

This thesis has been submitted in fulfilment of the requirements for a postgraduate degree

(e.g. PhD, MPhil, DClinPsychol) at the University of Edinburgh. Please note the following

terms and conditions of use:

This work is protected by copyright and other intellectual property rights, which are

retained by the thesis author, unless otherwise stated.

A copy can be downloaded for personal non-commercial research or study, without

prior permission or charge.

This thesis cannot be reproduced or quoted extensively from without first obtaining

permission in writing from the author.

The content must not be changed in any way or sold commercially in any format or

medium without the formal permission of the author.

When referring to this work, full bibliographic details including the author, title,

awarding institution and date of the thesis must be given.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Edinburgh Research Archive

https://core.ac.uk/display/429724121?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Parallel Problem Generation
for Structured Problems in
Mathematical Programming

Feng Qiang

Doctor of Philosophy

University of Edinburgh

2015

Declaration

I declare that this thesis was composed by myself and that the work contained
therein is my own, except where explicitly stated otherwise in the text.

(Feng Qiang)

2

7 August 2015

Acknowledgements

First of all, I would like to thank my principle PhD supervisor Dr. Andreas
Grothey, who is patiently guiding me through the course of my PhD research.
Without his guidance, I will never be able to reach at this point. As a PhD
supervisor, Dr. Grothey is responsible and considerate, and I have learned a lot
from him for conducting research works. As a mentor and friend, Andreas is very
friendly and always willing to help and to share his valuable life experiences. It
has been a great time to work with him for all these years in Edinburgh.

I would also like to express my gratitude to my second supervisor Prof. Jacek
Gondzio who is always there to offer me advice and support on both research and
career directions.

I would also like to thank Robert M. Gower, with whom I had invaluable
discussion on the automatic differentiation algorithms and their implementation
issues.

Furthermore, I would like to thank the University of Edinburgh who pro-
vided the funding support for my entire PhD study and brought me this great
opportunity to enhance my life experience.

Additionally, I would like to thank my parents and family members for their
mental and physical supports which greatly helped me through some tough times.

Finally, I would like to thank all my friends and colleagues, especially my
office mates: Yiming Yan and Waqquas Ahmed Bukhsh, with whom I had lots
of laughter and good memory.

3

Lay summary

Because of the hierarchical natural of our world, large scale problems can be al-
ways described using structured approaches. This hierarchical structure could
represent many real life objects, for example, an organization with multiple de-
partments, an event tree of a stochastic process, etc. Once an underlying ob-
ject is described using a mathematical model, decision-makers almost always use
a computer-based optimization solver to work out an optimized decision for a
given objective function incorporated in the model. Therefore, the model has to
be also computerized in order to communicate with the optimization solver. As
the cost of the parallel computing hardware decreases, more and more researches
are now interested in solving an optimization problem using parallel approaches.
In particular, large scale problems may take hours or even days to solve in serial,
therefore it is necessary to utilize parallel algorithms and solve them in a timely
fashion.

There are quite a few parallel solvers in the field already, but a well accepted
parallel modelling approach is not yet established. This is currently identified as
a run-time bottle-neck for solving large scale optimization problems.

In this research, we investigated the challenges involved in modelling large
scale structured problem in parallel. We also presented a novel methodology for
modelling and generating a structured problem in parallel using computer-based
tool. The result of this research enabled us to implement a parallel modelling
tool, namely Parallel Structured Model Generator (PSMG). PSMG aims to pro-
vide non-technical users an easy-to-use modelling framework for describing and
solving structured optimization problem using parallel solvers. Our modelling
framework also provides interface methods that enable an easy linkage between
parallel optimization solvers and the model framework itself.

This thesis also includes benchmarks to demonstrate both serial and parallel
performance of the PSMG. The benchmark results are obtained by modelling a
few different structured problems of various sizes. The results also demonstrate
that PSMG offers a promising run-time performance in both serial and parallel
cases.

4

Abstract

The aim of this research is to investigate parallel problem generation for struc-
tured optimization problems. The result of this research has produced a novel
parallel model generator tool, namely the Parallel Structured Model Generator
(PSMG). PSMG adopts the model syntax from SML to attain backward com-
patibility for the models already written in SML [1]. Unlike the proof-of-concept
implementation for SML in [2], PSMG does not depend on AMPL [3].

In this thesis, we firstly explain what a structured problem is using concrete
real-world problems modelled in SML. Presenting those example models allows
us to exhibit PSMG’s modelling syntax and techniques in detail. PSMG provides
an easy to use framework for modelling large scale nested structured problems
including multi-stage stochastic problems. PSMG can be used for modelling linear
programming (LP), quadratic programming (QP), and nonlinear programming
(NLP) problems.

The second part of this thesis describes considerable thoughts on logical call-
ing sequence and dependencies in parallel operation and algorithms in PSMG.
We explain the design concept for PSMG’s solver interface. The interface follows
a solver driven work assignment approach that allows the solver to decide how
to distribute problem parts to processors in order to obtain better data locality
and load balancing for solving problems in parallel. PSMG adopts a delayed
constraint expansion design. This allows the memory allocation for computed
entities to only happen on a process when it is necessary. The computed enti-
ties can be the set expansions of the indexing expressions associated with the
variable, parameter and constraint declarations, or temporary values used for set
and parameter constructions. We also illustrate algorithms that are important
for delivering efficient implementation of PSMG, such as routines for partitioning
constraints according to blocks and automatic differentiation algorithms for eval-
uating Jacobian and Hessian matrices and their corresponding sparsity partterns.
Furthermore, PSMG implements a generic solver interface which can be linked
with different structure exploiting optimization solvers such as decomposition or
interior point based solvers. The work required for linking with PSMG’s solver
interface is also discussed.

Finally, we evaluate PSMG’s run-time performance and memory usage by
generating structured problems with various sizes. The results from both serial
and parallel executions are discussed. The benchmark results show that PSMG
achieve good parallel efficiency on up to 96 processes. PSMG distributes memory
usage among parallel processors which enables the generation of problems that
are too large to be processed on a single node due to memory restriction.

5

Contents

Abstract 5

1 Introduction 12
1.1 Background of Algebraic Modelling Language 12
1.2 Structured Modelling Approaches Review 13
1.3 Motivation of Parallelization . 14
1.4 PSMG overview . 15
1.5 Structure of this Thesis . 15

2 Structured Problems and Modelling Techniques 17
2.1 SML Modelling Syntax Review 17

2.1.1 SML Keywords . 17
2.1.2 Block Model . 18
2.1.3 Stochastic Model . 18
2.1.4 Explicit Variable Referencing 19

2.2 MSND: A Nested-block Structured Problem 19
2.3 ALM-SSD: A Multistage Stochastic Programming Problem 23
2.4 Discussion . 27

2.4.1 Block Separability Assumption 27
2.4.2 Objective Function Treatment 27

3 Parallel Solvers for Structured Problems 29
3.1 Structure Exploiting in Interior Point Method 29

3.1.1 Linear Algebra in IPM . 29
3.1.2 Structure Exploiting in IPM 33
3.1.3 Parallel Allocation and Solving 33

3.2 Decomposition Algorithms . 35
3.2.1 Benders’ Decomposition 36
3.2.2 Parallel allocation and solving 37

3.3 Discussion . 38
3.3.1 Modelling Nonconvex Problems 39

4 PSMG Design and Implementation 40
4.1 Development Environment and Technique 40
4.2 Block and Stochastic Model . 41
4.3 Structure Building Stage . 43

4.3.1 Template Model Tree . 43

6

Contents

4.3.2 Expanded Model Tree . 47
4.4 Parallel Problem Generation Stage 49

4.4.1 Solver Driven Problem Assignment 49
4.4.2 Constraint Separability Detection 52
4.4.3 Function and Derivative Evaluation 52

5 Evaluating Derivatives in PSMG 54
5.1 Forward AD Algorithm . 54
5.2 Reverse AD Algorithm . 55
5.3 Computing Sparse Hessian . 57
5.4 AutoDiff Library Module . 60
5.5 Future Work in the AD Module 62

5.5.1 Some Parallel Consideration 62

6 PSMG Solver Interface 63
6.1 General Problem Formulation . 63
6.2 Problem Structure Retrieval . 66
6.3 Variable and Constraints Information 67
6.4 Local and Distributed Interface Methods 69

6.4.1 Inter-process Communication 70
6.4.2 Interface Method Summary 71

6.5 LP Problem Interface . 71
6.5.1 Constraint Matrix Evaluation 72
6.5.2 Constraint Function Evaluation 74
6.5.3 Objective Function Evaluation 76
6.5.4 Objective Gradient Evaluation 77

6.6 QP Problem Interface . 78
6.6.1 Hessian Matrix Evaluation 79
6.6.2 Objective Function Evaluation 80
6.6.3 Objective Gradient Evaluation 81

6.7 NLP Problem Interface . 83
6.7.1 Jacobian Matrix Evaluation 84
6.7.2 Hessian of the Lagrangian Matrix Evaluation 88
6.7.3 Constraint Function Evaluation 94
6.7.4 Objective Function Evaluation 96
6.7.5 Objective Gradient Evaluation 97

6.8 Summary . 97

7 Linking With Parallel Solvers 99
7.1 Structure Exploiting Interior Point Method 99

7.1.1 Building Matrix Structure 99
7.1.2 Building Vector Structure 102
7.1.3 Parallel Process Allocation 104
7.1.4 Parallel Problem Generation 105

7.2 Benders’ Decomposition . 107
7.2.1 Parallel problem generation 107

Page 7

Contents

8 PSMG Performance Benchmark 109
8.1 LP and QP Problems . 109

8.1.1 Test Problem Sets . 109
8.1.2 Comparison Analysis with SML 110
8.1.3 Serial Performance . 112
8.1.4 Parallel Performance . 114
8.1.5 Memory Usage Analysis 114

8.2 NLP Problems . 116
8.2.1 SCOPF Problem . 117
8.2.2 Serial Performance . 118
8.2.3 Parallel Performance . 118

8.3 Modelling and Solution Time . 120
8.3.1 Serial Analysis . 120
8.3.2 Parallel Analysis . 121
8.3.3 Discussion . 122

8.4 Discussion . 122

9 Conclusions 124
9.1 Research Summary . 124
9.2 Future Work . 125

Appendices 127

A AutoDiff Library Interface Methods 128

B Security Constrained Optimal Power Flow Model 131

C Asset Liability Management Model with Mean-Variance 138

Page 8

List of Figures

2.1 The constraint matrix structure of MSND problem. 21
2.2 Scenario tree structure for a 3-stage ALM-SSD problem instance con-

structed from data file in Listing 2.4 (using parameters: Parent and

Probs, and NODES set). The numbers on the tree edges are the proba-

bility of reaching each node from its parent node. 26
2.3 The constraint matrix structure of a 3-stage ALM-SSD problem in-

stance based on the data file in Listing 2.4. 27

3.1 The augmented matrix structure for a two level problem. 33
3.2 A general problem formulation using Bender’s decomposition scheme. . 36
3.3 Benders’ Decomposition solvers algorithm at each iteration k. 37

4.1 The template model tree for MSND problem model file specified in

Listing 2.1. 44
4.2 Entities in each template model tree node of MSND problem. 45
4.3 The template model tree for a 3-stage ALM-SSD problem specified in

Listing 2.3. The indexing expression associated with each tree node is

implicitly constructed by PSMG. 46
4.4 Entities in each template model tree node of ALM-SSD problem. . . . 47
4.5 The expanded model tree of an MSND problem instance constructed

by PSMG using data file in Listing 2.2. 48
4.6 Expanded model tree for a 3-stage ALM-SSD problem instance con-

structed by PSMG using data file in Listing 2.4. 48
4.7 The PSMG workflow diagram with a parallel optimization solver. . . . 50

5.1 The computational graph for function f(x) = (x−1x−2) + sin(x−2)x0. . 55
5.2 Illustration for applying forward AD to evaluate ∂f

∂x
−1

of f(x) = (x1x−2)+

sin(x−2)x0. 56
5.3 Illustrating the forward sweep for applying reverse AD to evaluate

∇f(x) of f(x) = (x−1x−2) + sin(x−2)x0. 58
5.4 Illustrating the reverse sweep for applying reverse AD to evaluate∇f(x)

of f(x) = (x−1x−2) + sin(x−2)x0. 59
5.5 The class hierarchy diagram in AutoDiff Library for building function

expression tree. 62

6.1 A general two level structured problem. 65
6.2 Double bordered block-angular structure for a two level structured

problem . 66

9

List of Figures

6.3 A general two level structured problem. 72
6.4 Structure of Jacobian matrix for a general two LP problem. 73
6.5 The objective gradient for a general two level LP problem. 77
6.6 A general two level structured problem. 79
6.7 The objective Hessian matrix structure for a general two level QP problem. 79
6.8 The objective gradient for a general two level QP problem. 81
6.9 Structure of Jacobian matrix for a general two level NLP problem. . . 84
6.10 Structure of Hessian of the Lagrangian matrix for a general two level

NLP problem. 90

7.1 A potential matrix data type hierarchy diagram adopted by solver im-

plementation. 100
7.2 The double bordered angular-block structure matrix created using an

expanded model tree of a two level problem. Each nonzero block of the

matrix is indicated by a pair of expanded model tree nodes. 101
7.3 A potential vector data type hierarchy diagram adopted by solver’s

implementation. 103
7.4 This figure demonstrates the expanded model tree and its corresponding

vector structure. The dimension of each sub-vector can be obtained by

accessing the interface properties of the expanded model tree node. . . 104
7.5 Parallel processor allocation of the rearranged augmented matrix and

corresponding vector in OOPS. 105

8.1 Semi-log plot for generating MSNG problem instances using PSMG and

SML-AMPL. The data is from Table 8.1. It clearly demonstrates that

the performance of PSMG is far superior to SMP-AMPL. 111
8.2 Plot for PSMG’s problem generation time for the MSND problems in

Table 8.2. 113
8.3 Problem generation time for the ALM-SSD problems in Table 8.2 . . . 113
8.4 Problem generation time for the ALM-VAR problems in Table 8.2 . . 113
8.5 Parallel efficiency plot for MSND problem. 115
8.6 Parallel efficiency plot for ALM-SSD problem. 115
8.7 Total memory usage plot for generating problem msnd30 100. 116
8.8 Per processor memory usage for generating problem msnd30 100. . . . 116
8.9 Plot for PSMG’s problem generation time for the first iteration of the

SCOPF problems in Table 8.6. 119
8.10 Problem generation time for the subsequent iteration of the SCOPF

problems in Table 8.6. 119
8.11 Per-iteration parallel efficiency plot for problem generation in the first

iteration of the largest SCOPF problem in Table 8.6. 121
8.12 Per-iteration parallel efficiency plot for problem generation in the sub-

sequent iterations of the largest SCOPF problem in Table 8.6. 121

Page 10

List of Tables

6.1 Summary of the local and distributed interface methods for LP, QP and

NLP problems. In this table, “L” donates the local interface method is

implemented for a problem type. “D” means the distributed interface

is implemented. “Same” means the interface methods are the same

for both local and distributed implementations. This happens when the

entity to be evaluated does not depend on the variable values. “×”

means the evaluation routine for a problem type is not meaningful. . 71

8.1 Comparison of PSMG with SML-AMPL for generating MSND problem

instances in serial execution. 111
8.2 Problem sizes and PSMG problem generation time for MSND, ALM-

SSD and ALM-VAR problem instances. 112
8.3 PSMG speedup and parallel efficiency for a large MSND problem. . . 114
8.4 PSMG speedup and parallel efficiency for the largest ALM-SSD problem.115
8.5 Parallel processes memory usage information for generating problem

msnd30 100. 116
8.6 Problem sizes and PSMG problem generation time for SCOPF problem

instances. 119
8.7 PSMG speedup and parallel efficiency for largest SCOPF problem in

Table 8.6. 120
8.8 PSMG’s modelling time for a set of MSNG problems and their corre-

sponding solving time. 121
8.9 PSMG’s modelling time the MSND problem. 122

11

Chapter 1

Introduction

1.1 Background of Algebraic Modelling Language

Mathematical programming techniques are widely used in various fields. Let us
consider a mathematical programming problem in the general form,

min
x∈X

f(x) s.t. g(x) ≤ 0, (1.1)

where x ∈ R
n, f : Rn → R, g : Rn and f, g are sufficiently smooth. Here x is the

vector of decision variables, f(x) is the objective function and g(x) are the con-
straint functions. Most optimization solvers are implemented with an iterative al-
gorithm. At each iteration, all or some of the values f(x),g(x),▽f(x),▽g(x),▽2f(x),
and ▽2gi(x) are required at the current iterate x ∈ X.

To avoid hardcoding of problem specific routines for function and derivative
evaluation, in most cases a problem is modelled using an algebraic modelling lan-
guage(AML) of the modeller’s choice. A few survey papers [4, 5] have studied
the advantages of using an AML to describe an optimization problem over other
methods (such as MPS form [6, 7] or matrix generator form). Most AMLs use
common algebraic abstraction (such as index sets, parameters, variable, etc.) to
describe an optimization problem allowing to produce a model with good un-
derstandability. AMLs usually also offer the feature of separation of model and
data which can effectively improve the maintainability of a model. AMPL [3],
GAMS [8], AIMMS [9] and Xpress-Mosel [10] are popular choices of commercial
modelling languages. GLPK is an open source counterpart which is offering a
subset of the AMPL language but is restricted to modelling linear problems, or
mixed integer problems [11]. By using an AML, a modeller is able to focus on
specifying the underlining mathematical relations of the problem using common
algebraic abstraction from the AML. Otherwise, the modeller is most likely re-
quired to write matrix generator programs to interactive with an optimization
solver, which is usually a tedious and error-prone process. Therefore, AML is a
great bridge between the optimization solver and the modeller.

Few recently developed AMLs, such as FlopC++ [12], Pyomo and JuMP
[13] are using operator overloading techniques and are built on top of a general
purpose programming languages: C++, Python and Julia respectively. They
allow the optimization model to be specified in a declarative style in a similar

12

1.2. Structured Modelling Approaches Review

way as in AMPL or GAMS. Since FlopC++ is built on top of C++, it requires
explicit compilation to execute code. Pyomo, on the other hand, is developed
on top of an interpretive language–Python [14]. Arguably, the restriction arising
from building a modelling language on top of a general purpose Object-Oriented
language make it more cumbersome to use. According to the author of Pyomo,
”Pyomo has a more verbose and complex syntax” [15] than AMLs like AMPL.
On the other hand, the use of a general purpose programming language means
that it is easy to embed optimization models in software application [12].

1.2 Structured Modelling Approaches Review

As the need for accurate modelling increases, the size and complexity of math-
ematical models increases likewise. The underlying mathematical model of a
particular problem may composed of multiple sub-models at various scale lev-
els. In order to produce an accurate and efficient model behavior, multiscale
modelling technique are used in various physics, chemistry, material science ap-
plications etc. Multiscale modelling is refered to a modelling style that is used to
express a system with simultaneously models at different scales. Weinan stated
that our society is organized in a hierarchical structure, and the macroscale model
behavior is produced by the microscale models and their structure and dynamics
[16]. In [16], Weinan discussed various multiscale modelling techniques and their
corresponding applications.

In the field of mathematical programming, the multiscale modelling is usually
used for solving multiscale decision-making problems [17]. The multi-level model
are usually result of the underlying organization’s hierarchical structure or multi-
stage stochastic process. It is common that a large scale optimization problem
is modelled with millions of constraints and variables. Because of the hierar-
chical nature of the real world, a large scale problem is usually not only sparse
but also structured. Here structure means that there exists a discernible pattern
in the constraint matrix. This pattern is usually the result of an underlying
problem generation process, such as discretizations in space, time or probability
space; many real world complex optimization problems are composed of mul-
tiple similar sub-problems and relations among the sub-problems, where those
sub-problems can be considered as microscale models. Our research goal is to
investigate a convenient modelling approach for describing large scale structured
decision-making problems that can be efficiently linked with various parallelized
optimization solvers.

For many years, researchers have been working on using such problem struc-
ture to parallelize optimization solvers in order to reduce their solution finding
time. Algorithms, such as Dantzig-Wolfe [18, 19] and Benders’ Decomposition
[20], and interior point solvers, such as OOPS [21, 22, 23] and PIPS [24] can take
advantage of such structure to speed up the solver by parallelization and enable
the solution of larger problems. To use such techniques the solver needs to be
aware of the problem’s constraint matrix and structure. However the AMLs we
mentioned above do not have the capabilities to express the problem’s structure
and convey it to the solver.

Page 13

1.3. Motivation of Parallelization

The modelling language SAMPL [25] is a stochastic extension to AMPL [3]
using AMPL’s suffix declaration. StAMPL [26] is another modelling tool for
describing stochastic programming problems. It can specify the scenario tree
structure as data and allows separation of the stochastic tree topology from the
abstract mathematical relation between stages. There are also other approaches
that are able to convey the problem structure to the optimization solver. The
mechanism is to pass structure information by annotation of the unstructured
model. This can be done by annotation on top of MPS format [27]. There are
attempts made for automatic recovery of the problem’s matrix structure from the
unstructured model [28], however this process is computationally intensive and
produces far from perfect results.

Colombo et al. have presented a more detailed review of these approaches
in [1]. Those modelling system that do offer capabilities to express structure,
are either not general approaches (e.g. specialized to stochastic programming),
or they require assembling the complete unstructured model before annotations
can be parsed, which is usually infeasible for large problems because of memory
limitation of a single node.

On the other hand, SML [1] is designed as a generic AML for describing
any structured problem. SML extends the modelling syntax from AMPL by
introducing additional high level abstraction such as block, stage, etc., therefore
a concise and straightforward model can be produced for a structured problem.

1.3 Motivation of Parallelization

The total time required to solve an optimization problem is the combination of
time consumed for problem generation and function evaluations in the AML plus
the time consumed for the optimization solver. Although the former is often a
comparatively small part of the overall process, for a large scale optimization
problem with millions of variables and constraints, the model generation process
itself becomes a significant bottleneck for both memory and execution speed, es-
pecially when the optimization solver is parallelised, while the model generator
is not. Therefore parallelization, not only of the solver, but also of the problem
generation and function evaluation is necessary. The need for parallel model gen-
eration has also been recognised by the European Exascale Software Initiative
EESI [29]. It is worth mentioning Huchette et al. who have recently presented
StochJuMP [30]–a parallel extension for the JuMP. However StochJuMP is only
for modelling stochastic programming problems, and not yet supporting the sepa-
ration of model and data. In our research, we have studied the challenges and dif-
ficulties when performing a parallel problem generation for structured problems.
The result of this work has produced a generic parallel algebraic modelling tool,
namely Parallel Structured Model Generator (PSMG). PSMG adopts the proven
modelling syntax from SML for describing structured problems. PSMG also pro-
vides a generic solver interface implementation that is sufficient to be adapted
by different structure exploiting solvers. Meanwhile, the initial proof-of-concept
generator for SML was implemented as an AMPL pre- and post-processor. It uses
the AmplSolver [31] library to compute the function and derivative evaluations

Page 14

1.4. PSMG overview

through *.nl-file, which means it uses a file system based interface for com-
municating between the solver and AMPL. The file-system based interface has
been proven to be inefficient for parallel processing;on the other hand, PSMG
is a standalone algebraic modelling generator and does not depend on AMPL.
The elimination of file system interface has resulted in huge performance gains
in PSMG for generating large structured problems. As a result, PSMG’s model
parser requires additional implementation work for handling the full semantics of
the modelling syntax. A data parser is also implemented for PSMG to load the
corresponding data files for models. The usage of the modelling syntax of SML
is also documented in [2]. In other words, a major percentage of work is spent in
software design and implementation to make PSMG released as an open-sourced
modelling tool. PSMG was firstly presented in [32] where PSMG’s high-level de-
sign concept and performance for modelling linear programming problems were
demonstrated. In this thesis, we provide in-depth details about PSMG design and
its solver interface, and we also present the extension work that allows PSMG to
model nonlinear programming problems.

1.4 PSMG overview

From the modeller’s point of view, the problem is described in a model and data
file. PSMG builds the template model tree and expanded model tree from the files
(discussed in Chapter 4). The template model tree represents the problem’s high
level abstraction specified in the model file, whereas the expanded model tree
represents an actual problem instance by expanding the template model tree with
the data file. The expanded model tree is generate in two stages: model pro-
cessing stage and problem generation stage. PSMG firstly generates the skeleton
of expanded model tree with minimal processing effort. This expanded model
tree skeleton contains just enough information (i.e. number of constraints and
variables in each sub-problems) for PSMG to convey the problem structure to the
parallel solver processes. Then at the problem generation stage, PSMG computes
and populates the part of the content of the expanded model tree that is nec-
essary for function and derivative evaluations on a local process. The expanded
model tree also acts as the solver interface between a structure exploiting solver
and PSMG (discussed in Chapter 6).

The template model tree and expanded model tree skeleton are built on every
parallel processes. PSMG employs a solver driven work assignment approach for
parallel problem allocation (discussed in Chapter 4). This design allows PSMG
to be easily adopted by various parallel solvers with different inter-process com-
munication patterns.

1.5 Structure of this Thesis

The rest of this thesis is organized as follows: Chapter 2 presents the structured
problems and their modelling technique adopted in PSMG. In this chapter, we
present an overview of PSMG’s model and data syntax by demonstrating the

Page 15

1.5. Structure of this Thesis

model and data files for two structured problem examples. PSMG’s modelling
syntax is mostly adapted from the SML but the parser has been re-implemented
for better performance. A data parser is also implemented for PSMG to handle
a subset of AMPL’s data syntax. Chapter 3 briefly reviews two types of parallel
solving approaches (i.e. using structure exploiting interior point method and de-
composition algorithms) in order to identify the required tasks to be performed by
a parallel modelling system. Chapter 4 explains the model processing of PSMG
in detail. We describe important design and implementation decisions in PSMG,
as well as some major components of PSMG. PSMG implements the state-of-
the-art auto differentiation(AD) algorithms for computing Jacobian and Hessian
matrices and their corresponding sparsity patterns. Thus, we also explain the AD
algorithms and their implementation in Chapter 5. Chapter 6 presents PSMG’s
solver interface for LP, QP and NLP problems. The interface methods for prob-
lem structure retrieval and function and derivative evaluations are demonstrated.
Chapter 7 explains the work involved in linking PSMG’s solver interface with op-
timization solvers. Chapter 8 presents PSMG’s performance benchmark results
for both serial and parallel executions. The run-time speed and memory usage
results are provided and discussed for several structured problems. Finally, in
Chapter 9 we present the conclusions of this thesis and a list of possible future
work that may be continued in this research area.

Page 16

Chapter 2

Structured Problems and
Modelling Techniques

In this chapter, we first briefly review the modelling syntax of SML, and then
we present two nested-structured problems modelled in SML. The examples we
used are Multi-Commodity Survivable Network Flow (MSND) and Asset Liability
Management with Second Order Stochastic Dominance constraints (ALM-SSD).
This chapter also serves the purpose to showcase how PSMG modelling syntax
is used to express problem structure. The examples we presented in this chapter
are also used to evaluate PSMG’s performance in Chapter 8.

2.1 SML Modelling Syntax Review

SML modelling syntax is documented in the SML User’s Guide [2] in detail. For
sake of completeness of this thesis, we also briefly illustrate some key concepts in
its modelling syntax.

2.1.1 SML Keywords

SML’s modelling syntax is build on top of AMPL’s with added feature to describe
block structures in a problem. The modeller can still use normal statements in
AMPL’s format to declare a set, parameter, constraint, objective, etc. In addition
to the keywords used in AMPL, other keywords are also reversed in SML for
describing the structure of the problem. Those keywords are listed below.

• block – declares a block entity.

• stochastic – modifier of a block entity that indicates it is a stochastic
block.

• using – modifier of a stochastic block statement that specifies the sets used
to construct the scenario tree of this stochastic process.

• stage – declares a stage entity.

• ancestor – ancestor function, e.g. ancestor(i) references i-th ancestor
stage.

17

2.1. SML Modelling Syntax Review

• deterministic – indicates the entities defined within the stochastic block
are repeated only once for each stage.

• Exp – expectation function, e.g. Exp(expr) represents the expectation of
the expression expressed by expr.

2.1.2 Block Model

The syntax for specifying a block model is given below.

block statement:

block name of block [indexing set]: {
[statements]

}
The statements can be any of normal AMPL statements (for describing an

entities in this block such as set, param, subject to, var, minimize, etc.)
or further block statement (for describing a problem with nested structure).
The expression inside the square brackets [] is optional. The square brackets
itself are not a part of the syntax. It is obvious that the block statement can be
conveniently used to describe similar block structure of a problem that is repeated
over an indexing set expression. Between the curly brackets {}, it define the scope
of this block statements, which is similar to the scope in many programming
language such as C, JAVA, etc. The entities declared inside the scope can be
implicitly referenced within the same scope. On the other hand, entities declared
outside the scope should be explicitly referenced.

Indexing Set

The grammar for an indexing set is very similar to the one used for AMPL. The
indexing set is used to define entities such as set, parameter, variable, constraint,
block, etc. The indexing set syntax is crucial for using SML to describe similar
blocks. The grammar for declaring an index set is given below.

indexing set:

{[j in] set expression}
An optional dummy variable j can be declared and used inside the set expression

declaration or the entity that is declared with this indexing set. If this indexing
set is used for defining a block model, the dummy variable can also be referenced
in the scope of the block statements.

2.1.3 Stochastic Model

The stochastic model offers a convenient syntax for modelling stochastic pro-
gramming problems. The syntax for specifying a stochastic block model is given
below.

stochastic block:

Page 18

2.2. MSND: A Nested-block Structured Problem

block name of block stochastic using([i in] node set,

prob param, parent param, [j in] stage set): {
[stochastic statements]

}
The stochastic block requires a few sets and parameters to be specified inside

the brackets (). node set and parent param contains node names and their
corresponding parent relationship to form the scenario tree. prob param gives
the probability on the scenario tree branch. stage set provides the full stage
set names of this scenario tree. The stochastic statements can be any normal
AMPL statements, block statement or stage statement. By default, the enti-
ties declared in the scope of the stochastic block are repeated for every stage
and node on the scenario tree, unless the entity declaration statement is further
restricted by a stage statement.

The stage statement offers a convenient feature for declaring entities only
present in a subset of stage set. The syntax for the stage statement is given
below.

stage statement

stages set expression:{
[statements]

}
The entities declared in the scope of the stage statement are repeated for

every node in the stage set represented by the set expression.
In the stochastic block, the variable declaration statement can be further

restricted by the deterministic keywords to make it only repeat once for each
stage.

2.1.4 Explicit Variable Referencing

To reference a variable outside of the current scope in a block statement, the
dot notation that is similar to that found in an Object-Oriented programming
language (eg. Java) is introduced. For example, name of block[i].name of var
references the variable name of var declared in name of block block indexed by
i. We will demonstrate the usage of the dot notation in the MSND problem in
Section 2.2.

In stochastic statement, ancestor stages can be referenced by ancestor(i)

function where i is a positive integer value. Combining the ancestor(i) with dot

notation, a variable from ancestor stages can be referenced as ancestor(i).name of var.
The usage of the ancestor function is demonstrated in AML-SSD problem in sec-
tion 2.3.

2.2 MSND: A Nested-block Structured Prob-

lem

In the MSND problem, the objective is to install additional capacity on the edges
of a transportation network so that several commodities can be routed simulta-
neously without exceeding link capacities even when one of the links or nodes

Page 19

2.2. MSND: A Nested-block Structured Problem

should fail. The mathematical formulation for this problem is given below in
(2.1). The sets, parameters and decision variables used in this model formulation
are explained below.

Sets

• N represents the node set of the network.

• E represents the edge set of the network.

• C represents the set of commodities.

Parameters

• bk, k ∈ C is the demand vector for k-th commodity.

• Cl, l ∈ E is the base capacity for l-th edge.

• cj, j ∈ E is the per unit cost of installing additional capacity on j-th edge.

Variables

• x
(n,i)
k , k ∈ C, i ∈ N is the flow vector of k-th commodity on the reduced

network after removing the i-th node from the full network.

• x
(e,j)
k , k ∈ C, j ∈ E analogous to above, represents the flow vector after

removing the j-th edge from the full network.

• sj, j ∈ E is the additional capacity to be installed on edge j.

We use A(n,i) and A(e,j) to represent the node-edge incident matrix for the reduced
network after removing the i-th node and j-th edge respectively.

min
∑

l∈E

clsl (2.1a)

s.t. A(n,i)x
(n,i)
k = bk ∀k ∈ C, i ∈ N (2.1b)

A(e,j)x
(e,j)
k = bk ∀k ∈ C, j ∈ E (2.1c)

∑

k∈C

x
(e,j)
k,l ≤ Cl + sl ∀j ∈ E , l ∈ E (2.1d)

∑

k∈C

x
(n,i)
k,l ≤ Cl + sl ∀i ∈ N , l ∈ E (2.1e)

x ≥ 0, sj ≥ 0 ∀j ∈ E . (2.1f)

The constraints (2.1b) and (2.1c) are flow balance constraints for each node or
edge failure scenario respectively. These two sets of constraints ensure demands
are satisfied for each commodity in the reduced network. The constraints (2.1d)
and (2.1e) are edge capacity constraints, which ensure the flow passing through
each edge does not exceed the capacity limit of the edge.

Page 20

2.2. MSND: A Nested-block Structured Problem

Net

Net

Net

Net

Net

Net

Net

Net

Net

Capacity

FlowBalancec1

FlowBalancec2

FlowBalancecn

s
p
a
r
e
c
a
p

repeated
for each
missing
node/edge

repeated
for each
com-
modity

Figure 2.1: The constraint matrix structure of MSND problem.

Page 21

2.2. MSND: A Nested-block Structured Problem

The PSMG model for this problem is given in Listing 2.1. This model uses
block statements to describe repeated common structures in the problem, and
then the full problem is build using nested block statements of two layers. Firstly
the problem can be constructed by modelling a basic building block, namely the
node-edge incident matrix formed by the flow balance constraint. Secondly, we
can repeat these blocks for all commodities. Finally we can repeat the nested
block again for each missing edge and node case to build the full problem.
The flow balance constraints in lines 11–13 and 24–26 describe a node-edge in-
cidence matrix for a network with a missing edge or node respectively. The
block statements at lines 9 and 22 repeat this structure for each commodity,
while the block statements at lines 7 and 19 repeat for each missing edge or
node, creating a nesting of sub-problem blocks. In addition, we have Capacity

constraints (at lines 14 and 25) to model the edge capacity for routing multiple
commodities. These are also the linking constraints for Net-blocks.

Based on the MSND problem model file, the structure of the problem can be
summarised as following. In the top-level master problem, two sub-problems are
declared which corresponds to the MCNFArcs and MCNFNodes block in the model
file. We call them the level-1 sub-problems in this structured problem (assuming
master problem is the level-0 problem). In each of the level-1 sub-problems, a
level-2 sub-problem is also declared which corresponds to the Net-blocks. The
actual constraint matrix for a problem instance can be realised when providing
a corresponding data file. A sample data file with 3 nodes and 3 arcs is given in
Listing 2.2.

The constraint matrix of this problem instance is given in Figure 2.1. As it
can be seen the problem displays a nested block structure that is expanded from
the problem’s declaration, a fact that is not immediately obvious from the math-
ematical description, but can be easily observed from the model file in PSMG’s
format.

1 set NODES , ARCS , COMM;

2 param cost{ARCS}, basecap{ARCS}, arc_source{ARCS}, arc_target{ARCS};

3 param comm_source{COMM}, comm_target{COMM}, comm_demand{COMM};

4 param b{k in COMM , i in NODES} := if(comm_source[k]==i) then comm_demand[k] else

if(comm_target[k]==i) then -comm_demand[k] else 0;

5 var sparecap{ARCS }>=0;

6

7 block MCNFArcs{a in ARCS}: { #declaration of MCNFArcs block

8 set ARCSDIFF := ARCS diff {a};

9 block Net{k in COMM}: { #declaration of Net block inside MCNFArcs

10 var Flow{REMARCS }>=0;

11 subject to FlowBalance{i in NODES }:

12 sum{j in REMARCS:arc_target[j]==i} Flow[j]

13 - sum{j in REMARCS:arc_source[j]==i} Flow[j] = b[k,i];

14 }

15 subject to Capacity{j in REMARCS }:

16 sum{k in COMM} Net[k].Flow[j] <= basecap[j] + sparecap[j];

17 }

18

19 block MCNFNodes{n in NODES }: { #declaration of MCNFNodes block

20 set REMNODES := NODES diff {n};

21 set REMARCS := {m in ARCS:arc_source[m]!=n and arc_target[m]!=n};

22 block Net{k in COMM}: { #declaration of Net block inside MCNFNodes

23 var Flow{ARCS} >= 0;

24 subject to FlowBlance{i in REMNODES }:

25 sum{j in REMARCS:arc_target[j]==i} Flow[j]

26 - sum{j in REMARCS:arc_source[j]==i} Flow[j] = b[k,i];

27 }

Page 22

2.3. ALM-SSD: A Multistage Stochastic Programming Problem

28 subject to Capacity{j in REMARCS }:

29 sum{k in COMM} Net[k].Flow[j] <= basecap[j] + sparecap[j];

30 }

31 minimize costToInstall: sum{x in ARCS} sparecap[x]*cost[x];

Listing 2.1: Model file for MSND problem.

1 set NODES := N1 N2 N3 ;

2 set ARCS := A1 A2 A3 ;

3 param: cost basecap arc_source arc_target :=

4 A1 1 4 N1 N2

5 A2 4 7 N1 N3

6 A3 5 6 N2 N3;

7 set COMM := C1 C2 C3 ;

8 param: comm_source comm_target comm_demand :=

9 C1 N1 N2 0

10 C2 N3 N2 3

11 C3 N2 N3 0;

Listing 2.2: Sample data file for MSND problem.

2.3 ALM-SSD: A Multistage Stochastic Program-

ming Problem

PSMG can also model a stochastic programming problem conveniently using the
stochastic statement from SML. Here we present an example of a stochastic
programming problem, namely an Asset & Liability Management problem with
second order stochastic dominance constraints (ALM-SSD) [33].

In the multi-stage ALM-SSD problem, the goal is to find an optimal portfolio
strategy that is no worse than a specified benchmark by second order stochastic
dominance [34]. The benchmark is typically the performance of a market index
or a competitor’s portfolio.

Let a scenario tree be given by a set of nodes L with probabilities pi of reaching
node i ∈ L. We also denote all nodes in stage t by Lt and the parent node of node
i by π(i). Let A be a set of assets to invest in. Let Vj be the initial price of asset
j and ri,j be the rate of return if asset j is held in node i. We seek to invest an
initial capital I. On each node i ∈ L, we define variables xh

i,j, x
s
i,j, x

b
i,j to represent

the amount held, sold and bought of asset j respectively and ci to represent the
amount of cash held. Buying and selling incurs proportional transaction costs of
γ.

Second order stochastic dominance is a constraint controlling the risk the in-
vestor allowed to take. It can be formulated by saying that the expected shortfall
of the optimized portfolio at various shortfall levels Nl, l ∈ F , should be less than
the expected shortfall at the same levels for a selection of benchmark portfolios
b ∈ B. The benchmark portfolios are typically market indices or competitors
portfolios. Let Mb,l the expected shortfall of benchmark portfolio b ∈ B with
respect to Nl.

Page 23

2.3. ALM-SSD: A Multistage Stochastic Programming Problem

A mathematical description of the ALM-SSD model is given below:

max
∑

i∈LT

pi(
∑

j∈A

Vjx
h
i,j + ci) (2.2a)

s.t. (1 + γ)
∑

j∈A

(xh
0,jVj) + c0 = I, (2.2b)

cπ(i) + (1− γ)
∑

j∈A

(Vjx
s
i,j) = ci + (1 + γ)

∑

j∈A

(xh
i,j), ∀i 6= 0, i ∈ N (2.2c)

(1 + ri,j)x
h
π(i),j + xb

i,j − xs
i,j = xh

i,j, ∀i 6= 0, i ∈ L, j ∈ A (2.2d)
∑

j∈A

(Vjx
h
i,j) + ci + bi,l ≥ Nl, ∀i 6= 0, i ∈ L, l ∈ F (2.2e)

∑

i∈Ls

pibi,l ≤Ml,b, ∀b ∈ B, l ∈ F (2.2f)

x ≥ 0, bi,l ≥ 0, ∀l ∈ F , ∀i 6= 0, i ∈ L (2.2g)

We can contrast the mathematical description with the model file in SML
(Listing 2.3). SML provides a stochastic block (line 15) to describe a model
block repeated for every node of a scenario tree. The arguments in bracket ()

after the keyword using are used to describe the scenario tree of a stochastic
programming problem. Furthermore, stage statement can be used within the
stochastic block for declaring entities that repeated only for certain stage sets.
Using this modelling syntax for stochastic programming problems allows the mod-
eller to separate the abstract mathematical relation among stages from the shape
of the scenario trees. Without modifying the model file, a stochastic programing
problem can be solved according to different scenario trees from various scenario
generation processes.

Constraint (2.2b) in the above formulation is the start-budget constraint and
only appears in root stage (line 20 in Listing 2.3). Constraints (2.2c) and (2.2d),
lines 28–30 in the model file, are cash-balance and inventory constraints respec-
tively. They are repeated in every node except the root stage node. The last two
constraints (2.2e) and (2.2f) are the linear formulation of second-order stochas-
tic dominance (line 33 and 36 in Listing 2.3). Note that the SSD formulation
introduces constraints that link all nodes of the same stage. While this is uncom-
mon for stochastic programming problem, SML provides features to model such
constraints concisely (through the Exp construct in line 38). The Exp(expr) rep-
resents the expectation of expr which is equivalent to a weighted sum of expr from
every nodes in a stage. Our benchmarking results given in Chapter 8 also con-
firm that the performance of PSMG is not harmed by the presence of expectation
constraints.

1 param T;

2 set TIME ordered = 0..T;

3 param InitialWealth;

4 set NODES;

5 param Parent{NODES} symbolic; # parent of nodes

6 param Probs{NODES }; # probability distribution of nodes

7 set ASSETS;

8 param Price{ASSETS };

9 param Return{ASSETS , NODES }; # returns of assets at each node

Page 24

2.3. ALM-SSD: A Multistage Stochastic Programming Problem

10 set BENCHMARK; # BENCHMARK = number of benchmark realization

11 param VBenchmk{BENCHMARK }; # values of benchmarks

12 param HBenchmk{BENCHMARK }; # 2nd order SD values of benchmarks - calc ’ed

13 param Gamma;

14

15 block alm stochastic using (nd in NODES , Parent , Probs , st in TIME): {

16 var x_hold{ASSETS} >= 0;

17 var shortfall{BENCHMARK} >= 0;

18 var cash >=0 ;

19 stages {0}: {

20 subject to StartBudget:

21 (1+ Gamma)*sum{a in ASSETS} (x_hold[a]* Price[a]) + cash = InitialWealth

;

22 }

23 stages {1..T}: {

24 var x_sold{ASSETS} >= 0;

25 var x_bought{ASSETS} >= 0;

26

27 subject to CashBalance:

28 ancestor (1) .cash - (1-Gamma)*sum{a in ASSETS} (Price[a]* x_sold[a])

29 = cash + (1+ Gamma)*sum{a in ASSETS} (Price[a]* x_bought[a]);

30 subject to Inventory{a in ASSETS }:

31 x_hold[a] - Return[a,nd] * ancestor (1) .x_hold[a] - x_bought[a] + x_sold

[a] = 0;

32

33 subject to StochasticDominanceSlck{l in BENCHMARK }:

34 sum{a in ASSETS }(Price[a]* x_hold[a]) + cash + shortfall[l] >= VBenchmk[

l]* InitialWealth;

35

36 subject to StochasticDominanceExp{l in BENCHMARK }:

37 Exp(shortfall[l]) <= HBenchmk[l]* InitialWealth;

38 }

39 stages {T}:{

40 var wealth >= 0;

41

42 subject to FinalWealth:

43 wealth - sum{a in ASSETS} (Price[a]* x_hold[a]) - cash = 0;

44 maximize objFunc: wealth;

45 }

46 }

Listing 2.3: Model file for ALM-SSD problem.

Base on the model file (Listing 2.3),the structure of the ALM-SSD problem
can be summarised as following. The master problem contains the constraints
and variables declared in stage 0 which also corresponds to the root node in the
scenario tree. Then the level-0 sub-problems are the stage 0 nodes in the scenario
tree, and level-1 sub-problems are the stage 1 nodes, and so on. The number of
stages and the scenario tree structure are determined by the data file.

1 param T := 2;

2 set NODES := 1 2 3 4 5 6 7 ;

3 param: Parent := 1 null

4 2 1

5 3 1

6 4 2

7 5 2

8 6 3

9 7 3;

10 param: Probs := 1 1

11 2 0.500000000000

12 3 0.500000000000

13 4 0.500000000000

14 5 0.500000000000

15 6 0.500000000000

16 7 0.500000000000;

17 param Gamma := 0.001000000000;

18 param InitialWealth := 10000 .000000000000;

Page 25

2.3. ALM-SSD: A Multistage Stochastic Programming Problem

19 set ASSETS := ACGL ACHC ;

20 param: Price :=

21 ACGL 59 .260000000000 ACHC 47 .280000000000;

22 param: Return :=

23 ACGL 1 0 ACHC 1 0

24 ACGL 2 0.982538851056 ACHC 2 1.015950659294

25 ACGL 3 0.968106648667 ACHC 3 0.995135363790

26 ACGL 4 0.982538851056 ACHC 4 1.015950659294

27 ACGL 5 0.968106648667 ACHC 5 0.995135363790

28 ACGL 6 0.982538851056 ACHC 6 1.015950659294

29 ACGL 7 0.968106648667 ACHC 7 0.995135363790;

30

31 set BENCHMARK := b0 b1 ;

32 param: VBenchmk := b0 0.992647842600

33 b1 0.996635529701;

34 param: HBenchmk := b0 0.001993843550

35 b1 0.000000000000;

Listing 2.4: Sample data file for ALM-SSD problem.

1

2

4

0.
5

5
0.5

0.
5

3

6

0.
5

7

0.5
0.5

⇒ stage 0 (root stage)

⇒ stage 1

⇒ stage 2

Figure 2.2: Scenario tree structure for a 3-stage ALM-SSD problem instance con-
structed from data file in Listing 2.4 (using parameters: Parent and Probs, and NODES

set). The numbers on the tree edges are the probability of reaching each node from its
parent node.

A sample 3-stage stochastic problem instance for the ALM-SSD model is given
in Listing 2.4. In this data file, the shape of the scenario tree is specified using
sets and parameters: Node, Parent, TIME. The probability of each tree branch
is specified in parameter, Probs. Figure 2.2 presents the scenario tree constructed
from the given data file. Those parameters are also referenced in the stochastic
block declaration in Listing 2.3 (line 15).

The constraint matrix of this problem (illustrated in Figure 2.3 for the scenario
tree in Figure 2.2) has the nested block-angular structure typical of multistage
stochastic programming problems with additional expectation constraints.

Each sub-blocks of the constraint matrix is identified by the intersection of the
constraints and variables declared at the corresponding nodes in the scenario tree.
The dark grey blocks are the SSD constraints that involve taking an expectation
over all nodes at the same stage in the scenario tree. In generally, the constraints
having expectation expression in a stochastic programming problem are always
placed in the root node of the scenario tree as linking constraints.

The light grey blocks represent the cash balance, inventory, start budget and
final wealth constraints correspondingly at each node. The start budget con-
straint only appears in the root node (node 1), whereas the final wealth con-
straints are in the final stage nodes (node 4, 5, 6 and 7). Again the problem
structure is not immediately obvious from its mathematical description.

Page 26

2.4. Discussion

node 4

node 5

node 2

node 6

node 7

node 3

node 1

stage 2

stage 2

stage 1

stage 1

stage 0

node 4 node 5 node 2 node 6 node 7 node 3 node 1

Figure 2.3: The constraint matrix structure of a 3-stage ALM-SSD problem instance
based on the data file in Listing 2.4.

2.4 Discussion

2.4.1 Block Separability Assumption

There is a very important assumption that should be hold true while using PSMG
as a modelling tool. We call this the block separability assumption which is stated
below.

Block Separability Assumption The variables declared inside a sub-
problem have to be additively separable (in constraint expressions) with respect
to the variables declared in the sub-problems from its sibling branches.

This assumption should be taken care of when modelling linking constraints in
a parent level problems. This assumption can be easily achieved by pushing non-
separable variables into the same sub-problem. This assumption is always true for
modelling Linear Programming (LP) problems, as all variables in LP problems
are additively separable with each other. By enforcing the block separability
assumption, the Jacobian and Hessian matrices for problems modelled in PSMG
always demonstrate a double bordered block-angular structure (possibly nested)
which can be exploited by parallel solvers. This assumption also helps PSMG to
achieve an efficient parallel problem generation design.

2.4.2 Objective Function Treatment

PSMG also implements the same semantics for objective function modelling as in
SML. SML’s modelling syntax allows a single objective function to be modelled in
its separable structure in every block. Therefore, it is required for the modeller to
use either maximize or minimize consistently to model each objective function
part in every block (or to leave absent if the block does not contribute to the
objective function). Furthermore, an objective function can not associate with
an indexing set expression in its declaration. The objective function expression
declared in stochastic block is always considered by taking its expectation. For
example, in the converted block model of a 3-stage ALM-SSD problem in Listing

Page 27

2.4. Discussion

4.1, the objective function is multiplied by the product of Prob[n1] (probability
of reach from the node in stage0 to stage1) and Prob[n2] (probability of reach
from the node in stage1 to stage2). The final objective function expression based
on the converted block model is exactly the expectation of the objective function
declared in the original stochastic model in Listing 2.3 (line 44). Moreover, the
objective expression modelled in a block only allow to use variables declared in
this block itself or its ancestor blocks, whereas variables declared in its descendant
blocks can also be referenced in the constraint declaration using the dot notation
(e.g. line 15 and 27 of the MSND model in Listing 2.1).

Page 28

Chapter 3

Parallel Solvers for Structured
Problems

In this chapter, we mainly review the current parallel structure exploiting opti-
mization solvers and algorithms for large scale structured problems.

Generally speaking, there are two categories of solver algorithms for parallel
solution of large scale structured problems. One is implemented using the struc-
ture exploiting interior point method (IPM), and the other uses decomposition
algorithms.

Different parallel solver algorithms may employ different allocation strategies
by considering the load balancing to minimise the inter-process communication
needed. By studying the parallel algorithms in this chapter, it provides enough
background for explaining the design and implementation decisions of PSMG in
the later chapter.

3.1 Structure Exploiting in Interior Point Method

The interior point method offers poly nominal run-time complexity to solve large
scale problems efficiently. Its parallel implementation by exploiting block struc-
ture of the problem matrix has been proven successful for solving large scale
problem with 109 variables [23]. Some known parallel solvers in this category are
OOPS [21] and PIPS [24].

IPM can be used to solve LP, QP and NLP problems. Now, we should review
the basic linear algebra in IPM.

3.1.1 Linear Algebra in IPM

LP and QP problem

Given the LP (3.1) and QP (3.2) problem formulation below.

(LP)min cTx

s.t. Ax = b

x ≥ 0

(3.1)

29

3.1. Structure Exploiting in Interior Point Method

(QP)min cTx+
1

2
xTQx

s.t. Ax = b

x ≥ 0

(3.2)

where A ∈ R
m×n, Q ∈ R

n×n, c ∈ R
n, and b ∈ R

n. Because of the similarity
between QP and LP problem formulation, the results for LP problem can be
followed by setting Q = 0. So, let us look at the QP problem formulation in
(3.2). We can use a logarithmic barrier term to replace the inequality constraint
(x ≥ 0). The result gives us the corresponding barrier problem in (3.3), where
the barrier parameter µ > 0.

min cTx+
1

2
xTQx− µ

n
∑

j=1

ln xj

s.t. Ax = b,

(3.3)

The Lagrangian L for the barrier problem (3.3) is given below.

L(x, y, µ) = cT +
1

2
xTQx− yT (Ax− b)− µ

n
∑

j=1

ln xj (3.4)

We can derive the first order optimality conditions below for the barrier prob-
lem.

∇xL(x, y, µ) = c− ATy − µX−1e+Qx = 0

∇yL(x, y, µ) = Ax− b = 0
(3.5)

where X = diag{x1, x2, ..., xn} and e = (1, · · · , 1)
Let s = µX−1e, (i.e. XSe = µe). Then the first order optimality conditions

for the barrier problem are

Ax = b

ATy + s−Qx = c,

XSe = µe

x, s ≥ 0

(3.6)

The interior point method evaluate one Newton step of the system of equations
(3.6) before updating µ. The value of the barrier parameter µ is reduced at each
iteration, so that the solution of this sequence of iterates is guaranteed to converge
to the optimal solution of the original problem.

The Newton steps can be derived as following. First, let us define the vector
function F

F (x, y, s) =

Ax− b

ATy + s−Qx− c

XSe− µe

 (3.7)

Page 30

3.1. Structure Exploiting in Interior Point Method

Then

∇F (x, y, s) =

A 0 0
−Q AT I

S 0 X

 (3.8)

The Newton direction (△x,△y,△s) for solving the system of linear equations
in (3.6) at each iteration is obtained by solving the system of linear equations in
(3.9)

∇F (x, y, s) ·

△x

△y

△s

 =

b− Ax

c− ATy − s+Qx

µe−XSe

 (3.9)

We can further simplify the equation system in (3.9) by eliminating the △s

(i.e. △s = −X−1S△x +X−1(µe−XSe) to obtain the augmented system illus-
trated in (3.10).

[

−Q−Θ−1 AT

A 0

]

·

[

△x

△y

]

=

[

ǫd −X−1ǫµ
ǫp

]

(3.10)

where
Θ = XS−1

ǫp = b− Ax

ǫd = c− ATy − s+Qx,

ǫµ = µe−XSe.

NLP problem

Given the general NLP problem formulation below

min f(x)

s.t. g(x) ≤ 0
(3.11)

where x ∈ R
n, f : Rn → R, g : Rn and f, g are sufficiently smooth and twice dif-

ferentiable. The inequality constraint in (3.11) can be converted into an equality
by introducing a non-negative slack variable z. Therefore, we can formulate the
NLP problem in an equivalent form in (3.12).

min f(x)

s.t. g(x) + z = 0

z ≥ 0

(3.12)

By adding a logarithmic term in the objective function to replace the inequal-
ity constraint (z ≥ 0), the barrier problem can be formulated as below.

min f(x)− µ

m
∑

j=1

lnzi

s.t. g(x) + z = 0

(3.13)

Page 31

3.1. Structure Exploiting in Interior Point Method

The Lagrangian L for the barrier problem in (3.13) is given below.

L(x, y, z, µ) = f(x) + yT (g(x) + z)− µ

m
∑

j=1

lnzi (3.14)

Similarly, the first order optimality conditions can be derived from the follow-
ing.

∇xL(x, y, z, µ)⇒ ∇f(x) +∇g(x)
Ty = 0

∇yL(x, y, z, µ)⇒ g(x) + z = 0

∇zL(x, y, z, µ)⇒ ZY e = µe

(3.15)

where Y = diag{y1, y2, · · · , ym} and Z = diag{z1, z2, · · · , zm}. IPM for NLP
problems solves the system of equations (3.15) also by Newton’s method. The
barrier parameter µ is also gradually reduced at each each iteration, so that the
solution converges to the optimal solution of the original problem.

Define vector function F as below.

F (x, y, z) =

∇f(x) +∇g(x)Ty
g(x) + z

ZY e− µe

 (3.16)

Then

∇F (x, y, z) =

Q(x, y) A(x)T 0
A(x) 0 I

0 Z Y

 (3.17)

The Newton direction (△x,△y,△z) for solving the sytem of linear equations
in (3.15) at each iteration is obtained by solving the system of linear equations
in (3.18)

∇F (x, y, z) ·

△x

△y

△s

 =

−∇f(x)− A(x)Ty
−g(x)− z

µe− Y Ze

 (3.18)

where

Q(x, y) = ∇2f(x) +
m
∑

i=1

yi∇
2gi(x)

A(x) = ∇g(x) ∈ R
m×n

(3.19)

It is worth noting that Q(x, y) is also the Hessian of the Lagrangian for the NLP
problem in (3.11), where yi are the dual variables.

Similar to LP and QP cases, we can simplify the equation system in (3.18) to
obtain the augmented system given in (3.20).

[

Q(x, y) A(x)T

A(x) −ZY −1

]

.

[

△x

△y

]

=

[

−∇f(x)− A(x)Ty
−g(x)− µY −1e

]

(3.20)

Page 32

3.1. Structure Exploiting in Interior Point Method

3.1.2 Structure Exploiting in IPM

From the above discussion, the augmented system can also be presented using a
common structure for LP, QP and NLP problems as below.

Φ =

[

−Q−Θ−1
p AT

A ΘD

]

(3.21)

For LP and QP problems, ΘD = 0, and A is the constant Jacobian matrix for
their linear constraint functions. Q is a constant Hessian matrix for the objective
function (where Q = 0 for LP problem). For nonlinear problem, Θ−1

P = 0, and Q

is the Hessian of the Lagrangian function that changes at every iteration. A also
changes at every iteration for nonlinear problems. However the structure of the
augmented system stays the same.

Structure exploiting IPM is able to rearrange the augmented matrix into a
double bordered block-angular matrix. This requires A and Q matrices to have
block-angular structures in them. PSMG, on the other hand, guarantees the
block-angular structure in A and Q matrix by the block separability assumption
in its model formulation. The block-angular structure is also crucial to enable
parallel solving of the augmented system Φx = b in IPM. Without loss of general-
ity, let us give an augmented system matrix of a general two level problem which
can be viewed in left of the Figure 3.1. The A and Q matrices both demonstrate
the double bordered block-angular structure. After exploiting the structure of
the augmented system, the rearranged matrix also has a double bordered block-
angular structure shown on the right side in Figure 3.1.

-Q-Θ-1
P

A

AT

ΘD

exploiting
Φ

Figure 3.1: The augmented matrix structure for a two level problem.

3.1.3 Parallel Allocation and Solving

We can use similar notation from [35] to represent the augmented system matrix
Φ in Figure 3.1, where Φi ∈ R

ni×ni , i = 0, · · · , n and Bi ∈ R
n0×ni , i = 1, · · · , n.

Then Φ has N =
∑n

i=0 ni rows and columns. Each of the Φi and Bi are assembled

Page 33

3.1. Structure Exploiting in Interior Point Method

from the corresponding parts of the A and Q matrices by a structure exploiting
process in section 3.1.2.

Φ =

Φ1 BT
1

Φ2 BT
2

. . .
...

Φn BT
n

B1 B2 . . . Bn Φ0

(3.22)

Given two block matrices L and D with the following structure.

L =

L1

L2

. . .

Ln

Ln,1 Ln,2 . . . Ln,n Lc

D =

D1

D2

. . .

Dn

Dc

and

Φi = LiDiL
T
i (3.23a)

Ln,i = BiL
−T
i D−1

i (3.23b)

C = Φ0 −
n

∑

i=1

BiΦ
−1
i BT

i (3.23c)

= LcDcL
T
c (3.23d)

Then Φ can be decomposed into a generalised Cholesky factorization form as
Φ = LDLT .

The solution to the system Φx = b, where x = (x1, · · · , xn, x0)
T , b = (b1, · · · , bn, b0)

T

can be obtained by the following operations:

zi = L−1
i bi, i = 1, · · · , n (3.24a)

z0 = L−1
c (b0 −

n
∑

i=0

Ln,izi) (3.24b)

yi = D−1
i zi, i = 0, · · · , n (3.24c)

x0 = L−T
c y0 (3.24d)

xi = L−T
i (yi − LT

n,ix0), i = 1, · · · , n (3.24e)

The factorization operations in (3.23) and the subsequent solve operations
in (3.24) can be performed in parallel. The execution order of the operations
in (3.23) and (3.24), and also the matrix block allocation strategy on parallel
processes may have a signification influence on the overall efficiency of the parallel
solving of the equation system Φx = b.

In [35], Gondzio and Grothey explained an efficient parallel solving and allo-

Page 34

3.2. Decomposition Algorithms

cation strategy that is implemented in OOPS [21]. Their parallel strategy can be
seen in two stages: a parallel factorization stage (as in (3.23)); and a parallel solv-
ing stage (as in (3.24)). In their implementation, C (in (3.23c)) is computed from
terms (L−1

i BT
i)D

−1
i (L−1

i BT
i), the outer products of sparse rows of L−1

i BT
i . The

matrices Ln,i in (3.23b) are not required to evaluate explicitly. Later on in the
solving stage, Ln,izi (in (3.24b)) is calculated by Bi(L

−T
i (D−1

i zi)), and similarly
LT
n,ix0 (in (3.24e)) is calculated by D−1

i L−1
i BT

i x0.
The works involved in each of the two stages are summarized as following:

• Factorization Stage

F.1 Factorizes Φi = LiDiL
T
i and computes Ci = BiL

−T
i DiL

−1
i BT

i , ∀i =
1, · · ·n

F.2 Computes C = Φ0 −
∑n

i=1 Ci

F.3 Factorizes C = LcDcL
T
c

• Solving Stage

S.1 Computes zi = L−1
i bi and li = BiL

−1
i D−1

i zi, i = 1, · · ·n

S.2 Computes l = b0 −
∑n

i=1 li

S.3 Computes z0 = L−1
c l

S.4 Computes yi = D−1
i zi, i = 1, · · ·n

S.5 Computes y0 = D−1
c z0

S.6 Computes x0 = LT
c y0

S.7 Computes xi = L−T
i (yi −D−1

i L−1
i BT

i x0), i = 1, · · ·n

In above steps, F.1,S.1,S.4 and S.7 are the parallel steps. F.2 is performed
with a MPI all reduce operation, therefore C exists on every parallel processes.
F.3 is executed on every processes, therefore each process has a copy of Lc and
Dc without inter-process communication. S.2 is also computed using a MPI
AllReduce operation, therefore l is available on every processes and S.3 can be
computed everywhere. y0 and x0 are also computed on every processes in step S.5
and S.6 respectively. OOPS allocates vectors x0, y0, z0, l and matrices C,Φ0 on
every parallel processes to minimise inter-process communication and maximise
the parallel efficiency. However, other allocation scheme is also possible as long
as the required inter-process communication routine is implemented properly.

From above review of the parallel structure exploiting IPM solver, a parallel
modelling system that can be linked with solver in this category should be able
to assist the solver to setup problem matrix structure in blocks and allow the
solver to make the allocation strategy.

3.2 Decomposition Algorithms

Another category of solvers that can also be easily made in parallel execution
are those which implement decomposition algorithms, such as Dantzig-Wolfe [18,

Page 35

3.2. Decomposition Algorithms

0

1 2 n

f0(x0)

f1(x0, x1)

c11(x0, x1) + c01(x0)

f2(x0, x2)

c22(x0, x2) + c02(x0)

fn(x0, xn)

cnn(x0, xn) + c0n(x0)

Figure 3.2: A general problem formulation using Bender’s decomposition scheme.

19] or Benders’ [20] Decomposition. In this section, we first review the mathe-
matical formulation in Benders’ Decomposition algorithm. It helps us to identify
the routines that should be provided by the modelling language in order for a
decomposition solver to setup and solve the problem in parallel.

3.2.1 Benders’ Decomposition

Benders’ Decomposition algorithm is firstly presented in [20] for solving mixed
integer programming problems. But it is not difficult to generalise this scheme
to solve NLP problems [36, 37].

Given the general problem formulation to use Benders’ Decomposition as be-
low,

min
xi,x0

f0(x0) +
n

∑

i=1

fi(x0, xi)

s.t. cii(x0, xi) + c0i (x0) ≤ 0, ∀i ∈ {1, · · · , n}

(3.25)

It can be easily observed that the above formulation in (3.25) is a two level
general problem without the linking constraint in the master problem.

The corresponding problem structure can be presented in a tree format in
Figure 3.2. x0 can be considered as the complicating variables in the master
problem linking n sub-problems.

After applying Benders’ Decomposition algorithm, this problem can be for-
mulated into two levels: a master problem (3.26); n sub-problems (3.27). vi(x0)
is the value function for each sub-problem i ∈ {1, · · · , n} at a given x0. The ob-
jective function in the original problme (3.25) can be split into several separable
parts, where each sub-problem i has an objective function part fi(x0, xi). The
constraints can also be split into two additively separable parts: cii(x0, xi); and
c0i (x0).

min
x0

f0(x0) +
n

∑

i=1

vi(x0) (3.26)

vi(x0) = min
xi

fi(x0, xi)

s.t. cii(x0, xi) ≤ -c0i (x0)
(3.27)

For simplicity of the discussion, let us assume vi(x0) are convex functions and
each sub-problem is feasible. The master problem (3.26) can be relaxed with a

Page 36

3.2. Decomposition Algorithms

sequence of linear realization of the value function v
j
i evaluated at each x0 from

sub-problems. The corresponding formulation is given below.

min
x0,vi

f0(x0) +
n

∑

i=1

vi

s.t. vi ≥ vi(x
(j)
0) + g

(j)
i (x0 − x

(j)
0), j ∈ J, i ∈ {1, · · · , n}

(3.28)

where J represents the set of indices that vi(x
(j)
0) has been already evaluated,

and g
(j)
i is a subgradient for vi(x

(j)
0) which is also the dual variable values of each

sub-problem i evaluated at optimal for a given x
(j)
0 .

At each iteration k, the sub-problems (3.27) are solved to optimal at a given

point x
(k)
0 of the master problem. v

(k)
i is an underestimator for each sub-problem

i, which can be used to refine the master problem (3.28) and generate an upper
bound for the original problem (3.25). Then the master problem (3.28) is solved,
yielding a new lower bound for the original problem. The algorithm terminates
when the gap between the upper and lower bounds is less than a predefined
epsilon value. This iterative solution process works at least for convex problems.

Figure 3.3 demonstrates the Bender’s decomposition algorithm for solving the
two level problem (in 3.28 and 3.27) at iteration k. It is noted that each of the
sub-problems can be computed independently in parallel provided the value of
master variable x0 is given at each iteration.

Subproblem1

Subproblem2

...

Subproblemn

Master
vi(x

(k)
0), g

(k)
i x

(k+1)
0

Figure 3.3: Benders’ Decomposition solvers algorithm at each iteration k.

3.2.2 Parallel allocation and solving

A straightforward parallel solving strategy for a Benders’ Decomposition solver
could be done by solving each sub-problem on a parallel process and master
problem on all the processes. This work can be summarized as following:

B.1 Initializes x0, UB ←∞, LB ← -∞;

B.2 Solves sub-problems in 3.27;

Page 37

3.3. Discussion

B.3 Obtain a new upper bound UBnew of the master problem, set UB ←
min{UBnew, UB};

B.4 Introduces new constraints in the constraint set of the relaxed master prob-
lem in 3.28;

B.5 Solves the relaxed master problem in 3.28 to obtain a lower bound, LB;

B.6 if UB − LB ≥ ǫ goto B.2, otherwise algorithm terminates.

In order to minimize the inter-process communication, x0 should be allocated
on every parallel processes. From above list, B.2 is the parallel step, and the
resulting vectors vi(x

(j)
0) and g

(j)
i are needed to create new constraint in the

relaxed master problem. Furthermore, the master problem can also be solved
using a parallel algorithm, therefore B.5 can be computed in parallel as well. It
may require the vectors vi(x

(j)
0) and g

(j)
i to be communicated on parallel processes.

At each iteration the solver is required to wait for all sub-problems to be solved
before it can solve the new relaxed master problem, and then the solver proceeds
to the next iteration if necessary (by checking the condition in B.6).

As we can see that a modelling system that can assist solvers to identify the
problem hierarchical structure and provide function and derivative evaluations in
master and sub-problem context could be very helpful for parallel solvers that
implements a decomposition strategy.

3.3 Discussion

According to the discussion of two categories of parallel solver algorithms above,
we can conclude the following major abilities that should be considered when
designing a parallel modelling system.

• Problem Structure Setup

– be able to identify the problem structure in block matrices.

– be able to identify the problem hierarchical structure in master and
sub-problems.

• Problem Generation

– be able to generate each matrix blocks of A and Q in the augmented
system in (3.22) on allocated processes.

– be able to evaluate the function and derivative values of the constraints
or the objective function in its additively separable parts.

In general, a parallel modelling system should be able to assist the solver
for setting up the problem structure on parallel processes and generating the
corresponding sub-problem matrices or the matrix blocks on the allocated process.
Usually this parallel allocation strategy is decided by the solver algorithm after
considering the inter-process communication cost and load balance.

Page 38

3.3. Discussion

3.3.1 Modelling Nonconvex Problems

When the optimization problem is formulated as a convex problem, a local opti-
mal solution is also the global optimal solution. Therefore, only one set of possible
optimal solution will be produced by the solver for a convex optimization prob-
lem. On the other hand, multiple local optimal solutions could be produced for
a nonconvex optimization problem. Vanderbei et. al. described the modifica-
tions conducted for extending an interior point method solver–LOQO to solve a
general nonconvex nonlinear programming problems [38]. Vanderbei et. al. also
demonstrated that different initial values could produce different local optimal
solution, and those initial values could be computed by the solver [38]. Therefore,
our desired modelling system should be able to take initial values for both primal
and dual variables in the model. It is up to the solver to track a set of local
optimal solutions for nonconvex optimization problem.

MINLP models are heavily used in various engineering area, such as oil and
gas field infrastructure planning [39], gas network design [40, 41], aircraft route
planning[42], vehicle path planning[43], etc.. Usually the generalized Benders’
Decomposition (GBD) method (described in Section 3.2.1) is used for solving
MINLP problems in parallel. However the GBD method is not guaranteed for
solution of a nonconvex problem [44]. Li et. al. presented a nonconvex generalized
Benders’ Decomposition (NGBD) method for obtaining the global optimization of
a two-stage stochastic mixed-integer nonlinear programming problems (MINLPs)
[44]. In order to link with optimization solver that implements NGBD method,
the modelling system should also have the ability to model integer variables and
passing their indexing information to the solver. This can be easily achieved
by adding an modifier field for variable declaration statement to indicate the
variable types, such as integer, binary, or real. The interface method for passing
the integer variables index location to the solver should also be implemented.

Page 39

Chapter 4

PSMG Design and
Implementation

In this chapter, we firstly explain PSMG’s development environment, and then we
focus on discussing the important design and implementation issues of PSMG in
the rest of this chapter. PSMG has a two stage design for generating a structured
problem. The first stage is the structure building stage, where PSMG reads
the model and data files and builds an internal skeletal representation of the
information that describing the problem with minimal processing. The work in
this stage happens on every parallel processes. The second stage is the parallel
problem generation stage, where the problem structure is conveyed to the solver
so that the solver is able to make parallel problem allocation strategy and request
the specific blocks or sub-problems to be generated on the processor where they
are needed. Major work in processing the problem happens at the second stage.

4.1 Development Environment and Technique

Because PSMG is a modelling tool mainly for large scale problems, performance
is an important factor to be considered in PSMG’s design and implementation.
We also make PSMG available as an open-source software, therefore it is quite
important to keep a good modular design in the PSMG’s coding base. We feel
the Object-Oriented implementation is the most suitable programming technique
for serving this purpose. The parallelization of PSMG is achieved by using Open-
MPI library–an open source Message Passing Interface implementation [45]. In
addition, with the help of the Gnu’s Flex [46] and Bison [47] tool and their corre-
sponding C/C++ code generation ability, we can conveniently develop the parser
for PSMG’s model and data files with reasonable efforts. Therefore, we have cho-
sen C++ as the implementation language for PSMG. Furthermore, PSMG can
be compiled with either Intel or gnu compiler.

A commercial licensed modelling tool usually involves years of development
efforts in code quality and runtime efficiency. Therefore it is likely to have better
performance than PSMG for generating a problem in serial case. However, there
is not yet any commercial modelling tool that does parallel problem generation
at this time. Since PSMG is design to achieve parallel problem generation that

40

4.2. Block and Stochastic Model

works together with any parallel structure exploiting solvers, we believe PSMG
generate the problem faster in parallel process than any other serial model gen-
erator. Because PSMG is open-sourced, it is easy for others to add new features
or interface with it, whereas a proprietary modelling tool provides very limited
customization ability for a user.

4.2 Block and Stochastic Model

The SML modelling syntax is specially designed for describing structured problem
with blocks. In general, a structured problem can be described using either block
or stochastic modelling syntax. The block syntax allows PSMG to declare
reusable building blocks and relations between blocks to model the problem along
with its structure, whereas the stochastic block provides a convenient syntax for
a modeller to describe the entities in stochastic programming problems by stages.
In a stochastic programming problem, nodes at the same stage usually contain
similar abstraction. It is easy to see the corresponding problem structures of a
block model. On the other hand, a stochastic model can always be converted
to a block model after providing an actual scenario tree in the corresponding data
file of the model. The conversion process requires the following major steps.

• evaluating the number of stages in the problem (using parameter values
from data file if necessary);

• duplicating the stage block and its declared variables for each stage in the
stage set;

• attaching an index set expression of nodes for each stage block;

• interpreting the variables with ancestor keyword by replacing them with
the ones declared at their corresponding ancestor stage;

• translating variables declared with deterministic keyword based on its
scope (e.g. either in stochastic or stage block);

• moving constraints declaration with Exp keyword to the root stage, and
replacing Exp(expression) with the weighted sum of the expression;

• rewriting objective expression by multiplying the probability from the root
stage (i.e. converting to the expectation of the objective expression.).

It is worth noting that this conversion process may need to access the data file
to decide the number of stages in a stochastic programming problem instance.
For example, to evaluate the stage set TIME in the ALM-SSD model (Listing 2.3),
PSMG needs to access the dependent parameters from the data file (i.e. T in this
case). This stochastic-to-block model conversion process is also documented in
the previous SML implementation [1], but PSMG offers better run-time efficiency.

Listing 4.1 presents the block model for a 3-stage ALM-SSD problem as a
result of performing the conversion process on the original stochastic model in
Listing 2.3. The number of stages are evaluated using parameter values in the

Page 41

4.2. Block and Stochastic Model

data file given in Listing 2.4. This process is done with a specially implemented
routine inside PSMG. The modeller does not require to know the technical details
behind it. In fact, this converted block model given below is to demonstrate the
relationship between a stochastic and block model, and it is only held in the
corresponding memory objects in PSMG.

From the converted block model (Listing 4.1), we can observe that PSMG
creates dummy index variables for the index expression at each stage to repre-
sent the nodes of this stage. PSMG generates dummy variables (n0, n1 and n2)
for each stage block at lines 17, 31 and 47 respectively. The root node is deter-
mined by the indexing set expression, “n0 in Child[null]” at line 17, and this
expression returns a node set that contains the root node only.

PSMG creates the compound set, Child, and uses it to construct the index-
ing set expression for each stage block, whereas SML uses Parent set for this
purpose. This allows PSMG to iterate the provided Parent set from the data file
only once and to build the Child set, which is used to determine the children node
set for every node. Without using of the Child compound set, SML is required
to iterate the Parent set at each node to build its children node set. Hence, the
run-time efficiency is improved by using the temporary Child compound set in
PSMG.

Once the stochastic model is converted into a block model, there is no dif-
ference in handling the two types of model in PSMG. This is an important fact
considered in designing and implementing PSMG.

1 param T;

2 set TIME ordered = 0..T;

3 param InitialWealth;

4 set NODES;

5 param Parent{NODES} symbolic; # parent of nodes

6 param Probs{NODES }; # probability distribution of nodes

7 set ASSETS;

8 param Price{ASSETS };

9 param Return{ASSETS , NODES }; # returns of assets at each node

10 set BENCHMARK; # BENCHMARK = number of benchmark realization

11 param VBenchmk{BENCHMARK }; # values of benchmarks

12 param HBenchmk{BENCHMARK }; # 2nd order SD values of benchmarks - calc ’ed

13 param Gamma;

14

15 set Child{NODES} within NODES;

16 # stage 0

17 block stages0 {n0 in Child[null]) {

18 var x_hold{ASSETS} >=0;

19 var shortfall{BENCHMARK} >=0;

20 var cash >=0;

21 subject to StartBudget:

22 (1+ Gamma)*sum{a in ASSETS} (x_hold[a]* Price[a]) + cash = InitialWealth;

23 # weighted sum of stage 1 nodes

24 subject to StochasticDominanceExp_up1{l in BENCHMARK }:

25 sum{n1 in NODES: Child[n0]=n1} (Prob[n1] * stage1[n1].shortfall[l]) <=

HBenchmk[l]* InitialWealth;

26 # weighted sum of stage 2 nodes

27 subject to StochasticDominanceExp_up2{l in BENCHMARK }:

28 sum{n1 in NODES: Child[n0]=n1} (Prob[n1] * sum{n2 in NODES: Child[n1]=

n2}(Prob[n2]* stage1[n1].stage2[n2].shortfall[l]))= HBenchmk[l]*

InitialWealth;

29

30 # stage 1

31 block stages1 {n1 in Child[n0]}: {

32 var x_hold{ASSETS} >=0;

33 var shortfall{BENCHMARK} >=0;

34 var cash >=0;

Page 42

4.3. Structure Building Stage

35 var x_sold{ASSETS} >= 0;

36 var x_bought{ASSETS} >= 0;

37

38 subject to CashBalance:

39 stage0[n0].cash - (1-Gamma)*sum{a in ASSETS} (Price[a]* x_sold[a])

40 = cash + (1+ Gamma)*sum{a in ASSETS} (Price[a]* x_bought[a]);

41 subject to Inventory{a in ASSETS }:

42 x_hold[a] - Return[a,n1] * stage0[n0].x_hold[a] - x_bought[a] +

x_sold[a] = 0;

43 subject to StochasticDominanceSlck{l in BENCHMARK }:

44 sum{a in ASSETS }(Price[a]* x_hold[a]) + cash[n1] + shortfall[l] >=

VBenchmk[l]* InitialWealth;

45

46 # stage 2

47 block stages2 {n2 in Child[n1]}:{

48 var x_hold{ASSETS} >=0;

49 var shortfall{BENCHMARK} >=0;

50 var cash >=0;

51 var wealth >= 0;

52 var x_sold{ASSETS} >=0;

53 var x_bought{ASSETS} >=0;

54

55 subject to CashBalance:

56 stage1[n1].cash - (1-Gamma)*sum{a in ASSETS} (Price[a]* x_sold[a])

57 = cash + (1+ Gamma)*sum{a in ASSETS} (Price[a]* x_bought[a]);

58 subject to Inventory{a in ASSETS }:

59 x_hold[a] - Return[a,n1] * stage1[n0].x_hold[a] - x_bought[a] +

x_sold[a] = 0;

60 subject to StochasticDominanceSlck{l in BENCHMARK }:

61 sum{a in ASSETS }(Price[a]* x_hold[a]) + cash + shortfall[l] >=

VBenchmk[l]* InitialWealth;

62

63 subject to FinalWealth:

64 wealth - sum{a in ASSETS} (Price[a]* x_hold[a]) - cash = 0;

65

66 #weight sum of the objective function

67 maximize objFunc: Prob[n1]*Prob[n2]* wealth;

68 }

69 }

70 }

Listing 4.1: Explicitly-blocked model for a simple 3-stage ALM-SSD problem.

4.3 Structure Building Stage

PSMG analyses the structured problem from its model and data file, and builds
two tree structures to represent this problem. One structure is called the template
model tree and the other one is called the expanded model tree. In the rest of this
section, we use the examples from previous chapter to demonstrate these two tree
structures in detail.

4.3.1 Template Model Tree

The template model tree is PSMG’s minimal internal representation of the prob-
lem’s high level abstraction. The tree is built by reading and analyzing the model
file directly for problem modelled using block-statement. For problem modelled
with stochastic programming syntax, the template model tree is built on the
translated block model which is the result of performing the conversion process
(explained in section 4.2) on the original stochastic model.

Page 43

4.3. Structure Building Stage

Problem modelled using block syntax

The template model tree naturally presents the nested block statement declared
in the model file of a structured problem modelled using block syntax. Each tree-
node corresponds to one block-statement declared in the model file and contains
a list of entities declared in this block. The entities can point to any of the set,
parameter, variable, constraint or sub-block declared at the corresponding block.
At this point the description of the entities is very much as described in the model
file; they are analyzed with respect to their syntactical components (i.e. indexing
expressions, variable references, etc), but no further processing is performed. In
particular, indexing expressions and summation sets are not expanded, nor is
any information from the data file used. Thus the template model tree encodes
the problem and sub-problem dependency information as described by the block
statements in the model file, while each node of the tree serves as a template
description of the entities in this block that are to be made concrete at the later
processing stage. Each tree-node is also associated with an indexing set expression
which will be used for generating the expanded model tree. In other words, each
tree node is the basic building block that can be reused or duplicated according
to its associated indexing set to construct the full problem instance, namely the
expanded model tree.

Figure 4.1 demonstrates the template model tree structure for the MSND
problem. There are one root model and four sub-models in this template model
tree. The root model has references to the MCNFArcs and MCNFNodes sub-models
which are represented as two child nodes. Each of the sub-models MCNFArcs and
MCNFNodes also has reference to a nested sub-model named Net. Even though the
two Net sub-models have the same name, their declarations are in different scopes
in the model file (Listing 2.1). Therefore they are referred to as different sub-
models, one is Root.MCNFArcs.Net and the other one is Root.MCNFNodes.Net.

Root

MCNFArcs

Net

MCNFNodes

Net

a in {Arcs} n in {Nodes}

c in {COMM} c in {COMM}

Figure 4.1: The template model tree for MSND problem model file specified in Listing
2.1.

The entities contained in each tree node are listed in Figure 4.2. The root node
represents the full problem, and the child tree nodes represent the sub-problems.
It is worth mentioning that most of the entities, such as sets, parameters, variables
and sub-models declared in each tree node are associated with an indexing set
expression (e.g. cost{ARCS}, MCNFArcs{a in ARCS}, etc.). However in building
the template model tree, these indexing expressions are not evaluated and stored
only in its high level definition form in the tree.

Page 44

4.3. Structure Building Stage

• Root node
– Sets: NODES, ARCS, COMM

– Parameters: cost, basecap, arc source, arc target,

comm source, comm target, comm demand

– Variables: sparecap
– Objective constraint: costToInstall
– Sub-models: MCNFArcs, MCNFNodes

• MCNFArcs node
– Set: ARCSDIFF
– Variables: capslack
– Constraints: Capacity
– Sub-model: Net

• MCNFNodes node
– Set: NODESDIFF, ARCSDIFF

– Variables: capslack
– Constaints: Capacity
– Sub-model: Net

• Net node (child of MCNFAcrs)
– Variables: Flow
– Constraints: FlowBalance

• Net node, (child of MCNFNodes)
– Variables: Flow
– Constraints: FlowBalance

Figure 4.2: Entities in each template model tree node of MSND problem.

Page 45

4.3. Structure Building Stage

Problem modelled using stochastic syntax

The template model tree for a stochastic problem is not straightforward to be
observed from its original model file in stochastic-block syntax, but the tree
structure can be easily obtained if we look at the translated block model file.
The translated block model fixes the stages number of this stochastic problem,
and the rest of the model is equivalent to its original stochastic model. Figure
4.3 demonstrates the template model tree for a 3-stage ALM-SSD problem as
a result of translating the stochastic model given in Listing 2.3. The number
of stages is evaluated using parameters values provided in the data file given in
Listing 2.4. An indexing set expression of a node set is also added for each stage
block. PSMG uses this indexing set expression to build the expanded model tree
for this stochastic programming problem instance later.

Root

Stage 0

Stage 1

Stage 2

n0 in {Child[null]}

n1 in {Child[n0]}

n2 in {Child[n1]}

Figure 4.3: The template model tree for a 3-stage ALM-SSD problem specified in
Listing 2.3. The indexing expression associated with each tree node is implicitly con-
structed by PSMG.

We can observe that each of the tree nodes represents one stage block in the
translated model (Listing 4.1), and a list of entities and its high level declaration
are also stored in each of the tree nodes. The entities contained in each of the
tree nodes are listed in Figure 4.4.

We can observe that variable declarations are duplicated in necessary stage
blocks in accordance with their declared stage scopes. For example, variables
such as x hold, shortfall and cash are duplicated in all the stage blocks,
and variables, such as x sold and x brought are only presented in stage1 and
stage2.

The constraints StochasticDomianceExp up1 and StochasticDomiStochas-

-ticDominanceceExp up2 from stage0 node are built from the constraint dec-
laration, StochasticDomianceExp in the original stochastic model (at line 36
in Listing 2.3). The constraints involved with expectation expressions are always
moved to the stage0 (first stage), because variables declared in all the nodes of
the same stage can only be accessed from their common ancestor. To demonstrate
this, let us consider the 3-stage stochastic problem instance presented in Figure
2.2. The expected shortfall for nodes 2 and 3 in stage1 can be evaluated only
at the node of the root stage, namely node1. The expected shortfall for nodes

Page 46

4.3. Structure Building Stage

• Root node
– Parameters: T, InitialWealth, Parent, Probs, Prices,

Return, VBenchmk, HBenchmk

– Sets: TIME, NODES, ASSETS, BENCHMARK, Child

– Sub-model: sage0
• stage0 node

– Variables: x hold, shortfall, cash

– Constraints: StartBudget,StochasticDomianceExp up1,

StochasticDominanceExp up2

– Sub-model: stage1
• stage1 node

– Variables: x hold, shorfall, cash, x sold, x brought

– Constraints: CashBalance, Inventory,

StochasticDomianceSlck

– Sub-model: stage2
• Stage2 node

– Variables: x hold, shortfall, cash,wealth, x sold,

x brought

– Constraints: CashBalance, Inventory,

StochasticDomianceSlck, FinalWealth

– Objective: objFunc

Figure 4.4: Entities in each template model tree node of ALM-SSD problem.

4, 5, 6 and 7 can only be evaluated at their common ancestor node which is
also node1 in stage0.

The template model tree for a stochastic model also has a root node to store
sets, parameters and variables declared outside of the stochastic block. Such vari-
ables behave like deterministic variables for the entire stochastic process, which
is same as declaring the variables with deterministic keywords inside a stochastic
block.

PSMG builds the template model tree for problems modelled using either
block or stochastic syntax. This design allows PSMG to share the most com-
mon structure processing routine for the two model types. Once the template
model tree is built, the rest of the problem structure processing routines are the
same for problems modelled using either block or stochastic syntax.

4.3.2 Expanded Model Tree

The expanded model tree represents an instance of the problem which is gener-
ated after reading the problem data. It is obtained by creating copies of each
sub-model in the template model tree in accordance with the associated index-
ing expression. In this process, data file is only used to expand the index set
expression of each tree node; the other indexing set, such as the one used in the
variable, parameter, and constraint declarations are not expanded and remain as
high level template in the template model tree node. However the cardinality
of the variables and constraints in each sub-model are counted to provide the
problem size information. This allows the expanded model tree node to store the

Page 47

4.3. Structure Building Stage

scalar information (such as number of local constraints and local variables), there-
fore only minimal amount of memory is used for storing the problem structure.
Each node in the expanded model tree also has a pointer to the corresponding
template model tree node, where the declaration templates of local entities can be
retrieved from. The expanded model tree thus provides the context in which to
interpret the template variable and constraint definitions in the template model
tree.

Figure 4.5 demonstrates an expanded model tree for an MSND problem in-
stance constructed by PSMG after reading the data file (in Listing 2.2). This
expanded model tree is generated by repeating MCNFArcs, MCNFNodes and Net

tree nodes in the template model tree (Figure 4.1) for each set value of their as-
sociated indexing set. For example, the indexing set expression ‘a in {Arcs}’ in
the template model tree is expanded into three nodes (MCNFArcs A1, MCNFArcs A2

and MCNFArcs A3) in the expanded model tree.

root

MCNFArcs A1 MCNFArcs A2 MCNFArcs A3 MCNFNodes N1 MCNFNodes N2 MCNFNodes N3

N
e
t
C
1

N
e
t
C
2

N
e
t
C
3

N
e
t
C
1

N
e
t
C
2

N
e
t
C
3

N
e
t
C
1

N
e
t
C
2

N
e
t
C
3

N
e
t
C
1

N
e
t
C
2

N
e
t
C
3

N
e
t
C
1

N
e
t
C
2

N
e
t
C
3

N
e
t
C
1

N
e
t
C
2

N
e
t
C
3

Figure 4.5: The expanded model tree of an MSND problem instance constructed by
PSMG using data file in Listing 2.2.

Figure 4.6 demonstrates an expanded model tree for a 3-stage ALM-SSD
problem instance using its template model tree (in Figure 4.3) and the data file
(in Listing 2.4). The expanded model tree is generated by repeating the stage0,
stage1 and stage2 tree nodes in the template model tree for each set value of
their associated indexing set. That is, the indexing set expression {Child[null]}
is evaluated to the node set {1} which only contains the root node in the scenario
tree. Child[1] is evaluated to a node set {2,3}. Child[2] and Child[3] are
evaluated to node sets {2,3} and {4,5} respectively.

root

1

2

4 5

3

6 7

⇒ stage 0

⇒ stage 1

⇒ stage 2

Figure 4.6: Expanded model tree for a 3-stage ALM-SSD problem instance constructed
by PSMG using data file in Listing 2.4.

Once the expanded model tree is constructed by PSMG, it is passed to the

Page 48

4.4. Parallel Problem Generation Stage

solver. The solver is able to retrieve the concrete structure and the size informa-
tion about the problem and each of its sub-problems from the expanded model
tree. Each expanded model tree node represents a sub-problem, whereas the
root node represents the top-level problem. Constraint and variable numbers for
each of the sub-problems can be retrieved from its corresponding expanded model
tree node. The problem structure layout matches with the expanded model tree
structure; hence, the solver can traverse the expanded model tree recursively to
retrieve the structure information and set up the problem for parallel solution.

It is also worth mentioning that PSMG’s memory usage in this stage is re-
stricted to information which the solver needs to decide on the distribution of
problem components to processors, namely, the structure of the problem (i.e.
number of blocks and the relationship among blocks, and the size of each block).
Due to the minimal processing involved, this phase is very fast. According to
our performance benchmark tests in Chapter 8, this processing finishes within
seconds for problems of more than a million variables and constraints.

Now PSMG can proceed to the second stage for generating a structured prob-
lem, namely the parallel problem generation stage. The expanded model tree
then acts as an interface between PSMG and the solver.

4.4 Parallel Problem Generation Stage

In this stage, PSMG generates blocks of the problem’s Jacobian and Hessian
matrices as required by the solver. In order to evaluate a particular block, PSMG
will expand the indexing set expressions for variables, constraints and compute
any temporary sets and parameters needed for function and derivative evaluations
in this block. The indexing set for summation expressions are also evaluated and
stored in memory only when it is necessary. The work involved in this stage takes
a major percent of the whole model processing time. PSMG is able to distribute
this work among parallel processors. In addition, PSMG implements state-of-
the-art automatic differentiation (AD) algorithms that can efficiently compute
accurate Jacobian and Hessian blocks without truncation-error.

4.4.1 Solver Driven Problem Assignment

To avoid unnecessary communication it is evident that function and derivative
evaluation routines for a particular part of the the problem (and by extension the
generation of the necessary data) should be performed on the processor that is also
assigned to have this part of the problem. Moreover, allocation of sub-problems to
processors should be taken into account load balancing and cost of inter-process
communications. We note that both these issues are highly dependent on the
algorithm used by the solver and can only be judged by the solver.

This leads us to follow the design of a solver driven work assignment approach
for PSMG’s solver interface, in which initially a minimal set of information de-
scribing the problem structure is extracted from the model and passed to the
solver. The solver then decide how to distribute problem components among
processors based on this structure and subsequently initiate the remainder of

Page 49

4.4. Parallel Problem Generation Stage

the model processing and function evaluations through call-back functions on a
processor-by-processor basis. It is clear that the expanded model tree fits this
purpose.

On-demand problem processing

Figure 4.7 illustrates the overall work-flow between PSMG and the solver.

Value
block

Gradiant
Jacobian
Request

Solver Solver Solver

PSMG PSMG PSMG

Value
block

Function
Derivative
Request

Value
block

Function
Derivative
Request

Process 0 Process 1 Process N

P
S

M
G

Process model and data file
Passing problem structure to solver

Parallel solver communication channel

2

4

3 33

PSMG's Model and Data files

1 1 1

4 4

Figure 4.7: The PSMG workflow diagram with a parallel optimization solver.

The steps of in the work-flow diagram in Figure 4.7 can be summarised as
below:

1. PSMG reads model file and data file.

2. PSMG extracts the template tree and builds the expanded model tree to
describe the problem structure information (as described in the structure
building stage (4.3)).

3. PSMG passes the expanded model tree to the parallel solver. The solver
will then decide how to distribute the problem parts, i.e. the nodes of the
expanded model tree, among processes to achieve optimal load balancing
and data locality.

4. The solver uses PSMG’s callback function interface to request the specific
blocks or subproblems to be evaluated on a processor per processor basis.

Steps 1–3 form the structure building stage. After building and passing the prob-
lem structure information to the solver, every solver process knows the size and

Page 50

4.4. Parallel Problem Generation Stage

structure information of the entire problem. Once this information is available,
there is no further need for any communication among the PSMG processes. The
solver can then employ an appropriate distribution algorithm to assign blocks to
available processes in order to achieve load balancing and minimize solver internal
communication. After that, every parallel processes can request the function and
derivative values of each block to be generated in parallel from PSMG. This work
corresponds to step 4 above, namely the parallel problem generation stage.

In order for PSMG to evaluate function and derivative values for a particular
block of a sub-problem, additional processing needs to take place. Some major
work items involved in step 4 are listed below.

• expanding the indexing set expression of the variables and constraints;

• initializing the variables and build concrete constraint expression;

• expanding the sum expressions in the constraint declaration;

• computing the set and parameter values that are needed;

• initializing the memory block used by automatic differentiation routines.

The amount of computing work involved and memory allocated are dependent
on the size and complexity of the block required by the solver. Therefore, to
maximise PSMG’s parallel problem generation efficiency, it is important for the
solver to adopt a balanced parallel allocation scheme by considering the number
of blocks and the size of each block. The expanded indexing set, any temporary
set and parameter values are stored in memory for future use.

Memory consideration

The total memory used in PSMG consists of the memory used for storing problem
structure and problem data that required for computing the function and deriva-
tive evaluations. The problem structure is represented by the prototype model
tree and expanded model tree. The expanded model tree only stores scalar in-
formation (i.e. number of variables and constraints in each tree node) before the
parallel problem generation stage starts. Therefore it contributes a very minimal
percentage of the total memory usage, which is confirmed in the performance
evaluation result for PSMG in Chapter 8.

At the parallel problem generation stage (step 4 in Figure 4.7), additional
memory is allocated to store the problem data in the expanded model tree. This
“lazy” approach of data computation guarantees that processing power and mem-
ory is only used when and on the process where it is necessary.

Therefore, PSMG can effectively distribute the memory usage for storing prob-
lem data among parallel processes. However, the problem structure information
is duplicated on every processes. This design is crucial for enabling the solver
driven problem distribution to achieve the on-demand problem generation and
further eliminates inter-process communication in both the model generation and
function evaluation stages.

Page 51

4.4. Parallel Problem Generation Stage

Furthermore, the names for variables and constraints are not stored in the
data memory, but rather can be dynamically generated upon request from the
solver. In most cases, the constraint and variable names are needed for debug
or solution reporting purpose. Storing those names for problem with millions
of constraints and variables could consume a considerable amount of memory.
Therefore it is not worthwhile to store them.

Callback function interface with solver

PSMG uses the expanded model tree as the interface for communicating the prob-
lem structure to the solver. PSMG implements C/C++ type of solver interface
as member functions or properties of the ExpandedModel class. It is quite con-
venient for solver to employ PSMG’s interface as a callback function to require
each block (of Jacobian or Hessian matrix) or sub-vector (of objective gradient,
constraint values, etc.) on demand in parallel. Further details about PSMG’s
solver interface methods are discussed in Chapter 6.

4.4.2 Constraint Separability Detection

In a nested structure problem, constraint expression in a sub-problem can be
modelled with variables declared from itself or either its ancestor or descendant
problems. Since PSMG evaluates Jacobian and Hessian matrix by blocks, and
function and derivative values by their separable parts, it is quite useful to sepa-
rate the whole constraint expression into parts based on blocks. Therefore at the
problem generation stage, only the part of constraint which contributes to the re-
quested block is evaluated. This can also be useful to verify the block separability
assumption in Section 2.4.1.

PSMG achieves this by recursively tracing the constraint expression declara-
tions and grouping the constraint expression in line with the separability of the
variables used in this constraint. Each constraint is grouped into several addi-
tively separable parts. For a linear constraint, each constraint part contributes
to one block in the Jacobian.

For example, the Capacity constraint expression declared in the MSND prob-
lem in Listing 2.1 (line 15) will be partitioned into two parts: sum{k in COMM}
Net[k].Flow[j] + capslack[j]; and sparecap[j], where the first part is used
for evaluating the diagonal block, and the second part is used to evaluate the
right hand side border block (in Figure 2.1).

For nonlinear constraint, a separable part of this constraint may contribute
to one or more blocks in the Jacobian and Hessian matrix, since variables in this
separable part may from different levels of the problem.

4.4.3 Function and Derivative Evaluation

The majority of the time spent in PSMG’s problem generation stage is on evaluat-
ing Jacobian and Hessian matrix at a given point x. An efficient implementation
for computing such values is paramount for PSMG to achieve excellent perfor-
mance. In particular, for Nonlinear Programming (NLP) problems, the Jacobian

Page 52

4.4. Parallel Problem Generation Stage

and Hessian matrices may need to be evaluated for every iteration. The deriva-
tive evaluation is a very interesting research area by itself, therefore we discuss
PSMG’s function and derivative evaluation design in the next Chapter.

Page 53

Chapter 5

Evaluating Derivatives in PSMG

In general, there are three ways of computing derivatives, numerical differentia-
tion, symbolic differentiation and automatic differentiation. Numerical differen-
tiation approximates the derivative values using the rate of change between two
or more function points. It is prone to truncation error [48], sometimes making
the result useless [49], but it can return the derivative value quickly. Symbolic
differentiation first requires an algebraic expression of the derivatives function
to be computed, and then the derivatives at a function point can be evaluated
using the computed symbolic expression. Symbolic differentiation method brings
no truncation error, but it needs additional memory space to store the deriva-
tive function expressions and also requires considerable amount of programming
work for an efficient implementation. Also, memory space is a critical resource
for solving large scale optimization problems. The automatic differentiation(AD)
method neither requires the symbolic expression to be computed nor introduces
any truncation error (that is outside of the machine’s precision) for evaluating
derivatives of a function, therefore the AD method is the most efficient among the
three methods. Because of the superiority of AD over other two classical methods
for derivative evaluation, most AMLs adopt AD method in their implementation.
We have also implemented the AD routine in PSMG.

5.1 Forward AD Algorithm

A number of research papers contributed to the theoretical development of AD
[50, 51, 52]. Griewank and Walther have also studied the memory and run-time
complexity for AD algorithms in [53].

To simplify the discussion, we use the same notation as introduced by Griewank
and Walther in [53]. We can consider a scalar function f : R

n → R which
can be represented using a list of elemental functions (φ1−n, · · · , φl). Each el-
emental function φi is either unary or binary, ∀i ∈ {1, · · · , l} and φi = xi for
i ∈ {1 − n, · · · , 0}. Using the elemental function list, it is quite convenient to
construct the computational graph as a directed acyclic graph G(N,A), where
the size of node set, |N | = n + l. Let vi represent the output value of φi,
∀i ∈ 1− n, · · · , l; hence, vi = φi(vj) if φi is an unary function and arc (j, i) ∈ A;
and vi = φi(vj, vk) if φi is a binary function and arcs (j, i) and (k, i) ∈ A. We

54

5.2. Reverse AD Algorithm

should also define a dependence relation ≺, where i ≺ j means arc (j, i) ∈ A.
Then we can write more concisely vi = φi(vj)i≺j for i ∈ 1, · · · , l and vi = φi = xi

for i ∈ {1− n, · · · , 0}.
The main idea in AD is to apply the chain rule along the computation graph

of a function expression to evaluate the derivative. According to the direction of
propagation, AD algorithms can be categorized in two modes: forward; and re-
verse. We demonstrate these two modes by an example. Figure 5.1 demonstrates
computational graph for function expression: f(x) = (x−1x−2) + x0 sin(x−2).

In forward AD, we should declare a list of tangent variables (v̇1−n, · · · , v̇l)
for each node in the computational graph. We need to choose a seed direction
in x, and then apply the forward AD algorithm (Algorithm 1) to compute the
derivative. The seed direction is the component in x vector that is considered
to be variable and rest of the components in x are kept constant while apply-
ing the chain rule, therefore choosing a seed direction allows the corresponding
partial derivative to be evaluated using forward AD algorithm. A point on the
function should also be provided to indicate where on the function the derivative
is evaluated. For example, ∂f

∂x
−1

can be evaluated using Algorithm 1 by setting
input a = −1, where a is the seed direction parameter. Figure 5.2 illustrates the
computation steps for evaluating ∂f

∂x
−1

.

+

∗

x−1

∗

sin

x−2 x0v−1 = φ−1 = x−1 v−2 = φ−2 = x−2 v0 = φ0 = x0

v1 = φ1(v−1, v−2) = v−1v−2 v2 = φ2(v−2) = sin(v−2)

v3 = φ3(v2, v0) = v2v0

v4 = φ4(v1, v3) = v1 + v3

Figure 5.1: The computational graph for function f(x) = (x−1x−2) + sin(x−2)x0.

When using the forward AD, evaluation of the gradient vector requires the
algorithm to be run n times, where n is the number of independent variables in
the function expression (i.e. n = |x|). That is, it requires n forward sweeps on the
computational graph to evaluate the gradient vector. Otherwise we can modify
the algorithm by carrying a vector of size n at each loop iteration to compute
gradient in one forward sweep; however, this is not memory efficient. The forward
AD algorithm is inefficient in both memory usage and run-time speed.

5.2 Reverse AD Algorithm

The Jacobian matrices of the large scale structured problems we are dealing with
are always sparse. In order to fully exploit the sparsity structure of the Jacobian
matrices, we have adopted the reverse mode AD in PSMG.

In the reverse mode AD, we should declare a list of adjoint variables (v̄n−1, · · · , v̄l)
for each node i ∈ {n − 1, l} in the computation graph G(N,A). The algorithm

Page 55

5.2. Reverse AD Algorithm

+

∗

x−1

∗

sin

x−2 x0

v−2 = x−2

v̇−2 = 0

+

∗

x−1

∗

sin

x−2 x0

v−1 = x−1

v̇−1 = 1

+

∗

x−1

∗

sin

x−2 x0

v0 = x0
v̇0 = 0

+

∗

x−1

∗

sin

x−2 x0

v1 = x−1x−2

v̇1 = v̇−1v−2 + v̇−2v−1

= x−2

+

∗

x−1

∗

sin

x−2 x0

v2 = sin(x−2)

v̇2 = cos(v−2)

= cos(x−2)

+

∗

x−1

∗

sin

x−2 x0

v3 = x0 sin(x−2)

v̇3 = v2v̇0 + v0v̇2

= 0

+

∗

x−1

∗

sin

x−2 x0

v4 = x−1x−2 + x0 sin(x−2)

v̇4 = v̇1 + v̇3

= x−2

Figure 5.2: Illustration for applying forward AD to evaluate ∂f
∂x

−1
of f(x) = (x1x−2)+

sin(x−2)x0.

Page 56

5.3. Computing Sparse Hessian

Algorithm 1 The forward AD algorithm for computing gradient

Input:
a ⊲ the seed direction
x ⊲ the given function point

Output:
v̇l ⊲ partial derivative for the seed direction

1: for i = n− 1, · · · , 0 do
2: vi ← xi

3: if i = a then
4: v̇i ← 1
5: else
6: v̇i ← 0
7: end if
8: end for
9: for i = 1, · · · , l do
10: vi = φi(vj)i≺j

11: v̇i ← 0
12: for i ≺ j do
13: v̇i+ = ∂φi

∂vj
v̇j

14: end for
15: end for

for reverse mode AD is presented in Algorithm 2. As we can see that the gradi-
ent vector can be evaluated by calling to the reverse AD algorithm once. Only
one forward and one reverse sweep on the computational graph is needed in the
reverse AD algorithm. In the forward sweep, the value for each φi is computed
and stored in variable vi. The reverse sweep propagates the adjoints from top
to bottom. Once finishing the reverse sweep, the gradient vector is given in the
adjoint variables at each leaf node (the independent variable node). Reverse AD
can exploit the sparsity structure in the Jacobian matrix. Furthermore, by care-
fully arranging the evaluation order on the computational graph, reverse AD can
be efficiently implemented using a stack [53]. Figure 5.3 and 5.4 demonstrate
the computation steps in forward and reverse sweeps for evaluating ∇f(x) using
reverse mode AD algorithm. The computational graph and function expression
is illustrated in Figure 5.1. Once the reverse AD finishes the reverse sweep on the
computational graph, the gradient vector (∇f(x))T can be obtained from adjoints
(i.e. (∂f

∂x
−2

, ∂f

∂x
−2

, ∂f

∂x
−2

) = (v̄−2, v̄−1, v̄0) = (x0cos(x−2) + x−1, x−2, sin(x−2))).

5.3 Computing Sparse Hessian

Most optimization solvers require the Lagrangian Hessian matrix to be evaluated
by the model generator. The Lagrangian function is the linear combination of
constraint and objective functions. Therefore it is crucial for performance reason
to have the sparse Hessian matrix evaluated efficiently in our AD implementation.
Gebremedhin et al. presented an effective approach of computing the sparse

Page 57

5.3. Computing Sparse Hessian

+

∗

x−1

∗

sin

x−2 x0

v−2 = x−2

+

∗

x−1

∗

sin

x−2 x0

v−1 = x−1

+

∗

x−1

∗

sin

x−2 x0

v0 = x0

+

∗

x−1

∗

sin

x−2 x0

v1 = x−1x−2

+

∗

x−1

∗

sin

x−2 x0

v2 = sin(x−2)

+

∗

x−1

∗

sin

x−2 x0

v3 = x0 sin(x−2)

+

∗

x−1

∗

sin

x−2 x0

v̄4 = x−1x−2 + x0 sin(x−2)

Figure 5.3: Illustrating the forward sweep for applying reverse AD to evaluate ∇f(x)
of f(x) = (x−1x−2) + sin(x−2)x0.

Page 58

5.3. Computing Sparse Hessian

Algorithm 2 The reverse AD algorithm for computing gradient

Input: x ⊲ point on function
Output: v̄ ⊲ gradient of the function at x
1: for i = n− 1, · · · , 0 do ⊲ start forward sweep
2: vi ← xi

3: v̄i ← 0
4: end for
5: for i = 1, · · · , l do
6: vi = φi(vj)i≺j

7: v̄i ← 0
8: end for
9: v̄l ← 1
10: for i = l, · · · , 1 do ⊲ start reverse sweep
11: for i ≺ j do
12: v̄j+ = ∂φi

∂vj
v̄i

13: end for
14: end for

+

∗

x−1

∗

sin

x−2 x0

v̄4 = 1

v̄3 = 1
v̄1 = 1

+

∗

x−1

∗

sin

x−2 x0

v̄3 = 1

v̄2 = x0

v̄0 = sin(x−2)

+

∗

x−1

∗

sin

x−2 x0

v̄2 = x0

v̄−2 = x0 cos(x−2)

+

∗

x−1

∗

sin

x−2 x0

v̄1 = 1

v̄−2 = x0 cos(x−2)
+x−1

v̄−1 = x−2

Figure 5.4: Illustrating the reverse sweep for applying reverse AD to evaluate ∇f(x)
of f(x) = (x−1x−2) + sin(x−2)x0.

Page 59

5.4. AutoDiff Library Module

Hessian by combining graph coloring and the reverse AD algorithm [54]. This
approach is also integrated into ADOL-C [55] using the graph coloring library,
ColPack [56]. The sparse Hessian computation using graph coloring is a two-step
algorithm. In the first step the compressed Hessian matrix C = HS is evaluated,
where the seed matrix [54] S is obtained according to a coloring mode. Then the
Hessian matrix H can be recovered from C using the seed matrix obtained in the
second step. It seems that this two-step algorithm for sparse Hessian evaluation
was the most efficient approach before a recent work published by Gower et al. [57]
who presented a “truely” reverse algorithm for sparse Hessian calculation, namely
edge pushing. The edge pushing algorithm exploits both the symmetry and
sparsity structure in Hessian matrix. It allows the Hessian matrix to be evaluated
in one forward and one reverse sweep on the computational graph. According to
the result analysis presented in [57, 58], edge pushing algorithm demonstrates
more robust performance than the graph coloring algorithm. Therefore we have
chosen to implement the edge pushing algorithm in PSMG’s AD module.

In addition, most optimization solvers require the model generator to provide
the sparsity structure for the Hessian matrix to set up the memory storage before
the actual Hessian matrix is evaluated; hence a routine for just returning the Hes-
sian matrix structure is also quite useful for this purpose. Routines for retrieving
the non-zero structure of the Hessian matrix are provided in AMPL and their us-
age is documented in [31]. Walther [59] also presented a forward mode algorithm
for evaluating the sparsity structure of the Hessian matrix; and this algorithm
is implemented in ADOL-C. However a “truly” reverse algorithm for detecting
non-zero structure of the Hessian matrix is recently developed by Gower, namely
edge push sp [60]. We have also implemented this reverse algorithm in PSMG’s
AD module to return the sparsity structure of the Hessian matrix.

5.4 AutoDiff Library Module

There are various open source libraries for using AD to compute derivatives of
a function [61]. These libraries are implemented using either source code trans-
formation or operator overloading method. The AD libraries implemented using
both of the methods require the compiler to be used to build the computation
graph of a function expression. On the other hand, PSMG employs a user friendly
interface design, and requires no compiler intervention after it is deployed a target
machine. The modeller only needs to specify the model and data files to use the
modelling system. We need either to develop an interface between PSMG and
an open-source AD library or to implement our own AD module. For technical
reason and also the ability to tailor the AD algorithm for the purpose needed by
PSMG, we choose the latter approach.

We should now discuss some design concepts and implementation details in
the PSMG’s AD module. The AD routines in PSMG are designed as a separate
module, and itself is released as an open source library, namely AutoDiff Library

[62]. AD is an active research area, therefore the modular design allows PSMG
to adopt the latest AD algorithms easily. Unit tests implemented using Boost
Testing Framework [63] are also integrated in AutoDiff Library for testing new

Page 60

5.4. AutoDiff Library Module

AD algorithms.
While implementing the AD library, we have consulted an Object-Oriented

implementation from [64]. We have also borrowed the “tape” idea from ADOL-C
[55, 65] for storing the computational graph and temporary variables needed in
the derivative evaluation. We implemented the tape using a collection of array
objects that store the elementary function operators of the function expression
and any intermediate values such as vi, v̄i, v̇i,

∂φi

∂vj
, etc. Using tape allows the AD

routine to store the computed intermediate values that can be quickly accessed
for later use; therefore it is important for an efficient AD implementation. It is
worth mentioning that our AD routine implementation is on scalar function, a
more robust AD implementation based on vector function as presented in ADOL-
C [55]. This could be a future route to go for improving the performance of
PSMG.

Our AutoDiff Library provide interface methods for building the constraint
functions in the form of directed acyclic graphs, where the leaf nodes represent
either variables or parameters, and the non-leaf nodes represent either binary or
unary operators. Then the Jacobian and Hessian matrices (in sparse form using
ublas [66]) can be evaluated using corresponding interface methods from this
library.

The AutoDiff Library is implemented in C++ with Object-Oriented design.
The computational graph for function expression is built using nodes initiated
from classes: VNode; BinaryOpNode; UnaryOpNode; PIndex; and PVal. Their
explanations are listed below. Figure 5.5 presents the class hierarchy in AD
module.
• BinaryOpNode

– represents a binary operator node that has two operands as its children.
• UaryOpNode

– represents a unary operator node that has only one operand as its
child.

• VNode

– represents a variable node which is also a leaf node.
• PVal

– represents a fixed parameter leaf node in the expression tree.
• PIndex

– represents a parameter node whose value can be looked up by index.
In order to use the AutoDiff Library, one should include the header file

autodiff.h where interface methods for building the computational graph are
declared. There are also interface methods for computing the Jacobian and Hes-
sian matrices, and their corresponding non-zero structures. PSMG computes the
Jacobian and Hessian in blocks. Therefore, tailor made method calls to return
those matrix blocks are provided in the AD module. The solver can decided how
to deal with the block matrices for other part of the problem (i.e. either commu-
nicate the block or discard it). The interface methods and their explanations are
attached in Appendix A of this thesis.

Page 61

5.5. Future Work in the AD Module

Node

ActNode

VNode OpNode

PNode

PVal PIndex

Figure 5.5: The class hierarchy diagram in AutoDiff Library for building function
expression tree.

5.5 Future Work in the AD Module

The AD module in PSMG has its own interface and can be used as a standalone
library. Because derivative evaluation takes a consideration amount of compu-
tation effort in problem generation, it is quite useful to conduct a performance
analysis between the PSMG’s AD module and other open sourced AD libraries.
In this case, we can identify any potential performance issue in the AD evaluation
routine and to conduct further improvements to PSMG’s AD module implemen-
tation.

5.5.1 Some Parallel Consideration

In the reverse sweep of AD algorithm, it traverses the computational graph from
root to leaf nodes. At each non-leaf node with more than one child, there is an
opportunity to traverse each child in parallel. It is note that Christianson [51]
also described the similar approaches for parallel implementation of the reverse
gradient algorithm. His method is to use a counter at each node to indicate the
number of terms that are waiting to be accumulated in the reverse sweep. When
the counter is zero, the adjoint variable at this node is ready. Then, the reverse
sweep can be propagated in parallel for its children. Using this approach, the
adjoint variables have to be accessed through some synchronization primitives.
There are also prototype implementations for both reverse and forward AD al-
gorithms using parallel programming such as using MPI in [67] and OpenMP in
[68].

Page 62

Chapter 6

PSMG Solver Interface

In this chapter, we discuss PSMG’s solver interface methods for retrieving prob-
lem structure and evaluating the function and derivatives. PSMG offers two
categories of interface methods (distributed and local) for function and derivative
evaluations, which provide great flexibility to support different parallel solver al-
gorithms. PSMG can be used for modelling LP, QP and NLP problems with
nested structure. The interface methods for structure retrieval are the same for
these three problem types, whereas the interface methods for function and deriva-
tive evaluation can be different.

6.1 General Problem Formulation

PSMG is designed to model structured problems. A structured problem can be
naturally presented using a single-rooted tree as described in Chapter 4, where
each child node represents a sub-problem, and the root node represents the master
problem. The structured problem can also be nested, which corresponds to a tree
with more than two levels. To help us explain PSMG’s solver interface design, we
should present the general problem formulation for problems modelled in PSMG.

Let us first restate block separability assumption (Section 2.4.1) more formally.
Given T be the set of nodes in the tree that represents the structured problem.
We should also define a function anc that takes a node i ∈ T and returns a set
of tree nodes containing i’s ancestors. Then we can give the generalized block
separability assumption below.

Block Separability Assumption (Generalized) Let i and j be any two
different nodes in T that is not on the same branch – which means there isn’t
any path on the tree started from root that passes both nodes, i and j. Let
the set of nodes I = anc(i) ∩ anc(j), and F be the set of constraint functions
declared in every node n ∈ I. Let Vi and Vj be the sets of variables declared in
node i and j respectively. Given variables vi ∈ Vi and vj ∈ Vj, and constraint
function fk, k ∈ F , vi and vj must not present in the expression of ∂vjfk and
∂vifk respectively. In this case, we say vi and vj satisfy the block separability
assumption.

In above description of the generalized block separability assumption, we have

63

6.1. General Problem Formulation

relaxed the additively separable requirement for variables vi and vj (originally
stated in 2.4.1). This assumption holds providing that vi and vj are separable with
respect to the partial differentiation operator in constraint function fk. The addi-
tively separable relation between vi and vj is a special case which is often enough
for modelling structured problems. In addition, PSMG provides the Exp(·) func-
tion (inherited from SML [2]) for modelling stochastic programming problems.
Many risk measures, such as variance, conditional value at risk (CVAR), stochas-
tic dominance constraints, etc can be modelled using expectation-like constraints
[1, 34, 69].

For simplicity, we consider a general two-level structured problem whose math-
ematical formulation is given in (6.1). This problem has one master problem and
n sub-problems. Each qi represents the part of the objective function declared
in ith sub-problem, where i ∈ {1, · · · , n}. q0 represents the part of the objective
function declared in the master problem. The overall objective function of this
problem is the linear combination of qi, ∀i ∈ {0, · · · , n}. gi0 is the constraint in
the master problem which links all the sub-problems’ variables. The xi are the
variables declared in the ith sub-problem, ∀i ∈ {1, · · · , n}. x0 is the complicat-
ing variables declared in master problem. Without lost of generality, qi and gi
can represent either linear or nonlinear vector functions; and xi can represent
either scalar or vector, ∀i ∈ {0, · · · , n}. In this formulation we assume variables
xi, ∀i ∈ {1, · · · , n} are additively separable in the complicating constraints (that
are declared in the master problem). However, the results can be obviously ap-
plied for problem formulation that satisfies the generalized version of the block
separability assumption.

min
xi

q0(x0) +
n

∑

i=1

qi(xi, x0) (6.1a)

s.t. gi(xi, x0) ≤ 0, i ∈ {1, · · · , n} (6.1b)
n

∑

i=1

gi0(x0, xi) ≤ 0 (6.1c)

Given the block separability assumption, the constraints and objective function
can be split into several separable parts according to the operation described
in Section 4.4.2. Then (6.1) can be rewritten into an expanded formulation in
(6.2). The additively separable part of the constraint expression involves only the
complicating variables x0 that are expressed separately using c0i , ∀i ∈ {0, · · · , n}.
PSMG always processes a model’s constraints and objective function into the
expanded formulation; hence, the expanded formulation is used to explain the
principle of PSMG’s solver interface in the rest of this chapter.

Page 64

6.1. General Problem Formulation

0

1 2 n

c0 : c
0
0(x0) + c10(x0, x1) + c20(x0, x2) + · · ·+ cn0 (x0, xn)

f0(x0)

f1(x0, x1)

c11(x0, x1) + c01(x0)

f2(x0, x2)

c2(x0, x2) + c02(x0)

fn(x0, xn)

cn(x0, xn) + c0n(x0)

Figure 6.1: A general two level structured problem.

min f1(x0, x1) + f2(x0, x2) + · · ·+ fn(x0, xn) +f0(x0) (6.2a)

s.t. c11(x0, x1) +c01(x0) ≤ 0 (6.2b)

c22(x0, x2) +c02(x0) ≤ 0 (6.2c)

. . .
...
... (6.2d)

cnn(x0, xn) +c0n(x0) ≤ 0 (6.2e)

c10(x0, x1) + c20(x0, x2) + · · ·+ cn0 (x0, xn) +c00(x0) ≤ 0 (6.2f)

Figure 6.1 demonstrates the tree structure of this two level structured prob-
lem, where the constraint and objective expressions in every sub-problem are
annotated next to every node. This tree structure is also the same as the ex-
panded model tree generated by PSMG; hence an expanded model tree node can
be used to refer to a sub-problem, where the root node can refer to the master
problem.

We can conclude the following key facts in a general problem formulation of
a problem modelled by PSMG.

• The overall objective function is declared in its additively separable parts
in each expanded model tree node, where f0 is declared at master problem
(root node).

• The objective function part declared in an expanded model tree node can
only use variables declared from this node itself and its ancestor nodes.

• The variables declared in an expanded model tree node can only be used in
constraints declared in this node itself, or its ancestor or descendant nodes.

• The variables declared in any two nodes from sibling branches are additively
separable with each other in the constraints. This is also known as our block
separability assumption.

This formulation is guaranteed to produce a double bordered block-angular
structure (in Figure 6.2) for Jacobian and Hessian matrix of the problem. It is
worth mentioning that structure problems demonstrating either primal or dual
block-angular structure in their Jacobian matrix are considered as special cases
in PSMG. Therefore, it is unnecessary to discuss them separately.

Page 65

6.2. Problem Structure Retrieval

. . .
...

· · ·

Figure 6.2: Double bordered block-angular structure for a two level structured problem

6.2 Problem Structure Retrieval

We have already explained that the problem structure can be presented using the
expanded model tree in PSMG. In order to retrieve the problem structure and
dimension information (constraint and variable numbers) for each sub- and master
problem, the solver can use the interface methods and properties declared in the
ExpandedModel class. The root node of the expanded model tree represents the
master problem. Therefore, the solver can recursively trace from the root node
to obtain the whole problem structure.

The keyword, this which is commonly found in Object-Oriented program-
ming languages (i.e JAVA, C++, etc.) is used throughout rest of this chapter in
the explanation of PSMG’s solver interface functions. Because PSMG’s interface
functions are declared as member methods or properties in ExpandedModel class,
this always refers the current expanded model tree node object, which could be
either a sub-problem or the master problem (if this refers to the root node).

The interface properties and methods can be used to retrieve problem struc-
ture are listed below.

Page 66

6.3. Variable and Constraints Information

• string name

– the name of this expanded model tree node.

• uint numLocalVars

– the number of local variables declared in this sub-problem. This
also corresponds to the number of columns in this sub-block of
the full constraint matrix.

• uint numLocalCons

– the number of local constraints declared in this sub-problem.
This also corresponds to the number of rows in this sub-block of
the full constraint matrix.

• unit nchild()

– returns the number of children nodes of this expanded model
tree node. This also gives the number of sub-problems.

• ExpandedModel* child(int i)

– returns the ExpandedModel pointer which points to the ith sub-
problem of the problem represented by this expanded model
tree node.

6.3 Variable and Constraints Information

Each expanded model tree node can have a list of local variables and constraints
belonging to this sub-problem (or master problem if it the root node). The
variables and constraints may have static information which stays the same during
the solution process. This information could be the upper and lower bounds or
ranges, and the constraint and variable names, etc. The interface methods for
retrieving information related to variables and constraints are also implemented
in ExpandedModel class.

It worth noting that interface methods for retrieving variable and constraint
names are only for solution reporting or debugging purposes. Those names are dy-
namically generated but not stored because of memory consideration (illustrated
in Section 4.4.1).

In certain cases, the modeller may want to specify default primal and dual
variable values in the model as the starting point for solver iteration. PSMG’s
solver interface also provides methods to obtain these default values.

The interface methods for retrieving above static information are listed below.

Page 67

6.3. Variable and Constraints Information

• void get var ranges(double** lower, double** upper)

– set the lower and upper pointers to the corresponding lower
and upper array. The dimension of the double arrays pointed by
lower and upper need to be agreed with the number of variables
declared in this expanded model tree node. Positive or negative
infinity value is set for a variable that does not present a upper
or lower ranges.

• void get cons bounds(double** lower, double** upper)

– set the lower and upper pointers to the corresponding lower
and upper array. The dimension the double arrays pointed by
lower and upper need to be agreed with the number of constraint
declared in this expanded model tree node. Positive or negative
infinity value is set for a variable that does not present a upper
or lower bounds.

• void get vars names(vector<string>& vnames)

– set the names of the variables declared at this expanded model
tree node to the string vector vnames.

• void get cons names(vector<string>& cnames)

– set the names of the constraints declared at this expanded model
tree node to the string vector cnames.

• void get default x0(double** x0)

– set x0 pointer to the default value of the primal variable declared
at this expanded model tree node. The dimension of the array
pointed by x0 needs to be agreed with the number of variables
declared in this expanded model tree node. NaN is set whenever
a default value is not presented for a primal variable.

• void get default y0(double** y0)

– set y0 pointer to the default value of the dual variable declared at
this the expanded model tree node. The dimension of the array
pointed by y0 needs to be agreed with the number of constraints
declared in this expanded model tree node. NaN is set whenever
a default value is not presented for a dual variable.

At the end of current solver iteration, the primal and dual variable values are
very likely to be updated by the solver, so that the solver can request PSMG to
evaluate the function and derivative using the updated values for next iteration.
The interface methods for solver to update the primal and dual variable values
are also implemented in ExpandedModel class and listed below.

Page 68

6.4. Local and Distributed Interface Methods

• void update primal x(double* vals)

– update the primal variable values. The dimension of vals is
equal to the number of variables declared in this expanded
model tree node.

• void update dual y(double* vals)

– update the dual variable values. The dimension of vals is equal
to the number of constraints declared in this expanded model
tree node.

6.4 Local and Distributed Interface Methods

Each expanded model tree node has a list of local variables and constraints de-
clared in it. The constraint function in an expanded model tree node can be
declared using not only the local variables but also the variables from its an-
cestor and descendant nodes, whereas the object function part in an expanded
model tree node can be declared using the local variables and variables from its
descendant nodes only. These may be allocated on different processors. There-
fore, it is required to provide values of variables declared in the dependent nodes
before invoking any interface methods for function or derivatives evaluation.

By considering the block separability assumption in PSMG’s problem formu-
lation, the dependent node set is decided in accordance with the type of problem
being modelled and the actual interface method being called. PSMG offers two
types of interfaces (local and distributed) for three types of problems (LP, QP and
NLP problem). Each type of interface has methods for evaluating entities such
as constraint or objective function value, objective gradient vector and blocks
of the Jacobian or Hessian matrix based on the problem type. Before calling
an interface method for evaluating an entity, the solver first is required to re-
trieve the corresponding dependent node set and to make necessary inter-process
communication work so that the variable values from the dependent node set are
locally available. Then the solver can safely invoking the corresponding interface
method.

The local interface offered in PSMG allows each above mentioned entity to be
evaluated on one processor by a single call to a corresponding method. However,
the dependent node set could contain every node from the expanded model tree
when using local interface method, that is to say variable values of the full prob-
lem may need to be accessed locally. Therefore the inter-process communication
cost and memory usage could be significant for problem with a large number of
variables. For example, evaluation of the link constraint values in the root node
may require variable values of the entire problem to be locally accessible using
the local interface method.

By taking further consideration of the additively separable expression for the
above mentioned entity, we can derive a more efficient interface type, namely
the distributed interface. The distributed interface methods evaluate only each

Page 69

6.4. Local and Distributed Interface Methods

separable part in the entity requested by the solver. Therefore, the dependent
node sets are computed differently from the ones used in local interface methods.
This will be illustrated in later section in accordance with the interface methods.
The final result can be obtained by a MPI Reduce operation to sum over the value
return for each separable part on parallel processors. The distributed interface
can maximise the parallelism for function and derivative evaluation. It can also
reduce the cost of communication and memory usage for problem variable values.
The distributed interface methods are further demonstrated in rest of this chapter.

6.4.1 Inter-process Communication

Local Interface

Generally speaking, the local interface method calling sequence can be sum-
marised as following.

• Solver requests the dependent node set from PSMG according to the inter-
face method to be called.

• Solver makes inter-process communication to make variable values from the
dependent node set locally available.

• Solver calls the PSMG’s interface method to evaluate the requested entity.

As we can see that the local interface method requires communication of the
variable values from its corresponding dependent node set before the method is
invoked.

Distribute Interface

The distributed interface calling sequence can be summarised as following.

S.1 Parallel solver processes request the dependent node set from PSMG ac-
cording to the interface method to be called.

S.2 Each solver process makes necessary communication efforts to make variable
values from the dependent node set locally available before invoking the
interface methods.

S.3 Each separable parts of the entity is computed by the distributed interface
methods.

S.4 The final result should be computed by the MPI Reduce operation on the
corresponding parallel communicator.

It is worth noting that the communication cost (in S.2) can be eliminated by
allocating variables of the parent node of the expanded model tree on every pro-
cesses that have the children nodes allocated. This allocation scheme guarantees
each separable part of the requested entity can be evaluated on a local process
using the distributed interface method. OOPS [21] is one of the solver enforced

Page 70

6.5. LP Problem Interface

this parallel allocation scheme. The communication work (in S.4) requires a par-
allel communicator to be created. At this time, PSMG does not takes the parallel
process allocation results from the solver, therefore the communicator creation
should be taking care of when linking PSMG with a parallel solver. Moreover,
PSMG could implement helper methods to create such communicator given that
the solver provides the process allocation results to PSMG.

6.4.2 Interface Method Summary

A summary of those interface methods is given in Table 6.1, where each row
gives the type of the interface methods implemented for one of the problem types
that can be modelled using PSMG at this time. The Jacobian block column
lists the evaluation routines for the Jacobian matrix of a problem’s constraints.
The Hessian of the Lagrangian matrix is evaluated for NLP problem, whereas
the Hessian matrix of the objective function is evaluated for QP problem. They
correspond to the Hessian block column. In the rest of this chapter, we shall
explain the interface methods from Table 6.1 according to the problem types.
Without loss of generality, we use the two level problem (in 6.2) as an example
to explain PSMG’s solver interface methods.

Interface Methods

Problem

type

Jacobian

block

Hessian

block

constraint

value

objective

value

objective

gradient

LP Same × L,D L,D Same
QP Same Same L,D L,D L,D
NLP L,D L,D L,D L,D L,D

Table 6.1: Summary of the local and distributed interface methods for LP, QP and
NLP problems. In this table, “L” donates the local interface method is implemented for
a problem type. “D” means the distributed interface is implemented. “Same” means
the interface methods are the same for both local and distributed implementations. This
happens when the entity to be evaluated does not depend on the variable values. “×”
means the evaluation routine for a problem type is not meaningful.

6.5 LP Problem Interface

In a LP problem, the general two level formulation given in (6.2) can be simplified
to (6.3), where c

j
i ∈ R

pi×qj and fj ∈ R
qj . pi is the number of constraints in sub-

problem i, for i ∈ {1, · · · , n}. p0 is the number of constraints in master problem.
qj is the number of variables in sub-problem j, for j ∈ {1, · · · , n}. q0 is the
number of variables in master problem. The corresponding tree representation
for this two level LP problem is given in Figure 6.3. This tree structure is the
same as the expanded model tree.

Page 71

6.5. LP Problem Interface

0

1 2 n

c0 : c
1
0x1 + c20x2 + · · ·+ cn0xn + c00x0

f0x0

f1x1
c11x1 + c01x0

f2x2
c22x2 + c02x0

fnxn
cnnxn + c0nx0

Figure 6.3: A general two level structured problem.

min f1x1 +f2x2 + · · · +fnxn + f0x0 (6.3a)

s.t. c11x1 + c01x0 ≤ b1 (6.3b)

c22x2 + c02x0 ≤ b2 (6.3c)

. . .
... (6.3d)

cnnxn + c0nx0 ≤ bn (6.3e)

c10x1 +c20x2 + · · · +cn0xn + c00x0 ≤ b0 (6.3f)

6.5.1 Constraint Matrix Evaluation

PSMG’s formulation guarantees the constraint matrix for LP problem demon-
strates a double bordered block-angular structure. The corresponding constraint
matrix structure for the two-level problem (Figure 6.3) is presented in Figure 6.4.

It is worth noting that blocks in the constraint matrix are identified by the
constraints declared at one expanded model tree node indicating the rows, and
variables declared at the other expanded model node indicating the columns.
Therefore, we should define the following terms to ease our discussion.

• row-node – an expanded model tree node that indicates the rows in a
Jacobian block.

• col-node – an expanded model tree node that indicates the columns in a
Jacobian block.

Thus, each pair (row-node,col-node) uniquely identifies a block in the Jacobian
matrix. It is to note that if row-node and col-node represent the same node in the
expanded model tree, the pair (row-node,col-node) identifies a diagonal block in
the Jacobian matrix.

We can also observe that the pair (row-node,col-node) identifies an non-zero
block if and only if row-node and col-node are on the same branch, which means
there is a path on the tree started from root that passes both nodes. Therefore,
by using the expanded model tree structure, we can easily focus the evaluation
of the non-zero blocks of the constraint matrix.

Page 72

6.5. LP Problem Interface

c11 c01

c22 c02

. . .
...

cnn c0n

c10 c20 · · · cn0 c00

c1

c2

...

cn

c0

x1 x2 · · · xn x0

Figure 6.4: Structure of Jacobian matrix for a general two LP problem.

The pairs (i, i), ∀i ∈ {0, · · · , n} represent the corresponding diagonal blocks
in the Jacobian matrix. The pairs (0, i), ∀i ∈ {0, · · · , n} represent the bottom
border blocks in the Jacobian matrix. And the pairs (i, 0), ∀i ∈ {0, · · · , n}
represent the right-hand side border blocks in the constraint matrix.

Because the constraint matrix is constant and does not depend on the problem
variable values, the dependent node set for calling this interface method is an
empty set. The local and distributed interface methods are the same for LP
problem.

PSMG offers two interface methods for evaluating a block of the constraint
matrix, one for returning the sparsity structure of the block, the other one for
evaluating the value of the entries. The sparsity structure of a matrix block is
returned using an indicator matrix object, namely indicator matrix which is
illustrated below.

Indicator Matrix
The indicator matrix represents the sparsity pattern of a value matrix. Its
underlying data structure uses two integer array row index and col start,
where row index stores the row indicies of each nonzero, and col start stores
the index of row index array which start a column of the value matrix. This
is similar to the compressed column storage but without value array.

PSMG returns the block matrix using a sparse matrix storage type, named
col compress matrx. col compress matrix is an wrapper object, and its un-
derlying data structure uses compressed column storage from the Boost ublas
library [66]. These two interface methods are declared in the ExpandedModel

class. They both take an expanded model tree node emcol as an input parameter,
where this expanded model tree node represents row-node and emcol represents
col-node. The this pointer represents the current object in an Object-Oriented
programming context. The two interface methods are listed below.

Page 73

6.5. LP Problem Interface

• uint nz cons jacobs lp qp(ExpandedModel* emcol,

indicator matrix& im)

– returns the number of non-zero elements in the constraint matrix
block identified by the constraints in this node and the variables
in emcol node. This method also fills an indicator matrix im to
demonstrate the sparsity structure of the block matrix.

• void cons jacobs lp qp(ExpandedModel* emcol,

col compress matrix& m)

– evaluates the constraint matrix block identified by the constraints
in this node and the variables in emcol node. The result is filled
in a sparse matrix m.

6.5.2 Constraint Function Evaluation

A constraint function declared in an expanded model tree node could use variables
from both its ancestor nodes and descendant nodes. In particular, the linking
constraints declared at the root node could reference every variable from the
entire problem. Therefore, the local interface method for constraint function
evaluation could require all the problem variable values to be accessible locally
on one processor. However, with the consideration of the additively separable
structure in the constraint formulation, we can produce the distributed interface
method for evaluating the constraint functions.

Local interface

To ease our discussion, we should now define the following two function terms as
listed below.

• anc – takes an expanded model tree node as input and returns its ancestors
in a set.

• des – takes an expanded model tree node as input and returns its descen-
dants in a set.

The dependent node set for evaluating constraint function declared at an ex-
panded model tree node i can be evaluated as anc(i) ∪ des(i) ∪ {i}. Variable
values should be provided by the solver using interface method update primal x

at each corresponding expanded model tree node. Then the solver can employ the
local interface method to compute values of the constraint functions declared in
expanded model tree node i. The local interface method for constraint function
evaluation is listed below.

Page 74

6.5. LP Problem Interface

• void cons feval local(double* vals)

– computes values of the constraint function declared at this ex-
panded model tree node, and sets the result values to the double
array vals. The dimension of vals is equal to the number of
constraints declared at this expanded model tree node.

Distributed interface

Because the variables in LP problem are always additively separable with each
other, the dependent node set in this case contains only the node itself. In most
case, the variables are allocated on the calling process. Using distributed interface
method, PSMG can evaluate each of the separable parts of the constraint function
declaration in an expanded model tree node (i.e. cTi xi), and those separable parts
can be computed in parallel.

For example, to evaluate the constraint declared at an expanded model tree
node i, the separable part of the constraint is identified by the variable in one
of the expanded model tree nodes in the set anc(i) ∪ des(i) ∪ {i}. Therefore, we
can apply the following steps using distributed interface to evaluate constraint
declared in the expanded model tree node i.

S.1 evaluating the separable part of constraint vj, ∀j ∈ anc(i) ∪ des(i) ∪ {i}

S.2 obtaining the constraint value v =
∑

j vj

S.1 is the parallel step, and the dependent node set for evaluating each vj is
{j}, ∀j ∈ anc(i) ∪ des(i) ∪ {i}. Evaluation of each vj can be done in parallel
on the process where each node j is allocated. S.2 is the communication step,
where the constraint function values are obtained by a MPI Reduce or AllReduce
operation with the corresponding parallel communicator.

The distribute method maximizes the parallelism for constraint function eval-
uation and also saves potential memory used for storing variable values from other
parallel processors. The distributed interface method for constraint function eval-
uation is listed below.

• void cons feval dist(ExpandedModel* emcol, double* vals)

– computes the separable part of the constraint functions in this

expanded model tree node. The separable part is identified by
the variables declared in expanded model tree node, emcol. The
resulting values are placed into the double array vals. The di-
mension of the double array vals is equal to the number of con-
straints in this expanded model tree node.

To illustrate the distributed interface, let us consider evaluating the linking
constraint declared at root node in Figure 6.3. The constraint can be expressed
as

∑n

i=0 c
i
0xi.

Page 75

6.5. LP Problem Interface

S.1 evaluate ci0xi by calling node0.cons feval dist(i, vi), ∀i ∈ {0, · · ·n}.

S.2 obtain the constraint value v =
∑n

i=0 vi.

S.1 is the parallel step. Before invoking the interface method in S.1 on each
parallel process, the solver need to provide values of the variables in the depen-
dent node set, {i}. Communication effort may be needed if the values are not
available locally. The constraint function value is obtained in S.2, where a MPI
Reduce operation may be invoked with the corresponding parallel communicator
to compute, v =

∑n

i=0 vi.

6.5.3 Objective Function Evaluation

In problems modelled using PSMG, each expanded model tree node may con-
tribute an additively separable part in the overall objective function. The part
of the objective function declared in an expanded model tree node can only use
variables from this node itself for LP problems.

Local interface

To evaluate the objective function using local interface method, the variable val-
ues should be provided for every expanded model tree node where an objective
function part is declared;hence, the dependent node set may include every nodes
in the expanded model tree in the worst case. Once the solver provides values of
the variables in the corresponding dependent node set, the local interface method
can be called to evaluate the objection function.

This local interface method is implemented as a staticmethod in ExpandedModel
class and listed below. static keyword has the same meaning as it is in a Object-
Oriented programming context.

• double& obj feval local(double& oval)

– computes the value of the objective function in the full problem,
and sets the objective function value to oval. The method also
returns the value of the objective function.

Distributed interface

By considering the objective function as a linear combination of the parts de-
clared in each expanded model tree node, the distributed interface method can be
implemented for objective function evaluation.

Using the distributed method for objective function evaluation, PSMG com-
putes only the value of the objective function part declared in one expanded
model tree node. These additively separable parts declared at every expanded
model tree node can be evaluated in parallel. Once they are evaluated, MPI Re-
duce or AllReduce operation can be invoked to sum them together to produce the
overall objective function value. Similar to the distributed method for constraint

Page 76

6.5. LP Problem Interface

function evaluation, the dependent node set for objective function evaluation only
contains this node itself.

The distributed interface method again maximizes the parallelism for objec-
tive function evaluation and reduces communication and memory cost related for
gathering all the variable values locally. This distributed interface is implemented
as a member method in ExpandedModel class and listed below.

• double& obj feval dist(double& oval)

– computes the separable part of the objective function declared
at this expanded model tree node. The result is assigned to oval
and returned.

To demonstrate the distributed interface method, we should consider to evalu-
ate the objective function in the two level LP problem formulation in (6.3). The
objective function can be expressed using

∑n

i=0 fixi. Each of the ovali = fixi can
be evaluated using the distributed interface method by calling nodei.obj feval dist(ovali)

∀i ∈ {0, · · · , n}. The overall objective value (i.e. oval =
∑n

i=0 ovali) can be
evaluated using a MPI Reduce operation with the corresponding parallel commu-
nicator.

6.5.4 Objective Gradient Evaluation

The objective function is declared in its separable part in each expanded model
tree node, therefore the objective gradient is composed of several sub-vectors.
Each of these sub-vectors can be evaluated separately in parallel. Because the
objective gradient vector is constant and does not depend on the problem variable
values, the dependent node set is an empty set for this interface method. The local
and distributed interface methods for objective gradient evaluation are the same
for an LP problem.

For example, let us consider the objective gradient for the two level LP prob-
lem (6.3). Its structure is presented in Figure 6.5. The objective gradient vector is
composed of a list of sub-vectors: f0, f1, f2, and · · · , fn. Each fi can be evaluated
separately on each expanded model tree node i ∈ {0, · · · , n}.

f1 f2 · · · fn f0

x1 x2 · · · xn x0

Figure 6.5: The objective gradient for a general two level LP problem.

The interface method for evaluating a sub-vector of the objective gradient is
declared in ExpandedModel class and listed below.

Page 77

6.6. QP Problem Interface

• void obj grad c lp(double* vals)

– sets the values of gradient sub-vector to the double array vals.
The sub-vector is evaluated according to the objective function
part declared in this expanded model node. The dimension of
vals is needed to agree with the number of variables declared at
this expanded model tree node.

6.6 QP Problem Interface

In a QP problem, the general two level formulation given in (6.2) can be simplified
to (6.4), where c

j
i ∈ R

pi×qj and fj ∈ R
qj . pi is the number of constraints in sub-

problem i, for i ∈ {1, · · · , n}. p0 is the number of constraints in master problem.
qj is the number of variables in sub-problem j, for j ∈ {1, · · · , n}. q0 is the
number of variables in master problem. gi represents a quadratic function, for
i ∈ {0, · · · , n}.

Comparing to the LP problem, the QP problem formulation has additional
quadratic terms in the objective function part modelled at each expanded model
tree node. These quadratic terms are the cross products of the variables declared
at this expanded model tree node with respect to the variables declared at itself
or its ancestor nodes. In the two-level general QP problem formulation, there is
one additional quadratic term gi(xi, x0) in the objective function part for each
sub-problem i, ∀i ∈ {1, ...n}. g0(x0) is the quadratic term that is modelled in
master problem. The corresponding tree representation is given in Figure 6.6.

min f1x1 +f2x2 + · · · +fnxn + f0x0+ (6.4a)

g1(x1, x0) +g2(x2, x0) + · · · +gn(xn, x0) + g0(x0) (6.4b)

s.t. c11x1 + c01x0 ≤ 0 (6.4c)

c22x2 + c02x0 ≤ 0 (6.4d)

. . .
... (6.4e)

cnnxn + c0nx0 ≤ 0 (6.4f)

c10x1 +c20x2 + · · · +cn0xn + c00x0 ≤ 0 (6.4g)

Because LP and QP problems have the exactly same formulation for their con-
straint formulation, the interface methods for evaluating Jacobian matrix blocks
and constraint function values are the same. Thus, the discussion of the corre-
sponding interface methods in LP problem can be applied to QP problem.

In the rest of this section, we discuss the interface methods specifically related
to QP problems.

Page 78

6.6. QP Problem Interface

0

1 2 n

c0 : c
1
0x1 + c20x2 + · · ·+ cn0xn + c00x0

f0x0 + g0(x0)

f1x1 + g1(x1, x0)

c11x1 + c01x0

f2x2 + g2(x2, x0)

c22x2 + c02x0

fnxn + gn(xn, x0)

cnnxn + c0nx0

Figure 6.6: A general two level structured problem.

6.6.1 Hessian Matrix Evaluation

Optimization solvers may request the Hessian matrix to be evaluated for QP prob-
lems. PSMG’s formulation for QP problem also guarantees the objective Hessian
matrix demonstrates a double bordered angular-block structure (or nested struc-
ture for problems with more than two levels).

For example, the objective Hessian matrix structure for the two-level QP
problem formulation in 6.4 presents a double bordered block-angular structure as
illustrated in Figure 6.7. The evaluation expression of each non-zero block is also
annotated in Figure 6.7.

The objective Hessian matrix is constant and does not depend on problem
variable values for QP problems. The dependent node set for invoking the Hessian
matrix evaluation routine is an empty set. Therefore, the local and distributed
interface methods for Hessian matrix evaluation are the same.

∂2g1
∂x2

1

∂2g1
∂x0∂x1

∂2g2
∂x2

2

∂2g2
∂x0∂x0

. . .
...

∂2gn
∂x2

n

∂2gn
∂x0∂xn

∂2g1
∂x0∂x1

∂2g2
∂x0∂x2

· · · ∂2gn
∂x0∂xn

∂2g0
∂x2

0

x1

x2

...

xn

x0

x1 x2 · · · xn x0

Figure 6.7: The objective Hessian matrix structure for a general two level QP problem.

PSMG also offers two interface methods for evaluating a block of the objective
Hessian matrix in QP problem, one for computing the sparsity structure of this
block matrix, and the other one for evaluating the matrix entries. An expanded
model tree node is taken by both methods as an input parameter. Together with
the expanded model tree node represented by this pointer, the two expanded
model tree nodes indicate the block in the Hessian matrix to be evaluated. These
two interface methods are listed below.

Page 79

6.6. QP Problem Interface

• uint nz obj hess qp(ExpandedModel* emcol,

indicator matrix& im)

– returns the number of non-zero entries in a block of the objective
Hessian matrix. This block is identified by taking the second
order derivative of the non-linear constraint declared in this

node with respect to the variables declared in this and emcol

expanded model tree node. This method also fills an indicator
matrix im to demonstrate the sparsity structure of the block
matrix.

• void obj hess qp(ExpandedModel* emcol,

col compress matrix& m)

– evaluates a block of the objective Hessian matrix. This block
is identified by taking the second order derivative of the non-
linear constraint declared in this node with respect to the
variables declared in this and emcol expended model tree
node. The results are filled in the column compress matrix type
col compress matrix.

6.6.2 Objective Function Evaluation

Similar to the LP problem, the objective function for QP problems can be eval-
uated using either local or distributed interface methods.

Local interface

Similar to the local interface method discussed for LP problems, the local inter-
face method for QP problems requires the variable values to be provided for every
expanded model tree node where an objective function part is declared. There-
fore, the discussion of the local interface method from LP problem can also be
applied here. In fact, this interface method has the same method signature as its
counterpart for LP problems.

Distributed interface

The distributed interface allows the objective part declared in an expanded model
tree node to be evaluated separately. The objective function part declared in each
expanded model tree node could include a quadratic term. This quadratic term
could be the cross product with the variables from any of its ancestor nodes (but
not from its descendants), therefore the dependent node set for evaluating the
objective part declared in an expanded model tree node i can be represented as
anc(i)∪{i}. Variable values in this dependent node set need to be provided before
calling the distributed interface method to evaluate the part objective function
declared in the expanded model tree node i. Each objective function part can
be evaluated in parallel. The overall objective function value can be obtained

Page 80

6.6. QP Problem Interface

by a MPI Reduce operation with the corresponding parallel communicator. The
method signature for this distributed interface method is the same as the one for
LP problem.

Let us use the two-level QP problem formulation in (6.4) as an example to
demonstrate the use of the distributed interface method for evaluating the objec-
tive function. The corresponding calling sequence is listed below.

S.1 computes the value of the objective function part in each expanded model
tree node i, ∀i ∈ {0, · · · , n}. i.e. nodei.obj feval dist(vi)

• vi =

{

v0 = f0x0 + g0(x0), if i = 0

vi = fixi + gi(xi, x0), otherwise

S.2 obtains the objective function value of the problem v.

• v =
∑n

i=0 vi

In the above calling sequence, S.1 is the parallel step. Before invoking the
interface method in S.1 on each parallel process, the solver need to provide values
of the variables in the dependent node set, anc(i) ∪ {i}. Communication effort
may be requested if the values are not available locally. The objective function
value is obtained in S.2, where a MPI Reduce operation may be invokded with
the corresponding parallel communicator.

6.6.3 Objective Gradient Evaluation

Similar to the LP problem, PSMG’s solver interface methods evaluate the ob-
jective gradient sub-vector in accordance with variables declared in an expanded
model tree node as well. In QP problems, variables declared in one expanded
model tree node can be used in the objective function part declaration of this
node itself or its decedents, therefore the objective function parts declared in
more than one expanded model tree nodes may be needed to be considered for
evaluating one sub-vector of the objective gradient. In general, the set of ex-
panded model tree nodes to be considered for evaluating an objective gradient
sub-vector identified by variables declared in an expanded model tree node i is
{i} ∪ des(i).

The objective gradient structure for the two level QP problem in formulation
(6.4) is given in Figure 6.8. Evaluation of the objective gradient sub-vector for x0

requires knowledge of all objective function parts declared in the entire expanded
model tree.

∂f1
∂x1

+ ∂g1
∂x1

∂f2
∂x2

+ ∂g2
∂x2

· · · ∂fn
∂xn

+ ∂gn
∂xn

∂f0
∂x0

+
n
∑

i=0

∂gi
∂x0

x1 x2 · · · xn x0

Figure 6.8: The objective gradient for a general two level QP problem.

Page 81

6.6. QP Problem Interface

Local interface

The local interface evaluates an objective gradient sub-vector in a single call.
The dependent node set for evaluating one such sub-vector identified by variables
declared in an expanded model tree node i can be represented as anc(i)∪des(i)∪
{i}. The solver is required to provide values for variables declared in this set
before invoke the interface method. However, the actual expression to evaluate
this sub-vector is created by taking a linear combination of the objective function
parts declared from node set {i} ∪ des(i).

The local interface method for evaluating a gradient sub-vector is listed below.

• void obj grad qp nlp local(double* vals)

– evaluates the objective gradient sub-vector for variable declared
in this expanded model tree node. The result is assigned to the
double array vals whose dimension is equal to the number of
variables in this expanded model tree node.

To illustrate this interface method, let us consider the objective gradient sub-
vector identified by the x0 variable in the two level general QP problem formu-
lation (6.4). The dependent node set is evaluated as anc(0) ∪ des(0) ∪ {0}. The
work involved in using the local interface method for evaluating this sub-vector
is summarized below.

S.1 solver provides variable values for dependent node set, {0, · · · , n} .

S.2 solver invokes the interface method to evaluate this sub-vector v0 (i.e. by
calling node0.obj grad qp nlp local(v0).

In above steps, communication work may be required in S.1 to make the
required variable values locally available to PSMG. In S.2, PSMG creates a tem-
porary expression by taking linear combination of the objective function parts
declared in node set {0} ∪ des(0). Then, the sub-vector of the objective gradi-
ent is evaluated by taking the partial derivative respect to x0 on this temporary
expression (i.e.

∑n

i=0
∂gi
x0

+ f0x0), and the resulting sub-vector is written to v0.
As we can see that evaluation of the objective gradient sub-vector for variables

declared in the root node may require to access values of the entire problem’s
variables using the local interface method.

Distributed interface

Using the local interface method may require accessing the entire problem’s vari-
able values in the worst case. By considering the objective function as a linear
combination of the parts declared in each expanded model tree node, the dis-
tribute interface method can be implemented for objective gradient evaluation.
We can derive the following steps of using the distributed interface method to
evaluate an objective gradient sub-vector for variables declared in an expanded
model tree node i.

Page 82

6.7. NLP Problem Interface

S.1 evaluating the gradient vector vj of the part of objective function declared
in node j, ∀j ∈ des(i) ∪ {i}.

S.2 obtain the gradient sub-vector v =
∑

j vj.

S.1 is the parallel step, where each vj can be evaluate using the distributed
interface method one parallel processes. The dependent node set for evaluating
each vj is anc(j)∪{j}, which is less than the dependent node set required by the
local interface method on one processor. S.2 is the communication step, where
the sub-vector of the objective gradient is obtained by a MPI Reduce or AllReduce
operation with the corresponding parallel communicator.

Therefore, the distributed interface method maximizes the parallelism and
reduces amount of memory used for storing variable values on one processor.
This distributed interface is listed below.

• void obj grad qp nlp dist(ExpandedModel* decol,double*

vals)

– evaluates a separable part of the objective gradient sub-vector for
variable declared at this expanded model tree node. The result
is assigned to the double array vals whose dimension is equal to
the number of variables in this expanded model tree node. The
separable part is indicated by decol node.

For example, evaluating the objective gradient sub-vector for variable declared
at the master problem (i.e. x0) in the two level QP problem in formulation (6.4)
can be achieved by the following steps of using distributed interface method.

S.1 computes each separable part vi, ∀i ∈ {0, · · · , n}
nodei.obj grad nlp dist(0,vi)

• vi =

{

f0 if i = 0
∂gi
∂x0

otherwise

S.2 obtain the sub-vector v.

• v =
n
∑

i=0

vi

In above example, S.1 can be performed in parallel. Before invoking the
interface method in S.1 on each parallel process, communication effort may be
required for the solver to provide values of the variables in the dependent node set,
anc(i) ∪ {i}. The sub-vector is obtained in S.2, where a MPI Reduce operation
may be invoked with the corresponding parallel communicator.

6.7 NLP Problem Interface

The interface methods for function and derivative evaluations are more compli-
cated for NLP problems. Without loss of generality, we use the general two-level

Page 83

6.7. NLP Problem Interface

problem formulation in (6.2) to demonstrate the interface methods for NLP prob-
lem. The tree structure of this problem can be viewed in Figure 6.1. We also
assume each of the functions fi, ci, and ci0 are nonlinear functions, ∀i ∈ {0, · · · , n}.

6.7.1 Jacobian Matrix Evaluation

The Jacobian matrix of a NLP problem modelled using PSMG also demonstrates
a double bordered block-angular structure. The structure can be nested for prob-
lems with more than two levels. The Jacobian matrix structure for the two-level
NLP problem in formulation (6.2) is given in Figure 6.9, where each of the non-
zero blocks is annotated with the corresponding evaluation expression. Similar
to LP problems, each block in the Jacobian matrix can also be identified by a
pair (row-node, col-node).

∂c1
1

∂x1

∂c1
1

∂x0

+
∂c0

1

∂x0

∂c2
2

∂x2

∂c2
2

∂x0

+
∂c0

2

∂x0

. . .
...

∂cnn
∂xn

∂cn
∂x0

+ ∂c0n
∂x0

∂c1
0

∂x1

∂c2
0

∂x2

· · · ∂cn
0

∂xn

n
∑

i=0

∂ci
0

∂x0

c1

c2

...

cn

c0

x1 x2 · · · xn x0

Figure 6.9: Structure of Jacobian matrix for a general two level NLP problem.

To ease our discussion, we should define a level function as below.

• level – takes an expanded model tree node as input and returns its level in
the tree, where the level of root node is 0.

In order to evaluate a non-zero block in the Jacobian matrix identified by pair
(row-node,col-node), PSMG may need to access the variable values of the depen-
dent nodes. There are two cases to be considered to decide a set of dependent
nodes.

Case 1: level(row-node)=level(col-node)

When the pair (row-node,col-node) indicates a non-zero block in the Jacobian
matrix, the condition of this case also implies row-node and col-node are the same
node in the expanded model tree, since sibling nodes can not be on the same tree
branch. The pair (row-node,col-node) indicates a diagonal block in the Jacobian
matrix. For example, pairs (0,0), (1,1), (2,2), · · · , (n,n) indicate the diagonal
blocks in the Jacobian matrix of the two-level NLP problem in Figure 6.1.

Page 84

6.7. NLP Problem Interface

Because constraints declared in node i can reference the variables in i or i’s
ancestor and descendant nodes, in order to evaluate the diagonal Jacobian block
identified by pair (i, i), the variable values from node set anc(i)∪des(i)∪{i} may
be accessed.

For example, to evaluate the bottom right corner block indicated by the pair
(0,0) in Figure 6.9, the values of variables declared in the node set {0, 1, · · · , n}
may be accessed.

Case 2: level(row-node) 6=level(col-node)

In this case, the pair (row-node,col-node) identifies either a block in the bottom
border of the Jacobian matrix (if level(row-node)<level(col-node)) or a block in
the right-hand side border of the Jacobian matirx (if level(row-node)>level(col-
node)). This case implies that one of the row-node or col-node is the ancestor
node of the other one. For example, pairs (0,1), (0,2), · · · , (0,n) identify the
bottom border blocks in the Jacobian matrix of the two-level NLP problem in
Figure 6.1, and (1,0), (2,0), · · · , (n,0) identify the right-hand side border blocks
in the Jacobian matrix.

Let i be the node row-node or col-node which has the greater level number.
The variables declared in node set anc(i) ∪ des(i) ∪ {i} should be considered for
evaluating a Jacobian block in this case. For example, to evaluate the bottom
block in the Jacobian matrix identified by the pair (0, 1), the dependent node set
is evaluated to {0, 1}.

We can now discuss the local and distributed interface methods for Jacobian
matrix evaluation of the NLP problems.

Local interface

The local interface methods allow each Jacobian matrix block to be evaluated
with a single call. Therefore, it requires the solver to provide the variable values
from the dependent node set before invoking the local interface method.

To use the local interface method for evaluating the Jacobian block identified
by pair (i, j), where i, j ∈ T , and T is the set of nodes in the expanded model
tree, the dependent node set should be represented as anc(k)∪des(k)∪{k}, where

k =

{

i if level(i) ≥ level(j)

j otherwise

The worst case could happen when evaluating the bottom right corner block
in the Jacobian matrix. In this case, the dependent node set may include every
node in the expanded model tree.

For example, to evaluate the bottom right block (identified by pair (0, 0)), the
dependent node set is evaluated as anc(0) ∪ des(0) ∪ {0} = {0, 1, · · · , n}. Thus,
the entire problem’s variable values could be needed. Therefore depending on
the parallel allocation strategy, a solver may need to communicate those variable
values and provide the values to PSMG. PSMG also needs to allocate memory

Page 85

6.7. NLP Problem Interface

to store those values. Then the solver can invoke the local interface methods for
evaluating the block of the Jacobian matrix.

There are three interface methods declared for evaluating the Jacobian ma-
trix block, two for computing the sparsity structure of this block, the other for
evaluating this block matrix. These interface methods for evaluating the block of
the Jacobian matrix are listed below.

• uint nz cons jacobs nlp local(ExpandedModel* emcol)

– returns the number of non-zero elements in the block matrix of
the Jacobian matrix identified by pair (this,emcol).

• uint nz cons jacobs nlp local(ExpandedModel* emcol,

indicate matrix& im)

– same as the method above. In addition, this method also fills an
indicator matrix im to demonstrate the sparsity structure of the
block matrix.

• void cons jacobs nlp local(ExpandedModel* emcol,

col compress matrix& m)

– evaluates the the Jacobian matrix block identified by pair (this,
emcol). The results are filled into the column compress matrix
type col compress matrix.

Distributed interface

Using the local interface methods may require values of the entire problem’s vari-
ables to be available on one processor for evaluating a block in the Jacobian
matrix in the worst case. However, by taking consideration of the separability
structure within each block in the Jacobian matrix, we can design the distributed
interface methods for evaluating each separable part in the block. The number of
dependent nodes for each calling of the distributed interface method is less than
the number of dependent nodes required for invoking the local interface method.
Moreover, each separable part can also be evaluated in parallel. The distributed
interface methods are listed below.

Page 86

6.7. NLP Problem Interface

• nz cons jac nlp dist(ExpandedModel* emcol, ExpandedModel*

decol, indicator matrix& im)

– returns the number of non-zero element in the separable part
within a block in the Jacobian matrix identified by pair (this,
emcol). The separable part is identified by decol. decol is
one of the node in set anc(i) ∪ des(i) ∪ {i}, where i = this

if level(this) ≥ level(emcol) ,or i = emcol otherwise. The
method also sets the sparsity structure to the indicator matrix
im for the separable part.

• cons jac nlp dist(ExpandedModel* emcol, ExpandedModel*

decol, col compress matrix& m)

– computes one of the separable parts within a block in the Jaco-
bian matrix block identified by pair (this, emcol). The sep-
arable part is identified by decol. decol is one of the node
in set anc(i) ∪ des(i) ∪ {i}, where i = this if level(this) ≥
level(emcol), or i = emcol otherwise.

We should now demonstrate using of the distributed interface methods for
evaluating the Jacobian matrix block identified by pair (i, j), where i, j ∈ T , and
T is the node set of the expanded model tree.

Let

k =

{

i if level(i) ≥ level(j)

j otherwise

Then, the following steps can be applied for evaluating the Jacobian matrix
block (i, j)

S.1 evaluating the separable part of this block mp,
∀p ∈ anc(k) ∪ des(k) ∪ {k}
i.e. by invoking nodei.cons jac nlp dist(j,p,mp)

S.2 obtaining this block matrix m

m =
∑

p mp

S.1 is the parallel step, where each mp can be evaluated in parallel using the
distributed interface. The dependent node set for invoking each interface method
to evaluate mp is anc(k) ∪ anc(p) ∪ {k}. This set can be further simplified to
anc(p) ∪ {p} if level(p) ≥ level(k), or anc(k) ∪ {k} otherwise. Depending on
the solver’s parallel allocation scheme, inter-process communication work may be
required to make the values of the variables in the dependent node set available
locally before the interface method is invoked to evaluate each separable part
on a process. S.2 is the communication step, where the Jacobian block is ob-
tained by a MPI Reduce or AllReduce operation with the corresponding parallel
communicator.

The dependent nodes set for evaluating each mp using the distributed interface
is less than the dependent node set for evaluating m directly using the local

Page 87

6.7. NLP Problem Interface

interface method. Therefore, using the distributed interface for evaluating blocks
of the Jacobian matrix could maximize the parallelism and also reduce the amount
of memory needed for storing variable values on one processor.

For example, let us considering the right bottom block identified by the
pair (0, 0) in the Jacobian matrix of the two level NLP problem in Figure 6.9.
The block can be evaluated by following sequence using the distributed interface
method.

S.1 computing each separable part of the matrix block, mp for all p ∈ {0, · · ·n}
node0.cons jac nlp dist(0,p, mp)

• mp =
∂c

p
0

∂x0

, for all p ∈ {0, · · ·n}.

S.2 obtaining the matrix block m =
n
∑

p=0

mp.

It is worth noting that S.1 is the parallel step. Before calling the interface
method in S.1 to evaluate mp on each parallel process, values of variables from
node set {0, p}, ∀p ∈ {0, · · · , n} should be available locally.

For computing the sparsity structure of the block identified by the pair (0, 0),
let us define the binary operator || for the indicator matrix using the component-
wised logical or operator (e.g. 0||1 = 1). The nnz can be obtained by counting
the number of non-zero elements the indicator matrix. This sparsity pattern can
be evaluated by the following sequence using the distributed interface method.

S.1 computing the indicate matrix, mp for all p ∈ {0, · · ·n}
node0.nz cons jac nlp dist(0,p, imp)

• imp indicates the sparsity structure of
∂c

p
0

∂x0

, for all p ∈ {0, · · ·n}.

S.2 obtaining the sparsity structure of the matrix block im = im0||im1...||imn.
The non-zero number nz = nnz(im).

In above steps, S.1 is the parallel step, and S.2 is achieved by a MPI Reduce
or AllReduce operation with the corresponding parallel communicator. It is worth
noting that variable values are not required for evaluating the sparsity pattern of
a block.

6.7.2 Hessian of the Lagrangian Matrix Evaluation

Most optimization solvers for solving NLP problems require the Hessian of the
Lagrangian matrix to be evaluated. The Hessian of the Lagrangian matrix also
demonstrates a double bordered angular-block structure for the NLP problem
modelled in PSMG. The structure can be nested for problems with more than
two levels. For the NLP problem in formulation (6.2), the Lagrangian L is given
below.

Page 88

6.7. NLP Problem Interface

L(x, y) =f0(x0) +
n

∑

i=1

fi(xi, x0) +
n

∑

i=1

yic
i
i(x0, xi) +

n
∑

i=1

yic
0
i (x0)

+ y0

n
∑

i=1

c0(x0, xi) + y0c
0
0(x0)

(6.5)

where yi represents the Lagrangian multipliers for constraints declared at node i.
The Hessian of the Lagrangian matrix structure for this two level NLP problem
is presented in Figure 6.10. It demonstrates a double bordered angular-block
structure, where each of the non-zero block is annotated with the corresponding
evaluation expression.

We should now redefine the row-node and col-node in the following to represent
a block in the Hessian of the Lagrangian matrix.

• row-node – an expanded model tree node indicating the rows in a block of
the Hessian of the Lagrangian matrix.

• col-node – an expanded model tree node indicating the columns in a block
of the Hessian of the Lagrangian matrix.

Therefore each pair (row-node,col-node) uniquely identifies a block in the Hes-
sian of the Lagrangian matrix. Because of the symmetry of the Hessian matrix,
the block matrix identified by the pair (row-node, col-node) is equal to the trans-
pose of the block matrix identified by pair (col-node, row-node) . We can also
observe that the pair (row-node, col-node) identify a non-zero block if and only if
row-node and col-node on the same branch of the expanded model tree. Therefore,
using the expanded model tree structure, we can easily work out the structure of
the Hessian of the Lagrangian matrix and focus on the evaluation of the non-zero
blocks.

Depending on the relative levels of row-node and col-node, there are three
cases to be considered.

Case 1: level(row-node)=level(col-node)
The non-zero blocks identified by the pairs (row-node,col-node) are the diagonal
blocks in the Hessian of the Lagrangian matrix. row-node and col-node represent
the same node in the expanded model tree. The variables declared in row-node
(or col-node) can be used in the constraint declaration of a node from the set
anc(row-node) ∪ des(row-node) ∪ {row-node}. The nonlinear terms for variables
in row-node node could be presented in the constraint declarations of a node from
this set.

Case 2: level(row-node)<level(col-node)
The non-zero blocks identified by these pairs are the bottom border in the Hessian
of the Lagrangian matrix. The nonlinear terms respect to variables in row-node

Page 89

6.7. NLP Problem Interface

y
1
∂
2
c1 1

∂
x
2 1

+

y
0
∂
2
c1 0

∂
x
2 1

+
∂
2
f
2 1

∂
x
2 1

y
1

∂
2
c1 1

∂
x
1
∂
x
0

+
y
0

∂
2
c1 0

∂
x
1
∂
x
0

+
∂
2
f
1

∂
x
1
∂
x
0

y
2
∂
2
c2 2

∂
x
2 2

+

y
0
∂
2
c2 0

∂
x
2 2

+
∂
2
f
2 2

∂
x
2 2

y
2

∂
2
c0 2

∂
x
2
∂
x
0

+
y
0

∂
2
c2 0

∂
x
2
∂
x
0

+
∂
2
f
2

∂
x
2
∂
x
0

. .
.

. . .

y
n
∂
2
cn n

∂
x
2 n
+

y
0
∂
2
cn 0

∂
x
2 n
+

∂
2
f
n

∂
x
2 n

y
n

∂
2
c0 n

∂
x
n
∂
x
0

+
y
0

∂
2
cn 0

∂
x
n
∂
x
0

+
∂
2
f
n

∂
x
n
∂
x
0

y
1

∂
2
c1 1

∂
x
1
∂
x
0

+

y
0

∂
2
c1 0

∂
x
1
∂
x
0

+
∂
2
f
1

∂
x
1
∂
x
0

y
2

∂
2
c2 2

∂
x
2
∂
x
0

+

y
0

∂
2
c2 0

∂
x
2
∂
x
0

+
∂
2
f
2

∂
x
2
∂
x
0

··
·

y
n

∂
2
cn n

∂
x
n
∂
x
0

+

y
0

∂
2
cn 0

∂
x
n
∂
x
0

+
∂
2
f
n

∂
x
n
∂
x
0

y
0

n
∑ i=

0

∂
2
ci 0

∂
x
2 0

+
n
∑ i=

1

y
i(

∂
2
ci i

∂
x
2 0

+

∂
2
c0 i

∂
x
2 0

)
+

n
∑ i=

0

∂
2
f
i

∂
x
2 0

x
1

x
2 . . .

x
n

x
0

x
1

x
2

··
·

x
n

x
0

F
ig
u
re

6.
10
:
S
tr
u
ct
u
re

o
f
H
es
si
an

of
th
e
L
ag

ra
n
gi
an

m
at
ri
x
fo
r
a
ge
n
er
al

tw
o
le
ve
l
N
L
P

p
ro
b
le
m
.

Page 90

6.7. NLP Problem Interface

and col-node could present in the constraint declaration of a node from the set
anc(col-node) ∪ des(col-node) ∪ {col-node}.

Case 3: level(row-node)>level(col-node)
The non-zero blocks identified by these pairs are the right hand side border in
the Hessian of the Lagrangian matrix. The nonlinear terms respect to variables
in row-node and col-node could be presented in the constraint declaration of a
node from the set anc(row-node) ∪ des(row-node) ∪ {row-node}. Because of
symmetry in the Hessian matrix, we can interchange row-node and col-node, and
then evaluate the transpose of the block matrix as per our discussion in case 2.

Furthermore, we can condense above three cases. Let us consider a block in
the Hessian of Lagrangian matrix identified by a pair (i, j), where i, j ∈ T , and
T is the node set of the expanded model tree.

Let

k =

{

i if level(i) ≥ level(j)

j otherwise

Then, the nonlinear terms respect to variables from node i and node j could be
presented in the constraint declaration of a node from the set anc(k)∪des(k)∪{k}.

Local interface

The local interface method evaluates a block in the Hessian of the Lagrangian
matrix in a single call. The values of the primal and dual variables declaration
in the dependent node set should be made available locally before invoking the
interface method. The primal and dual variable values can be provide to PSMG
using interface methods update primal x and update dual y respectively on
each of the expanded model tree node.

There are two local interface methods declared for evaluating a block in the
Hessian of the Lagrangian matrix, one for computing the sparsity structure of this
block, the other one for evaluating the block matrix. These interface methods
are listed below.

Page 91

6.7. NLP Problem Interface

• uint nz lag hess nlp local(ExpandedModel* emcol,

indicator matrix& im)

– computes the sparsity structure of the block in the Hessian of
the Lagrangian matrix. The block is identified by the pair (this,
emcol) of expanded model tree nodes. The sparsity structure is
presented by the indicator matrix im. This method also returns
the number of nonzero elements in this block.

• void lag hess nlp local(ExpandedModel* emcol,

col compress matrix& m)

– computes the matrix block in the Hessian of the Lagrangian ma-
trix. The block is identified by the pair (this, emcol) of ex-
panded model tree nodes. The block matrix is filled into the
column compressed matrix m.

It is worth mentioning that the sparsity structure evaluation of a block does
not require the problem variable values.

Assuming the local interface method is called for evaluating a block in the
Hessian of the Lagrangian matrix identified by a pair (i, j), the cross-product
terms that contributed in this block are from the constraint declarations of the
node from node set anc(k) ∪ des(k) ∪ {k}, where k is defined above. PSMG
constructs a temporary expression by taking the linear combination of those cross-
product terms and evaluate the entries in this block matrix. The dependent node
set for evaluation this temporary expression is also anc(k) ∪ des(k) ∪ {k}. The
values of the primal and dual variables declared in the node from this dependent
node set should be provided to PSMG before invoking the local interface method.

For example, to evaluate bottom right corner block identified by the pair
(0, 0) in Figure 6.10, the dependent node set is evaluate as anc(0) ∪ des(0) ∪
{0} = {0, 1, · · · , n}, the full node set of the expanded model tree (in Figure
6.1). After providing the primal and dual variable values declared in the node of
the dependent node set, solver can obtain the required matrix block by calling
node0.lag hess nlp local(0,m). The result is filled in the sparse matrix object
m.

In the worst case (i.e. bottom right corner block), using the local interface to
evaluate a block in the Hessian of the Lagrangian matrix may require values of
all the problem’s primal and dual variables to be available locally. It could cause
a heavy communication and memory cost.

Distribute interface

By considering the additively separable structure within the block, the distributed
interface methods can be designed for evaluating each separable part in the block.
Then, each of the separable part can be evaluated on parallel processes, and the
number of dependent nodes for evaluating each separable part is less than the
number of dependent nodes for evaluating the full block using local interface

Page 92

6.7. NLP Problem Interface

method. Therefore, the memory used for storing the variable values is also re-
duced compare to the memory usage for local interface method.

There are two distributed interface methods declared for evaluating an addi-
tively separable part of the block in the Hessian of the Lagrangian matrix, one for
computing the sparsity structure of this block, and the other one for evaluating
the block matrix.

• void nz lag hess nlp dist(ExpandedModel* emcol,

ExpandedModel* decol, indicator matrix& im)

– computes the sparsity structure for the separable part in the
block in the Hessian of the Lagrangian matrix. The block is
identified by pair (this,emcol). The separable part is further in-
dicated by decol. The sparsity pattern will be returned in an
indicator matrix im.

• void lag hess nlp dist(ExpandedModel* emcol,

ExpandedModel* decol, col compress matrix& m)

– computes a separable part of the block in the Hessian of the
Lagrangian matrix. The block is identified by pair (this,emcol).
The separable part is further indicated by decol. The result will
be filled into the column compressed matrix m.

We should now demonstrate how to use the distributed interface to evaluate
a block in the Hessian of the Lagrangian matrix identified by pair (i, j). The
nonlinear terms that contribute in this block are from the constraint declarations
of the node from node set anc(k)∪des(k)∪{k}, where k is defined above. Instead
of building a temporary expression from the nonlinear terms using the node set
and evaluating the block locally, the distributed methods evaluate these additively
separable terms on parallel processes. The work involved in evaluating the block
identified by pair (i, j) is summarized below.

S.1 evaluating the separable part of this block mp

∀p ∈ anc(k) ∪ des(k) ∪ {k}
i.e. by invoking nodei.lag hess nlp dist(j,p,mp)

S.2 obtaining this block matrix m

m =
∑

p mp

S.1 is the parallel step, where each mp can be evaluated in paralle using dis-
tributed interface. The dependent node set for invoking each interface method
to evaluate mp is anc(k) ∪ anc(p) ∪ {k}. Similar to the discussion in the Jaco-
bian matrix evaluation for the NLP problem, the set can be further simplified to
anc(p) ∪ p or anc(k) ∪ {k}. Inter-process communication work may be required
to make values of the primal and dual variables in the dependent node set avail-
able locally before the interface method is invoked on one process. S.2 is the
communication step, where each of the evaluated separable parts are summed to-
gether by a MPI Reduce or AllReduce operation with the corresponding parallel
communicator.

Page 93

6.7. NLP Problem Interface

Similar to the argument in the Jacobian matrix evaluation for the NLP prob-
lem, the distributed interface method for evaluation Hessian of the Lagrangian
matrix could maximize the parallelism and also reduce the amount of memory
needed for storing variable values on one processor.

To further demonstrate the distributed interface methods, let us consider the
right bottom corner block identified by the pair (0, 0) in the Hessian of the La-
grangian matrix of the two level NLP problem in Figure 6.10. The block can be
evaluated by the following sequence using distributed interface method.

S.1 computing each separable part in the matrix block, mi, ∀i ∈ {0, · · · , n}.
node0.lag hess nlp dist(0,i,mi)

• mi =

{

y0
∂2c0

0

∂x2

0

+ ∂2f0
∂x2

0

, if i = 0

y0
∂2ci

0

∂x2

0

+ yi(
∂2cii
∂x2

0

+
∂2c0i
∂x2

0

) + ∂2fi
∂x2

0

, otherwise

S.2 obtaining the matrix block m =
n
∑

i=0

mi.

In S.1, each mi can be evaluated in parallel given the values of primal and
dual variables from node set {0, i} is available locally before each calling of
lag hess nlp dist method, ∀i ∈ {0, · · · , n}. S.2 is the communication step,
where a MPI Reduce or AllReduce operation is involved to obtain the matrix
block.

To demonstrate the sparsity pattern evaluation of the bottom right corner
block identified by the pair (0, 0), the following calling sequence can be applied
for using distributed interface methods. It is worth mentioning that the variable
values are not required to evaluate the sparsity pattern.

S.1 computing the indicator matrix, imi for all i ∈ {0, · · · , n}
node0.nz hess nlp dist(0,i,imi)

• imi indicates the sparsity structure of y0
∂2c0

0

∂x2

0

+ ∂2f0
∂x2

0

, if i = 0,

• otherwise imi indicates the sparsity structure of y0
∂2ci

0

∂x2

0

+yi(
∂2cii
∂x2

0

+
∂2c0i
∂x2

0

)+
∂2fi
∂x2

0

.

S.2 computing im = im0||im1 · · · ||imn.
The non-zero number nz = nnz(im).

6.7.3 Constraint Function Evaluation

PSMG can also evaluate the constraint function of an NLP problem using either
the distributed or local interface method.

Page 94

6.7. NLP Problem Interface

Local interface

Because the constraint declared in an expanded model tree node i can reference
variables from i itself and its ancestor or descendant nodes, the dependent node
set for evaluating the constraint functions in node i using local interface method
is anc(i) ∪ des(i) ∪ {i}. Therefore, in the worst case the whole problem variable
values are needed for constraint function evaluation (e.g. when i is the root node
of the expanded model tree).

The method has the same signature as described in LP problem section. Pos-
sible communication work may be needed to make values of the variables from
the dependent node set available locally before invoking the interface method for
constraint function evaluation.

Distributed interface

Considering the additively separable structure in the constraint function, we can
design the distributed interface method for evaluating the constraint function.

The method has the same signature as described in LP problem section. We
can derive the following steps for using the distributed interface method to eval-
uate constraint function declared in an expanded model tree node i.

S.1 compute the separable part vj,
∀j ∈ anc(i) ∪ des(i) ∪ {i}

S.2 obtain the constraint function value v

v =
∑

j

vj

S.1 is the parallel step, where each of the separable part vj, ∀j ∈ anc(i) ∪
des(i) ∪ {i} can be evaluated on separate process. The dependent node set for
computing each vj is anc(i) ∪ anc(j) ∪ {i}. The set can be further simplified to
anc(i) ∪ {i} if level(i) ≥ level(j), anc(j) ∪ {j} otherwise. Values of variables for
the dependent node set should be provided before invoking the interface method
for evaluating each separable part in the constraint function. Then a MPI Reduce
or AllReduce operation is performed on the corresponding parallel communicator
to obtain the constraint function values. The dependent node set for calling dis-
tributed interface method is less than the node set used in local interface method.
The distributed interface method again maximizes the parallelism and reduce
amount of memory used for storing variable values on one processor.

For example, evaluating the constraint functions in the master problem (at
node 0) of the two level NLP problem in formulation (6.2) can be achieved by
the following steps using distributed interface method.

S.1 compute each separable part vi , ∀i ∈ {0, · · · , n}
node0.cons feval dist(i,vi)

• vi =

{

c00(x0) if i = 0

ci0(x0, xi) otherwise

Page 95

6.7. NLP Problem Interface

S.2 obtain the constraint function value v =
n
∑

i=0

vi

S.1 is the parallel step to evaluate each vi. Communication work may be
incurred for making variable values available locally before invoking the interface
method. The resulting constraint value v is obtained in S.2, where a MPI Re-
duce or AllReduce operation may be performed with the corresponding parallel
communicator.

6.7.4 Objective Function Evaluation

Similar to the LP and QP problem, the objective function for the NLP problem
can also be evaluated using either distributed or local interface method.

Local interface

Similar to the discussion for LP and QP problems, the local interface method
for the NLP problem requires variable values to be provided for every expanded
model tree nodes where an objective function part is declared. Therefore, the
discussion of the local interface method from the LP and QP problem also applies
here. The local interface method for objective function evaluation of the NLP
problem has the same signature as the one declared for the LP and QP problems.
The dependent node set contains all the expanded model tree node that has an
objective function part declaration.

Distributed interface

The distributed interface method evaluates the objective function part declared
in an expanded model tree node. Since the objective function part declared in an
expanded model tree node can use variables from this node itself and its ancestors,
the dependent node set for evaluating the objective function part declared in an
expanded model tree node i can be represented as anc(i) ∪ {i}.

The distributed interface method for objective function evaluation of the NLP
problem also has the same signature as the one declared for the LP and QP
problems.

The following calling sequence can be applied for using the distributed method
interface to evaluate the objective function for an NLP problem.

S.1 computing each objective function part oi, ∀i ∈ T , where T is the node set
of an expanded model tree.
i.e. by calling nodei.cons feval dist(oi)

S.2 obtaining the objective function value o =
∑

i∈T

oi

S.1 is the parallel step, where the dependent node set for evaluating each oi
is anc(i) ∪ {i}. Values of variables from this node set should be provided before
each calling of the interface method to evaluate oi. Then, a MPI Reduce or
AllReduce operation is performed with the corresponding parallel communicator

Page 96

6.8. Summary

for obtaining the overall objective function value v in S.2. Again, the distributed
interface method for objective function evaluation maximizes the parallelism and
reduce the amount of memory for storing variable values on one processor.

For example, to evaluate the objective function value of the two level NLP
problem in formulation (6.2) can be achieved by the following steps of using
distributed interface method.

S.1 computes each objective function part oi, ∀i ∈ {0, · · · , n}
nodei.obj fval nlp dist(oi)

• oi =

{

f0(x0) if i = 0

fi(x0, xi) otherwise

S.2 obtains the objective function value, o =
n
∑

i=0

oi

The dependent node set in S.1 for evaluating oi is {0} for i = 0, {0, i} other-
wise.

6.7.5 Objective Gradient Evaluation

Similar to the QP problem, the objective gradient for the NLP problem is also
evaluated by the sub-vectors in accordance with variables declared in an expanded
model tree node using either local or distributed interface method. In fact, the
method signatures for objective gradient evaluation of the NLP problem are the
same as their counterparts for the QP problem. Therefore, the discussion from the
objective function evaluation section for the QP problem can be easily generalised
for handling the NLP problem.

6.8 Summary

PSMG can be used to model three type of problems (i.e. LP, QP and NLP
problem). In this chapter, we have discussed the PSMG’s solver interface for
retrieving the problem structure and evaluating a list of entities from the problem
model. Those entities to be evaluated using PSMG’s interface methods could
be constraint function values, objective function values, blocks in the Jacobian
matrix, blocks in the Hessian of the Langrangian matrix, blocks in the objective
Hessian matrix and objective gradient sub-vectors depending on the problem
type.

The interface methods for structure retrieval are the same for the three type of
problems, whereas the interface methods for evaluating those entities mentioned
above could be different according to the problem type. Because of the similarity
in the LP and QP problem formulation, they share most of the interface methods.
However, the NLP problem formulation is the most general case handled by
PSMG.

Page 97

6.8. Summary

PSMG also offers two types of interfaces for evaluating the entities mentioned
above, namely the local and distributed interfaces. We have discussed them sep-
arately for three problem types. The local interface allows the required entity
to be evaluated in a single call to the corresponding interface method. How-
ever, we demonstrate that the local interface methods may have a significant cost
for inter-process communication and memory usage in the worst case scenario.
On the other hand the distributed interface considers the additively separable
structure in the entity to be evaluated. The distributed interface allows each sep-
arable part in each entity to be evaluated separately in parallel. Therefore, it
reduces the amount of memory usage and inter-process communication needed
for problem variable values. The distributed interface can maximize parallelism
for evaluating each entity according to different problem types. However, if using
the distributed interface method, a corresponding parallel communicator should
be created to perform a MPI Reduce or AllReduce operation to sum over the val-
ues returned on each parallel processor. This could introduce more linkage work
between PSMG and the parallel solver.

Page 98

Chapter 7

Linking With Parallel Solvers

Different parallel solver algorithms may employ different parallel allocation strate-
gies by considering the load balancing and the inter-process communication cost.
Because of the solver driven work assignment approach taken in PSMG’s solver
interface design, it is quite convenient to link PSMG with different parallel solver
algorithms. In this chapter, we discuss the work involved in linking PSMG’s
solver interface with two types of parallel solver algorithms that were presented
in Chapter 3.

7.1 Structure Exploiting Interior Point Method

The solvers that implements the structure exploiting interior point method usu-
ally builds the augmented system matrix internally using the structure from A

and Q matrices, where A represents the Jacobian matrix of constraints, and Q

represents the Hessian of the objective function (for QP problems) or the La-
grangian (for NLP problems) (see Section 3.1.2).

Therefore, PSMG is responsible for passing the structure information of A
and Q matrices to the solver. The expanded model tree built after the structure
building stage in PSMG can fulfil this requirement, as each block from the A and
Q matrices can always be identified by the intersection of two expanded model
tree nodes (as illustrated in Chapter 6).

7.1.1 Building Matrix Structure

To explain the algorithm for building the matrix structure from the expanded
model tree, we should introduce the following data type abstractions in an Object-
Oriented programming context as illustrated in Figure 7.1. These data type
abstractions are enough for us to describe algorithm for building a nested dou-
ble bordered block-angular matrix using the expanded model tree from PSMG.
Without loss of generality, we assume both A and Q are both double bordered
block-angular matrices. Data abstractions for other matrix structures can be
easily added as a sub-type of the Matrix interface.

• Matrix

99

7.1. Structure Exploiting Interior Point Method

– the matrix interface.

• MatrixSparse

– represents a simple matrix block whose value can be retrieved using
PSMG’s solver interface methods. This matrix block is always created
by two expanded model tree nodes, where one node represents the row
and the other represents the column in its containing matrix.

• DbBordDiagMatrix

– represents a double bordered block-angular matrix (possibly nested).

• DenseMatrix

– represents a bottom or right-hand-side border matrix block.

Matrix

MatrixSparse DenseMatrix DbBordDiagMatrix

Figure 7.1: A potential matrix data type hierarchy diagram adopted by solver imple-
mentation.

For each of the data types above (except the Matrix interface), we should also
define their corresponding constructors as following.

• MatrixSparse(ExpandedModel row,ExpandedModel col)

– Creates a matrix block using two expanded model tree nodes. The
dimension of this matrix block is obtained by row.numLocalCons ×
col.numLocalVars if it is a sub-block of the constraints Jacobian ma-
trix. If this matrix is a sub-block of the Hessian (of the objective func-
tion or Lagrangian), the dimension is obtained by row.numLocalVars

× col.numLocalVars.

• DbBordDiagMatrix(int nchild,Matrix* D,Matrix* B,Matrix* R)

– Creates a double bordered block-angular matrix, where D, B and R are
arrays of Matrix pointers for the diagonal blocks, the bottom bor-
der blocks, and the right-hand-side blocks respectively. nchild is the
size of the B and R arrays. The dimension for the D array is equal to
nchild+1, because the right bottom corner block is also store in the D
array. This matrix can have nested structure when the Matrix pointer
in D is a DbBordDiagMatrix type. In this case, the pointers from cor-
responding index of the B and R Matrix arrays should be DenseMatrix
type.

• DenseMatrix(int nblocks,Matrix* B)

– Creates a complex matrix block of the bottom or right-hand-side bor-
der. Each Matrix pointers in the B array represents a sub-block of this

Page 100

7.1. Structure Exploiting Interior Point Method

complex border matrix. It is used to represent the border blocks of
matrices with nested block-angular structure. The dimension of the B
array is equal to nblocks.

The pseudocode for building the nested double bordered block-angular matrix
is given in Algorithm 7.1.1. The main procedure of this algorithm takes the root of
an expanded model tree as the input parameter and returns the double bordered
block-angular matrix constructed. The main procedure in this algorithm also
calls other two procedures for building the bottom and right-hand-side border
matrix blocks correspondingly. It is worth noting that this algorithm and its
sub-procedures are called recursively to build the corresponding matrix structure
for nested structured problem. Moreover, Algorithm 7.1.1 can be applied for
constructing both A and Q matrices.

Figure 7.2 demonstrates the matrix constructed using an expanded model tree
of a general two level structured problem in Figure 6.1. Each nonzero block of
the matrix is indicated by a pair of expanded model tree nodes.

(1, 1)

(2, 2)

. . .

(n, n)

(0, 0)

(1, 0)

(2, 0)

...

(n, 0)

(0, n)· · ·(0, 2)(0, 1)

1 2 n

0

1

2

n

0

Figure 7.2: The double bordered angular-block structure matrix created using an
expanded model tree of a two level problem. Each nonzero block of the matrix is
indicated by a pair of expanded model tree nodes.

Page 101

7.1. Structure Exploiting Interior Point Method

Algorithm 7.1.1: createDbBordDiagM(ExpandedModel node)

main
Matrix M ;
int nchild = node.nchild();
if nchild == 0
then M = new MatrixSparse(node, node);

else

Matrix D[nchild+ 1];
Matrix B[nchild];
Matrix R[nchild];
for i← 0 to nchild

do

D[i]← createDbBordDiagM(node.child(i))
B[i]← createBottomBlock(node, node.child(i))
R[i]← createBorderBlock(node.child(i), node)

M = new DbBordDiagMatrix(nchild,D,B,R);
return (M)

procedure createBottomBlock(ExpandedModel row,ExpandedModel col)
comment: Create the bottom block.Matrix M ;

int nchild = row.nchild();
if nchild == 0
then M = new MatrixSparse(row, col)

else

Matrix B[nchild+ 1]
for i← 0 to nchild

do
{

B[i]← createBottomBlock(row, col.nchild(i))
B[nchild] = new MatrixSparse(row, col)
M = new DenseMatrix(nchild+ 1, B)

return (M)

procedure createBorderBlock(ExpandedModel row,ExpandedModel col)
comment: Create the right-hand-side border block.Matrix M ;

int nchild = col.nchild();
if nchild == 0
then M = new MatrixSparse(row, col)

else

Matrix R[nchild+ 1]
for i← 0 to nchild

do
{

R[i]← createBottomBlock(row.nchild(i), col)
R[nchild] = new MatrixSparse(row, col)
M = new DenseMatrix(nchild+ 1, R)

return (M)

7.1.2 Building Vector Structure

The solver in this category may also need to know the structure of the primal and
dual vectors of the structured problem. The primal vector structure can be used

Page 102

7.1. Structure Exploiting Interior Point Method

for storing primal variables and their bounds, objective gradient, etc. The dual
vector structure could be used for storing constraint values and ranges, etc. This
structure information can be easily obtained by tracing the expanded model tree.
To explain the algorithm used for building such structured vectors, we should
introduce the following data type abstractions in Object-Oriented programing
context as illustrated in Figure 7.3.

• Vector

– The vector interface.

• VectorSparse

– Represents a sparse vector whose value can be retrieved by PSMG’s
solver interface methods.

• VectorDense

– Represents the vector with nested structure.

Again, the corresponding constructors for each of the data types above (except
Vector interface) are listed below.
• VectorSparse(ExpandedModel node)

– Creates a sparse vector using the expanded model tree node. The
dimension of this vector is equal to node.numLocalVars, if the vector
has primal structure. If the vector has a dual structure, the dimension
is equal to node.numLocalCons.

• VectorDense(int nvec, Vector* V)

– Creates a dense vector to represent the (nested) structure of either the
primal or dual vector. The dimension of the array V is equal to nvec.

Vector

VectorSparse VectorDense

Figure 7.3: A potential vector data type hierarchy diagram adopted by solver’s imple-
mentation.

The pseudocode for building the structured vector is given in Algorithm 7.1.2.
This algorithm takes the root node of an expanded model tree as the input param-
eter and returns the structured vector. This algorithm applies for constructing
vectors in either primal or dual structure. It is worth noting that this algorithm is
called recursively to create the corresponding structured vector for nested struc-
tured problems.

Figure 7.4 demonstrates the primal and dual vector structures constructed
using an expanded model tree of a general two level structured problem in Figure

Page 103

7.1. Structure Exploiting Interior Point Method

0

1

2

n

x0

xn

...

x2

x1

y1 y2 · · · yn y0

0.numLocalVars

n.numLocalVars

2.numLocalVars

1.numLocalVars

0
.
n
u
m
L
o
c
a
l
C
o
n
s

n
.
n
u
m
L
o
c
a
l
C
o
n
s

1
.
n
u
m
L
o
c
a
l
C
o
n
s

2
.
n
u
m
L
o
c
a
l
C
o
n
s

Figure 7.4: This figure demonstrates the expanded model tree and its corresponding
vector structure. The dimension of each sub-vector can be obtained by accessing the
interface properties of the expanded model tree node.

6.1. The dimension of each sub-vector is indicated on the figure.

Algorithm 7.1.2: createStrVector(ExpandedModel node)

comment: Creating a structured vector

main
int nchild = node.nchild();
V ector v;
if nchild == 0;
then v = new SpraseV ector(node);

else

V ector subv[nchild];
for i← 1 to nchild

do
{

subv[i] = createStrVector(node.child(i));
v = new DenseV ector(nchild, subv);

return (v)

7.1.3 Parallel Process Allocation

Once PSMG passes the structures of the required matrices and vectors to the
solver, the solver allocates the matrix and vector blocks among parallel processes.
This parallel allocation is performed on the augmented system matrix, and the
related linear algebra background is explained in Chapter 3. The primal and dual
structured vectors are also allocated correspondingly among parallel processes.

Page 104

7.1. Structure Exploiting Interior Point Method

Figure 7.5 demonstrates the parallel allocation result by OOPS solver on n

parallel processes of a general two level problem with n sub-problems. Each block
in the augmented system matrix is composed of corresponding blocks from Q and
Amatrices, and each sub-vector is also composed of the corresponding sub-vectors
from primal and dual vectors. In order to minimize the inter-communication cost,
OOPS allocates the right bottom corner block on every process. The primal and
dual sub-vectors of the top level problem are also allocated on all processes. The
numbers annotated on top of each block in Figure 7.5 indicate the processes where
the block or sub-vector is allocated.

0

1

. . .

n

0− n

0

1

...

n

n· · ·10

0 1 · · · n 0− n

A
u
g
m
en
ted

S
y
stem

M
a
trix

Primal\Dual Vector

Figure 7.5: Parallel processor allocation of the rearranged augmented matrix and
corresponding vector in OOPS.

7.1.4 Parallel Problem Generation

According to the discussion in the previous section, each matrix block is created
by the MatrixSparse constructor with two expanded model tree nodes, and each
sub-vector is created by the VectorSparse constructor with one expanded model
tree node. It is sufficient to evaluate each matrix block and sub-vector using the
interface methods in the ExpandedModel class (as illustrated in Chapter 6).

Call-back interface design with OOPS

While building the matrix structure, PSMG also sets up a CallBackInterfaceType
object for each matrix block. At a later time, when PSMG is asked to evaluate
the matrix block by invoking the callback function, PSMG can decided which ac-
tion to take according to the content of CallBackInterfaceType instance. The
declaration of the CallBackInterfaceType is given in Listing 7.1.

The possible actions that PSMG could take are the following.

• returns number of non-zero elements in the block requested;

• returns an indicator matrix in compressed column storage (CCS) format to
indicate the sparsity pattern of the matrix sub-block;

Page 105

7.1. Structure Exploiting Interior Point Method

• returns the actual block matrix in CCS format.

In LP and QP problems, the matrices A and Q stay the same at each iteration.
Each block matrix is evaluated in two calls to PSMG. The first call to evaluate
the number of non-zero elements, and solver uses this number to allocate memory.
Then, the matrix block is evaluated in the second call.

For NLP problems, OOPS requires the indicator matrix of a block to be
evaluate first, to set up the indices for symbolic factorisation. The indicator
matrix can be requested by invoking the call-back function with nlp str = true,
whereas the actual block matrix is evaluated when setting nlp str = false.

1 class OOPSBlock {

2 public:

3 ExpandedModel *emrow; // Expanded Model giving row information

4 ExpandedModel *emcol; // Expanded Model giving col information

5 OOPSBlock(ExpandedModel *rowmod , ExpandedModel *colmod);

6 };

7 typedef struct {

8 /* INPUT: */

9 void *id; // points to a OOPSBlock

10 bool nlp_str; // evaluates the indicator matrix if true ,

11 // otherwise evaluates the actual block matrix.

12 /* OUTPUT */

13 int nz;

14 int *row_nbs;

15 int *col_nbs;

16 int *col_beg;

17 int *col_len;

18 double *element;

19 } CallBackInterfaceType;

Listing 7.1: Call-back interface in OOPS

Distributed vs. Local interface

With the above call-back interface design, it is straightforward to link the PSMG’s
local interface methods with OOPS. Each block or sub-vector can be generated
locally on the calling process, as long as the variable values from the dependent
node set are provided before each invoking of the PSMG’s interface method. It is
also obvious that each block in the A and Q matrices for LP and QP problem are
constant and independent from the problem’s variable values. Only the constraint
and objective function values are dependent on the current problem’s variable
values. However the constraint and objective function values are not required by
OOPS from PSMG. Therefore the local interface methods are sufficient to offer
an efficient parallel problem generation strategy for LP and QP problems.

For NLP problem, OOPS need to provide variable values for the dependent
node set before invoking PSMG’s interface methods. Therefore inter-process com-
munication costs for sending and receiving variable values may incur. We have
linked PSMG’s local interface methods with OOPS for demonstrating PSMG’s
performance. The benchmark results are given in next chapter. It is worth men-
tioning that the distributed interface could offer better performance for generating
a general NLP problems. However it requires considerable amount of linkage work
to take advantage of the distributed interface methods.

Page 106

7.2. Benders’ Decomposition

7.2 Benders’ Decomposition

PSMG can also be linked with parallel solver that implements a decomposition
algorithm, such as Benders’ Decomposition. We have already discussed the ap-
proach of using Bender’s decomposition scheme for solving a general nonlinear
structured problem in Chapter 3. A Benders’ Decomposition solver requires
PSMG to provide the problem in terms of master and sub-problem structure.
The expanded model tree constructed after PSMG finishes the structure building
stage can be used for this purpose. The root node of the expanded model tree
represents the master problem, and each child node represents one of the sub-
problems. The number of constraints and variables for master and sub-problems
can be easily accessed using the interface properties from the ExpandedModel

class as illustrated in Chapter 6.
In Section 3.2.2, we have suggested a possible parallel allocation strategy for

a Benders’ Decomposition solver which is to allocate each sub-problem on one
process, and the master problem on every processes. Then, the sub-problems can
be solved in parallel. The master problem could also be solved using a corre-
sponding parallel solver algorithm. Since values of the master problem variables
are needed to solve each sub-problem at every iteration, allocating the master
problem on every processes could efficiently reduce inter-process communication
cost for values of the variables declared in the master problem. For example,
the value of x0 is needed to solve the sub-problem whose formulation is given in
(3.27).

7.2.1 Parallel problem generation

Once the solver finishes allocation of the problems on parallel processors, the
solver can request PSMG to generate the required function and derivative values
for the master and sub-problems. While linking PSMG with a decomposition
solver, similar callback interface as illustrated in 7.1.4 can also be designed for
accessing PSMG’s solver interface methods conveniently.

Now, let us demonstrate how PSMG’s solver interface is called to generate
the master and sub-problems in formulation (3.28) and (3.27) respectively. The
master and sub-problems are derived by applying the Benders’ Decomposition
scheme on a two level general structure problem in formulation (3.25). The
corresponding expanded model tree for this problem is illustrated in Figure 3.2.

Sub-problem generation

To solve the ith sub-problem in formulation (3.27), the solver is likely to request
the following entities to be evaluated by PSMG.

• constraint function value, v = cii(x0, xi)

– i.e. nodei.cons feval dist(0,v)

• right hand side value, v = c0i (x0)

– i.e. node0.cons feval dist(i,v)

Page 107

7.2. Benders’ Decomposition

• objective function value, v = fi(x0, xi)

– i.e. nodei.obj feval dist(v)

• Jacobian matrix, m =
∂cii
∂xi

– i.e. nodei.cons jacobs nlp local(0, m)

• objective gradient vector, v = ∂fi
∂xi

– i.e. nodei.obj grad qp nlp local(v)

• Hessian of the Lagrangian, m = ∂2fi
∂x2

i

+ yi
∂2cii
∂x2

i

– i.e. nodei.lag hess nlp local(0,m)

It is worth mentioning that the dependent node set for each above PSMG
interface calls is evaluated as 0, i. By allocating the master problem variables
on every process, each sub-problem can be generated in parallel without any
inter-process communication.

Master problem generation

PSMG’s solver interface methods can be used to generate the following entities
of the master problem.

• part of the objective function value, v = f0(x0)

– i.e. node0.obj feval dist(0,v)

• objective gradient vector, v = ∂f0
∂x0

– i.e. node0.obj grad qp nlp local(v)

• Hessian of m = f0(x0)

– i.e. nodei.lag hess nlp dist(0,0,m)

While doing the linkage work between a Benders’ Decomposition solver and
PSMG, vi and g

(j)
i values from each sub-problem i should be communicated to

processes where the master problem is solved. Based on the suggested parallel
allocation strategy described above, a MPI AllReduce operation could be used to
make the values available on all parallel processes using MPI COMM WORLD
communicator. If other parallel allocation scheme is used, the corresponding
parallel communicator should be created.

Page 108

Chapter 8

PSMG Performance Benchmark

We have linked PSMG’s local interface methods with OOPS. In this chapter, we
discuss the performance of PSMG’s problem generation by problem type. For LP
and QP problems, the problem matrices are constant, therefore the solver only
requires PSMG to provide the matrix blocks once. On the other hand, the solver
is likely to require PSMG to provide values of the problem matrix blocks at every
iteration for NLP problems. Additionally, based on the allocation scheme used by
OOPS, each matrix block in LP and QP problem can always be evaluated with
only local information, whereas evaluation of a matrix block in NLP problems
may depend on variable values of other nodes. Therefore, the NLP problem may
have different performance results from LP and QP problems.

8.1 LP and QP Problems

8.1.1 Test Problem Sets

We have used three test problem sets for our experiments in this section. The
first one is a set of MSND problems (described in Listing 2.1) based on a network
of 30 Nodes and 435 Arcs, corresponding to a complete graph. The number of
commodities varies between 5 and 50. The number of constraints and variables
in these problems increases linearly with the number of commodities. The largest
problem of this MSND problem set has over 10.2 million variables and 0.8 million
constraints.

The second test problem set is a series of large scale portfolio management
problems. We have chosen 10 random stock symbols from Nasdaq and used the
Nasdaq-100 as a benchmark to generate a set of 3-stage problem instances for
the ALM-SSD problem (described in Listing 2.3) for a range of scenarios and
benchmark realisations. The largest problem of this ALM-SSD problem set has
over 10.1 million constraints and 20.5 million variables.

The above two are sets of LP problems. The third one is a set of QP problems
based on Markovitz mean-variance model [70] (henceforth referred as ALM-VAR).
The mathematical formulation is given in (8.1). The sets, parameters and vari-
ables represented by A,L,LT , γ, Vj, pi, ci, x

h
i,j, x

s
i,j, x

b
i,j, ri,j have the same meaning

as the notations used in ALM-SSD formulation. However, this model does not

109

8.1. LP and QP Problems

have the second order stochastic dominance constraints. Instead, it maximizes
the expectation of wealth µ and its negative variance with risk-aversion param-
eter ρ. s(i) represents the stage of a node i; hence, Ls(i) represents the liability
needed to be satisfied at its corresponding stage. The model file for this problem
is given in Appendix C. We have generated a set of 3-stage problem instances for
this model by choosing 50 random stock symbols and a range of scenarios. The
largest problem of this ALM-VAR problem set has over 2.5 million constraints
and 7.3 million variables.

max µ− ρ

∑

i∈LT

pi

[

∑

j∈A

Vjx
h
i,j + ci

]2

− µ2

s.t. (1 + γ)
∑

j∈A

(xh
0,jVj) + c0 = I,

cπ(i) + (1− γ)
∑

j∈A

(Vjx
s
i,j)− Ls(i) = ci + (1 + γ)

∑

j∈A

xh
i,j, ∀i 6= 0, i ∈ L

(1 + ri,j)x
h
π(i),j + xb

i,j − xs
i,j = xh

i,j, ∀i 6= 0, i ∈ L, j ∈ A
∑

i∈LT

pi(
∑

j∈A

Vjx
h
i,j + ci) = µ

(8.1)

8.1.2 Comparison Analysis with SML

The proof-of-concept model generator for SML [1] was implemented as a pre- and
post-processor for AMPL; henceforth we use SML-AMLP to refer to it. After
analyzing the problem structure as defined by the block-statements, SML-AMPL
would create a self-contained sub-model file for each block. Then the sub-model
files are processed by AMPL together with the data file to create *.nl-files for
every block. The solver interface can access these files through the AmplSolver

library [31] for function and derivative values.
PSMG is designed specifically to model and generate structured problems

with an in-memory solver interface design. On the other hand, SML-AMPL has
the same design goal but uses AMPL as a backend, and can only run in serial.
Therefore, we have compared the serial performance of PSMG to SML-AMPL.
The problem generation times of using PSMG and SML-AMPL for generating
the problems in MSND test problem set are presented in Table 8.1 and Figure 8.1.

For SML-AMPL we report the time taken up by the pre-processing stage
which finishes when all *.nl-files are written (Column 7) and the time taken to
fill each matrix block in the problem with numerical values (Column 8). The
total time for SML-AMPL to generate the problem is listed in Column 6. For all
of our test problems SML-AMPL can barely finish the pre-processing stage in the
time it takes by PSMG to generate the whole problem. An even more extensive
amount of time is needed by SML-AMPL to generate the values for the matrix
blocks. Furthermore, SML-AMPL’s performance also highly depends on the disk
access speed. We have used a solid state drive which provides a fast file system

Page 110

8.1. LP and QP Problems

access speed for our test problems, and SML-AMPL is likely to run even slower
on a system with a slower disk.

It turns out that the pre- and post-processing steps take a significant amount
of time and does not scale well. This is mainly because for a large scale structured
problem, thousands of *.nl-files and auxiliary files need to be created on the file
system. Those files also need to be read and processed in order to evaluate the
sub-blocks of the Jacobian matrix. Furthermore, the file system interface used
due to the reliance on *.nl-files is unsuitable for parallelization. PSMG was
developed to address these issues.

The benchmarking results demonstrate that PSMG’s in-memory implementa-
tion is much preferred to the pre-/post-processing approach using SML-AMPL.

MSND Problem Instance
PSMG

Problem Generation
Time(s)

SML-AMPL
Problem Generation

Time(s)
Number of
commodities

Number of
variables

Total
Structure
Setup

Problem
Generation

Total
Pre-

processing
Post-

processing

5 1,206,255 12 ≤ 1 12 123 16 107
10 2,211,105 23 ≤ 1 23 317 29 288
15 3,215,955 34 ≤ 1 34 567 42 525
20 4,220,805 48 ≤ 1 48 890 55 835
25 5,225,655 57 ≤ 1 57 1318 70 1248
30 6,230,505 67 ≤ 1 67 1855 81 1774
35 7,235,355 79 ≤ 1 79 2619 94 2525
40 8,240,205 91 ≤ 1 91 3507 111 3396
45 9,245,055 102 ≤ 1 102 4699 126 4573
50 10,249,905 114 ≤ 1 114 6022 141 5881

Table 8.1: Comparison of PSMG with SML-AMPL for generating MSND problem
instances in serial execution.

1 2 3 4 5 6 7 8 9 10 11

x 106

101

102

103

104

Number of variables

P
ro

bl
em

 g
en

er
at

io
n

tim
e(

s)
 −

 lo
gs

ca
le

PSMG

SML−AMPL

Figure 8.1: Semi-log plot for generating MSNG problem instances using PSMG and
SML-AMPL. The data is from Table 8.1. It clearly demonstrates that the performance
of PSMG is far superior to SMP-AMPL.

Page 111

8.1. LP and QP Problems

8.1.3 Serial Performance

The serial performance test is conducted using the three problem sets described
in section 8.1.1 on a machine with Intel i5-3320M CPU. Table 8.2 presents the
problem sizes and their corresponding generation time for the three problem sets.

The problem generation time in PSMG is composed of the two stages men-
tioned in the previous section: the structure building stage, which finishes by
passing the expanded model tree to the solver; and the parallel problem genera-
tion stage. We report these separately in addition to the total problem generation
time in Table 8.2.

Moreover, in Figure 8.2, 8.3 and 8.4 we plot the total problem generation
time against the problem size (represented by the number of variables) for the
three problem sets. The plots indicate that PSMG scales almost linearly for these
problem set as the problem size increases.

MSND Problem Instance
PSMG Problem

Generation Times(s)
Number of
commodities

Number of
variables

Number of
constraints

Number of
nonzeros

Total
Structure
setup

Problem
generation

5 1,206,255 270,570 3,416,490 12 ≤ 1 12
10 2,211,105 340,170 6,431,040 24 ≤ 1 24
15 3,215,955 409,770 9,445,590 36 ≤ 1 36
20 4,220,805 479,370 12,460,140 48 ≤ 1 48
25 5,225,655 548,970 15,474,690 59 ≤ 1 59
30 6,230,505 618,570 18,489,240 69 ≤ 1 69
35 7,235,355 688,170 21,503,790 79 ≤ 1 79
40 8,240,205 757,770 24,518,340 93 ≤ 1 93
45 9,245,055 827,370 27,532,890 103 ≤ 1 103
50 10,249,905 896,970 30,547,440 119 ≤ 1 119

ALM-SSD Problem Instance
Number of
scenarios

Number of
benchmarks

441 21 34,262 15,268 168,817 0 ≤ 1 0
1681 41 196,442 91,308 1,115,457 3 ≤ 1 3
4096 64 665,803 316,225 4,034,571 15 ≤ 1 15
7056 84 1,428,263 685,525 8,924,171 34 ≤ 1 34

11236 106 2,767,777 1,338,463 17,669,787 67 ≤ 1 67
16384 128 4,755,851 2,311,809 30,810,123 114 ≤ 1 114
21904 148 7,233,511 3,528,469 47,322,123 182 ≤ 1 182
28900 170 10,814,561 5,290,911 71,336,091 287 ≤ 1 287
36864 192 15,415,883 7,559,617 102,346,763 432 ≤ 1 432
44944 212 20,591,783 10,115,157 137,362,443 616 ≤ 1 616

ALM-VAR Problem Instance

Number of
scenarios

Number of
nonzero

(Jacobian)

Number of
nonzero
(Hessian)

1,600 249,292 85,242 169,817 1,600 3 0 3
3,600 556,312 190,262 1,115,457 3,600 9 0 9
4,600 984,932 336,882 4,034,571 6,400 14 0 14

10,000 1,535,152 525,102 8,924,171 10,000 25 1 24
14,400 2,206,972 754,922 17,669,787 14,400 38 2 36
19,600 3,000,392 1,026,342 30,810,123 19,600 51 2 49
25,600 3,915,412 1,339,362 47,322,123 25,600 66 4 62
32,400 4,952,032 1,693,982 71,336,091 32,400 86 6 80
40,000 6,110,252 2,090,202 102,346,763 40,000 104 8 96
48,400 7,390,072 2,528,022 137,362,443 48,400 128 12 116

Table 8.2: Problem sizes and PSMG problem generation time for MSND, ALM-SSD
and ALM-VAR problem instances.

Page 112

8.1. LP and QP Problems

1 2 3 4 5 6 7 8 9 10 11

x 106

0

20

40

60

80

100

120

Number of variables

P
ro

bl
em

 g
en

er
at

io
n

tim
e(

s)

PSMG

Figure 8.2: Plot for PSMG’s problem gen-
eration time for the MSND problems in Ta-
ble 8.2.

0 0.5 1 1.5 2 2.5

x 107

0

100

200

300

400

500

600

700

Number of variables

P
ro

bl
em

 g
en

er
at

io
n

tim
e(

s)

PSMG

Figure 8.3: Problem generation time for
the ALM-SSD problems in Table 8.2

0 1 2 3 4 5 6 7 8

x 106

0

20

40

60

80

100

120

140

Number of variables

P
ro

bl
em

 g
en

er
at

io
n

tim
e(

s)

PSMG

Figure 8.4: Problem generation time for the ALM-VAR problems in Table 8.2

Page 113

8.1. LP and QP Problems

8.1.4 Parallel Performance

On a node with 4GB memory, plain AMPL will not be able to generate a MSND
problem with 100 commodities on a network comprising 30 nodes and 435 edges
due to running out of memory. This problem (msnd30 100 - twice as large as
the largest MSND problem in Table 8.2) has 20, 298, 405 variables and 1, 592, 970
constraints. Because PSMG distributes the problem data among processors, this
problem can be generated in parallel using PSMG.

We have also performed parallel scaling benchmarks for a large ALM-SSD
problem (the largest problem in Table 8.2). This problem has 44944 scenarios,
20, 591, 783 variables and 10, 115, 157 constraints.

Tables 8.3 and 8.4 show the problem generation time, the resulting speedup
and parallel efficiency for these problem when generated on up to 96 processes in
parallel. The parallel efficiency is also plotted against the number of processors for
both problems in Figures 8.5 and 8.6. These parallel experiments were performed
on the parallel cluster at the Edinburgh Compute and Data Facility (also known
as Eddie). It comprises 156 worker nodes, each of which is an IBM iDataplex
DX360 M3 server with two six core Intel E5645 CPUs and 26GB of RAM. A
single core on Eddie is slower than the Intel i5-3320M CPU used for our earlier
serial experiments, so these benchmarking times are not directly comparable.

We observe that PSMG obtains excellent speed-up (> 0.9) on up to 24 pro-
cesses and still a respectable speed-up in excess of 0.7 on 96 processes. The main
reason preventing even higher speed-up for both problem sets (MSND and ALM-
SSD) is the lack of perfect load balancing (note that the number of sub-blocks
in both examples is not divisible by 96). Another reason is OOPS allocates the
bottom right corner blocks of the Jacobian matrix on every parallel process based
on its parallel allocation scheme. Therefore, the work to evaluate these blocks is
repeated on every parallel process, but not distributable.

Number of
parallel
processes

Finishing
Times(s)

Speedup Efficiency

1 532 NA NA
2 270 1.97 0.99
4 135 3.94 0.99
8 68 7.82 0.98
12 45 11.82 0.99
24 23 23.13 0.96
48 12 44.33 0.92
96 7 76 0.79

Table 8.3: PSMG speedup and parallel efficiency for a large MSND problem.

8.1.5 Memory Usage Analysis

We have also measured the per processor and total memory usage of PSMG for
generating msnd30 100 problem. The memory usage in each PSMG process is

Page 114

8.1. LP and QP Problems

Number of
parallel
processes

Finishing
Times(s)

Speedup Efficiency

1 1085 NA NA
2 564 1.92 0.96
4 281 3.85 0.96
8 140 7.7 0.96
12 93 11.55 0.96
24 48 22.16 0.92
48 27 38.79 0.81
96 15 67.88 0.71

Table 8.4: PSMG speedup and parallel efficiency for the largest ALM-SSD problem.

10 20 30 40 50 60 70 80 90 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of parallel processes

P
ar

al
le

l e
ffi

ci
en

cy

parallel efficiency

Figure 8.5: Parallel efficiency plot for
MSND problem.

10 20 30 40 50 60 70 80 90 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of parallel processes

P
ar

al
le

l e
ffi

ci
en

cy

parallel efficiency

Figure 8.6: Parallel efficiency plot for
ALM-SSD problem.

composed of the memory used to store the problem structures (prototype model
tree and expanded model tree) and the problem data required to compute the
function and derivative evaluation. Recall that the problem data in the expanded
model tree will be distributed over all the parallel processes, whereas the problem
structure information is not distributable and has to be repeated on every process.
We define the memory overhead to be this (i.e. the non-distributable) part of
the total memory usage.

This memory usage data is presented in Table 8.5. Columns 4 and 5 give the
total and per-processor memory requirements respectively. The total memory is
broken down in columns 2 and 3 into memory used for problem structure and
data required for function and derivative evaluations. Column 6 gives memory
overhead as a percentage of total memory usage. We also plot the total memory
usage and the average memory usage in Figure 8.7 and 8.8 correspondingly.

For this example the non-distributable part requires about 40MB. This con-
sists of memory used for the prototype model tree (24.5 KB) and the expanded
model tree (39.93MB). Note that this problem has 46500 nodes in the expanded
model tree; on average, each node in the expanded model tree thus uses about
900 bytes to store the problem structure. This memory is repeated on every
processor. The remaining part of 1.46 GB is distributable over processes.

Page 115

8.2. NLP Problems

Thus we are able to distribute the vast majority of the memory required,
enabling the generation of problems that can not be generated on a single node.
The overhead in non-distributable memory is mainly due to making the prototype
and expanded model tree available on every processor. This, however, is crucial to
enable the solver driven processor assignment and to achieve on-demand parallel
problem generation at later stages, so we maintain that it is a worthwhile use of
memory.

Number of
parallel
processes

Total
memory

by problem
structure
(GB)

Total
memory

by problem
data
(GB)

Total
memory
(GB)

Memory
per
process
(MB)

Structure
memory
overhead

1 0.04 1.46 1.50 1532.7 2.6%
2 0.08 1.46 1.54 786.3 5.1%
4 0.16 1.46 1.61 413.2 9.7%
8 0.32 1.46 1.77 226.6 17.6%
12 0.48 1.46 1.93 164.4 24.3%
24 0.96 1.46 2.39 102.2 39.1%
48 1.92 1.46 3.33 71.1 56.2%
96 3.84 1.46 5.21 55.5 72.0%

Table 8.5: Parallel processes memory usage information for generating problem
msnd30 100.

0 10 20 30 40 50 60 70 80 90 100
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

Number of parallel processes

M
em

or
y

us
ag

e
(G

B
)

total PSMG memory usage

Figure 8.7: Total memory usage plot for
generating problem msnd30 100.

100 101 102
101

102

103

104

Number of parallel processes (logarithmic scale)

M
em

or
y

us
ag

e
(M

B
)

(lo
ga

rit
hm

ic
 s

ca
le

)

average PSMG memory usage per process

Figure 8.8: Per processor memory usage
for generating problem msnd30 100.

8.2 NLP Problems

Using the local interface for PSMG to generate NLP problems may have a sig-
nificant parallel performance penalty in any solver. For example, let us consider
the bottom right corner block in the Hessian of the Lagrangian matrix for the

Page 116

8.2. NLP Problems

complicating variables declared in the master problem. We should also refer to
this block as the complicating block in the Hessian of the Lagrangian matrix.

If the complicating variables in the master problem are forming nonlinear
relations in constraints from its sub-problems, the evaluation of the complicat-
ing block in the Lagrangian Hessian matrix may involve every constraint in all
of the sub- and master problems. According to OOPS’ parallel problem alloca-
tion scheme, this complicating block is being allocated on every parallel process.
Therefore, if the local interface methods are used for parallel generation problem
for OOPS, every processor may need to evaluate this complicating block locally.
Thus, the entities in every expanded model tree node of the entire problem need
to be expanded on all the processors. Not only does the solver need to provide
the variable values of the entire problem on every processor, but also the memory
needs to be allocated for storing the expansion of the entire problem’s constraints.
It essentially defeats the purpose of parallelization of the problem generation in
this case. For NLP problems with this structure, it is quite expensive to compute
the complicating block in the Hessian of the Lagrangian matrix. As a result, the
distributed interface method should be considered, which allows the evaluation
of the complicating block to be distributed on parallel processes according to its
separable structure in PSMG’s problem formulation.

For NLP problems, OOPS requires the sparsity pattern of the Jacobian and
Hessian matrix block to be evaluated in the first iteration to set up the memory
storage and symbolic factorisation before requesting the actual values for the
blocks. Therefore, the cost of problem generation in the first iteration is more
expensive than the cost of function evaluation for each subsequent iteration. In a
subsequent iteration, OOPS only requires PSMG to update values in the matrix
blocks whose sparsity structure is already known. Therefore, we report the per-
iteration problem generation time for the first iteration and subsequent iterations
separately in the test results.

8.2.1 SCOPF Problem

To demonstrate PSMG for the generation of NLP problems, we have used a set
of Security Constrained Optimal Power Flow (AC-SCOPF) problems.

In the SCOPF problem, we are seeking a long-term operation plan which
allows demands and power system constraints still to be satisfied when any pre-
defined equipment failure occurs on the power system network. This problem
can be viewed as a two level structure problem. The master problem has a set of
demand and power system constraints for the full power system network, whereas
the similar set of constraints should be repeated for each of the contingency cases
on the reduced network.

To satisfy the demands on the reduced network for each contingency case,
the real power generation can be modified on a reference bus to allow correction
actions. The power and voltage on the real power generator buses should remain
the same for all the contingency cases, which introduces linking variables between
the master and sub-problems. We have modelled these restrictions with linear
constraints in the sub-problem (i.e. BusVolCons and BusGenCons at line 422 and
424 in Appendix B). The full model file of the SCOPF problem in PSMG is given

Page 117

8.2. NLP Problems

in Appendix B. For the concern of this thesis, we will not provide the detailed
mathematical formulation for the SCOFP problem (which can be found in [71]),
but rather provide the following key facts about SCOPF problem formulation in
PSMG.

• The complicating variables from the master problem do not occur in the
nonlinear constraint of the sub-problems.

• The objective function is formulated using variables from master problem
only.

• Variables from a sub-problem are not referred to in the master problem’s
constraints, and there is no linking constraint in the master problem.

According to the above facts observed from SCOPF’s model in PSMG, we
can infer that the Hessian of the Lagrangian presents a block diagonal matrix
structure, and each block can be evaluated with local information without any
inter-process communication efforts. As a result, it eliminates the potential issue
of inefficiency caused by the local interface methods for evaluating Hessian of the
Lagrangian matrix blocks.

Furthermore, OOPS allocates the master variables on every parallel proces-
sors. Therefore every Jacobian matrix block and constraint function can also be
evaluated using local information already available on every parallel processor.

For this reason, the SCOPF problem can be efficiently generated using local
interface methods on OOPS. Moreover, PSMG provides good parallel results for
generating the SCOPF problems using its local solver interface linked with OOPS.

8.2.2 Serial Performance

We have generated a set of SCOPF problem instances on a random energy net-
work of 100 buses, 125 generator, 500 lines and 10 transformers. The number of
contingency cases are between 20 and 510 for these problems. The problem sizes
and their corresponding generation time are presented in Table 8.6.

The serial performance test is conducted on a machine with Intel i5-3320M
CPU and a solid state drive. The results are presented in Table 8.6, where Column
6 and 7 provide the per-iteration costs for problem generation in the first and each
subsequent iteration.

In addition, we plot the per-iteration generation times against the problem
sizes (represented by the number of variables) in Figure 8.9 and 8.10 for the first
and subsequent iteration respectively. Similar to LP and QP problems, the plots
also indicate the problem generation time in PSMG scales almost linearly as the
problem size increases.

8.2.3 Parallel Performance

The special problem structure and variable dependencies among master and sub-
problems presented in the SCOPF problem allow each derivative and function

Page 118

8.2. NLP Problems

SCOPF Problem Instance
Problem Generation

Time(s)

Number
contingency

Number of
constraints

Number of
variables

Number of
nonzeros
(Jacobian)

Number of
nonzeros
(Hessian)

Structure
setup

Problem
generation

(first iteration)

Problem
generation

(subsequent)

20 73,301 73,590 338,703 110,445 ≤ 1 64 49
30 108,321 108,630 500,909 162,029 ≤ 1 98 76
40 143,421 143,670 662,487 215,251 ≤ 1 125 102
50 178,461 178,710 823,753 265,281 ≤ 1 153 128
90 318,621 318,870 1,472,377 477,011 ≤ 1 277 222
170 598,771 599,190 2,765,469 893,187 ≤ 1 535 392
330 1,158,921 1,159,830 5,344,913 1,699,109 ≤ 1 1027 772
510 1,790,301 1,790,550 8,261,941 2,659,715 ≤ 1 1544 1283

Table 8.6: Problem sizes and PSMG problem generation time for SCOPF problem
instances.

0 2 4 6 8 10 12 14 16 18

x 105

0

200

400

600

800

1000

1200

1400

1600

Number of variables

P
ro

bl
em

 g
en

er
at

io
n

tim
e(

s)

PSMG

Figure 8.9: Plot for PSMG’s problem gen-
eration time for the first iteration of the
SCOPF problems in Table 8.6.

0 2 4 6 8 10 12 14 16 18

x 105

0

200

400

600

800

1000

1200

1400

Number of variables

P
ro

bl
em

 g
en

er
at

io
n

tim
e(

s)

PSMG

Figure 8.10: Problem generation time for
the subsequent iteration of the SCOPF
problems in Table 8.6.

Page 119

8.3. Modelling and Solution Time

evaluation to be performed locally without any inter-process communication ef-
fort. Therefore, good parallel efficiency can be expected for generating SCOPF
problems using PSMG’s local interface methods linked with OOPS.

We have conducted the parallel scaling benchmark tests for the largest SCOPF
problem in Table 8.6. This problem has over 1.7 million of variables and con-
straints and 510 contingencies (or sub-problems). The parallel experiments were
also executed on Eddie. The per-iteration speedup and parallel efficiency for first
and each subsequent iteration are reported in separate columns in Table 8.7. In
addition, the per-iteration parallel efficiency is also plotted in Figure 8.11 and
8.12 for first and each subsequent iteration respectively.

We can observe that PSMG obtains good speed-up for both first and sub-
sequent iterations on and up to 96 processes. Similar to the results from LP
problem, there are two reasons preventing even higher speed-up. Firstly it is lack
of perfect load balancing (note that the number of sub-problem in this SCOPF
problem is not divisible by 12). Secondly, OOPS allocates the bottom right corner
blocks of both Jacobian and Hessian matrices on every parallel process, therefore
the work required for the evaluation of these blocks is repeated on every paral-
lel process, but not distributable. However, extra communication cost may be
needed if allocating the top level problem on a dedicated master processes.

Number of
parallel
processes

First time setup Subsequent update
Finishing
Time(s)

Speedup Efficiency
Finishing
Time(s)

Speedup Efficiency

1 1965 NA NA 1453 NA
12 186 10.56 0.88 191 7.61 0.63
24 96 20.47 0.85 97 14.98 0.62
36 67 29.33 0.81 68 21.37 0.59
48 50 39.30 0.82 51 28.49 0.59
60 41 47.93 0.80 43 33.79 0.56
72 37 53.11 0.74 35 41.51 0.58
84 30 65.50 0.78 30 48.43 0.58
96 28 70.18 0.73 28 51.89 0.54

Table 8.7: PSMG speedup and parallel efficiency for largest SCOPF problem in Table
8.6.

8.3 Modelling and Solution Time

8.3.1 Serial Analysis

In order to compare PSMG’s modelling time to the total execution time, we have
modelled and solved a set of MSND problems based on a network of 20 Nodes and
190 Arcs with various commodity sizes. Those MSND problems are modelled and
solved in serial execution on a machine with Intel E7-4830 CPU. The problem
sizes and their corresponding serial performance results are presented in Table
8.8. The modelling time represents the time spent for PSMG to generate the
problem and pass it to the solver. The solving time is the number of seconds
for the solver (OOPS in this case) to solve the corresponding model to reach
optimality. We have also computed the modelling time as a percentage of the

Page 120

8.3. Modelling and Solution Time

10 20 30 40 50 60 70 80 90 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of parallel processes

P
ar

al
le

l e
ffi

ci
en

cy

parallel efficiency

Figure 8.11: Per-iteration parallel effi-
ciency plot for problem generation in the
first iteration of the largest SCOPF prob-
lem in Table 8.6.

10 20 30 40 50 60 70 80 90 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of parallel processes

P
ar

al
le

l e
ffi

ci
en

cy

parallel efficiency

Figure 8.12: Per-iteration parallel ef-
ficiency plot for problem generation in
the subsequent iterations of the largest
SCOPF problem in Table 8.6.

total execution time, which is presented in the last column of Table 8.8. We
can observe that the modelling time percentages for all of the MSND problem
instances (given in Table 8.8) are between 4.04% and 7.28%.

The modelling time percentage is also dependent on how hard it is for the
solver to solve a particular problem. Since a harder problem may require more
solver iterations to reach optimality, the modelling time percentage could vary
depending on not only the size, but also the hardness of the problem. Therefore,
the modelling time percentage could be highly dependent on the complexity of
an optimization problem.

MSND Problem Instance
Number of

commodities
Number of
variables

Number of
constraints

Number of
nonzeros

Modelling
Time

Solving
Time

Modelling
Time (%)

5 236,170 60,230 668,610 15 296 4.82%
10 432,820 81,130 1,258,560 31 433 6.68%
15 629,470 102,030 1,848,510 46 586 7.28%
20 826,120 122,930 2,438,460 59 1038 5.38%
25 1,022,770 143,830 3,028,410 77 1346 5.41%
30 1,219,420 164,730 3,618,360 90 1219 6.88%
35 1,416,070 185,630 4,208,310 106 1627 6.12%
40 1,612,720 206,530 4,798,260 122 2012 5.72%
45 1,809,370 227,430 5,388,210 138 2435 5.36%
50 2,006,020 248,330 5,978,160 152 3615 4.04%

Table 8.8: PSMG’s modelling time for a set of MSNG problems and their corresponding
solving time.

8.3.2 Parallel Analysis

To demonstrate PSMG’s parallel modelling time with respect to the parallel solv-
ing time, we have solved the largest MSND problem from Table 8.8. The results of
those parallel experiments are presented in Table 8.9. Those parallel experiments
were performed on a parallel computing server with Intel E7-4830 CPUs. Because
of the limited availability of the computing resource at the time for conducting

Page 121

8.4. Discussion

those parallel experiments, we only be able to run up-to 32 parallel processes. The
results demonstrate that modelling (problem generation) contributes less than 4%
of total execution time for all the parallel executions. Again, the modelling time
percentage is highly dependent on the hardness of the problem, therefore we may
not be able to generalize the result universally for other problems.

Number of
parallel
processes

Modelling
time

Solving
time

Modelling
time (%)

1 152 3615 4.04%
2 80 1903 4.03%
4 41 985 4.00%
8 21 539 3.75%
16 11 286 3.70%
32 6 160 3.61%

Table 8.9: PSMG’s modelling time the MSND problem.

8.3.3 Discussion

It is worth noting that we have used only LP problems to assess the percentage
of the modelling time with respect to the total execution time. LP problems only
require their problem matrices to be evaluated once, and matrices remain con-
stant for rest of the solver iterations. For NLP problems, modelling could take
more proportion of the total execution time, since at each sub-sequent solver iter-
ation PSMG may be invoked again for evaluating the updated problem matrices.
Since the modelling and solving time are highly related to the hardness of an op-
timization problem, the percentage of modelling time may also differ for different
problems.

The purpose of the results in this section are intended to provide a basic
guideline for the performance and design efficiency of PSMG.

8.4 Discussion

In this chapter, we have demonstrated the performance for PSMG’s problem
generation by linking the local interface methods with OOPS. The results in this
chapter can be generalised for solvers that implements the structure exploiting
IPM algorithm (such as PIPS [24],etc).

Based on our performance results, PSMG achieves good parallel efficiency for
generating large scale LP and QP problems. It is worth mentioning that PSMG
implements the solver driven work assignment approach, therefore those parallel
performance results are produced by adopting the parallel problem allocation
scheme of the OOPS solver. This parallel problem allocation scheme allows each
of the blocks in the Jacobian and objective Hessian matrices to be evaluated using
local information without inter-process communication effort.

We have also achieved satisfactory parallel performance for generating the
AC-SCOPF problem, however the result cannot be applied to general NLP prob-
lems. For a general NLP problems modelled in PSMG, evaluation of the blocks

Page 122

8.4. Discussion

in Jacobian and Hessian of the Lagrangian matrix may require variable values
from its dependent nodes. In addition, if the variables in the master problem
have nonlinear relation in the constraints of its sub-problems, the evaluation of
the complicating block in the Hessian of the Lagrangian matrix could be quite
expensive using PSMG’s local interface methods. In this case, the distributed
interface methods may need to be used.

PSMG is very likely to have similar performance for linking with a decompo-
sition solver, since the same interface methods are used.

We are aware that our implementation may not match the performance of a
commercial model generator such as AMPL on a single node but we believe this
will be offset by the advantage realized from exploiting parallelization.

Page 123

Chapter 9

Conclusions

9.1 Research Summary

In this thesis, we have presented PSMG –a model generator for structured problems–
which is capable of not only conveying the problem structure to the solver, but
also parallelising the problem generation process itself. PSMG uses the modelling
language SML which offers an easy-to-use syntax to model nested structured op-
timisation problems and stochastic programming problems.

Unlike its predecessor, an AMPL based SML implementation (SML-AMPL),
PSMG is independent of AMPL. It can efficiently extract the problem struc-
ture and convey it to the solver within seconds for large scale structured prob-
lems with millions of variables and constraints. Based on our serial performance
benchmarks, PSMG’s runtime performance is far superior to that of SML-AMPL.

We have also explained PSMG’s parallel problem generation design in detail.
PSMG generates a structured problem in two stages. In the first stage, PSMG
builds a representation of the problem structure with only minimal work required.
This representation is also used as the solver interface. The majority of the work
involved in problem generation is at the second stage, where the necessary data
structures are built for constraint function and derivative evaluations. Any tem-
porary set and parameter values evaluated in the second stage are also stored in
memory for future use. PSMG evaluates the first and second order derivatives
using state-of-the-art AD algorithms implemented in a separate module. This
design allows PSMG to adopt different AD algorithms easily in the future. Ad-
ditionally, PSMG is able to use the problem structure information to parallelize
the second stage of the problem generation process. As far as we know, PSMG
is the only model generator for an algebraic modelling language that can pass
the structure information to the solver and use this information to parallelize the
model generation process itself.

In this thesis, we have also discussed PSMG’s novel parallel interface design,
namely solver driven work assignment. This design enables the parallel solver to
make parallel allocation decisions to achieve load balancing and data locality, and
to minimize the amount of data communications among parallel processes. We
have illustrated that by paying a small memory overhead to store the problem
structure on every parallel process, PSMG can implement solver driven problem

124

9.2. Future Work

distribution to achieve the on-demand problem generation, and further eliminate
inter-process communication in both the model generation and function evalua-
tion stages.

PSMG offers two types of solver interfaces for generating LP, QP and NLP
problems. The local interface methods evaluate each function and derivative re-
quest locally. Therefore, possible inter-process communication efforts are needed
for passing variable values from the dependent nodes. Since LP and QP problems
have constant Jacobian and Hessian matrices whose results does not depend on
variable values, the local interface methods are sufficient to provide an excellent
parallel efficiency for generating LP and QP problems. We have also illustrated
that the local interface methods may have a significant performance issue for
generation NLP problems with border blocks in their Hessian of the Lagrangian
matrix. On the other hand, the distributed interface methods should be used in
this case to achieve better parallel performance.

PSMG’s solver interface can be linked with different parallel solvers and algo-
rithms. In particular, we have demonstrated how to link PSMG’s solver interface
with a parallel structure exploiting IPM solver (i.e. OOPS) and solvers that
implement Benders’ Decomposition scheme.

To evaluate the performance of PSMG, we have linked PSMG’s local solver in-
terface methods with OOPS and generated several different structured problems
with various sizes. The performance evaluation of PSMG shows good parallel
efficiency in terms of both speed and memory usage for generating LP and QP
problems. We demonstrate that PSMG is able to handle much larger mathemati-
cal programming problems that could not be generated by AMPL due to memory
limitation on a single node.

PSMG also achieves good parallel efficiency for generating the SCOPF prob-
lems. Since the Hessian of Lagrangian matrix of the SCOPF problem presents
a block-diagonal structure with no borders, PSMG’s local interface methods are
able to provide an efficient solution for generating this problem in parallel for
OOPS. We suspect the parallel efficiency benchmark result can not be general-
ized for a general NLP problem, where the Hessian matrix could have border
blocks.

9.2 Future Work

When using PSMG for generating a problem, a considerable amount of time is
spent on expansion of constraints and variables. At this time PSMG does not
save the expanded constraints and variables, therefore, if the same problem is
solved again with different algorithms or solvers, this expansion work needs to
be repeated. It should be quite useful for PSMG to offer ability to store the
expanded constraints and variables on disk based on the problem’s structure
and its parallel allocation so that when the problem is solved again, PSMG can
load the expanded constraints and variables directly from disk. This feature is
analogous to AMPL’s ability to save the generated problem in NL-file format.
However, AMPL doesn’t deal with structured problem, and stores only a single
NL-file to represent the problem. PSMG should address this feature in a parallel

Page 125

9.2. Future Work

and structured fashion.
We have linked PSMG’s local solver interface with OOPS for demonstration

purpose at this time. This allows us to efficiently generate any LP and QP
problems in parallel. It can also efficiently generate the NLP problems with block-
diagonal structure in their Hessian of the Lagrangian matrix. However, to achieve
efficient parallel problem generation for a general NLP problem, the distributed
interface methods should be used. Linking PSMG’s distributed interface methods
with parallel solvers can also be a potential future work.

PSMG’s parallel problem generation efficiency can depend on how the solver
allocates the problem on parallel processes. Different solvers may adopt different
parallel allocation schemes. Therefore, it is a good idea to test PSMG with dif-
ferent parallel allocation schemes and to compare the performance results among
them. This will also help us to identify any bottle-neck in the current solver
interface design and to improve the flexibility of PSMG’s solver interface.

Page 126

Appendices

127

Appendix A

AutoDiff Library Interface
Methods

A list of interface methods for building the computational graph of a function
expression.

• Node* create var node(uint& idx)

– creates a variable node with index for value lookup.

• Node* create param node(double value)

– creates a parameter node with a fixed value.

• Node* create param node(uint& idx)

– creates a parameter node with index for value lookup.

• Node* create unary op node(OPCODE code, Node* left)

– creates a unary operator node with its OPCODE and operand pointed
by left.

• create binary op node(OPCODE code, Node* left, Node* right)

– creates a binary operator node with its OPCODE and two operands
pointed by left and right.

A list of interface methods for evaluating gradient and Hessian matrices and
their non-zero structures.

• double eval function(Node* root)

– returns the function value for function expression pointed by root.

• uint nzGrad(Node* root)

– returns the number of non-zero element in the function expression
pointed by root.

128

• double grad reverse(Node* root, vector<double>& grad)

– returns the function value and fills the gradient vector in grad. The
dimension of grad should agrees with the dimension of the gradient
vector of the function pointed by root.

• void nonlinearEdges(Node* root, EdgeSet& edges)

– implements the edge pushing algorithm for computing a list of non-
linear edges in the function expression pointed by root.

• uint nzHess(EdgeSet& edges, col compress imatrx& im)

– returns the number of non-zero element in the Hessian matrix. The
sparsity structure is filled in the Column Compressed Matrix, im.

• double hess reverse(Node* root, col compress matrix& hess)

– returns the funtion value and fills the Hessian matrix in Column Com-
press Matrix format in hess.

A list of tailor-made interface method calls for PSMG in order to generate
Jacobian and Hessian matrices in sub-blocks.

• uint nzGrad(Node* root, boost::unordered set<Node*>& vnodes)

– returns the number of non-zero element in gradient sub-vector defined
by variables from vnodes of the function expression pointed by root.

• nzGrad(Node* root, vector<Node*>& vlist, col compress imatrix row&

rgrad)

– returns the number of non-zero element in gradient sub-vector defined
by variables from vnodes of the function expression pointed by root.
This methods also fills the gradient sparsity in rgrad row vector. The
dimension of rgrad is equals to size of vlist.

• double grad reverse(Node* root, vector<Node*>& nodes,

col compress matrix row& rgrad)

– returns the function value and fills the gradient vector in rgrad.

• uint nzHess(EdgeSet& edgeset,boost::unordered set<Node*>& set1,

boost::unordered set<Node*>& set2)

– returns the number of non-zero elements in sub-block of a Hessian
matrix. The variables from set1 and set2 identifies the Hessian sub-
block. The edgeset contains a set of nonlinear edges computed using
edge pushing algorithm.

• uint nzHess(EdgeSet& edgeset,boost::unordered map<Node*,uint>& colvMap,

boost::unordered map<Node*,uint>& rowvMap,col compress imatrix&

im)

Page 129

– same as above, and this method also fills the sparsity structure in CCS
matrix format.

• double hess reverse(Node* root, vector<Node*>& nodes,

col compress matrix& hess)

– returns the value of the function expression pointed by root and fills
the Hessian matrix block identified by variables from nodes.

• double hess reverse ep(Node* root,boost::unordered map<Node*,uint>&

colvMap, boost::unordered map<Node*,uint>& rowvMap,col compress matrix&

hess)

– returns the value of the function expression pointed by root and fills
the Hessian matrix block identified by variables from colvMap and
rowvMap.

Page 130

Appendix B

Security Constrained Optimal
Power Flow Model

1 param baseMVA;

2 param demScaleDemand;

3 param demScaleFlow;

4 param RefBus symbolic;

5

6 #BUS

7 set Bus;

8 param DemandP{Bus};

9 param DemandQ{Bus};

10 param MinVoltage{Bus} >=0;

11 param MaxVoltage{Bus} >=0;

12 param GS{Bus};

13 param BS{Bus};

14

15 #Line

16 set Line;

17 param LStartBus{Line} symbolic;

18 param LEndBus{Line} symbolic;

19 param LReactance{Line};

20 param LResistance{Line};

21 param LBsh{Line};

22 param LMaxFlow{Line} >=0;

23 param LContMaxFlow{Line} >=0;

24 param LNminus1{Line};

25 param LG{l in Line }:= LResistance[l]/(LReactance[l]^2+ LResistance[l]^2);

26 param LB{l in Line}:=- LReactance[l]/(LReactance[l]^2+ LResistance[l]^2);

27

28 #Transformer

29 set Transformer;

30 param TStartBus{Transformer} symbolic;

31 param TEndBus{Transformer} symbolic;

32 param TReactance{Transformer };

33 param TResistance{Transformer };

34 param TBsh{Transformer };

35 param TMaxFlow{Transformer} >=0;

36 param TContMaxFlow{Transformer} >=0;

37 param TNminus1{Transformer };

38 param TB{l in Transformer }:= TResistance[l]/(TReactance[l]^2 + TResistance[l]^2);

39 param TG{l in Transformer }:=- TReactance[l]/(TReactance[l]^2 + TResistance[l]^2);

40 param ExTap{Transformer} >=0;

41

42 # Generator

43 set Generator;

44 param Location{Generator} symbolic;

45 param MinGenP{Generator} >= 0;

46 param MaxGenP{g in Generator} >= MinGenP[g];

47 param MinGenQ{Generator };

48 param MaxGenQ{g in Generator} >= MinGenQ[g];

131

49 param GenConst{Generator };

50 param GenLin{Generator };

51 param GenQuad{Generator };

52

53 #computed parameters

54 set LUT = Line union Transformer;

55 param StartBus{lu in LUT }:= if (lu in Line) then LStartBus[lu] else TStartBus[lu

] symbolic;

56 param EndBus{lu in LUT }:= if (lu in Line) then LEndBus[lu] else TEndBus[lu]

symbolic;

57 param MaxFlow{lu in LUT }:= if(lu in Line) then demScaleFlow*LMaxFlow[lu] else

demScaleFlow*TMaxFlow[lu];

58 param ContMaxFlow{lu in LUT }:= if(lu in Line) then demScaleFlow*LContMaxFlow[lu]

else demScaleFlow*TContMaxFlow[lu];

59 param Bsh{lu in LUT} := if (lu in Line) then LBsh[lu] else TBsh[lu];

60 param G{lu in LUT} := if (lu in Line) then LG[lu] else TG[lu];

61 param B{lu in LUT} := if (lu in Line) then LB[lu] else TB[lu];

62 set PVBUS within Bus = setof {g in Generator: MaxGenP[g]>0} Location[g];

63 set PQBUS = Bus diff PVBUS;

64 param TapRatio{t in Transformer} := ExTap[t];

65 set Contingencies within LUT = setof {r in Line: LNminus1[r] == 1} r union setof

{t in Transformer: TNminus1[t] == 1} t;

66

67 ##

68 #root stage

69 ###

70 #root level variables

71 var Voltages{b in Bus} >= MinVoltage[b], <= MaxVoltage[b];

72 var PpowerGen{g in Generator } >= MinGenP[g], <= MaxGenP[g];

73 var QpowerGen{g in Generator} >= MinGenQ[g], <= MaxGenQ[g];

74 var FlowStartP{l in LUT};

75 var FlowStartQ{l in LUT};

76 var FlowEndP{l in LUT};

77 var FlowEndQ{l in LUT};

78 var VoltageAngles{Bus};

79 var slackStart{l in LUT} <= MaxFlow[l]^2;

80 var slackEnd{l in LUT} <= MaxFlow[l]^2;

81

82 #KCL + P power

83 subject to KCLP{b in Bus}:

84 sum{g in Generator: Location[g] == b} (PpowerGen[g])

85 - sum{l in LUT: StartBus[l] == b} (FlowStartP[l])

86 - sum{l in LUT: EndBus[l] == b} (FlowEndP[l])

87 - GS[b]*(Voltages[b]^2)

88 =

89 demScaleDemand*DemandP[b]

90 ;

91

92 #KCL + Q power

93 subject to KCLQ{b in Bus}:

94 sum{g in Generator: Location[g] == b} (QpowerGen[g])

95 - sum{l in LUT: StartBus[l] == b } (FlowStartQ[l])

96 - sum{l in LUT: EndBus[l] == b } (FlowEndQ[l])

97 + 0.5*(Voltages[b]^2)

98 *

99 (sum{l in Line: LStartBus[l] == b } (LBsh[l])

100 + sum{t in Transformer: TStartBus[t] == b} (TBsh[t]/ TapRatio[t]^2)

101 + sum{l in LUT: EndBus[l] == b} (Bsh[l])

102)

103 + BS[b]*(Voltages[b]^2)

104 =

105 demScaleDemand*DemandQ[b]

106 ;

107

108 #KVL +P Power at start bus of lines

109 subject to PKVLStart{l in Line}:

110 FlowStartP[l]

111 - G[l]*(Voltages[StartBus[l]]^2)

112 + Voltages[StartBus[l]] * Voltages[EndBus[l]]

113 *

114 (

Page 132

115 G[l] * cos(VoltageAngles[StartBus[l]] - VoltageAngles[EndBus[l]])

116 +

117 B[l] * sin(VoltageAngles[StartBus[l]] - VoltageAngles[EndBus[l]])

118)

119 =

120 0

121 ;

122

123 #KVL +Q power at Start bus of lines

124 subject to QKVLStart{l in Line}:

125 FlowStartQ[l]

126 + B[l]*(Voltages[StartBus[l]]^2)

127 +

128 Voltages[StartBus[l]]* Voltages[EndBus[l]]

129 *

130 (

131 G[l] * sin(VoltageAngles[StartBus[l]] - VoltageAngles[EndBus[l]])

132 -

133 B[l] * cos(VoltageAngles[StartBus[l]] - VoltageAngles[EndBus[l]])

134)

135 =

136 0

137 ;

138

139 #kVL +P power at End bus of lines

140 subject to PKVLEnd{l in Line}:

141 FlowEndP[l]

142 - G[l]*(Voltages[EndBus[l]]^2)

143 + Voltages[StartBus[l]] * Voltages[EndBus[l]]

144 *

145 (

146 G[l]* cos(VoltageAngles[EndBus[l]] - VoltageAngles[StartBus[l]])

147 +

148 B[l]* sin(VoltageAngles[EndBus[l]] - VoltageAngles[StartBus[l]])

149)

150 =

151 0

152 ;

153

154 #KVL +Q power at End bus of lines

155 subject to QKVLEnd{l in Line}:

156 FlowEndQ[l]

157 + B[l]*(Voltages[EndBus[l]]^2)

158 + Voltages[StartBus[l]] * Voltages[EndBus[l]]

159 *

160 (

161 G[l]* sin(VoltageAngles[EndBus[l]] - VoltageAngles[StartBus[l]])

162 -

163 B[l]* cos(VoltageAngles[EndBus[l]] - VoltageAngles[StartBus[l]])

164)

165 =

166 0

167 ;

168

169 ################# KVL Transformer

170 #KVL +P power at start bus of transformer

171 subject to tPKVLStart{l in Transformer }:

172 FlowStartP[l]

173 - G[l]*(Voltages[StartBus[l]]^2) /(TapRatio[l]^2)

174 + Voltages[StartBus[l]]* Voltages[EndBus[l]]/ TapRatio[l]

175 *

176 (

177 G[l]*cos(VoltageAngles[StartBus[l]] - VoltageAngles[EndBus[l]])

178 +

179 B[l]*sin(VoltageAngles[StartBus[l]] - VoltageAngles[EndBus[l]])

180)

181 =

182 0

183 ;

184

185 #KVL +P power at end bus of transformer

Page 133

186 subject to tPKVLEnd{l in Transformer }:

187 FlowEndP[l]

188 -G[l]* Voltages[EndBus[l]]^2

189 + Voltages[StartBus[l]]* Voltages[EndBus[l]]/ TapRatio[l]

190 *

191 (

192 G[l]* cos(VoltageAngles[EndBus[l]] - VoltageAngles[StartBus[l]])

193 +

194 B[l]* sin(VoltageAngles[EndBus[l]] - VoltageAngles[StartBus[l]])

195)

196 =

197 0

198 ;

199

200 #KVL +Q power at start bus of transformer

201 subject to tQKVLStart{l in Transformer }:

202 FlowStartQ[l]

203 + B[l]*(Voltages[StartBus[l]]^2) /(TapRatio[l]^2)

204 + Voltages[StartBus[l]]/ TapRatio[l]

205 *

206 (

207 G[l]*sin(VoltageAngles[StartBus[l]] - VoltageAngles[EndBus[l]])

208 -

209 B[l]*cos(VoltageAngles[StartBus[l]] - VoltageAngles[EndBus[l]])

210)

211 =

212 0

213 ;

214

215 #KVL +Q power at end bus of transformer

216 subject to tQKVLEnd{l in Transformer }:

217 FlowEndQ[l]

218 + B[l]*(Voltages[EndBus[l]]^2)

219 + Voltages[StartBus[l]]* Voltages[EndBus[l]]/ TapRatio[l]

220 *

221 (

222 G[l]*sin(VoltageAngles[EndBus[l]] - VoltageAngles[StartBus[l]])

223 -

224 B[l]*cos(VoltageAngles[EndBus[l]] - VoltageAngles[StartBus[l]])

225)

226 =

227 0

228 ;

229

230 #reference bus

231 subject to RefBusZero:

232 VoltageAngles[RefBus] = 0;

233

234 ############# Line and Transformer Thermal Limits

235 #Flow limit at Start bus of each line

236 subject to FlowLimitStart{l in LUT}:

237 FlowStartP[l]^2 + FlowStartQ[l]^2 - slackStart[l] = 0;

238

239 subject to FlowLimitEnd{l in LUT}:

240 FlowEndP[l]^2 + FlowEndQ[l]^2 - slackEnd[l] = 0;

241 ##

242 # 2nd Stage

243 # Contingency cases

244 ##

245 block Contingency{c in Contingencies }: {

246 set LUTDIFF = LUT diff {c};

247 set LineDIFF= Line diff {c};

248 set TransformerDIFF = Transformer diff {c};

249 var cVoltages{b in Bus} >= MinVoltage[b], <= MaxVoltage[b];

250 var cPpowerGen{g in Generator } >= MinGenP[g], <= MaxGenP[g];

251 var cQpowerGen{g in Generator} >= MinGenQ[g], <= MaxGenQ[g];

252 var cFlowStartP{l in LUTDIFF };

253 var cFlowStartQ{l in LUTDIFF };

254 var cFlowEndP{l in LUTDIFF };

255 var cFlowEndQ{l in LUTDIFF };

256 var cVoltageAngles{Bus};

Page 134

257 var cslackStart{l in LUTDIFF} <= MaxFlow[l]^2;

258 var cslackEnd{l in LUTDIFF} <= MaxFlow[l]^2;

259

260 #KCL + P power

261 subject to KCLP{b in Bus}:

262 sum{g in Generator: Location[g] == b} (cPpowerGen[g])

263 - sum{l in LUTDIFF: StartBus[l] == b} (cFlowStartP[l])

264 - sum{l in LUTDIFF: EndBus[l] == b} (cFlowEndP[l])

265 - GS[b]*(cVoltages[b]^2)

266 =

267 demScaleDemand*DemandP[b]

268 ;

269

270

271 #KCL + Q power

272 subject to KCLQ{b in Bus}:

273 sum{g in Generator: Location[g] == b} (cQpowerGen[g])

274 - sum{l in LUTDIFF: StartBus[l] == b } (cFlowStartQ[l])

275 - sum{l in LUTDIFF: EndBus[l] == b } (cFlowEndQ[l])

276 +

277 0.5*(cVoltages[b]^2)

278 *

279 (sum{l in LineDIFF: LStartBus[l] == b } (LBsh[l])

280 + sum{t in TransformerDIFF: TStartBus[t] == b} (TBsh[t]/ TapRatio[t]^2)

281 + sum{l in LUTDIFF: EndBus[l] == b} (Bsh[l])

282)

283 + BS[b]*(cVoltages[b]^2)

284 =

285 demScaleDemand*DemandQ[b]

286

287 ;

288

289 #KVL +P Power at start bus of lines

290 subject to PKVLStart{l in LineDIFF }:

291 cFlowStartP[l]

292 - G[l]*(cVoltages[StartBus[l]]^2)

293 + cVoltages[StartBus[l]] * cVoltages[EndBus[l]]

294 *

295 (

296 G[l] * cos(cVoltageAngles[StartBus[l]] - cVoltageAngles[EndBus[l]])

297 +

298 B[l] * sin(cVoltageAngles[StartBus[l]] - cVoltageAngles[EndBus[l]])

299)

300 =

301 0;

302

303 #KVL +Q power at Start bus of lines

304 subject to QKVLStart{l in LineDIFF }:

305 cFlowStartQ[l]

306 + B[l]*(cVoltages[StartBus[l]]^2)

307 + cVoltages[StartBus[l]]* cVoltages[EndBus[l]]

308 *

309 (

310 G[l] * sin(cVoltageAngles[StartBus[l]] - cVoltageAngles[EndBus[l]])

311 -

312 B[l] * cos(cVoltageAngles[StartBus[l]] - cVoltageAngles[EndBus[l]])

313)

314 =

315 0

316 ;

317

318 #kVL +P power at End bus of lines

319 subject to PKVLEnd{l in LineDIFF }:

320 cFlowEndP[l]

321 - G[l]*(cVoltages[EndBus[l]]^2)

322 + cVoltages[StartBus[l]] * cVoltages[EndBus[l]]

323 *

324 (

325 G[l]* cos(cVoltageAngles[EndBus[l]] - cVoltageAngles[StartBus[l]])

326 +

327 B[l]* sin(cVoltageAngles[EndBus[l]] - cVoltageAngles[StartBus[l]])

Page 135

328)

329 =

330 0

331 ;

332 #KVL +Q power at End bus of lines

333 subject to QKVLEnd{l in LineDIFF }:

334 cFlowEndQ[l]

335 + B[l]*(cVoltages[EndBus[l]]^2)

336 + cVoltages[StartBus[l]] * cVoltages[EndBus[l]]

337 *

338 (

339 G[l]* sin(cVoltageAngles[EndBus[l]] - cVoltageAngles[StartBus[l]])

340 -

341 B[l]* cos(cVoltageAngles[EndBus[l]] - cVoltageAngles[StartBus[l]])

342)

343 =

344 0

345 ;

346

347 #KVL +P power at start bus of transformer

348 subject to tPKVLStart{l in TransformerDIFF }:

349 cFlowStartP[l]

350 -G[l]*(cVoltages[StartBus[l]]^2) /(TapRatio[l]^2)

351 +

352 (cVoltages[StartBus[l]]* cVoltages[EndBus[l]]/ TapRatio[l])

353 *

354 (

355 G[l]*cos(cVoltageAngles[StartBus[l]] - cVoltageAngles[EndBus[l]])

356 +

357 B[l]*sin(cVoltageAngles[StartBus[l]] - cVoltageAngles[EndBus[l]])

358)

359 =

360 0

361 ;

362

363 #KVL +P power at end bus of transformer

364 subject to tPKVLEnd{l in TransformerDIFF }:

365 cFlowEndP[l]

366 -G[l]* cVoltages[EndBus[l]]^2

367 +

368 cVoltages[StartBus[l]]* cVoltages[EndBus[l]]/ TapRatio[l]

369 *

370 (

371 G[l]* cos(cVoltageAngles[EndBus[l]] - cVoltageAngles[StartBus[l]])

372 +

373 B[l]* sin(cVoltageAngles[EndBus[l]] - cVoltageAngles[StartBus[l]])

374)

375 =

376 0

377 ;

378

379 #KVL +Q power at start bus of transformer

380 subject to tQKVLStart{l in TransformerDIFF }:

381 cFlowStartQ[l]

382 + B[l]*(cVoltages[StartBus[l]]^2) /(TapRatio[l]^2)

383 + cVoltages[StartBus[l]]/ TapRatio[l]

384 *

385 (

386 G[l]*sin(cVoltageAngles[StartBus[l]] - cVoltageAngles[EndBus[l]])

387 -

388 B[l]*cos(cVoltageAngles[StartBus[l]] - cVoltageAngles[EndBus[l]])

389)

390 =

391 0

392 ;

393

394 #KVL +Q power at end bus of transformer

395 subject to tQKVLEnd{l in TransformerDIFF }:

396 cFlowEndQ[l]

397 + B[l]*(cVoltages[EndBus[l]]^2)

398 + cVoltages[StartBus[l]]* cVoltages[EndBus[l]]/ TapRatio[l]

Page 136

399 *

400 (

401 G[l]*sin(cVoltageAngles[EndBus[l]] - cVoltageAngles[StartBus[l]])

402 -

403 B[l]*cos(cVoltageAngles[EndBus[l]] - cVoltageAngles[StartBus[l]])

404)

405 =

406 0

407 ;

408

409 #reference bus

410 subject to RefBusZero:

411 cVoltageAngles[RefBus] = 0;

412

413 #Line and Transformer Thermal Limits

414 subject to FlowLimitStart{l in LUTDIFF }:

415 cFlowStartP[l]^2 + cFlowStartQ[l]^2 - cslackStart[l] = 0;

416 subject to FlowLimitEnd{l in LUTDIFF }:

417 cFlowEndP[l]^2 + cFlowEndQ[l]^2 - cslackEnd[l] = 0;

418

419 ##

420 #Linking constraints to first stage

421 ##

422 subject to BusVolCons{b in PVBUS }: cVoltages[b] - Voltages[b] = 0;

423 #noteA: duplicate temporary set created for {g in Generator: Location[g]!=

RefBus and (Location[g] in PVBUS)}

424 subject to BusGenCons{g in Generator: Location[g]!= RefBus and (Location[g] in

PVBUS) }: cPpowerGen[g] - PpowerGen[g] = 0;

425 }

426

427 minimize Total_Cost: 0.000001* sum{ g in Generator} (

428 GenConst[g]

429 + baseMVA*GenLin[g]* PpowerGen[g]

430 + (baseMVA ^2)*GenQuad[g]*(PpowerGen[g]^2)

431);

Listing B.1: Security Constrained Optimal Power Flow Model

Page 137

Appendix C

Asset Liability Management
Model with Mean-Variance

1 param T;

2 set TIME ordered = 0..T;

3 set NODES;

4 param Parent{NODES} symbolic;

5 param Probs{NODES };

6 set ASSETS;

7 param Price{ASSETS };

8 param Return{ASSETS , NODES };

9 param Liability{TIME};

10 param InitialWealth;

11 param Gamma; # transaction costs

12 param Lamda; # risk -aversion parameter

13 var mu >=0;

14 block alm stochastic using (nd in NODES , Parent , Probs , st in TIME): {

15 var x_hold{ASSETS} >= 0;

16 var cash >= 0;

17 stages {0}: {

18 subject to StartBudget:

19 (1+ Gamma) * sum{j in ASSETS} (x_hold[j] * Price[j]) + cash = InitialWealth

;

20 }

21 stages {1..T}: {

22 var x_bought{ASSETS} >= 0;

23 var x_sold{ASSETS} >= 0;

24 subject to Inventory{j in ASSETS }:

25 x_hold[j] - (1+ Return[j,nd]) * ancestor (1) .x_hold[j] - x_bought[j] +

x_sold[j] = 0;

26 subject to CashBalance:

27 cash + (1+ Gamma) * sum{j in ASSETS} (Price[j] * x_bought[j]) - ancestor (1)

.cash - (1-Gamma) * sum{j in ASSETS} (Price[j] * x_sold[j]) = -

Liability[st];

28 }

29 stages {T}: {

30 var wealth >= 0;

31 subject to FinalWealth:

32 wealth - sum{j in ASSETS} (Price[j] * x_hold[j]) - cash = 0;

33 subject to ExpPortfolioValue:

34 Exp(wealth) - mu = 0;

35

36 maximize objFunc: wealth - Lamda * ((wealth*wealth) - mu*mu);

37 }

38 }

Listing C.1: Asset Liability Management Model with Mean-Variance

138

Bibliography

[1] Marco Colombo et al. “A structure-conveying modelling language for math-
ematical and stochastic programming”. In:Mathematical Programming Com-
putation 1 (4 2009), pp. 223–247. issn: 1867-2949. url: http://dx.doi.
org/10.1007/s12532-009-0008-2.

[2] Marco Colombo et al. Structure-Conveying Modeling Language User’s Guide.
Feb. 2011. url: http://www.maths.ed.ac.uk/ERGO/sml/userguide.pdf.

[3] Robert Fourer, David M. Gay, and Brian W. Kernighan. AMPL: A Model-
ing Language for Mathematical Programming. Duxbury Press, 2002. isbn:
0534388094. url: http://www.worldcat.org/isbn/0534388094.

[4] Cornelis Antonius Christiaan Kuip. “Algebraic languages for mathematical
programming”. In: European Journal of Operational Research 67.1 (1993),
pp. 25–51.

[5] Emmanuel Fragniere and Jacek Gondzio. “Optimization modeling languages”.
In: Pardalos, P., Resende, M. Handbook of Applied Optimization (2002),
pp. 993–1007.

[6] Bruce A Murtagh. Advanced linear programming: computation and practice.
Vol. 1. McGraw-Hill New York/London, 1981.

[7] William Orchard-Hays. “History of mathematical programming systems”.
In: Annals of the History of Computing 6.3 (1984), pp. 296–312.

[8] Anthony Brook, David Kendrick, and Alexander Meeraus. “GAMS, a user’s
guide”. In: SIGNUM Newsl. 23.3-4 (Dec. 1988), pp. 10–11. issn: 0163-5778.
doi: 10.1145/58859.58863. url: http://doi.acm.org/10.1145/58859.
58863.

[9] J. Bisschop and R. Entriken. “AIMMS the modeling system”. In: Paragon
Decision Techonology (1993).

[10] Yves Colombani and Susanne Heipcke. “Mosel: an extensible environment
for modeling and programming solutions”. In: Proceedings of the Fourth
International Workshop on Integration of AI and OR Techniques in Con-
straint Programming for Combinatorial Optimisation Problems (CP-AI-
OR’02). Ed. by Narendra Jussien and Franc C. Laburthe. Le Croisic, France,
Mar. 2002, pp. 277–290.

[11] Gnu Linear Programming Kit. http://www.gnu.org/software/glpk/.

139

http://dx.doi.org/10.1007/s12532-009-0008-2
http://dx.doi.org/10.1007/s12532-009-0008-2
http://www.maths.ed.ac.uk/ERGO/sml/userguide.pdf
http://www.worldcat.org/isbn/0534388094
http://dx.doi.org/10.1145/58859.58863
http://doi.acm.org/10.1145/58859.58863
http://doi.acm.org/10.1145/58859.58863
http://www.gnu.org/software/glpk/

Bibliography

[12] Tim Helge Hultberg. “FlopC++ An Algebraic Modeling Language Embed-
ded in C++”. English. In: Operations Research Proceedings 2006. Ed. by
Karl-Heinz Waldmann and UlrikeM. Stocker. Vol. 2006. Operations Re-
search Proceedings. Springer Berlin Heidelberg, 2007, pp. 187–190. isbn:
978-3-540-69994-1. doi: 10.1007/978-3-540-69995-8_31. url: http:
//dx.doi.org/10.1007/978-3-540-69995-8_31.

[13] Miles Lubin and Iain Dunning. “Computing in Operations Research using
Julia”. In: arXiv preprint arXiv:1312.1431 (2013).

[14] William E. Hart. Pyomo: Python Optimization Modeling Objects. https:
//software.sandia.gov/trac/coopr/wiki/Pyomo.

[15] William E. Hart, Jean-Paul Watson, and David L. Woodruff. Pyomo: Mod-
eling and Solving Mathematical Programs in Python. Tech. rep. Sandia Na-
tional Laboratories, 2012.

[16] E Weinan. Principles of multiscale modeling. Cambridge University Press,
2011.

[17] ChristianWernz and Abhijit Deshmukh. “Multiscale decision-making: Bridg-
ing organizational scales in systems with distributed decision-makers”. In:
European Journal of Operational Research 202.3 (2010), pp. 828–840.

[18] George B. Dantzig and Philip Wolfe. “The Decomposition Algorithm for
Linear Programs”. English. In: Econometrica 29.4 (1961), pp. 767–778.
issn: 00129682. url: http://www.jstor.org/stable/1911818.

[19] George B Dantzig and Philip Wolfe. “Decomposition principle for linear
programs”. In: Operations research 8.1 (1960), pp. 101–111.

[20] Jacques F Benders. “Partitioning procedures for solving mixed-variables
programming problems”. In: Numerische mathematik 4.1 (1962), pp. 238–
252.

[21] Jacek Gondzio and Andreas Grothey.Object Oriented Parallel Solver. http:
//www.maths.ed.ac.uk/~gondzio/parallel/solver.html. July 2003.

[22] Jacek Gondzio and Andreas Grothey. “Exploiting structure in parallel im-
plementation of interior point methods for optimization”. In: Computational
Management Science 6 (2 2009). 10.1007/s10287-008-0090-3, pp. 135–160.
issn: 1619-697X. url: http://dx.doi.org/10.1007/s10287-008-0090-
3.

[23] Jacek Gondzio and Andreas Grothey. “Direct solution of linear systems of
size 109 arising in optimization with interior point methods”. In: Proceed-
ings of the 6th international conference on Parallel Processing and Applied
Mathematics. PPAM’05. Berlin, Heidelberg: Springer-Verlag, 2006, pp. 513–
525. isbn: 3-540-34141-2, 978-3-540-34141-3. doi: 10.1007/11752578_62.
url: http://dx.doi.org/10.1007/11752578_62.

[24] Cosmin Petra et al. The solver - PIPS. http://www.mcs.anl.gov/~petra/
pips.html.

Page 140

http://dx.doi.org/10.1007/978-3-540-69995-8_31
http://dx.doi.org/10.1007/978-3-540-69995-8_31
http://dx.doi.org/10.1007/978-3-540-69995-8_31
https://software.sandia.gov/trac/coopr/wiki/Pyomo
https://software.sandia.gov/trac/coopr/wiki/Pyomo
http://www.jstor.org/stable/1911818
http://www.maths.ed.ac.uk/~gondzio/parallel/solver.html
http://www.maths.ed.ac.uk/~gondzio/parallel/solver.html
http://dx.doi.org/10.1007/s10287-008-0090-3
http://dx.doi.org/10.1007/s10287-008-0090-3
http://dx.doi.org/10.1007/11752578_62
http://dx.doi.org/10.1007/11752578_62
http://www.mcs.anl.gov/~petra/pips.html
http://www.mcs.anl.gov/~petra/pips.html

Bibliography

[25] Christian Valente et al. “Extending Algebraic Modelling Languages for
Stochastic Programming”. In: INFORMS J. on Computing 21.1 (Jan. 2009),
pp. 107–122. issn: 1526-5528. doi: 10.1287/ijoc.1080.0282. url: http:
//dx.doi.org/10.1287/ijoc.1080.0282.

[26] Robert Fourer and Leo Lopes. “StAMP: A Filtration-Oriented Modeling
Tool for Multistage Stochastic Recourse Problems”. In: INFORMS Journal
on Computing 21.2 (2009), pp. 242–256.

[27] Emmanuel Fragniere et al. “Structure Exploiting Tool in Algebraic Model-
ing Languages”. In: Management Science 46 (2000), pp. 1145–1158.

[28] Michael C. Ferris and Jeffrey D. Horn. “Partitioning Mathematical Pro-
grams for Parallel Solution”. In: Mathematical Programming 80 (1994),
pp. 35–62.

[29] European Exascale Software Initiative. Final report on roadmap and rec-
ommendations development. http://www.eesi-project.eu. 2011.

[30] Joey Huchette, Miles Lubin, and Cosmin Petra. “Parallel algebraic model-
ing for stochastic optimization”. In: Proceedings of the 1st First Workshop
for High Performance Technical Computing in Dynamic Languages. IEEE
Press. 2014, pp. 29–35.

[31] David M. Gay. Hooking Your Solver to AMPL. Tech. rep. Bell Laboratories,
Murray Hill, NJ, 1997.

[32] Feng Qiang and Andreas Grothey. PSMG–A Parallel Structured Model
Generator for Mathematical Programming. Tech. rep. Technical report, School
of Mathematics, University of Edinburgh, 2014.

[33] Xi Yang, Jacek Gondzio, and Andreas Grothey. “Asset liability manage-
ment modelling with risk control by stochastic dominance”. In: Journal of
Asset Management 11.2-3 (), pp. 73–93. issn: 1470-8272. doi: 10.1057/
jam.2010.8. url: http://dx.doi.org/10.1057/jam.2010.8.

[34] D. Dentcheva and A. Ruszczynski. “Optimization with Stochastic Domi-
nance Constraints”. In: SIAM Journal on Optimization 14.2 (2003), pp. 548–
566. doi: 10.1137/S1052623402420528. eprint: http://dx.doi.org/
10.1137/S1052623402420528. url: http://dx.doi.org/10.1137/
S1052623402420528.

[35] Andreas Grothey Jacek Gondzio. “Parallel interior-point solver for struc-
tured quadratic programs: Application to financial planning problems”. In:
Annals of Operations Research volume 152.1 (2007), 319–339(21).

[36] Arthur M Geoffrion. “Generalized benders decomposition”. In: Journal of
optimization theory and applications 10.4 (1972), pp. 237–260.

[37] Andreas Grothey. “Decomposition Methods for Nonlinear Nonconvex Op-
timization Problems”. PhD thesis. University of Edinburgh, 2001.

[38] Robert J Vanderbei and David F Shanno. “An interior-point algorithm for
nonconvex nonlinear programming”. In: Computational Optimization and
Applications 13.1-3 (1999), pp. 231–252.

Page 141

http://dx.doi.org/10.1287/ijoc.1080.0282
http://dx.doi.org/10.1287/ijoc.1080.0282
http://dx.doi.org/10.1287/ijoc.1080.0282
http://www.eesi-project.eu
http://dx.doi.org/10.1057/jam.2010.8
http://dx.doi.org/10.1057/jam.2010.8
http://dx.doi.org/10.1057/jam.2010.8
http://dx.doi.org/10.1137/S1052623402420528
http://dx.doi.org/10.1137/S1052623402420528
http://dx.doi.org/10.1137/S1052623402420528
http://dx.doi.org/10.1137/S1052623402420528
http://dx.doi.org/10.1137/S1052623402420528

Bibliography

[39] Bora Tarhan, Ignacio E Grossmann, and Vikas Goel. “Stochastic program-
ming approach for the planning of offshore oil or gas field infrastructure
under decision-dependent uncertainty”. In: Industrial & Engineering Chem-
istry Research 48.6 (2009), pp. 3078–3097.

[40] Diana Cobos-Zaleta and Roger Z Rı́os-Mercado. “A MINLP model for mini-
mizing fuel consumption on natural gas pipeline networks”. In: Proceedings
of the XI Latin-Ibero-American conference on operations research. 2002,
pp. 90–94.

[41] Xiang Li et al. “Stochastic pooling problem for natural gas production
network design and operation under uncertainty”. In: AIChE Journal 57.8
(2011), pp. 2120–2135.

[42] Manuel Soler et al. “En-route optimal flight planning constrained to pass
through waypoints using MINLP”. In: Proceedings of 9th USA/Europe Air
Traffic Management Research and Development Seminar, Berlin. 2011.

[43] Tom Schouwenaars et al. “Mixed integer programming for multi-vehicle
path planning”. In: European control conference. Vol. 1. 2001, pp. 2603–
2608.

[44] Xiang Li, Asgeir Tomasgard, and PaulI. Barton. “Nonconvex Generalized
Benders Decomposition for Stochastic Separable Mixed-Integer Nonlinear
Programs”. English. In: Journal of Optimization Theory and Applications
151.3 (2011), pp. 425–454. issn: 0022-3239. doi: 10.1007/s10957-011-
9888-1. url: http://dx.doi.org/10.1007/s10957-011-9888-1.

[45] OpenMPI. www.open-mpi.org.

[46] Flex. http://www.gnu.org/software/flex/.

[47] Bison. http://www.gnu.org/software/bison/.

[48] Michael Bartholomew-Biggs et al. “Automatic differentiation of algorithms”.
In: Journal of Computational and Applied Mathematics 124.1 (2000), pp. 171–
190.

[49] R.L. Burden and J.D. Faires. Numerical Analysis. Brooks/Cole, Cengage
Learning, 2011. isbn: 9780538735643. url: http://books.google.co.uk/
books?id=KlfrjCDayHwC.

[50] Andreas Griewank et al. “On automatic differentiation”. In: Mathematical
Programming: recent developments and applications 6 (1989), pp. 83–107.

[51] Bruce Christianson. “Automatic Hessians by reverse accumulation”. In:
IMA Journal of Numerical Analysis 12.2 (1992), pp. 135–150. doi: 10.
1093 / imanum / 12 . 2 . 135. eprint: http : / / imajna . oxfordjournals .

org / content / 12 / 2 / 135 . full . pdf + html. url: http : / / imajna .

oxfordjournals.org/content/12/2/135.abstract.

[52] Laurence Dixon. “Automatic differentiation: calculation of the Hessian Au-
tomatic Differentiation: Calculation of the Hessian”. In: Encyclopedia of
Optimization. Springer, 2009, pp. 133–137.

Page 142

http://dx.doi.org/10.1007/s10957-011-9888-1
http://dx.doi.org/10.1007/s10957-011-9888-1
http://dx.doi.org/10.1007/s10957-011-9888-1
www.open-mpi.org
http://www.gnu.org/software/flex/
http://www.gnu.org/software/bison/
http://books.google.co.uk/books?id=KlfrjCDayHwC
http://books.google.co.uk/books?id=KlfrjCDayHwC
http://dx.doi.org/10.1093/imanum/12.2.135
http://dx.doi.org/10.1093/imanum/12.2.135
http://imajna.oxfordjournals.org/content/12/2/135.full.pdf+html
http://imajna.oxfordjournals.org/content/12/2/135.full.pdf+html
http://imajna.oxfordjournals.org/content/12/2/135.abstract
http://imajna.oxfordjournals.org/content/12/2/135.abstract

Bibliography

[53] Andreas Griewank and Andrea Walther. Evaluating Derivatives: Princi-
ples and Techniques of Algorithmic Differentiation. Second. Philadelphia,
PA, USA: Society for Industrial and Applied Mathematics, 2008. isbn:
0898716594, 9780898716597.

[54] Assefaw H Gebremedhin et al. “Efficient computation of sparse Hessians
using coloring and automatic differentiation”. In: INFORMS Journal on
Computing 21.2 (2009), pp. 209–223.

[55] Andreas Griewank, David Juedes, and Jean Utke. “ADOL-C: A Package
for the Automatic Differentiation of Algorithms Written in C/C++”. In:
ACM Trans. Math. Softw. 22.2 (June 1996), pp. 131–167. issn: 0098-3500.
doi: 10.1145/229473.229474. url: http://doi.acm.org/10.1145/
229473.229474.

[56] Assefaw H Gebremedhin et al. “ColPack: Software for graph coloring and
related problems in scientific computing”. In: ACM Transactions on Math-
ematical Software (TOMS) 40.1 (2013), p. 1.

[57] Robert Mansel Gower and Margarida P Mello. Hessian matrices via au-
tomatic differentiation. Universidade Estadual de Campinas, Instituto de
Matemática, Estat́ıstica e Computação Cient́ıfica, 2010.

[58] RM Gower and MP Mello. “A new framework for the computation of Hes-
sians”. In: Optimization Methods and Software 27.2 (2012), pp. 251–273.

[59] Andrea Walther. “Computing sparse Hessians with automatic differenti-
ation”. In: ACM Transactions on Mathematical Software (TOMS) 34.1
(2008), p. 3.

[60] Robert Mansel Gower and Margarida Pinheiro Mello. “Computing the spar-
sity pattern of hessians using automatic differentiation”. In: ACM Trans-
actions on Mathematical Software (TOMS) 40.2 (2014), p. 10.

[61] Community Portal for Automatic Differentiation. www.autodiff.org. url:
www.autodiff.org.

[62] Feng Qiang. AutoDiff Library. http://www.autodiff.org/?module=
Tools&tool=AutoDiff_Library.

[63] Gennadiy Rozental. Boost Test Library. http://www.boost.org/doc/
libs/1_34_1/libs/test/doc/components/utf/index.html.

[64] R. Neidinger. “Introduction to Automatic Differentiation and MATLAB
Object-Oriented Programming”. In: SIAM Review 52.3 (2010), pp. 545–
563. doi: 10.1137/080743627. eprint: http://epubs.siam.org/doi/
pdf/10.1137/080743627. url: http://epubs.siam.org/doi/abs/10.
1137/080743627.

[65] Andrea Walther and Andreas Griewank. “Getting started with ADOL-C”.
In: Combinatorial Scientific Computing (2012), pp. 181–202.

[66] Joerg Walter and Mathias Koch. Basic Linear Algebra Library. Tech. rep.
url: http://www.boost.org/doc/libs/1_57_0/libs/numeric/ublas/
doc/index.html.

Page 143

http://dx.doi.org/10.1145/229473.229474
http://doi.acm.org/10.1145/229473.229474
http://doi.acm.org/10.1145/229473.229474
www.autodiff.org
www.autodiff.org
http://www.autodiff.org/?module=Tools&tool=AutoDiff_Library
http://www.autodiff.org/?module=Tools&tool=AutoDiff_Library
http://www.boost.org/doc/libs/1_34_1/libs/test/doc/components/utf/index.html
http://www.boost.org/doc/libs/1_34_1/libs/test/doc/components/utf/index.html
http://dx.doi.org/10.1137/080743627
http://epubs.siam.org/doi/pdf/10.1137/080743627
http://epubs.siam.org/doi/pdf/10.1137/080743627
http://epubs.siam.org/doi/abs/10.1137/080743627
http://epubs.siam.org/doi/abs/10.1137/080743627
http://www.boost.org/doc/libs/1_57_0/libs/numeric/ublas/doc/index.html
http://www.boost.org/doc/libs/1_57_0/libs/numeric/ublas/doc/index.html

Bibliography

[67] Paul Hovland and Christian Bischof. “Automatic differentiation for message-
passing parallel programs”. In: Parallel Processing Symposium, Interna-
tional. IEEE Computer Society. 1998, pp. 0098–0098.

[68] Christian Bischof et al. “Parallel reverse mode automatic differentiation for
OpenMP programs with ADOL-C”. In: Advances in Automatic Differenti-
ation. Springer, 2008, pp. 163–173.

[69] R Tyrrell Rockafellar and Stanislav Uryasev. “Conditional value-at-risk for
general loss distributions”. In: Journal of banking & finance 26.7 (2002),
pp. 1443–1471.

[70] Harry Markowitz. “Portfolio selection”. In: The journal of finance 7.1 (1952),
pp. 77–91.

[71] Nai-Yuan Chiang. “Structure-Exploitng Interior Point Methods for Secu-
rity Constrained Optimal Power Flow Problems”. PhD thesis. University
of Edinburgh, 2013.

Page 144

	cover sheet
	Thesis_final_v2
	Abstract
	Introduction
	Background of Algebraic Modelling Language
	Structured Modelling Approaches Review
	Motivation of Parallelization
	PSMG overview
	Structure of this Thesis

	Structured Problems and Modelling Techniques
	SML Modelling Syntax Review
	SML Keywords
	Block Model
	Stochastic Model
	Explicit Variable Referencing

	MSND: A Nested-block Structured Problem
	ALM-SSD: A Multistage Stochastic Programming Problem
	Discussion
	Block Separability Assumption
	Objective Function Treatment

	Parallel Solvers for Structured Problems
	Structure Exploiting in Interior Point Method
	Linear Algebra in IPM
	Structure Exploiting in IPM
	Parallel Allocation and Solving

	Decomposition Algorithms
	Benders' Decomposition
	Parallel allocation and solving

	Discussion
	Modelling Nonconvex Problems

	PSMG Design and Implementation
	Development Environment and Technique
	Block and Stochastic Model
	Structure Building Stage
	Template Model Tree
	Expanded Model Tree

	Parallel Problem Generation Stage
	Solver Driven Problem Assignment
	Constraint Separability Detection
	Function and Derivative Evaluation

	Evaluating Derivatives in PSMG
	Forward AD Algorithm
	Reverse AD Algorithm
	Computing Sparse Hessian
	AutoDiff Library Module
	Future Work in the AD Module
	Some Parallel Consideration

	PSMG Solver Interface
	General Problem Formulation
	Problem Structure Retrieval
	Variable and Constraints Information
	Local and Distributed Interface Methods
	Inter-process Communication
	Interface Method Summary

	LP Problem Interface
	Constraint Matrix Evaluation
	Constraint Function Evaluation
	Objective Function Evaluation
	Objective Gradient Evaluation

	QP Problem Interface
	Hessian Matrix Evaluation
	Objective Function Evaluation
	Objective Gradient Evaluation

	NLP Problem Interface
	Jacobian Matrix Evaluation
	Hessian of the Lagrangian Matrix Evaluation
	Constraint Function Evaluation
	Objective Function Evaluation
	Objective Gradient Evaluation

	Summary

	Linking With Parallel Solvers
	Structure Exploiting Interior Point Method
	Building Matrix Structure
	Building Vector Structure
	Parallel Process Allocation
	Parallel Problem Generation

	Benders' Decomposition
	Parallel problem generation

	PSMG Performance Benchmark
	LP and QP Problems
	Test Problem Sets
	Comparison Analysis with SML
	Serial Performance
	Parallel Performance
	Memory Usage Analysis

	NLP Problems
	SCOPF Problem
	Serial Performance
	Parallel Performance

	Modelling and Solution Time
	Serial Analysis
	Parallel Analysis
	Discussion

	Discussion

	Conclusions
	Research Summary
	Future Work

	Appendices
	AutoDiff_Library Interface Methods
	Security Constrained Optimal Power Flow Model
	Asset Liability Management Model with Mean-Variance

