserved cysteines. Both AtHOM I and AtHOM2 however are missing critical residues in 
the kinase domain (Hanks. 198). This renders them kinase null (denoted as cross-filled kinase 
domains). AtHOM3 and AtHOM4 are predicted to encode proteins with active kinase domains. 
however the extracellular domains are less similar to ACR4. Both AtHOM3 and AtHOM4 
contain the seven 39aa repeats, although these share a lower degree of similarity to ACR4 than 
the other ACR4-like proteins. The first TNFR-like repeat is conserved in both AtHOM3 and 
AtHOM4, but the second two are not. Instead of the third TNFR-like repeat the AtHOM4 
protein has a prolinc-rich domain (purple). 



cell stage. Its expression was found to be restricted to the outside cell layer at the 

dermatogen stage and then maintained in the outside layer of organs and meristems 

throughout development. ACR4 was expressed in roots and was not found to be 

expressed in endosperm cells, suggesting that ACR4 and CR4 might not have 

identical functions. Also curious was the fact that, unusually for an Li-specific 

gene, the ACR4 promoter did not contain an Li box. This suggests that ACR4 may 

be expressed independently of AtMLJ/PDF2. 

There are also DEKJ-like and SALJ-like genes in the Arabidopsis genome 

(AtDEKJ, AtSAL],2). The prospect that AtDEKJ is involved in a pathway with 

ACR4 in the specification of epidermal cell identity is therefore worthy of 

investigation. Exactly if and how these two genes interact is the subject of 

investigation in the lab by Kim Johnson and Gwyneth C. Ingram. The AtSAL] and 2 

genes are also being studied in the lab. 

Altogether this initial work gave a good indication that ACR4 might be involved in 

receiving and transducing postulated signals (as mentioned in Section 1.3.2) involved 

in epidermal specification in Arabidopsis. The gene was selected for further 

analysis, which is the primary subject of this thesis. Some preliminary data has been 

published by Tanaka, et al. (2002) and more recently by Watanabe, et al. (2004) 

which suggested that ACR4 might be involved in embryo morphogenesis. This data 

will be examined in Chapter III. The specific role that ACR4 plays during 

Arabidopsis development will be discussed in the chapters that follow. Part of the 

work described in this thesis is published in Gifford, et al. (2003) (see bound copy 

inside back cover). 
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Chapter II. Materials and methods 

11.1. Plant culture and plant material 

11.2. DNA techniques 

11.3. Construct production 

11.4. Isolation of t-DNA insertion and TILLING generated mutant alleles 

11.5. Phenotypic and expression pattern analysis 

11.6. Protein localisation and functional analysis 
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11.1. Plant culture and plant material 

11.1.1. Cultivation of plant lines 

Seeds were sterilised by rinsing in 70% ethanol (EtOH), 0.05% Triton-X-100 for a 

period of 12 minutes (mins). 95% EtOH was then used to rinse the seeds, for two 

washes of two mins. Seeds were pipetted on to 3MM filter paper in a sterile tissue 

hood, the ethanol allowed to evaporate and seeds sprinkled evenly on to Murashige 

and Skoog (MS) nutrient medium agar plates (0.5X MS salt and vitamin mix 

(Gibco/BRL, Gaithersburg, MD, USA), 0.6% sucrose, 1% microagar (Detriot, MI, 

USA); pH5.7, containing appropriate selection antibiotics). Plates were stratified at 

4°C for three days before transferring them to a Percival incubator (Percival 

Scientific, Perry, Iowa, USA). Plates were then incubated at 22°C with a 

photoperiod of 16 hours. 

After two weeks growth in the incubator, seedlings were transferred to a soil 

mixture (3 parts Fison's F2 compost:1 part sand:1 part perlite, with 'Intercept' 

fungicide (Clydeside Trading Society Ltd, Strathclyde, UK)) and placed in 

conditions with an 18 hour (long day) or 10 hour (short day) photoperiod at 22°C, 

50% humidity. The humidity level was increased for early stages by keeping plants 

under clear plastic domes for the first four days. 

Crosses between plant lines were made by first emasculating three flowers that had 

not yet dehisced on a lateral shoot of the acceptor plant. Carpels were then hand 

pollinated one day later with pollen from two different flowers from the donor plant. 

Tweezers used for emasculating and transferring pollen were sterilised in 70% EtOH 

between flowers, to avoid contamination. Mature seed was collected and stored in 

air-permeable envelopes. 

11.1.2. Tissue culture 

In order to obtain root tissue, plants were grown in conical culture flasks. Once 

sterile, seed was suspended in 0.1% agarose powder (Bioline, London, UK) solution 
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and the seeds stratified for 3 days at 4°C. Seeds were then sown into sterile flasks 

containing lOmi 0.5X MS, 0.3% sucrose solution. Flasks were incubated under long 

day conditions (as for seedlings on soil), on a rotating platform at 40rpm. The MS 

solution was changed after six days, then every two days following that. After two 

weeks of growth root tissue was harvested in a sterile environment using a scalpel 

and tweezers. Tissue was dried on paper towel and stored at -80°C for protein/RNA 

extraction. 

11.1.3. Mutagenesis of the acr4-2 seed line 

In order to mutagenise seeds from the homozygous acr4-2 line, approximately 3,000 

seeds were exposed to gamma (y)  rays emanating from a cobalt source. In order to 

achieve an absorbed dose of 300 Grays (recommended for such mutagenesis: 

Frédéric Berger, Ecole Normale Supérieure, Lyon, France, pers. comm.). This 

equated to an exposure time of 11 minutes for the cobalt source used (Andrew 

Sanderson, University of Edinburgh, UK, pers. comm.). 

All M0 seeds were sown immediately after mutagenesis. The ratio of seed death 

was estimated, with 2500 individual plants then transplanted to soil. M 1  seeds were 

collected from individual lateral branches on individual plants, to create single 

segregating lines. 

11.1.4. Ovule development mutants 

The following lines were ordered as heterozygous segregating lines from the 

Nottingham Arabidopsis Stock Centre (NASC), UK. bell-], 1-3 (N3030 and N8545, 

in L er), mo-i (N3881, in L er), sin-] (N3089, in L er) and ats (N154, in L er). A 

heterozygous line of ant (in L er) was kindly provided by David Smyth (Monash 

University, Australia). 
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11.1.5. Hormone signalling pathway mutants 

The following homozygous lines were obtained from the NASC: gail-1, 1-3 (NW58, 

N3104, both in L er), spy], 3, 5 (N6266, N6268 in ColO; N8094 in L er). crei-1, 1-

2, 1-4 were kindly supplied by T Kakimoto (Osaka University, Toyonaka, Japan). 

Homozygous gai seed and the resultant plants were supplied with 10OtM gibberellic 

acid (GA) in order for germination to occur and to rescue the flowering phenotype. 

11.1.6. Additional mutants and marker lines 

A heterozygous wus-1 line (in L er) was kindly provided by Dr. Rildiger Simon 

(Universiton of Kooln, Germany). A heterozygous gnom line (CS8 146, in ColO) was 

obtained from the Arabidopsis Biological Research Centre (ABRC) stock centre, 

UK. The pLAT52::EGFP line was kindly provided by Richard Parton and Masaki 

Watahiki (The University of Edinburgh, UK). 
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11.2. DNA techniques 

11.2.1. Genomic DNA extraction 

Leaf samples were collected and stored in Eppendorf tubes (Eppendorf, Hamburg, 

Germany) at -80°C prior to DNA extraction. Frozen leaves were crushed to a fine 

powder using a mini-pestle inside the tube. 500p.l of extraction buffer (50mM 

EDTA, 0.1M NaCl, 0.1M TrisHCl, 1% SDS) was then added and the tissue mixed 

to create a paste. Samples were then placed in N20) before thawing them, first on 

the bench at room temperature (room temp. —25°C), and then at 65°C for five 

minutes. 	A phenol/chloroform extraction was then performed to remove 

contaminants from the extraction. 	500p1 phenol/chloroform (equilibrated 

phenol: chloroform: isoamylalcohol 25:24:1) was added, the sample vortexed to mix 

and then left to stand for five minutes. The upper (aqueous) phase was removed and 

the phenol/chloroform extraction repeated. To the second aqueous extract (400j.tl), 

50j.il 3M NaAc (pH5.2) and 350ji1 isopropanol were added. The sample was 

inverted gently to precipitate DNA, then centrifuged at 14,000rpm for five minutes. 

The pellet was rinsed with 70% EtOH, then air-dried before being dissolved in 50p1 

R40 [TE (10mM TrisHC1 pH8, 1mM EDTA) containing 5.tgIml ribonuclease A 

(pre-boiled (100°C) for five minutes to remove DNAase activity and stored as a 

1mg/mi stock)], and stored at -20°C. 

11.2.2. PCR reaction 

The following PCR constituents were made as a master-mix, pipetted into a PCR 

tube, then 1il of plasmid/genomic DNA was added. The master-mix consisted of 

2l lox PCR buffer (500mM KC1, 100mM TrisHCi pH9, 1% Triton-X-100), 2t1 

25mM M902,  1il 10pM forward primer, lp.l 10tM reverse primer, 0.4jtl 10mM 

dNTPs (10mM of each: dATP, dCTP, dGTP, dTTP), 0.5 units of Taq polymerase 

enzyme (Promega, Madison, USA) and 12.51 dH20. Oligonucleotide stocks were 
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either already available in the lab, or ordered from Qiagen Operon (Cologne, 

Germany). Primers were designed by eye, making sure that no secondary structures 

would form, with an optimal ratio of 30-50% dGTP/dCTP and a G-clamp at the 3' 

end. For primer pairs, the melting temperatures were chosen to be compatible. PCR 

tubes were placed in a T3 Thermocycler (Biometra, Goettingen, Germany) and the 

following program run: 94°C for two minutes, followed by 30 cycles of [94°C for 30 

seconds (denaturing), 55°C160°C (depending on primer set) for 30 seconds 

(annealing), 72°C for 30 seconds per expected 500 base pairs (bp) (extension)], 

followed by 72°C for five minutes to complete extension. 

Alternatively, for high fidelity PCR reaction, PftJ Turbo (Stratagene, La Jolla, CA, 

USA) was used for amplification. lp.l of plasmid/genomic DNA, 2jil lox PfU 

Turbo PCR buffer, lp.M forward primer, lj.tl lOp.M reverse primer, 0.4jtl dNTPs 

(10mM), 0.4jil PfU polymerase enzyme, 14.2p1 dH 20, was used. An extension 

temperature of 68°C was used, with an extension time of one minute per SOObp. In 

order to clone resultant products into the pGEMT-easy vector (Promega), the 

reaction was treated with 2 units of standard Taq polymerase for one hour at 37°C. 

11.2.3. Agarose gel electrophoresis of DNA 

DNA fragments were separated and quantified by using electrophoresis. 1% (3% for 

distinguishing between TILLING PCR products, 0.8% for a Southern blot) agarose 

gel was made by dissolving agarose powder in ix TAE buffer (0.04M Tris acetate, 

0.001M BDTA pH8, with 0.0005jtWml EtBr). Gels with a thickness of 8-12mm 

were prepared in Owl moulds (Autogen bioclear, Santa Cruz, CA, USA), and run in 

the corresponding tanks. 

DNA samples were loaded after addition of 1/10 volume of loading buffer (40% 

w/v sucrose, 0.25% bromophenol blue). 0.5p.g of either 1Kb or lOObp ladder (NEB, 

Beverly, MA, USA) was used as a size and concentration marker (according to 

manufacturer's guidelines) for DNA or RNA. Gels were run at room temp. at 

lOOvolts for about 40 minutes for diagnostic tests, 70v for isolation of cleaved DNA 



by gel-extraction (-90 minutes), or at 30v when run overnight for a Southern blot 

(see Section 11.2.5). After electrophoresis, separated DNA fragments were viewed 

on a transilluminator. 

11.2.4. Digestion and ligation of DNA 

Restriction digestions were carried out according to manufacturer's guidelines 

(PromegalNEB) at suggested temperatures using the restriction enzyme, appropriate 

buffer and bovine serum albumin (BSA) where required. Digests were incubated for 

between one and three hours (five hours for a Southern blot). For diagnostic 

digestions, 1-5jt1 DNA was digested (-bOng). For preparatory digestions 10-15p1 

DNA was used (-200ng); 25pJ genomic DNA (-SOOng) was digested for a Southern 

blot. In double digests the two enzymes were added at the same time if requiring the 

same buffer. If not, the DNA was first cut with the enzyme requiring a lower salt 

concentration, then this adjusted for optimal cutting of the second. Digested DNA 

was separated on an agarose gel and extracted from excised bands using the QIAEX 

II Gel Extraction kit (Qiagen, Cologne, Germany). Calf intestinal alkaline 

phosphatase (dCIP) (Promega) was used to dephosphorylate the restricted ends of 

fragments when recommended for the enzyme used, in order to prevent re-ligation at 

the same position. 

Ligation of insertions into the pGEMT-easy vector were made according to 

manufacturer's guidelines. The following were mixed: (1.0p1 PCR product 

(insertion), 0.5jil pGEMT-easy vector, 0.5p.l DNA ligase, 5.0t1 DNA ligase buffer, 

3.0t1 dH20), and the reaction incubated for one hour at room temp., before being 

transformed into bacterial cells. Other ligations were made using T4 DNA ligase 

(NEB) according to manufacturers guidelines, using 10-20ng plasmid DNA, 50-60ng 

insert DNA, in a total reaction volume of lOpi. Ligations were incubated overnight 

at 16°C prior to transformation into bacterial cells. 
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11.2.5. Southern blotting 

DNA was digested, fractionated on an agarose gel, transferred to membrane and 

hybridised to radioactively labelled DNA probes similarly to that described by 

Southern (1975). DNA samples were fractionated on an 0.8% agarose gel, in an Owl 

Scientific gel system (overnight at 30v). The gel was then photographed under a 

trans-illuminator with a ruler, in order to record the positions of the size ladder 

fragments. The gel was then rinsed consecutively in: depurination solution (0.2M 

HC1) for ten minutes, dH20 for 30 seconds, twice in denaturation solution (1.5M 

NaCl, 0.5M NaOH) for 30 minutes, then twice in neutralization solution (0.5M Tris, 

1.5M NaCl; pH8) for 30 minutes. DNA was then transferred to Hybond membrane 

(Amersham Biosciences, Uppsala, Sweden) which had been pre-wetted in 2X SSC 

(20X SSC stock = 3M NaCl, 0.3M Sodium citrate; pH7). Capillary transfer was 

carried out in lOX SSC buffer overnight at room temp. After marking the position of 

the gel wells (for orientation) and air-drying the membrane, DNA was cross-linked 

to the membrane using a UV light. The UV-treated membrane was then baked at 

65°C between Whatman 3MM blotting paper (Whatman Inc., Clifton, NJ, USA) for 

two hours before being dampened in 2XSSC and rolled into a hybridisation tube. 

Pre-hybridisation treatment was made by incubating the membrane in 25m1 Church 

buffer (1% w/v BSA, 0.001M EDTA, 0.5M NaPO 4  pH7.2, 7% SDS) for at least five 

hours at 65°C in a rotary incubator oven. 

Radioactively labelled probe was prepared using either random hexamers or 

specific primers as follows. For random hexamers, SOng template DNA in lOjd 

dH20 was boiled for five minutes then placed on ice for one minute. The following 

was added: li.il (1.85jtg/tl) random hexamers (Boehringer, Ingelheim, Germany), 

5j.il 5X buffer/dNTP mix (100mM of: dATP, dTTP, dGTP, 50mM MgCl2,  450mM 

HEPES solution (0.5g HEPES, 0.8g NaCl, 0.037g KC1, 0.0135g Na 2HPO42H2O, 

0.lg dextrose); pH6.6), 5 units of DNA polymerase I ((Kienow) Gibco/BRL), 5p1 

a32P dCTP (Amersham Biosciences), and then the tube incubated at 37°C for one 

hour. For specific primers, 25ng DNA, lOOng forward primer and lOOng reverse 

primer together in 14jil dH20 was boiled for three minutes. The tube was placed on 
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ice for one minute before adding 5jl 5X buffer/dNTPs, 5tl a 32P dCTP and 1l 

Kienow, then incubated at 37°C for one hour. 

After incubation at 37°C, 30jtl dye (1% Dextran blue, 0.1% Orange G in TE) was 

added to the labelling reaction. This was then passed over a Sephadex G50 (Sigma-

Aldrich, St. Louis, MO, USA) column, in order to remove unincorporated 

radioisotopes. Radiolabelled probe (which migrates with the blue dye through the 

column) was collected after fractionation. The percentage of incorporation was 

estimated by comparing the radioactivity in the collected probe fraction in 

comparison to the remainder, using a Geiger counter. 

Labelled DNA probe fragments were then denatured by heating at 102°C for ten 

minutes before adding to the pre-hybridised membrane in lOml Church buffer. 

Hybridisation was carried out at 65°C for at least five hours. The membrane was 

then rinsed at high stringency twice in 2X SSC/1% SDS (pH7.2) at 65°C, then twice 

in 0.2X SSC/1% SDS at 65°C. The first rinses for each were for 30 minutes, with 

the second for 15 minutes. The membrane was air-dried and autoradiography 

performed using Kodak 	X-OMAT AR film (Sigma-Aldrich) and intensifying 

screens, exposed overnight at 	-80°C inside a cassette. Film was then developed 

using a Konica developing machine (Konica, Langenhagen, Germany). 

11.2.6. Cloning and transformation of plasmids into E.coli and Agrobacterium 

cells 

In order to clone a vector sequence, the vector was transformed into competent 

DH5a Escherichia coli by heat-shock induced transformation. Competent cells were 

available in the lab, made according to Inoue (1990). 100tl E. coli cells were 

thawed on ice for ten minutes before 5j.il of ligation, or <lOng of already circular 

DNA, was added, then mixed gently by flicking the tube. The tube was incubated on 

ice for 30 minutes before heat-shocking the cells at 42°C for one minute. One ml of 

Luria broth (LB) (1% tryptone, 0.5% yeast extract, 0.5% NaCl; pH7) was then added 

before incubating the tubes at 37°C for 45 minutes. Meanwhile, plates containing 



solid LB (LB containing 1% bactoagar (Difco, Haarlem, The Netherlands), were 

prepared containing appropriate concentrations of antibiotics used to select for 

transformed bacteria. Ampicillin (Sigma-Aldrich) at a concentration of lOOp.g/mI, or 

kanamycin (Duchefa Biochemie, The Netherlands) at 50p.g/ml was added. After 

incubation, lOOjil of the bacterial culture was plated, using a moulded glass Pasteur 

pipette, on to one plate. The remaining cells were harvested by centrifugation at 

7,000rpm, then resuspended in 100tl LB and plated on to a second plate. Plates 

were then incubated at 37°C upside-down and overnight, to allow multiplication of 

the bacteria. For selection of transformed bacteria which carry a vector containing 

an insertion which disrupts the LacZ gene, allowing blue/white colony selection (e.g. 

for pGEMT-easy), plates were spread with lOOpi of X-gal solution (5-bromo-4-

chloro-3-indoyl-3-D-galactosidase) (20mg/ml in dimethylformamide (DIvIF)). 

Colonies were picked using a sterile toothpick and inoculated into culture tubes 

containing three ml of liquid LB (containing antibiotics). Tubes were incubated 

overnight at 37°C on a shaking incubator. 

In order to transform binary vectors into Agrobacterium tumefaciens cells, a cold-

shock method was used. lOOpi of competent Agrobacterium cells (available in the 

lab, prepared according to Cui (1995) were thawed from -80°C on ice for 90 mins. 

ljig plasmid DNA was added to the cells and mixed gently by flicking. Cells were 

then incubated on ice for 30 minutes, before they were snap frozen in N20) for one 

minute, then thawed at 37°C for a few minutes. One ml of YEP (1.0% bactopeptone, 

1.0% yeast extract, 0.5% NaCl; pH7.5) was added, and the cells incubated at 28°C 

on a shaking incubator for three hours. lOpi of the sample was then plated on to a 

solid YEP plate (YEP containing 1% bactoagar), containing appropriate selection 

antibiotics (gentamycin (Sigma-Aldrich), to select Agrobacteri urn cells was added at 

80tg/ml, with kanamycin, to select colonies containing the binary vector, at 

50p.g/ml). The remainder was centrifuged at 7000rpm for one minute to harvest 

cells, resuspended in lOOpi YEP and plated on to a second YEP plate. Plates were 

incubated upside down at 28°C for three days. Resultant colonies were inoculated 

into three ml of liquid YEP (containing antibiotics), and incubated overnight at 28°C 

on a shaking incubator in the dark. 
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11.2.7. Preparation of plasmid DNA from bacterial cultures: E.coIi and 

Agrobacteria 

Vector DNA was mini-preped from E. coli bacteria in the following way: 1 .5m1 fresh 

overnight bacterial culture was centrifuged at 7,000rpm for three minutes. Harvested 

cells were resuspended using a pipette in 350 j.il of boiling buffer (8% (w/v) sucrose, 

0.5% Triton-X-100, 50mM EDTA, 10mM TrisHCl pH8) with 0.01% w/v lysozyme 

(to lyse cells), and then boiled for one minute. Tubes were then placed immediately 

on ice for two minutes, then centrifuged at 14,000rpm for 20 minutes at 4°C. A 

pellet of bacterial genomic DNA and protein was removed using a sterile tooth-pick, 

then 40il 3M NaAc (pH 5.2) and 400p1 isopropanol (propan-2-ol) added to 

precipitate DNA. After inverting the tube several times it was centrifuged at 

14,000rpm for five minutes, the pellet washed with 70% EtOH, left to air-dry, then 

resuspended in 50pJ R40. 

DNA was cleaned up using a phenol/chloroform extraction and ethanol 

precipitation as follows. Samples were made up to 200jil with dH20, and a 

phenol/chloroform clean-up was made as for genomic DNA extraction (Section 

11.2.1), this time using 200pJ phenol/chloroform. To the resultant 180 jil sample, 20j.tl 

NaAc (pH5.2) and 550pJ 100% EtOH was added, and the sample placed at -20°C for 

four hours to precipitate DNA. The tube was centrifuged at 14,000rpm for 30 

minutes at 4°C, the DNA pellet washed with 70% EtOH, then resuspended in 4011 

elution buffer (10mM TrisCl pH8.5). 

In order to increase the amount of DNA obtained from E. coli, a QlAfilter Plasmid 

Midi Kit (Qiagen) protocol was followed; this gave a yield of 0.5tg/pJ DNA. 

In order to extract DNA from Agrobacterium cells, 1.5m1 of fresh overnight culture 

was centrifuged at 14,000rpm for three minutes to harvest the cells. Cells were 

resuspended in lOOjil ice-cold lysis buffer P1 (50mM TrisHC1, 10mM EDTA) 

containing 115 volume lysozyme. This was incubated at room temp. for 30 minutes, 

before 200p1 buffer P2 (0.2M NaOH, 1% SDS) was added. This was mixed by 

inverting several times and the tube stored on ice for 5 minutes. 150pi ice-cold 

buffer P3 (KAc, pH4.8) was added, the tube vortexed upside down for 10 seconds, 
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stored on ice for five minutes, then centrifuged at 14,000rpm for five minutes at 4°C. 

The supernatant was removed to a sterile tube, 315p1 isopropanol added, mixed by 

inverting, and then centrifuged at 14,000rpm for ten minutes at 4°C. The DNA pellet 

was then rinsed in 70% EtOH, air-dried and dissolved in 10.tl R40 to give a 

concentration of —0.5tg/tl. 

For long term storage of bacterial lines, glycerol stocks containing equal volumes 

of 80% glycerol:bacterial solution were made, snap frozen in N20) and stored at - 

80°C. 

11.2.8. Sequencing of plasmid DNA 

The QIAEX II Gel Extraction kit (Qiagen) was used to clean mini-preped vector 

DNA from E. coli in order to remove contaminants. This was carried out according 

to the manufacturer's guidelines by treating the sample, made up to lOOjil with 

dH20, as a 100mg gel slice. DNA was then quantified on an agarose gel, with lOOng 

used for a 0.25X sequencing reaction. The following was added to a PCR tube: 2pJ 

DNAIdH20, 2p1 BigDye Version 3.1 sequencing mix (Applied Biosystems, Foster 

City, CA, USA), ljtl 0.8pM oligo. This reaction was overlaid with mineral oil to 

minimise evaporation and the following PCR program used: 96°C for two minutes, 

followed by 30 cycles of [96°C for 30 seconds, 50°C for 15 seconds, 60°C for four 

minutes]. Mineral oil was removed from samples by rolling across Parafilm M film 

(Sigma-Aldrich). Samples were then made up to 201J with dH20 and processed in-

house, within the ICMB (Institute of Cell and Molecular Biology, The University of 

Edinburgh). Prior to sequencing, contaminants were removed by clean-up by a 

MWG robot, using the Millipore Montage clean up kit. Samples were then analysed 

using ABI Prism 3100 (Abgene, Epsom, UK). Sequences were viewed and analysed 

using Sequence Navigator (Abgene). 
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11.2.9. Agrobacterium mediated plant transformation 

Plants were transformed with the appropriate constructs by using an Agrobacterium-

mediated floral dipping technique (dough and Bent, 1998) using Agrobacterium 

strain GV3 101. Transformed Agrobacterium lines were grown on YEP plates in the 

dark for two days at 28°C, and then inoculated stepwise into three ml, 50m1 and 

finally into 500m1 of YEP (containing appropriate selection antibiotics), over a 

period of three days. 500m1 cultures were spun down at 4,200rpm for 20 minutes at 

4°C and the bacterial pellet resuspended in 500ml 0.5X MS with 200p1 'Silwet' 

detergent (Lehle Seeds, Round Rock, USA). Plants were grown in short day 

conditions for five weeks to enhance vegetative rosette leaf size, and increase the 

number of axillary buds that form during flowering. Plants were then shaved to 

stimulate axillary inflorescence formation, then dipped in the bacterial solution two 

weeks later. After one week the same plants were re-transformed with the same 

bacterial lines. 

Transformed plants (germinating from generally 5% of seeds collected), carrying 

the appropriate vector were selected on 0.5X MS plates containing 200mg/I Timentin 

(GlaxoSmithKline, Brentford, UK) for selection against Agro bacteria, with 15mgIml 

hygromycin B (Calbiochem, Darmstadt, Germany) or 50p.g/ml kanamycin for vector 

selection, according to the original plasmid used. Transformants were visible as 

plants able to develop true leaves (resistant to the antibiotic). Resultant T 1  lines 

harbouring a single insertion were selected on antibiotic-containing plates for a ratio 

of 3 resistant plants:1 susceptible plant. Resultant T2 lines homozygous for the 

insertion were selected for a ratio of 100% resistant plants. 



11.3. Construct production 

Sequences of all primers used are listed in Table 11.1. All constructs containing 

insertions generated by PCR amplification from either ColO DNA or from available 

plasmids were sequenced using internal primers prior to transformation into plants. 

In addition, diagnostic restriction digestions were made on vector DNA from both E. 

coli and Agrobacterium colonies to confirm the insertion size and orientation. 

Primer name Primer sequence Description 

35Ssx3 5'- TCTCGAGCACTGATAG'ITTCGGATCTAG -3' 35s promoter oligo 

35Ssx5 5'- ACTCGAGTCGA'Tl'CGACTCACTATAGG -3' 35s promoter oligo 

BARI39 5'- CGTACCGAGCCGCAGGAAC -3' BAR selection ORFoligo 

BAR559 5'- ATCTCGGTGACGGGCAGGAC -3' BAR selection ORFoligo 

CAPS 1 5'- 'ITFAACGGGTGGAGATGGG -3' TILLING oligo 

CAPS2 5'- T1'CGAACTCTAAGCTCTTTCC -3' TILLING oligo 

CAPS3 5'- ACTC'IlTAGCCGTGGTAGGTG -3' TILLING oligo 

CAPS4 5'- 'ITI'GCAAGGCGAG'ITITCTl'GG -3' TILLING oligo 

CAPS5 5'- AG'VI'CCTCAACCAATGACC -3' TILLING oligo 

CR-155 5'- AACCACAAGATGAGACCC -3' ACR4 ORFoligo 

CR2520 5'- ACATCATCGCAGAGGAG -3' ACR4 ORF oligo 

CR1860 5'- GCAAGATTCGA'VI'CCTC -3' ACR4 ORFoligo 

CR-370 5'- C'ITCTAAATACTCAGCTCC -3' ACR4 ORF oligo 

CR4-3 5'- GAGCTCAGAAA'Il'ATGATGCAAGAACAAGC -3' ACR4 ORFoligo 

CR4-5 5'- 'ITI'GAAAAGAATGAGAATG'Il'CG -3' ACR4 ORFoligo 

CRCT3 5'- AGATCTAGAATGAGTAAAGGAGAAGAAC -3' Deletion construct oligo 

CRCT5 5'- GGATCCCA'ITAGCTGTGCAAGC -3' Deletion construct oligo 

CRCT-stop 5'- GAGCTCTATAGCTGTGCAAGCGCTCG -3' Deletion construct oligo 

CREC3 5'- GGATCCCAGGTATCGGC'ITTl'ATGATC -3' Deletion Construct oligo 

CREC5 5'- AGATCTGACCAGGAGTCCCATCG -3' Deletion construct oligo 

CRFUSI 5'- CTCGAGGAGCACCTACAATFCCTCAATC -3' ACR4 ORFoligo 

CRNM5 5'- GGATCC' 11FITCCYFGCCTCCACTGG -3' Deletion construct oligo 

CRNOT 5'- AGCGGCCGCTATGATCATCGTGCG -3' ACR4 ORF oligo 

CRTN3 5'- GGATCCCAGTGGAGGCAAGGAAAAAG -3' Deletion construct oligo 

CRTN5 5'- AGATCTATACAGAGTCCTGGTG -3' Deletion construct oligo 

dC383C 5'- YFCTGAAAC'ITI'CCTTCCTTGG -3' TILLING oligo 

dC59T 5'- GCAGTGTTTCCCCACAATAAG -3' TILLING oligo 

dC758T 5'- GACAGCTAAAGGGACCGAAGCAG -3' TILLING oligo 

dC77IT 5'- GAGTCCTGGTGAGCCAGCTAAA TILLING oligo 

dG235A 5'- CCTC'VI'CTCCAG'VFGAlTGTTG -3' TILLING oligo 



Primer name Primer sequence Description 

dG350A 5'- GATTACTFGACTACGATFCTCAT -3' TILLING oligo 

dG72A 5'- CCA1TI'GAATAAATGAACTGTTT -3' TILLING oligo 

GFP-3-stop 5'- TCTAGTG'ITFGTATAGTI'CATCCATG -3' GFP ORF oligo 

GFP-Kpn3 5'- AGGTACCAGGTGTITGTATAGTFCATCC -3' GFP ORF oligo 

GFP-XbaS 5'- ATCTAGAATGAGTAAAGGAGAAGAAC -3' GFP ORFoligo 

GEW 1 5'- TGCCATCTCAGTACTI'CATGACTCTCTCT -3' ACR4-specific oligo (Wisconsin screen) 

GEW2 5'- CTCTCTGCCTC'IT7G'V7ACTI7CCTGCCT -3' ACR4-specific oligo (Wisconsin screen) 

GUS6T 5'- CACATI'GGCCACCACCTGCCACTC -3' GUS marker ORF oligo 

GUS713 5'- GTGGGAAAGCGCG'VFACAAGAAAGC -3' GUS marker ORFoligo 

JL202 5'- CA'ITVI'ATAATAACGCTGCGGACATCTAC -3' Wisconsin t-DNA left border oligo 

L132 5'- CCTATI'ATATCYFCCCAAA'Il'ACC -3' SAIL t-DNA left border oligo 

pCR4-3 5'- Y1'CTAGACAAAGTCAACACACACGC'VI'C -3' ACR4 promoter oligo 

pCR4-5 5'- TGTCGACATAGTCAAGAAATGGCCYITCC -3' ACR4 promoter oligo 

PRS3 5'- AGAGCTCCTI7GACACATCATACAGTG -3' PRS ORF oligo 

PRS5 5'- AGTCGACTCTGAACGGAGAATGAGTCC -3' PRSORFoligo 

QR133 5'- CGCCATGGCATATGCTAGCATGCATAATTC -3' SAIL t-DNA right border oligo 

SALK LB 5'- GCTGTI'GCCCGTCTCACTGGTG -3' SALK t-DNA left border oligo 

Table 11.1. Primers used for DNA amplification by PCR reaction (alphabetically listed). 

11.3.1. Expression pattern analysis 

For promoter expression analysis the ACR4 promoter was placed upstream of 

H2B::YFP in order to drive its expression. The H2B::YFP-coding sequence' was 

digested from pL99 2  (which contained the H2B::YFP sequence) using BamHT and 

Sad, cloned into Bluescript KS (Stratagene) and removed as a KpnJJSacI fragment. 

This was cloned into KpnJJSacI-cut pL3 binary vector pBIBHyg (Becker, 1990) 

which contained the Nos terminator sequence  downstream of a GFP sequence; the 

GFP sequence was removed from the vector via the KpnIISacI digestion. Excess 

poly-linker sequences were then removed by digestion using Smal (pMD4). The 

ACR4 promoter was then cloned in as an SalIlXbaI fragment from vector pL93 

(which contained the pACR4 sequence; Gifford, et al., 2003), creating construct 

pMID6. 

'The H2B::YFP coding sequence was originally isolated from pBI121 (Boisnard-Lorig, et al., 2001). 
2  Constructs labelled L. were constructed by Gwyneth C. Ingram and were already available in the 
lab. 

The Nos terminator sequence was used to terminate transcription in all constructs generated. 
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To enhance expression of this construct, four 35s enhancer elements were placed 

upstream of the ACR4 promoter. The elements were amplified from the pSKI015 

vector (Weigel, et al., 2000) using 35sx5 and 35sx3 and then cloned into pGEMT-

easy (Promega). Vectors carrying the insertion in the appropriate orientation were 

digested with XhoI, and the resultant fragment was inserted into the dCJP-treated 

Sail site upstream of pACR4 in pMID6 to create construct pMD24. A second variant 

with a reduced yet functional promoter size (as Gifford, et al., 2003), was created in 

the same way by inserting the enhancer elements into the pBIBHyg vector pL226 

(Gifford, et al., 2003); this created construct pMD63. 

In addition to this approach a trans-activation system, available in the lab as 

transformed plant lines, was optimised. Homozygous driving lines 

(pACR4::GAL4::VPJ6 ( pL143))4  and target lines (UAS::H2B::YFP (pL2)) were 

selected to give the highest intensity of fluorescence when crossed. 

11.3.2. Complementation analysis 

For complementation studies the ACR4 open reading frame (ORF) was removed as a 

KpnhlSacl fragment from pL92 (which contained the ACR4 ORF sequence; Gifford, 

et al., 2003) and inserted into KpnhJSacI cut binary vector pL3. The ACR4 promoter 

was then added as a SalJJXbaI fragment from pL93 upstream of the ORF to create 

pMD5. 

11.3.3. Protein localisation and functional analysis 

For protein localisation studies the full length ACR4 ORF::GFP was amplified with 

CR4-5 and GFP-3-stop from pL205 (containing the ACR4 ORF cloned in-frame with 

mGFP6 from pBSMGFP6; Gifford, et al., 2003), and cloned into pGEMT-easy 

(pMID9). It was then removed with KpnI/SacI, and cloned into KpnJJSacI-cut pMDS 

The GAL4::VPI6 coding sequence and terminator were originally isolated from an enhancer-trap 
vector (http://www.plantsci.cam.ac.ukfHaselofffHome.htnil ) (Haselhoff, 1999) 
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to make pMDll. To make construct pAKIC-ter::GFP the ACR4 ORF lacking both 

kinase and C-terminal regions, with a C-terminal GFP was amplified from pL180 

(containing the ACR4 ORF missing the kinase and C-terminal regions, cloned in-

frame with mGFP6 from pBSMGFP6) using CR4-5 and GFP-3-stop, and cloned into 

pGEMT-easy. This fragment was then removed with KpnJJSacI, and cloned into 

KpnhJSacI-cut pMD5, creating pMD12. 

To create variants containing N-terminal GFP sequences, the GFP ORF was 

amplified from pBSmGFP6 using primers GFP-Xba5 and GFP-Kpn3, cloned into 

pGEMT-easy, then removed using KpnI and Sad. This was inserted in-frame, 

upstream of the ACR4 ORF in pMD6 to create pMD58. The GFP ORF was also 

cloned into pMIDll to create a line with GFP tags at both termini of the ACR4 gene 

(pMD59). In order to ensure correct targeting of ACR4, the ACR4 putative signal 

peptide was placed upstream of the N-terminal GFP sequences. The putative signal 

peptide was removed from construct pL218a (which contained the ACR4 putative 

signal peptide) by digesting with EcoRI. The fragment was then cloned into EcoRI-

cut Bluescript KS vector, and clones in the appropriate orientation digested with 

XbaI to remove the putative signal peptide. This was then inserted into dCIP-treated, 

XbaI-digested pMD58 and pMD59, creating pIvlID61 and pMID60 respectively. 

pIMD61 is referred to as pGFP::ACR4, and pMD60 as pGFP::ACR4::GFP. 

In order to create a construct where five of the seven 39aa repeats had been 

removed, CREC5 and CR4-5 were used to amplify the N-terminal end of ACR4 from 

pL92 up to the start of the second 39aa repeat; this product was cloned into pGEMT-

easy (pMID30). CREC3 and CR4-3 were used to amplify the C-ter end, from the 

start of the seventh repeat to the end of the ORF. This (N-ter end) product was 

cloned into pGEMT-easy, removed by digesting with BaniHI and Sad, and ligated 

in frame into BglIIISacI-cut pMD30 (containing the N-ter end). This ACR4 

A39aaORF was then removed using KpnJISacI and cloned into KpnJJSacI-cut pMD5 

downstream of the ACR4 promoter, creating pA39aa. 

In a similar fashion pATNFR, pATMJKIC-ter and pAC-ter constructs were made 

by amplifying with the primer combinations listed in Table 11.2. The N-ter and C-ter 

ends (where required) were then ligated and cloned into pMIDS as above. 
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To create GFP-tagged variants of these deletion constructs, the required C-ter end 

of the ACR4 ORF fused to GFP was amplified from pMID9 with primers as listed in 

Table 11.2, ligated to the N-ter end and cloned into pMID5. 

Construct N-ter end amplified with C-ter end amplified with: 

pi\39aa CR4-5/CREC5 CREC3/CR4-3 

pi39aa::GFP CR4-5/CREC5 CREC3/GFP-3-stop 

piVFNFR CR4-5/CRTN5 CRTN3/CR4-3 

pTNFR::GFP CR4-5/CRTN5 CRTN/ GFP-3-stop 

pTM/K/C-ter CR4-5/CRNM5 - 

piTM/K/C-ter::GFP CR4-5/CRNM5 CRCT3/GFP-3-stop 

pC-ter CR4-5/CRCT-stop - 

piC-ter: :GFP CR4-5/CRCT5 CRCT3/GFP-3-stop 

Table 11.2. Primer pair combinations used for construction of deletion constructs. 

Similar constructs in which the conserved lysine (at amino acid position 540) in the 

ACR4-encoding ORF (see Appendix 1) was mutated to a methionine (Gifford, et at., 

2003) were constructed in order to create kinase null ACR4 versions. KpnJJSacI-cut 

insertions from pL256 (which contained the mutated ACR4 ORF, for pK-null) or 

from pL257 (which contained the mutated ACR4 ORF fused in frame to GFP, for 

pK-null::GFP) were cloned into KpnIISacI-cut pMD5. In addition a construct was 

made in which ACR4 missing both the TNFR-like repeat and 39aa repeat domains 

was placed under the control of the ACR4 promoter. This was made by digesting 

vector pL220 (which contained the ACR4 ORF missing the 39aa repeat domain and 

the TNFR-like repeat domain) to remove a fragment which contained only the ACR4 

putative signal peptide, transmembrane and cytoplasmic domains, and then cloning it 

into pIvlID5. This made pA39aaITNFR. 

Predicted protein molecular weights were calculated in EditSeq (Abgene). 

11.3.4. Genetic analysis: Pressed Flower constructs 

The PRESSED FLOWER (PRS) ORF was amplified from both wild-type (WT) ColO 

genomic DNA (gDNA) extracted as Section 11.2.1, and from WT ColO cDNA 
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(available in the lab), using PRS5 and PRS3 and then cloned into pGEMT-easy. The 

ORFs were then removed by digestion with Sail and Sad, and each inserted into two 

different SalJJSacI digested vectors containing the 35s promoter sequence which 

were available in the lab: pL260 (p35s in pBIBHyg) and pL261 (p35s in 

pSTV20Kan). This therefore resulted in the creation of four constructs: pMID66 

(35s::gDNA PRS in pBIBHyg), pMD67 (35s::gDNA PRS in pSTV20Kan), pMD68 

(35s::cDNA PRS in pBIBHyg), and pMD69 (35s::cDNA PRS in pSTV20Kan). 

11.3.5. Additional constructs 

To confirm the second t-DNA insertion site in acr4-3, the 3' end of the promoter 

region was PCR amplified with LB2 and pCR4-3, cloned into pGEMT-easy 

(pMID14) and sequenced. 
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11.4. Isolation of t-DNA insertion and TILLING-generated mutant alleles 

11.4.1. acr4-1 - acr4-6: t-DNA insertion alleles 

The acr4-1 allele was obtained through a screen of the Wisconsin knockout facility 

using primers GIW1 and GIW2 (as Krysan, et al., 1999) in the lab. The insertion 

line had been narrowed down to being in one of 25 pools (each containing nine 

plants), of which seed was available for further screening. Seed carrying the acr4-2, 

-3 and -4 alleles was screened for and obtained through the Syngenta SAIL/GARLIC 

online collection of t-DNA insertion lines (Sessions, 2002). Seed carrying the acr4-

5 and -6 alleles was obtained by screening the SALK online collection of t-DNA 

insertion lines (Alonso, et al., 2003), and ordering lines from the Arabidopsis 

Biological Resource Centre (ABRC). Table 11.3 gives details of the acr4-1 to -6 

alleles, and Fig.II.1 shows the positions of the t-DNA insertions in ACR4; see 

Appendix 1 for more detailed positional information regarding the sites of t-DNA 

insertion. 

Plants were PCR genotyped as listed in Table 11.4. In order to confirm the 

genotyping, DNA from plants was digested and Southern blotted with an A CR4-

specific fragment that allowed homozygous, heterozygous and wild type plants to be 

distinguished. The number of insertions was determined by probing with a t-DNA-

specific fragment. 

acr4 Knockout Seed stock No Ecotype t-DNA insertion Insertion site 

allele collection vector 

acr4-1 Wisconsin *Collection screened with Wassilewskija pD991 1078bp downstream of ATG 

oligos GIW-1 and GIW2* (Krysan, etal., 1999) 

acr4-2 SAIL Garlic_240.1304.b.la.Lb3Fa Colo pCSAI 10 249bp downstream of ATG 

(McElver J, 2001) 

acr4-3 SAIL Garlic_442.001.b.la.Lb3Fa ColO pCSAI 10 1587bp upstream of ATG 

acr4-4 SAIL Garlic_599.00I.b.Ia.Lb3Fa ColO pDAPIO1 574bp downstream of ORF 

- (Baulcombe, etal., 1986) 

acr4-5 SALK CLONSALK_043641 .23.1 0.x CoIO pROK2 I OObp downstream of ATG 

(Baulcombe, etal., 1986) 

acr4-6 SALK CLONSALK064665..56.00.x ColO pROK2 657bp upstream of ATO 

Table 11.3. t-DNA insertion lines used for analysis of ACR4 knockout. 

75 



acr4-6 acr4-5 acr4-2 	acr4-1 	 -r4-4 

ACR4 promoter 	 39 aa repeats TNFR TM 	kinase domain 	conserved 
-like repeats domain 	 c-te minal region 

Figure 11.1. Predicted sites of t-DNA insertions in the ACR4 gene; See Appendix 1 for a 

more detailed schematic showing the positions of the t-DNAs. 

acr4 Genotyping: Genotyping: Southern ACR4 probe ACR4 probed t-DNA probe 

allele WT band mutant digest fragment and Southern band fragment and 

band enzyme amplification sizes amplification 

primers primers 

acr4-1 CR1860 JL202 	and EcoRl ORF fragment from mutant: 0.8Kb, 1.6Kb, GUS marker gene from 

and 	CRNOT CRNOT Hindlil-cut pL92 5.46 Kb reporter 	line 	FA4C 

(l000bp) (400bp) (random hexamers) WT: 0.8Kb, 5.2Kb (Colon-Carmona 	and 

Doerner, 1999) 

(GUS713 and GUS6T) 

acr4-2 CR4-5 	and CR4-5 	and HindlIl ORF fragment from mutant: 7.8Kb, 1.9Kb, GUS 	marker 	gene 

CR-930 LB2 (300bp) HindIIl-cut pL92 two 0.45 Kb (GUS713 and GUS6T) 

(1050bp) (random hexamers) WT: two 0.45 Kb, 

3.3 Kb 

acr4-3 pCR4-5 	and LB2 	and EcoR1 ORF fragment from mutant: 13Kb, 0.85 Kb GUS 	marker 	gene 

CR-370 pCR4-3 HindIll-cut pL92 WT: 5.46Kb, 0.85Kb (GUS713 and GUS6T) 

(380bp) (1600bp) (random hexamers) 

acr4-4 LB2 	and Pstl ORF fragment from mutant: 3.26Kb, BAR-G selection gene 

- CR2520 Hindlil-cut pL92 3.31 Kb, 0.02Kb from 	the 	pSKI0I5 

(700bp) (random hexamers) WT: 3.26Kb, vector (Weigel, 	et al., 

2.62Kb, 0.02Kb 2000) 	(BAR 159 	and 

BAR559) 

acr4-5 CR4-5 	and CR4-5 	and Hindlil ORF fragment from mutant: 1.84Kb, 35s 	promoter 	from 

CR-155 SALK LB HindlIl-cut pL92 0.46Kb, 1.34Kb, HindllIIXbal-cut 

(l7Obp) (IOObp) (random hexamers) 4.86Kb pL259 (containing the 

WT: 2.3Kb, 1.34Kb, 35s promoter) (random 

0.46Kb hexamers) 

acr4-6 pCR4-5 	and SALK-LB HindlIl Promoter 	fragment mutant: 1.44Kb, 2Kb, 35s promoter (random 

pCR4-3 and 	pCR4-3 from 	Xbal/SalI-cut 0.46Kb, 2.86Kb hexamers) 

(l800bp) (650bp) pL93 	(random WT: two 0.46Kb, 

hexamers) 1.435Kb 

Table 11.4. Genotyping primers, Southern digest enzymes, expected band sizes, and probes 

used for Southern blots carried out during investigation of acr4 knockout alleles. 
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11.4.2. acr4-7 - acr4-22: TILLING alleles 

In order to isolate single base pair mutations in the extracellular region of ACR4, this 

region was subject to TILLING (Till, et at., 2003a; Neff, et at., 1998). Seed from 

lines of interest was ordered through the TAIR website from the ABRC. See 

Appendix 1 for positions of TILLING changes. Plants were genotyped using 

cleaved amplified polymorphic sequence (CAPS) analysis or dCAPS analysis (Neff, 

et at., 1998). These methods utilise the property of differential restriction sites 

between mutated and WT lines, which are either inherent in the sequence due to the 

induced mutations (CAPS), or created using mismatches in PCR primers used for 

genotyping (dCAPS). The TILLING alleles generated, primers and restriction site 

polymorphisms used to genotype with dCAPS/CAPS are listed in Table 11.5. PCR 

products were amplified, cleft and then products run on 1-3% agarose gels for 

separation of fragments to allow genotyping of lines. 

TILLING 

allele 

ABRC 

Stock No 

Nucleotide 

change 

Effect Genotyping primers RE Polymorphism 

gained/lost with mutation 

acr4-7 CS89759 G309A CI70Y CAPS5/dG309A CAPS: loss of Hhal site 

acr4-8 CS94128 G235A W155* CAPS5/dG309A CAPS: gain of Mnll site 

acr4-9 CS93212 G625A W285* CAPS3/dC758T CAPS: gain of Mnll Site 

acr4-10 CS92031 G745A W325* CAPS3/CAPS4 CAPS: gain of Mnll site 

acr4-11 CS92277 C59T P97S CAPS 1/dC59T dCAPS: loss of BslJ site 

acr4-12 CS89742 G72A GIO1E CAPS1/dG72A dCAPS: loss of XmnI site 

acr4-13 CS90771 G22A D153N CAPS 1/CAPS2 CAPS: gain of Msel site 

acr4-14 CS91694 G350A D194N d235AIdG309A dCAPS: loss of BsIl site 

acr4-15 CS86843 C383T P205S d383T/dG235A dCAPS: loss of Bsll site 

acr4-16 CS9I 144 G420A G217E CAPS5/CAPS2 CAPS: gain of HpHI site 

acr4-17 CS86834 C680T L304F CAPS3/dC758T CAPS: loss of Mbol site 

acr4-18 CS86715 C689A G307R CAPS3/CAPS4 CAPS: gain of Mnll site 

acr4-19 CS89891 C735T P322L CAPS3/CAPS4 CAPS: loss of HpHI site 

acr4-20 CS91018 G891  P330S CAPS3/CRFUSI CAPS: gain of Mwol site 

acr4-21 CS87697 C758T P334L CAPS 3/dC758T dCAPS: loss of Bsll site 

acr4-22 CS93965 C771T S374N CAPS3/ dC77IT dCAPS: loss of Bsll site 

Table 11.5. TILLING allele effects and the genotyping methods used; (*) indicates a stop 

codon. See Appendix 1 for positions of TILLING changes in the ACR4 gene. 
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11.5. Phenotypic and expression pattern analysis: microscopy 

techniques 

In order to characterise the acr4-2 phenotype, seedlings and plants at a range of 

developmental stages during embryogenesis and floral development were dissected 

and analysed using a variety of methods. Photographs taken were processed in 

Adobe Image Ready 7.0 (Adobe Systems, San Jose, CA, USA). 

11.5.1. Light microscopy techniques 

Seeds from a single silique were removed by dissecting and removing the septum to 

which the seeds were attached. Seeds were then mounted in chloral hydrate solution 

(8g chloral hydrate in 3m1 of 33% glycerol) under a glass coverslip. Chloral hydrate 

was used as a clearing agent to aid visualisation of developing ovules and seeds. 

Tissue was then viewed using a compound microscope, using Differential 

Interference Contrast (DIC) microscopy. 

11.5.2. Confocal and fluorescence microscopy 

In order to study ovule development in greater detail, ovules were fixed and their 

auto-fluorescence exploited to enable their structure to be viewed using Confocal 

LASER Scanning microscopy (as Christensen, et al., 1997). Floral buds, prior to 

opening, were dissected to remove the unpollinated carpels. These were slit down 

each side using a needle to allow fixative to penetrate. Carpels were placed in tubes 

containing fixative solution (12.5mM cacodylate, 4% glutaraldehyde, 0.02% Tween, 

0.02% Nonidet P40; pH6.9) and vacuum infiltrated for two hours, with a change of 

fixative at one hour. Tissue was then dehydrated using an ethanol series: 20% EtOH 

for 10 mins, 40% EtOH for 10 mins, 60% EtOH for 10 mins, 80% EtOH for 15 mins, 

then three changes into 100% EtOH for 15 minutes each. Cleared carpels were then 



mounted in immersion oil (518N; Carl Zeiss, Jena, Germany) under a No.0 glass 

coverslip (Chance Propper, Smethwich, UK) and sealed with nail polish. Tissue was 

viewed using confocal microscopy using an Olympus Fluoview FV300 microscope 

(Olympus, Tokyo, Japan). Excitation light at 543nm was provided by a helium-neon 

laser. Fluorescence light was selected using a dichromatic beamsplitter and a band 

pass BP560-615 emission filter. In general, optical sections of 2pm were taken with 

a pinhole diameter of 200p.m. Images were acquired using the Olympus Fluoview 

camera and software. 

The Olympus Fluoview microscope was also used to view tissue from plant lines 

expressing GFP or YFP. Tissue was dissected and mounted in dH20 under a No.0 

glass coverslip. Excitation light of 388nm was provided by an argon laser light. 

Fluorescence light was selected using a BP460-490 emission filter. To visualise root 

cell walls of YFP-expressing plants, two week old seedling roots were stained in 

10p.g/ml propidium iodide. Excitation light of 388nm was provided by an argon-ion 

laser light, then the resulting fluorescence light was selected using a BP510-550 

emission filter. 

11.5.3. Scanning electron microscopy (SEM) 

Mature seeds were prepared for SEM as follows with the assistance of Chris Jeffree 

at the SEM facility, The University of Edinburgh. To make seeds conductive, they 

were stuck to double-sided carbon tape (DiA, No 63347, Agar Scientific, Stansted, 

UK). Samples were gold-sputter coated in an argon atmosphere, the seeds unstuck 

and rotated, then re-coated to ensure all surfaces were completely covered. Samples 

were then viewed using the SEM microscope. 

In order to view developing ovules, dissected carpels were first cryo-fixed in N20), 

then freeze-fractured in a manipulation chamber. Floral buds and seedlings were 

also fixed for SEM viewing by cryo-fixation. Ice crystals were removed from 

samples by partial thawing, then the samples were gold-sputter coated as above and 

viewed. 
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11.6. Protein localisation and functional analysis 

11.6.1. Protein extraction 

Inflorescence material was collected and stored at -80°C prior to protein extraction. 

A mortar and pestle was pre-chilled using N 2(1), then used to grind tissue to a fine 

powder. To the ground tissue 200j.il extraction buffer (0.05M Tris pH7.5, 0.15M 

NaCl, 0.1M filter-sterile dithiothreitol (DTT) pH8, one tablet of protease inhibitor 

cocktail (Roche, Basel, Switzerland), in lOml dH 20) was added and mixed to form a 

paste. At this point one of two routes were followed. For total (single fraction) 

protein extraction, 1/5 volume of 6X protein loading buffer (0.35M TrisHC1 pH6.8, 

10.28% w/v SDS, 36% w/v glycerol, 0.6M D11T, 0.012% w/v bromophenol blue) 

was added and samples stored at -80°C until required. 

Alternatively, to separate cytoplasmic- and membrane- enriched fractions, an 

additional 200tl extraction buffer was added before centrifuging samples at 

14,000rpm for 30 mins at 4°C. To precipitate cytoplasmic-enriched protein, one ml 

of ice cold 100% acetone was added to the supernatant, the solution placed at -20°C 

for two hours and then centrifuged at 14,000rpm for ten minutes at 4°C. The protein 

pellet was washed in ice-cold 80% acetone and re-centrifuged before air-drying. It 

was resuspended in 25% extraction buffer with 2/5 volume protein loading buffer, 

and then stored at -80°C. Meanwhile, one ml of extraction buffer was used to 

resuspend the pellet containing membrane-enriched protein, and the solution was 

centrifuged at 14,000rpm for ten mins at 4°C. This was repeated, then the final 

pellet resuspended in 20pi extraction buffer with ½ volume loading buffer and stored 

at -80°C. 

11.6.2. Western blotting 

Protein gels were prepared and run as follows using the BIORAD mini-protean 3 

system. To make the gel, 'resolving' gel (10% w/v acryllbis-acrylamide 37:5:1 



(Amresco, Ohio, USA), 0.375M Tris pH8.8, 0.1% w/v SIDS, 0.1% w/v APS, 0.01% 

v/v TEMIED) was overlaid with 1/5 depth of 'stacking' gel (6% w/v bis/acrylamide, 

0.125M Tris pH6.8, 0.1% w/v SIDS, 0.1% w/v APS, 0.01% v/v TEMED). 15jd 

protein samples were denatured by boiling for five minutes, then were centrifuged 

for five minutes at 14,000rpm prior to loading on to the gel. A protein size marker 

ladder was also loaded. The gel was run for one hour at a fixed voltage of 120v at 

room temp. in running buffer (0.6% TRIS, 2.28% glycine, 1.0% w/v SDS; pH8.3). 

Separated protein was then transferred to Hybond Nitrocellulose membrane in a 

BIORAD (Hercules, CA, USA) mini-protean 3 transfer cassette and tank; buffer 

containing 1.44% glycine, 0.3% TRIS, 20% v/v methanol, was used to soak the 

membrane and gel prior to transfer. 

Transfer was carried out at 4°C in transfer buffer (1.44% glycine, 0.3% TRIS, 

0.1% SDS, 20% v/v methanol), at 65v for one hour and 40 minutes. Protein transfer 

and the ladder position was monitored by rinsing the membrane briefly in Ponceau 

stain (0.1 w/v Ponceau, 5% v/v acetic acid). The membrane was blocked by rinsing 

for two hours at room temp. in PBST milk (5% Marvel milk powder (Premier 

International Foods (UK) Ltd, Spalding, UK), 1% phosphate buffered saline solution 

(PBST) with Tween: 0.8% NaCl, 0.02g KC1, 0. 144% Na21_IPO 4, 0.024% KH2PO 4 ; 

pH7.2; 0.2% Tween). 

The membrane was incubated in 1/1000 primary (1°) antibody, (anti-GFP rabbit 

polyclonal antibody (Molecular Probes, Netherlands)) in PBST milk, overnight at 

4°C on a rolling incubator. The membrane was rinsed for one hour with several 

changes of PBST, and then incubated in a 1/4000 dilution of secondary (2°) antibody 

in PBST milk, (anti rabbit horseradish peroxidase (Amersham Biosciences)) at room 

temp. for one hour on a rolling incubator. The membrane was again rinsed in PBST 

with four changes of PBST over one hour, and then the position of antibody 

attachment detected using an ECL reaction. The membrane was incubated at room 

temp. in equal volumes of ECL detection reagents 1 and 2 (Amersham Biosciences) 

for two minutes, then exposed to photographic film (Kodak X-OMAT AR, Sigma-

Aldrich) in the dark for periods of five minutes or one hour (to completion of light 

emanation). The film was developed as for a Southern blot (Section 11.2.5). 
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11.6.3. Brefeldin A treatment 

Two week old seedling roots were incubated in a solution of 100iM Brefeldin A 

(BFA) (B7651, Sigma-Aldrich) for two hours. The working BFA stock was made by 

diluting a 10mM DMSO stock 1:100 in dH20. Control seedling roots were 

incubated in a 1:100 dilution of DMSO in dH20 for two hours. 
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111.1. Introduction 

As discussed in Chapter I, the Arabidopsis ACR4 gene encodes a receptor-like kinase 

which shares a high degree of sequence similarity with the maize CR4 gene. In 

maize CR4 appears to be involved in a process which results in specification of 

aleurone cells in the endosperm of the maize grain. It is also involved in proper 

epidermal cell layer development. Homozygous cr4 allele plants show defects in the 

way that the epidermal cell layer is specified and organised. These defects result in 

malformation of maize leaves, giving them a 'crinkly' appearance (Becraft, et al., 

1996). Defects are also apparent in the underlying cell layers of cr4 mutant leaves. 

The Arabidopsis ACR4 gene was investigated to determine whether it played a 

similar role in Arabidopsis to that of CR4 in maize. An initial study of the function 

of ACR4 had shown that it was expressed specifically in the protoderm during 

embryogenesis and in the outside cell layer in the plant. As ACR4 encodes a 

receptor-like kinase, the possibility that ACR4 played a role in receiving and 

transducing a signal between cells, in order to specify and maintain cell identity in 

the protoderm and epidermis of Arabidopsis was particularly exciting. 

The question of whether ACR4 was important in protodermal specification in the 

embryo was addressed in this study and the results are presented in this chapter. In 

order to approach this question a range of mutant alleles were isolated to study the 

effect of loss of ACR4 function. It was hypothesised that if ACR4 were to be critical 

for correct specification of the protodermal cells in the embryo, then loss of ACR4 

function would result in aberrant development of the protoderm, which would be 

likely to cause major problems during embryogenesis. This would mean that 

homozygous null individuals could be embryo lethal or show severe developmental 

defects. In order to determine whether ACR4 did play a role in protoderm 

specification the phenotype of acr4 mutants, which were not actually embryo lethal, 

was investigated in great detail. The phenotype observed was confirmed to be the 

result of loss of ACR4 function by carrying out a complementation analysis. 

An in depth analysis of the expression pattern of ACR4 was carried out by 

constructing and using a range of fluorescent reporter-gene-expressing marker lines. 
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This data was used to confirm and elaborate on previously available in situ data 

obtained in the lab. Knowledge of the expression pattern of the gene is critical to 

complement mutant analysis in such a functional study. Together the data was used 

to synthesise a functional model for the role of ACR4 in Arabidopsis thaliana. This 

model is assessed in the context of wider research into cell layer specification and 

organisation. Questions are posed and discussed in order to aid the elucidation of the 

precise mechanism of ACR4 signalling. 



111.2. acr4 alleles have defects specifically in ovule integument 

outgrowth and sepal margin organisation 

111.2.1 Isolation of loss of function acr4 alleles 

In order to investigate the effect of loss of ACR4 function, a range of acr4 alleles 

were isolated (Chapter II, Table 11.3). The acr4-1 allele was predicted to contain a t-

DNA insertion near the start of the TNFR-like repeat region of ACR4 and was 

isolated after screening the Wisconsin population of knockout lines. This was 

carried out in a series of stages. The initial steps had been carried out in the lab prior 

to this study and are as follows. In the first instance PCR reactions were performed 

by the Wisconsin knockout facility using combinations of ACR4-specific and t-DNA 

specific primers (Chapter II, Table 11.4). PCR amplification was used to identify 

plant families in the collection that contained an insertion in the ACR4 gene; positive 

identification was indicated by the presence of an amplified band in a reaction. In 

the first step PCR amplification was carried out from DNA extracted from super-

pools of plants. There were 30 super-pools that each contained DNA from 2025 

individual families. The products from the PCR reactions were probed in the lab to 

identify whether any of the 30 super-pools contained an ACR4-specific band. After a 

positive hit was found in one super-pool, the same procedure was repeated at the 

Wisconsin facility on nine pools that each contained DNA from 225 families. Again 

one positive hit was found. Seed from 25 sub-pools, each containing seed from nine 

families was received by the lab. Seedlings germinating from this seed were grown 

and DNA for each sub-pool extracted. It was at this stage that the work described in 

this chapter began. PCR reactions on sub-pool DNA were carried out and one 

positive hit again found. The remaining seed for that sub-pool was sown out, 

germinated and plants grown. Individual plants which harboured the t-DNA 

insertion could then be identified using the same PCR procedure. This combination 

of primers could only be used to determine whether a t-DNA insertion was there or 

not, and so a second round of genotyping on the same plants was carried out using 
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primers as described in Chapter II, Table 11.4, to identify homozygous, heterozygous 

and wild-type plants. 

Alleles acr4-2,-3 and -4 were isolated from the Syngenta SAIL/GARLIC 

collection (Sessions, 2002). Alleles acr4-5 and -6 were isolated from the SALK 

collection. acr4-2 was predicted to contain a t-DNA insertion 249bp after the start of 

the ORF in the first of the seven 39aa repeats. acr4-3 was predicted to contain a t-

DNA 1587bp upstream of the ACR4 ORF, in the promoter region (pACR4). acr4-4 

was predicted to contain a t-DNA insertion 574bp downstream of the ACR4 gene in 

the 3' UTR. Line acr4-5 was predicted to contain a t-DNA insertion lOObp after the 

start of the ORF (in the ORF) just prior to the first 39aa repeat, and acr4-6 was 

predicted to contain an insertion 657bp upstream of the ORF in the ACR4 promoter. 

The positions of the insertions in acr4-1, acr4-2 and acr4-5 were predicted to give 

strong mutant alleles and were therefore of particular interest. Alleles from the 

SAIL/GARLIC and SALK collections were initially identified on the web-based 

catalogues. Seed from heterozygous plants for each line had been deposited to seed 

stock centres by Syngenta and SALK. Seed for all SAIL/GARLIC and SALK lines 

described above was germinated and DNA extracted from the resulting plants. PCR 

genotyping reactions were carried out on the extracted DNA to identify homozygous, 

heterozygous and wild-type plants (see Chapter II, Table 11.4 for primer 

combinations). 

In order to confirm the initial genotyping results of all t-DNA insertion lines, 

Southern blotting of digested DNA was carried out. A restriction enzyme site 

cleavage polymorphism was present within each t-DNA insertion line due to the 

presence (or not) of additional restriction recognition sites carried on the t-DNA 

vector. DNA was digested with specific enzymes in order to generate different 

sized DNA bands in plants within each insertion line. The DNA bands were 

identified by probing with ACR4-specific probes which had been designed to identify 

the differential bands of interest (see Table 11.4 for details of the enzymes and probes 

used for each line together with the banding patterns expected). This method also 

allowed identification of whether each plant had t-DNA insertions in both, one, or 
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neither copies of the genome: whether plants were homozygous, heterozygous or 

wild-type was confirmed. 

Southern blotting of digested DNA from all t-DNA insertion lines was also used to 

determine number of t-DNAs present for each line. This was predicted to be one per 

line in the locations as described above by the databases of the t-DNA collections 

(Krysan, et at., 1999; Sessions, 2002; Alonso, etal., 2003), however that information 

had to be confirmed in the lab. To determine the number of t-DNAs, a t-DNA 

specific probe was designed for each t-DNA vector that had been used for insertional 

mutagenesis (see Table 11.4). After Southern blotting, the genotype of plants in each 

line was compared to the number and segregation of bands seen using the t-DNA 

specific probe. This was used to determine both the number of insertions in each 

line, and where more than one insertion was present whether the t-DNAs segregated 

separately (un-linked) or together (linked). 

Both acr4-2 and acr4-6 lines contained a single t-DNA which segregated 

specifically with homo- or hetero-zygous plants. acr4-4 was found to contain 

several independently segregating t-DNAs. acr4-5 was found to contain no t-DNAs 

and therefore was not of use for analysis. This was likely either due to poor 

annotation of t-DNA insertion lines, or excision of the expected t-DNA due to 

chromosomal rearrangement in the stock prior to the analysis here. During Southern 

blot analysis and PCR amplification from the right t-DNA border in the acr4-2 line, 

it was found that the sizes of the bands identified were not the same as those 

expected (as in Chapter II, Table 11.4). The bands amplified or cut were found to be 

roughly 1Kb larger than expected. The region of DNA between the predicted right 

border of the t-DNA vector and the insertion site in ACR4 was sequenced and 

compared to the sequence expected. An additional 1.2Kb of DNA vector fragment 

was found to be adjoining the right border of the t-DNA insertion vector (not 

shown). The presence of the extra fragment accounted for the larger band sizes and 

was likely present due to some rearrangement during the mutagenesis used to create 

the Syngenta SAITJGARLIC lines. 

During the genotyping of acr4-1, it was found that a t-DNA specific band could 

unusually be detected when amplifying DNA using combinations of the t-DNA 



specific primer both with ACR4-specific primers to the left, and with primers to the 

right of the t-DNA. Usually only one combination results in amplification of a band 

as the t-DNA specific primer primes from the left or right t-DNA border only. 

Through Southern blotting it was found that the acr4-1 line contained two back to 

back t-DNA insertions, which therefore accounted for the abnormal genotyping 

results. By sequencing the insertion sites of the two back-to-back t-DNAs, it was 

found that they were between bases 1066 and 1100 in the ACR4 ORF (within the 

TNFR-like repeat region of ACR4 near the site that had been initially predicted: See 

Chapter II, Table 11.3 for predicted sites). Nested PCR between the two t-DNAs was 

carried out, and the t-DNAs were found to be only Sbp apart. 

acr4-3 was found to contain two linked t-DNAs. In order to determine the site of 

the second t-DNA in acr4-3, the flanking t-DNA sequence and adjacent bases of the 

ACR4 gene were amplified and sequenced. By comparison to the known ACR4 

promoter sequence, the second t-DNA was found to be 824bp upstream of the ACR4 

ORF. The first t-DNA was found to be 1587bp upstream of the ACR4 ORE as 

predicted. 

In addition to lines containing t-DNA insertions, 16 acr4 alleles containing single 

base pair mutations were generated by TILLING. TILLING (targeting-induced local 

lesions in genomes) is a process carried out by the Arabidopsis Tilling Project (ATP) 

in which induced point mutations are identified in a target region of interest (Till, et 

al., 2003a; Banner, et al., 1993). 15 acr4 alleles were isolated in the seven 39aa 

repeat region of ACR4 and one acr4 allele was isolated in the TNFR-like repeat 

region (see Appendix 1 for TILLING allele positions). The 39aa repeat 

region/TNFR-like repeat region of ACR4 was selected for TILLING analysis for two 

main reasons. Firstly, single base pair mutations in ACR4 could provide weaker 

alleles than those generated using t-DNA knockouts. Weaker alleles are helpful for 

phenotypic investigation when t-DNA insertions completely knock out the gene of 

interest, resulting in a severe phenotype. Secondly, the 39aa repeat domain was of 

particular interest as it is part of the extracellular region of the protein where a 

potential ligand could be bound (as discussed in Chapter I). Disrupting the 39aa 



repeat region could interrupt ligand-binding and would therefore be helpful for 

elucidation of ACR4 function. This disruption could also potentially provide clues 

as to the nature of the ACR4 ligand. Thirdly TILLING alleles could be used to 

confirm the null phenotype of acr4. 

After the TILLING process 33 alleles containing single base pair mutations were 

generated. Any alleles where the single base pair mutation resulted in a change in an 

amino acid that was not conserved either between the ACR4 repeats or between 

ACR4 and the maize CR4 repeats were discarded. From the remaining alleles a 

range throughout the 39aa region were selected for analysis, as well as the single 

change generated in an amino acid at the start of the TNFR-like repeat region; the 

change in the TNFR-like repeat region was not in one of the conserved cysteines (as 

Banner, et al., 1993). acr4 alleles where there were changes in particularly 

conserved amino acids were of particular interest. These included the highly 

conserved cysteines in the 39aa repeat region (see Chapter IV for a discussion of the 

39aa domain structure), and also any alleles where coding amino acids had been 

substituted for stop codons (which would definitely be null acr4 alleles due to lack 

of full length ACR4 protein translation). Altogether 16 alleles were isolated: acr4-7 

to -22. 

111.2.2. Phenotypic analysis of acr4 lines 

Plants for each acr4 line were grown and genotyped for the disrupting t-DNA 

insertion. Genotyped plants were observed during growth and all aspects of plant 

morphology and development were studied. In particular though, protoderm 

formation in the embryo and epidermal development was carefully analysed. This 

was due to the predicted phenotype of epidermal defects and embryo lethality in loss 

of function null acr4 mutants (as mentioned in Section 111.1). Surprisingly however, 

acr4 homozygous mature plants were isolated. Indeed all lines excepting acr4-5 

(which did not contain a t-DNA insertion) segregated wild-type, heterozygous and 

homozygous plants in a 1:2:1 ratio which had not been expected. 



Homozygous and heterozygous plants of acr4-3, -4, and -6 lines were all found to 

be aphenotypic. acr4-3, -4 and -6 all had insertions either far upstream or 

downstream of the ACR4 ORF and were thus not expected to completely disrupt 

function. acr4-5 was found not to carry a t-DNA insertion, therefore only wild-type 

plants could be isolated. 

It was predicted that homozygous plants of acr4-1 and -2 lines would disrupt 

ACR4 function due to the presence of t-DNA insertions in the coding region of 

ACR4. As mentioned this was found not to result in embryo lethality as mature and 

viable homozygous acr4 seed was generated. Embryo development was found to be 

normal in acr4 homozygous plants and in general homozygous individuals appeared 

similar to wild-type siblings. After thorough investigation however, a defect in 

silique filling was noted in homozygous acr4 plants. Heterozygous acr4-1 and -2 

plants were aphenotypic. 

111.2.2.A. ACR4 is required for normal seed development 

Siliques from acr4-2 homozygous plants (as well as acr4-1 homozygotes) were 

found to be shorter than those of wild-type siblings (Fig.III.1A). After detailed 

analysis of silique formation it was found that there were variable levels of abortion 

during seed development, consequentially resulting in a shorter silique length. 

Aborted seeds were visible as small pale or yellowing structures which eventually 

shrivelled up while other seeds continued to mature (Fig.III.113,C). Abortion 

occurred at a frequency of around 25% and was noted at a range of time points 

throughout development. Embryo development inside aborting seeds was 

investigated and this was found to be normal. The stage in embryogenesis at which 

seeds aborted was scored to determine whether abortion occurred at a specific point. 

Most seeds appeared to abort in early to mid embryo development - from the 

globular to the early torpedo stage - but this was variable both within siliques and 

between siliques on the same plant. Fig.III.1C shows an aborting seed containing a 

torpedo embryo inside an acr4-2 silique, indicated by an asterisk. The acr4-2 silique 
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Figure 111.1. w-r4-2 seed morphology phenotype. (A) Opened mature siliques showing reduced seed 
set in act-4-2 homozygote mutants (horn) in comparison to ACR4-2 wild-type (WT) plants. (B.C) 
Maturing seeds at comparative stages of development inside siliques. In comparison to an ACR4-2 
wild-type sibling (B) there is variable seed (asterisk) and ovule (arrow) abortion during development in 
acr4-2 homozygotes (C). act-4-2 maturing seeds are smaller and rounder than wild-type siblings, and 
have a rougher' appearance (compare seed marked by arrowheads). (D-G) SEM images of mature 
seed. In comparison to wild-type seed (D.F) acr4-2 seed (E,G) size and shape abnormalities are 
prominent, with defects in surface structure due to callus-like outgrowths on the seed surface 
(arrowhead). (G) Outside cell layer abnormalities are present, with variable patches of cells which 
appear to have lost organisation with respect to each other (arrow). Scale bars: 100p.m, except for A 
(600p.m). 



in Fig.III.8A (see later) carries aborting seeds both at the early globular (small 

yellow seed) and heart (browning seed) stages of embryogenesis. Therefore abortion 

of seeds in acr4-2 homozygous plants was unrelated to the stage of embryo 

development. 

As previously mentioned acr4-1 and -2 could both be maintained as homozygous 

seed lines. This was due to the fact that 40-85% of seeds were still able to develop to 

maturity and contained viable embryos. However these mature seeds appeared to be 

morphologically abnormal. In order to characterise the phenotype, mature acr4-2 

mutant and wild-type sibling seeds were analysed with the aid of scanning electron 

microscopy (SEM) (Fig.IIJ.1D-G). Rather than being elliptical with a smooth 

surface as in wild-type, acr4-2 homozygous seeds were rounder with a 'chick-pea' 

shape, and were also smaller. In addition seeds had a 'rougher' outer surface which 

appeared to be due to the presence of callus-like outgrowths (Fig.III.1G, arrowhead). 

Epidermal cells on the surface of seeds appeared to be improperly organised in 

comparison to the wild-type, with some parts of the seed coat losing their regularly 

spaced cell morphology (Fig III.1G, arrow). Defects in the seed outer cell layer 

morphology were particularly noticeable in cleared developing seeds when viewed 

using DIC microscopy (Fig.III.2). Abnormalities were also seen in the organisation 

of underlying integument and endothelium (most inner layer of the inner integument) 

cell layers in acr4-2 mutants (Fig.III.2B) in comparison to wild-type (Fig.III.2A). 

Interestingly, during fixation or staining of developing seeds, stains or fixatives 

used appeared to penetrate tissue more quickly and to a greater depth (data not 

shown), which suggested that seeds were compromised in their surface integrity. 

I1I.2.2.13. ACR4 is required for proper ovule integument outgrowth 

The reduced size and round shape of seeds was noticeable and was postulated to be 

due to a lack of proper ovule integument growth. During the course of normal ovule 

development in Arabidopsis two layers of tissue - the ovule integuments - are 

initiated and elongate. These then go on to form the testa (seed coat) which expands 
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Figure 111.2. ac,-4-2 phenot)pe in seed layers. In comparison to a wild-type 
sibling (A) act-4-2 mutant cleared seed (B) has reduced elongation of integument 
layers, which results in a rounder overall seed shape. Cell extrusions are apparent 
on the surface (arrowhead). In addition, integuments and the endothelium layers 
appear to he thinner and aberrantly defined (compare width of bracketed areas) in 
act-4-2 mutants. oi, outer integument; ii, inner integument; en, endothelium .Scale 
bars: 50iim. 



as the embryo and endosperm develop, giving seeds their elliptical shape. Therefore 

it seemed likely that there was a defect in ovule morphology. In addition, the 

number of aborted seeds did not entirely account for the reduced seed set, which 

suggested that some ovules remained un-fertilised. In order to investigate both the 

underlying basis of the seed abortion phenotype and the abnormal seed morphology, 

ovule development was analysed. Developing carpels, prior to fertilisation, were 

cryo-fixed and fractured in order to break open the outer carpel wall tissue. 

Scanning electron microscopy was then used to visualise the uncovered developing 

ovules (Figs.III.4,5). 

Ovule development in wild-type plants was as previously described (Robinson-

Beers, etal., 1992; Schneitz, etal., 1995); see schematic of a fully mature ovule just 

prior to fertilisation (Fig.II1.3). In the wild-type carpel, ovules are first initiated as 

bulges of cells which originate from the placental tissue and develop into finger like 

protrusions (Fig.III.4A). Each protrusion, known as a nucellus, contains a female 

megasporophyte (see diagram beside SEM image) which through the course of ovule 

development eventually gives rise to the haploid female gametoyphyte. Next, at 

defined positions near the nucellus tip two bulging rings of Li-derived cells grow 

out. These two rings are the ovule integuments. The inner integument grows out 

closest to the nucellus apex, with the outer integument initiating further down 

(Fig.III.4C). Development then proceeds with the integuments growing out over the 

nucellus (Fig.III.4E). The outer integument grows over both the inner integument 

and the nucellus, to give a narrow micropyle where the pollen tube can grow into the 

ovule to deliver the sperm nuclei. This course of development forms a mature ovule 

in which the female gametophyte is almost completely enclosed by the integuments 

(Fig.II1.4G). 

Abnormalities in ovule integument outgrowth and organisation were found in acr4 

mutants. These defects account for the variable degree of ovule and seed death 

visible at later stages. During the earliest stages of ovule formation acr4-2 mutants 

develop as wild-type, with a normal nucellus being initiated (Fig.III.4B). At the 

point of integument initiation, problems in acr4-2 mutant ovules start to be visible 

(Fig.III.4D). The positions of both inner and outer integument initiation on the acr4- 
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Figure 111.3. Schematic of a mature ovule just prior to fertilisation. The main part of the 
ovule is connected to the carpel by the funiculus. The female gametophyte is surrounded 
by the endothehiurn layer through which nutrients are transported to the developing 
gametophyte. The endothelium is the most inner cell layer of the inner integument. It is 
surrounded by the outer layer of the inner integument, and then by the outer integument. A 
pollen tube which has grown down through the carpel tissue towards the ovule is indicated 
(blue). The pollen tube reaches the female gametophyte (purple) through the micropyle. 
After contacting the synergid cells and after a recognition event the pollen tube bursts to 
release the two sperm nuclei. One nucleus fertilises the egg cell resulting in development 
of the embryo. The second fertilises one of the central cell nuclei which results in 
development of the endosperm tissue. Schematic adapted from figure by Gwyneth C. 
Ingram. 
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Figure 111.4. Phenotypic analysis of wild-type and acr4-2 ovule ,.,. (A.C.E.U) SEM images of cryo-
fixed wild-type ovules, with the stage of ovule developmental illustrated to the left. (B.D.F.H) act-4-2 
mutant ovules. (A.B) Ovule primordia immediately prior to integument initiation, showing comparable 
development. (C.D) Initiation of inner (arrowhead) and outer (arrow) integument growth. In wild-
type. single integuments are initiated, whilst in acr4-2 integuments are initiated irregularly. Two 
regions of outgrowth are visible in the region of outer integument initiation (asterisks), while other 
regions lack outgrowths. (E,F) Integument outgrowth is retarded in acr4-2 ovules (F). In comparison 
to wild-type (E) where the leading edges of ovule integuments are smooth, those of act-4-2 arc ragged 
with disorganised cells: the nucellus has snapped off the right-hand ovule in (F) during sample 
preparation. (G.H) Mature ovules, just prior to fertilisation. (H) Weakly affected acr4-2 ovule in 
comparison to wild-type ovule (G), see Fig.1II.5 for details. Scale bars: 20p.m. 



2 mutant nucellus, rather than being distinct, were variable and not well defined. 

Rather than two integuments being initiated, between one and three bulging and 

often incomplete rings of cells appeared at varying points on the nucellus 

(Fig.III.4D). It was not clear whether (in Fig.III.4D) each of the three bulges of cells 

would actually then develop, forming an ovule with three integuments, as the 

development of a single ovule over time could not be monitored. It is however 

unlikely that such growth would have been maintained as this would have caused 

severe morphological problems. 

Integument outgrowth itself was also severely affected in many ovules. Instead of 

smooth rings of outgrowing cells which are visible in ovules of wild-type plants 

(Fig.III.4E), those of acr4-2 mutant ovules were instead disorganised (Fig.III.4F). 

Outgrowth of integument cells in acr4-2 mutant ovules did not occur at the same rate 

across the integument as a whole. At certain places the integument expanded 

whereas at others it did not. This produced uneven, disordered and retarded 

integument outgrowth. The result of this was that in acr4-2 mutants the ovule 

integuments failed to grow out properly, leaving the nucellus and inner integument 

visible (Fig.III.4H). This aspect of the phenotype was variable, being dependent on 

the degree to which integument development was disorganised. Mature acr4-2 

ovules thus exhibited a wide range of defects, with more weakly affected ovules 

exhibiting the same features seen in acr4-2 mature seeds: they were rounder and 

smaller than wild-type, with cell outgrowths on the surface (Fig.III.5B) (compare to 

wild-type Fig.III.5A). More severely affected ovules showed an acute lack of, in 

particular, outer integument outgrowth which resulted in 'ragged' looking ovules 

(Fig.III.5C). If fertilised, such ovules would have been unlikely to maintain proper 

development. This would therefore have resulted in abortion during seed 

development. Ovules with even greater abnormalities show little elongation of either 

integument (Fig.III.5D). These ovules would have been likely to abort during 

development and certainly would never have been fertilised due to serious 

abnormalities. In some particularly severely affected ovules, no functional female 

gametophyte was present. However, this was likely to be an indirect effect of 

abnormal cell layer formation (see below) which resulted in gametophyte abortion or 
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Figure 111.5. Mature acr4-2 ovule phenotype. (A-D) SEM images of cryo-fixed mature 

stage oules: inner (arrowhead) and outer (arrow) integuments are labelled. In wild-type 

(A) the outer integument has grown over the inner integument and nucellus to give a 

narrow niicropyle (m). facing the funiculus (f). (B-D) Weak, medium and severely 

affected acr4-2 ovules respectively. (B) The outer integument has retarded growth. 

leaving the inner integument and nucellus exposed. Surface abnormalities (asterisk) 

where cells appear to he growing in the wrong direction are visible. (C) Both the inner 

integument appears fairly normal, whereas the outer integument has failed to elongate. 

(D) The inner integument, and the outer integument have failed to elongate, which leaves 

the nucellus exposed. Scale bars: 20.tni. 



degradation, rather than lack of initiation of gametophyte development. 

Irregularities in acr4-2 mutants were only first seen at a point (integument initiation) 

where the female gametophyte has already started to develop. 

In summary, loss of ACR4 function results in abnormal ovule integument 

outgrowth with defects in integument cell layer organisation apparent. Isolation of a 

wide range of mutants defective in ovule formation including BELL], SHORT 

INTEGUMENTS1, AINTEGUMENTA, and INNER NO OUTER show that proper 

integument formation is important for normal development of the female 

gametophyte of the ovule (Reiser and Fischer, 1993; Baker, et al., 1997; Broadhvest, 

et al., 1999; Villanueva, et al., 1999). An intact endothelial layer is also crucial for 

proper development, it being important in transfer of nutrients to the developing 

gametophyte from the plant (Kapil and Tiwari, 1978). Abnormal integument 

outgrowth in acr4 mutants has an affect on the underlying cell layers (see 

Fig.III.2B). This would be likely to adversely affect normal nutrition, which is the 

likely cause of seed and ovule abortion of development. In more weakly affected 

ovules, normal development can be maintained. 

In order to determine whether there was any genetic relationship between ACR4 

and genes known to be important in ovule development including those mentioned 

above, double mutants were generated by crossing. The resultant plants were 

analysed to determine whether any enhancement or alteration of phenotype occurred 

(see Chapter V). 

11I.2.2.C. ACR4 is required for proper sepal margin cell organisation 

Additional defects in acr4-2 were searched for but the only other defect seen was 

one occurring at the margins of the sepals (calyx) in the flower. Sepal margins had a 

rougher appearance when viewed under a light microscope, in comparison to those 

of wild-type flowers. In order to investigate this defect floral buds were partially 

dissected to expose the margins of developing sepals and then cryo-fixed. acr4-2 
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mutant and wild-type sibling sepals were viewed using SEM. acr4-2 mutant 

marginal cells appeared to have a defect in cell organisation. Rather than a smooth 

monolayer of cells as seen in the wild-type sepal margin (Fig.III.6A), acr4-2 mutant 

margins appear thicker (Fig.III.6B). This appeared to occur due to the fact that acr4-

2 marginal cells were not properly orientated with respect to each other, giving them 

a 'lumpy' appearance. Wild-type marginal cells were completely covered in 

cuticular decoration, visible as if the surface was covered with veins when viewed 

using SEM (Fig.III.6A). In contrast acr4-2 mutant marginal sepal cells had regions 

where the cuticular decoration was absent (Fig.III.6B). This suggested that some 

element of cuticle formation had been affected in acr4-2 mutants. This aspect will 

be further explored in later chapters (Chapters V and VI). 

111.2.3. acr4 has a maternal sporophytic effect 

In order to confirm that the seed morphology and abortion phenotype was under 

female sporophytic control, acr4-2 homozygous carpels were self-pollinated or cross 

pollinated with pollen from wild-type or heterozygous siblings. Control flowers on 

heterozygous or wild-type siblings were either self pollinated, or pollinated using 

pollen from an acr4-2 homozygous plant. Siliques from crosses using either wild-

type or heterozygous carpels were both full of normal elliptical seed (five crosses 

each). Siliques from self-pollinated acr4-2 individuals contained only 15-60% 

mature seed, with a phenotype as described above (Section III.2.2A). Siliques 

resulting from crosses of wild-type or heterozygous pollen onto homozygous acr4-2 

females showed the same phenotype to that of self-pollinated homozygotes (10 

crosses of each). Seed from each cross was sown out and all mature seeds 

germinated successfully. Mature plants of each line were genotyped, and the 

expected ratios of homozygous, heterozygous and wild-type plants found. If the 

genotype of the fertilised embryo sac had an affect on the seed phenotype, a lower 

proportion of mature homozygous plants would occur due to an enhancement of 
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Figure 111.6. acr4-2 mutant sepal margin phenotype. (A-B) SEM images of cryo-fixed sepals. 

(A) Sepal margins (indicated by arrowhead) in wild-type are smooth and covered in cuticular 

decoration. (B) Marginal cells in acr4-2 mutant sepals in comparison are improperly organised. 
resulting in a thick ridge of cells which gives sepal margins a rough appearance. In addition some 
parts of acr4-2 marginal cells are bald, with no embellishment of cuticle. Scale bars: 20p.ni. 



defective seed development. However, as the expected numbers of each genotype 

were found, acr4 carries no such gametophytic effect. 

111.2.4. Single base pair mutations in the 39aa repeat region render ACR4 non-

functional 

In addition to analysing t-DNA knockout lines, the phenotype of alleles generated by 

TILLING was analysed. Lines acr4-11 to -21 were found to be aphenotypic, but 

lines acr4-7 to -10 all exhibited an identical phenotype to that of the two independent 

t-DNA insertion alleles acr4-1 and acr4-2 (see above). The severity of defects in 

both ovule development and sepal margin organisation was found to be the same, 

thus no alleles exhibiting weaker phenotypes were isolated. acr4-8, 9 and 10 all 

contained base changes in the ACR4 39aa repeat region which caused coding amino 

acids to be substituted for stop codons, presumably resulting in a truncated and non-

functional ACR4 product being translated. The fact that these three isolated 

TILLING alleles exhibit the same phenotype as the two t-DNA insertion alleles is 

good evidence that the defects seen are truly the result of complete ACR4 loss of 

function. This therefore confirms that the acr4-1 and acr4-2 alleles are null. 

Interestingly, line acr4-7 contained a base change substituting a cysteine amino 

acid for a tyrosine in the fourth 39aa repeat. The importance of this change will be 

discussed in detail later (see Chapter IV). 

111.2.5. ACR4 sequence analysis 

As well as in elucidating the function of ACR4, t-DNA insertion lines can also be of 

use in clarifying the boundaries of the ACR4 promoter and coding regions. Promoter 

deletion studies carried out in the lab showed that a 857bp promoter region upstream 

of the ACR4 ORF is sufficient to drive ACR4 expression, whilst a 405bp region is 

not (Gifford, et al., 2003). As acr4-6 is aphenotypic, it suggests that the functional 

promoter region can be restricted to 657bp. In addition, as the acr4-4 allele confers 
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no phenotype it confirms that the 3' UTR of ACR4, at least beyond 574bp 

downstream of the ORF, is not required for function. 

111.2.6. acr4-1 carries a s!rene-like mutation 

The Wisconsin collection acr4-1 allele carries an additional, un-linked mutation 

which segregates separately from the t-DNA insertion in ACR4. It is not linked to a 

detectable t-DNA insertion. Reciprocal crosses from the acr4-1 line to ColO wild-

type plants were used to separate the two mutations. The additional mutation caused 

half of the ovules in each developing silique to remain unfertilised. In order to 

investigate this lack of fertilisation ovules were fixed and analysed, using tissue auto-

fluorescence to view ovules using confocal microscopy (not shown). 

The phenotype of mutant ovules was found to be very similar to that seen when the 

SIRENE gene is knocked out (Rotman, et al., 2003). The mutation was named 

carmen. In sirene a signalling defect results in a lack of recognition between the 

female gametophyte of the ovule and a pollen tube which has entered the synergid 

cell. In wild-type when normal recognition between pollen tube and female 

gametophyte occurs the pollen tube bursts upon entering the synergid. This results 

in release of the two male gametes which go on to fertilise the egg cell and the 

central cell of the female gametophyte (Christensen, et al., 1997; Faure, et al., 2002) 

(see Fig.III.3). In sirene, pollen tubes do not burst and instead continue to grow 

around the inside of the female gametophyte before eventually stopping. As male 

gametes are not released ovules remain unfertilised. The defect in sirene is female-

gametophytic lethal. 

In fixed homozygous carmen ovules, a large mass of tissue with high refractive 

index was observed at the micropylar end of the ovule (not shown). With reference 

to and knowledge of the sirene phenotype, the tissue was postulated to be a clump of 

pollen tube. To investigate this theory further, pollen tubes growing inside carmen 

carpels were examined. In order to visualise pollen tubes, carpels of homozygous 

carmen mutant plants and control wild-type plants were pollinated using pollen from 



the pLAT52::EGFP marker line (kindly provided by Richard Parton and Masaki 

Watahiki, The University of Edinburgh, UK). 

LAT52 is a tomato gene which is specifically expressed in the cytoplasm of the 

pollen vegetative cell (Muschietti, et al., 1994). When plants carrying 

pLAT52::EGFP are viewed using confocal microscopy pollen tubes appear green. 

Normal pollen tube growth and bursting response was observed in the wild-type 

ovule (Fig.III.7A), but in the carmen ovule this was not evident. The pollen tube did 

not burst and instead continued to grow at the micropylar end of the ovule 

(Fig.III.7B), as was visualised in cleared ovules. This mutant does not represent an 

additional allele of sirene (Jean-Emmanuel Faure, Ecole Normale Supérieure, Lyon, 

France, pers. comm.) but could be potentially caused by a mutation in a related gene. 

In order to ensure that even when this second mutation was removed from the 

acr4-1 line, any additional background effects did not modify the acr4 phenotype, 

the acr4-2 line was used primarily for all phenotypic analysis. In addition, as the 

acr4-2 allele was in the ColO background it was more suitable for the subsequent 

work carried out here. 
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Figure 111.7. 	sirene-like mutation carried by the act-4- 1 line. 	(A-B) Coniocal images of 

pLAT52::EGFP expression (green) in ovules one day after pollination (IDAP). (A) WT ovule 
containing a normal bursting pollen tube (arrow). (B) acr4-1 ovule: due to a lack of a bursting 
response, the pollen tube continues to grow into a hail at the micropylar end of the ovule, visible 
when viewed under light microscopy as a mass of tissue (not shown). Scale bars: tm. Photos 
taken by Gwyneth C. Ingram and included with kind permission. 



111.3. Isolated acr4 null mutants are complemented by wild-type ACR4 

gene expression 

Although two independent mutant alleles of acr4 showed identical defects, an 

additional conformation that the phenotype seen was really due to a loss of ACR4 

expression was made. In order to do this a complementation analysis was carried out 

to determine whether an introduced copy of ACR4 could rescue the seed death and 

morphology phenotype. 

Homozygous acr4-2 plants were crossed in both directions to a transgenic line 

carrying a full length ACR4 ORF under the control of the ACR4 promoter (pMD5: 

see Chapter 11.3.2 for details of line construction); the transgene conferred 

hygromycin antibiotic resistance. In addition, control homozygous carpels were self 

pollinated. Four F2 generation families were selected on media containing 

hygromycin for plants either homo- or hetero-zygous for the ACR4 transgene. Plants 

were then genotyped by PCR to ascertain acr4-2 homo- or heterozygosity, with a 

Southern blot used to confirm homozygosity of plants in two families. The 

phenotype of acr4-2 homozygous, heterozygous and wild-type plants was compared. 

In all four families, full complementation of the acr4-2 homozygous phenotype 

was evident. In comparison to selfed acr4-2 homozygous where seed death and 

morphology abnormalities are apparent (Fig.1II.7A), siliques of acr4-2 homozygotes 

carrying the pACR4::ACR4 transgene are full of normal wild-type seed (Fig.III.7B). 

Sepal margins of these plants were also as wild-type (not shown). In conclusion, 

defects seen in isolated acr4-2 alleles are complemented by expression of an 

introduced copy of the ACR4 gene, thus the plants have a phenotype which is 

directly associated with loss of ACR4 function. 
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Figure 111.8. Complementation of ur4 mutant-s. (A.B) Opened siliques 

showing acr4-2 lines either harbouring a transgene expressing 

pA CR4::A CR4 (B), or not (A). (A) acr4-2 siliques contain small, round 

seeds with a varying degree of seed abortion. In (B), expression of ACR4 

has restored normal seed development. Siliques are full of elliptical, 

smooth seed. Scale bars: 100im. 



111.4. ACR4 is expressed in the outside cell layer of embryos, 

meristems and in ovule integuments, defining the Li layer 

A detailed study of the ACR4 expression pattern was undertaken in order to both 

confirm, and elaborate on ACR4 RNA distribution results obtained from in situ 

hybridisation experiments carried out in the lab (see Gifford, et al., 2003). In order 

to do this, various ACR4 promoter-driving marker line tools were used or 

constructed. Firstly, a two-component marker line already available in the lab was 

optimised. Secondly, a single marker line with the ACR4 promoter directly driving 

expression of the yellow fluorescent protein HISTONE2B::YFP (H2B::YFP) marker 

gene was constructed. Thirdly, an enhanced version of the single marker line was 

made. 

111.4.1. Marker line construction and optimisation 

111.4.1.A. Two-component (transactivation) marker line 

In the lab a two-component marker line had already been constructed, with plant 

lines available for use. The ACR4 promoter had been placed upstream of the 

chimaeric GAL4: : VPJ6 transcriptional activator (Haseloff, 1999) and transformed 

into plants (driving line). In a second plant line the HIS TONE2B::YFP protein fusion 

encoding marker gene had been placed under the control of a 35s minimal promoter 

and the Upstream Activating Sequence (UAS) (Boisnard-Lorig, et al., 2001) 

(transactivation line). Homozygous single-insertion driving and transactivation lines 

were crossed (in either direction). When both transgenes were present in the same 

plant, the GAL4:VP16 DNA binding domain bound and activated the UAS. This 

resulted in expression of H2B:: YFP wherever the ACR4 promoter was activated and 

thus where ACR4 was expressed. H2B::YFP is a stable marker and a nuclear-

localised protein. The dual nature of the system results in an intrinsic amplification 
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of expression levels, allowing visualisation of promoter expression pattern where the 

intrinsic promoter activity is weak. 

Initial experiments were underway in the lab to confirm that in the two-component 

marker line the ACR4 promoter was driving expression of H2B:: YFP in the same 

pattern of distribution found for ACR4 RNA. These tests were continued and 

completed. The two-component marker line system was optimised by selecting the 

strongest driving and transactivation lines. In order to do this, crosses were 

performed between individuals from 12 families of each line; the driving line carried 

kanamycin antibiotic resistance and the transactivation line carried hygromycin 

resistance. Fl generation plants carrying both transgenes (and thus expressing 

H2B:: YFP where ACR4 is expressed) were selected using double antibiotic 

resistance. The relative fluorescence of roots for individuals from each cross was 

assessed, and optimum combinations of families determined (not shown). Three 

lines for each construct in the two-component marker system were thereby selected, 

seed for each line bulked up and used in expression pattern analysis. 

1I1.4.1.13. Single and enhanced-single marker lines 

The transactivation approach, although resulting in strong marker gene expression 

levels, carries several innate problems in application. Firstly, if the two-component 

line is being used to analyse ACR4 gene expression in mutants it requires the 

crossing into and maintenance of two individual transgenes in a single plant. This is 

likely to pose a technical difficulty. Secondly, the presence of two transgenes which 

carry similar terminator sequences (as used here) could result in some degree of 

silencing of the transgene sequences. This could reduce the level of marker gene 

expression in later generations, which could potentially cancel out the inherent 

enhanced expression expected. After initial tests with the two-component line, 

transgene silencing did not appear to be taking place, but a single marker line was 

still constructed for ease of use. 
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A single marker line was constructed by placing the ACR4 promoter directly 

upstream of the H2B:: YFP marker gene, in order to directly drive expression. As 

predicted, H2B:: YFP was found to be expressed at a lower level to that of the two-

component marker line, thus an enhanced marker line was constructed. To do this 

four 35s enhancers were placed upstream of the full length (2Kb) ACR4 promoter 

(see Chapter 11.3.1 for details). In addition the enhancers were placed upstream of a 

truncated ACR4 promoter, driving H2B:: YFP (857bp truncated promoter as Gifford, 

et al., 2003). This alternative line was made in order to reduce the size of the 

promoting region. 

H2B:: YFP was found to be expressed to a higher level in the 35s enhanced lines as 

predicted. This level of expression was found to be comparable to that of the two-

component marker line and thus provides a more useful tool for examining the 

expression pattern of the ACR4 gene. No difference in expression pattern or 

intensity of fluorescence was seen between the two 35s lines. The expression of 

H2B:: YFP in the enhanced single marker lines was found to be identical to that in 

the single marker line in all organs analysed. This confirmed that the addition of 

enhancer elements had not distorted the observed pattern of ACR4 promoter 

expression. 

111.4.2. ACR4 expression pattern analysis 

111.4.2.A. ACR4 is expressed in the outside layers of the embryo, shoot apical, 

inflorescence and floral meristems 

Wild-type tissue expressing the above marker lines was dissected, mounted in water 

under a coverslip, and the fluorescence of tissue examined using confocal laser 

scanning microscopy. The expression pattern of H2B:: YFP in the two-component, 

single- and single enhanced- marker lines was found to be identical to that of the 

RNA distribution of ACR4 in all organs examined. Protoderm-specific expression 

throughout embryo development was seen from the 8-16 cell stage of embryo 
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development and is maintained throughout embryogenesis (Fig.III.9A). H2B:. YFP 

expression is also detected in the embryonic root pole (Fig.III.9A). No expression of 

H2B:: YFP was detected in the endosperm tissues of the seed: H2B:: YFP 

fluorescence in the embryo when viewed using confocal microscopy is clearly 

visible despite the embryo being surrounded by endosperm tissue. Li-specific 

expression in the shoot apical, inflorescence (Fig.III.9B) and floral meristems 

(Fig.III.8C) was confirmed. Li-specific expression in all organs derived from these 

meristems was also confirmed (not shown). 

1114.2.B. ACR4 is expressed in ovule integuments, the root meristem and in 

outside layer cells at the lateral root cap boundary 

In previous in situ hybridisation experiments carried out in the lab the distribution of 

ACR4 in both root and ovule tissue had proven difficult to clarify. ACR4 expression 

in these two organs, determined using the constructed marker lines, will now be 

discussed. Schematics of the root apical meristem (Fig.III.iO) and a mature ovule 

(Fig.III.3) are provided for reference. 

In ovules ACR4 expression was observed in all integument cells and in the outer 

layer of the funiculus (Fig.III.91)). Expression was strongest in the most outer layer 

of the ovule (effectively the ovule epidermis), the 'outer' layer of the inner 

integument and the endothelium. These ovule cell layers are derived from 

outgrowths of the epidermal Li cell layer and thus ACR4 expression in ovules is Li-

specific. 

At the lateral root cap boundary of the apical root meristem ACR4 expression was 

detected in 'outside' cells, and also the epidermis/lateral root cap initial 

(Fig.III.9H,I). Expression was maintained in the cells of the lateral root cap, but not 

in cells of the epidermis. Epidermal cells only started to express H2B:: YFP when 

they were directly on the outside of the root after they had emerged from under the 

lateral root cap (Fig.1II.91). Epidermal cells below the lateral root cap did not 
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Figure 111.9. 	CR-I pr)ln)ter acti\ it throughout de clopinent. (A-I) Contcal images of lines 

expressing H2B.: YFP (green) under the control of the ACR4 promoter. (A) Early heart stage embryo 

where H2B.: YFP expression is detected in the protodermal cells on the outside of the embryo and in 

the root pole (rp). No expression is detected in the surrounding endosperm. (B.C) Inflorescence (im) 

and floral meristems (fm) respectively, where expression of ACR4 is detected specifically in the 

outside (LI) cell layer. (D) Mature ovule: ACR4 expression is detected in the outer layer of the 

funiculus (f). outer integument (oi), inner integument (ii) and endothelium (en). (E.F) Confocal 

images of emerging lateral roots from the pericycle at the 16 cell stage (E) and further in development 

(F). (G-1) Propidium iodide staining of the cell wall (red) is used to mark root cells. (H) Apical root 

meristeni: ACR4 is expressed in the colurnella initials (c), the epidermal/lateral root cap initial (e/1-i), 
the lateral root cap (Ire) and the quiescent centre (qc), but not in the epidermal cell file (e). ACR4 is 
similarly expressed in the corresponding regions of the lateral root meristem (G). (I) Upper lateral 

root cap boundary: ACR4 expression is detected in the epidermal cell file only after cells emerge from 

under the lateral root cap (at star). This is also visible at the lateral root cap boundary in (G). c, 

cotyledon priniordium: SAM, shoot apical meristem: fg, female gametophyte: m. micropyle. Scale 

bars: 25i.im, expect for I (lOxm). Photos A-F taken by Gwyneth C. Ingram and included with kind 

permission. 
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Figure 111.10. Schematic of the root apical ineristem. The meristematic zone 
quiescent centre, the cell files and the cell tile initials as well as the lateral root cap are 
indicated with colour-coded labels. The epidermal/lateral root cap initial (brown) 
divides anticlinally to contribute cells to the epidermal cell file. This Initial also 
divides periclinally to contribute cells to the lateral root cap which covers the apical tip 
of the meristeni. Schematic taken from Van Den Berg, et al. (1997) and adapted in 
Ingram (2004). 



express H2B:: YFP. Outside-layer specific expression in epidermal cells of the root 

was maintained, becoming weaker in more mature roots beyond the elongation zone. 

ACR4 therefore is expressed not specifically in epidermal cells, but rather in the 

'outside' cells at the lateral root cap boundary. This finding is interesting as it 

suggests that root cells are able to perceive the outside environment that they are 

situated in, or at least recognise a lack of some sort of signalling at one cell edge that 

the surrounding cells usually provide. 

However, as well as being expressed in outside tissues of the root, ACR4 was 

expressed in some non-outside tissues (Fig.III.9G,H). This is quite distinct to the 

case of ACR4 expression in aerial meristems where H2B:: YFP is only detected in 

outside/Li cells (Fig.III.9B,C). ACR4 expression was detected in the 

epidermis/lateral root cap and columellar initials, and the quiescent centre cells. In 

addition ACR4 expression was detected in the pericycle cells of initiating lateral root 

primordia (Fig.III.9E,F). H2B:: YFP expression was first detected at the four to eight 

cell stage of lateral root pnmordia development. Lateral roots are initiated from 

founder cells in the pericycle which maintain their competence for division 

throughout the elongation and differentiation zones. Lateral roots are initiated at 

positions defined by a combination of developmental and environmental cues 

(Dubrovsky, et al., 2000; Dubrovsky, et al., 2001). One or two longitudinally 

adjacent pericycle cells (founder cells) per cell file undergo one round of asymmetric 

cell division to create adjacent shorter cells. These shorter cells form the centre of 

the future lateral root. It has been found that a minimum of three founder cells from 

adjacent pericycle cell files are required for lateral root primordia to be initiated 

(Dubrovsky, et al., 2001). The shorter cells subsequently divide anticlinally in a 

strict series of morphogenetic events, which together with differential gene 

expression form a proper lateral root. After being expressed early in lateral root 

development in these dividing cells, 112B:: YFP expression (under the control of the 

ACR4 promoter) was maintained in the outside and meristematic cells throughout 

lateral root outgrowth. Expression in fully mature lateral root meristems was 

subsequently detected in the same pattern as described for the apical root meristem 

(Fig.III.9G). 
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In conclusion ACR4 expression is detected in 'outside' cells of the root in the 

lateral root cap and most epidermal cells, but also in cells of the meristem which are 

not on the outside. This will be discussed in more detail in Section 111.5. 

As H2B::YFP is a fairly stable marker gene it was important to confirm that the 

expression pattern seen (particularly the transition at the lateral root cap) was a true 

spatial indication of ACR4 expression, and not an artefact of earlier expression which 

had been maintained through time. This was confirmed firstly by analysis in the lab 

of plants expressing GFP (green fluorescent protein) under the control of the ACR4 

promoter. GFP was found to be localised to the same cells as mentioned above for 

H2B::YFP (Ingram, 2004). However one caveat that had to borne in mind was that 

GFP moves between cell layers, potentially distorting the expression pattern seen 

(Ingram, 2004). This is the reason why GFP was not used as a marker for the ACR4 

expression pattern here. In order to further verify the expression pattern a second 

construct was analysed. The same expression pattern was seen in plants expressing 

an ACR4::GFP fusion under the control of the ACR4 promoter (see Chapter IV), 

although H2B::YFP expression was maintained for slightly longer in the root cap 

than ACR4::GFP was. Together this data suggests that the marker expression pattern 

described here is a faithful representation of where ACR4 is expressed. 

106 



111.5. ACR4 appears to be involved in signalling between cells in order to 

maintain outside Li layer integrity 

ACR4 is expressed in the outside layer of embryos and meristems, and is involved in 

regulating proper ovule integument outgrowth and sepal margin organisation. As a 

receptor-like kinase it could act by perceiving extracellular signals, transmitting the 

signal into the cell via phosphorylation; ACR4 has been shown to encode a protein 

with an active kinase domain (Gifford, et at., 2003). Gene expression studies 

indicate that ACR4 is not exclusively expressed in ovule integuments and sepal 

margins. Thus, why is a phenotype seen only in these two organs? Why is such an 

apparently weak phenotype noted for such a widely expressed gene? There is only 

one likely explanation for these findings, as the possibility that the acr4 alleles are 

not null has already been discounted (see Chapter 111.2.4). There could be 

redundancy with one or more of the four other members of the Arabidopsis CR4-like 

gene family. In this study the results obtained cannot eliminate this possibility, and 

indeed a role for one or more genes with similarity to ACR4 is proposed in Chapter 

IV as part of a molecular model for ACR4 function. A comprehensive study of the 

four other CR4-like genes in Arabidopsis which includes a dissection of their 

expression patterns and functions is currently taking place in the lab. 

111.5.1. ACR4 function: a hypothetical model 

In order to explain the phenotype seen in acr4 mutants a mechanistic model is 

proposed. Interestingly, marginal sepal cells and outside-layer derived ovule 

integuments are unique in Arabidopsis in being composed of two single appressed 

Li cell layers (Fig. III.ilA,B). All other organs, including leaves, roots and 

embryos (all of which ACR4 is expressed in) have an underlying cell layer. In order 

to regulate correct outside/Li cell layer development, so that cells form as a well 

organised mono-layer (which is developmentally important), it could be 

hypothesised that two possibly related signalling operations are involved. The first 
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Figure 111.11. ACR4 may receive positional information to maintain outside-layer organisation. 

(A-B) Schematic of cell layer organisation in sepal margins (A) and ovule integuments (B). The 

Li cell layer is indicated by blue coloured cells, with underlying cells coloured green. (C) 

Hypothetical signalling between outside cells (a) and from underlying cells (h), together providing 

positional information required to maintain proper outside (LI) cell layer organisation in aerial 

organs. 



would be between cells of the outside/Li layer, and the second would be from 

underlying cells (Fig.III. 1 1C). Together these would provide positional information 

to maintain proper outside/Li layer organisation. If ACR4 is implicated as a 

molecule involved in signalling between outside-layer cells (process (a) in Fig. 

III.1IC), then this signalling would be compromised in acr4 mutant Li cells. A 

signal from underlying cells (process (b) in Fig. 111.1 1C) could compensate for loss 

of ACR4 activity in most organs, ensuring normal development. However as sepal 

margins and ovule integuments have no underlying cell layer, this compensation 

could not occur, and thus defects would be manifest in these two organs. This is 

exactly what is observed in acr4 mutants. The effect of loss of ACR4 function in Li-

derived stipules was not determined in this study. However, as stipules are 

composed of a single layer of Li cells - not two single appressed Li layers - a defect 

in cell layer organisation similar to that seen in sepal margins and ovule integuments 

would have been unlikely to occur. 

Thus ACR4 is likely to be involved in a process in aerial organs by which Li cells 

recognise their position with respect to each other. Were ACR4 to be localised at the 

plasma membrane of Li cells, such a signalling process would be feasible. The 

localisation of ACR4 protein will be discussed in Chapter IV. 

111.5.2. Opposing opinions and a comparison of ACR4 with CR4 

In contrast to the results presented in this chapter and in Gifford, et al. (2003), 

several authors find defects in the protoderm and epidermis of acr4 mutants. These 

opposing findings will be examined here. Also the role of ACR4 in Arabidopsis in 

comparison to the role of CR4 in maize will be discussed. Tanaka, et al. (2002) find 

defects during embryo development when using an antisense approach to reduce the 

level of ACR4 expression. In a second paper by the same group, Watanabe, et al. 

(2004) report defects in epidermal cells and the cuticle of the leaf in an acr4 allele 

generated by t-DNA insertion. In maize (as discussed earlier), loss of CR4 function 



results in defects in epidermal specification as well as defects in the aleurone layer 

(Becraft, et al., 1996). Considering the high degree of similarity between maize CR4 

and ACR4, it would be expected that ACR4 would play a similar role in Arabidopsis. 

However, despite careful examination of all t-DNA insertion and TILLING-

generated alleles, no defects in protodermal or epidermal specification were found 

here. Indeed acr4 mutants express epidermal cell markers in a normal fashion, 

which suggests that epidermal cells are correctly specified (Gifford, et al., 2003). 

In Tanaka, et al. (2002), antisense expression of ACR4 appears to result in 

malformation of embryos during development. However it is likely that Tanaka, et 

al. are seeing an effect not directly associated with loss of ACR4 expression for a 

number of reasons. Firstly, the use of antisense to reduce gene expression levels is 

unreliable due to its lack of specificity. Secondly, the expression pattern of antisense 

ACR4 shown in the publication appears to be patchy, which could affect results. 

Finally, antisense ACR4 seeds shown appear to exhibit some similar features to those 

found in this study: seeds appear to be rounder with abnormal outer layers. Defects 

in embryo development could therefore occur indirectly as a result of abnormal seed 

development (although no such effects are seen here). The possibility that antisense 

expression is reducing the expression levels of the other A CR4-like genes, producing 

an attenuated and less restricted phenotype to that seen when only ACR4 expression 

is lost, is a prospect worth considering. However due to the low similarity between 

ACR4 and the other CR4-like genes in Arabidopsis, this seems unlikely. 

Watanabe, et al. (2004) confirm the importance of ACR4 in integument and seed 

development, but also report defects on the leaf surface including apparent 

extrusions of epidermal cells. The authors suggest that ACR4 is important in 

epidermal differentiation, but do not hypothesise why a phenotype is not seen in the 

epidermis of the root. The acr4 allele used in their study (named acr4-1) appears to 

correspond to the acr4-1 line used here. It is possible that the acr4 mutation is more 

penetrant in a Wassilewskija (Ws) background (which acr4-1 is in) than in a 

Columbia 0 (ColO) background. Ecotype differences were not investigated in detail 

between acr4-1 (Ws) and acr4-2 (ColO) in this study. As mentioned above (Section 

111.2.6), the acr4-1 line was found to carry an additional mutation, not associated 

109 



with a t-DNA insertion. Alternatively then it is possible that additional background 

effects are seen in the line used by the authors. The leaf cuticle of acr4 mutant 

alleles was not investigated in detail in this study but no major defects, as suggested 

by Watanabe, et at. were obvious. In particular no cell to cell fusion which is often 

seen in mutants where the cuticle is defective, was observed. In conclusion 

therefore, data from the studies discussed above may have been incorrectly 

interpreted, and does not impinge significantly on the conclusions drawn here. 

As to a comparison between ACR4 and CR4, one interesting point worth discussing 

is that the phenotypes seen in Arabidopsis and maize may not be as unrelated as first 

they appear. Although cell layer abnormalities are seen in different organs to those 

of maize, the types of cell disorganisation defects observed in acr4 ovule 

integuments and sepal margins are similar to the epidermal defects observed in the 

leaves of maize cr4 mutants. In addition, due to the differing expression patterns of 

ACR4 and CR4, a similar phenotype would be unlikely to occur in mutants. For 

example ACR4 is not expressed in the endosperm of developing seeds (Gifford, et 

al., 2003), whereas CR4 is expressed in the aleurone layer of maize (Becraft, et al., 

1996). ACR4 is expressed in roots (Gifford, et at., 2003) whereas CR4 is not (Jin, et 

at., 2000). Also work on epidermal specification in maize suggests that the 

abnormalities in cr4 mutants are not directly the result of incorrect epidermal 

specification (as discussed in Chapter I). Becraft, et at. (2001) analysed the 

expression of epidermal cell markers in CR4 and cr4 leaf sectors of genetic mosaics. 

One maize epidermal cell marker is anthocyanin accumulation. Rather than reduced 

levels of anthocyanin pigmentation as would be expected if epidermal cell fate was 

lost, elevated levels were in fact observed. In addition, cr4 mutant sectors had an 

effect on the spatial patterning of adjacent CR4 wild-type sectors cells: leaf sectors 

showed a displacement of ligules (Becraft, et al., 2001). This work suggests that cr4 

mutants have defects in epidermal signalling, rather than in epidermal specification 

itself. Therefore CR4 and ACR4 seem to be playing more similar roles than first 

thought, both involved in regulating the organisation of cells rather than acting to 

specify cell fate. 
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A better candidate for a gene involved in epidermal specification in maize is the 

DEK] gene. DEK] is expressed in most maize tissues and is important in pattern 

formation in the embryo and leaf epidermis, as well as cell fate specification in the 

leaf epidermis and aleurone cells of the endosperm (Becraft, et al., 2002; Lid, et al., 

2002). The defects in dek] mutants are more suggestive of a role in epidermal 

specification than those in cr4 mutants, as misspecification of cell identity rather 

than a lack of organisation is seen. Interestingly recent unpublished work suggests 

that the Arabidopsis homolog of DEK], AtDEK] is important in the specification of 

epidermal cells in Arabidopsis (Gwyneth C. Ingram, pers. comm.). 

The underlying basis of, and evolutionary implications for the differences in 

expression pattern and phenotype seen between Arabidopsis ACR4 and maize CR4 

will be addressed in more detail in Chapter VI. 

111.5.3. A wider context: what signal is ACR4 responding to? 

So, if ACR4 is involved in receiving and transducing some sort of signal which helps 

to maintain cell layer organisation, what is the identity of the signal? In order to 

identify the ligand(s) bound by ACR4 several experimental approaches have been 

taken, both here and within the lab (see Chapter IV). As the potential ligand-binding 

domain of ACR4 is located in the extracellular matrix, a secreted ligand would seem 

likely. It is possible that several ACR4 ligands exist, differing with the stage of 

development (embryo or mature plant), or perhaps with organ type (ovule, shoot or 

root). One insight into a possible ligand that could be received by ACR4 during 

embryo development comes from investigation of the ALE] (ABNORMAL LEAF 

SHAPE]) gene by Tanaka, et al. (2001). ALE] is strongly expressed in endosperm 

cells which surround the embryo and is required for proper cuticle formation. ALE] 

encodes a subtilisin-like serine protease (subtilase) which could cleave and thus 

activate a potential ligand peptide. The ligand would then be present on the exterior 

of the embryo. A zygotically controlled signal such as a potential ligand processed 

by ALE1, or a maternally produced signal could be important in specifying 
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positional information in cell layers of the embryo. This would then also affect gene 

expression and developmental patterning in the resultant plant. Interestingly it has 

been shown that acr4/alel double mutants exhibit an exacerbated phenotype in the 

seedling not seen in either single mutant (Nakajima and Benfey, 2002). Whether 

ALE1 does in fact process a ligand directly received by ACR4 though is yet to be 

determined. 

In organ primordia (such as in the root) rather than a ligand being located on the 

exterior of the plant, it is more likely that differentiation is maintained by an inside to 

outside signalling process or by signalling within the outside layer (Nakajima and 

Benfey, 2002). This might act in combination with signals from neighbouring cells. 

Interestingly ACR4 expression is detected in the meristematic cells of the root 

meristem which are not Li-derived. This suggests that there could be two factors, 

potentially two independent ligands, which activate and control the expression of 

A CR4. What role ACR4 might play in the root meristem is unclear. It could be 

involved in controlling proper outside layer organisation in the root by maintaining 

proper cell organisation patterns in the root meristem itself. The fact that ACR4 is 

being expressed in non-outside tissues of the root indicates that some inside-outside 

patterning could be taking place. Again such a process in organ primordia involving 

ACR4 is supported by the localisation of ACR4 protein (see Chapter IV). 

Interestingly there are some similarities between the expression pattern of ACR4 

and that of AUX1, an auxin influx, carrier in the root menstem. A potential link 

between ACR4 and auxin is of particular interest due to auxin being a regulator of 

pattern organisation. AUX1 expression follows the pattern that auxin is transported 

in, which goes down the centre of the root and then after reaching the meristem back 

up through the epidermal layer (Colon-Carmona, et al., 2000). ACR4 is expressed in 

a similar fashion in the meristem and in most cells of the epidermal layer. There are 

differences between the patterns of gene expression: ACR4 it is not expressed in the 

central tissues of the whole root. However the similarities suggest that auxin could 

in some part be influential in regulating the pattern of ACR4 expression. 

Interestingly the ACR4 promoter contains six putative auxin response element 
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(ARE) binding boxes (ARE sequence reviewed in Ulmasov, et al. (1995)). More 

detailed work would be required to investigate this possible link. 

In summary, the ACR4 gene is expressed in the outside cell layer of embryos, 

meristems and ovules, defining the Li layer. ACR4 appears to be involved in a 

signalling process which helps to maintain Li cell layer organisation, with gene 

expression being required for proper development of ovule integuments and sepal 

margins. 
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Chapter IV. ACR4 protein is localised to the Li plasma 

membrane and may be endocytosed and cleaved in the cell 

lvi. Introduction 

Functional ACR4 protein is localised to the plasma membranes of Li 

cells and to intracellular bodies 

ACR4 functional analysis 

The dynamics of ACR4 localisation 

The 39aa repeat domain is required for protein turnover: a ligand 

binding domain? 

The molecular mechanism of ACR4 action: homo-/hetero-oligomers with 

other ACR4-like proteins? 
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IV.1. Introduction 

The ACR4 gene encodes a receptor-like kinase which plays a role in maintaining Li 

cell layer integrity. The ACR4 protein contains a putative transmembrane domain 

with predicted extracellular and intracellular regions (see Appendix i). The 

predicted extracellular (N-terminal) region of ACR4 consists of two domains. The 

first domain comprises seven novel 39aa repeats, and the second is a tumour-necrosis 

factor receptor (TNFR)-like region which contains three cysteine rich repeats (as 

discussed in Chapter I). In addition there is a signal peptide at the N-terminus of the 

ACR4 ORF. The predicted cytoplasmic region also consists of two recognisable 

domains. Downstream of the transmembrane domain there is firstly a kinase domain 

which has been shown to be active (Gifford, et al., 2003). Secondly there is a C-

terminal region which shows a particularly high degree of conservation with respect 

to the maize CR4 gene. 

The ACR4 receptor-like kinase seems to be involved in a process by which Li 

cells are organised with respect to each other. It was hypothesised at the end of 

Chapter I that ACR4 protein acts by receiving signals from neighbouring cells in 

the outside (Li) cell layer. A signal could then be transmitted by activation of 

downstream signalling components, via phosphorylation by the kinase domain of the 

ACR4 protein. Each Li cell would then be receiving and transmitting signals in a 

pathway involving A CR4. The concerted action of a downstream signalling pathway 

could then be involved in regulating Li cell layer organisation as a whole, ensuring 

that the Li cell layer is sustained as a well organised mono-layer. Such signalling is 

probably required for normal Li layer characteristics, such as the formation of a 

protective cuticle, to be maintained (as discussed in Chapter I). 

For such a signalling process to take place the ACR4 protein must be localised in 

such a way that cell-cell signalling is possible. Localisation at the cell plasma 

membrane between Li cells would support the above hypothesis, as the ACR4 

protein would be situated in a way such that it could receive a signal or ligand from a 

neighbouring Li cell. 
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In order to investigate the ACR4 protein in detail several approaches were taken. 

Firstly the localisation of wild-type protein was investigated in order to determine 

where in the cell it could be receiving a signal. Secondly a functional dissection of 

the protein was carried out. The purpose of this approach was two-fold: (i) to 

determine which domains of ACR4 were required for function of the protein, and (ii) 

to ascertain which domains were necessary for correct localisation. Thirdly the 

dynamics of ACR4 localisation were analysed in order to examine the connection 

between protein localisation and function. Together this data was used to synthesise 

a model for the molecular action of ACR4. 
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IV.2. Functional ACR4 protein is localised to the plasma membranes of 

Li cells and to intracellular bodies 

The sequence of ACR4 contained a predicted trans-membrane domain and thus 

ACR4 protein was expected to be localised to the plasma membrane. In order to test 

this a green fluorescent protein (GFP) tag was added to ACR4 and the localisation of 

the fusion protein determined. To create tagged ACR4 an ACR4::GFP in frame gene 

fusion was placed under the control of the ACR4 promoter (see Chapter 11.3.3 for 

details of construction). When transformed into plants, the translated ACR4::GFP 

was visualised by exciting the fluorescence of GFP using confocal laser scanning 

microscopy. The localisation of ACR4::GFP was examined in all organs of the plant 

in which ACR4 is expressed. As well as examining protein localisation within the 

cell itself, the intensity of fluorescence as a comparable measure of protein 

concentration between individual cell membranes was examined. 

ACR4::GFP was observed to localise to the plasma membrane of Li/outside layer 

cells in embryos (Fig.IV.1A), meristems (Fig.IV.1B,F), lateral and apical roots 

(Fig.IV.1E,G) and ovules (Fig.IV.iC,D). This confirms the ACR4 sequence 

predictions and supports a role for ACR4 in signalling between cells. ACR4 protein 

was seen in exactly the same cells in which the H2B::YFP expression in 

pACR4::H2B::YFP lines was observed. This correlation acts as a good confirmation 

that the expression pattern of H2B::YFP really does mark the cells in which wild-

type ACR4 is being expressed. 

ACR4::GFP was localised to the plasma membranes of cells in the two ovule 

integuments, the endothelium and the Li of the funiculus (Fig.IV.113). ACR4::GFP 

fluorescence was present at all membranes in each of these cells, but it was weaker 

in the most outer membrane of the outer integument (which is directly on the outside 

of the ovule). It was stronger in membranes adjacent to the anticlinal cell wall 

(perpendicular to the surface of the ovule) and in membranes facing towards the 

inside of the ovule. It is possible that the fluorescence only appears to be of a higher 

intensity in these cases (inner and 'anticlinal' membranes of the outer integument) 
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Figure IV.1. AUR-1::GFP pmtcui Ialitijtii 	 C'lih'LaI lmaLcs l plants expressing 
an ACR4::GFP protein fusion (green). (A) Early heart stage embryo and (B) floral meristem 
showing membrane localised and outside-layer specific ACR4::GFP localisation. (C) Surface 
view of an ovule, ACR4 protein is localised to the plasma membrane of epidermal cells. (D) 
Longitudinal section through a mature ovule. Fluorescence is seen in the outer integument 
(oi), the inner integument (ii) and the outer layer of the funiculus (f) Little protein is detected 
in the most outer cell membrane (arrowhead). (E) Surface view of a root showing plasma 
membrane ACR4::GFP localisation in epidermal cells. (F) Localisation of ACR4::GFP 
specifically to the plasma membrane of'outside' cells in the lateral root cap (Ire), and in 
epidermal cells (e) of the lateral root. only when not underneath the lateral root cap. (G) 
ACR4::GFP protein localisation in an emerging lateral root primordium (lrp). Scale bars: 
25j.im. c, cotyledon primordium: SAM, shoot apical meristem: rp. root pole: fni, floral 
meristem: m, micryopyle: fg. female gametopyhte. Photos A-D. F taken by Gwyneth C. 
Ingram and included with kind permission. 



simply due to an additive fluorescence from the membranes of two neighbouring 

cells. 

In the root epidermis and root meristem ACR4::GFP was found to be localised to 

membranes adjacent to both anticlinal and periclinal walls of cells (Fig.IV.1E,F). 

The levels of fluorescence in both anticlinal and periclinal membranes was found to 

be similar in the internal cells of root menstems (the quiescent centre, collumellar 

initials, and the epidermis/lateral root cap initials). However in outside cells 

ACR4::GFP was preferably localised to the inner periclinal membrane and anticlinal 

membranes (Fig.IV.1F), as was the case in ovules (Fig.IV.1D). This preferential 

localisation will be discussed in Section IV.6. 

As well as being localised to the plasma membrane ACR4::GFP was observed to 

be localised to multiple small bodies which were present at varying positions 

throughout the cell. These bodies did not co-localise with chloroplasts, and appeared 

to be of a smaller size. The size and number indicated that they could be vesicles. 

ACR4::GFP was seen in these bodies in all of the same cells that plasma membrane 

localisation was observed in, although they were particularly noticeable in outside 

cells of the root (Fig.IV.1E). This is likely due to the fact that epidermal cells of the 

root are older and more cytoplasmically dense than, for example, integument cells 

which are younger and highly vacuolated. The localisation of ACR4::GFP to these 

bodies will be discussed in detail in Section IV.4. 

In order to confirm that ACR4 was specifically associated with the plasma 

membrane and not just secreted to the cell wall, the localisation of ACR4::GPP was 

examined in plasmolysed cells. Roots of seedlings carrying the ACR4::GFP protein 

fusion were treated with 0.8M mannitol to induce cell plasmolysis: the plasma 

membrane tears away from the cell wall (Fig.IV.2). When treated roots were viewed 

using confocal microscopy the ACR4::GFP fluorescence was observed to move 

away from cell-cell boundaries as the membrane contracted (Fig.IV.2B). The cell 

wall and extracellular space were observed to be clear of ACR4::GFP, confirming 

that ACR4::GFP is not localised to the cell wall. In untreated roots the ACR4::GFP 

fluorescence remained at the plasma membrane (Fig.JV.2A). 
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Figure IV.2. Treatment of ACR4::GFP fusion lines with mannitol. (AM) 
Confocal images of roots expressing ACR4::GFP. (A) Control roots as Fig.IV.lE. 
mounted in water. (B) Roots mounted in 0.8M mannitol to induce plasmolysis of 
cells. The cell wall region is cleared of fluorescence (arrow) which is seen to pull 
away from cell-cell boundaries as the plasma membrane contracts. Scale bars: 
25j.im. Photo B taken by Gwyneth C. Ingram and included with kind permission. 



In order to confirm that the introduced ACR4: :GFP protein was functional and thus 

that the correct localisation of ACR4 activity was being indicated by fluorescence, a 

complementation analysis was carried out. Plants from two families which carried 

and were expressing the pACR4::ACR4::GFP transgene were crossed to the acr4-2 

homozygous mutant. The ability to complement the acr4 defects in homozygous 

acr4-2 mutants was assayed (as carried out for the line carrying non-GFP-tagged 

ACR4 in Chapter 111.3). In the F2 progeny of one family cross, full 

complementation was observed (as Fig.III.8). For the second family partial 

complementation was seen, i.e. the level of seed and ovule abortion was decreased 

and seeds exhibited a more normal morphology with most seeds being elliptical. 

Seeds were generally smooth although some still appeared to have surface 

irregularities. Overall the presence of ACR4::GFP was able to complement the acr4 

phenotype which proves that the ACR4::GFP protein is functional. The pattern of 

ACR4::GFP localisation was compared in ACR4-2 wild-type and acr4-2 mutant 

plants, and was found to be identical. 

In summary, functional ACR4 protein is localised to the plasma membrane of 

Li/outside cells in such a fashion that cell to cell signalling in the Li/outside layer 

could be possible. 
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IV.3. ACR4 functional analysis 

In order to study the ACR4 protein in more depth a functional analysis was 

undertaken. The purpose of this was twofold. Firstly, the requirement of each 

ACR4 domain for function was determined using complementation analysis. If 

ACR4 missing a certain domain was not able to complement acr4 it was asked 

whether this was due to a lack of correct protein localisation. Therefore secondly, an 

assay to ascertain which domains were necessary for proper plasma membrane 

localisation was carried out. In order to address both of these points a range of 

deletion derivatives of the ACR4 protein were constructed and tested (see Chapter 

11.3.3 for details of construction). 

ACR4 gene sequences were first amplified and ligated in order that one or more of 

the ACR4 domains would be removed. Sequences where translated proteins would 

be missing the following domain(s) were constructed: five of the seven 39aa repeats 

('A39aa'), the TNFR-like repeat region ('ATNFR'), the C-terminal region ('AC-ter') 

and the kinase domain and C-terminal regions ('AKIC-ter'). In addition a variant of 

ACR4 where the kinase domain had been inactivated was used: 'K-null'. The amino 

acid change in this sequence has been shown to result in inactivation of the ACR4 

protein kinase in vitro (Gifford, et al., 2003); see Appendix 1. All AACR4 sequences 

were placed under the control of the ACR4 promoter and constructs were 

transformed into plants to create plant lines as named above. These lines were used 

for functional analysis. 

In order to determine the localisation of each protein derivative, a GFP sequence 

was fused in-frame to the C-terminus of all deletion ACR4 sequences and the ACR4 

K-null. An ACR4 transgene missing both the transmembrane and intercellular 

domains (kinase domain and C-terminal regions) ('L\TMIK/C-ter') was also fused to 

GFP. This was made in order to confirm that the extracellular part of the protein is 

targeted to the extracellular space, in other words to confirm the predicted orientation 

of the protein. In addition an N-terminal GFP-tagged variant of the wild-type ACR4 

protein, as well as a variant with GFP tags at both ends of ACR4 were generated. In 

order to ensure that the N-terminal GFP-tagged proteins were correctly targeted to 
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the plasma membrane a second (the first being the endogenous signal peptide) ACR4 

signal peptide was added to the N-terminus of GFP(N-ter): :ACR4 sequences. See 

Fig.IV.3 for schematic of proteins in each line. 

All AACR4::GFP, both GFP::A CR4, and the K-null ACR4::GFP transgenes were 

transformed into wild-type ColO plants. All MCR4, the K-null and some 

AACR4::GFP (ATM/KIC-ter ACR4::GFP, K-null ACR4::GFP) transgenes were 

transformed into both the acr4-1 and acr4-2 mutant lines; no difference in results 

was seen between the acr4-1 and acr4-2 lines. Plant lines carrying the remaining 

AACR4 and the GFP::ACR4 transgenes were crossed to acr4-2 mutants. The 

transformants or F2 acr4-2 homozygous progeny, resulting from the transformations 

and crosses respectively, were subject to complementation analysis (as Chapter 

111.3). This allowed determination of which AACR4 proteins were functional, and 

thus which ACR4 domains were required for function and which were not. 

Complementation analysis was also used to compare the function of N-terminal and 

C-terminal tagged ACR4 proteins. In addition, in all acr4-2 and wild-type lines 

transformed with all of the above transgenes, any enhancement or alteration of the 

phenotype which might be associated with dominant negative or positive effects was 

investigated. 

IV.3.1. An ACR4 deletion protein lacking the transmembrane, kinase and C-

terminal regions is exported to the cell wall 

As mentioned above, the localisation of ACR4 variants was determined. Both N-

terminal GFP-tagged and all AACR4 proteins analysed were localised (correctly or 

not as will be discussed) to cells of the Li/outside cell layer as for C-terminal tagged 

GFP. This was an important confirmation that the introduced transgenes are being 

correctly transcribed and translated. In addition, identical localisation in both ColO 

wild-type and acr4 mutant plants was observed. 

Full length ACR4 proteins with N-terminal, and both N- and C-terminal GFP tags 

were correctly localised to the plasma membrane as the C-terminal tagged ACR4 
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Figure IV.3. ACR4 functional and localisation analysis Schematic showing deletion derivatives 
of ACR4 and the full length wild-type tagged proteins (WT) and a summary of results. (A) The 
functionality of each derivative was tested by the ability of the protein to complement the acr4 
phenotype. Whether or not ACR4 variants were localised to the plasma membrane (B) and BFA-
compartments (C) is indicated. (-) indicates result was not obtained. (A) Removal of the 39aa 
repeat domain of ACR4 (A39aa) or addition of an N-terminal GFP tag (star-marked proteins) 
rendered ACR4 non-functional. A kinase-null derivative was functional. A protein lacking all 
but the extracellular protein domains was non-functional (ATM/KJC-ter). (B) The transmembrane 
domain was required for localisation of ACR4 to the plasma membrane: (*) as predicted 
ATM/KJC-ter was localised to the cell wall. (V) a derivative lacking the kinase domain and C-
terminal regions (AKJC-ter) was unstable: data from this construct was not usable. All other 
variants were localised to the plasma membrane as wild-type ACR4::GFP. (C) Removal of the 
39aa repeat region (A39aa) or addition of an N-terminal GFP tag (stars) resulted in no 
ACR4::GFP being detected in BFA compartments. These three proteins were visible only at the 
plasma membrane. ATM/KIC-ter ACR4::GFP was also not detected in BFA compartments, it 
remained at the cell wall. 



(Section IV.2). Deleted ACR4 proteins ATNFR andAC-ter were both correctly 

localised (Fig.IV.4C and D respectively). It does not appear therefore that either the 

TNFR-like repeat domain or the C-terminal region are required for normal plasma 

membrane localisation of ACR4. The ATNFR ACR4::GFP fluorescence was overall 

slightly brighter than that of AC-ter ACR4::GFP. A39aa ACR4::GFP and K-null 

ACR4::GFP were also correctly localised to the plasma membrane which suggests 

that neither the 39aa repeat domain nor kinase activity are necessary for correct 

targeting and localisation (Fig.IV.4A and E respectively). The relative fluorescence 

of plants between lines carrying these two proteins in comparison to the wild-type 

ACR4::GFP did appear to vary however. There was a stronger level of ACR4::GFP 

fluorescence in the line carrying A39aa ACR4::GFP which is consistent between 

many families. Fluorescence of plants carrying K-null ACR4::GFP is consistently 

lower. These differences could be due to positional effects related to the insertion 

site of the introduced transgene. However the range of variation is smaller within 

families transformed with one construct, than between lines transformed with 

different constructs, which suggests that this is not the case. It is more likely that 

there are differences in ACR4 protein behaviour. AK/C-ter ACR4::GFP was 

undetectable in transformed plants. It is likely that this protein derivative is unstable 

and thus no meaningful results can be gained from this construct. It is possible that 

the kinase domain is involved in maintaining correct localisation at the membrane. 

Interaction between the kinase domain of a protein with sub-cellular scaffolding 

proteins has been shown for members of the epidermal growth factor receptor 

(EGFRJERBIN) (ErbB) family in animals, as discussed in Chapter I (Carraway and 

Sweeney, 2001). However it is not possible to conclude anything from the results 

here. 

ATMJK/C-ter ACR4::GFP was localised to the extracellular matrix/cell wall region 

(Fig.IV.4B). ACR4::GFP fluorescence in plants carrying this protein was quite 

distinct from membrane localised ACR4: :GFP protein fluorescence. Large areas of 

fluorescence were seen at cell-cell boundaries where the width of cell wall is thicker. 

This suggested that ATMIK/C-ter ACR4::GFP was mobile in the apoplast. When 

roots carrying ATMIKIC-ter ACR4::GFP were treated with mannitol (as carried out 
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Figure IV.4. AACR4: :(iF1 I LI S Ioll prowin l ocali sation. 	( A-E' Con local images of ovule 

epidermal cells of lines carrying deletion derivatives of ACR4. (A) Bright fluorescence localised 
at the membrane of A39aa ACR4::GFP-expressing ovules. (B) Extracellular localisation of 
ATMIKJC-ter ACR4::GFP. Fluorescence is brighter at cell-cell boundaries (arrows). (C-E) 
Membrane localisation in ovules of plants expressing (C) ATNFR ACR4::GFP, (D) AC-ter 
ACR4::GFP and (E) kinase null ACR4::GFP. Scale bars: 251tm. Photos B-E taken by Fiona 
Robertson and included with kind permission. 



in Section IV.2) fluorescence was seen to remain at the cell wall rather than enter 

cells (not shown). The fact that ATMJKIC-ter ACR4::GFP was localised to the 

extracellular space confirms the predicted orientation of ACR4 in the plasma 

membrane. 

IV.3.2. The 39aa repeat region of ACR4 is vital for function whilst kinase 

activity is not 

The ability of ACR4 variants to complement the defects seen in acr4 mutants was 

assayed in at least 20 T1 transformants or in four independent crosses (depending on 

the complementation test method). Identical results were obtained using either 

ACR4 or GFP-tagged ACR4 deletion derivatives when tested. The results are 

presented in Fig.IV.3. Lines carrying either ATNFR or AC-ter ACR4 protein were 

able to rescue the acr4 phenotype. Introduction of these proteins into the acr4 

mutant restored a wild-type seed shape and normal seed development. 

Complemented siliques were completely full of seeds. This suggests that neither the 

TNFR-like repeat region nor the C-terminal region are required for normal function. 

Plants carrying ATMIKIC-ter ACR4: :GFP were not able to complement acr4 and 

thus this protein is non-functional. This is to be expected as ATMJKIC-ter 

ACR4::GFP is incorrectly localised. The AKIC-ter construct was not tested although 

is not likely to be able to complement acr4 defects due to protein instability (as 

mentioned in Section IV.3.1). In acr4-2 plants that carried ATMJKIC-ter 

ACR4::GFP there was no exacerbation of the acr4 defects. This might have been 

expected if the construct had a dominant negative effect (as discussed in Chapter I, 

(Shpak, et al., 2003)). The lack of such an effect will be discussed in Section IV.6. 

Interestingly, kinase activity itself was not required for function: the K-null ACR4 

construct was able to complement acr4 mutant defects. 

A deletion of ACR4 where the entire extracellular region had been removed 

(439aa/I'NFR ACR4) was transformed into ColO, as carried out for the other deletion 

derivatives. It had been hypothesised that this transgene would confer a dominant 
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positive phenotype by comparison to studies in mammal cells (as discussed in 

Chapter I, (Basler, et al., 1991)). However no altered phenotypes were seen and all 

organs of the transformed plants looked wild-type. The reasons why a dominant 

positive effect might not have been seen will be discussed in Section IV.6. 

When the 39aa repeat region is removed, the ACR4 protein is rendered non-

functional. Introduction of the zl39aa ACR4::GFP transgene was not able to rescue 

the acr4 defects. As mentioned in Chapter III, the 39aa repeat region is of particular 

importance as a potential ligand binding domain. The fact that the domain is vital 

for function supports a potential important role in receptor function. The 39aa repeat 

region is located at the N-terminal end of ACR4 and has been shown (see Section 

IV.3. 1 above) to be localised to the extracellular matrix. When the seven repeats are 

aligned it is clear that the domain has a highly conserved and almost invariant 

consensus sequence of: cysteine, around ten variable amino acids, cysteine, 

tryptophan, glycine [C (X-10) CWG] (Fig.IV.5). 

Modelling studies were carried out in collaboration with Dinesh Soares and 

Dietlind Gerloff (The University of Edinburgh). The 39aa repeat domain gene 

sequence shows similarity to the sequence of beta-lactamase inhibitor II. The 

conformation of this protein has been solved by crystallography and been shown to 

fold up as a seven-bladed 3-propeller (Lim, et al., 2001). A n-propeller structure 

could be stabilised in ACR4 by the cysteine residues in the seven repeats. These 

cysteine residues, although absent in the beta-lactamase inhibitor are positioned in 

such a way that disulfide bridges could form between the seven blades. The 

modelled structure of the 39aa repeats f3-propeller is shown in Fig.IV.6. The ACR4 

3-propeller has a highly electronegative pore as well as pockets of positively and 

negatively charged amino acids around the sides of the doughnut-shaped ring. If the 

39aa repeat region is in fact the ACR4 ligand binding domain it is possible that a 

ligand could bind at one or more of these charged regions. 

The phenotype of acr4 mutants could also not be rescued when lines carrying 

either GFP::ACR4::GFP or GFP::ACR4 were crossed to acr4 homozygotes. This 

suggests that blocking the 39aa repeat region (here with a GFP tag), renders the 
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ISYGEGGSVF-CGLKS--DGSHLVVCYGSNSAI--LYGTPG 
FIGLTGGDGFMCGLLM- -LS -HQPYCWGNSAFI - -QMGPQ 
LCGLRKPIVGRRKNSNIIS- SSLVDCWGYNMTR- -NFVFDK 
LHSLSAGSEFNCALSS - - -KDKSVFCWG-DENSS- - - QVIS 
FQKIAAGGYHVCGIL]J- -GLESRVLCWGKSLEF- - - EEEVT  
LLAVVGGKFYACGIKR- -YD-HSAVCWGFFVNR- - - STPAP   
FYDLAAGNYFTCGVLT- -GTSMSPVCWGLGFPASIPLAVSP 

Figure IV.5. Pileup of the seven ACR4 39aa repeats, aligned by eye. Amino acids that 
are highly conserved between repeats are coloured red, whilst conservation to the 

repeats in maize CR4 is indicated with underlining. The repeats have an almost 
invariant consensus sequence motif of C (X—IO) CWG. 
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Figure IV.6. The predicted conlomiation ul the A('R4 	)aa repeat domain. (A) 

Conformation of amino acids with the folded structure indicated as a green string. 

Disulfide bridges between conserved cysteines are highlighted (numbering coincides with 

the numbering of ACR4 amino acids shown in Appendix I. In the act-4-7 allele the 

cysteine at position 180 marked on the schematic is changed to a tyrosine. (B) Surface 

view of the folded protein with electrostatic charges indicated. White = neutral, red = 

negatively charged, blue = positively charged. Images obtained through collaborative 

work carried out with Dinesh Soares and Dietlind Gerloff (The University of Edinburgh). 



ACR4 protein non-functional. The lack of function was not due to protein instability 

as both of these N-terminal GFP-tagged proteins were properly translated: 

fluorescence was visible at the plasma membrane (see Section IV.3.1). An 

alternative explanation for this result will be discussed in Section IV.6. 

Interestingly the acr4-7 allele, where one of the conserved cysteines in the fourth 

ACR4 39aa repeat has been substituted (by TILLING) for a tyrosine residue (see 

Fig.IV.6A for TILLING allele position), confers a loss of function phenotype as 

described in Chapter 111.2.4. It seems likely that this change at a conserved cysteine 

in some way disrupts the 13-propeller conformation, and the result highlights the 

functional importance of the 39aa repeat domain. In order to confirm that the loss of 

ACR4 function is not merely due to the fact that stable ACR4 protein is not being 

translated, experiments are currently being carried out by Ross Walker in the lab. 

The modified acr4-7 ORF will be introduced as a transgene tagged with GFP into 

ColO wild-type and homozygous acr4-2 plants (as for the ACR4 localisation 

experiments in Section IV.3.1). Whether stable ACR4(2-7)::GFP protein is able to 

be translated will be evident as ACR4(2-7): :GFP protein fluorescence being visible 

and being localised to Li cell plasma membranes. 
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IV.4. The dynamics of ACR4 localisation 

IV.4.1. BFA-sensitive vesicle trafficking is required for some aspect of correct 

ACR4 localisation or protein turnover 

As mentioned in Section IV.2, small intercellular bodies were visible in the 

cytoplasm of cells of plants expressing ACR4::GFP. Similar bodies were also noted 

in lines carrying AACR4::GFP, K-null ACR4::GFP and N-ter GFP::ACR4 proteins 

(not shown). These small bodies were hypothesised to be vesicles which were 

trafficking ACR4::GFP within the cell. This trafficking could potentially be 

transporting ACR4 protein to the membrane, and/or could perhaps be part of some 

sort of endocytosis of ACR4 after ligand binding. As mentioned in Chapter I, 

endocytosis of active animal receptor kinases is thought to be an important method 

of damping down the signalling activity, and maintaining sensitivity to incoming 

signals (Waterman and Yarden, 2001). In order to address these issues, the potential 

vesicle trafficking of ACR4 was examined. 

In order to investigate vesicle trafficking, the effect of Brefeldin A (BFA) on 

ACR4::GFP protein localisation was examined. BFA is a commonly used inhibitor 

of vesicle movement in both animals and plants which acts by targeting and 

inhibiting the action of proteins involved in vesicle formation. BFA inhibits of a 

subset of GDP/GTP guanine-nucleotide exchange factors, ARF-GEFs, which 

catalyse activation of ADP ribosylation factors. ARF-GEFs are involved in 

formation and coating of vesicles which are vital in the correct functioning and 

transport between the endoplasmic reticulum (ER) and golgi stacks (Nebenfuhr, et 

al., 2002). Despite being a widely used drug for study of protein trafficking in cells, 

it is not known precisely what resultant effect this BFA-inhibition has in either 

animal or plant cells. However by using organelle specific markers some of the 

consequences on vesicle transport within the endomembrane system, and between 

the endomembrane system and the plasma membrane can be dissected. After BFA 

treatment, vesicle movement comes to a stop and vesicle aggregates form. 

Vesiculation at the golgi is inhibited, with the result that golgi cisternae fuse directly 
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with the ER stacks or seem to disappear. In addition, large intercellular membranous 

aggregates appear inside the cell. These aggregates are thought to consist of two 

structures. Firstly BFA-induced ER-golgi hybrid compartments which are rapidly 

formed (apparent within 30 minutes) as a result of breakdown of the physical 

separation between the two organelles. Secondly 'BFA compartments/bodies' which 

comprise a conglomerate of tubules, vesicles, the trans-most golgi cisternae which 

split from the main stack, as well as endosomes (Nebenfuhr, et al., 2002; Samaj, et 

al., 2004). 

Roots of plants carrying the ACR4::GFP protein fusion were bathed in a lOOj.tM 

BFA solution for two hours. After treatment with BFA the number of small sized 

ACR4::GFP-staining bodies decreased. At the same time there was an increase in 

signal in what appeared to be larger organelles that rapidly coalesced into one or two 

large brightly fluorescing pennuclear aggregates per cell (Fig.IV.7). The size and 

number of aggregates in each cell was consistent with the structures being 'BFA 

bodies'. As ACR4::GFP is localised to BFA bodies it seems therefore that 

ACR4::GFP is being trafficked via a BFA-sensitive pathway. ACR4::GFP was 

however still strongly localised to the plasma membrane of the cell. Membrane-

associated fluorescence remained bright or became brighter. This is evident in a 

comparison of the membranes in roots of Fig.IV.7A and B. The roots used for both 

control and BFA treatment came from seedlings of the same homozygous 

pACR4::ACR4::GFP line in which the level of fluorescence between plants was 

uniform. This suggests that ACR4: :GFP transport to the membrane is not the direct 

target of BFA inhibition. The target could therefore be some other aspect of ACR4 

protein localisation. 

One possible explanation for the BFA-sensitivity of ACR4 is that the protein is 

trafficked via a GNOM-mediated pathway. GNOM encodes a BFA-sensitive 

endosome-localised ARF-GEF; there are many other ARF-GEFs including several 

closely related to GNOM (Steinmann, et al., 1999), but not all are BFA sensitive 

(Donaldson and Jackson, 2000). GNOM is ubiquitously expressed and mediates 

auxin transport through correct localisation of the auxin efflux carrier PIN1 
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Figure IV.7. The effect ol BreiclUm A treatment oil ACR4::GFP protein localiatiii. (A-

B) Confocal images of root cells expressing an ACR4::GFP protein fusion (green). (A) 

Surface view of a root (untreated; incubation for 2hr in DMSO solution). Normal plasma 

membrane localisation of ACR4 is seen. (B) Surface view of a root treated with Brefeldin 

A (BFA) in DMSO solution for two hours. The relative plasma membrane fluorescence 

decreases with respect to that in the cell, with ACR4::GFP instead being localised internally 

to large endomembrane compartments or perinuclear bodies termed 'BFA compartments'. 

Scale bars: 25i.tm. Photos taken by Gwyneth C. Ingram and included with kind permission. 



(Geldner, et al., 2003). GNOM is essential for correct PIN  localisation, mediating 

shuttling between the basal domain of the plasma membrane and intracellular 

compartments (Steinmann, et al., 1999; Geldner, et al., 2001). In gnoin embryos the 

characteristic polar PIN] protein localisation of wild-type cells is disorganised. 

When treated with BFA, PIN1::GFP is localised to BFA bodies. This is consistent 

with the idea that GNOM regulates vesicle trafficking required for the polar 

localisation of PIN1. Loss of GNOM activity results in loss of the auxin gradient 

across organs which is vital for proper organisation and development. In order to 

determine whether ACR4 trafficking was mediated by GNOM, the localisation of 

ACR4::GFP protein in gnom embryos was analysed. 

Plants carrying the ACR4::GFP protein fusion were crossed to a heterozygous 

gnon null mutant line. In the F2 generation pACR4::ACR4::GFP-expressing plants 

which were segregating gnom homozygous seed were selected. The localisation of 

ACR4::GFP in gnom embryos was examined using confoca! microscopy. If GNOM 

was to be required for proper ACR4 trafficking, abnormal ACR4::GFP localisation 

would be expected. However normal ACR4::GFP plasma membrane localisation 

was seen as in wild-type embryos; this can not be shown due to a technical difficulty 

in image capture. Thus ACR4 is trafficked via a BFA-sensitive ARF-GEF vesicular 

transport system, but not one that is GNOM-mediated. 

So, normal plasma membrane localisation of ACR4::GFP is maintained after BFA 

treatment, but some other aspect of ACR4::GFP localisation is affected. It seems 

therefore that BFA-sensitive vesicle trafficking is not required for membrane loading 

per Se. Alternatively an effect on protein turnover might be occurring. In order to 

further investigate BFA-sensitive vesicle trafficking of ACR4, lines containing all 

AACR4::GFP and GFP::ACR4 constructs were subject to BFA treatment as above. 

GFP-tagged ACR4 was seen to be localised to BFA-bodies for all but four constructs 

in a similar fashion to that described earlier. GFP fluorescence was not seen in BFA 

bodies in lines carrying ATMJKIC-ter ACR4::GFP, A39aa ACR4::GFP, nor in the 

lines which carried N-terminal GFP::ACR4 fusion constructs. Fluorescence from 
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ACR4::GFP constructs in these lines was seen to remain at the cell plasma 

membrane (or at the cell wall for ATMJK/C-ter ACR4::GFP). 

The fact that the cell wall localised ATMJKIC-ter ACR4::GFP is not present in 

BFA bodies but is still present in the extracellular compartment again suggests that 

normal movement of ACR4::GFP to (and across) the membrane is taking place, but 

that some sort of processing of ACR4::GFP is inhibited by BFA. This also holds 

true for the membrane-localised A39aa ACR4::GFP and N-ter GFP::ACR4 proteins, 

which are all still present at the membrane after BFA treatment. The level of 

membrane fluorescence remained similar throughout BFA treatment for these 

proteins. Processing could involve endocytosis into the cell from the plasma 

membrane. As i\TMJKIC-ter ACR4: :GFP is not membrane localised it would have 

been unlikely for it to have been present in endosomes, and thus this is why it is not 

seen in BFA bodies. The potential reasons for, and implications resulting from the 

fact that neither A39aa ACR4::GFP nor the N-terminal GFP::ACR4 proteins were 

present in BFA bodies will be discussed in Section IV.5. 

Recent work in both the lab, and elsewhere (reviewed in Samaj, et al., 2004), is 

starting to decipher the mechanism of BFA inhibition (which was poorly 

understood). It seems that BFA inhibits trafficking of endocytic vesicles from the 

plasma membrane into the cell. It does not however inhibit the trafficking of 

outgoing vesicles, which are likely to contain newly synthesised protein, from the 

golgi to the plasma membrane (Uwyneth C. Ingram, pers. comm.). Recent work in 

the lab suggests that ACR4 is present in endosomes within the cell. This work is part 

of ongoing research to elucidate the potential processing of ACR4 in the cell and will 

be discussed in Section IV.6. 

IV.4.2. ACR4 protein is subject to rapid turnover and may be cleaved in the 

cell 

In order to investigate the ACR4 protein in more detail and to address the possibility 

that ACR4 could be subject to processing within the cell, protein from lines carrying 
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all ACR4::GFP variants was extracted and subject to western blotting. Protein was 

either extracted from inflorescence material as a total cell fraction, or as two 

fractions: one membrane protein enriched and one cytoplasmic protein enriched 

fraction (depending on the method used). The presence of some membrane-bound 

proteins, for example those attached to or trapped in vesicles, cannot be discounted 

in the cytoplasmic enriched fraction. In order to detect ACR4: :GFP proteins on the 

western blot an anti-GFP polyclonal antibody was used. Table IV.1 lists the 

predicted molecular weight of each ACR4::GFP derivative or variant used in this 

study. 

Protein Predicted molecular weight Protein Predicted molecular weight 

ACR4::GFP 124.2KDa TM/K/C-ter:: ACR4::GFP 72.6 KDa 

GFP::ACR4 129.2 KDa K/C-ter:: ACR4::GFP 74.9 KDa 

GFP::ACR4::GFP 155.2 KDa K-null:: ACR4::GFP 124.2 KDa 

i39aa::ACR4::GFP 101.0 KDa AC-ter:: ACR4::GFP 114.2 KDa 

ATNFR:: ACR4::GFP 117.9 KDa 

Table IV.1. Table to show the predicted molecular weights of all ACR4::GFP protein 

variants used in functional and localisation analysis. 

An initial western blot was carried out on protein extracted from the plants 

carrying a full length ACR4::GFP C-terminal protein fusion. To act as controls for 

this western blot, protein was also extracted from plants expressing GFP under the 

control of the ACR4 promoter, as well as wild-type ColO plants. Neither of these two 

lines contained GFP-tagged ACR4 protein. A method to extract two fractions of 

protein was used and the extracted protein western blotted. ACR4::GFP was 

expected to be present as a band at about 125KDa (see Table IV. 1). Unexpectedly 

rather than a single band of this size being seen, two smaller bands with sizes of 

roughly 77KDa and 55KDa were present on the western blot (Fig.IV.8). These two 

bands were seen specifically in the line expressing ACR4::GFP, being absent in the 

two control protein extracts. The bands are present in both membrane- and 

cytoplasmic-enriched fractions. This result was observed in two independent 

experiments using independent ACR4::GFP lines, and thus the smaller sized bands 
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Figure IV.8. Western Not of extracted ACR4::GFP pmtcill using an anti-GFP 
polyclonal antibody. Protein was extracted from three types of plants: one carrying 
the ACR4::GFP protein fusion (pACR4::ACR4::GFP). one expressing GFP under 
the control of the ACR4 promoter (pACR4::GFP) and also wild-type COO plants. 
Two fractions were obtained using the protein extraction method chosen, one 
cytoplasmic-enriched and one membrane-enriched. The two fractions contain 
ACR4 bands of the same size. Rather than a hand of I 25KDa as expected for full 
length ACR4::GFP, two smaller hands were seen (marked by white dots). One 
hand ran at -77KDa and a second ran at -55KDa. These hands are specific to the 
ACR4::GFP line. In addition two or three hands of cleaved off GFP are also 
present at 27-29KDa in both GFP expressing lines. 



do not appear to be the result of random ACR4 protein degradation. It is possible 

therefore that ACR4::GFP is being cleaved at the membrane. The larger fragment 

corresponds to the size expected were the kinase and C-terminal domain regions to 

be cleaved internal to the transmembrane domain. The smaller sized band could 

correspond to cleavage within the kinase domain. Both of these bands on the 

western blot do not appear to be sharply defined. This can suggests that the protein 

fragments are phosphorylated or otherwise modified. This is consistent with the 

hypothesis that they could be cleavage products containing the ACR4 kinase domain, 

however further experiments would be required to ascertain exactly what protein 

fragments these bands correspond to. It is also possible that rather than resulting 

from protein cleavage, the lack of full length ACR4::GFP indicates that the protein is 

being rapidly turned over in the cell. Rapid turnover is consistent with the results 

obtained during the BFA experiments discussed above (Section IV.4.1). Several 

small bands are visible at the size of 27-29KDa on the western blot of ACR4::GFP. 

This corresponds to GFP which may be cleaved off during processing. Similar sized 

bands are also visible in large quantities (as would be expected) in the pACR4::GFP 

line. 

A second western blot was carried out on protein extracted from plants containing 

all N-terminal or C-terminal tagged GFP and derivative ACR4::GFP proteins in the 

ColO background. This time a method to extract whole cell protein was used and a 

anti-GFP polyclonal antibody used to detect ACR4::GFP protein fragments 

(Fig.IV.9). In the lab a third set of protein extractions from the same material was 

carried out using immuno-precipitation affinity purification. This was carried out 

with anti-GFP antibody using Protein A-anti GFP-coupled Dynabeads (as 

manufacturer's instructions: Dynal (UK) Lid, Merseyside, UK) by Gwyneth C. 

Ingram. Immuno-precipitation (EP) was used to enrich for ACR4::GFP protein. The 

same anti-GFP antibody was used to detect ACR4::GFP protein fragments on the 

western blot. Some of the results from this experiment are included here due to 

technical difficulties arising in earlier experiments (Fig.IV.9). 

The method of protein extraction seems to affect the results seen on the western 

blot. When protein was extracted using the single fraction or IP single fraction 
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Figure IV.9. Western blot of extracted protein from plants carrying ACR4::GFP, GFP::ACR4 
and AACR4::GFP proteins using an anti-GFP antibody. (A-G) Western blot of protein extracted 
as a single fraction as in Chapter 11.6.1. (H-K) Western blot carried out by Gwyneth C. Ingram 
using immuno-precipitation (IP) to enrich for ACR4::GFP protein; the Protein A-anti GFP band 
is labelled with an asterisk (*). When using either the single fraction or the IP method (rather 
than the duel-fraction method used for the western blot in Fig.IV.8), the two ACR4 cleavage 
products could not he detected. (A) In A39aa::GFP-expressing plants a single (ACR4-specific) 
band of -I05KDa is seen. (B) In ATNFR::GFP plants a band at -115 kDa was seen. (C) In AC-
ter::GFP plants a predicted full length band (-I I4KDa) could not he detected. (D) In ATM/K/C-
ter::GFP plants a single band at .-70KDa is visible. (E.K) In K-null::GFP plants a predicted full 
length band (.-I25KDa) could not he detected. (F) No ACR4-specific protein bands could he 
detected in plants carrying AKIC-ter::GFP. (G) In protein from plants carrying 
GFP::ACR4::GFP a single (ACR4-specific) band of .-I55KDa was seen. (H) In protein extracted 
from ColO plants no ACR4-specific bands could be detected. (I) In ACR4::GFP plants a 
predicted full length hand (-125KDa) could not he detected. (J) In GFP::ACR4 plants a single 
band at -130KDa is visible. Two or three bands of cleaved off GFP are also present at 27-
29KDa in all lines (not shown for lanes H-K). 



method, the smaller sized (potential cleavage product) bands of -77KDa and 

—55KDa could not be detected in the extracts from ACR4::GFP-expressing plants 

(Fig.IV.91). It may be that using the single fraction extraction methods that potential 

cleavage products are not properly extracted. As the smaller bands were not present 

in protein extracted from plants expressing ACR4::GFP, their absence in other 

extractions was not informative. As in the first western blot full length ACR4: :GFP 

was impossible to detect (Fig.IV.91). It seems likely that some full length 

ACR4::GFP would be present in the cell/at the plasma membrane, even if the protein 

was cleaved there. However as mentioned for the first western blot, if ACR4::GFP 

is rapidly turned over in the cell it may be hard to detect. 

Unlike for ACR4::GFP, predicted full length protein fragments were observed for 

the lines carrying A39aa ACR4::GFP (Fig.IV.9A), ATMJK/C-ter ACR4::GFP 

(Fig.IV.913), GFP::ACR4::GFP (Fig.IV.9G), GFP::ACR4 (Fig.IV.9J) and ATNFR 

ACR4::GFP (Fig.IV.9B). Protein bands were detected at roughly 105, 70, 155, 135 

and 118 KDa respectively. As in the case of ACR4::GFP, full length protein was 

impossible to detect for K-null ACR4::GFP (Fig.IV.9K) or AC-ter ACR4::GFP 

(Fig.IV.9C), predicted to be 125 and 114KDa respectively. No ACR4::GFP specific 

bands were seen in protein extracted from ColO plants (control) (Fig.IV.9H), or in 

AKIC-ter ACR4::GFP (Fig.IV.9F); as mentioned earlier in Section IV.3.1, the AK/C-

ter ACR4::GFP results are not informative. Although cleavage products could not be 

detected for ACR4::GFP or any of the other lines, the fact that predicted full length 

protein could be detected for A39aa ACR4::GFP, ATM/K/C-ter ACR4::GFP, 

GFP::ACR4, GFP::ACR4::GFP and ATNFR ACR4::GFP, but not for ACR4::GFP, 

K-null ACR4::GFP or AC-ter ACR4::GFP was interesting. This may suggest that 

the ACR4 protein in plants carrying the former five proteins has been stabilised and 

is not turned over or cleaved; this must however be confirmed as part of future work. 

For extractions where the ACR4: :GFP-specific bands were not detectable it might 

suggest that rapid protein turnover, or possibly protein cleavage is taking place. The 

differences seen are not merely due to differences in the intensity of ACR4::GFP 

expression: plants carrying the N-ter GFP-tagged ACR4 proteins showed weak 

expression in comparison to AC-ter ACR4::GFP and K-null ACR4::GFP. The 
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increased stability tends to coincide with loss of protein function. Neither A39aa 

ACR4::GFP, ATMJKIC-ter ACR4::GFP, GFP::ACR4 nor GFP::ACR4::GFP are 

functional proteins. ACR4: :GFP, K-null ACR4: :GFP and AC-ter ACR4: :GFP on the 

other hand are all functional proteins. The only protein for which this does not hold 

true is ATNFR::GFP. This could suggest that the TNFR domain plays a role that has 

not been uncovered in the complementation analysis. This matter will be discussed 

in Section IV.6. The results from plants carrying N-ter GFP::ACR4 proteins are 

intriguing. These lines were initially made in order to follow the N-terminal end of 

ACR4 after cleavage, however it was found that addition of an N-ter GFP actually 

resulted in loss of ACR4 function, and potentially also protein stabilisation. 

133 



IV.5. The 39aa repeat domain is required for protein turnover: a ligand 

binding domain? 

The importance of the seven x 39aa repeat domain has been indicated and 

highlighted by results gained from acr4 mutant analysis and ACR4 protein 

functional analysis. This has also been seen at the protein level with western blotting 

and Brefeldin A drug treatment of ACR4::GFP fusion lines. A summary of the 

results from functional, localisation and BFA-treatment analysis is presented in 

Fig.IV. 3. 

Complementation analysis using A39aa ACR4 indicates that the 39aa repeat region 

of ACR4 is vital for function. This is not due to incorrect protein localisation as 

A39aa ACR4::GFP is localised to the plasma membrane as for full length 

ACR4: :GFP. Therefore the 39aa repeat domain does not appear to be required for 

localisation of ACR4. Indeed the level of fluorescence for A39aa ACR4::GFP 

suggests that the protein is present in high quantities at the membrane. A39aa 

ACR4::GFP is also visible in what appear to be vesicles in the cell. When roots 

carrying A39aa::GFP line are treated with Brefeldin A, A39aa ACR4::GFP is not 

present in BFA bodies. The mechanism of BFA action is now starting to be 

understood in plants (reviewed in Samaj, et al., 2004). Recent work in the lab 

suggests that BFA targets and inhibits the movement of endocytotic vesicles but not 

outgoing vesicles to the membrane (Owyneth C. Ingram, pers. comm.). It therefore 

seems likely that if A39aa ACR4::GFP is not present in BFA compartments, then it 

is not present in endocytotic vesicles within the cell and is therefore not endocytosed. 

Western blot results shown suggest that turnover and/or cleavage of ACR4 also 

might be dependent on the presence of the 39aa repeat region. 

The same results for A39aa ACR4::GFP are obtained when a GFP tag is added to 

the N-terminal end of ACR4. Even though the protein is membrane-localised it is 

non-functional. GFP::ACR4 is not found in BFA bodies and the protein does not 

seem to be turned over. An alternative explanation is that the N-ter GFP::ACR4 

proteins are not orientated properly at the plasma membrane. Both N-ter 

GFP::ACR4 constructs include two signal peptides. It is possible that after the first 
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signal peptide has targeted the protein to the extracellular matrix the second signal 

peptide itself acts as the transmembrane domain. This would mean that the 

GFP::ACR4 protein would be membrane localised, but only the GFP would be 

outside the cell - the 39aa repeat domain would be inside the cell. The protein 

would therefore likely be non-functional. However the amino acid residues adjacent 

to the second signal peptide are not sufficiently hydrophilic to maintain anchoring of 

the protein at that point. As mentioned in Chapter I, the juxtamembrane domain of 

plasma membrane localised proteins is distinct in being rich in highly hydrophilic 

lysine (K) and arginine (R) residues. This is designated the 'stop-transfer' signal and 

prevents the protein from passing further into the membrane (Walker, 1994). There 

is such a KIR-rich region between the ACR4 transmembrane domain and the kinase 

domain, but not immediately after the signal peptide next to the 39aa repeat region. 

Therefore it is highly unlikely that the second signal peptide acts as a transmembrane 

domain and thus that the N-ter ACR4: :GFP proteins are incorrectly orientated. 

As well as evidence from functional and localisation studies the predicted 

orientation of ACR4 has been confirmed (Section IV.3.1). The 39aa repeat domain 

of ACR4 is definitely outside the cell, at a site where it could receive ligands from 

neighbouring cells. The extracellular region is the classical ligand-binding domain 

of protein kinases (Walker, 1994; Toni and Clark, 2000). Put together this evidence 

supports a hypothesis that the seven x 39aa repeat region is the ligand binding 

domain for the ACR4 receptor-like kinase. When the 39aa repeat region is not part 

of the ACR4 protein, ligand binding cannot therefore occur. It is likely that addition 

of a GFP on to the N-terminus of ACR4 structurally inhibits binding by blocking the 

ligand attachment site. Either way no ligand can be bound to ACR4. The probable 

consequence of this is that the kinase domain of ACR4 is not activated and that 

downstream signalling can not occur. The protein is thus rendered non-functional. 

Results from BFA treatment and the presence of ACR4::GFP in intercellular vesicles 

suggest that wild-type ACR4 could be endocytosed. Western blot results suggest 

that ACR4 is turned over in the cell. Due to the fact that there is both lack of 

localisation to BFA bodies, and potentially increased protein stability of full length 
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A39aa ACR4::GFP, GFP::ACR4 and GFP::ACR4::GFP, it can be postulated that 

endocytosis and turnover are both directly or indirectly dependent on ligand binding. 

As discussed in Chapter I, endocytosis of the animal ErbBl receptor tyrosine kinase 

and the later degradation steps following internalisation are phosphorylation-

dependent (Oved and Yarden, 2002; Soubeyran, et al., 2002). It seems possible 

therefore that ACR4 is subject to ligand-mediated endocytosis and processing within 

the cell. As mentioned previously this is a good way to dampen down signalling 

from receptor kinases in order to avoid a constitutive signal being produced 

(Waterman and Yarden, 2001). It makes sense then that if ligand binding is not able 

to occur on A39aa ACR4::GFP, there will be no signal produced, and subsequently 

no damping down. This could be why bright fluorescence is seen in Li cell 

membranes of the plants carrying A39aa ACR4::GFP: the protein builds up at the 

membrane and is not processed in the cell. It also explains why such bright BFA 

bodies are normally seen in full length ACR4::GFP fluorescing cells - ACR4::GFP 

is being processed in the cell and thus is present in endocytotic vesicles which are 

incorporated into BFA bodies. Therefore the hypothesis that there is ligand binding 

(on the 39aa repeat domain) mediated endocytosis fits all of the available data. 

However, further work will be needed to confirm this prediction. When potential 

ligand candidate molecules have been identified, an interaction with the 39aa repeat 

domain could be tested in vitro or in vivo using a binding assay. For example 

various assays have been used to investigate ligand binding to the animal ErbB 

family of receptor tyrosine kinases (such as Zhang, et al., 1997; Lemmon, et al., 

1997). Here the isolated TILLING alleles will be of use. The amino acid changes 

could be modelling in order to investigate how the conformation of the 39aa repeat 

region might be altered, and therefore which changes might affect ligand binding. 
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IV.6. The molecular mechanism of ACR4 action: homo-/hetero- 

oligomers with other ACR4-like proteins? 

In order to explain the relatively weak phenotype of acr4 mutants and to take into 

account the data gained from functional and protein analysis we have developed a 

model for ACR4 action. It proposes the formation of hetero- and/or homo-oligomers 

with one or more of the four other ACR4-like Arabidopsis proteins (Fig.IV.10A). 

Redundancy with such hetero-oligomeric partners is hypothesised to occur and 

indeed the other ACR4-like genes are the subject of detailed investigation in the lab 

in order to elucidate their relationship to A CR4. 

The model proposes that a hetero- or homo-oligomer is formed at the plasma 

membrane between ACR4 and an ACR4-like protein. As mentioned in Chapter I, 

multimerism is a common mechanism for plant and animal receptor-like kinases 

(Olayioye, et al., 2000). Ligand binding is proposed to occur on the extracellular 

39aa repeat domains of the oligomer, with proper conformation and presence of the 

ACR4 39aa repeat domain vital for binding. When the 39aa repeat domain is 

missing it is likely that the ligand cannot bind the hetero- or homo-oligomer; this is 

represented in Fig.IV.1OB. 

After normal ligand binding, auto- and/or trans-phosphorylation between the 

kinase domains of the oligomer partners is proposed (as for other RLKs as discussed 

in Chapter I, and reviewed in Walker, 1994). This phosphorylation would act as the 

first step in a downstream signalling cascade. A lack of ACR4 kinase activity could 

be compensated for through trans-phosphorylation of ACR4 by the active kinase 

domain of a hetero-oligomeric partner. As discussed in Chapter I, research into 

another Arabidopsis receptor-like kinase, CLAVATA1 (CLV1), has found such an 

effect (Trotochaud, et al., 1999). The clv] -6 allele of the CLV] gene is effectively 

kinase null, yet the CLV 1-6 protein encoded retains some of its function. As 

introduced in Chapter I this is because the kinase activity can be provided by another 

protein kinase (Toni and Clark, 2000). A similar explanation could be used to 

understand the behaviour of the kinase null variant of ACR4. The model is therefore 

consistent with the functional analysis of the kinase null ACR4 protein; this aspect of 
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A molecular model for ACR4: homo-/hetero-oligomers of ACR4 and ACR4-like proteins?I 
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Figure IV.1O. Schematic illustrating the predicted molecular mechanism of ACR4 action: 

protein domain labelling as Fig.1V3. (A) Wild-type protein. It is hypothesised that ACR4 (on 

the left) forms homo-oligomers or hetero-oligomers with one or more of the other CR4-like 

proteins in Arabidopsis. The ACR4/ACR4-like homo/hetero-oligomer receives a ligand at the 

predicted ligand-binding domain (39aa repeat region). This results in kinase activity and 

downstream signalling via phosphorylation. Western blot and BFA-treatment results suggest 

that ACR4 is endocytosed and turned over, either to allow proper signalling and function, or as 

a result of it. (B and C) The model is consistent with results obtained from functional 

analysis: (B) When the 39aa region is removed from ACR4, this is likely to alter the ligand-

binding site conformation. As no ligand can hind the complex there is no downstream 

signalling (ACR4 is not functional) and the protein is not endocytosed or turned over. (C) A 

kinase null ACR4 variant can still hind the ligand. An active kinase domain (of an ACR4 

homo-/hetero-oligomer partner) could then transactivate the inactive ACR4 kinase domain. 

Normal function and turnover are thereby maintained. 



the model is represented in Fig.IV.1OC. An alternative explanation of the behaviour 

of the kinase null ACR4 protein is that the kinase domain is simply not required for 

function. However by analogy to other plant and animal RLKs discussed earlier this 

seems unlikely. The importance of the kinase domain could be confirmed by 

repeating construction and testing of the AK/C-ter construct. At present the most 

likely hypothesis is that presence of a kinase domain is required for ACR4 function, 

but that loss of kinase activity can be compensated for. Two of the four ACR4-like 

genes have predicted kinase activity and thus are the best candidates for formation of 

ACR4/ACR4-like oligomers. The results obtained here differ to those published by 

Watanabe, et al. (2004). The authors found that introduction of a kinase null ACR4 

variant was unable to complement the acr4 mutant. In addition they found that 

introduction of an ACR4 derivative missing the C-terminal region was unable to 

complement acr4. These results however are unreliable, firstly because the 35s 

rather than the endogenous ACR4 promoter was used to express the deletion 

constructs. The 35s promoter is not very efficient in developing seeds and thus this 

may have led to poor expression of the constructs introduced. Secondly the 

localisation of these proteins was not determined. Although a full length ACR4 

protein expressed under the same conditions was able to complement acr4 it may be 

that the ACR4 derivatives were not correctly localised. An ACR4 derivative lacking 

the whole extracellular domain (including the 39aa repeat region) was unable to 

complement as found here, but again the membrane-localisation of this protein was 

not confirmed. 

It seems likely that as part of ACR4 function, the ACR4 protein is endocytosed and 

turned over in the cell. Turnover/cleavage of a receptor-like kinase is thought to be a 

biologically sound method of damping down kinase activity and maintaining 

sensitivity to the presence of a ligand (Waterman and Yarden, 2001). This ensures 

that downstream signalling is not switched on constitutively, rather only when the 

appropriate signalling molecule is present. This is the first example of RLK 

endocytosis in response to ligand binding to be shown in planta in Arabidopsis (as 

opposed to the apparent endocytosis of AtSERK shown in cow-pea protoplasts by 

Shah, et al. (2002). Whether this endocytosis is mediated by the KAPP protein as 
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seems to be the case for plant RLKs such as CLV1 and AtSERK as discussed in 

Chapter I (Braun, et al., 1997; Stone, et al., 1998; Shah, et al., 2002) is not known. 

As mentioned, the maize CR4 protein has not been shown to associate with KAPP 

(Braun, et al., 1997). In the lab work is being carried out by Gwyneth C. Ingram in 

order to determine whether ACR4 associates with KAPP. If it is found not to, then 

ACR4 endocytosis may define a novel endocytic mechanism. Whether ACR4 

activation by ligand binding and phosphorylation results in protein turnover/cleavage 

(as is the case for the animal RTK ErbBl, Waterman and Yarden, 2001), or 

turnover/cleavage itself is required for activation (as demonstrated for proteins such 

as NOTCH, Fortin], 2001; Schweisguth, 2004), is yet to be determined. It is also not 

clear through which protein domains the two oligomeric partners might interact. It is 

possible that ligand binding is necessary for stabilisation of a hetero-oligomer. For 

example the mammalian EGFR receptor undergoes ligand-dependent dimerisation 

(Schlessinger, 2002). 

As mentioned in Section IV.4.2, deletion of the TNFR-like repeat domain of ACR4 

seems to result in the protein being less susceptible to the turnover/processing seen 

with ACR4::GFP; this result however must be confirmed. It is possible that this 

domain is involved somehow in oligomer-stabilisation and perhaps correct 

orientation of ACR4 for phosphorylation. Removal of the TNFR-like repeat domain 

could potentially cause a conformational change in the ACR4 protein which results 

in inefficient phosphorylation or processing. That could either result in ACR4 not 

being efficiently removed from the membrane, or perhaps being less susceptible to 

degradation and cleavage as part of protein turnover once removed. Alternatively 

the ATNFR ACR4::GFP protein might bind ligand less efficiently. However as the 

presence of the TNFR-like repeat domain is not required for acr4 mutant 

complementation, it seems that the domain is not strictly necessary for function. 

Thus ATNFR ACR4::GFP is still found in BFA bodies and is likely only partially 

stabilised, suggesting that some function is maintained. If the function of the 

oligomer partner for ACR4 were to be disrupted in some way, and the TNFR-like 

domain has such a function as suggested, it is unlikely that ATNFR::GFP would be 

able to compensate for such defects and thus might not complement the acr4/acr4- 

139 



like gene double mutant phenotype. Through investigation of the other ACR4-like 

genes in the lab this prediction will be tested. As mentioned in Chapter I, the TNFR-

like repeat region consists of three cysteine rich repeats. In mammals the second two 

repeats are thought to act as ligand binding domains whilst the first is proposed to be 

involved in trimerisation of protein molecules (Chan, 2000). It is possible then that 

the TNFR-like repeat region of ACR4 plays some minor role in one or both of these 

processes; it might be that tri-oligomers of ACR4 and ACR4-like proteins are 

formed. Whatever the exact function of the TNFR-like repeat region is, it seems 

likely that it does play some part in regulating the molecular mechanism of ACR4 

action. It would be interesting to generate more TILLING alleles throughout the 

TNFR-like repeat region in order to determine the effect of such changes on the 

stability of the ACR4 protein. 

A mode of action for ACR4 involving hetero- as well as homo-oligomers can also 

help to explain why no dominant positive or negative effects were observed during 

expression of ACR4 protein variants. For example a dominant negative effect could 

have been postulated when only the N-terminal end of the protein was expressed 

(ATMJKIC-ter ACR4: :GFP). As discussed in Chapter I such effects have been seen 

with other plant RLKs (Shpak, et al., 2003). It is possible that ligand binding at the 

39aa repeat domain might have occurred but this would not have activated proper 

kinase activity and signalling (due to no kinase domain being present). This would 

have resulted in a dominant negative effect as the ligand would have been 

sequestered by the protein derivative. However no such effect was observed. In the 

proposed homo-/hetero-oligomer it is likely that both the presence as well as proper 

conformation and orientation (ACR4 being membrane bound) of the 39aa repeat 

domain of ACR4, and of the extracellular regions of the partner protein, are required 

for ligand binding. Therefore the ACR4 extracellular domain on its own, as in 

ATMIKIC-ter ACR4::GFP, would not be able to bind a ligand. In order to 

investigate the behaviour of a membrane bound version of ATMJKIC-ter 

ACR4::GFP, a line that carried an appropriate construct was made in the lab. 

However again no effect was observed (Gwyneth C. Ingram, pers. comm.). This 
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might suggest that proper interactions between ACR4 and an ACR4 oligomeric 

partner, at the cytoplasmic domain, are also necessary for ligand binding. 

It was also initially hypothesised that expression of a protein lacking the 

extracellular regions (A39aaJTNFR::ACR4) might result in a dominant positive 

effect by comparison to previously mentioned studies in mammal cells. Removal of 

the extracellular region of the SEVENLESS receptor tyrosine kinase, which 

functions in photoreceptor cell fate in the Drosophila eye results in ligand-

independent receptor dimerisation (Basler, et al., 1991). Induction of a dominant 

positive effect could allow the consequences of ACR4 activity in places where it is 

not normally switched on by ligand binding to be determined. This would aid further 

elucidation of ACR4 function. However no alteration of phenotype which might 

occur as a consequence was seen in this experiment. As with the potentially 

dominant negative protein, a dominant positive effect with this approach might not 

occur due to the unique nature of hetero-oligomers. One alternative explanation is 

that the deletion protein was either not properly translated or correctly localised. The 

localisation of this protein was not determined and so this question cannot be 

answered here. Another alternative explanation is that as the phenotypic effect of 

gain of ACR4 function or a dominant negative effect is not known, the defects that 

are associated with these are present but have not been found. This could be 

addressed as part of further work. 

As mentioned in Section IV.2, ACR4::GFP fluorescence is localised preferentially 

to the cell inner and anticlinal membranes. This could be due to the additive effects 

of two appressed membranes. However there could in fact be a functional basis for 

such preferential localisation. If ACR4 is involved in receiving a signal from a 

neighbouring cell, the consequence being to ensure proper organisation of the Li cell 

layer, then such signals are likely to be received at cell-cell boundaries. There might 

therefore be a greater amount of ACR4 protein at such sites. As mentioned in 

Chapter III a signal from inside the organ could provide positional information. Put 

together this would mean that ACR4 would be preferentially localised to Li 
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membranes adjacent to underlying cells and to neighbouring Li cells. This is 

exactly what is observed. 

In order to elucidate a potential pathway involving cleavage of ACR4, there are 

some other clues from maize genes as discussed in Chapter I. Both deki and sail 

mutants in maize have a very similar phenotype to cr4 when their function is 

knocked out (Lid, et al., 2002; Shen, et at., 2003). It is thought that DEK] and SAL] 

may therefore be involved in the same regulatory pathway as CR4. DEKJ encodes a 

cysteine protease and SAL] encodes a vacuolar sorting protein. DEK]- and SAL]-

like genes are present in the Arabidopsis genome. It is possible that they interact 

with ACR4 and are potentially involved in the cleavage and processing of the ACR4 

protein due to their predicted functions. In the lab the function of both AtDEK and 

AtSAL112 are being elucidated and any relationship to ACR4 investigated. 

Therefore in summary ACR4 protein is localised to the plasma membranes of 

Li/outside cells in such a fashion that cell-cell signalling is possible. Formation of 

homo-/hetero-oligomers between ACR4 and ACR4-like proteins at the membrane is 

proposed as a molecular model of ACR4 action. A ligand is postulated to be bound 

at the 39aa repeat domain of the ACR4 protein homo-/hetero-oligomer with the 

result of transphosphorylation between oligomer kinase domains, and then 

downstream signalling. This ligand binding could mediate endocytosis of the protein 

and turnover within the cell. 
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Chapter V. ACR4 genetic analysis: elaboration of the signalling 

network 

Introduction 

ACR4 does not interact with genes involved in ovule morphogenesis 

How does ACR4 fit into the wider signalling network? 

New y-mutagenesis-generated mutants are candidate enhancers of the 

acr4 mutant phenotype 

Other aspects of the ACR4 signalling pathway 
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V.1. Introduction 

The ACR4 gene plays a role in the maintenance of Li/outside cell layer integrity. In 

Chapter III the expression pattern and function of the gene was investigated. In 

Chapter IV it was shown that ACR4 protein localises to the plasma membrane of 

Li/outside cells. The protein is positioned and orientated in such a way that it could 

receive signals which are located in the extracellular matrix. These signals could be 

secreted from adjacent cells, therefore allowing cell-cell signalling in the outside cell 

layer. ACR4 localisation is dynamic, the protein is endocytosed and cleaved in the 

cell. This intercellular processing seems to be mediated by ligand binding on the 

39aa repeat domain of the protein. In addition it is likely that ACR4 forms homo-

and/or hetero- oligomers with other ACR4-like proteins. After a ligand signal is 

received, trans -/auto-phosphorylation could occur between the kinase domains of the 

protein complex. Phosphorylation of downstream targets in a signalling cascade is 

then probable. This signalling may ensure that the Li/outside layer divides and 

develops as a monolayer and that proper organisation is maintained. Precisely what 

the ACR4 ligand(s) is/are, and what proteins act as downstream signalling targets has 

yet to be determined. 

In order to address these two points a range of genetic approaches have been taken. 

One approach taken was to identify genes that might be hypothesised to play a role 

with ACR4 in controlling Li cell layer integrity in aerial organs. The acr4-2 

homozygous mutant was then crossed to plants which carried mutations in the genes 

of interest. Double mutants were isolated and the phenotype examined for any 

enhancement or alteration from the single mutants. This analysis was used to 

determine whether the genes could be in the same genetic pathway. 

The genes chosen can be divided into two groups. Firstly various genes involved 

in regulating ovule morphogenesis were selected (Section V.2). Although acr4 

mutants have defects in ovule integument outgrowth, ACR4 does not seem to play a 

role specific to ovule development. This is evidenced both by the more widespread 

expression pattern of the gene and by the fact that defects are not specific to ovules 

(the sepal marginal cells are also disorganised). However it was still important to 

144 



analyse the relationship between ACR4 and such genes in order to confirm this 

hypothesis. In addition, it might be that some poorly characterised mutants which 

have defects in ovule development are in fact additional components in the ACR4 

signalling pathway. The second group of genes analysed were chosen with reference 

to a previous yeast-two-hybrid screen carried out in the lab by Samuel Dean and 

Gwyneth C. Ingram. Two proteins involved in the response to the hormone 

gibberellic acid were identified as potential interactors at the C-terminal end of 

ACR4. Genes involved in gibberellic acid signalling were therefore chosen as 

candidate genes (Section V.3). As well as investigating an interaction with the 

gibberellic acid signalling pathway, the cytokinin hormone receptor was of interest. 

Cytokinins regulate cell division patterns as a whole (Hutchison and Kieber, 2002) 

and thus it was postulated that there could be a link to ACR4 which regulates cell 

layer organisation (also Section V.3). 

Another approach taken was to carry out an enhancer screen on a mutagenised 

population of acr4-2 homozygous mutant seed (Section V.4). The mutagenesis 

screen was designed to identify genes which might act in parallel to A CR4. Any 

enhancement of the seed abortion phenotype of acr4-2 in new mutants was analysed. 

In addition, mutants with potential defects which might suggest improper cell layer 

organisation were of interest. These included seedlings with apparent 

disorganisation of cells in the developing organs. The dependency of new mutations 

on the acr4-2 background was tested in order to identify specific interactors. 

Finally the hypothetical model describing the role of ACR4 in Li cell layer 

signalling in aerial organs was investigated in more detail using information gained 

from published research in the literature (Section V.5). An experiment was 

recapitulated that generated a mutant plant in which signalling from the L2 to the Li 

cell layer was postulated to have been disrupted. The effect of loss of L2 to Li 

signalling on the acr4 mutant which seems to have a loss of Li-Li signalling was 

analysed. In addition other possible ACR4 interactors are hypothesised and 

discussed. 

Together through these three approaches the aim was to elucidate where ACR4 

fitted into the wider signalling network. 
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V.2. ACR4 does not interact with genes involved in ovule 

morphogenesis 

In order to investigate potential interactions with other genes involved in ovule 

morphogenesis, crosses to a number of known ovule development mutants were 

carried out. These included crosses to plants containing mutations in the following 

genes. BELL] (BELl) (Robinson-Beers, et at., 1992, Reiser, et at., 1995), SHORT 

INTEGUMENTS 1 (SIN]) (Robinson-Beers, et at., 1992; Ray, et at., 1996), INNER 

NO OUTER (INO) (Villanueva, et al., 1999; Meister, et at., 2004), and 

AINTEGUMENTA (ANT) (Kiucher, et at., 1996; Krizek, 2003) encode proteins 

which are required for various different aspects of proper ovule integument 

morphogenesis. bell, sin], mo and ant all exhibit sporophytic female sterility as the 

result of aberrant ovule development. The ABBERRANT TESTA SHAPE (ATS) 

(Leon-Kloosterziel, et al., 1994) gene was also of interest due to its role in patterning 

the ovule. The ats mutant was therefore used in this study. Some of these genes 

have additional roles during floral development, however their specific role in ovule 

development is the focus here. The phenotype in ovules of each of these mutants, as 

well as the wild-type role of each gene affected will be discussed. See Figure 111.3 

for a schematic of a wild-type ovule. 

The BELl gene encodes a homeodomain transcription factor (Reiser, et at., 1995). 

Wild-type BELl gene function is required for morphogenesis of the ovule 

integuments and is responsible for early development of the central or chalazal 

region of the ovule (Robinson-Beers, et al., 1992; Reiser, et al., 1995). BELl also 

plays a separate role in regulating normal embryo sac development (Western and 

Haughn, 1999). In bell homozygous mutant ovules rather than two integuments 

being initiated, a single integument-like structure forms. This structure develops 

aberrantly into a collar-like outgrowth. This gives bet] mutant ovules a bell-shaped 

appearance; the nucellus is the 'clapper' of the bell. In addition a normal embryo sac 

is not formed. bet]-] and bell-3 are two alleles which have similar phenotypes, the 

former being a stronger allele. 
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SIN] encodes a gene with similarity to the Drosophila melanogaster gene DICER 

(Golden, et al., 2002); DICER encodes a multidomain ribonuclease which is 

involved in RNA silencing (Schauer, et al., 2002). SIN] plays a wide range of roles 

including in maternal sporophytic control of embryo pattern formation, meristem fate 

determination, flowering time control and in during ovule morphogenesis (Robinson-

Beers, et al., 1992; Ray, et al., 1996). The role of SIN] during ovule morphogenesis 

in particular has been well characterised. sin]-] mutant ovules initiate two 

integuments, but the outgrowth of these integuments is disrupted. Normal cell 

division occurs in the integuments but there is a lack of cell elongation. Due to this 

retarded growth sin] mutant ovules are overall rounder and also narrower at the 

micropylar end than ovules of wild-type. Ovules of sin] mutants like those of bell 

mutants also fail to form an embryo sac. 

The INO gene encodes a YABBY family transcription factor which is a positive 

regulator of ovule integument growth and is required for abaxial-adaxial patterning 

of the ovule (Villanueva, et al., 1999; Meister, et al., 2004). INO plays a role in the 

regulation of the formation and asymmetry of the outer integument. It is expressed 

specifically in cells on one side of the ovule primordium which give rise to the outer 

integument. Ovules homozygous for the mo-] allele initiate and develop a normal 

inner integument, however the outer integument fails to initiate on the abaxial side of 

the ovule. Instead a protuberance is initiated on the adaxial side which undergoes 

only limited development. 

The ANT gene encodes a member of a plant specific family of transcription factors 

(Krizek, 2003). ANT is required for proper formation of the ovule integuments and 

also for regulation of floral organ number (Klucher, et al., 1996). Strong ant allele 

mutant ovules fail to form either integuments or a female gametophyte. Weaker ant 

mutant ovules develop normal inner and outer integuments but fail to form a 

functional female gametophyte. ANT has overlapping roles with the HUELLENLOS 

gene which regulates the initiation and maintenance of integument and embryo sac 

development (Schneitz, et al., 1998). The strong ant-] allele was obtained for use 

here. 
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ATS is a gene which plays a role in proximal-distal patterning of ovule 

development (Leon-Kloosterziel, et al., 1994). Unlike the above mutants the ats 

mutant can form viable seed. The seeds however are heart-shaped rather than oval 

due to abnormal integument morphogenesis. The inner and outer integuments are 

not clearly defined in ats mutants. This is due to deviant cell divisions and abnormal 

cell expansion during integument initiation and outgrowth. The ats ovule embryo 

sac is enclosed by three rather than five integument cell layers. It is thought that this 

is either due to initiation of only one integument or fusion between the two 

integuments. ATS encodes a gene which has not been characterised, its precise 

function is unknown. As ats mutant seeds, like those of acr4 are of an unusual shape 

due to problems in integument development, it was of particular interest as a possible 

player in the ACR4 pathway. 

The genes discussed above have distinct but also interlinked roles during ovule and 

floral development. For example the zone of INO expression is expanded in bell 

and ant mutants. It is thought therefore that BELl and ANT might be involved in 

down-regulating INO in order to maintain its abaxi al -specific expression pattern in 

wild-type ovules. (Villanueva, et al., 1999). In addition the bell phenotype is 

dependent on function of the floral meristem identity gene AGAMOUS (AG). BELl 

acts in a partially redundant manner with AG to specify proper ovule identity 

(Western and Haughn, 1999). 

If ACR4 was specifically involved in regulating ovule development then it might 

interact genetically with one or more of the ovule developmental genes discussed 

above. In order to test whether there were any genetic interactions a double mutant 

analysis was carried out. The phenotype of double mutants was analysed to see if 

there was any exacerbation or alteration of the defects seen in single mutants, which 

might be associated with such an effect. 

Crosses of bell-], bell-3, sin]-], mo-i and ant-i mutants to the acr4-2 

homozygous mutant were made in both directions for at least three heterozygous 



individuals. The heterozygosity of the ovule mutant individuals was confirmed by 

checking for segregation of female sterile mutants in the progeny of the plants 

crossed. The acr4-2 homozygous phenotype is selectable for by screening siliques 

of plants for seed abortion and round-shaped seeds (as discussed in Chapter III, 

Section 2.2). The ovule mutant homozygous phenotype is selectable for by 

screening for individuals with female sterility: no seeds are formed and thus siliques 

are very short. In order to isolate double mutants there were two stages of screening. 

Firstly plants homozygous for the acr4-2 mutation were selected by means of their 

seed phenotype in the F2 generation. Segregation ratios were monitored: 4/16 plants 

were expected to be acr4-2 homozygotes in the F2. If ACR4 and the ovule gene 

under investigation were unlinked '/4 of these (i.e. 1/16 of the total) would have been 

double mutants. However these double mutants would have been female sterile and 

would thus have looked similar to the single ovule mutants (3/16 of the total). In 

order to specifically select double mutants, all F2 individuals homozygous for acr4-2 

were sown out. The resultant F3 generation lines were screened for those 

segregating female sterile individuals. Such individuals were therefore definitely 

double mutants. For the mo-i cross a different approach was taken. All F2 

individuals with female sterility (as a result of mo-i homozygosity) were genotyped 

by PCR in order to identify acr4-2 homozygotes and thus double mutants. 

In the crosses to and from the ant-1 lines, no ant-] homozygotes could be isolated. 

When the ant-] line individuals crossed were resown it was found that none were 

heterozygous for the ant-i mutation. There seemed to be a problem with the ant-] 

line used here and thus results from this cross could not be obtained and are not 

included. 

As well as selecting for homozygous acr4-2 mutant plants in the F2 generation 

then double mutants in the F3 generation, the phenotype of all plants was examined. 

The bell-], bell-3, sin]-], mo-i and ats mutations were all in the Landsberg erecta 

(L er) background while the acr4-2 mutation was in the ColO background. Because 

the erecta mutation was therefore segregating in the background of the F2 plants it 

was important to check for any modifier effects of the ovule phenotypes. However 

no differences were seen between plants. 
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The numbers of plants showing these phenotypes were recorded for both the F2 

and (where screened) the F3 generations in several families for each cross carried 

out. The results from one representative F2 family for each mutant cross are shown 

in Table V.I. 

Several crosses between the ats-1 homozygous mutant and the acr4-2 homozygous 

mutant were made in both directions. In the F2 generation double mutants were 

selected as those carrying both heart shaped seeds (indicating homozygosity for the 

ats mutation) and variable levels of seed abortion (indicating homozygosity for the 

acr4-2 mutation). Again the numbers of plants of each possible phenotype were 

noted (Table V.1) and the double mutants analysed. 

Cross No wild-type single acr4-2 single ovule dev. Double mutant 

performed plants -like mutant mutant 

acr4-2 x bell-] 

F2(2) 15 11 2 2* 1. 

F3(14) 16 13 3 

acr4-2 x sin-]-] 

F2(1) 13 11 1 1* * 

F3(2) 18 13 5 

acr4-2 x mo-i 

F2(2) 22 15 3 3 1 

als-1 x acr4-2 

F2(2) 23 13 5 4 1 

Table V.1. Phenotypic analysis of the F2 and F3 plants generated from crosses between bell-i, sin]-

I, mo-i and ats-i with acr4-2. The number of plants of each phenotype are listed for each F2 or F3 

family number (in brackets). *pl ants  of these two genotypes would have looked indistinguishable. 

'Each of these F3 families originated from one F2 plant that was homozygous for the acr4-2 

mutation. 

The segregation ratios of plants in each family were analysed. If the two genes 

involved in each cross were unlinked there would predicted to be 9/16 plants with a 

wild-type phenotype, 3/16 plants with a homozygous ovule mutant phenotype, 3/16 

with a homozygous acr4-2 phenotype and one double mutant. Genetic linkage was 

not expected to cause a problem as all of the ovule development genes reside on 

different chromosomes to ACR4 (which is on chromosome 3): BELl and ATS are on 
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chromosome 5 and SIN] and INO] are on chromosome 1. The ratios for each 

phenotype seen were in accordance with no linkage (see Table V.1). 

The phenotype of bell-.1, sin]-] and mo-] single mutants was compared with that 

of the double mutants for each cross. For each comparison ovules at stage 13 of 

development (developmental stages as Robinson-Beers, et al., 1992) just prior to 

when fertilisation would occur were dissected from floral buds. The ovules were 

cleared in chloral hydrate, mounted and viewed using DIC microscopy. The seeds of 

the ats-] single mutant and the ats-1 acr4-2 double mutant were compared by 

viewing opened siliques of each plant. For the double mutants generated in each of 

these crosses an additive phenotype was seen and no specific exacerbation of single 

mutant defects was visible. 

acr4-2 sin]-] double mutant ovules were similar to those of sin]-] (Fig.V.1A-F). 

Integument outgrowth was retarded in ovules of both the single and double mutants. 

It was particularly evident that the outer integument had not fully elongated. This 

meant that the inner integument and the nucellus were visible in cleared ovules. This 

aspect of the sin]-] phenotype was identical in ovules of the acr4-2 sin]-] double 

mutant. However, ovule integuments of the double mutant ovules were more 

disorganised (Fig.V. 1B,D,F). There were outgrowths on the surface of the outer 

integument, consistent with the defects seen in acr4-2 single mutants (as Chapter III, 

Figs .111.4,5). 

acr4-2 bell-] double mutant ovules were indistinguishable from those in the bell- 

single mutant line (Fig.V.1G-H). Both the single and double mutant ovules had 

'bell' shaped ovules, with a nucellus and an integument-like structure. Unlike on the 

acr4-2 sin]-] double mutant ovules, no clear additional bulges were seen on the 

acr4-2 bell-] double mutant ovules (Fig.V.1H). However the presence of such 

bulges occur only variably on acr4-2 mutant ovules. The bulges might only be 

noticeable on integuments that are more fully developed than those of bell mutant 

ovules. acr4-2 bell-3 double mutants ovules in comparison with bell-3 single 

mutants ovules at first glance also appeared to be indistinguishable, although they 

were not analysed in detail. 
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Figure V.1. Phenotype of double mutants of acr4-2 with sin]-] (A-F), bell-] (G-H) and mo-I (1-
K). Light microscopy images of ovules in (A,C,E,G,I) single mutants and (B,D,F,H,J,K) double 
mutants. All ovules were dissected from carpels at floral stage 13. (A-F) acr4-2 sin]-] double 
mutants exhibit an additive phenotype. In sin]-] mutants (A,C,E) the outer integument (oi) in 
particular shows a lack of complete outgrowth. This results in the micropylar end of the ovule 
(arrowhead in E) being narrower than the chalazal end (star in E). acr4-2 sin]-] double mutant 
ovules (B,D,F) look very similar to those of sin]-]. The integuments in the double mutant are 
however less organised than those of sin]-] single mutants. This disorganisation is evident as 
apparent bulges on the ovule surface (arrows in B, D and F). In (B) the nucellus (nuc) is visible 
due to reduced inner integument growth. (G,H) Single bell-] (G) and double acr4-2 bell-] (H) 
mutant ovules are indistinguishable. Both show the characteristic 'bell' shape due to improper 
integument development. A single integument-like structure (ils) is seen in place of two 
integuments. The nucellus (nuc) is clearly visible. (I,J,K) Single mo-] and double acr4-2 mo-I 
mutant ovules are almost indistinguishable. Both mo-] (I) and double acr4-2 mo-I (J,K) ovules 
are characteristically narrow due to lack of the outer integument. The nucellus (nuc) and inner 
integument (ii) form fairly normally. In acr4-2 mo-I double mutants the inner integument of the 
ovule is however slightly less organised, as evidenced by the appearance of bulges on the inner 
integument tissue (arrow in J). Scale bars: 50tm. 
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No exacerbation of the mo-i phenotype was seen in acr4-2 mo-i double mutant 

ovules in comparison to ovules in the mo-i single mutant line (Fig.V.1I-K). Ovules 

in both the double and single mutant plants were similar. Both mo-i (Fig.V.lI) and 

double acr4-2 mo-i (Fig V.1J,K) ovules consisted of a nucellus and an inner 

integument, but no outer integument. This gave them a characteristically narrow 

appearance in comparison to wild-type ovules. No outer-integument-like 

protuberance was obvious in homozygous ovules of this strong mo-i allele line. 

Although similar, the inner integument of acr4-2 mo-i double mutant ovules was 

more disorganised than that of the mo-i single mutant ovule inner integument. 

There were outgrowths on the inner integument surface, similar to those seen in 

acr4-2 single mutants. 

In siliques of the acr4-2 ats-] double mutant an additive phenotype was seen 

(Fig.V.2A). All mature seeds in the double mutant were heart-shaped, as in seen in 

the ats-1 single mutant silique. The seeds were slightly smaller in the siliques of 

acr4-2 ats-] double mutants, consistent with the smaller size of seeds in acr4-2. 

acr4-2 ats-] double mutant siliques are also shorter than those of ats-] single 

mutants and there was a variable degree of seed abortion. No new defects which do 

not normally occur as a result of loss of each single gene were seen. 

In conclusion no exacerbation of the phenotype in a range of mutants defective in 

aspects of ovule development was found when ACR4 function was lost. The defects 

seen in double mutants were additive. This shows that ACR4 does not interact 

specifically with either BELl, SIN], INO or ATS. It suggests that as expected ACR4 

does not play a role specific to ovule development. Rather as previously discussed 

(in Chapter III) it seems that ACR4 is involved in maintaining Li integrity in the 

whole plant. 
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Figure V.2. Phenotype of ac4-2 ats-J double mutant. Photograph ol an ats-] mutant 

opened silique (A) and an act-4-2 ats-1 double mutant opened silique (B). The 

characteristic heart-shaped seeds of the ars-1 homozygote are evident in both the 

single and double mutant siliques (arrows). In the acr4-2 ars-1 double mutant the 

reduced seed set and seed abortion (starred aborting seeds) are particularly visible and 

seeds are marginally smaller than those of at.s-I, as seen in acr4-2. No additional or 

attenuated defects are seen. Scale bar: 1mm. 



V.3. How does ACR4 fit into the wider signalling network? 

ACR4 does not interact specifically with genes involved in regulating ovule 

development. It seems to be regulating a more general process. So how is the 

regulation of Li cell layer integrity related to the more widespread control of 

development? Also, which other genes might ACR4 be interacting with? In order to 

address these questions one approach utilised data gained from a yeast-two-hybrid 

(Y21-1) screen carried out by Samuel Dean and Gwyneth C. Ingram in the lab. In the 

Y21-1 screen the C-terminal region of the ACR4 protein was used as bait against 

protein in a seedling library. The screen was designed to identify proteins which 

interact with the cytoplasmic C-terminal domain of ACR4 and thus those that could 

be potential downstream targets of ACR4. Several potential interactors were 

identified in the screen of which two are proteins involved in the gibberellic 

signalling pathway: GIBBERELLIC ACID INSENSITIVE (GAl) (Peng, et al., 1997) 

and REGULATOR OF GIBERELLIC ACID (RGA) (Dill and Sun, 2001). The 

hormone gibberellic acid (GA) regulates multiple aspects of plant development 

including the break of seed dormancy, the rate of growth and the transition to 

flowering. A link from ACR4 to the GA signalling pathway would be interesting due 

to the multiplicity of developmental processes that are regulated by GA. In order to 

investigate this potential genetic link, double mutants between acr4-2 and two genes 

important in the GA response pathway were generated. Any genetic interaction was 

screened for by comparing the phenotypes of single and double mutants. 

GIBBERELLIC ACID INSENSITIVE (GAl) encodes a transcription factor which is 

a negative regulator of the gibberellic acid signalling pathway (Peng, et al., 1997). 

The gai mutation affects the reception of GA or the resultant signal transduction. 

Loss of function gail-i and gaii-3 dominant mutants are late flowering, dwarfed due 

to reduced stem elongation and dark green in colour. In addition gai mutant seed 

requires external application of GA for germination. GAl has partially redundant 

functions with RGA (Dill and Sun, 2001). 
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Another component involved in a signalling pathway that negatively regulates GA 

responses is the SPINDLY (SPY) gene (Jacobsen, et at., 1996). SPY encodes a 

tetratricopeptide repeat protein which has a protein-protein interaction domain. spy 

alleles are compromised in gibberellin signal transduction and resemble plants that 

have been constitutively treated with gibberellic acid. This results in early flowering 

plants that are lighter green and exhibit increased stem elongation. Together this 

gives spy mutants a characteristically 'spindly' appearance. spy mutants also have 

reduced fertility due to an effect on male sterility. Loss of spy function can suppress 

the gai phenotype. Three spy mutants exist: spy-1, spy-3 and spy-5; these are listed 

in descending order of severity. 

Another class of plant hormones of interest in the context of ACR4 function are 

cytokinins. Cytokinins regulate patterns of cell division in plants by triggering 

division of cells in the meristem and controlling their meristematic competence 

(Higuchi, et al., 2004, Nishimura, et at., 2004; Nishimura, et at., 2004). A link to 

ACR4 which is involved in maintaining the integrity of the Li layer might be 

possible. As part of this ACR4-regulated process it is important that the outside cell 

layer is maintained as a monolayer. In order for it to be so, the proper pattern of cell 

division must be controlled. In addition a possible link to cytokinin was a possibility 

as one of the other CR4-like genes in Arabidopsis (AtHOM3) groups closely in terms 

of sequence similarity to the cytokinin-regulated CRKJ gene of Nicotiana as 

mentioned in Chapter I, Section 1.5.1. 

The CRE] (CYTOKININ RESPONSE i) gene encodes a histidine kinase which has 

been identified as cytokinin receptor (Franco-Zorrilla JM, 2002). crel mutants 

exhibit reduced responses to cytokinins. Three alleles of crei-i were obtained and 

used in this study. crel-] (Harrar, et at., 2003), crei-2 and crel-4 (Harrar, et at., 

2003). The crei-4 allele contains a t-DNA insertion near the N-terminal end of 

CRE] and confers the strongest phenotype. In the same way as for the GA signalling 

pathway mutants above, a possible genetic link between acr4-2 and cre] was 

investigated by generating double mutants. 
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V.3.1. ACR4 does not interact specifically with either GA! or SPY 

Crosses to acr4-2 were made in both directions for at least three homozygous 

individuals of gail-1, gaii-3, spy-], spy-3 and spy-5. rga was not crossed to acr4-2 

as it was not possible to germinate the seed obtained for the line (Gwyneth C. 

Ingram, pers. comm.). Homozygous gai seed, and seed generated during crossing 

to/from the gail-1, and gail-3 lines was supplied with lOOp.M gibberellic acid (GA) 

in order to allow germination to occur. Two weeks after transfer to soil the plants 

which were homozygous for the gai mutation were visible as being stunted and dark 

in colour. In order to rescue these mutants to flowering, plants were sprayed with a 

lOOp.M solution of GA at weekly intervals. This was necessary in order to generate 

flowers and pollen for crosses of the homozygous gai lines, and also so that the seeds 

produced by the gai plants could be screened in the F2 generation for homozygosity 

of the acr4-2 allele. The results for a representative F2 family from each cross are 

listed in Table V.2. Again, as with the ovule development mutants in Section V.2, 

the gaii-1, 1-3 and spy-5 mutants were all in the L er background while acr4-2 was 

in the ColO background. As before no differences between the phenotypes of plants 

with or without the erecta mutation were seen. 

Cross No wild-type-like single acr4-2 single gai/spy Double mutant 

performed plants mutant mutant 

gail-I x acr4-2 

F2(1) 27 15 3 7 2 

gail-3 x acr4-2 

F2(1) 19 11 5 2 1 

spy-] x acr4-2 

F2(2) 28 19 3 3 3 

spy-3 x acr4-2 

F2(2) 16 9 2 3 2 

acr4-2 x spy-5 

F2(1) 26 19 4 2 1 

Table V.2. Phenotypic analysis of the F2 plants generated from crosses between spy-], -3, -5 and 

gail-1, -3 with acr4-2. The number of plants of each phenotype are listed for each F2 family number 

(in brackets). 
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Genetic linkage was not expected to occur between GAll (on chromosome 1) and 

ACR4 (on chromosome 3). SPY is on chromosome 3, but it is on the opposite 

chromosome arm to ACR4 and thus any linkage is likely to be very weak. The ratios 

for each phenotype seen were in accordance with no linkage between the genes (see 

Table V.2). 

The phenotype of double mutants in all five crosses was compared with that of the 

corresponding single mutants. The defects associated with the individual single 

mutants were found to be additive in the double mutants for both gai and spy. No 

alteration or exacerbation of either phenotype was seen. All acr4-2 spy double 

mutant plants exhibited the same phenotype to those of the corresponding spy single 

mutants (Fig.V.3A-C). In each case both the double and single mutants were lighter 

green and spindly as previously described. The only difference between the two was 

that double mutant siliques were shorter and contained abnormal seeds as seen in 

acr4-2 homozygotes. Both single gail-i and double acr4-2 gail-i mutants were 

stunted, dark green in colour and late flowering (Fig.V.4A). acr4-2 gaii-3 double 

mutant plants were also indistinguishable from gaii-3 single mutants in their growth 

form (Fig.V.4B). The only difference was that the double mutant plants had shorter 

siliques due to being homozygous for the acr4-2 mutation. During analysis of the 

gai crosses it was noted that the ratios of acr4-2 gai double, and gai single mutants, 

were not in accordance with the dominance of the gai mutation - there were too few 

plants in each category. As the presumed double mutants were not test-crossed to 

confirm their genotype, it is possible that the genotyping of this cross progeny was 

incorrect. The crosses of acr4-2 to gail-i and gail-3 should therefore be repeated. 

However as no unusual phenotype was seen whatsoever during this experiment, 

there is still good evidence for a lack of interaction between GAl and ACR4. 

Therefore it seems that there is no direct interaction between the ACR4 gene and 

either the GAl or SPY genes. This result does not however invalidate the findings of 

the yeast-two-hybrid study. It could be that the effect of this interaction was not 

uncovered in this study, for example there might have been some subtle differences 

at the protein level. 
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Figure V.3. Double mutant analysis of act-4-2 with spy-i (A). spy-3 (B) and spy-5 (C). (A-C) 
Photographs of plants after live weeks growth on soil. Comparative double and single mutants are 
all phenotypically similar in terms of their vegetative development. ac,-4-2 double mutants differ 
only from the single spy mutants in carrying acr4 mutant seed. This results in the double mutants 
having shorter siliques than the single spy mutants: compare arrowed siliques of similar ages in 
each photograph (A) acr4-2 ,rpv-J double mutant plant (left) and spy-i single mutant plant (right). 
Both plants are characteristically spindly': they are early flowering, pale in colour and show an 
increase in stem elongation. (B) act-4-2 spy-3 double mutant (left) and spy-3 single mutant (right). 
(C) act-4-2 spy-5 double mutant (left) and spy-5 single mutant (right). Plants in B and C are all 
spindly' although have a less severe phenotype to that of spy-I. Scale bars: 5cm. 



J 
Figure V.4. Double mutant analysis of a(1-4-2 with gail-I tA. gail-3 B) and rI--I 

(C). Photographs of plants after (A) five weeks (B) six weeks or (C) four weeks on soil. 
(A) The act-4-2 gail-I double mutant (left) has a similar phenotype to the gail-I single 
mutant (right), although again with acr4 mutant seeds (both in Laer background). Plants 
were sprayed once a week for three weeks with 1001iM GA to rescue the plants to 
flowering. (B) The act-4-2 gail-3 double mutant (left) is of a similar size and form to the 
gail-3 single mutant (right) (both in Laer background). acr4-2 gail-3 double mutants 
contain act-4 mutant seed which results in a shorter silique length: compare arrowed 
siliques of similar age. Plants were sprayed once a week for four weeks with lOOjiM GA 
to rescue the plants to flowering. (C) ColO plant on left: both act-4-2 and crel-4 are in the 
ColO background. The crel-4 single mutant (in the middle) is indistinguishable from the 
act-4-2 crel-4 double mutant (on the right), apart from that the ae4-2 crel-4 double 
mutant has acr4 mutant seed. Sc ale bars: 5cm. 



V.3.2. ACR4 does not interact specifically with CRE1 

Crosses to acr4-2 were made in both directions for at least three homozygous 

individuals of cre]-1, crel-2 and crel-4. To investigate whether loss of CREJ-1 

function had any affect on the pattern of ACR4 gene expression, the crel-1 mutant 

was also crossed to homozygous individuals of the single ACR4 marker line 

(pACR4::H2B::YFP); the crel-2 and -4 alleles were not available for crossing at the 

time. In order to isolate double acr4-2 crel mutants, plants homozygous for the 

acr4-2 mutation were 'selected by means of their seed phenotype in the F2 

generation. Under the conditions in which plants were grown in, cre] homozygous 

mutant plants appeared to be spindlier than wild-type ColO plants. Plants 

homozygous for the cre] mutation could therefore be selected due to their growth 

phenotype. Genetic linkage was not expected between CREJ (on chromosome 2) 

and ACR4 (on chromosome 3). 

In double mutants of acr4-2 with cre]-1, -2 and -4 the defects associated with each 

allele were found to be additive as in the gai and spy crosses. The cre]-4 allele is the 

strongest of the three and the phenotypic ratio results for a representative F2 family 

generated in a cross are presented in Table V.3. The results for the acr4-2 crel-] 

and acr4-2 cre]-2 double mutants are not presented as the phenotypic results were 

the same. The ratios for each phenotype in the F2 generation were in accordance 

with no genetic linkage between ACR4 and CRE]. 

Cross No plants wild-type like single acr4 single crel Double mutant 

performed mutant mutant 

crel-4 xacr4-2 

F2(2) 19 10 3 5 1 

Table V.3. Phenotypic analysis of the F2 plants generated from a cross between crc-i -4 with acr4-2. 

acr4-2 crel-4 double mutants were phenotypically identical to crel-4 single 

mutants, apart from the presence of acr4-2 seed (Fig.V.4C); no enhancement of 

acr4-2 seed defects was seen. Therefore it does not seem that the ACR4 and GRE] 

genes interact directly. In addition there was no difference in the pattern and 

intensity of ACR4 gene expression between plants wild-type for the GRE] gene and 

those homozygous for the crel-] mutation. 
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V.4. New y-mutagenesis-generated mutants are candidate enhancers 

of the acr4 mutant phenotype 

V.4.1. A y-mutagenesis enhancer screen based on the acr4-2 mutant 

In order to identify additional components in the ACR4 signalling pathway a 

mutagenesis enhancer screen was carried out. acr4-2 homozygous seed was 

mutagenised and the resultant lines were screened for enhancement or alteration of 

the acr4-2 phenotype. The screen was designed to uncover pathway components or 

elements which act in parallel or redundantly with ACR4 in order to maintain Li cell 

layer integrity. Components directly up- or down-stream of ACR4 might not be 

identified using this approach as the ACR4 receptor is already completely null. 

Therefore mutations in such epistatic components could confer the same phenotype 

as loss of ACR4 function, and thus might be indistinguishable from the background. 

However if the downstream components are targeted by both homo- and hetero-

oligomers of ACR4 and ACR4-like proteins (see Chapter IV), or also by a parallel 

pathway then they might be detected. 7-rays were chosen as the mutagen for this 

screen rather than the commonly used EMS (ethyl -meth anesufonate) due to the 

defects in the seed coat of acr4-2 homozygous seed. It was thought that the EMS 

mutagen, which is applied in a liquid solution, might penetrate the acr4-2 seeds more 

quickly than it would wild-type seed (as was seen when using dyes and fixatives in 

Chapter III). Determining the correct conditions for the altered substrate would 

therefore have been very time and material consuming. 

About 3000 acr4-2 homozygous seeds were measured out by weighing 100 acr4-2 

seeds and multiplying up to calculate the weight of 3000 seeds. The seeds were then 

placed next to a -y-ray source for a period of time which would give an absorbed dose 

of radiation of 300 Grays. This dosage had been recommended as being optimum 

for mutagenesis for saturation of the whole genome of Arabidopsis (Frédéric Berger, 

Ecole Normale Supérieure, Lyon, France, pers. comm.). This original population of 

mutagenised seed was designated the M 0  generation. 
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All M0 seeds were sown immediately after mutagenesis on to MS agar plates to 

allow germination to take place. After two weeks growth in an incubator the number 

of seeds that did not germinate was compared to the number that germinated to give 

viable plants. The ratio of seed death of M 0  seeds was found to be high but was not 

accurately enumerated. Together with the ratio of albino-type mutations and the 

ratio of sterility found in M 2  plants this can be used to calculate the level of genome 

saturation of mutagenesis events (Jurgens, et al., 1991; Guitton, et al., 2004). 

However it was not possible to use the ratio of seed death for calculation as the ratio 

included seeds that do not germinate simply due to abnormalities associated with the 

acr4-2 phenotype. 

From this initial M 1  population, 2500 individual M 1  seedlings were transplanted to 

soil. After eight weeks on soil, seed from M 1  plants was collected. In order to create 

single segregating lines, seed was collected from individual lateral branches on 

individual M 1  plants. This ensured that all seeds in each line were either 

homozygous, heterozygous or wild-type for the same mutation(s). Plants in the M 2  

generation will therefore be segregating this mutation event as homozygous, 

heterozygous and wild-type plants in a ratio of 1:2:1. Sowing of mutagenised seed, 

transplanting of seedlings and collection of seed was carried out with technical 

assistance from Kathryn Degnan and Ross Walker. 

About 50 seeds from each M 1  seed line were sown on to individual MS agar plates 

and the resultant M2 seedlings of each line screened on the plate. This screen was 

carried out for 1000 out of the 2500 M 1  lines. The phenotype of seedlings in each 

line was compared with that of the background acr4-2 line. Any abnormalities 

which segregated in a ratio suggestive of either heterozygous or homozygous 

mutations were examined. These abnormalities included alterations in the rate of 

germination as well as defects in seedling formation. Defects in the rate of 

germination could indicate a sporophytic mutation which results in defective 

embryogenesis. Seedlings that terminate growth very early on during development 

or those which have abnormal cotyledons might be the due to irregular embryo 

morphogenesis, the effects of which are manifest after germination. For example the 

defects in gnorn homozygous seedlings are due to incorrect embryo development but 
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are visible in germinated embryos (Jurgens, et al., 1991, Shevell, et al., 1994; 

Shevell, et al., 1994). Abnormal seedling shape or size was also investigated. 

Mutations resulting in improper seedling cell layer organisation were of particular 

interest. Mutations occurring in components that act redundantly with ACR4 could 

result in enhanced outside cell layer disorganisation. The function of such redundant 

components would normally restrict cell layer integrity defects to the ovule 

integuments and to sepal margins in acr4 homozygous mutants. 

After screening on plates, 15 plants for every line (regardless of whether a defect 

on the plate was seen or not) were transplanted to soil. A second stage of screening 

was then carried out. Here a range of abnormalities were again searched for. These 

included defects in mature plant growth and form, such as smaller or spindlier plants. 

An enhancement of the acr4 mutant phenotype could be expected to adversely affect 

general plant size or shape. In addition the length of siliques was analysed: 

shortened siliques could indicate a lack of fertilisation or early seed abortion. Of 

particular interest was any enhancement or suppression of the ovule and seed 

abortion seen in the acr4-2 line. In order to be able to identify defects both during 

early and late seed development several siliques of various ages were screened for 

each plant. Seed development was observed by opening siliques and viewing them 

using a dissecting microscope. Early stages of seed development were viewed by 

choosing the fourth or fifth silique down from the last open flower. Later stages 

were analysed by choosing the tenth or eleventh silique down. A mutation with a 

gametophytic effect would be likely to result in early seed abortion and thus would 

be particularly visible at early stages. In older siliques any seeds that aborted early 

in development would be obscured by larger maturing seed. Older siliques were 

however required for analysis of seed abortion at late stages due to aberrant embryo 

development: such abnormalities would not be obvious at early stages. Any seeds 

appearing white or yellow, rather than green, were dissected to determine whether 

they had a normal morphology yet were albinos (loss of proper chlorophyll 

pigmentation), or whether they harboured a mutation altering embryo development 

itself. Out of the 1000 lines screened, 4.8% were found to carry mutations resulting 

in albino seeds and/or seedlings. 2.2% of the screened lines were found to carry a 
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mutation resulting in male sterility and thus very short siliques. Reduced male 

sterility was identified as lower amounts of pollen on the stamens of open flowers in 

comparison to wild-type or acr4-2 plant flowers. Male sterility was not of interest 

here and so any lines carrying such a phenotype were noted but abandoned. In 

general the number of lines carrying any sort of mutant phenotype seemed to be low 

(-20%), which suggests that the screen was not at saturation (Jurgens, et at., 1991). 

After the initial screen of all 1000 M2 lines, a second round of screening on the M3 

generation of all lines with interesting defects was carried out. If after screening the 

lines were not found to carry the expected defect, they were abandoned. As well as 

identifying mutant phenotypes in the lines of interest, the ratios of mutant to 

background acr4-2 seedlings was determined in order to understand how the 

mutations were segregating. 

V.4.2. Identified mutants have an enhancement in seed abortion or defects in 

cell layer organisation: are they dependent on acr4? 

V.4.2.A. Description of mutants identified in the y-mutagenesis enhancer 

screen 

After screening 1000 M2 lines a total of 130 candidate mutant lines were identified. 

After two rounds of re-screening on these lines this was narrowed down to 37 lines. 

This reduction was due to either false positive identification of defects, for example 

some apparent defects in seedling development were due to the fact that seeds had 

been collected too early and thus had not properly matured. In other lines it seemed 

to be that the M2 generation carried more than one mutation, the sum total of which 

had an effect on plant growth but when separated (in the M3 generation) did not. 

A brief description of the 37 mutants identified is given in Table V.4. Isolated 

mutants were generally divided into three categories depending on the phenotype. 

These include where a phenotype was visible in the vegetative phase of 

development, where defects occurred in seed development, or when defective 
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Table V.4. Table showing the 37 y-mutagenesis lines of interest with a brief description of each 
phenotype (see text of Section V.4.2 for details). The phenotype of each line is divided into 
'plate' (B) or 'plant' (C) phenotype which indicates at what screening stage the defects were 
noted. The 37 lines are colour coded by phenotype (A). Red indicates lines with a phenotype 
generally related to the vegetative stage of development i.e. abnormal seedlings or stunted plants 
(18 in total). Green indicates lines with defects in seed development i.e. increased seed abortion 
(seed ab.) or reduced germination rate (xgerm) (14 in total). Blue indicates lines in which 
defective embryo development is observed when siliques are screened; seeds containing these 
defective embryos germinate to produce abnormal seedlings (5 lines in total). An asterisk 
indicates that some lines carried mutant seedlings that could survive on soil. Therefore the 
phenotype recorded for 'plate' and 'plant' refers to the defects seen in the same individual (e.g. 
line 18). The average ratios of the mutants in each line are indicated below the phenotype. This 
includes the average % of seed abortion for lines carrying such a defect. 

The table also shows the results from screening the F2 generation resulting from crosses 
carried out to determine whether the new mutations were dependent on the acr4-2 mutant 
background (D) and crosses carried out to clean up the new lines (E). Not all results were 
obtained due to time restrictions; some lines have been crossed but not screened. (F) For each 
test the cross carried out and the F2 family number (in brackets) is included. (G,H) All F2 
families were screened on plates (G) and most were then also screened at the mature plant stage 
(H). At the mature plant stage the phenotypes of F2 family members were divided into four 
categories. In the F2 families resulting from crosses to clean up lines there were only two 
categories: plants homozygous for the acr4-2 allele (thus carrying acr4 mutant seed) with or 
without the new mutation (acr4 and new, or acr4). In crosses to check for dependency there 
were also ACR4-2-like plants with or without the new mutation (ACR4 and new, or ACR4 -like). 
The ratios of interest for each cross are highlighted in red. A dash indicates that no plants of the 
phenotype indicated could be present (e.g. no ColO plants in the crosses to acr4-2). A blank box 
indicates that screening for plants of the phenotype listed was not carried out (i.e. for some of the 
crosses to mutants carrying a phenotype visible on the plate, the mature plants were not 
screened). See Section V.4.3 for details about line 852. cots, cotyledons; sm, small; wh, white; 
xger, not germinated. 
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embryo development was manifest and apparent in both seeds in the silique and in 

the resultant germinated seedlings. Not all mutant phenotypes and the ratios of 

segregating mutations in the lines isolated were investigated in depth due to time 

constraints. Only lines which were dependent on the acr4-2 background were of real 

interest. A brief summary of the phenotype in each line and some preliminary 

conclusions will however now be given. 

Some mutants found were very similar or identical to known mutants. The mutants 

isolated here might therefore represent the same alleles or new mutations in those 

genes. Lines 18 and 537 carried asymmetric leaves]-like seedlings which are small 

and squat due to abnormal leaf patterning (Byrne, et al., 2000; Xu, et al., 2003). 

Line 248 carried fusca-like embryos and dark brown abnormal seedlings. fusca 

seedlings are defective in responses to various endogenous and environmental 

factors (Castle and Meinke, 1994; Misera, et al., 1994). This causes a build up of 

anthocyanins in fusca embryos and the resultant seedlings, which gives them a dark 

purple/brown colouration. Line 561 mutant seedlings were similar to embryonic 

flower-like seedlings (Yang, et al., 1995; Chen, et al., 1997) (Fig.V.5E). EMF 

polycomb-group genes mediate shoot development and flowering (Moon, et al., 

2003). The other mutants of interest seemed to be novel, or at least were not clearly 

identifiable as known mutants. 

Around a third of the 37 mutants isolated carried defects resulting in increased seed 

abortion at a late stage in development. This increase was obvious above the normal 

levels of seed abortion seen in acr4-2 mutants. It was also visible as the aborting 

seeds which carried the new mutation were all of the same developmental age, unlike 

the aborting seed in acr4-2 mutant siliques. Lines with increased late stage seed 

abortion included lines numbered 136, 145, 159, 468, 470, 498, 552, 645, 662, 685, 

784, 841 and 899. In the siliques of these lines the aborting seeds were yellow or 

brown, whilst those at the same developmental stage in wild-type were green. The 

stage at which abortion occurred varied between the different lines. In general it 

ranged between the late heart and bent cotyledon stages of embryo development. As 

all aborting seeds in these lines were of roughly the same phenotype it was likely that 

the abortion was directly due to abnormal embryo development (unlike in acr4-2). 
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The ratio of seed abortion within siliques varied between the lines listed above. 

Some lines had roughly 50% late seed abortion which suggested a female 

gametophytic mutation (lines 145, 159, 468, 470, 498, 662, 685). Others had 

roughly 25% seed abortion which suggested a sporophytic defect (lines 136, 552, 

645, 784, 841, 899). In some lines the stage at which seeds were aborting was much 

later than others and there was a reduced germination rate. In these cases the ratio of 

seed death was equivalent to the ratio of seeds not germinating, which suggested that 

the aborting seeds could be harvested, but then were not viable (lines 498, 662, 685, 

784). 

One line, 271, carried a putative sporophytic mutation that caused early seed 

abortion, around the globular stage of embryo development. Another line, 977, 

carried seeds which contained embryos that looked white. These were not albinos 

but the reason for the colour alteration was not apparent. The germination rate for 

line 977 was normal and there were no visibly abnormal seedlings in the line. 

In five lines there were both seed abnormalities in the silique and malformed 

seedlings. It is possible that in these lines the abnormal seeds do not abort totally 

and thus can be harvested and can germinate. However as the seeds contain 

defective embryos, the resultant seedlings will be defective and so do not continue 

growth after cotyledon and/or root emergence. This group of mutants include the 

Jlisca-like defective mutants seen in line 248. In addition it includes lines 57 

(Fig.V.5A), 60 (Fig.V.5B), 514 and 540 (Fig.V.5D) in which mutants had late stage 

(or globular stage for 60) seed abortion as well as small and defective seedlings. 

Seven lines carried mutations resulting in defective seedling development. The 

emf-like line 561 also falls into this category. Lines 160 (Fig.V.5C), 527, 851 

(Fig.V.5F,G) and 933 (Fig.V.5J) had small and malformed seedlings with 

deformities. Line 895 mutant seedling cotyledons and leaves were pale in colour. 

The apparent outgrowths on seedlings in line 852 (Fig.V.5H,I) were of particular 

interest and will be discussed in detail in Section V.4.3. 

Four lines contained mutants which had abnormal seedling and mature plant 

morphology. The abnormal seedlings in these lines could be grown to maturity 

although there were associated defects in fertility in the mutant plants. These lines 
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Figure V.5. Phenotype of lines generated from a y-mutagcnesis screen. (A-L) Photographs of 
two-week old seedlings in y-mutagenesis lines exhibiting a range of phenotypes. All seedlings 
shown are in the act-4-2 homozygous background. (F.J) Photographs also show acr4-2 sibling 
seedlings in the top right of the picture for comparison. (A) Line 57 mutant seedlings are stunted 
and lumpy. The hypocotyl in particular is thicker. (B) Line 60 mutant seedling development is 
stunted. Seedlings have very small cotyledons and leaves and if present a shortened root. (C) 
Line 160 mutant seedlings are similar to those of line 60, although with a more normal root. (D) 
Line 540 mutant seedlings are about half the size of wild-type. The leave are yellow or almost 
transparent. (E) Line 561 mutant seedlings are e,nf-like as discussed. (F.G) Line 851 mutant 
seedlings are very small and have a wet appearance. The mutant seedlings show a lack of proper 
development with the apex appearing disorganised. (H,!) Line 852 mutant seedlings appear to 
have outgrowths of cells over the entire surface of green parts. See Fig.VL.6 for more details. (J) 
Line 933 mutant seedlings are similar to those in line 57 (A). (K) Line 724 mutant seedlings have 
leaves which curve upwards at the edges. The leaves are also dark in colour. (L) Line 980 
mutant seedling leaves are pointed at the tip and pale in colour. Unlike all other mutant seedlings 
shown here, those of lines 724 and 980 can grow to maturity on soil, producing a limited number 
of seeds. N.B. The number of mutant seedlings in pictures also containing wild-type siblings is 
not representative of the ratios actually seen within each line, cot, cotyledon: Scale bars: 1mm 
except (G) 500p.m. 



included the two as-] like lines 18 and 537. Line 724 mutant seedlings had leaves 

which curled upwards at the edges (Fig.V.5K). As the mutant plants in line 724 

matured, the leaf edges became serrated. Mutant seedlings in line 980 had pale 

coloured leaves which were pointed at the tips (Fig.V.5L). 

The final group of mutants had normal seed and seedling development but had 

abnormal plant architecture or form. Mutant plants in lines 70 and 166 were stunted 

in size (about 1/3 of the height of the acr4-2 background) and had spindly stems. 

Line 70 mutants were also early flowering and fairly sterile. Mutant plants in lines 

443 and 778 were both spindly with phenotypes that had some similarity to that of 

the spy mutant alleles. There was a reduction in fertility in line 778 but not in line 

443. Line 546 mutant plants had several defects: white stems, serrated leaves and 

sterility. These three defects were all linked, but it seems likely that more than one 

gene is affected as such a combination of abnormalities is unusual. Mutant plants in 

line 619 were of normal height but had smaller serrated leaves. 

Out of all the mutants with defective seedling development, mutants in lines 57, 

851, 852 and 933 were of particular interest. The seedlings of these lines showed 

abnormalities resulting in lumpy or disorganised cotyledons and leaves which were 

suggestive of some sort of cell-layer organisation defect. 

V.4.2.13. Clean-up of lines and test of dependency on the acr4-2 background 

In order to test whether the phenotypes caused by the new mutations of interest were 

dependent on the original acr4-2 background mutation, crosses were made to ColO 

(the original ecotype in which ACR4 was mutated). These crosses were used to see 

whether the new mutations would be apparent in a ColO background (not dependent), 

or whether they were only visible in the acr4-2 background or were exacerbated in it 

(and thus were dependent). In order to do this, plants either heterozygous or 

homozygous (when possible) for the new mutation (in the acr4-2 background) were 

crossed to ColO plants. Several crosses for each line were performed and the 

heterozygosity of the new mutation in the F2 generation for each cross was 
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confirmed. The F2 generation was analysed by screening for the new phenotype of 

interest and examining the segregation ratios of expected phenotypes in comparison 

to the actual numbers. If a new mutation was dependent on the acr4-2 background 

then the mutant phenotype would only be visible in acr4-2 plants. The ratio of 

plants carrying the new mutation in the ACR4-21Co1O background would thus be 

much lower than expected for two independent and unlinked mutations. The 

dependency of mutants which had defects in seed development or vegetative 

development could easily be determined by screening the plant siliques to identify 

acr4-2 homozygotes orACR4-2-like plants, and then screening for the new mutation. 

In crosses to lines carrying mutations which caused a phenotype visible at the 

seedling stage, the F2 families were generally only screened on plates to test the 

dependency of the mutation. However a problem with this approach arises if a 

mutated gene which causes seedling death is linked to A CR4. If it is, then the same 

ratio of mutant seedlings would be expected even if the mutation was not dependent. 

This is because due to reduced recombination, a higher number of double mutants 

would be seen in comparison to the number carrying the new mutation in the A CR4-

2IColO background. This would therefore make it appear as if the mutation was not 

dependent. Whether or not the gene in which the new mutation occurs is linked to 

ACR4 can however be determined. All F2 seedlings can be transplanted and then the 

number of acr4-2 homozygous plants compared to the number of wild-type plants 

(determined by examining the siliques). If there is a much lower ratio of acr4-2 

homozygotes than expected, it is likely that the two genes are linked: the majority of 

acr4-2 homozygotes would have died at the seedling stage due to carrying two 

copies of the new mutation (because they were double mutants). This test has been 

carried out for two of the six lines in question (537 and 852) and will be carried out 

for the remaining seedling mutants in the future. 

Even although not all isolated mutants were likely to be dependent on acr4-2 (for 

example the emf-like allele), all lines were crossed to ColO. The results from the 

dependency check are presented in Table V.4. Due to time constraints not all 

dependency test results have been obtained (27/37). 
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Out of all the mutants tested thus far, none of the mutant phenotypes have been 

found to be dependent on the acr4-2 background; see Section V.4.3 for discussion of 

the result for line 852. In the test crosses it was possible to isolate all of the new 

mutations in a ColO background. In addition the ratios as presented appear to be 

generally in agreement with the expected ratios (compared to how the mutations 

normally segregate). This suggests that none of the isolated and tested mutations are 

in genes that interact directly with A CR4. Some mutants which have apparent 

defects in seedling layer organisation such as those in line 852 (see Section V.4.3) 

however are still of interest as they could potentially be part of separate pathways 

which are involved in regulating cell layer organisation, independent of the function 

of ACR4. These mutants might therefore be of use in future research. In addition 

some of the mutants not tested, such as 57, 851 or 933 could turn out to be dependent 

and so be of special interest in further work. 

For such particularly promising new mutants, and most other mutants, back-crosses 

to the original ac4-2 background line were performed in order to remove any 

additional mutations caused by the mutagenesis. These crosses were therefore used 

to 'clean-up' the lines for future analysis (see Table V.4). Where mutations were not 

dependent on the acr4-2 background such crosses were not always performed due to 

time restrictions, and also because the new mutations had already been selected in 

the clean ColO background. 

V.4.3. hulk mutants have a loss of epidermal integrity 

One mutant of particular interest was that in line 852. This is a novel mutant, 

although a mutant with a phenotype which bears some similarities to it has been 

reported recently (Basu, et al., 2004); see later for discussion of this research. One 

quarter of seedlings in this line seemed to have outgrowths of epidermal cells on the 

surfaces of leaves, cotyledons and petioles. The ratio (¼) is consistent with these 

abnormal seedlings being homozygous for a new mutation. These mutant seedlings 

were not able to survive when transplanted to soil: a high humidity environment was 
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required. In order to investigate the apparent surface outgrowths, seedlings were 

examined using scanning electron microscopy (SEM). 

Seedlings were cryo-fixed, gold-vapour sputter coated and viewed under the SEM 

(Fig.V.6). A representative example of a mutant in line 852 is shown in Fig.V.6A. 

The apparent outgrowths over the surfaces of the seedlings turned out to be tears in 

the epidermal cell layer (Fig.V.613). In addition there were holes in the surface of the 

cotyledons (Fig.V.613). In comparison the surface of an acr4-2 sibling seedling is 

free of epidermal tears or holes (Fig. V.6C). 

The tears in the epidermal layer of mutants were the result of the fact that the 

epidermal cells were not properly attached to one another. Unlike the epidermal 

cells of an acr4-2 homozygous mutant plant cotyledon which are properly connected 

(Fig. V.61: leaf), the epidermal cells of cotyledons and leaves in line 852 mutants 

have small gaps between them (Fig.V.6G: leaf). As the organs in line 852 mutants 

expand, the epidermal cells do not maintain their connections and are pulled apart 

(Fig.V.6H: cotyledon). This results in large holes appearing in the surface of 

cotyledons and leaves (Fig.V.D,E: cotyledons). Such holes are not present in the 

acr4-2 mutant (Fig.V.6F: cotyledon). Where large regions of cells in the line 852 

mutant pull apart, curls of epidermal cells are apparent (as in Fig.V.613). These tears 

are particularly obvious on the petioles of seedling leaves (Fig.V.0,K). The petiole 

of an acr4-2 mutant in contrast is smooth with no holes or rips in the epidermal cell 

layer (Fig.V.6L). It is the presence of these holes and tears in the epidermal cell 

layer that means that line 852 mutants cannot survive in the air. Due to these holes 

the surface of the 852 mutants is often covered in liquid which has been exuded from 

the exposed underlying cells. An intact epidermal layer normally stops this from 

occurring. The mutant in line 852 was named hulk. At the leaf margins the cells of 

hulk mutants are also disorganised (Fig.V6M). The defects seen there are 

reminiscent of the loss of cell organisation seen in sepal margins. The defects in cell 

layer integrity seen in hulk mutants only affect the aerial parts of the seedlings, the 

roots appear to be normal. As seen in acr4-2 mutants, hulk mutants range in their 

severity of defects, dependent on the degree of loss of cell adhesion (compare 

Figs.V.D and E). Overall though the seedlings are fairly similar. 
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Figure V.6. Phenotype of the hulk mutant. (A) Light microscopy image of a representative two 
week old hulk mutant seedling. (B,D,E,G,H,J,K,M,N) SEM images of hulk mutants. (C,F,I,L,O) 
SEM images of an acr4-2 sibling. (A) hulk homozygous mutant seedlings appear to have 
outgrowths of tissue on the surfaces of cotyledons, petioles and leaves. The hulk leaves look 'wet' 
to the eye. These seedlings only survive in a highly humid environment, hulk mutant roots appear 
to be normal. (B) Under SEM the apparent outgrowths are actually rips of tissue (arrowhead). 
There are also holes in the cotyledon surface (arrows); holes are also present on the surface of 
leaves. (C) Such rips and holes are not present on the surface of an acr4-2 mutant seedling. (D,E) 
At higher magnification the holes in the cotyledons (arrows) are particularly obvious in hulk 
mutants; the defects in (E) are more severe than those in (D). (F) No holes are visible in acr4-2 
mutant cotyledons. (G,H) The holes occur as a result of loss of epidermal cell connection. (I) In an 
acr4-2 leaf the epidermal cells are properly connected and the surface is smooth. (0) In a young 
hulk leaf small gaps between the edges of epidermal cells are visible (arrow). (H) As the hulk leaf 
(or cotyledon as shown here) expands, the epidermal cells are pulled apart and the underlying 
mesophyll cells are visible where holes appear (arrows). (J,K) Rips in the epidermal layer of the 
hulk leaf petiole are evident as areas where the epidermal layer has 'pealed' away from the 
underlying cells (arrows). (K) Mesophyll cells beneath the epidermal layer in hulk petioles seem to 
be forming a cuticle (star). (L) acr4-2 mutant leaf petiole cells in contrast are well organised and 
the surface integrity of the outside layer is maintained. (M) The margins of hulk leaves are 
disorganised and irregular. Lumps of cells are visible (arrowhead) as well as gaps in the epidermis, 
as were seen in hulk cotyledons (arrow). (H,J,M) Epidermal cell identity in hulk mutants appears 
to be correctly specified, but there are differences in the numbers of stomata. The stomatal density 
is increased in many area (stars). In addition stomata are not properly formed and guard cells often 
protrude above the leaf surface. (N) Two guard cells that have not properly developed appear to be 
pushed out between two epidermal cells of the hulk leaf. (0) SEM showing stomata in an acr4-2 
mutant leaf which are flush with the epidermal cell layer. In (G) a stoma is abnormally covered by 
cuticle (star). Scale bars: (A-F) 500jim, (G-I) 50im, (J-M) lOOp.m (N-0) 20jtm. 
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It is clear that hulk mutants only have a single epidermal cell layer, just as acr4-2 

mutants (there were in fact no epidermal outgrowths as it was initially thought). The 

mesophyll cells are visible directly through the holes in the epidermal layer (Fig. 

V.6.H,K). In addition the epidermal cells themselves seem to be relatively normal: 

they form proper trichomes (on the leaves) and stomates at the epidermal surface 

(compare Fig.V.6G and I; J and Q. The epidermal cells however do appear to be 

distended, suggesting that there may be an effect on cell morphology due to the hulk 

mutation. It seems therefore that an epidermal identity is being properly specified. 

It seems that there is rather a loss of epidermal layer integrity in hulk mutants, just as 

is seen in acr4 mutants. There do however appear to be consequences on the 

behaviour of the exposed mesophyll cells of hulk mutants. The mesophyll cells seem 

to be forming a cuticle which is visible as a 'skin' between adjacent cells (Fig.V.6K). 

Interestingly hulk mutant seedlings have a higher density of stomata. In addition 

the stomata are incorrectly spaced, often being clustered together (Fig.V.6H,J,M). 

The acr4-2 mutant seedling in comparison has regularly spaced stomata (see 

Fig.V.60 cotyledon and Fig.V.6L petiole). The morphology of many stomata in 

hulk mutants is also abnormal. Stoma in acr4-2 mutants are composed of properly 

developed and connecting guard cells which appear flush with the surface of the 

epidermis (Fig.V.60). In comparison the guard cells of some stomata on the leaves 

and cotyledons of the hulk mutant are pushed up on top of the epidermis surface, 

which gives these stomata an unusual shape (Fig.V.6N). The guard cells themselves 

seem to have a normal morphology but the shape of the stomatal pore seems to be 

abnormal. In a stoma the stomatal pore is formed between two guard cells which are 

connected by a ventral wall. In wild-type during stomata] development a lens-

shaped thickening occurs in the middle of the ventral wall. After the wall thickening 

reaches a critical stage, the anticlinal walls separate in the region of the thickening to 

create the stomatal pore (Zhao and Sack, 1999; Bergmann, 2004). In hulk mutants 

the connections between cells are not properly formed or maintained. This is likely 

to impact upon the shape of the stomata, as proper connections between the two 

guard cells must be maintained in order to create the correct forces required for pore 

formation. The stomata] defects here can therefore be explained by the lack of 



connection between the guard cells. As well as defects in stomatal morphology there 

is also a higher density of stomata on hulk leaf surfaces as mentioned above. The 

regulation of stomatal density is tightly controlled and is thought to be controlled by 

a diffusible lipid-soluble signal which regulates the asymmetric cell divisions 

involved in stomatal formation (von Groll and Altmann, 2001). If the surface 

integrity of the epidermal layer is not maintained, as is seen in hulk mutants, then 

signals which travel between cells to regulate cell layer patterning would likely be 

compromised. Such an effect on the development and distribution of stomata seems 

to be occurring here. 

The hulk mutation is not dependent on the acr4-2 background. The results of this 

dependency test will be discussed shortly. From the phenotypic evidence HULK is 

still a good candidate to be involved in some aspect of maintaining outside layer 

integrity. However it is possible that other processes are affected in hulk mutants 

which would cause the phenotype seen. One possibility is that HULK encodes a 

protein which is simply involved in maintaining correct cell adhesion as a 

component of the cell wall. In order to address this point a comparative analysis of 

the composition of the cell wall in the hulk mutant and the background acr4-2 

mutant was carried out in the lab by Kim Johnson. Both the aerial parts of the plant 

and the roots were compared. It was found that the pectin types and levels in both 

roots and aerial parts were normal. Apart from cellulose, pectins constitute a major 

part of the cell wall. They constitute most of the middle lamella which 'glues' 

neighbouring cells together (Brett and Waldron, 1996). As these are normal it 

provides some evidence that hulk mutants are not compromised in cell wall structure. 

Interestingly it seems that there are effects on cuticle formation in hulk mutants. The 

hulk mutants appear to be producing more cuticle than acr4-2 mutants. Many 

stomata appear to be covered in cuticle (Fig.V.6G) and the underlying mesophyll 

layer was seen to be producing a cuticle when left exposed (Fig. V.6K). At present 

the possibility that HULK is involved in maintaining cell layer integrity by regulating 

the production of the cuticle is being investigated in the lab by Gwyneth C. Ingram 

and Kim Johnson. 

169 



When line 852 was under investigation it was found that an additional phenotype 

was visible in some heterozygous hulk lines. As well as hulk seedlings as described 

above (Fig.V.7A) there were some seedlings with similar but much less pronounced 

defects (Fig.V.7B). In these seedlings the hulk-like surface defects were visible on 

the cotyledons and on some leaf petioles but the leaves were almost normal. See Fig. 

V.7C for a comparative acr4-2 seedling. There were obviously still some defects in 

the leaves of this mutant however as the seedlings were much more susceptible to 

drying out than acr4-2 mutant seedlings were. When these mutant seedlings were 

viewed using SEM the cotyledons were seen to be as defective (full of holes) as 

those of hulk (not shown). The leaves of this mutant still had some holes in the 

epidermal layer but there were far fewer holes than in the epidermis of hulk seedling 

leaves. This variant of hulk was named suppressor of hulk (sulk). In line 852 

families which carried this hulk variant there was roughly one sulk seedling for every 

three hulk seedlings. This ratio is consistent with the likely effects of a suppressing 

mutation. When seedlings are homozygous for sulk the hulk phenotype is slightly 

alleviated. Not all line 852 families carried sulk seedlings and thus the hulk and sulk 

mutations do not seem to be linked. The effects of the HULK and SULK genes 

perhaps counteract each other in wild-type plants. 

The dependency of hulk on the acr4-2 background was tested as for the other 

isolated mutants. Unbeknown at the time, a line carrying both the hulk and sulk 

mutations was crossed to ColO. In the F2 of this cross 24 hulk mutants, 5 sulk 

mutants and 100 seedlings which were acr4-2 homozygous, heterozygous or ACR4-

2 wild-type were seen. This ratio is accordance with the hulk mutant not being 

dependent on the acr4-2 background. In order to confirm that the mutations were 

not dependent but linked (as discussed earlier), 24 mature F2 plants were screened. 

Four of these were found to be homozygous for the acr4-2 mutation, consistent with 

no dependency and no linkage. 

In summary then, various new mutants of interest were isolated by carrying out an 

enhancer screen on a mutagenised population of acr4-2 mutants. The most 

promising candidate mutant enhancer of the acr4-2 phenotype was found in line 852 
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Figure V.7. Phenotypes of the hulk and sulk mutants. (A-D) Photographs of two-
week old seedlings. (A) hulk homozygous mutant exhibiting characteristic lumpy 
cotyledons, petioles and leaves. (B) The sulk mutant has lumpy cotyledons and 

cotyledon petioles (black arrows) which appear white and rough in texture. The true 

leaves and leaf petioles in contrast appear almost as wild-type (red arrows). They are 

however more susceptible to desiccation than an acr4-2 homozygous or wild-type 

seedlings, which gives sulk seedlings a limp appearance if exposed to the air for a short 
period of time (five minutes). (C) Wild-type sibling seedling (in an act-4-2 mutant 

background). Scale bars: I mm. 



and was named hulk. Although hulk was later found not to be dependent on the 

acr4-2 mutant background, the defects in epidermal cell layer integrity in hulk plants 

are still of interest. In addition a potential suppressor of the hulk phenotype, sulk, 

was also identified. The hulk and sulk mutants are currently being investigated in the 

lab as mentioned above. This work will involve further characterisation of the hulk 

and sulk phenotypes as well as identification of the HULK and SULK genes by 

mapping. 

Interestingly recent research has uncovered a gene which when mutated has some 

similarities in phenotype to hulk. In a new paper by Basu, et al. (2004) the function 

of the PIROGJ (PIR) gene was investigated. The PIR gene is part of a complex (the 

'distorted group') of genes in Arabidopsis which is involved in remodelling the actin 

cytoskeleton. PIR function is required for maintenance of cell shape and in 

particular the polarised growth of trichomes. When PIROGI gene function is lost a 

range of cell shape and actin-cytoskeleton related phenotypes are seen. These 

include partial loss of cell adhesion between leaf cotyledon pavement cells, a 

phenotype which is similar to the reduced adhesion seen in hulk mutants. The 

defects are not however identical, the cell adhesion defects are of a much lower 

severity in pir mutants in comparison to those of hulk and the pir seedlings can 

survive on soil. In addition there are other defects such as aberrant tnchome shape 

which are not seen in hulk mutants. The similarity is however interesting because a 

link between maintenance of cell layer integrity (as regulated by A CR4) and actin 

cytoskeleton dynamics is certainly not unlikely. As discussed in Chapter I, the actin 

cytoskeleton is an important factor in the regulation of cell shape, organelle 

positioning and intracellular transport in plant cells (Mathur and Hulskamp, 2002). 

It can be postulated that the regulation of actin cytoskeleton dynamics is therefore 

important when maintaining correct cell organisation, and vice versa. Similar small 

defects in epidermal adherence as well as trichome abnormalities were seen in atarp 

mutants which also have defects in actin polymerisation (Le, et al., 2003). It is 

possible that there could be a direct interaction between genes such as ATARP, 

PIROGI and HULK. Upstream of these genes ACR4 might indirectly influence their 
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expression or regulation. In addition there is a possibility that genes involved in 

regulating the actin cytoskeleton are important for the correct localisation and/or 

endocytosis of ACR4 (See Chapter IV). The actin cytoskeletal framework is 

important for transport of proteins within the cell (Mathur and Huiskamp, 2002) and 

for proper regulation of endocytosis (Samaj, et al., 2004). These lines of 

investigation would be interesting to follow up as part of future research. 

One problem with the use of a y-mutagenesis screen is that the identification of the 

site of mutagenesis in a mutant line is a particularly time consuming process. It 

involves a series of crosses between the mutant line (which is in one ecotype 

background) and a second ecotype, followed by the tracking of genetic markers 

which differentiate between the two ecotypes. A second type of mutagenesis makes 

use of random t-DNA insertions into the background of interest. TAIL PCR can then 

be used to map insertion sites with more ease (Singer and Burke, 2003). One 

particularly useful variant of this is activation tagging which can be used to produce 

dominant mutations (Weigel, et al., 2000; Memelink, 2003). This approach was not 

taken here however, partly due to time constraints resulting from the fact that t-DNA 

is a less penetrant mutagen than y-rays or chemical alternatives such as EMS. In 

addition it was not because the starting background line (acr4-2) already contained a 

t-DNA insertion. The presence of the original t-DNA could have led to silencing of 

the newly inserted t-DNA. Such silencing would inhibit the activation tagging and 

thus gain of function mutants would not be generated. This approach can however 

now be taken by using the isolated TILLING lines as the starting basis. Loss of acr4 

function TILLING alleles do not contain t-DNA insertions and thus would be a 

useful basis for an activation tagging enhancer screen. 
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V.5. Other aspects of the ACR4 signalling pathway 

It has been shown here that ACR4 does not directly interact either with genes which 

are specifically involved in regulating ovule development, or with elements of the 

cytokinin or gibberellic signalling pathways. In addition it had been shown 

previously that the expression pattern of ACR4 was not affected by mutations in a 

number of genes involved in embryo development: gurke, gnom, monopteros and 

ettin (Gwyneth C. Ingram, pers. comm.) (the roles that these genes play is reviewed 

in Jurgens, 2001). Also in previous work the acr4-2 mutant was crossed to an 

AtML1 protein fusion line; AtMLJ is a gene which is involved in specifying the Li 

layer of plants (Lu, et al., 1996). AtML1 was found to be localised to Li cells in a 

normal fashion in acr4-2 mutants (Gifford, et al., 2003). These results together 

confirmed that the ACR4 gene was not involved in specifying Li cell layer identity 

per Se, or involved in regulating the development of specific organs. Rather it seems 

that ACR4 plays a role in maintaining the integrity of the Li cell layer. 

So far no genes have been found to interact directly with ACR4. The other 

members in an ACR4-directed pathway which is involved in controlling Li integrity 

are therefore as yet unknown. Some of the newly isolated mutants from the y -

mutagenesis enhancer screen described in Section V.4 could be involved in this 

pathway. In addition, although the hulk mutation was not found to be dependent on 

the acr4-2 background, the HULK gene could be involved in regulating a related 

process to that controlled by ACR4. As discussed, hulk is now the subject of 

investigation by other members of the lab. As mentioned in Chapter IV the other 

ACR4-like genes in Arabidopsis are also being studied. In addition a second yeast-

two-hybrid screen using the extracellular domain of ACR4 is being carried out by 

Ross Walker in the lab to search for possible ACR4-ligands. 

Recent research elsewhere has brought to light some other possible genes that 

might be involved with ACR4 directly, or might be involved in other aspects of cell 

layer organisation. Firstly a potential link between WUSCHEL and ACR4 was 

addressed. It was found recently that the WUSCHEL (WUS) gene which plays a role 
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in stem cell regulation in shoot and floral meristems, is also involved in regulating 

ovule development (Gross-Hardt, et al., 2002). wus homozygous mutant seedlings 

terminate development prematurely, just after a few leaves are formed. As discussed 

in Chapter I, this termination is due to the fact that the wus meristem population of 

stem cells is not properly maintained. A role for WUS in controlling ovule 

morphogenesis was uncovered through a combination of expression pattern analysis 

and by rescuing wus seedlings to the reproductive stage (Gross-Hardt, et al., 2002). 

WUS is expressed in the nucellus of ovules and the intensity of gene expression is 

greatest in the region where the integuments are initiated. wus plants were rescued to 

the stages of ovule development to determine whether WUS played a role in the 

nucellus. In rescued plants abnormalities in ovule morphogenesis were indeed found 

- wus mutant ovules were found to lack integuments. These defects were found to be 

due to compromised inter-regional signalling between the nucellus and the chalazal 

region during ovule formation. WUS activity seems to generate a signal in the 

nucellus which controls integument initiation in the chalaza. Therefore WUS, like 

ACR4 plays a role in regulating ovule integument development. Interestingly the 

ACR4 promoter contains three perfect putative WUS transcription factor binding sites 

(WUS binding site analysis in Lohmann, et al., 2001; Hong, et al., 2003). Together 

these two pieces of evidence suggested that there might be a genetic link between 

ACR4 and WUS. In order to investigate this possibility double mutants between the 

two genes were generated and screened for any enhancement of phenotype (as for 

the crosses in Sections V.2 and 3). 

Crosses to acr4-2 were made in both directions for at least three heterozygous wus-

1 individuals. wus-1 heterozygotes were also crossed to homozygous individuals 

carrying the single ACR4 marker transgene (pACR4::H2B::YFP). This was carried 

out in order to determine whether loss of wus function had any affect on ACR4 

expression. The heterozygosity of plants in the wus-1 mutant line was confirmed by 

checking for segregation of wus-1 homozygous seedlings in the progeny of the plants 

crossed. In order to isolate double mutants, plants homozygous for the acr4-2 

mutation were selected by means of their seed phenotype in the F2 generation. Seed 

from these acr4-2 homozygotes was collected and sown out. Any wus-] seedlings 
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that segregated out in the F3 generation were therefore double mutants. The number 

of seedlings and plants of each expected phenotype in the F2 and F3 generations 

were counted and the results for one representative cross are presented in Table V.5. 

Again, as in Section V.2. with the ovule development mutants, the wus-] mutant was 

in the L er background while acr4-2 was in the ColO background. However as 

before no differences between the phenotypes of plants with or without the erecta 

mutation were seen. 

Genetic linkage was not expected between WUS which is on chromosome 2, and 

ACR4 which is on chromosome 3. The ratios for each phenotype seen were in 

accordance with no genetic linkage between the two genes. 

Cross performed No plants wild-type-like single acr4 single wus Double mutant 

mutant mutant 

wus-1 x acr4-2 

F2 (1) 10 6 1 3* * 

F3(6) 17 - 9 - 8 

Table V.5. Phenotypic analysis of the F2 and F3 plants generated from a cross between wus-1 and 

acr4-2. *This F3 family originated from the one F2 plant that was homozygous for the acr4-2 

mutation. *plants  of these two genotypes would have looked indistinguishable. 

The phenotype of mutant seedlings that were homozygous for both the acr4-2 and 

wus-1 alleles was found to be identical to that of wus-1 mutant seedlings (Fig.V.8). 

Both the single and double mutant seedlings both terminated development prior to 

full leaf emergence. In addition no difference in the expression pattern of ACR4 was 

seen in the root or meristem in wus-1 homozygous seedlings in comparison to that 

seen in wild-type. Therefore at early stages it seems that there is no direct 

interaction between ACR4-2 and WUS. However this does not exclude the 

possibility that there is an interaction later on, during ovule development. acr4-2 

wus-1 plants were not rescued to flowering as in Gross-Hardt, et al. (2002). It is 

possible that if they were, a genetic interaction between the two genes would be 

uncovered. This experiment would be useful to carry out as part of future work. 

Another gene of interest is PRESSED FLOWER (PRS) which encodes a homeobox 

transcription factor that is related to WUS (Matsumoto and Okada, 2001). PRS is 
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Figure V.8. Phenotype of acr4-2 wits-1 double mutant. Photograph of 10 day old 
act-4-2 'us-1 double mutant (A), wus-1 single mutant (B) and wild-type sibling (C) 
seedlings. The act-4-2 wus-! double mutant is indistinguishable from the wus-1 single 
mutant. Both lack activity at the apical meristem which normally results in 
production of leaf primordia and leaves (as seen in the wild-type). Scale bar: I mm. 



involved in regulating lateral axis-dependent organ development. PRS is expressed 

in Li cells at the lateral regions of various organs including those of the floral sepals, 

at the sepal margins. It is the role of PRS in sepal margins which is of interest here. 

Loss of PRS expression results in loss of the marginal cells of the sepal. In contrast 

when the gene was over-expressed using 35s enhancers sepal margin-like structures 

were formed over the whole sepal surface, rather than just at the margin. This results 

in sepals with white wrinkly structures on the edges (see Fig.V.9D). This was 

thought to be due to over-proliferation of cells. In addition an over-proliferation of 

cells was observed in the form of multicellular bulges on the stems and peduncles of 

35s::PRS plants. 

Together this data led to the hypothesis that PRS could be involved in a process by 

which the proliferation of marginal cells is activated. The timing and location of 

PRS expression at the leaf margins of leaf primordia correlates with the temporal 

activity of the marginal meristem. PRS is related to the NARROW SHEATH (NS) 

genes in maize which are also required for the development of leaf margins (Gross-

Hardt, et al., 2002). Recent research into the NS genes has further uncovered the role 

of PRS. It seems that the NS genes in maize and the PRS gene in Arabidopsis are 

both involved in a process by which organ founder cells are recruited from a lateral 

domain of plant meristems. 

Interestingly there are parallels between the role that PRS plays in sepal marginal 

cells and the role that WUS plays in ovule integument outgrowth. As mentioned PRS 

is expressed in marginal sepal cells and when there is loss of PRS function there is a 

loss of marginal sepal cells. Interestingly WUS is strongly expressed in the outer 

layer of nucellus, in cells which will form the integuments (Gross-Hardt, et al., 

2002). When WUS function is lost those integument cells do not form: the 

integument cells are lost. This parallel is intriguing and suggests that these two 

related genes have related functions in different parts of the plant. Whether over-

expression of WUS would result in over-proliferation of integument cells is yet to be 

investigated. 

In order to explain the role of PRS it can be hypothesised that there is a signal from 

the L2 cell layer to the Li cell layer which is important in maintaining a single cell 
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thick (monolayer) outside layer. This would inhibit the division of Li cells away 

from underlying cells. It could be that in tissues overexpressing PRS this signal is 

not recognised or responded to. This would therefore result in Li cells being able to 

divide away from underlying cells in lateral regions where PRS is normally 

expressed. 35s::PRS therefore would render all Li cells blind to such an L2-L1 

signal. However the outgrowths in 35s::PRS still form properly organised back-to-

back (appressed) monolayers of cells, which suggests that the communication 

between Li cells is normal. The effect of acr4 on 35s::PRS plants would be 

interesting. The sepal marginal cells in acr4 mutants lack proper organisation as a 

hypothetical result of loss of Li-Li signalling. These cells are still in theory 

competent to respond to an L2-derived signal (as hypothesised in Chapter III). If this 

competence was removed, and the model for ACR4 function holds true, then there 

would be loss of organisation in 35s::PRS associated Li outgrowths. Such an effect 

might result in the formation of sepals which are covered in a thick mass of 

disorganised Li cells. See Figure V.9. for schematic representation of this 

hypothesis. 

In order to test this hypothesis and therefore to examine the model of ACR4 action, 

35s::PRS expressing ColO and acr4-2 plants were generated. In order to do this, 

firstly the PRS ORF was amplified from both cDNA and from genomic DNA. 

Gross-Hardt, et al. (2002) amplified PRS from cDNA only, but it was decided here 

to use PRS from both sources for completion. The PRS ORFs were cloned 

downstream of a promoter sequence consisting of four 35s enhancer sequences. Two 

different binary vectors containing the 35s enhancers were used to contain the PRS 

ORF from each DNA source. This made four over-expressing PRS vectors in total. 

All four vectors were transformed into both ColO wild-type and acr4-2 homozygous 

plants. Transformants were selected using antibiotic resistance in the T 1  generation. 

These primary transformants were then analysed as both seedlings and as mature 

plants. The phenotype of plants was compared between the four types of 35s: :PRS 

lines both within and between ColO and acr4-2 transformants. 

The phenotype of 35s::PRS plants in each background was compared and defects 

as seen in Matsumoto and Okada (2001) searched for. The type of 35s::PRS 
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Figure V.9. Testing the hypothetical modcl of ACR4 function using PRS over-expression. (A) 
PRS is expressed in cells of lateral organs including sepal margins as shown in this schematic. 
PRS expression is indicated by red colour. (B) Schematic showing the result of loss of PRS 
expression: loss of marginal sepal cells. (CD) Over-expression of PRS using 35s enhancers 
results in sepal margin-like outgrowths of LI cells over the sepal surface. (C) Schematic of 
extra sepal margins. (D) Light microscopy image of extra sepal margins (asterisks) in a 
sectioned sepal, taken from Matsumoto and Okada (2001 ). This unusual outgrowth of LI cells 
may he due to the LI cells being rendered blind to a signal which emanates from the underlying 
L2. and usually controls LI proliferation. (E) The expected expression pattern of PRS in a 
disorganised acr4 mutant sepal margin. (F) It was hypothesised that ACR4 is involved in an 
signalling process between cells of the LI cell layer. helping to maintain LI cell layer Integrity. 
In acr4 mutants there seems to he a lack of LI -LI cell signalling. If ACR4 expression is lost in 
35s::PRS it is hypothesised that the extra sepal margins will lose their integrity. This may result 
in a mass of disorganised cells being seen on the sepal surface. Scale bar: 25i.tm. 



construct used was not found to alter the phenotype seen. Some similar phenotypes 

were seen in this recapitulation experiment, such as outgrowths on flower pedicels 

(Fig.V.10F, compare with those seen in the literature: Fig.V.10E). However these 

outgrowths were only seen in a very small proportion (<1%) of 35s::PRS expressing 

plants. No multicellular bulges on the stems or sepals were obvious. In contrast to 

the literature, defects were primarily observed in a subset of seedlings in both ColO 

and acr4-2 backgrounds which carried the 35s::PRS constructs (as Fig.V.10A-D). 

Mutant seedlings were stunted: the cotyledons and a few small leaf primordia 

emerged and then seedlings terminated development. The cotyledons and the 

hypocotyl of seedlings in particular had a 'lumpy' appearance with apparent 

outgrowths of cells. Roughly 10% of seedlings exhibited these defects although the 

severity varied. This lumpiness is likely to be due to some sort of over-proliferation 

and is therefore consistent with the effect of 35s: :PRS, albeit at a different stage in 

development. The 35s::PRS transformed ColO and acr4-2 abnormal seedlings 

looked very similar, they were both small and lumpy. All other 35s::PRS 

transformed seedlings in both the acr4-2 and ColO backgrounds appeared wild-type 

throughout development. Therefore after initial observations there did not seem to 

be any enhancement or alteration of 35s::PRS defects in plants in the acr4-2 

background. 

The effect of over-expression of PRS is still however of interest and to investigate 

this further it would be useful to express it specifically in the outside cell layer. This 

could be achieved by expressing PRS under the control of an epidermal-layer 

specific gene such as FIDDLEHEAD (FDH) (Lolle, et al., 1997). In this more 

specific system i.e. pFDH::PRS, the effect of potential loss of an L2-L1 signalling 

response in acr4 mutants could be investigated again. It would be likely that loss of 

such a response would result in down-regulation of factors responding to a signal 

from the L2 layer, which could also potentially include A CR4. In addition to this 

work the 'lumpy' seedlings which were observed in the above experiment could be 

examined in more detail, in order to see if any subtle alterations in cell layer 

organisation occur between ColO and acr4-2 background seedlings. Over-expressing 
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Figure V.10. Recapitulation of the over-expression of PRS phenotype. Photographs 
of the defects in a two week old seedling (A-D) and a pedicel (F) of ColO plants 
expressing a 35s::PRS construct. (A-D) The hypocotyl of a 35s::PRS seedling is 
lumpy with areas of apparent over-proliferation of cells. The surface of 35s::PRS 
seedlings is also rough in texture. One lump on the hypocotyl is labelled with an 
arrow for orientation in each picture. The root is shortened although fairly normal. 
See Fig.V.7C for comparative wild-type seedling. (E) Pedicel outgrowths of cells 
(arrows), taken from Matsumoto and Okada (2001). (F) Pedicel outgrowths in a 
recapitulated 35s::PRS ColO plant. The pedicel is normal apart from a single 
outgrowth (arrow) which is visible just at the base of a floral bud (bud). Scale bars: 
(A-D) 2mm (E-F) 500jim. 



PRS seedlings in both ColO and acr4-2 backgrounds have been fixed for such 

examination. 

In summary then potential genetic interactions between ACR4 and a number of 

genetic pathways have been investigated. It was found that ACR4 does not interact 

specifically with genes involved in ovule morphogenesis, or with several genes 

involved in hormone signalling pathways. An interaction between ACR4 and 

proteins in the gibberellic signalling pathway is still however of interest due to 

results from a yeast-2-hybrid study. Using an mutagenesis screen based on the acr4-

2 homozygous mutant, several new mutants which might interact with ACR4 in 

maintaining the integrity of the Li layer have been isolated. These include four 

mutants of special interest which appear to have defects in cell layer organisation. 

Whether or not the phenotype associated with new mutations was dependent on the 

acr4-2 background was tested; some results from these tests are pending. One 

mutant, named hulk, with putative loss of epidermal adhesion has been the subject 

of preliminary phenotypic investigation. In addition an analysis of the mechanistic 

aspect of the role of ACR4 was carried out. The relationship of ACR4 to the WUS 

and PRS genes which are both involved in the regulation of cell outgrowth was 

investigated. This aspect is of particular interest and although no conclusive results 

were obtained here, the work has provided some clues for future approaches. A 

continuation of the research as mentioned above will help to better understand what 

part ACR4 plays during plant development. This will be carried out as part of 

ongoing research into the function of ACR4, currently taking place in the lab. 
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Chapter VI. General discussion and perspectives 

VIA. ACR4 plays a role in maintaining the integrity of the Li layer: a 

conserved function across plant species? 

V1.2. ACR4 appears to undergo ligand-binding mediated endocytosis and 

seems to be rapidly turned over in the cell: defining a concept in plant 

RLK behaviour 

V1.3. Expanding the ACR4 signalling pathway 
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VIA. ACR4 plays a role in maintaining the integrity of the Li layer: a 

conserved function across plant species? 

ACR4 had been identified as a candidate gene with a role in Arabidopsis epidermal 

specification by means of comparison with the CR4 gene in maize. The expression 

pattern of ACR4 was investigated and a loss of function analysis carried out in order 

to characterise the actual role of A CR4. ACR4 was found to be expressed in all 

Li/outside cells of the plant. These included the 'outside' or epidermal cells of the 

embryo, all aerial organs and meristems as well as the Li-derived ovule integuments. 

ACR4 was also expressed in the lateral root cap and the epidermal layer of the root. 

However it was only expressed in those epidermal cells that had emerged from under 

the lateral root cap - only in the 'outside' epidermal cells. Expression was also 

detected in some 'inside' cells of the root. The role, if any, that ACR4 plays in the 

inner cells of the root is unknown, although a potential link to expression of the 

AUXJ influx carrier, and the auxin maximum there (Colon-Carmona, et al., 2000; 

Benkova, et al., 2003) has been postulated. 

When ACR4 function was lost, organisational defects were found in the 

integuments of the ovules and at sepal margins. The acr4 phenotype was found to be 

maternal sporophytic. The defects seen were complemented by introduction of full 

length ACR4 under the control of its own promoter. The phenotype was not 

consistent with an initially proposed role for ACR4 in specifying the identity of Li 

cells. However as the gene was expressed in all Li cells it was still postulated to 

play a role there. Rather than being involved in specifying an outside layer identity 

it was postulated that ACR4 plays a role in the organisation of Li cells in aerial 

organs. A model was suggested by which the loss of ACR4 function in Li cells can 

be compensated for by a signal from the L2 cell layer. In organs or regions which 

have no L2 cell layer the loss of ACR4 can not be compensated for and 

organisational defects are manifest. This is the case only in ovule integuments and 

sepal margins which are regions formed from back-to-back epidermal cell mono-

layers. This model provides an explanation of why such minor defects are seen 

when a gene with a widespread expression pattern is knocked out. As discussed in 
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Chapter III it seems unlikely that ACR4 plays a specific role in epidermal 

specification as suggested by Tanaka, et al. (2002) and Watanabe, et al. (2004). The 

evidence presented in these two papers has been discussed and in several details it 

may have been incorrectly interpreted. 

As well as being specified through the action of genes such as AtML11PDF2, the 

organisation of the Li layer must also be properly maintained. In most tissues the 

epidermis forms a planar mono-layer, allowing it to carry out defensive functions as 

well as efficiently allowing gas exchange, regulation of water balance and allowing 

light - the energy source of the plant - to pass (reviewed in Lolle and Pruitt, 1999). 

In addition as mentioned in Chapter I, there are many developmentally important 

signals that travel through the cuticle covering the outside of the plant (Kerstiens, 

1996). If the integrity of the outside layer is disrupted, this will have an affect on the 

function of such signals. Therefore ACR4 defines an important function during 

Arabidopsis development. This work has also contributed to the dissection of cell 

layer signalling mechanisms during Arabidopsis development. It seems to show that 

there are several connected mechanisms involved in organising the outside cell layer. 

By removing acr4 function an intracellular mechanism involved in this is disrupted 

in Li cells. It seems however that it can be compensated for by an intercellular 

mechanism operating from the underlying cell layer. 

ACR4 was originally postulated to be involved in epidermal specification in 

Arabidopsis due to its similarity to CR4, which at the time appeared to play that role 

in maize (Becraft, et al., 1996). The research here has shown that ACR4 may not be 

primarily involved in this process. In addition, as discussed in Chapter III, later 

research into the function of CR4 showed that it plays a role in the differentiation of 

the epidermal layer, rather than the specification of epidermal cells (Jin, et al., 2000; 

Becraft, et al., 2001, Jin, et al., 2000). The specification of the epidermis in maize 

seems to be more dependent on the function of DEK than CR4 (Becraft, et al., 2002). 

Therefore ACR4 and CR4 do in fact seem to play a similar role during plant 

development and are more functionally analogous than was originally thought. One 

example of this similarity is that the epidermis of cr4 plants shows some areas of 

abnormal cells interspersed with normal areas (Becraft, et al., 1996). This is similar 
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to what is seen in the integuments and sepal margins of acr4 mutants - there is a 

mosaic pattern of organised and disorganised cells. 

As discussed in Chapter III, CR4 is expressed in the aleurone layer of maize and 

plays a role there (Becraft, et al., 1996). As mentioned earlier the epidermal layer 

and the aleurone layer in maize have similar characteristics and so it is reasonable 

that they are under common control. ACR4 does not play a role in Arabidopsis 

endosperm development. However there is no evidence of a comparable structure to 

the aleurone layer in Arabidopsis, and so this aspect of CR4 function in maize cannot 

be directly compared to the function of ACR4. The fact that similar genes are 

employed in a similar process to control outside layer cell behaviour across both 

dicots and monocots suggests an evolutionary conserved function. There are also 

five CR4-like genes in the rice sequence database, although it remains to be seen 

what role they may play. In which plant species these genes originated is unknown. 

No similar genes can be found in the available sequence database of the bryophyte 

model species Physcomitrella patens. Physcomitrella, although being a multi-

cellular organism has a very simple body plan in comparison to angiosperms. Most 

Physcomitrella organs, including the leaves are composed of only one layer of cells. 

Due to this difference it is likely that, at least in part, different genes govern cell 

layer morphogenesis in Physcomitrella compared to species such as maize and 

Arabidopsis. A functional origin for ACR41CR4 in higher plants seems most likely. 

As plant morphology became more complex in higher plants, the function of genes 

such as CR4 would allow the developing layered organisation of the plant body to be 

organised. 

The relatively weak phenotype seen in loss of function acr4 alleles can be 

accounted for by functional overlap between ACR4 and related ACR4-like genes, as 

introduced in Chapter I. The expression patterns of these genes are being 

investigated in the lab and functional analysis carried out in order to see if any 

interact with A CR4. Why CR4 is more strongly responsible for control of Li 

behaviour in maize than ACR4 in Arabidopsis is a good question. It may be that 

mechanistic differences between the development of organs in monocots such as 
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maize and dicots such as Arabidopsis result in less functional overlap in maize than 

in Arabidopsis. Alternatively it may be that the degree of redundancy with other 

genes is changed in maize, compared to Arabidopsis. 

As mentioned in Chapter I, the promoter of ACR4 unusually does not contain an 

Li box. It suggests that ACR4 might be expressed in an independent pathway to 

AtMLJ/PDF2. This is highlighted by the fact that ACR4 is expressed in roots 

whereas AtML11PDF2 is not (Lid, et al., 2002). It seems likely that several 

independent pathways operate to control the development of the Li cell layer, as 

evidenced by the fact that many potentially developmentally important genes are 

expressed in the Li layer from early on. 
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V1.2. ACR4 appears to undergo ligand-binding mediated endocytosis 

and seems to be rapidly turned over in the cell: defining a concept in 

plant RLK behaviour 

In order to understand more about A CR4, the behaviour of the ACR4 protein was 

investigated. Full length functional ACR4::GFP was found to be localised to the 

plasma membrane of cells, as predicted by the structure and as expected for RLKs 

(Toni and Clark, 2000). ACR4::GFP was also found in bodies within the cell which 

appeared to be intracellular vesicles. When roots carrying an ACR4::GFP protein 

fusion were treated with BFA which disrupts vesicle trafficking within the cell, the 

intracellular ACR4: :GFP localised to BFA bodies in the cell. Later experiments 

carried out in the lab by Gwyneth C. Ingram showed that ACR4::GFP localises to 

endocytic vesicles within the cell, suggesting that ACR4 was subject to endocytosis. 

In addition, analysis of extracted protein suggested that ACR4 was rapidly turned 

over and possibly cleaved in the cell. 

In order to investigate the behaviour of ACR4 in more detail a series of deletion 

derivatives of ACR4 were constructed and studied. Of prime significance in the 

results obtained was that loss of the novel 39aa repeat domain, or blocking of it by 

addition of an N-terminally positioned GFP, rendered ACR4 non-functional. In 

addition these ACR4 variants were not present in BFA-induced bodies, and seemed 

to be stabilised rather than turned over in the cell. The novel seven 39aa-repeat 

domain is predicted to adopt a f3-propeller conformation and be stabilised by the 

formation of disulphide bridges between conserved cysteines in each repeat. 

TILLING analysis indicated that the conformation of this extracellular ACR4 region 

is vital for function. 

The extracellular region of an RLK is generally proposed to be the ligand-binding 

domain (Toni and Clark, 2000). The results summarised above suggest a 

mechanism by which the 39aa repeat domain acts as a ligand binding domain for 

ACR4 - localisation analysis showed that was situated in the extracellular matrix, 

where likely ligands would be present. It seems likely that ligand binding mediates 

ACR4 endocytosis, as loss/obstruction of the ligand binding domain seems to result 
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in protein building up at the membrane, rather than being endocytosed into the cell. 

As discussed in Chapter I for animal receptor kinases, as in the example given of the 

EGF-binding ErbBl RTK, endocytosis is one biological method by which the 

activity of receptor kinases can be modulated (Waterman and Yarden, 2001). It 

seems therefore that this process is involved in modulating the behaviour of ACR4. 

As mentioned in Chapter I for ErbBl, endocytosis is phosphorylation dependent - a 

consequence associated with ligand binding (Oved and Yarden, 2002). In addition it 

seems that after ligand binding, ACR4 activity is regulated by turnover/degradation 

in the cell; this seems to be inhibited by loss of the 39aa repeat domain. It is likely 

that this is involved in deactivating ACR4 after ligand binding. It is possible that the 

postulated cleavage products have downstream regulatory roles in the cell, although 

there is no evidence for this so far. The biological relevance of ACR4 endocytosis 

and cleavage is yet to be uncovered. 

This is the first demonstration of potential ligand-binding mediated endocytosis in 

Arabidopsis. The research has therefore uncovered an important regulatory process 

in plants. It furthers the parallels that can be drawn between animal and plant 

receptor kinases. Which components are actually involved in regulating ACR4 

endocytosis is one further piece of research being addressed in the lab at present. 

From what is postulated regarding endocytotic mechanisms which regulate RLKs in 

plants, a role for the KAPP protein phosphatase is suggested (Braun, et al., 1997; 

Stone, et al., 1998; Shah, et al., 2002). As mentioned, KAPP has not been shown to 

bind CR4. Due to this, and the fact that degradation of ACR4 appears to play a role 

in the regulation of its function (not seen for CLV1), a different mechanism may be 

operating here. Whether or not KAPP binds ACR4, and the mechanism of 

endocytosis are currently being investigated in the lab. 

It was found that loss of ACR4 kinase activity was able to be compensated for in 

planta, as had been found for CLV1 (Trotochaud, et al., 1999). This result in 

particular pointed to a possible mechanism of action involving hetero-oligomers of 

ACR4 and a second protein with kinase activity. It is possible that this second 

protein is one of the two ACR4-like proteins that are predicted to have functional 

kinase domains (AtHOM3 or AtHOM4). This also fits in with the idea that there is 



redundancy in the ACR4 pathway. As mentioned in Chapter I homo-or hetero-

oligomerisation is thought to be a crucial aspect of receptor kinase function in both 

plants and animals (Walker, 1994; Olayioye, et at., 2000). Here the formation of 

both homo-oligomers and hetero-oligomers is proposed. The former is proposed to 

account for the redundancy seen when ACR4 function is lost. The latter is proposed 

to account for the function of the kinase null ACR4 variant. Whether formation of 

oligomers is ligand-dependent or ligand-independent is yet to be seen. If the TNFR 

repeat-domain is involved in multimerisation by analogy to the TNFR receptor, then 

oligomers might be formed before ligand binding (Chan, et at., 2000). In either case 

ligand binding appears to be required for ACR4 signalling, transmission of a signal 

and downstream ACR4 turnover/processing. 

What exactly the roles of the TNFR-like repeat domain and the C-terminal region 

of ACR4 are is as yet unclear. The TNFR-like repeat domain could be involved in 

some aspect of multimerism, or perhaps contribute to ligand binding. The seemingly 

increased stability of the ATNFR ACR4::GFP protein, compared to the wild-type 

ACR4::GFP protein, points to this domain having some importance. The answer 

may be uncovered through investigation and study of possible RLK partners for 

ACR4. 

What roles AtDEKJ and AtSAL1,2 play in Arabidopsis and what relationship, if 

any, they have to ACR4 is under investigation in the lab. By analogy to the CR4 

pathway in maize, AtDEKJ might be involved in cleaving a negative regulator of 

ACR4 (Becraft, et al., 2002). As in maize it might play a specific role in the 

specification of epidermal cells. AtSAL112 might be involved in regulating ACR4 

trafficking or turnover in the cell. 

Another important angle at which to approach the study of RLK behaviour is by 

the creation of dominant negative and dominant positive alleles. As shown in 

Chapter IV none of the proteins expressed that could have such effects, by 

comparison to other studies of plant RLKs (Basler, et al., 1991; Dievart, et al., 2003; 

Shpak, et at., 2003), did so. They did however suggest that ACR4 may associate 

with other factors that could compensate for the effects of the introduced derivatives. 

In the lab several new approaches are underway to knock out the function of ACR4 
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and potential oligomeric partners by engineering new derivative proteins. If the 

potential partner of ACR4 as well as ACR4 itself is blocked from signalling, and the 

ligand sequestered, then a stronger phenotype might be seen than that of the acr4 

alleles. Combinations of deletions, such as ATNFR-repeats with loss of kinase 

activity might help to elucidate the function of all of the ACR4 domains. These 

approaches will also contribute to an understanding of the precise molecular 

mechanism of ACR4 action. 
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V1.3. Expanding the ACR4 signalling pathway 

It was found that ACR4 does not play a specific role in ovule development and also 

does not specifically interact with elements of the gibberellic acid or cytokinin 

signalling pathways. It may be that the major components of the ACR4 pathway 

have already been identified by comparison to CR4: AtDEK and AtSAL112. However 

other analysis presented here suggests some possible indirect interactions between 

ACR4 and the regulation of both Li-specific processes and wider developmental 

controls. 

Through an enhancer screen of mutagenised acr4-2 seed several interesting 

mutants which could potentially be involved with ACR4 in maintaining Li layer 

integrity, were isolated. These newly isolated mutants included lines where there 

was defective embryo/seed development, and also lines containing putative cell-layer 

organisation defects. The latter grouping included the hulk mutation which is 

currently postulated to be involved in controlling cuticle deposition. Although none 

of these newly isolated mutants tested so far seem to be directly dependent on loss of 

ACR4 function, it may be that they play a related role. As mentioned in Chapter I, 

the control of epidermal differentiation (cuticle formation, stomatal development 

etc.) is dependent on maintenance of outside layer integrity. A potential link 

between ACR4 and cuticular formation is worthy of further investigation. As shown 

in Chapter III, acr4 mutant sepals have an absence of cuticular decoration. This may 

be a downstream result of loss of Li layer integrity, hulk mutants in contrast seem to 

have increased cuticular deposition and also disorganised Li layer cells, partially due 

to a loss of cell adhesion. This is the opposite effect to that seen in fdh mutants 

which have abnormal cuticular material and associated organ fusion (Lolle, et al., 

1997). 

As discussed in Chapter I, a properly polarised and orientated actin cytoskeleton is 

important for maintaining a correctly organised outside cell layer (as well as all other 

cell layers) (Mathur and Hulskamp, 2002). It is likely that downstream of ACR4 

signalling the elements of the cytoskeleton are regulated. The PIROGI gene as 

discussed in Chapter V plays a role in regulation of the actin cytoskeleton (Basu, et 



al., 2004). Interestingly pirogi mutants also have defects in cell-cell adhesion as 

seen in hulk mutants. It is a reasonable possibility that ACR4 regulates genes such as 

HULK and PIROGI. In addition to this the cytoskeleton itself might be important 

for proper ACR4 localisation. It could act as a conduit for outward- and inward-

going vesicles which transport ACR4 to the membrane, and are involved in its 

endocytosis into the cell. 

A potential interaction between ACR4 and genes such as PRS would provide a link 

between cell recruitment to the Li layer and layer organisation. As mentioned in 

Chapter V, PRS seems to be involved in maintaining lateral regions of Li cells 

(Matsumoto and Okada, 2001). It is not specifically involved in specifying sepal 

identity, but rather like the NS genes of maize seems to play an evolutionary 

conserved role in establishing the competence of meristem cells to become lateral 

founder cells (Nardmann, et al., 2004). As proposed in Chapter V it seems that over-

expression of PRS renders Li cells blind to a signal from the L2 layer which is 

involved in preventing the Li from dividing away from the L2. The interaction 

between this effect, and the loss of Li layer integrity associated with the acr4 

mutation was initially investigated, but no conclusions could be drawn so far. The 

analysis of ACR4 and PRS function started here will be continued in the lab in order 

to determine whether the roles played by these two genes are interlinked. 

In conclusion then, the ACR4 gene plays an important role in maintaining the 

integrity of the outside (Li) cell layer in aerial organs. After ligand binding, ACR4 

seems to be endocytosed and rapidly turned over in the cell, consistent with its 

function as a receptor-like kinase. What the ligand(s) received by ACR4 are, now 

remains one of the major questions to be answered. 
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Appendix 1. Schematic of the translated amino acid sequence of the ACR4 ORF, highlighting 
the ACR4 receptor-like kinase functional domains. The amino acid numbers (starting from the 
ATG of A CR4) are indicated. The promoter region (upstream of A CR4) and the downstream 
region are included, but are not drawn to scale. The three TNFR-like repeats (yellow shading) 
are divided by black lines. The cysteines conserved (to the TNFR receptor) within each repeat 
are underlined. See Fig. IV.5. for a pileup of the seven 39aa repeats showing the conserved 
consensus sequence. The circled lysine (K) at position 540 is altered to a methionine (M) in 
the kinase-null ACR4 version. Filled triangles represent the sites of t-DNA insertions. There 
are two back-to-back insertions in the acr4-1 line, two insertions in the acr4-3 line and one 
insertion in each of the acr4-2 and acr4-6 lines; acr4-4 contained one insertion in the ACR4 
UTR region but additional t-DNAs in the genome. The unfilled acr4-5 triangle indicates that 
the line obtained did not in fact contain a t-DNA. Filled circles represent sites of amino acid 
substitutions in isolated TILLING lines. The TILLING sites are labelled with shorthand i.e. 4-
7 corresponds to allele acr4-7. Red filled triangles/circles represent the t-DNA insertions or 
substitutions that result in loss of ACR4 function. Black filling indicates that no visible 
phenotype is associated with the change. 
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481 NGKI RPDLDELQKRRRARVFTYEELEKAADGFKEES IVGKGS FSCVYKGVLRDGTTVA\® 5401 

541 RAIMSSDKQKNSNEFRTELDLLSRLNHAHLLSLLGYCEECGERLLV'iJ 	 600 

601 LHGKNKALKEQLDWVKRVTIAVQA.RGIEYLHGYACPPVIHRDIKSSNILIDEEHNARVA 6601 

661 DFGLSLLGPVDSGSPLAELPAGTLGYLDPEYYRLHYLTTKSDVYSFGVLLLEILSGRKAI  7201 

721 	 -.:WAVPLI KAGDINALLDPVLKHPSEIEALKRIVSVACKCVRMRGKDRPSM 780 

781 DKVTTALERALAQ LMGNPSSEQPILPTEVVLGSSRMHKKSWRIGSKRSGSENTEFRGGSW 8401 
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acr4 -4 

downstream of ACR4 

Appendix 1. Schematic highlighting the ACR4 ORF regions that code for the ACR4 receptor-like 

kinase functional domains. 
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SUMMARY 

The mechanisms regulating cell layer organisation in 
developing plant organs are fundamental to plant growth, 
but remain largely uninvestigated. We have studied the 
receptor kinase-encoding ARABIDOPSIS CRINKLY4 gene 
and shown that its expression is restricted to the Li cell 
layer of most meristems and organ primordia, including 
those of the ovule integuments. Insertion mutations show 
that ARABIDOPSIS CRINKLY4 is required for regulation 
of cellular organisation during the development of sepal 
margins and ovule integument outgrowth. We show that 

ARABIDOPSIS CRINKLY4 encodes a functional kinase 
that, in ovules and possibly other tissues, is abundant in 
anticlinal and the inner periclinal plasma membrane 
of 'outside' cells. We propose that ARABLDOPSIS 
CRINKLY4 may be involved in maintaining Li cell layer 
integrity by receiving and transmitting signals from 
neighbouring Li cells and/or from underlying cell layers. 

Key words: Li. Cell layer. Integuments. Signalling. Receptor kinase. 
Ovulc. Arobidops:s rho/juno 

INTRODUCTION 

Plant meristems are composed of organised layers (files or 
plates) of cells arranged parallel to the 'outside' of the 
meristem. Each layer undergoes cell divisions in a defined 
plane or planes pushing cells to the periphery of the nieristem 
where they are either incorporated into new meristems or 
become differentiated. In Arabidopsis the shoot apical 
meristem (SAM) has two outer tunica layers, the LI and the 
L2. which undergo regulated divisions in the anticlinal plane. 
The inner cell layer or corpus is designated L3 and undergoes 
both anticlinal and periclinal divisions. As organ primordia 
arise on meristem flanks, changes in the regulation of cell 
division patterns occur. In dicotyledon leaf primordia, the 
epidermal cell layer is exclusively LI-derived and LI-derived 
cells continue to divide largely anticlinally until late in 
development, in contrast the L2 layer undergoes both anticlinal 
and periclinal divisions to contribute the leaf mesophyll, while 
the L3 contributes to both leaf mesophyll and the vasculature 
(Stewart and Burk, 1970). The contributions of meristematic 
cell layers to organ primordia vary. Whilst the Arabidopsis leaf 
is usually formed from Ll-. L2- and 1-3-derived cells, petal 
primordia have been shown to contain cells of only L 1 and L2 
origin and ovule integuments are entirely LI derived (Jenik and 
Irish, 2000). Integument cells undergo carefully regulated 
divisions, mainly in the anticlinal plane. so  that the completed 
organ is a tubular plate of cells only 2-3 cells thick and 
effectively entirely epidermal (Schneitz et al.. 1995: Robinson-
Beers et al.. 1992). 

Experiments and observations in many plant species have 

shown that the developmental behaviour of cells in meristems 
and developing organs is largely dictated by their position rather 
than by lineage. Thus if the progeny of cells from one layer 
invade another layer during development, the displaced cells 
differentiate according to their new position (Stewart and 
Derman, 1975; van den Berg et al.. 1995; Kidner et al.. 2000). 
For this developmental plasticity to he achieved, cells must 
constantly receive and interpret information from their 
neighbours. Our understanding of how plant cell layers 
communicate is currently limited to a few specific examples. 
In Arabidopsis roots, an inside to outside movement of 
transcription factors (notably the SCARECROW (SCR) protein) 
is required for normal differentiation of ground cell layers 
(Nakajima and Benfey. 2002). In contrast, inter layer 
communication in shoot nieristems appears to require the 
interaction of a diffusible ligand with a cell-autonomous receptor 
kinase complex (Fletcher et al.. 1999). A similar interaction is 
invoked in the development of maize leaves and endosperm. 
where the receptor kinase-encoding CRINKLY4 (CR4) and the 
calpain-encoding DEFECTIVE KERNEL I (DEKI) genes are 
required for specification and maintenance of 'outer' cell layer 
identity during endosperm and leaf development (Becraft et al.. 
1996: Becraft et al.. 2002: Lid et al.. 2002). The maize EXTRA 
CELL LAYERS I (XCL] ) gene seems to be involved in pathways 
regulating division behaviour in L  cells during organ ftrmation. 
The Xcii mutant provides intriguing evidence that cell identity 
can he uncoupled from positional cues at least late in 
development. (Kessler et al.. 2002). 

In a search to identify genes involved in inter-cell layer 
communication in Arabidopsis, a study of ACR4. an  
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Arahidopsis CR4 homologue, was carried out. ACR4 was found 
to be required for normal cell organisation during ovule 
integument development and the formation of sepal margins. 
Both these tissues are formed exclusively from plates of LI 
cells arranged back to back. By isolating the functional ACR4 
promoter, ACR4 was shown to be expressed in L  cells in all 
apical meristems and young organ primordia. including those 
of the developing ovule integuments. In addition. ACR4 is 
expressed in an intriguing pattern in root meristems. The kinase 
activity of ACR4 was demonstrated and, using fusion proteins 
expressed under the ACR4 promoter. ACR4 protein localisation 
was visualised in vivo in the plasma membranes of Li-derived 
cells. The wide expression pattern of ACR4 compared to its 
associated mutant phenotype may be a result of functional 
redundancy with other related proteins or functionally related 
pathways. Taken together, the data presented indicate a role for 
ACR4 in the cellular signalling pathways required for correct 
cell organisation in ovule integuments and sepal boundaries, 
and may provide important clues as to the types of signalling 
involved in cell layer maintenance and specification in the 
wider context of plant development. 

MATERIALS AND METHODS 

Expression and complementation analysis of ACR4 
The ACR4 open reading flame (ORF) was PC'R amplified from 
A Iabu/HpsIs tluiluuia genoinic DNA ecotype Columbia (ColO) v ith 
CR5 (s'-TGGTAcCmGAAAAGAATGAGAAT(;n-cG) and 5'-
GAGCTCAGAAATTATGATGCAAGAACAAGC The ACR4 promoter 
was amplified with 5'-TGTCGACATAGTCAAGAAATGGCCTJTCC 
and 5'-TTCTAGACAAAGTCAACACACACGCTT Products were 
cloned into pGEMT-easy (Promega) )pL92 and pL93 respectively). 
Probes (ailtisense and sense) for in situ hybridisation were made 
by linearising pL92 with Ncol or Skill. respectively, and transcribing 
with Sp6 or T7 RNA polymerase. respectively. In situ hybridisations 
were carried oLit using a standard protocol (Jackson. 19911. For 
promoter expression analysis. the GAL4: VP 16-encoding sequence 
and terminator were isolated from an enhancer trap vector 
)http://www.plantsci.canl.ac.ukJHaseloff/Homelitnil)  (Haseloff. 1999) 
and transferred to the binary vector pSPTV20 (Becker et al., 1992). The 
ACR4 promoter was inserted upstream of the GAL4::VPI6 coding 
sequence (pL143). The .4CR4 promoter was placed upstream of 
H213::YFP, by cloning the H2B::YFP-coding sequence from p131121 
(Boisnard-Lorig et al.. 2001) into the binary vector pBlBHyg (pMD4) 
(Becker, 1990). The ACR4 promoter was inserted upstream of 
H2B::YFP pMD6). For deletion —1026 an Xliol-XhaI fragment 
from pL93 was cloned into pMD4 (pL227. For deletions —857 and 
—405. L93 was hilly digested with X/a1 and partially digested with 
Hindlll. Appropriate fragments were cloned into MD4 (pL226 and 
p1225 respectively). To place the ACR4 promoter upstream ot mGFP6. 
an  mGFP6-encoding fragment was cloned from pBSmGFPÔ to 
pBlBHvg and the ACR-/ promoter was placed upstream (1)1_228). The 
niGFP6 variant is identical to mGFPS (Haseloff. 1999) with two amino 
acid changes: F64-L and S65-T (J. Haseloti. personal communication). 
For protein localisation studies the full-length ACR4 ORF was amplified 
with CR5 and 5'-GAGCTCGAGAA ATTATGATGCAAGAACAAG. 
and mGFP6 was amplified from pBSmGFP6 with 5'-CTCGAGAAT-
GAGTAAAGGAGAAGA AC and 5'-TCTAGTGmGTATAGTft-
ATCCATG so as to remove the ER retention signal. Green fluorescent 
protein )GFP) was cloned downstream of ACR4 and the fusion protein-
encoding fragment was then cloned into pBIBHyg. The ACR4 promoter 
was then added (pMD I I I. For complementation studies the ACR4 ORF 
was cloned into pBlBHyg. The ACR4 promoter was added (pMD5). 

Plant transformations were carried out using Agrnbacreriwn GV3I0I 
)Konci and Schell. 1986) and a floral dipping technique (Clough and 
Bent. 1998). Fluorescence studies ssere carried out using an Olympus 
Fluoview confocal microscope. 

Expression of recombinant proteins in bacteria and kinase 
assays 
To express recombinant GST fusion proteins in bacteria, the ACR4 
kinase domain was amplified using 5'-AGGATCCGTCCGGA-
TC1TGATGAG and 5'-GAGCTCGAGmCCCATrAGCTGTGC 
and cloned as an in-frame fusion with GST coding sequences in pGEX-
3x (Amersham Pharmacia Biotech). Protein expression and purification 
using GST-sepharose (Amersham Pharmacia Biotech) was carried out 
according to the manufacturer's guidelines. Site directed mutagenesis 
was carried out using the QuikChangc site-directed mutagenesis kit 
(Stratagene) with primer 5'- GGAACCACTGTTGCAGTGATGA-
GAGCGATAATGTC and its reverse complement. GST fusion proteins 
were assayed for kinase activity by incubation in 30 p1 (final volume 
with 20mM Tris (pH 7.5). 100 m NaCl, 12 m MS02 with lOpCi 
of [y- 32 PJATP for I hour at room temperature. Saniples were boiled in 
loading buffer and analysed by SDS-PAGE. Coomassie Blue-stained 
gels were dried and exposed to film. 

Isolation and phenotypic characterisation of mutant 
alleles 
TO isolate iicr4- I the Wisconsin collection was screened with oligos 5'-
TGCCATCTCAGTACYTCATGACTCTCTCT and 5'- CTCTCTGC-
CTCT11'GTTACTTTCCTGCCT as described previously (Krysan et 
al.. 999). The illutants acr4-2, act-4-3, ac)-4-4 were identified on the 
Syngenta website (Sessions eta).. 2002). To estimate insertion number, 
probes against the GUS marker gene or BAR selection gene were made 
by amplifying the GUS ORF with printers 5' -GTGGGAAAGCGCGT-
TACAAGA A AGC and 5'-CACCATfGGCCACCACCTGCCAGTC 
or the BAR ORF with 5'-CGTACCGAGCCGCAGGAAC and 5'-
ATCTCGGTGACGGGCAGGAC. For histological analysis, tissue 
was submerged overnight in 84 mM Pipes (pH 6.8) solution containing 
4% acrolein. 1.5% glutaraldehyde I (4  parafornialdehvde and 054 
Tween 20. Tissue was rinsed several times in 100 mM Pipes and 
dehydrated using an ethanol series. JB4 resin was infiltrated into the 
tissue over a period of 2 weeks before embedding. 4.5 .tni sections 
were stained in Toluidine Blue and visualised using a Leica standard 
light microscope. For creation of the ATMLI marker line, the ATMLI 
ORF was amplified by reverse transcription PCR and cloned into 
pGEMT-easy using oligos ATMLI A and ATMLI B (Abe eta].. 2001 
GFP was amplified using 5'-AGCTAGCATGAGTAAAGGAGAA-
GAAC and 5'-AGCTAGCGTGrnGTATAGTTCATC, and cloned 
pGEM-9z (Promega). The A TML / ORF was fused downstream of GFP 
and the fused construction was cloned downstream of the pAS99 
HindlIl insert [containing the full ATMLI promoter (Sessions et al.. 
1999)] in 1)B1BHvg (pLl7S). 

Brefeldin A experiments 
Roots were incubated for 2 hours in IOU liM brefeldin A (BFA) ) B765 I. 
Sigma-Aldrich. The working BFA solution was made by diluting a 10 
niM DM SO stock 1:1)))) in water. Control roots were incubated for the 
same period of time in a 1: 100 di) Lit iOil of DM SO in water. 

RESULTS 

14CR4 RNA is distributed in an outer cell layer 
specific pattern 

Similarity searches were carried out using the maize CR4 
(Becraft et al.. 1996) protein against the annotated Arabidopsis 
genome. Five genes encoding predicted products showing 
sequence and structural similarity to CR4 were identified. One 
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predicted protein, encoded by ACR4 (Tanaka et al.. 2002), wa. 
considerably more similar to CR4 than the other sequence' 
identified, both within the extracellular domain and the kina.e 
domain. RNA in situ hybridisations were carried out i 
determine the distribution of ACR4 transcripts in developin: 
Arabidopsis tissues (Fig. 1). Embryonic ACR4 expression 
first observed at the eight-cell stage, throughout the eight celk 
of the embryo proper (Fig. 1A-D) and then became restricted 
to the outer cell layer (protoderm) of the developing embr 
soon after the dermatogen stage. Expression was maintained 
at high levels in all protoderm cells until the early torpedo 
stage, when it diminished in non-meristernatic cells. Cells 
the embryonic root and shoot meristems continued to expre'. 
ACR4 at high levels until embryo maturity. No ACR4 mR\\ 

could  be detected in the developing endosperm at any sta 
Post-germination. ACR4 transcripts were detected in the I 
cell layers of seedling apical meristems, inflorescence 
meristenis (Fig. 1F), floral meristems and young leaf and floi:ii 
organ primordia but decreased rapidly in older organs before 
cell expansion had initiated. Expression was also detected in 
ovule primordia. where it was initially limited to external cell 
layers as in other organs. and then detected in integument 
primordia. Al maturity, expression in the ovule was mo( 
strongly maintained in the internal layer of the inner 
integument, the endothelium. although it was detectable 
throughout the integuments. In main and lateral rot 
primordia. results were unclear although expression v a 
observed in the outer (epidermal) cell layer of young roots in 
some transverse sections, and diminished as roots expanded 
Transcript distribution at the root tip appeared strong in root-
cap cells near the quiescent centre. In summary. ACR4 
transcripts were detected in all meristematic tissues tested and 
were, with the exception of roots. specifically localised to 
outer cell layers. 

The ACR4 promoter drives marker gene expression 
in patterns similar to RNA distribution 

Because ACR4 RNA expression levels were low, a two- 
 component transactivation approach was used for promoter 

analysis. A 1.9 kb genornic fragment finishing at the 
presumptive ATG of the ACR4 gene was placed upstream of a 
sequence encoding the chimaeric GAL4::VP16 transcriptional 
activator (Haseloff. 1999). Homozygous single-insertion 
transformants were crossed to plants containing a HISTONE 
2B::YFP protein fusion encoding gene under control of a 35S 
minimal promoter and the GAL4-UAS (Boisnard-Lorig et al.. 
20011. In the immediate products of these crosses, nuclear -
localised YFP was detected in embryos as early as 48 hours 
after pollination. Embryonic pACR4-driven marker gene 
expression was protoderm localised. mirroring exactly ACR4 
mRNA distribution (Fig. lE). The observation that ACR4 is not 
expressed in the developing endosperm was confirmed. Post-
germination expression patterns correlated with in situ 
hybridisation results in root, vegetative. inflorescence (Fig. lG) 
and floral meristems as well as in leaf and floral organ 
primordia (Fig. lH). In ovules all integument cells showed 
marker expression although expression was stronger in the 
ovule epidermis. the 'outer' layer of the inner integument, and 
the endothelium (Fig. 11). H2B:: YFP placed directly under 
control of the 1.9 kb ACR4 promoter gave expression that was 
identical to. but weaker than trans-activated marker expression. 

' 

1:1 g. I. l\1—ton 	((I?4 dLlFIII 	!L\Llk()IICl)i 	\( 	l -kiicence 

images of two- to four-cell A) and eight-cell (C) embryos (arrows). 
(B.D) In situ hybridisations of the same sections with ACR4 

antisense probe. Expression is detected as light brown coloration in 
the eight-cell embryos but not in two- to four-cell embryos. 
(E-H) ,4C'R4 expression in the L  (outer) cell layer of developing 
embryo. inflorescence (im) and floral nieristems (fin). In situ 
hybridisation (F) and eonfocal images (E.G.H( of H2B::YFP 
expression (green) in pA CR4 transactivatlon lines. (I) In mature 
ovules expression is detected in the outer cell layer of the fLuniculus 
(f). the outer integument (ol) inner integument (ii) and endothelium 
(en). (J (In the root tip expression occurs in at least four columella (C 

cells layers. the lateral root cap (LRC) and the quiescent centre (QC) 
but not in the epithelial cell tile (C). (K) Expression in the root 
epithelial cell file (e( initiates as epithelial cells emerge from the 
LRC. c. cotyledon primordia: rp, embryonic root pole: sam. 
embryonic shoot apical meristem: tg, female gametophyte: m, 
micropyle ..Scale bars'. 25 jim except for K (It) pm), 

confirming that the transactivation system amplified promoter 
activity without distorting expression patterns. 

In the roots of plants transactivating H2B::YFP. marker 



4252 M. L. Gifford S. Dean and G. C. Ingram 

expression was observed in the quiescent centre (QC) central 
cells. columella initials and cells below the QC. the lateral root 
cap (LRC) and the initial cells destined to give rise to the root 
epidermal cell file and the LRC (Fig. ii). However, expression 
was not observed in epidermal cells until the point where they 
emerged from under the LRC (Fig. 1K). This transition was 
sharp. with cells initiating expression as soon as they started to 
lose contact with the LRC. Expression in the root epidermis 
was maintained into the elongation zone, where it diminished. 
In more distal positions on the root, initiating lateral root 
primordia could be identified on the basis of their expression 
of H2B::YFP. Expression initiated in lateral root primordia at 
the four- to eight-cell stage. usually in a double file of cells 
(not shown). Expression in lateral roots resembled that 
observed in apical root meristems. The expression pattern of 
ACR4 in roots differed from that in apical regions. firstly, in 
that a population of meristematic LI cells (epidermal cell file 
under LRC) did not express ACR4. and secondly in that 
populations of 'internal' cells (QC. and lateral root primordiurn 
initials) expressed ACR4. 

In contrast to in situ hybridisation results. H2B::YFP 
remained visible in developing organs until relatively late in 
development. To investigate this phenonienon, a sequence 
encoding a cytoplasmically localised version of rnGFP6 was 
placed under the control of the 1.9 kb ACR4 promoter. Lines 
expressing this construction showed expression in the same 
meristematic zones observed for lines expressing H2B::YFP, 
although fluorescent protein 'leaked' from outer cell layers into 
internal cell layers, especially in young embryos and floral] 
inflorescence nieristems. GFP expression was not maintained 
in mature organs indicating that in some tissues H2B::YFP 
may persist in nuclei after gene expression has terminated. 

The ACR4 promoter is restricted to an 857 bp region 
upstream of the ATG 
To determine the extent of the functional ACR4 promoter. the 
1.9 kb full-length promoter was reduced distally from —1849 
(where —1 is the base before the ATG) to give a —1026, a —857 
and a —405 deletion. These fragments were placed directly 
upstream of the H2B:: YFP reporter gene previously described, 
and transformed into plants. Their ability to drive Ll-specific 
expression was assessed in young roots, developing seeds and 
inflorescence meristerns, and compared to that of the full-
length promoter. -1026 and -857 both gave expression 
patterns identical to that shown by the full-length promoter 
in roots, embryonic and meristematic tissues (verified in 
20 independent transformants). A-405 gave no detectable 
H2B: : YFP expression (40 independent transformants 
screened). Thus all sequences required for normal ACR4 
expression were located in the first 857 bases of the promoter. 

ACR4 is necessary for normal seed development 
To gain material for functional analysis of A CR4. collections 
of T-DNA insertion lines were screened. One insertional 
mutant in ACR4 was identified in the Wisconsin population 
(Krysan et al.. 1999) and shown to be heterozygous for a 
double (back to back) T-DNA between bases 1066 and 1100 
of the ORF. This allele was designated ac4-1. Three mutant 
lines were uncovered in the Syngenta collection (Sessions et 
al.. 2002): the acr4-2 allele contained a 1-DNA insertion at 
base 249 of the ACR4 ORF, act-4-3 contained an insertion 570 

bp downstream of the ACR4 ORF and acr4-4 housed two 
insertions in the ACR4 promoter, one 1.6 kb and one 810 bp 
upstream of the start of transcription. PCR and subsequent 
Southern blot analysis confirmed that the progeny of 
heterozygous acr4-I. -2, -3 and -4 plants segregated wild-type, 
heterozygous and homozygous individuals in a 1:2:1 ratio. 
Southern blot analysis also showed that the acr4-1 and acr4-2 
and backgrounds contained no other 1-DNA insertions than 
those at the ACR4 locus, but that both the acr4-3 and acr4-4 
backgrounds contained multiple independently segregating 1-
DNAs. The positions of the insertions in ucr4-1 and acr4-2 
would be predicted to give strong mutant alleles and were 
therefore of particular interest for functional studies. 

Segregating populations carrying act-4- 1, acr4-2, ucr4-3 and 
acr4-4 were analysed to identify potential mutant phenotypes 
associated with disruption of the ACR4 gene. No differences 
in gross plant morphology between homozygous mutants and 
wild-type plants were noted in any of the four populations. 
However, all act-4-1 and acr4-2 homozygotes showed 
abnormalities in both the shape and texture of developing 
seeds. Instead of being elliptical and smooth, the developing 
seeds were rounded and rough in appearance. In addition, seeds 
were heterogeneous in their development compared to wild 
type, and siliques contained unfertilised ovules and aborted 
seeds at a rate of 40-85% (Fig. 2A.B). The developmental stage 
of seed abortion varied from just after pollination to just prior 
to maturity. When selfed heterozygous plants were analysed. 
no seed abnormalities were found, indicating that the 
phenotypes described were due to the maternal genotype. No 
seed defects were observed in the siliques of homozygous 
act-4-3 and ac44 plants. 

To confirm that seed morphology and abortion phenotypes 
were entirely under maternal control, flowers from 
homozygous acr4-2 plants were emasculated and pollinated 
either with self pollen, or pollen from heterozygous or wild-
type siblings. Control flowers from heterozygous and wild-type 
siblings were either self pollinated or cross pollinated with 
pollen from the homozygous plant. Siliques from crosses onto 
heterozygous or wild-type plants were full of morphologically 
normal seed, independent of the genotype of the male parent 
(5 crosses of each). Self-pollinated siliques from homozygous 
plants were only 15-60% full, and contained seeds exhibiting 
the mutant phenotypes previously described. Siliques from 
crosses of wild-type or heterozygous pollen to a homozygous 
female presented identical phenotypes to self-pollinated 
homozygotes (10 crosses of each). In all cases mature 
seed germinated successfully and segregated homozygous, 
heterozygous or wild-type seedlings in the proportions 
expected, confirming that the embryo sac genotype plays no 
role in the seed phenotype observed. 

To understand the developmental basis of the observed seed 
phenotype. ovule morphology in mutant plants was analysed. 
Mutant ovules displayed phenotypes of varying severity (Fig. 
313-D). All ovules showed epidermal irregularities, including 
abnormal cell size and shape, callus-like outgrowths, and 
occasional inappropriate cell types such as stomata. Ovules 
sometimes fused together (Fig. 313). In most (>90%) of mutant 
ovules the abaxial zone of the integuments failed to elongate 
sufficiently to give the curvature seen in wild-type ovules. 
In some cases the embryo sac/nucellus protruded from the 
shortened integuments (Fig. 4H,J). In addition to disruption in 
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Fig. 2. aer4 mutant seed phenotype. A.B) Opened IILjiies showing 
differences in seed size and texture between a wild-tvpc A and 
honioi.ygous (B) plant at comparable stages (12 days after 
pollination). Aborted ovules (arrowhead), retarded seeds (star) and 
seeds with epidermal outgrowths (arrow) are frequent in mutant 
siliques. (C.D) Comparison between mature wild-type (C) and 
mutant (D) seeds observed by SEM. Scale bars: 100 gm. 

ovule epidermal organisation, lack of organisation of 
integument cell layers was observed, with some ovules 
showing loss of cell layers. and others showing sporadic over-
proliferation of integument cells. A varying proportion (20- 
50 61c) of ovules lacked a recognisable embryo sac (Fig. 3C.D). 
In extreme cases the endothelium was absent or reduced to a 
few disorganised cells. In other cases the endothelium cells 
enclosed differentiated/divided cells, or an empty space. In 30- 

50% of mutant ovules the egg apparatus (synergids. egg cell 
and polar nucleus) could he distinguished (Fig. 313). 

In order to ascertain at what stage ovule developmental 
defects first occurred, scanning electron microscopy (SEM) of 
developing ovules was undertaken. Wild-type development 
was as previously described (Schnietz et al.. 1995: Robinson-
Beers et al.. 1992). Ovule prirnordia arose as bulges along the 
placenta, and developed into finger-like protrusions (Fig. 4A). 
Subsequently the inner and outer integuments initiated as two 
ring-shaped growths encircling the megasporocyte-containing 
ovule tip (nucellus). with the inner integument initiating just 
before the outer integument (Fig. 4C). Both integuments then 
elongated as sleeves of cells engulfing the nucellus, with the 
outer-integument growing faster than. and eventually 
overgrowing the inner integument (Fig. 4E,G). In cicr4 mutant 
ovules, development was normal until the point of integument 
initiation (Fig. 4B). However, instead of initiating as smooth 
ring-like bulges, the integuments of mutant ovules initiated 
unevenly, with some cell files bulging out, and others 
remaining flat. In many cases more than two sets of bulging 
cells could be seen in the proximodistal axis, and integuments 
did not initiate as coherent rings, suggesting that the points of 
integument initiation were not well defined (Fig. 4D). After 
initiation, mutant integuments appeared thicker than wild-type, 
and their more rounded cells gave developing ovules a rough 
texture (Fig. 4F). Integuments grew more slowly in mutant than 
in wild-type plants, and the leading edge of the integument, 
instead of being smooth. appeared disorganised. At maturity, 
even in the most 'normal' mutant ovules. integuments failed to 
fully enclose the nucellus (compare Fig. 4G with 4H). In some 
cases integument elongation either of one (Fig. 41) or both 
integuments was severely compromised (Fig. 4J). Abnormal 
protruding cells were often observed on the surface of mutant 
ovules (Fig. 4H) 

Defects observed in ovules were maintained in developing 
seeds when fertilisation had been possible. In particular, the 
texture of the seed coat was abnormal, with outgrowths 
observed, particularly in retarded seeds. A lack of 
proximodistal elongation of the mutant embryo sac after 
fertilisation caused the mutant endosperm to develop in a 

reduced volume giving seeds a round rather than 
elliptical shape (Fig. 2D). Although defects in embryo 

- 	organisation were not observed, seeds with more 
severe defects in integument organisation were also 
retarded in embryo and endosperm development. 

Fig. 3. The internal structure of acr4 mutant ovules. Wild-
l\ pe (A) compared with mutant ( B.C.D) ovules. Micropyles 
uic indicated by arrowheads. Female gamctophvtes ((g) and 
densely staining endothelia! cells (C) are labelled where 
prcsent. (.A) In wild type neatly organised cell layers are 

sible, with the female gametophvtc (fig) surrounded by an 
orderly endothelium. (B) Mutant ovule with weak -
phenotype. FP is visible hut outer integument is disrupted 
ii left of star). Endothelial layer is visible. (C) Mutant 

ovule with intermediate phenotype showing disorganised 
cell layers and replacement of Ig with divided cells. 
(D) Two fused (star) mutant ovules with extreme 
phenotypes. Both show cell layer disorgantsation hut one 
has distitiguishable probably abnormal) 1g. Scale bar: 
25 pm. 
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Fig. 4. Phenotypic analysis of wild-type and wr4 mutant plants. 
AR Ovule primordia immediately prior to integument initiation in 

wild-type (A) and mutant (B) plants. (C.D) The initiation of the inner 
(arrowheads) and outer (arrows) integuments in wild-type and mutant 
ovules respectively. In the mutant, the irregular initiation of 
integLiment outgrowth is visible, with at least two outgrowths 
observed in one region of outer intecument initiation asterisks). 
whereas oilier regions have no outgrowths. ( EA-') Ongoing integument 
outgrowth. In wild-t\pe ovules (E) the leading edges of the 
integuments are stiiooth. whereas in mutants (F) theN are ragged and 
often retarded. (The nueel lus has snapped oft in the right hand ovule 
off.) ( G) A mature wild-type ovule at anthesis. The outer integument 
has overgrown the inner integument and nueellus to give it narrow 
nncropv Ic (in ) lacing the funteul us (1). ) H-i ( A weak, a mcdiii in and a 
severe mature mutant ovule phenotype. respectively. In H. the 
retardation of outer integument (arrow) growth has left an open 
micropyle within . hich the inner integumetit (arrowhead) and 
nucellus are visible. In I the inner integument (arrowhead) looks 
relatively normal whereas the outer integument (arrow) has failed to 
elongate correctly. )J ) The inner integument (arrowhead) has failed to 
grow out leaving the nucellus almost completely exposed. (K) Wild-
type sepal margin (arrowhead) showing well organised border cells 
covered in cuticular decoration. (L) Mutant sepal margin (arrowhead) 
showing typical irregularities in cell organisation. 'lumpy' appearance 
and regions devoid of euticular decoration. Scale bars: 20 pm. 

Histological analysis supported the hypothesis that these seeds 
were those observed to abort. 

To study the epidermal abnormalities observed in developing 
seeds. SEM analysis of mature mutant seeds was carried out. 
Although seed coat abnormalities were observed, particularly 
at the funiculus abscission scar and at the micropylar region, 
the majority of seed coat cells had a similar structure to those 
observed in wild-type seeds (Fig. 2C,D). Because homozygous 
seeds still differentiated appropriate epidermal cell types, and 
even in ovules. mis-specification of cell types (for example the 
presence of stomata) involved epidermal-specific identities, the 
expression of an L 1 marker in mutant ovules was investigated. 
Homozygous acr4-2 and ac4-I plants were crossed to marker 
lines expressing an N-terminal GFP::ATMLI fusion protein 
(unpublished results) under the ATMLJ promoter (Sessions et 
al.. 1999). These lines expressed nuclear localised fusion 
protein in the LI-specific pattern previously reported for 
ATMLJ expression in embryos and nieristems (Lu et al., 1996; 
Sessions et al., 1999). ATMLI fusion protein expression was 
observed in the outer cell layer and endotheliurn of mature 
ovules in wild-type plants. with weak expression occasionally 
observed in the inner cell layer of the inner integument. In acr4 
mutant ovules ATMLJ expression was similar to or more 
widespread than in wild type. In excrescences on the ovule 
surface, both protruding callus-like cells and underlying cells 
showed expression. Strong expression was sporadically seen in 
cells situated between the ovule epidermis and the 
endothelium. In several cases, the egg sac space was filled with 
expressing cells. This analysis suggests that although mutant 
ovule integument cells showed abnormalities in organisation. 
they did not loose their LI identity. 

Because (:cr4 mutants showed abnormalities in ovule 
infeguments, sepal margins, which have a similar structure 
Oppressed layers of LI cells) were examined in more detail. 
Although no major defects in sepal morphology were 
observed in iicr4 mutants, it was noted that the cells at sepal 
boundaries appeared less well organised than in wild-type 
plants, giving a somewhat ragged appearance (Fig. 4K.L). In 
general the border region was thicker (contained more cells) 
in the abaxialiadaxial dimension than in wild type. suggesting 
that outgrowth of sepal margins could be affected. Mutant 
margin cells were irregularly shaped and showed abnormal 
'Jumpy ,  areas and regions devoid of the cuticular decoration 
seen in wild-type cells. No defects at the margins of leaves or 
petals could be discerned. 

Although two independent mutant alleles in two different 
backgrounds both gave identical phenotypes, a further 
confirmation that the observed phenotype was due to loss of 
ACR4 function was obtained by genetic complementation of 
act-4-2. Homozygous mutants were crossed to hygromycin-
resistant transformants carrying a full-length ACR4 promoter 
driving the ACR4 ORF. Four F2 families corresponding to four 
independent transformants were selected on hygromycin and 
PCR-genotyped for homo- or heterozygosity of ac4-2. The 
phenotypes of homozygous plants were compared with those 
of heterozygous and wild-type plants in each case. For two 
families homozygosity of acr4-2 plants was verified by 
Southern blot. For all four families full phenotypic 
complementation was apparent in immature and mature seeds 
of homozygous mutant plants, confirming that the observed 
mutant phenotypes were due to loss of AC'R4 function. 
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ACR4 encodes an active kinase domain 
To establish whether ACR4 protein encodes a functional kinase. 
as predicted from its sequence. a GST fusion protein construct 
was engineered to express the ACR4 kinase domain in bacteria. 
A 61 kDa protein encoding the GST-kinase was expressed and 
purified (Fig. 5). To act as a control in kinase assays, Lys 540 
(a crucial amino acid in the kinase activation loop) was mutated 
to methionine. GST-kinase and GST-kinase-null proteins were 
subjected to in vitro kinase assays. The kinase domain showed 
phosphorylation that was absent in the kinase-null variant (Fig. 
5). Incubation of the kinase domain with GST protein alone did 
not result in phosphorylation of GST, indicating that the kinase 
domain could autophosphory late inter or intramolecularty in 
vitro (results not shown). 

ACR4 fusion proteins localise to the plasma 
membrane and to intracellular bodies 
Structural predictions indicated a plasma membrane localisation 
for ACR4. To test this prediction the entire ACR4 ORF was fused 
at the C terminus in frame with GFP. placed under control of the 
complete ACR4 promoter and introduced into plants. In order to 
test whether the fusion protein was being correctly localised. 
plants from two different expressing lines were crossed to 
homozygous acr4-2 mutants, and F2 plants were genotyped 
for the acr4-2 allele. Full complementation of the acr4-2 
mutant phenotype was observed for one line, and partial 
complementation for the other line tested. Partially 
complementing plants showed reduced seed death, and a more 
normal seed shape. although seed texture was still abnormal. 
Expression of fusion proteins was detected in regions where 
H2B::YFP reporter expression had previously been observed 
(Fig. 6). and was identical in wild-type and in complemented 
homozygous mutant plants. Cellular localisation of fusion 
proteins varied from tissue to tissue. In some cells, for example 
those on the surface of ovules, most fluorescence appeared to be 
associated with plasma membranes (Fig. 6A). In the LI cells of 
embryos. inflorescence and floral meristems and roots, plasma 
membrane localisation was observed, but fluorescence also 
localised to multiple small intensely staining bodies within cells 
(Fig. 6B.C.D.G). These bodies did not co-localise with red-
fluorescing chloroplasts, but were the same size or smaller. 
To confirm that fluorescent protein was localised to plasma 
membranes rather than cell walls, roots were treated with 0.8 M 
mannitol to induce plasmolysis. Under these conditions 
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Fig. 5. ACR4 kinase activity. Coomassie Blue-stained gel (top) 
showing products of kinase assay on the wild-type ACR4 kinase 
domain K+) and kinase null variant (negative control. K-. 
Autoradiography of this gel (below) shows that the native kinase 
domain has kinase activity whereas the kinase null variant does not 

fluorescence was pulled away from cell-cell boundaries, 
indicating that fluorescent proteins were indeed associated with 
the plasma membrane. rather than the cell wall (Fig. 6F). In order 
to further address ACR4::GFP localisation. the effect of 
brefeldin A (BFA) on protein localisation in roots was examined. 
BFA targets and inhibits the action of proteins involved in vesicle 
formation, thereby inhibiting vesicle trafficking within cellular 
membrane compartments and to and from the plasma membrane 
(Nebenfuhret al., 2002). After treatment with BFA. ACR4::GFP 
localisation was compromised (Fig. 6G.H). The relative intensity 
of plasma membrane-associated fluorescence decreased, and 
instead of multiple small cytoplasmic bodies, one or two large 
fluorescent bodies were observed in each cell. An identical 
phenomenon has been observed using immunolocalisation of the 
auxin efflux carrier PIN I in BFA-treated roots (Geldner et al.. 
2001; Geldner et al.. 2003). The described result of BFA 
treatment on ACR4::GFP localisation supports the hypothesis 
that ACR4 is usually exported to the plasma membrane via the 
ER and Golgi, and that this export, or possibly some form of 
recycling, is inhibited by BFA. It seems likely that the 
cytoplasmic bodies observed in cells not treated with BFA 
correspond to elements of the endomembrane system, such as 
excretory vesicles or endosomes. 

In all tissues studied, fusion protein was present in plasma 
membranes adjacent to both anticlinal and periclinal cell walls, 
although the degree of localisation adjacent to periclinal cell 
walls was variable. In root meristems (QC and root cap initials) 
localisation was observed uniformly in both anticlinal and 
periclinal plasma membranes (Fig. 6E). In cells situated on the 
surface of the plant, the amount of protein visible in plasma 
membranes adjacent to the outer periclinal cell wall appeared 
lower than that on anticlinal and inner periclinal cell plasma 
membranes (Fig. 613.I). This phenomenon was particularly 
noticeable in the outer cells of ovule outer integuments where 
all cells expressed fusion protein, although this could in part 
be due to the additive signal from two appressed internal 
membranes (Fig. 61). 

DISCUSSION 

ACR4 regulates the organisation of Li-derived ovule 
integuments and sepal margins 
Despite the wide ranging expression pattern observed for 
ACR4, probable null mutants only show defects in two tissues: 
ovule integuments and sepal boundaries. Characterisation of 
mutants in several genes affecting integument development 
including INNER NO OUTER, SHORT INTEGUMENTS 1, 
SHORT INTEGUMENTS 2, BELL, AINTEGUMENTA, 
ABERRANT TESTA SHAPE and NOZZLE, has shown that 
integuments play an important role in female ganietophyte 
development and maturation (Reiser and Fischer. 1993: 
Villanueva et al.. 1999; Robinson-Beers et al.. 1992: 
Broadhvest et al.. 1999: Baker et al.. 1997: Schneitz et al.. 
1998: Balasubramanian et al.. 2002). In particular the presence 
of an intact endothelial cell layer is crucial, possibly because 
nutritionally and developmentally important substances are 
channelled to the gametophyte through this specialised cell 
layer (Kapil and Tiwari. 1978). We observed no defects 
in ovule development until integument initiation, when 
megaspores usually initiate meiosis, suggesting that the 
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Fig. 6. Protein localisation in lines expressing an 
R4::GFP protein fusion. (A) localisation of 
on proteins (gren) in the plasma membranes of 

ilic ovule epidermis. (B,C) Expression patterns of 
tusion proteins (green) in embryos (B) and 
nieristems (floral meristem. fm ) (C). Plasma 
membrane localisation can be observed (arrow in 
B). (D-F) Protein localisation in root meristems. 
(D) Lateral root tip. columella and LRC 
expression are visible. No protein is seen in the 
epidermis (e) before emergence from the LRC. 
(F) Main root tip with COIL1111CIla cell layers 
indicated by stars. )F) surface view when mounted 
in 0.8 NI mannitol. Cell wall area is clear of 
fluorescence. (G.H) Protein localisation in 
comparable untreated and 2-hour BFA-treated root 
samples. respectively, showing relative decrease in 
p I asma membrane localisation and the appearance 
of bright perinuclear bodies. (1) mature ovule with 
fluorescence seen in outer integument (oi) (where 
little protein is detected in the outermost cell 
plasma membrane; arrowhead), inner integument 
(ii) and outer cell layer of funiculus (I). rp. 
embryonic root pole: c. cotyledon primordia: s, 

cpil primordia: m, micropyle: fg. female 
gametophyte.Scale bars: 25 pm. 

observed lack ol a female gametophyte in some mature acr4 
ovules may be due to degradation or de-differentiation rather 
than to lack of initiation of gametophyte development. 

Many cicr4 mutant ovules are never fertilised because of 
severe morphological abnormalities, but of the ones that are, 
those with more severe organisational defects abort as 
developing seeds. Abortion is independent of zygotic genotype 
and is, moreover not due to developmental defects in embryo 
and endosperm development, although both tissues are 
retarded at the time of seed death. Retardation and abortion 
probably occur because defective seeds provide insufficient 
maternal support. in terms of nutrients, for embryo sac 
development. Similar retardation and death of embryo/ 
endosperm was observed when reduced expression of the 
genes FBP7 and FBPIJ led to developmental abnormalities 
and degeneration in the endothelium and seed coat of Petunia 
(Colombo et al., 1997). The total lack of zygotically derived 
embryo development defects and the observation of seed coat 
abnormalities in our study contradicts results obtained using 
antisense experiments to reduce ACR4 expression (Tanaka et 
al., 2002). 

ACR4, as a membrane-localised receptor-like kinase, 
probably acts by perceiving extracellular ligands. Several 
genes encoding possible ligands, or ligand processing 
molecules for CR4 and related proteins have been proposed. 
These include the subtilase encoded by the ABNORMAL 
LEAF SHAPE I (ALE!) gene (Tanaka et al.. 2001). During 
embryo and endosperm development, signals from 
surrounding tissues (as could be provided by the action of 
genes such as ALE!) might be important in signalling required  

for outside cell layer specification. However, it seems more 
likely that in organ primordia, as has been shown in root cell 
layer differentiation, an 'inside to outside' signalling process 
is involved in regulating cell layer behaviour, combined with 
a role for signals from neighbouring cells in the same cell 
layer (Nakajima and Benfey. 2002). Our observation that 
ACR4 protein is localised on 'internal' plasma membranes of 
'outside' cells supports the hypothesis that AC'R4 may 
perceive signals from underlying cells and/or same-layer 
neighbours. If this is the case, the restriction of the acr4 
phenotype to ovule integuments and sepal margins could he 
attributable to the fact that these tissues are unique in the 
Arabidopsis plant, in being composed of two appressed layers 
of LI cells. If normal Ll behaviour (i.e. anticlinal divisions 
giving rise to a monolayer of LI cells) were dependent on 
perception of positional information both from underlying 
cells, and from same-layer neighbours, then a loss in 
signalling between same-layer neighbours could be 
compensated for by signals from underlying cells in most 
tissues. However, in the case of ovule integuments and sepal 
margins, positional information would be effectively limited 
to that exchanged between same-layer neighbours. The cells 
in these organs would thus be particularly sensitive to 
disruption of this signalling pathway. which would be 
expected to lead to a loss of cellular organisation and thus 
abnormalities in organ outgrowth, similar to the phenotype 
observed in acr4 mutants. 

Other pieces of the puzzle 
The restricted mutant phenotype of ACR4 compared to maize 
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CR4 mutants is surprising since ACR4 appears to be unique in 
Arabidopsis in its degree of similarity to maize CR4. Unlike 
studies of cr4 in maize, we find no evidence for a loss of 
epidermal identity in act-4 mutants, but rather solely a loss of 
cell organisation. The cell disorganisation observed in acr4 
ovule integuments and sepal margins is, however, reminiscent 
of aspects of the epidermal defects observed in the leaves of 
maize cr4 mutants. Notably, both phenotypes involve 
deregulation of the planes of division, and organisation of 
populations of L  cells. Striking differences in expression also 
exist between ACR4 and CR4. In maize. CR4 is expressed in 
the aleurone cell layer and one of the major phenotypes 
associated with cr4 mutants is a defect in aleurone 
differentiation (Becraft et al., 1996). ACR4 shows no 
endosperm expression, although it is arguable whether 
Arabidopsis can be considered to differentiate a structure 
analogous to the cereal aleurone layer (Berger. 1999). In 
addition, unlike ACR4. CR4 appears to he expressed 
throughout apical meristems, without restriction to the L  layer 
until late in leaf development (Becraftet al.. 1996), and no CR4 
expression has been reported in maize root tissue. 

Functional redundancy between ACR4 and four other 
Arabidopsis genes showing weaker similarity to CR4 cannot 
be ruled out as an explanation for some of the differences 
in phenotypic severity between cr4 and acr4 mutants. The 
two most closely related genes encode proteins lacking 
a conserved kinase catalytic domain required for kinase 
activity (domain 8) (Hanks et al.. 1998). ACR4 encodes a 
functional kinase. and kinase activity is probably required for 
at least some of its functions. However, kinase-inactive 
receptors can retain partial function, possibly by interaction 
with other unrelated kinases. The kinase-null c10-6 allele, 
which causes part of the kinase domain of the CLAVATA 1 
protein to be deleted, causes only a weak mutant phenotype. 
The mutant protein thus retains functions that are independent 
of its ability to auto/transphosphorylate itself and other 
proteins (Toni and Clark. 2000). Of the two less similar 
genes, one encodes a protein closely related to tobacco 
CRKI, which has recently be implicated in cytokinin 
responses (Schafer et al., 2002). The other shares many more 
residues with CRKI than with ACR4 and CR4, especially 
in the extracellular domain adjacent to the trans-plasma 
membrane domain, where ACR4 and CR4 encode putative 
TNFR-like repeats. 

An alternative explanation for the weak acr4 phenotype 
could he that although several independent mechanisms 
regulate Ll behaviour in both Arabidopsis and maize, 
mechanistic differences in organ primordiurn development in 
monocotyledonous and dicotyledonous species have led to less 
functional overlap in maize than in Arabidopsis. Considering 
the relatively large numbers of genes expressed in Ll cell 
layers from early in development in both species. this 
possibility seems realistic, and will be investigated using 
ongoing mutagenesis and double mutant analysis approaches 
in the near future. 

We would like to thank Driini Haseloff lLlntversity of Cambridge. 

[K>. Dr Corinne Boisnard-Lorig and Dr Frederic Berger (Ecole 
Normale Supericure. Lyon. France) for providing pBl 21. 

pBSn1GFP6 and the GAL4::VPI Ci coding sequence. We are most 

grateful to Dr Allen Sessions ISyngentu. Torrey Mesa Research 

Institute. San Diego) for providing pAS99. to Dr Chris Jetfree for help 
with SEM. Kathryn Degnan for technical assistance. Dr Jane 
Langdale. Dr Andrew Hudson. Dr Justin Goodrich and three referees 
for critical comments on the manuscript. Dr John Goli for help with 
in situ hybridisations and resin embedding and Dr Thomas Guehitz 
for help with phylogenetic analysis. We acknowledge the work of the 
NASC. ABRC. Syngenta and the University of Wisconsin for creating 
and providing seed stocks. G.I. is supported by a Royal Society 
University Research Fellowship. and M.G. by a BBSRC studentship. 
The project also benefited from a JREI grant (BBSRC/Olympus 

optical). 

REFERENCES 

Abe. \I.. Takahashi, T. and Komeda. V. (2001 ). ldentiticaii,m ii a as-
regulaatry element for Li layer-specific gene expression. which is targeted 
by an LI -specific homeodornain protein. Plant J. 26. 487-494. 

Baker. S. C., Robinson-Beers, K.. Villanueva, J. M.. Gaiser, J. C. and 
Gasser. C. S. ( 1997. Interactions among genes regulating ovule 
des elopment in .1 tahidop xii iltalianu. Genetics 145. 1109-1124. 

Balasubrarnanian. S. and Schneitz. K. 2(X)2. NOZZLE links proximal-
distal and ada xiai-ahaxial pattern formation during ovule development in 
Arahiopsrs. DeieIonnent 129. 4291-43(X). 

Becker, D. (1990. Binary vectors which allow the etchange of plant selectable 
markers and reporter genes. Nucleic ,4cith Res. 18, 203. 

Becker, D., Kemper, E., Schell, J. and Masterson, R. (1992). New plant 
binar vectors with selectable markers located proximal to the left T-DNA 
border. Plant MoI. Fool. 20. 1195-1197. 

Becraft, P. %V., Li, K., I)ey, N. and Asuncion-Crahb, V. (2(X)2(. The maize 
dek I gene functions in embryonic pattern formation and cell fate 
specification. Deveiopnient 129. 51217-5-2 -2 5. 

Becraft. P. W., Stinard, P. S. and McCarty. D. R. (1996). CRINKLY4: A 
TNFR-like receptor kinase invoked in maize epidermal differentiation. 
Science 273. 1406-1409. 

Berger, F. (1999). Endosperm development. Cur,: Opin. Plant Biol. 1 28-32, 
Bois na rd- Lorig. C., Colon-Carmona, A.. Bauch, M., Hodge, S., Doerner, 

P., Bancharel. E., Dumas, C., HaselofT, J. and Berger, F. (2()0). Dynamic 
analyses of the expression of the HISTONE::YFP fusion protein in 
.1ra/ndopsrs show that syncytial endosperm is divided in mitotic domains. 
Plow Cell 13. 495-509. 

Broadhvest, J., Baker, S. C. and Gasser, C. S. (1999) SHORT 
LvTEC;L!ME,vTs 2 promotes growth during ,hro/'idopsis reproductive 
development. Getienet 155. 899-907. 

Clough, S. J. and Bent. A. F. (1998). Floral dip: a simplified method for 
.1 troliocteriittn-med iated transformation of .4 ra/tidopsis t/uzliatia. Plant ./. 

16. 735-743. 
Colombo. L., Franken. J., van der KroI, A. R., Wittich. P. E., Dons, H. J. 

M. and Angenent. G. C. 1997. Dow nregulaiion of ovule-specific MADS 
box genes from /'enuiia results in maternally controlled defects in seed 
development. Plant Cell 9, 703-7 IS, 

Fletcher, J. C.. Brand, C., Running. \1. P.. Simon, R. and Meyerowitz, E. 
M. 1999. Signalling of cell fate decisions b CLAVATA3 in Ara/titlopiis 

shoot meristerns Science 283. 1911-1914. 
Geidner, N., Anders, N., Wolters, H., Keicher. J., Kornberger. W., Muller, 

P., Delbarre, A., Ceda, T., Nakana, A. and Jurgens. G. (20)3). The 
Arahidopsi.s (INOM ARF-GEF mediates endosomal recycling. auxin 
transport and auxin-dependent plant growth. Cell 112. '19-230- 

Geidner, N., Frimi ......tierhof. V.-!)., Jurgens, G. and Palme. K. (2091). 
Auxin transport inhibitors block t'IN I cycling and vesicle trafficking. 
Satitie 413, 425-428. 

Hanks. S. K.. Quinn. A. M. and Hunter, T. (1998). The protein kinase family: 
conserved fe,inircs and deduced phlogeny of the catalytic domains. Science 

241. 42-52. 
HaselofT. J. 1999. GFP variants for multispectral imaging of living cells. 

Met/toil., Cell Biol. 58. 39-151. 
Jackson. D. (1991 	In situ hybridisation in plants. In Molecular Plant 

Pat/tolov; .4 Practical Approach led. D. I. Bowles. S. .1. Gurr and M. 
\lcPhersonL Oxford: Oxford University Press. 

Jenik, P. D. and Irish. V. F. i20000. Regulation of cell proliferation patterns 
h% homeutic genes during ,4rithiilopsis floral development. Development 

127. 1267-1276. 



4258 M. L. Gifford S. Dean and G. C. Ingram 

Kapil. R. N. and Tiwarj, S. C. 1978r The integumentary tapetum. Bog. Rev. 
44. 457490. 

Kessler, S., Seiki, S. and Sinha, N. (2002). Xe/I causes delayed oblique 
periclinal cell division ,, in developing maize leaves, leading to cellular 
differentiation b linea ge instead of position. Development 129, 1859-1869. 

Kidner, C., Sundaresan, %, Roberts, K. and Dolan, L. (2(88)). Clonal 
analysis of the Arabidopsi.s root confirms that position, not lineage, 

determines cell fate. PIanta 221. 191-199. 
koncz, C. and Schell. J. (1986). The promoter of T[_-DNA gene 5 controls 

the tissue-specific expression of chimaeric genes carried by a novel type of 
,1,ohacjerjwn binary vector. Mo!. Gen. Gene!. 204.383-396. 

Knsan, P. J., Young. J. K. and Sussman. M. R. (1999). T-DNA as an 
insertional mutagcn in 4rabidop.sis. P1(1,?! Cell II. 2283-2290. 

Lid. S. E.. Gruis. D.. Jung. R.. IAirentzen........ nanies E.. Chamberlin. 
\I.. Niu. X., Meeley, R.. Nichols, S. and Olsen, 0. A. (2(9)2. The defective 
kernel I (dekl) gene required for aleurone cell development in the 
endosperm of maize grains encodes a plasma membrane protein of the 
calpain gene superfamily. Prot. Nail. Acad....i. USA 99. 5460-5465. 

Lu. P., Porat, R.. Nadeau, J. A. and O'Neill, S. D. (1996i. Identification ol 
it meristeni L  laser-specific gene in .4rahidorsi.s that is expressed during 
embryonic pattern formation and defines a class of homeobox genei. Plant 
('elI 8. 2155-2168. 

Nakajima, K. and Benfey. P. N. i0((2i. Signalling in and out: control of cell 
dis ision and differentiation in the shoot and root. I'/ci,ii Cell 14, S265-S276. 

Nehenfiihr, A., Ritzenthaler, C. and Robinson, D. C. (2(8)2). Brefeldin A: 
Deciphering an enigmatic inhibitoi Of secretion. I'/w,t P/coin!. 130, 1102-
I 1(18. 

Notredame. C., Higgins, D. G. and Heringa, J. 2(88)). T-Coffee: A nosel 
method for fast and accurate multiple sequence alignment. J. Mo!. Rio!. 302. 
205-217. 

Reiser, I.. and Fischer, R. L. (1993). The ovule and embryo sac. Plant Cell 
5, 1291-1301. 

Robinson-Beers. K., Pruitt. R. E. and Gasser, C. S. (1992). Ovule 
development in 55 I Id-type .•\ ro/odop.si.s and two female-sterile mutants. Plant 
(e114. 1237-1249. 

Schafer, S. and Schmulling. T. 2002). The CRKI receptor-like kinase of 
tobacco is legato el\ regulated by cvtokinin. Plant Mo!. Biol. 50, 155-166.  

Schneitz, K., Baker. S. C., Gasser, C. S. and Redweik, A. (1998). Pattern 
formation and growth during floral organogenesis: H[ELLENLOS and 

AINTEGUMENTA are required for the formation of the proximal region of 
the osule pnmordium in .4rabidopsia thaliana. Development 125, 2555-
2563. 

Schneitz, K., Hulskamp. M. and Pruitt, R. E. (1995). Wild-type ovule 
dcsel lpment in ..ti-aliidopiis llia/,ana: a light microscope study of cleared 
whole-mount tissue. Plant .l. 7. 731-749. 

Sessions, A.. Burke. E.. Presting, G., Aux, G., McElver, J., Patton, D., 
Dietrich, B., Ho. P., Bacwaden, J., Ko, C. et al. 2002). A high-throughput 
.4rahidopsis reverse genetics system. P/a;,! Cell 14, 2985-2994. 

Sessions, A.. Weigel, D. and Yanofsky. M. F. (1999). The Arahidopsis 
tha/iw,a MERISTEM LAYER I promoter specifies epidermal expression in 
menstems and young primordia. Plain J. 20. 259-263, 

Stewart, R. N. and Burk, L. G. (1970). Independence of tissues derived from 
apical layers in ontegeny of the tobacco leaf and ovary. Am. J. Rot. 57. 101(1-
1016. 

Stewart, R. N. and Dermen. H. (1975). Flexibility in ontogeny as shown by 
the contribution Of the s hoot apical Imer, to the leaves of periclinal 
chimaeras. ,ian. .1. Boi, 62, 935-947. 

Tanaka, H., Onouchi, H.. Kondo. \l.. Hara-Nishimura, 1.. Nishimura, NI., 
Machida. C. and \Iachida, Y. (20(11). A sLibtilisin-like serine protease is 
required for epidermal surface formation in .4rab/dopic emhros and 
jus enile plants. /)et e/iipnient 128. 4681-4689. 

Tanaka, H., Watanabe, NI., Watanabe, D., Tanaka, 1'.. Machida. C. 
and Maehida. V. (2002). ACR4. a putative receptor kinase gene of 
,4rahido1isic 1/ia//rota, that is e'spressed in the outer cell layers of embryos 
and plants. is involved in proper enibryogenesis. P/wit Cell P/iviol. 43, 
419-428, 

Toni. K. and Clark, S. (2(88)). Receptor-like kinases in plant development. 
,4(/i. //ot. Res. 31 225-267. 

San den Berg, C., Willemsen, V., Hage, W., Weisheek. P. and Scheres. B. 
1995). Cell fate in the .1 i'a/;d/op.si.s root meristem determined h directional 

signalling. Na/moe 378. 62-65. 

Villanueva, J. Al., Broadhvest. J., Hauser. B. A.. Meister, R. J.. Schneitz, 
K. and Gasser, C. S. (1999). INNER NO OUTER regulates ahaxiul-adaxial 
pattern mug in .4 ,'ahmilajo Li ovules. Genes Dci: 13. 3160-31(19. 


