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Abstract. A novel method to improve the generalization performance
of the Minimum Classification Error (MCE) / Generalized Probabilistic
Descent (GPD) learning is proposed. The MCE/GPD learning proposed
by Juang and Katagiri in 1992 results in better recognition performance
than the maximum-likelihood (ML) based learning in various areas of
pattern recognition. Despite its superiority in recognition performance,
as well as other learning algorithms, it still suffers from the problem of
“over-fitting” to the training samples. In the present study, a regular-
ization technique has been employed to the MCE learning to overcome
this problem. Feed-forward neural networks are employed as a recogni-
tion platform to evaluate the recognition performance of the proposed
method. Recognition experiments are conducted on several sorts of data
sets.

1 Introduction

It is well-known that, theoretically, the Bayes decision rule would give the op-
timum decision that achieves the minimum classification risk if one can predict
the exact probabilistic parameters of the target categories beforehand. However,
in case of real world problems, as the number of training data for estimating the
probabilistic parameters by the maximum likelihood (ML) method is restricted,
the ML-based Bayes classifiers sometimes performs poorer recognition than the
classifiers trained by non-parametric learning scheme such as LSE (least squared
error) based neural networks and discriminant learning to minimize the recog-
nition error.

The idea of Minimum Classification Error (MCE) / Generalized Probabilistic
Descent (GPD) learning was first proposed in 1992 by Juang and Katagiri [1] to
establish a general learning scheme for minimizing classification error of arbitrary
discriminant functions. Although a number of discriminative-learning algorithms
have been proposed so far [2][3][4], the MCE learning is unique in the sense that it
is applicable to arbitrary discriminant functions that are differentiable in respect
to the parameters that are to be adapted. To be specific, it can be applied to
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discriminant functions that deal with variable record length of data like speech
recognition.

The superiority of the MCE learning to the conventional ML based learning
has been shown for various functions such as linear-discriminant functions, MLP
(multi-layer perceptron), DTW (dynamic time warping) [5] and HMM (Hidden
Markov Models) [6]. Since the MCE learning mainly tries to minimize a cost
function that corresponds to the number of classification error for a given training
dataset, the generalization perfomance is not adequate against unseen data. In
another word, over-fitting to the training data is inevitable.

In order to improve the generalization ability of the MCE learning, a regular-
ization technique, which is widely used to solve ill-posed problems[7], is employed
in this study.

This paper is divided into five sections. The next section describes the MCE
learning briefly. The third section describes the proposed algorithm of modifying
the MCE. The fourth section presents experimental results. Finally, the last
section is devoted to conclusion.

2 Minimum Classification Error Learning

Let gk(x;Λk) be a discriminant function with positive value to discriminate a
data of class Ωk from the other classes, where x = (x1, . . . , xD) and Λk denotes a
vector in D-dimensional feature space and a set of parameters of the discriminant
function, respectively. For an input vector x, if the following equation holds

gk(x;Λk) ≥ gi(x;Λi) for all i 6= k (1)

then x is classified to class Ωk.
In the framework of MCE learning, misclassification measure for class Ωk is

defined as follows

dk(x) = −gk(x;Λk) +


 1
C − 1

∑

j,j 6=k
gj(x;Λj)η




1/η

(2)

where C represents the number of classes and η is a positive constant. In an
extreme case where η goes to infinity, the misclassification measure becomes

dk(x) = −gk(x;Λk) + max
i 6=k

gi(x;Λi). (3)

Obviously dk(x) ≤ 0 in case of correct classification, and dk(x) > 0 in case of
misclassification.

Using the misclassification measure for a set of training dataX = {x1,x2, · · · ,xP },
the objective function to be minimized is defined as an empirical average cost
function as given below

L0(Λ|X) =
1
P

P∑
p=1

C∑

k=1

`(dk(xp))1(xp ∈ Ωk). (4)



Here Λ = {Λ1, Λ2, · · · , ΛC} and `(d) is a smooth loss function, for which the
following sigmoid function is typically used

`(d) =
1

1 + e−ξ(d+θ)
. (5)

1( ) in (4) is an indicator function which has value of one when the argument is
true and zero otherwise.

In order to minimize the objective function of (4), the well-known gradient
descent method can be applied and the set of parameter of each discriminant
function is adapted by the following rule:

Λ(t+1) = Λ(t) − ε∇L0(Λ(t)|X) (6)

where Λ(t) denotes the parameter set at the t-th iteration and ε denotes the
learning parameter of a positive small value.

Instead of using the parameter updating rule of (6), Juang and Katagiri
showed another updating rule called Generalized Probabilistic Descent (GPD)
which is given by

Λ(t+1) = Λ(t) − εtU∇`(dk(x)). (7)

Here U is a positive-definite matrix and εt is a small positive real number.
Compared to the updating rule of (6) that tries to minimize the empirical average
cost of (4), (7) is expected to minimize the expected cost of the following equation

L(Λ) = E[`(d(x))] =
∑

k

P (Ck)
∫
`(dk(x))p(x|Ck)dx. (8)

Here P (Ck) and p(x|Ck) are the a priori and conditional probabilities, respec-
tively. The convergence to a local minimum by the rule (7) is guaranteed when
an infinite sequence of random observation {x} are presented during training
and the conditions

∑∞
t=1 εt ←∞,

∑∞
t=1 ε

2
t <∞ are satisfied.

3 Modification of the MCE Learning

In any real-world pattern classification problems, the number of training samples
available is finite and relatively small, and the MCE/GPD learning described in
the previous section basically tries to minimize an empirical error [8]. Therefore,
the MCE learning scheme suffers from the problem of over-fitting to the training
dataset as it is with other training schemes.

In order to prevent the over-fitting effect and improve generalization per-
formance, McDermott and Katagiri [5] proposed a method to adapt the slope
parameter ξ in (5), which is expected to control the sensitivity of forming the
decision boundary against the distribution of training data. In other words, as
the parameter ξ increases, the sensitivity increases and the number of training
patterns that dominate the shape and location of the boundary becomes fewer.
In this sense, the parameter ξ influences the generalization performance of the



discriminant functions. One of the drawbacks of this approach is the relationship
between ξ and the shape of decision boundary in the feature space is not clear
because it is not the shape of decision boundary but the sharpness of the sigmoid
function of the distortion measure that ξ controls.

From the view point of generalization, the mapping function from input to
output that the recognizer tries to learn should be, in some sense, smooth. In
other words, a small change in the inputs should produce a small change in
the outputs. This assumption of smoothness as a priori knowledge is natural
in case of real-world pattern recognition problems such as character recognition
and speech recognition. Based on this assumption, we propose a new method
to improve the generalization performance of the MCE learning. Basic idea is
to utilize a regularization technique instead of the original definition. In the
framework of regularization, the new objective function L̃(Λ) has the form

L̃(Λ|X) = L0(Λ|X) + γF (Λ), (9)

where F is the penalty term for adding smoothness to the discriminant functions,
and the parameter γ controls the extent to which the penalty term F influences
the form of the solution.

Regularization has been widely applied in the field of image restoration and
neural networks. In contrast to the case specific regularizers proposed so far,
we employ the so called Tikhonov regularizers [7] for our purpose. This is due
to the fact that the MCE/GPD learning is a general learning scheme that is
applicable to any first order differentiable discriminant functions, and therefore
the regularizer should not be case specific.

The class of Tikhonov regularizers has the form

F =
1
2

R∑
r=0

∫ b

a

hr(x)
(
dry

dxr

)2

dx (10)

in which x, y denote the input, output variable, respectively, and hr(x) ≥ 0 for
r = 0, . . . , R− 1 and hR(x) > 0.

In the present study, as a simple case of the Tikhonov regularizer, we have
employed the following empirical penalty term given in [9][10], which is

F (Λ|X) =
1

2P

C∑

k=1

P∑
p=1

D∑

i=1

(
∂2gk(xp)
∂x2

pi

)2

(11)

where xp = (xn1, xn2, . . . , xnD) represents the p-th training data in D dimen-
sional space. The parameter updating rule of (6) is now

Λ(t+1) = Λ(t) − ε∇L̃(Λ(t)|X). (12)

The MCE learning algorithm based on the proposed criterion will be referred
as mMCE in the following text.



4 mMCE based Neural Networks

The modified MCE learning criterion given in (9) can be applied to arbitrary
discriminant functions that are second order differentiable in respect to the vari-
ables of the functions. In the present study, multi-layer perceptron type neural
network is employed to evaluate the performance.

For the p-th training data xp ∈ RD, let i(m)
pj and o(m)

pj be the input and output
of the j-th cell of layer m respectively. Then the input value of the j-th cell of
layer m is given by

i
(m)
pj =

nm−1∑

i=1

w
(m,m−1)
ji o

(m−1)
pi + θ

(m)
j . (13)

Here w(m,m−1)
ji is the connection weight between the j-th cell of layer m and the

i-th cell of layer m−1, θ(m)
j is a constant and nm represents the number of cells

in layer m. The output of each cell is given by

o
(m)
j = f(i(m)

j ) (14)

where f( ) is a sigmoid function of the form

f(x) =
1

1 + e−x
. (15)

In the framework of the classical error back-propagation (EBP) [11], the object
function is defined on the basis of least squared error (LSE)

Esq =
1
2

P∑
p=1

n3∑

k=1

(
tpk − o(3)

pk

)2

, (16)

in which three-layer network is assumed and tpk is the desired output (teacher)
for the k-th output cell against the p-th input xp.

On the other hand, in the proposed mMCE, the objective function is defined
as

L̃(Λ|X) =
1
P

P∑
p=1

L0p(Λ|X) + γ
1
P

P∑
p=1

n1∑

i=1

Fpi(Λ|X) (17)

where

L0p(Λ) =
n3∑

i=1

`(di(xp))1(xp ∈ Ci), (18)

Fpi(Λ) =
1
2

n3∑

k=1

(
w

(32)
kj (w(21)

ji )2f ′′(i(2)
pj )
)2

. (19)

The weight adjustment ∆w(m,m−1)
pij corresponding to ∇L̃ in (12) is

∆w
(m,m−1)
pij =

∂L0p(Λ)

∂w
(m,m−1)
ij

+ γ
∂Fp

∂w
(m,m−1)
ij

. (20)



In the output layer where m = 3,

∂L0p

∂w
(32)
kj

= `′(dk(xp))
∂dk(xn)

∂i
(3)
pk

o
(2)
pj 1(xp ∈ Ck), (21)

∂Fpi

∂w
(32)
kj

=
1
2
w

(21)
ji f ′′(i(2)

pj )Qpki (22)

where

Qpki =
n2∑

j′=1

w
(32)
kj′ w

(21)
j′i

2
f ′′(i(2)

pj′). (23)

In the hidden layer where m = 2,

∂L0p

∂w
(21)
ji

=
n3∑

k=1

(
∂Lp

∂i
(3)
pk

w
(32)
kj

)
∂`(dj(i

(2)
pj ))

∂i
(2)
pj

o
(1)
pi , (24)

∂Fpi

∂w
(21)
ji′

=
1
2

(
2δii′f ′′(i

(2)
pj )w(21)

ij + i
(1)
pi′w

(21)
ij

2 [
(1− 2f(i(2)

pj ))f ′′(i(2)
pj ) (25)

−2f ′(i(2)
pj )

2]) n3∑

k=1

w
(32)
kj Qpki.

It can be seen in the above formulation that the weight adaptation takes place
backward from the output layer to the input layer.

5 Experiments

Performance evaluation was conducted on several types of datasets in UCI ma-
chine learning repository [12] and ATR speech database [13].

In order to compare the performance of the proposed method with other
learning algorithms, the EBP based neural networks, the original MCE based
neural networks, and Bayes quadratic discriminant functions where a single
Gaussian distribution (full covariance) is assumed for each category were ap-
plied on the same datasets.

Since the MCE and mMCE learning are computationally expensive, the ini-
tial parameters used in the parameter updating rule of (6) were set to the one
obtained by the LSE based EBP learning.

Three-layer feed-forward neural networks were employed for the experiments,
the parameter γ in (9) was set to 0.01 and the slope parameter ξ in (5) was set
to 1.0.

In case where the absolute recognition performance of the recognizer is an
important topic to discuss, one has to pay careful attention in choosing the
parameters of neural networks such as the number of nodes in the hidden-layer
and learning parameters. However, since the purpose of our experiment is to
see how the proposed method improves the generalization performance of the
original MCE learning, optimization of the network architecture and learning
parameters is not very important.



Table 1. Performance comparison in two-class problems

Data set
Cancer House Sonar

# classes 2 2 2
# training data 420 265 141
# test data 279 170 67
# attributes 9 15 60

Method # hidden units 12 12 12

Bayes/ML 95.0 98.8 100.0
NN/EBP training 91.9 96.3 95.0
NN/MCE 93.6 97.4 92.9
NN/mMCE 95.0 94.3 91.5

Bayes/ML 95.7 96.4 74.6
NN/EBP testing 90.3 96.5 82.1
NN/MCE 94.3 95.3 85.1
NN/mMCE 95.7 97.7 89.6

A. Results for Two-Class Problems

Experiments were, at first, performed for two-class problems on the UCI datasets
“cancer”, “house” and “sonar”. Each dataset was divided into two groups, one
was used for training and the other was used for testing.

The experimental results (correct classification rates ([%])) are summarized
in Table 1. It can be seen that mMCE gives the best test-set performance among
the three methods for each dataset. Compared to the performance improvements
from MCE to mMCE for the training set and testing set, the improvement on the
training set is larger than that of the testing set. This certifies that the proposed
penalty term of (11) is effective for improving the generalization performance of
the recognizer.

Fig. 1 shows the learning curves of the loss function L0, the penalty function
F , and the mMCE’s total loss function L in (9). Fig. 2 shows the correct clas-
sification rates in terms of the slope parameter ξ in (5). Although ξ influences
the correct classification rate, mMCE performs better than MCE for any value
of ξ. This shows the proposed approach is more effective than the McDermott’s
approach [5] discussed in Section 3.

B. Results of Multi-Class Problems

In order to evaluate the performance on different datasets, speech database “iso-
let” (isolated alphabet letters) of the UCI repository, and “vowels” (Japanese five
vowels) made from the ATR continuous speech database “Set-B” were collected.
In the “isolet” database, the data file “isolet1+2+3+4” was used for training
and “isolet5” was used for testing. The database “vowels” was created for this
research purpose by extracting 100 samples of each vowel uttered by each subject



Fig. 1. Learning curves of the loss L0, L̃ and the penalty F in terms of training epochs
(dataset: house)

from the ATR database containing the uttered voice of six subjects. The dataset
was divided into three groups so that each group contains data of two subjects.
Among these three groups, two groups were used for training and the remaining
one was used for testing. All of the possible combinations (in this case, 3) were
employed for both training and testing.

Table 2 shows the correct classification rate for both the training and test sets.
The proposed mMCE gives better classification performance than the original
MCE for the test sets.

6 Conclusion

Improvement of generalization performance of the MCE/GPD learning is pro-
posed by employing a regularizer to the objective function to be minimized.
Since the employed regularizer is not case specific but general, apart from neu-
ral networks the proposed modified MCE (mMCE) learning can be applied to
various type of recognizers like HMM (hidden Markov models) and so on.
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Fig. 2. Classification performance for the test set “house” as a parameter of ξ
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Fig. 3. Classification performance for the test set “house” as a parapmeter of γ

Table 2. Performance comparison in multi-class problems

Data set
isolet(UCI) vowels(ATR)

# classes 26 5
# training data 6238 4000
# test data 1559 1000
# attributes 617 12

Method # hidden units 32 12

Bayes/ML - 86.3
NN/EBP training 89.0 87.3
NN/MCE 95.9 88.3
NN/mMCE 95.5 87.0

Bayes/ML - 73.0
NN/EBP testing 93.3 81.8
NN/MCE 94.8 86.4
NN/mMCE 95.3 87.8


