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A B S T R A C T

The large-scale structure of the Universe is delineated by the spatial distributions of 

galaxies and clusters of galaxies. This thesis describes three projects concerned with 

the use of galaxies and clusters as cosmological probes, following the presentation of 

necessary background m aterial in Chapter 1 .

Chapter 2 is concerned with spatial correlations of clusters of galaxies. After compre­

hensively reviewing previous work addressing this topic from both observational and 

theoretical points of view, we present, test and apply an im portant new method for 

computing theoretical cluster correlations. Our method combines the theory of peaks 

in Gaussian random fields with the evolution of the cosmological density field by the 

Zeldoviclr Approximation: this is the first analytic calculation of the cluster correlation 

function to take account of the nonlinear evolution of the cosmological density field on 

cluster scales. We find good agreement between our results and those from recent nu­

merical simulations, except for the richest cluster samples, for which our method yields 

stronger clustering. Comparison of our predicted correlations with those observed in 

recent optical cluster samples reveal that the once-popular Einstein -  de Sitter Cold 

Dark M atter (CDM) model lacks the large-scale power required to match the observed 

clustering. We also apply our method in the first theoretical study of the spatial corre­

lations of R O S A T  clusters. Our results here favour cosmogonies with more large-scale 

power than CDM, in accordance with those we obtained from optical cluster samples.

The projects in Chapters 3 and 4 are concerned with galaxy clustering. In Chapter 3 

we consider the redshift-space clustering of samples of I R A S  galaxies selected on the 

basis of their dust emission temperature, having argued tha t there might be a relation



between the tem perature of the galaxy and density of the environment in which the 

galaxy is located. We find, however, no conclusive evidence for a difference in the 

clustering strength of the “warm” and “cool” samples in redshift space. This validates 

the use of redshift samples of I R A S  galaxies as tracers of large-scale structure, as well 

as constraining models of merger-induced star formation.

In Chapter 4 we show, through the novel analysis of liigli-resolution numerical simulation 

data, how the observed power spectra of optical and I R A S  galaxy clustering constrain 

the initial power spectrum of density fluctuations and the relation between the galaxy dis­

tribution and the underlying density field. Motivated by recent N -body/hydrodynam ic 

simulations, we employ a biasing prescription in which the local galaxy number density 

at redshift zero is determined by the present local mass density. We determine which 

combinations of initial power spectrum and biasing prescription are consistent with the 

observed clustering of optical galaxies and use the observed relation between the dis­

tributions of optical and I R A S  galaxies to predict corresponding redshift-spa.ee I R A S  

power spectra. These are compared with observations, as are the pairwise velocity dis­

persions predicted by the models. In this way, building, in part, on our results from 

Chapter 3, we are able to construct a coherent picture of galaxy clustering which is in 

accord with our results 011 cluster correlations from Chapter 2, showing tha t galaxies 

and clusters are consistent probes of the large-scale structure of the Universe.
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Amongst the most fundamental questions addressed by the physical sciences are those 

of cosmology, concerning the formation and evolution of the large-scale structure of the 

Universe. Cosmology has matured greatly in recent decades, as increasingly sophisticated 

techniques -  observational, theoretical and computational -  have been brought to bear 

upon its subject m atter. Rather than attem pt to survey all of these advances, this 

Introduction provides the context in which to set the work described in subsequent 

chapters of this thesis. General references covering this background m aterial are the 

books by Weinberg (1972), Kolb & Turner (1990) and Peebles (1993) and the proceedings 

of the Nobel Symposium 79 (Nilsson e t  al. 1991), to which the reader is referred for a 

fuller list of original references than is presented here.

1.1 T H E BIG  B A N G  M ODEL

1.1 .1  T h e C osm olog ica l P rin cip le

The basic tenet of the Big Bang cosmology is the Cosmological Principle. This is, ba­

sically, a statem ent of cosmic humility: it posits tha t we do not occupy a privileged 

position in the Universe or, more formally, that the Universe is isotropic about all points 

and, hence, homogeneous. The weight of astronomical evidence is against this assump­

tion, as we see inhomogeneities on scales up to tens of megaparsecs, so it is conventional 

to say tha t the homogeneity only holds in some statistical sense, when the Universe is 

averaged on some sufficiently large scale. Formal problems arise when one takes averages 

in relativistic cosmologies (Ellis 1988), but we shall follow convention in neglecting these 

and press on with discussion of isotropic, homogeneous models.

1 .1 .2  T he F riedm ann-L em aitre-R obertson -W alker M etric

The Cosmological Principle motivates the study of homogeneous, isotropic spacetimes. 

The metric for the full set of such spacetimes is that studied variously by Friedmann, 

Lemaitre, Robertson and Walker (FLRW). The FLRW metric may be derived by em­

ploying the following chain of reasoning (Islam 1992): for a full, rigorous derivation the



reader is referred to Weinberg (1972).

Consider a spacetime. The Cosmological Principle requires tha t for this spacetime to 

be used as a model for the Universe it must be homogeneous. It follows, therefore, 

tha t we can foliate the spacetime into a set of space-like hyper surf aces, labelled by some 

param eter t  and tha t these hypersurfaces are homogeneous. If this foliation is performed 

such tha t the surface of simultaneity of the local Lorentz frame of any observer lying in 

a particular hypersurface coincides locally with tha t hypersurface then the param eter t 

may be identified with the proper time of the observer.

We may introduce coordinates (a;1, a'2, x 3) on the space-like hypersurfaces which are 

constant along each of the time-like geodesics orthogonal to the hyper surfaces. It follows 

tha t the line element in the spacetime is given by

ds2 = c2 df2 -  htJ d x l d x J, ( 1 .1 )

for i , j  =  1 . . . 3 .  In general h -  =  h - f t ,  x 1 , x 2 , x 3) and the cross terms in the metric goi 

must vanish if the definition of simultaneity given by t  — const, is to agree with that 

of the local Lorentz frame. The Einstein summation convention is assumed throughout 

and the signature of the metric is taken to be (-|--------- ).

Consider a particular space-like hypersurfa.ee, given by t =  t 0 . The spatial separation be-
1 2  3 1 1 2  2 3tween a close pair of observers with coordinates (x  , x , x  ) and (a; + A .t , x + A.t , x  -f

A x 3) is h - A x ' A x 3. A triangle is defined by this pair of observers and a third observer 

in their neighbourhood on the hypersurfa.ee t  = t 0 . Consider the triangle described by 

the same three observers (assumed to travel along geodesics) on the hypersurface cor­

responding to some later time fj. The isotropy and homogeneity of the Cosmological 

Principle requires the three angles within the triangle to remain constant with time, so 

tha t the lengths of its sides must increase in proportion to each other. It follows that 

the 3-metric h -  takes the form

h tJ =  a \ t ) l t ] , ( 1 .2 )

where ci(t) is called the scale factor and 7 -  = , x 2, x 3). By assumption the 3-

space described by the metric 7 -  is homogeneous and isotropic. It can be shown (see
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Weinberg 1972) tha t such spaces (called maximally symmetric because they admit the 

maximum number of Killing vectors) are spaces of constant curvature, in the sense that 

their Riemann tensor is given by

{3)R,jki =  H l . k l j l  ~  7,;7jfc), (1.3)

where k  is called the curvature constant.

It is simple to verify tha t one 3-metric that satisfies this equation is the one yielding the 

comoving line element

7 ,-jda;' daP =  (1 +  k r 2 / 4 ) ~ 2 [(da;1)2 + (da;2) 2 +  (dm3)2] , (1.4)

where f 2 =  (a;1)2 + (z 2)2 +  (£3)2- Thus, this metric satisfies our requirements of ho­

mogeneity and isotropy. It can be shown (Weinberg 1972) tha t any two maximally 

symmetric metrics with the same value of the curvature constant k  and the same signa­

ture may be related by a coordinate transformation. It follows, therefore, tha t we have 

found the unique set of metrics satisfying the Cosmological Principle and that, by the 

coordinate transformations

r =  f / (  1 + kr2 /  4)

a;1 = fsin#cos</>

x 2 = fsin9siii(f)

x3 = rcosd

they take the form of the FLRW line element, which reads:

dsz =  c2d t 2 — a ( t) df + r 2(d(92 + sin2^ d0 2)
1 — k r 2

(1.5)

It is clear from equation 1.5 that the value of k  can be scaled by a suitable choice of 

units for the r  coordinate. It follows that k  can take values —1, 0,1, yielding solutions in 

which the 3-space is described, respectively, as being hyperbolic, flat and spherical. In 

equation 1.5 $,</> are the usual azimuthal, meridonal angles, respectively. The coordinate 

r  runs from 0 to oo for k = 0 , - 1 , but only from 0 to 2 tt if k = 1 : in the former two 

cases the space is infinite, while it is finite, although unbounded, for k  = 1 .
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1.1.3 The Recession of the Nebulae

The isotropy of the FLRW model restricts its velocity field to be either pure expansion 

or pure contraction, since the presence of either shear or vorticity components would 

define preferred directions.

Consider light em itted by a source at some time t e , which is detected by an observer at 

time t Q. W ithout loss of generality, we may place the observer at the origin of coordinates 

and consider a radial path  for the light, since setting d# = d^  = 0 is consistent with 

the vanishing shear and vorticity in the FLRW model. Photons follow null geodesics 

( i .e .  ds2 = 0), in which case equation 1.5 gives the equation of motion of a particular 

wave crest as

where r e is the radial coordinate of the source. Consider now the next wave crest, 

which is em itted at time t e +  6te and observed at time t a + 6t0 . It follows from the 

time-independence of / ( r e) that

since the change in a ( t )  in times 6te and St0 will be negligible. From this it follows that 

the frequency, ue , of emission and of observation, ua, of light propagating in the FLRW 

model are related by

( 1 .6 )

Integrating this along the path of the light yields

(1.7)

v.O K  _  a ( * e ) (1-9)
V.e Sto a ( t oy

Thus, if we define the quantity

(1.10)
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where A0, Ae are the wavelengths corresponding to the frequencies u0 , ue respectively, we 

see that

1 +  2

If 2 > 0 then light is redshifted by propagation through an FLRW model, while it is 

bluesliifted if 2 < 0. It is convenient to normalise the scale factor to equal unity at the 

present, in which case equation 1.11 shows that the value of the scale factor, a ( z ) ,  at the 

time of emission of a photon which is observed now with a redshift 2 is given by

« M  =  (1.12)

From 1910 onwards, Slipher undertook a programme of spectroscopic observations of 

spiral nebulae. By 1922 he was able to report that out of a sample of 41 spiral nebulae, 

36 had redshifted lines and only five showed blue shifts. In 1918, W irtz suggested that 

Slipher’s observations should be interpreted as evidence for a general recession of the 

nebulae and this view was strengthened as further work by W irtz and Lundmark in the 

1920s showed tha t Slipher’s redsliifts increased with the distance to the nebulae, which is 

in accordance with their being cosmological redshifts in an FLRW universe, as we shall 

now show.

The argument advanced by W irtz became widely accepted following Hubble’s 1929 an­

nouncement of a “roughly linear relation” between redshift and distance. The distances 

to the nebulas estimated by Slipher and Hubble were luminosity distances, determined 

using Cepheid variable stars as “standard candles” -  objects whose luminosities could 

be deduced (from the period-luminosity relation in the case of Cepheids) and, hence, 

whose apparent magnitudes could be used as measures of distance. If the luminosity of 

a source is C and the measured flux of energy from it is JF, then its luminosity distance, 

d L, is defined by the relation

£  =  — . (1.13)
L 4ttJF

Tlie reason for this choice of definition is obvious in a static universe and to see its 

utility in a FLRW model, consider again the emission of light by a source at coordinate
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r e a t time t e, detected by an observer at the origin at time t 0 . The fraction of the area 

of the sphere surrounding the source tha t is covered by the observer’s detector (with a 

collecting area of dA) is AA/A-Ka2{ t0) r 2. The energy flux reaching the detector is reduced 

by a factor (1 -f z)2, where z is the redshift of the source: the first factor of (1 +  z) comes 

from the reduction in the energy of each individual photon that results from equation 1 .9 , 

while the second comes from the decrease in the arrival rate of photons, which follows 

from equation 1.8. It follows tha t the luminosity distance is given by

dL =  «(io)re(1 +  z)- (1.14)

The coordinate distance r e is unobservable, so we must eliminate it. This may be done 

as follows, for the case of a nearby source. We first make use of the fact tha t f ( r e ) ~  re 

for small values of r e, irrespective of the value of the curvature param eter k. If we make 

a Taylor expansion for the scale factor

a ( X )  -  CI( i o )  +  (* e  _  t o ) d (.t o )  +  (* e  ~  t o ) 2 +  • • • , (1.15)

where the dot denotes differentiation w.r.t. t  and substitute this into equation 1.7 we 

obtain

(*0
la(f0

2 a (te)O  +  +  ( t e ~ t 0 )2 ^
2a(i0)

(1.16)

The same Taylor series may be used in equation 1.11 to obtain

1 +  z  = 1 +  (*e t  ) ^ -  +  ( t 2 « C O

2 a ( t0)
+ (1.17)

which we may invert for small (fe -  t 0 ) a ( t0) / a ( t 0) and solve for (ie — t a ), to yield

f \ i .  'd ( t0)a(t
(to ~ t j  -  j 7—r < z  -  1 ------------- -

a \ t 'o )  (  ■ V o )

(1.18)

Substituting this into equation 1.16 and then substituting the resulting expression for 

r e into the definition for the luminosity distance we obtain

L =  «  +
<to)

2 2 C Z
i +

d ( t0)a ( t0)
d2(t0

+ . . . . (1.19)
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Comparing this with Hubble’s observations in the low redsliift limit tha t he studied 

shows tha t the quantity a ( t0 ) / a ( t 0) is to be identified with Hubble’s constant, H 0, if 

we are to interpret the redshifts observed by Slipher and Hubble as resulting from the 

expansion of a FLRW universe.

A comprehensive historical account of the observational estimation of E 0 is presented by 

Rowan-Robinson (1985), while the review articles by Jacoby et al. (1992) and van den 

Bergh (1992) summarise the current state of play in this controversial field. In this thesis 

we adopt the convention of writing Hubble’s constant as H 0 =  100 h km s_1 Mpc-1 , with 

the observational uncertainty as to its value translating to the fact tha t h can only be 

constrained to lie within the range 1 > h >  0.5.

1.1 .4  G eneral R e la tiv ity

The determination of the dependence of the scale factor, a ( t ) ,  in equation 1.5 on time, t,  

requires the specification of the dynamics of the FLRW model. The standard Big Bang 

cosmology assumes tha t this is correctly given by the field equations of general relativity, 

which read -

G,iy =  8 7 tG T ^ ,  ( 1 .2 0 )

where the Einstein tensor, G  , describes the curvature of the spacetime, T/liy is the 

energy-momentum tensor, G  is Newton’s gravitational constant and we use units in 

which the speed of light is unity.

The symmetries of the FLRW model dictate tha t the energy-momentum tensor must 

take the form

T = A u h K  +  b 9»v (!-21)

where u^ is the 4-velocity. By analogy with the corresponding case in special relativity, 

this form for T  may be identified with that of the perfect fluid

T,w  =  {P +  P ) % K  + p g ( 1 .2 2 )
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with the additional constraint tha t the pressure, p,  and energy density, p, must depend 

only on time. W ith this form for T  it follows that

T£" =  0, (1.23)

where the semi-colon denotes covariant differentiation. The spatial components of this 

equation are satisfied identically, while the temporal component yields the First Law of 

Thermodynamics, in the form

d(pa3) =  — p d (a 3). (1-24)

The Bianclii identities ensure that

( R ^ - l g V ' R )  =  0, (1.25)

where R is the Ricci tensor, g is the metric tensor and R  is the Ricci scalar. The 

term  in brackets in equation 1.25 is, therefore, a candidate for being the Einstein tensor, 

but g ? ” =  0, so tha t the Einstein tensor can only be defined up to a constant multiple 

of the metric tensor. It follows, therefore, tha t Einstein’s equations take the form

R„u _  1 g v » R  _  A g »v =  g7rGT^  (! 26)

where A is called the cosmological constant. Einstein first used the freedom to introduce 

the A-term into equation 1.26 when he noticed that without it the field equations would 

admit no static solutions, which was abhorrent to his intuition. In the light of the 

discovery of the recession of the nebulae by Sliplier and Hubble, Einstein removed the A- 

term from the field equations, dubbing it “the biggest blunder of my life” . Since then the 

cosmological constant has often been the last resort of a theorist unable to account for 

some observational data  (e.g.  the redsliift distribution of quasars: Petrosian e t  al. 1967): 

cosmologies with non-zero values of A will be met from time to time in this thesis and the 

reader may wish to recall these historical precedents at each re-appearance. An excellent 

review of the chequered career of the cosmological constant and the controversies that 

still surround it is presented by Carroll et  al. (1992).
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1 .1 .5  T h e  F r ied m a n n  E q u a tio n s

Substituting the FLRW metric into the Einstein equations with the perfect fluid form 

for yields the following pair of coupled equations

These are the Friedmann equations, which describe the dynamics of the FLRW model, 

when supplemented with an equation of state, p  = p ( p ) .  Three equations of state will 

be of particular interest to us: those for m atte r-, radiation- and vacuum-dominated 

universes. The Universe today is m atter-dom inated and is well approximated by dust 

( i .e .  p m = 0), in which case equation 1.24 gives the variation of the density, p m , in 

non-relativistic m atter as

Another interesting equation of state is tha t for radiation, where p m =  p T/ 3, in which 

case the energy density, p T, in radiation varies as

the equation of state p v = — pv, in which case the vacuum energy density, pv, does not 

vary with scale factor.

The Friedmann equations may be combined to yield the Raycliaudhuri equation for 

isotropic, homogeneous models, which reads

(1.27)

and

(1.28)

- 3 (1.29)

p r ce a 4 . (1.30)

Finally, the false vacuum state in the inflationary models discussed in Section 1.2 has

a
a (1.31)
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Consider the situation where A = 0 and (p + 3p) > 0: this la tter is the so-called Strong

Energy Condition {e.g. Hawking & Ellis 1973) and it holds true for all known kinds of 

classical m atter. In tha t case, a < 0 which, coupled with the fact tha t a > 0 today (by 

the observed recession of the nebulae) implies (Hawking & Penrose 1970) that a =  0 at 

some finite time in the past, which it is clearly sensible to label as t  — 0. This is the 

Big Bang. It can be shown tha t scalars defined by contraction from the curvature tensor 

diverge as t  —> 0, so tha t the Big Bang is a curvature singularity. Such a point must be 

excluded from the spacetime manifold and, thus, the Big Bang marks the point at which 

classical physics breaks down. This immensely im portant result follows solely from the 

symmetries of the FLRW metric and a reasonable assumption about the equation of 

state.

A positive value of the cosmological constant can push the singularity further back in 

time and can prevent it happening for a sufficiently large, positive value of A. Another 

way to get around the singularity is to argue that quantum processes will be im portant 

at times before the Planck era (ip ~  10-43  s) and thus a general relativistic analysis 

should not be expected to hold earlier than that time.

We may define the (dimensionless) density param eter, fi, as

(1.32)

where we have defined

3(d /a )2
S  l i e ”’

(1.33)

in which case equation 1.27 may be written as

(1.34)

From equation 1.34 we can see that the density, pc, is that which yields 11 = 1 in a 

spatially flat {i . e.  k =  0) universe with A = 0: as a consequence of this, pc is called the 

critical density.



In general, the density param eter, 12, will be the sum of contributions from a number of 

components, such as relativistic m atter, non-relativistic m atter, vacuum energy, etc. We 

have seen above tha t the densities in these components vary differently with the scale 

factor. Given the knowledge of the contributions from these components at a given time, 

say, the present, it is possible to integrate the Friedmann equations to determine the 

expansion age of the Universe — i .e.  the age of the FLRW model which would have the 

expansion rate quantified by the value of H 0 , given the assumed model for the m atter 

constituents of the Universe. A particularly simple and im portant case is tha t of the 

Einstein -  de Sitter universe, which is the FLRW model with A = 0 and f20 = 1 in a 

component whose equation of state is p  =  u p ,  in which case the Friedmann equations 

can be integrated to yield the following relation for the expansion age, t 0 :

'« = WTTu)T0- (1-35)

Evaluating this for the case of a matter-dom inated model (w = 0), which seems most 

appropriate for the Universe, gives an expansion age of 7 Gyr < t0 < 14 Gyr, where 

the age range results from uncertainty in the value of H 0. The oldest globular clusters 

appear to be ~  12 — 18 Gyr old, so that the larger possible values of H 0 are excluded by 

this argument if we live in an Einstein -  de Sitter universe.

1.1.6 Prim ordial N u c leosyn th esis  in th e  standard B ig  B ang m odel

If we can neglect the cosmological constant term in the Friedmann equations and if, as 

we have seen, the scale factor, a( t ) ,  is a monotonically increasing function of time, t, 

then it follows from equations 1.29 and 1.30 that some early phase of the universe must 

have been radiation-dominated.

We can estimate the redshift, 2eq, of m atter-radiation equality from a knowledge of 

the energy densities in radiation and non-relativistic m atter today. The dominant con­

tribution to the energy density in radiation today is the cosmic background radiation 

(CBR, see Section 1.1.7), which has the spectrum of a black body with a tem perature 

T0 ~  2.7K (Ma,t.her et. al. 1990). From this it follows tha t the current radiation density

12



is p TQ ~  5 x 10-31 kg m~3. The current density in non-relativistic m atter may be w rit­

ten as p m0  =  fim 0 p c 0 , which may be evaluated as pm0 =  1.9 X 10-26  fim 0 h2 kg m -3 , 

where the presence of the factor h2 indicates tha t the uncertainty in the value of the 

Hubble constant translates into an uncertainty in the definition of the critical density, 

through equation 1.33. Combining these values for pr 0 and p m0  with equations 1.12,1.29 

and 1.30 yields the following expression for the redshift of m atter-radiation equality:

(1.36)

This will be of great importance when we come to discuss the evolution of cosmological 

density perturbations in Section 1.4, but for the time being we just note tha t equa­

tion 1.36 shows tha t at epochs earlier than z ~  104 we may treat the Universe as being 

radiation-dominated. In this case, we may obtain the following scalings for the conditions 

of the early universe:

T
10loK

kBT
IMeV

1 + z 
1010 lsec

- 1 / 2

(1 . 37)

where k B is the Boltzmann constant. In the 1940s, Gamow realised tha t the relations of 

equation 1.37 imply tha t the nuclei of light elements could have been produced in the hot, 

early phase of a FLRW universe, since their binding energies are typically ~  1 -  10 MeV. 

Gamow erroneously believed tha t neutrons were the only m atter constituents present 

initially but by 1950, when Hayashi recognised the role of neutron-proton equilibration, 

the framework for standard Big Bang nucleosynthesis (SBBN) was set. The classic 

paper by Wagoner, Fowler & Hoyle (1967) saw the first computation of the predicted 

abundances of light elements using a full network of SBBN reactions. The codes used 

today are essentially the same as that employed by Wagoner et  al. , with only minor 

modifications resulting from improved experimental determinations of param eters of the 

model, such as reaction rates. This attests not only to the quality of the work of Fowler 

et. al. , but also to the fact that the computation of light element abundances is a well 

posed problem in the hot Big Bang model, producing robust predictions for comparison 

with observations. An excellent recent review of all aspects of SBBN is presented by 

Smith et  al. (1993).
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The period of interest here is 10~2s < t  < 102s, at the start of which the constituents 

of the universe are assumed to be a homogeneous mix of (black body) photons and 

leptons, with trace amounts of nucleons. The determination of the width of the Z° decays 

at CERN indicates tha t we should consider three generations of leptons (although, in 

fact, this result had been predicted from the SBBN limit on the 4He abundance before 

the discovery of the Z°). This fixes the total density of non-relativistic m atter and, 

hence, the expansion rate and temperature of the universe at a particular time, t ,  given 

the assumption of radiation-domination. The thermal history of the Universe through 

the period of primordial nucleosynthesis is profitably described in the following five 

logarithmic time-steps:

1 . t  < 10~2s, T  > 1011K : The reaction rates of weak interactions are much higher 

than the expansion rate of the universe, so neutral current weak interactions

e+ +  e~ <— > zq + iq i = e,/z, r  (1.38)

maintain the leptons in equilibrium, while charged current weak interactions

p +  e~ <— > n +  ue and n +  e+ <— » p -f z?e, (1.39)

plus beta decay and its inverse

n <— v p -fi e~ +  Pe (1.40)

maintain the nucleon equilibrium ratio

£  =  = p ( ^ ) .

Here, nn and np are the neutron and proton number densities respectively, 

Am = m n — m  is the neutron-proton mass difference and we use units where 

the Boltzmann constant and the speed of light are unity.

2. t  ~  10- 1s, T  ~  3 X 1010K: The neutrinos freeze out (i.e. decouple from the 

other material components) when, first, the neutral current and then, slightly 

later, the charged current weak interactions become unim portant, as their 

reaction rates become comparable with the expansion rate and the expansion 

of the txniverse moves particles apart before they have time to react with each 

other. Beta decay, being a one-body process, persists and so ue freeze out 

slightly later.
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3. t  ~  Is, T  ~  1010K: Charged current weak interactions have ceased by now, 

so that the nucleons cannot stay in equilibrium and they freeze out at a 

tem perature Tf , when

n n / — A m \
-  =  exp ( — )  . (1.42)

The n /p  ratio falls below this slightly due to neutron decay, but soon all 

the neutrons are bound up in nuclei, where they are stable, and the neu­

tron/proton ratio remains constant thereafter.

4. t  ~  10s, 3 X 109K: Before this time, electrons and positrons had been in 

equilibrium with the radiation, due to pair creation/annihilation

e+ + e~ *— > 7  + 7  (+43)

plus Compton scattering

e1*1 +  7  —■> e± +  7 - (1-44)

Now, pair production slows, but annihilation continues, increasing the num­

ber density of photons by a factor 11/4: the origin of this factor being in 

the requirement of a continuous change in the entropy density (which is pro­

portional to the product of the photon density and the number of degrees of 

freedom in the system) across the annihilation transition, where the number 

of degrees of freedom falls by a factor 11/4, due to the loss of e^.

5. t > 102s, T  <  109Iv: As the radiation cools in the expanding universe, the 

photons become less capable of photodissociating those nuclei tha t form and 

by t  102s element production starts in earnest. By t  ~  103s, the epoch 

of primordial nucleosynthesis draws to a close, as the Coulomb repulsion be­

tween nuclei prevents reactions from taking place at rates faster than the 

expansion of the universe can disperse the would-be reactants and the pri­

mordial abundances of the light elements are fixed.

The abundances of light elements left at the end of this period of activity depend 011 the 

conditions in the universe, which may be quantified in terms of

7? =  lO10^ = 1010^ ,  (1.45)
ni
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where n ^ , n  are the present number densities of nucleons and photons, respectively. 

The value of ??10 is unknown and so a number of values of it are studied. Note that the 

following relation holds between the value of 7710 and the fraction of the closure density 

present in baryons,

fig h = 0.015 T2 75 i)w , (1-46)

where T2 75 is the current black body tem perature of the CBR in units of 2.75K (T2 75 ~  1 , 

see Section 1.1.7).

The light element abundances which are studied are those of d (deuterium), 3He, 4He 

and 7Li. Heavier elements than these are not produced in SBBN to any appreciable 

extent due to the absence of stable mass-5 and mass-8 nuclei which can be produced by 

two-body collisions: these are the only processes tha t can take place in the early universe, 

when the baryon density is low and the available time short — heavier nuclei can be 

formed only in stellar interiors, when the density is high enough and the timescales long 

enough for appreciable yields from much rarer three-body collisions.

The abundances of these four light nuclei (relative to hydrogen) are computed from the 

following network of twelve crucial reactions:

n o p  p (n ,7 )d d (p ,7 )3He d (d ,n )3He

d(d, p)3H 3H (d,n)4He 3H (o ,7 )7Li 3H e(n,p)3H

3H e(d,p)4He 3H e(a ,7 )7Be 7L i(p ,a )4He 7B e(n,p)7Li

The cross-sections for these reactions may be determined experimentally and applied,

with appropriate temperature-dependent corrections, to SBBN. As would be expected 

from this complicated network of reactions, the final abundances of the nuclei of d,3He 

and 'Li reflect a balance between competing production and destruction processes, with 

the position of the balance depending sensitively on ri10. The abundances of d and 3He 

are both decreasing functions of r?10 (reflecting the fact tha t if the density is higher, they 

are more likely to be destroyed, to produce, eventually, 4He) while ' Li exhibits a bimodal 

behaviour, with a dip in its abundance at r]10 ~  3. The bimodality exhibited by 'Li is 

readily explainable in terms of two competing methods of production: at low densities,
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7 Li is primarily produced by 3H (a ,7 )7Li and both 3H and 'Li are readily destroyed, 

so the lithium  abundance declines with increasing density; at higher densities, lithium 

production proceeds largely through the electron capture decay of 'Be, which is more 

robust, so the lithium abundance increases with density.

By contrast, the primordial abundance of 4He, which is denoted by YP, is very insensitive 

to T]1 0 . This is because virtually all the neutrons tha t remain after freeze out end 

up in 4 He because it is the most tightly bound nucleus in the network of accessible 

reactions, so YP is only sensitive to the freeze-out tem perature. This depends on the 

strength of the weak interactions, which may be quantified by the half-life, r , / 2, of 

free neutrons: increasing r 1(/2 weakens the weak interactions, which leads to decoupling 

at a higher tem perature, hence a higher n /p  ratio at freeze-out and a higher relative 

abundance of 4He. The determination of the observed abundance of 4He may be made 

from observations of emission lines in metal-poor extragalactic HII regions and dwarf 

galaxies, where helium is seen due to the recombination of He+ . The 4He abundance is 

determined as a function of metallicity and the results extrapolated to zero metallicity 

to yield an estimate of YP . Opinions differ as to the best metallicity tracer to use, but 

a primordial helium abundance of 0.21 < YP < 0.24 is advanced by Smith et  al. , which 

provides an upper bound to ?710.

The observations of deuterium can only yield a lower limit to its primordial abundance, 

since deuterium is always destroyed in stars, largely to produce 3He. The amount of 

deuterium tha t survives depends sensitively on the stellar models, limiting the utility of 

the deuterium abundance as a cosmological probe. Much of this model-dependence can 

be removed by considering, instead, the combination d + 3He, which provides a lower 

bound to r]1Q.

Combining the upper bound from 4He and lower bound from d -f 3He constrains 7;]0 

to lie in the interval 2.86 < ?710 < 3.77 for SBBN to be consistent. Observations of 

the 'Li abundance are consistent with this interval, although their interpretation is 

complicated by the apparent sensitivity of the ' Li destruction rate in stars to complexities 

of rotation, convective mixing and mass loss. This allowed range of ?q0 corresponds to

0.011  < h 2 < 0.015. Combining this with sensible limits on the value of h leads to
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the conclusion tha t there cannot be a closure density in baryons. (It also leads one to 

conclude tha t there must be some baryonic dark m atter, but discussion of this point is 

left until Section 1.3.)

There remain, however, ways to avoid the conclusion that Í1B <C 1. The first is to 

doubt the reliability or universality of the observed abundances. A second, and more 

interesting, approach is to drop the assumption tha t nucleosynthesis took place in a 

homogeneous plasma (see Sato & Teresawa 1991 and references therein). If the quark- 

hadron phase transition is strongly first order, then large inhomogeneities could be pro­

duced at temperatures T  > 100 MeV. Neutrons can pass through the primordial plasma 

much more easily than protons, so they will preferentially diffuse from these overdense 

regions, resulting in nucleosynthesis taking place in conditions of varying density and 

neutron/proton ratios. The earliest inhomogeneous Big Bang nucleosynthesis models 

appeared to be able to reconcile flB = 1 with the observed abundances of d,4He and 

3He, but only at the price of overproduction of 7Li. This lithium overproduction problem 

seemed to disappear in later work, following the inclusion of the diffusion of neutrons 

back to the overdense regions after nucleosynthesis had taken place in the low density 

regions, but this back diffusion also had the unfortunate consequence of over-producing 

4He for i lB = 1 . Fine-tuning of the parameters of the phase-transition model was found 

to be capable of reconciling the abundances of 4He and 'Li, but only in a. very contrived 

way, since any realistic model would include a distribution of conditions and would then 

over-produce helium, lithium or both. Furthermore, it has been argued that that the 

phase boundaries at the quark-hadron transition are likely to be fractal, giving them 

large surface areas, increasing the interaction between the phases and reducing the mag­

nitude of any of these exotic effects.

1.1.7 T he C osm ic Background Radiation

Gamow realised tha t a corollary of the synthesis of light nuclei in the hot Big Bang model 

is the presence of a cosmic background of photons today, principally those generated in 

the e+ e~ annihilation at t ~  10 — 100s. Two of Gamow’s collaborators (Alpher & 

Herman 1948) calculated that this cosmic background radiation (CBR) should have the
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spectrum of a black body at a temperature of T0 ~  5K. Although it was not realised 

until much later, direct evidence for the existence of the CBR had been observed several 

years earlier. Adams (1941) had detected absorption lines in interstellar clouds due to 

rotationally excited states of CN as well as its ground state and the relative strengths of 

these lines had been used (McKellar 1941) to infer an effective excitation temperature 

of T ~  2.3K for the CN molecules, in accordance with the predictions of Alplier 

Herman, given the various uncertainties involved. The importance of these results was 

not, however, appreciated until twenty-five years later, after what is commonly called 

the discovery of the CBR.

The fascinating series of events leading up to this “discovery” are well described by 

Peebles (1993). In 1964, Dicke’s group at Princeton and Zeldovicli’s in Moscow were 

interested in the CBR as a probe of the early universe. Two members of the Moscow 

School (Doroshkevich & Novikov 1964) calculated a strong bound on the present CBR 

temperature based on a report by Ohm (1961) of excess noise present in a radio telescope 

at Bell Telephone Laboratories in Holmdel, New Jersey: Ohm suspected that the source 

of the noise was ground radiation being picked up by the back lobes of the antenna, 

but it seemed- stronger than expected from similar antennae. The CBR temperature 

bound (T0 < IK) computed by Doroshkevich & Novikov was judged to be too low for 

compatibility, within the context of Gamow’s model, with the observed *He abundance, 

thus leading Zeldovich (1965) to consider a cold Big Bang model.

Meanwhile, unaware of the excess noise problem in the radio telescope thirty miles away 

at Bell Labs, Dicke proposed the construction at Princeton of a radiometer capable of 

detecting the CBR. Dicke’s goal, however, was not the CBR of the Gamow model, but 

the background of thermal photons generated in an oscillating universe. Dicke assigned 

the task of building the radiometer to Roll & Wilkinson and the task of interpreting its 

results to Peebles.

In February 1965, Peebles gave a seminar on the project at Johns Hopkins University. 

News of this talk reached Penzia.s & Wilson at Bell Labs, who had been planning to use 

the Holmdel radio telescope for radio astronomy, but whose efforts had been thwarted by 

the excess noise problem detailed by Ohm, which they had been unable to account for by
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any instrum ental effect. A meeting was arranged between Penzias & Wilson and Dicke’s 

group, which reached the view tha t Ohm’s excess noise, now known to be isotropic over 

the sky, could well be the CBR. Following this meeting there came the publication of the 

famous pair of papers: one by Penzias & Wilson (1965), announcing an “excess antenna 

tem perature” of T0 — 3.5 ±  1.0 K at a wavelength of 7 cm and one by Dicke et. al. (1965) 

interpreting this as “cosmic blackbody radiation” . A few months later Roll &: Wilkinson 

(1966) announced at a detection at 3.2 cm with a tem perature of T0 = 3.0 ±  0.5 K, in 

excellent agreement with the interpretation of the Penzias & Wilson result as being the 

CBR.

The spectrum of the CBR has subsequently been shown to follow that of a black body 

over four orders of magnitude in frequency. The FIRAS (Far InfraRed Absolute Spec­

trophotometer) instrument on board C O B E  (The Cosmic Microwave Background Ex­

plorer) has shown that between 0.5 mm and 1 cm the CBR spectrum deviates from a 

black body with a temperature of T0 — 2.735 ±  0.010 K by less than 0.03% of the peak 

intensity: this result (Mather 1993) comes from just the first six weeks of data and a 

great improvement should be possible by the end of the C O B E  mission.

The CBR photons observed by C O B E  probe the conditions of the Universe at the 

epoch of last scattering at a redshift of 2 ~  1000 : this is the point at which the CBR 

photons decoupled from the primordial plasma, since Thomson scattering could no longer 

maintain thermal contact once the photon mean free path became comparable to, and 

then exceeded, the Hubble radius. Anisotropies in the sky distribution of CBR photons 

are produced by anisotropies on the surface of last scattering (primary anisotropies), as 

well as by the conditions along the line of sight (secondary anisotropies). By far the 

largest anisotropy is, however, the dipole component (with amplitude A T / T  ~  10~'!), 

which is interpreted as being due to the motion of the satellite with respect to the cosmic 

rest frame defined by the CBR,.

The relative importance of the various primary anisotropies depends on angular scale. At 

large angular separations, such as those studied with the DMR, (Differential Microwave 

Radiometer) on C O B E , the dominant term is the Sachs-Wolfe (Sachs & Wolfe 1967) 

effect, due to gravitational potential fluctuations on the surface of last scattering. In the
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Newtonian gauge the Sachs-Wolfe effect can be understood readily (Peacock 1991) as 

the sum of gravitational redshift and time dilation terms of opposite sign resulting from 

photons climbing out of potential wells on the last scattering surface. The large angular 

scales probed by the COBE DMR correspond to super-horizon scales at decoupling. 

This greatly simplifies their analysis by removing any dependence on microphysics and, 

hence, sensitivity to the material constituents of the universe. The COBE DMR results 

reported by Smoot et  al. (1992) indicate temperature anisotropies consistent with a 

scale-invariant ( i .e.  |^fc|2 oc k ) primordial power spectrum with an rm s-quadrupole- 

normalised amplitude of Qrms = 16 ±  4 ¿iK: we shall use this amplitude extensively in 

what follows and postpone discussions of possible complications in the interpretation of 

the COBE DMR result due to a contribution from gravitational waves until later.

Anisotropies on scales < 1° are much more complicated to analyse, arising as they do 

from microphysical phenomena, making them much more sensitive to the assumed ma­

terial constituents of the universe. Two effects contribute to the small-scale anisotropy: 

the first is a simple Doppler term, due to the CBR photons scattering off baryons falling 

into potential wells on the last scattering surface, while the second, the adiabatic term, 

is slightly more complicated in origin. The photon fluid will respond to variations in the 

density of the plasma, so that an overdense region at 2 = 103, say, will have a larger 

photon density too (excepting the case of isocurvature fluctuations, when the photon 

density will be lower, to compensate for the m atter overdensity). This means tha t the 

photons will be hotter and so will recombine slightly later. If recombination takes place 

at a fixed temperature (ignoring density effects), then this means that the photons from 

this overdense region which are observed today will have suffered a smaller redshift due 

to their more recent last scattering event and, hence, will appear to be hotter. The adi­

abatic term is dominant on the smallest scales, with a region of Doppler dominance on 

intermediate scales. On the arcminute scales, anisotropies can be washed out as a result 

of the superposition of different temperature components, due to the finite thickness of 

the surface of last scattering.

Potential fluctuations in an Einstein - de Sitter universe are time-independent to first 

order in perturbation theory, so that photons do not undergo a change in energy at first 

order due to their passage through collapsing overdensities/expanding underdensities
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along the line of sight from the surface of last scattering. This time-independence does 

not hold at all orders, however, and the resulting Rees-Sciama effect (Rees &: Sciama 

1968) is our first example of a secondary anisotropy. Another source of anisotropy gener­

ated along the line of sight is the Sunyaev-Zeldovich (Sunyaev & Zeldovich 1972) effect, 

which is caused by the inverse Compton scattering of CBR photons passing through a 

very hot plasma. The Rees-Sciama effect may be neglected for practical purposes, while 

the Sunyaev-Zeldovich effect is only im portant for those lines of sight which pass through 

rich clusters of galaxies, where there is hot intracluster gas: this will be seen to have an 

im portant consequence in Section 1.3.

Even when secondary anisotropies may be neglected the analysis of primary anisotropies 

is very complicated, requiring detailed comparisons of observational results with what 

would be detected by a particular experiment, with a particular observational set-up, 

for a particular cosmological model. All that, furthermore, is possible only after the 

correction for anisotropy induced by other Galactic and extragalactic sources: C O B E .  

for example, made observations at three different frequencies to try to overcome this 

problem. We shall say no more here, except to note that the Doppler and adiabatic 

terms ensure tha t the CBR anisotropy should be larger on ~  1° scales than on the 

larger scales observed by C O B E , provided that the primordial fluctuation spectrum 

was scale-invariant and tha t fi0 = 1 . Recent observations (e.g.  Meinhold e t  al. 1993; 

Gundersen e t  al. 1993) which indicate roughly the same level of temperature fluctuations 

on degree scales as seen by C O B E  are, therefore, difficult to reconcile with a scale- 

invariant primordial spectrum in an $70 = 1 model: we shall have cause to reconsider 

this point later.

1.1.8 Sum m ary

As discussed here and, for example, in the review by Peebles et  al. (1991), the case for 

the relativistic hot Big Bang, resting on the recession of the nebulae, the abundances of 

light elements and the isotropy of the CBR, is a strong one. It is made even stronger by 

the C O B E  DMR results which may be interpreted as indicating the presence of density 

fluctuations at the epoch of decoupling of the right amplitude to form the large-scale



structure seen today, as we sliall discuss in later chapters. Despite the great successes 

of this model, there remain those {e.g.  Arp et  al. 1990) who reject the Big Bang model 

and favour some variant of the Steady State cosmology of Hoyle (194S) and Bondi A 

Gold (1948). Whilst one may admire the tenacity and ingenuity of those who manage 

to steer the Steady State model through the unfriendly seas of new observational data, 

there will be no cause to consider their views further in this thesis.

1.2 IN FLATIO NARY COSMOLOGY

1.2.1 Inadequacies of th e  relativ istic  B ig  B ang m odel

The successes of the Big Bang model are impressive, but there remain a. number of 

enigmas, as Dicke & Peebles (1979) call them, which indicate that perhaps the relativistic 

Big Bang model is not the whole story. These are discussed in some detail by Blau A 

Guth (1987), upon whose account the following description is based.

The first of these is the “flatness problem”. Consider equation 1.34 for the case A = 0. 

It can be shown tha t this may be rewritten in the form

3 k
0 ( f )  =  ( 1 - Z ) -  , where * (* )  =  8 n G p a 2 - ( L47 )

It follows from equations 1.29 and 1.30 that x ( t )  oc a ( t ) 2 for t <  teq and x ( t )  <x a ( t )  for 

t  > feq: thus il = 1 is an unstable solution to the Friedmann equations for equations of 

state relevant to the Big Bang model. Given that 1 > ft0 > 0.1, equation 1.47 places 

a very tight constraint on the possible deviation of ft from unity at earlier times in the 

history of the Universe: for example, at the Planck time, t P ~  10~'Hs, we obtain

|ft -  1| < 0(1O-60). ( 1.4S)

Given tha t ft is, in some sense, a free parameter, the “flatness problem” is the statem ent 

of surprise that equation 1.48 constrains ft to be close to unity at t P . It has been 

argued tha t the form of equation 1.47 ensures that ft(t) —> 1 at early times, so that the

equation 1.48 should come as no surprise: if you look at early times then ft should be
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very close to unity. This is mistaken, however, since ip is the natural unit of time and, 

thus, t  — t P is not an early time in the history of the Universe. This leads to another way 

of looking at the “flatness problem”, recasting it as the question as to how the universe 

could reach such an age (in units of the Planck time) and still have if 0(1).

The second enigma is the “horizon problem” . The essence of this is that the observed 

level of isotropy in the CBR. requires the universe to have been homogeneous on scales 

relating regions of space tha t have never been in causal contact in the standard Big Bang 

model: Blau & Guth (1987) show tha t antipodal regions of the sky were ~75 horizon 

distances apart at the epoch of last scattering, so what process could cause them to be 

at temperatures differing by only one part in ~  105?

A third problem comes from the consideration of the growth of structure in the Big Bang 

model by gravitational instability. Blau & Guth (1987) show that the density pertur­

bations that would give rise to a galaxy-mass object in the standard model are, at the 

Planck time, some seventeen orders of magnitude smaller than the Poisson fluctuations 

expected on tha t scale.

A further problem arises if one includes the principle of grand unification into the stan­

dard model, as one may wish to do, since the baryon non-conserving reactions predicted 

to take place in GUTs by the Sakharov mechanism provide a way of explaining the 

small, non-zero value of the p parameter discussed in Section 1 .1 .6 . GUT phase transi­

tions to the S U ( 3) ® 577(2) ® 77(1) low temperature standard model of particle physics 

produce topological defects in the Higgs field, called magnetic monopoles, with a num­

ber density (Kibble 1976) of roughly one per horizon volume. Monopole-antimonopole 

annihilation is very inefficient at this number density, so these monopoles should survive 

to the present era. Estimates of the monopole mass from simple GUTs imply that, the 

mass density of monopoles present now is ifmono > 1011, which is clearly not compatible 

with observations.

There is also a problem with the “bang” in Big Bang itself: the standard model suggests 

no origin for the expansion of the universe, it just posits an expanding early state. These 

enigmas are not inconsistencies in the Big Bang, they just indicate inadequacies in its 

predictive power, requiring the assumption of very special initial conditions: for exam-
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pie, Collins & Hawking (1973) show that the set of spatially homogeneous cosmological 

models tha t approach spatial isotropy at late times is a set of measure zero in the space 

of homogeneous models. One way around this problem is to assert tha t the conditions of 

the early universe before t P will be set by quantum gravitational processes, so that until 

we have a quantum theory of gravitation we are in no position to question the “natu­

ralness” or otherwise of any possible set of conditions at t P . One may also appeal to 

anthropic arguments, suggesting tha t perhaps only a very special set of initial conditions 

could produce sentient beings capable of pondering these issues. Another explanation is 

furnished by the idea of an inflationary epoch in the early universe, as first proposed by 

Guth (1981) and it is to this that we now turn our attention.

1.2.2 A n Inflationary U niverse

The story of the genesis of inflationary cosmology is a fascinating one and like that 

relating the discovery of the CBR it shows how science can often progress along very 

tortuous paths. Many particle physicists had considered the cosmological effects of GUT 

phase transitions before Guth (see the review by Olive 1990), but his stroke of genius 

was to see how this work could account for the enigmas described in the article by Dicke 

& Peebles (1979).

The essence of the model advanced in G uth’s seminal paper (Guth 1981, now referred to 

as old inflation) is that a phase transition in the early universe could produce a period 

of exponential growth of the scale factor and that, provided the exponential expansion 

lasted sufficiently long, it could resolve the horizon and flatness problems. Old inflation 

is based on the minimal S U ( 5 ) GUT of Guth & Tye (1980), with a first-order phase 

transition to S U ( 4 )  ® U ( 1 )  occurring at a. critical tem perature of Tc ~  1 0 1'1 GeV. As the 

universe cools to Tc, the Higgs field, 0, gets caught in a false vacuum state -  a local 

minimum of the potential, U(</>) -  with a potential barrier preventing 4> from falling to 

the true vacuum with U (^ true) < U((^false). Symmetry considerations dictate that the 

energy-momentum tensor of the false vacuum be a multiple of the metric tensor, so that 

its equation of state is pf = —pf = constant. If we consider a region of space which is
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homogeneous, isotropic and flat, then equation 1.27 has the solution

a( t )  =  e x t , where x =  ( — P()  ■ (1.49)

This solution to the Friedmann equations, with a constant value of x an^i hence, an 

exponentially increasing scale factor, is called de Sitter space and it is the hallmark 

of inflation. Equation 1.49 was derived using the assumption tha t the region of space 

under consideration was homogeneous and isotropic, so that we could use the Friedmann 

equations, but this is not necessary: it is believed (e.g.  Blau &: Gutli 1987) that there 

exists a ‘cosmological no-hair theorem’, by which perturbations about de Sitter space 

are smoothed out by the expansion, so that homogeneous, isotropic de Sitter will result 

from generic initial conditions.

Suppose tha t the inflationary phase continues for some time A t ,  in which case the 

universe will expand by a factor Z  =  exAi. In a first-order phase transition like the one 

under consideration here, the decay of the false vacuum to the true vacuum happens by 

quantum tunneling (Coleman 1977), with the production of bubbles of the true vacuum, 

which expand at the speed of light in the surrounding sea of false vacuum. Resolution of 

the flatness problem requires Z  > 1029, which may seem an extraordinarily large number, 

but it is found (Guth & Weinberg 1981) that the minimal 517(5) model can yield bubble 

nucleation rates sufficiently low as to produce Z  ~  l O 10 . So, inflation replaces the 

flatness problem with a prediction that f l0 should equal unity to great precision. The 

horizon problem is solved equally trivially: the horizon distance is stretched by a factor 

Z  during inflation, so that (with Z  ~  1029) the entire observable universe was well 

within the horizon at the onset of inflation and the equality of the CBR temperature at 

antipodal points on the sky can be explained causally.

Old inflation does, however, suffer from a fatal flaw: the so-called “graceful exit” problem. 

If inflation is to last sufficiently long for the horizon and flatness problems to be solved, 

the bubble nucleation rate must be low. It can be proved that, with a sufficiently low 

nucleation rate, the bubbles of true vacuum form finite sized clusters only; they do not 

percolate and fill all space. The bubble size reflects that of the horizon at the time of 

their formation, so the clusters of bubbles are much smaller than the horizon size today.
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This yields a picture of a much more inhomogeneous universe than the one we observe 

and so marks the failure of old inflation.

1.2.3 N ew  Inflation and the generation of density perturbations

G uth’s seminal paper was quickly followed by two papers (Linde 1982, Albrecht & Stein- 

hardt 1982) independently advancing an inflationary scheme based on a second-order 

GUT phase transition. As the effective temperature falls through Tc , the shape of the 

potential V(<fr) changes: (j) is no longer constrained to remain in the false vacuum state 

at (j) =  0 and can roll down the potential curve to the true vacuum. The requirement 

for sufficient inflation translates here into a requirement of a potential which is very 

flat near <j> — 0 , so tha t <j> takes a long time to roll down the potential, during which 

time the energy density remains very nearly constant and the scale factor undergoes the 

exponential expansion characteristic of inflation: such potentials are found (Coleman & 

Weinberg 1973) in the minimal 57/(5) GUT. At the end of the period of inflation the 

Higgs field rolls quickly down the final, steep part of the Coleman-Weinberg potential 

and goes into oscillation about the true vacuum. These oscillations are equivalent to the 

production of zero momentum scalar particles, which will decay, releasing energy, which 

will soon tliermalise and reheat the universe to a temperature ~  T J 3.

The field is in unstable equilibrium at <f> =  0 , so quantum and/or thermal fluctuations 

are required to start it rolling down the potential. These fluctuations are random in 

nature and so will vary throughout space. At different points in space, therefore, the 

Higgs field will experience a different initial jolt down the hill of the potential, which will 

result in the potential reaching the true vacuum at slightly different times at different 

points in space. Since energy deposition results from the arrival of the Higgs field at the 

true vacuum, this means that the universe will be inhomogeneous after reheating. The 

new inflationary model, therefore, not only solves the horizon and flatness problems, but 

it also provides a mechanism for the generation of density perturbations.

It transpires tha t the slope of the power spectrum of density fluctuations is related to 

the slope of the potential V((j>), with a flat potential producing a sc ale-in variant power 

spectrum. This may be understood quite readily, by the following chain of reasoning. If



the potential is flat, then <j> ~  0 ralse and the energy density remains close to that of the 

false vacuum, so the inflationary spacetime remains close to de Sitter space. Each Fourier 

mode of the density perturbation field freezes out once the horizon size becomes equal 

to its wavelength. De Sitter space is time-invariant, so that the amplitudes of different 

modes at the time of freeze out are the same. A density power spectrum whose modes 

have the same amplitude at horizon crossing is, by definition, scale invariant (Harrison 

1970, Zeldovich 1972). Consequently, an inflationary model with a potential tha t is very 

flat will produce expansion which differs only slightly from de Sitter space and, thus, a 

power spectrum of density fluctuations whose amplitudes differ only slightly at horizon 

crossing -  i .e. a power spectrum very close to the Harrison-Zeldovich scale-invariant 

form.

The density fluctuations are produced by random, quantum processes, so the phases of 

different modes are unrelated, with the consequence that the density perturbations obey 

Gaussian statistics. The density fluctuations are also adiabatic, in the sense that they do 

not produce spatial variations in the ratio of baryon to photon number densities. This 

may be explained readily as well. The density perturbations are produced because of 

the time delay between the start of the slow roll of the potential at different points in 

space. Different regions of space therefore underwent the same evolution, but slightly 

out of synchronisation. If the regions underwent the same evolution, then they will go 

through the same baryogenesis process, resulting in the production of a universal baryon- 

to-photon ratio. We shall not consider isocurvature fluctuations (spatial variations in 

the equation of state) in this thesis, due to the lack of a plausible mechanism for their 

generation.

The new inflationary scenario seems a great success: it can solve the horizon and flatness 

problems in the same way as old inflation, plus it can also generate a scale-invariant 

spectrum of Gaussian density perturbations. It too has a fatal flaw, however. The 

amplitude of the density fluctuation spectrum is determined by the strength of the 

coupling of the Higgs field. It is found that, for the fluctuation amplitude to be low 

enough not to contradict the observed level of CBR isotropy, the coupling must be so 

weak that the Higgs field would not be in thermal contact with the other fields present 

in early universe and, thus, the finite-temperature quantum field theory methods used
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above would not be valid. One way around this is to have the inflation produced by 

some other scalar field, not the Higgs field. This has the added advantage of being 

able to solve the monopole problem as well since, if the Higgs field can be arranged to 

acquire its non-zero expectation value before or during the inflationary epoch, then the 

number density of monopoles surviving today will be diluted by the huge factor of Z 3 

by inflationary expansion. Introducing a scalar field, the inflaton, specifically to produce 

inflation, removes the GUT motivation for new inflation and leaves it looking rather 

contrived.

1.2.4 Summary: Generic Inflation

We have seen the successes and failures of both new and old inflation. We described these 

in some detail for their pedagogical value: our description of old inflation showed how 

exponential expansion can solve the horizon and flatness problems, while our outline 

of the new inflation model illustrated the principles behind inflation’s mechanism for 

generating density fluctuations. A bewildering array of other inflationary models have 

been suggested over the past decade, but none of them has been shown to work: in the 

words of Kolb & Turner (1990), inflation is a paradigm in search of a model -  its general 

principles are so appealing tha t one just wishes for a concrete way of realising them.

In this spirit, one may consider a generic inflationary model, which combines the suc­

cesses of specific models with a deft avoidance of their individual problems. Generic 

inflation features a phase of exponential expansion, which is sufficiently long to solve 

the horizon, flatness and monopole problems. Quantum fluctuations are generated in 

generic inflation, which freeze out to become the classical density fluctuations which 

grow by gravitational instability to produce the large-scale structure we observe today. 

Note, however, tha t these perturbations need not be scale-invariant (power law inflation 

and extended inflation produce power spectra which differ from the Harrison-Zeldovicli 

form), nor do they have to be Gaussian (some inflationary models featuring multiple, 

interacting fields produce non-Gaussian fluctuations). The la tter complication will, how­

ever, be generally neglected in what follows and we shall usually assume that generic 

inflation produces Gaussian fluctuations. We shall, however, have cause to consider
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power spectra which are not scale-invariant: such models tend to generate gravitational 

waves which contribute to the CBR anisotropy and, thus, we shall have to consider them 

when using the C O B E  DMR results to normalise power spectra. W ith a single CBR 

anisotropy measurement it is impossible to distinguish the contributions from density 

fluctuations and gravitational waves, but one may differentiate between them given data 

from different angular scales (Crittenden et  al. 1993).

1 .3  D a r k  M a t t e r  i n  t h e  U n i v e r s e

The possibility of the existence of non-luminous m atter was first raised by Zwicky (1933), 

who noticed tha t the motions of the galaxies in the Coma cluster implied a larger dy­

namical mass than that associated with the galaxies themselves. Whilst it may now be 

widely accepted tha t dark m atter exists, there is still no agreement as to its amount, 

distribution or nature. These are questions which have a strong bearing on the field of 

large-scale structure which is the subject of this thesis, so it is im portant to consider 

them here. We can give, however, only a brief summary of the salient points in this 

Introduction, referring the reader to the reviews by Ashman (1992) and Trimble (1987) 

for a more detailed discussion.

1.3.1 Evidence for the existence of dark matter

Over the past sixty years, evidence for the existence of dark m atter has been inferred from 

observations on all scales from the solar neighbourhood to the large-scale distribution 

of galaxies. These observations are often quantified in terms of the mass-to-light ratio 

(M / L ), which is the ratio (in solar units) of the mass of the system to its luminosity in 

a particular pass band: the mass-to-light ratio corresponding to the critical density, pc, 

is ~  1500/i, although there is considerable uncertainty in this due to uncertainty in the 

luminosity density from which it is derived and there is some variation dependent on the 

pass band in which the luminosity is measured.

The study of the density of the disk of the Milky Way was pioneered by Oort (1932), 

who used the observed motions of stars perpendicular to the Galactic plane to show
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(Oort 1960) that the mass density of the disk exceeds that of its luminous components. 

Bahcall (1984) used a development of the Oort method, plus a constraint of consistency 

with the Galactic rotation curve, to estimate tha t the density of dark m atter in the solar 

neighbourhood is at least half that of the luminous m atter and that the dark m atter is 

concentrated in a disk with an exponential scale-heiglit of 0.7 kpc. Contrasting results 

were obtained by Bienayme e t  al. (1987), who found no evidence for a significant quan­

tity  of dark m atter in the Galactic disk. A suggested resolution to this disagreement 

came from Creze et  al. (1989), who argued that the uncertainties in the mass determi­

nations used in previous work had been seriously under-estimated and that the results 

of Bahcall and Bienayme e t  al. are consistent once realistic errors are used. Kuijken & 

Gilmore (1989a-c) advanced a new method for determining the surface density of the 

disk and found no evidence for a disk-like component of dark m atter. More recently, 

a comprehensive study by Bahcall et  al. (1992) reached the following two conclusions: 

(a) that the hypothesis that there is no disk dark m atter is consistent with data at the 

14% level; and ( 6) that if the suggested dark m atter component is distributed like the 

luminous m atter in the disk, then there must be 53% more mass in dark m atter than in 

luminous m atter. The question of a disk-like dark component to the Milky Way is clearly 

a very controversial one but, equally, it is a very im portant one: for the hypothesised 

dark m atter to have settled into a disk would imply that it is dissipative, which would 

place strong constraints on its nature (see Section 1.3.2).

Estimations of the total mass of the Milky Way have been made using three dynamical 

methods. The first of these is to study the tidal radii of the Milky Way’s satellite galaxies 

and globular clusters: a number of uncertainties limit the practical utility of this method. 

A second method makes a statistical application of the virial theorem to the dynamics 

of the globular clusters and satellite galaxies. This method is worryingly sensitive to 

the velocity of one particular satellite, Leo I: for example, Little & Tremaine (1987) 

and Ivulessa & Lvnden-Bell (1992) obtain masses of 5 x 1011 M0  and 1.3 x lO1“ M0  

respectively by this method with the only significant difference between their analyses 

being the assumed velocity of Leo I. A mass similar to that determined by Kulessa A 

Lynden-Bell was estimated by Zaritsky et  al. (1989) by timing arguments, through a 

consideration of the relative motions of the Milky Way and M31 and the Milky Way and
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Leo I. There is, therefore, some degree of consensus for a Milky Way mass of ~  1012 M &, 

which implies about ten times more mass in the dark halo than in the luminous portion 

of the Galaxy.

Nearby dwarf spheroidal galaxies have been the subject of much study, with the advent 

of fibre systems facilitating the accurate determination of their velocity dispersions and, 

hence, their masses, given the assumption of virial equilibrium. These systems tend to 

show mass-to-visible light ratios of M /L v =  50 — 100. Care must be taken in making 

these measurements to ensure that the stars observed are not pulsating variables or 

members of binary systems, which would yield misleading velocities. A more serious 

objection to this method (Kuhn fe Miller 1989) is that these galaxies may not be in 

virial equilibrium and that tidal effects in the gravitational field of the Milky Way could 

boost the velocity dispersions of the dwarf spheroidals and lead to an over-estimation of 

their M / L  values.

Perhaps the most compelling piece of evidence for the existence of dark m atter in galaxies 

comes from the observed rotation curves of spirals: the rotation curves of many spirals, 

determined either from observing stars in the optical (e.g.  Rubin et  al. 1980) or from HI 

studies of interstellar gas (Bosma 1978), stay roughly flat out to large radii, in contrast 

to the decline tha t would be expected if the luminous m atter comprised the total grav­

itational mass of the galaxies. Estimations of the mass of dark m atter in spirals from 

tlais effect require models decomposing the galaxy into disk and halo mass components. 

It is common to make the “maximal disk assumption” (e.g.  Sancisi & van Albada 1987) 

in which one gives the disk component the maximum M / L  value consistent with the 

inner portion of the rotation curve and deduces the properties of the dark halo from the 

discrepancy at outer radii between the rotation curve that is observed and that produced 

by the maximal disk: support for the maximal disk assumption comes (e.g.  Casertano 

& van Albada 1990) from the observation that features in the inner rotation curve seem 

to correlate with features in the light distribution. Application of the maximal disk 

assumption to real spirals indicates that the disk and halo masses must be comparable 

within the optical radii of the galaxies to produce flat rotation curves. Many authors 

have questioned the fine-tuning apparent in this, dubbing it the “disk-halo conspiracy” .
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A possible resolution of the disk-halo conspiracy is suggested by the work of Persic 

& Salucci (1988), who suggest a. variation in the relative importance of disk and halo 

components with galactic luminosity. They claim that the disk component dominates the 

dynamics of the inner portions of bright spirals, with the halo only making a significant 

contribution at larger radii, while the halo is more likely to dominate at all radii in spirals 

with lower luminosities: this is borne out by the observation by Casertano & van Gorkom 

(1991) tha t the HI rotation curves of bright spirals decline beyond their optical radii. 

Salucci e t  al. (1991) find that the M / L  values they deduce for spirals in their sample 

decrease with increasing galactic luminosity and it appears that this relation may be 

extended to include dwarf irregular galaxies: no clear explanation of this phenomenon 

exists, but it might seem to indicate some variation of star formation efficiency with the 

depth of the galactic potential well.

Spiral galaxies furnish evidence for the existence of dark m atter in two further ways. 

Ostriker & Peebles (1973) argue that the luminous portions of spiral galaxies must be 

embedded in dark halos to stabilise them against the formation of bar instabilities, 

although Kalnajs (1983) has suggested that this function may be performed by the 

luminous material in the central bulges which many spirals possess. Athanassoula et  al. 

(1987) have used the swing-amplification theory of Toomre (1981) to relate the number 

of spirals arms present in a galaxy to the ratio of disk mass to total mass, arguing that 

the fact that most spirals have two arms implies that most spirals have comparable disk 

and halo masses.

Huclira & Brodie (1987) have studied the dynamics of the globular cluster system sur­

rounding M87 and deduced a mass-to-blue light ratio of M / L B ~  150, implying ~  15 

times as much dark mass as there is luminous mass: this conclusion is supported by 

a similar study by Mould et  al. (1990). The mass determined by Huclira. & Brodie is 

consistent (given an assumed M ( R ) oc R  mass profile) with that obtained by Stewart 

et  al. (1984) from observations of X-ray emission from M87 using the Ei ns te in  satellite: 

the poor spatial resolution of current X-ray instruments limits the utility of this method 

for determining the masses of elliptical galaxies, as it requires accurate knowledge of the 

temperature profile of the gas.
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An obvious parallel with the held of stellar mass determinations suggests the study of 

dynamics of binary galaxies, but this has a number of practical difficulties. The first 

obvious problem concerns the selection of true bound systems, rather than pairs of 

galaxies coincidentally close together on the sky -  clearly, the orbital periods are many 

orders of magnitude too long for the observer just to wait and see! The difficulty in 

translating the projected velocity difference and separation between the galaxies into 

an orbital velocity and physical separation means tha t one must analyse a large sample 

of binary galaxies and make some statistical allowance for effects of orbital inclination. 

W hite e t  al. (1983) have performed such an analysis and have deduced larger M / L  

values for the galaxies in binary systems than determined on the basis of their individual 

rotation curves: this is to be expected, since this technique probes the mass distribution 

in the galaxies to larger radii than is possible using HI rotation curve observations, 

although note that this would also be the result produced by contamination by unbound 

systems.

Puche Sz Carignan (1988, 1991) have performed a detailed study of the dynamics of the 

Sculptor group of galaxies and have derived M / L B ~  83 ±  1 0 . This anomalously low 

value has been' questioned by Ashman (1992), who believes that the Sculptor group is 

not dense enough to have virialised and doubts over group membership and virialisation 

plague the dynamical study of groups of galaxies.

We shall postpone discussion of the virial analysis of clusters of galaxies until Section 

1.3.3, where we shall discuss the recent work on the Coma cluster by W hite et al. (1993) 

in some detail. The largest scale on which evidence for dark m atter has been found 

is the scale probed by large galaxy surveys. These provide indirect evidence for dark 

m atter by implying a value for the cosmological density param eter in excess of the value 

determined by summing the luminous m atter in galaxies. These methods typically do 

not yield an estimation of 11 directly, but rather a combination of 11 and the linear bias 

param eter, b: we shall postpone detailed discussion of this work until later, but simply 

note that Dekel et al. (1993) determine a bound of 11 > 0.3 from a comparison of the 

density field traced by I R A S  galaxies with the velocity field in the same region of space 

sampled by ~  500 galaxies.
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In this section we have outlined the evidence for the existence of dark m atter, which we 

may summarise as follows:

• the luminous m atter in the observable universe appears to have a density of < 1% 

of the critical density

• dark m atter outweighs luminous m atter by at least an order of magnitude

• the observable universe contains at least if ~  0.3 in m atter that clusters on scales of 

a few tens of megaparsecs: dynamical measurements do not preclude a component 

contributing the remainder of the critical density, provided it does not cluster on 

these scales.

1.3.2 The nature of dark matter

Dark m atter candidates are many and varied: from axions to supermassive black holes 

they span roughly eighty orders of magnitude in mass. Some of the most mundane 

candidates can be ruled out quite easily. The Gunn-Peterson test (Gunn & Peterson 

1965) implies tha t there can only be a tiny amount (DHi 10“ ' h ~1) of diffuse neu­

tral hydrogen along lines of sight to quasars, while closure density in hot gas is ruled 

out by the absence of an X-ray background with the correct spectrum. Rees (19S7) 

argues that constraints from background light, the observed heavy element abundances 

in Population II stars and the absence of dynamical effects disturbing the disks of spiral 

galaxies imply tha t baryonic dark m atter candidates must have masses less than 0.1  M q  

or in the range 102 — 106 M q . The low mass option here corresponds to brown dwarfs: 

these are self-gravitating bodies which are insufficiently massive to initiate core hydrogen 

fusion and which radiate the gravitational potential energy of their collapse. No convinc­

ing brown dwarf candidates have been observed so far, but they should be detectable 

through either their proper motion (which must be high, as they must be very close to 

be detected at all), through their very cool near-infrared colours or through microlensing 

(Cañizares 1982) of light from quasars.

If if > 0.06 then the primordial nucleosynthesis constraint on dictates that some, at 

least, of the dark m atter must be non-baryonic. Non-baryonic dark m atter candidates
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are classified as hot, warm or cold, depending on their thermal velocities at early times: 

the importance of this classification will be seen in Section 1.4, when we consider the 

growth of cosmological density perturbations -  for now we shall just consider which 

particles fall into each category.

The principal candidate for hot dark m atter is a hypothesised massive neutrino. Interest 

in neutrino-dominated cosmogonies has fluctuated since their introduction twenty years 

ago (Marx & Szalay 1972, Cowsik & McLelland 1973), peaking perhaps in the after- 

m ath of the announcement of a detection of a non-zero mass for the electron neutrino 

of m u ~  36 eV by Lyubimov et  al. (1980). Controversy still surrounds the question of 

whether the electron neutrino has a rest mass, but one attraction of the hot dark m at­

ter scenario is tha t neutrinos are known to exist, which is clearly desirable and which 

distinguishes them from almost all other non-baryonic dark m atter candidates. Another 

attraction of the hot dark m atter model is tha t it is well specified: the Big Bang model 

specifies the number density of neutrinos and so the present fraction, f o f  the closure 

density contributed by a single massive species of neutrino with rest mass m u is given 

(Weinberg 1972) by

0 „ / i2 = 0.32 (1.50)
V3 0 eVy v

The entire mass range 100h2eV —3 GeV is, therefore, ruled out: if m u > 3 GeV, then the 

rest mass term in the Boltzmann factors maintaining equilibrium in equations 1.38,1.39 

& 1.40 would ensure that few neutrinos would survive to decouple. Tremaine & Gunn

(1979) show, by means of a very neat phase space argument, that this allowed mass 

range, coupled with the Pauli exclusion principle, precludes neutrinos from comprising 

the dark m atter in dwarf galaxies. Observations of high redshift quasars are also difficult 

to explain within the context of a neutrino-dominated universe when structure will form 

in a top-down fashion (see Section 1.4) as is the absence of the huge X-ray emitting 

structures that the model predicts, so the hot dark m atter model has fallen out of 

favour, although mixed dark m atter models (see below) do contain a significant mass 

fraction in a heavy neutrino.

There are no well-motivated warm dark matter candidates, so we move on to consider 

cold dark matter (CDM), which is the most studied cosmogony. There exist a plethora of
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possible CDM candidates, including the axion (the particle whose existence was invoked 

by Peccei & Quinn 1977 to explain why strong interactions do not exhibit large CP 

violations) and a number of supersymmetry particles. The difference between these is 

that the supersymmetry particles are cold due to their high rest mass (~  GeV), while 

the axion is cold because it is produced out of thermal equilibrium. An even more exotic 

possibility is tha t of macroscopic nuggets of quark m atter: W itten (1984) has shown 

how stable clumps of such material, comprising roughly equal quantities of up, down and 

strange quarks, can be produced in GUT phase transitions in the early universe, while 

Alcock & Fahri (1985) conclude tha t the quark nuggets must be of at least planetary 

mass to avoid subsequent evaporation.

In Section 1.4 and in later chapters of this thesis we shall see that the observed large-scale 

structure of the universe can be accounted for by a model in which there are significant 

quantities of both hot and cold dark m atter. Such mixed dark m atter models have 

been dismissed as being contrived: they have been derided for “invoking the tooth fairy 

twice” to explain how the universe could contain roughly comparable mass fractions of 

baryons, neutrinos and some CDM particle. This criticism may now be out of place, 

following the work by Madsen (1992) and Kaiser, Malaney & Stockman (1993) on what 

Kaiser et  al. call ‘neutrino-lasing’. The basic principle is that a mixture of hot and cold 

dark m atter can be the natural result of decays of heavy fermions in the early universe. 

The model advanced by Kaiser et  al. produces a hot/cold ratio of ~  70% /~ 30%, which 

is the inverse of that required to account for the observed large-scale structure, but, 

nevertheless, this may prove to be a very im portant step to understanding the dark 

m atter composition of the universe.

1.3.3 A challenge to orthodox cosmology

The title for this subsection comes from that of a recent paper (W hite et al. 1993) 

investigating the baryon fraction in the Coma cluster. The importance of the questions 

raised by this work merits its being described in a separate subsection and it provides a 

suitable coda to this section.

W hite et  al. start their paper with an inventory of the Coma cluster, their aim being to
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estimate the mass of the various components of the cluster contained within the central 

sphere of radius 1.5h~ 1 Mpc (this being RA, the Abell radius; Abell 195S). The first mass 

component is that in galaxies, which may be estimated as the product of the V-band 

luminosity density within the central Abell radius (determined from the data of The 

& W hite 1988 and Kent & Gunn 1982) and the mean M / L v value (M /L y  = 14.7 h) 

quoted by Binney & Tremaine (1987) for a sample of bright elliptical galaxies, similar to 

those found in the core of the Coma cluster. This yields a mass in galaxies, Mgal, within 

the central R A of Coma of

M sal( R A ) = (3.15 ±  0 .6 6 ) x 1013 /T 1 Af0 , (1.51)

where the uncertainty corresponds to an assumed 0.2  mag zero-point error in the pho­

tometry.

The mass in hot intracluster gas is determined from the recent observations of Coma 

by the R O S A T  Al l -Sky  Survey  (Briel et  al. 1992). Briel et  al. fit the X-ray surface 

brightness profile to a standard form and, using a range of mass profiles, estimate the 

gas mass within the central 2.5 h -1  Mpc. The value so obtained may be scaled using the 

surface brightness profile fit to yield a gas mass, Mgas, within the central Abell radius 

of Coma of

^gas ( R a )  =  (5.66 ±  1 .0 2 ) x 1013 /T 5/ 2 M0 . (1.52)

By summing the quantities in equations 1.51 and 1.52 it is possible to obtain a lower 

limit to Mbar(i2A), which is the baryonic mass within the central Abell radius of Coma: 

it is a lower limit, since there may also be baryonic dark m atter.

The total dynamical mass, Mtot, within the central Abell radius is harder to estimate, 

since it requires assumptions. Assumptions of spherical symmetry and dynamical equi­

librium are common to all the methods, each of which requires further assumptions: to 

perform a virial analysis using optical data requires an assumption about the relation­

ship between the distributions of light and mass, while use of X-ray data requires an 

assumed density and temperature profiles. Virial analyses (The & W hite 1986, M erritt 

1987) which assume that light traces mass yield M lot( R A ) -  (6.7 ± 1.0) X 1011 h 1 M Q.
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Hughes (1989) assumes the density profile resulting from this analysis to determine 

Mtol(R A) = (6.82 ±  0.34) X 101'1 h~l M& from X-ray data.

To test the sensitivity of the Mtol determinations on the assumption tha t light traces 

mass, W hite et al. study Coma-like clusters in numerical simulations of 17 =  1 CDM 

universes. The dissipationless simulations of Frenk et al. (1990) produced 152 clusters 

with velocity dispersions in excess of 800 km s-1 . Scaling these to account for the mass 

profiles of the simulated clusters being shallower at R A than the galaxy number den­

sity profile in Coma produces a set of ‘galaxy’ velocity dispersions for the simulated 

clusters. Viewing each of these along one of three orthogonal axes facilitated an esti­

mation of the mean value and dispersion of the ratio of the quantity R A(v2)/G  (the 

observational virial mass estimator) to the mass within R A. Applying these values to 

correct the raw virial mass obtained for Coma yielded Mtot — (8.5 ±  2.6) X 101'1 h~l Mg, 

although the uncertainty would have been higher had cluster members been identified 

in projection, rather than in three dimensions (Frenk et al. 1990). Simulations em­

ploying Smooth Particle Hydrodynamics (SPH, see Section 1.4) were used to generate 

clusters with X-ray profiles similar to that of Coma. From these a total mass for Coma 

of M tot = (1.0 ±  0.18) x 1015 h~1 Mq was deduced. So, from these two results it is seen 

that the assumption of light tracing mass produces a total mass about 50% smaller than 

tha t found by assuming cluster profiles similar to those in if = 1 CDM simulations. 

Since the aim here is to determine the a lower limit to the baryon mass fraction in 

Coma, W hite et al. adopt the CDM-simulation mass

to be conservative. From equations 1.51, 1.52 and 1.53, W hite et al. deduce the following 

limit, on the baryon mass fraction in the central Abell radius of Coma:

M tot = 1.1 x 1015 h - 1 Mg (1.53)

A f
—— {Ra ) > 0.029 + 0.051 / r 3/2.

tot.
(1.54)

Comparing this with the maximum baryon density ( ilB = 0.015 h 2 ) allowed by nucle­

osynthesis shows that this figure appears to be inconsistent with the baryon fraction in 

an 11 = 1 universe by a factor of about ~  3 for h = 0.5 and a factor of ~  5 for h = 1.
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Now, dissipative processes are likely (Babul & Katz 1993) to produce in rich clusters 

like Coma an enhancement in the baryon fraction above its cosmological value, so White 

e t  al. use a combination of analytical and numerical analyses to question whether it is 

possible for such mechanisms to produce a baryon fraction as high as that observed in 

Coma. The first analysis used is that of Bertschinger (1985) ,  studying the self-simi lar 

infall of spherical shells of m atter onto a central point mass in an otherwise unperturbed 

Einstein - de Sitter universe. Bertschinger finds two solutions to this problem: shells 

of collisionless mass fall in and oscillate with a decaying amplitude about the central 

mass, while an extremely dissipative medium is modelled by a solution in which shells 

of m atter fall onto the compact object at the centre and just stick. Modelling the 

formation of clusters as comprising a mixture of these two components, it is possible to 

calculate the baryon enhancement, T, as a function of the mean overdensity, A, enclosed 

within a certain radius. Through the use of numerical simulations White et  al. show 

tha t Bertschinger’s spherically symmetric infall model produces the maximum baryon 

enhancement at a given value of A: simulations with aspherica.1 proto-clusters and a 

slightly more realistic treatm ent of dissipation using SPH produce lower values of T at 

a given value of A. W hite et  al. find that the baryon enhancement, T, predicted for the 

value of A corresponding to the central Abell radius of Coma is well below that required 

to reconcile the observed baryon fraction in Coma, with SBBN in an fl = 1 universe: a 

simple model for the uncertainties in the parameters of the models rules out consistency 

at the 99.99% level.

This leads White et  al. to the following four possible resolutions:

• open universe: clearly, the results of White et  al. are not in conflict with SBBN 

in a low density universe and, indeed, if enhancement effects are small, they imply 

i20 =  0.15 h ~ 1/2/ (  1 + 0.55 h3/2)

•  non-standard nucleosynthesis: if the upper bound on provided by SBBN is 

incorrect then baryon mass fractions as high as tha t deduced here for Coma need 

not be incompatible with if = 1

• non-gravitational effects: it is possible tha t non-gravitational effects could be re­

sponsible for enhancing the baryon mass fraction in the cores of clusters, but no
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plausible mechanism suggests itself

• mass uncertainties: the mass estimates used by W hite e t  al. could be seriously in 

error.

W hite et  al. dismiss the latter two possibilities and leave the reader with a choice between 

an open universe and non-standard nucleosynthesis. The depth of this challenge to 

orthodox cosmology merits a few comments. Firstly, to follow up a point discussed by 

W hite et  al. , there is the possibility that their value of Mgas is an over-estimate, due 

to inhomogeneity in the X-ray emitting gas: the bremsstrahlung emissivity varies as the 

square of the gas density, so appreciable dumpiness in the gas could produce a misleading 

estimate of the amount of gas required to produce the observed X-ray flux. White et 

al. counter this argument by saying that the observed Sunyaev-Zeldovich (S-Z) effect in 

Coma constrains the clumping of the gas to a low level but, until, a detailed account of 

the S-Z detection in Coma is published there must be some uncertainty 011 this point. 

Secondly, the results presented by White et  al. are entirely consistent with a scenario in 

which there is fl ~  0.8 in a component which is not clustered on the scale of the Coma 

cluster. This places a constraint on the mass of such a particle and it would appear that 

currently favoured mixed dark m atter scenarios including a ~  30 eV neutrino would not 

do, since they have only Q ~  0.3 in the hot component. These caveats aside, the White 

et  al. result provides a very im portant datum, which should be borne in mind by the 

reader of the remainder of this thesis.

1 .4  T h e  g r o w t h  o f  c o s m o l o g i c a l  d e n s i t y  p e r t u r b a t i o n s

In this section we consider the growth of cosmological density perturbations through 

gravitational instability. We shall present a purely Newtonian description of perturbation 

growth, which is adequate as long as our concern is with fluctuations 011 scales much 

smaller than the Hubble radius and we neglect issues relating to the gauge freedom 

in general relativity, since a.11 unambiguous choice of hypersurfaces of simultaneity is 

possible in this regime. The paper by Bardeen (1980) gives a rigorous treatm ent of
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gauge-invariant perturbation theory, while the excellent review article by Efstathiou 

(1990) is recommended as a general reference for the material covered in this section.

1.4.1 Linear perturbation growth in a pressureless N ew ton ian  fluid

The Newtonian theory of perturbation growth in a pressureless perfect fluid is essentially 

the study of the following set of the three equations:

+  V • (pv)  =  0, (1.55)

d v
—  +  ( w V ) »  =  — V<£ (1.56)

and

V 2<̂> = 47\ G p .  (1-97)

These are, respectively, the continuity, Euler and Poisson equations and they govern the 

evolution of a self-gravitating Newtonian fluid: p is the fluid density, v  its velocity and <i> 

the Newtonian gravitational potential. It is convenient to transform these to a comoving 

coordinate system x  related to the proper coordinates r  by

r  =  a ( t ) x .  (1.58)

The proper velocity, v ,  may be w ritten as

v =  ax  +  ax,  (1.59)

where ax  is the peculiar velocity and we may define a comoving peculiar velocity u =  x. 

We may define a density fluctuation field 6 ( x , t )  about the background density p( t )  by

p { x , t )  = p ( t )  [1 + ¿ ( M ) ] ,  (1-60)
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and then transform equations 1.55, 1.56 and 1.57 to the comoving frame, to obtain 

dS
—  + V x ■ u  +  v x • (uS) =  0 (1-61)

d u  cl

+  2 \ u  +  (u ‘ v x)u = - V ,( * /« 2) (1.62)

V 2(<^/a2) = 4 irGpS, (1.63)

where <f> is the peculiar potential and Vx denotes gradients w.r.t. comoving coordinates.

We assume tha t our perturbed FLRW model is periodic over a large volume V, so that 

we may define Fourier components {6/.}  of the density field by

6 ( x , t ) =  T  6k e'k X (1-64)

**(<) =  y j  S ( x , t ) e ~ i k x d 3x  (1.65)

where k is the comoving wavevector.

The statistical properties of the density perturbation field 6(x,  t)  are given by the infinite 

hierarchy of n-point correlation functions (¿(aq).. .¿ (*n)), where the brackets denote 

ensemble averages. The notion of an ensemble average can be a somewhat tricky one 

when considering the universe but, in any case, this difficulty is avoided by assuming 

that the density field is ergodic, so that the ensemble averages in the definitions of the 

correlation functions may be replaced by spatial averages taken over a sufficiently large 

volume of space. The ergodic property of the density field may be proved (Adler 1981) 

for the case where it obeys Gaussian statistics. The statistical distribution of a Gaussian 

density field is straightforward too, with its statistical properties being fully specified by 

the two-point correlation function,

£(x)  =  (S(x +  x')S(x')),  (1.66)

or, equivalently, the power spectrum, P ( k ) ,

p ( k) =  (I h  I2). d-C")
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which are related by a Fourier transform:

r , , V  _ . f . sinkx  2 jl
£(I)  = 2p / o (1.6S)

In much of what follows it will be useful to use a dimensionless form of the power 

spectrum, A 2(k) ,  which is defined by

A 2(*0 =  ~ k 3 P ( k ) ,  (1.69)

so that A 2{k)  is the contribution to the variance per unit interval in Ink.

Physically, Gaussian density fields will be produced whenever the phases of different 

Fourier components are uncorrelated, as a. result of the Central Limit Theorem: an 

example of this is the generation of density fluctuations in the new inflationary scenario 

discussed in Section 1.2.3. The probability distribution function p(6)  for a Gaussian 

density field is given by

p( i )d£ = v s ^ exp ( “ ¿ h ) d i ' (L70)

where a 2 is the variance of the density field: equation 1.70 shows that a  < 1 necessarily 

for a Gaussian density field.

Following this digression, we may then obtain the Fourier space form for our set of 

coupled equations in the comoving frame:

~TT +  ik  ■ u k +  i 6k, (fc • u k_ k,) = 0 (1-71)
ar k

~ & t  2 a Uk +  S  z [u t- '' (fc _  u k - k ‘ = (1-72)

^ k/a2 =  —4 n G p  (1.73)

The presence of the summation signs in these equations indicates tha t the different 

Fourier modes of the density perturbation field do not evolve independently. Peebles

(1980) provides a plausibility argument why these mode-coupling terms may be negligible
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in comparison to the linear terms and, neglecting them, we may obtain the following 

second-order differential equation which gives the evolution of 6k :

àh
d t 2

+ 2
. à d 6k 

a df
4i rGp 6k = 0. (1.74)

Different solutions to equation 1.74 clearly follow for different equations of state. We 

know tha t the early universe was radiation-dominated, so our first solution of equa­

tion 1.74 will be for m atter fluctuations in a radiation-dominated universe. We may 

take the radiation to constitute a smooth background, as it will show negligible fluctu­

ations on the scales of interest (A <C ct) ,  in which case equation 1.74 becomes

à dé
+  2 - 

dt 2 a dt 47rGPnA- = °> (1.75)

with the effect of the relativistic component just being felt through its contribution to 

the expansion rate

SttG
(Pm +  Pr)  ■ (1.76)

Recalling that p m cc a and pr a  a , it is convenient to transform from t to

Pr
(1.77)

in which case equation 1.75 becomes

d2é
d7;

k (2 +  3?l) d6k 36,.
277(1 + 77) d77 277(1 +  77)

=  0. ( 1 . 78)

This lias (Mészâros 1974, Peebles 1980) two solutions: a ‘growing mode’

6k a  1-|— 77 ( 1-79)

and a ‘decaying mode’

cx 1 + -77 ) In
( l  +  77)1/2 +  l

(1 +  77 y / 2 -  1
-  3(1 + 77), / 2 . 1.80)
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From these it is clear that perturbation growth is not possible until the universe becomes 

matter-dominated -  i.e. r? > 1.

Now, in a matter-dominated Einstein - de Sitter universe, a{t) a  f2//3, so equation 1.74 

becomes

+ ~= ° ’ (L81) 

where the dot denotes differentiation w.r.t. t. This has the general solution

6k = A k t2/S + Bk t ~ \  (1.82)

where, clearly, Ak is the growing mode and Bk is the decaying mode: so, linear theory

growth is

6(t) oc a(t). (1.S3)

1.4.2 T h e  J e a n s  L en g th

The analysis given in the previous subsection ignores the effects of pressure. If we include 

the effects of pressure, then the Euler equation becomes

Q 1
_E + (w.V)t> =  -Vd> -  -V p ,  (1.84)
at p

where p is the pressure. This, in turn, means that equation 1.74 becomes

d2^. . _ d 6k+ 2H —± = 47rGp -  (csk/a)2 \ Sk, (1.8i
df2 df I

where c is the adiabatic sound speed, defined by

: l.sG)

where the subscript s denotes partial differentiation at constant entropy. Equation 1.85 

is the Jeans-Bonnor (Jeans 1928, Bonnor 1956) equation and its form shows that the
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evolution of a perturbation with wavenumber k depends on the sign of the quantity in 

square brackets. This quantity defines a characteristic scale, the Jeans length, Aj,

Aj - c- I g ^ J  ’ ^

which marks the balance between the effects of pressure gradients and of gravity: for 

perturbations with wavelengths A >  Aj, the effects of pressure are negligible and evolu­

tion proceeds as in the case of a pressureless fluid described in the previous subsection; if 

A <C Aj then gravity may be neglected and the perturbations will oscillate like acoustic 

waves, without growing.

Before decoupling, Thomson scattering kept the matter and radiation tightly coupled, 

so that they act as a single fluid, with an adiabatic sound speed given by

c- = f ( ^  + 1)' (L88)
Now, since pm/ p T oc a, the adiabatic sound speed and, hence, the Jeans mass, A/, 

(M j = 47rpmA j/3 ) decrease with time, so that perturbations corresponding to increas­

ingly small masses start growing: by decoupling it has fallen to M, ~  9 X 101G (S7/?2)~ 2 M &. 

After decoupling the relevant sound speed is that of a monotonic gas:

=  (If) ■ (L80>
where m  is the proton mass. So, for a temperature T  ~  3000 K at the epoch of de­

coupling, M i  ~  1 X 106 (i!/i2) - 1 / 2 M q : this great drop in the Jeans mass at decoupling

facilitates the growth of perturbations on scales of relevance to the study of large-scale 

structure.

1.4 .3  S ilk  D a m p in g

The coupling between photons and electrons due to Thomson scattering is tight, but not 

perfect, resulting in the phenomenon of Silk damping (Silk 1968), whereby small-scale 

perturbations in the baryonic component are damped before decoupling.
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Silk damping may be explained quite simply, as follows. The imperfect coupling of 

the photons to the matter means that each photon performs a random walk between 

scatterings. If the mean time between collisions is tc, then the number of steps in the 

random walk made in time t is N  =  t / t c and it follows that the photons drift a mean 

distance AD ~  y/~Nctc ~ c(itc)1̂ 2. Photons can, therefore, diffuse out of overdense 

regions, or into underdense regions, of size A < AD. They will drag ba.ryon.ic matter 

with them since, even though the coupling is not perfect, it is tight. Thus it follows 

that Silk damping will erase perturbations on mass scales below MD = 4irpm Ad/3 

1012(fth2r 3/2 Mq by decoupling in a purely baryonic universe.

1.4.4 Transfer Functions

From the previous subsections it should be clear that even the linear theory of pertur­

bation growth in a realistic, multi-component cosmogony is complicated and will require 

numerical, rather than analytical, study. As long as mode-coupling terms are negligible, 

the results of such a treatment may be expressed in terms of a transfer function, T(k),

Sk(t0) <x T(k)Spk , (1.90)

relating the density perturbations {<5fc} at the present, t0, with the primordial fluctuations 

{<?>£}: it is conventional to normalise the transfer function such that T ( k ) —> 1 as k —» 0.

The form of the transfer function for a particular cosmogony depends on the matter 

components present and their microphysical interactions. Bond & Szalay (1983) find 

that the transfer function for a. neutrino dominated universe takes the form

T(k)  <x i 0- 2(fc/M 3/2, (1.91)

where

27r (  m,  N 1\  = rA ~  4 1 - ^ 7  Mpc (1-92)
k„ V30 eV, 1
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is the neutrino damping length. This arises because neutrino free-streaming erases fluctu­

ations tha t enter the horizon while the neutrons are rela.tivistic: A„ is, therefore, roughly 

equal to the distance that a neutrino has travelled since the Big Bang.

Bond & Efstathiou (1984) give the following fit to the transfer function for CDM- 

dominated models with negligible baryon content:

T ( k )  =  { l  +  [ak +  {bk)3/2 +  ( c k ) 2y y 1,‘/ , (1.93)

where a = 6.4(0/i2)-1 Mpc, b =  3.0(il /?2)-1  Mpc, c = 1.7(fi/i2) -1  Mpc and u = 1.13. 

Equation 1.93 shows that the shape of the CDM transfer function depends only on the 

quantity f lh,  given wavenumbers expressed in observational units of h ~ l Mpc. This 

is because the only length scale imposed on the density perturbation field of a dissi- 

pationless fluid is the Hubble radius at matter-radiation equality which, as we saw in 

equation 1.36, depends on flh2.

Comparison of equations 1.91 and 1.93 shows that a neutrino-dominated universe has 

more power on large scales (low k)  than a CDM-dominated universe. This is impor­

tan t, as it dictates the form of large-scale structure in these two cosmogonies. In a, 

neutrino-dominated universe, large-scale structures are expected to form first, with small 

structures forming by fragmentation: this is called the ‘top-down’ scenario of structure 

formation, for obvious reasons. By contrast, smaller structures will form first in a CDM- 

dominated universe, with larger structures forming through their agglomeration: this is 

the ‘hierarchical’ scenario.

1.4.5 Normalisation of the power spectrum

We have seen how inflationary processes can generate the power spectrum of density 

perturbations and how microphysics modifies it: we now need to discuss its normalisa­

tion.

In this thesis we shall consider only power spectra that tend to the Harrison-Zeldovich 

( n = 1 ) slope at large scales. Since the CBR anisotropy data from the C O D E  DMR
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experiment are consistent with this spectrum we may use them to normalise our model 

power spectra.

We can write the power spectrum in the form

a2(*> "  T  ( 0  r 2 ( t ) ' t1-94»

where e is a dimensionless normalisation constant, whose value we are to determine: 

Peacock (1991) shows that e2 is the gravitational potential variance per unit lnfc.

The background radiation temperature fluctuations on the sky may be expanded in 

spherical harmonics, E)m(#, <f>):

AT
=  £ « “1?’(».«. (1-95)

i.m

where the angular power spectrum, = (| a"1 |2), is related to the power spectrum of 

density perturbations at the present epoch. For a scale-invariant spectrum of the form

A  (*) =  —  (■IfJ ’ u - 96)

in a spatially flat universe, this relationship is given (Efstathiou, Bond & W hite 1992, 

EBW) as

C -  2"  ^  e2 (197)
“  9 /(/ + 1) (1 °

Smoot et al. (1992) fit such a formula to the COBE DMR. data for multipoles higher 

than the quadrupole and express the results in terms of the value of Q rnvi, which is 

related to C2 by

47T

and so using equations 1.97 and 1.98 this gives, for a scale-invariant spectrum

5 V T0'2 - 108 ( Q™ \  (1.99)
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Fitting to the C O B E  data, subject to the constraint of a scale-invariant spectrum, 

Smoot et al. (1992) obtain a value of = 16.7 ±  4 /¿K. This does not include, 

however, the effect of the ‘cosmic variance’, an added uncertainty due to the power 

spectrum of the observed sky not being equal to that of the mean of the ensemble of all 

possible skies in the Universe. Inclusion of the cosmic variance requires another fit to the 

higher order multipoles, subject, for our purposes, to the constraint of a scale-invariant, 

spectrum, which will modify the Q rms value and increase its uncertainty slightly. We 

take the fluctuation amplitude indicated by C O B E  to be = 17 ± 5  /¿K, which, from 

equation 1.99, yields c = 2.9 ±  0.9 X 10~ 5 flo ° '' •

Before the advent of C O B E ,  the most common way to express the amplitude of a. lin­

ear density power spectrum was in terms of its predicted value for a 8 , the variance in 

spheres of radius 8 h -1  Mpc: the origin of this somewhat arcane measure being that the 

galaxy distribution is observed to have roughly unit variance when samples in 8 h ~ l Mpc 

spheres. This leads to another measure of the fluctuation amplitude, the bias factor, b8, 

defined by b8 =  1/<t8. This measure is motivated by a particularly simple picture of the 

relationship between the distribution of m atter and galaxies in the universe, in which it 

is assumed the fluctuations in the galaxy number density field, ngal, are related to the 

density fluctuations by

I S_ n s A  _ I  (&£.) (1.100)
V n s a l  )

where b is called the bias parameter. This association of a measure of the density 

fluctuation amplitude with a specific hypothesis for the relation between the distribution 

of mass and galaxies in the Universe is unfortunate and leads to ‘bias’ being the most 

confusingly-used word in cosmology: we shall avoid it wherever possible in what follows.

1.4.6 N on-linear growth of density  perturbations

Our treatm ent of the growth of density fluctuations heretofore has been based on the 

assumption of their being small. Observations that a 8 ~  67(1) indicate that, this per- 

turbative approach is inadequate, on small scales at least, and that we must seek a 

non-linear treatm ent instead.



Both analytic and numerical methods may be used to study perturbation growth into 

the non-linear regime, with the most appropriate method depending on the details of 

the particular problem and, especially, on how non-linear the density field is 011 the 

scales of interest. In the mildly non-linear regime, one may profitably use the Zeldovich 

Approximation (Zeldovich 1970, Shandarin & Zeldovich 1989), which we discuss at some 

length in Chapter 2. The density field on galactic scales is, however, sufficiently non­

linear that one must resort to numerical simulations.

Numerical simulations may be separated into two categories, depending on whether or 

not they include prescriptions to model dissipative processes. Dissipationless simulations 

(commonly called A-body simulations) may themselves be classified, according to the 

method by which they compute the gravitational forces between their particles. The 

simplest of these are the particle-mesh (PM) codes, which, in their simplest form, calcu­

late the net force acting on each particle at each time-step by moving it to the nearest 

node of a mesh laid out throughout the simulation volume and then using a fast Fourier 

transform (FFT) routine to solve Poisson’s equation on this (conventionally cubic) grid. 

The accuracy with which this models the gravitational interaction between particles de­

pends, of course, on .the fineness of this grid, which is limited by the computer memory 

available. For many purposes, the force resolution obtainable by this method is inade­

quate, in which case a particle-particle/particle-mesh (P3M) code may be used instead. 

This supplements the computation of the gravitational forces between widely-separated 

particles using the FFT prescription of a PM code with the direct computation of forces 

between nearby pairs of particles: the computational expense of this exercise limits the 

range over which this direct force computation can be performed.

A-body codes have been used extensively in cosmology for the past fifteen years, but 

it is only recently that advances in computer hardware have facilitated the creation of 

codes including dissipative processes. These codes supplement the evolution of dissipa­

tionless components by standard A-body techniques with that of a dissipative gaseous 

component, modelled using simple prescriptions for cooling and star formation. The 

development of these codes is still in its infancy, but we shall have cause to consider 

some of the results of one such simulation in Chapter 4.



1 .5  P l a n  f o r  t h e  r e m a i n d e r  o f  t h i s  t h e s is

As its title suggests, this thesis is concerned with the use of galaxies and clusters as 

tracers of the large-scale structure of the Universe.

In Chapter 2 we consider the use of rich clusters of galaxies as probes of large-scale 

structure. The observational study of the spatial distribution of clusters has advanced 

greatly in recent years and this chapter combines a detailed analysis of recent clustering 

data with the development of a new method for calculating predictions for the cluster 

correlation function in cosmological models.

Chapters 3 and 4 are principally concerned with the clustering of galaxies. A great 

deal of attention has been focussed in recent years on the study of galaxies observed in 

the infrared by I R A S .  It has been argued that I R A S  galaxies are unbiased tracers of 

the cosmological density field, that “I R A S  galaxies trace the mass” . Implicit in such a. 

statem ent is a belief in the homogeneity of the class of I R A S  galaxies. In fact, I R A S  sees 

a broad range of galaxies: one may divide them into “cool” galaxies (isolated spirals) 

and “warm” galaxies (interacting galaxies, starbursts and the like). This classification 

is somewhat crude, but it suggests a difference in the clustering of the two populations, 

since interacting galaxies would be expected in more dense environments than isolated 

spirals. In Chapter 3 we investigate the clustering of “cool” and “warm” I R A S  galaxies, 

to see whether any such difference is discernible.

In Chapter 4 we show how a synthesis of recent observational data may be used to 

determine the power spectrum of density fluctuations over a wide range of scales and 

produce a consistent picture of the large-scale structure. Chapter 5 presents a discussion 

of the results of the previous chapters, along with the conclusions that may be drawn 

from them. Finally, there are several mathematical appendices, containing derivations 

that it wotdd be too tedious to include in full in the main text of this thesis, followed by 

a complete list of works cited and by a copy of the paper (Mann, Heavens &: Peacock, 

1993, MNRAS, 263, 798) describing some of the results of Chapter 2 .
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C h ap ter  2

C L U S T E R  C O R R E L A T IO N S  

AS P R O B E S  O F 

L A R G E -S C A L E  S T R U C T U R E

2 .1  I N T R O D U C T I O N

The large-scale structure of the Universe is delineated by the spatial distributions of 

galaxies and clusters of galaxies. Later chapters in this thesis are concerned with the 

galaxy distribution; in this chapter we consider what one may learn from a study of the 

spatial distribution of rich clusters of galaxies.

There are both observational and theoretical motivations for studying the cluster distri­

bution in addition to the galaxy distribution. On the observational side, clusters offer 

a much more efficient coverage of space; they trace the same large-scale structure as 

galaxies, but do so much more sparsely, marking, presumably, the highest points in the 

cosmological density field.

One of the attractions of the study of the cluster distribution for the theorist is its relative 

lack of dynamical evolution: the cosmological density field is only mildly non-linear 011 

cluster scales today, so clusters have not moved far from the sites of their formation.
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This is of particular importance to the present work, since it means that the dynamical 

component to the clustering of clusters is amenable to an analytic treatm ent, as pursued 

here.

In Sections 2.2 - 2.4 we present a comprehensive review of the observational study of 

cluster correlations: it is essential for the theorist to understand the complexities of, and 

controversies surrounding, these observational data before using them to constrain cos­

mological models and that is why a lengthy review is necessary, particularly since a great 

deal of work (both observational and theoretical) has been performed since the publica­

tion of the last substantial review of the subject (Balicall 1988). The most widely used 

cluster catalogue in studies of large-scale structure is the Abell/ACO catalogue, which 

is the subject of Section 2.2. The advent of plate-measuring machines has facilitated 

the production of cluster catalogues with far more objective selection criteria than those 

of catalogues constructed from visual scans of photographic plates, like the Abell/ACO 

catalogue: two such catalogues, produced using the COSMOS and APM plate-measuring 

machines, are described in Section 2.3. In Section 2.4 we summarise the current state of 

the observational study of cluster correlations, before turning to the theoretical side of 

the question.

Section 2.5 reviews previous theoretical studies of cluster correlations, using both ana­

lytical and numerical methods. Analytical work has centred on the computation of the 

statistical component to the clustering, through the study of the spatial correlations of 

peaks in Gaussian random fields, while the success of numerical simulations of the full 

dynamical problem has been restricted by its inherent dynamical range.

In Section 2.6  we present a new method for computing cluster correlations. This is the 

first analytical method to take account of the nonlinear evolution of the cosmological 

density field. It employs the framework devised by Bond & Couchman (1987, 1988; 

hereafter, collectively, BC) to supplement the statistical peak-peak methods of Section

2.5 with dynamical evolution using the Zeldovich Approximation.

Section 2.7  compares the results of our analytical method with those from recent numer­

ical simulations, while Section 2.8 compares them with observations of optical cluster 

samples. The application of our methods to the study a sample of R O S A T  clusters is
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outlined in Section 2.9. A detailed discussion of the results of this chapter will be given 

in Chapter 5.

2.2 TH E A BELL/ACO  CATALOGUE

The most widely used cluster catalogue in large-scale structure work has been the 

Abell/ACO catalogue. This comprises the original Abell (1958) catalogue of rich clusters, 

together with a revision and southern extension prepared by Abell, Corwin & Olowin 

(1989, ACO): the construction of the Abell/ACO catalogue is described in Section 2 .2 .1 . 

(In what follows the word “Abell” will generally be used to denote northern clusters from 

Abell (1958), while “ACO clusters” will be those in the southern extension presented 

by ACO.) A number of redshift samples of Abell/ACO clusters have been produced and 

these are discussed in Section 2.2.2, along with the spatial correlations deduced from 

them. Many authors have questioned the integrity of the Abell/ACO catalogue and 

its suitability for use in studying large-scale structure: a review of the long and con­

tentious debate on this subject that has raged in the literature for the past fifteen years 

is presented in Section 2.2.3.

2.2.1 C onstruction  o f th e  A b e ll /A C O  catalogue

The scientific aim of George Abell’s 1958 paper was two-fold: to produce a large finding 

list of rich clusters of galaxies and to draw from it a smaller sample, selected in a, 

homogeneous fashion, that would be suitable for statistical studies investigating the 

clustering of clusters.

Abell’s raw material was the National Geographic Society - Palomar Observatory Sky 

Survey. This comprises 879 pairs of photographic plates, (one blue- and one red-sensitive 

plate for each field), taken by the 48-incli Schmidt telescope of the Palomar Observatory 

and covering the sky from the northern celestial pole to a declination of 27°: Abell 

used only the red plates from each pair, as these were found to be more suitable for 

identifying clusters, particularly at higher redshifts.

Earlier analyses of the galaxy distribution on plates taken at the Lick Observatory per­
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formed by Neyman, Scott and collaborators (Neyman & Scott 1952, Neyman, Scott & 

Shane 1953, 1954, Scott, Shane & Swanson 1954) had motivated Abell’s work by reveal­

ing the presence of clusters, but also illustrated the difficulty of selecting true clusters 

from a distribution of galaxies seen in projection on the sky: Abell was well aware of 

projection effects and many subsequent authors have been uncharitable in failing to ac­

knowledge his understanding of the difficulty, as well as the scale, of the task he set 

himself in producing a cluster catalogue from the Palomar sky survey.

Abell pictured the distribution of galaxies on the sky as a field population, whose surface 

density varies with position, upon which is superposed a number of very rich and conspic­

uous associations. He assumed that these are physical clusters, not chance projections: 

some of the galaxies in these associations will, of course, be members of the field and 

should be excluded by some suitable means but, he argued, this contamination should 

be relatively unim portant if only the richest and most compact clusters are considered.

In order to select associations that match this idealised picture, Abell imposed the fol­

lowing four selection criteria:

1 . Richness Criterion: a cluster must contain, after background subtraction, at least 

50 galaxies in the magnitude range m 3 —► m 3 + 2, where m3 is the apparent 

magnitude of the third brightest cluster member. The validity of the galaxy count 

in this magnitude range as a richness estimator depends on the form of the bright 

end of the luminosity function for cluster galaxies, but Abell provided evidence in 

support of it.

2. Compactness Criterion: the fifty or more members must be contained within a 

physical distance, rA, of the cluster centre. This distance was given by Abell as a 

redshift-dependent distance on the plate, but it translates to a physical distance 

of r A = 1.5 h ~ x Mpc: this is commonly called the Abell radius.

3. Distance Criterion: the cluster must be sufficiently distant that its members do 

not extend over more than one plate or, at most, part of an adjacent plate, but 

sufficiently near that the counting strip (m 3 —> m3 + 2 ) lies well within the mag­

nitude limit of the plate. These constraints correspond to a. range of estimated
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redshifts of 0.02  < z  < 0 .2 , where the upper limit results from considering clusters 

with m3 < 17.5.

4. Galactic Position Criterion: the position of the cluster should be such as to ensure 

identification of clusters satisfying the other three criteria. This region of “complete 

identification” is given in Table 1 of Abell (1958) and excludes those areas of the 

sky where Abell felt that either a high surface density of stars or particularly high 

Galactic absorption would hamper cluster detection.

Abell found 1682 clusters that satisfied all four criteria and these constitute his s tat is t i cal  

s a m p le , which he supplemented with further objects to produce a catalogue containing 

a total of 2712 members.

These selection criteria should, in principle, select clusters of the desired sort in a. ho­

mogeneous, redshift-independent manner, but there are a number of caveats relating to 

their performance in reality. The first caveat concerns the estimates made of the appar­

ent magnitudes of cluster members. Magnitude information is required for two purposes: 

firstly to define the counting strip of m3 —> ra3 + 2 and, secondly, to estimate the redshift 

of the clusters from the m 10 — z  relation derived from the redshift sample of clusters stud­

ied by Humason, Mayall & Sandage 1956) to determine the angular distance on the plate 

corresponding to the Abell radius r A. Abell estimated the magnitudes of galaxies on a 

plate by comparing their images with a set of calibration images of galaxies on film. This 

method assumes that plate quality is consistent and that the conditions of observation 

and development are fixed, which is clearly inaccurate at some level. Zero-point errors 

in the derived magnitude scale will be unim portant, since the counting strip is defined 

by an interval in magnitude and the ??r10 — 2 relation is normalised using observations 

of clusters with known redshift. Doubts must remain, however, about systematic errors 

that would not shift the zero-point, but could alter the width of the counting strip and 

wrongly determine the redshift used to set the counting radius, 7-A: one such systematic 

effect is the Scott effect (Scott 1957), whereby richer clusters have brighter M 10 values 

(provided tha t the shape of the luminosity function of cluster galaxies does not vary 

much with cluster richness).

Internal checks of the parameters assigned to the selected clusters were made possible by

58



the overlap of survey plates: Abell found 120 clusters on more than one plate, 90 of which 

satisfied the conditions for inclusion into the statistical sample. From comparing these 

twice-selected clusters he estimated that his stated cluster positions were accurate to a 

couple of minutes of arc and tha t the error on the estimated magnitudes was ~  0.2  mag. 

His estim ated error on the counts of cluster members was 17%, but there may be a 

significant systematic error on that, due to his method of background subtraction: to 

obtain the background count Abell turned to an area of the plate that appeared to be 

free of clusters and counted galaxies down to the appropriate limiting magnitude. This 

procedure produced corrections of up to 30% of the raw count, but this could be a. 

systematic underestimate, since it was made on an area with a low surface density of 

galaxies, by construction: this effect is illustrated by Lucey (1983) who finds that for his 

simulated plates (see Section 2.2.3) areas selected to be cluster-free have typically ~70% 

of the mean surface density of galaxies.

These estimated errors for the counts and magnitudes were used by Abell to select 

appropriate richness and distance classification schemes for the clusters in the statistical 

sample: in each case the width of the class was set to be 3.5 times the estimated error 

at the lower limit of the class, so that, for normally-distributed errors, there would be 

a very small chance of a cluster being in a group more than one level away from its 

true one. The resultant classification of the statistical sample into richness and distance 

classes is shown in Tables 2.1 and 2.2, respectively. Clusters with 30-49 galaxies were 

assigned to richness class R  = 0: Abell advised that this class not be used in statistical 

work, because of its incompleteness.

In 1975 Abell suggested that a southern rich cluster survey be performed, using the I lla -  

J plates then being taken by the 1 .2m UK Schmidt telescope for its Southern Sky Survey. 

The resultant catalogue, constructed in broadly the same manner as the original Abell 

(1958) northern catalogue, is presented by AGO, along with a revision and correction 

of the earlier work. Partly, no doubt, in response to some of the criticism levelled at 

the original catalogue since its publication, ACO were less confident in the claims they 

made for their catalogue: they did not consider it possible to construct a. statistical 

sample, writing “since the present all-sky catalogue is based on purely visual surveys 

of apparent areal densities of galaxies, it  should not  be taken as a defiiiit.ivc catalog of
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Richness Class Galaxy Count No. of clusters

1 50-79 1224

2 80-129 383

3 130-199 68

4 200-299 6

5 300 and over 1

Total 1682

Table 2.1: Richness Class classification for clusters in Abell’s statistical sample (from 

Abell 1958)

Distance Class m 10 magnitude range No. of clusters Cumulative count

1 13.3-14.0 9 9

2 14.1-14.8 2 11

3 14.9-15.6 33 44

4 15.7-16.4 60 104

5 16.5-17.2 657 761

6 17.3-18.0 921 1682

Table 2.2: Distance Class classification for clusters in Abell’s statistical sample (from 

Abell 1958)
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clusters, but rather as a finding list of apparent clusters which need further investigation 

[ACO’s italics].”

In addition to the problems associated with the Abell (1958) catalogue, some of which 

were mentioned above and more of which will be discussed in detail in Section 2.2.3, 

ACO faced further difficulties, one might say of their own making: their catalogue was 

produced by three observers, in two continents, using two different types of material 

(Abell & Corwin in Edinburgh using original plates and Olowin in Oklahoma using film 

copies), using calibration procedures that varied with time and between observers. Not 

surprisingly, a sizeable section of their paper is concerned with comparing clusters that 

more than one of them observed, due to plate overlaps, to find systematic differences in 

the cluster parameters assigned and to “correcting” their raw results accordingly.

One significant difference between the methods of ACO and those of Abell (1958) is 

the method of background subtraction: ACO correct cluster counts on the basis of a 

universal luminosity function for field galaxies (from Rainey 1977). This is clearly not 

in keeping with Abell’s initial picture relating clusters to a position-dependent field, 

since it leads to their being selected as excursions above a global, rather than a local, 

surface density threshold: the unsuitability of this procedure is evinced by the negative 

“corrected” counts tha t it returns for a number of poorer ACO clusters in sparsely- 

populated regions of the sky.

ACO produced a catalogue containing a total of 4073 clusters, divided into the same 

richness and distance classes as Abell (1958). They do not define a statistical sample 

and write “we hope tha t this will be the last such catalog prepared by visual scans of 

photographic plates, and we urge future investigators to compile cluster catalogs using 

high-speed microphotometric scanning machines and objective selection criteria. To 

compare this quote and the one reproduced above with the more confident tone of Abell 

(1958) is to see how far observational cosmology had progressed in the intervening three 

decades: Abell’s methods may have been “state-of-the-art” in 1958, but by 1989 not 

only was it realised that a more objective approach was required, but such an approach 

was becoming possible, due to advances in astronomical technology.

Comparisons of the Abell (1958) and ACO catalogues are presented by Batuski et. al.
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(1989, BBOB) and Scaramella et  al. (1991, SZVC) and both groups find systematic 

differences between them. SZVC begin their comparison by looking at the clusters in 

the overlap region between the northern Abell catalogue and its southern extension 

presented by ACO. Two points are clear from this: (i) the number density of ACO 

clusters is larger than that of Abell clusters in the overlap region (the ratio is 1.47 ± 

0.13 for R  > 0 clusters and 1.39 ±0.14 for R  > 1); (n) ACO tend to estimate higher 

richnesses for the clusters (the best fit linear correlation between the number of galaxies, 

N g , counted by Abell and ACO for overlap clusters is N g(ACO) ~  -30 +  1.5 Arg(Abell), 

with a quoted lcr error of 0.07 on the slope of the fit: this fit comes after the counts for 

the four most discrepant clusters have been excluded and assumes equal errors on the 

two N g values). The first observation is probably the result of the higher completeness in 

the ACO catalogue, while the second may well be the result of the difference between the 

background subtraction procedures adopted for the two catalogues: both these effects 

are discussed in more detail below.

BBOB and SZVC both compare the radial density distributions of the two catalogues, 

finding the distributions consistent with each other and with homogeneity out to an 

estim ated distance of ~  300 h ~ l Mpc. Differences between the distributions determined 

by the two groups at larger redshifts result from the different distance estimators they 

use. BBOB find tha t the difference between the radial distributions of Abell and ACO 

subsamples is greater when distance classes are used rather than estimated redshifts: 

they interpret this as indicating a systematic shift in the magnitude limit of distance 

classes between the two catalogues, with the redshift limit of the D  <  4 class in the ACO 

catalogue being ~30% higher than that for the Abell catalogue. SZVC find that there is 

an offset in Abell’s magnitude calibration between the overlap region and the rest of the 

northern catalogue, with Abell’s estimated distances in that region being systematically 

larger by ~  (15 ±  6 )%. There are clearly serious problems with magnitude estimates 

and, consequently, distance estimation in the Abell/ACO catalogue.

Both groups find Galactic-latitude selection dependences for both catalogues, as well as 

a selection bias with declination for the ACO catalogue. SZVC find that the Galactic- 

latitude selection bias is much stronger in the full catalogues than in volume-limited sam­

ples (with depths of 300 and 350 /j-1  Mpc for the Abell and ACO samples respectively;
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these being the distances out to which the samples appear to be homogeneous). This is 

im portant: it shows that Galactic-latitude selection biases affect more distant clusters 

more seriously, (as would be expected if the dependence were due to Galactic extinction 

pushing the faint end of the counting strip beyond the magnitude limit of the plates), 

which means it is inappropriate to correct for this effect using a redsliift-independent 

Galactic-latitude selection function, P (b) ,  as is conventional practice, followed even by 

SZVC themselves!

The complexity (especially the redsliift-dependences) of the selection biases discussed 

by SZVC and the differences both they and BBOB find between their Abell and AGO 

subsamples, (as well as the biases introduced by using estimated distances tha t their 

analyses reveal), can only reinforce the belief, implicit in the quotes from AGO given 

above, tha t the Abell/ACO catalogue is far from ideal for use in statistical studies.

2.2.2 Spatial correlations of A b e l l /A C O  clusters

Abell (1958, 1961) was the first author to study the distribution of clusters in his sta­

tistical sample. His work was soon followed by that of others (Bogart & Wagoner 1973, 

Hauser & Peebles 1973, Rood 1976) who used statistical tools such as the angular cor­

relation function and the nearest-neighbour distribution to study the clustering of Abell 

clusters. This early work was principally concerned with the distribution of clusters seen 

in projection on the sky: studies of the three-dimensional distribution of clusters had to 

wait until the 1980s, when large and complete redshift samples of Abell clusters became 

available.

The first determination of the spatial correlation function of Abell clusters to be pub­

lished was tha t of Klypin & Kopylov (1983). Their sample contained 158 R  > 0 clusters 

with redshifts (largely from Fetisova 1982) of 2 < 0.08 and | b |>  30 : they estimated 

their completeness to be 85%. Inclusion of R  = 0 clusters, which Abell (1958) deemed 

to be unsuitable for statistical work, was justified by noting that the class apparently 

only becomes seriously incomplete at redshifts higher than those considered by Klypin & 

Kopylov. F itting the spatial correlation function of this sample to the canonical form of 

£(r) = (r0/ r )7 in the range 2.5 < r <  50 h ~ x Mpc yields r0 ~  25 h ~ l Mpc and 7  ~  1.6.
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Partly, no doubt, due to its appearance in a Soviet, rather than a Western, journal, the 

work of Klypin & Kopylov received much less attention than tha t enjoyed by a second 

study, published a few months later by Bahcall & Soneira (1983, BS83). The redshift 

sample used by BS83 is that of Hoessel, Gunn & Thuan (1980), comprising all 104 

R  > 1 Abell clusters in distance class D  <  4 and with | b |>  30°. Before determining 

the spatial correlation function, BS83 make a correction for the variation of the cluster 

surface density with Galactic latitude: apparently the region of “complete identification” 

defined by Abell (1958) does not exclude all the areas of the sky where interstellar 

absorption or star/galaxy confusion hamper cluster detection. This effect is modelled 

with a latitude selection function P [ b ) = dex [0.3(1 — cosec | b |)], which has become 

standard procedure in subsequent work, although, as discussed above, SZVC show that 

this is inappropriate, as the Galactic-latitude selection bias varies with redshift.

Bahcall & Soneira detect clustering out to ~  150 h -1  Mpc, with a correlation length of 

r0 ~  25 h ~ l Mpc for a fit to a 7  = 1.7 power law. They find that this spatial correlation 

function is consistent, through Limber’s equation (Limber 1953, Peebles 1980), with the 

observed angular clustering of the D  < 4 and D  =  5 + 6 Abell subsamples. From this 

scaling test they conclude that the D  < 4 redshift samples of Hoessel e t  al. is a fair 

sample of the larger D  =  5 + 6 sample and that the observed spatial correlations of 

Abell clusters are genuine.

BS83 also study the angular correlations of R  = 1 and R  > 2 subsamples of D  =  5 + 6 

clusters. They find that both richness classes produce correlation functions well approx­

imated by the same power law, [u>($) oc 6 1], but that that of the R  > 2 sample has a 

higher amplitude. Even stronger small scale angular correlations are found for R  > 3 

clusters, but the small sample size precludes meaningful comparisons here: BS83 con­

clude that they have demonstrated the presence of a strong richness dependence for the 

correlations of Abell clusters.

The validity of these results is challenged by Postman, Geller & Huchra (1986, PGH). 

They question wdiether the Hoessel et  al. survey is a “fair sample’ , due to its inclusion 

of the rich Corona Borealis supercluster. PGH note that “mean value of the spatial 

correlation function drops by a, factor of ~4 in the 10-20 Mpc [with /i= l] range when
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Corona Borealis is removed from the sample. The drop is significant at the 3<r level. 

No such drop in the spatial correlation function occurs when six northern clusters are 

randomly removed from the sample”. Enhancements due to Corona Borealis are also 

seen at larger separations, albeit at a lower significance level, so PGH are correct to 

conclude that the Hoessel et  al. survey is not a fair sample for the purposes of clustering 

analysis.

To circumvent this problem PGH construct a larger cluster sample, whose clustering 

should be less sensitive to individual superclusters like Corona Borealis. Their sample is 

constructed by imposing on Abell’s statistical sample the twin distance limits of z  < 0.1 

and M 10 < —19.38; the la tter corresponding to the catalogue limit of 7?r10 =  18 at 

z = 0.1, beyond which PGH judge that foreground contamination affects estimation of 

m 10 seriously. The sample so defined comprises 152 clusters, for which there are known 

redshifts for all but sixteen clusters: estimates for these are made using the methods of 

Leir & van den Bergh (1977), who advocate estimating redshifts from a number of clus­

ter param eters, to reduce scatter due to inaccurate magnitude estimations for individual 

galaxies. PGH detect significant correlations in their sample out to ~  60/i-1 Mpc. F it­

ting the correlation function to the canonical form yields 7  ~  1.8 and r0 ~  20 h 1 Mpc, 

but with large uncertainties: the uncertainty on the slope of the power law is ~ 10%, 

while tha t on its amplitude is ~50%. These results are consistent with those of BS83, 

given their uncertainties, and it would appear from their Figure 2 that PGH have not 

been altogether successful in overcoming the sensitivity of the correlation function to 

Corona Borealis.

PGH also study the richness dependence of clustering strength. They determine the 

spatial correlation function for the full R  — 1 and R  =  2 subsamples of the Abell 

statistical sample, using Leir & van den Bergh (1977) redshift estimates in the absence 

of a measured redshift. Constraining the correlation functions to the canonical 7  = 1.8 

power law they obtain correlation lengths of r0 = 24 h 1 Mpc and r 0 ~  42 h Mpc 

for the R  = 1 and R =  2 samples respectively, with respective uncertainties of ~ 20% 

and ~35% in the correlation length. This richness dependence is consistent with that 

found by BS83, but a degree of scepticism must greet observational results so reliant 

on estimated redshifts: ~80% of the R  = 1 clusters and ~75% of the R  = 1 sample
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have estimated redsliifts. PGH raise another caveat: they show tha t the R  = 3 clusters 

are under-represented at low galactic latitude and suggest that star/galaxy confusion 

might lead to a systematic underestimation of cluster richness in that region and, thus, 

bias the clustering of richer clusters and spuriously enhance the strength of any richness 

dependence of clustering.

A deeper complete sample of clusters, containing no supercluster comparable in richness 

to Corona Borealis, is presented by Huchra e t  al. (1990, HHPG). This sample contains 

145 clusters (103 R  > 1) from distance classes D  <  6 (137 D  > 5), all with measured 

redshifts. HHPG justify their inclusion of R  = 0 clusters by noting tha t the redshift. 

histograms for their R  =  0 and R  > 1 subsamples are consistent out to £ ~  0.2. Fitting 

the correlation function they calculate to a power law with 7  = 1.8 in the interval 

10 < r < 70 h~l Mpc, HHPG obtain correlation lengths of r0 = 20.3 and 20.9 fi-1  Mpc 

for their R  > 0 and R  > 1 subsamples, respectively: the respective 1er bootstrap errors 011 

these are (+4.79,-5.05) and (+6.69,-6.91) respectively, with all distances in /i-1  Mpc. 

HHPG also consider a subsample of 132 clusters limited to 2 < 0.24, (beyond which 

they judge their deep sample to become seriously incomplete), for which they obtain 

rQ = 20.7 h~l Mpc, w ith '1er uncertainties of (+6.32, -6.38) h_1 Mpc: these results are 

again consistent with those of BS83.

Following their analysis of a deep Abell sample, the same authors turn to a survey of 

nearby clusters in Postman et  al. (1992, PHG). This sample contains all 350 A bell/ACO 

clusters (plus Virgo, which is too extended to satisfy the Abell/ACO selection criteria) 

north of 6 = -27°30 ' with m10 < 16.5: this includes 15 southern ACO clusters. The 

richness distribution of this sample is: 195 R. =  0 clusters, 126 R  =  1, 28 R  =  2 and 2 

R  = 3 . The correlation function of this sample is well approximated by the canonical 

power law form with r 0 = 2 0 .O^q’® h 1 Mpc and 7  = 2.49 ±  0 .2 2 : these results are 

demonstrated to be very insensitive to the Corona. Borealis supercluster. The sensitivity 

to. Corona Borealis is more visible in the R  > 1 subsample considered by PHG: they 

find r0 = 23.7Ígo h~l Mpc when Corona Borealis is included, but r0 = 18.9 ^ 5  h~l Mpc 

when it is left out, although, of course, these results are consistent, given the large quoted 

uncertainties.
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PHG define a ‘statistical sample” , in which they include all clusters in their sample with 

z  < 0.08 and | b |> 30 : the redshift limit marks the distance out to which the number 

density of PHG clusters remains constant. For this “statistical sample” a correlation 

length of Tq =  2 0 .6 ^  g h Mpc and a power law slope of 7  =  1.86 ± 0.20 are computed.

Three further samples of Abell/ACO clusters are considered by Plionis, Valdarnini & 

Jing (1992, PVJ). The computation of the spatial correlation function is not the prime 

concern of these authors, but they do calculate it in passing: the same material is 

presented by Plionis, Valdarnini & Coles (1992). The first two PVJ samples are drawn 

from the Abell (1958) catalogue and contain clusters with measured redsliifts of z  <  0.1 

in the northern and southern Galactic caps: 206 clusters in the NGC and 131 in the 

SGC. The correlation functions for both samples are fitted to the canonical power law 

with r0 =  18 ±  4 h ~ l Mpc for 7  =  1 .8 : significant correlations are observed in the 

NGC subsample out to ~  50 h ~ l Mpc, but the bootstrap errors are larger than the 

signal for almost all bins in the SGC subsample, so these correlations have a low formal 

significance. The third sample considered by PVJ comes from the ACO catalogue and 

contains 118 clusters with b < —20°, 8 < —17° and m 10 < 16.4: redshifts for 25 of 

these are derived using the m 10 — z  relation of Plionis & Valdarnini (1991). Significant 

correlations in this sample are seen out to ~  30 h -1  Mpc, with a correlation length of 

r 0 =  22 ±  10 h_1 Mpc for a fit to a power law constrained to 7  = 1 .8 .

The final redshift sample of Abell/ACO clusters we shall consider is tha t compiled 

by Peacock & West (1992, PW92). Their sample covers the whole sky, excluding 

regions where Galactic extinction (deduced from IRAS  100/nn observations) exceeds 

A v — 0.5 mag and is volume-limited to z  <  0.08. PW92 consider the spatial correlations 

of three subsamples: R > 1 (for which they have 179 clusters with measured redshifts 

and 16 with estimated redshifts), R = 0 (198 measured and 34 estimated) and R > 2 

(42 measured and 3 estimated). PW92 estimate 2 using a number of cluster parameters, 

not just m 10: in the north they fit log102 to m 10, A v  and log10lV (where N  is the galaxy 

count for the cluster) and in the south supplement these with m 1, m 3 and ( lo g ^ A )2, 

finding tha t this second order ‘Scott effect’ term is im portant. Fitting the resultant 

correlation functions to the canonical power law model they obtain the following results: 

r0 =  21.1  ±  1.3 i r 1 Mpc, 7  = 2 .0 ± 0.2 for R  >  1; r0 = 20.6 ± 1.5 h ~ l Mpc, 7 = 1.5±0.2
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or rQ — 21.1 ±  1.5 h Mpc with 7 — 2.0 forced for R = 0; and r0 = 45 ± 5 h 1 Mpc with 

7 = 2.0 forced for R > 2.

2.2.3 The Integrity of the A bell/A C O  Catalogue

If one takes these observational results a.t face value, then a consistent picture is apparent: 

the spatial distribution of Abell/ACO clusters is correlated out to large separations 

(r ~  100 h 1 Mpc); the correlation function of the distribution is well approximated 

by the same power law as the galaxy correlation function -  i .e.  f ( r )  =  ( r0/ r )7 with 

7  ~  2; the cluster correlation length is richness dependent -  r 0 ~  20 — 25 l i~l Mpc for 

richness R  > 1 (and R  >0 if these are included), but increases to r0 ~  40 h~l Mpc 

for R  > 2 clusters. The details of this picture have, however, been challenged by a 

number of authors who question the suitability of the Abell/ACO catalogue as the basis 

of statistical clustering studies: we review the voluminous literature on this topic in this 

section.

Fesenko (1979a) considered 6 °  X 6 °  fields on the sky, all centred at the same declination 

and with serial numbers ¿=1,2,3... running in the direction of increasing right ascension: 

each field corresponds to a Schmidt plate. Let n J1' , n f  be the number of Abell clusters 

whose centre falls in the western, eastern half of the i th field respectively. Fesenko defines 

the following two quantities, 7 l 57 2 which measure the fluctuations between contiguous 

half-fields within a given field and in adjacent fields, respectively:

7 _  7) alld _  (("■" -  -f);) (,
7 > “ (nf +«!*■) 12 “ « , + » ? > ’

where the averages are taken over all fields in the declination zone. The two quanti­

ties should be statistically equivalent, giving = 7 2, while j 2 > 7 i would indicate 

inhomogeneities between plates, either inherent in the plates (due to variations in the 

conditions of exposure and development, or even in the quality of the plates themselves) 

or in Abell’s identification of clusters on them. Fesenko studied seven declination zones, 

with centres from -18° to +18° and finds 7 2 > 7 j for six of them: the mean value of the 

difference, A  =  q 2 — 7j , is found to be ( A )  =  0.317 ±  0.142. Plate-to-plate variations like

68



these, whatever their cause, clearly hamper the study of clustering in the Abell/ACO 

catalogue. In a second paper Fesenko (1979b) studied the effects of variations in the 

surface density of the field population of galaxies, given that Abell estimated his back­

ground count some distance away on the plate from the cluster candidate. This analysis 

is strongly dependent on the toy model used for the field population and on the cluster 

multiplicity function, but Fesenko concludes that “most Abell clusters are spurious.”

A less extreme conclusion is reached by Lucey (1983), who modelled the effects of con­

tam ination by field galaxies through the use of artificial “plates” , constructed so as to 

mimic Abell’s analysis of real plates. Lucey scattered points into a cone to mark cluster 

centres and then projected them onto the plane normal to the axis of the cone to generate 

a two-dimensional distribution. Galaxies were then placed around each cluster centre 

on this artificial plate so as to reproduce the radial dependence observed by Seldner & 

Peebles (1977) for the surface density of galaxies around rich clusters, with the cluster 

multiplicity function of Bahcall (1979) being used to set the number of clusters required 

in each richness class: an objection to this method is that the random scattering of clus­

ter centres means that the galaxy distribution generated on the artificial plates will not 

be a particularly good approximation to the true distribution on the sky. The resulting 

two-dimensional galaxy distribution was then analysed using an algorithm implementing 

Abell’s selection criteria: tests were conducted to check that this algorithm selected a 

very similar set of clusters as a visual application of these criteria.

Contamination by field galaxies is found by Lucey to have two effects: firstly, some rich 

clusters are missed, as contamination by a foreground galaxy leads to m3 being estimated 

at too bright a magnitude, with the result that too few galaxies are found in the counting 

strip; and, secondly, some spurious clusters are identified, due to the inclusion of field 

galaxies in the counting strip, boosting the cluster richness above the threshold of fifty 

counts. Quantitative estimates of the seriousness of these effects are model-dependent, 

but Lucey estimated that the 15-30% of rich clusters were missed by Abell on account of 

a contaminated m3, while 15-25% of Abell clusters have a true galaxy population which 

is less than half their Abell count, due to the inclusion of field galaxies.

A ttem pts have been made, by Dekel et al. (1989, DBPO) and Olivier et  al. (1990,
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OBDPS; 1993, OPBD), to model these projection effects and so to construct “decon­

tam inated’ catalogues of Abell/ACO clusters. This work assumes a model in which 

the galaxy distribution is composed of two components, an unclustered field population 

superposed on which is a number of clusters, which have spherically-symmetric halos of 

galaxies, following a universal radial profile: this is clearly very similar to the picture 

Abell had in mind when he set out to identify rich clusters for his catalogue. This model 

is quantitatively specified by the observed mean number densities of galaxies and clusters 

and the observed galaxy-cluster and cluster-cluster correlation functions. Two forms for 

the galaxy-cluster cross-correlation function are considered, those determined by Seldner 

& Peebles (1977) and Lilje & Efstathiou (1988) from the Lick galaxy catalogue and the 

Abell catalogue: the use of observations of (possibly contaminated) Abell clusters in this 

decontamination procedure is likely to lead to an underestimation of the im portance of 

projection effects. This toy model, together with a Scliechter galaxy luminosity function 

from Efstathiou et  al. (1988), is then used to calculate the contribution to the Abell 

count of each cluster from every other cluster in the sample under consideration. This is 

done iteratively and, upon convergence, those clusters with an Abell count of less than 

fifty are removed, to leave a “decontaminated” sample.

DBPO use this model to decontaminate the R > 1,D < 4 sample of 102 (sic) Abell 

clusters, considering only contamination from other members of this sample. The results 

of this procedure depend in detail on the form of galaxy-cluster correlation function 

used: 12 clusters are eliminated if the Lilje & Efstathiou (1988) form is used, against 

17 for tha t of Seldner k  Peebles (1977). The spatial correlation function can then be 

determined for the decontaminated sample: DBPO find (with either form of the galaxy- 

cluster correlation function) that decontamination reduces the amplitude of the cluster 

correlation function by a factor of ~2 at separations < 3 0  h 1 Mpc, so tha t the resultant 

correlations are significant only at the ~  1 a  level.

DBPO find that significant contamination in their model is only found for clusters which 

are at similar redshifts and are separated by less than ~  30 h Mpc: they explain this 

by saying that once the ratio of distances becomes greater than about two the magnitude 

ranges comprising the counting strips of the two clusters have little overlap, so tlieie can 

be little projection contamination. This explains their observation for the case where a
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distant cluster is contaminating a nearby one (i.e. background contamination), but it 

does not account for the converse case, of foreground contamination. This is because, 

so long as the contaminating foreground cluster has a luminosity function tha t rises 

towards fainter magnitudes, there will always  be galaxies in the foreground cluster that 

will fall into the counting strip of the more distant cluster. The reason why foreground 

contamination is not observed for clusters with wide redshift separations must just be 

a geometrical effect: there will not be significant overlap on the sky between the halo 

of the nearby cluster and the circle of radius rA surrounding the more distant cluster 

once the distance between them becomes too large. Despite the fact tha t DBPO do not 

explain it correctly, their observation that projection contamination is only im portant for 

clusters relatively close in space is an im portant one since, as they argue, it undermines 

the use of the scaling test in deciding whether or not clustering is genuine: as DBPO 

write, projection “should not lead to an increased number of pairs at all separations in 

redshift; it enhances the number of pairs preferentially at small angular separations and 

relatively small redshift separation. The effect should therefore be similar at all depths.”

The claims of DBPO are challenged by Szalay, Hollosi & Toth (1989, SHT) on the basis 

of their study of angular correlations of Abell clusters in different richness classes. They 

take the sample of 1418 R  > 1 Abell clusters with 6 > — 27° and | b |>  40° and divide 

it into three subsamples: 95 clusters with D  < 4, 565 D  = 5 clusters and 758 from the 

D  = 6 distance class. They compute the angular autocorrelation functions for the three 

samples, [«>¿,-(0) for ¿=4,5,6], finding them all consistent with the power law w ( 0 )  oc 0_1, 

with amplitudes w 44 >  w 55 >  w 66 scaling broadly as expected from Limber’s equation 

for real clustering. SHT seek to refute the projection contamination model of DBPO 

by considering the cross-correlations between clusters in different distance classes [in- 

for i ±  j \ .  If the distance classes were well separated then the cross-correlation between 

different classes would be zero, but one might expect a small positive correlation here, 

since the distance classes are known to overlap (Struble & Rood 1987), as a result of the 

inaccuracy of distance estimation using the m 10 — z  relation. SHT find tha t the cross­

correlation functions for the adjacent classes (w45 and w56) are indeed weak and positive, 

as expected, and they find that iu4q is negative, which they claim contradicts the DBPO 

contamination model. This conclusion is incorrect: as OBDPS are quick to point out,
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the model they advance in DBPO predicts significant projection contamination only for 

clusters which are fairly close together in space, so this effect could only boost w 46 if 

Abell s distance estimates were so wildly inaccurate as to produce a significant overlap 

in redshift between distance classes D  < 4 and D  =  6. In fact, what SHT have done 

is to quantify another selection bias in the Abell catalogue, (one mentioned in passing 

by PGH), tha t Abell systematically missed distant (D  =  6) clusters in the proximity 

of nearby ( V  < 4) clusters on the sky. SHT suggest two possible explanations: (i)  

tha t distant clusters were thought by Abell to be subclusters within the nearer ones; 

(n) tha t Abell’s distance estimates incorrectly placed (presumably due to foreground 

contamination of m 40) some distant clusters in classes D  < 4. Supporting evidence for 

the la tte r suggestion is provided by the excess of pairs [above the u>(9) tx power 

law] counts seen in w 44 for angles 1° < 9 <  3°, but SHT argue tha t this effect alone is 

insufficient to account for the strength of anticorrelation seen in w 46.

An extension of the work of DBPO is presented by the same authors in OBDPS, where 

they consider angular correlations in decontaminated samples of distant ( D  = 5 + 6) 

clusters in the Abell and ACO catalogues. They consider two samples, constructed to 

be as similar as possible, given the differences between the two catalogues: ( ¿) 1650 Abell 

R  >  1 clusters from all distance classes; (i i)  546 ACO clusters with R  > 1, m 10 <  19.3 

and b < -45°. These two samples were decontaminated following the method outlined 

in DBPO, with distances estimated for all clusters using a fit to the m 10 — z  relation 

including a term to account for the Scott effect. The angular correlations of the de­

contaminated D  — 5 + 6 clusters were then determined, using the standard latitude and 

declination selection functions, and are discussed for three angular ranges: (¿) small an­

gles, 0 <  1°; (m) intermediate angles of 1° < 9 < 3°; and ( in)  large angles, 9 > 3°. They 

find tha t decontamination reduces w cc(9)  by about a factor of two on small angles, by 

about ~30% for intermediate angles, but has a negligible effect on large scales (6 > 3°): 

this is, of course, just as expected from DBPO, where it is emphasised that projection 

contamination only affects clusters separated by < 30 h 1 Mpc. Consistent results are 

obtained on small and intermediate scales (both before and after decontamination) for 

the Abell and ACO subsamples, but they are discrepant on large scales: significant cor­

relations are observed in the Abell sample out to 9 ~  40 , as against ~  3 for the AC 0



subsample.

This difference on large scales cannot be due to projection contamination of the DBPO 

variety, since the superclusters within which their effect is supposed to take place are 

smaller than 6 ~  3°. As a further test, OBDPS try accounting for extinction effects 

using the Burstein & Heiles (1982) H I  column density data to introduce a longitude 

dependence not present in the standard P ( b ) selection function, but this too has no 

effect. It seems, in fact, that there are large-scale inhomogeneities in the Abell/ACO 

catalogue. OBDPS split their combined Abell/ACO sample into two longitude cuts, the 

first containing the regions b < 0°, -60° < / < 120° and b > 0°, 90° < I <  270° and the 

other the rest of the sky. They find that the first zone contains 68% of the clusters in 

50.8% of the sky, but that the angular correlations of clusters in the second region are 

much stronger on large scales.

To illustrate further tha t the large-scale angular correlations of Abell/ACO clusters are 

not terribly robust, OBDPS re-calculate the correlation functions of the Abell and ACO 

subsamples, normalising the pair counts using a local background (smoothing within 30° 

of each cluster), rather than a global one. This has a minor effect on the large-angle 

correlations of the ACO sample, but has a large effect on the Abell sample, bringing 

the two samples into agreement: this is in the opposite sense to that expected from 

the different (global versus local) background subtraction procedures used by Abell and 

ACO, indicating tha t Abell’s selection was not a simple, algorithmic implementation of 

his criteria and may be significantly influenced by subjective effects.

This decontamination routine is applied to the HHPG and PHG samples by OPBD. 

They find tha t the PHG sample has roughly the same degree of contamination as the 

samples studied by DBPO and OBDPS, but that the HHPG deep sample appears to be 

anomalously ‘clean’.

The decontamination procedure used by DBPO, OBDPS & OPBD corrects solely the 

Abell counts for clusters. It does not treat the effects of m3 contamination [which 

the work of Lucey (1983) indicates may well be equally serious as the introduction of 

interlopers by projection contamination] and it assumes spherically-symmetric clusters 

[which are not expected from theoretical considerations of the shapes of collapsing density
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perturbations (Lin, Mestel & Sim 1965; Peacock & Heavens 1985) nor from observations 

of the shapes of clusters projected on the sky (Plionis, Barrow & Frenk 1991)]. A more 

general criticism of this work follows from its model-dependence: it is able to correct for 

one particular selection bias in the Abell/ACO catalogue, but there are several others 

and, more importantly, the subjective nature of the selection method means that no 

algorithmic decontamination procedure can correct for all the biases Abell and ACO 

introduced into their catalogues; the psychological and physiological factors are simply 

too complex and are inherently unquantifiable.

An alternative approach which may seem more fruitful is that pioneered by Sutherland 

(1988, S88) and later applied by Sutherland & Efstathiou (1991) and Efstathiou e t  al. 

(1992b). The Sutherland method adopts a different philosophy: instead of assuming 

a model for the selection bias it seeks to correct for the results of the selection bias, 

irrespective of its origin. The starting point for this work is the observed anisotropy 

of the cluster-cluster correlation function, £(rp, r , ) ,  calculated as a function of redshift 

separation (rz) and projected separation ( 7̂ ). This anisotropy was first noted by BS83 

and is discussed in some detail by Balicall, Soneira & Burgett (1986, BSB). BSB con­

struct scatter plots of pair .separations from two samples of Abell clusters (the Hoessel 

e t  al. sample studied by BS83 and a larger, slightly incomplete sample of R  >  0 clusters

from Bahcall & Soneira 1984) in the R z- R s , R z- R a and R s- R a planes, subject to the
2 2 2 \ 1 / 21 •restriction tha t the physical separations of the pairs [(fZa + R s + R z) ] is less than

100 h ~ 1 Mpc. They report that a “ strong and systematic elongation in the 2-direction 

is seen in all the real samples studied” [i .e.  for R > 0 and R  > 1 subsamples of the 

two cluster samples studied), with the elongation stronger in the R  > 0 subsamples: by

contrast the R 8~ R a plane is populated relatively uniformly, showing evidence for clus­

tering, but no pronounced elongation in either the a — or ¿-direction. BSB find that 

this elongation in the redshift direction is equivalent to convolving the pair frequency 

distribution along one of the projected axes with a pairwise Gaussian velocity dispersion 

of width u v = 2000 Iso“  km s-1 . They suggest that this redshift-space anisotropy 

is a combination of two effects: “a geometrical elongation of the large-scale structure 

(in a form of broad filaments, partial cells or shells)” , plus a residual elongation due to 

cluster-cluster peculiar velocities.
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Both the method of analysis of the redshift anisotropy used by BSB and the conclusions 

they draw from it are criticised in S88 , in which Sutherland addresses the anisotropy first 

in the complete R  > 1 , D  < 4 sample and then in a sample of Abell clusters drawn from 

the Struble & Rood (1987, SR87) redshift catalogue. The variation of the redshift space 

correlation function, £(Az), as a function of A z  for the R  >  1, D  <  4 sample is seen 

to be inconsistent with the 2000  km s 1 Gaussian velocity broadening model advanced 

by BSB: £ ( A z )  remains positive and roughly constant out to redshift separations of 

A z  ~  0.07, by which point the velocity broadening model would predict it to have 

tended to zero. The peculiar velocity model of BSB is rejected as a possible explanation 

of the anisotropy in the SR87 sample too, because £(rp, r 2) does not decline with r. 

in the way predicted and because implausibly large velocities (~  7000 km s-1 ) would 

be required to reproduce the magnitude of the anisotropy: cluster peculiar velocities 

determined by Aaronson et al. (1986) are much lower, although these are for isolated 

clusters, rather than clusters in the virialised superclusters envisaged by BSB.

Having identified projection effects in the SR87 catalogue, Sutherland then proceeds to 

correct for them. His method makes no assumptions about the source of the projection 

effects, but it does make one assumption regarding the true clustering: it assumes that 

the mean value of £(rp, rz) is zero for rz > 50 h 1 Mpc. The Sutherland correction 

method proceeds as follows:

• produce histograms of cluster-cluster and cluster-random pairs in both rp and rz

• normalise the columns at constant rp in the chister-cluster counts, N cc, to have the 

same total, NCT, as the corresponding cluster-random column: i.e. multiply each 

column by a correction factor, B(rp), given by

7 \  S r z > 5 0  ^ c r ( 7 p ’ Tz) ( ?  91
B (rp) = r  N  (r r y  ( >

L r 2> 50 ccV p i  '  z )

where the sums are for all bins r z > 5 0  h 1 Mpc.

The cluster correlation function may then be calculated, with the paiis weighted by 

the appropriate value of B(rp). The resulting correlation functions show no significant
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correlations beyond ~  50 h -1  Mpc (this is not an artifact of the cut-off at 50 /i-1  Mpc: 

a cut-off at 80 h ~ l Mpc produces the same result) and are well approxim ated by the 

canonical 7  = 1.8  power law with r0 ~  14 h_1 Mpc: no significant difference is observed 

between R  > 0 and R  > 1 subsamples. Taking this correlation function and convolving it 

with Gaussian velocity dispersions of different widths gives a best fit of a v ~  750 km s-1  

for the corrected £(rp, r 2), strongly excluding pairwise velocities of ~  2000  km s-1 , as 

advocated by BSB.

Sutherland & Efstathiou (1991, SE91) apply the same correction method to the deep 

Abell sample of HHPG and again obtain a corrected correlation length of r 0 ~  14 /i-1  Mpc 

A further application of the Sutherland correction method to a sample of Abell/ACO 

clusters is presented by Efstathiou et  al. (1992b, EDSM), who consider projection ef­

fects in the PHG redsliift survey of nearby clusters. The effect of correction is quoted as 

reducing the correlation length of the PHG sample from 17.4 h ~ l Mpc to 13.9 h ~ 1 Mpc, 

but note tha t these figures are consistent within their quoted errors, and tha t the uncor­

rected correlation length quoted by EDSM differs from tha t given by PHG and calculated 

independently from the PHG data  by Nichol (1992).

Sutherland &: Efstathiou also present further evidence attesting to the weakness of the 

scaling test as a discriminator between genuine and spurious clustering. They show that 

to apply it profitably requires an accurate knowledge of the redsliift distribution of the 

cluster sample and tha t its results depend on the assumed evolution of the clustering 

with redshift. They find tha t while the angular correlations of D  — 5 and D  = 6 

subsamples of Abell clusters scale qualitatively as predicted for the BS83 model of the 

spatial correlation function, their amplitudes are too high, even for the evolution model 

tha t gives the largest w( 9) .  They suggest tha t the closer agreement th a t BS83 obtained 

in their scaling tests resulting from a combination of inaccurate distance estimation 

(BS83 use a simple m 10- z  relation derived from the original Abell m 10 magnitudes, 

while SE91 use the redshift distribution of the SR87 catalogue, which they argue should 

be a fair sample of tha t of the full Abell catalogue within each distance class) and using 

the combined D  — 5 +  6 sample rather than the two samples individually, (since the 

weak cross-correlation w 56 will reduce the amplitude of the auto-correlation function of 

the combined sample).
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Two additional sources of spurious clustering in the Abell/ACO catalogue are discussed 

by SE91. The first of the these is the presence of large scale gradients, as discussed 

by OBDPS, while the second is variation between Schmidt plates: SE91 calculate the 

angular correlation functions for intra- and inter-plate pairs and find tha t the difference 

between them is not tha t which would be expected for a simple variation of the limiting 

magnitudes of the plates.

The analysis of redshift anisotropies conducted by Sutherland and his collaborators has 

principally been applied to samples of R  > 0 clusters, with an implicit assumption 

tha t projection effects corrupt all samples of Abell/ACO clusters. Several authors {e.g.  

PW 92, Soltan 1988 and Jing et  al. 1992) have, however, found tha t samples of R  > 1 

clusters may not be as prone to corruption as those containing R  — 0 clusters. In 

particular, PW92 find tha t their R  > 0 sample is strongly corrupted, while the redsliift- 

space anisotropy seen in their R  >  1 sample is consistent with velocity broadening of 

~  1000  km s-1 , which they judge is not implausible, given the inhomogeneous origins of 

the redshifts for their sample: we shall discuss this point in more detail later.

2.3 A U T O M A T E D  C L U ST E R  CATALOGUES

The previous section has shown tha t the Abell/ACO catalogue is far from ideal for 

use as the basis for statistical studies of cluster correlations and tha t the subjective 

way its selection criteria were implemented precludes correction of the catalogue to 

produce a homogeneous sample. All selection criteria will introduce biases, but only 

if they are implemented objectively, using a reproducible algorithm, can these biases 

be understood, quantified and corrected for, if necessary. As ACO noted, homogeneous 

cluster catalogues with objective selection criteria can be produced using plate-measuring 

machines. Two such catalogues now exist, constructed from scans of UIv Schmidt plates 

by the COSMOS and APM machines, with objective selection criteria whose design 

was informed by the critique of the Abell/ACO catalogue summarised above: these two 

catalogues and the spatial correlations in redshift samples derived from them are the 

subject of this section.
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2 .3 .1  T h e  E d in b u r g h /D u r h a m  C lu s te r  C a ta lo g u e

The Edinburgh/D urham  Cluster Catalogue (EDCC) is composed of clusters selected 

from the Edinburgh/D urham  Southern Galaxy Catalogue (EDSGC, Heydon-Dumbleton 

et  al. 1989). The EDSGC consists of COSMOS scans of 60 UK Schmidt plates covering

0.5 steradians, centred on the South Galactic Pole. The catalogue is asserted to be 9 5 % 

complete to a magnitude of ^ = 2 0 .5 , with stellar contamination at the <10% level and 

plate-to-plate magnitude offsets of Am ~  0.05 mag.

The construction of the EDCC from the EDSGC is detailed by Lumsden e t  al. (1992, 

LNCG). The method employed by LNCG is similar in approach to tha t used to construct 

the Abell/ACO catalogue, to facilitate a direct comparison of the two catalogues.

The first step is to bin the EDSGC data: LNCG use binned data, rather than employ 

percolation analysis, because this la tte r method can introduce undesirable biases into the 

cluster catalogue, by merging distinct objects into a single structure. The EDSGC data 

were binned into equal area bins, whose size was chosen to produce a mean occupancy of 

roughly one galaxy per bin. Three runs over the EDSGC were made, down to different 

limiting magnitudes and, consequently, with different bin sizes: this was done to detect 

clusters over as broad a redsliift range as possible.

The binned data  for each run were then lightly smoothed, using a Shectman (1985) filter, 

which is a 3 X 3 grid, with weights

A  1 A
16 8 16

1 1 1
8 4 8

J_ 1 A
16 8 1 6 ’

which roughly approximates a Gaussian in two dimensions: this light smoothing reduces 

binning noise. A ‘sky fram e’ was then made for each run, by taking its ‘Shectman fram e’ 

and smoothing it with a filter of about 1° to 2°: the details of the filter have a negligible 

effect on the resulting cluster catalogue. The ‘sky fram e’ was then subtracted from the 

‘Shectman fram e’ and cluster candidates identified as excursion sets of pixels above a 

threshold; the threshold appropriate to each run being determined empirically, so as to
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produce minimum contamination but not to miss any clusters tha t had been identified by 

eye in small test regions. A ‘deblending’ algorithm was then applied, to assign each pixel 

to only one cluster candidate. From each run this procedure yielded a set of contiguous 

pixels and the COSMOS information relating to each of the EDSGC galaxies contained 

within those pixels.

An iterative Abell-type analysis was then applied to the candidate list from each run. For 

each candidate cluster the magnitude of the tenth brightest galaxy, m 10, was estim ated 

and an Abell radius, r A, deduced. The m 10 value was then corrected for contam ination, 

using the number-magnitude relation for galaxies in a 4° X 4° square region of the plate 

centred on the centroid of the candidate cluster. This corrected m 10 was then used 

to start the next iteration. This procedure was followed until the difference between 

successive estimates of m 10 differ by less than 1%. Cluster candidates are rejected if: 

(i) the final m 10 estim ate is fainter than the EDSGC catalogue limit; (u) the centroid 

of the candidate moves by more than a quarter of the original Abell radius during the 

course of the iteration procedure; or (Hi) no convergence was achieved in ten iterations. 

Once convergence had been attained, the final m 10 value and cluster centroid were used 

to make the Abell count in.the m 3 —> m 3 +  2 interval, subject to background correction 

by the same method as described above for m 10.

The candidates listed for the three runs were then combined and a two-sided Kolmogorov- 

Smirnov test was then applied to the background-subtracted magnitude distributions of 

candidates with centroids within the Abell radius of a candidate from another run, to 

reject clusters detected in more than one run. This procedure yielded a final catalogue 

of 769 clusters, deblended so tha t each galaxy was assigned to only one cluster, for which 

the Abell param eters were then determined. All the candidates were examined by eye 

and doubtful ones flagged in the catalogue.

As with plate overlaps in the Abell and ACO catalogues, the selection of candidate 

clusters in more than one run facilitated an internal error estim ation for the cluster 

richnesses and m w  magnitudes in the final catalogue: the results of this error analysis 

are summarised in Table 2.3. The scatter in the magnitudes is reduced when only 

the richest (c > 30) clusters are considered, but the scatter on the richness is not.
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Table 2.3: Internal error estimates for the E D C C  (from L N C G )
Sample ^mi Gml0 "̂counts

All clusters: run 1 v. 2 0.54 0.36 0.24 10.4

All clusters: run 1 v. 3 0.52 0.31 0.34 9.2

All clusters: run 2 v. 3 0.42 0.31 0.26 9.5

c > 30: run 1 v. 2 0.57 0.24 0.15 10.4

c > 30: run 1 v. 3 0.60 0.24 0.19 8.2

c > 30: run 2 v. 3 0.46 0.16 0.15 9.5

Final catalogue: 0.34 0.23 0.18 6.9

Final catalogue: c > 30 0.38 0.15 0.15 6.5

Final catalogue: offset < 21 0.32 0.14 0.08 4.6

LNCG explain th a t this is because the richness error is roughly equal to the product of 

the cluster richness and the error on m3, so that even though the m 3 error decreases 

roughly in proportion to richness, the two terms will always give approxim ately the same 

product. The scatter on both the richness and the magnitudes is reduced by considering 

only those clusters whose centroids are offset by less than 2' in the two runs, to produce 

what LNCG call the “irreducible errors” in their catalogue, which they say are inherent 

in the iterative Abell analysis procedure they employ.

LNCG follow their description of the construction of the EDCC with a comparison 

between it and the Abell/ACO catalogue: this comparison requires correction between 

the R  magnitude system of Abell, the V  magnitudes of ACO and the 6 magnitudes of 

the EDCC. LNCG find ~80% of the Abell/ACO clusters in the EDCC area down to 

its limiting magnitude =  18.75, but find that only one third of those clusters

which are quoted as R  > 1 have a count of >30 galaxies and only one in six have more 

than the required 50 galaxies: this is broadly in line with the estimates of Lucey (1983) 

on the basis of his simulations, but greatly exceed the internal estimates of the scatter 

in Abell/ACO richnesses made by Struble Sz Rood (1991). LNCG show tha t Abell and 

ACO assigned higher richnesses to the clusters they found in common with the EDCC. 

This is, in part at least, due to poor m w  estimates in the Abell/ACO catalogue: the 

m 10 magnitude difference increases with EDCC m 10, so that fainter Abell/ACO clusters
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Table 2.4: Estim ates of internal errors in the Abell/ACO catalogue, from comparison 

with the EDCC (from LNCG)___________________________________

Sample ^mio ‘"’co u n ts

All ACO clusters 1.28 0.98 0.82 33.0

have m 10 increasingly too faint, and, hence, Abell radii and galaxy counts increasingly 

too large.

This comparison with the EDCC cannot be regarded as an absolute test of the relia­

bility of the Abell/ACO catalogue, since the EDCC will have its own biases, but the 

results shown in Table 2.4 do indicate tha t the errors in the Abell/ACO magnitudes and 

richnesses are larger than these authors estimated: it would certainly appear tha t some 

clusters will have been assigned to distance and/or richness classes more than one level 

away from their true designation.

Spatial correlations of a sample of EDCC clusters are considered by Nichol e t  al. (1992, 

NCGL). For this purpose the following selection criteria are used:

• clusters m ust have > 22  galaxies in the magnitude range m 3 —> m 3 +  2 within a

distance 1 h ~ l Mpc of the cluster centre: by choosing a distance smaller than the

Abell radius NCGL hope to suffer from less projection contamination

• the clusters must be near enough tha t m 10(6j) < 18.75

• the clusters must be located on the sky in the region 21/‘53m < a  < 03h35m ,

-42°12' < 6 <  -22°53/.

These criteria selected 97 clusters from the EDCC, for which 79 have redshifts [63 from 

the Edinburgh/M ilano Redshift Survey (EMRS, Nichol 1992), plus 16 from the litera­

ture], giving a 90% completeness. F itting the correlation function of this sample to the 

canonical form, £(r) =  (?'o/r )7’ ^ ie range 3 < r <  35 h 1 Mpc, yields ?’0 = 16.4±4 h 

Mpc, 7  =  2.1 ±  0.3  with lcr bootstrap errors or 7-0 =  16.2 ±  2.3 h 1 Mpc, 7  = 2.0  ±  0.2  

for l a  Poisson errors.
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NCGL show tha t their sample yields a contour plot of £ ( r z , r  ) with a very low level 

of anisotropy: the best fit Gaussian velocity broadening for convolution with a spatial 

correlation function model of f ( r )  =  (16 h -1  M p c /r )2 has a width of a v =  300 km s-1  

(Nichol 1992), with a velocity dispersion of 1000 km s-1  being excluded at the 2<r level.

The correlation function of the EMRS sample has a relatively large statistical error, due 

to its low number of clusters, but its systematic errors are probably very low: the 71 

clusters taken from the EMRS have, typically, ~  10 measured redshifts, which should be 

sufficient to eliminate distance errors due to the presence of interlopers, while the low 

level of anisotropy present in £ ( r z , r ) would seem to indicate tha t LNCG have succeeded 

in their aim of creating a catalogue free from serious contamination by projection effects.

2.3 .2  T h e  A P M  C luster  C ata logue

Dalton (1992) discusses the creation of cluster catalogues from the APM Galaxy Survey 

of Maddox e t  al. (1990a-c) and the spatial correlation function of a redshift sample of 

these clusters is presented by Dalton et  al. (1992, DEMS). The APM Galaxy Survey 

contains over two million.galaxies, selected from scans of 185 UK Schmidt plates by 

the APM  plate-measuring machine. It is attested to be 90-95% complete at a limiting 

magnitude of bJ =  20.5, with stellar contamination at about the 5% level. Like LNCG, 

the APM group consider cluster selection algorithms based on tha t of Abell, but designed 

to circumvent some of its problems. They find (on the basis of simulations) no single 

algorithm tha t satisfies their requirement of stability and ability to select clusters equally 

well over a broad redshift range, but find a general improvement over the Abell algorithm 

if they use: (i) a counting circle with a radius smaller than r A; (ii) a richness-dependent 

distance indicator, mx , in place of m 10; and (Hi) a galaxy count which gives a higher 

weight to galaxies near the cluster centre.

The redshift sample of DEMS is drawn from a catalogue constructed using a counting 

radius of r c  = 0.75 h ~ l Mpc. The selection procedure starts with a percolation analysis, 

linking APM galaxies to produce a list of candidate clusters: this causes DEMS to miss 

nearby ( z  <  0.035) clusters, which are too extended on the sky to be picked up by 

percolation analysis, but there are so few of them that this should have a negligible

82



effect on the correlation function of the sample.

The following iterative selection procedure is followed for each cluster 011 the percolation

list, starting with an initial guess of m x = 18.4:

1 . predict search radius from a redshift, z est, given by zest =  dex (0.125 m x -  3 .3 7 )

2 . determine the centroid of the cluster candidate

with n ( <  m t) being the surface number density of galaxies brighter than m,-, which 

is the apparent magnitude of the zth galaxy (in order of increasing magnitude), 

whose weight, w i: is'defined by

where r- is the distance of the zth galaxy from the cluster centroid. The background 

count, N b , is equal to the number of galaxies in the magnitude range [mx -

0.5, m x +  1.5] expected to lie within the counting circle, on the basis of the number 

found in an annulus 5-6 times the counting radius of the cluster and centred 011 

the cluster centroid.

4. set X equal to 1Z/2 (taking X proportional to 7Z should take account of the Scott

3. obtain the weighted richness count, 7Z, of the cluster, which is defined by

(2.3)

where the weighted counts C i are defined by

(2.4)

W ; = (1 +  2 r j r c ) ~ \ (2.5)

effect)

5. evaluate m x , by counting down the magnitude-ranked galaxy list until C i > X and 

setting m x = m {.
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This loop is taken to converge if successive values of m x differ by less than 0.025 mag 

and if the cluster centroids are within 40//. Clusters are rejected if the background- 

subtracted galaxy count falls below X at any time, or if convergence is not attained 

within 20 iterations.

This procedure produces a catalogue of 240 clusters with 7v >20 and z x  < 0.1. DEMS 

have constructed a redsliift survey containing 211 of these clusters, which is, therefore, 

~90% complete. From these they consider a sample of 190 clusters in the redshift 

range 5000 < c z  <  35000 km s-1  for correlation analysis, finding a correlation length of

13.2 h ~ l Mpc for a fit to the canonical power law. Constraining this fit to 7  =  2 yields 

r 0 =  12.9 ± 1 .2  h ~ l Mpc for this full sample and r0 =  14 ±  4 h ~ 1 Mpc for the richest 

93 clusters, which have 7Z >35. The redshift space anisotropy is low, with a good fit 

to £(rz, r p) coming from convolving £(r) =  (13 h ~ l M pc) / r ) 2 with a Gaussian of width 

a v =  700 km s-1 , which is about \ [ 2  times DEMS’ estimated redshift error. Efstathiou 

e t  al. (1992b) consider a sample of 7Z >20 clusters from a slightly wider redshift range 

(500CK c z  <  40000 km s-1 ) and obtain a correlation length of r 0 = 13.2 h ~ l Mpc.

2 . 4  O B S E R V A T I O N A L  B A C K G R O U N D :  S U M M A R Y

In the previous two sections we have reviewed the observational study of cluster corre­

lations, through a discussion of the Abell/ACO, Edinburgh/D urham  and APM cluster 

catalogues: these are the sources of the observations with which we shall compare our 

theoretical predictions in Section 2.8 below.

As we have seen, samples of Abell/ACO clusters display stronger correlations than those 

drawn from the two autom ated catalogues and it has been suggested tha t part of the 

clustering strength observed in samples of Abell/ACO clusters is spurious, resulting 

from selection biases in tha t catalogue. On the basis of the evidence presented above, 

we believe this undoubtedly to be the case for Abell R  > 0 cluster samples and we 

shall not use these in what follows. Those authors who have included R  — 0 clusters 

in their studies have justified their inclusion on the basis of the redshift distribution of 

R  =  0 clusters, arguing, for example, tha t the distributions of R, = 0 and R  — 1 clusters
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vary with distance in a consistent fashion out to the limiting redshift of their particular 

sample. T hat is not a sufficient justification, since it fails to consider the distribution of 

the clusters on the sky: poorer clusters are more likely to suffer from spurious angular 

correlations due to projection effects. We note tha t, in excluding R  =  0 clusters, we are 

acting in accordance with Abell’s belief tha t these should not be used in statistical work.

The question of significant projection contamination is far less clear-cut in the case of 

samples of Abell/ACO R  > 1 clusters. In what follows we shall assume the tru th  of 

the hypothesis of PW92 tha t the correlations in their R  > 1 sample are genuine and 

use them  to constrain theory. The redshift-space anisotropy tha t PW92 find for this 

sample is less severe than that in their R  = 0 sample and is equivalent to convolution of 

an isotropic real-space correlation function [£(r) = ( r / 21 h ~ l M pc)-2 ] with a Gaussian 

pairwise velocity distribution with a dispersion of about 1000 km s_1. They argue 

tha t this is not unreasonable, given th a t, in their desire to construct as large a redshift 

sample as possible, they have included cluster redshifts from a large number of sources, 

some estim ated, some from a single galaxy in a cluster and, thus, they are likely to 

include a number of inaccurate redshifts. This may be true, but it is also possible tha t, 

by adopting this cautious, attitude to their redshift database, PW92 are inadvertently 

‘explaining away’ projection contamination: what is certainly true is tha t the redshift- 

space anisotropy test cannot be profitably used to detect projection contam ination in a 

redshift sample with such a possibility of anisotropy from other sources. It is arguable, 

indeed, whether the anisotropy test can ever be an unambiguous diagnostic for projection 

contamination in a redshift sample of the size currently feasible. The number of expected 

cluster pairs varies with projected separation in proportion to r p d rp and so a very small 

number of close pairs are expected. This means tha t the chance alignment of genuine 

clusters close to the line of sight can produce a large anisotropic feature in £ ( r p , r z ) at 

low rp. PW92 cite the example from their sample of the cluster A3565, which lies at a 

redshift of z=0.01 along the line of sight to the Shapley concentration, which contains 

ten R  >  1 clusters at z=0.05: this alignment produces a high value for £ (rp, r , )  at 

(r  =  0 , r 2 = 120 h ~ l Mpc), which might be taken as evidence of contam ination were 

its origin not known.

It should, however, be possible to distinguish between such isolated high values of
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£(rp> r z) anc  ̂ the extended feature along the rz axis tha t is expected to follow from pro­

jection effects. These isolated features could, however, cause problems for the Sutherland 

correction procedure (see Section 2.2.3), which assumes tha t there is no genuine clus­

tering a t separations beyond rz = 50 h~l Mpc. Efstathiou et al. (1992b) estim ate tha t 

over-correction by the Sutherland method due to this effect could introduce biases of 

order ~  0.01 into the correlation function of an otherwise unbiased catalogue. W hilst 

this will have a negligible effect on the correlation length derived for the cluster sample, 

it could have a significant effect on scales where £ < 1 where, as we shall see below, 

comparison between theory and observation is most fruitful. For this reason we shall 

not compare our theoretical results with observational data to which the Sutherland 

correction method has been applied.

The two autom ated catalogues were designed to circumvent the selection problems tha t 

compromise the Abell/ACO catalogue, but they still select clusters as over-densities in 

the distribution of galaxies seen in projection on the sky and it could be argued (e.g.  

Frenk et al. 1990) tha t this procedure must necessarily introduce projection contam i­

nation at some level. It is desirable, therefore, to look for different methods of cluster 

selection which might be expected to produce contamination-free catalogues. One way 

of doing this is to use radio galaxies (Peacock & Nicholson 1991) which are found, typi­

cally, in relatively poor clusters (Prestage Peacock 1988). Peacock & Nicholson (1991) 

determine a correlation function for their sample of ~  300 radio galaxies which they fit 

to canonical power law form (for r < 30 h~l Mpc) to obtain r 0 =  11.0 ±  1.2 h~l Mpc, 

7  =  1.8 ± 0 .3 .

Another method, advocated by West & van den Berg (1991), uses cD galaxies, which are 

readily identifiable, due to their size and luminosity, and which are known to be good 

tracers of rich clusters: indeed, it is generally assumed that a high-density environment 

is a prerequisite for their formation, perhaps through merging of galaxies. West & van 

den Bergh (1991) have drawn a sample of 64 clusters containing cD galaxies with mea­

sured redshifts of z < 0.1 from the SR87 compilation of Abell clusters: 44 of these are 

R  >  1 clusters. They fit the correlation function of this sample to the canonical power 

law form and obtain r0 =  22.1 h -1  Mpc and 7  =  1.7, with 6 8 % error ranges from boot­

strap resampling of 1.22< 7  < 2.18, 15.3< 7'0 < 28.9 h -1 Mpc. This correlation function

86



is consistent (perhaps not too surprisingly, given the large statistical uncertainties that 

result from such a small sample size) with tha t of the complete sample of all (138) R > 1 

clusters with measured z < 0 .1 . West & van den Bergli claim tha t this indicates tha t 

the strong clustering seen in samples of Abell/ACO clusters is not spurious, since cluster 

selection using cD galaxies should not be prone to projection contamination. This is, 

however, an invalid deduction to make, since the cD cluster sample used is a subset of the 

Abell catalogue: the presence of cD galaxies had no bearing on its selection, which was 

conducted using the same criteria as the rest of the Abell/ACO catalogue and it cannot, 

therefore, be considered a pr io r i  as being any more reliable than any other subset of 

tha t catalogue. It remains true, however, tha t cD galaxies may provide a good way of 

selecting clusters, but selection of cD cluster samples must be performed solely on the 

basis of the presence of the cD galaxy, without any other criteria tha t might be prone 

to projection contamination.

An alternative approach which, at first sight, appears very promising is X -ray selection. 

Intracluster gas is known to emit X -rays, but it is only in the cores of the clusters, 

deep in their potential wells, tha t the tem perature and density of the gas are sufficiently 

high tha t substantial therm al emission is possible: this is im portant, since it reduces 

the possibility of projection effects contaminating X -ray selected cluster samples, as the 

X -ray em itting region of the cluster covers a much smaller area on the sky than the halo 

of galaxies.

The first study of the spatial correlations of a sample of X -ray clusters was performed 

by Lahav e t  al. (1989, LEFP). They compiled a sample of the 53 brightest clusters 

in the sky from a miscellany of observations by the HE AO-1, Ariel V, EXOSAT  and 

Einstein X -ray satellites. The number density of this sample is ~  10-5  h3 Mpc~3, which 

is comparable to tha t of Abell R  > 1 clusters, but LEFP estim ate th a t the completeness 

of their sample is only ~60% and tha t, in particular, they are missing a large number of 

fainter clusters at low Galactic latitude, due to confusion with Galactic sources.

F itting  the correlation function of this sample to a 7  =  1.8 power law gives a correlation 

length of r 0 ~  21 h ~ l Mpc, but this falls to r 0 = 17 Mpc when only the 45 clusters 

with I b |>  20° are considered. The large statistical errors here are compounded by
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selection effects resulting from the different resolutions of the various instrum ents used 

to detect the clusters.

Some of the problems tha t faced LEFP should be overcome by those compiling samples of 

clusters on the basis of X -ray emission detected by R O S A T , since they may select clusters 

using homogeneous selection criteria, based on the capabilities of a single instrum ent: 

we shall consider in detail a sample of R O S A T  clusters in Section 2.9. There are, 

however, problems inherent in X -ray cluster selection too, some of which are as difficult 

to circumvent as those which plague optical selection. A particularly serious problem 

concerns X -ray emission from AGN: given the spatial and spectral resolution of an 

instrum ent like R O S A T ,  it is difficult to distinguish between X -ray emission from cluster 

gas and from AGN, especially for distant clusters which are not extended and faint 

clusters, from which few photons will have been detected. More fundam ental problems 

results from the likely association of AGN with clusters: should candidates which are 

revealed to be AGN be removed from cluster catalogues or, conversely, should AGN be 

used as tracers of cluster environments? It is clear that X -ray cluster selection is far 

from straightforward and R O S A T  samples are being constructed using optical follow-up 

programmes, indicating the practical difficulties associated with selection based solely 

on X -ray  emission.

Despite all the difficulties with cluster selection discussed in this chapter, it has been 

claimed, most forcefully by Bahcall and collaborators {e.g. Bahcall 1988, Balicall & West 

1992), th a t the complete suite of observations of cluster correlations described above fit 

neatly into a consistent picture. Bahcall asserts tha t there exists a universal correlation 

function, of the form £(r) = (0 A d / r ) 1'8, where d  is the characteristic separation of the 

sample of objects under consideration (and is related to the number density, N , of the 

objects by d =  This relation is shown in Figure 2.1, which we have adapted from

Bahcall & West (1992): the absence of number densities (from which to deduce d)  from 

many of the original papers used to produce this figure (most of which are not identified 

by Bahcall &: West) results in our being unable to reproduce this diagram for ourselves, 

adding, as we should like, the error bars tha t Bahcall & West omit. The solid line in 

this figure marks the prediction of Bahcall’s universal correlation function: r 0 — OAd.  

Figure 2.1 includes data  points from the cluster catalogues of Sliectman (1985) and
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Zwicky (1961-1968). These catalogues are not discussed in detail here since, for various 

reasons, they are not particularly suitable for statistical studies of cluster correlations. 

Shectman (1985) selected clusters from the Shane & W irtanen (1967) Lick galaxy counts, 

as corrected by Seldner e t  al. (1977): the resultant cataloguéis compromised by many of 

the problems (large-scale gradients, etc.) tha t are known to corrupt the Lick catalogue. 

Zwicky and his collaborators compiled a catalogue of ~9700 clusters from Palom ar sky 

survey plates, but their richness classification is made in a redshift-dependent fashion, 

which is one reason why this catalogue is unsuitable for clustering studies.

Implicit in the use of the d — r 0 relation, as plotted in Figure 2.1, is a very strong 

assumption about the consistency of the methods used by theorists and observers to 

identify and select clusters in their work. The assumption is tha t associations of galaxies 

may be ranked in order by some property which is a convenient measure of richness 

(mass, for example) and tha t all selection procedures involve stepping down this ranked 

order to a particular point, with the result tha t cluster samples of a given number 

density, however selected, may be taken as being equivalent. This cannot, of course, be 

absolutely true. There must be some morphological influence on cluster selection using 

an Abell-type count of galaxies within a counting circle on the sky. Bahcall West

(1992) discuss a specific example of this. They argue tha t since Dalton e t  al. (1992) use 

a small counting circle they will select groups of galaxies (such as Morgan groups), whose 

central density is high, but whose to tal population is insufficient to lead to inclusion in 

a catalogue like Abell’s where selection is determined by the to tal galaxy count over a 

wider area of sky. This is an interesting point and one tha t deserves further consideration 

but, in what follows, we shall assume tha t it has little effect on the correlation length 

of samples of optical galaxies, so tha t we are able to use the d  — r 0 relation to compare 

the correlations of APM, EMRS and Abell/ACO clusters. A stronger objection should 

be raised, however, at the inclusion by Bahcall & West of the data  point for the Laliav 

e t  al. X-ray cluster sample in Figure 2 .1 . Leaving aside the possibility of systematic 

differences in relative cluster richnesses determined by studying the optical and X-ray 

properties of clusters, the optical samples discussed above are mainly volume-limited 

(they are flux-limited insofar as their selection depends on the visibility of galaxies 

above the magnitude limit of the plate, but we assume that the imposition of a, redshift
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Figure 2.1: The universal correlation function of Bahcall & West

lim it is the stronger bound) while the X-ray sample of Lahav et  al. is flux-limited, as 

are those being constructed from the ROSAT All-Sky Survey. It is, therefore, incorrect 

to include X-ray cluster samples on the d  — r0 diagram for optically selected samples, 

since their correlation length will be determined, in essence, by integrating over exactly 

such a curve, weighted by the cluster luminosity function.

In the Bahcall picture, the observed correlations of Abell/ACO, EMRS and APM clusters 

are mutually consistent, with a richness dependence of clustering strength accounting for 

the differences in correlation length for samples drawn from the three catalogues. One 

of the main goals of this chapter is to see whether this supposed richness dependence 

can be reproduced by any theoretically plausible power spectrum of primordial density 

fluctuations.

2 . 5  T H E O R E T I C A L  B A C K G R O U N D

This section reviews previous theoretical studies of cluster correlations. We discuss in



some detail analytic work, predicated on a model in which sites of cluster formation are 

identified with high peaks in a Gaussian linear density field: cluster correlations in this 

model were first studied in the seminal paper of Kaiser (1984). We follow this with a 

brief description of early numerical work, reserving detailed discussion of more recent 

numerical studies until Section 2.7.

2.5 .1  T h e  K aiser  Effect

In a remarkable paper, Kaiser (1984) showed how the strong spatial correlations of Abell 

clusters may be accounted for by a simple model of structure formation, at the heart of 

which lie the following three assumptions:

1. the primordial density field obeyed Gaussian statistics

2. the primordial density field had fluctuations on the mass scale of clusters 

superposed on lower amplitude, longer wavelength modes

3. clusters formed at peaks in the primordial density field, smoothed on cluster 

mass scales, which exceeded some (moderately high) threshold.

These assumptions are all very plausible. The first assumption is particularly well mo­

tivated in inflationary models of the early universe, which predict Gaussian primordial 

fluctuations as a generic feature, but it is also the default hypothesis: the central limit 

theorem would lead one to expect Gaussian primordial fluctuations unless there is some 

very good reason why not in a particular case. The second assumption selects a generic 

hierarchical model for the power spectrum, and so excludes, for example, neutrino- 

dominated models, where small-scale fluctuations will have been damped at early times 

by free streaming. The final assumption is plausible too, if not beyond question: local 

density maxima seem eminently reasonable places for bound objects to form, as one 

would expect, a priori, that objects are more likely to form where there is more mass. 

There follows, therefore, a picture in which the highest density peaks collapse first, so 

that a threshold is naturally set by the requirement that a given density perturbation 

must have collapsed by the present to be observed today: this reasoning is supported by 

the work of White et al. (1992), who show that the linear rms density fluctuation today 

is roughly unity on the scales appropriate to the formation of clusters.
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Calculation of the two-point correlation function of local maxima in a Gaussian random 

field that lie above a certain threshold is very complicated, as it involves correlations 

between the first and second spatial derivatives of the field at the two points, as well 

as correlations between the values of the field itself. To avoid this complexity, Kaiser 

chose to address a closely related, but much simpler, problem, that of computing the 

correlation function of points in the density field that lie above a threshold: by drop­

ping the constraint that the points be local maxima one also drops the need to include 

correlations between the spatial derivatives of the field, which simplifies the analysis 

greatly.

If the threshold is set to be vcr0, where <r0 is the rms density fluctuation [cTq = £(0), 

where £(r) is the correlation function of the density field], their the desired correlation 

function (denoted by £>u) is given by

1 + {>,(>■) =  | | .  (2-0)

where P1 is the probability that a randomly selected point should lie above the threshold 

and P2 is the joint probability that two such points should be found a distance r apart.

Now,

ro o

Pl = /  P(y)dy,  (2.7)
J V(T

where P(y) = (2ir2a2)~1̂ 2ex.-p(-y2/2cr2) and

r oo r o o

p 2 =  /  P(y\,y2)&y\ d?/2> (2-8)
J v<j  J if a

where

p( \ (r> \ - l  r^2/n\ r2f yi-l/2 f ~ [f (®)i/l + £ (0)^2 — 2£(7’ )V\ 2 ]̂ 1 (or)\
^ ( 2/1, 2/2) = (27r) [i ( ° W  (r )i eXP \ ----------0^ 2(0) _ ^2(7)]----------  (M 2^ )

It follows that £>u is given by

1 + £ > , »  = (2 /tt)1/2 [erfc(i//v^)]“ 1/2

fJo
. - 1/2»' erfc / « -  y m t m  \  d (210)

I v ^ [l -  f 2( r ) / i !(0)l/
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£>*0) -  £(r ), (2.11)

i.e. the correlation function of points above a threshold is an amplified version of that of 

the underlying field, with the degree of amplification increasing with increasing threshold.

Kaiser applied this formalism to the correlations of Abell clusters, taking the density field 

to be an n — — 1 power law (in accord with the observed slope of the galaxy correlation 

function on the appropriate scales), smoothed on the mass scale of a rich cluster. This 

smoothing length and the corresponding threshold, v, were chosen such that they select 

objects with the correct abundance that would collapse (in the spherical collapse model) 

at time tcoll in the interval 1 > tcoll/ i 0 > 1/2, where t0 is the present age of the universe.

Thus specified, the Kaiser model estimates that the large-scale correlations of Abell 

R  > 1 clusters are amplified by about an order of magnitude above those of the underly­

ing density field. The richness dependence of clustering strength predicted by this model 

is seen to be in qualitative agreement with the observations of Shectman (1985), Abell 

R > 1 and R  > 2 clusters.

The Kaiser model implies that the strength of the clustering of peaks of a given height 

on a given scale will depend on the amount of power in the density field at longer 

wavelengths and this is borne out by the work of Peacock &: Heavens (1985), who made 

realisations of Gaussian noise with different power spectra and computed the correlation 

functions of the resulting peak distributions. The numerical work of Peacock & Heavens 

also reveals the importance of thresholding in producing the Kaiser effect: they find 

that the amplification increases dramatically with threshold, thus validating another 

prediction of the Kaiser model.

2.5 .2  Further app rox im ations to  th e  correlations of peaks in G aussian  

noise

Several authors have extended Kaiser’s original study of the correlations of points in 

Gaussian random fields lying above a threshold. Politzer & Wise (1984) follow Kaiser’s

In the limit that f(r)/f(0) <C 1 and v >  1 this reduces to
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treatment and obtain an expression for the n-point correlation function of thresholded

which agrees with Kaiser’s original result (equation 2.11) in the limit of weak clustering of 

thresholded regions. Silk & Vittorio (1987) use this approximation in their study of large- 

scale structure in low-ft models, comparing its predictions with the BS83 correlation 

function.

Equations 2.11 and 2.12 are both approximations to equation 2.10 in different limits: 

Politzer & Wise require that the correlations in the underlying field be weak, while 

Kaiser needs the tighter constraint that the clustering of thresholded regions in that 

field is weak. Jensen & Szalay (1986, JS86) show how the n-point correlation functions 

for thresholded regions may be calculated to arbitrary accuracy, using a series solution. 

They find that the two-point correlation function may be written as

There are problems with using the correlations of thresholded points as an approximation 

to those of peaks. As noted by Coles (1986), the correlation function of thresholded

typical size of the thresholded regions) because it will include counts of pairs which 

are within the same thresholded region: Kaiser (1984), in fact, acknowledged that the 

correlation function of thresholded regions will be more like a mass-weighted cluster

objection. A second problem is that the thresholded points model predicts that the

points. In the limit that (i-'/c’b)2 >  1 and f(rt- -  r  •) <  1 V i , j  they show that the 

n-point correlation function reduces to a combination of two-point functions; the two- 

point function taking the form:

.2
o i (2 .12)

(2.13)

where An = 2xHn_1(x) 2 nt2/[y/nxe*2 exic{x)\, with Hn{x) being the Hermite polyno­

mials and x = v /y j2: in the limit v —> oo this reduces to Kaiser’s result (equation 

2 .11).

points will overestimate the peak correlations at small scales (scales smaller than the

correlation function than a simple cluster-cluster correlation function, anticipating Coles’
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zero-crossings of the peak-peak correlation function should coincide with those of the 

underlying field, but this is not seen in the numerical realisations of Gaussian random 

noise made by O tto, Politzer & Wise (1986) and Lumsden, Heavens & Peacock (1989, 

LHP). This may be readily explained as a result of the neglect of correlations of the first 

and second spatial derivatives of the field: if the correlation function of the field is steep 

when it crosses zero then its derivatives may not be neglected and their correlations may 

produce a non-vanishing peak-peak correlation function at tha t separation. Furtherm ore, 

Coles (1989) notes tha t the series solution presented by Jensen & Szalay (1986) is slow 

to converge, which reduces its utility.

Bardeen, Bond, Kaiser & Szalay (1986, BBKS) discuss the com putation of the true 

n-point correlation functions of the peak distribution, defined by

where (ftpk -pk) is the probability of their being a peak satisfying an appropriate 

threshold condition in the volume dV' about the point r i and ( f t p k - p k ( r i )  • • • n p k - p k ( r n ) )  

H, dV) is the joint probability of there being n such points in the volumes {dVj} sur-

a single point may be reduced to those between just two variables -  i .e.  v  = 6 / a 0 and 

x — —V 25 / a 2, where a i are the moments of the field. Further, BBKS assume tha t 

the cross-correlations between the derivatives of the field at different points may be ne­

glected: the validity of this approximation in a particular case will depend on the field 

involved -  for example, in the specific example BBKS consider (the CDM power spec­

trum  smoothed on galactic scales), it is valid for separations greater than about four 

times the smoothing length used to define the peaks.

BBKS define n-component column vectors v  and x, the components of which are

1 4- £ (n)' Çpk—pk
( n p k - p k ( r l ) - - - n p k - p k ( r n ) )

( n p k - p k ) "
(2.14)

rounding the points {r,-}. This joint probability function is a function of IO71 variables, 

being the values of the field, 6, its three first spatial derivatives and its six indepen­

dent second spatial derivatives at the n points. The correlations between variables at

and x ( i )  for i = 1 .. . n, (2.15)
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where the spectral parameter, 7, defined by

( k )  a \
7 =  -, ;4 U /2  =  ------  (2.16)

( k4)1 ' 2

expresses the range of wavenumbers over which the field has significant power: 7  =  1 if 

the power spectrum is a ¿-function at a single wavenumber and is much less than unity 

for power spectra with power over a broad range of scales.

BBKS then define an n x n matrix, T, whose diagonal elements are zero and whose off- 

diagonal elements are the normalised density cross-correlations, ip - ,  [ ip-  =  £(?'-)/£(())] 

and a further matrix, C , defined as

C =  { [ ^ [ I + ^ / ( l - 72)]}-1, (2.17)

where I  is the n-dimensional identity matrix. BBKS show that the joint probability

distribution in the num erator of equation 2.14 then takes the form

(» p t-p k i 'i)  ■ • ■»pk-pk(’-n)) = ( 4 ^ ) - ” <det[I + ¥ / ( ! -  7 )]}
- 1/2

X I J d v ( i )  J  dx(i): KO 9  [K O ,7 ,7 K 0 ] e "(!)2/2exp Q îK C £ )  K ( 2 -18)

where = v K c rj/^ , t ( u / u t ) is the peak selection threshold function [ t ( v / v t ) = 6 ( v —vt ),  

where 9 is the unit Heaviside function, for a sharp threshold at u =  v t ]. The quantity 

g( x,  7 ,7 1/ )  is given by

g( x,  7 ,7 1/ )  = f ( x )
[2tt(1 -  72)]l/2 exp

—(a: — 7  uY

2 (1 - 7 2)
(2.19)

where a closed form for f ( x )  is given in Appendix A. This 2 n-dimensional integration 

cannot, in general, be reduced to a product of simpler integrals, since C is non-diagonal 

by construction, so tha t evaluation of equation 2.14 is a formidable task, even for the case 

of n —2. Two further approximations are suggested by BBKS to enable progress beyond
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this point. The first is to consider the weak clustering limit, in which is? i p -  < 1  V i , j .  

In this case

(2 .20)

and the integrals over x  and is may be evaluated separately at each point. In this limit 

equation 2.14 reduces to

£pk-pk(*T---r n) = W r ij)> (2 .2 1 )
i<j

where (is) is the mean value of is taken over all peaks selected by the threshold criterion, 

so tha t the two-point function takes the form

£pk-pk(r ) = ^ 4 - £ ( r )-°o
(2 .22 )

This is the same form as equation 2.11 derived by Kaiser (1984), but is not identical,

is to model g ( x ,  7 , 71 )̂ as a Gaussian in x,  with the result tha t the integrals over x  in 

equation 2.14 may be performed analytically, reducing equation 2.14 to an n-dimensional 

integral, with a very complicated integrand.

BBKS present a second approach to the approximation of n-point peak correlations, 

using the so-called ‘peak-background split’ method. In this approach, the smoothed 

density field, ¿>s, used to select the peaks is considered to be the sum of a ‘peak’ field, 

¿p, and a ‘background’ field, <5b, which is obtained by smoothing the full density field 011 

a scale larger than tha t (R s) used to define 6S: in a loose sense <5p describes the local 

properties of the peaks of the field ¿s , while <5b gives its large-scale correlations. This 

picture motivates the expression of (n pk( r 1) . .  . n pk( r n)) in the form

because (is) < is for appropriate values of 7  and is. The second suggestion made by BBKS

(nPk(r i) • • • npk(r n)) =  J l [ n pk[uh( i ) ] d u h P[uh( l ) . . . i s h(n)] , (2.23)
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where vh = <5b/<7b an(  ̂ ab = £b(0)- The quantity npk(z/b) is the local density of peaks 

in the field Sp as a function of vh and P[i/b( l ) . . .  ^b(n)] has a multivariate Gaussian 

distribution:

i > b(l)...zq,(n)] =  (27r)-n/2 [det(I+^)]-1/2 e x p [ - ^ (I +  ̂ r ip l (2 24)

where, as before, \f' has vanishing diagonal elements and off-diagonal elements equal to

the normalised cross-correlations, ip- ; in this case the normalised cross-correlations of 

the background field, ip- = (^(O^bC?))- Computation of npk(i/b) is not trivial, since 6h 

and Sp are correlated, by construction, as a result of their sum being equal to 6S at all 

points. In the ‘peak-background split’ approximation, BBKS ignore these correlations 

and define <5p to be a Gaussian field whose power spectrum is the difference between the 

power spectra of 6S and <5b. W ith this simplification, it can be shown that npk(^b) takes 

the form

which we shall use later, in Section 2.6. This greatly simplifies the expression for 

(npk(r i) • • ^ p k ^n )) and BBKS show how, in the limit that ¡3 <C 1 (which holds when 

Rh >  R s), the peak-background split yields the following n-point correlation function

which is the same form as the correlation function of thresholded regions derived by 

Politzer & Wise (1986).

BBKS demonstrate that the peak-background split provides an excellent approximation

in 6S are well approximated by those of <5b.

Lumsden, Heavens & Peacock (1989, LHP) argue that the approximations of BBKS

verse dominated by CDM than they are for the galaxy distribution. This is because

(2.25)

(2.26)

to the true peak-peak correlation function for separations r >  f?b, where the correlations

outlined above may be less satisfactory for modelling the cluster distribution in a uni
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the larger smoothing scale appropriate to clusters pushes attention to scales where the 

power spectrum is flatter and the derivatives of ip- may not be neglected so readily. 

To overcome this problem they consider a modification of the JS86 method, made in 

the light of the work of BBKS. They note that in the limit xp —► 0, the JS86 formula 

(equation 2.13) reduces to £>u = A\(v)xp(r), while the asymptotic peak-peak correlation 

function (equation 2.22) is £pk_pk(r) = (v)2xp(r). Thus, by solving the implicit equation 

Ai(i'efl') = (v)(v,~fv) they find an effective threshold, z/efr. Using i/eff as the threshold in 

equation 2.13 they find that the JS86 formalism gives a much better fit at all separations 

to the true peak-peak correlation function (determined from a numerical realisation of 

the field 6S) than is obtained using u and they apply this modified JS86 approximation 

to flat baryon- and CDM-dominated models, as well as an open CDM model.

This modification does not, however, circumvent one of the failings in the JS86 approach, 

since it scales the amplitude of the quantities A n, but will keep the zero-crossings of 

the correlation function for thresholded regions coincident with those of the underlying 

density field which, as we have seen, compromises its use as a model for the peak-peak 

correlation function. In view of this, LHP and Coles (1989) consider the approximation 

of the true peak-peak correlation function for a three-dimensional field by that of a one­

dimensional skewer through it: the restriction to one dimension simplifies the analysis 

to the point that the peak-peak correlation function may be computed quite readily. 

Although the peaks in the one-dimensional slice will not, of course, generally coincide 

with peaks in the three-dimensional field, LHP argue that since the contours around 

peaks in the three-dimensional field are simply-connected (for even moderately high 

peaks), a peak in a one-dimensional slice is likely to lie close to a true, three-dimensional 

peak: Coles (1989) gives the same argument in more mathematical terms. LHP find 

that the correlation function of peaks in a one-dimensional slice is, indeed, a very good 

approximation to the true peak-peak correlation of peaks in the three-dimensional field, 

much better than approximations based on thresholded regions.
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2 .5 .3  T h e  d y n a m ic  ev o lu t io n  o f  p e a k -p e a k  co rr e la t io n s

The methods described above may be used to determine the spatial correlations of the 

distribution of nascent clusters at an early epoch (provided tha t we are justified in iden­

tifying sites of cluster formation with peaks in a Gaussian random field), but the cluster 

distribution has evolved over time and account must be taken of the resultant dynamical 

component to its observed clustering today. The coupling between the statistical and 

dynamical components is complicated and so BBKS restrict their treatm ent of this topic 

to the limit of weak correlations in the peak-background split.

The two-point correlation function in the peak-background split may be w ritten as

fpbi*«»*) = (N pk(.x i , t )N pk(x 2 , t ) ) / ( N pk)2i (2-27)

for fixed Eulerian separation x 12 = | x 1 — x 2 |, where

N Pk =  nPl> b 0 5°)] X [1 +  vh( r , t ) a h( t )], (2.28)

where the factor [l +  ̂ b<7b(t)] comes from the transformation of volume elements from La- 

grangian to Eulerian coordinates. Approximating equation 2.25 by npk ~  n0[l +  , 0)]

BBKS show tha t equation 2.27 reduces to

£pb(i) = («  +  a 6) V 12 = {[£pb(0)]1/ 2 + [£ (i)]1/2}2 > (2.29)

and they say tha t comparison with the numerical simulations of Davis et  al. (1985) show 

tha t the second form given in equation 2.29 gives a good approximation to the evolution 

of clustering beyond the weak clustering limit assumed in its derivation, although it 

clearly breaks down when £pb is negative. A modification of this treatm ent is used by 

Bardeen, Bond &: Efstathiou (1987, BBE) to consider predicted cluster correlations in 

an array of fifteen models. BBE replace fpb in equation 2.29 by a statistical peak-peak 

component, £pkal pk, given by the Fourier transform of the power spectrum Ppk!llpk, which 

is defined to be
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i f t -p k W  = { [ « +  (W  -

+  ( 1 5 ( x e ) 2 +  5 ( xp ) 2) R ,. k , / 9 y 4 } P l, ( k ) / a l  (2 .3 0 )

In this equation Pp is the power spectrum of the density field and (u) ,  (D), (x e ) and 

(x p ) are averages over the peaks selected by the threshold criterion of quantities de­

scribing their heights and shapes: e and p  are the ellipticity and prolaticity of the peak 

respectively. BBE identify clusters as peaks which have collapsed by the present in 

the spherical collapse model -  i .e.  va0(Rs,nov:) > Sc, where 6C is in the range from 

1.06 (corresponding to the turnaround of a spherical perturbation in an i f = l  universe) 

and 1.69 (which corresponds to its collapse to a singularity): a smoothing length of 

R s =  5 h_1 Mpc is used to select peaks in all models. This method has been used more 

recently by Holtzman 8z Primack (1993) to study cluster correlations in several CDM 

variants. It is unfortunate than Holtzman & Primack choose to compare their results 

with only one set of observations (the PHG sample, decontaminated by Olivier e t  al. 

1992).

A very different approach to the study of the dynamical evolution of clustering is adopted 

by Coles (1989). The starting point for his work is the observation tha t the probability 

distribution function of a density perturbation field that obeys Gaussian statistics ini­

tially must develop a skew towards positive densities as it evolves, since it is bounded 

below at zero density. Following Coles (1989) we define a measure of skewness, P, by 

N =  (o's/cr^)1 2̂ and second-order perturbation theory (Peebles 1980, Coles 1989) enables 

one to estim ate P ~  5 for an initially Gaussian density field evolved to £(0) ~  1 . Coles 

then seeks to model the correlations of the evolved peak distribution by the correlations 

of peaks in two non-Gaussian density fields bounded at zero and with K ~  5: the two 

non-Gaussian models considered are the lognormal and y 2 distributions. Coles concludes 

tha t the development of this (moderate) degree of skewness has little effect on the peak 

correlation function and suggests tha t the dynamical component of the cluster correla­

tion function will be small compared to the statistical component. This investigation 

is, however, only made for two specific non-Gaussian distribution functions and a single
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toy model for the correlation function of the underlying density field, so it is not clear 

how general conclusions may be drawn from it.

2 .5 .4  N u m erica l s tud ies  o f  c luster  correlations

The past fifteen years have seen the widespread application of the methods of numerical 

simulation to the problems of cosmology. Their impact on the study of cluster correla­

tions has, like that in most areas of cosmology, been somewhat mixed. The first serious 

IV-body study was that reported by Barnes et al. (1983). This was somewhat inconclu­

sive, since the number of particles used was so small (323 in the largest simulation and 

only 8000 in the smallest) that the size of the simulation volume (determined by identi­

fying the correlation length of the particle distribution with that observed for galaxies 

- i .e .  ~  5 h~l Mpc) was insufficient to produce many clusters as rich as those in the 

Abell/ACO catalogue, so that a quantitative comparison of theory with observation was 

impossible.

Clearly, the very rareness of rich clusters poses a problem for numerical simulators. 

Batuski et al. (1987, 1991) tried to overcome this by performing very large volume 

simulations (cubes of side ~  600 — 700 h~l Mpc), but their emphasis on simulation size 

left them with woefully inadequate resolution: the cell size in the simulations of Batuski 

et al. (1987) is 6 h~2 Mpc and each particle has a mass of ~  1015MQ, which is the mass 

of a rich cluster.

A balance of some sort between the conflicting requirements of size and resolution is 

found in the work of White et al. (1987) on clusters in the standard CDM model but, like 

other authors, they have to employ a BBKS-inspired analytic prescription to produce a 

cluster distribution from their density field. More satisfactory simulations are becoming 

possible with improvements in computer capabilities and we shall discuss the current 

generation of simulations in Section 2.7.
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2 . 6  C L U S T E R I N G  I N  T H E  Z E L D O V I C H  A P P R O X I ­

M A T I O N

In previous sections we have seen how to approximate the spatial correlation function 

of the distribution of nascent clusters using the peaks formalism and how to extend this 

formalism to include the dynamical component to the clustering in l inear  theory.  This 

linear theory treatm ent is only strictly valid in the limit of weak statistical correlations 

and will not be accurate in situations where the density perturbations are sufficiently 

strong for linear theory to be inadequate. Studies of cluster correlations through TV-body 

simulation face, as we have seen, difficulties resulting from the dynamic range inherent in 

the problem: the numerical simulations should ideally possess sufficient spatial resolution 

to produce plausibly galaxy-like objects, while the rarity of rich clusters means th a t a 

very large simulation volume is required to facilitate the com putation of the correlation 

function with reasonable accuracy. Numerical modellers (e.g.  Dalton e t  al. 1992) have 

been forced to make assumptions about the relation between the cluster distribution 

and the Mpc-scale mass distribution. Given this necessity, it is clearly preferable to 

implement such assumptions analytically, provided tha t one can employ an adequate 

analytical method for determining the Mpc-scale mass distribution. We do just th a t in 

the present work, using the Zeldovich Approximation to perform the evolution of the 

density field, within the framework devised by Bond & Couchman (1987, 1988; hereafter, 

collectively, BC). Their paper is an analytic tour  de force  but, unfortunately, it is plagued 

by typographical errors, as well as being concise to the point of terseness. In this section 

we describe the work of BC and employ the framework it presents in the calculation of the 

cluster correlation function. For a general discussion of the origin and properties of the 

Zeldovich Approximation the reader is referred to the marvellous review by Shandarin & 

Zeldovich (1989), while more recent applications in reconstruction analysis are discussed, 

for example, by Nusser & Dekel (1993) and Lacliieze-Rey (1993a,b): in what follows we 

consider the Zeldovich Approximation only insofar as it is used in the method of Bond 

& Couchman.
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2 .6 .1  T h e  Z e ld o v ich  A p p r o x im a t io n

Consider a three-dimensional space populated by a dissipationless fluid. In proper co­

ordinates, the (Eulerian) position, y ( r , t ) ,  of a particle at a time t is related to its initial 

(Lagrangia.il) position, r, by

y ( r , t ) = a ( t ) r  -  D ( r , t ) ,  (2.31)

where a ( t ) is the cosmological scale factor, D ( r ,  t ) is the displacement field and the minus 

sign is a m atter of convention. In linear theory (e.g.  Peebles 1980; see also Section 1.4), 

D ( r , t ) can be w ritten as the product of spatial and temporal parts, D ( r , t ) =  b( t ) d( r ) ,  

so th a t equation 2.31 reads

y ( r , t )  =  a ( t ) r  -  b ( t ) d ( r ), (2.32)

where the function b( t)  depends on the value of the cosmological density param eter, fi, 

and determines the evolution of density perturbations: an expression for the growing­

mode solution for b ( t ) is given in the appendix to Zeldovich (1970). The Zeldovich 

approxim ation consists of the extrapolation of equation 2.32 into the regime where den­

sity perturbations are no longer small. From equation 2.32 we can see tha t the comoving 

peculiar velocity and acceleration vectors are parallel in the Zeldovich Approximation: 

particles move along straight trajectories in the Zeldovich Approximation and its utility 

will depend on whether or not this simplification compromises its ability to describe the 

evolution of cosmological density perturbations.

We may define comoving coordinates, x ( r , t ) =  y ( r , t ) / a ( t ) ,  in which case equation 2.32 

becomes

x ( r , t ) = r  — d (r ) .  (2.33)
a ( t )

Our concern here is with the distribution of m atter at a specific epoch, the present, rather 

than with following the evolution of the density field with time, so it is convenient to
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define the variable

(2.34)

where t 0 denotes the present epoch, from which it follows that

x r s. (2.35)

Given knowledge of the density perturbation field, equation 2.35 is all tha t is required

to determine the distribution of particles, since the displacement field, s ,  is related to 

the density perturbation field in a way we shall now show.

Consider a small region of space. The tensor of deformation, V - ,  is defined by

r)x ■ 3s  ■
V ,-  ^  =  «« -  (2.36)

using equation 2.35 and where 6tJ denotes the Kronecker delta. The derivatives { d s j d r j }  

define a set of coordinate axes, such that the unit cube is transformed into a paral­

lelepiped. If we select this particular coordinate system then the deformation tensor

where a , / ? , 7  are the eigenvalues of the m atrix { d s j d r  • } . The deformation tensor gives 

the transform ation of the unit cube, so that the volume of space occupied by the par­

allelepiped into which the unit cube is deformed is simply the determ inant of V  -  i.e.  

\ \ V  | |= ( 1  — a ) ( l  — /3)(1 — 7 ). Conservation of mass then requires tha t

becomes

V

'  1 -  a  0 0 ^

0 1 - /3  0

v 0 0 1 - 7  j

p{  1 -  a ) ( l  -  ß ) (  1 - 7 ) =  p, (2.37)
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where p  and p  are the local and mean densities, respectively. For small perturbations 

this yields the following relationship between the displacement field, s , and the density 

perturbation field, 6,

6 =  =  V • s , (2.38)

where the divergence of s  is taken with respect to the Lagrangian coordinates r. This 

may be expressed in terms of the Fourier components, {sfc}, {¿>fc}, of the two fields as

(*fc); = -*  J  ( k ) j ,  (2.39)

where k =  k /  | k | and (fc)J is the j t h  component of the vector k,  etc.

The Zeldovich Approximation, as outlined above, breaks down when caustics form -  i.e. 

p  —> oo locally. After this time it gives an increasingly poor description of the density 

field, as it leads to ‘shell-crossing’, with particles passing through each other, rather than 

coalescing, resulting in an underestimation of the density of collapsed objects. This may 

be remedied by introducing a viscosity term into the dynamical equations, to produce 

‘sticky’ particles: this is the adhesion model, for a discussion of which the reader is 

referred to Williams e t  al. (1991) (and references therein, particularly G urbatov e t  al. 

1989). The advantage afforded by the introduction of ‘sticky’ particles is outweighed, 

in the present context, by the impossibility of incorporating the adhesion model into a 

straightforward analytic framework like tha t outlined here for the Zeldovich Approxima­

tion.

An alternative approach to solving the problem of ‘shell-crossing’ in the Zeldovich Ap­

proximation is to apply a filter to the density field, to remove small-scale power and to 

prevent ‘shell-crossing’. It has been shown (Efstathiou & Silk 1983; Efstatliiou 1990; 

Coles, M elott & Sha.nda.rin 1993) that, with the inclusion of such a filter mechanism, the 

Zeldovich Approximation can provide a remarkably accurate picture of the evolution of 

the density field well into the nonlinear regime, as judged by comparison with the results 

of A-body simulations using the same initial conditions. Coles et  al. (1993) favour the 

simple truncation of the power spectrum at a particular wavenumber to remove small- 

scale power, while BC prefer smoothing with a. Gaussian filter. We adopt the la tter
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approach here, since a sharp truncation in A;-space can introduce undesirable ringing in 

the correlation function: we discuss the choice of smoothing scale for the Gaussian filter 

in Section 2.6.2.

In addition to this direct illustration of the efficacy of the Zeldovich Approximation in 

this application, through comparison with IV-body simulations, BC and Coles (1990) 

have shown tha t the Zeldovich Approximation reproduces the quadratic nonlinear terms 

in the full dynamical power spectrum in the mildly nonlinear regime appropriate to 

analysis through second order perturbation theory.

Given th a t the Zeldovich Approximation is rooted firmly in linear theory, one might be 

surprised at how well it can describe the mildly nonlinear evolution of the cosmological 

density field, but this can be readily explained through a consideration of the properties 

of the collapsing density perturbations involved. It can be shown tha t proto-objects in 

Gaussian density fields are generically triaxial (Peacock & Heavens 1985; BBKS) and 

tha t gravitation acts to accentuate tha t deviation from spherical symmetry (Lin, Mestel 

& Shu 1965), leading to collapse along one axis first (Zeldovich 1970), with subsequent 

particle motion being preferentially directed parallel to this axis. While the details 

of this procedure depend on the nature of the cosmological density field, especially 

the slope of its power spectrum, it will be generally true tha t gravitational collapse in 

structure formation is well-approximated by a one-dimensional process and, hence, tha t 

the Zeldovich Approximation will give a good description of the evolution of the density 

field well into the nonlinear regime, for a wide range of cosmological models (Coles et  

al. 1993).

2.6 .2  M ass correlations in th e  Zeldovich A pp rox im ation

The first application of the Zeldovich Approximation to be considered is in the determ i­

nation of the correlation function of a density field with known linear power spectrum. 

We require knowledge of the mass correlation function as part of the procedure we adopt 

for determining the smoothing length of the filter that we must apply to the density field 

to prevent shell crossing. It is also instructive to consider this first part of the BC formal­

ism (the evolution of the density field) before the addition of the further complication of
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the prescription to relate the cluster distribution to the density field. The mass correla­

tion function, £p(x ) ,  is related to the probability, P ( x  11,2), of finding masses at points

1,2 a distance x apart by

1 +  £p( x )  =  P ( * | l , 2 ). (2.40)

This may be w ritten as

1 +  £p{ x ) = J d3r  d3s P ( x  | r , s)  P ( s  | r )  P ( r ) ,  (2.41)

where P(x\ r,s)  is the conditional probability tha t two particles have an Eulerian separa­

tion x, given tha t their Lagrangian separation is r  and tha t their relative displacement 

through subsequent motion is s; P (s |r)  is the conditional probability tha t two particles 

have a relative displacement s given a Lagrangian separation r; P ( r )  is the probability 

of there being two particles with Lagrangian separation r; and the integral is taken over 

all r  and s.

This method would calculate the correlation function for a distribution of particles tha t 

had been perturbed in any way tha t produces a Gaussian displacement field: the Zel- 

dovich Approximation is required only for relation of the displacement field to the initial 

density field. From equation 2.33 we see tha t the conditional probability P ( x  |r,s) taking 

the simple form P (x \ r , s )  = ¿D(a ;- |r -s |) /(47rx2), where ¿D denotes the Dirac ¿-function.

We give here only a sketch of how the derivation of the final form of £p( x )  proceeds from 

this point, reserving the full derivation for Appendix C.

The probability P (s |r)  has a Gaussian distribution:

P ( s \ r  ) =  -  exp (  Sl^ t3 S] \  (2 42)
( 1 ' ( 2 tt)3 /2  || M  H1/ 2 ' P ^ 2 )  ’ 1

where the covariance m atrix of the distribution is M tJ =  (s i ( y ) r ) s J( y ] r )), where s,-(y; r)  =  

s t ( y  +  r )  —  5,-(y) and {i,} are the components of the displacement field.

This may be readily evaluated in a Cartesian coordinate system whose 3-axis lies along 

the direction of the vector r — r /  | r |, using the relationship between the Fourier
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components of the displacement and density fields (equation 2.39) to obtain

M i j  =  2<7s (1  -  +  (V»X - (2.43)

The quantity <js is the one-dimensional rms particle displacement and is given in terms 

of the power spectrum, A 2(k ) ,  of the density field by

1 2/n —k2 R 2

3 1
(2.44)

and and are defined by

cr
roo .,

V||(r) =  Jo A  2(k)el r(k-r) e-k2R2 dk

it3 ’
(2.45)

and

fJo
A 2( k ) e h

i  — (fc ■ ry e~k2Rf dk
fc3 '

(2.46)

It follows that equation 2.42 may be w ritten as

1
P ( s  | r)

(27 r )3/ 2(2crs) 3/ 2( l  -  ^ x ) ( l  -  ^ i ) 1/ 2

(1 -  ,̂|)s2 -  ( i p ±  ~ V'llX*-*)2
exp (2.47)

4<t2(1 -  V tX 1 -  ^ ||)

Since P(x |r,s) takes the form of a ¿-function, the integration over s is restricted to the 

sphere at constant | x  |. In our coordinate system this means tha t s2 — r2 -fa:2 — 2xrcos9 

and s-r =  r — .tcos6 . These may be substituted into the expression for P (s |r)  and the 

resultant integrations over 6,<f> performed, the la tter one trivially. This leaves a. one­

dimensional integration (over r), which is straightforward to convert into the following 

form:

1 r°°
1 +  ̂ {X) =  2 v / 7 r< 7 2 .T Jo ( 1

r2dr

v /7rcr2.T 70 (1 -  t/>x)1/2( ^ x  -  ^ | | ) 1/2

( r  — x )2
F ( u , ) e x  p 4ct2(1 - V>||)

F ( u _  )exp
{r +  x)

4o-K1 -  -0||)
12.48)
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which is the final form for £pZ(z). In equation 2.48, F  (it) is Dawson’s integral,

F ( u )  =  j f V - “2d3/, (2.49)

and the arguments are given by

(j-L -  ^ ||)1/2 _

O x  ~ V>||)2crs( l  — V’|l)1/ 2( l  ~  V’j.)1/ 2
(! -  O l ) ,r T-,------------ ± x (2.50)

which differs slightly from the equivalent equation in BC, which contains typographical 

errors.

Equations 2.44 -  2.46 contain a Gaussian smoothing term (e~k Rf) to filter small-scale 

power from the power spectrum A 2(k) .  The choice of the filter radius, R { , for use with 

a particular power spectrum is motivated by several considerations: if R { is too small, 

then shell crossing will not be suppressed; if is too large, it will filter out real power 

at short wavelengths and produce a two-point function tha t underestimates the strength 

of correlations on small scales. This behaviour can clearly be seen in Figure 2.2, which 

shows the mass correlation function for a CDM model in the Zeldovich Approximation, 

with the linear power spectrum smoothed with Gaussian filters with different smoothing 

lengths, R { . The largest smoothing length of R { =  5 h _1 Mpc filters out real small-scale 

power: as the smoothing scale is reduced, the small-scale correlations increase, until a 

maximum is produced by a filter radius of 3 h -1  Mpc. As R { is reduced further, it is clear 

tha t shell crossing is occurring to a large extent since, with filter radii of R { < 1 h -1  Mpc, 

the correlations are reduced at small separations, due to the smearing out of structure as 

shells of particles pass through each other. Motivated by these considerations, we adopt 

the filter radius which maximises £(0 ) for each of the models we consider.

When calculating the cluster correlation function, however, consideration of the motion 

of the peaks in the density field leads us to modify this procedure and to impose the 

constraint th a t R t cannot be smaller than the filter length, R s , to be used to define the 

peaks. This follows from seeing tha t if the peaks are defined by smoothing the density 

field on some scale R s then the motion of those peaks can only be due to modes with 

wavelengths longer than R s and so, whenever the procedure outlined in the preceding 

paragraph gives R { < R s , we set R { equal to R s .
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x / (h 1 Mpc)

Figure 2.2: The mass correlation function for an fl0 = 1, F=0.5 model with COBE 

amplitude, calculated for a number of values of the filter length, R{, as indicated. (R { 

in units of h~l Mpc).
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In Figure 2.3 we compare the mass correlation function in linear theory and in the 

Zeldovich Approximation for a CDM model, normalised to COBE and smoothed with 

Gaussians of filter length Rf =0.5, 1.0, 3.0 and 5.0 h~l Mpc: from Figure 2.2 we see that 

Figure 2.3 (c) shows the correct smoothing length (R{ = 3.0 h_1 Mpc) to use with this 

power spectrum, as determined by our requirement of producing the maximal small-scale 

correlations in the Zeldovich Approximation. The relationship between the linear and 

Zeldovich mass correlation functions shown in Figure 2.3 (c) is generic: whenever the 

correct smoothing length is used the Zeldovich mass correlation function exceeds the 

linear prediction on small scales, dips below it on intermediate scales and then crosses it 

again on larger scales. The two correlation functions tend to a common asymptotic limit 

at large separations: this may be shown by expanding equation 2.48. It is instructive to 

compare Figure 2.3 with those for other power spectra. Figures 2.4 and 2.5 use the same 

CDM transfer function and the same four smoothing lengths, but with higher and lower 

amplitudes (e twice and half the COBE values, respectively). From the variation of 

the small-scale mass correlations in these models we see that the appropriate smoothing 

scales for the higher, lower amplitude models are 5.0, 1.0 h-1 Mpc respectively. The 

agreement between linear theory and the Zeldovich Approximation is good over all scales 

for the lower amplitude, but for the larger dynamical evolution produced by the higher 

amplitude the agreement is poor on all scales. Figure 2.6 shows the corresponding figure 

for a power spectrum (Model 2 of Section 2.6.5, normalised to COBE) which has less 

small-scale power than CDM. This model has relatively more power at large scales, 

so that its correlation function has its first zero-crossing point at a significantly larger 

separation than the CDM models. One feature common to all four of these figures is 

that the first zero-crossing point of the mass correlation function is at a larger separation 

in the Zeldovich Approximation than in linear theory: this observation is important, 

since it shows that dynamical evolution can affect correlations out to surprising large 

separations.

2.6 .3  D efin in g  a p op ula tion  of objects

In Section 2.6.4 we shall use the asymptotic form of the peak-peak correlation function to 

normalize the prescription used by BC to relate the cluster distribution to the underlying
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x  / ( h  1 Mpc) x  / ( h  1 Mpc)

x  / ( h  1 Mpc) x  / ( h  1 Mpc

Figure 2.3: Comparison of mass correlation function in the Zeldoviclx Approximation 

and in linear theory, for a CDM model normalised to COBE. The smoothing lengths 

used are: (a) R { = 0.5 h~l Mpc; (b) R{ — 1.0 h~l Mpc; (c) R{ — 3.0 h~l Mpc; and 

(d) R { = 5.0 h~ . In all four cases the solid line shows the mass correlation function 

calculated in the Zeldovich Approximation and the dotted line gives the linear theory 

prediction.
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Figure 2.4: Comparison of mass correlation function in the Zeldovich Approximation 

and in linear theory, for a CDM model with a value of the normalisation parameter 

e twice that for COBE. The smoothing lengths used are: (a) R ( = 0.5 h~l Mpc; (b) 

R { = 1.0 h~x Mpc; (c) R { -  3.0 h~l Mpc; and (d) R { = 5.0 h~l . In all four cases the 

solid line shows the mass correlation function calculated in the Zeldovich Approximation 

and the dotted line gives the linear theory prediction.
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Figure 2.5: Comparison of mass correlation function in the Zeldovich Approximation and 

in linear theory, for a CDM model with a value of the normalisation parameter half that 

for COBE. The smoothing lengths used are: (a) R{ = 0.5 h~l Mpc; (b) R { — 1.0 h 1 

Mpc; (c) R( = 3.0 h~l Mpc; and (d) R{ = 5.0 h~x. In all four cases the solid line shows 

the mass correlation function calculated in the Zeldovich Approximation and the dotted 

line gives the linear theory prediction.
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Figure 2.6: Comparison of mass correlation function in the Zeldovich Approximation 

and in linear theory, for Model 2 of Section 2.8, normalised to COBE. The smoothing 

lengths used are: (a) R { = 0.5 h-1 Mpc; (b) R( = 1.0 h~l Mpc; (c) R { = 3.0 h~l Mpc; 

and (d) R{ = 5.0 h~l . In all four cases the solid line shows the mass correlation function 

calculated in the Zeldovich Approximation and the dotted line gives the linear theory 

prediction.
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density field. To do this we require a procedure for calculation of the values of Rs and 

vs appropriate to the set of peaks which we identify with a population of clusters with 

number density Nc : we assume that the number density of clusters is conserved even 

though the individual cluster positions change over time. There is no unique way of 

making this identification. We employ a prescription based on the following simple 

collapse model.

Collapse models commonly identify the formation of an object with the time when the 

rms density contrast of the extrapolated local linear density field, smoothed on the 

appropriate mass scale, exceeds some critical value 6C, which, in an Einstein-de Sitter 

universe, equals 1.7 for a spherical perturbation. Lower values (1.7 > Sc > 1) will be 

appropriate for a triaxial proto-object (More, Heavens & Peacock 1986), which is the 

generic case for peaks in a Gaussian random field (Peacock & Heavens 1985; BBKS). 

It is found (e.g. White et al. 1992) that the value of 6C is very insensitive to for a 

flat universe, so we shall consider the range 1.7 > 6C > 1 for all models in what follows. 

An independent constraint on the value of 8C to be used is that this procedure should 

produce sensible cluster mass estimates: this point is discussed further in Section 2.9, 

with reference to the comparison of our results with those from numerical simulations.

It is clear that the first objects of a given mass to form in this picture will be those 

corresponding to the highest peaks in the initial density field and that, as time progresses, 

the objects of that mass which collapse will correspond to increasingly low peaks in the 

initial density field. A lower bound to the threshold us may be obtained, therefore, by 

equating it with the peak height corresponding to peaks collapsing today. This would 

clearly be an underestimate of the threshold for objects like galaxies which formed some 

time ago, but for clusters, which are the most massive objects to have collapsed by the 

present and which are observed to be dynamically young, it is reasonable to equate the 

threshold with the height of peaks collapsing today, and that is what we shall do here. 

This provides the first constraint on the values of Rs and us, which may be written as

p, = i c. (2.51)

A second constraint comes from matching the number density of clusters, Nc, to np^(us),
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which is the number density of peaks in the initial density field, smoothed on scale R s, 

which lie above the threshold vs , and which is given by

1 /'■nPl>s) = ̂ 3̂ JQ ~ 7£) 
V 2(l -  7 2)

(2.52)

where f i ,  = \/3  <̂ 1 / <̂2: a derivation of this formula is presented in Appendix B.

From equations 2.51 and 2.52 we obtain a unique solution for R s and us for a particular 

cluster number density and a given power spectrum: this prescription is very similar to 

tha t used by BBKS and BBE. We discuss the application of this procedure to power 

spectra of practical interest in Section 2.8.

2.6 .4  C luster  correlations in th e  Zeldovich A p p rox im ation

In order to calculate the cluster correlation function, it is necessary to supplement our 

mechanism for evolution of the density field with a prescription for relation of the cluster 

distribution to the underlying density field. This involves, of course, a rather subjective 

choice, given the current level of understanding as to how galaxies and clusters form. 

Given such a prescription, the cluster correlation function may be w ritten in terms of 

conditional probabilities in a form analogous to, and derived from, equation 2.41 :

1 +  £c( x )  =  J d3r  d3s drq du2 P ( x  | r ,  s)  P ( r )  P ( lc  | tq )P (2c \ v 2)

■ P ( a \ r , u 1, u 2) P ( v l , v 2 \ r ) .  (2.53)

In this equation, P ( s  | rq z q ,^ )  is the conditional probability tha t two points, where 

the smoothed density field takes values u1, u2 (in units of the rms perturbation, <r0), 

should have a relative displacement s ,  given tha t their initial separation was r.  The 

term P { u l ^v2 \ r )  is the conditional probability tha t the smoothed density field should 

take values at points with initial separation r .  From the definition of conditional

probabilities it follows that

P ( a  | r , v l t v 2) P ( v l t v 2 \ r)  = P ( s ,  v x, \ r ) ,  (2.54)
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which has a Gaussian distribution. The term P(c \ i s ) ,  the probability of there being 

a cluster at a point where the density field (smoothed on a scale larger than that used 

to define the peaks) takes a value is, encapsulates our statistical prescription for cluster 

formation. As discussed in Section 2.5 above, BBKS and others have studied models 

where objects form in thresholded regions or at peaks in the linear density field. Some 

authors have argued, however, that the physics of structure formation is more likely 

to produce a smooth non-linear relation between the mass density and the number 

density of objects, rather than a sharp threshold (e.g. Kaiser & Davis 1985; BBKS; 

Szalay 1988; Coles & Jones 1991). In particular, Kaiser & Davis (1985) suggest an 

exponential relationship between the number density of objects and the density field. 

This is an approximation to the peak-background split formula of equation 2.25, which 

tends to it in the limit that R{ Rs. It gives the correct form for the statistical 

contribution to the correlation function at large separations (see below) and is very 

convenient computationally, so we follow BC in employing it here, giving the form of 

P(c | is) as

P(c\ is)  = exp[(£ -  l)a0is] exp[—(£  -  l)2<^/2], (2.55)

where the second exponential term normalizes P(c \ is), so that it conserves mean density, 

and where the choice of the value of the enhancement factor, E,  is considered below. 

The background smoothing scale used here is arbitrary, except for the constraint that 

it cannot be smaller than Rs, so we take it to be equal to R {, the filter scale used to 

suppress shell crossing in the Zeldovich Approximation, which satisfies this constraint 

by definition.

The derivation of the final expression for the cluster correlation function from this point 

proceeds similarly to that for the mass correlation function and again we provide just a 

sketch of it here, reserving the full derivation for Appendix D.

The term P(s, is1, is2 \ r) in equation 2.54 is given by

P(s,is,,is2\r) =    — — ; —  exp ■) , (2.56)V 1 21 ' (2tt)5/2 || M  ||!/2 v  V 2y'

where y 1 =  (3,vx,v2) and M tJ = ( jq ( z ;^ ( z ; r ) ) .
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Using the same coordinate system as used in Section 2.6.2, the only non-vanisliing matrix 

elements of the form (z'S;) are those involving the 3-component of the displacement field, 

which read

(us3) = 3<Js f ^ L
dr (2.57)

where = (2ipx  + V^)/3 and a0 is the rms perturbation in the background density field. 

The matrix elements (s ,^ )  are as given above in equation 2.43, while the remaining 

elements of M  are given by

(zqzq) =  (zqzq) =
O n

= i>(r) (2.58)

and

(v\ vl ) =  ( ^ 2) = V>(0) = 1, (2.59)

where ip(r) is the normalised correlation function of the background density field.

The covariance matrix, M , is of block-diagonal form, so there are no terms linking 

the sets {a1,s 2} and {s3, vl ,v2) in the exponentiated quadratic form in the probability 

distribution P (s,u1,u2 ¡r). So, to perform the integrations over vx^v2 in equation 2.56,
<■> ^ 'p

we need only consider the reduced covariance matrix M  for the vector y = (s3, zq, v2). 

It follows that the integral over zq, v2 takes the form

/ oo r co

-co J —
e(£;-i)<To(i/i+i^)eXp dzqdzq.(2.60)

( 2 tt)3/2 || m  | | - i / 2

Both integrations may be performed using the standard result (Gradshteyn & Ryzliik 

1980, section 3.323)

/ o° /pz
exp(— p2x2 ±  qx) d.r =  exp

-OO P

4 p 2
(2.61)

to obtain

/ ------
y  4tt<7s(1 -  t/;||)

exp
4 (J s ( 1 -  ^|| )

exp
- 3 (E  -  1 )s3 ( d 

(! -  ^||) dr

X exp (E — l ) 2cr0(l + ip)
9o-g(E — l )2 (dip, '  2

(1 -  V>||) dr
(2.62)
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From this point, the derivation proceeds much as before to yield, after much tedious 

rearrangement, the following expression for £cZ, the cluster correlation function in the 

Zeldovich Approximation:

r2 dr exp[(F — l ) 2£(r)]
1 + £cz(x) —

where

± — f
nxcr} J0

F(ü+)exp —(x — f y
4(72(1. -  ^ |()_ F’(û_)exp - ( X + f)

^ s i 1 -  ^||)
(2.63)

= r +  6(E — l)<7g (dipv/dr)

and where ipv(r) = (2ip± + 0 ||)/3 and £(r) is the correlation function of the smoothed 

linear density field. This also differs from the equivalent expression given by BC, due to 

the presence of typographical errors in that work.

The appropriate value of the enhancement factor, E,  may be determined readily by 

matching the large-separation asymptotic limit of the statistical contribution to £cZ to 

that of the statistical peak-peak correlation function. The one-dimensional rms particle 

displacement, as, is a measure of the degree of dynamical evolution of the density field, 

so that the statistical contribution to £cZ comes from considering the limit crs —> 0. It 

may readily be shown that

1 +  £cz(*) -> exP [(£ -  1)2̂ (a;)] as CTs (2.64)

in which case the large-separation asymptotic form of the statistical contribution to

£czO )is given by

Î c Z Î * )  ( E  -  a s  X  0 0 • ° s 0. (2.65)
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M atching this to the large-separation asymptotic limit of the peak-peak correlation func­

tion derived by LHP

£pk-Pk(r) -»■ <Ês)2 1>(r) as r —> oo, (2.66 )

yields the correct value of E  to be used. From the results of LHP it is also possible to 

verify tha t the form of P(c | u) given in equation 2.55 provides a good approxim ation to

£ p k - Pk ( r )  d o w n  t o  r  ~  R s-

2.6 .5  M o d e ls  and N orm alisa tion

We consider models in which the universe is spatially flat and in which the initial den-

sity fluctuations are Gaussian and have scale-invariant power spectra. Such models are 

consistent with the predictions of inflation and with the results of the C O B E  DMR ex­

periment (Smoot et al. 1992), which we use to constrain the amplitude of the fluctuations 

at the present epoch.

The power spectrum of density fluctuations is given by

where T { k )  is the transfer function and the dimensionless normalization param eter, 

e, is th a t defined by Peacock (1991). In Section 1.4.5 we showed how the value of 

e could be determined from the C O B E  DMR results, upon the assumption tha t the 

contribution to these tem perature anisotropies from gravitational radiation is negligible. 

We shall follow tha t procedure here and so consider fluctuation amplitudes in the range 

e -  (2.9 ±  0.9) x 10-5 f r 0'77 (Mann e t  al. 1993).

We follow Efstathiou, Bond & W hite (1992a, EBW) in adopting the following param etric 

form for the transfer function:

(2.67)

T ( k )  =  { l  +  [ajJb + (a2fc)3/2 + (a3fc)2] a4} ^ (2.6S)
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where a4 = (6.4/T)/i_1 Mpc, a2 = (3 .0 /r)/i-1 Mpc, a3 = (1 .7 /r)/i-1 Mpc and a4 = 1.13. 

The origin of this parametric form is in fitting the linear power spectrum of CDM models 

(Bond k  Efstathiou 1984) but, with suitable choices of the parameter T, it can fit the 

power spectra of a wide range of cosmological models to a reasonable accuracy. In 

retrospect, the definition of T chosen by EBW is slightly unfortunate. In pure CDM 

models, where DB (the fraction of the critical density in baryons) is zero, T ( k ) is a 

function of k / ü h 2 only, so one might interpret T as ilh. For models where ^  0, 

the appropriate scaling is found empirically to be roughly with k/0,h2e~2QB (Mann et 

al. 1993). The EBW transfer function for CDM is a fit to a model with fiB = 0.03, 

which means that T differs from fl/r by about 6 per cent, which can lead to significant 

differences between a transfer function of the EBW form with a given value of T and, 

say, a BBKS CDM transfer function (for negligible baryonic content) which has flh equal 

to the same numerical value.

We consider the following four spatially flat models:

CDM: f20 =  1, A0 = 0, T = 0.5, (Model 1)

low density CDM: = 0.2, A0 = 0.8, T = 0.2, (Model 2)

CDM + extra large-scale power: Í20 = 1, A0 = 0, T = 0.2, (Model 3)

Bahcall k  Cen model: D0 = 0.2, A0 = 0.8, T = 0.1, (Model 4)

where A0 = A/3íTq and A is the cosmological constant. Model 2 is that advanced by 

Efstathiou, Sutherland k  Maddox (1990) to account for the strong angular correlations 

seen in the APM galaxy catalogue: cluster-cluster correlations in this model were con­

sidered in linear theory by BBE (see Section 2.5). From EBW we see that one of the 

possible cosmogonies that could correspond to Model 3 (on these scales) is an = 1, 

h=0.5, CDM-dominated universe in which one species of massive neutrino contributes 

~  0.3 (van Dalen k  Schaefer 1992): such a model is elaborated by Davis, Summers 

& Schlegel (1992) and Taylor k  Rowan-Robinson (1992). Models 2 and 3 have the same 

transfer function, so any differences between them can only result from the difference 

in the fluctuation amplitude that they require to match the CODE observations: one
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Figure 2.7: The variation of Rs with characteristic separation, d, for the four models we 

consider, normalized to COBE. The solid, dashed, dotted and dasli-dotted lines give the 

correlation function for Models 1,2,3 and 4 respectively. In all cases the upper line of 

the pair for each model is for £c=1.0 and the lower is for <5C=1.7.

result of the higher amplitude of Model 2 is that the importance of the dynamical com­

ponent of the clustering, relative to the statistical component, is greater than for Model

3. Model 4 is the transfer function which Bahcall & Cen (1992) claim is consistent with 

all cluster observations. The amplitude used by Bahcall & Cen is excluded by COBE , 

and we consider only the range of amplitudes that COBE allows. Bahcall & Cen (1992) 

claim that their cluster correlation function results are unchanged if this model is open 

or has a non-zero cosmological constant to make it spatially flat: we consider only the 

spatially flat model here.

In Figure 2.7 we show' the variation of Rs with characteristic separation, d, that our 

procedure from Section 2.7.3 produces for the four models listed above. The differences 

in the value of Rs for a given separation, d, between the different models may be readily 

understood from a consideration of the relative amounts of small-scale power in their
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Figure 2.8: The variation of vs with characteristic separation, d, for the four models we 

consider, normalized to COBE. The solid, dashed, dotted and dash-dotted lines give the 

correlation function for Models 1,2,3 and 4 respectively. In all cases the upper line of 

the pair for each model is for ¿c=1.7 and the lower is for <5C=1.0.

respective power spectra. In all cases the filter radii correspond to reasonable mass 

estimates for, say, Abell R  > 1 clusters, although we stress that the ‘cloud-in-cloud’ 

problem precludes the results shown in Figure 2.7 from being expressed as a cluster 

mass function. In Figure 2.8 we show the corresponding variation of vs versus d.

2.6 .6  S en s it iv ity  to param eters

In our formalism, the cluster correlation function for a given transfer function and cluster 

number density is a function of three parameters: the background smoothing scale, I?f; 

the linear density contrast at collapse, Sc; and the amplitude of primordial fluctuations, 

e. In the preceding sections we have discussed constraints on all these quantities, and 

now we consider the sensitivity of our results to variations in their values.
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In Section 2.6.2 we discussed a procedure for determining the correct value of the smooth­

ing scale, R {, through the maximisation of the small-scale correlations of the density field. 

This is subject to a constraint that R { > R s, to ensure that excessive small-scale cluster 

correlations are not produced by power spectra with little small-scale power, resulting 

from our biasing prescription, P(c | u). The effect of varying the value of R ( is, as one 

would naively expect, largely confined to separations of less than a few filter radii, where 

one must always be suspicious that the filter function will be dominant. For example, 

upon changing the value of smoothing length from R{ = 0.5 h~l Mpc to 2.6 h~l Mpc, 

the correlation function for an fi = 1, T = 0.2 model only changes by more than 10 per 

cent for r < 6 h-1 Mpc. Our results are, therefore, quite robust to variations in the 

selected value of R{.

The sensitivity to the value of Sc is illustrated in Figure 2.10, which is discussed in more 

detail in the next subsection. We find that there is a degree of sensitivity to the value 

of 6C for all four models that we consider, but it is not too serious: the difference in the 

correlation function for <5C = 1.0 and 6C = 1.7, for a given power spectrum and cluster 

number density is generally significant only on small scales, but is smaller than the error 

bars on the observational data. This sensitivity is a regrettable, but inevitable, feature 

of our formalism.

The sensitivity of our results to the value of the fluctuation amplitude, e, is shown in 

Figure 2.9. This figure shows the correlation function for clusters of EMRS number 

density, calculated for the four models with the extreme allowed values of e. It is clear 

that Model 3 is less sensitive to the fluctuation amplitude than are Models 1, 2 and 4. 

This is because Model 3 has less small-scale power and so its cluster correlations are 

dominated by the statistical contribution, rather than by the dynamical contribution, 

which means that its cluster correlation function will be less sensitive to the value of e, 

which has a strong influence on the dynamical contribution to clustering, but not on the 

statistical one. The results in Figure 2.9 should be borne in mind when looking at the 

plots shown in Figures 2.14 -  2.17, which, for the sake of clarity, show the correlation 

function only for the CODE normalization and do not indicate the effects of uncertainty 

in the value of e.
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Figure 2.9: The effect on the correlation function of varying the amplitude of primordial 

fluctuations. The number density considered is that of the EMRS clusters of Nicliol 

et al. (1992), from where the data points are taken. In (a) the dashed and solid lines 

give results for Models 1 and 2 respectively, while in (b) the dotted and dash-dotted 

lines are for Models 3 and 4 respectively: all models are for Sc = 1.0. In each case the 

hatched area indicates the region between the curves for the correlation function foi the 

maximum and minimum value of the fluctuation amplitude e.
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2 . 7  C O M P A R I S O N  W I T H  R E C E N T  N U M E R I C A L  R E ­

S U L T S

Before comparing with observations the results of our computation of the cluster cor­

relation function in Models 1 — 4, we compare the results of three recent numerical 

simulations of the clustering of rich clusters with those determined by our method for 

the same power spectra and cluster number densities. It must be understood that this 

cannot be taken as a straight test of our method, since there are, of course, assumptions 

and approximations in numerical simulations just as in analytical work: approximations 

to the true non-linear evolution of the density field and assumptions relating the density 

field to the cluster distribution.

2.7.1 C om parsion  w ith  B ahcall & Cen (1992)

In Figure 2.10 we compare our method with the results of Bahcall & Cen (1992), who 

use a PM code with 2503 particles in a simulation cube of side 400 h~l Mpc. They 

employ the BBKS CDM transfer function for zero baryons, which has the form

ln (l + 2.34q) - 1 / 4
= ; r  1 + 3.89q + (14.lg) + (5.46q) + (6.71g) , (2.69)

where q = k / ( i l0h2 Mpc-1). We perform a comparison with their results for il0 =  1, h = 

0.5 and il0 = 0.2, h = 0.5 and we present results for the number densities of APM and 

Abell R  > 1 clusters. Bahcall & Cen select clusters using an adaptive friends-of-friends 

algorithm which links pairs of particles using a density-dependent linking length. They 

appear to have run only one realisation of each power spectrum which, even for such a 

large simulation volume, must make one question the significance of their results.

2.7 .2  C om parison  w ith  Croft &: E fstathiou  (1993)

Simulations with much better spatial resolution are described by Croft & Efstathiou

(1993). They have used the P3M code of Efstathiou et al. (1985) to follow the evolution 

of 106 particles in a simulation cube of side 300 /i-1 Mpc. They consider power spectra
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Figure 2.10: Comparison with numerical results from Bahcall Sz Cen (1992), for clusters 

with the number density of (a) APM clusters and (b) Abell R  > 1 clusters. The solid 

(dotted) line shows the correlation function for an fl0 = l , h  — 0.5 model with 8C = 1.0 

(8C = 1.7), while the dashed (dash-dotted) line shows that for an Q0 = 0.2, h = 0.1 model 

with <5C = 1.0 (8C = 1.7). The squares and circles are the numerical results of Bahcall & 

Cen for the fl0h = 0.5 and fl0h = 0.1 models respectively.
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with T = 0.2 and T =  0.5, with amplitudes expressed in terms of a8 and run an ensemble 

of ten realisations for each model. The cluster selection algorithm employed by Croft 

& Efstatliiou is designed to mimic that used by Dalton et al. in constructing the APM 

cluster survey (see Section 2.4), with the exception that it is applied in three dimensions, 

rather than in projection, as for the observational algorithm. In Figures 2.11 & 2.12 

we compare their results (kindly provided by R. Croft) with those determined for the 

same power spectra and a variety of cluster number densities by our methods: we show 

results for a8 = 1.0, but a very similar level of agreement is found for a8 =  0.59, which 

was the other epoch for which the comparison was made.

2 .7 .3  C om parison  w ith  Cole (1993)

The final set of simulations we consider are those of Cole (1993, private communication). 

These were not performed for the purposes of studying the cluster-cluster correlation 

function and only two realisations of a CDM model with the BBKS zero-baryon transfer 

function have been run, evolved using a P3M code, in a box of side 256 h~l Mpc. Cole 

used a friends-of-friends algorithm with a fixed linking length equal to 20% of the mean 

interparticle separation to combine particles into clusters. The velocity dispersions of the 

clusters were then calculated and the top 100 and 200 clusters in rank order by velocity 

dispersion constitute the two samples shown in Figure 2.13: they have characteristic 

separations of d = 44 h~l Mpc and d = 55 h~1 Mpc.

2.7 .4  D iscu ss ion  and S u m m ary

Our comments here are principally concerned with the Cole and Croft & Efstathiou 

simulations, since they have much better resolution than those of Bahcall & Cen. From 

Figures 2.11 and 2.12 we can see that there is excellent agreement between the numerical 

and analytical results for low richness clusters: to d = 40 h~l Mpc for the T = 0.5 model 

and up to d — 50 h-1 Mpc for T = 0.2. The differences between the two methods 

are more apparent for the richest clusters, where our analytic theory predicts stronger 

clustering than that found by Croft & Efstathiou. It is interesting to note, however, 

that the clustering strength found for the richest systems by Croft & Efstathiou is also
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Figure 2.11: Comparsion with numerical results from Croft & Efstatliiou (1993) for a

F =  0.2 model with amplitude a s =  1.0, for a number of different cluster number densities

( d  in units of h ~ l Mpc). Circles denote positive values of the correlation function and

crosses denote negative values. The error bars on the points are Poissonian. Solid and

dashed lines are our predictions for Sc =  1.0 and 6C =  1.7 respectively.
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Figure 2.12: Comparsion with numerical results from Croft & Efstathiou (1993) for a

T = 0.5 model with amplitude a 8 =  1.0, for a number of different cluster number densities

(d  in units of /i-1 Mpc). Circles denote positive values of the correlation function and

crosses denote negative values. The error bars on the points are Poissonian. Solid and

dashed lines are our predictions for 6C =  1.0 and 6C =  1.7 respectively.
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Figure 2.13: Comparison with numerical results from Cole (1993) for a fl/i =  0.5 CDM

model with am plitude a 8 =  0.63, for cluster number densities d  = 44 h ~ l Mpc and

d =  55 h ~1 Mpc. Results from two realisations are shown: filled (empty) triangles show

positive (negative) points from one realisation and filled (empty) squares show positive

(negative) results from the other. Solid and dashed lines are our predictions for 8C — 1.0
133and 6C = 1.7 respectively.



weaker than tha t found by Cole, although the scatter between the results from Cole’s 

two realisations suggests that one must make such comparisons with caution. These 

results seem to indicate tha t differences between the selection criteria used to define the 

cluster samples significantly influence the spatial correlations deduced from them once 

the number density of the sample falls below a certain level. We eagerly await the results 

of other A-body studies of cluster correlations to see whether or not they confirm this 

assertion.

One striking difference between the numerical and analytical results is the respective 

strength of their large separation anticorrelations. Correlation functions derived from 

numerical simulations in finite sized boxes are self-normalised, which means tha t the 

integral f  £ (r)d3r must vanish when evaluated over the full simulation volume. It follows 

from this tha t a correlation function from an A-body simulation which exhibits strong 

positive correlations on small scales m u st  also exhibit compensating anti correlations on 

large scales in order to satisfy the normalisation criterion. W ith this integral constraint 

in mind, it is to be expected tha t there is a significant discrepancy between the numerical 

and analytical results on large scales.

2.8 RESULTS: O PTICAL C L U ST E R  SAM PLES

We have computed the cluster correlation function for the four models for four cluster 

number densities, those for the EMRS and APM autom ated surveys and the Abell R  >  1 

and R  >  2 samples of PW92: we note tha t PW92 urge caution in the use of their R  > 2 

sample, due to its small size. We do not consider Abell cluster samples including R  = 0 

clusters, nor do we choose to make comparisons of our results with observations to 

which the Sutherland method for correction for redshift anisotropy has been applied: 

the reasons behind these decisions are discussed in Section 2.4.

We show our results for the cluster correlation function in Figures 2.14 -  2.17. The 

observational points have 1<t Poisson error bars. Where no correlation is detected with 

significance at the l a  level we plot a 90 per cent confidence upper lim it, marked with an 

arrow. We compare theoretical predictions of configuration-space correlation functions
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Figure 2.14: The cluster correlation function for APM 71 >  20 clusters.The solid, dashed, 

dotted and dash-dotted lines give the correlation function for Models 1,2,3 and 4 respec­

tively with C O B E  normalization and <5C = 1.0.

with observed results measured in redshift-space. Redshift-space corrections are con­

sidered by Kaiser (1987), who finds tha t the (isotropic) real-space correlation function, 

£r(x), is related to the direction-averaged redshift-space correlation function, £ ^ (x ) ,  by 

f(s)(z) =  [l +  (2iiQ'6/3K ) + (iiJ'2/5Fi2)]^r(.T). For the models tha t we consider, this factor 

is a small fraction of the uncertainty in the C O B E  amplitude and much less than the 

errors in the observations with which we shall compare our results, so we neglect this 

correction. Figure 2.14 shows results for APM 1Z > 20 clusters, with number density 

N c =  2.4 X 10-5 h3 Mpc-3 . The observational data  are taken from Efstathiou et al. 

(1992b) and include clusters from a slightly wider redshift range than tha t considered 

by Dalton et al. (1992). In Figure 2.15 we give results for EMRS clusters, from Nichol 

et al. (1992), which have a number density of N c = 1.0 x 10-5 h3 Mpc-3 . Figure 2.16 

and 2.17 show correlation functions for the Abell R  > 1 and R  >  2 samples of PW92, 

which have number densities of 7.2 x 10-6 and 1.7 x 10-6 h3 M pc-3 respectively.

135



o

x / (h 1 Mpc)
Figure 2.15: The cluster correlation function for EMRS clusters. The solid, dashed, do t­

ted and dash-dotted lines give the correlation function for Models 1,2,3 and 4 respectively 

with C O B E  normalization and 5C=1.0.
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Figure 2.16: The cluster correlation function for Abell R  > 1 clusters from PW92. The 

solid, dashed, dotted and dash-dotted lines give the correlation function for Models 1,2,3 

and 4 respectively with C O B E  normalization and <5C = 1.0.
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Figure 2.17: The cluster correlation function for Abell R  > 2 clusters from PW92. The 

solid, dashed, dotted and dash-dotted lines give the correlation function for Models 1,2,3 

and 4 respectively with C O B E  normalization and <5C=1.0.
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None of the models can account for the correlation functions of all four cluster samples, 

although, conversely, the uncertainty in the C O B E  amplitude and the size of the error 

bars on the observations mean tha t it is difficult to exclude any of the models with a 

high degree of confidence on the basis of the observations as they stand. CDM with 

T =  0.5 appears incapable of reproducing the strength of clustering observed for rich 

Abell clusters, although it gives the best fit to the data  for APM 1Z > 20 clusters and 

is the only model in which the first zero-crossing point of the correlation function is 

at a separation of ~  40 h ~ x Mpc, as indicated by the APM and EMRS (Nicliol 1992) 

data. One must be careful, however, in using the first zero-crossing point as a diagnostic 

tool, since the observational data  are prone to significant systematic errors as a result 

of uncertainty in the cluster number density, which could shift the zero-crossing point. 

Model 2 gives the best overall agreement with the correlation functions of the four cluster 

samples and, indeed, its only real inconsistency with the data comes at large scales for 

the APM number density, where the reliability of the observations is in some doubt. The 

presence of a cosmological constant affects the epoch and rate at which structure forms, 

but has little  effect on the final phase-space distribution of the particles (Kauffmann 8z 

W hite 1992, and references therein), so tha t the results of Model 2 should be very similar 

to those of an open model ( il0 = T = 0.2, A0 = 0) with the same fluctuation am plitude, 

and, indeed, Bahcall & Cen (1992) report such a finding on the basis of their numerical 

simulations of models with and without a cosmological constant. The problem, however, 

in making this identification between open and flat models with the same T lies with 

the amplitude: the standard analyses of the Sachs-Wolfe effect are for a spatially flat 

universe, so it is not clear how to determine the fluctuation am plitude for open models 

from C O B E  .

In Figures 2.18 -  2.21 we show results for the d  — r0 relationship. In addition to the 

four cluster samples discussed above, we also include observational data  from the APM 

7Z >  35 sample of Efstathiou et al. (1992b) and the Abell R  >  1 samples of BS83 and 

Postm an, Huchra & Geller (1992, PHG). We determine the value of ?-0 by interpolation in 

logr space from a correlation function evaluated at a hundred separations in the range 

0.5 < r / / i _1 Mpc < 100. If, instead, a power-law fit is made to the (positive portion 

of the) correlation function in this interval, the resultant values of r 0 differ, typically,
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Figure 2.18: The d -  r0 relation for Model 1. The observational points come from the 

sources indicated in the figure and the theoretical curves are for (i) e = 3.8 X 10 5, 6C 

= 1.0 (dotted line) and 6C = 1.7 (dot-dot-dot-dashed line), (ii) e = 2.9 X 10“ 5, <5C = 1.0 

(solid line) and 6C =  1.7 (dashed line) and (iii) e = 2.0 x 10 5, 6C = 1.0 (dot-dashed 

line).

by r>j X h 1 Mpc or less from those obtained by interpolation, and the slope of the 

best-fitting power law is seen to increase with d.

Two points are clear from these results. First, no model is able to produce the strength 

of the trend of correlation length increasing with richness tha t is required to account 

for all of the observations from APM 1Z > 20 clusters to Abell R  > 2. Secondly, the 

d — r 0 relation, taken on its own, may be a misleading statistic: from Figures 2.18 -  2.21 

one would conclude that all of the models are wildly inconsistent with the Abell R  > 2 

data, although the noise on the data given in Figure 2.17 shows tha t the situation is 

not so clear and, in addition, the Poisson error quoted for the correlation length may be 

something of an underestimate in this case.

The variation between models in the sensitivity of the d -  r0 relation to the value oi
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Figure 2.19: The d — r0 relation for Model 2. The observational points come from the 

sources indicated in the figure and the theoretical curves are for (i) f -  1.3 X 10 , 6C

= 1.0 (dotted line) and 6C = 1.7 (dot-dot-dot-dashed line), (ii) e = 1.0 x 10~4, <5 = 1.0 

(solid line) and 6C = 1.7 (dashed line) and (iii) e = 6.9 X 10 5, <5C = 1.0 (dot-dashed

line).
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Figure 2.20: The d -  r0 relation for Model 3. The observational points come from the 

sources indicated in the figure and the theoretical curves are for (i) e — 3.8 x 10 5, <5C 

= 1.0 (dotted line) and 6C = 1.7 (dot-dot-dot-dashed line), (ii) f = 2.9 x 10-5 , 6c = 1.0 

(solid line) and 5C =  1.7 (dashed line) and (iii) e = 2.0 X 10 5, 6C = 1.0 (dot-dashed 

line).
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Figure 2.21: The d -  r0 relation for Model 4. The observational points come from the

sources indicated in the figure and the theoretical curves are for (i) f = 1.3 x 10 4, 6C 

— 1.0 (dotted line) and 6C = 1.7 (dot-dot-dot-daslied line), (ii) e — 1.0 x 10-4 , 6 = 1.0

(solid line) and 6C 

line).

1.7 (dashed line) and (iii) e = 6.9 x 10 5, 6C = 1.0 (dot-dashed
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e can be readily explained by the same argument as given in Section 2.6.6 above: the 

sensitivity to e is greater for models with more small-scale power, since these are the 

ones where the amplitude-sensitive dynamical contribution to the clustering is enhanced 

relative to the statistical component produced by the initial peak distribution.

2.9 RESULTS: A RO SA T  C L U ST E R  SA M PL E

In this section we consider the application of our method to perform the first theoretical 

study of a sample of ROSAT -selected clusters, that of Romer et al. (1993), whom we 

thank for providing access to their data prior to publication.

Romer et al. have constructed a sample of 160 clusters in a 1.1 steradian region of the sky 

around the South Galactic Pole with ROSAT  X-ray fluxes above a limit of 1.1 X 10~12 

erg s-1 cm-2 . They have obtained redshifts for 128 of these clusters and have computed 

the spatial correlation function for this (80% complete) sample.

We may compute cluster-cluster correlation functions for a flux-limited sample like this 

by combining results for volume-limited samples calculated using the methods of Section 

2.6. To see how this is done, consider clusters between distances R and R  + dR  from us. 

The clusters in this interval that are included in the survey are those with luminosities 

in excess of that corresponding to the survey flux limit at distance R. Now, the number 

of such clusters is defined to be N(R)  dR, where

N (R )  = n R 2 n(R ), (2.70)

where fI is the solid angle subtended by the survey and n{R) is the mean number density 

of clusters above the appropriate luminosity threshold. The number of pairs, Np(r ; R), 

of such clusters with separations in the interval r to r + dr is then given by

Np(r -R )drdR  = N(R)  dR 4ir r2 dr n(R)  [1 + £(r; R)], (2.71)

where £(r; R) is the correlation function of chisters detectable at distance R. Since 

the expected number of pairs is the same with £ (r;fi) set to zero, it follows that the
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where the integrals are evaluated over the distance interval corresponding to the redshift 

limits of the sample. The only assumption made here is that pairs at a separation r 

lie above the luminosity threshold appropriate to the distance R. The validity of this 

assumption clearly depends on the orientation of the pair’s separation vector relative to 

the line of sight and to the ratio of r to the scale over which the luminosity threshold 

varies but, in the case that we are concerned with here, of clustering on scales of tens of 

Mpc in a cluster sample that extends to z ~0.25, equation 2.72 should be an excellent 

approximation.

Evaluation of equation 2.72 is very straightforward. To obtain n{R) as a function of 1?, 

one simply bins the sample’s redshift histogram and works out the number density of 

clusters in each bin. One may then interpolate between these values to obtain n(R ) at 

the values of R  required for the integration in equation 2.72. We compute the distance,

R , to each cluster from its redshift, 2, using the angular diameter distance -  redshift

relation appropriate to each of Models 1-4, using the following formula (Carroll et al. 

1992):

^aO ) = n  TTT  ' /  f(l + a;)2(l +  iima:) -  x(2 + z)fiv] '  dz, (2.73)
-not1 + Z) •'0 L

where fim, i iv are, respectively, the fractions of the critical density in (non-relativistic) 

m atter and vacuum energy. Given n(R), the appropriate value of £(r; R) may then be 

found by interpolation between the values of the correlation function at separation r 

calculated for volume-limited samples of clusters with different number densities.

We consider the same four spatially flat models as in Section 2.6, again normalised by

correlation function of the flux-limited sample, f(r), is given by

COBE to f = 2.9 X 10 fl0 • The resultant cluster correlation functions are shown-5 o - ° - 77 “ 0
in Figure 2.22, together with the data points from Romer et al. .

There are two caveats, one theoretical and one observational, concerning the interpreta­

tion of Figure 2.22. The theoretical complication results form the fact that our method
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Figure 2.22: Predictions for the correlation function of the Romer et al. sample of ROSAT  

cluster sample for Models 1 - 4 .  In all cases the solid line corresponds to Sc = 1.0 and 

the dashed line to 6C = 1.7. This plot omits a negative value of the correlation function 

at r Oi 52 h~l Mpc.
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yields accurate correlations only at separations larger than the smoothing length, Rs, 

used to define the clusters. For clusters of, say, Abell R > 1 number density this is only 

~  5/i“1 Mpc, but for the richest clusters in the Romer et al. sample this can be ~  15h~l 

Mpc. This can introduce spurious small-scale clustering when evaluating equation 2.72. 

This effect is shown in Figure 2.23, which shows the relative contribution to £(r) in 

Model 1 from cluster pairs at different distances: we plot R3n2(R)£(r] R) (normalised 

to unity at its maximum) against R , so that the contribution to £(r) from cluster pairs 

out to a distance R  is given by the area under the curve out to R. It is clear that 

cluster pairs beyond R  ~  500 h“ 1 Mpc are making a spurious contribution to the value 

of £(r) at r — 10 h~1 Mpc (and, much less seriously, at r = 20 /i“ 1 Mpc) where r < Rs, 

while no such contribution is seen on larger scales, where r > R s. In Figure 2.24 we 

show the effect of excluding from the evaluation of equation 2.72 the contribution from 

clusters beyond different distances. It is clear from this that minimal changes to £(r) are 

produced on large scales by omitting clusters beyond R = 600 h“ 1 Mpc, so we have done 

that to generate the results shown in Figure 2.22, to remove the spurious small-scale 

clustering component produced by the richest clusters.

The results of Figure 2.24 also make us confident that our predicted ROSAT  correlation 

functions are robust, given the uncertainty in the correlations of the richest clusters dis­

cussed in Section 2.7: Figure 2.24 clearly shows that a very small change in the predicted 

ROSAT  correlation function would result from a weaker richness dependence of cluster­

ing, like that found by Croft & Efstathiou. This insensitivity to the clustering strength 

of the richer clusters results from the presence of the n2(R.) factor in equation 2.72, which 

is a sufficiently steeply decreasing function of R  to outweigh the increase in £(r; R) with 

richness and, hence, R.

The observational caveat concerning the interpretation of Figure 2.22 results from the 

presence of a negative value for the cluster correlation function at r ~  50 /i“ 1 Mpc: is 

this point real or not? Its reality would lend support to CDM (Model 1), since that is 

the only model which produces a first zero-crossing point at about that scale. If this 

negative point is not real, then we can see from Figure 2.22 that Model 2 gives the best 

agreement with the correlations of the Romer et al. sample, as it did for the optical data 

of Section 2.8. Optical and X-ray observations of clusters appear, therefore, to give a
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Figure 2.23: The relative contributions from cluster pairs at different separations to the 

predicted correlation function of the ROSAT-selected sample for Model 1, showing the 

spurious contribution from the richest clusters to the small-scale correlation function
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Figure 2.24: The effect on the predicted correlation function of the R O S A T -selected 

sample of excluding the contribution from cluster pairs beyond different distances: R — 

400 (full line), 500 (dashed), 600 (dash-dot-dash-dot), 700 (dotted) and 800 (dasli-dot- 

dot-dot) h_1 Mpc.
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consistent picture of large-scale structure.

2.10 S U M M A R Y

In this Chapter we have considered the spatial correlations of cluster samples selected 

in both the optical and X-ray wavebands. We have reviewed previous work addressing 

this topic from both observational and theoretical standpoints and presented, tested and 

applied an important new theoretical method for tackling the problem.

Doubts concerning the reliability of the Abell catalogue have dogged theorists attempting 

to use cluster correlations to constrain cosmological models and it is, therefore, essential 

for the theorist to study the observational data before comparing them with theoretical 

predictions. Reliable determinations of the clustering strength of relatively poor clusters 

are provided by samples drawn from the EDSGC and APM machine-based galaxy cat­

alogues. The clustering strength of richer clusters, investigated only by using samples 

from the Abell catalogue, remains less well constrained: we must await the results of 

work in progress on a richer sample of APM clusters (Dalton, private communication) 

for a reliable answer to whether there is a strong richness dependence to the clustering 

of galaxy clusters.

We have reviewed previous theoretical work which have used both analytical and nu­

merical methods. Previous analytical work has generally considered only the statistical 

component to the clustering, neglecting the dynamical component which can be impor­

tant in many popular models, such as COIhE-normalised CDM. Those attempts which 

have been made to incorporate dynamics have employed linear theory, which will not be 

adequate if a8 ~  1, as indicated by a wide range of recent work.

The central element to this Chapter has been our presentation of the first analytic 

calculation of the cluster correlation function to take account of the nonlinear evolution 

of the cosmological density field. Our method employs the sophisticated framework 

devised by Bond & Couchman. This combines the theory of the statistics of peaks 

in Gaussian random fields with the evolution of the cosmological density field by the 

Zeldovich Approximation, facilitating accurate computation of both the statistical and
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We have extended and improved the Bond & Couchman method in a number of regards: 

we have shown how an understanding of the dynamical evolution described by the Zel- 

dovich Approximation motivates the choice of the smoothing radius of the filter to be 

applied to the density field; we have constructed a self-consistent mechanism for defining 

the set of peaks in a Gaussian random field to be identified with a given cluster sam­

ple; and we have used the asymptotic large separation peak-peak correlation function to 

normalise the prescription used to construct a cluster distribution from the underlying 

density field.

Using this method we have computed the predicted correlation functions for cluster 

samples of different richness in four popular cosmogonies. We have performed a detailed 

comparison of these predictions with those determined from recent numerical simula­

tions. Excellent agreement is found between our results and those of the best numerical 

simulations (those of Croft & Efstathiou) with the exception of samples of the richest 

clusters, where our method predicts stronger clustering: a detailed discussion of the 

importance of this point will be given in Chapter 5.

Comparison of our predictions with the observational results from the optical samples 

that we believe may be reliable shows that the once-favoured Einstein - de Sitter CDM 

model is incapable of reproducing the strength of clustering exhibited by rich clusters 

of galaxies. Much better agreement with the observational data is obtained for models 

with relatively more large-scale power than CDM has in an Einstein - de Sitter universe, 

in accordance with a number of recent studies of galaxy clustering. This consistency 

between galaxy and cluster clustering studies may be taken as support for the standard 

picture, due to Kaiser, in which objects form at the sites of peaks in an initial density 

field that obeys Gaussian statistics: we shall consider this point further in Chapter 5.

We have also computed predictions for comparison with the observed spatial correlations 

of a sample of clusters selected 011 the basis of their X-ray emission by the ROSAT  

satellite. This is the first study of the theoretical implications of the spatial correlations 

of ROSAT  clusters. The results of this comparison are broadly in agreement with those 

we obtained from optical cluster samples. This is encouraging, suggesting as it does that

dynamical components to the clustering.
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the selection criteria used in the optical and the X-ray bands are selecting similar sorts 

of object.

We shall discuss the issues raised by this project in more detail in Chapter 5.
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Chapter 3

THE CLUSTERING OF W ARM  

A N D  COOL IRAS GALAXIES

3.1 IN T R O D U C T IO N

Cosmology has benefit.ted greatly from the IRAS  mission. The IRAS  view of the ex- 

tragalactic sky in the infrared (reviewed by Soifer, Houck & Neugebauer 1987) contains 

~25,000 galaxies detected at 60 /¿m, roughly half of which were not previously listed in 

optical catalogues. IRAS  offers the cosmologist excellent sky coverage (IRAS  surveyed 

~96% of the sky, but further areas at low Galactic latitude must be excluded, due to 

their high source density), together with uniform flux calibration (estimated to be better 

than 10% over nearly the entire sky by Soifer et al. 1987), good positional accuracy and 

insignificant Galactic absorption (there is no broad ‘Zone of Avoidance’ in the infrared). 

Of the four IRAS  passbands (which are centred on 12, 25, 60 & 100 /mi), it is the 60 /mi 

band which provides the most successful means of selecting galaxies: more than three 

quarters of the sources in the IRAS Point Source Catalog (1985; hereafter PSC) detected 

at | b |> 30° in the 60 /mi band are extragalactic while, conversely, ~75% of previously 

catalogued extragalactic objects to be found in the PSC were detected at 60 /mi.

Cosmological studies have centred on two large redsliift surveys of IRAS  galaxies: the 

QDOT survey (Lawrence et al. , in preparation) and the Berkeley survey (Strauss et al.
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1990, Fisher et al. 1992). The compilers of these surveys have adopted slightly different 

criteria (expressed in terms of constraints imposed on the fluxes of the sources in the four 

IRAS  passbands) in attempting to meet their common goal of selecting uncontaminated 

galaxy catalogues. They have also used contrasting procedures to construct redshift 

samples from these parent catalogues of positions of IRAS  sources on the sky. The 

QDOT survey comprises redshifts for a one-in-six random sample from the QMW IRAS  

Galaxy Catalogue (Rowan-Robinson et al. 1991, hereafter QIGC) of galaxies with 60 

pm fluxes above 0.6 Jy: adoption of this sparse-sampling strategy seeks to optimise the 

information on large-scale galaxy clustering obtainable from a given amount of observing 

time (Kaiser 1986). The Berkeley group, by contrast, chose to construct a fully-sampled 

redshift catalogue of galaxies above a limit of 2 Jy (1.936 Jy, in fact), reduced to 1.2 Jy 

in the extension prepared by Fisher et al. (1992). These procedures are complementary: 

the sparse-sampling strategy of QDOT assays a larger volume of space, while the full 

sampling of the Berkeley survey provides better resolution of smaller scale features in 

the galaxy distribution.

The overwhelming majority of galaxies observed by IRAS  are spirals, which are seen 

in preference to early-type galaxies by reason of their containing more dust which can 

re-radiate energy from galactic sources into the infrared. There are several mechanisms 

through which this can take place and these have been studied by many authors: the 

details of such work are well beyond both the scope of this thesis, so we shall only 

summarise them here. Rowan-Robinson & Crawford (1989) have modelled the IRAS  

spectra of galaxies as being composed of three components: a cool ‘disc’ component, a 

warm ‘starburst’ component and a hot ‘Seyfert’ component. The ‘disc’ component is 

due to the re-emission by interstellar dust grains of energy absorbed from the ambient 

galactic ra.diation field: this component peaks in the 100 /.¿m band and is the extragalactic 

analogue of the infrared ‘cirrus’ (Low et al. 1984) observed in the Milky Way. The 

‘starburst’ component peaks in the 60 /¿m band and is modelled as being produced by 

optically-thick dust clouds surrounding regions where massive stars are currently being 

formed. Finally, the ‘Seyfert’ component is to be identified with emission from the 

dust cloud surrounding a compact power-law continuum source and peaks in the 12 

and 25 /¡m IRAS  bands. Rowan-Robinson & Crawford argue that the IRAS  spectra

154



of their sample of 227 galaxies are well explained in terms of varying fractions of these 

three components, with the great majority of galaxies being dominated by the ‘disc’ and 

‘starburst’ components.

Reality is, no doubt, far more complicated than the simple picture presented by Rowan- 

Robinson & Crawford but the basic notion of the far-infrared emission from IRAS  galax­

ies being a combination of ambient cirrus emission and localised emission from active 

star-forming regions appears to be correct in essence (Knapp, Helou & Stark 1987; 

Bothun, Lonsdale & Rice 1989). The relative contributions may be quantified by a 

dust emission temperature deduced (see Section 3.2.4 for details) from the 60 and 100 

Hm fluxes of the galaxies and Bothun, Lonsdale & Rice (1989) attest to its efficacy in 

their comprehensive study of ‘normal’ and ‘active’ samples of UGC (Nilson 1973) galax­

ies observed by IRAS.  Saunders et al. (1990) have determined the 60 gm luminosity 

functions for warm and cool IRAS  galaxies, defining their subsamples on the basis of 

the Rowan-Robinson & Crawford models, which predict that the emission from galax­

ies with emission temperatures above 36 K (classified as ‘warm’) is dominated by the 

‘starburst’ component, while the ‘disc’ component dominates in (‘cool’) galaxies with 

emission temperatures-below 36 K. They find that the overall 60 /.im luminosity function 

of IRAS  galaxies is dominated by cool galaxies for luminosities below ~  5 x 106 h~2 Lq 

(Lq  = 3.826 X 1033 erg s_1) and by warm galaxies above that level. They find that 

there are no high luminosity cool galaxies, but that warm galaxies are found down to 

low luminosities.

The implications of this for a flux-limited sample are clear: as redshift increases, the 

fraction of galaxies included in the sample that are classified as warm will increase. In 

other words, there is a radial gradient in the local mean temperature of a flux-limited 

sample of IRAS  galaxies: this trend is shown in Figure 3.1. The implication of this, 

in turn, for clustering analyses of flux-limited samples of IRAS  galaxies is equally clear 

when one considers the relationship between the relative importance of the ‘disc’, ‘star- 

burst’ and ‘Seyfert’ emission components for a particular galaxy and the environment 

within which the galaxy finds itself.

There is a growing body of evidence linking dynamical interactions between galaxies
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Figure 3.1: The radial gradient in galactic temperature in the QDOT survey.
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with the starburst phenomenon of enhanced star fromation. Theoretical simulations 

of such events {e.g. Barnes & Hernquist 1991 and references therein) have reproduced 

morphologies like those seen in observed interacting pairs and, more importantly, shown 

how interactions can result in the gas in the interstellar media of the galaxies losing 

angular momentum, with a resulting infall of large quantities of gas, which could provide 

the necessary fuel to trigger a burst of star formation. Evidence on the observational side 

is equally forthcoming (see, for example, Sulentic, Keel & Telesco 1990 and references 

therein). For example, Larson & Tinsley (1978) have shown how the dispersion of U- 

B  and B- V colours observed in samples of morphologically disturbed galaxies may be 

interpreted as resulting from recent bursts of star formation. Bushouse, Lamb & Werner 

(1988) and Xu & Sulentic (1991) have shown that samples of IRAS  galaxies selected 

on the basis of morphological indications of interactions in the optical have higher far- 

infrared luminosities than samples of isolated galaxies showing no such features in the 

optical. Surace et al. (1993) have refined this study a stage further, by constructing 

samples of interacting and isolated IRAS  galaxies with the same distribution of blue 

luminosities. They find that while infrared properties alone are insufficient to distinguish 

clearly an individual interacting galaxy from an individual isolated galaxy with the 

same blue luminosity, due to the intrinsic dispersion in galactic properties, it is seen 

that samples of interacting galaxies have substantially warmer far-infrared colours than 

samples of isolated galaxies.

One would naively expect galaxy interactions to be more likely to take place where the 

galaxy number density is higher than average and, by the Kaiser mechanism (see Chapter 

2) these regions will exhibit enhanced clustering. We may draw these threads together 

to deduce a qualitative picture of the effect of the radial gradient in the mean emission 

temperature of a flux-limited sample of IRAS  galaxies on studies of its clustering. Put 

rather crudely, the argument runs as follows: the ‘starburst’ component will tend to 

dominate in galaxies with higher emission temperatures; starbursts are expected to be 

found preferentially in interacting galaxies which, in turn, are more likely to be found in 

regions with above-average galaxy number density; these regions will exhibit enhanced 

clustering, due to the Kaiser mechanism, and, thus, we expect warm IRAS  galaxies to 

be more strongly clustered than cool ones.
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So, a radial mean temperature gradient in a galaxy sample could produce a radial gradi­

ent in clustering strength. Such an effect may have already been observed. Mo, Peacock 

& Xia (1993) report a significant increase in the strength of the redshift-space cross­

correlations between Abell clusters and QDOT galaxies if they exclude QDOT galaxies 

within a redshift of 2 = 0.03, while Feldman, Kaiser & Peacock (1993) find that the 

amplitude of the redshift-space power spectrum of the QDOT survey is lower if they 

adopt a. radial weighting scheme that gives more weight to nearby galaxies than one 

giving more weight to more distant galaxies.

Both of these observations would be explained by a picture in which there are two 

populations of IRAS  galaxy: a cool, faint, weakly-clustered population of isolated spirals 

and a more strongly clustered population of hotter, more luminous starbursting galaxies. 

This scenario is undoubtedly a somewhat naive one, but the importance of any such effect 

merits its consideration. Cosmological studies using redshift samples of IRAS  galaxies 

make implicit assumptions about the homogeneity of the properties of the galaxies. If, 

in fact, such samples comprise a mixture of these hypothesised two populations, then 

they will yield biased measures of clustering -  in particular, a clustering strength with 

a non-trivial dependence on the effective depth of the sample.

In this Chapter we seek to address this very important issue, by comparing the clustering 

strengths of warm and cool subsamples drawn from the QDOT and 2 Jy surveys. In 

Section 3.2 we present details of the selection criteria used to calculate these subsam­

ples and of the methods used to calculate their selection functions. Sections 3.3 and 

3.4 describe our clustering analysis, using two complementary statistics: the two-point 

correlation function in Section 3.3 and a counts-in-cells analysis in Section 3.4. A brief 

discussion of the results of these analyses is presented in Section 3.5, while more general 

discussions are postponed until Chapter 5.
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3.2 T H E  DATA SAMPLES

3.2.1 The Q DO T Survey

The QDOT survey (Lawrence et al. , in preparation) is a redshift survey of a one-in- 

six random sample of galaxies drawn from the QMW IRAS  Galaxy Catalogue (QIGC; 

Rowan-Robinson et al. 1991), limited to | b | > 10° and with a 60 /mi flux limit of 

^60 > 0.6 Jy. The selection criteria for the QIGC are as follows, where Sn denotes the 

flux in the IRAS  passband centred on n /mi:

• Sources in the PSC are included if they satisfy

J- ‘-’ 6 0  '> Jy-
2. Log(560/5 25) > —0.3. This condition is satisfied by all previously-catalogued 

galaxies, but not by the great majority of Galactic sources: if the source is 

not detected in the 25 /mi band then the appropriate upper limit is used.

3. Log(S25/S 12) < 1.0, if the source is detected at 25 /mi, unless the source is 

a previously-catalogued galaxy: the 12 /¿m upper limit is used if there is no 

detection. Only two galaxies (Arp 220 and NGC 4418) had to be reinstated 

after failing this criterion, which is designed to exclude planetary nebulae at 

low Galactic latitude.

4. Log(S100/S 25) > —0.3, if the source is detected at 25 /mi: this excludes further 

planetary nebulae.

5. Log(560/ 5 12) > 0, if the source is detected at 12 /mi: this removes further 

stars.

6. Log(S100/S 60) < 0.6, unless the source is a previously-catalogued galaxy: the 

100 /¿m upper limit is used in the absence of a detection. This condition is 

very effective at removing cirrus sources, but, not surprisingly, it also excludes 

nearby galaxies similar to the Milky Way. Rowan-Robinson, Helou & Walker 

(1987) have studied the known galaxies which fail this criterion and it is 

assumed on the basis of this work that virtually no galaxies cool enough to
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fail this test, yet with a 60 /im flux in excess of 0.5 Jy, would be faint enough 

in the optical to have evaded detection by previous catalogues.

7. No identification with a catalogued star, HII region, star cluster or Local 

Group galaxy.

• Sources in the IRAS Small Scale Structure Catalog (SSS; Helou & Walker 1988) are 

included if they have an association with a previously-catalogued galaxy, excepting 

Local Group galaxies, and parts thereof, and if their 60 /im fluxes are in excess of 

0.5 Jy.

• Sources from the IRAS Large Galaxy Catalog (LGC; Rice et al. 1988) are included 

if their coadded 60 /am fluxes exceed 0.5 Jy: galaxies must have optical diameters 

in excess of 8 arcmin for inclusion in the LGC.

The QDOT survey, constructed from the QIGC limited to | b | > 10° and S60 > 0.6 

Jy is attested to be 98% complete (Efstathiou et al. 1990). We use the 1993 revision 

of the QDOT catalogue in which the redshifts for ~200 southern galaxies afflicted by a 

wavelength calibration error in earlier versions of the catalogue have been corrected.

3.2.2 The 2 Jy Survey

The 2 Jy survey (Strauss et al. 1990) was selected using a slightly different philosophy 

from the QDOT survey. Its compilers wished to use infrared properties alone, without 

reference to optical catalogues to reinstate known galaxies failing particular criteria, as 

was the case with QDOT. This, of course, necessitates the use of very cautious criteria 

and inevitably results in the inclusion of many Galactic sources, but, since Strauss et 

al. set out to obtain redshifts for all their objects, not just a sparse sample, this latter 

should not introduce bias into their catalogue. The criteria used to construct the 2 Jy 

are as follows:

• S60 > 1.936 Jy, after correction for various effects discussed by Strauss et al.

• Moderate or high flux quality at 60 /mi.
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• Sg0 > using upper limits in the absence of detections at 12 or 25 pm: this

excludes most stars.

Using these criteria, Strauss et al. created a catalogue of 5014 objects, of which 2649 are 

believed to be galaxies.

3.2.3 The Mask

The standard IRAS  data analysis procedure, which we follow here, involves the division 

of the sky into 41167 ‘lune bins’, which measure 1° X 1° defined in ecliptic coordinates 

(see Appendix X .l of the IRAS Explanatory Supplement by Beichman et al. 1988). It 

is then necessary to construct a mask, which comprises a list of the lune bins to be 

excluded from the analysis. The standard QIGC/QDOT mask excludes the ~  4% of the 

sky missed by IRAS,  plus the region | b \ < 10° and various other lune bins where high 

source density confuses discrimination between Galactic and extragalactic sources.

Our purposes, however, necessitate the exclusion of further lune bins, as we require 

accurate temperature determination on the basis of 60 and 100 pm  fluxes. Not all 

QDOT galaxies were detected at 100 pm  and the variation of the 100 pm  Galactic cirrus 

emission across the sky results in a corresponding variation in the upper limits assigned 

to sources in the absence of confirmed detections at 100 pm. In the computation of the 

60 pm  luminosity functions of their warm and cool subsamples, Saunders et al. (1990) 

overcame this problem by assigning estimated 100 pm  fluxes to the galaxies without 

confirmed detections in that passband on the basis of an empirical correlation between 

the 60 to 100 pm  flux ratio and the 60 pm luminosity: a temperature-luminosity relation, 

in essence. While perfectly adequate for their purposes, such a procedure could introduce 

serious biases into our clustering analysis, by classifying all galaxies with a particular 60 

pm  flux in one region of the sky as, say, warm, whereas some should be classified as cool, 

with the obvious introduction of a bias into our estimates for the spatial correlations of 

the two subsamples. This situation may be greatly ameliorated by the exclusion of lune 

bins with low 100 pm  upper limits and we implement that here, extending our mask 

to include lune bins where the 100 pm  background flux due to Galactic cirrus exceeds
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15 MJy per steradian. Thus extended, our mask (created by W. Saunders) leaves an 

unmasked region covering a solid angle of 8.84 steradian, about 70% of the sky. We use 

the same mask for the 2 Jy survey as for QDOT: this is being more conservative than 

we need to be, given the higher flux limit of the 2 Jy survey, but it has the advantage 

that the subsamples we draw from the two surveys cover the same area of sky and so 

are readily comparable. A number of galaxies with 100 /im upper limits remain in the 

unmasked regions of both catalogues even after this extension of the mask and we discuss 

what should be done with them in the next subsection.

3.2.4 Tem perature assignment and subsample selection

Our warm and cool subsamples were constructed using the methods described by Saun­

ders et al. (1990). We assume that the far-infrared spectra of the galaxies are well 

described by a single-temperature Planck function multiplied by an emissivity inversely 

proportional to wavelength, as often considered appropriate for dust: the modelling by 

Rowan-Robinson & Crawford (1989) shows that this is a reasonable approximation for 

both the ‘disc’ and ‘starburst’ components to the emission. For each source we fit a 

single-temperature Sw a  vBu(Tohs) curve [where -B„(T) is the Planck function for tem­

perature T] to the spectrum, such that its convolution with the response curves for the 

60 and 100 //m IRAS  detectors (Beichman et al. 1984) gives the observed broadband 

fluxes. The emission temperature, Tem, is then given by Tem = T0bs(l + z) for a galaxy 

with redshift 2. Saunders et al. use a temperature of 36 K to mark the division be­

tween the warm and cool subsamples, on the basis of the Rowan-Robinson Sz Crawford 

models. Bothun et al. (1989) show that the mean temperatures of their ‘normal’ and 

‘active’ (‘disc’ and ‘starburst/Seyfert’ respectively in the parlance of Rowan-Robinson 

& Crawford) samples of UGC galaxies observed by IRAS  are 35 and 38 K respectively, 

so a figure of 36 K is perfectly reasonable, although the temperature histograms of the 

‘normal’ and ‘active’ samples overlap, so it cannot be regarded as a sharp cut-off.

As mentioned before, we still have to consider what to do with those galaxies with 

100 /im upper limits that remain after the extension of our mask: 275 such galaxies 

remain in our QDOT sample and 61 in that from the 2 Jy survey. If the 100 / i m
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upper limit for a particular galaxy is sufficiently low compared with its observed 60 pm 

flux (S60/ S 100 > O-®)? then the galaxy may safely be classified as warm, according to 

our criterion, but 161 galaxies remain with uncertain temperature classifications in the 

unmasked region of our QDOT sample after accounting for this. One possible course of 

action here would be to use 100 pm fluxes from the IRAS Faint Source Survey (FSS; 

Moshir et al. 1989) rather than the PSC, but that introduces further problems, as the 

FSS suffers from more serious cirrus contamination and confusion, while the scatter 

between the FSS and PSC indicates that the accuracy of low 100 pm fluxes is inherently 

poor (W. Saunders, private communication).

Instead, we decided to take the 100 pm upper limits for these problem sources as de­

tections. This is not so questionable an action as at first it might seem. The majority 

of these sources (141 out of 161 in our QDOT sample) were detected at 100 pm in at 

least one IR AS  scan, so that while an upper limit is quoted, to indicate the absence of 

a confirmed detection, its value is that obtained in the unconfirmed detection. We may 

be sure that the 94 galaxies in our QDOT sample classified as warm by this procedure 

truly belong to that category, as their 100 pm fluxes can only be lower than the assumed 

value and, thus, they can only be hotter than we have imagined. That leaves 57 galaxies 

with doubtful cool classifications in our QDOT sample: since 10 of the 20 galaxies not 

detected once at 100 pm were classified as cool on the basis of their 100 pm upper lim­

its. Some of these will, no doubt, really belong in the warm sample, but we assume that 

this has a negligible bearing on our clustering analysis below. We may hope to assess 

the tru th  of this assumption by also performing our clustering analysis on subsamples 

selected above a higher 60 pm flux limit: the number of problem cool sources in our 

QDOT sample falls to 13 (out of 130 sources with upper limits) if the 60 pm flux limit is 

raised to 0.7 Jy, while it is only 7 (out of 71) for a cut at 0.8 Jy. We are unable to perform 

a similar analysis of the number of problem cool sources in our samples from the 2 .Ty 

survey, since the catalogue does not include correlation coefficient data for the 100 pm 

fluxes, so we cannot determine how many of the galaxies were not detected even once at 

100 pm. In general, however, we believe that the trend of decreasing percentage of prob­

lem cool sources with increasing 60 pm flux limit should continue and, thus, we expect 

our 2 Jy sample to be even less contaminated with doubtful temperature assignments
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Sample Survey 60 /;m cut (Jy) Warm/Cool No. of galaxies

w36.6 QDOT 0.6 warm 1230

c36.6 QDOT 0.6 cool 817

w36.7 QDOT 0.7 warm 997

c36.7 QDOT 0.7 cool 635

w36.8 QDOT 0.8 warm 813

c36.8 QDOT 0.8 cool 530

w2j36 2 Jy 2.0 warm 1330

c2j36 2 Jy 2.0 cool 828

Table 3.1: Properties of the four sets of warm and cool IRAS  galaxy samples to be 

considered in this Chapter.

than our QDOT samples.

In Table 3.1 we summarise the properties of the subsamples so produced and in Figure 3.2 

and Figure 3.3 we plot the radial velocity histograms for the warm and cool samples 

derived from QDOT (with a 60 fxm flux cut of 0.6 Jy) and the 2 Jy survey, respectively: 

note that throughout this work we correct radial velocities to the centroid of the Local 

Group by adding to the observed heliocentric radial velocity of a galaxy with Galactic 

longitude I and latitude b the correction term 300 sin(/) cos(6) km s 1.

3.2.5 Selection Functions

The radial decline in the number density of galaxies in a flux-limited sample is quantified 

by the selection function, which we define to be the expected number density of

galaxies at distance r lying above the sample’s flux limit in the absence of clustering: 

with this definition

roo
/  i f f (x)x2d x  =  N / S l ,  (3-1)
Jo

where N  is the number of galaxies in a survey covering a solid angle 0.
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Figure 3.2: The radial distance distributions of (a) the warm and (b) the cool samples 

derived from QDOT with a 60 ¿¿m cut at 0.6 Jy -  i.e. samples w36.6 and c36.6 re­

spectively. The distance have been computed from radial velocities corrected to the rest 

frame of the Local Group.
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Figure 3.3: The radial distance distributions of (a) the warm and (b) the cool samples 

derived from the 2 Jy survey -  i.e. samples w2j36 and c2j36 respectively. The distances 

have been computed from radial velocities corrected to the rest frame of the Local Group.



Details of the methods used in the computation of the selection functions for our sample 

(performed by W. Saunders) will be presented elsewhere (Saunders 1993, in preparation) 

and we provide only a summary here. We use both parametric and non-parametric forms 

for the selection function, which we determine by the following procedure:

• the galaxies in a given sample are binned by radial velocity to generate a redsliift 

distribution, n(z), which is the number of galaxies in a bin centred on redshift 2.

• dividing this by V(z), which gives the volumes of the redshift bins, yields ^ ( 2), 

which is our initial estimate of the selection function.

• V’i ( z) is no*M however, an adequate estimate, since 110 correction has been made for 

the fact that the galaxy distribution is clustered. This may be done by dividing 

ipi(z) by p(z) which is the maximum-likelihood radial density estimator described 

by Saunders et al. (1990). This is obtained by maximising the likelihood

£ =  T T _  ------------, (3.2)
i So

where 2max ,■ is the maximum redshift which the source labelled i could have and 

still remain above the flux limit and V  is the comoving volume out to redshift 2: 

details of how this is done in practice are given by Saunders et al. (1990).

• the quantity so obtained [call it ^ 2{z)\ is, however, still not a good estimate of 

the selection function, since dividing through by p(z) will divide out the effects of 

number density evolution, which Saunders et al. (1990) showed to be important 

for QDOT. The final estimator for the selection function is obtained, therefore, by 

multiplying tp2(.z ) by the evolution factor <7(2) which Saunders et al. (1990) have 

shown to be well approximated by the power law form g(z ) = (I + 2)6 '. Combining 

these factors gives our final non-parametric estimate of the selection function as

n(z ) g i z ) ^ - n
*<2> =  W )W Y  (3'31

which may be normalised using equation 3.1 and converted to ip(r) under the 

assumption that il0 = 1, A = 0.
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It is found that the selection function so computed closely approximates a double power 

law, so a convenient parametric form for the selection function is

io(1-a0A 

(1 + 10^ /^ ( A ) «  y3/7 ’ (3-4)

where A = log10(r) — and a ,/?,7 and d* are parameters whose values are to be found 

by standard maximum likelihood methods (Saunders 1993).

In Figures 3.4 and 3.5 we show the selection functions derived by these methods for 

the warm and cool subsamples derived from QDOT with a 0.6 Jy cut at 60 pm (w36.6 

& c36.6) and from the 2 Jy (w2j36 & c2j36): the selection functions of the QDOT 

subsamples selected above higher 60 pm flux cuts do not differ greatly from those for 

w36.6 and c36.6 shown here. Note that the results from the 2 Jy samples are not so well 

approximated by our parametric selection function as those from the QDOT subsamples, 

so we must be careful about using the parametric selection function in analyses involving 

2 Jy samples.

3.3 C O R R E L A T IO N  F U N C T IO N  ANALYSIS

3.3.1 M ethod

In this section we describe our comparison of the redshift-space clustering strengths of 

warm and cool IRAS  galaxies using the two-point correlation function.

Our estimator for the redshift-space autocorrelation function, £aa(5)’ ga-laxies of 

species A is

N* 4 f l . ^  (3.5)1 +  £a a (5) = -AAAA .
/VarO) nA

where -NAA(s) is twice the number of distinct pairs in the sample of A galaxies (which 

have a number density nA) whose separation places them in the bin centred 011 separation 

s and Aa r  is the corresponding number of cross-pairs between the A sample and a 

random catalogue with number density ?iR.
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l°g io r  (h ‘ UPC)

Figure 3.4: Selection functions for subsamples drawn from QDOT with a 0.6 Jy 60 /mi 

flux limit: (a) w36.6 and (b) c36.6. The solid line shows the parametric fit of equation 3.4, 

while the solid and empty circles show, respectively, the parametric selection function 

ip(r) and the initial estimate ^ ( r ) .
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Figure 3.5: Selection functions for subsamples drawn from the 2 Jy survey: (a) w2j36 

and (b) c2j36. The solid line shows the parametric fit of equation 3.4, while the solid and 

empty circles show, respectively, the parametric selection function ij)(r) and the initial 

estimate i/q(r).
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The term N AR(s) /  (nR/ nA) represents a Monte Carlo estimation of the expected number 

of pairs of A galaxies in the bin centred on s in the absence of clustering. In order to 

evaluate this term accurately, we create the random catalogue by randomly distributing 

100,000 particles across the unmasked region of the sky and make an assignment of 

radial velocities to them in a manner consistent with the selection function of the galaxy 

sample. By using an estimator with the term Aa r (s) in the denominator, rather than 

N r r ( s ) we hope better to account for edge effects (Hewett 1982), although these should 

be relatively unimportant for a survey region like ours which covers almost the whole 

sky.

Where relatively small galaxy samples are used, a more robust description (Mo, Peacock 

& Xia 1993) of the clustering may be obtained using the spatially averaged two point 

correlation function, £AA(s), defined by

£ a a O )  =  4  /  £ a a ( z ) z 2 d x , ( 3 -6 )S'3 Jo

and the estimator for which is

1 + s) =  k M  ■ 13 7)

where N AA(< s) is the sum of the pair counts in bins centred on separations < s and 

the definitions of the other terms follows analogously.

By analogy with equation 3.5 we define our estimator for the cross-correlation function, 

£AB(s), galaxies of species A and B to be

1 + ( 3 's >

where the meanings of the various terms are clear from above. This estimator is asym­

metric under exchange of A and B, so we could clearly equally well define a second 

estimator of the same quantity by

i + e & M  = (3-9)
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The difference between the meanings of these two estimators is clear if one considers 

(Peebles 1980) the definition of the two point correlation function, as we now show.

the probability of finding a neighbour of species B in volume 6V of a clustered distribution 

of such galaxies at separation s from a galaxy of species A against that for an unclustered

A at separation s from a galaxy of species B with that for an unclustered distribution. 

The symmetry of the situation dictates that these two estimators should yield identical

between the answers they give for finite samples and one can see that the difference 

between the results so obtained is a measure of the uncertainty in the determinations 

that they give for the cross-correlation function.

Clearly, by analogy with equations 3.5, 3.7, 3.8 and 3.9 we may define two estimators 

for the spatially-averaged cross-correlation function by

An interesting quantitative measure of any difference between the clustering strengths 

of the two samples may be obtained (Alimi, Valls-Gabaud & Blanchard 1988; Strauss 

et al. 1992; Mo, Peacock & Xia. 1993) by taking ratios of cross-correlation functions 

to autocorrelation functions. From the discussion above, picturing the meaning of the

Consider choosing a galaxy of species X from a sample of them. Then the probability, 

6P, of finding a galaxy of species Y (with number density nY) in a volume 6V a distance 

s away is given by

SP — nY SV [1 -f ̂ xy^)]- (3.10)

It is clear, therefore, that the estimator of equation 3.8 is estimating £ab(5) by comparing

distribution of B galaxies, while the estimator of equation 3.9 compares the probability 

of finding a neighbour in the same volume of a clustered distribution of galaxies of species

results in the limit of arbitrarily large data samples, but there may be some difference

(3.11)

and

(3.12)
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two cross-correlation function estim ators, it is clear tha t the correct ratios to consider 

a r e  £ a b / £ a a  a n d  £ a b / £ b B ’ since these represent comparisons between the numbers of 

neighbours of species A and B possessed by galaxies of species A and B respectively.

To optimise signal-to-noise, it is necessary to weight the galaxies in some way tha t reflects 

the variation in the mean galaxy number density with radial distance. The simplest way

(Davis & Peebles 1983, hereafter DP83) is to weight each galaxy by the reciprocal of

the selection function at its radial distance. This is motivated by the assumption that 

the galaxy distributions are homogenous and isotropic random processes, as it assigns 

to a given volume of space a weight in proportion to the number of galaxies expected in 

th a t region in a volume-limited sample. This prescription gives very high weights to the 

most distant galaxies in any sample, so a distance limit must be imposed if the estim ated 

data-data  pair count is not to be compromised by having a large uncertainty due to these 

few, highly-weighted distant galaxies: this, of course, means tha t some information is 

lost, as the most distant galaxies are excluded from the analysis.

An alternative scheme is to assign (Efstathiou 1988; Loveday et  al. 1992; Saunders, 

Rowan-Robinson & Lawrence 1992) to each galaxy in a pair with separation s  the weight

w ( r ) =  l / [ l  +  47r/V’( r ) J 3(s)] (3.13)

where /  is the sparse sampling factor (i .e.  f  =  1 for a fully-sampled survey and /  = 1/6 

for QDOT) and

J3( s ) = [  £(x) x 2 da:. (3-14)
Jo

It can be shown (Efstathiou 1988) tha t this weighting minimises the variance in the 

data-data  pair count if £( x )  =  0 for x >  s.  Saunders et  al. (1992) have shown tha t the 

real space J3( r )  continues to rise out to at least r =  100 h ~ l Mpc, so tha t equation 3.13 

does not necessarily give the minimum variance estim ate of the data-data  pair count 

on scales smaller than that. It remains, however, a sensible weighting scheme: for 

small separations, where 4:irf-tpJ3 >  1 and where the contributions to the pair count 

variance are dominated by clustering rather than the discreteness of galaxies, the galaxies 

are weighted by the reciprocal of the selection function and, hence, equal volumes are
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weighted equally; on large scales, galaxies are given equal weight, thus reducing the 

problem of shot noise from a few highly-weighted distant galaxies.

This has the advantage of using all the information in the galaxy sample, as none of its 

members are excluded, but it has the disadvantage that a model for J 3 must be assumed. 

Saunders et al. (1992) have shown that the real space J3 for QDOT is well approximated 

as being the integral over a power law correlation function £ = (3.79 h-1 M pc/r)1'5' 

out to r — 30 h~l Mpc and, with rather less certainty, out to r ~  100 h~l Mpc. 

We may, therefore, model the redshift space J3 as being this multiplied by a redshift 

space correction factor calculated according to the method of Kaiser (1987), whence, 

in linear theory, the (isotropic) real-space correlation function, £r(r), is related to the 

direction-averaged redshift-space correlation function, £{s)(s), by £(s)(s ) = T£r(r), where 

F  = [1 + (2flo'6/3&) + (flJ'2/562)] in a linear biasing model with bias factor b. Saunders 

et al. (1992) discuss the value of F  appropriate to QDOT: from a comparison of their 

determination of the variance of counts-in-cells in real space to that of Efstathiou et al. 

(1990) in redshift space they conclude that F  = 1.23 ± 0.13, but they argue that this 

is an underestimate due to its omission of non-linear effects (Suto & Suginoliara 1991) 

and, restricting themselves to cells of size > 40 h~l Mpc, where such effects are small, 

they obtain F  = 1.57±0.32. We may use these two values of F  to model J3(s), requiring 

consistency between this model and the J3 computed from our redshift space correlation 

function.

In Figure 3.6 we show a comparison between the model J 3 functions and those deduced 

observationally using this model as an input to the mininum variance weighting scheme. 

The model for J3(s) is seen to give consistent results for separations above a few Mpc: 

on smaller scales the Kaiser formula (whose basis is in linear theory) is invalid and 

the redshift space correlation function is not simply a constant multiple of that in real 

space. This does not constitute a serious problem for us, as we should not wish to 

compare our results for warm and cool samples on these scales anyway, simply because 

of the ambiguity in their interpretation introduced by redshift space effects: in our naive 

model, the warm sample is more strongly clustered in real space, but the higher pairwise 

velocities that the warm galaxies would possess as a result of their being in regions of 

higher density would have the effect of diluting the small-separation clustering in redshift
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Figure 3.6: Comparison of the measured redshift space J3(s ) functions for the QDOT 

samples with a 0.6 Jy flux cut at 60 /an with the model used in the minimum variance 

weighting prescription employed in their determination for: (a) (b) (c) <fcc;

and (d) <fww. The error bars on the points come from the scatter between the results 

computed from the four quadrants of the sky. The solid and dashed lines show the model 

J3(s) functions for F = 1.23 and F = 1.57 respectively.
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space and so, any difference that we observed at small scales between the clustering 

strengths of the warm and cool samples in redshift space would be a lower limit 011 the 

difference in real space.

In what follows we shall employ both of the weighting schemes discussed above: by using 

both we may hope to test the robustness of our results and their sensitivity to weighting 

schemes.

The question of how to estimate error bars on observational correlation functions is 

one which still awaits a satisfactory answer. The commonly used ‘Poisson’ error {i.e. 

¿£/( 1 + f) = l/- \/DD,  where DD  is the data-data pair count, is incorrect as it assumes 

an unclustered sample. It may be improved by replacing 1/a/ D D  by (1 + 4i r nJ3) / \ / D D  

which (Peebles 1980) models the galaxy distribution as a number of randomly distributed 

clusters each with N  = 1 + 47tn J3 members, but this is still conceptually unsatisfactory. 

Mo, Jing & Borner (1992) have used numerical simulations to validate analytic approxi­

mations to the true ensemble error on the correlation function of volume-limited samples, 

but their procedure is not readily applicable to flux-limited samples such as ours, nor is 

the boostrap resampling method of Ling, Frenk Sz Barrow (1986). We adopt, therefore, 

the robust method of estimating the uncertainty on the correlation function as being 

the standard error computed from independent estimates of it in the four quadrants of 

the sky defined by 0 < I < 180° and 180 < I < 360° in the northern and southern 

Galactic hemispheres. N.B.. Saunders et al. (1992) find good agreement between errors 

computed using the ‘T +  47rnJ3” cluster model and computed from independent regions 

on the sky.

3.3.2 Results

Our desire in this chapter is to obtain a robust comparison of the clustering strengths of 

cool and warm subsamples of IRAS  galaxies. In this subsection we present, therefore, 

correlation function results for a number of samples with different 60 /¿m flux limits, 

extending to different redshifts, calculated using different weighting schemes. Note that 

the spatially-averaged correlation functions are denoted by < £ > rather than £ in the 

figures, due to the limited labelling possibilities presented by the PGPLOT graphics
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package.

We consider the clustering of our QDOT samples first. Our desire for robust conclusions 

from this study leads us to ensure that the results obtained through using the mini­

mum variance weighting scheme should be consistent with those yielded by weighting 

the galaxies by the reciprocal of the selection function in the regime where the latter 

weighting scheme is applicable, so we must determine the maximum distance out to 

which this is so. Davis & Peebles (1983) argue that this weighting scheme be used only 

out to the point where the selection function has fallen by a factor of ten from its zero- 

redshift value. This corresponds to r ~  35 h~1 Mpc for the c36.6 sample, but there are 

only 87 w36.6 galaxies within that distance, limiting the utility of any comparison made 

to that depth.

In Figure 3.7 we compare results by three methods for samples w36.6 and c36.6 limited 

to 40 h_1 Mpc, within which there are 114 warm galaxies and 290 cool ones. We see 

that weighting by the minimum variance method gives very similar results to weighting 

by the reciprocal of the selection function, using either its parametric or non-parametric 

forms: weighting by the non-parametric selection function produces the most discrepant 

set of results, as a result of the effect of clustering on such a small sample. The results for 

the three methods are consistent within their estimated errors. These error bars (which 

are omitted for the sake of clarity) are quite large, of course, due to the small samples, 

so we compare the same three methods in Figure 3.8 for samples limited to 100 h“ 1 Mpc 

-  i.e. including 522 warm galaxies and 668 cool galaxies.

These three sets of results are again entirely consistent within their errors. Note that the 

larger numbers of galaxies in radial shells beyond 40 h~l Mpc has brought the results 

obtained by weighting by the reciprocal of the parametric and non-parametric selection 

functions into close agreement. There is a slight difference between those results and the 

ones yielded by the minimum variance weighting scheme, indicating that the inclusion of 

galaxies out to 100 h~l Mpc is introducing very highly-weighted galaxies which bias the 

correlation function: this interpretation of the discrepancy is supported by the fact that 

it is greater for f cc(s) than for £ww(s), as would be expected from the steeper decline of 

the selection function of the cool sample.
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Figure 3.7: Results for w36.6 and c36.6 limited to 40 Mpc, using three weighting 

schemes: the stars and triangles are results determined by weighting with the reciprocal 

of the parametric and nonparametric selection functions respectively; the circles denote 

results obtained using the minimum variance weighting scheme with the parametric 

selection function. Filled symbols denote positive values of the correlation function and 

open symbols negative ones.
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Figure 3.8: Results for w36.6 and c36.6 limited to 100 /i_1 Mpc, using three weighting 

schemes: the stars and triangles are results determined by weighting with the reciprocal 

of the parametric and nonparametric selection functions respectively; the circles denote 

results obtained using the minimum variance weighting scheme with the parametric 

selection function. Filled symbols denote positive values of the correlation function and 

open symbols negative ones.
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Figure 3.9: Results for w36.6 and c36.6 limited to 100 h~l Mpc, using the minimum 

variance weighting scheme: in (a) and (b) the triangles and stars denote £^ (s ) and 

^ 2j(s ); in (c) and (d) the triangles [stars] denote £ww(s) [£cc(s )]i (e) and (0  ^ ie

triangles and stars denote the ratios and respectively. Filled symbols

denote positive values of the correlation function and open symbols negative ones.
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We believe, therefore, that the minimum variance weighting scheme provides a robust 

measure of the clustering of the w36.6 and c36.6 galaxies within 100/i-1 Mpc and we show 

those results in more detail in Figure 3.9. We show the correlation functions as well as 

their spatial averages, to illustrate the desirability of using the latter for obtaining much 

less noisy results. Figure 3.9 (f) shows that there is no discernible difference between the 

clustering strengths of the warm and cool QDOT samples selected above a 60 /¿m flux 

limit of 0.6 Jy and within a distance limit of 100 h -1 Mpc. Consistent results to these 

are obtained when QDOT samples selected with S60 > 0.7 Jy and S60 > 0.8 Jy are used 

instead, so we believe this result to be insensitive to the small number of dubious cool 

classifications resulting from the 100 gm upper limit problem discussed in Section 3.2.4.

Beyond 100/i-1 Mpc we can use only the minimum variance weighting scheme, as weight­

ing by the reciprocal of the selection function will be inappropriate for galaxies beyond 

this point, as it would produce extremely highly weighted cool galaxies towards the 

outer limit of any sample. In Figure 3.10 we compare results obtained for w36.6 and 

c36.6 samples limited to 40, 100 & 500 h-1 Mpc, weighted by the minimum variance 

prescription. The first two samples show no difference in the clustering of the warm and 

cool species, but the third does: in the 500 h_1 Mpc sample the warm subsample does 

appear to be more clustered than the cool one.

In Figure 3.11 we show the results from the 500 h-1 Mpc samples in more detail and 

see the evidence for any difference is marginal and that the difference between the two 

estimates for the cross-correlation function indicates the limited accuracy of the auto- 

to cross-correlation function ratios as quantifiers of it.

In Figure 3.12 we show clustering results for the QDOT subsamples selected above 

^60 = 0.8 Jy, including all galaxies within 500 h 1 Mpc. Comparison of Figures 3.11 

and 3.12 suggests that the hypothesised difference between the clustering of the two 

samples is more pronounced when the higher flux limit is imposed. On the other hand, 

the difference between the two estimates of the cross-correlation function increases too, 

indicating, perhaps, that it is the smaller sample size that is responsible for the change. 

It is worth noting from Figure 3.12 (c) and (d) that the auto-correlation function of the 

warm sample appears to be less steep than the cool sample. This is just as we would
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Figure 3.10: Results obtained using minimum variance weighting for samples w36.6 

and c36.6 limited to 40 Mpc (stars), 100 h ~ l Mpc (triangles) and 500 h ~ l Mpc 

(circles). Filled symbols denote positive values of the correlation function and open 

symbols negative ones.
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Figure 3.11: Results for w36.6 and c36.6 limited to 500 h 1 Mpc, using the minimum 

variance weighting scheme: in (a) and (b) the triangles and stars denote £xVc (5) an<̂  

; in (c) and (d) the triangles [stars] denote £ww(5) [<fcc(s )]i (e) an<̂  (f) ^ ie 

triangles and stars denote the ratios ^ww/ ^  an(* ficVfcc respectively. Filled symbols 

denote positive values of the correlation function and open symbols negative ones.
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Figure 3.12: Results for w36.8 and c36.8 limited to 500 /i-1 Mpc, using the minimum 

variance weighting scheme: in (a) and (b) the triangles and stars denote £„c (.s) and 

£ ^ (s ) ;  in (c) and (d) the triangles [stars] denote £ww(s) [£cc(.s)]; in (e) and (f) the 

triangles and stars denote the ratios £ww/ £ ^  and £ ^ / i i cc respectively. Filled symbols 

denote positive values of the correlation function and open symbols negative ones.
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expect if the warm sample is more strongly clustered in real space due to the warm 

galaxies being in denser regions since, as a result of their higher small-scale velocities, 

they would suffer a larger reduction in small-separation clustering upon translation to 

redsliift space, while maintaining stronger clustering on larger scales.

Such an interpretation of the results may test the reader’s credulity, so we shall sum­

marise our discussion by saying that there is no unambiguous evidence for a difference 

between the redshift-space clustering strengths of warm and cool samples of QDOT 

galaxies, but that the data could be interpreted as supporting a hypothesised increase 

in the clustering strength of the warm population at radial velocities more than ~  10000 

km s_1 from the Local Group.

We turn now to the correlation function analysis of our 2 Jy samples. The slopes of the 

2 Jy selection functions are steeper above their knees than those of the corresponding 

QDOT samples. This means that we are unable to compare weighting the 2 Jy samples 

by the reciprocal of the selection function with using the minimum variance scheme: if 

we restricted ourselves to samples limited at the maximum distance out to which the 

reciprocal prescription could be applied then we would be left with an insufficient number 

of galaxies to perform a meaningful comparison.

We have no alternative but to use only the minimum variance weighting scheme. In 

Figure 3.13 we show the results for the 2 Jy samples limited to 500 h~l Mpc. They show 

no evidence at all of a more strongly clustered warm population. From Figure 3.3 we 

see that there are few 2 Jy galaxies beyond 20,000 km s-1 , so that a reader wishing to 

interpret our QDOT results as supporting the notion of a more strongly clustered warm 

population could achieve consistency with the 2 Jy results by arguing that the more 

strongly clustered population only appears beyond 200 h~l Mpc from us. We find that 

the J3 computed from applying the minimum variance weighting prescription to our 2 

Jy sample is consistent with the model J3 used in its calculation, validating its use in 

the production of these results.
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Figure 3.13: Results for w2j36 and c2j36 limited to 500 h~x Mpc, using the minimum 

variance weighting scheme: in (a) and (b) the triangles and stars denote ^|vlĉ (s) and 

^ 2J(s); in (c) and (d) the triangles [stars] denote £ww(s) [£cc(.s)]; in (e) and (f) the 

triangles and stars denote the ratios £ww/£^c and £̂ 2cV fcc respectively. Filled symbols 

denote positive values of the correlation function and open symbols nega.tive ones.

186



3.4 COUNTS-IN-CELLS ANALYSIS

An alternative statistic for quantifying the clustering of a sample of galaxies is the 

variance in counts in cells (Peebles 1980; Efstathiou et al. 1990; Loveday et al. 1992). 

The principal advantage that counts-in-cells analysis has over analyses using correlation 

functions is that, by considering the variance between cells at the same redshift, no 

account need be taken of the radial decline in the mean density with redshift in a flux- 

limited sample. Our wish throughout this chapter has been to make a robust comparison 

of the clustering strengths of the warm and cool subsamples, and the counts-in-cells 

analysis presented in this section complements the correlation function analysis of the 

previous section, testing the sensitivity of its results to weighting schemes.

3.4.1 M ethod

The method of counts-in-cells analysis is ably described by Efstathiou et al. (1990) and 

we shall follow their treatment here.

Consider splitting the volume of space occupied by a flux-limited galaxy redshift sample 

up into radial shells of width /. These radial shells are then subdivided so as to form 

roughly cubical cells of volume V  = I3. We may define the following pair of quantities:

n  = (3.i5)
i

and

s  I3-1«)

where the sums are performed over the M  cells in a given radial shell and N i is the galaxy 

count in the i th cell in that shell. The expectation values of these are readily shown to be 

(jV) = nV  and (5 ) = n2V 2a2, where n is the galaxy number density (assumed constant 

throughout the cell -  i.e. the cell size is assumed to be smaller than the scale over
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which the selection function varies appreciably) and the variance, cr2(l) is related to the 

autocorrelation function of the sample by

a 2'
’v )  = h  L( { r n )  iVliV*- (3-17)

If the cells are independent then the variance in 5 is given by

Var(S) = (S2) -  (S)2 = " 4 ~ ^  ~  ~ ^ , (3.18)

in the limit of large M.  In this limit 5 will approach a Gaussian distribution, by reason 

of the central limit theorem, with a variance given by equation 3.18, if the cells are 

independent: this, in turn, requires the cell size to be larger than the coherence length 

of the galaxy distribution. The quantities ^>^3  anc  ̂ M4 arei respectively, the second, 

third and fourth central moments of the cell counts. These will, of course, depend on the 

three- and four-point correlation functions, in general. If the fluctuations are Gaussian 

then all correlation functions of higher order than the two-point will vanish (see Chapter 

1), so, with the assumption of Gaussian statistics, Var(S) may be shown to take the 

following simple form:

Var(s) = 2g ? ( l ± £ V W W ± 2g W  (3 19)

which may be estimated using N  and 5.

The value of cr2(l) may be evaluated in each of the radial shells and these may be 

combined to yield a determination of cr2(l) for the whole sample which does not depend on 

the variation in mean galaxy number density with redshift. This is done by maximising 

the likelihood function

c(a2)  = n  [2„ v ^ s , o f *  ^
(Si -  n2V 2a2)2

2Var (5,;
(3.20)

where the product is taken over all the radial shells and the empirical estimates N t are 

used in place of n,TG this latter is justified because the errors on are much smaller 

than those on 5-, It is clear from equation 3.20 that the maximum likelihood procedure
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automatically assigns weights to shells dependent on the number of cells they contain, 

as Var(s,-) oc 1/M,- from equation 3.18.

The variance on this maximum likelihood estimate of cr2(l) may be determined given the 

assumption of underlying Gaussian fluctuations, in which case

Var(cr2 /d2!n(£)
'  da2 1 (3.21)

which, in the limit of large numbers of cells per shell takes the simple form

Var(cr2 £
M. N
2 a2 + (l  + Nta2)2 (3.299 1

where we take the empirically determined value of d2li\(C) /  dcr2 as an estimate of its 

expectation value.

The foregoing analysis is complicated by the presence of a mask, since parts of some of 

the cells will lie in the regions of the sky that it excludes. It is necessary, therefore, to 

compute the unmasked volume of each cell and weight the observed counts according, 

as a result of which the estimator for Si becomes

s = EANi -  Yi N*l E* Yhl ZI1 -  St 'A ] N> a m
' (Zj Nj/E, Vj yiZtK -  2 Zt  U3/ Zt  vt + (Zt v ^ / ( Z t U)21 ’

where Vk is the unmasked volume of the klh cell: this assumes that the principal ef­

fect of the mask is to alter the mean cell count, not the variance on the cell counts. 

Equation 3.23 differs slightly from the corresponding equation given by Efstathiou et  al. 

(1990), due to the presence of a typographical error in that work (A. Taylor, private 

communication).

3.4.2 Results

A counts-in-cells analysis (conducted by A. Taylor, using software kindly provided by S. 

Oliver), using the procedure outlined in the previous subsection, was performed on the 

warm and cool subsamples defined in Section 3.2 and the results are presented below.
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In Figures 3.14 and 3.15 (a) we show results from a counts-in-cells analysis performed on 

the full QDOT survey, to a depth of 300/i-1 Mpc. This was calculated using the corrected 

1993 version of the QDOT catalogue, but Figure 3.14 shows that the presence of the 

~  200 erroneous redshifts in the earlier version of the catalogue studied by Efstathiou et 

al. (1990) had a negligible effect on the results of their counts-in-cells analysis.

Informed by the results of the correlation function results presented in the previous sec­

tion, we performed counts-in-cells analyses of warm and cool samples of QDOT galaxies 

to different limiting depths and selected above different 60 fim flux limits. Figure 3.14 

shows that the values of <J2(/) for a given I vary greatly from radial shell to radial shell 

and each has a large uncertainty associated with it. The situation is even worse when 

we come to split QDOT into warm and cool samples and reduce the galaxy numbers 

by considering higher 60 /rm flux limits. This leaves us very reliant on the ability of 

the maximum likelihood mechanism to compute the correct solution for a 2(I). We may 

try to facilitate this by excluding those shells where the counts are low, but we must 

inevitably contend with large uncertainties resulting from our small sample sizes.

From Figure 3.15 we see that the cell variances of the warm and cool samples are con­

sistent within their errors for all three sample depths. A similar analysis of samples 

selected above 60 /.im flux limits yields similar results: the cr2(/) — I. relations for warm 

and cool subsamples selected above each flux limit and out to each depth are consistent 

with each other. The exception to this comes from the smallest cell size (/ = 1000 km 

s-1 ) in the 20000 and 30000 km s -1 samples selected above the 0.6 Jy flux limit, where 

the cool sample displays stronger clustering. Since this is not seen for the higher flux 

limit samples, nor seen in the 15000 km s-1 sample, despite the fact that there are very 

few cool galaxies beyond that distance, we must conclude that this result must be due to 

an erroneous solution being extracted by the maximum likelihood procedure from very 

noisy data.

From Figure 3.16 we see that a counts-in-cells analysis of warm and cool subsamples of 

2 Jy galaxies gives a very similar picture to that from QDOT. The results from all three 

sample depths show that the cell count variances of the warm and cool 2 Jy galaxies are 

consistent, except in the 1000 km s-1 cells, where the maximum likelihood estimate of
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Figure 3.14: Results from a counts-in-cells analysis of the full QDOT survey, to a depth 

of 30000 km s_1, for cells of size: (a) 1000 km s-1 (top left); (b) 2000 km s-1 (top right); 

(c) 3000 km s-1 (middle left); (d) 4000 km s-1 (middle right); and (e) G000 km s 1 

(bottom left). The errors are estimated using equation 3.19. In each plot the solid line 

denotes the maximum likelihood estimate of a 2(l) and the dashed line the estimate oi 

the same quantity from Efstathiou et al. (1990).
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Figure 3.15: Estimated a2(7) vs. I for: (a) the full QDOT survey to a limiting depth of 

30000 km s“ 1 (top left); and for w36.6 and c36.6 samples limited to (b) 30000 km s-1 

(top right), (c) 20000 km s-1 (bottom left) and (d) 15000 km s-1 (bottom right). In (b), 

(c) and (d) the dashed line denotes the results from the cool sample and the dot-dashed 

line those for the warm sample.
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Figure 3.16: Estimated <J2(l) vs. I for warm and cool samples from the 2 Jy survey to 

depths of : (a) 15000 km s“1 (top left); (b) 20000 km s_1 (top right); (c) 30000 km s_1 

(bottom). The dashed line denotes the results from the cool sample and the dot-dashed 

line those for the warm sample.
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the cell count variance is slightly higher for the cool sample than for the warm one.

To summarise, we see that a counts-in-cells analysis of warm and cool subsamples of 

galaxies from the QDOT and 2 Jy surveys does not reveal any difference between the 

strength of their clustering in redshift space. This conclusion is borne out by results 

from samples selected above different 60 /an flux limits and out to different depths.

3.5 S U M M A R Y

In this Chapter we have studied the redshift-space clustering strengths of samples of 

IRAS  galaxies selected on the basis of their far-infrared temperature.

Theoretical models predict that the far-infrared temperature of a galaxy (determined 

from its 60 /¿m/100 /¿m flux ratio) may be used to determine whether its far-infrared 

emission is dominated by: (a) a ‘disc’ component, produced by the scattering of photons 

from the ambient interstellar radiation field by dust in the galactic disc; or (b) a ‘star- 

burst’ component, produced by emission from dust surrounding regions where massive 

stars are being born. A  study of UGC galaxies observed by IRAS  bears this out.

We have reviewed observational evidence linking starburst phenomena with interactions 

between galaxies and have argued that interactions are likely to take place preferentially 

in dense environments, where there are the most galaxies. This assertion led us to invoke 

the Kaiser mechanism to predict that subsamples of warm IRAS  galaxies should be more 

strongly clustered than subsamples of cool ones. Such an effect would introduce a radial 

clustering strength gradient into flux-limited redshift surveys of IRAS  galaxies, with 

serious consequences for cosmological studies using them as tracers of the underlying 

density field.

To look for such an effect we have constructed warm and cool subsamples of galaxies 

from the QDOT and 2 Jy catalogues, taking care not to have the samples biased by 

the variation between 100 /¿m upper limits assigned to galaxies in different portions of 

the sky in the absence of their confirmed detection in that band. We have computed 

the selection functions for the samples and used them in calculating their redshift-space
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correlation functions.

We find no difference between the clustering strength of subsamples of warm and cool 

QDOT galaxies within 100 h~l Mpc of the Local Group: this result is insensitive to 

the details of the weighting scheme used and to the 60 ¡im flux limit above which the 

galaxies are selected. We have found ambiguous evidence for a marginal enhancement in 

the clustering of the warm QDOT sample beyond 100 Mpc. We have seen no such 

effect in our 2 Jy samples, but there are few 2 Jy galaxies beyond 200 h~l Mpc, so this 

may just be setting a limit on the distance beyond which the effect originates.

We have also studied the clustering of our samples using a counts-in-cells analysis, to 

test further whether our results could be artefacts of the different selection functions 

of the warm and cool populations. The results of our counts-in-cells analysis are very 

noisy, but they are consistent with there being no difference between the clustering of 

the warm and cool populations.

Having led the reader to suspect that there might be a difference in the clustering 

strengths of subsamples of IRAS  galaxies selected on the basis of far-infrared tempera­

ture, it behoves us to account for our not having seen such a difference: this we shall do 

in Section 5.2 below.
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Chapter 4

G ALAX Y CLUSTERING  

WITH EULERIAN BIAS

4.1 IN T R O D U C T IO N

In tliis Chapter we consider the use of galaxies as probes of the large-scale structure of 

the Universe. Our aim is to determine the set of galaxy clustering models which can 

provide a picture of large-scale structure consistent with that observed: for our purposes 

a galaxy clustering model is defined to be the combination of a linear density power 

spectrum and a physically well-motivated prescription relating the galaxy distribution 

to the underlying density field.

In pursuit of this aim we proceed as follows:

• we present a. novel technique for studying a number of power spectra using results 

from a single numerical simulation

• we consider an Eulerian bias prescription motivated by ^-body/hydrodynamic 

simulations of galaxy clustering: in doing this we eschew both ad hoc algorithms 

for grouping particles into “galaxies” and Lagrangian bias prescriptions which are 

likely to be poor at modelling the clustering of galaxy-sized halos
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• we use the observed optical galaxy power spectrum in real space to select successful 

galaxy clustering models

• we construct IRAS  galaxy distributions for our models through the use of the 

relation between the observed optical and IRAS  galaxy distributions

• we compute the redsliift-space power spectra for these models and compare them 

with observations

• we test our models further, by comparing with observations their predictions for 

the galaxy pairwise velocity dispersion.

This procedure provides us with firm constraints on the shape of the power spectrum 

of initial density fluctuations and the relation between the galaxy distribution and the 

underlying density field.

In Section 4.2 we review some of the previous work on this topic which has motivated 

this project and discuss some of the issues it has raised, concluding with a discussion 

of the simulations of Cen & Ostriker (1992, 1993), some of whose results we shall use 

in later sections. Section 4.3 describes the simulations that we ourselves use -  these are 

the higli-resolution P3M CDM simulations run by Bertschinger & Gelb (Bertschinger 

&: Gelb 1991, Gelb 1992, Gelb & Bertschinger 1993) -  as well as detailing the novel 

approach we use in analysing them.

In Section 4.4 we review observational determinations of the power spectrum of optical 

galaxies and test galaxy clustering models on the basis of comparison with them. Those 

models which can account for the observed clustering of optical galaxies are then further 

tested by comparison with the observed power spectrum of IRAS  galaxies in Section 

4.6, using a relationship between the distributions of optical and IRAS  galaxies deduced 

from observational data in Section 4.5: we use the redsliift space IRAS  power spectrum, 

since our work in Chapter 3 shows that, in redshift space at least, the observed cluster­

ing of IR AS  galaxies is unaffected by any hypothesised relation between the emission 

temperature of an IRAS  galaxy and the density of the environment in which it finds 

itself.
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By testing galaxy clustering models against the real space optical galaxy power spectrum 

and the IRAS  galaxy power spectrum in redshift space we are also implicitly studying 

the velocity fields they produce. We investigate these predicted velocity fields more ex­

plicitly in Section 4.7, where we compare the small-scale pairwise velocity dispersions of 

our successful galaxy clustering models with observational determinations of this quan­

tity. Section 4.8 summarises the work presented in this Chapter, while a more general 

discussion of the issues it raises is postponed until Chapter 5.

4.2 SIM ULATING  G A L A X Y  C L U S T E R IN G

A great deal of effort has been devoted to numerical studies of galaxy clustering over 

the past decade or so. Most of these studies conform to a particular methodology. The 

starting point in this procedure is a model for the material constituents of the universe 

(usually CDM and/or HDM, plus a certain quantity of baryons) and a description of the 

primordial density fluctuations (usually adiabatic and obeying Gaussian statistics, with 

a scale-invariant power spectrum): the basic principle here is that these choices should 

be motivated by, and, to some extent, falsifiable by, particle physics.

Numerical integration of the perturbation equations produces the transfer function for 

the particular cosmogony, which yields the linear power spectrum of density fluctuations 

expected at early times (see Chapter 1). A realisation of this density field is then 

produced, for example by using the Zeldovich Approximation (see Chapter 2) to displace 

a (large) number of particles from positions on a three-dimensional grid in a manner 

consistent with the computed linear power spectrum. The evolution of this distribution 

of particles is then followed, using some suitable means to calculate the gravitational 

forces exerted on each particle (see Chapter 1 and Section 4.3 for more details). This 

process is continued until a time to be identified with the present (set, for example, by 

the value of a8), at which point the properties of the predicted galaxy distribution is 

deduced by some plausible means (to be discussed below) from the final distribution of 

particles and compared with observational data in a battery of tests, the results of which 

arc used to judge the merits of the particular cosmogony.
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The epitome of this approach is the series of papers (Efstathiou et al. 1985, Davis et al. 

1985, Frenk et al. 1985, White et al. 1987a, White et al. 1987b, Frenk et al. 1988, Frenk et 

al. 1990) by the so-called ‘Gang of Four’ (M. Davis, G. Efstathiou, C.S. Frenk, S.D.M. 

White), principally concerned with the development of the CDM model. The prime 

virtue of this approach is that it is well specified: its adherents claimed that its sole free 

parameter was the fluctuation amplitude. Another element of its appeal is the grandeur 

of its scope, unifying the microscopic world of particle physics with the vast scales of 

cosmology, reflecting the role that the interactions between fundamental particles in 

the early universe played in shaping the large-scale structure we observe today. The 

great successes of the CDM model developed by the Gang of Four have been reviewed 

elsewhere (e.g. Frenk 1991, Davis et al. 1992) and one must concur with Ostriker (1993) 

that there “is no question about the historical utility of the CDM scenario. The existence 

of this model sharpened the questions to be asked of both observers and theoreticians. ”

The dramatic observational results yielded by a number of large galaxy surveys over the 

past few years (e.g. Maddox et al. 1990a-c, Efstathiou et al. 1990, Loveday et al. 1992, 

Dalton et al. 1992) have not only overtaken the CDM model (at least in its classic form, 

as advanced by the Gang of Four) in the sense of indicating that its power spectrum is 

of the wrong shape (although see Bower et al. 1992 for an alternative view) but have 

also facilitated a new approach to studying large-scale structure. The Luddite theorist 

may respond to the great increase in the quantity and quality of the observations of 

large-scale structure by desperately trying to shore up a cherished model against the 

deluge of reality, but it is better to acknowledge that the study of large-scale structure 

is now observationally-driven and to adopt a more appropriate methodology. Such a 

methodology should be phenomenological in its outlook, relying on observational data 

(where possible) rather than theoretical prejudice to decide its course.

The determination of the amplitude of primordial fluctuations by COBE enables the new 

phenomenological method to be applied to the very IV-body simulations that epitomise 

the philosophy of the 1980s. We saw in Chapter 1 that the transfer function of a pure 

CDM model features only one characteristic scale, set by the horizon scale a.t matter-
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radiation equality and corresponding (Efstathiou 1990) to a wavelength

V  =  ~  10( ^ ) -1 /i-'M pc, (4.1)

where the scaling with (D0/i)_1 holds if the baryon density is sufficiently small that 

Silk damping is negligible. The action of gravitation imposes no further characteristic 

length scale on the density field during its evolution so, on scales larger than the spatial 

resolution of the simulation, all distances in the simulated density field continue to scale 

with (fl0/i)_1 at later times.

This may seem to be of limited utility, since inflation-inspired prejudice and the com­

parison of density and peculiar velocity fields by the POTENT  method (see below for 

details) lead us to desire f20 = 1, while one of the early Gang of Four papers (Davis et 

al. 1985; DEFW) showed that for CDM to reproduce the observed strength of galaxy 

clustering on large scales the Hubble constant cannot greatly exceed 50 km s_1 Mpc-1 -  

i.e. h = 0.5. The great advantage of this freedom to scale simulation results arises if we 

regard equations 1.88 and 2.69 not as necessarily giving the transfer function for a CDM 

universe with particular values of fi0 and h , but, simply, as a convenient parametric 

form for the transfer function of a model that is scale-invariant on large scales and in 

which the power spectrum, A2(k), flattens off at a scale determined by Q0h, which is 

now not to be regarded as the product of two cosmological quantities, but rather as a 

shape parameter — call it T*.

The value of F* labels members of a family of power spectra with transfer functions 

given by equations 1.88 and 2.69. Our phenomenological outlook leads us to regard all 

members of this family on an equal footing, as we have no pet particle physics model 

leading us to a particular value of T*. It may seem, therefore, that we are left with the 

unattractive prospect of running a multitude of simulations, spanning a broad range of 

T* values, and taking a long time to run. In fact, the very scaling that led us to consider 

the T* parameter allows us to avoid such tedium.

Consider the set of different outputs from a numerical simulation of, say, a standard 

(i.e. 9,0h = 0.5) CDM model with flB = 0. At each output time, the simulation records 

the positions and velocities of each particle in units of, say, the length of the simulation
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volume and the Hubble velocity associated with that distance, respectively. The size 

of the simulation box may be expressed as a certain multiple of Aeq and, thus, the 

self-similarity of the simulation in these units may be invoked to scale the simulation 

results to yield those which would obtain in a CDM universe with a different value of 

r* from that assumed by the simulators. Note that the amplitude of fluctuations in the 

simulation (expressed in terms of, say, <r8 or e: see Chapter 1 for definitions of these 

quantities) will be changed by this scaling, but in a way that is readily calculable.

In this way, we may identify the earlier epochs of our fl0h = 0.5 CDM simulation as 

the present epoch (defined, say, by the COBE e) in cosmogonies with shape parameters 

F* < 0.5. We may, therefore, study a number of cosmogonies using the results from a 

single D0h = 0.5 CDM simulation although, clearly, we are restricted to the values of T* 

which correspond to the output times of the simulation (for a given value of e to define 

the present epoch) and we cannot use the very earliest outputs in the simulations, for 

which the particle distribution bears the mark of the grid of initial positions.

This procedure enables us to study a number of differently-shaped power spectra at 

the computational expense of running only one simulation. By adopting it we are also 

decoupling the question of the form of the initial power spectrum of density fluctuations 

from the question of what set of material constituents in the early universe produced 

it. This is in keeping with our phenomenological outlook: we let the observations of 

large-scale structure tell us the shape of the initial power spectrum and only thereafter 

do we speculate as to its origin.

The problem remains, however, that IV-body codes simulate the dark matter distribution, 

not the distribution of the baryons which will go to produce the galaxies whose properties 

we wish to use to judge our cosmological models. Given the current lack of knowledge 

as to how galaxies form it is necessary to employ some plausible, but necessarily ad hoc, 

prescription to deduce the properties of the galaxy distribution from those of the dark 

m atter distribution. A number of prescriptions have been used in previous work and we 

review some of them here.

One simple approach would be to follow the analogy with the study of cluster correlations 

presented in Chapter 2 and locate local maxima (above an appropriate threshold) in the
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initial Gaussian density field (smoothed on an appropriate scale) and tag the particle 

nearest each maximum as a site of galaxy formation. These ‘peak particles’ may be 

followed through the course of the simulation and their distribution at the final output 

be compared with that of galaxies at redshift zero. Gelb & Bertschinger (1993) show that 

roughly half of the galaxy-sized halos they identify (using their DENMAX algorithm -  

see below) at redshift zero in their large, high-resolution CDM simulations contain no 

particles tagged in the initial density field following the prescription of Frenk et al. (1988): 

i.e. smoothing with Gaussians with filter radii of R s = 550 and 800 kpc (comoving) and 

selecting peaks above thresholds of va = 3.0 and 2.5 respectively. It appears, therefore, 

that peak particles are poor tracers of galaxy-sized halos in the evolved density field and 

so should not be used (e.g. Park 1991) as a way of avoiding the requirement for good 

spatial resolution in the trade-off with maximising the simulation volume.

In simulations with sufficient resolution to have typically hundreds of particles per 

galaxy-sized halo, it is conventional to define halos using the so-called ‘Friends-of-friends' 

(FOF) algorithm. The FOF algorithm recursively links particles within a certain dis­

tance, b, called the linking length, typically taken to be ~  10% — 20% of the mean 

inter-particle separation. The justification (DEFW) for this is that such a prescription 

effectively corresponds to defining halos with overdensities above a certain threshold, 

the value of which is set by the linking length. The success of an FOF algorithm with 

a particular linking length varies with environment: a short linking length will miss 

some halos in underdense regions, while a longer one will fail to resolve halos in denser 

environments, joining together what the eye would regard as two distinct objects. This 

latter has a particularly serious consequence for the computation of small-scale velocity 

statistics and we shall discuss the possibility of its being the origin of ‘velocity bias’ in 

Section 4.7. To overcome this, some workers (e.g. Suto, Cen & Ostriker 1992; Suginohara 

& Suto 1992) have used an adaptive FOF algorithm whose linking length is set by the 

local density. The basic weakness of FOF remains, however: particles are linked on the 

basis of proximity, not physical association -  i.e. there is no requirement that the halos 

selected by FOF are actually bound objects at all. The FOF algorithm has been adopted 

as something of an ‘industry standard’ by numerical simulators, with the unfortunate 

consequence that results obtained with it are all too often accepted as fact without a
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proper investigation as to their sensitivity to the method of group-selection used. For 

example, the work of Suginohara & Suto (1992) and Gelb (1992) shows that the halo 

mass functions determined by the Press-Schechter (Press & Schechter 1974) formalism 

only match those found in A-body simulations if an FOF algorithm with b ~  0.2 is used 

and that discrepancies result from the use of equally plausible and/or higher resolution 

algorithms: this is serious, as it is this supposed agreement with A-body results that 

provides the pragmatic motivation for the widespread use of the conceptually-flawed 

Press-Schechter formalism. Perhaps more seriously, Suginohara & Suto (1992) show 

that the rotation curves of dark matter halos are very sensitive to the algorithm used to 

group particles into them and suggest that the production by the Gang of Four of flat 

rotation curves for the halos in their CDM simulations — one of the great triumphs of 

their CDM model — could simply be an artefact of their particular FOF algorithm and 

not reflect anything inherent to the CDM model at all.

These results must make one wary of using ad hoc algorithms, however plausible they may 

seem at first sight, and motivate one to adopt a more physical approach to finding groups 

of particles in A-body simulations. An algorithm developed in this spirit is DENMAX 

(Bertschinger & Gelb 1991, Gelb 1992, Gelb & Bertschinger 1993). In DENMAX, the 

density field is evaluated on a fine grid (typically 5123) and particles are left to move 

in this fixed gravitational field to one of the local maxima. The particles are labelled 

to denote which maximum they end up in and all particles are returned to their true 

positions. Finally, the particles assigned to each maximum are analysed, to determine 

the largest set of them which constitute a bound object, by removing unbound particles. 

This “unbinding” process has the benefit of destroying small halos which arise solely as a 

result of Poisson fluctuations, as well as removing particles transiently in the proximity 

of a true, bound halo, with obvious consequences for the internal velocity dispersions of 

the halos.

DENMAX is well motivated physically, but it is very expensive computationally. One 

might also argue that any galaxy identification scheme should be implemented at an 

earlier time, corresponding to the epoch of galaxy formation. Such an approach is 

followed by Couchman & Carlberg (1992), who identify as “galaxy precursors” those 

particles lying within a minimum overdensity contour of 125 at :  = 3. They then
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construct “galaxies” at redshift zero by joining together those particles previously tagged 

as “galaxy precursors” which finish up in groups of a certain size that have overdensities 

greater than ~  3000. This method is found to be rather inefficient -  only ~  20% of the 

“galaxy precursors” finish up in “galaxies” -  but it selects a statistically similar halo 

population as the simulations of Carlberg, Couchman & Thomas (1990), which includes 

a dissipative component followed using the methods of Smooth Particle Hydrodynamics 

(SPH).

The prescriptions outlined above may vary in their sophistication, but none of them can 

overcome the fundamental objection that they do not analyse the baryon distribution, 

which is what is required for a realistic treatment of the properties of galaxies: for exam­

ple, the high-resolution simulations of Bertschinger & Gelb, analysed using DENMAX, 

may provide an accurate description of the merging and evolution of dark matter halos 

but they can say nothing about the formation of galaxies through the cooling of baryons 

in the potential wells of the halos, nor about how such proto-galactic baryonic bodies 

respond to the interaction of their parent dark halos.

To study the baryon distribution directly requires the introduction of dissipative pro­

cesses into numerical simulations. Advances in computing are now making such simula­

tions possible, although the authors of the first reports on these mixed 7V-body/hydro 

codes (Katz, Hernquist & Weinberg 1992; Cen & Ostriker 1992, 1993) readily acknowl­

edge that the subject is in its infancy and that their results should be treated with cau­

tion. The simulation by Cen & Ostriker (1992, 1993; hereafter COI, COII respectively) 

of a CDM universe incorporating a hydrodynamic treatment of the baryonic compo­

nent and a “heuristic but plausible” [COI] prescription for galaxy formation produces 

particularly appealing results and we shall concentrate on their work in what follows.

At the heart of the Cen & Ostriker study (see COI, COII and references therein for 

further details) lies the simulation of an 80 h~l Mpc cube of 2003 dark m atter particles 

evolved using a PM code and a 2003 cell Eulerian hydrodynamic code (based on the 

aerodynamics code of Jameson 1989) which computes (in a spatially-averaged fashion) 

the principal line and continuum atomic processes for an H/He plasma of primordial 

composition, through the modelling of the radiation field from 1 eV to 100 keV.
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The following prescription is used by COI to model galaxy formation. At each time step 

the cells are analysed and flags raised marking those in which the baryonic component 

satisfies the following four criteria:

• dense: Sph/p h > r)

• contracting: V • v < 0

• rapidly cooling: fcool < tdyn =

• Jeans unstable: mb > = G~3/2p l 1/2c3[l + ( p j  Ph)(Spd/ P d ) / ( 6 P b / P b ) } ~ 3 / 2

where pb,p d are, respectively, the baryonic and dark matter densities; pt = pb + pd is the 

total density; m h, m 3 are the baryonic and Jeans masses of the cell; c is the sound speed; 

G is Newton’s gravitational constant; and the cooling time, tcooi, is defined (e.g. Rees & 

Ostriker 1977) to be tcool = 3/cBT/A(T)n, where n is the number density of the gas and 

A(T) is the cooling function. Ceil & Ostriker use a density threshold of i) = 5.5 and find 

that varying it affects the timing of galaxy formation events somewhat, but has little 

impact on the properties of the galaxy distribution at the present. The gas in cells flagged 

as satisfying the four criteria listed above is assumed to be heading towards inevitable 

collapse, with the resultant formation of a stellar system. This procedure is effected 

by a prescription inspired by the classic Eggen, Lynden-Bell & Sandage (1962, ELS) 

model for galaxy formation, assuming a simple relation between the galaxy formation 

time scale and the dynamical free-fall time. Cen & Ostriker compute the gas mass 

A 77rb = mbA f/fdyn that would collapse in the next time step A t and remove such an 

amount from the gas mass associated with the cell, replacing it by a particle of mass 

m m = Amb, placed at the centre of the cell and given the mean velocity of the gas in 

the cell. Each particle so created is given three labels: its mass (m*), the redshift (ztJ  

of its formation and the free-fall time (idyn) of its cell at redshift 2,.  The distribution 

of these particles is followed in a dissipationless fashion thereafter, 011 an equal footing 

with the dark matter particles. At a later time, galaxies are formed by grouping these 

created particles using an adaptive FOF algorithm.

The conversion of the collapsed baryonic material into stars is (again following ELS) 

taken to be spread over a dynamical time, so that the mass A??rsp, converted into stars

205



- ( i-O A d y n l-  (4-2)

in time step At following creation of a particle of mass m, at time t* is given by

Am SF = m, ( A t \t J. exp
V dyn J . dyn

Star formation will result in the injection of energy into the interstellar medium from 

both supernovæ and the UV output from massive young stars. The supernova input 

rate is modelled as

A E SN _  / A m SF\ 2 
At ~  \  A t  J C6sn’ (4’3)

where eSN = 10-4'5 and this energy is added to the ISM locally, spread out using a 

Gaussian of width a = 1.2 h~l Mpc. The UV input rate is taken to be

A Eu _  (  AmSF\  2
A* V A( >Ce^  {4A)

where euv = 10_4'° and gv is the normalised spectrum of a young stellar association 

(Scalo 1986). This input is not added locally, but to the ambient radiation field: this 

must be considered as a weakness of the Cen & Ostriker method, since UV radiation, like 

the thermal input from supernovae, would be expected to inhibit local galaxy formation 

(e.g. Bower et al. 1993).

In COII, Cen & Ostriker outline the results of this galaxy formation prescription. They 

find that galaxy formation peaks in the interval 2 ~  3 — 2 (with star formation peaking 

later, at z ~  2 — 1), but that there is a significant amount of galaxy formation as early 

as z ~  8 — 5 and that these oldest galaxies end up as the most massive systems by 

2 = 0, due to a combination of higher masses at formation and addition of mass through 

merging. They investigate the variation of location (at 2 = 0) of galaxies as a func­

tion of age, finding that the youngest quartile of galaxies comprise a relatively uniform 

field population, the second quartile shows evidence for filamentary structure, the third 

quartile is found principally in filaments and the rich clusters at their intersections and 

the oldest quartile is found only in rich clusters. By looking at the distribution of the 

oldest galaxies at early times it is found that this density-age relationship is produced by 

galaxies having formed in the filaments and then drifting along them to the clusters at
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their intersections. The observed correlation between galaxy mass and age leads Cen Sz 

Ostriker to identify the youngest 50% of their galaxies as spirals, the next 25% as SOs and 

the oldest 25% as ellipticals, following which they find a morphology-density relationship 

very reminiscent of that observed by Dressier (1980) and, consequently, a variation in 

the clustering strength with morphology like that observed by Davis & Geller (1976). 

One may question the identifications made by Cen & Ostriker between certain sorts of 

halo and certain classes of galaxy, but the picture they present is very appealing and 

certainly augurs well for the use of such IV-body/hydro codes in the future.

Perhaps the most striking result in COI is the surprisingly tight relation between the 

density field at redshift zero (smoothed with a Gaussian of some filter radius) and the 

local galactic number density field (smoothed in the same way) which Cen & Ostriker 

deduce. In COII they give a simple fit to this relationship as being

log10 = A  + B  log10
P t 

<Pt>
+ C log10

p t 
(Pt)

(4.5)

where pg,p t are, respectively, the galaxy density and total mass density fields at 2 = 0 

and the values of A, B  & C vary with the filter radius of the Gaussian used to smooth 

the fields. Cen & Ostriker note that this relationship does not reflect information about 

the process of galaxy formation so much as the combination of formation and subsequent 

movement: the most overdense regions may not be the best places for galaxies to form 

(as a results of their high virial gas temperatures, for example) but they will be the 

places to which many galaxies will drift, following their formation elsewhere.

The tightness of this pg — pt relation motivates the use of an Eulerian bias scheme, where 

one deduces the present number density of galaxies at a certain point in space from its 

local mass density through a pg — pt relation. Coles (1993) has recently considered 

Eulerian bias models in general terms and in this Chapter we perform a more detailed 

analysis, concentrating on the constraints placed on such models by the requirements 

of consistency with observations of galaxy clustering. Since the basic premise of this 

scenario is that the galaxy number density depends on the total mass density, wre need 

only consider dissipationless simulations, so long as we are concerned with mass models 

where the dominant mass component is dissipationless.
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4.3 DETAILS OF THE N U M E R IC A L  SIM ULATIO NS

In this Chapter we use P3M CDM simulations kindly provided by E. Bertschinger and 

J. Gelb: further details of the simulations axe given in Gelb (1992), while scientific 

results deduced from them are presented by Bertschinger &: Gelb (1991) and Gelb & 

Bertschinger (1993).

We use two sets of simulations, namely:

• “P3M”: these are simulations of a box of comoving size 2560 km s-1 and contain 

643 particles. Forces are evaluated using a standard Plummer (1911) potential 

with softening length e = 40 kpc and with the long-range component computed 

on a 1283 grid. A Hubble constant of H0 = 50 km s-1 Mpc-1 is assumed and 

a Holtzman (1989) CDM transfer function with = 1 and 5% baryons is used. 

The mass of each particle is 3.52 x 1010Mq. N.B. these simulations have the same 

physical parameters as the “CDM12” simulations discussed by Gelb (1992) and 

Gelb Sz Bertschinger (1993) but were run on different machines and had initial 

conditions determined by a different set of random numbers.

• “CDM16”: these are simulations of a box of comoving size 5000 km s-1 and contain 

1443 particles. Forces are again computed using a Plummer potential, this time 

with a smoothing length of e = 65 kpc, and with the long-range, particle-mesh 

forces calculated on a 2883 grid with (in a modification of the “adaptive P3M” 

method of Coucliman 1991) a finer (4203) grid being used in dense regions. A 

zero-baxyon CDM transfer function from Bardeen et al. (1986, BBKS) was used, 

again assuming D0 = 1 and h = 0.5. The mass of each particle in these simulations 

is 2.3 X 1010 Mq.

The Plummer (1911) model gives the force on a particle of mass m  at a distance r from 

another particle of mass m as being F(r) = Gm2r / ( r 2 + e2)3̂ 2: a non-zero value of 

e is needed to prevent two-body relaxation and the production of tightly-bound pairs 

of particles. Since this force is the sum of particle-particle and particle-mesh terms in 

a P3M code, it follows that the potential used to compute the particle-particle forces
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is not exactly of the Plummer form. In what follows we shall assume that there is a 

negligible difference between the fits obtained by Holtzman (1989) and by BBKS to the 

transfer function of a CDM model of the same composition: we shall, however, have to 

account for the 5% baryon fraction in the P3M simulations -  Mann et al. (1993) give 

the scaling of the shape parameter, T*, with baryon fraction as being well approximated 

by T* = Slh e~2iiB for values of QB consistent with SBBN (see Chapter 1). N.B. our T* 

parameter differs slightly from the shape parameter, T, introduced by Efstathiou, Bond 

&: White (1992), which they define as being T = Sl0h despite the fact that they use a 

CDM transfer function with non-zero flB.

We consider data from a number of output times, but wish to treat them, however, as 

being the present epoch (defined by a COBE fluctuation amplitude of e =  2.9 X 10- '1) 

in simulations of fi0 = 1 models with shape parameters differing from the original 

T* = 0.5 e-2fiB. Our choice of f!0 = 1 is motivated by two considerations: (a) the 

desire to achieve consistency with the inflationary prediction of a spatially flat universe 

(consistent also with the COBE CBR anisotropy observations) without having to intro­

duce a cosmological constant; and (b) the comparison performed by Dekel et al. (1993) 

of the local smoothed density field of IRAS  2 Jy galaxies and the local velocity field 

reconstructed using the POTENT  (Bertscliinger & Dekel 1989) procedure, which yields 

Dq,6/ 6j = 1.28^0 59 (at the 95% confidence level), which favours fi0 ~  1 in the absence 

of a good physical reason why the linear bias factor, for IRAS  galaxies should be 

significantly less than unity.

We must, therefore, determine the value of T* corresponding to each value of a8: to avoid 

confusion we shall denote by <rSIM the value of a8 in each data set’s original guise as an 

Sl0h = 0.5 CDM simulation. This may be done as follows, starting from the definition 

of the variance, cr2(l?), in spheres of radius R:

J roo  ̂ U
1 A \ k ) W 2(kR)— , (4.6)
o k

where W(kR.) is the window function for a spherical top hat: IV’(x ) = 3(sinx —xcosx)/.r . 

If we concern ourselves only with power spectra which are scale-invariant on large scales, 

then we know from Chapter 1 that the power spectrum, A2(k), may be written in terms
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A2W = v ( i ) <fc4r2« '  H")

where the normalisation constant, e, may be determined from the COBE CBR anisotropy. 

In that case, equation 4.6 becomes

4c2 / r \4 r°°
a \ R )  = —  J k3 T 2( k ) W \ k R ) d k .  (4.8)

Recalling that T ( k ) =  T(k/T*),  we make a change of variables x = k/(T* h~l Mpc), 

whence equation 4.8 becomes

4f2 roo
a \  =  _ (3 0 0 0 ) 4 r *4 /  x3T 2(x ) W 2(ART*x ) da:. (4.9)

9 Jo

So, if we express R  in terms of (l?*)_1/i_1 Mpc (equivalent to expressing it in terms

of Aeq) the integral on the rhs of equation 4.9 remains constant under changes of T*.

Evaluating this integral then gives us

of the transfer function, T(k), as

T — 0.455 crSjM (4.10)

as the relation between the cr8 value of an output in the original T “ =  0.5 simulation 

and the T* value of the cosmogony that would yield the same numerical value for a(R  = 

4/r* /i-1 Mpc) in a COBE-normalised universe today.

Having determined the appropriate value of T* for each output, we must then scale the 

simulation volumes accordingly. For example, the CDM16 simulations have comoving 

size 5000 km s-1 , corresponding to 25/r* h-1 Mpc. So, the output with crSIM = 0.31 

becomes a simulation of size 100 h -1 Mpc of a T* = 0.25 cosmogony. Not only are 

we, therefore, able to use the earlier outputs of a = 0.5 simulation to represent the 

present in a number of cosmogonies with T* < 0.5, but the comoving volumes of these 

models simulated are larger than those of the original simulation.

In Table 4.1 we list the simulation outputs studied, for each of which we give: the value 

of <7sim; the resultant value of E“; and the original and final, scaled simulation sizes.
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Simulation Original Size [h 1 Mpc] a S I M r* Scaled Size [h 1 Mpc]

P3M.11 25.6 0.20 0.18 64.0

P3M.12 25.6 0.30 0.23 50.0

P3M.13 25.6 0.40 0.26 44.3

P3M.14 25.6 0.45 0.28 41.1

P3M.15 25.6 0.50 0.29 39.7

P3M.16 25.6 0.55 0.31 37.2

P3M.17 25.6 0.60 0.32 36.0

P3M.18 25.6 0.65 0.33 34.9

P3M.19 25.6 0.68 0.34 33.9

CDM16.31

CDM16.39

50.0

50.0

0.31

0.39

0.25

0.28

100.0

89.3

Ta,ble 4.1: Parameters for the data sets used.

4.4 T H E  P O W E R  S P E C T R U M  OF O PT IC A L  G A L A X Y  

C L U ST E R IN G

The first stage of our procedure is to determine the set of galaxy clustering models which 

are consistent with the level of clustering observed in large optical galaxy catalogues: we 

do that in this Section.

4 .4 .1  O b s e r v a t i o n a l  D a t a

Several determinations of the power spectrum of optical galaxy clustering have been 

published in recent years. Vogeley et al. (1992) analysed two volume-limited samples of 

galaxies from the CfA redshift survey (Huclira et al. 1992), which is now complete to 

Zwicky magnitude m g = 15.5 in eleven 6° slices. Loveday et al. (1992) determined the 

power spectrum of the Stromlo/APM redshift survey. This is a l-in-20 sparse-sampled 

survey of bright (bj < 17.15) galaxies from the APM Galaxy Survey (Maddox et al. 

1990a-c). Baugh & Efstatliiou (1993; BE93) determined the real space power spectrum 

of the APM survey from its angular correlation function.
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We shall summarise the work of BE93, as we shall principally be using their results here, 

since they provide the tightest available constraint on the power spectrum of optical 

galaxy clustering, due to the higher signal-to-noise that can be obtained from the use of

dimensional real space power spectrum: this integral equation is the power spectrum 

analogue of Limber’s equation (Limber 1953) and may be written in the form:

the differential redshift distribution dN/dz  is chosen so as to be consistent with both 

(at bright magnitudes) the luminosity function of the Stromlo/APM redshift survey 

(Loveday et al. 1992) and (at faint magnitudes) the redshift distributions of the deep 

surveys of Broadhurst et al. (198S) and Colless et al. (1990, 1993).

Equation 4.11 may be inverted by Lucy’s iterative method (Lucy 1974) to yield the 

power spectrum P(k), given a parametric fit to w(zu). We use the results of BE93 with 

a =  0 .

a very large galaxy catalogue in projection rather than the three-dimensional distribution 

of a much smaller redshift sample drawn from it. BE93 use an iterative method (Lucy 

1974) to invert an integral equation relating the angular correlation function to the three-

(4.11)

where w(zu) is the angular correlation function for pairs of galaxies separated by angle 

8 = 2sin_1(2tu) on the sky, P(k ) is the three-dimensional real space power spectrum as 

a function of comoving wavenumber k and the kernel g(kw ) is given by

(A/Ï1J2 Jo
r o c  F

Jo (1 + z)<*
J0(kzux)dz, (4.12)

where the evolution of the power spectrum is modelled as

(4.13)

and Af is the surface density of galaxies in the catalogue, which subtends a solid angle 

f2S. The quantities F  and x are related to the metric by

ds2 = c2dt2 -  (dx2/ F 2(x ) -  x 2dd2 + z 2 sin2 6 d<̂ 2), (4.14)

and J0(y ) is the 0th order Bessel function of the first kind. A parametric form for
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4.4.2 Method

Our aim in this Section is to determine candidate galaxy clustering models capable of 

accounting for the APM power spectrum determined by BE93. The data sets we use 

are the full 643 P3M particle distributions and 100,000-particle sparse samples from 

the CDM16 simulations: we found empirically that this size samples the distributions 

adequately for our purposes. From each data set we construct an optical galaxy distri­

bution, by assigning a weight, wQ, to each of its particles, according to the following 

prescription:

logio(wo) = ci logio
(P)

+  Co logl° (w
(4.15)

where p is the value in the original simulation (i.e. not in the sparse sample for the 

CDM16 data) of the local density field evaluated on a 1283 grid and smoothed with a 

Gaussian of filter radius 1 Mpc to approximate filtering on galaxy mass scale: (p) is 

the mean value of p on the grid. This prescription is intended to be the analogue of the 

Cen & Ostriker relation of equation 4.5, given that it is more direct for us to implement 

a prescription weighting particles in the data set than one relating smoothed density 

fields.

For each data set, we consider a grid of points on the (cl 5c2) plane. For each of the 

optical galaxy clustering models specified by these (c1}c2) pairs, we assign the set of 

weights {w0 } to the particles in the data set and compute the power spectrum of this 

weighted particle distribution.

The first step in this procedure is to divide the simulation volume up into a number (we 

use 323) equal-volume cubic cells. A grid is formed by the set of points at the bottom 

left-hand corners of the cell and to each grid point is assigned the fraction of the total 

weight of the simulation to be found in that cell:

i.e. £ particles i in  cell iw o(hj)

E c e l l s j  E p a r t ic le s  i in  cell j w O
(4.16)

The derivation of the power spectrum of a distribution of weighted particles proceeds 

as follows (Peebles 1980). Consider dividing the volume containing the distribution of
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particles into infinitesimal cells of volume {¿Vj}, such that the occupancy, n{, of each 

cell is either one or zero. The amplitude, 6^ , of the fcth mode of the Fourier transform 

of this distribution is then given by

c Et niwt e‘ ^ r' , .
= i E ,  ' ( 4 17)

where the sum is evaluated over the cells.

It follows that

(6k sk>) = Y , ( n^w^ e' {h~k)  r' +  Y ^ ( ninj wiwj ) e<{k n fc,' rj) (4-18)
« i i^ j

but (n^jWiWj) = (£),- wt) SV^V ^ l  -f £(r,j)], where rtJ = |ri — r  -|, from the definition of 

the two-point correlation function. Setting fc1 = — k in equation 4.18 then yields

<i«C} = S i ^ i l  + i  / > , [ 1  +  {(,)] ei f c (4.19)(El F J

Since the power spectrum, P(k), is related to the correlation function, £(r), by (see 

Chapter 1)

P{k) = 1 J d3r£(r)eife-r, (4.20)

it follows that the power spectrum, P(k), is related to the quantity ( | ^ | 2) computed 

from the distribution of weighted particles by

P(k ) = <|ifc|2) - : (4.21)

*-e- ( E i^ ? ) / ( E i  ^ ,)2 is shot-noise term which must be subtracted from (|ifc|2) to 

yield the estimate of the power spectrum of the weighted density field.

The power spectrum thus determined is taken to be that of the optical galaxy clustering 

model. Interpolating between these binned data yields estimates of the power spectrum
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of the model at the wavenumbers corresponding to the centres of ten of the wavenum- 

ber bins used by BE93 in their determination of the APM power spectrum. For each 

candidate we compute the quantity y 2, defined by

x2 = E Vobsi^i ) 2/cand ( ^ i )

¿=1
(4.22)a(kt)

In equation 4.22, yobs(ki) = log10[A2bs(fct)], where A2bs(fc,) is the BE93 estimate for the 

APM power spectrum in the bin centred on wavenumber &,•; 2/cana(^») = ^Siot^candtA')]’ 

where A2and(fcJ) is the interpolated estimate of the power spectrum of the candidate at 

wavenumber kp, and cr(fct) is the estimated error on y0bs(^i)-

4 .4 .3  R e s u l t s

From these results we determine the (c1,c2) pair that yields the lowest value of y 2 (which 

we denote by xitiin) for each data set and produce a contour plot of A y2 = X2 -  Xmin on 

the (cl5 c2) plane. In Figure 4.1 we show the resulting plot for the data set CDM16.31: the 

three contour levels marked are A x2 = 2.3, 4.6 and 6.0, which correspond, respectively, 

to the 68%, 90% and 95% confidence limits for the (c1,c2) pair. The interpretation of 

this plot is straightforward: for a given positive value of cx it is always possible to find 

a negative value of c2 that will produce a weighted particle distribution with a power 

spectrum consistent with that of APM galaxies. The result of this trade-off between 

the linear and quadratic terms in equation 4.15 produces, for the most part, a weighted 

particle distribution in which the particle with the highest p/(p) does not have the highest 

w0 weight and the particle with the lowest p/(p) does not have the lowest iuQ weight -  

i.e. the trade-off is effected by under-weighting the most overdense and over-weighting 

the most underdense regions of the simulations.

Even acknowledging our lack of understanding about the processes of galaxy formation, it 

is difficult to imagine how a physical process could yield the values c1 = 13.0, c2 = —9.0, 

for example. We must introduce some further condition of “reasonableness” to constrain 

the allowed region on the (c1,c2) plane and prevent what must be regarded as the 

unpliysical excesses of the trade-off between the linear and quadratic terms. The choice
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c 1

Figure 4.1: The * 2 contour plot in the (q , c2) plane for data set CDM16.31. The contour 

levels marked are Ay'2 = 2.3, 4.6 and 6.0 corresponding, respectively, to the 68%, 90% 

and 95% confidence limits for the (cx,c2) pair, while the dots mark the models allowed 

at the 95% level.

216



of such a constraint must be somewhat subjective, but we have no choice other than to 

select a plausible constraint and determine its consequences.

One obviously reasonable constraint would be to require that the weight wQ must be a 

monotonically-increasing function of the local density field p, in accordance with one’s 

belief that galaxies are more likely to be found where the density is higher: the sit­

uation may well be more complicated for IRAS  galaxies, due to gas-stripping by the 

intra-cluster medhim and interaction-induced starbursting like that discussed in Chap­

ter 3, but this should hold for optical galaxy samples like those under consideration 

here. From equation 4.15 we see that this condition corresponds to the inequality 

Cj + 2c2log10( p /(p)) > 0 for the range of log10(p /(p)) probed by the simulations. Im­

posing this constraint greatly reduces the allowed region of parameter space and, indeed, 

leaves no allowed models for data sets P3M.15-19. This may be readily explained by 

considering the transformation which the w0 — (p /(p)) relation has to effect to produce a 

weighted distribution with a power spectrum consistent with that of APM galaxies. For 

reasonable (by our definition above) values of the (c1?c2) pair, the weighting procedure 

has a greater effect on the amplitude of the power spectrum than on its slope: the slope 

of the mass power spectra for data sets P3M.15-19 are steeper than that of APM galaxies 

on the same scales, so it requires an unreasonable w0 — (p /(p)) relation to flatten the 

slope in the way required to produce accord with the APM power spectrum.

In Figure 4.2 we show the final allowed regions on the (c1,c2) plane: the dots denote 

the allowed models and the three contour lines are, as before, the 68%, 90% and 95% 

confidence limits for the (c1,c2) pair. The straight lines delineate the constraint cx + 

2 c 2 log10(p /(p)) = 0 for the maximum and minimum values of log10(p / (p)) found in the 

simulation: the density range varies from —1.076 < log10(p /(p)) < 1.581 for P3M.11 to 

— 1.569 < log10(p /(p)) < 2.021 for P3M.14 — the range increasing, as expected, with 

the amount of small-scale power in the density field (i.e. with increasing F*).

Figure 4.3 shows contour plots of Po/(Po) against wQ for two models from Figure 4.2 

(b). The left-hand panel shows an allowed model (Cj = 0.225, c2 = 5.31 x 10~2), while 

the right-hand panel shows a model (cj = 1.041, c2 = —0.457) which does not satisfy the 

Cj + 2c2log10(p /(p)) > 0 constraint. The behaviour shown in the right-hand panel is

217



c 1 c1

c 1

Figure 4.2: The allowed regions on the (c j,c2) plane for: (a) P3M.11; (b) P3M.12; (c) 

P3M.13; and (d) P3M.14. The circles denote the models with A x '2 < 6.0: filled dots 

mark models which satisfy the constraint dlog10(u;o )/d log10(/?/(/i)) > 0, while empty

circles mark those which do not.
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generic to such models: the contours are concave, turning back on themselves to under­

weight the most overdense regions -  as c1 increases, this behaviour becomes increasingly 

pronounced.

In Figure 4.4 we show the optical power spectrum for a representative allowed model 

(T* = 0.23, c1 = 0.225, c2 = 5.31 X 10~2, as shown in the left-hand panel of Figure 4.3): 

the filled circles show the optical galaxy power spectrum predicted by the model, while 

the stars show the observational data from BE93. Other allowed models show a similar 

level of agreement with the APM power spectrum, although over slightly different scales: 

the wavelengths at which we determine the power spectrum are expressed in terms of 

the size of the simulation volume, so the interval in wavenumber over which we compute 

A 2(k) varies slightly with F*.

We obtain very similar results from P3M.14 and and CDM16.39 throughout this proce­

dure and the results from CDM16.31 follow closely those from P3M.13. We consider that 

ample evidence that the smaller volumes of the P3M simulations are perfectly adequate 

for our purposes and we shall consider only them in what follows.

4.5 T H E  D IS T R IB U T IO N S  OF O PT IC A L  A N D  IRAS  

G ALAXIES

Having found, for each value of T" considered, the locus on the (c1,c2) plane where 

acceptable optical galaxy clustering models lie, we now wish to see whether these can­

didates can also account for the redshift-space power spectrum of IRAS  galaxies. This 

is done in a way analogous to that for optical galaxies: we assign a set of weights {uq} 

to the particles in the data set, such that we are to regard the power spectrum of this 

weighted distribution as being the IRAS  power spectrum predicted by the galaxy clus­

tering model.

We wish to deduce the set of IRAS  weights {uq} from the set of optical weights {wG} 

through the use of a w0 -  uq relation derived from observational comparisons of the 

distributions of optical and IRAS  galaxies. A number of such studies (Babul Postman 

1990; Strauss et al. 1992; Oliver 1993; Hudson 1993) have been published in recent years,
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Figure 4.3: Contour plots of p0 /{p0 ) against w0 for two P3M.12 models which give 

satisfactory agreement with the APM power spectrum. The left-hand panel shows the 

allowed model (q  = 0.225, c2 = 5.31 X 10~2), while the right-hand panel shows a model 

(cj = 1.041,c2 =  - 0.457) which does not satisfy the cx + 2c2 log10(/?/(p)) > 0 constraint. 

The contours are linear in surface density.
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Figure 4.4: Comparison of the power spectrum of optical galaxy clustering in real space 

predicted by the model (T* = 0.23, cl = 0.225, c2 = 5.31 x 10-2 ) and that computed from 

the APM catalogue by Baugh & Efstathiou (1993). The dots mark the model predictions 

and the stars the observational data with error bars derived from the scatter between 

the values of the power spectrum computed in four regions of the APM catalogue.



yielding a fairly clear picture of the two classes of galaxy following consistent distributions 

except in rich environments, which have a lower overdensities in IRAS  galaxies than in 

optical galaxies. This suggests that we adopt a w0 — wj relation of the form

w
WQ if W 0  < W q

w c +  (w o ~ w c)n if w 0 > w c

where the parameters wc and n are to be determined observationally. Most of these 

optical-IRAS  comparisons have been quantified through smoothing the number density 

fields on ~  10 h~l Mpc scales, but we can extract the information we require on smaller 

scales from the study by Strauss et al. (1992) of five clusters found in the CfA redshift 

survey and the 2 Jy IRAS  survey of Strauss et al. (1990).

Strauss et al. (1992) determine radial profiles for their five clusters (Fornax, Ursa Major, 

Virgo, Coma and Centaurus) and find that in all cases the profiles (defined as the 

variation of the average overdensity in a sphere of a given radius centred on the cluster 

core as a function of radius) delineated by the optical and IRAS  galaxy populations 

have the same slope in redshift space. The clusters with the best statistics (i.e. the 

largest number of IRAS  galaxies) are Virgo and Ursa Major. The overdensity in optical 

galaxies in Virgo averaged over spheres in redshift space out to a radius ~  750 km s-1 

is roughly 1.6 times that in IRAS  galaxies, while the densities of the two species are 

consistent in Ursa Major out to a radius of ~  1000 km s-1 .

We may use the information contained in these radial profiles to deduce a wG -  tvj 

relation, as we shall now show. The Fourier-space window functions for smoothing with 

a spherical top hat of radius Rs and a Gaussian of filter length i?g are equal to second 

order for R s = y/bRg. It follows, therefore, that we may identify with Ursa Major and 

Virgo Major particles in our simulations that have the same redshift-spa.ce overdensity 

in optical galaxies (evaluated using Gaussian smoothing with our fiducial filter radius 

of 1 h~1 Mpc) as the clusters have averaged over spheres of radius y/b h~l Mpc: it may 

be objected that not all particles in our simulations at those overdensities will be found 

in cluster cores, but recall that our basic premise is that the local galaxy density is 

determined solely by the local mass density. Since Virgo has an overdensity in optical 

galaxies of ~  40 on this scale and Ursa Major one of ~  10 we see that the w0 / w j
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ratio must change from unity to a value of 1.6 in the interval of wQ corresponding to 

10 ^  [Po /(Po)} ^  40, where pQ is the optical galaxy distribution in the simulation 

smoothed with our standard 1 h~l Mpc Gaussian. If we denote the optical weights of 

the particles to be identified with Virgo and Ursa Major as w0 v and wQ UM respectively, 

then the parameter n may be expressed in terms of wc and wQ v for values of ivc in 

the interval u>0 UM < wc < wo v . Unfortunately, the allowed (c1,c2) pairs do not, 

generally, yield particles with smoothed redshift space optical densities quite as high as 

that required to match Virgo. In such cases we take w0 v to equal the optical weight of 

the particle with the largest pQ / (pQ) value: typically “Virgo” becomes a particle with 

Po / (Po) — 30 — 35. It might be objected that, by so doing, we are compromising our 

w0 — uq relation, through weakening its link with observed reality but, in fact, we find 

a negligible change in the IRAS  power spectrum if we vary the Virgo density from 40 to 

25 for data sets that do have particles with p0 /(Po) > 40: a sufficiently small number of 

particles are given wQ > uq and the resultant u>0 — uq is sufficiently small that the power 

spectrum is very insensitive to the details of the weigliting-down of the IRAS  galaxies 

in clusters.

To determine the w0 — uq relation to be applied to the set {u>0 } from each model we 

choose five equally-spaced values of wc between w0 UM and wQ v and solve for n. This 

gives us, for each allowed (c1,c2) pair in each data set, five sets of IRAS  weights, {uq}, 

defining five predicted IRAS  galaxy distributions, whose power spectra we compare with 

observations in the next Section.

4.6 T H E  P O W E R  S P E C T R U M  OF IR A S G A L A X Y  

C L U ST E R IN G

In this Section we test whether our galaxy clustering candidates can reproduce the clus­

tering of IRAS  galaxies, as well as optically-selected galaxies, by comparing the power 

spectra of our Wj-weighted particle distributions with the observed power spectrum of 

IRAS  galaxy clustering.
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4 .6 .1  O b s e r v a t io n a l  D a ta

Consistent results for the redshift-space power spectrum of IRAS  galaxies have been 

published recently by Fisher et al. (1993) and Feldman, Kaiser & Peacock (1993) using 

samples drawn from the 1.2 Jy and QDOT redshift surveys respectively: we use both sets 

of data here, to maximise the range of wavenumbers over which we can make our com­

parison. Our results from Chapter 3 show that the redshift-space clustering of samples 

of QDOT galaxies is not significantly affected by any hypothesised relationship between 

the far-infrared temperature of an IRAS  galaxy and the density of its environment, thus 

supporting our use of the redshift-space power spectrum rather than, for example, the 

Fourier transform of the real space correlation function determined by Saunders et al. 

(1992).

4 .6 .2  M e t h o d

Our method here mirrors that in Section 4.4.2: we simply determine the power spectrum 

of the uq-weiglited particle distribution.

4 .6 .3  R e s u l t s

In Figure 4.5 we compare the redshift-space IRAS  power spectrum of the model (T* = 

0.23, ca = 0.225, c2 = 5.31 X 10-2) with observations. The empty circles show the QDOT 

power spectrum of Feldman et al. (1993), while the empty squares present the 1.2 Jy 

data of Fisher et al. (1993): Fisher et al. evaluate the 1.2 Jy power spectrum to k ~  10 h 

Mpc-1 , but power is only detected significantly for k < 0.2h Mpc-1 , so we restrict 

ourselves to that wavenumber interval.

Figure 4.5 shows predictions for five (wc ,n)  pairs -  namely (2.23,0.44), (2.43,0.38), 

(2.64,0.31), (2.84,0.22) and (3.04,0.12). The redshift-space IRAS  power spectra pre­

dicted by other allowed models are very similar to that shown in Figure 4.5, of course, 

since they are produced by the same iu0 — wj relation being applied to different wQ 

weighted particle distributions which have, by construction, very similar rcal-space power
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Figure 4.5: Comparison of the redshift-spa.ce power spectra of IRAS  galaxy clustering 

predicted by the model (F* = 0.23, q  = 0.225, c2 = 5.31 x 10-2 ) and those computed 

by Feldman et al. (1993) (circles) and Fisher et al. (1993) (squares). The filled symbols 

show power spectra computed using five (wc , n ) pairs.
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spectra. The only difference between IRAS  power spectra computed from different mod­

els comes from the redshift-spa.ee distortions the models produce. The small size of this 

effect suggests that the velocity fields in the models must be very similar: we test this 

deduction in the next Section, where we compute the small-scale pairwise velocity dis­

persions in our allowed models.

4.7 T H E  PAIRW ISE V E L O C IT Y  D IS P E R S IO N  OF 

GALAXIES

As our aim is to construct a consistent picture of the phase-space distribution of galaxies, 

we must investigate the galaxy velocity field in addition to the spatial distribution of 

galaxies. We have done this implicitly already, through the use of the real space optical 

galaxy power spectrum in conjunction with the redshift-space power spectrum of IRAS  

galaxies: in this Section, however, we make our investigation more explicit, by consid­

ering the galaxy pairwise velocity dispersions predicted by our clustering models. The 

small-scale galaxy pairwise velocity dispersion has frequently been cited over the past 

decade as providing a very stringent constraint on small-scale power in the density field, 

but there are, as we shall see, good reasons, on both the observational and theoretical 

sides, why its use should be treated with caution.

4 .7 .1  O b s e r v a t i o n a l  e s t im a t i o n s  o f  t h e  pa irw ise  v e l o c i t y  d i s p e r s io n

The pairwise velocity dispersion of a redshift sample of galaxies is estimated from the 

effect that pairwise velocities have on £(r , 7r), which is the redshift-space correlation 

function as expressed as a function of projected separation, r , and line-of-sight separa­

tion, 7r. The standard reference for this procedure is Davis & Peebles (1983, DP83) and 

we follow the general treatment they outline.

The correlation function £ ( r p ,7 r) is determined using the estimator 

DD(rn, tt)
1 + = D i t y y  (4-23)
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where DD(rp,n)  is the number of galaxy pairs with separations (rp,n)  in the interval 

(rp — A rp/2,7T— A7r/2) —> (rp + A rp/2,7r + A7r/2) and DR(rp,n)  is the corresponding 

count of cross-pairs between the data sample and a random catalogue containing the 

same number of galaxies in the same volume of space and with the same radial selection 

function. Since the emphasis is on small-scale clustering, all pairs are given equal weight 

in equation 4.23 and only those pairs separated on the sky by angles, #12, of 0l2 ^  50° 

are included in the analysis, to facilitate the small-angle approximation by which the 

physical separation between the pair is r = (rp +  7T2 )1/2, with

7T = V1 ~ V2 
H0

and r = [(ua + v2) /H 0] tan(6>12/2), (4.24)

where v1,v2 are the recessional velocities of the galaxies.

The correlation function £(rp,7r) is a convolution of the real space correlation function 

£(7-) with the distribution function, f ( V , r ), of the pairwise peculiar velocity:

1 + f ( rp, tt) = H0 dy { l + £[(rp + y2)1̂ 2]} f (V ,r ) .  (4.25)
J — OO

The real space correlation function, £(r), is deduced from the projected correlation 

function, w(r ), which is defined by

w ( r p ) =  4̂ '2 6 )
-“ 0 ^

where a limit of vL = 2500 km s“ 1 was used by DP83 and many subsequent workers. 

The spatial and projected correlation functions are related by

roo
w(rp) = 2 Jo Op + 2/2) > (4.27)

so, fitting a power law model, w(r ) = Ar4 “7 , to the projected correlation function data 

produces a power law model for the real space correlation function, ^(r0/ r y ,  with

-4 (7 / 2 )

'°  ( l / 2 ) [ ( 7 -  l)/ 2 ]

a ; = . , -  ' / -7 (4.28)
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The velocity distribution function, f ( V , r ), is assumed to vary only slowly with r and 

DP83 suggest the following form for it:

f ( V )  = C exp ( 2ly/21V|/ cr) , (4.29)

where

v  = ir -  H0y { l  -  h [(rj + y2)1/2] } . (4.30)

Many authors (e.g. DP83; Gelb, 1992; Mo, Jing & Borner 1993) have considered C as 

a free parameter whereas, clearly, its value is determined uniquely by a normalisation 

condition applied to the distribution function f (V ) .  DP83 justify this by arguing that 

this degree of freedom is necessary to account for the deviation of the observed w(rp) 

from a power law. This is a fair point, but one must be careful that, by introducing 

an extra degree of freedom, one may be hiding the failure of the model to give good 

agreement with the observations.

The term H0yh(r) in equation 4.30 is to account for the mean streaming flow relative 

to Hubble expansion. DP83 use their earlier work on self-similar clustering using the 

hierarchy of BBGKY equations (Davis & Peebles 1977) to suggest that h(r) takes the 

form

h(r) = F  [l + ( r / r 0) T \  (4-31)

where r0 is the (real space) correlation length of the galaxy sample. DP83 consider 

different values for the F  parameter, to test the sensitivity of their results to the cor­

rection for streaming motions: their (Davis & Peebles 1977) similarity solution would 

suggest F — 1, while they note that the slowly collapsing clusters in the simulations of 

Efstathiou & Eastwood (1981) yield results consistent with F  ~  1.5.

Davis & Peebles obtained a value of cr = 340 ± 40 km s-1 for the velocity dispersion at 

the fiducial separation of 1 h~l Mpc from the CfA redshift survey using this method, 

while its application to the AAT redshift survey by Bean et al. (19S3) yielded a slightly
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lower figure of 250 ±  50 km s 1. Both these values -  particularly the DP83 result -  have 

been used many times to constrain galaxy clustering models.

Recently, Mo et al. (1993) have performed a very thorough examination of the ob­

servational determination of the small-scale galaxy pairwise velocity dispersion. They 

investigate its sensitivity to sample composition (early- or late-type or IRAS  galaxies, 

including or excluding galaxies in rich clusters) and analysis (with or without correcting 

for Virgocentric infall through the use of the H0yh(r) in equation 4.30). Their results 

indicate that sampling effects are important: they find values for the dispersion in the 

projected separation bin 0.8 < rp/(/i_1 Mpc) < 1.6 that vary from 276 ± 17 km s-1 

(for the CfA sample analysed by DP83) to 1861 ± 172 km s-1 (for the CfA2 sample, 

which includes many Coma galaxies). This is, of course, to be expected, given the 

morphology-density relation (e.g. Dressier 1980), but, more worryingly, the Virgocen­

tric infall correction is seen to be quite significant, as is the selection function used for 

flux-limited samples. Mo et al. conclude that “it is reasonable to doubt that the present 

data are a fair sample” for the purposes of estimating the small-scale pairwise velocity 

dispersion and, thus, the stringent constraint implied by the Davis Sz Peebles (1983) 

estimate of 340 ± 40 km s_1 at a separation of 1 li~l Mpc must be treated with some 

suspicion.

4 .7 .2  T h e o r e t i c a l  d e t e r m i n a t i o n s  o f  t h e  p a irw is e  v e l o c i t y  d i s p e r s io n

Problems arise in the determination of the galaxy pairwise velocity dispersion from 

numerical simulations due to a variety of causes, further complicating its use as a test 

of cosmological models.

One of the principal uncertainties concerns the issue of so-called “velocity bias” . A 

number of authors (e.g. Carlberg & Couchman 1989, Carlberg, Couchman & Thomas 

1990, Couchman & Carlberg 1992) have observed that the pairwise velocity dispersion 

of the objects they identify as galaxies in their simulation is lower than that of the mass 

— i.e. galaxies are biased tracers of the velocity field in the same way that they are 

often assumed to be biased tracers of the density field. Carlberg et al. (1990) argue that 

this velocity bias has a physical origin, arising from dynamical friction: as galaxies move
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through the sea of dark matter particles in a dark halo they experience a gravitational 

drag force due to dynamical friction (Chandrasekhar 1943), which results in the galaxy 

distribution becoming cooler and more centrally condensed than the distribution of dark 

m atter in the halo. This picture is appealing and has been invoked to account for 

some dynamical evolution features seen in rich clusters {e.g. Kashlinsky 1986), but it is 

worrying that the magnitude of the velocity bias observed in simulations varies between 

authors: estimates of the galaxy velocity dispersion expressed as a fraction of that of the 

mass vary from 0.37 (Couchman & Carlberg 1992) to 0.8 (Cen & Ostriker 1992) to unity 

in the many simulations where no velocity bias is observed. There are, however, many 

other possible explanations. One possibility, to which we alluded earlier, is that velocity 

bias is an artefact of the algorithms used to group particles into halos or “galaxies” in 

dissipationless simulations. An FOF algorithm operating in a dense environment can link 

halos which the eye would regard as distinct, with the result that their relative velocity 

contributes to the internal velocity dispersion of the (wrongly-merged) halo rather than 

to the pairwise velocity dispersion of the halo distribution.

Gelb & Bertschinger (1993) note that the dispersion is also sensitive to whether the 

velocity of a halo is defined to be that of its most bound particle (as used by White et. al. 

1987, for example) or its centre-of-momentum velocity. The latter gives lower velocities 

to the halos, as it does not include the velocity of the most bound particle relative to the 

centre-of-momentum, which can be significant, given the internal velocity dispersions of 

massive halos. Gelb (1992) also notes that there can be a difference between the velocity 

dispersion measured directly in a simulation to that estimated using the Davis & Peebles 

observational approach: the dispersions estimated by the two methods differ typically at 

the ~  20% level, although Gelb finds differences of up to 50% in extreme cases. Whilst 

it is probably best to view these differences as indicating failings in the observational 

approach of Davis Sz Peebles, it does suggest that caution should be exercised when 

comparing direct theoretical measures with observational data analysed using the Davis 

& Peebles treatment.
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4.7.3 Method

We compute velocity dispersions from our simulation data using a procedure along the 

lines of the Davis & Peebles treatment. For computational speed we slightly modify the 

observational procedure, by fitting a power law model to the true real-space correlation 

function, rather than determining the model parameters 7 '0 and 7 from w ( r p ): Gelb 

(1992) shows that the values of r0 and 7 derived from w[rp) do not differ greatly from 

those measured directly, so this should not compromise the claims of our procedure to 

being a fair representation of the Davis & Peebles observational method.

We compute the pairwise velocity dispersion of sparse samples of 10,000 particles drawn 

at random from our simulation data sets. For a given particle distribution (either un­

weighted to represent the mass, or wQ-  or uq-weighted to represent optical or IRAS  

galaxies respectively) we compute the real-space correlation function and fit it to the 

canonical power law form, £(r) = (r0/ r )7 in the interval 1 < r /[h~x Mpc) < 10. We 

calculate the two-dimensional redshift-space correlation function, £(rp, 7r), in the same 

seven r and twenty 7r bins as DP83, using a 50,000-particle random catalogue: N.B. for 

computational conyenience we employ the D D /R R  correlation function estimator here, 

rather than the D D / DR  estimator of equation 4.23.

We fit the DP83 model of equations 4.25, 4.29 and 4.30 to our model £(rp, 7r) data, 

finding, for each rp bin, which of 25 equally-spaced values of a in the range 300 < 

cr/(km s_1) < 800 gives the least scatter. In common with other authors [e.g. Gelb 

1992) we find that the DP83 model gives a particularly poor fit to the outermost rp bin 

(6.4 < rp/[h~l Mpc) < 12.8, which we exclude form our analysis. We also exclude the 

region 7r > 750 km s-1 , where £(rp, 7r) becomes very noisy, again in common with Gelb 

(1992). Finally, we fit the velocity dispersions from the various r bins to the power law 

form <r(rp) = <70(rp/ l  h~x Mpc)5, to obtain the values of a0 and 6.

4 .7 .4  R e s u l t s

In Table 4.2 we present the results of our analysis for the unweighted particles in data 

sets P3M. 11-14 -  i.e. for the mass in models with F* = 0.18,0.23,0.26 and 0.28. For
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Simulation r0 [h 1 Mpc] 7 <T0 [km s *] 6

P3M.11

P3M.12

P3M.13

P3M.14

1.73 ±  0.03 

2.54 ±  0.05 

3.07 ± 0.21 

3.37 ± 0.15

1.47 ±  0.01 

1.63 ±  0.02 

1.76 ± 0.05 

1.88 ± 0.03

460 ±  20 

485 ± 20 

538 ± 23 

557 ± 17

(-5.33 ±3.69) x 10~2 

(-9.72 ±3.34) X 10~2 

(-9.91 ±3.26) X 10~2 

-0.11 ± 0.02

Table 4.2: Power law fit parameters: mass distribution.

Simulation ci c2 r0 [h 1 Mpc] 7 <t0 [km s 1 6

P3M.11 0.43 0.11 3.95 1.83 500 -7.04 XlO-2

P3M.12 0.23 5.3 xlO-2 3.95 1.84 544 -9.94 XlO-2

P3M.13 0.14 -8.2 xlO -3 3.77 1.85 567 -9.95 x 10-2

P3M.14 0.12 -2.9X10-2 3.80 1.92 581 -0.12

Table 4.3: Power law fit parameters: iü0_weighted distribution.

each model we tabulate the parameters of the power law fits to the real-space correlation 

function and to cr(rp).

The results shown in Table 4.2 are unsurprising: as the small-scale power in the density 

field increases (i.e. as T* increases), the correlation length of the mass distribution 

increases, as does its small-scale velocity dispersion. The striking feature of these results 

is that the values of a0 deduced from these power spectra are so much lower than that 

determined the value (a0 ~  1300 km s-1 ) found by Coucliman & Carlberg in their 

low-bias CDM simulation. This illustrates very nicely the problem with the shape of 

the CDM power spectrum: when normalised to COBE (as the Coucliman & Carlberg 

simulation is, to a good approximation), T* ~  0.5 CDM has too much small-scale power.

Having determined the small-scale velocity dispersions of the unweighted particle distri­

butions in simulations P3M.11-14, we now turned to the u>0-weiglited particle distribu­

tions. For each model, we consider the allowed (c1,c2) pair which gives the lowest \'2 

fit to the APM power spectrum and tabulate our results in Table 4.3: considerations of 

space dictate that we omit the uncertainties on these quantities, but they are similar to 

those of the corresponding quantities in Table 4.2.

We see from Table 4.3 that, as expected, if we give extra weight to the overdense regions
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Simulation ci C2 W C n r0 [/i 1 Mpc] 7 <70 [km s 1 6

P3M.11 0.43 0.11 3.74 0.61 4.09 1.93 508 -5.94 Xl0-2

P3M.12 0.23 5.3 X10-2 2.09 0.24 3.85 1.79 535 -9.38 XlO-2

P3M.13 0.14 -8.2 Xl0-3 1.46 0.25 3.66 1.82 554 -0.10

P3M.14 0.12 -2.9x 10~2 1.28 0.10 3.77 1.91 571 -0.12

Table 4.4: Power law fit parameters: uq-weighted distribution.

(as we do in producing the w0-weighted distribution), we increase the small-scale pair­

wise velocity dispersion. What is interesting is that we do not increase it by muc.li and 

that the resultant pairwise, “galaxy” dispersion of ~  550 km s-1 at the fiducial separa­

tion of 1 l i Mpc. is perfectly consistent with the values deduced by Mo et al. (1993) in 

their recent re-analysis of the observational data.

Finally, we compute the velocity dispersion of the tzq-weighted particle distributions. We 

take the models from Table 4.3 and weight them according to our empirical w0 — wq 

relation using, for each model, the lowest of the five toc values defined in Section 4.5: 

our results are given in Table 4.4, without errors which are, again, similar to those given 

for the corresponding quantities in Table 4.2.

From Table 4.4 we see the expected result that, since IRAS  weights are lower than optical 

weights in our model, the small-scale pairwise velocity dispersion of the uq-weiglited 

distributions are lower than those of the parent u)0_weighted ones. The difference is 

not great, however, in accordance with what we would expect, given that the empirical 

w0 — itq relation only gives w0 ^  uq in the very richest environments.

4.8 S U M M A R Y

In this Chapter we have considered the clustering of optical and IRAS  galaxies. This 

has been done with the aim of determining the set of galaxy clustering models -  defined, 

for our purposes, to be combinations of linear density power spectra and prescriptions 

relating the galaxy distribution to the underlying density field -  which are consistent 

with the observed large-scale structure of the Universe.
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We have presented a novel method for studying a family of power spectra using the results 

of just one numerical simulation. We have implemented this procedure to investigate the 

family of CDM-like power spectra, studying nine different values of the shape parameter, 

T*, which labels the members of the family.

Motivated by results from recent iV-body/hydrodynamic simulations, we have investi­

gated an Eulerian bias scheme, in which the local number density of galaxies at redshift 

zero is determined in a simple fashion from the present local density field. By adopting 

such a bias prescription we have avoided the need to use an ad hoc group-finding algo­

rithm in our simulation data sets or to resort to biasing in Lagrangian space, which is 

likely to be a poor way to model the clustering of galaxies, given the nonlinearity of the 

cosmological density field on galactic scales.

We have used the observed power spectrum of optical galaxies to select those galaxy 

clustering models which are consistent with reality. We have found that an infinite set 

of models is selected if we give our weighting scheme free rein to trade off over- and 

under-dense regions against each other. With the addition of the constraint that the 

optical galaxy weight w0 should be a monotonically-increasing function of local density 

we find that no galaxy clustering model with T* > 0.29 is able to account for the power 

spectrum of APM galaxy clustering.

From the observed relation between the redshift-space distributions of optical and IRAS  

galaxies we have constructed the IRAS  galaxy distributions corresponding to our allowed 

galaxy clustering models. We have found the redshift-space power spectra of these 

distributions to be consistent with the clustering observed in the QDOT and 1.2 Jy 

IRAS  redshift samples.

Through studying optical galaxy clustering in real space and IRAS  galaxy clustering in 

redshift space we have implicitly been comparing the velocity fields in galaxy clustering 

models. We have made this study more explicit, by determining the small-scale pairwise 

velocity dispersions of sparse samples of our simulation data sets. We have found that 

our allowed galaxy clustering models yield pairwise velocity dispersions of 550 ± 50 km 

s“1 at the fiducial separation of 1 Mpc, in good agreement with a recent analysis of 

observational determinations of this quantity.
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We shall discuss the issues raised by this project in more detail in Chapter 5.
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Chapter 5

DISCUSSION, CONCLUSIONS  

AND FUTURE WORK
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No man knows, or ever will know, the truth about the pods and about every­

thing I  speak of: for even if one chanced to say the complete truth, yet oneself 

knows it not; for seeming is wrought over all things.

Xenophanes
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If the study of large-scale structure is to be cosmology rather than cosmography -  or 

physics rather than stamp-collecting, to employ Rutherford’s famous distinction -  then 

we must understand how the distributions of astrophysical objects such as galaxies and 

clusters relate to the underlying density field: it is the study of this relation which is 

the theme of this thesis. We now review the salient points from earlier chapters, expand 

our previous discussions of the conclusions to be drawn from them and outline plans for 

future work.

5.1 T H E  SPATIAL C O RRELATIO NS OF C L USTER S

As we have seen, we are currently enjoying a very active period of research into the 

spatial correlations of clusters of galaxies, on both observational and theoretical fronts.

The advent of mac.liine-based galaxy catalogues like the EDSGC and the APM catalogue 

has facilitated the construction of cluster catalogues using objective selection criteria. 

These provide the theorist with reliable data with which to challenge cosmological mod­

els, as well as, one hopes, removing the necessity, and even the excuse, for theorists to try 

to reconstruct what George Abell should have seen, either by ‘decontaminating’ cluster 

samples or ‘correcting’ correlation functions computed from them. Advances are also 

being made using ROSAT All-Sky Survey data, but X-ray cluster selection with ROSAT  

has not proved to be as clean a procedure as some had hoped.

The continuing improvement in the capabilities of computers is now producing believable 

numerical simulations of cluster correlations, like those of Croft & Efstathiou and Cole 

described in Chapter 2. There remains, however, the need for those performing numerical 

simulations to demonstrate the degree of sensitivity of their results to the particular 

algorithms and parameters used in their codes. Analytical work is, by contrast, more 

transparent to the critical eye, as well as being untroubled by the dynamical scale of the 

problem and being much, much faster.

All these considerations motivate analytical studies of cluster correlations, such as that 

pursued here. The principal advantage of our method over those previously employed is 

its treatment of the mildly nonlinear evolution of the cosmological density field 011 cluster
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scales and the resulting dynamical contribution to the clustering of galaxy clusters. The 

general degree of agreement between our results and those of Croft Sz Efstathiou gives 

us great confidence in our method. We must, however, understand the source of the 

differences between our predictions for the clustering strength of the richest clusters and 

those simulated numerically.

One possibility is that the correlations of the richest cluster samples are very sensitive 

to the prescription used to select them. Comparisons of Figures 2.13 and 2.14 do seem 

to show differences between the results from simulations run by Cole and by Croft Sz 

Efstathiou (which are comparable in all but their cluster selection procedures), although 

any suc.li conclusion must be tempered by the uncertainty in the Cole data resulting 

from their coming from only two realisations. It is important that this hypothesised 

sensitivity to selection algorithms be investigated.

A second possibility is that the Zeldovich Approximation is unable to reproduce the de­

gree of nonlinear evolution required to model accurately the cosmological density field. 

The results of our study of the mass correlation function in Section 2.6.2 lead one not 

to entertain that possibility too seriously, as the behaviour of £p(x) at small separa­

tions tends to suggest that, with an appropriate choice of filter radius, the Zeldovich 

Approximation may be used to evolve the smoothed density field accurately, without 

being compromised by shell-crossing: it may be tested, however, by directly comparing 

the mass correlation functions from IV-body simulations and from our method.

Thirdly, it is possible that the difference results from the prescription we use to derive 

a cluster distribution from the evolved density field. Our approximation to the peak- 

bac.kground split neglects a term quadratic in the threshold us (compare equations 2.25 

and 2.55), which could become significant as us increases with cluster richness. Evidence 

against this being the explanation for the difference between our results and those of 

Croft & Efstathiou comes from Figures 2.9, 2.12 Sz 2.13, which show that although the 

E = 0.2 model produces significantly larger values of //s, it is the F = 0.5 model for which 

there is the larger difference at high richness.

All three of these possibilities may be fruitfully addressed by further, more detailed 

comparisons between our analytical results and those from numerical simulations, along
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the lines of those outlined in Section 2.7 and it is hoped to start such work shortly.

The most interesting possibility is the one that would remain after the elimination of 

the three listed above -  that the Gaussian peaks prescription itself is inapplicable to the 

study of cluster correlations. As discussed in Section 2.5.1, the Kaiser effect is predicated 

on a model in which clusters form at the peaks in a Gaussian initial density field. A 

plausibility argument is invoked to suggest that clusters should form at density peaks, 

where there is the most mass, but this may not be a correct identification. Firstly, 

the density field may not be Gaussian: although work on the topology of large-scale 

structure (e.g. Gott et al. 1989 and references therein), the COBE DMR microwave 

background anisotropies (Smoot et. al. 1992) and the distribution of long-wavelength 

power in the redshift-space power spectrum of the QDOT survey (Feldman, Kaiser 

Peacock 1993) are all consistent with the hypothesis of a Gaussian initial density field. 

Secondly, perhaps other non-gravitational effects influence the locations where clusters 

form, although this is, perhaps, less likely for clusters than for galaxies, due to the 

larger scales in the density field appropriate to cluster formation and the finite range of 

feedback mechanisms like the injection of energy from supernovas which could inhibit 

the collapse of density perturbations.

Turning now to the comparison between our results and the observational data presented 

in Section 2.8, we see that none of the models we study reproduces the strong trend of 

increasing correlation strength with richness that is required to account for the observed 

correlation lengths of all cluster samples, from APM 1Z > 20 clusters to Abell R > 2 

clusters. In part this is just the result of how poor a description of the clustering of a 

real cluster sample the correlation length alone provides: from the d — r0 relations shown 

in Figures 2.19 -  2.22 one would conclude that all four models are wildly inconsistent 

with the Abell R > 2 data, but the noise on the data presented in Figure 2.18 shows 

that the case is not so clear. We urge other workers in this field not to reduce the 

information contained in spatial correlation functions to a single number by quoting 

only a correlation length for their samples. There are formal, as well as pragmatic, 

reasons why power law fits to correlation functions are to be discouraged: values of the 

correlation function evaluated in different separation bins are themselves correlated, so it 

is incorrect to apply a simple ^ -fitting  procedure to obtain r0 and 7 , without accounting

239



for these correlations.

It is unfortunate that a number of the cluster samples yield negative values for the cor­

relation function in single bins on large (r ~  40 h~ Mpc) scales, as this confuses the 

theoretical interpretation of these observational data. If, as seems likely, these negative 

values are simply the result of the binning of data from relatively small samples, then 

we may confidently rule out F = 0.5 CDM on the basis of its inability to reproduce the 

required strength of cluster correlations. On the other hand, if these negative values 

are real, then they lend strong support to this standard CDM model, since cosmogonies 

with relatively more large-scale power do not produce correlation functions with first 

zero-crossing points at such small separations. One must be very careful, however, when 

using the first zero-crossing point of the correlation function as a diagnostic tool since it 

is very sensitive to uncertainty in the mean cluster number density. This problem may 

be ameliorated by the construction of larger cluster samples. The APM cluster cata­

logue is still being expanded, while the forthcoming Sloan Sky Survey promises to yield 

large samples of even the richest clusters. Further samples of ROSAT-selected clusters 

should also provide additional observational determinations of the spatial correlations of 

clusters.

If we assume that the isolated negative data points in bins with separations of r ~  40/;._l 

Mpc result from the size of the data sets analysed, and do not reflect the correlations in 

the density field 011 those scales, then our results favour a spatially flat cosmogony with 

a linear power spectrum well approximated by the CDM transfer function with T ~  0.2. 

This is in accordance with the study of the angular correlations of APM galaxies by 

Efstathiou, Sutherland & Maddox (1990), verifying that galaxies and clusters do appear 

to delineate the same large-scale structure. Our results do not favour the (P = 0.1) 

model advanced by Bahc.all & Cen (1992) which, when normalised correctly to CODE, 

predicts correlations for poorer clusters which greatly exceed those observed. We do not 

find theoretical support for the Bahcall r0 oc d relation and doubt whether it will even 

remain a reasonable description of the observational data once the correlation function 

of the richer APM sample has been published.

There are other methods of studying the distributions of cluster environments beyond
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those considered so far: for example, Peacock and collaborators (Peacock & Prestage 

1988; Peacock & Nicholson 1991) have used radio galaxies as tracers of overdensities to 

great effect. Another probe of rich environments is the class of cD galaxies, as advocated 

by West & van den Bergh (1991) (see Section 2.4). The problem with their study is that 

the c.D sample they use is drawn from the Abell catalogue and thus prone to the same 

projection effects and other oddities of selection as any other subsample of that cata­

logue. The advent of the superCOSMOS measuring machine at the Royal Observatory, 

Edinburgh presents for the first time the possibility of constructing samples of cD galax­

ies using objective selection criteria rather than serendipity and the author is leading 

a collaboration to investigate this possibility. The advantages that superCOSMOS has 

over the previous generation of plate-measuring machines (COSMOS and APM) for this 

task result from both its greater scanning speed and its greatly enhanced dynamical 

range. Most low redshift elliptical galaxies in the EDSGC have saturated cores when 

scanned by COSMOS, but superCOSMOS, with its far greater dynamical range, will be 

able to determine their surface brightness profiles very accurately and, through compar­

ison with profiles of known c.D galaxies obtained by CCD imaging, facilitate selection 

of c.D galaxies from superCOSMOS scans of Schmidt plates. The scanning speed of 

superCOSMOS will also facilitate the construction of a relatively large catalogue, by 

enabling one to obtain good sky coverage in a reasonable length of time. It will be very 

instructive to compare, say, the clusters selected from the EDSGC by the methods of 

Lumsden et al. (see Section 2.3) with the cD galaxy distribution, to test the use of c.D 

galaxies as tracers of dense environments.

With this exciting observational project and the continuing refinement of the method 

presented in Chapter 2 for predicting cluster correlations, the author intends to remain 

actively involved in this important and flourishing area of research.

5.2 T H E  C L U ST ER IN G  OF IRAS G A L A X IE S

In Chapter 3 we suggested that one might expect there to be a relationship between 

the far-infrared temperature of an IRAS  galaxy and the density of the environment 

in which the galaxy finds itself. We argued that if this is so, and if warmer galaxies
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are found preferentially in rich environments, then one would expect them to be more 

strongly clustered than cooler galaxies found preferentially in the field. We carefully 

constructed warm and cool subsamples of galaxies from the QDOT and 2 Jy surveys 

and studied their redshift-space correlations, using both correlation function and counts- 

in-cells methods. We found, contrary to the expectation engendered by the argument 

we had previously advanced, that there is no unambiguous evidence for a difference in 

the clustering strengths of warm and cool IRAS  galaxies, at least in redshift space.

The caveat that our null result only applies to redshift space correlations deserves further 

comment. As we discussed briefly in Chapter 3, redshift-space effects c.ould mask a 

difference in the real-space clustering of the two samples, by diluting the small-separation 

clustering of the species found in the richer environment. Certainly, it does appear 

from Figures 3.11 and 3.12 that the warm QDOT samples extending to 500 /i-1 Mpc 

do show stronger large-scale and weaker small-scale redshift space clustering than the 

corresponding cool samples, in accordance with this possibility. No such effect is seen 

in the counts-in-cells analysis, but the uncertainties resulting from oiir small samples 

would hide all but the most extreme differences there. It is important, therefore, that we 

compare the real space correlations of our warm and cool subsamples too. Probably the 

best way to do this is to adopt the methods of Saunders et al. (1992) and so compute the 

spatial auto-correlation function of, say, the warm QDOT subsample via its projected 

cross-correlation function with the warm subset of QIGC galaxies. This method has 

the advantage of making xise of the much larger number (~  13000) of galaxies in the 

two-dimensional QIGC catalogue. We hope to undertake this project in the near future.

An alternative explanation for why we found no difference between the redshift space 

clustering strength of our warm and cool subsamples is, of course, that there is no 

difference between the strength of their clustering in real space. In that case we have 

to find the weak link in our chain of reasoning. One factor we have omitted to consider 

is that some cool IRAS  galaxies will be ellipticals, which are concentrated in dense 

environments and, therefore, are more strongly clustered than spirals (Dressier 1980, 

Davis Sz Geller 1976). A quantitative assessment of the consequences of this omission 

must await the collection of morphological classifications of the galaxies in the QDOT and 

2 .Jy catalogues, but it is likely to be of minor importance, since ellipticals have very low
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far-infrared luminosities, as a result of being dust-poor. Another possibility is that we are 

wrong to assume that the galactic interactions that may produce starburst phenomenons 

are more likely to occur in rich environments. Whilst it is, no doubt, true that galaxy- 

galaxy interactions, being two-body processes, take place more frequently in regions 

of high galaxy number density, it does not necessarily follow that starbursts will be 

found preferentially in rich environments. Numerical simulations of galactic interactions 

(see Barnes & Hernquist 1992 and references therein) reveal that an extended period of 

interaction between a pair of galaxies is likely to be required to trigger a starburst, since 

it is only prolonged interactions that have a strong effect on the subsequent evolution 

of the galaxies taking part in them. This consideration militates against the location of 

interaction-triggered starbursts in the densest environments since the pairwise velocities 

between the galaxies will be highest there and, hence, their interactions shortest-lived. 

The velocity dispersion within overdensities grows with time so, at some time in the 

past, the richest environments would have been the sites of starburst activity. It follows, 

therefore, that the clustering strength of warm IRAS  galaxies should show a redshift 

dependence, tracing the redshift variation in the density of the typical environments in 

which starbursts are found. Such a trend could be seen in redshift surveys of sufficient 

depth but since, as we have shown, any such effect must originate at redsliifts beyond 

that where many cool galaxies are seen, it would be impossible to distinguish this as 

being a temperature-dependent effect rather than a solely redshift-dependent one.

If this picture is correct, then starbursts are likely to be found in environments with 

a restricted range of densities at low redshift. This hypothesis may be tested observa- 

tionally and the author is involved in a project to do just that. The first stage of the 

project is to obtain deep CCD images of the immediate environments of ~  100 IRAS  

galaxies selected from the QCCOD redshift survey (Oliver 1993). This sample is selected 

in a narrow band of 100 /an luminosity (L100 ~  10UI L&) and a narrow redshift interval 

around z ~  0.03. This sample is composed of fairly average galaxies -  typical optical 

magnitudes are m  ~  14, which is close to at this redshift (Efstathiou et al. 1988) - 

so we are studying a more representative sample of galaxies than many previous projects 

(e.g. Lawrence et al. 1989, Leech et al. 1993) which have concentrated on ultra-luminous 

IRAS  galaxies (LG0 > 1011L(;)). This sample can elucidate the relationship between star-
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burst activity and environment on ~  200 kpc. scales and be used to calibrate the second 

portion of the project, which will study the same relationship on larger scales, using 

projected galaxy number surface densities measured from Schmidt plates.

Once again the author intends to pursue this line of investigation through a combination 

of further theoretical and observational work.

5.3 G A L A X Y  C L U ST E R IN G  W IT H  E U L E R IA N  BIAS

In Chapter 4 we considered the clustering of galaxies. In common with much of the 

previous work on this topic., our project was based on the analysis of the results of 

numerical simulations.

Our treatment differed from that of previous authors in two principal regards: (a) we 

did not set out to challenge a particular cosmogony with a battery of tests but, rather, 

we sought to use observational data to determine the shape of the mass power spectrum; 

and (b) we did not use an ad hoc algorithm to link particles into “galaxies” , but rather 

constructed optical and IRAS  galaxy distributions using weighting schemes motivated 

by the recent JV’-body/hydrodynamical simulations of Cen Sz Ostriker (1992) and the 

observed relation between the distributions of optical and IRAS  galaxies.

We also showed how, with knowledge of the amplitude of the mass power spectrum {e.g. 

from COBE ), it is possible to study a number of power spectra using the results from a 

single numerical simulation. This is a very powerful technique, which greatly increases 

the speed with which numerical simulations can cover the region of parameter space 

spanned by a family of power spectra.

To deduce a galaxy distribution from the density field, we employed an Eulerian bias 

scheme, in which the weights assigned to particles in the simulation are determined by 

the local mass density at the present. We showed how the constraint that the weight be 

a monotonica.lly-increa.sing function of the local density implies that the power spectrum 

shape parameter, T*, must be less than 0.29, to achieve consistency with the APM galaxy 

power spectrum.
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At the heart of the project lies the Eulerian bias scheme, with its motivation from 

the Cen & Ostriker (1992) JV-body/hydrodynamical simulations. The tightness of the 

mass density -  galaxy density relationship they observe is, perhaps, surprising, given 

the picture of structure formation which emerges from their sinmlations, with galaxies 

forming in filaments and only thereafter drifting into clusters, but it is very important. 

It suggests a solution to one of the great problems of cosmology, by saying how the 

distributions of dark and luminous matter are related. The importance of knowing any 

such relationship means that it is essential to show whether or not the mass density -  

galaxy density relationship is generic, or peculiar to CDM or to the particular simulation 

algorithms used by Cen & Ostriker: it is to be hoped that other authors will address 

this question with further simulations of different power spectra in the near future.

5.4 C O N C L U D IN G  R E M A R K S

This Thesis has been concerned with the use of galaxies and clusters as probes of the 

large-scale structure of the Universe. Central to this topic is the question of how the 

distributions of galaxies and clusters are related to the underlying density field. We have 

approached this question in several ways, using methods appropriate to the different 

properties of the galaxy and cluster populations. In all cases, however, we have turned 

to observational evidence in preference to theoretical prejudice to guide our course.

Cosmology has matured greatly over the course of the past few decades. This process 

has been particularly rapid in the past five years, when it has been characterised by the 

recognition that the quantity and quality of observational data describing large-scale 

structure have improved so greatly that theorists must adopt a phenomenological at­

titude, building up theoretical pictures from observations, rather than trying to make 

observations fit overarching theoretical notions. The next few years are sure to bring 

further observational advances, perhaps especially in galaxy surveys, the CBR and X-ray 

observations of clusters: these advances may tell us a great deal about large-scale struc­

ture, but only if theorists are flexible enough to let themselves be led by observations.
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MATHEMATICAL  

APPENDICES

“Innocent, light-minded men, who think that astronomy can he learnt by 

looking at the stars without knowledge of mathematics will, in the next life, 

be birds. ”

Plato, Timaeos
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A  Derivation of npk(i's)

From BBKS (their equation A18), the differential number density of peaks in the range 

v to u + dv is given by

A/'pkO'M?' = (27ry2R3 e "2/2 G ( i , j v ) d v ,  

where (BBKS equation A19) G(7 , 7 /z) is defined by

(Al)

r
G( 7 , 7") =

Jo
dx /(x )

[27t(1 — 72)]1/2exp — (x — 7 /z)2 
2(1 - 7 2)

(A2)

In equation A2, u is the height of the density perturbation field smoothed on scale R s 

expressed in units of the mis perturbation, 7 is the spectral parameter, x = — V 2<5/(t.2

and the function f ( x )  has the closed form

/ ( a 0
(x3 -  3x)

2 \ ,/2 
57r

erf
1 /2

31x 8
+ -  e' 4 5 /

+ erf

- 5 x 2 / 8

5 \ 1/2 x 
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-5x2/2 (A3)

from BBKS (their equation A15), who also give approximate fits to this exact form. It 

follows that the number density, npk("s), of peaks above a threshold vs is given by

i l p k ( " s )

where

I  a =

Afpk (v)dv (2tt)5/2(1 -  72)1/2ä 3 Jx=0 clx/(x)exp
—x

2(1 - 7 '2)
h ,  (A4)

du exp
—u 7 ux

2(1 — 7 )2 ( 1 - 7 2)

From Gradshteyn & Ryzliik (1980, § 3.222),

(AS)

exp ( — ßx J dx = v/frcv ca/i 1 -  erf (/3,/H + ^ = ) (A6)

and so equation A5 becomes

=
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rCN-71 1

1

1
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Hence, from equations A4 and A7, it follows that the final form for the number density 

of peaks above the threshold is

“x2/2 erfc ("s ~ l x ) 
v/2(l -  72)

(AS)

B  D e r iv a t i o n  o f  (us )

An expression for the n-point correlation function of peaks above a threshold is given 

in terms of a 2n-dimensional integral by BBKS. This expression is valid for separations 

of more than a few times the filter scale, Rs, used to select the peaks. In the limit 

i^ijj(r) <C 1, which will obtain at large separations, this integral simplifies and the two- 

point function takes the form

£ p k - Pk ( r ) =  <;7s ) 2 V > (r ), (Cl)

where V-z(r) — £(7')/£(0) is tlie normalized mass correlation function. The effective thresh­

old, P, is defined by

[u — ~/x) 
( 1 - 7 2) '

(B2)

The quantity (;? } is the average of this taken over all peaks above the threshold vs, and 

so is given by

( ,;s )  =
. C  àu _  1JZKkM ( l "  ^  (2tt)S/2(1 -  7 2 ) l / 2 ^ 3  n p k ( „ g)

(C3)

where

roc. roo

/ x—0 J
(;/ -  7 3 : )

( 1 - 7 2)
e s° dx d/z, (B4)

and

S0 =
(z/2 -  2'yvx + a:2)

2(1 - 7 2)
( b ;
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If we make the substitution y = u — 72, then

y2 + (1 -  72) s2
(1 -  72)

(B6)

and so the expression for IB becomes

(B7)

Finally, combination of ecpiations A8, B3 and B7 yields the following form for (;7s):

In this section we derive the form of the mass correlation function in the Zeldovich 

Approximation: this may not be the most elegant way to derive it, but it works. From 

equation 2.41 of Chapter 2 we see that the mass correlation function may be written as 

an integral over conditional probabilities, of the form

where P(x\r,s) is the conditional probability of two particles having an Eulerian sepa­

ration :c, given a Lagrangian separation r and a relative displacement a ; P (s |r) is the 

conditional probability of two particles having a relative displacement s given a La­

grangian separation r ; P(r) is the probability of two particles having a Lagrangian 

separation r ; and the integral is taken over all r and s.

We wish to calculate the covariance matrix M -  = ([s,(y+ r ) ~ »;(!/)] [*j(y + r ) -  fj(y)]), 

which enables us to determine P(s\  r). Now,

2 I 1/'2 J o ° f (x ) e 3:2/2 exp -( /q  -  7z)2/2 (l -  7 2) d*

-?r( 1 72)J J£° f (x )  e~x2/'2 erfc. (vt — j x ) / \ / 2 ( l  — 72) dx

C D e r iv a t i o n  o f  £p z  (x)

([-st(y + r) -  .s,(r)] [Sj(y + r )  -  ^ r ) ] )

(Si(y +  r)sj{y +  r) +  *i{r)sj(r) (f')Sj(y +  r )  -  si{r)sj(y +  r ) ) (Cl)
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so we need to evaluate terms like (s,(y) s: (y + r)). Recall (equation 2.39) that the

components { sk } and { 6k } of the displacement and density fields are related by

(**); = -*  j  ( %  (C2)

where fc = fc /  | fc | and (fc) ■ is the j th  component of the vector fc, etc.

From equation C2 we can see that

fc fc'
I’2f̂c I ifc-r/fx / f \ —fc2/ï2.

V  fc
—  e (fc), (fc)j-e 2

since the cross-terms vanish, following the imposition of periodic boundary conditions.

We may evaluate this in a system of Cartesian coordinates, whose 3-axis lies along the 

direction of the vector r = r /  | r | and where <6 is the angle measured from that axis, in 

which ca.se

(k)j = \Jl  -  (fc ■ r)2 cose/) for j  = 1

= \ j I  — (fc • f )2 sin</; for j  = 2

= fc • r for j  = 3

and, thus,

A2(fc) cifcr(fc ■ f )2 « -‘• '9  A  for i = j  = 3 

A*( fc I « * -  ,-** *? ¡S  for9 .̂3 J '

since (cose/)) = (sine/)) = 0 and (cos <¡6) = 1/ 2.

In this coordinate system this may be expressed more concisely as

( * i (y)Sj (y + r ) )  = a2 V’n r irJ + V;±(ótJ -  fq-f̂ ) (C3)
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where ^ s,V;||)V;x are as defined in equations 2.44, 2.55, 2.56 respectively. 

Combining equations Cl and C3 we obtain

(k '(y  +  r) -  s,-(r)] [ij(y  + r) -  Sjr)]) = 2ct2(1 -  ^ ± )6{j + 2a2s(ij)± -  - 0 | | ) r ( C 4 )

so, writing A= 2(t2(1 — V;j_) and B= 2ct2(i/>_l — -¡/’||) the determinant of the covari 

matrix M tJ is given by

lance

M  ||=  A ' \ A  + B) (C5)

and its inverse is

M  =
M  ||

A { A + B )  0 0

0 A( A + B)  0

V 0 0 /

From equation C2 we see that the displacement field obeys Gaussian statistics if the 

linear' density field is Gaussian (which it is by assumption) and, since, the difference of 

two Gaussian variables is itself Gaussian, it follows that P(s \ r) will obey Gaussian 

statistics. P(s | r) then has the form

1
n s i r )  —

(2tt)3/'2 II Af 111/2q exp

(27r)3/'2 II M  II1/'2
,-Q

where 

2 Q = 1 ( a V 2 + A B s1 -  ABsi Sj f i fA
II M ||

A( A  A B)s2 -  AB{s  • r )2
A 2(A + B)

Combining this with

P(x
6(x-

4irx2
(C6)
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and

P ( r )  -  1 (C7)

yields the following expression for the correlation function

1 + i z ( x ) -  J d3r d3s ¿(®— | r  — s | )

exp < -

(27t)3/ 2 ( 2 a 2)3/ 2 (1 — 1/;_[_) (1 — V̂ n) 1 / 2 47ra;2

(1 -  V’||)s2 -  (V»jl -  ^||)(3 - f )21
4 a 2( i  -  V,x ) ( l  -  V;||

(C8)

The ¿-function restricts the integration over s to the sphere at constant | x |. Using the 

same coordinate system as before, we have

,s2 = r 2 + x 2 — 2x • r =  r 2 -(- x 2 — 2.?:rcostì

and

(C9)

s ■ r = (r — x) ■ r = r — costì 

and, thus, equation C8 becomes
fOO

1 -
7'2 dr

/* 7T /*'27T

/ / S tì0=o 2</,=o

0 (27 t)3/ 2 ( 2 a 2 )3/ 2 (1  -  V^x) (1  -  V2| | ) 1/2  47r z 2

(r — zcostì)2 ( r2 + z 2 — 2zrc.ostì)sintì dtì dd> exp
2-D 2A

where

(CIO)

(C ll)

A(A + £ ) 
B

2 a 2( l - V » ± ) ( l - 7 / ; ||)

( V u  -  V’y)
Performing the trivial integration over </> and making the substitution /i = cos0 we obtain 

1 +  £ z (x ) :
r2 dr

lo (27t )1 / 2 ( 2 a 2)3/ 2 (1 -  -¡¿x) (1 -  V’ii)1/2

/,< = -!
d/i exp

(•Ui)2
2D

+ xr/iE exp - 1  ( r2 + , :2)
2 .4 2D
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where E = - j  — j j .

The integral over p is facilitated by making the substitution

w =
X[i

V2D

whence it becomes

[¿to V2D  r 2
/ dip ------------exp ( ip + a) — a

J  W  —  —TT-~W~ ^ D

where a = E r-JD /  2 

So, letting

u± = a ±  x j \ j2D

y = rv + a

E (u )  =  ¡¿‘ d y e 1

we may write

(2 D)1/2
r dy ^ e ^  + ^  
ly=0 ' !/=0

dy

\/2D
F (u +)exp —  +a:2 2aa: \  / a:2 2aa:

E (m_ )exp
2D \/TD

Thus, the integral equation for the correlation function becomes

r 2 dr
y exp

1 (  r2 + x 2\
2 I a  )

x/2D
X

a: 2 a a:
2D v/TD

(C12)

(C13)

(C14)

(C15)
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1 f r 2 + x2\  r2 x 2 2ax (r — x)2 (  1 1 .
"  _ 2 J + 2D + 2D + 7 2D ~  2 ( a  ~ D )  ( 6)

and, similarly, the exponent in the F(u_) term = — .(r+a:)2 ^2. _

Now,

1 1 1  I? 1 1

Consider the exponent in the F(u+) term:

but

i _ (V'x -  0 ||)1/2
a/ Z D  2 a 2 (1 -  V;i ) 1|/2 (1 ~  V,||)1/2

while

1 1 \ , D I Va - 1
D A A ■<J>± -  V;n

(C17)
A D A  A(A + 2?) A + £  2rr2 (1 -  V̂ ||) 

and, recalling that

«± = (C1S) 

we have

E r ± - f i B  = ^ B l D E T ± l )  (C19)

(C20)

So, finally, we have the following form for the correlation function

r dr
l y / i r t r jx  J o  (1 -  V a ) 1/2( V a  -  V’||)1/2

F ( u , ) exp (r -  a:)2 
4a2(l -  V>i|

-  F ( u _ ) exp (r + *) 
4 fT52 ( 1 -  V>||)_

(C22)
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where -F(n) is Dawson’s integral,

F ( u ) =  f U ey2~u2dy (C23)
Jo

and where the arguments u . are given by

U - V t )  ,
r T~i T \  ±  x(V'j. -  V>|| (C24)

N.B.  This is slightly different from equation (2.1h) of Bond & Couchman, which contains 

a typographical error.

D Derivation of CcZ( )̂

In this section we present the derivation of the cluster correlation function given in 

equation 2.63 of Chapter 2. This derivation largely mirrors that of the previous section 

and, again, its utility exceeds its elegance.

Recall that the cluster correlation function may be written in terms of conditional prob­

abilities as

1 + fcz(3;) = J  (1'3r d'3s cl"i (l"-2 P (x I r -> s ) P(r)P( lc . \vx) P{2c | v2) P(s,  vx, v2 | r). (D l)

If the fields v x, u2 are Gaussian, then so is the displacement field, s,  and, hence, P ( s ,  ux, u2 \ r) 

will be a multivariate Gaussian, taking the form

1 r) = (2. ) ^  ii m u  w exp (D2)

where y1 = (s, /q, m,) and Ai, =

Since P(r)  = 1 and P(x \ r ,s )  = I r ~ s |)i equation Dl takes the form

d"V d3s dm du2 ¿ (x— | r  -
1 + £cZ -

s

J (27r)5/ 2 || M  H1/ 2 47r.r2

exp[-{E  -  l)Vo] exp[{E -  1)<t0(i/j + v2)] exp [ ~ \ y l  (D3)
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Now,

Vl(r) = —  f 6k eik r e . - ^ 2R%\3k (D4)
c0 J

and, thus,

("i(r i)"2(r i + r )) = J  v*0t ) ?/2(r i + r ) cl'3ri

J  d3k d3k' d3r e - fe n e~ 2fc2/ï/ è% eik' •(^ +r) 6k, e“ ^ ' 2* / .
o-^(27r)6

The. imposition of periodic boundary conditions means that

J  ei(k'-k)-nd3ri ^ fc/ _  k ) ^ - ~ -  (D5'

and we obtain

< ™ >  =

= ~2 £(r ) =
^0

=  ( * V ' i ) .  ( DG)

where -0(7) is the scaled correlation function of the background density field. It follows 

that (ui 7/j) = (u2 v.2) = 1 since V;(0) = 1, by definition.

From ecpiation C2 and the definition of v it follows that

( v ( r j  a(rt +r))  = J  e ^  e,fc r -^  d 3k. (D?:

Evaluating this in the same coordinate system as before, we have

k — A:(sin0cos0 , sin#sin</->, cos 8) (DS)

and

= (■-‘Î1,<S2)<S3) (D°)
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then (s1 u) =  0 because (c.os</;) =  0 and, similarly, ( s 2 u )  =  0 because (sin0 ) =  0, so the 

only non-zero term is (s3u):

<*/(ri)a3(ri  +  r)} =
-iV 2 i k r  —k 2 R 2. k c o s 0  2

cr0(27r)3
- i V  

a0( 2tt)3

. 2 .1. _  , 2

e e k  dcosfl d4> dkJ  I 6k\

J  | 6 k  I2 k  e ~ k2R2f  d k ■ J  eikri* /r d/i d0 (DIO)

where /r = c o s 6 . If we define as rj>v = as -(- -0||)/3, then it follows from the definitions

of ipj_ and t/'h that

=
V

3(2tt)3 

and, therefore, that

/  |< t l 2 e _ f c 2 R /  d/c • I e i k n i  d/i d 0 (D ll)

cr? /  | ¿fc|2 e"* ’ *? /„• d* ■ /  [ieikrfl d /id *
d r  3(27r)3

-On
("S3) (D12)

i.e.

(// s3 ) =  -
3crs /  di/\.
o 0 V d r

(D13)

Thus, the covariance matrix for the Gaussian P(s,vi ,v2 \ r) is

M =

A 0 0 0 0

0 A 0 0 0

0 0 A + B c C

0 0 C 1 D

0 0 C D 1

where

A

I?

C

D

2a2( l - V T )  

2cts2(V>± -  V»||)
— 3(r2 /  d'lj)

d r

= '0
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and where we have used the results of the derivation of the equivalent expression from 

the previous section to give the matrix elements (sl Sj).

This matrix is of block-diagonal form, so, clearly, we may consider separately the com­

ponents for (a-j, s2) and (,s3, jq , ;q) since there will he 110 cross-terms in the resultant 

quadratic form linking these two sets of quantities. We consider first the c.ovariant 

matrix for the vector y — (.s3, ?q, /q), which has the following form:

M = C 1 D

\  C D 1 /

and an inverse

M~ =
II M ||

1 -  D 2 C ( D - l ) C ( D - l )

C ( D - l )  A + B - C ' 2 C2 - D { A + B )

C ( D - l )  C'2 - D { A  + B ) A + B - C 2

where

M ||=  (1 -  D)[(A + B)( l  + D) -  2C1]. (D14)

At this point it is convenient to make the following definitions:

a  = (1 -  D 2)/(2 II M  ||)

ft = [C(D — l)]/(2  || M  ||)

7 = (A + B -  C2/{2 || M

è = [C2 - ( A + B ) D  ] / ( 2 | |M | |)

259



Then the quadratic form ~^(yT • M  1 ■ y) is given by

^ ( y T • M  1 • y) =  - ( s 3 ;q v2

\a  ß  ß  

ß  7 6

{ ß  6 7 ) \  /
(D15)

— 7;yi *q [2(53/3 + /q<5)] — (as3 + 20s3v2 + ^ 7 ) (DIG) 

Now, from equations Dl and D2, we see that we wish to evaluate the integral

00 r 00

(2tt)3/2 II M  ||-l/2 y_
e(£-l)<r0i/i e(£-l)<T0i/2 eXp

OO — OO

-  ( y T • M  1 • y j dzq d zq

e'"2 I, dzq
(2tt)3/2 II M  \ \ - ' /2 J-oo 

where we define e = (f? — l)a 0 and

(D 17)

ec"‘ exp [ y  1 • M 1 • y j  dzq = J e~Ql dzq (DlS)

where Qj is given by

Ql =  7?q2 + iq [2(s3/i + zq<5) -  e] + (« ^  -f 2 ß s 3t/2 + ^ 7 ) (D19)

Now, using the standard result (Gradshteyn & Ryzhik 1980, § 3.323)

exp ( —p 2.7:2 ±  qx)  da: =
7T q

exp — (D20)

we find that

_  e-(<VÄ3+2̂ s3̂ +*'27) y ^ e x p  I + ^,y2) f ) ] (D21)

Thus, from equations D14 -  DlS it follows that 

1 f°° .I  =
S7T2 7  || M  || 

1

-(cvsjj + 2Ps3- 2+ ^ 7) e x  J J [2 ( / j5 3 +  ¿ / q )  -  

I 47
(1 / A ,

\/s7r27 || M ||
e_Q- (In, (D22)
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where

2 1 
Q 2 =  j h 2 - 6 2) +  ,- ^ [ ( 2 ß s 3 ~ e ) ( ' y - S ) \  +  — [ 4 s i ( a 1 ~ ß 2) +  4s 3ß ( - e 2} (D23)

So, using equation D20 we see that 

1 7T / 7T7
(2tt)3/2 || M  111/2 Y 7 V 72 - ¿2 ' exP 1 -

[4-13(07 -  ß 2) + 4<s3/jf -  f2] 
47

exp (2/3.3 -  ^}2(7 ~ 6? 
4 7  2

7
72 — (52.

A'
\J&n || M  || (72 — S2)

where

X (2/3.3 -  f)"(7 -  ¿)2 [4-13(0:7 -  i n  + 4 .3/3e -  t ]
47(72 -  62) 47

(D24)

7(72 — S2) ß \ 7 -  s)2 -  (a i  -  ( n ^  -  n2\/_.2 c'2-

e/3.-
7 (72 _ ¿2) (7 - ¿)2 - (72 - i2) + 47(72 ~ ¿2) (7-<5)2 + (72 -<52)

2/32

(7 +
—  a

( 7  +  <3) 2(7 + <3)'

Recalling the definitions of a,/3 , 7 and <3 we find

2 c27 —O =
1

{(.4 + B -  C2)2 -  [C2 -  (A + R)-D]2}
4 || M  |p

(D25)

(A + B)( 1 -  D ) [{a  + m  + D ) _ 2c2] = A + B
4 II M | |2 4 || M

and so

(D2G)

\Jsn II M  || (72 — S2) = j2n(A + B). (D27

Similarly,

7 + b  =
(A + B ) ( l - D )  

2 II M  ||
(D2S)
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so

2fr
(7 + ¿) — ft = 4 1| M  |1 C' \ D  -  l ) 2 (1 -  D 2)

{A + B ) { l - D )  4 || M | |2

1

2 II M

2{A + B)  || M 

-1

2C (1 - D ) -  (A + B){1 -  D )

2 (A + B)

while

P C ( D - l )  2 || M - C
7 +  ̂ 2 || M || (A + B ) ( l - D )  {A + B)

and

2 || M ||
(7 + 6) (A + B ) ( l - D )

-  9 {A + B){1 + D) -  2C2
{A + B)

= 2 (1 + D) - 2C
{A + B)

If we combine these with equations D21 and D22 we obtain

I  = exp
V̂ TT {A + B)

{E — 1 ) 2 (t 0 ( 1  +  D )

A-3
2(A + E)

exp 2{E — l )a0Cs3

exp

{A + B)

2{E -  l ) 2a 2C2'
(A + B)

Then

P(s,ul t u2 | r) 

and so

1 + Zczix) =

2nA
exp

/ "2 ■ 2 \ 
~(-sl + ,s2)

2A

4irx+

1'  —

exp[—( .E -  1) <r0] P { s , i ; x, v 2 \ r)

|) exp [-(E  -  1) <r0]

exp

47r .7:2 v/(27r)3A'2(J4 + B)

2{E -  1)ct0C-s3 

(A + B)
[ - 4 [ - ( ^ 1 + ^ ) 1exp exp
2(A + B) 2 A

(D29)

(D30)

(D31)

(D32)

(D33)
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2 ( E  -  1 )2a%C2 
( A + B )

I

exp

d 3r  d 3< 6 ( x — | r — s |)

v/(2tt)3A2(A + B) 47T.T2
exp[(£ -  1)2£L] • exp

(D34)

- 1 S ( £  -  l ) 2a^ / dip
(A + B ) dr

r'l-K rn
[  I x/  sini? d6 dcf) exp 

J<t>~o Jo=o

is • f i2 ( s  • f ) 2 6 ( E  — 1)ct2(s  • f )  f  d tj).
2A 2A 2(A + B)  (.4 + B)  \  dr

since, in our chosen coordinate system, s3 = s ■ r and s 2 = s2 + s \  + s |.  We have, noted 

that the ¿-function restricts the integration over s  to the sphere at constant | x | and 

performed the resultant (trivial) integration over the azimuthal angle. Furthermore,

r 2 4- x 2 — 2x ■ r

(D35

= r 2 + x 2 — 2 xrn

s ■ r — ( r  — x) ■ r 

=  r — x.fi

where /i = cos0, so the exponent in the integration over /i may be written as 
(s  ■ r)2 S2 (s  ■ r ) 2 6(E —  1 )o"2( s ■ r) / d^>v

2 A  2.4 2 (A +  B)  (A  +  B) dr

( s  • f ) 2 ' 1 1 ,s2 G(E -  l)a2{s ■ r) ( dV’v A
2 [-4 (.4 +  Z?)J 2.4 (A + 5 ) I  d r  J

(r  -  x/j.)2 ( r 2 +  x 2 2:;:r/i)  6 ( E  — 1 )<r2(r — x/i)  /  diJ>

Q /0 
2 E

2 E

2

+ fix

2.4 (A  +  B)

A _ _ 6(£ ~ 1K 2 ( W i
A E j  (A + B ) V dr

dr

( r 2 +  ®2 ) r 2 G ( £ -  l)c r2r  (d^v
2 A

( x t l ) 

2 E

where

X = G(E -  1) cr

2E (.4 + B) \  dr 

lixF(r + \ )

(  d'0v

(r2 + :r2! 
2.4

+ ^  + F r x

V d r

(D36)

(D37)

(D3S)
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E = A{A + B) 
B (D39)

so

1 1  B -1
~E ~ A A(A + B) ~ (A + B)

= F. (D40)

Now, if we let

w x/i
V2E

(D41)

and

(D42)

and then we may write the integral equation for the correlation function in the form 

r°° r2 dr exp [(if — 1)2£l] 2nx2
1 + £cZ / o y/(2it)*A2( A + B )

exp + F r x F X2

where

d/t exp[(w + a) — a ]

rx/\/2E
/  die exp[(w + a)2 -  a2]
I—x/ \Ei e  x

If we now define

y = xp -f a

• r (D43)

(D44)

± x / V 2 E

2G4



then

T r +  / ~2 ~2\ V 2E 
V  = / d2/ exp[y -  « ) -------

J  XL—  X

V2E n<+
(1 y exp (y - a  ) -  d y exp (y -  a. )

/ o Jo

V2 E ru+
dy exp(y2 -  u \ ) / x 2dx exp ( —  +

2 E y /2E;

[  dy exp(y 
Jo

2 -  u2 exp —  -
x 2 2dx ^ |
2E ~ V 2 E j j

and, thus, 

1 +  £cZ
f°° r2 dr ex p [(F - 1)2£L] 2 y/2E
lo v/(2tt)3.42(.4 + B) x eXP

(D45;

[r2 + x2) r2 _ X2F~
    d b Fry  +  ——2 A 2 E X 2

rv - x I x 2<lx F ( u . ) e x p  [ —  +
2E \[2E J

Consider the exponent in the F(u+ ) term:

— F(u_ )exp 2dx
2 E y/2E

(r2 + x 2) , rL , F\
2A + 2E + F7'Y “

2 2 _ 2xF\r  + x)  I E  
2 E \p2E

(D46)

F

9 [ x _ ( r  +  x )]2 = ^ ( * - f ) 2 (D47)

where f  =  r  +  x  and, similarly, the exponent in the F ( u_ ) term is (x + f ) 2{F/2).  

Equation D46 now takes the form

roo  / <y p

1 +  i ' z = I  dTr2‘x M E - i)2^ ]x

F (u,  )exp + f)2 — F(u_ )exp F ~\2(a: -  r ) }■
but,

2ttV2E

(D4S)

(D49)
x/(27r)3A2(A + 5 ) ^ \ A 2(A + B) ^ A B ^

so that, making the final substitutions into equation D48 we obtain the final expression 

for the correlation function as

1 r°° r 2 d?‘ e x p [(F  -  l ) 2£ j
1 +  £cz (a:) -
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F(u,)exi) {x -  r)2
4crs2(1 -  ^||)

— F(u_ )exp - ( x  + r)
. M C 1 -  V ’ | | ) _

where

r + 6 ( E ~ l ) a 2 ^

U  r f-M ±  x(v’x-V'ii)

and where ^  is the correlation function of the linear density field.

(D50)
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ABSTRACT
W e re p o rt on  a s tudy  o f  the  richness d ependence  o f  the sp a tia l co rre la tio n s o f  clusters 
o f  galaxies. W e em ploy  the m e th o d  devised  by Bond &  C ouchm an , w hich com bines 
the th eo ry  o f  the s ta tis tic s  o f  p eak s  in G au ss ian  ran d o m  fields w ith the evo lu tion  o f  
the cosm olog ical density  field by the  Z eldovich  A p p ro x im atio n , to  ca lcu la te  ana ly tica lly  
b o th  the  s ta tis tica l a n d  d y n am ica l c o n tr ib u tio n s  to  the clustering .

W e co m p u te  th e  c lu ste r c o rre la tio n  function  for a varie ty  o f  p o p u la r  cosm ological 
m odels an d  co m p are  o u r  resu lts  w ith  d a ta  from  four recent c luste r sam ples. W e find no 
m odel ab le  to  ac co u n t fo r all o f  the observa tions, a lth o u g h , conversely, the observa tiona l 
d a ta  a re  o f  insufficient q u a lity  to  ru le o u t firm ly any o f  the m odels. T he m odel th a t fares 
best is one w hich has been  a d v o c a ted  as acco u n tin g  for the an g u la r  co rre la tio n  function  
o f  A P M  galax ies: th a t the  sam e p o w er spectrum  gives the  best fit to  b o th  the galaxy 
an d  c lu ste r co rre la tio n  d a ta  m ay  be ta k en  as su p p o rt for the s ta n d a rd  p ic ture, due to  
K aiser, in w hich ob jects fo rm  a t the  sites o f  peaks in an  in itial cosm ological density  field 
w hich obeyed  G au ss ian  sta tistics.

N o  m odel is ab le  to  rep ro d u ce  th e  co rre la tio n  length  o f  a sam ple o f  A bell R > 2 
clusters. T h is resu lt m ay  ju s t  in d ica te  the  inadequacy  o f  the co rre la tio n  length  w hen 
tak en  a lone  as a d iag n o stic  sta tistic , o r  th a t this c luster sam ple is seriously  co rru p ted  
by p ro jec tio n  effects. W e consider, how ever, a lte rn a tiv e  ex p lan a tio n s, inc lud ing  the 
possib ility  th a t n o n -G a u ss ia n  in itia l co n d itio n s are requ ired  an d  th a t the iden tifica tion  
o f  p eak s  in the linear density  field as sites o f  nascen t cluste rs m ay b reak  dow n for the 
h ighest peaks, co rre sp o n d in g  to  the  richest clusters.

Key words: galax ies: c lu ste rin g  -  co sm ology : theory  -  large-scale s tru c tu re  o f  U niverse.

1 IN TR O D U CTIO N

The large-scale structure of the Universe is delineated by the distribution of galaxies and of clusters of galaxies. These distributions 
may be quantitatively described using the hierarchy of n-point spatial correlation functions (e.g. Peebles 1980). The two-point 
function, f(r), has become the dominant statistic for describing large-scale structure and for challenging cosmological theories 
through comparison with observation, despite the fact that, in many ways, the use of its Fourier transform, the power spectrum, 
is preferable (e.g. Peacock 1991; Peacock & West 1992, hereafter PW92). It is observed that the two-point functions for many 

‘ classes of objects, from galaxies (Davis & Peebles 1983) to rich clusters (Bahcall & Soneira 1983, BS83), are well approximated by 
the same power-law form, £ ( r )  =  (r0/r)y with y ~  1.8, with different values of the correlation length, r0, over a wide range of 
separations, r, where the correlation functions are relatively well determined. The correlation length of rich clusters has. however, 
been a m atter of great controversy throughout the past decade. The most widely used cluster catalogue has been that of Abell 
(1958), with a southern extension by Abell, Corwin & Olowin (1989, ACO). From a redshift survey of 104 Abell clusters with 
richness R > 1. BS83 obtained a correlation length of r0 =  25 / f 1 Mpc (where, as usual, h denotes the Hubble param eter in units 
of 100 km s_1 Mpc-1). Many workers have deemed this num ber to be too large to be readily explained by many cosmological 
theories, in particular by the standard Cold Dark M atter (CDM) model o f White et al. (1987). The importance of any such 
conclusion has prompted detailed study of the BS83 result.

The clusters in the Abell/ACO catalogue were selected by scanning photographic plates by eye, so their selection was 
dependent on many unquantifiable physiological and psychological factors. A number of authors (e.g. Lucey 1983; Sutherland 
1988: Dekel et al. 1989: Sutherland & Efstathiou 1991; Efstathiou et al. 1992b) have questioned the reliability of this method of
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cluster selection and, hence, o f the Abell/ACO catalogue as the basis for statistical analyses of the spatial distribution of clusters. 
They detect gross projection effects, which Sutherland (1988) defined as ‘angular correlations that are not due to genuine clustering 
in redshift space’ and which manifest themselves in a redshift-space clustering pattern with a higher degree of anisotropy than 
can be accounted for by reasonable cluster peculiar velocities. Sutherland (1988) presented a method for correction for projection 
effects, and its application to a sample o f Abell clusters from the redshift survey of Struble & Rood (1987) resulted in a much 
reduced correlation length of r0 =  14 h~l Mpc. Sutherland & Efstathiou (1991) and Efstathiou et al. (1992b) have applied the 
same procedure to further samples of Abell clusters, with similar results.

It is clearly preferable to start with a reliable sample, rather than to have to correct an initially unreliable one, especially if 
there may be some doubt as to the validity of the correction procedures. The advent of plate-measuring machines has facilitated 
the creation of cluster catalogues whose selection criteria should be much more objective than those of the Abell/ACO catalogue, 
and which were chosen to circumvent some of the problems associated with it. Recently, Nichol et al. (1992) have reported a 
correlation length of r0 =  16.4 +  4.0 h~l Mpc for the clusters o f the Edinburgh/M ilan Redshift Survey (EMRS), which are drawn 
from the E dinburgh/D urham  Cluster Catalogue (EDCC) of Lumsden et al. (1992), while a sample of APM  clusters (Dalton et al. 
1992) yields r0 =  12.9 ±  1.4 h~l Mpc. Bahcall & West (1992) have claimed that these latest results are consistent with the larger 
correlation length of BS83, given that the num ber densities o f the EM RS and APM  samples are higher than that of Abell R > 1 
clusters and provided that there is a strong dependence of correlation length on num ber density, as previously claimed (Bahcall & 
Burgett 1986; Bahcall 1988) to be followed by objects ranging from individual galaxies to superclusters.

In this paper we investigate whether the required strength of this richness dependence can be reproduced theoretically. 
Our method is an analytic one, that of Bond & Couchman (1987, 1988; hereafter collectively BC), which uses the Zeldovich 
Approximation to perform the evolution of the cosmological density field. We show how its use facilitates the com putation of 
predictions of the cluster correlation function for cosmological models in a much shorter time than is possible through N-body 
simulation. The advantages of analytic methods over numerical simulation extend, however, beyond the simple considerations of 
enhanced speed and the much more efficient coverage of param eter space that they facilitate. Studies of cluster correlations through 
IV-body simulation face difficulties resulting from the dynamic range inherent in the problem: the numerical simulations should 
ideally have sufficient spatial resolution to be capable of producing plausibly galaxy-like objects, while the low num ber density 
of clusters means that a very large simulation volume is required to generate a sample of clusters large enough to facilitate the 
computation of the correlation function with reasonable statistical accuracy. These conflicting requirements place tight constraints 
on those running N -body simulations, given the capabilities o f present-day computers. For example, Bahcall & Cen (1992) are 
able to simulate a cube of side 400 /t-1 Mpc, which gives them a sample of several hundred clusters, but only through the use of 
a PM code, the limited spatial resolution of which (~0.8 h~l Mpc) makes it far from ideal for addressing the im portant related 
problem of the cluster mass function, which they define in terms of the mass contained within a sphere of radius 1.5 /i-1 Mpc. 
Other numerical modellers (e.g. Dalton et al. 1992) have been forced to make assumptions about the relation between the cluster 
distribution and the Mpc-scale mass distribution. Given this necessity, it is clearly preferable to implement such assumptions 
analytically, which is the approach we adopt here.

We compute the cluster correlation functions for a number of models and for the number densities appropriate to observed 
duster samples, com paring our results with those observed. We also calculate the relationship between the correlation length, r0, 
and the characteristic separation, d, o f a sample of clusters, which is related to its number density, iVc, by d = N f l/3. In Section 
2 we review some of the features o f the theory of the statistics of peaks in Gaussian random  fields that relate to the study of 
large-scale structure. In particular, we look at the use of the peak-peak correlation function as an approxim ation to the cluster 
correlation function, and we show how a simple collapse model may be used to relate a population of clusters to a set o f peaks in 
a particular Gaussian random field. The Zeldovich Approximation is the subject o f Section 3, and the models that we have chosen 
to consider are described in Section 4. In Section 5 we compare our results, both for the cluster correlation function and for the 
tl — r0 relation, with observation. A discussion of our work and the conclusions that we draw from it are presented in Section 6.

2 GAUSSIAN RANDOM FIELDS AND LARGE-SCALE STRUCTURE

Most theoretical studies o f the formation of large-scale structure through gravitational instability assume that the primordial
density perturbation field obeyed Gaussian statistics. There are both theoretical and observational reasons for supposing that this
might be the case. Observational support comes from work by G ott and collaborators (Gott, M elott & Dickinson 1986; Hamilton, 
Gott & Weinberg 1986; Weinberg, G ott & M elott 1987; Melott, Weinberg & G ott 1988; G ott et al. 1989) and others (e.g. Coles
& Plionis 1991; Moore et al. 1992) on the topology of large-scale structure, as well as from the analysis o f the QDOT redshift 
survey of IRAS  galaxies presented by Saunders et al. (1991) (see also Juszkiewicz & Bouchet 1992) and, most recently, from the 
results o f the COBE D M R experiments presented by Smoot et al. (1992). On the theoretical side, the assumption of Gaussian 
statistics is particularly well motivated in inflationary models, which predict Gaussian statistics as a generic feature, resulting from 
the random nature of the quantum  processes that generate the primordial density perturbations (Bardeen, Steinhardt & Turner 
1983, and references therein).
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2.1 Peaks in Gaussian random fields

The simplifying assumption of Gaussian statistics facilitates an analytic study of the properties of the cosmological density field 
which is complementary and, in some ways, preferable to that pursued through TV-body simulations. Much work has been done to 
elaborate a scenario where non-linear structures form preferentially in thresholded regions (Kaiser 1984; Jensen & Szalay 1986) 
or at peaks [Peacock & Heavens 1985; Bardeen et al. 1986 (BBKS); Coles 1986; Couchman 1987; Lumsden, Heavens & Peacock 
1989 (LHP)] in a Gaussian primordial density field, following the insight o f Kaiser (1984) that such a model could explain the 
enhancement of the correlations of Abell clusters to a strength well above that o f galaxies. BBKS present the most comprehensive 
treatm ent o f the statistics o f peaks in Gaussian random  fields, and we shall generally use their terminology in what follows.

The basic assumption of BBKS’s theory is that the cosmological density perturbation field obeyed Gaussian statistics at early 
times and that, after smoothing, those of its peaks that lie above some threshold may be identified as sites o f nascent objects. 
It follows that a particular class o f objects is defined by the pair _RS and vs, which are, respectively, the smoothing scale of the 
(conventionally Gaussian) filter which, when applied to the density field, identifies the correct population of peaks (mass of object 
oc Rj1) and the threshold in this smoothed density field above which peaks are to be identified with nascent objects. Williams et 
al. (1991) have studied the relative merits o f various forms of filter function in a one-dimensional implementation o f peaks theory 
and they have found that, indeed, the use of a Gaussian filter gives the best agreement with results o f simulations based on the 
adhesion model, which is exact in one dimension: we consider only Gaussian filters in this paper.

BBKS derive a formal expression for the »-point correlation function of peaks in a three-dimensional Gaussian random 
field that satisfy the threshold condition. The joint probability function of n peaks is a function of 10» variables and the »-point 
correlation function may be reduced, using suitable approximations, only as far as a 2»-dimensional integral with a very complicated 
integrand, so that calculation of even the two-point function is problematic. Approximations to the peak-peak correlation function 
are considered by BBKS, as well as by LH P (and references therein).

If these methods are to be used to model the correlation function of galaxies or clusters as observed today, then one must 
assume that the clustering in the present-day distribution is due to that in the distribution of the sites o f nascent objects, resulting 
from their being rare events in a Gaussian process, and that there has been negligible movement of the objects from the sites of 
their formation as a result of their mutual gravitational attraction, since this will change the correlation function from its initial 
peak-peak form. BBKS provide a simplified approximate prescription for modification of the peak-peak correlation function to 
account for evolution while the density field remains linear, and this has been used recently by Holtzman & Primack (1993) to 
study several CDM  variants. The deficiencies o f linear theory, in comparison with a fuller dynamical treatm ent using the Zeldovich 
Approximation to perform the evolution of the density field into the non-linear regime, are discussed by Coles, M elott & Shandarin 
(1993). Such a treatm ent is required to facilitate the accurate com putation of the cluster-cluster correlation function and BC have 
shown how this may be done, as will be described in Section 3.

The static peak-peak correlation function should remain a good approximation to the true correlation function at very large 
separations, however, where the effects o f dynamical evolution are negligible. In the limit o f arbitrarily large separations, the 
peak-peak correlation function is simply a multiple of the autocorrelation function of the linear density field, and is shown by 
BBKS and LHP to take the form

where ip(r) = £ (r) /¿(0) is the scaled autocorrelation function of the linear density field, smoothed on scale Rs, and where (vs) is 
the value of an effective threshold quantity, vs, averaged over all peaks above the threshold vs, and is given by

A derivation of this closed form for (vs) is given in Appendix B, where the function f (x)  is defined. The spectral parameter, y,

power on a wide range of scales, while, as y —> 1, the power spectrum tends towards a ¿-function. This spectral parameter is 
defined in terms of moments, aj, o f the power spectrum of the density field, by y = (T j/^co- We define the moments by

Épk-pkW -* (vs‘}2V>(r) as r -*• oo, (1)

2 1 1/2 J T / ( x )e 'v2/2exP [~ (vs -  yx)2/2(l  -  y2)] dx (2)
_7t(l y )J  J “ /(x )e -x2/2erfc ' (vs — yx) /y/2{l  - y 2) dx

indicates the range of wavenumbers over which there is power in the power spectrum: a low value of y indicates that there is

(3)

and employ the dimensionless form of the power spectrum given by A2(k) [where A2(k) oc k1 P(k)], which is equal to the contribution 
to the variance of the density perturbation field per unit interval o f Ink, and which is related to the autocorrelation function of the 
density field by

¿’(t) = 5L r {w™Lr!dr.
n J Q kr

(4)
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2.2 Defining a population o f objects

In Section 3 we shall use the asymptotic form of the correlation function given in equation (1) to normalize the prescription used 
by BC to relate the cluster distribution to the underlying density field. To do this we require a procedure for calculation of the 
values of Rs and vs appropriate to the set o f peaks which we identify with a population of clusters with num ber density Nc : we 
assume that the num ber density of clusters is conserved even though the individual cluster positions change over time. There is no 
unique way of making this identification. We employ a prescription based on the following simple collapse model.

Collapse models commonly identify the formation of an object with the time when the rms density contrast o f the extrapolated 
local linear density field, smoothed on the appropriate mass scale, exceeds some critical value <5C, which, in an Einstein-de Sitter 
universe, equals 1.7 for a spherical perturbation. Lower values (1.7 ><5C >1) will be appropriate for a triaxial proto-object (More, 
Heavens & Peacock 1986), which is the generic case for peaks in a Gaussian random  field (Peacock & Heavens 1985; BBKS). It 
is found (e.g. W hite et al. 1992) that the value of <5C is very insensitive to flo for a flat universe, so we shall consider the range 
1.7 >  <5C >  1 for all models in what follows. An independent constraint on the value of dc to be used is that this procedure should 
produce sensible cluster mass estimates: this point is discussed further in Section 5, with reference to the comparison of our results 
with those from numerical simulations.

It is clear that the first objects o f a given mass to form in this picture will be those corresponding to the highest peaks in 
the initial density field and that, as time progresses, the objects o f that mass which collapse will correspond to increasingly low 
peaks in the initial density field. A lower bound to the threshold vs may be obtained, therefore, by equating it with the peak 
height corresponding to peaks collapsing today. This would clearly be an underestimate of the threshold for objects like galaxies 
which formed some time ago, but for clusters, which are the most massive objects to have collapsed by the present and which are 
observed to be dynamically young, it is reasonable to equate the threshold with the height of peaks collapsing today, and that is 
what we shall do here. This provides the first constraint on the values of Rs and vs, which may be written as

vs cr0(/?s) =  <5C. (5)

A second constraint comes from matching the number density of clusters, Nc, to npk(vs), which is the number density of peaks in 
the initial density field, smoothed on scale Rs, which lie above the threshold vs> and which is given by

nPk(vs) =  ^ 5^3 J d x /(x )e _JC /2erfc

where R, =  y/3 a \ /a2'- a derivation of this formula is presented in Appendix A.
From equations (5) and (6) we obtain a unique solution for Rs and vs for a particular cluster number density and a given 

power spectrum: this prescription is very similar to that used by BBKS and Bardeen, Bond & Efstathiou (1987). We discuss the 
application of this procedure to power spectra o f practical interest in Section 4.

(vs ~  yx)

\ /2(i y 2)
(6 )

3 CLUSTERING IN THE ZELDOVICH APPROXIMATION

The statistical peak-peak correlation function of BBKS and LHP is a poor approximation to the true cluster correlation function 
on scales where the dynamical evolution of the cluster population since formation is not negligible. A method must be found to 
combine the dynamical and statistical com ponents to the clustering, and BC have shown how this may be achieved, within an 
analytic framework, through the use of the Zeldovich Approximation (Zeldovich 1970; Shandarin & Zeldovich 1989) to perform 
the dynamical evolution of the density field into the mildly non-linear regime that is o f relevance to the cluster distribution. We 
present a full description of this m ethod here, since that given by BC is somewhat terse and contains a number of typographical 
errors.

3.1 The Zeldovich Approximation

Consider a three-dimensional space populated by a dissipationless fluid. In proper coordinates, the (Eulerian) position, y(i\t), of a 
particle at a time t is related to its initial (Lagrangian) position, r, by

y(r,t) = a(t)r -  D(r, t ) ,  (7)

where a(t) is the cosmological scale factor, D(r,t) is the (negative of the) displacement field and the minus sign is a m atter of
convention. The Zeldovich Approximation consists o f the assumption that the displacement field may be expressed as the product
of spatial and temporal parts, of the form

D M  =  b(t)d(r), ( 8)

so that, in the Zeldovich Approximation, equation (7) becomes
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x(r,t) =  r  _  $ ) d(r)' (9> 

where we define comoving coordinates, x(r, t) = y(r, t)/a(t).  The function b(t) depends on the value of the cosmological density 
parameter, fi, and determines the evolution of density perturbations: an expression for the growing-mode solution for b(t) is given 
in the appendix to Zeldovich (1970). O ur concern here is with the distribution of m atter at a specific epoch, the present, rather 
than with following the evolution of the density field with time, so it is convenient to define the variable

,(r) s  bM d(r)’ (io)
where t0 denotes the present epoch, from which it follows that

x =  r -  s. (11)

Given knowledge of the density perturbation field, equation (11) is all that is required to determine the distribution of particles, 
since the displacement field, s, is related to the density perturbation field by

<5 =  P- ^ -  =  V, s. (12)
P

This result, which holds for small perturbations at early times, may be derived through a consideration of mass conservation. At 
later times it may be taken as defining the extrapolation of the linear density field obtained using the Zeldovich Approximation, 
which is what we shall henceforth denote by the symbol <5, and it may be expressed in terms o f the Fourier components, {«*}, {()&}, 
of the two fields as

(sk)j =  - i  -A (k)j, (13)

where k =  k /  | k \ and (k)j is the y'th com ponent o f the vector k, etc.
The Zeldovich Approximation is exact in one dimension until caustics form -  i.e. p —► oo locally. After this time it gives an 

increasingly poor description of the density field, as it leads to shell crossing, with particles passing through each other rather than 
coalescing, resulting in an underestimation of the density of collapsed objects. This may be remedied by introducing a viscosity 
term into the dynamical equations, to produce ‘sticky’ particles: this is the adhesion model, for a discussion of which the reader 
is referred to Williams et al. (1991) and references therein (particularly Gurbatov, Saichev & Shandarin 1989). The advantage 
afforded by the introduction of ‘sticky’ particles is outweighed, in the present context, by the impossibility of incorporating the 
adhesion model into a straightforward analytic framework like that outlined here for the Zeldovich Approximation.

An analytically tractable solution to the shell-crossing problem in the Zeldovich Approximation is to apply a filter to the 
initial density field, to remove the small-scale power which causes shell crossing. It has been shown (Efstathiou & Silk 1983; 
Efstathiou 1990; Coles et al. 1993) that, with the inclusion of such a filter mechanism, the Zeldovich Approximation can provide 
a remarkably accurate picture of the evolution of the density field well into the non-linear regime, as judged by comparison with 
the results o f N-body simulations using the same initial conditions. Coles et al. (1993) favour the simple truncation of the power 
spectrum at a particular wavenumber to remove small-scale power, while BC prefer smoothing with a Gaussian filter. We adopt 
the latter approach here and discuss the choice of smoothing scale for the Gaussian filter in Section 3.2.

In addition to this direct illustration of the efficacy of the Zeldovich Approximation in this application, through comparison 
with IV-body simulations, BC and Coles (1990) have shown that the Zeldovich Approximation reproduces the quadratic non­
linear terms in the full dynamical power spectrum in the mildly non-linear regime appropriate to analysis through second-order 
perturbation theory.

Given that the Zeldovich Approximation is rooted firmly in linear theory, and one-dimensional linear theory at that, one 
might be surprised at how well it can describe the mildly non-linear evolution of the cosmological density field, but this can be 
readily explained through a consideration of the properties of the collapsing density perturbations involved. It can be shown that 
proto-objects in Gaussian density fields are generically triaxial (Peacock & Heavens 1985; BBKS) and that gravitation acts to 
accentuate that deviation from spherical symmetry (Lin, Mestel & Shu 1965), leading to collapse along one axis first (Zeldovich 
1970), with subsequent particle motion being preferentially directed parallel to this axis. While the details o f this procedure depend 
on the power spectrum of the density field, it will be generally true that gravitational collapse in structure formation is well 
approximated by a one-dimensional process, and hence that the Zeldovich Approximation will give a good description of the 
evolution of the density field well into the non-linear regime, for a wide range of cosmological models (Coles et al. 1993).

3.2 M ass correlations in the Zeldovich Approximation

The first application of the Zeldovich Approximation to be considered is in the determination of the correlation function of a 
density field with known linear power spectrum. We require knowledge of the mass correlation function as part of the procedure 
we adopt for determining the smoothing length of the filter that we must apply to the density field to prevent shell crossing. It
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is also instructive to consider this first part of the BC formalism (the evolution of the density field) before the addition of the 
further complication of the prescription to relate the cluster distribution to the density field. The mass correlation function, g()(.\j, 
is related to the probability, P(x 11,2), of finding masses at points 1,2 a distance x apart by

1 +  {„(x) =  P ( x | l , 2).

This may be written as

1 +  f p(x) =  /  d 3r d3.s P (x 11', s) P(s ] r) P (r),

(14)

(15)

where P(x|r,s) is the conditional probability that two particles have an Eulerian separation x, given that their Lagrangian separation 
is r and that their relative displacement through subsequent m otion is s; P{s\r) is the conditional probability that two particles 
have a relative displacement s given a Lagrangian separation P(r) is the probability of there being two particles with Lagrangian 
separation r; and the integral is taken over all r and s.

This m ethod would calculate the correlation function for a distribution of particles that had been perturbed in any way that 
produces a Gaussian displacement field: the Zeldovich Approximation is required only for relation of the displacement field to the 
initial density field. From equation (11) we see that the Zeldovich Approximation results in the conditional probability P(x ¡iysj 
taking the simple form P(x|r,s) =  <5D(x - |r -s |) /(47rx2), where ¿d denotes the Dirac ¿-function.

In Appendix C we sketch the derivation of the mass correlation function in the Zeldovich Approximation from this point 
through its reduction to a one-dimensional integral, which reads

l +  £,;z(x) =
1 r2dr

2^/no
F(u+)exp (r -  x)2 

4ff2(1 ~ Vi)
— F(u_)exp ('■ +  x)2 

4ff2(l — ipn)

In equation (16), F(u) is Dawson’s integral,

F (h) = "d y,

and the arguments u± are given by

u+ ■: (Vi-Vi )1/2
2«rs(l-tp|,)1/2 (l_v,±)i/2

(1 ~ ytj.) 
(Vi -  Vii)

(16)

(17)

(18)

which differs slightly from the equivalent equation in BC, which contains typographical errors. The quantity ers is the one­
dimensional rms particle displacement and is given in terms of the density field by

2 1 r  (¿2R2 dk' ¡ = - 3 Jo A2(k) e r r ­

and tpn and xp± are defined by

i f r lM  =  / A2(fc) e'kr (k ?)2 e

and

*sV ( r )  =  /  A2(/c) eiA
1 -  (k ■ f)2

dk
k2’

 (.2 d2 dk
e f ¥ '

(19)

(20 )

(21)

Equations (19)—(21) contain a Gaussian smoothing term (e f) to filter small-scale power from the power spectrum A2{k). 
The choice of the filter radius, R(, for use with a particular power spectrum is motivated by several considerations: if Rt is too 
small, then shell crossing will not be suppressed; if R( is too large, it will filter out real power at short wavelengths and produce 
a two-point function that underestimates the strength of correlations on small scales. This behaviour can clearly be seen in Fig. 
1, which shows the mass correlation function for a CDM  model in the Zeldovich Approximation, with the linear power spectrum 
smoothed with Gaussian filters with different smoothing lengths, Rr. The largest smoothing length of Rt- =  5 h~l Mpc filters out 
real small-scale power: as the smoothing scale is reduced, the small-scale correlations increase, until a maximum is produced by a 
filter radius of 3 /z_1 Mpc. As R[ is reduced further, it is clear that shell crossing is occurring to a large extent since, with filter radii 
of Rr <  1 h~{ Mpc, the correlations are reduced at small separations, due to the smearing out o f structure as shells o f particles pass 
through each other. From this it is clear that for this particular power spectrum a filter length of R{ =  3 / r 1 Mpc is appropriate. 
Using this method, we may determine the correct filter radius to be used for each of the models we consider.

When calculating the cluster correlation function, however, consideration of the m otion of the peaks in the density field leads 
us to modify this procedure and to impose the constraint that Rf cannot be smaller than the filter length, Rs, used to define the 
peaks. This follows from seeing that if the peaks are defined by smoothing the density field on some scale Rs then the motion of 
those peaks can only be due to modes with wavelengths longer than Rs and so, whenever the procedure outlined in the preceding 
paragraph gives R[ < Rs, we set R[ equal to Rs.
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Figure 1. T he m ass co rre la tion  function  for an £lo =  1» T =0.5  m odel w ith C O B E  am plitude, calcu lated  for a n u m b er o f  values o f  the filter length, 
R f, as indicated . (Rf in units o f  h ~ l M pc).

3.3 Cluster correlations in the Zeldovich Approximation

In order to calculate the cluster correlation function, it is necessary to supplement our mechanism for evolution of the density 
field with a prescription for relation of the cluster distribution to the underlying density field. This involves, o f course, a rather 
subjective choice, given the current level o f understanding as to how galaxies and clusters form. Given such a prescription, the 
cluster correlation function may be written in terms of conditional probabilities in a form analogous to, and derived from, equation 
(15):

1 +  ^c(x) =  J  d3)-d3j  dvi dv2 P(.x |r, v) P(r) P ( lc | Vi)P(2c| V2)P (i |r, v’!, V2) P(vi, Vi | »•)• (22)

In this equation, P(.v | r, v,, v2) is the conditional probability that two points, where the smoothed density field takes values vt, v2 
(in units of the rms perturbation, 00), should have a relative displacement s, given that their initial separation was r. The term 
P(vi,v2 | r) is the conditional probability that the smoothed density field should take values vi,v2 at points with initial separation 
r. From the definition of conditional probabilities it follows that

P(s | r ,v i,v 2) P(v!,v2 | r) =  P (s,vb v2 | r), (23)

which has a Gaussian distribution. The term P(c | v), the probability of there being a cluster at a point where the density field 
(smoothed on a scale larger than that used to define the peaks) takes a value v, encapsulates our statistical prescription for cluster 
formation. As discussed above, BBKS and others have studied models where objects form in thresholded regions or at peaks in 
the linear density field. Some authors have argued, however, that the physics of structure formation is more likely to produce a 
smooth non-linear relation between the mass density and the num ber density of objects, rather than a sharp threshold (e.g. Kaiser 
& Davis 1985; BBKS; Szalay 1988; Coles & Jones 1991). In particular, Kaiser & Davis (1985) suggest an exponential relationship 
between the num ber density of objects and the density field. This gives the correct form for the statistical contribution to the 
correlation function at large separations (see below) and is very convenient com putationally, so we follow BC in employing it here, 
giving the form of P(c | v) as

P(c I v) =  exp[(£ -  l)ff0v] e x p [- (£  -  l)2ffo/2], (24)

where the second exponential term normalizes P(c | v), so that it conserves mean density, and where the choice of the value of 
the enhancement factor, £ , is considered below. The background smoothing scale used here is arbitrary, except for the constraint 
that it cannot be smaller than Rs, so we take it to be equal to Rf, the filter scale used to suppress shell crossing in the Zeldovich 
Approximation, which satisfies this constraint by definition.

The derivation of the final expression for the cluster correlation function from this point is sketched in Appendix D. It 
proceeds similarly to that for the mass correlation function and yields the following result for £cz(x), the cluster correlation 
function in the Zeldovich Approximation:
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l  +  C c z M  —

where

r  dr exp[(£ — 1 )“^(r)] 
2fnxa\ Ja ( 1  -  i/L l ) i / 2 ( v _l  -  ipi)'/2 F(Q+)exp -(-x -  r)2 

4 o f ( l  -  Vn)
- £(S_)exp - ( A -  +  r ) 2

4ff2(l — ipn)
(25)

f  = r + 6(E — l)cr2 (dip,,/dr)

(VX-V’ll)1''2u± =
2 o-s ( 1 —  ip II ) 1 /2 ( 1 --V x  ) 1 /2

+ x
(V J_— V | | )  —

and where tp„(r) = (2yj± +ipi) / 3 and ç(r) is the correlation function of the smoothed linear density field. This also differs from the 
equivalent expression given by BC, due to the presence of typographical errors in that work.

The appropriate value of the enhancement factor, £ , may be determined readily by matching the large-separation asymptotic 
limit o f the statistical contribution to ¿;cz to that o f the statistical peak-peak correlation function. The one-dimensional mis particle 
displacement, crs, is a measure of the degree of dynamical evolution of the density field, so that the statistical contribution to CcZ 
comes from considering the limit crs —► 0. It may readily be shown that

1 +  £cz(x) —> exp [(£ -  1)2£(x)] as trs -> 0,

in which case the large-separation asymptotic form of the statistical contribution to ^cz (a) is given by

Lzix) (£ — 1) ç(x) as x —> oo, as 0.

(26)

(27)

Matching of this with the result given in equation (1) yields the correct value of £  to be used. From the results of LHP it is also 
possible to verify that the form of P(c | v) given in equation (24) provides a good approxim ation to Pk—Pk(>') down to r ~  Rs.

4 MODELS AND NORMALIZATION

We consider models in which the universe is spatially flat and in which the initial density fluctuations are Gaussian and have 
scale-invariant power spectra. Such models are consistent with the predictions of inflation and with the results o f the CO BE D M R 
experiment (Smoot et al. 1992), which we use to constrain the amplitude of the fluctuations at the present epoch.

The power spectrum of density fluctuations is given by

A2(/c) =  ( J j - 'j  T 2(k), (28)

where T(k) is the transfer function and the dimensionless normalization parameter, e, is that defined by Peacock (1991).
We follow Efstathiou, Bond & White (1992a, EBW) in adopting the following parametric form for the transfer function:

T(k) =  {1 +  [fljfc +  (a2k)3/2 + (aik)2]'u }~l/a\  (29)

where sq =  (6.4/T) h~l Mpc, a2 =  (3.0/T) h~l Mpc, a2 = (1.7/T ) h~l Mpc and «4 =  1.13. The origin of this param etric form is in 
fitting of the linear power spectrum of CDM  models (Bond & Efstathiou 1984), but, with suitable choices of the param eter T, it 
can fit the power spectra of a wide range of cosmological models to a reasonable accuracy. In retrospect, the definition of T chosen 
by EBW is slightly unfortunate. In pure CDM  models, where QB (the fraction of the critical density in baryons) is zero, T(k) is 
a function of k/Qh2 only, so one might interpret F  as fi/i. For models where 0 B ^  0, the appropriate scaling is found empirically 
to be roughly with k/Qh2e~2nB. The EBW transfer function for CDM is a fit to a model with QB =  0.03, which means that T 
differs from Qh by about 6 per cent, which can lead to significant differences between a transfer function of the EBW form with 
a given value of T and, say, a BBKS CDM transfer function (for negligible baryonic content) which has Sih equal to the same 
numerical value.

EBW also show how the COBE observations may be used to fix the amplitude of the power spectrum through the quantity 
2rms/7o, where Qms is the rms quadrupole of the fluctuations in the background radiation and T0 is its mean temperature, found 
by M ather et al. (1990) to be T0 = 2.735 +  0.06 K. This analysis assumes that the tem perature anisotropies seen by COBE were 
(excepting the monopole and dipole, of course) produced by fluctuations in the gravitational potential on the surface of last 
scattering and that the standard treatm ent of this effect (Sachs & Wolfe 1967) is applicable. In using it, we neglect the possibility 
that a significant portion of the COBE signal may be due to gravitational waves (e.g. Liddle & Lyth 1992; Lidsey & Coles 1992): 
the magnitude of the gravitational wave component is dependent on the form of the potential employed in the inflationary model 
that is used to generate the primordial fluctuations and it is thought to be 5 10 Per cent f° r most standard inflationary models. If 
this assumption is false, then lower values of e are appropriate and the importance of the dynamical component of the clustering 
is reduced relative to the statistical part. We also assume that the Universe is spatially flat.

The background radiation tem perature fluctuations on the sky may be expanded in spherical harmonics, Y"'(0,(j>):
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AT
~T~ =  (30)

where the angular power spectrum, C/ =  (| o f |2), is related to the power spectrum of density perturbations at the present epoch. 
For a scale-invariant spectrum o f the form

,2/, 4e2 fck V
A W =  T  \ H ~ , )  ’ M

in a spatially flat universe, this relationship is given (by EBW) as 

27t il‘54 ,

1 ~ T  /(/ + 1) e ' (32)
Smoot et al. (1992) fit such a formula to the COBE data for multipoles higher than the quadrupole and express the results in 
terms of the value o f Qrms, which is related to C2 by

_ /  5 C 2  \  1/2

V 471 ) To, (33)

and so using equations (36) and (37) this gives, for a scale-invariant spectrum,

e2 = l-f ( ^ ) 2 Do1'54. (34)
Fitting to the COBE data, subject to the constraint o f a scale-invariant spectrum, Smoot et al. (1992) obtain a value of 
Qrms =  16.7 +  4 pK. This does not include, however, the effect o f the ‘cosmic variance’, an added uncertainty due to the power 
spectrum of the observed sky not being equal to that o f the mean of the ensemble of all possible skies in the Universe. Inclusion 
of the cosmic variance requires another fit to the higher order multipoles, subject, for our purposes, to the constraint of a 
scale-invariant spectrum, which will modify the Qrms value and increase its uncertainty slightly. We take the fluctuation amplitude 
indicated by COBE to be Qms = 1 7  +  5 pK, which, from equation (34), yields e =  2.9 +  0.9 x 10-5 Y l f 11. This defines the interval 
of fluctuation amplitudes that we shall consider in this work.

We consider the following four spatially flat models:

CD M : Q0 =  1, 20 =  0, T =  0.5 (Model 1), 
low-density C D M : Qo =  0.2, 20 =  0.8, T =  0.2 (Model 2),
CDM  +  extra large-scale power: Do =  T 2o =  0, T =  0.2 (Model 3),
Bahcall & Cen model: Q0 =  0.2, 20 =  0.8, T =  0.1 (Model 4),

where =  A /3Hg. Model 2 is that advanced by Efstathiou, Sutherland & M addox (1990) to account for the strong angular 
correlations seen in the APM  galaxy catalogue: cluster-cluster correlations in this model were considered in linear theory by 
Bardeen et al. (1987). From EBW we see that one of the possible cosmogonies that could correspond to Model 3 is an Q0 =  1, 
h=0.5, CDM -dom inated universe in which one species of massive neutrino contributes Q, ~  0.3 (van Dalen & Schaefer 1992): 
such a model is elaborated by Davis, Summers & Schlegel (1992) and Taylor & Rowan-Robinson (1992). Models 2 and 3 have the 
same transfer function, so any differences between them can only result from the difference in the fluctuation amplitude that they 
require to match the COBE observations: one result of the higher amplitude of Model 2 is that the im portance of the dynamical 
com ponent of the clustering, relative to the statistical component, is greater than for Model 3. Model 4 is the transfer function 
which Bahcall & Cen (1992) claim is consistent with all cluster observations. The am plitude used by Bahcall & Cen is excluded by 
COBE , and we consider only the range of amplitudes that COBE allows. Bahcall & Cen (1992) claim that their cluster correlation 
function results are unchanged if this model is open or has a non-zero cosmological constant to make it spatially flat: we consider 
only the spatially flat model here.

In Fig. 2 we show the variation of Rs with characteristic separation, d, that our procedure from Section 2.2 produces for the 
four models listed above. The differences in the value of Rs for a given separation, d, between the different models may be readily 
understood from a consideration of the relative am ounts of small-scale power in their respective power spectra. In all cases the 
filter radii correspond to reasonable mass estimates for, say, Abell R > 1 clusters, although we stress that the ‘cloud-in-cloud’ 
problem precludes the results shown in Fig. 2 from being expressed as a cluster mass function.

5 RESULTS

In this section we present the results o f our com putations of the cluster correlation function and of the d — r0 relationship, and 
compare them with observations. Before that, however, we shall consider the sensitivity o f the results to variation in the parameters 
of the model and compare our results with those obtained by Bahcall & Cen (1992) by numerical simulation.
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Figure 2. T he v aria tion  o f  Rs w ith characteristic  separa tion , d , for the four m odels we consider, norm alized  to C O B E . T he solid, dashed, d o tted  
and d ash -d o tted  lines give the co rre la tion  function  for M odels 1,2,3 an d  4 respectively. In all cases the upp er line o f  the pair for each m odel is for 
<5C= 1 .0  an d  the low er is for ¿c=1.7.

5.1 Sensitivity to parameters

In our formalism, the cluster correlation function for a given transfer function and cluster number density is a function of three 
parameters: the background smoothing scale, Rf ; the linear density contrast at collapse, <5C; and the amplitude of primordial 
fluctuations, e. In the preceding sections we have discussed constraints on all these quantities, and now we consider the sensitivity 
of our results to variations in their values.

In Section 3 we discussed a procedure for determining the correct value of the smoothing scale, Rf, through the maximization 
of the small-scale correlations of the density field. This is subject to a constraint that Rf >  Rs, to ensure that excessive small-scale 
cluster correlations are not produced by power spectra with little small-scale power, resulting from our biasing prescription, 
F(c | v). The effect o f varying the value of Rf is, as one would naively expect, largely confined to separations of less than a few 
filter radii, where one must always be suspicious that the filter function will be dominant. For example, upon changing the value of 
the smoothing length from Rf =  0.5 hr1 Mpc to 2.6 h~~l Mpc, the correlation function for an fi =  1, T =  0.2 model only changes 
by more than 10 per cent for r < 6 h~l Mpc. Our results are, therefore, quite robust to variations in the selected value of Rf.

The sensitivity to the value of <5C is illustrated in Fig. 4, which is discussed in more detail in the next subsection. We find that 
there is a degree of sensitivity to the value of ¿c for all four models that we consider, but it is not too serious: the difference in the 
correlation function for <5C =  1.0 and <5C =  1.7, for a given power spectrum and cluster num ber density, is only very rarely found 
to be larger than the error bar on the observational point with which it is to be compared.

The sensitivity of our results to the value of the fluctuation amplitude, e, is shown in Fig. 3. This figure shows the correlation 
function for clusters of EM RS number density, calculated for the four models with the extreme allowed values of e. It is clear 
that Model 3 is less sensitive to the fluctuation amplitude than are Models 1, 2 and 4. This is because Model 3 has less small-scale 
power and so its cluster correlations are dominated by the statistical contribution, rather than by the dynamical contribution, 
which means that its cluster correlation function will be less sensitive to the value of e, which has a strong influence on the 
dynamical contribution to clustering, but not on the statistical one. The results in Fig. 3 should be borne in mind when looking at 
the plots shown in Fig. 5, which, for the sake of clarity, show the correlation function only for the COBE normalization and do 
not indicate the effects of uncertainty in the value of e.

5.2 Comparison with the results o f numerical sim ulations

In Fig. 4 we show a comparison between our results and those calculated through numerical simulation by Bahcall & Cen (1992). 
We show two of their models, CDM  and a T =  0.1 model, for two different cluster number densities. These cluster correlation 
functions are calculated by wholly independent methods: our formalism uses a prescription based on peak selection in the linear 
density field, while Bahcall & Cen use an adaptive ‘friends-of-friends' algorithm to link particles in the non-linear density field at
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Figure 3. T he effect on the co rre la tion  function  o f  varying the am plitude  o f  p rim ord ia l fluctuations. T he n u m b er density  considered  is that o f the 
E M R S  clusters o f  N ichol et al. (1992), from  w here the d a ta  poin ts are taken. In  (a) the dashed an d  solid  lines give results for M odels 1 and 2 
respectively, while in (b) the d o tted  and  d ash -d o tted  lines are for M odels 3 an d  4 respectively: all m odels are for <5C =  1.0. In  each case the hatched 
area  ind icates the region betw een the  curves for the  co rre la tion  function  for the m axim um  an d  m in im um  values o f  the fluc tuation  am plitude e.

R.G. Mann, A.F. Heavens and J.A. Peacock
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Figure 4. C om parison  w ith num erical results from  B ahcall &  Cen (1992), fo r clusters w ith the  n u m b er density  o f  (a) A P M  clusters and  (b) Abell 
R > 1 clusters. T he solid (dotted) line show s the co rre la tion  function  for an f i0 =  F T  =  0.5 m odel w ith <5C =  1.0 (5C=1.7), while the dashed 
(dash-do tted) line show s th a t for an ilo  =  0.2, T  =  0.1 m odel w ith <5C= 1 .0  (¿c =  1.7). T he squares an d  circles are the num erical results o f  Bahcall 
& Cen for the T  =  0.5 and T  =  0.1 m odels respectively.

the end of their simulation to form clusters. We reproduce the results for the T =  0.1 model very well at both number densities 
using <5C=1, but neither value of <5C can reproduce the low level o f clustering that Bahcall & Cen find in their T =  0.5 model: to do 
that we require <5C ~5, which produces clusters whose masses are too low. In view of the problems mentioned earlier concerning the 
use of low-resolution TV-body codes in simulating clusters, we do not regard this discrepancy too seriously and await the advent 
o f more sophisticated numerical simulations with which to test our analytic theory.
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5.3 Comparison with observations

We have computed the cluster correlation function for the four models for four cluster num ber densities, those for the EM RS and 
APM autom ated surveys and the Abell R > 1 and R >  2 samples o f PW92: we note that PW92 urge caution in the use of their 
R > 2 sample, due to its small size. We do not consider Abell cluster samples including R = 0 clusters, since it has been amply 
demonstrated (Sutherland 1988; Sutherland & Efstathiou 1991; Efstathiou et al. 1992b; PW92) that such samples are corrupted 
by projection effects, which lead to spurious clustering. Sutherland (1988) also claimed that the R >  1 sample of BS83 is similarly 
corrupted, but a recent analysis o f a much larger sample of R >  1 clusters by PW92 found no significant projection effects. In what 
follows, we shall assume the truth of the hypothesis o f PW92, that the correlations of Abell R >  1 clusters are genuine, although 
we note that the results of PW92 are consistent with a low level o f corruption by projection effects, albeit one much less serious 
than that found in samples of R >  0 clusters.

We choose not to make comparisons of our results with observations to which the Sutherland method for correction for 
redshift anisotropy has been applied. Such a procedure can only be reliably and profitably applied when it can be unambiguously 
shown that the clustering at large radial separation that it removes is spurious, and this is possible only for samples like the EMRS 
where there are many measured redshifts per cluster. Efstathiou et al. (1992b) estimate that the removal of genuine cluster pairs 
with large radial separations can introduce spurious contributions of ~  0.01 into the correlation function of a cluster sample that 
is free from projection biases. This is unfortunate, since it is at low ¿cc (¿;cc <  0.1) that discrimination between theoretical models is 
easiest, and so this effect could seriously impair the comparison of theory and observation. Whilst it is true that such biases could 
have no significant impact on the correlation function at <i;cc ~  1, we shall see below that the correlation length taken alone is a 
poor way of characterizing the spatial distribution of a sample of clusters.

We show our results for the cluster correlation function in Fig. 5. The observational points have lu  Poisson error bars. Where 
no correlation is detected with significance at the ler level we plot a 90 per cent confidence upper limit, marked with an arrow. 
We com pare theoretical predictions of configuration-space correlation functions with observed results measured in redshift space. 
Redshift-space corrections are considered by Kaiser (1987), who finds that the (isotropic) real-space correlation function, £r(x), is 
related to the direction-averaged redshift-space correlation function, C(s)(x), by <̂(s)(x) =  [1 +  (2D|]-6/3 £ )  +  (Dg2/ 5 £ 2)]cr(x). For the 
models that we consider, this factor is a small fraction of the uncertainty in the COBE amplitude and much less than the errors 
in the observations with which we shall compare our results, so we neglect this correction. Fig. 5(a) shows results for APM >  20 
clusters, with num ber density Nc =  2.4 x  10- 5 /r3M pc“3. The observational data are taken from Efstathiou et al. (1992b) and include 
clusters from a slightly wider redshift range than that considered by Dalton et al. (1992). In Fig. 5(b) we give results for EMRS 
clusters, from Nichol et al. (1992), which have a num ber density of Nc = 1.0 x 10” 5 h3 M pc-3. Figs 5(c) and 5(d) show correlation 
functions for the Abell R > 1 and R > 2 samples of PW92, which have num ber densities o f 7.2 x 10-6 and 1.7 x 10-6 /i3 M pc-3 
respectively.

None of the models can account for the correlation functions of all four cluster samples, although, conversely, the uncertainty 
in the COBE am plitude and the size of the error bars on the observations mean that it is difficult to exclude any of the models with 
a high degree of confidence on the basis o f the observations as they stand. CDM  with T =  0.5 appears incapable of reproducing 
the strength of clustering observed for rich Abell clusters, although it gives the best fit to the APM 0t >  20 clusters and is the 
only model in which the first zero-crossing point of the correlation function is at a separation of ~  40 /¡- l Mpc, as indicated by 
the APM and EM RS (Nichol 1992) data. One must be careful, however, in using the first zero-crossing point as a diagnostic 
tool, since the observational data become very noisy at low values of ¿cc and are also prone to significant systematic errors as 
a result of uncertainty in the cluster num ber density. Model 2 gives the best overall agreement with the correlation functions of 
the four cluster samples and, indeed, its only real inconsistency with the data comes at large scales for the APM  num ber density, 
where the reliability o f the observations is in some doubt. The presence of a cosmological constant affects the epoch and rate at 
which structure forms, but has little effect on the final phase-space distribution of the particles (Kauffmann & White 1992, and 
references therein), so that the results o f Model 2 should be very similar to those of an open model (Do =  T =  0.2,2o =  0) with the 
same fluctuation amplitude, and, indeed, Bahcall & Cen (1992) report such a finding on the basis of their numerical simulations 
of models with and without a cosmological constant. The problem, however, in making this identification between open and flat 
models with the same T lies with the amplitude: the standard analyses of the Sachs-Wolfe effect are for a spatially flat universe, 
so it is not clear how to determine the fluctuation amplitude for open models from COBE .

In Fig. 6 we show results for the d — rQ relationship. In addition to the four cluster samples discussed above, we also include 
observational data from the APM  .52 >  35 sample of Efstathiou et al. (1992b) and the Abell R > 1 samples of BS83 and Postman, 
Huchra & Geller (1992, PHG). We determine the value of rQ by interpolation in log r space from a correlation function evaluated 
it a hundred separations in the range 0.5 <  r /h -1M pc <  100. If, instead, a power-law fit is made to the (positive portion of the) 
torrelation function in this interval, the resultant values of ro differ, typically, by ~  1 h~l Mpc or less from those obtained by 
interpolation, and the slope of the best-fitting power law is seen to increase with d.

Two points are clear from Figs 5 and 6. First, no model is able to produce the strength of the trend of correlation length 
mcreasing with richness that is required to account for all of the observations from APM  01 >  20 clusters to Abell R >2.  Secondly, 
4e d — r0 relation, taken on its own, may be a misleading statistic: from Fig. 6 one would conclude that all o f the models are
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x  /  (h  1 M p c ) x  /  (h  1 M pc )
Figure 5. T he cluster co rre la tion  function  for (a) A P M  'M >  20 clusters, (b) E M R S  clusters, (c) A bell R  > 1 clusters, an d  (d) A bell R >  2 clusters. 
T he solid, dashed, d o tted  and  d ash -do tted  lines give the co rre la tion  function  for M odels 1,2,3 an d  4 respectively w ith CO B E  norm alization  and 
<5C=1.0.

wildly inconsistent with the Abell R > 2 data, although the noise on the data given in Fig. 5(d) shows that the situation is not so 
clear and, in addition, the Poisson error quoted for the correlation length may be something of an underestimate in this case.

The variation between models in the sensitivity o f the d — r0 relation to the value of e can be readily explained by the same 
argument as given in Section 5.1 above: the sensitivity to e is greater for models with more small-scale power, since these are 
the ones where the amplitude-sensitive dynamical contribution to the clustering is enhanced relative to the statistical component 
produced by the initial peak distribution.
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d  /  ( h -1 M p c ) d /  (h  1 M pc )

d /  (h  1 M p c ) d /  ( h _1 M pc )

Figure 6. T he d — r0 re lation  as a  function  o f  e an d  <5C for (a) M odel 1, (b) M odel 2, (c) M odel 3 and (d) M odel 4 (see Section 4). The observational 
data p o in ts are  from  the sources ind ica ted  in the figure and  are  discussed in Section 5. In (a) an d  (b) the curves are  fo r (i) e =  3.8 x  10- 5 , 8C =  1.0 
(dotted line) an d  <5C =  1.7 (do t-do t-d o t-d ash ed  line), (ii) e =  2.9 x  10- 5 , <5C =  1.0 (solid line) and  Sc =  1.7 (dashed line) an d  (iii) e =  2.0 x  10~5, Sc 
= 1.0 (do t-dashed  line). In (c) an d  (d) the curves are  for (i) e  =  1.3 x  10~4, Sc =  1.0 (do tted  line) an d  <5C =  1.7 (do t-do t-d o t-d ash ed  line), (ii) e =  
1.0 x  10- 4 , 3 =  1.0 (solid line) an d  <5C =  1.7 (dashed line) and  (iii) e =  6.9 x  10- 5 , 5C =  1.0 (do t-dashed  line).

6 DISCUSSION AND CONCLUSIONS

In this paper we have reported on the first analytic calculation of the cluster correlation function to take account o f the non­
linear evolution of the cosmological density field. We employ the Zeldovich Approximation, which has been shown to evolve the 
cosmological density field very accurately well into the non-linear regime, along with a physically well-motivated prescription to 
relate the evolved density field to the distribution of clusters.

We have applied our method to a range of cosmological models with Gaussian primordial fluctuations in a spatially flat 
universe. CDM  models seem incapable of reproducing the strength of the correlations observed in samples of the richest clusters, 

I but these are drawn from the A bell/A CO  catalogue and so may be regarded with a degree of suspicion. The models that give the
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best agreement with the cluster correlation data are those with low F, as required to fit the galaxy correlation data. This lends 
a degree of support to the hypothesis o f Gaussian primordial fluctuations, since, through the Kaiser mechanism (Kaiser 1984), 
Gaussian models would be expected to produce a picture such as this: a power spectrum capable o f accounting for both galaxy 
and cluster correlations, with a richness dependence qualitatively like that which is observed, with r0 increasing with d initially, 
but with the d — r0 relation flattening off eventually at very high richness. This flattening of the d — r0 relation at high richness 
follows from BBKS, who show that ¿pk-pk cc vs2 and that the num ber density of peaks above the threshold, iiPk(vs), varies as 
ttPk(F¡) oc vs2e^vs/2 for large vs.

In all o f the models we have considered, this saturation in the value of r0 happens well below the correlation length of the 
Abell R > 2 cluster sample of PW92. There are a number of possible explanations for this, the simplest o f which is that the 
correlation length of the R > 2  sample is incorrect. Another possibility is that the primordial fluctuations are not quite Gaussian, in 
which case one might expect any deviations from Gaussian predictions to be most apparent for the richest clusters, corresponding 
to the highest peaks. It is also possible that the deviation between the observed correlation length of the PW92 Abell R > 2 
sample and those predicted by our models is due to the breakdown of the identification of peaks in the linear density field as 
sites of nascent clusters for the very highest peaks. This identification of peaks in the linear and non-linear density fields is known 
to be very poor for low peaks, but is seen to improve with increasing peak height, so one might expect it to be closest for the 
highest peaks. This may be so, but the number density of peaks with vs >  1 is so low that even a tiny error in vs can mean 
that linear and non-linear peaks are completely different sets o f objects. The Voronoi cellular model may have an insight to offer 
here. This model produces a cluster correlation in which ro scales proportional to d (Williams 1992). This happens because the 
Voronoi model produces its richest clusters around the periphery of the largest voids, since mass drains from the proto-voids to 
the proto-clusters. A change in the cluster richness does not alter the typical pair separation very much -  just the distance to the 
next ‘clump' of clusters. This may appear rather different from the picture of rich cluster formation in Gaussian models, but the 
idea of clusters gaining mass from voids is, none the less, generic in such models. It is possible, therefore, that an r0 oc d scaling 
can emerge from Gaussian models.

Analysis o f further COBE data will reduce the uncertainty in the value of e, thus tightening the predictions that can be 
made using the formalism we have outlined in this paper, although this is unlikely to change the conclusions to any significant 
degree, since the uncertainties in the predictions for £cc due to the error on the COBE quadrupole are no larger than those in the 
observations with which they are to be compared. Better observational data are required, therefore, to improve the effectiveness 
of the cluster correlation function as a diagnostic tool in the study of large-scale structure, and it is hoped that samples of X-ray 
clusters selected by ROS A T  will provide an im portant new observational input.

A more fundamental problem remains, however, concerning operational definitions of what constitutes a cluster of galaxies. 
Theoretical work tends to be expressed in terms of mass thresholds and peak heights, whereas observational selection criteria are 
far more complex than this. This is particularly true for optically selected clusters, where the observer’s definition of a cluster 
in terms of an excess in the surface density of galaxies projected on the sky is not trivial to relate to the theorist’s image of an 
overdense clump of m atter that collapses and virializes. There is, therefore, always the problem of whether observers and theorists 
are comparing like with like, although this is perhaps less o f a problem for X-ray clusters, where the picture of localized X-ray 
emission from gas confined within a deep potential well is nearer to a simplistic theoretical image of a cluster.

Despite these caveats, the spatial distribution of clusters o f galaxies remains a powerful tool for the study of the large-scale 
structure of the Universe, and we believe that the analytic framework we have described here provides an im portant new way of 
addressing this topic. Our results show that, while there are models that can readily reproduce the correlation functions determined 
from recent autom ated cluster catalogues, we have found no model that can reproduce the strong trend of increasing correlation 
length with richness that is required to account for the observed correlation lengths of all cluster samples, from APM á? > 20 
clusters to Abell R > 2 clusters. The model that comes closest overall to reproducing the observed cluster correlations is that 
advocated on the basis o f its ability to reproduce the strong angular correlations of APM  galaxies: this may be taken as support 
for the Kaiser model, in which objects form at peaks in a Gaussian initial density field. Better observational data are required 
before the cluster correlation function can realize its full potential as a cosmological diagnostic, but we believe that our results 
place the theoretical side of its study on a firmer footing.
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APPENDIX A: DERIVATION OF //pk(vs )

From BBKS (their equation A18), the differential num ber density of peaks in the range v to v +  dv is given by

-V  pk (v)dv =
1

'" /2 G(y,yv) dv,
(2n)2Rl

where (BBKS equation A19) G(y,yv) is defined'by

G(y,yv) =
d  x f ( x )

J0 [27t(l - y 2)]*/2
exp -(x-yv)2 

2(1 - r 2)

(Al)

(A2)

In equation (A2), v is the height o f the density perturbation field smoothed on scale Rs expressed in units of the rms 
perturbation, y is the spectral parameter, x  = —V2<5/ff2 and the function f (x)  has the closed form

fix) =
(x3 -  3x)

erf
5 , 1/2

(I) +  erf (in  HDV 571 2 5
-5x2/2 (A3)

from BBKS (their equation A15), who also give approximate fits to this exact form.
It follows that the number density, /ipk(vs), o f peaks above a threshold vs is given by

«pk(vs) =  /  pk(v)dv =
1

(277)5 /2 (1  - f - y n - R i  J x=0 dx /(x )exp
2(1 — y2)

I  A ,

where

/  a  = dv exp + yvx
_2( l - y ) 2  (1 y2)

From Gradshteyn & Ryzhik (1980, section 3.322), 

- x -  „ \ . pi
exp ( — ß x J  dx =  -Jnx e

and so equation (A5) becomes

/  7 r ( l  —  y 2)
/a  =  \ l  x exp

r
x  y

erfc
2(1 — y2) _

(vs -  yx)

y/2(l-y2)

Hence, from equations (A4) and (A7), it follows that the final form for the num ber density o f peaks above the threshold is

«pk(vs)
1

8tHR) dx / (x) e v2/2 erfc (vs ~  yx) 
y/2(l —  y2)

(A4)

(A5)

(A6)

(A7)

(A8)
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A PPEND IX  B: DERIVATIO N O F (vs )

An expression for the n-point correlation function of peaks above a threshold is given in terms of a 2?i-dimensional integral by 
BBKS. This expression is valid for separations of more than a few times the filter scale, Rs, used to select the peaks. In the limit 
v2tp(r) <C 1, which will obtain at large separations, this integral simplifies and the two-point function takes the form

C p k -p k (r) =  (v's )2V>(r),

where ip{r) =  <^(r)/ç(0) is the normalized mass correlation function. The effective threshold, v, is defined by

.  _  (v-yx) 
v “  ( i - r 2) '
The quantity (vs) is the average of this taken over all peaks above the threshold vs, and so is given by 

ff vsJfpk(v) dv 1
(Vs> = ff J f pk(v) dv (2tt)5/2(1 -  y2)l/2R3 npk(vs)

where
/•co /*co

J x=0 J  v=vs
/(*) (y -  y*)

(1 - y 2) s° d x  dv ,

and

So =
(v2 — 2 y v x  +  x 2)

2(1 - y 2)

If we make the substitution y =  v — yx, then 

_  [ y 2 +  ( l - y  V ~° L
and so the expression for IB becomes 

—(vs -  y x ) 2f ( x ) e x /2 exp dx.
2(1 - y 2)

Finally, combination of equations (A8), (B3) and (B7) yields the following form for (vs): 

(V's) =
2 1/2 Jo”  f (x)  e *1/2 exp - ( v t - y x ) 2/ 2 (l - y 2)_ dx

7i ( l - y 2)_ f f  f ix )  e~x1/2 erfc (vj — yx)/-\y/2 (T y2) dx

(Bl)

(B2)

(B3)

(B4)

(B5)

(B6)

(B7)

(B8)

iPPENDIX C: DERIVATION OF £pZ (x)

From equation (15) of Section 3 we see that the mass correlation function may be written as an integral over conditional 
probabilities, o f the form

=  J  d3r T s  P(x\r,s)  P (s \ /•) P(r),

where P(r) =  1 and P(x|c,.s) =  <5(x-| r - s |) /(47rx2).
The probability P(s\r) has a Gaussian distribution:

Hs I r) =
1

(27t)V2 || M II1/2 exp ( C l )

where the covariance matrix of the distribution is M,;- =  (s,(y) Sj(y  +  »•)), where {s,} are components o f the relative displacement 
ield. This may be readily evaluated in a Cartesian coordinate system whose 3-axis lies along the direction of the vector r =  r /  \ r |, 
«sing the relationship between the Fourier components of the displacement and density fields (equation 13) to obtain

M'7 =  2 c r2 [ (1  -ip±)dij +  ( ip ±  -  i p i ) r , f j ]  ,

with crs,tp± and tpj as defined in equations (19) -  (21). 
It follows that equation (Cl) may be written as

P(s | #•) =
1

(27r)3/2(2<7s)3 /2(l -  V2j_)(l -  ip,\)l/2
exp

(1 - 'jr)s2-(ip± -y,)(ï-r-)2
4 tr2( l  -  V’_l)(1 -  Vi )

(C2)

(C3)
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Since P(x|r,s) takes the form of a ¿-function, the integration over s is restricted to the sphere at constant | x  |. In our coordinate 
system this means that s2 =  r2 +  x2 — 2xrcos0 and s r  = r — xcosO. These may be substituted into the expression for P(s\r) and 
the resultant integrations over 6, <j) performed, the latter one trivially. This leaves a one-dimensional integration (over r), which is 
straightforward to convert into the form given in equation (16) of Section 3.

APPEND IX  D: DERIVATION O F £cZ(x)

Equations (22) and (23) in Section 3 gives the following expression for the cluster correlation function: 

1 +  fczM  =  J  d3r d3s di'i dv2 P(x\r,s) P(r) P (lc |v j)  P(2c\v2) P(s, v,, v21 r).

The term P(s, v1; v2 |r) is given by

P(s,vi,v2|r) = (27l)5/2 || M ||1/:-  exp ÿj'j ,

(DI)

(D2)

where j>T =  (s,vi,v2) and M,-y =  (y,(z)yy(z +  r)).. Using the same coordinate system as in Appendix C, the only non-vanishing 
matrix elements o f the form (vs,-) are those involving the 3-component o f the displacement field, which read

(vs3) =
3o f  (  dtp
<70 dr (D3)

where ip„ =  (2ipj. +ip»)/3 and cr0 is the rms perturbation in the background density field. The matrix elements (s.-sy) are as given 
above in equation (C2), while the remaining elements of M  are given by

/ \ / \ i(rì I \(v,v2) =  (v2V|) =  —r  =  tp(r)

and

(vivi) =  (v2v2) =  tp(0) =  1,

(D4)

(D5)
where ip(r) is the normalized correlation function of the background density field.

The covariance matrix, M, is o f block-diagonal form, so there are no terms linking the sets {si,s2} and {s3,v i,v2} in the 
exponentiated quadratic form in the probability distribution P (s,Vi,v2 |r). So, to perform the integrations over v!,v2 in equation 
(D2), we need only consider the reduced covariance matrix M  for the vector yT = (S3,v i,v 2). It follows that the integral over V|,v2 
takes the form

1
(27r)3/2 || M | |- '/2

a(£-l)ffo('i+v2) .v‘ 21 exp I —-xÿ'Mjj ÿj I dvi dv2.

Both integrations may be perfomed using the standard result (Gradshteyn & Ryzhik 1980, section 3.323) 

exp(—p2x2 + qx) dx =  exp ( J ,4p2

(D6)

(D7)

to obtain

/,. = yj471(Js( 1 -  \p )
exp [  -55 1 exp

3(£ -  l)s3 (  dVr
40-2(1 -  v  )_ (1 - V ii) [ d r  ) \

x  exp {E — 1)2<t0(1 +  ip) -
9<t2(£ -  l)2 {dy,

( l - tp n )  I dr
(D8)

From this point, the derivation proceeds as in Appendix C to yield, after much tedious rearrangement, the expression for ¿cz given 
in equation (25) of Section 3.
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