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Abstract 

 

The thymus is the primary lymphoid organ responsible for the development and 

maturation of T lymphocytes (aka T-cells) in vertebrates.  The complex architecture 

of the thymic microenvironment orchestrates the formation of a diverse and self-

tolerant T-cell repertoire capable of supporting the development and maintenance of a 

functional immune system.  The main component of this microenvironment, the 

thymic epithelium, is crucially required to direct thymus organogenesis and 

homeostasis, and to mediate T-cell repertoire development and selection.  The thymic 

epithelial progenitor cells (TEPCs) from which the mature thymus develops originate 

from the endoderm of the 3rd pharyngeal pouch by embryonic day 9 in mouse 

development (or early week 6 in human embryos).  Expression of the transcription 

factor FOXN1 is required to drive TEPCs differentiation in each thymic epithelial 

lineage (TEC), while the absence of functional FOXN1 causes athymia.  Moreover, 

forced expression of Foxn1 in mouse embryonic fibroblasts (MEFs) converts these 

MEFs into TECs that can support the development of a normal thymic system.  Despite 

the great therapeutic potential that TEPCs present in regenerative medicine, there is 

currently no detailed model describing regulation of the TEPC state and its 

differentiation into cortical (c) and medullary (m) TECs, or explaining the dominant 

role of FOXN1 in the thymic epithelial system.  Comparative transcriptomics analysis 

in conjunction with pathway enrichment analysis of the developing TEPCs could 

reveal the signalling pathways that regulate the early TEPC state and progression into 

differentiation.  Additionally, integrative bioinformatics analysis of transcriptomics 

and genomics datasets could identify the functional networks that are directly 

regulated by FOXN1 during early TEC progression.  In this thesis I provide, for the 

first time, an in silico model explaining fetal TEPC differentiation into the functionally 

distinct TEC lineages, in the cellular, molecular and signalling contexts of thymus 

early development.  Furthermore, I present evidence which suggests that FOXN1 

could be a pioneer factor, capable of fully establishing the transcriptional programme 

that underpins thymic epithelial cell identity and function.  Finally, in this thesis, I 

introduce the development of an interactive thymic-specific database that provides a 

platform for easy access, analysis and integration of curated bioinformatics datasets. 
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Lay summary 

 

The thymus is the organ majorly responsible for the normal function of the immune 

system.  Thymocytes (a.k.a. T-cells), specialised defence cells that attack foreign 

invaders in the body (known as antigens), are developed and trained in the thymus.   

Within the thymus, T-cell maturation takes place via another group of cells, the thymic 

epithelial cells or TECs.  TECs are of two kinds, cortical thymic epithelial cells 

(cTECs) which reside in the outer region of the thymus called the cortex, and 

medullary thymic epithelial cells (mTECs) that exist in several regions inside the 

organ, called thymic medullary regions.  During thymus development, these TEC 

populations seem to form from an earlier, more immature cell type, the thymic 

epithelial progenitor cell (TEPC) population.  This transition from TEPCs towards 

cTECs and mTECs cannot occur in the absence of a factor named FOXN1.  A block 

of FOXN1 expression in TEPCs causes athymia, while its forced expression in an 

unrelated cell type is able to support from scratch the development of a functional 

thymus.  This thesis investigates the transition model of the earlier TEPC population 

towards the more mature and specialised cTECs and mTECs, based on representative 

datasets that measure all of the genes present in the above populations.  Furthermore, 

in this thesis, I explore the signalling cues that act in the very early TEPC state, to 

identify ways to improve TEPC culture conditions.  Additionally, by comparing 

FOXN1-dependent genes in TEPCs with candidate direct FOXN1 target genes in 

cTECs, I also try to demystify how FOXN1 applies its leading role in TEC fate.  Lastly, 

I introduce the development of an online interface specific for the thymic system that 

provides an easy way to store, access and share data within experimental groups, and 

offers further analysis and visualisation options for non-bioinformatics specialists. 
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Chapter 1  
 

Introduction 

 

 

 

1.0 THE THYMUS (PRÉCIS I) 

Since antiquity, a halo of mystery has surrounded the thymus organ.  Originating from 

the Greek word θύμος, meaning “warty excrescence” (like a thyme bud), the thymus 

was also misinterpreted by the ancient Greeks to mean “house of the human soul” 

(θυμός), possibly due to the location of the thymus just above the heart in the human 

body (Fanu, 1963; Fischbein, 1984; Jacobs et al., 1999).  Galen of Pergamum (130-

200 AC) was the first to note that this organ grew to its full size during childhood 

(Coleman, 1969), however it was not until 1961 that Jacqes Miller finally determined 

thymus true function in host immunity (Miller, 2002).  Miller used thymectomised 

young mice to demonstrate the importance of the thymus in the generation of key 

defence cells for their immune system, the nowadays well-known T lymphocytes (also 

known as thymocytes or T-cells). 

Today, the thymus is known as the central lymphoid organ responsible for the 

development and maturation of T-cells in vertebrates.  Circulating hematopoietic 

lymphoid precursors are attracted by the thymus and migrate inside the organ, where 

they undergo maturation to engender self-tolerant and naïve thymocytes equipped with 

a broad repertoire of antigen specific T-cell receptors (TCRs), before they are released 

back into the bloodstream (Boyd et al., 1993; van Ewijk et al., 1999; Jenkinson, 1992).  

The complex architecture of the thymic microenvironment encompasses the cellular 

crosstalk between the non-hematopoietic stromal cells residing in the thymus and the 

incoming immature hematopoietic progenitors, directing them in a patterned fashion 

through the compartments of the thymus that orchestrate thymocyte stepwise 

differentiation and selection (Benjamini and Hochberg, 1995; Takahama, 2006).  
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These processes subsequently contribute to the development and maintenance of a 

functional immune system. 

Thymocyte differentiation and specificity occurs at its highest efficacy during the very 

early stages of the thymus development.  It decreases after puberty and is almost (if 

not fully) absent during the elderly years (age-related thymus atrophy), highlighting 

the importance of the thymus structure in the early stages of life (discussed in Boehm 

and Swann, 2013).  This progressive shrinking of the thymus that advances with age 

is called thymic involution and is characterised by an acute decline in naïve T-cells.  

This sequentially impacts on the host’s immune system faculty in producing effective 

responses against pathogens (Gruver et al., 2007; Linton and Dorshkind, 2004).  

Consequently, thymic atrophy may have considerable consequences in the outcomes 

of chemotherapy and/or other cytoablative treatments on ageing patients, since these 

are heavily dependent on thymic efficacy for reconstitution of an adequate repertoire 

of T-cell receptors.  Regenerative strategies designed to prevent or invert thymus 

waning continue to be examined for clinical use (Chidgey et al., 2008). 

Thymus regeneration can be achieved through reactivation of the endogenous tissue 

(tissue regeneration) by chemically stimulating residual thymic epithelial progenitor 

cells (TEPCs) or by creating de novo thymic tissue (tissue replacement).  

Administration of cytokines and growth factors (GFs), such as Interleukin 7 (IL7) and 

Interleukin 7 (IL22) or the Fibroblast Growth Factor 7 (FGF7) and the keratinocyte 

growth factor (KGF), as well as enforced Forkhead Box Protein N1 (FOXN1) 

expression have been experimentally shown to promote thymus regeneration 

(Alpdogan, 2006; Bredenkamp et al., 2014a; Dudakov et al., 2012; Mackall et al., 

2001).  Thymic epithelial cells (TECs) can be generated through transdifferentiation 

from unrelated tissues into TECs or alternatively TEC-like cells can be generated 

through directed differentiation of pluripotent stem cells (PSCs) (Bredenkamp et al., 

2014b; Parent et al., 2013; Sun et al., 2013). TECs constitute the main component of 

the thymic stroma (which is essential in thymus development and maintenance) and 

the above findings underline the possibility of tissue replacement.  Significantly, long-

term self-renewing TEPCs and adequately compartmentalised TEC sublineage regions 

need to be contained in such tissue (Bredenkamp et al., 2015). 
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1.1 THE THYMIC MICROENVIRONMENT 

The mature thymic microenvironment comprises a complex network of various cell 

types that together establish and maintain a functional immune system.  More than 

95% of the thymic cellularity is made up by developing thymocytes (T-cells), whose 

maturation is mediated by the thymic stroma.  Within the thymic stroma, specialised 

thymic epithelial cells (TECs), neural crest (NC) – derived mesenchymal cells and 

bone marrow (BM) – derived lymphoid cells form a complex three-dimensional 

network which orchestrates T-cell development and differentiation (Boyd et al., 1993).  

Two main compartments are histologically apparent in the thymus: the cortex and 

medulla.  The thymic medulla is located in the innermost layer of the organ and is 

surrounded by the thymic cortex, forming a thin corticomedullary junction (CMJ) in 

the area of contact.  In turn, the cortex is surrounded by a thin layer of simple 

epithelium, the subcapsule, which separates it from the capsule, a thick outer layer that 

lies around the organ (Boyd et al., 1993). 

 

1.1.1 Thymic epithelial cells and other stromal cells 

Thymic epithelial cells (TECs) can be split in three main categories: cortical TECs 

(cTECs), medullary TECs (mTECs) and subcapsular epithelial cells.  cTECs reside in 

the thymus cortex where they form three-dimensional networks with densely packed 

developing thymocytes.  mTECs reside in the thymic medulla forming similar 3D 

networks with the available thymocytes, with the mTEC/thymocyte ratio  much higher 

compared to the one in the cortical compartment (Boyd et al., 1993).  In addition to 

TECs, bone marrow (BM) – derived cells reside in the thymic stroma: these are 

principally dendritic cells and macrophages.  Dendritic cells spread across the thymus, 

but mostly accumulate in the CMJ, while they express strongly MHC class II 

molecules.  Macrophages can be found in both the cortex and the CMJ compartments 

but express MHC class II molecules in varying levels contrary to the high MHC class 

II expression of dendritic cells (Duijvestijn and Hoefsmit, 1981; Milićević et al., 1987).  

Finally, mesenchymal cells consist a vital part of the thymic stroma (Boyd et al., 1993).  

Extracellular matrix (ECM) components are secreted by the thymic mesenchyme and 
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are potentially involved in the regulation of TECs (Schreiber et al., 1991; Watt et al., 

1991) and T-cells (Cardarelli and Pierschbacher, 1986; Cardarelli et al., 1988) via 

ECM receptors that the latter two populations have been found to express. 

 

1.1.2 T-cell repertoire selection 

The highly organised inner thymic architecture supports thymocyte development 

through its complex network of stromal cells.  Hematopoietic progenitors enter the 

thymic structure (early thymic progenitors; ETPs) through the corticomedullary 

junction (CMJ) and move towards the subcapsule (Wu et al., 1991).  At this early stage, 

ETPs do not express the T-cell receptor (TCR) or either of the cluster of differentiation 

4 (CD4) or cluster of differentiation 8 (CD8) co-receptors and are characterised as 

“double negative” (DN) cells.  Throughout four DN stages (DN1, DN2, DN3 and 

DN4), T-cells gradually acquire expression of the above molecules and become ready 

to undergo positive selection at the cortex.  Only cells expressing TCR, and the CD4 

and CD8 glycoproteins are destined to go through the DP stage, where they can receive 

a survival signal if they come in contact with MHC class I or MHC class II molecules 

(Jameson et al., 1995).  Cells which bind MHC class I molecules maintain expression 

of CD8 and stop expressing CD4, whereas cells that bind MHC class II molecules 

maintain expression of CD4 and stop expressing CD8.  The developing T-cells will be 

located in distinct anatomical positions based on their developmental stage.  Absence 

of MHC–DP cell interaction leads to death by neglect.  T-cells that received enough 

signal move inside the medulla, where negative selection takes place to eliminate cells 

that over-express both CD4 and CD8 molecules which could attack self-peptides 

(Palmer, 2003). 
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1.2 THYMUS ORGANOGENESIS 

During early organogenesis, the thymic gland originates from the endoderm of the 3rd 

pharyngeal pouch (3rd PP), from the same primordium that gives rise to the parathyroid 

gland (shown in Figure 1.1).  Around embryonic day 10 (E10), cells from the 3rd PP 

start proliferating, leading to the formation of the bilateral primordia.  Mesenchymal 

cells in the area, derived from a transient neural crest (NC) population that has 

migrated into the pharyngeal region at E9.5 and populated the pharyngeal arches, 

surround both primordia and expand similarly to the epithelial component until 

approximately E12.5.  These cells will eventually comprise the capsules that surround 

the thymus (reviewed in Rodewald, 2008).  At E12.5, both organ structures separate 

from the pharynx and migrate to their final anatomical locations; the midline and 

laterally of the thyroid respectively.  Critical to this early separation of the thymus and 

the parathyroid structures is the expression of the glial cells missing-2 (Gcm2) 

transcription factor (TF), whose expression is apparent as early as E9.5 in mouse 

development, setting the barrier between the parathyroid and the thymic cell fate 

(Gordon et al., 2001). 
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Figure 1.1: An overview of early thymus organogenesis.  A) Representation of the pharyngeal 

pouches (pp) structures that are aligned sequentially on the flanking structures of the foregut, with the 

3rd pair of pouches (pp3) to appear by E9.5. Gcm2 expression that marks the parathyroid region is 

already evident from E9.5 (shown in blue).  B) Appearance of the 4th pouch by E10.5.  C) Development 

of the pouches into thymus (red colour) and parathyroid (blue colour) primordia by E11.5; organs are 

identified by expression of Foxn1 and Gcm2 respectively.  D) Detachment of the primordia from the 

pharynx by E12.5.  E) Total separation of the parathyroid buds from the thymus, although they stay 

adjacent to the thyroid (purple); few parathyroid cells remain attached to the thymus.  F) Organs in final 

positions, in relevance to the heart (shown in pink).  Double-headed arrows indicate orientation: Dorsal 

(D), Ventral (V), Anterior (A) and Posterior (P).  Image reproduced from Gordon and Manley, 2011. 
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1.2.1 Origin of thymic epithelial cells 

Despite early controversy over the origin of TECs suggesting both endoderm and 

ectoderm as potential germ layers from which TECs may derive (Cordier and 

Haumont, 1980; Cordier and Heremans, 1975), cell transplantation experiments (in 

both chicken and mouse) verified the unique endodermal origin of TECs (Gordon et 

al., 2004; Le Douarin and Jotereau, 1975).  Transplantation of quail pharyngeal 

endoderm into chick hosts generated a chimeric thymus, where TECs were of donor 

origin, while mesenchymal tissue and T-cells were of host origin (Le Douarin and 

Jotereau, 1975).   Additionally, to study the potency of thymic epithelial cells in 

murine, pharyngeal tissue or reaggregated thymic organ culture (RTOC) was 

transplanted under the kidney capsule (Anderson et al., 1993; Blackburn and Manley, 

2004; Rodewald et al., 2001; Sheridan et al., 2009).  When the E9.0 3rd PP endoderm 

was dissected and grafted, it gave rise to an ectopic thymus characterised by normal 

corticomedullary regions, capable of supporting thymocyte development.  The latter 

experiment established a sole endodermic origin of TECs (Gordon et al., 2004).  

Importantly, this finding suggested that a subset of cells in the 3rd PP endoderm had 

inherited the thymic fate, even though thymic definitive markers (for instance, Foxn1) 

were not yet switched on. 

 

1.2.2 Specification and differentiation of thymic epithelial cells in 

the embryonic thymus 

Although the molecular mechanisms that establish TEPC fate in the 3rd PP endoderm 

are not yet fully defined, previous studies have suggested that early patterning of the 

thymic epithelium can be influenced by Paired Box 3 (PAX3) and Sonic Hedgehog 

(SHH) (Griffith et al., 2009; Moore-Scott and Manley, 2005).  Formation of a thymic 

rudiment in mice lacking the nude product demonstrated that TEC specification is 

independent from expression of the nude gene, nevertheless, subsequent 

differentiation of TECs, including assembly of the complex TEC architecture and T-

cell precursor recruitment and differentiation, are essentially dependent on its 

expression  (Bleul et al., 2006; Corbeaux et al., 2010; Vaidya et al., 2016).  The nude 
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mutant phenotype (Flanagan, 1966) is characterised by a developmental arrest in early 

thymus organogenesis and absence of thymopoiesis (Cordier and Haumont, 1980; 

Pantelouris, 1968; Pantelouris and Hair, 1970).  Further experiments, including 

positional cloning and targeted gene disruption identified FOXN1 as the protein 

encoded by the nude gene product and the nu mutation to be a single nucleotide 

deletion located in the third exon (exon3) of  the Foxn1 locus (Nehls et al., 1994, 1996).   

Moreover, thymus – bone marrow cross-transplantation studies between nude and wild 

type mice confirmed that stromal rather than haematopoietic defects caused the thymic 

phenotype (Wortis et al., 1971).  Further, analysis of nude – wild type chimeras 

identified nude TECs incorporated into the thymic epithelium of normal mice to be 

still expressing immature markers, indicating that FOXN1 promotes TEC 

differentiation in a cell-autonomous way (Blackburn et al., 1996).  Significantly, TECs 

that lack FOXN1 expression maintain a progenitor potency that allows them to form 

again a patterned and functional thymus, as demonstrated by quasi-clonal activation 

of Foxn1 in these cells postnatally (Bleul et al., 2006). 

A number of other genes, namely Homeobox A3 (Hoxa3), Eyes Absent (EYA) 

Transcriptional Coactivator And Phosphatase 1 (Eya1), SIX Homeobox 1 (Six1), 

Paired Box 1 (Pax1), Paired Box 9 (Pax9) and T-Box 1 (Tbx1), which act prior to 

FOXN1 expression, have also been found to cause abnormalities in thymus 

development (for example, hyperplasia, athymia, faulty lobe migration).  However, 

these defective phenotypes may also be due to the absence of these genes from the 

other germ layers or earlier developmental points (Conway et al., 1997; Dietrich and 

Gruss, 1995; Hetzer-Egger et al., 2002; Jerome and Papaioannou, 2001; Laclef et al., 

2003; Peters et al., 1998; Su and Manley, 2000; Su et al., 2001; Wallin et al., 1996; Xu 

et al., 2002; Zou et al., 2006).  This group of genes collectively suggests that there is 

a genetic regulatory network that acts upstream of TEC specification; their role is 

extensively described in the next section. 

 

1.2.2.1 A genetic regulatory network acting prior to TEC specification 

To better understand this early-acting genetic regulatory network, the role of the genes 

expressed prior to Foxn1 is discussed further here.  Hoxa3 is evident in both the 
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endoderm and surrounding mesenchyme of the pharyngeal region – foregut, while 

newborn mice lacking this gene are missing the thymus, parathyroid and part of the 

thyroid gland (Manley and Capecchi, 1995).  Foxn1 expression was delayed (but still 

initiated) in Hoxa3-/- mice, suggesting that Hoxa3 alone cannot lead specification of 

the thymic epithelium (Chojnowski et al., 2014).  Nonetheless, the lack of thymus 

could be explained by increased apoptosis in those mice.  Specific deletion of Hoxa3 

in the endoderm caused a more severe phenotype compared to deletion in the 

mesenchyme due to Bmp4 endoderm-specific dependence on Hoxa3 (Chojnowski et 

al., 2014). 

PAX1 and PAX9 are highly homologous transcription factors (Blake and Ziman, 

2014) that are commonly expressed in the 3rd PP at E10.5, however, their knockout 

phenotypes differ substantially (Peters et al., 1998; Wallin et al., 1996).  Pax9-/- mice 

display severe 3rd – 4th PP growth defects at E11.5 and their thymic tissue remains 

stuck in the neck region (absence of migration), however they still express Foxn1 and 

initiate thymocyte colonization that lasts only up to E16.5 due to pervasive apoptosis 

(Hetzer-Egger et al., 2002).  Pax1-/- mice display normal migration, with a mild delay 

in growth and thymocyte transition (Wallin et al., 1996).  The maintenance of Pax1 

expression is dependent on Hoxa3 expression (Manley and Capecchi, 1995); however, 

Hoxa3 expression is not affected in Pax1 Pax9 double knockouts (Zou et al., 2006), 

which suggests an upstream regulatory role for Hoxa3 compared to the above PAX 

genes.  Additionally, loss of one Hoxa3 allele (Hoxa3+/-) in combination with a Pax1 

mutant (Pax1-/-) leads to more severe aberrations, indicating a HOXA3-PAX1 partially 

regulating thymus organogenesis (Su and Manley, 2000; Su et al., 2001). 

Expression of Eya1 and Six1 is evident in the pharyngeal pouch and afterwards in the 

fetal thymus (Xu et al., 2002; Zou et al., 2006).  Eya1-/- mice demonstrate a complete 

lack of the thymus-parathyroid primordium, while Six1-/- mice (or Six1-/- Six4-/- double 

knockout) initially form a 3rd PP rudiment, which rapidly degenerates via apoptosis 

(Zou et al., 2006).  Eya1-/- Six1-/- double mutants also exhibit a more severe phenotype 

than Eya1-/- alone (Xu et al., 2002; Zou et al., 2006).  However, since EYA1 cannot 

bind DNA (Rebay et al., 2005), it is possible that EYA1 regulation of SIX1 may be 

through an alternative mechanism (for instance via EYA1’s phosphatase activity). 
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DiGeorge syndrome (DGS) is caused by the deletion of the 22q11.2 chromosomal 

region and among other symptoms, the immune system of the patients is compromised 

because of thymus hypoplasia or aplasia (Holländer et al., 2006).  In mice, knockout 

of the Tbx1 locus causes a very similar phenotype to DGS, verifying that deletion of 

Tbx1 is largely responsible for aberrations (Jerome and Papaioannou, 2001; Lindsay 

et al., 2001).  Expression of Tbx1 is apparent in the pharyngeal region (endoderm of 

the PP and arch mesenchyme; Lindsay et al., 2001), and dynamic regulation of TBX1 

is necessary to succeed normal thymus organogenesis since both Tbx1 knockout 

(Arnold et al., 2006) and gain-of-function mutants (Vitelli et al., 2009) led to aplasia 

and hypoplasia respectively.  TBX1 was shown to specifically repress Foxn1, as 

demonstrated from constitutive expression of Tbx1 under the control of the Foxn1 

promoter (Foxn1Cre), thus TEC differentiation can only proceed by Tbx1 down-

regulation (Reeh et al., 2014).  Overall, the above studies suggest a temporary role for 

Tbx1 in PP patterning and morphogenesis regulation and that happens partially through 

Fgf8 and Pax9 activation (Arnold et al., 2006; Okubo et al., 2011). 

It is likely that a genetic regulatory network orchestrates patterning and morphogenesis 

of the thymic anlage and this happens through cross-interaction of this network’s 

components.  Unlike the phenotype in nude mice, in which thymic rudiments are 

formed and survive into adulthood, most of these genes knockouts (except for Pax1) 

cause degeneration of the thymic primordia through apoptosis.  Therefore, two phases 

are evident during early progression of TECs: a) an early FOXN1-independent phase, 

in which a fine-tuned network of factors drives the cells into a stable and apoptosis-

resistant state ensuring TEC specification and survival and b) a later FOXN1-

dependent phase, in which FOXN1 activation mediates TEC differentiation into the 

functionally distinct cTEC and mTEC populations and allows further proliferation of 

these cells. 

 

1.2.2.2 Bipotent and lineage-fated thymic epithelial progenitor cells 

The early thymic primordium is populated by thymic epithelial progenitor cells 

(TEPCs) that can differentiate into the functionally distinct cortical and medullary 

TEC lineages and support the development of an adequate immune system (Bennett et 
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al., 2002).  Determination of the TEPC phenotype and isolation of these cells are 

therefore of major importance.  Evidence for the existence of such a progenitor cell 

type initially emerged from studying human thymic epithelial tumours where few cells 

were able to express both cTEC and mTEC markers (Schluep et al., 1988).  A more 

definitive TEPC phenotype was determined by a study addressing the role of FOXN1 

in mice.  As described above, this study demonstrated that cell-autonomous FOXN1 

expression is required for TEPCs to differentiate towards the cortical and medullary 

TEC lineages (Blackburn et al., 1996).  In more detail, analysis of adult aggregation 

chimeras from wild type and nude cells identified few nude-like cells marked by 

MTS20 and MTS24 monoclonal antibodies (Abs), and absence of any differentiation 

markers.  MTS20 and MTS24 Abs (Depreter et al., 2008) target the Placenta-expressed 

Transcript 1 (PLET1) antibody, which has been identified by two independent 

laboratories as a fetal TEC marker capable of reconstituting a full thymus organ in 

RTOC grafts (Bennett et al., 2002; Gill et al., 2002).  EpCAM+PLET1+ TEPCs at 

E12.5 of embryonic development were all identified to be capable of generating both 

cTECs and mTECs (designated bipotent) through a single cell transplantation assay 

(Rossi et al., 2006).  Additionally, improved flow cytometry methods identified all 

E12.5 TEPCs to be PLET1+, with the PLET1+ expression to subsequently decrease in 

organogenesis (Cook, 2010). 

A later block in differentiation due to differentiation arrest of thymocytes generated 

cells that co-expressed K8 and K5 markers which normally reside in the CMJ, while 

transplantation of these cells to mice with a later block showed their conversion into 

K8+K5- cells, suggesting their role as cTEC progenitors (Klug et al., 1998).  Also 

recently, a self-renewing subpopulation of embryonic TECs that expresses high levels 

of Claudin 3 (Cldn3), Cldn4 and stage-specific embryonic antigen (SSEA1) was able 

to generate mTECs in the long-term and this subset of TECs has been characterised as 

mTEC stem cells (Sekai et al., 2014).  Importantly, cells identified in the nude 

primordium express a similar set of markers (Baik et al., 2016), which suggests that 

FOXN1 is indispensable for TEC fate selection (Nowell et al., 2011).  Another 

embryonic progenitor mTEC population that is able to give rise to AIRE+ mTECs was 

shown to express RANK, a key regulator in the formation of the thymus medulla (Baik 

et al., 2016). 
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Despite current progress, the bipotent phenotype of specified TEC progenitors that 

populate the thymic anlage before the onset of FOXN1 has not yet been described in 

full to allow confident identification and purification of this bipotent TEPC population. 

 

1.2.2.3 A serial progression model into the embryonic cortical and 

medullary thymic epithelial cell lineages 

In the adult thymus, cTEC and mTEC populations are easily distinguishable based on 

the differential expression of a panel of markers (intracellular and cell surface ones) 

(Lucas et al., 2016; Ohigashi et al., 2013).  However, this is not the case in the 

embryonic thymus, where current TEC markers fail to clearly define the cTEC-mTEC 

early populations, setting a barrier in the analysis of the early cTEC and mTEC lineage 

emergence (Klug et al., 2000, 2002).  In a recent study, the cTEC-specific marker 

CD205 and the mTEC-specific marker CD40, which normally identify these 

populations in the adult thymus, were used to assess early cTEC and mTEC 

development (Shakib et al., 2009).  This study identified a CD205+CD40- population 

that was apparent around E12.0-13.0, while over time some cells progressively became 

CD205+ CD40+ and eventually CD205-CD40+.  Interestingly, a purified CD205+CD40- 

population was capable of giving rise to both cTEC and mTEC lineages through an 

RTOC transplantation assay, suggesting that mTEC lineages experience an early phase 

of cTEC markers expression (Baik et al., 2013).  In that direction, fate mapping data 

clearly demonstrated that all TECs experience expression of the cTEC marker β5t 

(Ohigashi et al., 2013). 

In particular for the mTEC lineage progression, SSEA1+ mTEC stem cells ontogenic 

appearance was examined against the key regulator of mTEC formation, RANK 

(Akiyama et al., 2008; Hikosaka et al., 2008; Rossi et al., 2007a).  The SSEA1+ mTEC 

stem cells was found to express RANK uniformly and also emerge earlier than the 

RANK- mTEC progenitor population (Baik et al., 2016).  Interestingly, SSEA1+ 

mTEC stem cells are evident in the embryonic thymus of mice which exhibit an mTEC 

developmental block (Relb-/- mice), whereas no RANK+ mTEC progenitors were 

detected (Baik et al., 2016).  Collectively, these studies agree on mTEC specification 

having already occurred by E12.0.  In brief, mTEC lineage progression generates 
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SSEA1+ mTEC stem cells in an RELB-independent way, however, RELB is required 

downstream of this stage to produce RANK+ mTEC progenitors which can also act as 

a subsequent source for mature AIRE+ mTECs generation (Akiyama et al., 2008).  The 

relationship between the mTEC stem cells and the mTEC progenitors is not yet known, 

however it seems that multiple members of the Tumour Necrosis Factor family 

(TNFR) take part in mTEC serial differentiation process. 

Collectively, the above findings are significant, as they propose that TEPCs are 

initially cTEC-fated and then progressively acquire their mTEC lineage in a stepwise 

manner, with mTEC sublineage differentiation to also proceed gradually through 

premature mTEC populations towards the mature mTEC phenotypes (see TEC 

differentiation diagram in Figure 1.2).  Nonetheless, the transition from the bipotent 

progenitor stage towards these phenotypes has not yet been deciphered. 
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Figure 1.2: A serial progression model of TEC early progression in development.  The diagram 

depicts a summarised overview of early TEC differentiation from the bipotent progenitor stage towards 

the cortical (c) and medullary (m) TEC lineages based on current literature analysing the embryonic 

thymus.  Early undifferentiated bipotent progenitors (TEPCs) undergo a stage where they express cTEC-

like genes before proceeding towards the cTEC or mTEC distinct subpopulations.  An unknown 

mechanism determining mTEC specification results in the generation of SSEA1+ mTEC stem cells, which 

are subsequently dependent on RELB for further differentiation and seem to also involve the mTEC 

regulator RANK.  Finally, crosstalk among the RANK+ mTEC precursors sets off differentiation towards 

AIRE+ mTECs. Image reproduced from Takahama et al., 2017. 
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1.2.2.4 Cell-crosstalk dependence for TEC progression  

TEC differentiation and maturation depends on extracellular signalling from the neural 

crest (NCC)-derived mesenchyme and the developing thymocytes which migrate in 

the thymic rudiment during organogenesis (Auerbach, 1960; van Ewijk et al., 1994).  

The thymic lobes are surrounded by a NCC-derived mesenchymal population that 

stimulates proliferation of immature TECs by secretion of FGF factors (Jenkinson et 

al., 2003; Revest et al., 2001).  Around E11.5, haematopoietic progenitors begin to 

colonise the thymus (Luis et al., 2016) coinciding with the onset of FOXN1 and the 

morphological shift of thymic epithelial cells.  In transgenic mice where thymopoiesis 

is blocked (hCD3ɛ; block at DN1 stage), TECs maintain a two-dimensional (2D) 

configuration, with the predominant TEC population to be K5+ K8+, while thymi were 

hypoplastic with large cysts (van Ewijk et al., 2000; Klug et al., 1998).  It is possible 

that the presence of haematopoietic progenitors is required to maintain TEC 

organisation, since T-cell progenitors are not necessary for the initial stages of fetal 

epithelium patterning (Klug et al., 2002).  A subsequent block in T-cell development 

using Rag1-/- mutants (block at DN3 stage) gave rise to thymi with reticular cTEC 

organisation and a detectable K5-K8+ population, although bare detection of mTECs 

was apparent (Klug et al., 1998).  Indeed, presence of more mature T-cells is essential 

for mTEC sublineage elaboration (Hikosaka et al., 2008).  Together, these results 

demonstrate that TEC differentiation after the initial specification stage encompasses 

several checkpoints and necessitates cell non-autonomous interactions to progress. 

 

1.2.3 Signalling mechanisms involved in early thymus 

progression 

 

1.2.3.1 Sonic Hedgehog (SHH) 

The role of SHH signalling in early development has been investigated through Shh-/- 

embryos, in which disturbed separation of the thymus-parathyroid structures was 

observed.  In the Shh-/- mutants, the overall pouch domain was diminished due to cell 

death, while subsequent loss of the Gcm2 expression resulted in an expanded thymus 

domain marked by expanded expression of Bmp4 and Foxn1 (Moore-Scott and 
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Manley, 2005).  Additionally, in experiments where Shh was constitutively expressed 

in the 3rd PP, cells did not acquire a parathyroid fate, but instead TBX1 was further 

induced and in turn repressed Foxn1 expression in the thymic domain (Bain et al., 

2016; Reeh et al., 2014), suggesting that SHH expression acts as a control gate of the 

thymic-parathyroid fate, rather than imposing it. 

Following the initial patterning of the 3rd PP, expression of Shh is also evident during 

TEC differentiation.  Subsequent investigation of the Shh-/- mutants has been difficult 

since development for these embryos fails around E16.5 (Shah and Zuniga-Pflucker, 

2014).  Analysis of fetal culture of Shh-/- thymi or of chemically blocked SHH 

signalling demonstrated lower number of cTECs and mTECs, increased levels of MHC 

class II expression and reduced numbers of AIRE+ mTECs (Saldaña et al., 2016).  

Collectively, the above findings propose a role for SHH in TEC differentiation, 

although it is not clear if these effects are the outcome of cells acting autonomously or 

if they have been partially caused indirectly through lymphocyte crosstalk, since Shh 

also regulates thymocyte development (Barbarulo et al., 2016). 

 

1.2.3.2 Bone Morphogenic Proteins (BMPs) 

During early organogenesis of the thymus Bmp4 shows a dynamic spatiotemporal 

expression pattern, by which Bmp4 expression is restricted in the few mesenchymal 

cells of the 3rd pharyngeal arch at E9.5.  Its expression it then continues to expand at 

the ventral aspect of the 3rd PP at E10.5-E11.5, and finally its expression is evident 

throughout the primordium and the mesenchymal capsule (Patel et al., 2006).  

Therefore, it is possible that Bmp4 is involved in the specification of the thymic 

epithelium starting from the ventral posterior aspect of the 3rd pouch.  Some in vitro 

evidence has suggested that Foxn1 expression in TECs may be induced by Bmp4, 

Foxn1 expression in the posterior area of the 3rd pouch at E11.25 (Tsai, 2003).  In 

agreement with this, expression of the BMP inhibitor NOGGIN (normally expressed 

in a complementary pattern to that of Bmp4) under the control of Foxn1 disrupts 

thymus migration, while the existent thymus is heavily reduced (Bleul and Boehm, 

2005).  Additionally, sustained expression of NOGGIN caused partial loss of Foxn1 

in the thymic primordium which resulted in domain reversion to a cystic structure, 
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indicatory of a more immature state (Soza-Ried et al., 2008), while specific deletion 

of Bmp4 as early as E9.5 (Foxg1Cre) also resulted in a similar phenotype (Gordon et 

al., 2010).  Finally, specific deletion of Bmp4 in committed TECs and the NC-derived 

surrounding mesenchyme (using Foxn1Cre and Wnt1Cre, respectively) demonstrated 

normal migration of the structure but again reduced size, suggesting a continuous 

requirement of BMP signalling after Foxn1 initiation, a requirement no longer needed 

though for the later stages of the mesenchyme. 

In general, BMP signalling seems to up-regulate Foxn1 expression in TECs as shown 

by addition of BMP4 in FTOC medium (Tsai, 2003).  In our hands, only combinatorial 

addition of FGF8 and BMP4 in 3rd PP culture resulted in Foxn1 up-regulation (Poppis, 

Blackburn lab, unpublished).  However, neither Foxg1Cre induced Bmp4 nor deletion 

or forced Noggin expression completely abolished Foxn1 expression, although in the 

latter case Foxn1 expression was lost from part of the thymic rudiment and the 

rudiment itself exhibited a cystic structure (Bleul and Boehm, 2005; Gordon et al., 

2010; Soza-Ried et al., 2008).  Interestingly, suppression of BMP signalling by 

NOGGIN activates Bmp2 and Bmp4 in a negative feedback fashion (Bleul and Boehm, 

2005).  This feedback loop, as well as potential redundancy among BMP factors, could 

explain the small impact on Foxn1 expression in the Bmp4 deletion model using the 

Foxg1Cre (Soza-Ried et al., 2008).  In summary, these data suggest a potential role for 

the BMP signalling in Foxn1 up-regulation, although this is possibly dependent also 

on other signalling pathways acting in the region and TECs maturation status itself. 

 

1.2.3.3 Fibroblast Growth Factors (FGFs) 

FGF signalling is involved in the development of several structures in the pharyngeal 

region, with mutations disrupting the normal FGF signalling to affect normal 

organogenesis in the thymus and/or the parathyroid system.  High expression of Fgf8 

is apparent in the distal posterior presumptive thymus region around E9.5.  FGFR2-

IIIb expression is limited in the thymic epithelium and its expression is first evident at 

E13.5, while its ligands (FGF3, FGF7 and FGF10) are expressed in the mesenchymal 

tissue surrounding the developing thymus.  Aplasia or hypoplasia is observed in Fgf8 

mutants because they fail to form normal 3rd PPs (Abu-Issa et al., 2002; Frank et al., 
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2002), while reduced TEC proliferation occurs after E12.5 in FGFR2-IIIb and FGF10 

mutants (Ohuchi et al., 2000; Revest et al., 2001).  Importantly, continuous localised 

inhibition of the FGF signalling by the sprouty genes (Spry1 and Spry2) is also 

necessary for the formation of a normal-sized parathyroid (via Gcm2 induction), 

thymus-parathyroid separation (via apoptosis) and expansion of the thymic 

primordium (via cell proliferation) (Gardiner et al., 2012).  Overall, FGF signalling 

regulates early thymus organogenesis in two stages: a) rudiment patterning and 

morphogenesis through an Fgf8 negative loop and b) TEC proliferation through a 

mesenchymal-epithelial crosstalk. 

 

1.2.3.4 Wingless-type MMTV integration site family members (WNTs) 

Several WNT ligands are expressed in the thymic anlage during early organogenesis 

(around E10.5), however only WNT4 seems to persist in adult development 

(Balciunaite et al., 2002).  A critical role for WNT4 as a Foxn1 inducer has been 

identified by using cTEC-derived lines in which both co-culture with WNT4-

transfected T-cells and WNT activation by lithium chloride led to an increase in Foxn1 

expression.  In support to this finding, a later study co-cultured E15.5 thymi with 

supernatant from a WNT4-secreting cell line; analysis of isolated TECs demonstrated 

Foxn1 up-regulation as well as up-regulation of the TEC differentiation markers, Il7 

and MHC II (Kvell et al., 2014).  Furthermore, analysis of Wnt4-/- thymi by Heinonen 

et al. (2011) demonstrated decreased TEC cellularity, an effect that was stronger if the 

deletion occurred in neonatal, rather than adult mice.  In agreement with this result, 

specific knockout of Grp16 (transporter of WNT ligands to the cell surface) in TECs 

reduced thymocyte and TEC cellularity (Brunk et al., 2015).  Interestingly, elevated 

activity of WNT signalling by loss of the WNT antagonist Kremen1, gradually 

disrupted the corticomedullary compartmentalisation (Osada et al., 2006).  A more 

dramatic disruption of the thymic structure and loss of Foxn1 resulted from two 

independent studies where the WNT effector β-catenin (Swann et al., 2017; Zuklys et 

al., 2009).  In addition, up-regulation of WNT4 alone demonstrated milder effects, 

suggesting that a negative loop may be regulating WNT4 expression (Swann et al., 

2017).  Collectively, the above results highlight a potential role of WNT4 in Foxn1 
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activation/up-regulation and dynamic expression of WNT signalling is essential for 

normal thymus development. 

Understanding the genetic network and signalling mechanisms that orchestrate TEPC 

early specification and expansion in early organogenesis will enable improved 

culturing conditions for survival and proliferation of TEPCs in vitro with significant 

effects in regeneration. 

 

1.2.4 The role of FOXN1 in thymus development 

 

1.2.4.1 FOXN1-independent TEC specification  

Foxn1 expression is evident in low levels during the initial outpocketing of the 3rd PP 

(E9.5) (Nehls et al., 1994), while high levels of Foxn1 become evident from E11.25 

onwards, with this strong expression being apparent in the most ventral part of the 3rd 

PP and gradually expanding to cover the entire thymus organ (Gordon et al., 2001, 

reviewed in Vaidya et al., 2016).  As discussed above, formation of the thymic 

primordium does not require FOXN1 (established by histological analysis, Cordier and 

Haumont, 1980; Cordier and Heremans, 1975).  In agreement with this, several studies 

strongly support that FOXN1 does not determine the thymic epithelial lineage 

specification, and their findings are summarised in this paragraph.  E9.0 3rd PPs ectopic 

transplantation (prior to Foxn1 expression) is capable of giving rise to a functional 

thymus organ with evident cTEC and mTEC compartments, denoting that 3rd PP cells 

have already been specified towards the TEC fate (Gordon et al., 2004).  In addition, 

expression of genes that are specific markers of the thymic domain (such as the 

interleukin 7; Il7, and the Forkhead transcription factor g1; Foxg1) occurs 

independently of FOXN1 (Wei and Condie, 2011; Zamisch et al., 2005).  Finally, the 

developmental arrest that occurs to TEPCs with Foxn1 revertible null or subfunctional 

hypomorphic alleles can be reversed at later stages, denoting that fetal TEPCs can exist 

in a stable state in vivo (Blackburn et al., 1996; Bleul et al., 2006; Jin et al., 2014) and 

therefore  suggesting the existence of an active transcriptional network acting upstream 

of FOXN1 that establishes TEPC identity and mediates TEC specification.  Taken 
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together, the above evidence indicates that TEC lineage commitment is not dependent 

on FOXN1, but potentially relies on a yet unexplored genetic network. 

 

1.2.4.2 FOXN1-dependent TEC differentiation 

Previous literature has demonstrated that TEC differentiation (and proliferation), 

including formation of the three-dimensional (3D) TEC microarchitecture are 

critically dependent on FOXN1 expression (reviewed in Vaidya et al., 2016).  In one 

of the studies, homozygous mice for a hypomorphic Foxn1 allele  (Foxn1Δ; lacking 

the FOXN1 N-terminal domain) were generated and analysis of the resulting thymi 

demonstrated thymus hypoplasia; the cTEC and mTEC regions failed to separate, 

while additionally these abnormal thymi could only support aberrant thymopoiesis in 

adult mice (Su et al., 2003).  The above observed phenotypes indicated that TEC 

differentiation was initiated but a subsequent block occurred leading to defects in the 

adult thymus.  With the use of a different Foxn1 hypomorphic allele (Foxn1R), Nowell 

et al. (2011) investigated the impact of variable FOXN1 levels on TEC differentiation.  

Foxn1R expresses around 15% of normal Foxn1 transcript levels compared to the wild 

type (WT) Foxn1 allele and mice homozygous for Foxn1R (Foxn1R/R) were 

characterised by hypoplastic thymi and suboptimal T-cell development.  Examination 

of a Foxn1 Allelic series which was generated based on the Foxn1WT, Foxn1R and 

Foxn1− alleles revealed Foxn1 dose-dependent TEC differentiation, in summary 

showing that increasing levels of Foxn1 control both cTEC and mTEC exit from the 

TEPC stage and progression through intermediate stages to terminal differentiation in 

the fetal and adult thymus (Nowell et al., 2011).  Of note is that another study using a 

revertible Foxn1 allele (Foxn1SA2), in which Foxn1 could be reactivated in single cells 

by tamoxifen induction (Cre-ERT2 system), generated miniature thymi with well-

defined cortical and medullary compartments, containing both Cytokeratin 5-high, 

Claudin 4-high (K5hiCldn4hi), and K5−Cldn4lo/− populations (Bleul et al., 2006).  The 

outcome of this analysis, in combination with published data showing that mTEC-

restricted progenitors (mTEPCs) during thymus organogenesis are Cldn4hi (Hamazaki 

et al., 2007; Sekai et al., 2014), suggests that the appearance of the mTEC lineage may 

be independent from Foxn1 expression and therefore that the divergence of the cTEC 
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and mTEC populations may happen earlier than indicated by Nowell et al. in the lines 

above. 

In summary, several lines of evidence described above have proved the importance of 

FOXN1 in TEC progression.  Further literature has also revealed a role for FOXN1 in 

managing the attraction and differentiation of haematopoietic progenitors in the 

thymic rudiment, as well as in the regulation of neural crest cell (NCC) migration and 

maturation that will shape the thymic mesenchyme.  Altogether, these data prove 

FOXN1 high significance in the establishment of a functional thymic system. 

 

1.2.4.3 FOXN1 binding motif 

Despites FOXN1’s (product of the nude locus) indisputable role in the thymic system, 

the molecular function and the genetic network around this transcription factor have 

not yet been determined in completeness, while only recently direct targets of FOXN1 

and the FOXN1 binding motif were identified in TECs by a chromatin 

immunoprecipitation assay combined with high throughput DNA sequencing (ChIP-

seq) (Žuklys et al., 2016).  The very first prediction for a FOXN1 binding motif came 

from an in vitro selection of binding sites (SELEX), in which the oligo-bound 

sequences contained an identical tetranucleotide core subsequence, 5’-ACGC-3’ 

(Schlake et al., 1997).  Following this, a study investigating the evolution of FOX 

factors used a protein-binding microarray (PBM; Berger and Bulyk, 2009; Berger et 

al., 2006) assay to identify preferred bound sequences by the different FOX family 

members (Nakagawa et al., 2013).  This competitive study identified an almost 

identical sequence, 5’-GACGC-3’, as the strongest bound sequence by FOXN1, while 

it also suggested that FOXN1 had lost over time the ability to bind the canonical FOX 

motif (5’-AAACAA-3’).  Even though two separate studies had predicted the same 

core nucleotide sequence as the preferred FOXN1 binding motif, both of them relied 

on experiments using short oligonucleotide binding in an artificial environment.  Only 

recently, the FOXN1 binding motif was confirmed by mapping the FOXN1-DNA 

interactions in vivo on a genome scale (Žuklys et al., 2016). 

Žuklys et al. expressed a FOXN1 protein, tagged with an octapeptide, under the Foxn1 

promoter in TECs of nude mice using a bacterial artificial chromosome (BAC).  Mice 
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homozygous for the BAC (designated Foxn1wt*/wt*) demonstrated a normal coat and 

thymus architecture, as well as normal Foxn1 expression levels with a mildly reduced 

cellularity which was still capable of supporting thymocyte development.  De novo 

motif analysis of the consistently enriched FOXN1 peaks around the proximal 

transcription start site of all expressed genes (5 kilobases (kb) upstream and 3kb 

downstream of genes TSSs) predicted 5’-GACGC-3’ to be the FOXN1 binding motif, 

in full agreement with the above in vitro studies, further validating this consensus as 

the preferential FOXN1 binding sequence. 

 

1.2.4.4 FOXN1 target genes 

In terms of gene regulation in TECs, Foxn1 has been shown to be generally required 

for expression of proteins that play a vital role in promoting T-cell development 

(Bredenkamp et al., 2014a; Calderón and Boehm, 2012; Chen et al., 2009; Nowell et 

al., 2011).  For instance, the C-C Motif Chemokine Ligand 25, C-X-C Motif 

chemokine ligand 12 (CXCL12) chemokine is necessary for the attraction of thymic 

seeding progenitors in both fetal and adult thymus (Liu, 2005; Liu et al., 2006; Plotkin 

et al., 2003), while Delta like canonical NOTCH ligand 4 (DLL4) allows commitment 

of migrating hematopoietic precursors to the T-cell lineage (Hozumi et al., 2008; Koch 

et al., 2008) and  KIT Ligand (KITL) is required for T-cell survival and proliferation 

(Buono et al., 2016).  Furthermore, Proteasome subunit beta 11 (PSMB11; also known 

as β5t) and Cathepsin L (CTSL) regulate peptide production in TECs to positively 

select CD8+ and CD4+ T-cells respectively  (Honey et al., 2002; Murata et al., 2007; 

Nakagawa et al., 1998; Sasaki et al., 2015), while MHC Class II expression contributes 

in peptide selection specifically for the CD4+ T-cells.  Additionally, FOXN1 is also 

regulating genes involved in differentiation, proliferation and function of TECs, 

namely, the Paired Box 1 (Pax1), Tumor Protein P63 (Trp63), Cyclin D1 (Ccnd1), 

Cluster of differentiation 40 (CD40), Cluster of differentiation 80 (CD80), Fibroblast 

growth factor receptor 2 isoform IIIB (Fgfr2IIIb), Autoimmune regulator (Aire), as 

well as some WNT regulators (Bredenkamp et al., 2014a; Nowell et al., 2011).  Finally, 

the FOXN1-tagged ChIP-seq analysis by Žuklys et al. (2016) has identified 450 highly 

confident FOXN1 direct target candidates, while it has also experimentally verified 
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for the first time in neonatal mice that Cluster of differentiation 38 (Cd38) and Psmb11 

are directly regulated by FOXN1 in cTECs.  Suggested from previous literature 

(Nowell et al., 2011), the usual FOXN1 candidate targets (Ccl25, Dll4, Cxcl12) are 

also included in this list, strongly suggesting that they are directly regulated by 

FOXN1. 

FOXN1 is now regarded as the master regulator in the thymic system, since its 

continuous expression is required for differentiation and maintenance of the cortical 

and medullary TEC lineages as well as subsequent thymocyte maturation, processes 

indispensably linked to a functional immune system.  In 2016, a FOXN1-tagged ChIP-

seq analysis finally provided more insights into FOXN1 direct binding potency in 

TECs in vivo, further identifying highly confident FOXN1 direct target candidates, 

specifically in the thymic cortex of 1 week old mice.  The same study also proposed a 

critical role for FOXN1 in the maintenance of the antigen processing and presentation 

program in newborn cTECs based on these data.  Nevertheless, how this single 

transcription factor establishes from scratch a robust transcriptional network that 

orchestrates thymus organogenesis and function in the early residing TEPCs or (as 

recently demonstrated) in an unrelated cell type (Bredenkamp et al., 2014b) still 

remains to be elucidated.  It also remains unclear how FOXN1 initiation is regulated 

by the early genetic regulatory network that is acting in the undifferentiated thymic 

anlage. 

 

1.2.5 The role of FOXN1 in skin 
 

Expression of Foxn1 has been identified in the skin, submatrix region of the nails, 

tongue, oral cavity and nasal placode (Lee et al., 1999; Meier et al., 1999).  In the skin, 

Foxn1 expression is observed in the epidermis and hair follicles but it is limited in the 

epithelium of these cell types (Baxter and Brissette, 2002; Weiner et al., 2007).  In the 

epidermis, Foxn1 participates in the transition from the proliferative state (basal layer) 

of the keratinocytes to the differentiated state (suprabasal and rest keratinocyte layers) 

(Lee et al., 1999; Prowse et al., 1999).  FOXN1 is most prominent in the keratinocytes 

suprabasal layer when cells seem to exit their cell cycle and begin to differentiate, 

while almost all of the proliferative basal cells of the epidermis are FOXN1 negative 
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(Lee et al., 1999; Meier et al., 1999).  This intrinsic supplement of source of cells from 

stem cells dispersed in the basal layer is required to generate defensive, terminally 

differentiated layers of skin (Morasso and Tomic-Canic, 2005).  Cells positive for 

FOXN1 also express early differentiation markers (Keratin 1 and 10; K1 and K10), 

indicating that FOXN1 acts as a prodifferentiation transcription factor (reviewed in 

Grabowska and Wilanowski, 2017). 

FOXN1 expression is also evident in the hair follicles, which exhibit synchronised 

dynamic cycles of active growth, regression and quiescence (anagen, catagen and 

telogen respectively) with FOXN1 levels peaking during anagen, when multipotent 

stem cells get activated and exit their niche, while FOXN1 is absent from the telogen 

stage (reviewed in Grabowska and Wilanowski, 2017) 

The molecular mechanisms that orchestrate FOXN1 function in skin are still to be 

better understood.  Only a few genes have been identified to be FOXN1 targets and 

the exact mechanism of their regulation is poorly understood.  A microarray analysis 

in which human epidermal keratinocytes with induced human FOXN1 were compared 

to a human epidermal keratinocyte control population were compared revealed up-

regulation of gene groups linked to signalling, cytokines, growth arrest, extracellular 

matrix and metabolism, including K10 suggesting that FOXN1 induction may be 

promoting keratinocyte differentiation (Janes, 2004).  In another study, FOXN1 was 

shown to impose pleiotropic effects, with WNT signalling family genes and 

metalloproteinases to be enriched in the keratinocytes of nude mice, while BMP and 

NOTCH signalling members demonstrated the opposite effect (Kur-Piotrowska et al., 

2017).   

In hair follicles, the regulatory network surrounding FOXN1 is not clearly defined.  In 

some reports, FOXN1 has been positioned downstream of BMP and upstream of 

NOTCH canonical pathway (Cai et al., 2009), whereas in other reports it seems to exist 

downstream of the NOTCH pathway (Hu et al., 2010).  As will be discussed later 

(section 1.4), the NOTCH pathway has been involved in the fate maintenance inside 

the hair matrix.  In an initial study (Cai et al., 2009), Foxn1 and Msx2 expression has 

been shown to be required for normal expression of Notch1 in the hair follicle 

matrix.  Genetic knock-out mutants of Foxn1 and Msx2 reduced Notch1 halfway, 
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which sequentially impaired differentiation of the medulla and the inner root sheath 

(IRS) of the hair follicle.  Further experiments indicated that FOXN1 was directly 

targeting the Notch1 promoter.  Additionally, Foxn1 and Msx2 seem to be acting 

synergistically but in parallel downstream of BMP signalling, since recombinant 

human BMP4 induced Foxn1 expression in Msx2-/- hair follicles.  Despite their 

synergistic effect, Foxn1 seems to exist downstream of Msx2, as demonstrated by 

reduced Foxn1 expression in Msx2-/- mutants.  Moreover, except for regulating 

NOTCH signalling, these two factors can be independently involved in cortical and 

cuticle keratins expression.  Collectively, Foxn1 and Msx2 exist downstream of BMP 

signalling and upstream of Notch1, and together they play a pivotal role in the 

differentiation of the IRS, cortex and medulla within the hair matrix.  In the second 

study (Hu et al., 2010), inhibition of NOTCH signalling in the surrounding 

mesenchyme was shown to influence Foxn1 expression in the keratinocyte epithelial 

through Wnt5a positioning NOTCH signalling upstream of Foxn1. 

The equilibrium of the stem cell activity within the bulge stem cells can be affected by 

the BMP-WNT interplay.  Inhibition of the BMP signalling and increase of WNT 

signalling pushes the balance towards the activation of quiescent stem cells (Kandyba 

et al., 2013).  Therefore, loss or down-regulation of Foxn1 could potentially contribute 

towards stem cell activation and a more regenerative environment.  Data availability 

for BMP, WNT and NOTCH signalling pathways in the epidermis is even more limited.  

BMP seems to regulate the cell fate of amplifying cells by promoting their 

differentiation (overexpression of terminally differentiated markers; K10 and 

involucrin; IVL) (Gosselet et al., 2007).  In contrast, WNT members are secreted and 

targeting the basal proliferative layer of the epidermis (mainly consisting of committed 

progenitors), while the suprabasal and remaining layers have WNT inhibitors (Kaur, 

2006).  Taking into account that lack of FOXN1 up-regulates WNT signalling and 

down-regulates WNT inhibitors, it is possible that blockage of FOXN1 favours a 

proregenerative environment (Kur-Piotrowska et al., 2017). 
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1.3 CLASSICAL MODELS FOR STEM CELL DIFFERENTIATION AND 

MAINTENANCE 

Early studies on hematopoietic stem cell (HSC) self-renewal and differentiation have 

created a central paradigm on the mechanisms that lead maintenance and repair in 

mammalian tissues (reviewed in Morrison et al., 1995; Orkin and Zon, 2008).  In this 

well-established example, the HSCs constitute a rare population of cells that sits at the 

top of the blood lineage hierarchy and divides infrequently in an asymmetric fashion 

(Suda et al., 1984).  Upon each division, the HSC creates two cells of differing 

fates.  One of these cells is an exact copy of the pre-divided HSC, while the other 

daughter cell adopts a subsequently lineage-restricted fate.  This unique defining 

capacity of stem cells to self-renew and maintain their long term lineage is called 

multi-potency.  In this paradigm, cells flow in one direction from the HSC towards 

progenitor lineages to terminally differentiated cells which will undergo apoptosis 

eventually. 

Nevertheless, this central example cannot always explain the underlying mechanisms 

in other well-studied stem cell systems that (unlike blood which is a fluid organ) 

contain a more rigid epithelial tissue (Watt, 1999).  A main feature of the epithelial 

cells in these organs is that they attach to the basement membrane of the tissues, with 

the types of epithelial structures also variable between organs.  In the examples of lung 

and intestine, the epithelia comprise a monolayer of epithelial cells in direct contact 

with the basal layer.  In the mammary gland epithelia, two distinct cell types exist: a 

luminal population which surrounds a central lumen and myoepithelial cells which are 

located to the basal area (Visvader and Stingl, 2014).  While all myoepithelial cells 

adhere to the basement membrane, only 20% of the luminal cells are attached to it. In 

the skin epithelium, multiple layers of epithelial cells (multilayer) are apparent, where 

distance of the epithelia from the membrane determines the level differentiation per 

cell.  Additionally, it is not unusual for epithelia to contain structures with specialised 

functions (like hair follicles or glands). 

In terms of their stem cell state, solid tissues display two types of behaviour: low 

proliferative activity when in a non-excited state (like lung, pancreas and liver) with 
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exhibiting proliferation bursts upon damage, and constant self-renewing activity (like 

the intestine and testis) with daily, weekly and monthly rates of tissue 

replacement.  The latter case resembles the bone marrow self-renewal process 

(reviewed in Clevers and Watt, 2018). 

The low proliferative nature of cells has been widely used over the years as a main 

attribute to define stem cells.  Excellent examples of adult tissue stem cells exist 

(dormant satellite cells in striated muscle; reviewed in Brack and Rando, 2012, bulge 

stem cells of the hair follicle; Cotsarelis et al., 1990), nevertheless, quiescence cannot 

be used as a discriminatory feature for novel stem cell identification, since the vast 

majority of mammalian cells are non-dividing. 

Studies on the proliferative state of the intestinal crypt cells have provided an example 

where stem cells do not flow in an unidirectional way (reviewed in Clevers, 2013), 

violating the “one-way” flow rule as it has been established by the HSC main 

paradigm.  In this case, lineage-restricted daughters constitute a persistent repertoire 

of cells which is able to resettle at the bottom of the intestinal crypt cell hierarchy in 

which a short-lived multipotent population exists (Buczacki et al., 2013).  This process 

is activated upon loss of the intestinal crypt stem cell marker. 

Under a different point of view, daughter cells may exhibit plasticity: the potential to 

return to a less differentiated (stem) cell state, even though they have progressed down 

the lineage hierarchy.  This progression can range from a progenitor cell stage (see 

intestinal crypt cells) to the more extreme cases of terminally differentiated cells that 

can still revert to a stem cell state (see lung epithelium, reviewed in Tata and 

Rajagopal, 2017). 

Unlike HSCs, which are characteristically rare, quiescent, long-living and divide 

asymmetrically, stem cells in skin (Clayton et al., 2007), intestinal crypt (Lopez-Garcia 

et al., 2010; Snippert et al., 2010), oesophagus (Doupe et al., 2012), stomach glands 

(Leushacke et al., 2013) and testis (Klein et al., 2010) are abundant, cycling and divide 

symmetrically while their life span is stochastically determined.  For all the latter 

tissues, stem cell self-renewal and longevity can only be defined at the population level, 

but not at the single cell level (see Clevers and Watt, 2018). 
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Notably, tissues may also involve more than one stem cell type acting independently 

to maintain the tissue distinct lineages.  In skin, for instance, stem cell niches are liable 

to sustain the differentiation compartments that are allocated only to their local area 

(Watt and Jensen, 2009). Even though that is the case under steady state conditions, 

during tissue injury all stem cells can give rise to all the epidermal lineages (Donati 

and Watt, 2015). 

In strong contradiction to the HSC example, no stem cell population has yet been 

identified in the liver tissue over decades of studies (reviewed in Stanger, 2015), 

suggesting that the proliferative capacity of the liver lineages are sufficient to maintain 

and repair the liver tissue. 

In sum, besides the well-established paradigm of HSC-like, rare and quiescent 

professional stem cells, deeper principles may underlie maintenance and regeneration 

mechanisms of individual tissues, involving cell plasticity, population self-renewal, 

multiple tissue stem cells and regeneration led by normal tissue cells  (reviewed in 

Clevers and Watt, 2018).  
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1.4 MODELS BY WHICH NOTCH OPERATES IN OTHER CELL 

TYPES 

NOTCH signalling is a highly conserved pathway that allows cell communication 

between neighbouring cells.  NOTCH ligands interact with their receptors which 

become activated through sequential proteolytic cleavages that lead to the release of 

the NOTCH intracellular domain.  In turn, this domain is transported inside the cell 

nucleus where it acts as a coactivator and regulates transcription of target genes in 

association with members of the CSL DNA binding transcription factor family 

(reviews by Artavanis-Tsakonas, 1999; Bray, 2006).  A wide range of cellular 

processes can be regulated by NOTCH, including specification of the cell fate, 

formation of boundaries, stem cell maintenance, cell proliferation, migration and 

apoptosis.  Despite the simple linearity regarding the mechanism of the NOTCH 

pathway itself, NOTCH signalling specifies highly complex biological outcomes 

(Artavanis-Tsakonas, 1999; Fortini, 2009; Lai, 2004) through its different modes of 

action: namely lateral inhibition, fate decisions and inductive signalling. 

Lateral inhibition characterises an event where the fate of a cell is specified while this 

cell lies among a group of equivalent cells.  One of the best characterised examples of 

lateral inhibition occurs in the embryonic neuroepithelium in Drosophila, where 

NOTCH determines if equivalent ectodermal cells will differentiate into epithelial 

cells or neuroblasts.  Initially, all cells in the neuroepithelium exhibit low levels of 

NOTCH ligand (DELTA) and its receptor (NOTCH).  However, possibly due to 

stochastic variation, some cells increase their levels of DELTA and this inceptive 

difference is magnified through a transcriptional positive feedback loop.  In contrast, 

these high-DELTA expressing cells cannot express NOTCH (because of cis-inhibitory 

interactions; Heitzler and Simpson, 1993).  Eventually, the system resolves in a salt 

and pepper pattern where the DELTA-expressing signal-sending cells differentiate 

into neuronal cells, while the NOTCH-expressing signal-receiver cells become 

epithelial cells.  The mechanism of lateral inhibition constitutes a common mechanism 

through which tissues containing identical cells are patterned during development 

(Bate and Rushton, 1993; Greenwald, 1998; Greenwald and Rubin, 1992; Roignant 

and Treisman, 2009; Rushton et al., 1995). 
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Lineage (or fate) decisions and inductive signalling within non-equivalent cells are 

also operated by NOTCH signalling.  In particular, cells are different from one another 

either because of asymmetric expression of NOTCH signalling regulators or because 

of ligand-receptor differential distribution in adjacent cells (review by Bray, 

2006).  For example, in the progeny of sensory organ progenitors, asymmetric 

segregation of the endocytic adaptor protein NUMB down-regulates NOTCH 

signalling and converts the NUMB-positive cells into NOTCH signal-senders.  On the 

contrary, expression of DELTA in vein cells during wing-vein patterning in 

Drosophila induces NOTCH signalling in the adjacent (or intervein) cells which 

blocks vein fate (Huppert et al., 1997). 

Overall, even though NOTCH signalling modality acts as a simple on/off 

switch,  multiple levels of control can ensure precise signalling in the involved cells.  

First, post-translational modifications and trafficking of the deployed ligands and 

receptors can regulate their activity.  Secondly, when the pathway is active for a 

specific period of time, oscillatory initiation/termination mechanisms are used.  This 

is possible because the NICD cofactor is short-lived but also because NOTCH target 

gene messenger RNAs and proteins are very unstable and can also inhibit their own 

transcription (review by Fior and Henrique, 2009). 
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1.5 MECHANISMS OF GENE REGULATION 

Gene expression in eukaryotes is controlled through a complex mechanism that 

involves a) presence of multiple RNA polymerases regulating distinct classes of genes, 

b) binding of proteins to specific regulatory sequences in order to interact and 

modulate the activity of these RNA polymerases and c) unfolding of the compact 

chromatin structure to provide a template that allows transcription to happen.  The high 

complexity of eukaryotic transcription orchestrates the unique expression patterns of 

genes that are necessary to drive development, differentiation and function of different 

cells in multicellular organisms (reviewed in Cooper and Hausman, 2009). 

Three different types of RNA polymerases exist in eukaryotic cells that modulate 

distinct classes of genes: RNA polymerase II (Pol II) for protein coding genes and 

microRNAs (Lee et al., 2004), RNA Polymerase III (Pol III) for  tRNAs (Willis, 1993),  

RNA Polymerase I (Pol I) and Pol III for rRNAs (Engel et al., 2013; Willis, 1993) and 

Pol II and Pol III for snRNAs and scRNAs (Willis, 1993). 

Part of the general mechanism through which these polymerases regulate gene 

transcription is the assembly of a pre-initiation complex formed by various proteins 

that is necessary to enable transcription initiation (Matsui et al., 1980; Orphanides et 

al., 1996).  Genes transcribed by Pol II have a characteristic TATA box and initiator 

(Inr) element in their core promoter, among other upstream and downstream binding 

sites that are specifically targeted by a group of proteins called general transcription 

factors (review by Weis and Reinberg, 1992).  Binding of these general transcription 

factors in the core promoter of genes enables Pol II recruitment and eventually 

formation of the pre-initiation complex.  A minimum of five general transcription 

factors are required to initiate transcription in in vitro systems, however, within a cell 

additional factors are necessary to stimulate transcription.  One of these factors, called 

the Mediator, is a large protein complex which can interact with both Pol II and the 

general transcription factors (Malik and Roeder, 2005).  In that way, a complex 

transcriptional machinery is formed which controls transcriptional regulation in 

eukaryotes in vivo. 
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The core promoter of genes also includes cis-regulatory regions targeted by gene-

specific transcription factors (reviewed in Maston et al., 2006).  These factors regulate 

individual gene expression.  Furthermore, many genes in mammalian cells can be 

regulated by far-acting sequences located in a significant distance from the 

transcription start site of the gene.  These particular regions, called enhancers, can 

function from a long distance and in either orientation (Dynan and Tjian, 1983).  They 

apply their regulation similarly to promoters, by regulating the RNA polymerase 

(reviewed in Maston et al., 2006).  The distant enhancers are able to interact with the 

Pol II preinitiation complex because of DNA looping (Matharu and Ahituv, 2015). 

 

1.5.1 Mechanisms of transcriptional activation and repression 

Promoter and enhancer regions contain specific binding sites through which 

transcription is regulated.  Binding sites are made of short DNA sequences that usually 

range from 6-10 base pairs.  These sequences are degenerate, denoting that regulatory 

proteins (such as TFs) will also bind to sequences deviating from the binding motif 

consensus by one or more positions.  Transcription regulators that bind to these motifs 

are divided into activators and repressors based on their function (reviewed in 

Kadonaga, 2004).  Transcription activators stimulate transcription through their 

binding to the regulatory DNA sequence (Ptashne, 1988).  These proteins are 

characterised by two domains: a DNA-binding domain that specifically binds DNA 

and an activation domain that interacts with the Mediator or other components of the 

pre-initiation complex to promote specific gene transcription.  The latter domain 

stimulates transcription by two different mechanisms.  First, by interacting with 

components of the pre-initiation complex to recruit Pol II and form the transcriptional 

complex at the promoter region.  Second, by interacting with a variety of other factors 

(namely coactivators) that modify chromatin structure to stimulate 

transcription.  Notably, transcription can also be regulated at the level of transcript 

elongation and RNA processing in which transactivators also play a role (reviewed in 

(Ma, 2011). 

Repressor proteins are also responsible for gene regulation in eukaryotic 

cells.  Similarly to the activator proteins, eukaryotic repressors bind to specific binding 
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sites to apply their effect; but in this case they cause transcription inhibition.  In some 

cases, this inhibition is mediated by interfering with the binding of the TFs to the 

regulatory region.  For instance, proximal binding of a repressor to the TSS of a gene 

can deter/prevent the interaction of general TFs or the Pol II itself with the 

promoter.  In other cases, receptors antagonize activators for binding in the same 

regulatory site.  Some repressors may exhibit the same DNA-binding unit with an 

activator but lack a stimulation domain, while others may contain a functional 

inhibitory domain that represses gene transcription by protein-protein interactions 

(active repressors).  Lastly, repressors can apply their inhibitory effect by interacting 

with corepressors, whose role is to modify the chromatin structure (reviewed in Gaston 

and Jayaraman, 2003). 

The action of both transcriptional activators and eukaryotic repressors controls the 

expression or silencing of tissue specific genes, cell proliferation and differentiation 

and responses to external stimuli (e.g. hormones and growth factors). 

 

1.5.2 Chromatin structure controlled by activators and repressors 

Both activators and repressors may control transcription not only by interacting with 

various subunits of the transcriptional machinery but also by inducing structural 

changes to the chromatin of the eukaryotic cell.  Instead of being present in a “naked” 

state, DNA in eukaryotes is wrapped around histones in the core particle of the 

nucleosome.  Packaging of the chromatin in this tight structure is directly linked to its 

availability as a substrate for permissive transcription.  Thus, gene expression is 

majorly dependent on the chromatin structure, with actively transcribed genes to be 

found in less condensed chromatin regions.  Nevertheless, these genes are still bound 

to histones and wrapped around nucleosomes, affecting the ability of both transcription 

factors and RNA polymerase to bind and transcribe DNA respectively. 

Several mechanisms are responsible for chromatin remodelling, including histone 

modifications, high mobility group (HMG) proteins-chromatin interactions and 

nucleosome rearrangement (Saha et al., 2006).  Two domains are apparent in the 

histones of the nucleosome core particle (H2A, H2B, H3 and H4): a histone-folding 
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domain, which takes part in histone-histone interactions and DNA wrapping around 

the core particle of the nucleosome, and an amino-terminal tail domain which stretches 

outside the nucleosome (Luger et al., 1997).  The extended domain contains multiple 

lysines on its tail which can be acetylated in specific positions.  Histone acetylation 

has been directly linked to transcriptional regulation through studies which showed 

associations of activators and repressors with histone acetyltransferases and 

deacetylases respectively (Brownell et al., 1996; Taunton et al., 1996).  Several other 

modifications can influence the status of histones, including methylation of arginine 

and lysine residues and phosphorylation of serine residues.  These modifications take 

place in the amino-terminal tails similar to histone acetylation and have been 

associated with alterations in transcriptional activity (Bannister and Kouzarides, 

2011).  It seems that histone modifications regulate gene expression by both 

remodelling the chromatin state and by creating accessible sites for other factors to 

bind and activate or repress transcription.  For instance, acetylation of lysines 

neutralizes their positive charge which relaxes protein structure and enables 

transcriptional activation.  Conversely, methylation of lysine residues in H3 create 

binding positions for factors that lead to a more condensed chromatin state, directly 

associating this modification with formation of heterochromatin and transcriptional 

repression. 

Apart from histone modifications, interaction of the HMG superfamily of proteins is 

able to influence the chromatin architecture by bending DNA and facilitating binding 

of regulatory factors or alternatively by inducing chromatin unfolding and maintaining 

DNA in a decondensed state (Hock et al., 2007).  Additionally,  chromatin remodelling 

factors can also alter the DNA-histone contacts by a) catalysing the sliding of the 

nucleosomes along the DNA molecule to alter the accessibility of DNA sequences to 

TFs (Workman, 2006), b)  changing the conformation of the nucleosomes to affect the 

ability of TF binding to DNA or c) ejecting histones from DNA to create a nucleosome-

free region (Henikoff, 2008). 
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1.5.3 Chromatin modifications as indicators of promoter/enhancer 

activity 

Histone modification marks are often used to distinguish promoter and enhancer 

regions in genome studies (reviewed in Andersson, 2015).  This methodology has been 

adopted based on distinguishable properties that can separate one from the other.  In 

particular, histone H3 tri-methylation at lysine residue 4 mark (H3K4me3) has been 

denoted as a specific promoter mark (as shown for instance in Barski et al., 2007), 

however, few studies have also associated this mark with regulatory active enhancers 

(as shown for instance in Koch et al., 2011 and Pekowska et al., 2011).  Furthermore, 

even though promoter and enhancer regions are usually flanked by nucleosomes 

bearing both histone H3 monomethylation at lysine residue 4 (H3K4me1) and 

H3K4me3, the H3K4me1:H3K4me3 ratio was found to be high in enhancers but low 

in promoters (Heintzman et al., 2007).  The patterns of histone post translational 

modifications (PTMs) have further been refined by subsequent studies to predict 

specific states of enhancer activity.  In short, H3K4me1 marks many enhancers, but 

on its own it cannot distinguish between active and primed (to become active) 

enhancers (Bonn et al., 2012); histone H3 acetylation at lysine residue 27 (H3K27ac) 

generally marks active enhancers (Creyghton et al., 2010) and histone H3 

trimethylation at lysine residue 27 (H3K27me3) and/or histone H3 trimethylation at 

lysine residue 9 (H3K9me3) exist at developmentally poised (silenced) enhancers, 

while they are substituted by H3K27ac when activated during early differentiation 

(Rada-Iglesias et al., 2011; Zentner et al., 2011).  Finally, other histone acetylation 

marks have been presented to have predictive power in discerning gene promoters to 

enhancers (Rajagopal et al., 2014). 

 

1.5.4 The role of pioneer factors 

Large eukaryotic genomes exist in a dual compacted chromatin state: at the level of 

the DNA wrapped around the nucleosomes (Luger et al., 1997) and at the level of inter-

nucleosome interactions (Schalch et al., 2005).  This compacted DNA state into 

chromatin restricts the amount of freely available DNA to which regulatory proteins 
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may have access to bind.  Therefore, there is an intrinsic tendency of the chromatin to 

exist in a repressive state, which reinforces a stable gene expression state and limits 

undirected cell fate commitment.  In order for the regulatory factors to gain access to 

DNA binding sites that reside within compacted chromatin (for instance silent genes) 

and control cell fate, the locally compacted chromatin must disentangle. 

Chromatin decompaction can be enabled by a subset of factors called pioneer 

factors.  The basic features that characterise a pioneer factor are the capacity to a) bind 

its cognate DNA site within “closed” chromatin (DNA is not accessible), b) instruct 

chromatin to remodel making specific DNA sequences accessible and subsequently c) 

enable binding of other TFs and lastly d) impose stable reformations in chromatin 

structure linked to epigenetic stability  (reviewed by Mayran and Drouin, 2018; Zaret 

and Mango, 2016).  However, binding of a pioneer factor can also lead to repressed 

chromatin, if the binding is alongside repressors or corepressors that cause local 

domain blanketing and impair activators access (Sekiya and Zaret, 2007; Watts et al., 

2011).  Altogether, these features suggest that when a pioneer factor “acts”, it may 

establish competence for consequent induction, establish a repressed region, or direct 

activation of a gene promoter, while its effect on chromatin is maintained. 

Nevertheless, binding of pioneer factors to chromatin is not fully unrestricted.  Certain 

chromatin domains can actively exclude pioneer factor binding through repressive 

features: in particular, the second level of compaction imposed by heterochromatin 

(regions enriched for H3K9me3 mark; Lachner et al., 2001), as first shown in a OSKM 

factor study where fibroblasts were converted into induced pluripotent stem (iPS) cells 

(Soufi et al., 2012).  Additionally, it is likely that pioneer factors will remain more 

stably bound in locations where they interact and experience cooperative binding with 

other regulatory proteins, a property which is common to both pioneer and other 

transcription factors but is not a defining feature of pioneers (reviewed by Zaret and 

Mango, 2016). 

Forkhead Box A (FOXA) constitutes the paradigm of a pioneer factor.  This was 

demonstrated by a study showing occupancy of liver-specific FoxA sites in endoderm 

prior to liver specification (Gualdi et al., 1996).  FOXA has also been shown to bind 

nucleosomal DNA (Cirillo, 1998) and unfold condensed chromatin (Cirillo et al., 
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2002).  In addition, FOXA remodelling activity and coupled nucleosome depletion 

have been shown by genome-wide studies (Iwafuchi-Doi et al., 2016; Li et al., 2011b; 

Serandour et al., 2011).  Currently, the pioneer factor label can be assigned to a 

regulatory factor by assessing the chromatin status prior to and after the factor’s 

action.  This needs to be tested in an experimental system where the cells have never 

been exposed to the pioneer factor.  Without this test, pioneer activity can only be 

inferred but not proved (reviewed by Mayran and Drouin, 2018). 
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1.6 NEXT GENERATION SEQUENCING TECHNOLOGIES AND DATA 

ANALYSIS (PRÉCIS II) 

Leaps in scientific insight are closely associated with development of technology.  The 

longstanding “Holy Grail” for regulatory biology is to understand how genomes 

encode and regulate the diverse gene expression patterns that designate the type and 

state of each cell.  The fields of genomics, transcriptomics and epigenomics constitute 

the current leading elements in this type of research.  The ability to measure gene 

expression and protein-DNA interactions in a cell in a genome-wise manner plays a 

vital role in elucidation of the defining features of a cell, the instructional changes 

driving cell differentiation and the genetic regulatory networks that supervise gene 

function overall. 

 

1.6.1 A short history of DNA sequencing technologies 

“... [A] knowledge of sequences could contribute much to our understanding of living 

matter.” 

Frederick Sanger 

Since the fundamental discovery of the DNA structure (Watson and Crick, 1953), 

scientists envisioned to discover its sequence.  A major breakthrough in the field of 

DNA sequencing occurred with the development of the Sanger (Sanger et al., 1977) 

and Maxam Gilbert (Maxam and Gilbert, 1977) sequencing methods, which defined 

the first-generation of DNA sequencing technologies.  The Sanger method overruled 

the sequencing world at the time, due to its radiation-free methodology and, following 

developments in automation and parallelisation, finally led to the landmark completion 

of the first human genome sequence (Lander et al., 2001; Venter et al., 2001).  Soon 

after, genomes of the mouse and several other key model organisms were also 

sequenced (Mouse Genome Sequencing Consortium et al., 2002). 

Developed in the mid-to-late 1990s, microarray technology was the first to provide a 

highly parallel (or high-throughput) assay to measure DNA and RNA.  In principle, a 

reference set of probes (with a reference to known transcripts) is fixed in a chip and 
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the sample of interest is added (Lockhart et al., 1996; Schena et al., 1996; Southern et 

al., 1992).  The probes are then hybridised with fluorescently labelled cDNA and the 

fluorescent signal on the chip is used to infer the relative quantity of the probed 

sequences.  Microarrays became widely commercial and this significantly contributed 

to their broad application in many fields (Hughes et al., 2014; Lipshutz et al., 1999; 

Morozova et al., 2009; Stoughton, 2005).  However, microarrays face a number of 

limitations: reliance upon existing knowledge for probes does not allow de novo 

transcript identification, and the limited dynamic range of detection (because of 

background and saturation noise) cannot adequately represent the dynamic range of 

gene expression (Mortazavi et al., 2008; Wang et al., 2009). 

From the Human Genome Project onwards, the need to increase the throughput while 

reducing the cost of sequencing technologies became clear.  This was achieved with 

the development of next generation sequencing (NGS) methods.  This term is used to 

describe the technologies performing parallel sequencing of multiple DNA fragments 

to define a sequence (Rizzo and Buck, 2012).  In comparison with Sanger sequencing, 

NGS technologies produce an exponentially greater amount of DNA sequence data at 

a much higher speed, while the cost is significantly reduced (Voelkerding et al., 2009).  

Second generation sequencing methods became available from commercial 

technologies, namely Roche/454, Applied Biosystems SOLiD and Illumina Genome 

Analyser IIX (reviewed in Heather and Chain, 2016).  The NGS methodology of these 

technologies is based in common concepts.  The fragmented sample is initially 

amplified through the polymerase chain reaction (PCR), which reduces cost, time and 

species-specific bias compared to cloning.   Secondly, massive parallelisation is 

achieved via “sequencing-by-synthesis”.  Even though different technologies come 

with different detection chemistries, as a ground rule nucleotides are labelled (with 

chemiluminescence or fluorescence) and they release a chemical signal when they are 

correctly incorporated to the synthesised sequence (Margulies et al., 2005; Shendure 

et al., 2005). 

Third generation sequencing technologies are highly similar to the NGS technologies, 

however, instead of using amplified DNA for sequencing as a template, they use DNA 

molecules, thereby eliminating errors occurring in the lab at the DNA amplification 

stage (Munroe and Harris, 2010; Schadt et al., 2010).  The newest available 
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commercial technologies include Illumina HiSeq, Pacific Biosciences RS platform 

(English et al., 2012) and Oxford Nanopore (Mikheyev and Tin, 2014; Stoddart et al., 

2009).  In more detail, the PacBio platform uses zero-mode waveguides for single 

molecule real time sequencing (English et al., 2012), while Nanopore measures the 

signal change (i.e. current) when a molecule translocates through a protein nanopore 

(Stoddart et al., 2009). 

These technologies have developed side-by-side with the physical development of 

sequencing machines, the data analysis methods and the storage capabilities of the 

time.  One remaining limitation is the incapacity of these sequencing technologies to 

sequence long reads with high accuracy.  When a reference genome is available, 

computational advances can possibly overcome this issue.  However, sequencing 

novel genomes or novel transcripts remains challenging.  The PacBio platform and 

more prominently nanopore-based technologies are currently making efforts in that 

direction (English et al., 2012; Mikheyev and Tin, 2014; Stoddart et al., 2009). 

Currently, large scale sequencing can be performed for any DNA sample, whether 

from reverse-transcribed RNA, whole genome or amplified DNA by other methods.  

Integration of the generated big data enables investigation of cell regulation from many 

different aspects, such as transcription dynamics (RNA sequencing; RNA-seq), 

transcription factor binding and epigenetic modifications (Chromatin 

immunoprecipitation coupled with sequencing; ChIP-seq, DNA adenine 

methyltransferase identification assay coupled with sequencing; DamID-seq, Assay 

for Transposase-Accessible Chromatin using sequencing; ATAC-seq) and genome 

variations in a population (whole-genome sequencing and assembly).  All the above 

applications have mostly been facilitated by improvements focusing on the library 

preparation and sensitivity, while newer applications are now focusing on the single 

cell level.  Single cell RNA-seq (scRNA-seq) is perhaps the most prominent technique 

nowadays for the investigation of population heterogeneity that cannot be denoted 

from the average population profile of the RNA-seq (Grün and van Oudenaarden, 

2015; Kolodziejczyk et al., 2015; Liu and Trapnell, 2016; Saliba et al., 2014).  For the 

purposes of this thesis we are going to explore further the RNA-seq and ChIP-seq 

analyses. 
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1.6.2 RNA-seq data processing for novel biological insight 

RNA-seq typically produces millions of sequenced reads that represent the average 

transcriptome profile of a cell population.  These data must be analysed in order for 

useful biological insights to be extracted.  A major challenge with analysis of the RNA-

seq data comes with assembling the millions of short reads into a map of non-

contiguous sequences on a genome-wide scale.  Two approaches can be recruited to 

reconstruct the transcriptome from RNA-seq data.  Transcribed sequenced reads can 

be mapped to a reference genome and overlapping alignments can be used to merge 

these sequences; or reads can be assembled as continuous transcripts de novo without 

the use of a reference genome. 

Read mapping using a reference genome has traditionally been the most common 

method to reconstruct the transcriptome.  This method increases sensitivity of the 

assembly, since lowly expressed genes may have very low coverage, making them 

insufficient for de novo assembly.  One of the hardest computational tasks in RNA-

seq read alignment is sequence non-contiguity due to introns (the non-coding sections 

of the RNA transcript) intersections.  A number of sequence aligning tools, namely 

Tophat (Trapnell et al., 2009), STAR (Dobin et al., 2013) and HISAT (Kim et al., 

2015) have introduced memory efficient and considerably fast ways to incorporate 

splice junctions allowing reliable merging of non-continuous reads.  As a next step, 

overlapping aligned reads are merged into putative transcripts and quantified.  For this 

quantification, regions that constitute a gene need to be inferred and ambiguously 

aligned reads or different isoforms have to be dealt with.  Various quantification 

methods have been proposed, ranging from simple counting of reads that overlap using 

prior information of annotated gene regions to more complex modelling of transcript 

isoforms abundances.  A few tools have been developed to perform “simple” counting, 

such as featureCounts (Liao et al., 2014) and HTSeq-count (Anders et al., 2015).  More 

recent methods have aimed at quantifying individual transcripts abundances, namely, 

Cufflinks (Trapnell et al., 2012) , RSEM (Li and Dewey, 2011), BitSeq (Glaus et al., 

2012), kallisto (Bray et al., 2016) and Salmon (Patro et al., 2016).  These approaches 

offer higher resolution compared to simple counting, while by skipping the 

computationally costly read mapping step, some (notably, kallisto and Salmon) 
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achieve very high execution speed.  However, calculating abundance of gene isoforms 

can be a lot more challenging and complex due to the high extent of overlap among 

transcripts.  Therefore, so far there is no agreement in the optimal resolution (or 

approach) for quantification of gene levels and downstream analysis. 

Mapping reads against a reference genome may result in potential information loss due 

to genetic diversity that may be apparent in a species and which cannot be represented 

in a linear reference genome.  Thus, de novo assembly constitutes an important 

alternative method to use, importantly when significant differences are apparent 

between the reference and the individual transcriptome.  Such variations may be splice 

isoforms, point mutations, indels (insertions or deletions) or significant alterations of 

the genome/transcriptome in e.g. cancer studies.  However, the main limitation of the 

de novo assembly method is that poor quality reads can result in accuracy loss of the 

transcriptomic output.  The computational hurdle of transcriptome alignment has been 

overcome by breaking down the long sequenced reads into substrings of length k (k-

mers) and then constructing graphs (called de Bruijn graphs), in which k-mers are 

represented by nodes and transcripts can be defined by following any route defined by 

the edges which constitute immediately overlapping k-mers (k-1 bases) (Compeau et 

al., 2011; Grabherr et al., 2011).  Reads are then mapped to compatible transcripts 

creating a pseudo-alignment (in which exact coordinates of the match are not kept), 

and their quantification happens through expectation maximisation procedures (see 

kallisto; Bray et al., 2016). 

The next step after transcript reconstitution and quantification is to gain useful insight 

from the experiment, by comparing gene expression profiles and selecting the genes 

that present significant changes in association with a specific condition for further 

analysis.  To discern significant from non-significant changes (often caused by 

technical variation in the measurements), a statistical model needs to be incorporated 

to best fit the nature of the RNA-seq data.  This model should account for the discrete 

nature of the RNA-seq data, differences in variance across the expression mean and 

expression intensity levels that are contingent on expression levels of other genes.  The 

Poisson model can appropriately model RNA-seq data, by describing read sampling 

from a fixed pool of genes.  A drawback of this model is that it considers an equal 

mean and variance for the data, which is not representative of RNA-seq data.  The 
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variation instead tends to be larger than the mean and also dependent on the mean 

(Marioni et al., 2008; Nagalakshmi et al., 2008; Rapaport et al., 2013).  Therefore, 

tools such as DESeq and EdgeR use a negative binomial distribution that incorporates 

a dispersion factor and estimate dispersion based on mean expression intensity from 

other genes in the samples because of the generally low number of sample replicates 

(Anders and Huber, 2010; Robinson et al., 2010).  Unlike the aforementioned tool, the 

voom function from limma represents expression intensity as a continuous variable 

and estimates the variance of expression intensity by applying non-parametric 

regression and incorporates it into a linear model (Law et al., 2014). 

At present, none of the above tools (or models) have demonstrated a major advantage 

in terms of accuracy or sensitivity of the differential expression analysis over the 

others,  and all of them are commonly used for RNA-seq analysis (Rapaport et al., 

2013; Seyednasrollah et al., 2015). 

 

1.6.3 ChIP-seq data processing for novel biological insight 

Chromatin immunoprecipitation followed by sequencing (ChIP-seq) produces 

millions of sequenced reads that represent the average binding profile of a protein 

(transcription factor; TF, histone modification mark; HMM, DNA-binding enzyme, 

chaperone or nucleosome) in a population of cells (Barski et al., 2007; Johnson et al., 

2007; Mikkelsen et al., 2007; Robertson et al., 2007).  Main advantages of the NGS 

technologies are relatively high mapping resolution, low noise and adequate genomic 

coverage, in comparison to ChIP coupled with microarray hybridization (ChIP-chip) 

assays.  For all the above reasons, ChIP-seq is currently the most widely used method 

for locating protein-DNA interactions in genome-wide assays (Furey, 2012) and 

locating histone modification positions in epigenetics research. 

A major challenge with the analysis of ChIP-seq data is that sufficient coverage needs 

to be provided by the sequenced reads (depth of sequencing) for the data analysis to 

be meaningful.  The two main factors that influence sequencing depth are the number 

and size of the protein binding sites and the size of the genome.  For transcription 

factors (TFs) present in mammals and chromatin modifications associated with gene 



45 
 

promoters that mark narrow sites at specific locations, 20 million reads may be 

adequate (with a much lower number of reads required for worm and fly TFs) (Landt 

et al., 2012).  However, for factors with more binding sites (e.g. RNA Pol II), including 

most of the histone marks, more reads will be required, up to 60 million reads for 

mammalian genomes (Chen et al., 2012).  Importantly, to ensure sufficient coverage 

of the genome, control samples should be sequenced in higher depth than the factor 

under investigation. 

Read mapping of ChIP-seq data to a reference genome is highly similar to RNA-seq, 

however, detection of indels is not a prerequisite for most ChIP-seq experiments.  

Popular ChIP-seq aligners include Bowtie2 (Urban, 2014), BWA (Li and Durbin, 

2009), SOAP (Li et al., 2008b) and MAQ (Li et al., 2008a), which use heuristics to 

improve mapping speed and reduce the memory footprint of the alignment.  For ChIP-

seq analysis, it is important to examine the percentage of the uniquely mapped reads 

(reads that map in only one location in the genome) reported by the aligner.  A low 

percentage of uniquely mapped reads can be indicatory of technical bias, such as 

excessive PCR amplification, inadequate read length, sequencing platform-specific 

issues.  A potential cause of a high percentage of “multi-mapping” reads (reads that 

confidently map in more than one locations in the same genome) for some ChIPed 

proteins is due to biological reasons (e.g. binding in repetitive DNA).  In this latter 

case, mapping ambiguity can be improved using paired-end sequencing.  As a ground 

rule, most peak-calling algorithms will discard multi-mapping reads for increased 

sensitivity although they can often lead to the discovery of new binding sites (Wang 

et al., 2013), while duplicated reads (reads map in the exact same location) also need 

to be removed prior to peak calling to improve specificity. 

A pivotal component of the ChIP-seq analysis is to identify the ChIPed regions that 

are significantly enriched (peaks) above background.  A fine balance needs to be 

achieved between specificity and sensitivity when choosing a peak-calling algorithm 

based on the type of protein that is ChIPed, with signal smoothing and background 

modelling to be the main focus areas for several peak calling tools.  For point-source 

factors (such as most TFs), which are the most abundant type of available ChIP-seq 

data, peak callers have been fine-tuned to fit the nature of them.  Peak callers, such as 

SPP (Kharchenko et al., 2008) and MACS (Zhang et al., 2008), calculate the footprint 
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of the ChIPed protein from the mapped reads in the minus and the plus strand of the 

bound region.  By making sure that the footprint differs from the read size selection 

during library preparation, they can improve accuracy of the prediction.  After signal 

smoothing, background models remove noise either directly using a control sample, or 

indirectly based on features of the genomic landscape, such as mappability and GC 

content (Cheung et al., 2011).  A user-defined threshold is set to finally call peaks.  

Multiple statistical models have been designed to fit the nature of the ChIP-seq data, 

namely, negative binomial (CisGenome Ji et al., 2008), inflated negative binomial 

(ZINBA; Rashid et al., 2011),  Poisson (CSAR; Muiño et al., 2011), local Poisson 

(MACS), and more sophisticated machine learning modelling techniques (Qin et al., 

2010; Spyrou et al., 2009).  Additionally, a few peak callers, such as PeakSplitter 

(Salmon-Divon et al., 2010) and GPS (Guo et al., 2010) use the peak shape as a clue 

to improve the spatial resolution of the binding and avoid erroneous merging of 

neighbouring peaks from peak callers that use window-based approaches.  For broadly 

enriched factors (such as histone modification marks), several peak calling tools have 

been adjusted to identify broadly enriched regions, including SICER (Zang et al., 

2009),  CCAT (Xu et al., 2010), RSEG (Song and Smith, 2011) and ZINBA.  Few of 

the narrow peak callers such as SPP, MACS version 2 (MACS2), and PeakRanger 

(Feng et al., 2011) can also be used to call broad peaks by adjusting their bandwidth 

(longer regions) and peak “cut-off” (more relaxed thresholds), while MACS2 and 

Scripture (Guttman et al., 2010) allow for the option of identifying an enriched narrow 

peak inside an already enriched broad peak identifying a more hierarchical pattern of 

peaks.  Lastly, for factors that bind to DNA regions with bigger variation (such as 

RNA Pol II) some tools (see SPP, MACS2 and ZINBA) offer both narrow and broad 

peak calling choices based on the question that needs to be addressed.  However, with 

careful parameter adjustments, any algorithm that identifies broad peaks could be used 

in this case. 

User-settable parameters among the different peak callers can greatly influence the 

number and the quality of the enriched peaks.  One of the most important parameters, 

the enrichment metric of the peak calling algorithm, such as the p-value or the false 

discovery rate (FDR), can be greatly influenced by the statistical model that each 

tool/algorithm uses.  Therefore, using the same enrichment metric thresholds does not 
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lead to comparable results (number of peaks) among different peak callers (Szalkowski 

and Schmid, 2011).  Instead, a more consistent approach of filtering significant peaks 

from non-significant ones, is to threshold the irreproducible discovery rate (IDR; Li et 

al., 2011a).  This method assesses the rank consistency of enriched peaks among 

replicates and peaks consistent above a user-specified IDR threshold are considered 

consistently enriched and more likely to constitute true ChIPed peaks.  It has been 

reported that the numbers of peaks declared using a reproducibility threshold (e.g. 

IDR) metric rather than an enrichment-based one (e.g. p-value or FDR) are more 

comparable across experiments (Landt et al., 2012).  Importantly, at least two 

biological replicates are recommended in such ChIP-seq experiments (Landt et al., 

2012) to ensure reproducibility of the identified peaks. 

 

1.6.4 NGS and data storing 
 

A major advantage in studies involving next generation sequencing datasets has been 

the standardisation of procedures for storing and sharing data.  Genome browsers, such 

as UCSC (Kent et al., 2002) and Ensembl  (Yates et al., 2016), make feasible the 

exploration of newly generated genomic, transcriptomic, epigenomic and proteomic 

datasets.  These datasets can be mapped onto whole-genome coordinates that exist as 

centralised repositories, the genome assemblies, providing a lot of useful insight to any 

researcher.  Continuous updates of these annotation packages make sure that the 

information keeps up-to-date.  In 2012, the Encyclopaedia of DNA Elements 

(ENCODE) project (Dunham et al., 2012) was released, providing a significant update 

in respect to the function of 80% of the genome. 

Since the information generated from a high-throughput experiment reaches beyond 

the detailed questions dealt in publications, these large scale sequencing data are stored 

in standardised repositories, such as NCBI’s Gene Expression Omnibus (Barrett et al., 

2013) and ArrayExpress (Kolesnikov et al., 2015) to support reproducible research.  

The benefits of data storage and public availability can become more obvious when it 

is put in the context of other data in future research. 
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In summary, an extraordinary leap has been produced in the last 10-15 years in the 

capacity to sequence, store and share insight from sequencing experiments.  Although 

some challenges still remain to achieve optimal experiment standardisation, including 

downstream information processing and storage, the next generation sequencing field 

is an ever growing resource with an extremely powerful reserve to the scientific 

community. 

 

1.6.5 Understanding gene regulatory mechanisms through RNA-

seq and ChIP-seq data integration 

The collection of genome-wide data from various samples, such as cells, tissues or 

model organisms has been made easier and cheaper with the use of high-throughput 

technologies.  Transcriptomics, genomics, epigenomics and proteomics data each 

provide an insightful, yet singular point of view.  Therefore, integrative analysis of 

these datasets can provide a more unified, global view of gene function (discussed in 

Angelini and Costa, 2014).   This section will briefly discuss how the interplay between 

gene expression and transcription factor binding/epigenetic markers presence can help 

to elucidate gene regulatory mechanisms. 

RNA-seq data provide a clear picture of the gene expressional profile in an average 

cell population.  However, sole nucleotide sequences of expressed genes cannot 

explain their function, nor their regulation.  Genes DNA structure and accessibility to 

available transcription factors and the basal transcription machinery specifies their 

transcription.  Transcription factors, chromatin-modifying enzymes and other 

accessory proteins physically interact with DNA to modulate gene expression 

dynamics and define the cell fate (Atkinson and Halfon, 2014).  Recent studies 

demonstrate that TF and histone modification binding can predict expression of genes 

in vitro, cells’ differentiation state and other epigenetic factors (Cheng et al., 2011, 

2012; Creyghton et al., 2010; Karlić et al., 2010; McLeay et al., 2012; Ouyang et al., 

2009).  Similarly, changes in gene expression have been correlated to TF binding and 

chromatin mark modifications (Althammer et al., 2012; Klein et al., 2014).  In terms 

of the potential impact on cell state, global (and local) chromatin changes accompany 

cell differentiation, leading to silencing of pluripotency genes and activation of 
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lineage-specific ones (Chen and Dent, 2014).  In this respect, multi-omic integrated 

data can be used to explore the heterogeneity of cell populations and explain or even 

potentially control differentiation of cells during development (Comes et al., 2013; 

Macaulay and Voet, 2014). 

Prediction of gene expression is possible using a limited number of samples (with 

replicates), however this is not the case for large gene regulatory networks.  To infer 

these networks, several high-throughput datasets need to be integrated together (shown 

by  Gerstein et al., 2012).  Nevertheless, less complicated networks that rely only on 

few factors and interactions can be predicted using fewer datasets.  For instance, a 

minimal set of components was sufficient to describe self-renewal of embryonic stem 

cells (Dunn et al., 2014). 

Two different approaches can be used to achieve data integration: unsupervised and 

supervised.  The unsupervised approach excels at generating hypotheses without any 

prior knowledge through discovery of patterns using different types of clustering.  

These novel patterns can be used to make and test predictions with further datasets or 

experiments.  This is where the supervised integration can become most informative, 

relying on a few dimensions of the different datasets to apply testable hypotheses of 

the question posed.  Therefore, the more predictive the hypothesis, the more insightful 

the biological result.  Collectively, data integration itself does not constitute the final 

step in an analysis: it aims to generate novel hypotheses and assist in their testing. 

Overall, next generation sequencing technologies have evolved over the years and they 

now offer quick and in depth investigation of cells transcription profile, binding 

occupancy and accessibility landscape at a reduced cost.  Integration of the above 

datasets together can lead to more predictive hypotheses and more biological insights 

that are necessary to formulate testable experimental models for validation and to drive 

the field under investigation further. 
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1.7 PROJECT AIMS AND THESIS STRUCTURE 

This thesis aims to improve the current understanding of the transcriptional, regulatory 

and signalling mechanisms in fetal thymic epithelial cell (TEC) progression during 

thymus organogenesis in the mouse embryo, by dint of bioinformatics analysis.  The 

objectives of this thesis and the structure of the chapters are laid out here, to provide a 

roadmap of the main points that are addressed in Chapters 3-7. 

One of the main challenges in the thymus field is to decipher how thymic epithelial 

progenitor cells (TEPCs) differentiate towards the cortical and medullary TEC 

lineages (cTECs and mTECs) during thymus organogenesis in mouse.  The current 

model (see outline in Takahama et al., 2017) of TEC differentiation describes a 

homogeneous bipotent progenitor population at E12.5 (when Foxn1 expression has 

already been established), which differentiates in a serial fashion towards the cTEC 

and mTEC lineages, after going through a preliminary stage, in which all cells express 

cTEC-like markers.  In Chapter 3, I use transcriptional datasets, representative of fetal 

TEPC and newborn TEC populations, to: a) explore the impact of different Foxn1 

levels on the progression of TEPCs, b) identify which developmental stage better 

resembles the bipotent TEPCs found in Foxn1-depleted samples, c) investigate a 

potential repressive role for FOXN1 in early fetal differentiation and d) predict a gene 

signature representative of the early bipotent progenitors.  These bioinformatics 

findings are used in combination with experimental evidence (provided by members 

of the Blackburn lab) to inform an improved version of the current TEPC progression 

model. 

TEPC exploration is currently limited by the small amounts of in vivo material that 

can be obtained from the developing thymus of mouse embryos.  To achieve expansion 

of the bipotent TEPC population in vitro, the experimental conditions in which these 

cells are kept (when in culture) would have to be fine-tuned and optimised, for cells to 

survive and expand in a more efficient way.  Thus, in Chapter 4, I use comparative 

transcriptomic analysis in conjunction with pathway enrichment analysis to predict the 

intrinsic and extrinsic signalling cues that act on the early undifferentiated TEPC state 

in vivo.  Among the predicted pathways, NOTCH signalling is identified as 

dynamically regulated in early fetal TEPCs.  In the same chapter, further experimental 
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(Dong Liu) and bioinformatics exploration of NOTCH signalling is performed, to 

explore its role in early TEPC development. 

FOXN1 comprises the central regulator of the thymic system, with its expression to be 

indispensable for the development of a functional thymus.  However, until recently,   

direct evidence for its immediate targets was lacking.  In Chapter 5, I am using 

integrative analysis of transcriptomic, genomic and epigenomic datasets to investigate 

the regulatory network, through which FOXN1 establishes the transcriptional 

programme that underpins thymic epithelial cell identity and function.  In this analysis, 

I will a) compare the chromatin accessibility landscape of fetal TEPCs with the binding 

events of FOXN1 in newborn TECs to identify a list of a high confident FOXN1 

candidate direct targets in fetal TEPCs, b) anticipate regulation of active signalling 

pathways in TEPCs via the FOXN1 predicted targets, c) explore how FOXN1 and 

NOTCH signalling may interact during fetal thymus development and d) discuss a  

potential role for FOXN1 to act as a pioneer factor and thus have the ability to impose 

TEC identity. 

The amount of high-throughput sequencing datasets of the various stromal 

subpopulations, which reside in the thymus, are currently limited and thus, field 

research could be set back due to insufficient expressional or regulatory insight in these 

populations.  For this cause, in Chapter 6, I introduce the development of ThymiBase, 

an interactive thymic-specific database that provides a platform for easy access, 

analysis and integration of curated bioinformatics datasets focussed on the thymic 

epithelium. 

To end, Chapter 7 presents a summarised overview of Chapters 3-6.  Additionally, 

it integrates together the FOXN1-NOTCH interplay (Chapters 4 and 5) with the 

revised version of the TEPC progression model in the fetal TEPCs (Chapter 3), to 

propose potential mechanisms through which TEPC specification in the cTEC and 

mTEC lineages may be deciphered. 
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Chapter 2  
 

Materials and methods 

 

 

 

2.1 PRÉCIS 

The first part of Chapter 2 (Data Repository) describes the biological designs and 

technical specifications of the different high-throughput sequencing datasets (provided 

by others) that I have computationally analysed for the purposes of this thesis.  The 

second part of Chapter 2 (Bioinformatics Analysis) presents in detail the RNA-seq 

and ChIP-seq pipelines that I have built to analyse the above data, as well as the post-

processing normalisation steps that I have followed to fully refine these data and 

remove any artefacts or technical bias. 
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2.2 DATA REPOSITORY 

The first part of Chapter 2 is a detailed record of the experimental designs for all the 

next generation sequencing (NGS; Behjati and Tarpey, 2013) datasets presented in this 

thesis.  Three main types of NGS data have been available for this project: 

transcriptomic, genomic and epigenomic data, which have been categorised and are 

described extensively below. 

 

2.2.1 Collection of transcriptomic datasets in mouse (RNA-seq) 

For the purposes of this project, RNA-seq datasets from thymic epithelial progenitor 

cells (TEPCs) and thymic epithelial cells (TECs) from fetal, newborn and adult mice 

have been generated by other members of the Blackburn lab or have been collected 

through public repositories.  A descriptive listing of all the RNA-seq samples 

(grouped in various series of experiments), their experimental designs and 

specifications is provided below. 

 

2.2.1.1 A Developmental series of fetal TEPC data 

RNA was obtained from EpCAM+PLET1+ TECs from fetal mice at days E10.5, E11.5 

and E12.5 of embryonic development (biological triplicates per day) by Harsh 

Vaidya, Blackburn lab (unpublished) and samples were sent for sequencing.  

EpCAM+PLET1+ mark the early developmental stages of the thymic epithelium and 

have been linked to progenitor activity of TECs (Depreter et al., 2008; Farr and 

Anderson, 1985). 

 

2.2.1.2 A Foxn1 Allelic series of fetal TEPC data 

RNA was obtained from EpCAM+PLET1+ TECs from fetal mice of different 

genotypes at day E12.5 of embryonic development (one biological replicate per 

genotype) by Stephanie Tetelin, Blackburn lab (unpublished) and samples were sent 

for sequencing.  In short, the mice genotypes contain variants of a Foxn1 normal allele 
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(Foxn1WT) and a Foxn1 revertible hypomorphic allele (Foxn1R).  For the generation of 

the Foxn1R allele, a LoxP flanked cassette was inserted into intron 1b of the Foxn1 

locus through homologous recombination in embryonic stem (ES) cells (see right 

panel in Figure 2.1) and this ES line was used to generate the Foxn1R mouse strain 

(see Nowell et al., 2011 for more details).  Precisely, five allelic combinations of the 

Foxn1WT and Foxn1R alleles resulted, Foxn1+/+ (WT), Foxn1R/+ (R/+), Foxn1+/- (Het), 

Foxn1R/R (R/R), Foxn1R/- (R/-).  Additionally, E12.5 TECs were also obtained from 

Foxn1nu/nu (Nude) mice, in which a targeted disruption of the Foxn1 locus has been 

used (Nehls et al., 1996).  RNA obtained from TECs isolated from Nude mice 

represent the transcriptional profile of these cells in the complete absence of Foxn1.  

Relative levels of expression for the WT, R/+, R/R, R/- and Nude samples are shown 

in Figure 2.1 (left panel). 

 

2.2.1.3 An RBPJ-mutant series of fetal TEPC data 

Foxn1Cre mice were crossed with an Rbpj conditional knockout (cKO) line (Dong Liu, 

Blackburn lab), creating a mouse model line (Foxn1CreRbpjFl/Fl mice), where RBPJ 

was absent from all TECs (Rbpj exon deletion is under the control of Foxn1 promoter).  

RNA was obtained from EpCAM+PLET1+ wild type (WT) and Foxn1CreRbpjFl/Fl 

(RBPJ cKO; loss-of-function; LOF) TEPC at E12.5 (3 biological replicates per 

dataset) and PLET1+ and PLET1- TEPC at E14.5 (3 biological replicates per 

dataset) by Dong Liu; Blackburn lab (Liu et al., 2017, submitted) and samples were 

sent for sequencing.  EpCAM+PLET1+ mark the early developmental stages of the 

thymic epithelium and have been linked to progenitor activity of TECs.  The cell 

populations analysed were chosen since, at E12.5, although the PLET1+ TEPC 

population is already heterogeneous, and will contain cortical TEC (cTEC)-fated cells 

along with common TEPCs and potentially medullary TEC (mTEC)-restricted 

progenitors, it cannot be split on the basis of known cell surface markers.  At E14.5 

prospective mTECs appear to be contained within the PLET1+ population, while 

prospective cTECs have down-regulated this marker. 
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2.2.1.4 TEC subpopulations from newborn and adult mice  

Raw RNA-seq data for cortical (sorted for CD45-EpCAM+Ly51+UEA1-) and 

medullary (sorted for CD45-EpCAM+Ly51-UEA1+) TEC populations from newborn 

(7 days old) mice (one biological replicate per population) were obtained from the 

GEO public repository (Barrett et al., 2013), under the GEO accession number: 

GSE44945 (generated by St-Pierre et al., 2013).  To isolate these populations, thymic 

stromal cells were stained for antibodies (Abs) against CD45, EpCAM and Ly51 and 

for the plant lectin ulex europeus agglutinin-1 (UEA-1).  CD45 is a hematopoietic pan-

epithelial marker expressed by both hematopoietic stromal cells and thymocytes.  

Unlike thymocytes, TECs that are not of hematopoietic origin do not express this 

marker (Rodewald, 2008).  Ly51 Ab recognizes a glutamyl-aminopeptidase that is 

solely evident in cTECs, while mTECs uniquely bind the plant lectin UEA1 (Gray et 

al., 2002).  Additionally, raw RNA-seq data for similarly sorted cTEC and mTEC 

populations (biological duplicates per population) from newborn (7 days old) mice 

were also obtained from the GEO public repository, under the GEO accession number: 

GSE53110 (generated by Sansom et al., 2014).  These cells, however, were also 

sorted for the MHCII marker; MHCII can be used to mark specifically mature TECs 

(Jenkinson et al., 1981).  In respect to this, Yang et al. (2006) demonstrated that the 

majority of 1 week old cTECs and  mTECs express MHCII markers.  Thus, these data 

were used as biological replicates of the St-Pierre generated datasets and combined 

together for further analysis.  Under the same GEO accession number (GSE53110, 

generated by Sansom et al., 2014), RNA-seq data from immature (CD45-

EpCAM+MHCIIloLy51-UEA1+), mature (CD45-EpCAM+MHCIIhiLy51-UEA1+), 

mature AIRE+, mature AIRE- and mature AIRE knock-out from 4 week old mice 

(biological duplicates per population) were also retrieved.  AIRE has been found to 

lead promiscuous gene expression of tissue-related antigens (TRAs) in mTECs, which 

essential for T-cell maturation and it is used here as a marker to further subdivide 

mature mTECs (Gray et al., 2007; Tykocinski et al., 2008). 
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2.2.2 Collection of regulatory datasets in mouse (ChIP-seq) 

For the purposes of this project, ChIP-seq datasets of TECs from newborn mice were 

obtained from public repositories. 

 

2.2.2.1 A FOXN1-flagged peptide protein dataset in adult TECs 

Raw ChIP-seq data for the FOXN1 protein tagged with an octapeptide (biological 

duplicates) were obtained from the GEO public repository, under the GEO accession 

number: GSE75219 (generated by Žuklys et al., 2016).  In more detail, the FOXN1-

tagged protein was expressed under the control of the Foxn1 promoter in TECs of nude 

mice (Foxn1nu/nu) using a bacterial artificial chromosome (BAC).  The genotype of 

homozygous mice expressing the fused FOXN1 protein is represented as Foxn1wt*/wt* 

(details of the targeting strategy are shown in Figure 2.2).  Chromatin 

immunoprecipitation was performed with the M2 anti-FLAG antibody (F1804; Sigma) 

against the FOXN1-flagged peptide in sonicated DNA obtained from enriched TECs 

(using magnetic beads) from digested thymic lobes from 1 week old Foxn1wt*/wt* (see 

Chapter 1, section 1.2.5.3 for mice phenotypic details), and input samples were 

prepared from non-immunoprecipitated chromatin in parallel . 
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Figure 2.1: Relative levels of expression for the Foxn1WT and Foxn1R variants and schematic 

representation of the Foxn1R design.  (Left) QRT-PCR analysis was used to determine the relative 

levels of Foxn1 expression on E12.5 with the Sybr-Green method in 5 different samples: Foxn1+/+ (WT), 

Foxn1R/+ (R/+), Foxn1R/R (R/R), Foxn1R/- (R/-) and Foxn1nu/nu (Nude) and a no RT control.  The geometric 

mean of three housekeeping genes was used to normalise for the Foxn1 expression levels.  (Right) 

Foxn1R hypomorphic allele design: Making use of ES cells and homologous recombination, a LoxP 

flanked cassette was inserted into intron 1b at the Foxn1 locus.  These cells were used to create a 

Foxn1R mouse strain (reproduced from Nowell et al., 2011). 

 

 

Figure 2.2: Schematic representation of the FOXN1-tagged protein design construct.  A cDNA 

encoding Foxn1 fused with three Flag sequences at its C-terminus, designated Foxn1-Flag was placed 

in exon 2 of the normal Foxn1 locus through homologous recombination of a bacterial artificial 

chromosome (reproduced from Žuklys et al., 2016).  FRT: Flipase recombinase target. 

 

 

 

No 
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2.2.3 Collection of accessibility datasets in mouse (ChIP-seq) 

For the purposes of this project, ChIP-seq datasets of TEPCs from fetal mice were 

generated in the lab. 

 

2.2.3.1 Histone modification data from fetal TEPCs 

Chromatin immunoprecipitation was performed with antibodies specific for tri-

methylation of lysine 4 on histone H3 (H3K4me3) and acetylation of lysine 27 on 

histone H3 (H3K27ac) and core histone H3 (panH3; used as control) in sonicated DNA 

obtained from EpCAM+PLET1+ TECs from mice at day E12.5 of embryonic 

development (biological duplicates per histone modification) by Harsh Vaidya, 

Blackburn lab (unpublished) and samples were sent for sequencing.  Histone 

modifications are covalent post-translational modifications that occur in histones and 

can influence the higher order of chromatin structure.  Specific modifications lead 

genome compartmentalisation into distinct domains, such as transcriptionally active 

euchromatin or transcriptionally silent heterochromatin (summarised by Martin and 

Zhang, 2005).  Therefore, histone modification marks can be used to assess gene 

expression and transcription factor occupancy.  All above marks are related to open 

chromatin configuration and are thus characteristic of euchromatin regions.  In 

particular, H3K4me3 marks are present in active promoters (Heintzman et al., 2007), 

while H3K4me1 and H3K27ac marks are often used in combination to provide a robust 

readout of active enhancers in the genome (Creyghton et al., 2010; Heintzman et al., 

2009; Rada-Iglesias et al., 2011; Zentner et al., 2011).  PanH3 marks all H3 histones 

in the genome, offering a uniform background to identify enrichment of histone 

modification marks.  EpCAM+PLET1+ mark the early developmental stages of the 

thymic epithelium and have been linked to progenitor activity of TECs (Depreter et 

al., 2008; Farr and Anderson, 1985). 
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2.3 BIOINFORMATICS ANALYSIS AND WORKFLOWS 

This section presents the generic bioinformatics pipelines that have been put together 

to pre-analyse the RNA-seq and ChIP-seq datasets provided, as well as the core 

processing analysis steps that have been undertaken in order to remove sources of 

technical bias in the aforementioned datasets.  Representative graphs of the RNA-seq 

and ChIP-seq pre-analysis and core analysis pipelines are provided at the end of each 

section. 

 

2.3.1 A common pre-analysis step in the RNA-seq and ChIP-seq 

analysis pipelines 

 

2.3.1.1 Raw reads quality control 

The FastQC tool (version 0.11.5, Andrews, 2010) was used to inspect the raw read 

files (saved in FASTQ format, Cock et al., 2010) of all the datasets described in section 

2.2  to decide if the sequenced reads require further trimming before aligning them to 

the genome.  FastQC is a commonly used tool that assesses the sequences quality and 

GC content of the reads, as well as, the presence of adapters and overrepresented k-

mers.  Quality control by FastQC suggested few low-quality reads and a small amount 

of adapter contamination in most of the samples, so low quality reads had to be 

removed and the remaining reads had to be trimmed of adapter sequences with 

Trimmomatic using default parameters (version 0.32, Bolger et al., 2014).  For single-

end (SE) or paired-end (PE) reads, the SE/PE parameter was selected accordingly.  

Also, when adapter contamination from a specific technology was detected, the pre-

set adapters were used to trim the reads; in the case that the adapter’s origin was not 

identified, reads were trimmed for the over-represented sequence detected.  Post-

trimmed reads were assessed by FastQC once again to verify that adapters and low-

quality reads had been removed properly and that trimming did not introduce any bias 

itself (for a representative diagram see upper section in Figure 2.3 or Figure 2.6). 
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2.3.2 RNA-seq pre-analysis pipeline 

 

2.3.2.1 Mapping reads to genome 

Trimmed reads that passed QC (section 2.3.1.1)  were aligned against the GRCm38.p5 

(mm10) Mouse assembly (downloaded from GENCODE – release M12) with STAR 

Aligner (version 2.5.1a, Dobin et al., 2013).  STAR is a splice aware read aligner that 

uses a RAM-intensive approach which significantly increases its mapping speed, 

allowing this tool to perform equally well or better than newer aligners such as 

HISAT2 (Kim et al., 2015), while it has also outperformed all tools of its time 

(reviewed in Baruzzo et al., 2016).  In the same review, STAR also managed to identify 

the highest percentage of correctly aligned reads using its default parameters, an 

important feature that an aligner need to possess, since there is no clear way for 

parameters optimisation in real data.  STAR ran with default parameters except for the 

--runThreadN parameter, which was set to 32 (the maximum number of double 

precision tasks that our computer facility can run in parallel; 8 processors x 4 cores 

each) to increase execution speed even more.  The comprehensive ENCODE 

annotation file for the GRCm38.p5 assembly which contains gene annotation on the 

reference chromosomes in a general transfer format (GTF) was downloaded from 

GENCODE (Harrow et al., 2006, release M12) and incorporated in the run, in order to 

extract splice junctions of the genome and improve the accuracy of the mapping. 

 

2.3.2.2 Quantification of gene counts 

The featureCounts program (version 1.5.1, Liao et al., 2014) was used to quantify the 

gene expression levels from the STAR-aligned files by counting the number of mapped 

reads per gene based on a GTF file (the same one used in section 2.3.2.1) that includes 

the gene coordinates for the GRCm38.p5 assembly.  featureCounts was executed with 

default parameters. 

An overview of the RNA-seq pre-analysis pipeline is shown in the graph in Figure 

2.3. 
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Figure 2.3: Overview plot of the RNA-seq pre-analysis pipeline.  In this pipeline, each step shows 

the type of analysis performed and the specific tool that was selected when the workflow was executed.  

Raw reads are assessed with FastQC (Andrews, 2010) for different types of bias (shown in red), namely, 

high sequence quality, organism specific GC content, absence of adapters, absence of overrepresented 

k-mers and normal duplication rate.  Reads which fail to qualify for any of the quality control (QC) criteria 

above are removed with Trimmomatic (Bolger et al., 2014).  After read trimming with Trimmomatic, reads 

which passed QC are reassessed with FastQC to ensure no bias has been introduced (see section 

2.3.1.1 in the main text).  Reads which passed QC are then mapped to the provided genome assembly 

(GRCm38) with STAR aligner (Dobin et al., 2013; see section 2.3.2.1 in the main text) and gene counts 

are quantified with featureCounts (Liao et al., 2014; see section 2.3.2.2 in the main text) before raw 

gene counts are imported into R for further processing and analysis. 
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2.3.3 RNA-seq core analysis pipeline 

 

2.3.3.1 Low gene counts 

The gene count tables per data series (for details see section 2.2.1) calculated with 

featureCounts (section 2.3.2.2) were imported into R and were converted into 

DGEList objects (edgeR package, Robinson et al., 2010) for further processing.  The 

majority of these genes were not expressed at a biologically meaningful extent across 

all samples (per dataset) and had to be removed prior to downstream analysis to reduce 

the number of genes that would be investigated, as well as the number of tests that 

would be performed.  To define the cut-off value under which genes would be 

discarded, the distribution of the log2-transformed counts per million (CPM) values 

for each of the transcriptomic datasets was inspected with the density function in R.  

Inspection of the resulting density plots showed that a large proportion of genes were 

unexpressed or very lowly expressed (see example plot in the left panel of Figure 2.4).  

The CPM threshold for each dataset was chosen based on each dataset’s density plot 

to sensibly separate non-expressed or lowly expressed genes from genes which are 

expressed.  A threshold of 1 was selected for all data series; this is also the suggested 

threshold in the RNA-seq Bioconductor tutorial for limma, Glimma and edgeR (Law 

et al., 2016). 
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Figure 2.4: Density plots of the log2-transformed CPM values from example datasets.  Density 

plots depict distribution of gene counts before (A) and after (B) filtering of the data based on a given 

expression (log2-CPM) threshold.  This threshold is chosen on the grounds of removing unexpressed or 

very lowly expressed genes across all samples, while maintaining genes that are expressed in at least 

in one of the samples, or in at least one of the sample groups if replicates are available (reproduced from 

Law et al., 2016). 
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2.3.3.2 Data normalisation and differential expression analysis 

Prior to gene-wise comparisons, normalisation across the samples is required to bring 

all distributions to the same scale in order for the future comparisons to be meaningful.  

The TMM normalisation (normalisation by trimmed mean of M values) was applied 

via the calcNormFactors function (edgeR package) in R to calculate the normalisation 

factors which represent the scaling factors per library.  These scaling factors are 

included in the DGEList object alongside the raw counts.  The voom function from the 

limma package (Ritchie et al., 2015) converts the raw count data into log2-transformed 

CPM values by extracting both the library sizes and the scaling factors from the 

DGEList object.  The voom function also weights the gene counts based on their mean-

variance relationship and it is preferred to limma-trend [or simply the cpm function 

(McCarthy et al., 2012; Robinson and Smyth, 2007) from EdgeR (Robinson et al., 

2010)] because its performance is more robust when library sizes vary among samples.  

The resulting voom object includes among others, a column with the normalised log-

CPM counts that can be also used for visualisation purposes. 

 

2.3.3.3 Data inspection and visualisation 

Hierarchical clustering and Principal Component Analysis (PCA) were used to 

visualise and inspect the structure of the sample data.  Both methods are unsupervised 

(i.e. no information of the samples relationships is provided prior to the clustering) and 

are therefore suitable for exploratory analysis of sample associations.  Samples 

groupings need to be representative of the biological design of the experiment to 

proceed with any comparative analysis between groups, and generate results that are 

meaningful and reliable.  Hierarchical clustering divides samples into homogeneous 

groups by maximising their distances based on a provided distance measure.  This 

method can be used for inspection of datasets with a simple biological design.  PCA 

identifies more complex sample relationships by representing multiple patterns 

characteristic of high levels of variance across the samples.  This method is used here 

to inspect the relationships between more complex datasets (e.g. merged data series).  

Hierarchical clustering was performed using the hclust function (Müllner, 2013) in R 
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using average dissimilarity of samples based on Pearson correlation (Pearson, 1895) 

to define groups.  PCA was performed with the prcomp function in R while the 

resulting principal components were coupled with the Analysis of Variance (ANOVA) 

method to identify strong associations of any of these principal components with class 

variables (edited code for the PrincipalComponentANOVA function is available in the 

thesis electronic supplement; initial code has been provided by Jonathan Manning; 

inspired from http://rnbeads.mpi-inf.mpg.de/index.php).  Class variables may be 

representative of the experiment’s biological design as well as of potential extraneous 

or technical effects; association of principal components with the class variables can 

inform of potential batch effects in the inspected dataset. 

 

2.3.3.4 Batch effect correction 

Batch effect correction across samples was performed with the Combat function from 

the sva package (Leek et al., 2016) in R to remove technical sources of bias.  Batch 

effect correction was only possible when technical effects present among the samples 

of a specific dataset were not confounded by the biological design of the experiment.  

After batch effect correction, datasets were replotted (see visualisation methods in 

section 2.3.3.3) to confirm that the extraneous effects had been removed while no new 

type of bias had been introduced to the data. 

 

2.3.3.5 Differential expression analysis 

Comparative analysis between groups of samples was performed using functions from 

the limma package (Ritchie et al., 2015).  For the differential expression analysis, the 

TMM-normalised CPM values (see section 2.3.3.1) were provided to the lmFit 

function to calculate a linear model which has the optimal fit to the provided gene 

expression matrix.  When batch effects were present across the samples, they were 

included in the design of the linear model to be considered for the model fitting.  The 

lmFit-generated model was then provided to the eBayes function from the same 

package to perform statistical analysis between the groups of interest and calculate 

gene fold changes between groups (in a log2-transformed scale) and a measure of 

http://rnbeads.mpi-inf.mpg.de/index.php
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assigning confidence to each gene comparison.  Genes were considered as 

differentially expressed when their adjusted p-value (calculated by the BH method, as 

known as false discovery method; FDR method, Benjamini and Hochberg, 1995) was 

equal to or less than 0.05 and their |FC| ≥ 1.5 (or 0.585 in log2 format).  By selecting 

this threshold, 5% of the differentially expressed genes could constitute false positives.  

The generated gene lists with the FC values per gene were also used for pathway 

enrichment analysis when appropriate. 

 

2.3.3.6 Pathway enrichment analysis 

The Gene Set Enrichment Analysis (GSEA, Subramanian et al., 2005) software was 

used to predict signalling pathways which were enriched between groups of interest.  

The GSEA’s ‘Run GSEAPreranked’ module was used to search for enriched pathways 

provided a differential expression gene list (generated using the limma package in R) 

as the ranked list of features and an “edited” version of the ConsensusPathDB database 

(Kamburov et al., 2011) as the pathways database to search against, while the 

remaining parameters were set as default (number of permutations: 1000, collapse 

datasets to gene symbols: false).  The ‘Run GSEAPreranked’ function allows numeric 

measurements to be incorporated into the statistical analysis, as a way to quantify the 

contribution of particular genes to pathway enrichment scores, in this case, by 

considering the fold change per gene.  The ConsensusPathDB was selected on the basis 

that it offers an up-to-date repository of biological pathways that have been collected 

and integrated from multiple known databases and it included in total 2,140 mouse-

specific pathways (2,140 was the number of pathways at the time of this analysis; the 

actual number has increased since, reaching 2,173 pathways that are mouse specific).  

Because FOXN1 consists one of the central regulators of the thymic system, an extra 

pathway was added to the ConsensusPathDB (“edited”) to incorporate the 450 FOXN1 

high confidence target genes in cortical thymic epithelial cells that have been published 

recently (Žuklys et al., 2016) to assist towards this direction.  The resulted pathways 

were filtered for an FDR value ≤ 0.25 (default parameters of GSEA), which suggests 

that there is 25% probability the gene set (or pathway) that is found enriched to be a 

false positive result.  
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An overview of the RNA-seq core analysis steps pipeline is shown in the graph in 

Figure 2.5. 
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Figure 2.5: Overview plot of the RNA-seq core analysis pipeline.  Each step shows the type of 

analysis performed and the specific function/tool that was selected in each case.  After the gene counts 

per data series have been imported in R (see Figure 2.3), lowly or unexpressed genes are removed 

using the rowSums function from the edgeR package (Robinson et al., 2010; see section 2.3.3.1 in the 

main text).  Gene counts across samples are then normalised for their library size with the 

calcNormFactors and voom functions from the limma package (Ritchie et al., 2015) to make samples 

equal in terms of their statistical properties and allow meaningful comparisons between samples (see 

section 2.3.3.2 in the main text).  Hierarchical clustering and PCA plots were used to visually inspect the 

data (see section 2.3.3.3 in the main text).  If batch effects were apparent in the samples, the Combat 

function was used to remove the detected batch effect and the data were replotted (as before) to examine 

whether the artificial effect has been removed.  Differential expression analysis was then performed using 

the lmFit and eBayes functions from the limma package (see section 2.3.3.5 in the main text).  The 

differentially expressed gene tables were used for integration with the ChIP-seq data (see section 

2.3.5.3 and pipeline in Figure 2.7).  The same differentially expressed gene lists with the log2 fold change 

values were also used for signalling pathway enrichment analysis (see section 2.3.3.6 in the main text). 
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2.3.4 ChIP-seq pre-analysis pipeline 

 

2.3.4.1 Mapping reads to genome 

Trimmed reads which passed QC were aligned against the GRCm38.p5 (mm10) 

Mouse assembly (downloaded from Gencode – release M12) with Bowtie2 (version 

2.3.0, Langmead and Salzberg, 2012).  Bowtie (Langmead et al., 2009) uses full-text 

minute indexing to produce ultra-fast and memory-efficient alignment of reads against 

any genome assembly.  Bowtie2 extends Bowtie’s flexible indexing with the 

capabilities of dynamic programming algorithms to allow alignment of longer reads 

against relatively long genome assemblies (e.g. mammalian) with high accuracy and 

sensitivity without impacting on the alignment’s speed.  These attributes of Bowtie2 

fit the nature of the provided ChIP-seq data (see section 2.2.2 and 2.2.3) that are 

characterised by long sequences (50-70 base pairs) which will then be aligned against 

the mouse genome.  Parameters for Bowtie2 were kept as default with both reads to be 

provided (-1 read1 -2 read2) when the datasets were of paired-end design, while the -

U parameter was selected when reads were of single-end design.  To increase 

sensitivity of the analysis, multi-mapping reads (reads that confidently map in more 

than one location in the genome) were excluded based on Bowtie’s mapping quality 

(MAPQ) score; only uniquely aligned reads were considered for downstream analysis.  

A MAPQ score of ≥ 2 would exclude all true multi-mapping reads and also uniquely 

aligned reads with ≥ 4 mismatches (see proof from Urban, 2014).  After multi-mapping 

reads were removed, to avoid PCR amplification bias in our results the 

MarkDuplicates function from Picard (version 1.141-1, Picard tools, 2016) was used 

to further remove duplicated reads (reads that map to the exact same location more 

than once). 

 

2.3.4.2 Peak calling 

MACS2 (version 2.1.0.20150731, Zhang et al., 2008) was used for peak calling 

provided the non-redundant uniquely aligned reads as the treatment file (-t) and their 

respective background as the control one (-c).  MACS2 can be used to identify two 
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types of enrichment: a) sharp (or narrow) domains, these are domains marked by 

transcription factors or histone modifications which mark only short genomic regions 

(e.g. gene promoters) and b) broad domains, these are domains marked by histone 

modifications that expand in longer stretches of the genome (e.g. full gene bodies).  

For sharp peaks (e.g. the FOXN1-tagged and the H3K4me3 ChIP-seq data) the p-value 

cut-off to call significant peaks was set to a more lenient threshold than the default (-

p 1e-3) and the Irreproducible Discovery Rate (IDR) pipeline (available at 

https://github.com/nboley/idr) was then used to identify peaks consistent among 

replicates (for details over the specific thresholds and the IDR pipeline see section 

2.3.5.1).  For broad peaks (e.g. the H3K27ac ChIP-seq data), MACS2 was used with 

the --broad parameter on (IDR pipeline not applicable yet for broad peaks), a --broad-

cutoff of 0.1 for the broader enriched regions and a -q-value cut-off of 0.05 for any 

significant narrow peaks included in that broader enriched region.  For the histone 

modification datasets that have low sequencing depth, the MACS2 --nomodel 

parameter was selected for MACS2 not to build a shifting model when it calculates 

the fragment length.  Instead, the fragment length was provided in the --extsize 

parameter equal to 147 nucleotides long which is representative of the DNA length 

that spreads across a nucleosome since the histone modification data have an 

underlying characteristic 147bp resolution. 

An overview of the ChIP-seq pre-analysis steps pipeline is shown in the graph in 

Figure 2.6. 

 

 

 

https://github.com/nboley/idr
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Figure 2.6: Overview plot of the ChIP-seq pre-analysis pipeline.  In this pipeline, each step shows 

the type of analysis performed and the specific tool that was selected when the workflow was executed.  

Raw reads are inspected with FastQC (Andrews, 2010) for different types of bias (shown in red), namely, 

high sequence quality, organism specific GC content, absence of adapters, absence of overrepresented 

k-mers and normal duplication rate.  Reads which fail to qualify for any of the quality control (QC) criteria 

above are removed with Trimmomatic (Bolger et al., 2014).  After read trimming with Trimmomatic, reads 

that passed QC are reinspected with FastQC to make sure no bias has been introduced (see section 

2.3.1.1 in the main text).  Reads which passed QC are then mapped to the provided genome assembly 

(GRCm38) with Bowtie2 (Langmead and Salzberg, 2012; see section 2.3.4.1 in the main text) and peaks 

are called from the generated aligned files with MACS2 (Zhang et al., 2008); see section 2.3.4.2 in the 

main text).  Mapped read files can be further inspected in the genome browser with IGV (Thorvaldsdottir 

et al., 2013; see section 2.3.5.2 in the main text). 
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2.3.5 ChIP-seq core analysis pipeline 

 

2.3.5.1 Significant peaks 

When calling narrow peaks from samples with replicates, the IDR pipeline 

(https://sites.google.com/site/anshulkundaje/projects/idr) was used to draw a line 

between consistent and non-consistent peaks, based on peaks reproducibility among 

replicates.  In order to assess peaks consistency based on the IDR value, non-consistent 

findings (peaks) need to be included in the called peaks list and this is why the p-value 

cut-off for MACS2 was set to 1e-3; a more relaxed threshold for peak calling.  After 

running the batch-consistency-analysis.r script, included in the IDR pipeline, only 

consistent peaks with an IDR value of ≤ 0.05 were considered significant as suggested 

from the pipeline.  In the case of broad peak datasets, the broad peaks q-value (--broad-

cutoff) was used to assess if peaks were significantly enriched over background and it 

was set to 0.1 (default by MACS2 for broad peaks). 

 

2.3.5.2 Data inspection 

Mapped read files were loaded to IGV (version 2.3.72, Robinson et al., 2011; 

Thorvaldsdottir et al., 2013) for visual inspection of the aligned reads enrichment over 

the control samples (or input DNA). 

 

2.3.5.3 Peaks to genes 

The ChIPseeker package (Yu et al., 2015) in R was used to match peaks to proximal 

genes based on genomic distance.  Genes were assigned to peaks if the peak was 5,000 

(-5kb) base pairs (bp) upstream or 3,000 (+3kb) bp downstream (arbitrary threshold) 

genes’ transcription start site (TSS) in the mouse genome. 

 

https://sites.google.com/site/anshulkundaje/projects/idr
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2.3.5.4 Motif analysis 

De novo motif discovery analysis was performed with the web interfaces of MEME-

ChIP (Machanick and Bailey, 2011) and RSAT peak-motifs (Thomas-Chollier et al., 

2011) tools with default parameters to identify enriched binding patterns under a 

provided set of identified binding peaks.  Motif discovery tools rely on different 

underlying algorithms and set of parameters to identify enriched motifs in a provided 

set of sequences, therefore results can often vary a lot among them and a combination 

of tools should be used to allow better coverage of existing motifs, as was suggested 

by Tompa et al. (2005).  Additionally, a survey of web tools for motif discovery 

suggested that enriched motifs that were consistent among different tools are more 

reliable (Tran and Huang, 2014).  Commonly identified motifs by MEME-ChIP and 

RSAT were considered as more significant compared to motifs only identified by one 

of the two tools. 

An overview of the ChIP-seq core analysis steps pipeline is shown in the graph in 

Figure 2.7. 
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Figure 2.7: Overview plot of the ChIP-seq core analysis pipeline.  Each step shows the type of 

analysis performed and the specific function/tool that was selected in each case.  To call confident peaks, 

the q-value provided by MACS2 was used as a threshold when replicates were not available, while the 

IDR pipeline and an IDR threshold was used for peaks when replicates were available.  Enriched peaks 

were further inspected in the genome browser with IGV (Thorvaldsdottir et al., 2013; see section 2.3.5.2 

in the main text).  For integration of the ChIP-seq data with the RNA-seq data (described in section 2.2.1 

and analysed based on pipelines in Figure 2.3 and Figure 2.5), peaks were mapped to genes based on 

peaks proximity to the transcriptional start site (TSS) of selected genes (-5 kb, + 3 kb from genes TSS).  

Peaks were also converted into DNA sequences (area under the peak) and motif discovery analysis was 

performed with MEME-ChIP and RSAT peak-motifs for a given a set of sequences to identify enriched 

motifs under the peaks of interest. 
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Chapter 3  
 

Modelling the developmental progression of early 

TEPCs during thymus development 

 

 

 

3.1 PRÉCIS 

Thymic epithelial cells (TECs) constitute essential elements of the thymic 

microenvironment that orchestrate T lymphocyte (T-cell) differentiation and repertoire 

selection (Takahama, 2006) and therefore are requisite for development of a functional 

immune system.  TECs derive from a thymic epithelial progenitor cell (TEPC) that has 

the capacity -bipotent- to differentiate into the functionally distinct cortical (c) and 

medullary (m) TEC sublineages under the control of FOXN1 (Bennett et al., 2002).  

Increasing levels of Foxn1 determine phenotypically the status progression of TECs’ 

differentiation (low Foxn1 levels allow exit from the TEPC state and initiation of TEC 

differentiation, intermediate/high Foxn1 levels allow more specialised TEC 

functions), while TECs lineage specification and the regulation of cell fate choice 

between cTEC/mTEC divergence take place even in the absence of Foxn1 (Nowell et 

al., 2011).  Despite the vital role of TECs in the establishment of a functionally 

adequate thymic system, the precise mechanisms through which TEC differentiation, 

and divergence of the cTEC and mTEC sublineages occur are not yet fully decrypted. 

Therefore, with the work in Chapter 3 I aim to answer a series of questions in 

relevance to the early TEPC status and progression upon Foxn1 expression in early 

mouse development. 

Question 1: What is the impact of differing Foxn1 expression levels on the early 

developmental progression of TEPCs at the molecular level? 
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Question 2: The transcription profile of which normal TEPC developmental stage 

better resembles the experimentally competent bipotent TEPCs that exist in the thymic 

rudiments of mice lacking Foxn1 expression? 

Question 3: Is there evidence of Foxn1 acting as a repressor in the thymic epithelium? 

Question 4: Can we predict a gene expression signature capable of identifying bipotent 

TEPCs that can be used to better isolate putative TEPC populations in the early, 

newborn and adult thymus? 

Question 5: Do the above findings revisit the current model of TEPC differentiation 

summarised in Takahama et al. (2017)? 
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3.2 RESULTS 

 

3.2.1 Pseudo-timing of a Foxn1 Allelic series dataset represents 

normal developmental progression of TEPCs 

Foxn1 expression levels comprise a definitive factor in determining thymic epithelial 

cell expansion and differentiation during the early, T-cell independent, fetal 

developmental stages and this effect has been demonstrated by phenotypic analysis of 

mouse thymi obtained from a Foxn1 Allelic series (Nowell et al., 2011), in which 

Foxn1 expression levels are progressively reduced due to the presence (in some 

variants) of the Foxn1R allele, which expresses around 20% of wild type (WT) Foxn1 

mRNA levels.  In the same paper, phenotypic analysis demonstrated a developmental 

block in TEPC differentiation that was more profound in the null or low-Foxn1 

variants compared to their allelic variants that expressed intermediate or high levels of 

Foxn1 (Figure 3.1; image edited from (Nowell et al., 2011)). 

To explore whether the phenotypes caused by impaired Foxn1 levels during early 

thymus development mimic normal developmental progression of TECs, I will 

compare the transcriptional profiles of the E12.5 PLET1+ TEPCs isolated from the 

Foxn1 Allelic series (RNA-seq data from singular biological samples provided by 

Stephanie Tetelin, Blackburn lab; see also Chapter 2, section 2.2.1) with the 

transcriptional profile of E10.5, E11.5 and E12.5 PLET1+ TEPCs from a TEPC 

Developmental series (RNA-seq data from biological triplicates per stage provided 

by Harsh Vaidya, Blackburn lab; see also Chapter 2, section 2.2.1). 

In short, there are six allelic combinations in the Foxn1 variants [Foxn1+/+ (WT), 

Foxn1R/+ (R/+), Foxn1+/- (Het), Foxn1R/R (R/R), Foxn1R/- (R/-), Foxn1nu/nu (Nude)], 

with the WT and Nude samples defining the highest (normal) expression and complete 

absence of Foxn1 respectively (see Figure 3.1 for R allele design and relative protein 

levels of Foxn1; image edited from (Nowell et al., 2011)).  The transcriptome 

information contained in the TEPC Developmental series represents gene expression 

changes that characterise overall TEPC differentiation during this time frame. The 

TEPC Developmental series may include FOXN1-dependent and FOXN1-



80 
 

independent elements, while the E12.5 Foxn1 Allelic series dataset can reveal the 

unique impact of Foxn1 expression levels on TEPCs (i.e. FOXN1-dependent 

elements) independently of their progression state since all samples were obtained at 

E12.5.  A graphical representation of how these RNA-seq series relate to each other is 

illustrated in Figure 3.2. 
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Figure 3.1: The Foxn1R hypomorphic allele.  Making use of ES cells and homologous recombination, 

a LoxP flanked cassette was inserted into intron 1b of the Foxn1 locus.  These cells were used to create 

a Foxn1R mouse strain (top).  QRT-PCR analysis was used to determine the relative levels of Foxn1 

expression on E12.5 with the Sybr-Green method in 5 different samples.  The geometric mean of three 

housekeeping genes was used to normalise for the Foxn1 expression levels (bottom left).  Sizes of 

generated thymi from the WT, R/+ and R/R samples (bottom right). Image edited from (Nowell et al., 

2011). 
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Figure 3.2: Graphical representation of the TEPC Developmental and the Foxn1 Allelic series.  

The image depicts the number of samples and biological replicates per data series, as well as the 

developmental stage at which the samples were obtained.  The Foxn1 Allelic series is linked to the TEPC 

Developmental series through a common developmental point that they both share.  This point is day 

E12.5; it represents the oldest developmental point in the Developmental series, and is the timepoint at 

which all samples in the Foxn1 Allelic series were collected. 
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For the analysis of the RNA-seq datasets in this thesis, I have put together a generic 

RNA-seq pre-analysis and core-analysis pipeline (described in Chapter 2, section 

2.3.1 and 2.3.2) that I am using to retrieve the expression profiles (normalised gene 

counts) of the average cell populations in the different datasets, including the TEPC 

Developmental series and the Foxn1 Allelic series datasets.  Hierarchical clustering 

was applied to the top 1,000 most variable genes (dominant gene expression profile) 

per series, to examine if samples followed the biological design of each experiment.  

The resulting dendrogram for the TEPC Developmental series (Figure 3.3, left panel), 

shows that triplicates of each developmental stage did not cluster in their own 

subgroups; sample E10.5 (C) clustered with E12.5 (A) while sample E11.5 (C) 

clustered with the rest of the E12.5 replicates.  This indicated a potential batch effect 

caused by samples sequenced in different lanes (different lanes marked with “#” and 

“*” symbols, Figure 3.3).  Therefore, the Combat function from the sva package in 

Bioconductor (Leek et al., 2016) was used to correct for this technical effect (Chapter 

2, section 2.3.3.4) and the balanced lane–subgroup design of the TEPC Developmental 

series allowed removal of lane effects without introducing other bias to the expression 

values.  Batch (or lane) effect corrected data (Figure 3.3, right panel) clustered as 

expected, based on biological age. 

The resulting dendrogram for the Foxn1 Allelic series dataset (top 1,000 most variable 

genes) revealed a sequential clustering of the samples that in general terms followed 

the biological design of graded drops in Foxn1 mRNA expression levels.  The lack of 

replicates in the Foxn1 Allelic series made it difficult to assess extraneous effects on 

the data.  Based on the phenotype of the generated mice, E12.5 R/- and E12.5 Nude 

samples would be expected to cluster separately to the rest of the samples, since only 

these Foxn1 variants exhibit a complete/near complete block in TEPC differentiation 

and hence functional athymia.  The R/R mutant generates instead a hypoplastic 

thymus.  Furthermore, the E12.5 WT TEPC samples were expected to cluster more 

closely with the E12.5 R/+ rather than the E12.5 Het TEPC sample, as it expresses 

slightly higher levels of Foxn1, although all three samples generate a fully functional 

thymus.  Despite the lack of replicates, similar phenotype samples were sequenced in 

different lanes creating a balanced experimental design to remove technical effects.  

The Combat function (sva package) was used again to remove the lane effect among 
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samples (see Figure 3.4, right hand panel).  The Combat-corrected data did not vary 

greatly from the original clustering, however, they were more consistent with known 

phenotypes of each allelic variant and the Foxn1 relative expression levels (Figure 

3.1; image edited from Nowell et al., 2011). 
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Figure 3.3: Cluster dendrogram of the E10.5, E11.5 and E12.5 sample triplicates from the TEPC 

Developmental series dataset.  Triplicates did not cluster into subgroups based on the developmental 

stage they have been obtained (left panel), suggesting a potential lane effect among samples (lanes 

represented with “#” and “*” symbols).  The post batch effect correction dendrogram is shown in the panel 

on the right, where samples have now clustered according to their biological design. 

 

 

 

 

Figure 3.4: Cluster dendrogram of the Foxn1 variant samples from the Foxn1 Allelic series 

dataset.  Dendrogram before batch effect correction (left panel) broadly reflects decreasing levels of 

Foxn1 expression.  Clustering of the samples after lane effect correction (right panel) better represents 

the biological design of the Foxn1 Allelic series and the relative Foxn1 expression levels as quantified 

by QRT-PCR (Figure 3.1, Nowell et al., 2011).  Lanes represented with “#” and “*” symbols. 
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To compare the expression profiles of samples from the TEPC Developmental series 

with those from the Foxn1 Allelic series, I further merged the two lane-effect-corrected 

series.  Sample similarity among two experiments can be masked by technical factors 

that are specific to each experiment (e.g. vastly different library sizes), therefore, 

association of class variables (such as experiment, developmental stage and Foxn1 

levels) for the top 5,000 most variable genes from the merged dataset was plotted 

against the first ten principal components (code provided by Jonathan Manning, 

inspired from http://rnbeads.mpi-inf.mpg.de/index.php; edited code available in thesis 

electronic supplement), to assess if technical differences among the two different series 

were masking biological differences.  The above ANOVA analysis suggested that 

PC1, accounting for 20.9% of the variance (Figure 3.5), is highly associated with the 

data series variable and therefore may be masking biologically relevant differences 

due to, for instance, Foxn1 expression levels.  Since neither of the two biological 

variables (Developmental stage and Foxn1 levels) were confounded by the data series 

class and since E12.5 WT, Het and R/+ samples from the Foxn1 Allelic series were 

almost identical to the E12.5 triplicates from the TEPC Developmental series, I 

concluded that batch effect correction would remove the technical effect caused by 

different data series being integrated together, without introducing any bias. 

ANOVA analysis on the batch effect corrected merged dataset indicated that the data 

series effect had been removed.  PC1 and PC3 (accounting for 17.8% and 10.4% of 

variation respectively) were now highly associated with the developmental stage and 

Foxn1 level variables respectively (depicted in the covariate matrix, Figure 3.6) 

representing differences among samples due to biological factors and not extraneous 

effects. 

Gene distances in PC1 were plotted against gene distances in PC3, to observe sample 

clustering in the integrated dataset (Figure 3.7).  Since samples from the Foxn1 Allelic 

series were all collected at E12.5, they might be expected to group together with the 

E12.5 triplicates from the Developmental series.  However, if cell identity is 

significantly influenced by Foxn1 mRNA expression levels, the samples should cluster 

based on the extent to which their average global expression profile has been impacted 

by the differing Foxn1 levels in the Foxn1 variants. 

http://rnbeads.mpi-inf.mpg.de/index.php
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Figure 3.5: PCA/variable associations among the TEPC Developmental series and Foxn1 Allelic 

series integrated dataset before batch effect correction.  Heatmap of the association levels (p-value 

calculated by ANOVA function in R, original code provided by Jonathan Manning and edited version 

available in thesis electronic supplement) of class variables (data series, developmental stage and Foxn1 

levels) among the first ten principal components for the top 5,000 most variable genes indicates an 

obvious effect due to technical differences between expreriments. 

 

 
 

Figure 3.6: PCA/variable associations among the TEPC Developmental series and Foxn1 Allelic 

series integrated dataset after batch effect correction.  Heatmap of the association levels (p-value 

calculated by ANOVA function in R, original code provided by Jonathan Manning and edited version 

available in thesis electronic supplement) of class variables (data series, developmental stage and Foxn1 

levels) among the first ten principal components for the top 5,000 most variable genes, indicating that 

variation within the data reflects the biological design of the data. 
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In Figure 3.7, the Foxn1 null/low expression thymic primordium (samples E12.5 

Nude and E12.5 R/-), which comprises TEPCs in a developmentally arrested state that 

can function as stem cells (TESCs, see Jin et al., 2014), clusters together with the 

undifferentiated wild type TEPCs at E10.5 (grey circle).  Sample E12.5 R/-, that 

expresses very low levels of Foxn1 mRNA, groups together with samples E10.5 (C) 

and E11.5 (A) (Figure 3.7, pink circle).  This is consistent with the fact that in sample 

E10.5 (C), Foxn1 expression is just above the detection level, while sample E11.5 (A) 

contains the lowest detected levels of Foxn1 among the E11.5 group.  Sample E12.5 

R/R, which expresses intermediate levels of Foxn1, clusters together with the two other 

E11.5 replicates (Figure 3.7, blue circle) whose profiles reflect further developmental 

progression than samples from the E10.5 developmental stage but less than those from 

E12.5.  Samples E12.5 WT – Het – R/+ group clusters with the rest of the E12.5 

triplicates (Figure 3.7, yellow circle) which agrees with the normal thymus phenotype 

generated by mice carrying the heterozygous and wild type genotypes. 

The above groupings thus demonstrate that the E12.5 Nude and E12.5 R/- samples 

represent on average a very immature TEPC population, despite being isolated on the 

later E12.5 developmental stage.  This also indicates that the average E10.5 TEPC 

population would be able to generate a full functional thymus if isolated and exposed 

to the right levels of Foxn1, consistent with previous findings (Gordon et al., 2004).  

The E12.5 developmental stage represents the latest TEPC age analysed.  At this stage, 

TEPC are actively differentiating.  Overall, Figure 3.7 illustrates that data clustering 

faithfully follows the Foxn1 expression levels design, showing a clear effect of Foxn1 

dosage on cell identity. 
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Figure 3.7: Principal component analysis of the TEPC Developmental series and Foxn1 Allelic 

series integrated dataset.  The PCA plot shows samples clustering from two different data series that 

have been integrated together.  Samples from the TEPC Developmental series are represented with 

triangles, while samples from the Foxn1 Allelic series are represented with circles.  Colour gradient inside 

both triangles and circles illustrates Foxn1 expression levels in each sample.  PC1 (x-axis) accounts for 

17.8% of samples variance, while PC3 (y-axis) describes 10.4% of samples variance.  Both axes 

represent samples differences that, in the Allelic series dataset, is due primarily to the Foxn1 level effect, 

while for the TEPC Developmental series is due to both the Foxn1 levels and the developmental stage 

which is encompassed by that (shown also in Figure 3.2). 
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To further establish that batch effect correction of the integrated datasets did not bias 

our data and to also examine if groups’ clustering (in Figure 3.7) is representative of 

genes expression profiles across samples (expressing similar Foxn1 levels) and did not 

result because of samples’ average clustering, gene expression patterns for TEPC and 

TEC lineage-specific markers (reviewed in Takahama et al., 2017) and for Foxn1 

target genes (Nowell et al., 2011; Žuklys et al., 2016) were observed across samples 

in each series and samples per series were clustered (see heatmaps in Figure 3.8) based 

on these markers.  Even though these markers consist a very small percentage of the 

total number of expressed genes in TEPCs, their level of expression is able to define 

major subpopulations of the thymic epithelium and therefore they can be used when 

inspecting samples identity and expressional profiles. 

Gene patterns across samples of varying Foxn1 levels were majorly similar for the 

selected markers.  Furthermore, the TEPC Developmental series dataset demonstrated 

a clear separation of samples E10.5 (A) and E10.5 (B) (similar to the PCA plot; Figure 

3.7) from rest of the samples, with samples E10.5 (C) and E11.5 (A) grouped and 

slightly separated from the E11.5 (B) and E11.5 (C) ones, while the E12.5 triplicates 

formed their own group with most genes showing a clear expression pattern among 

them.  The Foxn1 Allelic series also indicated a clear separation of the Nude and R/- 

from rest of the samples, which show a linear trend of separation based on increasing 

Foxn1 levels.  Overall, heatmap clustering of the individual series supports the 

observed clustering in PCA (Figure 3.7) and suggests that gene patterns across 

samples are highly similar. 

In summary, integration of the TEPC Developmental series with the Foxn1 Allelic 

series demonstrated that variation in Foxn1 expression level within an allelic series 

results in changes in gene expression that closely mimic those observed in the normal 

temporal development of TEPCs during fetal thymus development.  This analysis 

further highlighted the importance of a single transcription factor, FOXN1, in defining 

cell identity in TEPCs.  These datasets will consist the basic platform used to track 

differences between undifferentiated and differentiated TEPC genes, and FOXN1-

dependent genes, in this thesis, and will also be used in combination with more datasets 

to answer further questions in respect to the TEPC state. 
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Figure 3.8: Lineage-specific gene heatmaps for the TEPC Developmental series and the Foxn1 

Allelic series datasets before data integration. Both heatmaps depict samples clustering per series, 

based on a selected list of markers (Takahama et al., 2017) which are representative of different TEPC 

and TEC sublineages present in the embryonic and postnatal thymus. Column annotations (DevStage) 

on top side of the heatmaps represent the developmental day on which samples have been collected 

(E10.5-E12.5), while row annotations (Class) describes the TEPC/TEC subpopulation that is defined 

according to high expression levels of the specific gene. FOXN1 target genes, including Kitl, (under the 

cTEC class) have been additionally annotated with an “*” symbol. 
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3.2.2 Projection of differentiating TEPC genes onto representative 

populations of the TEC sublineages indicates TEPC heterogeneity 

among the E12.5 TEPCs 

To interrogate how the cTEC and mTEC sublineages are generated during TEC 

differentiation, genes that are differentially expressed between the E10.5 

(undifferentiated progenitors) and E12.5 (differentiating TEPCs) timepoints from the 

TEPC Developmental series were projected on representative populations of the cTEC 

and mTEC sublineages (see next paragraphs for details).  The data that I have used for 

this projection were embryonic E14.5 PLET1- and E14.5 PLET1+ TECs (RNA-seq 

data from biological triplicates per population provided by Dong Liu, Blackburn 

lab; the majority of these cells will become cTECs and mTECs respectively) and 1 

week old cTECs and mTECs [merged RNA-seq data from similarly sorted individual 

and biological duplicates obtained and reanalysed from GEO public repository: GEO 

accession codes GSE44945 (St-Pierre et al., 2013) and GSE53110 (Sansom et al., 

2014); for details see Chapter 2, section 2.2.1.4]. 

To identify groups of genes that change consistently between the E10.5 and E12.5 

triplicates from the TEPC Developmental series, differential expression analysis was 

performed using the limma voom function (see Chapter 2, section 2.3.3.2) and I 

assigned statistical significance to the gene changes using the false discovery rate 

(FDR).  The Foxn1 expression levels across all samples are shown in Figure 3.9, 

suggesting higher variance among the E10.5 samples than the ones at E11.5 or E12.5 

timepoints.  An FDR threshold of ≤ 0.2 and an absolute fold change (|FC|) value ≥ 1.5 

was chosen to define statistically significant genes.  A total of 1,650 genes passed the 

FDR threshold and were considered for further analysis. 

To explore how changes in the expression profile of early TEPC development is 

represented in later developmental points (such as E13.5 and older samples), when the 

cTEC and mTEC sublineages have emerged (or are starting to emerge), I further 

divided the 1,650 differentially expressed genes (E12.5 versus E10.5) in up and down-

regulated gene groups (980 versus 670 genes respectively) and then plotted them 

according to the representative expression values they have acquired in the E14.5 and 

1 week TEC subpopulations (Figure 3.10). 
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Figure 3.9: Representative levels of Foxn1 in the TEPC Developmental series dataset. A scatterplot 

of Foxn1 levels among the early TEPC developmental points (replicates per point distinguished by A-B-

C lettering) demonstrates higher variability among the E10.5 triplicates, compared to the rest of the 

samples. The high variance may be explained by high biological variance at this very immature stage. 

E10.5 may comprise a high interchangeable TEPC state, where Foxn1 levels may increase very rapidly 

after detection of its expression at ~E10.25 timepoint. Also, only small numbers of cells were used to 

generate the RNA-seq samples (data from Harsh Vaidya; Blackburn lab) which may contribute to this 

higher variability. 
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The scatterplots shown in Figure 3.10 show a bias for up-regulated genes at E12.5 vs 

E10.5 to be more highly expressed in E14.5 PLET1- TECs than in E14.5 PLET1+ TEC, 

a pattern that was even stronger when looking at the same genes in 1 week old cTECs 

versus 1 week old mTECs.  The opposite pattern was apparent for the genes down-

regulated in the E12.5 vs E10.5 comparison, which were more highly expressed in the 

E14.5 PLET1+ and 1 week old mTECs than in the E14.5 PLET1- and 1 week old 

cTECs.  Of note is that most of the up-regulated genes from the E10.5 to E12.5 

developmental stage were also expressed in E14.5 PLET1-/1 week old mTEC 

populations, albeit at lower levels than those in the E14.5 PLET1+/1 week old cTEC 

populations.  In contrast, a high portion of the down-regulated genes were fully absent 

from E14.5 PLET1-/1 week old cTEC (Figure 3.10, bottom right panel – genes below 

0 in y-axis). 

To investigate if these differing patterns of expression were driven by FOXN1, 

samples from the Foxn1 Allelic series were used to filter the 1,650 differentially 

expressed genes (E12.5 vs E10.5; TEPC Developmental series) for genes dependent 

on FOXN1.  Lack of sample replicates in the Foxn1 Allelic series dataset made it 

difficult to confidently compare samples to one another.  However, based on the 

phenotypic and functional characteristics that the Foxn1 Allelic series samples share, 

they could be categorised in three groups.  Samples E12.5 WT, E12.5 Het and E12.5 

R/+ (or Group 1) represent TEPC populations that express high levels of Foxn1 and 

can give rise to a normal (or hyperplastic) fully functional thymus, sample E12.5 R/R 

(or Group 2) expresses intermediate levels of Foxn1 and generates a suboptimally 

functional, hypoplastic thymus, while samples E12.5 Nude and E12.5 R/- (or Group 

3) are representative of a TEPC arrested population that leads to athymia. 

Pairwise comparison analysis was performed between the two phenotypically most 

distinct groups (Group 1: WT – Het – R/+ versus Group 3: Nude – R/-) to identify 

genes that are highly dependent on FOXN1.  In this analysis, up-regulated genes from 

E10.5 to E12.5 would be considered FOXN1-dependent if two out of three samples in 

Group 1 expressed these genes more highly than both samples in Group 3, and vice 

versa in the case of down-regulated genes.  The pairwise comparison identified a total 

of 850 FOXN1-dependent genes, which were used to assess the influence of FOXN1 

on the expression patterns demonstrated in Figure 3.10. 
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Figure 3.10: Projection of TEPC differentially expressed genes on E14.5 and 1w TEC 

subpopulations. The plot depicts a clear trend of the E12.5 vs E10.5 up-regulated genes to be more 

highly expressed in the representative cTEC compartment (E14.5 PLET1- and 1w cTECs; see circles 

coloured in red shades), while the down-regulated genes from the same comparison are more highly 

expressed in the representative mTEC compartment (E14.5 PLET1+ and 1w mTECs; see circles 

coloured in blue shades) with some of the genes completely missing from 1w cTECs (bottom right plot, 

blue circles below -1 in y-axis). Values in both axes are shown in log2-transformed RPKM format, size 

of the spot is scaled so that more highly expressed genes (either in x or y-axis) are represented with 

bigger circles, while colour scale (red or blue) represent spots density (darkers shades of red or blue – 

more overlapping spots) in graph. 
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Figure 3.11: Projection of FOXN1-dependent, differentially expressed TEPC genes on E14.5 and 

1w TEC subpopulations. The plot depicts a clear trend of the FOXN1-dependent up-regulated genes 

to be found higher expressed in the representative cTEC compartmnet (E14.5 PLET1- and 1w cTECs; 

see circles coloured in red shades), while the FOXN1-dependent down-regulated genes to be found 

higher expressed in the representative mTEC compartment (E14.5 PLET1+ and 1w mTECs; see circles 

coloured in blue shades) with some of the genes completely missing from 1w cTECs (bottom right plot, 

blue circles below -1 in y-axis). Values in both axes are shown in log2-transformed RPKM format, size 

of the spot is scaled so that more highly expressed genes (either in x or y-axis) are represented with 

bigger circles, while colour scale (red or blue) represent spots density (darkers shades of red or blue – 

more overlapping spots) in graph. 

 

 

E
1

4
.5

 P
L

E
T

1
- 

[l
o

g
2

(R
P

K
M

)]
 

E
1

4
.5

 P
L

E
T

1
- 

[l
o

g
2

(R
P

K
M

)]
 

E14.5 PLET1+ [log2(RPKM)] E14.5 PLET1+ [log2(RPKM)] 

1w mTEC [log2(RPKM)] 1w mTEC [log2(RPKM)] 

1
w

 c
T

E
C

 [
lo

g
2

(R
P

K
M

)]
 

1
w

 c
T

E
C

 [
lo

g
2

(R
P

K
M

)]
 



97 
 

Figure 3.11 illustrates the expression profiles of the 850 FOXN1-dependent genes 

[586 up-regulated (60% of DE up-regulated genes) and 264 down-regulated (40% of 

DE down-regulated genes)] that are mapped to the later developmental E14.5 PLET1-

/1 week old cTEC and E14.5 PLET1+/1 week old mTEC populations.  The patterns 

observed in Figure 3.10 for the up- and down-regulated genes are preserved in the 

FOXN1-dependent genes in Figure 3.11 suggesting that this pattern reflects FOXN1 

up-regulation.  FOXN1-dependent genes whose expression increases with FOXN1 up-

regulation (from E10.5 to E12.5) show higher levels of expression in representative 

populations of the cTEC than the mTEC lineage.  This difference is in agreement with 

the higher level of Foxn1 expression in cTECs versus mTECs (Rode et al., 2015;  

O’Neill et al., 2016) and it suggest the role of FOXN1 as a potential activator (also 

denoted by Žuklys et al., 2016).  Most of the FOXN1-dependent up-regulated genes 

remain expressed still in the mTEC compartment, although not as highly as in cTECs. 

The opposite trend is observed for genes that down-regulate from E10.5 towards 

E12.5.  These genes down-regulate when cells progress from an early developmental 

point to a latter one when Foxn1 expression increases and they are also found to be 

more highly expressed in the mTEC compartment (which has lower Foxn1 levels 

compared to the cTEC compartment), with some of the genes to be completely absent 

from the cTEC compartment (genes below -1 in y-axis; Figure 3.11).  All the above 

suggest a repressive role for FOXN1 in regulation of these genes.  This repression 

could happen either by direct binding of FOXN1 on gene promoters, or through 

indirect control of other regulatory factors that can then bind and affect downstream 

genes.  In both cases, these down-regulated genes may be expressed in a heterogeneous 

population of differentiating TECs (at E12.5), in which cells average profile shows an 

expressional decrease of these genes, however, this average expression profile (which 

at E12.5 better resembles a cTEC early phenotype) could be masking a few cells that 

would still be expressing these genes higher (less differentiated/expressing lower 

levels of Foxn1).  These genes may never reach as high levels of Foxn1 and could 

form the mTEC compartment by maintaining expression of these genes.  To examine 

the above scenario and to better envision how the differentiation of TEPCs occurs, 

gene expression values of the 264 down-regulated genes at E10.5 and E12.5 were 
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compared to the expression values of these genes in 1week old cTEC and mTEC 

(Figure 3.12). 

Gene expression values at E12.5 for particular genes in the down-regulated gene set 

were almost identical with those in 1 week old cTECs (Figure 3.12, top right panel, 

genes between 150 and 264 on x-axis), while the same genes were expressed much 

more highly in 1 week old mTECs (Figure 3.12, bottom right panel, genes between 

150 and 264 on x-axis).  On the other hand, the same group of genes at E10.5 TEPCs 

demonstrate similar expression levels to the same group of genes in 1w mTECs 

(Figure 3.12, bottom left panel, genes between 150 and 264 on x-axis).  The high 

similarity of the E10.5 TEPC gene expression profiles with the profiles in 1w mTECs 

could suggest a relation between these two populations.  However, if only a few cells 

maintain an E10.5 TEPC expressional profile (potentially less differentiated) when 

reaching the E12.5 developmental stage, gene expression values of these cells would 

be masked by the average E12.5 population gene profile which would represent on 

average a more cTEC-like phenotype. 

From this, I conclude that FOXN1 rapidly represses, either directly or indirectly, a 

number of genes on its induction in TEPCs.  These genes remain repressed in cTECs, 

and the repression is complete by E12.5.  However, since I observed a trend for these 

down-regulated genes to be expressed in mTECs, the possibility that a rare 

subpopulation of TEPCs at E12.5 continues to express these genes, and that these cells 

then generate the mTEC lineage, cannot be excluded.  This could be tested by 

determining heterogeneity of FOXN1 expression at E12.5, or by analysis of single cell 

sequencing data. 
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Figure 3.12: Expression levels of the FOXN1-dependent, down-regulated genes (E12.5 versus 

E10.5) in E10.5 TEPCs, E12.5 TEPCs, 1w old cTECs and 1w old mTECs.  Expression levels of the 

FOXN1-dependent E12.5 versus E10.5 down-regulated genes are shown in pairwise comparisons of 

E10.5 TEPCs-1w cTECs (top left panel), E12.5 TEPCs-1w cTECs (top right panel), E10.5 TEPCs-1w 

mTECs (bottom left panel) and E12.5 TEPCs-1w mTECs (bottom right panel) to compare the 

expressional profiles of these genes between these populations.  Genes (represented in the x-axis) are 

sorted by increasing fold change (in absolute value), with stronger changes to be shown towards the end 

of the x-axis (>150th gene), while y-axis shows expression values (RPKM) of genes in a log2-transformed 

scale. 
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3.2.3 Foxn1 heterogeneity among E12.5 bipotent TEPCs 

To address the issue of Foxn1 heterogeneity among the E12.5 TEPCs (see section 

3.2.2), Foxn1 levels should be determined on a per cell resolution.  Foxn1 expression 

has already been established in TECs during prenatal development (Rode et al., 2015; 

O’Neill et al., 2016).  In particular, analysis of thymi from a Foxn1-eGFP reporter 

mouse line has demonstrated a graded expression of Foxn1 between cTECs (marked 

by the CD205 cTEC-specific marker) and mTECs (marked by the UEA1 mTEC-

specific marker) at E17.5 in mouse development (when mTEC numbers become 

appreciable) with the mTEC population to be expressing lower levels of Foxn1 

(O’Neill et al., 2016).  In earlier timepoints, there is no distinct separation among the 

cTEC and mTEC lineages but only a separation between the MHCIIhi and MHCIIlo 

cell populations (E13.5 TECs, see O’Neill et al., 2016), with the MHCIIlo TECs to be 

expressing lower levels of Foxn1.  The above published data come in support of a 

possible Foxn1 heterogeneity in E12.5 TEPCs, while they more specifically suggest 

the existence of a two-level graded Foxn1 expression pattern which would agree with 

the presence of a rare TEC progenitor among rest of the differentiating TECs at E12.5. 

If the E12.5 TEPCs are dynamically regulated based on Foxn1 levels, it would also be 

interesting to examine if cells of the same stage with higher Foxn1 level would 

demonstrate lower levels of the PLET1 marker whose expression has been linked to 

progenitor capacity of fetal TEPCs (Depreter et al., 2008; Ulyanchenko et al., 2016).  

Approximately 99% of E12.5 TEPCs are PLET1 positive (example FACS plot from 

Liu et al., 2017, submitted).  PLET1 was significantly down-regulated between the 

E10.5 and E12.5 timepoints, with its down-regulation being FOXN1-dependent (see 

section 3.2.2).  To determine how strongly PLET1 down-regulation depended on 

Foxn1 expression level, I observed the expression profile of Plet1 in relation to Foxn1 

levels in 31 thymic epithelia samples, comprising the TEPC samples from the TEPC 

Developmental series and Foxn1 Allelic series integrated dataset, the 1 week old cTEC 

and mTEC samples and the 4 week old mTEC subpopulations (St-Pierre et al., 2013; 

Sansom et al., 2014) consisting of immature, Aire knock-out, Aire negative, Aire 

positive and mature mTECs (see Chapter 2, section 2.2.1.4 for sample details). 
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To estimate the level of correlation between Plet1 and Foxn1 expression, I calculated 

gene-to-gene correlation across the aforementioned 31 datasets (replicates treated 

separately) using the Spearman method (non-parametric data) in combination with a 

statistics test to evaluate the confidence of the correlation.  Foxn1 expression was 

significantly anti-correlated to Plet1 (rho ≃  -0.85, p-value  ≃ 5 x 10-7), as shown in 

Figure 3.13, with strong dependence of Plet1 down-regulation on Foxn1.  Moreover, 

association of the Plet1/Foxn1 ratio with the differentiation status of the sample 

suggested a more immature/anti-differentiated phenotype in samples expressing more 

Plet1 and less Foxn1 (TEPCs and immature mTECs, Figure 3.13), and a more 

differentiated phenotype in the opposite case (cTECs/mature mTECs). 
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Figure 3.13: Scatterplot of Plet1 versus Foxn1 among various TEC samples.  Correlation analysis 

of Plet1 and Foxn1 among the TEPC Developmental series and Foxn1 Allelic series integrated dataset, 

E14.5 PLET1- and PLET1+ TEC populations (Dong Liu, submitted), 1 week old cTECs and mTECs and 

4 week old immature, Aire knock-out, AIRE negative, AIRE positive and mature mTECs.  Level and 

statistical significance of the correlation between the two factors are shown under Spearman’s rank 

correlation, while sample labels are provided in the box on the right-hand side of the plot.  The null 

hypothesis (H0) of the test would consider that samples are not correlated.  H0 was rejected (p-value ≤ 

0.05) and the alternative hypothesis (Foxn1 and Plet1 are highly anti-correlated) was accepted. 
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3.2.4  A well-defined TEP/SC gene signature from scRNA-seq data 

To investigate in depth the heterogeneity of Foxn1 expression in E12.5 TEPCs, and to 

determine the existence of a rare subpopulation of cells that expresses lower levels of 

Foxn1 and possibly mTEC-associated genes among the E12.5 TEPCs, single cell (sc) 

RNA-seq data from the E12.5 TEPC population needs to be generated.  Identification 

of a rare Foxn1low subpopulation of cells from the E12.5 TEPC scRNA-seq data would 

likely allow better characterisation of this population by a unique gene signature which 

could then be used to potentially identify the same population or its derivatives in other 

stages during thymus development.  Characterising the expressional profile of this 

population would also clarify if these cells are bipotent TEPCs or they better resemble 

mTEPCs not previously identified before.  Howbeit, if this population of (m)TEPCs is 

very rare, a larger number of E12.5 progenitors would be required to be sequenced to 

capture it. 

 

3.2.5 Alternative markers to use in combination with PLET1 and 

EpCAM to identify a homogeneous population of bipotent 

TEP/SCs 

PLET1 is able to identify and purify all TEPCs at E12.5 in prenatal mouse 

development (Bennett et al., 2002; Gill et al., 2002).  PLET1 has also been shown to 

mark medulla epithelia stem/progenitor cells in early thymus ontogeny that further 

generate medullary islets (Rodewald et al., 2001) and a rare cTEC specific population 

in the adult thymus (Ulyanchenko et al., 2016) that is able to generate both thymic 

epithelial lineages; it has, therefore, been associated with progenitor potential.  

However, after E12.5, appearance of PLET1- TECs demonstrated an equal capacity to 

generate a fully functional thymus.  This potency of both PLET1+ and PLET1- 

populations continues until E18.5 when the PLET1+ subpopulation becomes a 

minority (Swann and Boehm, 2007; Rossi et al., 2007b).  Thus, PLET1 alone becomes 

an insufficient marker to isolate TEPCs that are bipotent. 

In the absence of scRNA-seq data, it would be preferable to use an earlier timepoint to 

identify markers to use in combination with (or instead of) PLET1 for isolating 
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bipotent TEPCs or TESCs.  As discussed before, from the Foxn1 pseudo-timing 

analysis (section 3.2.1), and the Foxn1-Plet1 correlation analysis (section 3.2.3), 

E10.5 samples were shown to resemble on average a more undifferentiated TEP/SC 

population.  Therefore, representative markers of that population would be more likely 

to identify a premature state of the TEP/SCs. 

To generate a list of alternative markers to be used in combination with PLET1 for 

bipotent TEP/SC isolation, the integrated dataset of the TEPC Developmental series 

and Foxn1 Allelic series was scanned and genes were considered as candidate markers 

only if they met certain criteria.  The expression level of candidate TEP/SC markers 

should diminish from E10.5 to E12.5; thus, a more stringent FDR threshold (FDR <= 

0.05) was used to identify high confidence genes in the candidate down-regulated gene 

list.  To bias the identification of candidate TEP/SC markers that could be used for cell 

sorting, genes that were expressed at higher levels than Plet1 at the early E10.5 

undifferentiated progenitor stage (based on their average expression values across the 

E10.5 replicates from the TEPC Developmental series) and that could also bind to 

cell’s surface (transmembrane proteins) were selected.  The resulting list of the 

candidate markers to be further characterised is provided in Figure 3.14. 
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Figure 3.14: Candidate marker list to be used in combination with PLET1 for TEP/SC isolation.   

The screening process for the candidate markers selected genes that were more highly expressed at 

E10.5 compared to Plet1, their expression decreased with Foxn1 increase and they could bind to the cell 

surface.  A list of these TEP/SC markers with their mean expression levels noted by a horizontal line 

(across replicates; log2 (RPKM) values) is shown in the plots depicted here. 
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3.3 DISCUSSION 

Multiple lines of evidence have demonstrated the importance of Foxn1 in respect to 

the thymic system, with Foxn1 to be indispensable for TEPC differentiation in each 

derived sublineage (Chen et al., 2009; Cheng et al., 2010; Corbeaux et al., 2010; 

Nowell et al., 2011; Su et al., 2003).  In one of these studies (Nowell et al., 2011), 

phenotypic analysis of thymi from an allelic series of mice expressing different levels 

of Foxn1 suggested that available levels of Foxn1 can determine both the size and the 

functionality of the thymi produced (either directly or indirectly through lack of 

regulatory signals between differentiating TECs and maturing T-cells).  In this chapter, 

I have made a list of observations based on bioinformatics analysis of RNA-seq series 

from early developmental stages of fetal TEPCs and newborn TECs to predict a 

potential TEPC differentiation model during thymus ontogeny.  

Observation 1:  The TEPC samples from the Foxn1 Allelic series, sorted for Foxn1 

increasing levels, correspond to wild type E10.5, E11.5 and E12.5 TEPCs from the 

TEPC Developmental series (see Figure 3.7), and thus the developmental steps that 

can be achieved in each of the allelic variants resemble a natural progression step of 

the fetal thymic epithelium.  Therefore, imposition of different maximum Foxn1 levels 

effectively corresponds to ‘pseudo-timing’ of early TEPC differentiation, with 

progression at each stage representing a natural progression step of TEPCs.  {this 

paragraph addresses Question 1 in section 3.1}  

Observation 2:  The average transcriptional profiles of the E10.5 TEPC samples (see 

groupings in Figure 3.7) and gene expression patterns of important TEPC and TEC 

lineage-specific markers (depicted in Figure 3.8) have indicated that the E10.5 TEPCs 

better resemble the E12.5 R/- and E12.5 Nude samples from the TEPC Developmental 

series, in which Foxn1 expression is majorly blocked.  The latter ones have been shown 

to be able to survive in vivo indefinitely and produce all thymic lineages upon Foxn1 

reactivation (Jin et al., 2014).  Additionally, these early E10.5 TEPCs are characterised 

by the highest levels of Plet1 (early thymic progenitor marker) compared to the rest of 

the TEPC developmental points, as shown by the differential expression analysis 

between the E10.5 and E12.5 sample triplicates, in which Plet1 was found to be down-

regulated with statistical significance in the E12.5 TEPCs (see section 3.2.1).  Plet1 
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expression was also found strongly anti-correlated (rho = -0.85, p-value ≤ 0.05) to that 

of Foxn1 (thymic pro-differentiation marker) in a correlation analysis performed 

among 31 TEC datasets (see section 3.2.3).  Together, these findings suggest that 

E10.5 TEPCs are more likely to consist a homogeneous TESC population (or bipotent 

TEPC population) that can give rise to all cTEC and mTEC sublineages and under the 

right conditions they could be maintained and expanded in vitro.  {this paragraph 

addresses Question 2 in section 3.1} 

Observation 3:  FOXN1-dependent genes that were differentially expressed between 

the E12.5 and E10.5 timepoints showed divergent patterns of expression among the 

cTEC and mTEC populations with up-regulated genes at E12.5 (vs E10.5) to exhibit 

higher expression in cTECs (vs mTECs) and down-regulated genes at E12.5 (vs E10.5) 

to exhibit lower expression in cTECs (vs mTECs) (see section 3.2.2, Figure 3.11 and 

Figure 3.12).  These patterns mainly represent the dynamic role of FOXN1 which 

appears to be acting both as an activator and a repressor for different groups of genes, 

resulting in divergent expression patterns maintained in the postnatal cTECs and 

mTECs (TEC populations that express Foxn1 in different levels).  Therefore, cTEC 

and mTEC fated cells could already be present among the E12.5 TEPCs, when Foxn1 

expression has been well established.  {this and the next paragraph address Question 

3 in section 3.1}   

A repressive role for FOXN1 has not been demonstrated before, thus here I discuss 

potential mechanisms by which FOXN1 could achieve gene repression in TEPCs.  In 

order to repress transcription of a particular gene, FOXN1 would have to bind to 

specific DNA sites and cause transcriptional inhibition.  Repression could be imposed 

by FOXN1 blocking or antagonising (lack of a stimulation domain or active inhibition 

through protein-protein interactions) for the binding site of a regulatory factor 

(transcription factor or member from the transcription initiation complex), or it could 

repress a certain group of genes by interacting with corepressors whose role is to 

modify the chromatin structure (reviewed in Gaston and Jayaraman, 2003).  

Nonetheless, FOXN1 ChIP-seq data will be vital to confidently demonstrate whether 

or not gene regulation is a direct effect of this transcription factor (see analysis in 

Chapter 5). 
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Observation 4:  Even though PLET1 has been linked to progenitor activity of TECs 

before (Bennett et al., 2002; Gill et al., 2002; Rodewald et al., 2001; Ulyanchenko et 

al., 2016), using solely PLET1 as a TEC early marker does not allow pure isolation of 

bipotent progenitors from the thymus in different embryonic stages of mouse 

development.  Therefore, in Chapter 3, I have used the E10.5 TEPCs (which better 

represent bipotent progenitors [see Observation 2]), in a comparative analysis versus 

the more progressed E12.5 TEPCs to identify a list of gene candidates which we could 

use in combination with PLET1 for better isolation of the early bipotent TEC 

population.  Subsequent filtering criteria used for the markers selection include equal 

or higher expression of these marker candidates at E10.5 compared to PLET1 

expression at the same stage and ability of these markers to bind the cell surface for 

more efficient cell isolation.  {this paragraph addresses Question 4, section 3.1} 

 

3.3.1 A potential TEP/SC differentiation model 

The in-silico observations from Chapter 3 inform a TEPC differentiation model {this 

section addresses Question 5 in section 3.1} in which E10.5 TEPCs represent (on 

average) an undifferentiated bipotent TEPC population (or TESCs) characterised by 

the highest Plet1 levels (in agreement with the progenitor capacity of these cells) 

[Observation 2], while from the onset of Foxn1 expression, E11.5 and E12.5 TEPCs 

comprise increasing proportions of differentiating TECs (lineage fated) whose 

progression is dependent on the Foxn1 level [Observation 1], with the possibility of 

distinctive expression profiles of cells to already exist among the E12.5 TEPCs that 

are then maintained in the differentiated cTEC and mTEC lineages [Observation 3]. 

Previous analysis of the Foxn1 levels on a per cell resolution in prenatal mouse 

development (O’Neill et al., 2016) has already proposed the existence of two 

populations with differing Foxn1 levels as early as E13.5 in mouse development that 

supports the prediction of a heterogeneous (or bimodal) expression pattern for Foxn1 

among the E12.5 TEPCs.  The subpopulation of cells that expresses Foxn1 in a lesser 

degree could comprise: a) less differentiated progenitor cells (more similar to the ones 

at the E10.5 or the E11.5 developmental stage) that will eventually increase their 

Foxn1 level and choose between a cTEC or an mTEC fate or b) mTEC fated 
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progenitors (mTEPCs) that will maintain moderate levels of Foxn1 and progressively 

become mTECs. 

E12.5 TEPC heterogeneity comes in opposition to the clonal analysis of TEPCs by 

Rossi et al. (2006) that demonstrated a capacity for the E12 TEPCs to differentiate into 

both cortical and medullary TECs.  However, unpublished data from Alison M. Farley 

(Blackburn lab, 2006) that repeated the clonal analysis for the E11.5 and E12.5 TEPC 

populations failed to reproduce the above results (injected cells would acquire only a 

cTEC phenotype).  As noted from correspondence with the authors, the only difference 

between the two protocols was due to cells laying in an overnight culture before 

injected in the aged matched developing thymus.  Apparently, keeping TEPCs in 

culture, reduces average levels of Foxn1 in the population.  It is then possible that the 

majority of the TEPCs in culture return to a more immature state and become again 

TEP/SCs.  If that is the case, Rossi et al. has really demonstrated that TEPCs at E12.5 

still exist in a transient state and are still capable of returning to a more immature state 

through adjustment of the Foxn1 levels, while Farley demonstrated that the majority 

of E12.5 TEPCs lack bipotency and are most probably cTEC fated progenitors.   

Collectively, the bioinformatics observations in conjunction with experimental 

evidence (denoted when necessary in the paragraphs above) can inform of a TEPC 

progression model, in which the E10.5 TEPCs comprise undifferentiated bipotent 

progenitors, while the TEPCs in later developmental stages (E11.5 and E12.5) are 

characterised by cell heterogeneity, which takes place after increase in Foxn1 

expression.  Three different versions of heterogeneity can be assumed based on the 

available data:  Version 1 describes the E11.5 and E12.5 TEPCs to consist of (more 

immature) bipotent TEPCs and cTEC fated progenitors (cTEPCs), version 2 envisions 

that the E11.5 and E12.5 TEPCs constitute mTEC fated progenitors (mTEPCs) and 

cTEPCs, while version 3 proposes the possibility of all three populations (TEPCs, 

mTEPCs and cTEPCs) to be apparent within the E11.5 and E12.5 TEPCs in different 

proportions.  The predicted TEPC progression model with the alternative 

heterogeneity versions of the E11.5 and E12.5 TEPC populations are illustrated 

unitedly in Figure 3.15.  This model improves our current knowledge of fetal thymus 

development. 
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Figure 3.15: Schematic representation of a potential TEPC differentiation model towards the TEC 

sublineages.  In this model, E10.5 TEPCs (light magenta colour) represent (on average) an 

undifferentiated TEPC population (or a TESC population, see section 3.2.1), while from the onset of 

Foxn1 expression, cells progressively comprise increasing populations of TEPC-fated cells (red/magenta 

and magenta/blue shades, see discussion in section 3.3.1); these TEPC-fated cells shall give rise to the 

cTEC (red colour) and mTEC (blue colour) main lineages.  The predicted TEPC heterogeneity, which is 

depicted in the E11.5 and E12.5 developmental stages of this model, could be resolved by alternative 

versions of existing populations:  In version 1, only bipotent TEPCs and cTEC-fated progenitors 

(cTEPCs) are present in the E11.5 and E12.5 TEPCs.  In version 2, only mTEC-fated progenitors 

(mTEPCs) and cTEPCs exist within the above populations, and in version 3, TEPCs, cTEPCs and 

mTEPCs altogether form the above populations.  The TEPC and the mTEPC populations are illustrated 

with a dashed line at the developmental timepoints E11.5 and E12.5, to represent the alternative versions 

of heterogeneity within the proposed model, because in version 1 and in version 2, mTEPCs and TEPCs 

respectively are absent from the E11.5 and E12.5 timepoints.  Notably, the E11.5 and E12.5 cTEPCs or 

mTEPCs are able to return to a less immature or bipotent state upon Foxn1 reduction (Farley 2006; 

Rossi et al. 2006, discussed in the main text of this section), as shown by representative arrows. 
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The model in Figure 3.15 agrees with the serial progression model of TEC 

differentiation reviewed in Takahama et al. (2017) that describes together the current 

understanding around “TEPCs towards TECs” differentiation based on existing 

literature.  Briefly, starting from a bipotent progenitor stage, TEPCs have to go through 

a cTEC-like TEPC stage [expressing Ly75 (Cd205), β5t (Psmb11) and Il7] from which 

a Claudinhi SSEA1+ mTEC stem cell population derives through an unknown 

mechanism and further differentiates into the mTEC lineage, while cells not expressing 

these latter markers will further differentiate into cTECs (see Chapter 1, Figure 1.2).  

Our model, in comparison to the one reviewed by Takahama et al., additionally 

suggests the existence of a (m)TEPC population among the cTEC-like TEPCs 

(E11.5/E12.5 TEPCs, see Figure 3.15) that would eventually consist some mTEC 

population, or act like a bipotent progenitor.  If existent, this population could consist 

part of the unknown mechanism that gives rise to the Claudinhi SSEA1+ mTEC stem 

cells, since E10.5-E12.5 TEPCs do not express the SSEA1 marker just yet.  Lastly, 

since all mTECs seem to have experienced expression of Ly75 (CD205), β5t 

(PSMB11) and Il7 in early ontogeny (Ohigashi et al., 2013), I would expect this 

population to also express (momentarily or continuously in a low level) these genes 

among other genes that are found highly expressed in E10.5 TEPCs and newborn 

mTECs. 

To examine the prospect of a heterogeneous expression of Foxn1 in E12.5 TEPCs and 

the existence of a rare TEPC and/or mTEPC subpopulation, scRNA-seq data for the 

E12.5 TEPCs will be required.  scRNA-seq data will verify current predictions/ 

findings presented here.  If enough cells express Foxn1 at a low level, the scRNA-seq 

data will also be able to generate a gene signature to allow isolation of this particular 

population of cells (even from later developmental stages) for expansion and 

functional characterisation.  Because these data are not yet available, uniquely 

expressed genes in E10.5 TEPCs that are expressed higher than Plet1 and are also able 

to bind the cell surface could be used for the isolation of a TEP/SC population [see 

Observation 4]. 
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3.4 SUMMARY 

RNA-seq data integration in conjunction with comparative bioinformatics analysis 

was used in Chapter 3 to investigate the early state of TEPCs in conjunction to Foxn1 

expression and to also develop a potential model of TEPCs differentiation towards the 

cTEC and mTEC sublineages.  In Chapter 3, I have shown that precise expression 

levels of Foxn1 play a vital role in regulating TEPCs identity, with different maximum 

Foxn1 levels to effectively correspond to ‘pseudo-timing’ of TEPCs natural 

progression in the fetal thymic epithelium.  Furthermore, it is the first time that a 

repressive role for FOXN1 has been indicated, with additional analysis to be required 

to confirm whether the repressive effect is due to direct binding of FOXN1 on DNA 

regulatory regions or due to indirect regulation of other transcription factors.  In 

Chapter 3, I also propose a new in silico TEPC differentiation model which 

encompasses the existence of a common bipotent progenitor (at E10.5) and appearance 

of lineage-specific progenitors (from E11.5 onwards).  Therefore, based on these 

findings and a clonal analysis of the E12.5 TEPCs by Farley (Blackburn lab), the 

current bipotent E12.5 TEPCs suggested by Rossi et al. (2005) is revisited.  Our data, 

in combination with the Rossi et al. paper, suggest that E12.5 cTEPCs and mTEPCs 

could exist in a transient state where lineage restriction can be amended through Foxn1 

expression reduction.  Markers to use in combination with (or without) PLET1 for the 

isolation of TEP/SCs have also been provided in this chapter. 
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Chapter 4  

 

An in silico model of the signalling requirements for 

the survival and expansion of bipotent fetal TEPCs 

 

 

 

4.1 PRÉCIS 

The thymic primordium is believed to contain bipotent thymic epithelial progenitor 

cells (TEPCs) from the time of its formation at least until the onset of expression of 

FOXN1, the transcription factor (TF) whose continuous expression is necessary for 

development and maintenance of a functional thymus.  These undifferentiated TEPCs 

present in the early fetal thymus can reconstitute all known thymic epithelial cell 

lineages and direct the formation of a complete, fully functional thymus (Gordon et 

al., 2004).  Differentiation arrest of TEPCs occurs in nude mice, which lack functional 

Foxn1 due to a null mutation (Nehls et al., 1996).  Recently, it has also been shown 

that when FOXN1 expression is blocked, at least some TEPCs are retained in a 

bipotent state, and these remain present in vivo apparently indefinitely (Jin et al., 

2014).  This indicates that the cell state upstream of FOXN1 initiation is inherently 

stable, and suggests that these cells effectively function as thymic epithelial stem cells 

(TESCs).  Expanding this population of cells in vitro could assist significantly in 

minimising the cost and time in thymus research.  

During fetal thymus development, early patterning of the 3rd pharyngeal pouch into 

the thymus and the parathyroid specific structures occurs in a neighbouring cell – 

independent way (Griffith et al., 2009), while domain spreading of both organs and 

separation from the pharynx are dependent on the existence of a supporting 

mesenchymal population around both primordia (Franz, 1989).  Interactions between 

the thymic epithelium that resides in the expanding primordium and the surrounding 

mesenchyme enables proliferation and differentiation of the undifferentiated TEPCs 
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towards cortical and medullary lineages independently of further lympho-epithelia 

crosstalk (Klug et al., 2002).  Previous research has indicated the WNT (Balciunaite 

et al., 2002), FGF (Frank et al., 2002), SHH (Moore-Scott and Manley, 2005) and 

BMP (Bleul and Boehm, 2005; Patel et al., 2006; Tsai, 2003) signalling pathways as 

regulators of the early TEPC state through endocrine signalling or provision of soluble 

growth factors, since diminished or enhanced activity of these pathways can lead to 

athymia or thymic hyperplasia.  Additionally, it has been proposed that FOXN1 

expression may be regulated by WNT and BMP signalling pathways (Balciunaite et 

al., 2002; Soza-Ried et al., 2008).  Despite this progress, a comprehensive model that 

describes dynamic regulation of signalling activity during the transition from 

undifferentiated TEPCs into differentiating TEPCs has not yet been described.  

To achieve the expansion of TEPCs in vitro, understanding of the intrinsic and 

extrinsic regulation of this upstream cell state and of FOXN1 initiation is needed, as 

expansion of TEPCs in vitro will require imposition of a reversible early block in 

differentiation and also fine-tuned experimental conditions for these cells to survive 

and grow.  Thus, in Chapter 4, I aimed to generate an unbiased in silico model of 

signalling pathways activity during fetal thymus development that could be used to 

assist with TEP/SC maintenance and proliferation in vitro.  Additionally, to support 

the integrity of this in silico model, throughout section 4.2.3 of Chapter 4 I have 

included experimental evidence that validate one of the predicted outcomes in the in 

silico model. 
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4.2 RESULTS 
 

4.2.1 Pathways reshaped at the onset of Foxn1 expression in 

TEP/SCs: pathways switching off 

To predict signalling pathways that reshape on the onset of FOXN1 expression, when 

early undifferentiated TEPCs start to differentiate, I extended the differential 

expression analysis (described in Chapter 3, section 3.2.1) that was performed 

between the E10.5 and E12.5 samples from the TEPC Developmental series (RNA-

seq data from biological triplicates per stage provided by Harsh Vaidya, Blackburn 

lab; see also Chapter 2, section 2.2.1) using pathway enrichment analysis. 

For the pathway enrichment analysis, the fold change values of the total 15,321 

differentially expressed genes from the comparative analysis of RNA-seq data from 

PLET1+ TEPCs isolated at E10.5 and E12.5 were provided as a ‘Pre-Ranked Gene 

List’ in GSEA (Subramanian et al., 2005) and analysed against the edited 

ConsensusPathDB database (Kamburov et al., 2011, details in Chapter 2, section 

2.3.3.6).   This approach should predict signalling pathways that alter between these 

two developmental stages. 

The GSEA output indicated two groups.  The first is pathways demonstrating increased 

intracellular signalling activity while TEPCs proceed from E10.5 to E12.5; these are 

referred to as up-regulated pathways.  The second group is pathways that demonstrate 

decreased or complete loss of intracellular signalling activity while TEPCs proceed 

from E10.5 to E12.5; these are referred to as down-regulated pathways.  Since the 

purpose of this analysis is to identify pathways implicated in regulation of the 

proliferation and survival of early undifferentiated TEPCs, I focused my analysis on 

pathways that exhibit more activity at the early E10.5 developmental stage and whose 

activity is found to decrease over time (down-regulated list of pathways).  From these 

down-regulated pathways, only those that had an FDR ≤ 0.25 (enriched with statistical 

significance) and were related to signalling were considered for further investigation.  

This analysis identified 10 pathways which are presented in Table 4.1. 
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Table 4.1: List of enriched signalling pathways with decreased activity in TEPCs between E10.5 and E12.5 timepoints.  In sequence, the columns show the name 

of each enriched pathway (GS follow link to MSigDB), the number of Pre-Ranked genes identified per pathway (size), the enrichment score of each pathway (ES), the 

enrichment score of each pathway normalised for the size of the pathway (NES), the nominal p-value (NOM p-val) that is not adjusted for the pathways size or multiple 

hypothesis testing and the FDR q-val (see Chapter 2, section 2.3.3.6). 
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Pathway enrichment analysis can often be limited by the complexity of the database 

used to predict enrichment for a particular gene set.  By complexity we refer to the size 

(number of pathways) and coverage (number of organisms and cell types represented) 

of the database in relation to the system under investigation.  Database curation, based 

on the current literature, defines pathways and assigns genes to them accordingly. 

Thus, de novo pathway analysis can only identify known pathways.  However, current 

annotation is far from perfect, with signalling pathways to also often have different 

function in different cell types, thus relying on pathways names to identify the 

pathways involved in regulation of a new cell type can be misleading.  Additionally, 

when a pathway is represented by a large number of genes, random accumulation of 

some genes may indicate that the pathway is enriched (or active) in that cell type, even 

though the main signalling molecules of the pathway (such as ligands, intermediate 

signalling molecules and receptors) may be missing. 

To further analyse the resulting pathways in Table 4.1, pathways that shared a large 

number of genes contributing to their enrichment were grouped together (see Figure 

4.1).  Additionally, individual genes that contribute to each pathway’s core enrichment 

were manually inspected and when appropriate the related pathway was renamed to 

better fit the contained genes (for detailed listing of genes see sections below).  For 

complicity, non-differentially expressed genes were also considered (if expressed) per 

pathway if they consisted essential molecules for the pathway’s function.  In the case 

of NEURAL CREST DIFFERENTIATION and HEDGEHOG SIGNALING 

PATHWAY pathways (#37 and #38 in Table 4.1, genes contributing to their core 

enrichment could be assigned to more than one major signalling pathways, thus all 

related pathways were included in the renaming of the #37 and #38 pathways (Table 

4.1) respectively (see Figure 4.1).  From these further analyses, six main pathways 

have been identified from the data presented in Table 4.1: the Fibroblast Growth 

Factor (FGF) signalling pathway, the NOTCH signalling pathway, the canonical and 

non-canonical Wingless Integration-1 (WNT) signalling pathways, the Sonic 

Hedgehog (SHH) signalling pathway and the Insulin-like Growth Factor (IGF) 

signalling pathway (Figure 4.1). 
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Figure 4.1: Grouped overview of the down-regulated signalling pathways based on core 

enrichment genes overlap.  High overlap of core enrichment genes among pathways allowed grouping 

of the statistically significant signalling pathways (listed in Table 4.1) in broader categories with names 

that better represent their underlying signalling mechanism/process (colour coded pathways per 

category).   In addition, the core enrichment genes of the NEURAL CREST DIFFERENTIATION (#37) 

and the HEDGEHOG SIGNALING PATHWAY (#38) pathways could be assigned to more than one major 

pathways and that is shown in the top label with major pathway names separated by slashes (“/”). 
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The above analysis is informative about the intracellular signalling mechanisms that 

are active in early undifferentiated TEPCs, but it can also identify signalling pathways 

activated in response to ligands provided by neighbouring cells (e.g. mesenchymal 

cells or migrating haematopoietic progenitors) by assessing the expression of effector 

genes known to be activated in response to specific signalling. 

In sections 4.2.1.1 to 4.2.1.4, I consider in detail the curated categories outlined in 

Figure 4.1, discussing the details of each category, including the expression levels of 

the relevant ligands, intracellular molecules and receptors, and core enrichment genes 

per pathway, and outlining which of these genes are differentially expressed with 

statistical significance (FDR ≤ 0.2, see Chapter 3, section 3.2.2 for threshold 

selection) between the E12.5 and E10.5 from the TEPC Developmental series to 

represent more confident changes between the two timepoints.  Representative graphs 

combining all resulting pathways in groups of two follow at the end of this section 

(Figure 4.6). 

 

4.2.1.1 FGF signalling pathway 

Three curated pathways, namely, the SHC-MEDIATED CASCADE (#4), FRS2-

MEDIATED CASCADE (#14) and NEGATIVE REGULATION OF FGFR 

SIGNALING (#20) (Table 4.1), were found to share the same core genes contributing 

to their enrichment score (see Figure 4.1 for overlap and Figure 4.2 for the list of core 

enrichment genes).  These were therefore grouped together under the category FGF 

signalling, since the enriched genes constitute the main ligands and receptors of the 

FGF signalling pathway (for detailed references to the FGF signalling pathway and its 

role in thymus development see Chapter 1, section 1.2.4.3).  The top ranked core 

enrichment genes from the FGF signalling category (Figure 4.2) are considered below. 
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Figure 4.2: GSEA Enrichment plot for the SHC-MEDIATED CASCADE pathway and gene list of 

core enrichment.  Enrichment score on the GSEA plot (top y-axis) indicates the degree of over-

representation (in absolute value) for the provided pre-ranked gene set (differentially expressed genes – 

E12.5 versus E10.5) and the direction of their regulation (negative sign/down-regulated genes).  The Pre-

Ranked list metric (GSEA plot, bottom y-axis) provides information over the numeric ranking used to 

weight genes (in this case log fold change), while the barcode bars (GSEA plot, middle part) represent 

all gene hits in the particular pathway with genes contributing to core enrichment of the pathway listed in 

the table next to the Enrichment plot. Differentially expressed genes for an FDR ≤ 0.2 are colour-coded 

in blue (* FDR ≤ 0.05, ** FDR ≤ 0.01). 
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Based on the expression data from the TEPC Developmental serie, Fgf8 was strongly 

expressed in the undifferentiated TEPCs at E10.5, but was not expressed in E11.5 or 

E12.5 TEPCs.  Fgf10 was moderately expressed in E10.5 TEPCs and was also absent 

at E11.5 and E12.5.  Fgf3, despite its apparent down-regulation in terms of fold-

change, exhibited very low level expression at all three TEPC developmental stages.  

Fgfr1 was expressed in E10.5 TEPCs, albeit at lower levels than Fgf8, with its 

expression progressively to decrease at E11.5 while it is fully absent in the E12.5 

TEPCs.  Notably, Fgf10, Fgf7 and Fgf3 comprise the main ligands of the Fgfr2-IIIb 

receptor, and therefore expression levels of Fgfr2-IIIb are also noted in the collective 

pathways representation (Figure 4.6). 

 

4.2.1.2 NOTCH, BMP and canonical WNT signalling pathways 

Inspection of the NEURAL CREST DIFFERENTIATION (#37) pathway indicated 

that its core enrichment genes (see top right panel in Figure 4.3) mainly comprised 

regulators of the NOTCH signalling pathway. 

Of NOTCH pathway genes, the receptor Notch3, ligands Dll1, and Dll3, effector Rbpj 

and target Msx2 contributed significantly to the enrichment of the NEURAL CREST 

DIFFERENTIATION pathway.  These genes demonstrate a continuous down-

regulation from E10.5 to E12.5 stage in TEPCs, indicating a gradual decrease in 

pathway activity.  However, NOTCH signalling seems to exhibit more complex 

regulation in the early development of the thymic epithelium since one of its main 

ligands, Dll4, is targeted by FOXN1 and reaches high levels of expression at E12.5, in 

contrast to the above trend.  In agreement with the Dll4 up-regulation, two of 

NOTCH’s main target genes [Hes1 (FDR ≤ 0.05) and Heyl (FDR ≤ 0.2)] also up-

regulate when cells proceed towards the E12.5 stage.  Finally, one of NOTCH’s main 

receptors (Notch1) seems to be constitutively expressed in all three timepoints, 

suggesting that the pathway could be active in all of them but its activity may be 

dynamically regulated based on provision of ligands by different groups of cells at 

distinct timepoints.  

Other genes contributing to the NEURAL CREST DIFFERENTIATION pathway 

enrichment, and also strongly down-regulated with statistical significance between 
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E10.5 and E12.5 (FDR ≤ 0.2), include Fgf8 and Fgfr1 (see section 4.2.1.1 above), 

Homeobox B1 (Hoxb1), Peripheral myelin protein 22 (Pmp22), Transcription factor 

AP-2 alpha (Tfap2a), T-Cell leukemia homeobox 2 (Tlx2), Paired like homeobox 2b 

(Phox2b), Collagen type II alpha 1 chain (Col2a1) and Protogenin (Prtg).  From the 

above, only Col2a1 and Prtg were expressed at E12.5, while only Col2a1, Prtg and 

Phox2b were expressed at E11.5.   The remaining genes were only present in E10.5 

TEPCs.   
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Figure 4.3: GSEA Enrichment plot for the NEURAL CREST DIFFERENTIATION pathway and gene 

list of core enrichment.  Enrichment score on the GSEA plot (top y-axis) indicates the degree of over-

representation (in absolute value) for the provided pre-ranked gene set (differentially expressed genes 

– E12.5 versus E10.5) and the direction of their regulation (negative sign/down-regulated genes).  The 

Pre-Ranked list metric (GSEA plot, bottom y-axis) provides information over the numeric ranking used 

to weight genes (in this case log fold change), while the barcode bars (GSEA plot, middle part) represent 

all gene hits in the particular pathway with genes contributing to core enrichment of the pathway listed in 

the table next to the Enrichment plot.  Differentially expressed genes for an FDR ≤ 0.2 are colour-coded 

in blue (* FDR ≤ 0.05, ** FDR ≤ 0.01). 
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4.2.1.3 SHH and WNT (non-canonical) signalling pathways 

The HEDGEHOG SIGNALING PATHWAY (#38, Table 4.1) enrichment plot and 

list of genes contributing to the pathway’s core enrichment are shown in Figure 4.4.  

Patched 1 (Ptch1), Patched 2 (Ptch2), Serine/Threonine Kinase 36 (Stk36) and GLI 

Family Zinc Finger 1 (Gli1) are all major effectors of the SHH pathway.  Of these 

genes, Ptch1 (the main receptor of Shh) was down-regulated between E10.5 and E12.5 

with statistical significance (FDR ≤ 0.2), while closer inspection of the mRNA levels 

for all the above genes revealed very low level of expression at E10.5, which 

progressively became incompetent or fully absent, suggesting that this pathway is 

potentially switched off before TEPCs progress to E12.5.  Inactivation of the SHH 

signalling in TEPCs is consistent with former literature that shows SHH signalling to 

drive cells differentiation towards the parathyroid fate by restricting the expression of 

the Gcm2 main regulator of the parathyroid (Grevellec et al., 2011).  

Further overview of the core list of genes for the HEDGEHOG SIGNALING 

PATHWAY suggested that some of the genes allocated to this pathway could also 

activate the WNT non-canonical pathway.  WNT Family Member 5A (Wnt5a) and 

WNT Family Member 5B (Wnt5b) are components of the non-canonical WNT 

pathway and were both strongly down-regulated with significance from E10.5 to 

E12.5. 
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Figure 4.4: GSEA Enrichment plot for the HEDGEHOG SIGNALING PATHWAY and gene list of core 

enrichment.  Enrichment score on the GSEA plot (top y-axis) indicates the degree of over-representation 

(in absolute value) for the provided pre-ranked gene set (differentially expressed genes – E12.5 versus 

E10.5) and the direction of their regulation (negative sign/down-regulated genes).  The Pre-Ranked list 

metric (GSEA plot, bottom y-axis) provides information over the numeric ranking used to weight genes 

(in this case log fold change), while the barcode bars (GSEA plot, middle part) represent all gene hits in 

the particular pathway with genes contributing to core enrichment of the pathway listed in the table next 

to the Enrichment plot.  Differentially expressed genes for an FDR ≤ 0.2 are colour-coded in blue (* FDR 

≤ 0.05, ** FDR ≤ 0.01). 
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4.2.1.4 IGF signalling pathway 

The SIGNALING BY IGFR1 (#48), IGF1R SIGNALING CASCADE (#47) and IRS-

RELATED EVENTS TRIGGERED BY IGF1R (#45) pathways were also found to 

share the majority of core genes contributing to their enrichment (see Figure 4.5) and 

were grouped together under the IGF signalling category (Figure 4.1), since Insulin 

Like Growth Factor 1 (Igf1) and Insulin Like Growth Factor 2 (Igf2) are the main 

ligands of the IGF signalling pathway, while SHC Adaptor Protein 2 (Shc2), Insulin 

Receptor Substrate 1 (Irs1) and Insulin Receptor Substrate 4 (Irs4) consist part of the 

IGF signalling cascade.  The genes enriched in these categories also included all those 

that contribute to the FGF pathway core enrichment (see section 4.2.1.1). 

Both IGF ligands showed decreased expression at E12.5 compared to E10.5, with Igf1 

reaching very low levels of expression by E12.5.  To form a more complete picture of 

the IGF intracellular activity, levels of the IGF receptors (IGF1R and IGF2R), as well 

as, IGF binding proteins (IGFBPs) were also analysed in addition to the IGF ligands. 
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Figure 4.5: GSEA Enrichment plot for the IGF1R SIGNALING CASCADE and gene list of core 

enrichment.  Enrichment score on the GSEA plot (top y-axis) indicates the degree of over-representation 

(in absolute value) for the provided pre-ranked gene set (differentially expressed genes – E12.5 versus 

E10.5) and the direction of their regulation (negative sign/down-regulated genes).  The Pre-Ranked list 

metric (GSEA plot, bottom y-axis) provides information over the numeric ranking used to weight genes 

(in this case log fold change), while the barcode bars (GSEA plot, middle part) represent all gene hits in 

the particular pathway with genes contributing to core enrichment of the pathway listed in the table next 

to the Enrichment plot.  Differentially expressed genes for an FDR ≤ 0.2 are colour-coded in blue (* FDR 

≤ 0.05, ** FDR ≤ 0.01). 
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4.2.2 A testable model of the signalling pathways required to 

maintain and expand TEP/SCs in vivo 

From the outcomes of the pathway enrichment analysis presented in section 4.2.1 and 

its subsections, I set out to create an in silico model that collectively summarises the 

pathways that down-regulate or switch off when cells proceed towards differentiation. 

The main regulators of the signalling pathways predicted in the enrichment analysis 

above (section 4.2.1) including the ligands, transient signalling molecules and targets 

are illustrated in Figure 4.6.  The core enrichment genes exhibiting consistent changes 

(Figure 4.2-Figure 4.5, coloured in blue) between the two developmental timepoints 

were then used to guide assembly of a signalling pathways model over all pathways.  

To improve the consistency of the model, when main pathway regulators were not part 

of the core enrichment gene list, they were added to the graph, with representative 

expression values from the TEPC Developmental series dataset. 

The SHH, WNT (canonical and non-canonical), NOTCH, BMP, FGF and IGF 

signalling pathways are thus depicted in Figure 4.6, with SHH effectively absent from 

all TEPC stages, the IGF, FGF and non-canonical WNT pathways to show a 

substantial decrease in ligand-expression (note: extrinsic provision of these ligands is 

possible), while NOTCH activity exhibits more complex regulation.  Previous 

literature has already demonstrated roles for the SHH, FGF and IGF pathways in early 

fetal thymus development, partially validating the outcomes of this model.   

The nature of Wnt5a, as a secreted protein, suggests that it could affect distinct 

regulatory pathways downstream in TEPCs but also in surrounding cells.  Previous 

research has identified multiple alternative receptors (He et al., 2008; Keeble, 2006; 

Martinez et al., 2015) through which WNT5A may establish its action, as well as 

partner proteins (Matsuyama et al., 2009) that can regulate cells by interacting with 

WNT5A.  In the model illustrated in Figure 4.6, Wnt5a is expressed very highly in 

E10.5 TEPCs and it subsequently down-regulates (FDR ≤ 0.03) in the later 

developmental stages.  A list of potentially involved receptors and interactors based 

on current literature is shown in Figure 4.7, where the log2 (RPKM) normalised 

expression values from the TEPC Developmental series dataset were used to depict 

the expression levels of these genes during early TEPC development.  Even though 
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both Ryk and Sfrp1 genes are expressed in a high enough level to allow signal 

transduction, the only gene that mimics Wnt5a pattern of expression and down-

regulates with statistical significance (FDR ≤ 0.05) towards the E12.5 timepoint is 

WNT5A potential interactor, Sfrp2.  Based on this, we can speculate that WNT5A-

SFRP2 (and/or SFRP1) protein interaction, as well as binding of WNT5A to the RYK 

receptor could control signalling processes in early undifferentiated TEPCs. 

It is apparent in Figure 4.6 that NOTCH signalling activity (as represented from the 

early TEPC samples) cannot describe a definitive trend of action.  The NOTCH ligand 

genes Dll1 and Dll3, receptor gene Notch3 and intermediate molecule Rbpj are clearly 

“switching off” by E12.5, when the NOTCH ligand Dll4, and target genes Hes1 and 

Heyl exhibit their highest expression level, with the NOTCH receptor Notch2 to be 

constitutively highly expressed in all three developmental stages.  It is possible that 

different levels of activity and involved molecules take part in distinct developmental 

stages.  Throughout these stages, the undifferentiated TEPCs have evolved towards 

more fated progenitors, now possibly constituting a more progressed cell type in the 

thymic lineage which may require NOTCH signalling for different purposes.  It is also 

likely that NOTCH may affect cells in a non-equal manner, since a number of cells 

that exhibit NOTCH signalling need to be the signal senders, while their neighbouring 

cells should be receiving the signal through cell-to-cell interactions.  It is evident that 

the role of NOTCH in early TEPCs requires further exploration to generate a more 

definitive picture of its action. 

Notably, Msx2 has been linked to the NOTCH, BMP and WNT pathways during 

differentiation of other cell types other than the thymic epithelium.  In the most 

relevant example, Msx2 together with Foxn1 have been shown to act upstream of the 

NOTCH pathway and promote hair shaft differentiation (Cai et al., 2009).  

Furthermore, in multipotent mesenchymal progenitors, BMP signalling has been 

shown to up-regulate Msx2 which in turn promotes differentiation of the osteogenic 

lineage that contributes into calcification of the vasculature (Cheng et al., 2003).  

Additionally, BMP-Msx2 signalling has been demonstrated to up-regulate the 

canonical WNT signalling through up-regulation of the WNT ligands in artery 

calcification (Shao et al., 2007).  Lastly, during osteogenic differentiation of vascular 

smooth muscle cells, Msx2 is regulated through NOTCH signalling in an independent 
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manner of that of the BMP signalling (Shimizu et al., 2009).  In short, Msx2 consists 

a common target or regulator of BMP, NOTCH and WNT signalling pathways and its 

expression is highly related to the cells differentiation state. 

In summary, in Figure 4.6, I provide a collective in silico model of signalling activity 

for the early undifferentiated TEPCs that can assist in better understanding TEPC 

differentiation in vivo.  Detailed interpretation of this model in combination with the 

links to known literature are provided in section 4.3 of this chapter. 
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Figure 4.6: Schematic 

representation of the 

down-regulated 

signalling pathways 

activity model in the 

early TEPCs to assist 

TEPCs expansion in 

vitro.  Assembled graph 

depicts TEPCs 

differentiation over E10.5, 

E11.5 and E12.5, with 

darker shades of purple 

shading cells that express 

higher levels of Foxn1. 

Expression levels of main 

ligands, intermediate 

transducers and receptors 

per pathway are explained 

by colour-coding, while 

when multiple alternative 

regulators exist, they are 

shown in black colour and 

the “?” symbol to  

denominate unknown 

regulation and are further 

discussed in the main text. 
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Figure 4.7: Expression profiles of Wnt5a receptors and interactors in TEPCs.  Average log2 RPKM 

expression values of the WNT5A receptors and interactor genes (including Wnt5a itself) over the E10.5, E11.5 

and E12.5 timepoints (sample triplicates) from the TEPC Developmental series.  Statistical significance 

calculated from the differential expression analysis between the E10.5 and E12.5 timepoints using the limma 

voom function is denoted as follows: ns (not significant), * (P ≤ 0.05),** (P ≤ 0.01), *** (P ≤ 0.001). 

0

1

2

3

4

5

6

Wnt5a Ryk Ror1 Ror2 Sfrp1 Sfrp2 Ptk7

lo
g2

 (
R

P
K

M
)

Wnt5a receptors and interactors

E10.5 E11.5 E12.5

ns 
ns 

ns 

ns 

* 

* 

ns 



134 
 

4.2.3 Exploring NOTCH signalling in the thymic epithelium: 

regulation of the medullary thymic epithelial cell lineage via 

specification of medullary progenitor cells. 

NOTCH signalling has a crucial role in thymocyte development (Shah and Zuniga-

Pflucker, 2014) and its down-regulation has recently been shown to be required to 

promote the later stages of mTEC development (Goldfarb et al., 2016; Jiang et al., 

1998; Masuda et al., 2009).  However, the potential for NOTCH to regulate early 

TEPC development has not yet been studied in detail.  The pathway enrichment 

analysis in section 4.2.1 has indicated NOTCH signalling to exhibit complex 

expression in the PLET1+ TEPCs at E10.5, E11.5 and E12.5 developmental stages, 

with Rbpj (the transcriptional effector required to transduce NOTCH signals) showing 

decreased expression when proceeding towards the E12.5 stage (see 4.2.1.2), 

complementary to the decreased activity of the other NOTCH pathway genes Notch3, 

Dll1, Dll3, and  Msx2 (Figure 4.3), while the NOTCH ligand Dll4 and the NOTCH 

target genes Hes1 and Heyl demonstrate an opposite pattern of behaviour with 

significant up-regulation of their expression towards the E12.5 TEPCs.  This 

implicates NOTCH signalling as a potential regulator of the early fetal TEPC state, 

and therefore I selected this pathway for further investigation. 

 

4.2.3.1 Genetic ablation of NOTCH signalling in early TEPCs under the 

control of Foxn1 demonstrates an effect only in the mTEC compartment 

To validate and better understand the importance of NOTCH activity in early fetal 

TEPCs and differentiating TECs, NOTCH signalling had to be blocked in all TECs.  

RBPJ is the main signal transducer of NOTCH signalling and deletion of it should 

block NOTCH activity in cells that express NOTCH.  Therefore, Foxn1Cre mice were 

crossed with an Rbpj conditional knockout (cKO) line (Dong Liu, Blackburn lab), 

creating a mouse model line (Foxn1CreRbpjFl/Fl mice), where RBPJ was absent from all 

TECs (Rbpj exon deletion is under the control of Foxn1 promoter).  Analysis of 2 week 

old mice (Dong Liu, Blackburn lab) demonstrated a reduced proportion of mTECs 

among total TECs in both male and female mice, while numbers of cTECs remained 
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unaffected.  T-cell differentiation proceeded normally in the Rbpj cKO mice, with T 

regulatory cells showing no apparent differences when compared to the control mice 

suggesting that the model was specific for the TEC compartment of the developing 

thymus (Liu et al., 2017, submitted).  These data suggested a unique impact of the 

early loss of NOTCH signalling activity (loss-of-function assay) in the differentiating 

mTEC population. 

Therefore, to probe at the transcriptional level the effect of loss of RBPJ on TEPC, 

RNA-seq datasets from wild type (WT) and Foxn1CreRbpjFl/Fl (RBPJ cKO; loss-of-

function; LOF) PLET1+ TEPC at E12.5 (biological triplicates per population; see 

also Chapter 2, section 2.2.1.3), and PLET1+ and PLET1- TEPC at E14.5 (biological 

triplicates per population; see also Chapter 2, section 2.2.1.3) were used; these 

datasets were generated by Dong Liu (Blackburn lab, University of Edinburgh).  The 

cell populations analysed were chosen since, at E12.5, although the PLET1+ TEPC 

population is already heterogeneous, and will contain cTEC-fated cells along with 

common TEPCs and potentially mTEC-restricted progenitors, it cannot be split on the 

basis of known cell surface markers.  At E14.5, prospective mTECs appear to be 

contained within the PLET1+ population, while prospective cTECs have down-

regulated this marker.  NOTCH resides in both TEC compartments. 

To retrieve the normalised gene counts of the WT and RBPJ cKO (LOF) datasets, I 

ran the RNA-seq pre-analysis and core-analysis pipelines (described in Chapter 2, 

sections 2.3.2 and 2.3.3) that I have put together for the analysis of RNA-seq datasets 

in this thesis. I next used the generated log2 RPKM normalised values of the above 

datasets to observe samples similarity based on their expressional profiles and I also 

further applied differential expression analysis between selected samples (see next 

paragraphs) to identify genes that change with statistical significance. 

No obvious differences were observed from the differential expression analysis 

performed between the PLET1+ WT and PLET1+ LOF samples at E12.5.  As expected 

considering the timing of deletion of Rbpj using Foxn1Cre (approximately at E12, Liu 

et al., 2017, submitted), the time period between samples collection and Rbpj’s exon 

deletion is too little to allow any differences to become apparent.  In accordance to 

this, Principal Component Analysis (PCA) of the top 2,000 most variable genes from 
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the E14.5 RBPJ PLET1+ and PLET1- WT and LOF samples (samples collected two 

days later by Dong Liu, Blackburn lab) revealed a slight separation of the E14.5 

PLET1+ WT from the E14.5 PLET1+ LOF samples on PC2, while no differences were 

found among the PLET1- samples (Figure 4.8).   This analysis therefore verified that 

loss of RBPJ, and consequently NOTCH signalling activity, affected only the TEC 

compartment containing prospective mTECs and undifferentiated TEPCs.  

Additionally, clustering of the E14.5 PLET1+ LOF samples closer to the 

PLET1- samples (PC2), suggested that TEPC samples with an ablated NOTCH signal 

during early TEPC development (after E12) acquires a more cTEC-like phenotype 

similarly to the PLET1- samples.  In the same PCA plot, biological variability among 

samples is represented in PC1.  This effect is apparent when observing PLET1+ and 

PLET1- groupings per replicate across the x-axis (note that the PLET1+ and PLET1- 

populations were sorted from the same cell preparations).  Overall, clustering analysis 

of the E14.5 PLET1+ and PLET1- samples shows that ablation of the NOTCH 

signalling pathway in early TEPCs under the Foxn1 promoter uniquely impacts on the 

mTEC lineage with also PLET1+ LOF samples to better resemble on average PLET1- 

samples of the same day.  The specific impact of the mTEC lineage was also supported 

by flow cytometric analysis (Dong Liu, Blackburn lab), demonstrating a proportional 

and numerical decrease in mTEC numbers in E14.5 PLET1+ LOF samples (Liu et al., 

2017, submitted). 

To identify consistent expressional changes of genes between the E14.5 PLET1+ RBPJ 

cKO samples and their controls, I performed differential expression analysis between 

the E14.5 PLET1+ RBPJ cKO and the E14.5 PLET1+ WT groups using the limma 

voom function (Chapter 2, section 2.3.3.2).  This revealed very few consistent 

differences with gene names to be outlined in the text here [Desmoglein 3 (Dsg3) and 

Regulator of G protein signalling 4 (Rgs4) (FDR < 0.1), Myosin light chain 7 (Myl7) 

(FDR < 0.2)] and a clear trend of NOTCH targets to be down-regulated in the E14.5 

PLET1+ RBPJ cKO samples, though their FDR values were higher than the pre-set 

threshold of 0.2 (Table 4.2).  Down-regulation of these targets was verified by RT-

qPCR analysis (Liu et al., 2017, submitted).  From the RT-qPCR analysis it became 

apparent that Notch1, Notch2, Notch3 and Jag1 in both E14.5 PLET1+ and PLET1- 

TECs were significantly more lowly expressed in cKO thymi compared to controls 
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(data from Dong Liu).  This pattern suggested that NOTCH activation may be causing 

up-regulation of its own receptors and JAG1 ligand, in a positive feedback loop.  One 

could contemplate that this positive feedback loop may lead to a sharper 

responsiveness to further boost NOTCH signalling. Of note is that average Foxn1 and 

Plet1 expression levels were unaffected by loss of RBPJ (Table 4.2).  
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E14.5 WT+ R3 

E14.5 WT+ R1 

E14.5 LOF+ R1 

E14.5 LOF- R1 

E14.5 WT- R1 

E14.5 WT- R3 

E14.5 LOF- R3 

E14.5 LOF+ R3 
E14.5 WT+ R2 

E14.5 LOF+ R2 

E14.5 WT- R2 

E14.5 LOF- R2 

Figure 4.8: PCA plot of the E14.5 RBPJ WT and LOF (RBPJ cKO) samples. Samples on PC2 

separate at a first level into PLET1+ (dark blue/light blue) and PLET1- (dark grey, light grey), while on a 

second level the E14.5 PLET1+ WT samples (dark blue) are distinct to the E14.5 PLET1- WT samples 

demonstrating the effects of RBPJ cKO specifically in the PLET1+ compartment. PC1 is representative 

of the high variability among the biological replicates, since samples are clustered based on their 

biological replicate. 
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Developmental stage E14.5 

PLET1 status PLET1+ PLET1- 

Genotype & sample name WT LOF WT LOF 

Gene symbol Ensembl ID Rep1 Rep2 Rep3 Rep1 Rep2 Rep3 Rep1 Rep2 Rep3 Rep1 Rep2 Rep3 

Notch1* ENSMUSG00000026923 0.19 0.06 0.58 -8.69 -1.03 -1.74 -2.39 0.01 -2.30 -1.56 -1.25 -2.05 

Notch2* ENSMUSG00000027878 4.91 3.40 4.02 6.43 3.29 3.44 4.78 3.64 3.46 5.20 3.27 3.68 

Notch3* ENSMUSG00000038146 -0.16 -0.14 0.48 -8.20 -3.79 -5.55 -1.78 -0.45 -1.72 -4.82 -1.50 -2.28 

Jag1* ENSMUSG00000027276 5.51 4.49 5.83 6.34 4.18 3.73 4.52 3.40 3.85 4.86 3.32 3.49 

Hes1* ENSMUSG00000022528 4.32 4.10 4.43 2.97 4.10 4.49 4.50 4.63 4.82 3.88 4.06 3.41 

Heyl* ENSMUSG00000032744 1.17 2.36 2.18 -5.52 0.18 -2.96 1.77 2.76 2.72 -2.39 2.03 1.25 

Ascl1 ENSMUSG00000020052 -5.37 -0.65 0.54 0.37 -0.97 -3.54 -0.32 -0.61 -6.48 -5.83 -1.83 -6.48 

Foxn1 ENSMUSG00000002057 4.89 5.95 4.94 2.64 5.51 4.58 5.06 6.30 6.58 4.42 5.82 5.52 

Plet1 ENSMUSG00000032068 3.01 3.36 3.54 2.36 3.57 4.00 -5.85 1.77 -0.54 -5.85 0.67 -2.49 

 

Table 4.2: Expression values of NOTCH targets for the E14.5 RBPK cKO (LOF) and WT samples.  Log2 RPKM values are provided for the NOTCH gene targets in 

the E14.5 PLET1+ and PLET1- LOF and WT samples.  “*” symbol marks NOTCH target genes whose down-regulation is supported by RT-qPCR analysis (Liu et al., 2017, 

submitted).
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4.2.3.2 Time-dependence of mTECs ablation during early thymus 

development 

The functional analyses conducted by Dong Liu have demonstrated that loss of 

NOTCH signalling in E12.5 TEPCs causes a numerical decrease in mTECs, and that 

NOTCH signalling is required for mTEC specification in a limited time-window prior 

to E16.5 (Liu et al., 2017, submitted).  While some mTECs are generated in the 

Foxn1Cre; RbpjFl/Fl model, this likely reflects that by the time of onset of deletion 

(around E12), some TEPCs may have already acquired an mTEC fate. 

My RNA-seq analyses of the TEPC Developmental series and the Foxn1 Allelic series 

(described in Chapter 3, section 3.2.1) shows that Rbpj expression levels are lower in 

the E11.5 and E12.5 TEPCs, with Plet1 having statistically significant (FDR ≤ 0.05) 

down-regulation between the E10.5 and E12.5 timepoints.   This suggests that the 

NOTCH signalling operation through RBPJ would normally be reduced by E11.5 and 

can partially explain the lack of more consistent differences among the E14.5 PLET1+ 

RBPJ cKO and E14.5 PLET1+ WT samples.  The lower levels of Rbpj observed at the 

later timepoints (E11.5 and E12.5) may represent a general decrease of NOTCH 

signalling in all TEPCs that express NOTCH.  However, if a few TEPCs retain high 

levels of Rbpj, this would be masked by the population analysis (results in support of 

TEPCs heterogeneity after Foxn1 expression are described in Chapter 3).  In either 

case, impacting Rbpj levels at a stage where its expression has already been limited 

should not lead to very distinguishable differences, as observed in Figure 4.8.  The 

findings presented here provide an explanation for the time-dependency of NOTCH 

function observed in experiments using pharmacological inhibition of NOTCH 

activity (Liu et al, submitted). 

Previous literature has suggested that divergence of mTEC progenitors can occur 

independently of Foxn1 expression and earlier than E12.5 (Hamazaki et al., 2007; 

Nowell et al., 2011).  To study the impact of loss of NOTCH signalling on mTECs at 

a FOXN1-independent stage when Rbpj is more highly expressed, Dong Liu cultured 

E10.5 pharyngeal pouches (PP) in control and DAPT conditions and demonstrated an   

almost complete inhibition of the mTEC lineage in the presence of DAPT (Liu et al., 

2017, submitted).  In other words, blockage of NOTCH signalling before Foxn1 
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expression fully ablated the mTEC fate and maintained the cTEC fate of TEPCs.  As 

will be demonstrated in Chapter 5, section 5.2.3, Rbpj is predicted to be a direct target 

of Foxn1 in TEPCs, a result that comes in agreement with the more severe phenotype 

caused by ablation of NOTCH signalling prior to Foxn1 expression; which would itself 

cause down-regulation of Rbpj.  Therefore, these data suggested that high NOTCH 

activity in early undifferentiated TEPCs is necessary for mTECs specification, a 

process possibly controlled by Foxn1 levels per cell.  This prediction could be further 

reinforced by the single-cell (sc) RNA-seq data of the E12.5 TEPCs. 

Collectively, the bioinformatics analyses and clustering of the PLET1+/- RBPJ cKO 

and WT samples, that I have performed in sections 4.2.3.1 and 4.2.3.2 have 

demonstrated a consistent (though not statistically significant) decrease in the 

expression of multiple genes involved in NOTCH signalling and have further 

implicated a unique role of NOTCH signalling in the mTEC compartment (see 

separation of PLET1+ LOF and WT samples on PC2, Figure 4.8).  Additionally, 

observation of Rbpj expression levels across the TEPC Development series and the 

Foxn1 Allelic series integrated dataset in conjunction with ChIP-seq analysis of a 

FOXN1-tagged protein dataset (Žuklys et al., 2016) presented and reanalysed in 

Chapter 5 have suggested a potential time-dependence of NOTCH’s signalling impact 

in the mTEC lineage, with a more severe phenotype (mTEC ablation) to be expected 

in earlier deactivation (prior to Foxn1 expression) of the NOTCH signalling.  Data 

generated by Dong Liu (Blackburn lab, University of Edinburgh) have fully validated 

and further expanded the findings from the bioinformatics analyses here, verifying the 

expressional differences in the NOTCH target genes and the unique impact on mTECs, 

as well as the suggested time dependence model, implicating NOTCH as an important 

regulator of the mTEC specification in early TEC development in a short-defined time 

window. 
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4.2.3.3 Genetic reinforcement of NOTCH signalling in early TEPCs 

perturbs the exit from the early TEPC state 

Since loss of NOTCH signalling leads to loss of the mTEC lineage, it was interesting 

to determine whether enforced NOTCH signalling activity might convert all TEPCs 

into mTECs.  This was addressed using a TEC specific gain-of-function (GOF) model, 

in which Foxn1Cre mice were crossed with R26-LoxP-stop-LoxP-NICD-IRES-eGFP 

(NICD) mice and generated Foxn1Cre;NICD mice that would express constitutively 

active NOTCH signalling and high (but normal) levels of NICD (Dong Liu, Blackburn 

lab).  These NOTCH gain-of-function experiments led to NICD thymi with higher 

levels of PLET1 and lower levels of MHCII in comparison to the E14.5 controls, 

indicating a delay in TEC differentiation (Liu et al., 2017, submitted). 

To probe the effect of sustained NOTCH signalling activity on early TEPCs at the 

transcriptional level, I analysed the RNA-seq datasets from five E14.5 PLET1+ NICD 

TEPC samples (data provided by Dong Liu, Blackburn lab; cell numbers for E14.5 

PLET1- NICD TEPC samples were extremely low) using the RNA-seq pre-analysis 

and core-analysis pipelines that I have put together for the RNA-seq data processing 

in this thesis (described in Chapter 2, section 2.2.1.3) in order to retrieve the 

normalised gene counts for all expressed genes of these datasets.  PCA of the E12.5 

and E14.5 WT and RBPJ cKO (LOF) samples (biological triplicates per population) 

with the E14.5 NICD (GOF) samples revealed three groups (Figure 4.9); Group 1: 

E14.5 PLET1+ NICD; Group 2: E14.5 PLET1+ and PLET1- WT and LOF samples; 

and Group 3: E12.5 PLET1+ WT and LOF samples.  Comparison of these groups 

showed that Group 2 and 3 shared some similarity in PC2, while Group 1 was found 

to cluster in-between Groups 2 and Group 3 in PC1 (but closer to Group 2).  This 

suggested that the E14.5 NICD samples had undergone a block in differentiation, since 

they all remain PLET1+ (Liu et al., 2017, submitted), or that over activation of NOTCH 

signalling had inducted a rare or aberrant TEC subtype. 

Since within batch effect correction was not possible between the three groups due to 

confounded batch effect with the biological differences across groups, the profiles of 

housekeeping genes were plotted among all groups to track preferences towards any 

specific group (Figure 4.9).  No significant differences were observed among groups 
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for the housekeeping genes, allowing for across group comparisons. I additionally 

performed differential expression analysis with limma (for details see Chapter 2, 

section 2.3.3.5) between the E14.5 PLET1+ GOF and E14.5 PLET1+ WT samples 

which clearly predicted several NOTCH targets as up-regulated in the GOF samples 

with statistical significance (FDR ≤ 0.2), while again none of the housekeeping genes 

were found differentially expressed in the same comparison. 

Finally, I performed an independent signalling pathway enrichment analysis using the 

total number of differentially expressed genes between the E14.5 PLET1+ GOF versus 

the E14.5 PLET1+ WT samples and their fold changes (calculated by limma voom) as 

a ‘Pre-Ranked Gene List’ in GSEA (Subramanian et al., 2005) against the edited 

ConsensusPathDB database (Kamburov et al., 2011, details in Chapter 2, section 

2.3.3.6), which also predicted NOTCH signalling pathway as enriched between the 

GOF and the WT groups among two other signalling pathways that were identified 

(shown in Table 4.3).  The GSEA Enrichment plot and the list of genes contributing 

to its core enrichment are shown in Figure 4.10. 
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Notch1 Notch2 Notch3 Jag1 

Figure 4.9: Differences among RBPJ cKO, NICD and WT groups.  PCA plot (top right panel) depicts a clear separation among the E12.5 WT/RBPJ cKO (orange/brown), 

the E14.5 WT/RBPJ cKO (blues/greys) and the NICD group (green).  The top right panel shows how NOTCH genes are impacted in the aforementioned samples with 

Notch3, Hes1 and Heyl found to be statistically significant between the GOF versus the E14.5 PLET1+ WT group.  The bottom barplot shows that no strong patterns were 

observed for the housekeeping genes among these datasets.   

0

2

4

6

8

10

12

14

Hprt Hmbs Ywhaz Tbp Gapdh Actb Tuba1a Tubb2a Tubb2b Tubb4b Tubb5 Reep5 Vcp Gpi1 Vps29

lo
g

2
(R

P
K

M
) 

v
a
lu

e
s

Housekeeping genes

Hes1 Heyl Ascl1 

NOTCH target genes RBPJ mutant and wild type samples 

RPKM values 

RPKM values 

Foxn1 Plet1 



145 

 

 

 

 

 

Table 4.3: Up-regulated signalling pathways in the E14.5 PLET1+ GOF versus E14.5 PLET1+ WT 

comparison.   In sequence, the table provides name of each pathway (GS follow link to MSigDB), 

number of Pre-Ranked genes identified per pathway (size), enrichment score of each pathway (ES), 

enrichment score of each pathway normalised for the size of the pathway (NES), NOM p-val and FDR 

q-val (see Chapter 2, section 2.3.3.6 for more details). 

Figure 4.10: GSEA Enrichment plot for NOTCH1 INTRACELLULAR DOMAIN REGULATES 

TRANSCRIPTION and gene list of core enrichment.  Enrichment score on the GSEA plot (top y-axis) 

indicates the degree of over-representation (in absolute value) for the provided pre-ranked gene set 

(differentially expressed genes – E14.5 PLET1+ GOF versus E14.5 PLET1+ WT) and the direction of their 

regulation (positive sign/up-regulated genes).  The Pre-Ranked list metric (GSEA plot, bottom y-axis) 

provides information over the numeric ranking used to weight genes (in this case log fold change), while 

the barcode bars (GSEA plot, middle part) represent all gene hits in the particular pathway with genes 

contributing to core enrichment of the pathway listed in the table next to the Enrichment plot. Differentially 

expressed genes for an FDR ≤ 0.2 are colour-coded in red (* FDR ≤ 0.05, ** FDR ≤ 0.01). 
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To better characterise the phenotype of the E14.5 GOF samples, I observed the 

expression levels of markers associated with the early TEPC and mature TEC state, as 

well as, the cTEC and mTEC derived sublineages across all E12.5 WT and LOF, E14.5 

WT and LOF and E14.5 GOF samples (shown in Figure 4.11).  This revealed that 

cTEC-associated genes in Group B (Figure 4.11), including Foxn1, were up-regulated 

from E12.5 to E14.5 in the WT samples, but that the E14.5 GOF samples retained 

similar levels of these markers to those observed in the E12.5 progenitors.  This 

suggested that they retained some similarity to the early TEPCs/early cTECs, and that 

expression of these differentiation markers was blocked as a result of enforced 

NOTCH signalling.  From this, I hypothesised that the lack of Foxn1 up-regulation 

might explain the lack of up-regulation of the other cTEC markers.  Relevant to this is 

that Foxn1 overexpression has previously been shown to result in down-regulation of 

NOTCH target genes in both mTEC and cTEC populations isolated from E17.5 

Foxn1Cre;iFoxn1 mice (O’Neill and Blackburn, unpublished).  These mice provide a 

model where Foxn1 overexpression can be induced under the control of Cre  

(Bredenkamp et al., 2014b) (see also Chapter 5, section 5.2.3 for more details).  

Supporting this idea, the ChIP-seq analysis of a FOXN1-tagged protein dataset 

(Žuklys et al., 2016)  that I will present in Chapter 5 of this thesis shows that FOXN1 

directly negatively regulates Rbpj, as well as a number of known NOTCH target genes 

(Fbxw7, Hey1, Hes6).  TEC differentiation may therefore be driven by a reciprocal 

inhibition between Foxn1 and Rbpj, in which increasing levels of FOXN1 drive cTEC 

differentiation by down-regulating the response to NOTCH signalling, while high 

levels of NOTCH signalling are required in some TEPCs to protect the mTEC 

phenotype and possibly down-regulate Foxn1.  The same pattern is also retained in 

one week old cTEC and mTEC populations (merged RNA-seq data from similarly 

sorted individual and biological duplicates obtained from public repositories; see 

Chapter 2, section 2.2.1.4 for details). 

Expression of genes related to both cTEC and mTEC differentiation in Group C 

(Figure 4.11) would remain high in all E14.5 samples with little variation among them, 

while they were much lower expressed in the E12.5 samples, suggesting a partial 

progression of the E14.5 PLET1+ GOF samples despite their high expression of Foxn1 

and Plet1.  Additionally, early ontogeny lineage-restricted mTEC markers (such as 
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Krt5, Cld3 and Cl4; Group A) were substantially up-regulated in the GOF samples.  

Lastly, genes in Group D (such as Fgfr2, Kitl and Pax9) showed lower expression in 

the GOF samples than controls, despite being expressed highly in E12.5 TEPCs. 
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Figure 4.11: Heatmap of TEPC and TEC-specific lineage markers for NOTCH mutant and control 

samples.  Row scaled values for a panel of TEPC and TEC markers among the E12.5 WT/LOF, E14.5 

PLET1+ WT/LOF, E14.5 PLET1- WT/LOF and E14.5 PLET1+ GOF are shown to identify clusters [A-D] 

of genes that change similarly per group.  Group A: early ontogeny lineage-restricted mTEC markers. 

Group B: FOXN1 targets/cTEC-like genes.  Group C: cTEC and mTEC lineage differentiation genes. 

Group D: early ontogeny TEPC genes. 
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From these data, I have concluded that overexpression of NOTCH in TEPCs causes at 

least a partial block in cTEC lineage progression (ablation of PLET1- TECs) and 

assists but does not impose mTEC development, suggesting an additional role of 

NOTCH in TEPC maintenance. 

Overall, experimental validation of NOTCH signalling activity in fetal TEPCs has 

verified that E10.5 TEPCs experience high levels of NOTCH activity, which, at a 

population level, progressively decreases concomitant with the onset of differentiation 

such that by E12.5 NOTCH signalling activity is lower in the TEPC population.  These 

data have informed detailed functional testing of the role of NOTCH signalling in early 

TEC development by Dong Liu and Dr Kathy O’Neill in the Blackburn lab, and form 

part of a resulting manuscript (Liu et al., 2017 submitted).  From these studies, we 

conclude that NOTCH signalling is necessary for specification of the mTEC 

compartment in a defined time window, prior to E16.5.  Withal, these functional data 

are partially consistent with the model of extracellular signalling pathways regulation 

of early TEPCs that I established through bioinformatics analyses (section 4.2.2, 

Figure 4.6). 
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4.3 DISCUSSION 

Nude mice, in which TEC differentiation is blocked prior to the onset of TEC 

differentiation, retain at least some bipotent TEPCs into adulthood.  These cells remain 

in a stable state in vivo apparently indefinitely.  Remarkably, release of the block in 

Foxn1 expression in a single cell, is sufficient to direct formation of a fully functional 

thymus (Bleul et al., 2006; Jin et al., 2014).  To improve the culture conditions and 

acquire the ability to maintain TEPCs in vitro, I investigated the signalling 

mechanisms active in the early pre-Foxn1 state.  Pathway enrichment analysis was 

performed between the undifferentiated and more differentiated TEPCs during the 

E10.5-E12.5 time-period, to identify signalling pathways active in the thymic 

epithelium prior to Foxn1 expression.  From this analysis, I generated an in silico 

model of signalling pathways activity in TEPCs just prior to the onset of differentiation 

that provides increased understanding of the signalling mechanisms supporting cells 

before their transition.  Insights gained from this predicted signalling pathway analysis 

are discussed below. 

 

4.3.1 A clear separation of TEC and parathyroid fate 

The Sonic Hedgehog (SHH) signalling pathway is known to act as a control gate of 

the thymic-parathyroid fate, with its ablated or enforced activity to disrupt the 

patterning of the thymus-parathyroid primordium.  Explicitly, absence of SHH (the 

main ligand of the pathway) in the endoderm of the 3rd pharyngeal pouch during 

organogenesis (thymus-parathyroid domain spreading), allows extension of the 

thymus into the parathyroid compartment (as demonstrated by Moore-Scott and 

Manley, 2005) suggesting that SHH signalling must be restricted in a particular region 

at a particular time point for thymus formation to take place.  Alternatively, ectopic 

expression of SHH in early development induced TBX1 which blocked the expression 

of Foxn1 and subsequently imposing of the thymic fate without though the cells to 

acquire a parathyroid fate (Bain et al., 2016; Reeh et al., 2014). 

The clear separation from the parathyroid fate is evident in the RNA-seq dataset of the 

E10.5 and E12.5 TEPCs from the TEPC Developmental series, with the main receptors 



151 

 

of the pathway (Ptch1 and Ptch2) expressed only at a very low level in the PLET1+ 

population analysed at E10.5, and being undetected at subsequent timepoints.  This is 

consistent with silencing of the SHH intracellular or extracellular signalling in the 

early TEPCs to allow normal Foxn1 expression and progression of the thymic fate 

(Figure 4.6).  Since PLET1 is expressed throughout the parathyroid at E10.5 and 

E11.5, there is a minor possibility that few parathyroid cells are present in the RNA-

seq samples.  This seems not to be the case here though, at least by E11.5 onwards 

since none of the SHH involved genes are expressed at E11.5 or E12.5 TEPCs 

(Ptch1/2, Gli1, Tbx1).  Additionally, Shh itself is fully absent from all datasets, 

consistent with the above observation. 

 

4.3.2 Changes in TEPC identity could be reflecting changes in cell 

morphology 

The mechanisms which orchestrate the diverse morphogenetic events in the thymus 

during early mouse ontogeny are not yet fully understood.  Originating from the 

endoderm of the 3rd pharyngeal pouch at E10.5, the thymic anlage initially forms as 

essentially a polarised monolayer of columnar epithelial cells.  This monolayer transits 

through a multilayered pseudostratified epithelial structure around E11.5 (which 

maintains an apico-basal polarity around a central lumen) before it forms the highly 

orchestrated three dimensional structure of the thymus where cells are no longer 

polarised (Itoi et al., 2001).  During this transition, the thymus and the parathyroid 

primordia are clearly patterned by E11.5, while they detach sequentially from the 

pharynx by apoptotic cell death around E11.5-E11.75 (Gordon et al., 2004).  In the 

end, both organs start migrating towards their final anatomical positions at E12.5 

(summarised in Gordon and Manley, 2011). 

Cell polarity is the asymmetric division of various components of a cell (cytoskeleton, 

plasma membrane or organelles) and it is used to maintain a barrier between cells or 

help cells to find their proper position for their normal function.  The polarity of 

specialised structures can be established by morphogens.  These include members of 

the BMP, WNT and SHH signalling pathways which can work cooperatively or in 

opposition to each other (Lee et al., 2001; Marcelle et al., 1997; Zhang et al., 2002) to 
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sculpt tissues.  In particular, Bmp4, Fgf8 and Shh have been implicated with the 

patterning of the pharyngeal region, since their loss or impaired regulation results in 

hypoplastic or absent pharyngeal arches (Abu-Issa et al., 2002; Ahlgren and Bronner-

Fraser, 1999; Bachiller, 2003; Frank et al., 2002; Ohnemus et al., 2002; Revest et al., 

2001; Stottmann et al., 2001) which subsequently lead to malfunctions in the thymus 

formation due to disturbed pouch patterning or thymus-pharynx-parathyroid 

separation. 

WNT5A is a known morphogen ascribed to the non-canonical WNT signalling 

pathway.  Non-canonical WNT signalling branches include: a) the Planar Cell Polarity 

(PCP)/Convergent Extension (CE) pathway, b) the WNT/Ca2+ pathway and c) the 

WNT/FZD2-ROR2 pathway.  Primarily, Wnt5a is an important regulator of 

embryonic development since its disruption leads to prenatal death in mice 

(Yamaguchi et al., 1999).  The same study demonstrated that proximal distal 

outgrowth of several structures in vertebrate early development requires Wnt5a 

expression (cell cycling), with the outgrowing tissues of homozygous mice (at a late 

embryonic stage) to reveal gross morphological defects.  Examples of Wnt5a 

regulation of cell polarity and directional cell migration exist in various cell types.  

During the mammalian palate development, this is orchestrated by the graded 

expression of Wnt5a and its receptor Ror2 along the anteroposterior (AP) axis (He et 

al., 2008), and a potential mechanism of regulation could be by the asymmetric 

accumulation of a WNT-mediated receptor-actin-myosin polarity structure (W-

RAMP) as demonstrated in a melanoma cell line study (Witze et al., 2008).  In a more 

recent study, WNT5A expression was shown to contribute to AP polarity of epithelial 

cells through its asymmetric secretion (basolaterally) in polarised kidney epithelial 

cells in mice (Yamamoto et al., 2015).  Additionally, interaction of SFRP proteins with 

WNT5A can regulate the apicobasal polarity and oriented cell division in the gut 

epithelium during embryonic mouse development (Matsuyama et al., 2009).  Roles of 

Wnt5a in promotion of self-renewal in tissue stem cells have also been demonstrated 

in spermatogonial stem cells in mouse (Yeh et al., 2011).  Taken together, WNT5A 

demonstrates a versatile role in the regulation of various processes such as self-

renewal, differentiation, polarity and migration of the cells, while the outcome of its 

regulation depends on the provision of several receptors in the regulated cells. 
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In my analysis, Wnt5a demonstrates high expression levels at E10.5, while its 

expression gradually decreases over the E11.5 and E12.5 subsequent timepoints.  As 

discussed before (Chapter 3), E10.5 TEPCs exist in an undifferentiated TEPC state, 

in which they can survive in vitro long-term upon Foxn1 blockage.  The high levels of 

Wnt5a expression in E10.5 TEPCs may indicate a potential role in the control of cells 

self-renewal.  In that direction, Wnt5a was shown to maintain HSCs in a quiescent G0 

state which increased their repopulating ability (Nemeth et al., 2007).  

Moreover, E10.5 TEPCs and E11.5 TEPCs exhibit an apicobasal polarity while very 

few cells may be still polarised at E12.5 (Itoi et al., 2001).  The timing of Wnt5a down-

regulation after Foxn1 initiation is consistent with their differentiation and their 

morphological switch from a mono layer of polarised cells that surrounds the thymic 

lumen to an apolar, complex and well-defined structure that characterises the thymus.  

Towards this direction, the expression pattern of the Sfrp genes among the stages of 

the TEPC Developmental series (shown in Figure 4.7) resembles the expression 

pattern of Wnt5a, with Sfrp2 to down-regulate with statistical significance (FDR ≤ 

0.05) when cells proceed towards the E12.5 timepoint. Thus, similar to the example in 

the gut epithelium (Matsuyama et al., 2009), Wnt5a may be interacting with these 

proteins to orchestrate cell polarity.  In that scenario, epithelial cells would have their 

basal layer at the lumen surface and their apical layer would be extended away from 

the lumen during E11.5.  Further down-regulation of Wnt5a at E12.5 could represent 

the loss of the apicobasal polarity for the majority of TEPCs. 

Because Wnt5a comprises a secreted protein and a morphogen, existence of multiple 

available receptors (based on the bioinformatics data presented in this thesis) make it 

difficult to distinguish between the specific mechanisms that WNT5A may be 

controlling in early undifferentiated TEPCs.  Nevertheless, to test if WNT5A may 

support self-renewal of the early undifferentiated TEPCs, provision of WNT5A in cell 

culture should be able to promote TEPCs survival even in the absence of feeder cells 

(mesenchyme) and/or it could aid in the formation of a pseudostratified structure since 

TEPCs survive better in a 3D structure.  Additionally, conditional deletion of Wnt5a 

in TEPCs in conjunction with immunofluorescent analysis for tight junctions and 

adherent proteins would enable testing of the above hypothesis and establish a role for 

Wnt5a in the maintenance/control of TEPCs polarity and differentiation.  If Wnt5a is 
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related to the delayed separation of the thymus/parathyroid from each other and/or 

both from the pharynx, a migration assay could be performed to identify cell 

polarisation and movement through imagining in vitro.  Finally, it is always possible 

that the surrounding mesenchyme or the incoming hematopoietic progenitors could 

also provide the WNT5A ligand and maintain the ongoing signalling required for 

different functions of TEPCs, as discussed in the next section. 

 

4.3.3 Switching to a neighbouring cell-dependent fate 

The role of the FGF signalling pathway (FGF) has been widely investigated in the 

early undifferentiated TEPC stages and proceeding thymus development (summarised 

in Gardiner et al., 2012).  Previous research has highlighted FGF8 as necessary for 

normal thymus development, with high expression of Fgf8 apparent in the distal 

posterior presumptive thymus region before the onset of Foxn1, and null or hypoplastic 

Fgf8 mutations leading to thymic hypoplasia and athymia (Abu-Issa et al., 2002; Frank 

et al., 2002).  FGFR2-IIIb comprises another essential factor for thymus development 

since its expression is required for TEC proliferation after E12.5 (Revest et al., 2001).  

FGFR2-IIIb expression escalates after Foxn1 initiation (tested in thymic epithelium 

and skin samples) suggesting that Fgfr2IIIb is a direct target of FOXN1.  Fgfr2IIIb 

null mutation results in reduced thymus size, but normal anatomical position, T-cell 

development and Foxn1 expression (Revest et al., 2001).  FGFR2-IIIb earliest point of 

detection is E13.5, approximately the time that TEC proliferation will reach to a block 

in Fgfr2IIIb-/-lacZ.  Unlike its ligands (FGF3, FGF7 and FGF10) that are expressed in 

the mesenchymal tissue surrounding the developing thymus, FGFR2-IIIb expression 

is limited in the thymic epithelium.  Of these ligands, FGF10 is thought to be the main 

ligand required for normal thymus development, since the absence of FGF10 leads to 

athymia (Ohuchi et al., 2000). 

In agreement with the literature, my analyses revealed high expression levels of Fgf8 

and Fgfr1 in E10.5 TEPCs, with no further expression of these factors at E11.5 or 

E12.5.  Of the ligands, Fgf7 and Fgf3 were essentially absent from TEPC at all stages 

analysed.  Previous in situ hybridisation (ISH) analysis had indicated that Fgf10 was 

not expressed in TEPCs, but in the neural crest cell (NCC)-derived thymic 
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mesenchyme.  However, through the more sensitive technique of RNA-seq, the 

analyses presented herein revealed moderate expression of Fgf10 in TEPCs at E10.5 

possibly explaining the greater effect of loss of FGF10 compared to FGF7 in thymus 

development.  Potential contamination of the cell populations analysed by RNA-seq 

with surrounding neural crest cells is unlikely, since the cells were sorted using TEPC 

markers and since bona fide neural crest genes FoxD3 and Sox10 (Simoes-Costa and 

Bronner, 2015) were also not detected.  Furthermore, our RNA-seq data have 

demonstrated expression of the Fgfr2-IIIb as early as E10.5, reestablishing the earliest 

detection point for Fgfr2-IIIb to exist prior to Foxn1 initiation.  In our data, Fgfr2-

IIIb’s expression escalates in E11.5 and E12.5 agreeing with the suggested role of 

FOXN1 as a regulator of FGFR2-IIIb.  Further evidence in support of this suggestion 

comes from the ChIP-seq reanalysis of a FOXN1-tagged protein dataset (Žuklys et al., 

2016) presented in Chapter 5 that identifies Fgfr2-IIIb as a highly confident direct 

target of FOXN1.  Lastly, Spry1 and Spry2, FGF feedback antagonists, whose 

expression is required for FGF inhibition maintenance at a specific location of the 

pouch and subsequent patterning formation (Gardiner et al., 2012), were found 

expressed in similar levels across the developmental points. 

Up-regulation of FGFR2-IIIb after Foxn1 initiation potentially allows for stronger 

activation of the FGF signalling pathway in TEPCs, signifying the moment when 

TEPCs become more reactive to FGFR2-IIIb ligands.  The absence of most FGF 

ligands from TEPC at all stages analysed suggests that TEPCs depend on an 

appropriate supporting surrounding environment to provide the appropriate 

proliferation and survival signals.  Down-regulation of Fgf10, the only FGFR2-IIIb 

ligand expressed in E10.5 TEPCs, potentially marks a complete transition of 

developing TEC to dependence on neighbouring cells for FGF signalling inputs. 

IGF factors are also known to play an important role in thymus development (reviewed 

in Lee et al., 2010; Smith, 2010), with IGF1 increasing survival and differentiation of 

TECs and thymocytes by activating IGF-1R, an effect that is delivered through TECs 

(Chu et al., 2008).  My analysis has indicated that both Igf1 and Igf2 mRNA levels 

decrease significantly from E10.5 to E12.5, with Igf1 being expressed at extremely 

low levels at E12.5, suggesting decreased intracellular signalling activity.  Similar to 

FGF signalling, IGF ligands are expressed at low levels at E12.5, but the receptor is 
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still expressed at a high level, allowing activation of the pathway through ligands 

provided by neighbouring cells.  Contrary to the decrease of the FGF ligands, that were 

absent from both cTEC and mTEC populations from one week old mice, both IGF 

factors were found to be almost uniquely expressed in the one week old mTEC 

population and was almost absent in cTECs, suggesting that a loss of the IGF ligands 

could potentially impact more the mTEC compartment.  Lastly, IGF availability can 

be controlled by the presence of IGFBPs that can bind to the IGF ligands and prevent 

them from activating their receptor.  Multiple Igfbp genes seem to be expressed in the 

different timepoints of the TEPC Developmental series at variable mRNA levels, with 

no obvious trend of up-regulation or down-regulation across these developmental 

stages.  Therefore, it is difficult to evaluate their contribution in restricting pathway’s 

activation. 

In summary, investigation of the core enrichment genes involved in the FGF and IGF 

signalling pathways has suggested a switch of TEPCs from a partially cell autonomous 

system to a system depending on extracellular provision of ligands from the NCC-

derived mesenchyme and potentially haematopoietic progenitor cells.  The data 

suggest that this switch is driven by FOXN1 and permitted by the presence of FGFR2-

IIIb and IGF1R.  However, the impact of decreased IGF signalling activity in TEPCs 

may not equally influence both TEC lineages. 

 

4.3.4 Establishing the mTEC lineage from a common TEPC 

progenitor 

NOTCH regulators hold a dominant role in different stages of TEC and thymocyte 

development (Shah and Zuniga-Pflucker, 2014), however, contribution of NOTCH 

signalling during early ontogeny of the thymic epithelium has not yet been studied in 

detail.  In brief, pathway enrichment analysis in section 4.2.1 has identified NOTCH 

pathway (among other signalling pathways) as highly active in the undifferentiated 

E10.5 TEPCs but consistently down-regulated as TEPCs progress towards the E12.5 

timepoint, suggesting a potential regulatory role for NOTCH signalling during fetal 

TEPC differentiation.  Nevertheless, a closer look at NOTCH ligand Dll4 and target 

genes Hes1 and Heyl (whose expression increases when cells proceed towards the 
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E12.5 stage) made obvious that NOTCH pathway may be dynamically regulated in 

different developmental stages and possibly by different groups of cells.  Thus, 

NOTCH was put under the microscope for further exploration.     

In agreement with the decreased expression of Rbpj in E12.5 TEPCs, comparative 

bioinformatics analysis of NOTCH loss-of-function (LOF, Rbpj exon deletion under 

the control of the Foxn1 promoter around E12) samples versus stage-matched controls 

demonstrated only a few expressional differences between these groups (section 

4.2.3.1).  Though few, differences between the E14.5 PLET1+ LOF TEPCs and their 

controls were still apparent, while comparison of the E14.5 PLET1- LOF TEPCs to 

their controls did not reveal any differences (see Figure 4.8), demonstrating an effect 

(even subtle) only in the PLET1+ TEPC population.  The PLET1+ compartment of 

E14.5 TEPCs constitutes undifferentiated TEC progenitors and potentially mTEC 

specific progenitors (mTEPCs), while the PLET1- compartment comprises of mostly 

cTEC-fated progenitors (cTEPCs), suggesting that it is the TEPCs or the mTEPCs 

rather than the cTEPCs that are impacted by NOTCH ablation. 

Additionally, comparative analysis of the transcriptional profiles of the E12.5 vs E10.5 

samples from the TEPC Developmental series (RNA-seq data from biological 

triplicates per stage provided by Harsh Vaidya, Blackburn lab; see also Chapter 2, 

section 2.2.1) in conjunction with comparative analysis of high-Foxn1 and low-Foxn1 

groups from the Foxn1 Allelic series (RNA-seq data from singular biological samples 

provided by Stephanie Tetelin, Blackburn lab; see also Chapter 2, section 2.2.1) 

presented in Chapter 3 (section 3.2.2) has identified Rbpj among other genes as 

FOXN1-dependent that down-regulates with Foxn1 increase.  This finding suggested 

that Rbpj down-regulation may be regulated (directly or indirectly) by FOXN1, thus 

ablation of Rbpj expression after Foxn1 initiation would be expected to have minimum 

impact. 

Experimental evidence from Dong Liu (Blackburn lab, University of Edinburgh) 

demonstrated that inhibition of NOTCH signalling at E10.5 in TEPCs led to the 

complete loss of the mTEC lineage, in total agreement with the above predictions, and 

also verified NOTCH signalling as a potent regulator of mTECs specification.  

Conversely, overexpression of NOTCH intracellular domain in all TEPCs blocked 
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TEC lineage differentiation, evidenced by retention of PLET1 staining (Dong Liu) 

and lack of differentiation markers (Figure 4.11), but did not force the differentiation 

of mTECs (Figure 4.11), suggesting roles for NOTCH in both mTEC specification 

and TEPC maintenance. 

A potential regulatory mechanism between FOXN1 and NOTCH signalling is 

extensively described in Chapter 5 (section 5.3.3) while how this interplay fits with 

the revised TEPC differentiation model (presented in Chapter 3, section 3.3.1) is 

devised in Chapter 7 (section 7.1.4). 

In summary, the bioinformatics analysis presented herein (section 4.2.3), in 

conjunction with extensive experimental investigation and validation of the NOTCH 

signalling pathway in the Blackburn lab by Dong Liu, has concluded that “a NOTCH 

gate controls differentiation of thymic epithelial progenitors and medullary thymic 

epithelial lineage specification” (Liu et al., 2017, submitted). 
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4.4 SUMMARY 

In this chapter, I have presented a comparative bioinformatics analysis in conjunction 

with pathway enrichment analysis of RNA-seq data obtained from TEPCs at 

timepoints just prior to, during and immediately following the initiation of the TEC 

differentiation programme.  This integrative analysis was used to determine which 

major signalling pathways are highly active in fetal TEPCs, focusing on those 

pathways whose activity is decreasing while they are transiting towards differentiation.   

The identified pathways indicate a) the separation of the thymus from the parathyroid 

fate (section 4.3.1), b) potential roles for WNT5A in cell renewal and cell polarity 

(maintenance of TEPCs and/or guidance of TEPCs into the 3D complex architecture 

of the functional thymus, section 4.3.2) and c) a shift from a TEPC autocrine niche to 

a TEPC niche dependent on neighbouring cells (section 4.3.3).  Moreover, 

computational and experimental validation of the importance of NOTCH activity in 

early TEPCs (ablation of NOTCH signalling), highlighted NOTCH as a potent 

regulator of mTEC specification and maintenance of the TEPC state in a short but 

well-defined time window.  Additionally, overexpression of NOTCH signalling 

suggested that E12.5 TEPCs may still exist in a fairly interchangeable state which 

could be fine-tuned or potentially pushed back to a less differentiated state (a concept 

also discussed in Chapter 3, section 3.3.1) by an altered signalling reciprocity 

involving (in this case) FOXN1 and NOTCH.  

Within the in silico model predicted in Chapter 4, the master thymus regulator, 

FOXN1, seems to control the signalling pathways that dictate the TEPC proliferation 

and differentiation state.  This is evidenced by FOXN1 directly targeting FGFR2-IIIb, 

that controls TEPC expansion, alongside with Rbpj and other regulators involved in 

the NOTCH pathway, that are involved in the specification of the mTEC lineage (the 

role of FOXN1 and its regulatory landscape are discussed extensively in Chapter 5).  

Overall, this analysis has improved the current picture of the signalling mechanisms 

that govern maintenance and specification of TEPCs prior to their sublineage 

progression orchestrated by FOXN1. 
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Chapter 5  
 

FOXN1: A master regulator of TEC differentiation 

 

 

 

5.1 PRÉCIS 

FOXN1 comprises the master transcriptional regulator of TEC differentiation, with 

continuous expression of Foxn1 also being required for maintenance of the thymic 

epithelium (Chen et al., 2009; Cheng et al., 2010; Nowell et al., 2011).  Evidence for 

its significance is that absence of functional FOXN1 protein arrests differentiation of 

thymic epithelial cells (TECs), blocks initial formation of the organ, and prevents 

colonisation of thymic primordium by hematopoietic progenitors (T-cell precursors).  

This early block can be reversed by reestablishing Foxn1 expression in TECs, and this 

alone then leads to normal thymus development (Bleul et al., 2006).  In a more extreme 

example, “forced” expression of FOXN1 in a thymus-unrelated cell population, mouse 

embryonic fibroblasts (MEFs), is capable of reprogramming these cells into functional 

TECs (“induced” TECs or iTECs), further demonstrating the extraordinary potency of 

this factor (Bredenkamp et al., 2014a). 

Despite the core role that FOXN1 plays in the thymus and 20 years of research since 

FOXN1 (nude gene product) was first identified (Nehls et al., 1994, 1996), the full 

picture of the functional network around this regulator is incomplete.  In Chapter 5, I 

attempt to better understand how FOXN1 imposes its dominant role in the thymic 

system, by identifying direct FOXN1 targets in early TEPCs and investigating the 

pathways that FOXN1 controls through them, via a comparative study between fetal 

and newborn thymic epithelial populations. 
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5.2 RESULTS 
 

5.2.1 Prediction of candidate direct FOXN1 targets in mouse fetal 

TEPCs 

In this chapter, I will describe the integrative analysis undertaken to identify candidate 

direct FOXN1 targets in mouse fetal TEC progenitors (TEPCs).  A brief summary of 

the above analysis is provided here.  Starting from the already identified list of 

FOXN1-dependent genes from the fetal TEPC RNA-seq series (described extensively 

in Chapter 3, section 3.2.1), I will first subselect the genes which show binding 

evidence for FOXN1 in their distal promoter sites (peaks located within -5kb and +3kb 

of the gene’s transcription start site) using ChIP-seq data available from 1 week old 

(1w) TECs.  Next, I will retain only the genes that also show evidence for an active 

promoter or enhancer mark in TEPCs using histone modification ChIP-seq data from 

E12.5 TEPCs that overlap with the 1w TEC FOXN1 enriched peaks.  This final list of 

genes will define the (first-described) high-confidence candidate direct FOXN1 targets 

in fetal TEPCs. 

 

5.2.1.1 FOXN1-dependent genes in fetal TEPCs 

To identify a list of FOXN1-dependent genes, the differentially expressed genes 

between E12.5 and E10.5 timepoints (|FC| ≥ 1.5 and FDR ≤ 0.2) from the TEPC 

Developmental series (RNA-seq data from biological triplicates per stage provided 

by Harsh Vaidya, Blackburn lab; see also Chapter 2, section 2.2.1) were integrated 

with the differentially expressed genes (pairwise comparisons between Foxn1high vs 

Foxn1low phenotypic sample groups) from the Foxn1 Allelic series (RNA-seq data 

from singular biological samples provided by Stephanie Tetelin, Blackburn lab; see 

also Chapter 2, section 2.2.1) and the overlap of both differentially expressed gene 

lists was taken (details on data integration are given in Chapter 3, section 3.2.1).  As 

described previously, the TEPC Developmental series dataset depicts gene expression 

profiles of E10.5, E11.5 and E12.5 TEPCs during mouse development.  These 

timepoints relate to the developmental stages at which: Foxn1 expression is majorly 
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absent, Foxn1 expression has been initiated and Foxn1 expression has been 

established.  The gene expression changes that occur among these stages could be 

assigned to either FOXN1 expression itself or FOXN1-independent developmental 

progression.  The Foxn1 Allelic series dataset shows, specifically at the latest 

timepoint of the TEPC Developmental series (E12.5), how variation of Foxn1 levels 

alone impacts on the expressional profile of TEPCs.  Chapter 3 section 3.2.1 has 

demonstrated the dominant effect of Foxn1 dosage on cell identity, with Foxn1 

expression level influencing TEC developmental progression, suggesting that many of 

the changes occurring in the early TEPC development might be FOXN1-dependent.  

In order to focus on direct FOXN1 targets, I therefore focused the analysis on those 

genes that are dependent on FOXN1 (independently of the developmental stage) to 

limit the span of the gene inventory search. 

In particular, a total of 15,321 genes were expressed in at least in one of the E10.5 and 

E12.5 TEPC sample triplicates from the TEPC Developmental series based on a log2-

transformed counts per million (CPM) cut-off value of zero, which was selected based 

on samples’ expression density plot, as described in Chapter 2, section 2.3.3.1.  As 

described before (Chapter 3, section 3.2.1), the limma package from Bioconductor 

was used to calculate differential gene expression between E10.5 and E12.5 timepoints 

and to assign statistical significance to the gene changes.  From the 15,321 genes 

expressed in E10.5 or E12.5 TEPC samples, only 1,650 (980 up-regulated and 670 

down-regulated) were differentially expressed between the E10.5 and E12.5 triplicates 

with |FC| ≥ 1.5 and FDR ≤ 0.2.  These 1,650 genes were selected for further analysis 

(Figure 5.1, step 1).  Pairwise comparison analysis was performed between a Foxn1high 

and a Foxn1low phenotypic group, consisting of the Foxn1+/+ (wild type; WT), Foxn1+/- 

(Het) and Foxn1R/+ (R/+) samples, and the Foxn1R/- (R/-) and Foxn1nu/nu (Nude) 

samples from the Foxn1 Allelic series dataset respectively.  This comparison identified 

genes that are highly dependent on FOXN1 (for details see Chapter 3, section 3.2.1).  

The latter filtering for FOXN1-dependent genes decreased the number of differentially 

expressed genes from 1,650 to 850 genes (586 up-regulated and 264 down-regulated) 

that were fully dependent on FOXN1 (Figure 5.1, step 2).  These 850 genes change 

consistently between the pre- (E10.5) and post-FOXN1 (E12.5) TEPC developmental 

stages as defined by a |FC| ≥ 1.5 and a FDR ≤ 0.2 criteria, however, their change can 
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be most likely explained by direct dependence on FOXN1, since they also change 

consistently between the Foxn1high and a Foxn1low phenotypic groups, independently 

of the developmental stage of TEPCs. 
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STEP 1 

STEP 2 

STEP 3 

STEP 4 

STEP 5 

Figure 5.1: Overview of the integrative analysis for identification of FOXN1 target candidates in 

TEPCs. The total number of up-regulated (in red) and down-regulated (in blue) genes between the 

E10.5 and E12.5 timepoints from the TEPC Developmental series dataset is shown in the top of this 

schema, with step 1 retaining only differentially expressed genes with FDR ≤ 0.2. In step 2, genes that 

are not dependent on FOXN1 are excluded from further analysis, while in step 3 genes are filtered on 

the basis of having a FOXN1 binding peak in their distal promoter area (-5kb to +3kb from the TSS of 

the gene). Step 4 shows how many of these genes have an accessible promoter or enhancer region 

with either an H3K4me3 or an H3K27ac mark, while step 5 shows how many of these two accessibility 

marks co-reside with the FOXN1 peaks (or simply mark alternative sites in the distal, TSS of the gene).  
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5.2.1.2 Direct binding events of FOXN1 in newborn TECs 

Until recently, lack of suitable antibodies meant that data on direct FOXN1 binding to 

the promoter/enhancer regions of expressed genes were not available.  Recently, a 

FOXN1-tag ChIP-seq dataset became available (Žuklys et al., 2016), which identified 

direct FOXN1 targets in newborn mouse cTECs. 

In their study, Žuklys et al. express a FOXN1 protein, tagged with an octapeptide (for 

details of the design see cited paper or Chapter 2, section 2.2.2.1), under the Foxn1 

promoter of nude mice (Foxn1nu/nu) using a bacterial artificial chromosome (BAC).  

Mice homozygous for the BAC (Foxn1wt*/wt*) demonstrated a normal coat and thymus 

architecture, as well as normal Foxn1 expression levels, but a mildly reduced 

cellularity which was still capable of supporting thymocyte development.  Chromatin 

immunoprecipitation (ChIP) was performed in isolated thymic lobes from 

homozygous mice and DNA samples were pooled to create two replicates that were 

sent for sequencing.  After sequencing, contaminating adapters were removed using 

Trimmomatic (Bolger et al., 2014), alignment was performed with BWA (pre-

alignment; Li and Durbin, 2009) and Stampy (Lunter and Goodson, 2011) against the 

mouse genome assembly (mm10) and MACS2 (Zhang et al., 2008) in combination 

with the IDR pipeline (https://github.com/nboley/idr) was used to call confident 

FOXN1 peaks.  9,012 peaks passed the IDR threshold, of which a third marked the 

distal upstream TSS region of genes and were enriched for H3K4me3 marks.  

Furthermore, de novo motif discovery using the aforementioned IDR-selected peaks 

predicted the canonical (5’-GACGC-3’) FOXN1 binding motif and an alternative 

motif (5’-GAAGC-3’) which were both over-represented in the DNA sequences under 

the peaks. 

 

5.2.1.3 Inferring candidate direct FOXN1 targets in fetal TEPCs from 

FOXN1 binding events in newborn TECs 

Since no other ChIP-seq datasets were available for FOXN1 in fetal TEPCs, I used the 

FOXN1-tagged ChIP-seq dataset in newborn TECs (Žuklys et al., 2016) to obtain a 

list of FOXN1 binding sites, which I then further integrated with the list of FOXN1-

https://github.com/nboley/idr
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dependent genes in TEPCs (from the differential expression analyses described in 

section 5.2.1.1), to infer potential FOXN1 gene regulatory events in fetal TEPCs.  In 

more detail. I obtained the raw FASTQ files from the FOXN1-tagged ChIP-seq data 

from newborn TECs through the GEO repository (Barrett et al., 2013) and reanalysed 

them (as described in Chapter 2, section 2.3.1 and section 2.3.4) to provide a list of 

FOXN1 binding sites.  In general, the ChIP-seq reanalysis steps were similar to the 

Žuklys et al. ChIP-seq pipeline, including adapter removal with Trimmomatic, peak 

calling with MACS2 and identification of confident peaks with the IDR pipeline.  

However, I used Bowtie2 (Langmead and Salzberg, 2012) for read mapping in the 

ChIP-seq reanalysis instead of the BWA-Stampy combination that was used by  Žuklys 

et al.,  so that the same alignment tool was used for the analyses of the ChIP-seq 

datasets described in my thesis.  A total of 4,858 IDR confident peaks (IDR ≤ 0.05) 

resulted from the FOXN1-tagged protein ChIP-seq reanalysis.  As also shown by 

Žuklys et al., FOXN1 confident peaks (IDR ≤ 0.05) were found to mostly bind at the 

promoter region of genes and also at some distal intergenic regions (to a lesser extent); 

these intergenic regions could represent enhancer regions across the genome (Figure 

5.2). 

To infer candidate direct target genes for FOXN1 in the fetal TEPCs, I integrated the 

4,858 FOXN1 confident peaks (IDR ≤ 0.05) from the FOXN1 ChIP-seq reanalysis in 

newborn TECs based on their genomic location (in reference to mouse genome 

assembly; version GRCm38.p5 from GENCODE – release M12) with the FOXN1-

dependent genes in TEPCs from the TEPC Developmental series and the Foxn1 Allelic 

series RNA-seq dataset analyses (identification of these genes is described extensively 

in section 5.2.1.1, see also Figure 5.1, step 1-2).  For this integration, only TEPC 

FOXN1-dependent genes with a FOXN1 confident peak around their distal TSS site 

[5 kilobases (kb) upstream and 3kb downstream of genes TSSs] were chosen as 

potential FOXN1 direct targets in TEPCs.  A subset of 597 FOXN1-dependent genes 

demonstrated FOXN1 binding evidence at their distal promoter region (-5kb, +3kb), 

with 468 of them (~78.4%) to be up-regulated in association with increase in Foxn1 

expression (Figure 5.1, step 3), suggesting a predominant role for FOXN1 as a 

transcription activator in TEPCs.  This conclusion was consistent with findings 
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showing a prevailing role of FOXN1 in genes up-regulation in newborn cTECs 

(Žuklys et al., 2016).
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Figure 5.2: FOXN1 ChIP-seq peaks distribution in the mouse reference genome assembly gene regions.  The 4,858 FOXN1 confident peaks (IDR ≤ 0.05) from the 

FOXN1 ChIP-seq re-analysis in newborn TECs were annotated in terms of genomic features with the peakAnno function from ChIPseeker package in R and plotted in a 

barplot format with plotAnnoBar function from the same package.  Approximately 50% of the peaks reside in the proximal promoter region (light blue section) of the 

reference genome, with the second biggest percentage of peaks to fall into distal intergenic regions (brown section). 
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5.2.1.4 Insights in the TEPC chromatin accessibility landscape based 

on promoter and enhancer histone modification marks in E12.5 TEPCs 

The FOXN1 binding landscape marked by the FOXN1-tagged ChIP-seq dataset is 

representative of a mixed TEC population in newborn mice.  When a transcription 

factor binds at a promoter or enhancer region of a gene and regulates its expression in 

a specific cell type, a fair assumption is that it will probably regulate the same gene in 

another cell type if the gene is expressed in the new cell type and the promoter or 

enhancer region of this gene is also accessible and active. 

To assess the chromatin regulatory landscape of TEPCs, histone modification data 

were generated from E12.5 fetal TEPCs [Vaidya and Blackburn (unpublished)].  These 

datasets comprise ChIP-seq for the H3K4me3 and H3K27ac chromatin modifications 

(ChIP-seq data from biological duplicates per mark provided by Harsh Vaidya, 

Blackburn lab; see also Chapter 2, section 2.2.3.1): the H3K4me3 modification 

mainly marks active promoters (Heintzman et al., 2007), while the H3K27ac 

modification marks mostly accessible and active enhancers (Creyghton et al., 2010; 

Heintzman et al., 2009; Rada-Iglesias et al., 2011; Zentner et al., 2011).  Combined, 

these histone modification marks provide a robust readout of accessible and active 

promoter and enhancer regions of TEPCs on day E12.5 in embryonic development.  

By making use of the above histone modification datasets, TEPC genes with accessible 

and active promoters or enhancers in their distal promoter regions in the E12.5 TEPC 

average population landscape can be identified. 

The average binding profile of the H3K4me3 and H3K27ac marks in TEPCs was thus 

plotted for all regions marked by the 4,858 FOXN1 confident peaks (IDR ≤ 0.05) from 

the FOXN1 ChIP-seq reanalysis in newborn TECs, to broadly assess accessibility of 

the regions located under the FOXN1 IDR peaks in TEPCs, by looking at the 

modification profiles of those regions in TEPCs (Figure 5.3).  In more detail, Figure 

5.3 depicts genomic region profiles (top section) and respective heatmaps (bottom 

section) of the FOXN1 ChIP-seq peaks in newborn TECs, and the H3K4me3 and 

H3K27ac histone modification marks in fetal TEPCs for all the regions defined by the 

FOXN1 IDR peaks in newborn TECs, centred in the middle of the FOXN1 IDR peak 

and extended by ± 2 kb from the centre of the peak.  The genomic profiles represent 
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cumulatively the peaks enrichment scores over a set of genomic regions (the FOXN1 

IDR peaks), while heatmaps show for each FOXN1 IDR peak-defined region the 

enrichment score  of selected datasets (FOXN1 peaks from newborn TECs, and 

H3K4me3 and H3K27ac from fetal TEPCs) per row (Ramírez et al., 2016).  As 

expected, distributions of the FOXN1 peaks are centred in the middle of the IDR 

FOXN1 peaks, while the histone modification marks show a binomial distribution over 

the IDR FOXN1 defined regions with a depletion in the centre of the IDR FOXN1 

peaks.  Transcription factor binding sites (TFBS) reside in the open chromatin region 

between flanking nucleosomes that carry these histone modification marks (Chai et 

al., 2013), thus this depletion signature is expected in IDR FOXN1 binding site.  

Overall, samples H3K4me3 (A) and H3K27ac (B) demonstrated the strongest signals 

(fold-enrichment versus control) around the FOXN1 peak centres, marking 

approximately two thirds of the FOXN1 IDR peaks.  This analysis therefore suggested 

that a common landscape might exist for FOXN1 targets in fetal TEPC and newborn 

TEC samples.  Because replicate samples for H3K4me3 and H3K27ac revealed lower 

signal intensity for the FOXN1 peaks marked by their own replicates (H3K4me3 (B) 

and H3K27ac (A); Figure 5.3) IDR analysis was not performed for these samples.  

Instead significant peaks were determined for each replicate for a 0.05 (H3K4me3 

mark; narrow peaks) and 0.1 (H3K27ac mark; broad peak) q-value threshold (MACS2) 

and these significant peaks were mapped to genes from the GRCm38.p5 (mm10) 

Mouse assembly. 
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Figure 5.3: Genomic region profile plots and heatmaps over the FOXN1 IDR peak regions in 

newborn TECs for the FOXN1 and histone modification ChIP-seq datasets.  Total signal profiles 

(top section) over the FOXN1 IDR peak-defined regions [± 2kb from centre of the FOXN1 peak] show 

cumulatively enrichment scores for FOXN1 peaks from 1 week old TECs (FOXN1 biological replicates A 

and B: FOXN1 (A) and FOXN1 (B)), and for H3K4me3 and H3K27ac peaks for E12.5 TEPCs (H3K4me3 

biological replicates A and B; H3K4me3 (A) and H3K4me3 (B), H3K27ac biological replicate A and B; 

H3K27ac (A) and H3K27ac (B)).  Heatmap plots (bottom section) show for each FOXN1 IDR peak-
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defined region from 1 week old TECs the enrichment score for both FOXN1 replicates from 1 week old 

TECs (shown in gold-black colour scale) and for both replicates of each histone modification mark from 

E12.5 TEPCs: H3K4me3, and H3K27ac (shown in green-white, blue-white and red-white colour scales 

respectively).  Heatmaps have been sorted in descending order based on the mean value per region. 
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5.2.1.5 Prediction of high confidence candidate direct FOXN1 targets in 

fetal TEPCs from overlapping FOXN1 binding sites in newborn TECs with 

accessibility histone marks in fetal TEPCs 

As shown in section 5.2.1.3, candidate direct FOXN1 targets were inferred based on 

the proximity (-5kb, +3kb) of the promoters of FOXN1-dependent genes in TEPCs to 

the FOXN1 confident peaks (IDR ≤ 0.05) from the FOXN1-tagged ChIP-seq dataset 

in newborn TECs (see Figure 5.1, steps 1-2 and 3).  This integrative analysis identified 

597 genes as candidate direct FOXN1 targets.  When the significant peaks of the 

histone modification marks detected in E12.5 TEPCs (q-value for H3K4me3 ≤ 0.05 

and for H3K27ac ≤ 0.1; see section 5.2.1.4) were mapped to genes, the vast majority 

of the 578 candidate direct FOXN1 targets in TEPCs (451 up-regulated and 127 down-

regulated, as shown Figure 5.1, step 4) possessed an H3K4me3 and/or an H3K27ac 

mark in their distal promoter area (-5kb, +3kb) as expected, since the list comprised 

TEPC expressed genes. 

Although the 578 candidate direct FOXN1 targets in TEPCs exhibited a FOXN1 

binding peak from newborn TECs as well as an H3K4me3 peak and/or an H3K27ac 

peak from fetal TEPCs in the region (-5kb, +3kb) around their TSS, these peaks did 

not necessarily coincide.  When the H3K4me3 and H3K27ac peaks were overlaid with 

the distal FOXN1 binding peaks, 107 (67 up-regulated and 40 down-regulated) genes 

exhibited marks at a different location from the FOXN1 binding site (Figure 5.1, step 

5).  This suggested that the non-overlapping FOXN1 peaks from the newborn TEC 

population were not located in an open chromatin area in TEPCs, and that they could 

not be regulating the particular genes via direct binding.   The remaining genes in 

which the FOXN1 and H3K4me3 and/or FOXN1 and H3K27ac peaks overlapped 

included: 269 (231 up-regulated, 38 down-regulated) with FOXN1 overlapping with 

both histone modification marks, 146 (107 up-regulated, 39 down-regulated) with 

FOXN1 overlapping only with the H3K4me3 mark and 56 (46 up-regulated, 10 down-

regulated) with FOXN1 overlapping only with the H3K27ac mark (Figure 5.4).  All 

471 genes with one or more FOXN1 peaks from newborn TECs overlapping with one 

or both histone modification marks from fetal TEPCs are present in my most confident 

candidate list for FOXN1 direct targets in fetal TEPCs.  Among these candidates were 
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the widely known FOXN1 targets, Ccl25 and Dll4, which were shown to be up-

regulated after transient transfection of mouse embryonic stem (ES) cells with Foxn1 

by QRT-PCR analysis (Nowell et al., 2011), as well as the recently identified FOXN1 

direct targets in 1 week old cTECs, Psmb11 and Cd83, whose expression was lost or 

reduced in HEK293 cells expressing FOXN1 if their FOXN1 binding sites located in 

genes near promoter were mutated (Žuklys et al., 2016) (Figure 5.4).  Further 

evaluation of these targets, including comparative analysis versus FOXN1 targets 

specifically predicted in newborn cTECs, and pathway enrichment analysis between 

the E10.5 and E12.5 TEPCs is described in sections 5.2.2 and 5.2.3 below. 
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Figure 5.4: Volcano plots of the FOXN1 candidate targets in fetal TEPCs.  Each point represents one of the 471 FOXN1 candidate targets in fetal TEPCs that have 

an overlapping FOXN1 binding peak from newborn TECs with a histone modification mark from fetal TEPCs around gene’s distal promoter region (-5kb to +3kb from 

gene’s TSS).  In the left graph, genes with FOXN1 peaks overlapping with A) both H3K4me3 and H3K27ac marks are shown in blue, B) only an H3K4me3 mark are shown 

in green and C) only an H3K27ac mark are shown in red.  Location of FOXN1 known targets is shown in the right graph and gene names have been coloured based on 

the FOXN1 peak overlap.  The x-axis shows the log2-transformed fold changes as calculated from the differential expression analysis between E10.5 and E12.5 timepoints 

from the TEPC Developmental series (Chapter 3, section 3.2.2) with limma package in R.  The y-axis depicts the adjusted p-value (here the false discovery rate), with a 

threshold of 0.7 in the –log10 scale (or a threshold of 0.2 in the log2 scale) to define confident gene changes (Chapter 3, section 3.2.2).

CD83 
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5.2.2 Comparative analysis and insights on the highly confident 

direct candidate FOXN1 targets in fetal TEPCs 

In their study, Žuklys et al. (2016) integrated the IDR FOXN1 peaks from 1 week old 

(newborn) TECs with transcriptomic data depicting gene changes in 1 week old cTECs 

and 1 week old mTECs between Foxn1wt*/wt* and Foxn1wt*/- mice.  As previously 

described, the Foxn1wt* allele expresses the FOXN1 protein tagged with a flagged 

peptide, and mice homozygous for this allele (Foxn1wt*/wt*) demonstrated an overall 

normal phenotype and Foxn1 expression levels, with a mildly reduced cellularity 

which was still capable of supporting thymocyte development (Žuklys et al., 2016).  

In comparison, the heterozygous mice for the Foxn1wt* allele (Foxn1wt*/-) demonstrated 

a thymus of significantly reduced size, decreased Foxn1 expression, disorganised 

corticomedullary segregation and multiple large cysts.  A large number of genes were 

found to be differentially expressed (DE) from this analysis in newborn cTECs (8,378 

DE genes) and mTECs (11,690 DE genes).  Furthermore, to get a more confident set 

of genes that are regulated by FOXN1 in newborn cTECs,  Žuklys et al. designed triple 

mutant mice (Psmb11-rtTA::tetO-Cre::Foxn17,8loxP/loxP; designated iFoxn1Δ7,8), in 

which induction with doxycycline (Dox) drives a cTEC-specific deletion of exon 7 

and 8 in the Foxn1 locus.  Prior to Dox exposure, mice demonstrated an overall normal 

thymus phenotype, TEC architecture and intrathymic T-cell development.  However, 

the thymi of Dox-treated mice demonstrated significantly reduced Foxn1 levels, 

decreased cellularity and specific reduction of thymocytes subpopulations (Lin-

CD44+CD25+CD4-CD8- and Lin-CD44-CD25+CD4-CD8-) by day 3 after treatment.  

Differential expression analysis of the cTEC transcriptomic datasets from 1 week old 

iFoxn1Δ7,8 mice prior to, and 3 days after, Dox treatment identified 2,506 DE genes 

regulated by FOXN1.  Finally, the gene overlap of the differentially expressed genes 

between cTECs in Foxn1wt*/wt* and Foxn1wt*/- mice, and the differentially expressed 

genes in cTECs from  iFoxn1Δ7,8 mice prior to and 3 days after Dox treatment was 

integrated with the 9,012 IDR FOXN1 peaks (IDR) from the analysis of the FOXN1-

tagged ChIP-seq dataset by Žuklys et al. based on distance of genes TSS to the FOXN1 

peak (5kb upstream or 100 bases downstream) and identified 450 highly confident 

candidate direct FOXN1 targets in cTECs. 
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Comparison of the 450 highly confident direct FOXN1 targets in newborn cTECs 

(Žuklys et al., 2016) with my highly confident 471 candidate direct FOXN1 targets in 

fetal TEPCs showed that 102 of these targets were commonly shared between the two 

datasets, with these genes having a FOXN1 peak overlapping with an H3K4me3 

and/or an H3K27ac mark in fetal TEPCs.  Apart from these 102 common targets 

between TEPCs and cTECs, 369 candidate direct FOXN1 targets in fetal TEPCs 

(identified from this analysis) did not constitute candidate direct FOXN1 targets in the 

1 week cTEC population.  Possible reasons for the absence of these 369 candidate 

targets from the newborn cTEC population include differential binding or regulation 

of these genes between cTECs and mTECs since the FOXN1-tagged ChIP dataset 

comes from a mixed cTEC-mTEC population and it would be possible that some of 

the FOXN1 binding sites result from unique FOXN1 binding only in one of the two 

populations.  In this respect, 65 of the 369 genes were more strongly or equally 

expressed in newborn (1 week) mTECs compared to cTECs of the same age, 

suggesting potential regulation of these genes only in mTECs.  Additionally, technical 

reasons could explain why genes with FOXN1 binding sites proximal to their promoter 

may not result as differentially expressed between cTEC samples that express normal 

and defective levels of FOXN1.  For instance, even though Foxn1 mRNA levels were 

significantly reduced by day 3 after Dox treatment, FOXN1 protein levels may still 

reside in the cells allowing part of genes to continue to be regulated from  iFoxn1Δ7,8 

mice prior to and 3 days after Dox treatment.  In support of this, on day 3 after Dox 

exposure, iFoxn1Δ7,8 mice maintained a fairly normal intrathymic T-cell development.  

Alternatively, genes may be not strongly impacted by the absence of FOXN1 in the 

given period of time.  Finally, it is possible that our reanalysis of the FOXN1-tagged 

ChIP-seq dataset by Žuklys et al. assigned more distal FOXN1 peaks to genes, since  

I have defined a more extended window (-5kb, +3kb) to match genes TSSs to FOXN1 

regulatory peaks compared to the Žuklys study (-5kb, +100b). 

To better understand the behaviour of the predicted FOXN1 targets in fetal TEPCs, I 

plotted the 471 highly confident candidate direct FOXN1 targets across the TEPC 

Developmental series dataset (E10.5, E11.5 and E12.5 timepoints) from fetal TEPCs 

(Figure 5.5) using the pheatmap function in R and observed them in accordance to a) 

the expression of the same genes in 1 week old cTEC/mTEC populations, b) the 
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provided highly confident cTEC targets (Žuklys et al., 2016) and c) the FOXN1, 

H3K4me3 and H3K27ac binding overlap landscape.  Gene targets with overlapping or 

alternative binding sites for FOXN1 and H3K4me3/H3K27ac were equally distributed 

across the genes (shown in Figure 5.5) showing no obvious patterns of preference for 

promoter or enhancer marks towards up-regulated or down-regulated groups of genes.  

Approximately 80% of the direct FOXN1 target genes that were differentially 

expressed between E10.5 and E12.5 timepoints from the TEPC Developmental series 

dataset were up-regulated with Foxn1 increase supporting the predominantly 

activating role of FOXN1 in fetal TEPCs, as similarly suggested in the newborn cTEC 

population (Žuklys et al., 2016).  The vast majority of the direct FOXN1 target genes 

in fetal TEPCs, which are up-regulated with increase in Foxn1 expression from day 

E10.5 to E12.5 (TEPC Developmental series), were found more highly expressed in 

cTECs, and the opposite trend was observed in mTECs as expected, since FOXN1 is 

more highly expressed in the cTEC population.  Lastly, overlapping FOXN1 targets 

with the 450 highly confident direct FOXN1 targets in newborn cTECs are shown to 

mark only the up-regulated proportion of the gene list, overlapping mostly with genes 

found higher expressed in the cTEC population (see label “whichTEC” in Figure 5.5). 
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Figure 5.5: Heatmap of the high confidence FOXN1 target candidates in fetal TEPCs. Expression 

levels of the FOXN1 target candidates in TEPCs are shown across the TEPC Developmental series and 

Foxn1 Allelic series datasets. Samples cluster according to their Foxn1 expression level (red bar on top 

of the heatmap; also in agreement with Chapter 3, section 3.2.1). Rows (representative of genes) have 

been colour-annotated based on differential expression in TECs for an FDR ≤ 0.05 and |FC| ≥ 1.5 (red: 

higher expression in cTECs, blue: higher expression in mTECs, grey: not differentially expressed or not 

statistically significant), overlap with the high confidence FOXN1 targets in cTECs (yellow bars; Žuklys 

et al., 2016) and presence of FOXN1-H3K4me3/H3K27ac overlapping/alternative peaks around their 

TSS (blue/green/red; see also Figure 5.4). 

 

 

 

 

 

Heatmap of FOXN1 candidate targets in fetal TEPCs  



181 

 

5.2.3 Comparative analysis and insight of the highly confident 

direct candidate FOXN1 targets in newborn cTECs 

To complement the analysis in section 5.2.2 and better understand why the high 

confidence candidate direct FOXN1 targets in newborn cTECs (Žuklys et al., 2016) 

were not identified from the integrative analysis of candidate FOXN1 targets in early 

TEPCs, the unique FOXN1 targets in cTECs were analysed across the embryonic data 

series (Chapter 3, section 3.2.1).  When the 348 FOXN1 cTEC-specific targets (450 

excluding the 102 common targets) were mapped to the TEPC Developmental series 

and the Foxn1 Allelic series datasets, 12% of these genes (42/348 genes; see Table 

5.1) were not detected at all in the TEPC datasets.  Of those genes that were expressed, 

270 (see Table 5.1) did not pass the significance threshold in the differential 

expression analysis between the E10.5 and E12.5 timepoints and therefore were 

excluded from been considered as FOXN1 targets in our analysis.  These genes may 

have a different dependence on FOXN1 in the fetal and newborn cTEC populations or 

they may have been too variable among replicates in the fetal TEPC Developmental 

series and did not pass the FDR and FC defined thresholds.  An additional 22 genes 

(see Table 5.1) were not FOXN1-dependent, based on the pairwise comparison 

between Foxn1high and Foxn1low phenotypic samples from the fetal Foxn1 Allelic 

series independently of the developmental stage (for details see Chapter 3, section 

3.2.2).  Again, differential regulation or variability may explain the lack of these genes 

from our list.  A minority of 10 genes (both dependent and with a FOXN1 peak) had 

an IDR FOXN1 peak (IDR ≤ 0.05) in their distal promoter (-5kb, +3kb), however, this 

peak did not overlap with any of the histone modification marks (H3K4me3, 

H3K27ac) in fetal TEPCs; these genes are potentially regulated by a different factor 

in early development that binds to a different accessible region close to genes 

promoter, while FOXN1 could become involved in their regulation later on in 

development (newborn stage).  Lastly, 4 genes (see Table 5.1) did not have an IDR 

FOXN1 peak, based on our reanalysis of the published FOXN1-tagged ChIP-seq data.  

The reanalysis did not identify as many peaks as the ones identified by Žuklys et al., 

so it is likely that the peaks close to these genes were not identified as enriched in our 

reanalysis. 
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Table 5.1: Unique FOXN1 targets in newborn cTECs compared to targets in fetal TEPCs.  List of 

potential causes of the absence of uniquely identified FOXN1 targets in newborn cTECs from the fetal 

TEPC population.  Genes per list are mutually exclusive. 

 

Taken together, the comparative analyses presented in section 5.2.2 and 5.2.3 have 

described two major classes of genes that are directly regulated by FOXN1: a) genes 

regulated in both fetal TEPCs and newborn cTECs and b) genes regulated only in 

newborn cTECs.  Genes in category (a) could be subdivided into i) genes at which the 

FOXN1 ChIP-seq peaks from newborn cTECs overlapped with both H3K4me3 and 

H3K27ac marks from fetal TEPCs, ii) genes at which the FOXN1 ChIP-seq peaks 

from newborn cTECs overlapped only with the H3K4me3 mark from fetal TEPCs, iii) 

genes at which the FOXN1 ChIP-seq peak from newborn TECs overlapped only with 

the H3K27ac mark from fetal TEPCs and iv) genes at which the FOXN1 ChIP-seq 

peak from newborn cTECs did not overlap with either H3K4me3 or H3K27ac from 

fetal TEPCs (see Figure 5.4). 

 

5.2.4 Differential FOXN1 binding profiles in fetal TEPCs and 

newborn TECs 

To better understand the differences between the genes regulated directly by FOXN1 

in fetal TEPCs and newborn cTECs, and genes regulated directly by FOXN1 only in 

newborn cTECs, the overall signals from the ChIP-seq  FOXN1  (newborn mixed TEC 

population), H3K4me3, and H3K27ac (fetal TEPCs) datasets were plotted for 4 

Unique FOXN1 targets in cTECs ( versus TEPCs ) 

Not detected   42 / 348 

Not differentially expressed 270 / 348 

Not solely FOXN1-dependent 22 / 348 

Non-overlapping FOXN1 peak 10 / 348 

No FOXN1 peak  4 / 348 
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different clusters of regions: the FOXN1 IDR peaks that overlap with a) H3K4me3, b) 

H3K27ac, c) both H3K4me and H3K27ac marks (clusters a, b and c define common 

candidate direct FOXN1 targets in fetal TEPCs and newborn TECs) or d) none of the 

histone modification marks (cluster d defines unique candidate direct FOXN1 targets 

only in TECs, and suggest differential regulation of these genes in fetal TEPCs by 

other factors) and peak intensity for FOXN1 was compared between these groups (see 

Figure 5.6).  FOXN1 IDR peaks from newborn TECs that have no overlap with either 

of the histone modification marks (“only FOXN1”; Figure 5.6) from fetal TEPCs 

demonstrated the strongest signal intensity for FOXN1 compared to all other groups, 

suggesting stronger binding for FOXN1 in regions that are accessible in newborn 

TECs and not in fetal TEPCs.  No major differences were observed among the other 

groups for the FOXN1 dataset, suggesting similar binding intensity of FOXN1-

H3K4me3, FOXN1-H3K27ac and FOXN1-H3K4me3/H3K27ac sites, allowing 

merging these datasets together for further analysis. 
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Figure 5.6: Genomic region profile plots and heatmap clusters over the FOXN1-H3K4me3, FOXN1-

H3K27ac, FOXN1-H3K4me3-H3K27ac and FOXN1 IDR overlapping peaks for the FOXN1 and 

histone modification ChIP-seq datasets.  Total signal profiles (top section) show cumulatively 

enrichment scores for FOXN1 peaks from 1 week old TECs (FOXN1 biological replicates A and B: 

FOXN1 (A) and FOXN1 (B)), and for H3K4me3 and H3K27ac peaks from E12.5 TEPCs (H3K4me3 

biological replicates A and B; H3K4me3 (A) and H3K4me3 (B), H3K27ac biological replicate A and B; 

H3K27ac (A) and H3K27ac (B)) over regions defined by computed k-means clusters, Cluster 1: FOXN1-
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H3K4me3 (dark blue) , Cluster 2: FOXN1-H3K27ac (light blue), Cluster 3: FOXN1-H3K4me3/H3K27ac 

(green) and Cluster 4: only FOXN1 (orange) ± 2kb from the centre of the FOXN1 peak.  Heatmap plots 

(bottom section) show for each cluster the enrichment score for both FOXN1 replicates from 1 week old 

TECs (gold-black colour scale) and for both replicates of each histone modification mark from E12.5 

TEPCs: H3K4me3 and H3K27ac (green-white, blue-white and red-white colour scales respectively).  

Heatmaps have been sorted in descending order based on the mean value per cluster. 
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5.2.5 Motif discovery in regions defined by FOXN1 peaks in 

newborn TECs and histone modification marks in fetal TEPCs 

Following the differential FOXN1 binding analysis presented in section 5.2.4, I 

undertook a de novo motif discovery analysis to test if the differential peak intensity 

of FOXN1 in regions uniquely bound by FOXN1 in newborn TECs and regions bound 

by FOXN1 in newborn TECs that overlap with accessible histone modification marks 

in fetal TEPCs resulted from a different FOXN1 binding motif under the 

aforementioned regions.  FOXN1 IDR peaks in newborn TECs that did not overlap 

with the histone modification marks in fetal TEPCs were used to predict enriched 

binding motifs uniquely bound by FOXN1 in TECs, while overlapping FOXN1 IDR 

peaks in newborn TECs with either an H3K4me and/or an H3K27ac mark in fetal 

TEPCs were used to predict enriched binding motifs predicted to be bound by FOXN1 

in both fetal TEPCs and newborn TECs.  To examine the integrity of our analysis, the 

H3K4me3/H3K27ac peaks in fetal TEPCs that were not overlapping with the FOXN1 

IDR peaks in newborn TECs were used.  Since FOXN1 did not ChIP on these regions 

(even though FOXN1 is expressed already at E12.5 TEPCs and the regions are 

accessible based on the ChIP-seq analysis of the histone modification marks in the 

same TEPC population), these regions should be controlled by other direct regulators, 

therefore no FOXN1 binding motifs should be identified in the area under the histone 

modification mark.  Additionally, motif discovery analysis of the non-FOXN1-

overlapping histone modification regions could potentially identify alternative binding 

sites of FOXN1 (differential regulation in fetal mouse) or binding motifs of other 

regulators. 

Motif discovery analysis was performed using two different motif discovery tools 

(MEME-ChIP; Machanick and Bailey, 2011 and RSAT; Thomas-Chollier et al., 

2011).  MEME-ChIP uses two complementary discovery algorithms to perform ab 

initio motif discovery analysis.  These algorithms are MEME (Bailey et al., 2006) and 

DREME (Bailey, 2011). MEME uses expectation maximisation to discover 

probabilistic models of single or combined transcription factor binding motifs 

(TFBM), while DREME uses a less complex, non-probabilistic algorithm to predict 

single TF binding events.  The RSAT peak-motifs tool (Thomas-Chollier et al., 2011) 
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implements complimentary word based approaches to perform ab initio motif 

discovery analysis.  Oligo-analysis (van Helden et al., 1998) and dyad-analysis (van 

Helden et al., 2000a) algorithms discover over-represented oligonucleotides or spaced 

pairs respectively, while position-analysis (van Helden et al., 2000b) and local-word-

analysis algorithms  identify positionally biased oligonucleotides.  Previous literature 

has discussed extensively how results from different motif discovery algorithms can 

vary greatly even if they are executed with same parameters because the underlying 

method is different and has suggested using more than one algorithm to improve motif 

discovery (Tompa et al., 2005).  A recent survey focusing only on online accessible 

motif discovery tools showed that results consistent between tools are more reliable 

(Tran and Huang, 2014).  In the same study, results from MEME-ChIP and RSAT in 

a benchmarking study were found to highly overlap.  Thus, I have selected these two 

tools to use for this analysis. 

The motif discovery analysis revealed the previously identified canonical FOXN1 

binding site 5’-GACGC-3’ (Nakagawa et al., 2013; Schlake et al., 1997; Žuklys et al., 

2016) and a newly identified slightly extended FOXN1 motif with the same penta-

peptide core sequence (GACGC) under the IDR FOXN1 peaks (IDR ≤ 0.05) 

overlapping with either or both histone modification marks (H3K4me3, H3K27ac) in 

fetal TEPCs, as well as, the ones that did not overlap and uniquely defined FOXN1 

binding sites in newborn TECs.  De novo motif discovery analysis for the H3K4me3 

and H3K27ac marks in fetal TEPCs that do not overlap with the FOXN1 IDR peaks 

in newborn TECs did not identify the canonical FOXN1 motif.  In the latter case, 

accessible regions in fetal TEPCs without FOXN1 binding evidence are potentially 

controlled by other transcription factors. 

From this, I conclude that FOXN1 bound peaks in newborn TECs that overlap with 

histone modification marks in fetal TEPCs identify the very same FOXN1 motif with 

the FOXN1 bound peaks in newborn TECs that are uniquely accessible in TECs (no 

overlap with histone modification marks from fetal TEPCs).  Importantly though, a 

slight variation of the RSAT identified motif, with the adenosine in the 6th position of 

the y-axis in Table 5.2 (green “A”) to be not as conserved, could suggest that other 

regulators may bind co-operatively in some of the uniquely accessible FOXN1 regions 

in TECs and this motif could be the outcome of the averaged profiles of two different 
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existing motifs.  Therefore, differences in binding intensity between the overlapping 

and non-overlapping IDR FOXN1 peaks could be partially explained by differential 

binding of the overlapping and the non-overlapping regions.  Additionally, the lack of 

an enriched FOXN1 motif in the accessible regions of the fetal TEPCs marked by the 

histone modification marks suggests that the FOXN1 binding motif is not generally 

enriched in the accessible regions of the genome, but it is specifically located under 

the FOXN1 ChIPed peaks. 

 

 MEME RSAT 

Peaks FOXN1 motif E-value FOXN1 motif E-value 

Common 
peaks  

 

6.5e-025 

 

3.6e-08 

Unique 
FOXN1 

 

3.5e-026 

 

8.7e-31 

Unique 
H3K4me3 -
H3K27ac 

NONE - NONE - 

 

Table 5.2: De novo identification of canonical and extended FOXN1 binding motifs in the regions 

under the IDR FOXN1 peaks in newborn TECs that overlap (or not) with histone modification 

marks in fetal TEPCs.  Table depicts FOXN1-identified motifs in the regions under the FOXN1 bound 

peaks in newborn TECs that overlap with histone modification marks (H3K4me3 and H3K27ac) in fetal 

TEPCs (common peaks) and under the FOXN1 bound peaks in newborn TECs that are uniquely 

accessible in TECs (no overlap with histone modification marks in fetal TEPCs; unique FOXN1).  The 

dash (“-“) symbol is used when no similar motifs to the previously identified canonical and alternative 

FOXN1 motif are identified (regions under the histone modification marks that do not overlap with IDR 

FOXN1 peaks from newborn TECs; Unique H3K4me3-H3K27ac).  The statistical significance of the 

enrichment (E-value) assigned by the de novo motif discovery tools, MEME-ChIP and RSAT is also 

provided in the table. 
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5.2.6 Nodal points that FOXN1 regulates in fetal TEPCs during 

thymus organogenesis  

In sections 5.2.1 to 5.2.5, I have described an integrated analysis of transcriptional, 

regulatory and accessibility datasets, which identified confident candidate FOXN1 

target genes in fetal TEPCs, while FOXN1 peak and binding motif differences among 

fetal TEPCs and newborn TECs were also discussed thoroughly.  I next wished to 

investigate the molecular mechanisms that FOXN1 may regulate via its targets and 

how these may control TEPC progression. 

As described in Chapter 4 (section 4.2.1), to predict the signalling pathways that are 

enriched between the E10.5 and E12.5 TEPC developmental stages, all differentially 

expressed genes (in number 15,321) from the comparison above (analysis with limma) 

were identified and used as a ‘Pre-Ranked Gene List’ in GSEA (Subramanian et al., 

2005) against the edited ConsensusPathDB database (Kamburov et al., 2011) to predict 

biological pathways (or processes) that alter between these two developmental stages.  

Only pathways with an FDR ≤ 0.25 were considered as enriched and these were 

selected for further analysis (see Table 5.3 and Table 4.1 for pathways and Chapter 

2, section 2.3.3.6 for interpretation of the GSEA results). 

FOXN1, similar to other transcription factors, can interact with specific pathways by 

targeting their intrinsic regulators.  Since this analysis aims to identify nodal points in 

early TEPC progression directly regulated by FOXN1, I compared the genes 

contributing to the core enrichment of each pathway (Table 5.3 and Chapter 4, Table 

4.1) to the 471 high confidence candidate direct FOXN1 targets in fetal TEPCs 

identified in section 5.2.1 (see Figure 5.7) and I used the overlap of this comparison 

to select the enriched pathways that are directly regulated by FOXN1 during the 

undifferentiated (E10.5) – differentiating TEPCs (E12.5) transition.  The generated list 

of 39 candidate direct FOXN1 targets was used to group the selected pathways into 

broader biological categories (Figure 5.7, A-F gene clusters) based on the presence of 

ligands, receptors, signalling molecules or machinery subunits. 

Among the pathways in Table 5.3, the TCR SIGNALING (#10), DOWNSTREAM 

TCR SIGNALING (#13), COSTIMULATION BY THE CD28 FAMILY (#27) and T-
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CELL RECEPTOR SIGNALING PATHWAY (#51) candidates suggest increased 

activity of T-cell specific pathways in the E12.5 TEPCs, an enrichment that could 

indicate T-cell contamination.  However, a potential contamination of the RNA-seq 

samples would be difficult based on the fact that hematopoietic progenitors migrate to 

the mesenchymal capsule of the thymus around E11.5, but they are not observed 

among epithelial cells until around E12 (Itoi et al., 2001).  Moreover, even if T-cell 

precursors were present among the obtained cell population of thymic epithelial cells, 

sorting these cells for EPCAM and PLET1 should remove any non-epithelial 

cells.  Additionally, a closer look to the core enrichment genes of these pathways can 

resolve any dispute, since the involved genes are not T-cell specific genes.  On the 

contrary, they seem to be mostly ligands, receptors, transcription factors and 

intermediate molecules (H2-Aa, Prkcq, Pag1, H2-Eb1, Nfkb1, Nfkbia, Zap70, Ube2v1 

in #10; H2-Aa, Prkcq, H2-Eb1, Nfkb1, Nfkbia, Ube2v1 in #13; H2-Aa, Cd274, 

Pdcd1lg2, H2-Eb1, Map3k8, Lyn, Ptpn6, Cd80 in #27 and Prkcq, Nfatc2, Pak6, 

Nfatc1, Map3k8, Tec, Fos, Map3k14, Nfkbie, Nfkbia, Vav3, Zap70, Jun, Ptpn6, Cblc, 

Il4 in #51) that could be involved in alternative signalling pathways, however, in this 

case these genes (together) have qualified to surpass the enrichment analysis threshold 

and result in enrichment of the aforementioned pathways.  This observation highlights 

again the inefficacy of the manually curated pathways and/or the pathway enrichment 

analysis tools to accurately predict the biological reality in the different cell types 

(previously discussed in Chapter 4, section 4.2.1), since existence of T-cell specific 

genes should be required to allocate enrichment to T-cell specific pathways. 

Based on the enriched pathways between the E10.5 and the E12.5 developmental 

stages during TEPC differentiation (shown in Table 5.3) and their core enrichment 

genes that were also identified to be high-confidence FOXN1 direct targets (shown in 

Figure 5.7, I conclude that FOXN1 could directly regulate the downstream cytokine 

signalling, the antigen processing and presentation program, NF-κB and NOTCH 

signalling pathways and protein degradation (gene groups depicted in Figure 5.7).  

These pathways are discussed further in sections 5.3.1 and 5.3.2. 
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Table 5.3: List of signalling pathways whose activity increases during the developmental 

progression from E10.5 undifferentiated TEPCs to E12.5 TEPCs.  In sequence, the table provides 

name of each pathway (GS follow link to MSigDB), number of Pre-Ranked genes identified per pathway 

(size), enrichment score of each pathway (ES), enrichment score of each pathway normalised for the 

size of the pathway (NES), NOM p-val and FDR q-val (see Material and Methods for more details). 
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Figure 5.7: Heatmap of the high confidence FOXN1 target candidates that regulate enriched 

signalling pathways in fetal TEPCs.  Expression levels of the FOXN1 target candidates involved in 

signalling pathways in TEPCs are shown across the TEPC Developmental series and Foxn1 Allelic series 

datasets.  Genes (rows) have been colour-annotated based on presence of an FOXN1-H3K4me3 

overlapping/alternative peak around their TSS (green/blue; see also Figure 5.4), overlap with the high 

confidence FOXN1 targets in cTECs (yellow bars; Žuklys et al., 2016) and differential expression in TECs 

with statistical significance for an FDR ≤ 0.05 and |logFC| ≥ 0.585 (red: higher expression in cTECs, blue: 

higher expression in mTECs, grey: not differentially expressed or not statistically significant).  Genes 

were ordered and categorised in 6 groups [A-F] based on their biological role or signalling activity.  A: 

Cytokines with group subclustering into FOXN1 targets (Ccl25, Kitl), IL-7 signalling (Il7, Cish) and IFN-γ 

signalling (Ifngr1, Ifngr2, Jak2, Irf1, Stat1), B: Antigen processing and presentation programme, C: 

Degradation with group subclustering into proteasome (Psmb11, Psmb10, Psmb9) and proteases (Ctsl, 

Capn1, Capn2), D: T-cell regulation with group subclustering into NF-κB signalling (Bcl10, Nfkb1, 

Map3k14, Nfkbia, Junb) and VAV-SHB signalling, E: NOTCH signalling and F: Other. 

A 

B 

C 

D 

E 

F 

Heatmap of FOXN1 candidate targets grouped per pathway 
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5.3 DISCUSSION 

 

5.3.1 FOXN1: a potential pioneer factor 

The analysis presented in this chapter has provided further insight into the FOXN1 

binding landscape and the FOXN1 gene regulatory network in fetal TEPCs.  It has also 

highlighted the central role of FOXN1 in the establishment of the thymic system 

through comparative analysis of the FOXN1 binding landscape in newborn TECs with 

the chromatin accessibility landscape in fetal TEPCs.  The latter analysis has 

demonstrated that the binding landscapes of FOXN1 in these two developmental 

stages are highly similar, suggesting regulation of the same programmes in both early 

(fetal TEPCs) and late (newborn TECs) TEC differentiation stages.  The highly similar 

predicted landscape for FOXN1 binding in combination with known literature where 

reversion of a null allele of FOXN1 can initiate the thymic programme in nude TECs 

(Nowell et al., 2011) and where forced FOXN1 expression in an un-related population 

of cells (MEFs) converted these cells into TECs (Bredenkamp et al., 2014b) suggests 

that FOXN1 may be able to open chromatin in the regions that it binds, in order to 

apply the same regulatory programme in the above cell types.  This would be more 

obvious in the case of MEFs, since they constitute a TEC-unrelated population and 

FOXN1 would have to bind and initiate the expression of genes that are not normally 

expressed in MEFs to establish the thymic program.   

In other words, FOXN1 may be acting as a ‘pioneer’ factor: pioneer transcription 

factors can bind to specific DNA motifs, open chromatin and formulate the 

transcriptional landscape of the cells accordingly (Zaret and Carroll, 2011).   In more 

detail, FOXN1 could bind FOXN1-specific DNA sequences within “closed” 

chromatin and instruct the chromatin to remodel.  Chromatin remodelling would then 

make “hidden” DNA sequences accessible to regulatory factors (general transcription 

factors, activators, RNA polymerase II) which would bind and interact with each other 

to enable initiation of gene transcription (see also Chapter 1, section 1.5.1).  Even 

though FOXN1 has been shown to act as an activator, analysis in section 5.2.1.3 

identified 129 genes as candidate direct FOXN1 targets whose expression drops with 

increase in Foxn1 expression, demonstrating a potential repressive role for FOXN1 
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that has not been observed before (this was suggested in Chapter 3, section 3.3).  

Taking into consideration its potency as a pioneer factor, FOXN1 could cause gene 

silencing by binding alongside repressors or corepressors.  These factors could in turn 

cause local domain blanketing that would impair activator recruitment and would 

repress transcription.  Nevertheless, to verify or reject the hypothesis of FOXN1 

exhibiting pioneer factor activity, chromatin accessibility datasets in fetal TEPCs pre 

and post FOXN1 initiation would be required to identify FOXN1 regulated regions 

that are in closed formation in the absence of FOXN1 and become accessible just after 

FOXN1 is activated through FOXN1 direct binding to chromatin. 

 

5.3.2 A first-described high-confidence list of FOXN1 direct 

targets in fetal TEPCs and dynamic regulation of pathways 

The analysis described in this chapter has identified 471 candidate direct FOXN1 

target genes that are expressed in fetal TEPCs, and a “most” confident list of 102 

FOXN1 targets that have been predicted to be directly regulated by FOXN1 in both 

fetal TEPCs and newborn cTECs.  Several of the FOXN1 targets in TEPCs were also 

shown, via complimentary pathway enrichment analysis, to directly regulate a list of 

important biological pathways for thymic function.  TEPC pathways directly regulated 

by FOXN1 include downstream cytokine signalling (activation of cytokine receptors 

in TECs), the antigen processing and presentation program (AP&P programme), 

protein degradation, NF-κB signalling and NOTCH signalling.  Based on the current 

literature, most of these pathways can be interconnected through loops of 

positive/negative regulation (see below).  Additionally, the role of FOXN1 in the 

maintenance of the antigen processing and presentation programme and protein 

degradation pathways has already been demonstrated in newborn cTECs (Žuklys et 

al., 2016). 

In the next paragraphs, the FOXN1-regulated pathways are described in more detail in 

an effort to define a testable in silico FOXN1 regulatory model that acts during early 

TEPC progression. 
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5.3.3 FOXN1 drives and maintains the antigen processing and 

presentation programme via multiple mechanisms 

One of the main regulators of the antigen processing and presentation (AP&P) program 

in multiple cell types is the interferon gamma IFN-γ signalling pathway (Dong et al., 

1999; Muhlethaler-Mottet et al., 1998; Piskurich et al., 1998, 1998; Rohn et al., 1999).  

Below, I discuss the potential role of IFN-γ in FOXN1-mediated regulation of the 

AP&P pathway in TECs. 

 

5.3.3.1 General mechanism of interferon gamma signalling  

The interferon gamma signalling pathway (Figure 5.8; Reith et al., 2005) involves 

signalling via the JAK-STAT pathway (reviewed in Schroder, 2003).  IFN-γ binds to 

the IFN-γ receptor (IFN-γR; consisting of the IFNGR1 and IFNGR2 subunits).  This 

changes the conformation of the receptor, leading to auto-phosphorylation (and 

activation) of JAK2, which in turn transphosphorylates (and activates) JAK1 (Briscoe 

et al., 1996).  These events lead to the release of the STAT1 homodimer from the 

receptor (Greenlund et al., 1995).  Free STAT1 reaches the nucleus where it binds to 

gamma activated site (GAS) elements at the promoter of genes to initiate or suppress 

IFN-γ regulated gene transcription (Decker et al., 1997; Meraz et al., 1996).  Many of 

the STAT1 regulated genes are transcription factors (such as IRF1; Pine et al., 1994) 

which drive the next wave of transcription by binding to IFN-stimulated response 

elements (ISRE) at the promoter regions of target genes (Harada et al., 1989; Nelson 

et al., 1993), with IRF1 to be able to promote transcription of STAT1.  A number of 

genes involved in the IFN-γ signalling pathway, Ifngr1, Ifngr2, Jak2, Irf1, Stat1, have 

been all predicted to be candidate direct FOXN1 targets in fetal TEPCs based on the 

analysis in this chapter (section 5.2.1), indicating a very consistent regulation of the 

IFN-γ signalling by FOXN1 at multiple levels. 

With respect to the antigen processing and presentation program, IFN-γ regulates both 

constitutive and induced expression of MHC class II (MHCII) (Boehm et al., 1997), 

as described below. 
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Figure 5.8: Regulation the MHCII programme through direct binding of the interferon gamma 

activated STAT1 and IRF1 on the pIV promoter of Ciita.  The general mechanism of IFN-γ is depicted 

in upper section: IFN-γ binds to the IFN-γ receptor (IFN-γR; consisting of the IFNGR1 and IFNGR2 

subunits) and changes IFNGR1 receptor conformation (through activation of JAK1 and sequentially 

JAK2) which enables the recruitment of a STAT1 pair.  STAT1-homodimer phosphorylation releases the 

dimer from the receptor and free STAT1 reaches the nucleus where it binds to GAS elements at the 

promoter of genes and can activate or suppress IFN-γ regulated gene transcription.  IRF1 is one of the 

main targets of STAT1 that will then drive the next wave of transcription by binding to IFN-stimulated 

response elements (ISRE) at the promoter regions of target genes.  Direct binding on the pIV CIITA 

promoter is shown in lower section: IFN-γ activated STAT1 and IRF1 bind on the TEC specific promoter 

(pIV) that includes a GAS and an IRF-specific binding motif within the proximal promoter of CIITA and 

induce its transcription (reviewed in (Schroder, 2003).  Image reproduced from Reith et al., 2005. 
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5.3.3.2 MHC class II antigen presentation pathway and IFN-γ 

IFN-γ is a key regulator of the MHCII antigen processing and presentation programme 

(Schroder, 2003).  Professional antigen presenting cells (B-cells, macrophages and 

dendritic cells) and TECs are the only cell types that constitutively express MHCII 

(LeibundGut-Landmann et al., 2004), and treatment with IFN-γ can lead to further up-

regulation of the MHCII molecules in the majority of these cells.  Additionally, in cells 

that do not constitutively express MHCII, IFN-γ comprises the most potent inducer of 

MHCII expression (LeibundGut-Landmann et al., 2004). 

 

5.3.3.3 The MHC class II transactivator (CIITA) 

Typically, IFN-γ regulates expression of MHCII genes by targeting the pIV promoter 

of the class II transactivator (CIITA, see Figure 5.8).  This transactivator has been 

characterised as the “master control factor” of the MHCII antigen presentation 

programme because it can activate on its own both genes encoding classical MHCII 

molecules and those encoding accessory proteins needed for MHCII antigen 

presentation (LeibundGut-Landmann et al., 2004).  The pIV promoter contains a GAS 

element and an E-box that are bound cooperatively by STAT1 and USF-1, as well as 

an IRF1-consensus motif that is occupied by IRF1.  These elements exist within a 

300bp region and are necessary for CIITA induction in most cells (LeibundGut-

Landmann et al., 2004). 

 

5.3.3.4 CIITA and TECs 

The pIV promoter regulates expression of the MHCII molecules in TECs 

(Muhlethaler-Mottet, 1997) and it is essential for maintenance of MHCII gene 

expression in both cTECs and mTECs (Waldburger, 2003; Waldburger et al., 2001).  

pIV knockout mice (MHCII- TECs) demonstrate strong reduction of CD4+ T-cells due 

to ablation of positive selection since this process requires MHCII+ cTECs 

(Waldburger, 2003).  The same mice also showed a reduction in genes that encode 

peripheral tissue antigens in mTECs.  This process normally promotes tolerance to 

autoantigens and absence of these peripheral antigens causes autoimmunity 

(Waldburger, 2003). 
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5.3.3.5 FOXN1 consists part of the unknown mechanism that maintains 

CIITA’s expression and the MHC class II programme in the absence of IFN-γ 

signalling 

The mechanism by which IFN-γ induces CIITA and MHCII expression in TECs 

(constitutive expression of MHCII molecules) appears to differ from that operating in 

other cells that constitutively express MHCII (APCs).  Although treatment with IFN-

γ further up-regulates CIITA in TECs, loss of essential components of the IFN-γ 

signalling – including IFN-γ, IFN-γR, IRF1 and STAT1; did not alter positive selection 

of CD4+ cells, suggesting that an alternative mechanism must mediate pIV activation 

in TECs (Reith et al., 2005).  The unknown mechanism of pIV activation is believed 

to depend on signals provided by the thymic microenvironment because TECs lose 

expression of MHCII if cultured in a monolayer ex vivo, while they maintain MHCII 

expression in reaggregate thymic organ cultures (Anderson et al., 1993; Reith et al., 

2005) or in vivo.  A potential model for FOXN1-mediated regulation of MHCII is 

discussed below.  

Thymic epithelial cells seem to possess a unique mechanism for maintaining/ 

recovering the MHCII antigen presentation programme if IFN-γ signalling is 

disrupted.  FOXN1 is the master regulator of TEC differentiation, and is expressed 

only in thymic epithelial cells and keratinocytes (which do not constitutively express 

MHCII).  FOXN1 expression is also lost when TECs are cultured in a monolayer and 

this observation has suggested that its maintenance may require signals from a 

surrounding mesenchymal population, cell-cell contact and proper vasculature.  This 

suggests that FOXN1 could potentially regulate the IFN-γ independent mechanism 

that maintains MHCII antigen presentation.  Furthermore, the analysis presented above 

shows that FOXN1 can directly bind Ciita; Ciita is not expressed in E10.5 TEPCs, but 

is expressed once Foxn1 has been initiated.  Thus, FOXN1 might be responsible not 

only for maintenance of the MHCII antigen presentation program in TECs, but also 

for its initiation. 

Finally, in agreement with the role of FOXN1 in regulating the MHCII AP&P, Ctsl, 

which facilitates MHCII maturation through processing of the MCHII molecules 
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invariant chain (Honey et al., 2002; Hsieh et al., 2002), was predicted to belong in the 

high confidence candidate direct FOXN1 targets list 

Our data suggest that FOXN1 regulates the MHCII AP&P program at two levels:  by 

targeting CIITA directly and via the IFN-γ signalling pathway; since STAT1 and IRF1 

(which bind to the CIITA promoter region) are both candidate direct targets of FOXN1 

in TEPCs.  Although loss of each of these factors individually has been reported not 

to affect CD4+ thymocyte selection and therefore by extension MHCII antigen 

processing and presentation, the effect of loss of both (Irf1-/- and Stat1-/- mice) on 

activation of CIITA in TEC has not been tested. 

In conclusion, this analysis strongly suggests that FOXN1 directly activates and 

maintains the MHCII program through FOXN1-targeted IFN-γ signalling or through 

direct binding to the Ciita pIV promoter under both normal and disrupted IFN-γ 

signalling conditions. 

 

5.3.4 The FOXN1-NOTCH interplay in determining TEC 

specification 

The importance of the NOTCH signalling pathway in early TEPC differentiation has 

been extensively discussed in Chapter 4, section 4.3.4 with the NOTCH canonical 

pathway shown to play a critical role in mTEC specification.  In brief, ablation of 

NOTCH signalling (NOTCH loss-of-function; LOF) in undifferentiated E10.5 TEPCs 

(when FOXN1 is still inactive) led to a complete loss of the mTEC compartment, while 

blocking NOTCH signalling at later stages (RBPJ deletion under the control of the 

Foxn1 promoter in E12.5 TEPCs) caused a lesser reduction in the mTEC number (Liu 

et al., 2017, submitted).  On the other hand, reinforcement of NOTCH signalling by 

overexpression of NOTCH intracellular domain (NOTCH gain-of-function; NOTCH 

GOF) restricted TEC lineage differentiation (retention of PLET1 staining, Dong Liu), 

and even though cells also lacked differentiation markers (Figure 4.11), it did not lead 

to forced mTEC differentiation (Figure 4.11). 

NOTCH signalling was identified as one of the signalling pathways down-regulated 

with significance in TEPCs between E10.5 and E12.5 (section 4.2.1.2; Figure 4.1, 
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Figure 4.6) with Notch3, Dll1, Dll3, Rbpj and Msx2 genes (Figure 4.3) contributing 

to the core enrichment of the pathway.  Unlike the rest of the genes contributing to the 

pathway’s core enrichment, Rbpj was also identified as a high confidence candidate 

direct FOXN1 target in fetal TEPCs (Figure 5.7; Group E), and one of the very few 

genes to be seemingly repressed by FOXN1 up-regulation.  This finding is consistent 

with the less severe effect on mTECs of Rbpj deletion via Cre under the control of 

Foxn1 promoter (see Chapter 4, section 4.3.4), since if FOXN1 is a natural repressor 

of RBPJ, the Rbpj knockout would simply slightly amplify that effect. 

Additionally, clustering of the TEPC and TEC-specific lineage markers for NOTCH 

loss-of-function (LOF; RBPJ deletion under the control of the Foxn1 promoter in 

E12.5 TEPCs), NOTCH gain-of-function (GOF: NICD overexpression) and control 

samples presented in Chapter 4, section 4.2.3.3 (Figure 4.11) identified multiple 

cTEC markers (Ctsl, Krt8, Ly75 and Psmb11) to show a reduced expression pattern in 

the E14.5 GOF samples compared to the E14.5 controls.  Both Psmb11 and Ly75 have 

been predicted to be high confidence candidate direct FOXN1 targets in newborn 

cTECs, with Psmb11 to also be experimentally verified (via mutation of the FOXN1 

binding site analysis) as a direct FOXN1 target in cTECs (Žuklys et al., 2016).  

Additionally, Ctsl and Krt8 have been predicted as high confidence candidate direct 

FOXN1 targets in fetal TEPCs.  Taken together, these results suggest that blockage of 

the cTEC progression by NOTCH may be mediated by repression of the expression 

and/or activity of FOXN1.  Partial FOXN1 repression by NOTCH expression may 

explain how NOTCH protects the mTEC lineage from higher levels of FOXN1 

induction. 

The relationship between FOXN1 and NOTCH was further explored by Dr Kathy 

O’Neil who has generated Rosa26CAG-FL-STOP-FL-Foxn1-IRES-GFP transgenic mice 

(designated iFoxn1), which provide a model where Foxn1 overexpression can be 

induced under the control of Cre  (Bredenkamp et al., 2014b).  In particular, male 

Foxn1Cre mice were mated with female iFoxn1 mice to produce double transgenic 

litters which constitutively overexpress Foxn1 in TECs (designated TgFoxn1).  

Analysed E17.5 TgFoxn1 thymi revealed the presence of very few mTECs, and a 

highly similar phenotype with the one observed by the NOTCH LOF model (Liu et 

al., 2017, submitted).  Additionally, RT-qPCR analysis demonstrated a three-fold 
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increase in Foxn1 expression, while a two-fold reduction of Notch1 and Notch3 in 

mTECs.  Therefore, molecular interactions seem to support the phenotypic similarities 

between FOXN1 gain-of-function and NOTCH loss-of-function.  Importantly, 

analysis in this chapter has identified among the high confident candidate direct 

FOXN1 targets in fetal TEPCs, Foxn1 to also constitute a FOXN1 target itself.  Thus, 

after Foxn1 initiation, FOXN1 may be able to further boost its own expression through 

auto-regulation. 

In summary, investigation of NOTCH signalling pathway and NOTCH gain-of-

function experiments reveal cross repressive modulations between FOXN1 and 

NOTCH, suggesting a regulatory model in early TEPC differentiation, in which 

NOTCH signalling protects the emergence of the mTEC compartment during an early 

defined time-window, FOXN1 expression represses NOTCH and a FOXN1-NOTCH 

interplay determines if TEPCs will acquire the cTEC or the mTEC fate. 

 

5.3.5 A potential role for Tfap2a in the early TEPCs 

Analysis in this chapter has revealed a similar expression pattern of Rbpj with the 

transcription factor Tfap2a (Figure 5.7), with high Tfap2a expression levels to be 

associated with immature cells and Tfap2a expression drop to relate to cells 

developmental progression.  The role of TFAP2A (also commonly known as AP2) has 

not yet been investigated in the thymic epithelium.  Nevertheless, Tfap2a has been 

shown to play an important role in both the epidermis and the neural crest (NC) cell 

gene regulation.  In the epidermis, AP2 is necessary (but not sufficient) for epidermal 

gene expression (Leask et al., 1991).  Early studies have shown evidence for AP2 

protein binding directly to the proximal promoter of Keratin 14 (K14) and other 

epidermal-specific genes, however, additional binding of other transcription factors in 

a distal K14 element contributes to tissue-specific expression of K14 (Leask et al., 

1991).  Since keratins K14 and K5 have been associated with mitotically active 

keratinocytes (Nelson and Sun, 1983), and their down-regulation occurs upon further 

keratinocyte differentiation (different pairs of keratins are switched on then) (Fuchs 

and Green, 1980; Moll et al., 1982; Sun et al., 1984), it could be inferred that AP2 

expression is linked to a more immature cell phenotype. Furthermore, Wang et al. 
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(2011) reported that Tfap2a acts within the same genetic pathway with Forkhead Box 

D3 (Foxd3) during early neural crest cells development, with combined loss of these 

factors (Tfap2amob and Foxd3mos) to cause nearly complete absence of NC-derived 

tissues.  Their findings indicated that both factors are necessary for NC specification, 

but their role is still important during the earliest steps of the NC precursor cell 

development.  Taken together, the above studies suggest that Tfap2a plays a significant 

role in early progenitor cell progression, with tissue-specificity possibly determined 

by the action of other regulatory factors.  Similarly, it is possible that in the thymic 

epithelium, expression of Tfap2a is required in the early specification and development 

of TEPCs, with FOXN1 up-regulation (which belongs in the same protein family with 

FOXD3) to lead to Tfap2a down-regulation by direct binding to the Tfap2a enhancer 

region upon further developmental progression. 
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5.4 SUMMARY 

In conclusion, Chapter 5 has investigated the mechanisms via which FOXN1 

regulates early fetal thymic epithelial progenitor cell differentiation, in order to better 

understand its dynamic role in the establishment of a fully functional thymus.  

Comparative analysis of FOXN1 ChIP-seq datasets in newborn TECs with histone 

modification ChIP-seq datasets in fetal TEPCs demonstrated high similarity in the 

FOXN1 binding landscape in newborn TECs with the chromatin accessible landscape 

in fetal TEPCs.  This finding, in combination with predicted biological pathways in 

fetal TEPCs and newborn cTECs that are commonly regulated by FOXN1, suggests 

that FOXN1 may create a similar transcriptional landscape in these two different 

developmental stages in the mouse thymus.  This finding could enhance the already 

suggested (Vaidya et al., 2016) role of FOXN1 as a pioneer factor which can establish 

and maintain a FOXN1-specific thymic landscape given a chromatin substrate; 

however, further experiments would be necessary to prove the pioneer role of FOXN1.  

This model of pioneer activity could also explain how FOXN1 is able to lead the 

conversion of an unrelated cell type into TECs which are also able to support the 

development of a fully functional system. 

 

 

 

 

 

 

 

 

 



204 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Chapter 6  

 
ThymiBase 



205 

 

Chapter 6  
 

ThymiBase 

 

 

 

6.1 PRÉCIS 

The large amount of bioinformatics datasets generated and analysed during this study 

has rendered the need to store and share these data in an easy and manageable way, 

but to also allow downstream analysis and visualisation of the presented datasets that 

may assist in other ongoing research projects.  Currently, there are only two online 

databases providing expressional profiling of immune cell types:  the Gene expression 

commons (Seita et al., 2012) and the Immunological Genome Project (Immgen; Heng 

et al., 2008) databases.  The majority of the expressional information available in both 

platforms has been derived mostly from microarray experiments, with only Immgen 

providing RNA-seq profiling for 34 immune cell types, from which only one dataset 

relates to the thymic epithelium (mTEC population isolated from 6 week old C57BL/6J 

mice, sorted on CD45-Ly51loMHCIIhiEpCAMhi).  Gene expression commons uses a 

very large number (>10,000) of various microarray datasets as a common reference to 

overcome the variable sensitivities of each probeset and in that way the intrinsic bias 

in the expressional range of genes per probeset is normalised, providing reliable gene 

expression levels among the different microarray experiments (Seita et al., 2012).  

However, downstream analysis and visualisation capabilities for these microarray 

profiles is limited.  On the other hand, Immgen offers more flexibility in terms of 

downstream investigation methods (differential expression and gene correlation 

analysis) of the existent datasets, however, this functionality has been built to fit 

mostly the nature of the microarrays technology (Heng et al., 2008).  Therefore, there 

is an obvious gap in the availability of whole transcriptome profiling datasets for 

immune cell populations, in particular representative populations of the thymic stroma, 
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and a further need for appropriate subsequent analysis and normalisation of these 

RNA-seq datasets to create new hypotheses and answer different biological questions.   

In Chapter 6, I present an online database for easy access, analysis and visualisation 

of curated bioinformatics datasets of the thymus (ThymiBase).  ThymiBase currently 

consists of RNA-seq datasets which represent the global transcriptomic profiles of 

several thymic epithelia cell subsets. 
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6.2 METHODS 

ThymiBase is an interactive web application that I have built under the Shiny package 

(Chang et al., 2016) in R.  The Shiny package provides an online application 

framework that enables easy building of interactive web application with R.  The Shiny 

package also offers a “reactive” environment that automatically binds inputs and 

outputs together and in combination with the available prebuild widgets that are 

available, users can build applications that are responsive, powerful and with a delicate 

design with minimal effort.  Details on ThymiBase’s specific inputs – outputs and 

methods are described in the commented code that launches the database (available in 

the thesis electronic supplement), while the functionality of ThymiBase’s main 

components is also discussed in the Results / Discussion section below. 
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6.3 RESULTS / DISCUSSION 
 

6.3.1 A curated collection of thymic datasets 

In order to meet the needs for a data storage and analysis repository, I have generated 

a bespoke database, named ThymiBase, which is a curated, thymus-specific collection 

of next generation sequencing datasets (outline shown in Figure 6.1).   ThymiBase 

was created to accommodate the bioinformatics data generated during this PhD project 

and to provide a platform for easy access of post-analysed bioinformatics datasets to 

other researchers.  The graphical environment of this platform allows scientists with a 

basic bioinformatics knowledge to analyse and integrate already normalised RNA-seq 

data.   Because my PhD studies were part of a bigger European consortium, designated 

ThymiSTEM (www.thymistem.org), this database could also assist substantially in 

terms of data sharing across collaborative labs in the future. 

At the moment, ThymiBase consists of 7 broad RNA-seq datasets of multiple samples, 

namely, a Developmental series of fetal TEPC samples [RNA-seq data from biological 

triplicates per stage provided by Harsh Vaidya, Blackburn lab (unpublished); see 

also Chapter 2, section 2.2.1], a Foxn1 Allelic series of fetal TEPC data [RNA-seq 

data from singular biological samples provided by Stephanie Tetelin, Blackburn lab 

(unpublished); see also Chapter 2, section 2.2.1], an E12.5 RBPJ LOF series of fetal 

TEPC data, an E14.5 RBPJ LOF series of fetal TEPC data, an E14.5 RBPJ GOF series 

of fetal TEPC data [all RBPJ series were provided by Dong Liu; Blackburn lab (Liu 

et al., 2017, submitted); see also Chapter 2, section 2.2.1.3], cTEC and mTEC 

subpopulations from 1 week old (newborn) mice and mTEC subpopulations from 4 

week old (adult) mice [merged RNA-seq data from similarly sorted individual and 

biological duplicates obtained and reanalysed from GEO public repository: GEO 

accession codes GSE44945 (St-Pierre et al., 2013) and GSE53110 (Sansom et al., 

2014); for details see Chapter 2, section 2.2.1.4].  Taken together the above datasets 

are representative of several distinct thymic epithelial subpopulations in mouse and of 

different developmental stages of the thymic epithelium during mouse development 

(fetal, newborn, adult). 

http://www.thymistem.org/
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The raw sequenced files of the aforementioned datasets have been processed following 

the generic pre-analysis (described in Chapter 2, sections 2.3.1-2.3.2) and core-

analysis (described in Chapter 2, sections 2.3.3.1 and 2.3.3.2) pipelines to obtain data 

tables of normalised gene counts per dataset.  These normalised data tables can be 

further inspected using several visualisation methods or they can also be used for 

downstream types of analysis as described in section 6.3.2 below. 

.
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Figure 6.1: ThymiBase database panel.  ThymiBase’s generic preface consists of a sidebar menu (shown on the left in black background) and different main panels 

(shown always on the right in light blue background) which can be selected from the former sidebar menu.  The “Database” main panel here includes a lay summary of 

the available RNA-seq samples available in ThymiBase (listed in section 6.3.1).  Samples have been manually annotated for multiple categories (shown here in table 

header).  The experiment to which each sample belongs can be seen from the Dataset column in the table.  The normalised gene counts (data normalisation explained in 

Chapter 2, sections 2.3.3.1 and 2.3.3.2) for each of these datasets are provided in the “Gene counts per dataset” tab (shown in the purple bar).
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6.3.2 An interface to support easy reanalysis of data 

ThymiBase currently provides different types of visualisation and data analysis for 

advanced investigation of the available (or user-provided) gene expression count 

tables from RNA-seq datasets.  The current preface of ThymiBase is divided into two 

sections: a side-bar menu that allows navigation through the different panels and a 

main panel section, where the sidebar-selected main panel is displayed (Figure 6.1).  

In the sidebar menu, the user can select which main panel to be displayed from eight 

options: The thymus (AN OVERVIEW), About ThymiBase, Quick Tutorial, 

Database, Samples Inspection, Data Integration, Analysis on-the-fly, Enquiries (see 

sidebar menu in Figure 6.1).  To simplify the navigation process of the ThymiBase 

components (panels) in the sidebar menu, the Samples Inspection, Data Integration 

and Analysis on-the-fly main panels include a selection of subpanels in relevance to 

the main panel. 

Under Samples Inspection in the side-bar menu exists the “Cluster datasets” option 

(see snapshot in Figure 6.2) which enables users to visualise selected datasets as 

hierarchical clustering dendrograms, heatmaps, or Principal Component Analysis 

(PCA) plots.  The R respective functions, hclust, pheatmap and prcomp (described in 

Chapter 2, section 2.3.3.3) are executed in the background to generate the plot, when 

the user clicks the Plot/Update plot button.  The users get to choose between the 7 

broad datasets (listed in section 6.3.1) or to upload their own gene counts tables. 

The “Analysis on-the-fly” panel in the sidebar menu includes a “Differential 

Expression” and a “Pathway Enrichment” analysis subpanels that allow users to run a) 

differential expression analysis (see snapshot in Figure 6.3) to investigate significant 

differences in the expression of genes between sample groups and b) gene set 

enrichment analysis (see snapshot in Figure 6.4) to predict enriched pathways from 

comparisons between selected sample groups.  For the differential expression analysis, 

the user can choose which samples to compare from one of the provided broad datasets 

(see section 6.3.1), and the analysis executes on-the-fly with the voom function from 

the limma package (Law et al., 2014) in R which runs in the background (for more 

details on the differential expression analysis with limma voom, see Chapter 2, 

section 2.3.3.5).  For the pathway enrichment analysis, users need to upload a ranked 
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gene list file (similar to GSEA’s ranked file, Subramanian et al., 2005) and a pathways 

database file to search against and identify enriched pathways based on the provided 

ranked list.  The “edited” ConsensusPathDB file contains 2,140 biological pathways 

in mouse (Kamburov et al., 2011; see also Chapter 2, section 2.3.3.6) and is provided 

from a scroll-down menu in the main panel as a pre-set database option (Figure 6.4).  

This analysis also executes on-the-fly, with the fgsea function (Sergushichev, 2016) in 

R to run in the background when the Run GSEA button is pressed.  The fgsea function 

produces similar results to the GSEA’s ‘Run GSEAPreranked’ module analysis 

(described in Chapter 2, section 2.3.3.6). 

Importantly, although this is a curated database focused on the cell types found into 

the thymus, most (if not all) of its components, including data inspection and analysis, 

could be used independently to house and analyse for any externally provided datasets. 
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Figure 6.2: ThymiBase visualisation panel.  In the “Cluster datasets” main panel here (see legend from Figure 6.1 for ThymiBase’s generic preface), users can inspect 

the available datasets (listed in section 6.3.1) from a scroll down menu (includes user-upload option) inside the “All data” box under the “Select samples to cluster” 

subheader.  In the same box under the “Plot based on” subheader, the “Number of top variable genes to plot” can be selected to cluster the datasets based on “Gene 

variability” with the rowVars function from the genefilter package (Gentleman et al., 2017) in R.  A number of graphical representations, namely heatmaps, PCA plots or 

dendrograms (shown in the purple bar) are finally used to cluster the datasets on-the-fly using the pheatmap, hclust,or prcomp functions in R (see Chapter 2, section 

2.3.3.3). 
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Figure 6.3: ThymiBase panel for differential expression analysis.  In the “Differential expression” main panel here (see legend from Figure 6.1 for ThymiBase’s generic 

preface), users can run differential expression analysis between selected groups of samples from the available (listed in section 6.3.1) or user-uploaded datasets using 

the limma voom function (Law et al., 2014) in R which executes on-the-fly in the background (for details see Chapter 2, section 2.3.3.5).  The total table of the differentially 

expressed genes with genes log2 fold change (logFC), average log2 xpression for gene over all genes (AveExp), moderated t-statistic (t), raw p-value (P.value), adjusted 

p-value (adj.P.value; calculated by the FDR method; Benjamini and Hochberg, 1995) is displayed in the right of the main panel (for details see limma topTable function). 
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Figure 6.4: ThymiBase panel for pathway enrichment analysis.  In the “Pathways enrichment” main panel here (see legend from Figure 6.1 for ThymiBase’s generic 

preface), users can run pathway enrichment analysis (see Chapter 2, sections 2.3.3.6) by uploading a ranked gene list file and selecting the ConsesusPathDB (Kamburov 

et al., 2011) or uploading their own database in the “Datasets” box.  The fgsea function (Sergushichev, 2016) in R will run in the background on-the-fly to generate the list 

of enriched pathways based on the provided inputs.  The total pathways table with the number of genes per pathway (size), enrichment p-value (Pval), BH-adjusted p-

value (Padj; Benjamini and Hochberg, 1995), enrichment score (ES; same as in  GSEA, Subramanian et al., 2005), normalised enrichment score for the mean value of 

random samples of the same size (NES) and number of times a random gene set had a more extreme ES (nExtreme) is displayed in the right part of the main panel. 
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6.4 SUMMARY 

In a nutshell, Chapter 6 demonstrates the development of a curated database of whole 

genome transcriptome (RNA-seq) datasets related to the thymus that allows easy 

access, sharing and downstream analysis of these stored datasets.  Currently, available 

expressional profiling databases of immune cells (Gene expression commons; Seita et 

al., 2012) and Immgen; Heng et al., 2008) are limited to microarray datasets (very few 

RNA-seq datasets included in Immgen, only one related to the thymic epithelium) 

while they offer none or mostly microarray-specific downstream analysis options for 

these datasets.  Another advantage of ThymiBase is that it offers multiple data 

visualisation methods to allow more precise data inspection prior to subsequent data 

analyses.  These methods are provided through a user-friendly graphical interface 

instead of the R environment to make easier the use of these analysis methods to non-

bioinformaticians.  Additionally, all incorporated analyses in the ThymiBase platform 

for all included or user-added datasets are executed “on-the-fly” and can run almost 

instantly in a laptop.  Finally, ThymiBase is a generic tool for inspection and analysis 

of RNA-seq datasets that is thymus independent (user-added datasets) and can also be 

of great use to non-thymus specialists.  The intention is to convert this platform into a 

publicly available repository to assist other scientists in gaining further biological 

insight in the thymus field. 
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Chapter 7  
 

Concluding remarks 

 

 

 

7.1 CONCLUSIONS 

This thesis sets out to further our understanding of the transcriptional, regulatory and 

signalling networks that regulate fetal thymic epithelial cell (TEC) development, via 

in silico analyses.  In this chapter, I provide a summary of the main bioinformatics 

findings that have been presented in Chapters 3-6, accompanied by experimental data 

(provided by others as stated), when necessary, to validate or complement the 

computational predictions.  I also include a section of future work which may be 

required to solidify or validate some of these outcomes.  

 

7.1.1 A revised serial progression model of TEPCs into cortical 

and medullary TECs 

The main focus of Chapter 3 was to investigate the serial progression model 

(reviewed in Chapter 1, section 1.2.3.3) of the thymic epithelial progenitor cells 

(TEPCs) towards their functionally distinct differentiated lineages, cortical (c) and 

medullary (m) TECs, during early mouse development.  In Chapter 3, I showed that 

different maximum levels of Foxn1 in E12.5 TEPCs (from a Foxn1 Allelic series; raw 

sequence data provided by Stephanie Tetelin, Blackburn lab), effectively capture 

‘pseudo-timed’ snapshots of TEPC natural progression (TEPC Developmental series; 

raw sequence data provided by Harsh Vaidya, Blackburn lab), indicating that the 

precise expression levels of Foxn1 play a vital role in regulating TEPC identity.  Part 

of this analysis highlighted the high resemblance of the E10.5 TEPCs with the E12.5 

TEPCs, in which Foxn1 expression has been majorly blocked (E12.5 R/- and E12.5 

Nude samples).  These Foxn1-deprived samples are capable of surviving in vivo 
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indefinitely and giving rise to all TEC lineages upon Foxn1 reactivation (Jin et al., 

2014).  The highly similar transcriptional profiles of the E10.5 TEPCs with the Foxn1-

deficient samples, in combination with the high levels of PLET1 that E10.5 TEPCs 

exhibit (compared to the E12.5 TEPCs), strongly suggest that E10.5 TEPCs are more 

likely to consist a homogeneous TESC/TEPC (TEP/SC) population. 

Further comparative analysis of the E10.5 and E12.5 samples from the TEPC 

Developmental series revealed distinct patterns of expression for the differentially 

expressed genes when these genes were projected into newborn cTEC and mTEC 

representative populations (with cTECs expressing higher levels of Foxn1 compared 

to mTECs; raw sequence data obtained from GEO: GSE44945, St-Pierre et al., 2013 

and GSE53110, Sansom et al., 2014).  The above patterns were still apparent when 

only FOXN1-dependent genes were selected.  These results propose a both activatory 

and repressive role for FOXN1 in fetal TEPCs (with a repressive role for FOXN1 not 

to have been acknowledged before) and also suggest that variable levels of Foxn1 

expression per cell can lead to transcriptional heterogeneity.  Experimental data by 

O’Neill et al. (2016), showing a graded expression pattern for Foxn1 across the E13.5 

TECs, suggest that Foxn1 exhibits heterogeneous expression among the E13.5 TECs 

and hence imply that this heterogeneity may be already apparent among the E12.5 

TEPCs.  The above observation and a clonal analysis of the E12.5 TEPCs by Alison 

M. Farley (Blackburn lab), in which single E12.5 TEPCs gave rise mostly to cTECs, 

strongly suggest that E12.5 TEPCs exhibit heterogeneity, with the majority of them to 

comprise cTEC-fated progenitors.  The above evidence comes in contradiction with 

the E12 TEPC bipotency model proposed by Rossi et al. (2006), which demonstrated 

E12 TEPC bipotency at the single cell level.  However, this inconsistency can be 

explained by the drop in Foxn1 levels when TEPCs are kept in culture (Rossi et al., 

2006), from which we can argue that E12.5 TEPCs exist in a fated but transient state, 

which can be pushed back upon a reduction in Foxn1 levels. 

As indicated in the previous paragraph, the majority of the E12.5 TEPCs constitute 

cTEC-fated progenitor cells (cTEPCs).  These cTEPCs would most likely exhibit 

higher levels of Foxn1 expression, compared to other existing bipotent or mTEC-fated 

cells; undifferentiated TEPCs are characterised by low Foxn1 levels, while the cortical 

component exhibits higher Foxn1 expression compared to the medullary component.  
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The remaining cells among the E12.5 TEPCs are thus characterised by lower levels of 

Foxn1 and may constitute undifferentiated TEPCs and/or mTEC-fated progenitor cells 

(mTEPCs).  It is also possible that mTEPCs among the E12.5 TEPCs exhibit a 

transcriptional profile more similar to the profile of the E10.5 undifferentiated TEPCs 

(the bipotent progenitors).  Notably, the mTEPC population, if existent, must appear 

prior to the ClaudinhiSSEA1+ mTEC stem cell population included in the TEC serial 

progression model summarised by Takahama et al. (2017), since E10.5-E12.5 TEPCs 

do not yet express the SSEA1 marker. 

In summary, in Chapter 3, I have used in silico analysis, in conjunction with 

experimental evidence (provided as stated in the text by others, Blackburn lab), to 

demonstrate an early TEPC progression model (see Figure 3.15) which encompasses 

the existence of a common bipotent TEPC at day E10.5 of mouse development (when 

cells still exist at an undifferentiated state and express only low levels of Foxn1) and 

a more immature TEPC type and/or an mTEPC one among cTEPCs at day E12.5 of 

mouse development.  Our data in combination with the Rossi et al. paper (2006) 

suggest that the E12.5 cTEPCs or (m)TEPCs exist in a transient state, where lineage 

restriction can be amended by reduction of Foxn1 expression. 

 

7.1.2 An in silico model of the intrinsic and extrinsic cues acting 

in the early undifferentiated TEPC state: NOTCH signalling in 

mTEC specification  

In Chapter 4, I have examined the intrinsic and extrinsic signalling cues that act on 

the early undifferentiated TEPC state, through pathway enrichment analysis of the 

expressional differences between TEPCs at timepoints just prior to and after the 

establishment of the TEC differentiation programme.  In this chapter, I generated an 

unbiased in silico model that describes signalling pathway activity during fetal thymus 

development in vivo (Chapter 4, Figure 4.6), and identified candidate genes which 

could improve TEP/SC maintenance and proliferation in vitro.  The predicted 

signalling pathways from this analysis denote the complete deactivation of the SHH 

pathway, which normally protects the formation of the parathyroid, and the early 

specification of the progenitor cells towards the thymic fate.  This analysis has also 
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identified the WNT non-canonical ligand, Wnt5a, as being strongly down-regulated 

between E10.5 and E12.5 TEPCs (when cells become more differentiated), the timing 

of which is consistent with the morphological switch of TEPCs from a monolayer of 

polarised cells (E10.5) to a more complex and well-defined structure (E12.5) which 

characterises the thymic system.  The high levels of Wnt5a expression in E10.5 TEPCs 

may also reflect a potential role for WNT5A in the regulation of cells self-renewal.  

Therefore, ablation or reinforcement of WNT5A expression in the early thymic 

epithelium could reveal interesting insights regarding its biological function in vivo, 

while provision of WNT5A in TEPC culture could aid TEPC survival and expansion 

in vitro.  The signalling pathway analysis in Chapter 4 has predicted down-regulation 

of ligands that normally activate the FGF and IGF signalling pathways.  Since these 

pathways are active during early thymus development (see Chapter 1, section 1.2.4), 

absence of their ligands may represent a TEPC switch from a partially cell autonomous 

system to a system depending on extracellular provision of ligands from neighbouring 

cells (for instance from the NCC-derived mesenchyme and potentially incoming 

haematopoietic progenitor cells). 

Among the predicted pathways, this analysis has identified the NOTCH signalling 

pathway to be highly active in the early undifferentiated TEPCs.  Further 

bioinformatics analysis, accompanied by experimental validation (Dong Liu) of 

NOTCH loss-of-function data (raw sequence data provided by Dong Liu, Blackburn 

lab), has highlighted NOTCH as a potent regulator of mTEC specification in a short 

but well-defined early TEPC time window (Liu et al., 2017, submitted).  Additionally, 

the RNA-seq analysis of NOTCH gain-of-function data (raw sequence data provided 

by Dong Liu, Blackburn lab), indicated a developmental block in cTECs and a high 

expression of the PLET1 marker (related to progenitor activity of cells), suggesting 

that the transient state of TEPCs could be fine-tuned or potentially pushed back to a 

less differentiated state through altered signalling of NOTCH (Chapter 4, section 

4.2.3.3).  Collectively, the bioinformatics analyses that I present in Chapter 4, have: 

a) improved the current picture of the signalling mechanisms that govern maintenance 

and specification of TEPCs before FOXN1 orchestrates differentiation towards both 

TEC lineages, b) identified WNT5A as a potential regulator of cell polarity and 
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proliferation in early TEPCs and c) highlighted the importance of NOTCH signalling 

in early mTEC specification and TEPC maintenance. 

 

7.1.3 FOXN1: A master regulator of the thymic system and a 

potential pioneer factor 

In Chapter 5, I explored the role of the central thymus regulator, FOXN1, in TEC 

differentiation.  For this purpose, I applied an integrative analysis of FOXN1-

dependent genes in fetal TEPCs, FOXN1 binding sites in newborn TECs (raw 

sequence data obtained from GEO: GSE75219, Žuklys et al., 2016) and histone 

modification marks in fetal TEPCs (raw sequence data provided by Harsh Vaidya, 

Blackburn lab).  With this analysis, I aimed to predict high confidence candidate direct 

FOXN1 targets in fetal TEPCs.  In summary, 471 genes were predicted as candidate 

direct FOXN1 targets in fetal TEPCs.  Also, a “most” confident list of 102 genes from 

the above targets has been shown to be directly regulated by FOXN1 in both fetal 

TEPCs and newborn cTECs.  Genes involved in Cytokine signalling, the Antigen 

processing and presentation (AP&P) programme, protein degradation, NF-κB 

signalling, VAV-SHB signalling and NOTCH signalling exist among the 471 

candidates.  From these, the AP&P programme and NOTCH signalling are further 

discussed in this thesis.  With evidence of FOXN1 binding in the proximal promoters 

of Irf1, Stat1 and Ciita (genes involved in the IRF signalling), it is likely that FOXN1 

consists part of the unknown mechanism which regulates expression of the MHC class 

II AP&P programme in TECs.  FOXN1 has also been found to target genes involved 

in the NOTCH signalling pathway, which has been shown to control mTEC 

specification and TEPC maintenance in Chapter 4 (section 4.3.4); the FOXN1-

NOTCH interplay is overviewed in section 7.1.4.  

High similarity of the chromatin accessibility landscape in fetal TEPCs with the 

FOXN1 binding sites in newborn TECs, in combination with known literature (Bleul 

et al., 2006; Bredenkamp et al., 2014b), have indicated a potential pioneer role for 

FOXN1 in the thymus.  Even though FOXN1 has been shown to act as an activator, 

129 of the 471 high confidence candidate direct FOXN1 targets in fetal TEPCs were 

down-regulated with an increase in Foxn1 expression, showing that FOXN1 could also 
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directly repress these genes.  Thus, FOXN1, as a pioneer factor, could cause gene 

activation/silencing by binding nearby (co)activators/repressors, and induce or block 

the expression of proximal genes through them.  Further bioinformatics analyses and/ 

or experimental validation would be required to prove the pioneer potency of FOXN1. 

 

7.1.4 Role of the FOXN1-NOTCH interplay in fetal TEPCs and 

potential mechanisms of how it deciphers fate specification 

during TEPC progression 

The analysis presented in Chapter 4 demonstrated an important role for NOTCH 

signalling in mTEC specification and TEPC maintenance, while the analysis in 

Chapter 5 highlighted FOXN1 as a potent regulator of NOTCH in fetal TEPCs.  In 

particular, a NOTCH positive feedback loop has been shown to safeguard the mTEC 

population (Chapter 4, section 4.2.3.1), with blockage of its expression causing a 

partial or total developmental block in the emergence of mTEC expression (Chapter 

4, section 4.2.3).  Additionally, a partial block in cTEC differentiation and reduction 

of Foxn1 levels occurred (without an imposition of the mTEC fate) when NOTCH was 

overexpressed in TEPCs (Chapter 4, section 4.2.3.3), suggesting a potential role for 

NOTCH in TEPC maintenance.  FOXN1 has been predicted to down-regulate RBPJ, 

the main transcriptional mediator of NOTCH, through direct binding on the distal Rbpj 

promoter (Chapter 5, section 5.3.2), succeeding down-regulation of NOTCH 

signalling upon TEPC differentiation.  The analysis of FOXN1-tagged ChIP-seq data 

in newborn TECs (Chapter 5, section 5.3.2) also provided direct binding evidence of 

FOXN1 at the Foxn1 locus, indicating that FOXN1 could regulate its own expression.  

Notably, enforced FOXN1 expression in TEPCs (Dr Kathy O’Neil) led to a 

phenotype similar to the one observed by NOTCH ablation, demonstrating a FOXN1 

repressive role over NOTCH.  Taken together, the above findings propose an in silico 

regulatory model, in which FOXN1-NOTCH exhibit mutual repressive roles in 

configuring the balance in early fetal TEPC differentiation in mouse, with NOTCH 

permitting the emergence of mTECs, and FOXN1 promoting cTEC and mTEC 

differentiation.  The collective model of FOXN1-NOTCH interplay in early TEPC 

differentiation is summarised in Figure 7.1. 
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Figure 7.1: Model of the FOXN1-NOTCH interplay in TEPC progression.  In this model, the mutual 

repressive roles FOXN1-NOTCH, in combination with their auto-regulation (FOXN1 through direct 

binding of its own promoter, see Chapter 5, section 5.3.2; and NOTCH via a positive feedback loop 

through its targets, see Chapter 4, section 4.2.3.1), are shown to drive normal TEPC progression 

towards both TEC lineages.  NOTCH signalling has been shown to safeguard the mTEC population, with 

ablation of its expression during early thymus development causing a partial or total developmental block 

in the mTEC emergence (Chapter 4, section 4.2.3).  In an opposite fashion, enforced expression of 

FOXN1 has been experimentally demonstrated to also block mTEC progression (Dr Kathy O’Neil).  

NOTCH down-regulation with an increase in FOXN1 expression could be achieved by direct binding of 

FOXN1 on RBPJ’s distal promoter (as shown in Chapter 5, section 5.3.2).  Additionally, NOTCH 

enforced expression did not enforce mTEC fate; however, it partially blocked cTEC emergence, 

proposing a role for NOTCH in the maintenance of TEPCs.  Together, the above findings contributed to 

a FOXN1-NOTCH mutual repressive model that configures the balance in early fetal TEC regulation, 

with NOTCH permitting mTECs emergence and maintaining the TEPC state, and FOXN1 promoting 

cTEC and mTEC differentiation. 
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Despite the invaluable role that the FOXN1-NOTCH interplay exhibits in the early 

progression of TEPCs, the mechanisms by which fate specification is deciphered 

among the E10.5 TEPCs when Foxn1 expression is initiated are still unknown.  This 

section proposes two alternative versions of how TEPC specification may occur, based 

on current knowledge and the analyses presented in this thesis.  NOTCH signalling is 

well-known to be involved in the specification of highly complex biological outcomes 

(Artavanis-Tsakonas, 1999; Fortini, 2009; Lai, 2004), with NOTCH achieving its 

regulation through different modes of action, namely: lateral inhibition, fate decisions 

and inductive signalling.  Lateral inhibition is used to describe lineage specification of 

a cell among a group of equivalent cells, while the other two modes take place within 

non-equivalent cells.  Since TEPCs are likely to comprise a very homogeneous 

population prior to FOXN1 expression, I am going to explore how lateral inhibition 

could be establishing lineage-restricted fates among these bipotent progenitors.  

Similar to the well-characterised example in the embryonic neuroepithelium in 

Drosophila (see Chapter 1, section 1.4), stochastic variation (possibly driven by 

stochastic up-regulation of Foxn1) may lead to the increase of NOTCH ligands (DLL4 

is a known FOXN1 direct target), with a transcriptional positive feedback loop 

magnifying this difference (Figure 7.2, Mechanism A).  Because of their high level 

of DELTA expression, these TEPCs would not be able to express NOTCH (cis-

inhibitory interactions; Heitzler and Simpson, 1993), resulting in a salt and pepper 

pattern where the DELTA-high, signal-sender cells will differentiate into cTECs, 

while the NOTCH-high, signal-receiver cells will become mTECs.  Alternatively, 

despite E10.5 TEPC homogeneity, because NOTCH signalling receptors are already 

lowly expressed as early as E10.5 (Chapter 3), these cells could exhibit asymmetric 

expression of these receptor proteins (potentially activated by neighbouring cells), 

forcing the adjacent TEPCs to become the signal receivers (Figure 7.2, Mechanism 

B), and enable higher expression of FOXN1 in those cells, leading again to a salt and 

pepper pattern as mentioned above. 
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Figure 7.2: Potential fate decision mechanisms for the E10.5 TEP/SCs.  The figure presents two 

alternative mechanisms by which TEPC specification may be resolved within the E10.5 undifferentiated 

TEPCs.  Mechanism A illustrates the scenario in which stochastic expression of Foxn1 may increase 

the expression levels of the NOTCH ligand (DELTA) in the same cells, forcing their adjacent cells to 

become the NOTCH signal receivers and creating a salt and pepper pattern with an increase in Foxn1 

expression.  Alternatively, mechanism B proposes a model in which few of the E10.5 TEPCs already 

express NOTCH receptors (or other intermediate molecules), which have been activated by neighbouring 

cells (NOTCH ligands are not expressed yet within the thymic epithelium).  NOTCH-receiver cells would 

possibly safeguard the mTEC fate of themselves, allowing the remaining cells to reach high Foxn1 levels 

which will then up-regulate the NOTCH ligands and convert these cells into the NOTCH-sender cells 

(salt and pepper pattern).  In both scenarios of this model, the DELTA-high, signal-sender cells 

differentiate into cTECs, while the NOTCH-high, signal-receiver cells become mTECs. 
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7.1.5 ThymiBase 

In Chapter 6, I introduce the development of ThymiBase, an interactive database with 

a user-friendly graphical interface (see Figure 6.1), to provide a platform for easy 

access, analysis and integration of curated bioinformatics datasets.  This platform can 

yield further insight for other collaborative or public research groups which may put 

this information in the context of other data.  This database demonstrates an advantage 

against other currently available immune cell expressional profiling databases, 

because (unlike the other databases) it grants access to whole transcriptome expression 

datasets focused on the thymus system and also offers different analysis components 

specialised in further examining this type of data.  ThymiBase’s encapsulated analysis 

components can run on-the-fly and almost instantly on a laptop.  While this platform 

may currently focus on thymus-related data, it is not limited to this data. 
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7.2 FUTURE WORK 
 

7.2.1 Single cell RNA-seq analysis of E12.5 TEPCs 

To validate the revised serial progression model of TEPCs into cortical and medullary 

TECs proposed in Chapter 3, in which Foxn1 exhibits (a bimodal; O’Neill et al., 

2016) heterogeneous expression among the E12.5 TEPCs with a predicted rare 

mTEPC population to exist among E12.5 cTEC-fated cells, single cell (sc) RNA-seq 

data from the E12.5 TEPC population need to be generated.  These data will provide 

a per cell quantification of the Foxn1 levels in E12.5 fetal TEPCs, to confirm or 

contradict the presence of FOXN1low and FOXN1medium/high TEPCs.  Identification of a 

FOXN1low population among the E12.5 TEPCs will allow better characterisation of 

this population, to determine if indeed these cells comprise an mTEPC population 

expressing high levels of Claudins and mTEC markers or a bipotent TEPC population.  

Prediction of a unique gene signature for the potential (c/m)TEPC populations among 

the E12.5 fetal TEPCs could then be used to potentially identify the same populations 

or their derivatives in other stages during thymus development. 

 

7.2.2 Validation of FOXN1’s pioneer activity in TEPCs 

The analysis in Chapter 5 in combination with known literature (Bleul et al., 2006; 

Bredenkamp et al., 2014b) have suggested FOXN1 to demonstrate pioneer activity in 

TECs.  In order to prove FOXN1’s pioneer role in the thymus, evidence of chromatin 

“opening” events due to FOXN1 expression is necessary.  To collect this evidence, 

chromatin accessibility datasets (ChIP-seq, ATAC-seq) need to be generated from a 

TEC population prior to FOXN1 initiation (at E10.5 developmental stage; 

undifferentiated TEPCs) and after establishment of its expression (at E12.5 

developmental stage; differentiating TEPCs).  Since ChIP-seq data from histone 

modification marks obtained from E12.5 fetal TEPCs and a reference FOXN1 binding 

site dataset from newborn TECs have already been analysed in Chapter 5, generation 

of the same histone modification marks in E10.5 TEPCs would give a direct measure 

of determining whether FOXN1 bound sites in fetal TEPCs are in close formation prior 
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to FOXN1 initiation and become accessible with FOXN1 expression.  This would be 

sufficient evidence to propose that FOXN1 is acting as a pioneer factor in TECs. 

 

7.2.3 ThymiBase: additional components and ChIP-seq data 

Future plans for ThymiBase include expanding the current downstream analysis 

components of the platform to allow integration of RNA-seq datasets with a) other 

available RNA-seq datasets (through correlation to lineage-specific markers) or b) 

newly added ChIP-seq datasets (through assignment of peaks to the nearest gene) for 

identification of potential gene targets.  Integration of the available (or user-provided) 

transcriptomics datasets with other expressional datasets can be used to infer sample 

similarities or similar gene regulation across different data based on co-expression 

analysis of multiple datasets for specific markers.  Selection of lineage-specific 

markers based on prior knowledge will allow tracing the developmental and 

differentiation stages of samples, for instance, if two different datasets highly correlate 

with the same marker (e.g. an early differentiation marker).  Relying on markers 

correlation for dataset integration may also be an intelligent option when batch effect 

correction is not possible due to confounded factors of the different experiments and 

cannot be applied.  Furthermore, integration of the available (or user-provided) 

transcriptomics datasets with ChIP-seq added datasets can be used to infer regulation 

of genes based on transcription factor binding and/or chromatin accessibility. 
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